WorldWideScience

Sample records for pressure-induced structural phase

  1. Pressure induced structural phase transition of OsB2: First-principles calculations

    International Nuclear Information System (INIS)

    Ren Fengzhu; Wang Yuanxu; Lo, V.C.

    2010-01-01

    Orthorhombic OsB 2 was synthesized at 1000 deg. C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2 . An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3 /mmc structure (high-pressure phase) is stable for OsB 2 . We expect the phase transition can be further confirmed by the experimental work. - Abstract: Graphical Abstract Legend (TOC Figure): Table of Contents Figure Pressure induced structural phase transition from the orthorhombic structure to the hexagonal one for OsB 2 takes place under 10.8 GPa (0 K), 10.35 GPa (300, 1000 K) by the first-principles predictions.

  2. Pressure-induced structural phase transformation and superconducting properties of titanium mononitride

    Science.gov (United States)

    Li, Qian; Guo, Yanan; Zhang, Miao; Ge, Xinlei

    2018-03-01

    In this work, we have systematically performed the first-principles structure search on titanium mononitride (TiN) within Crystal Structure AnaLYsis by Particle Swarm Optimization (CALYPSO) methodology at high pressures. Here, we have confirmed a phase transition from cubic rock-salt (fcc) phase to CsCl (bcc) phase of TiN at ∼348 GPa. Further simulations reveal that the bcc phase is dynamically stable, and could be synthesized experimentally in principle. The calculated elastic anisotropy decreases with the phase transformation from fcc to bcc structure under high pressures, and the material changes from ductile to brittle simultaneously. Moreover, we found that both structures are superconductive with the superconducting critical temperature of 2-12 K.

  3. Pressure induced structural phase transition in SnS—An ab initio study

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The structural behaviour of SnS under pressure has been investigated by first principle density functional ... tural phase transition from orthorhombic type to monoclinic type structure around 17 GPa which is in good agreement with the ... is achieved by performing the electronic structure and total energy calculation ...

  4. Pressure induced structural phase transition of OsB 2: First-principles calculations

    Science.gov (United States)

    Ren, Fengzhu; Wang, Yuanxu; Lo, V. C.

    2010-04-01

    Orthorhombic OsB 2 was synthesized at 1000 °C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2. An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3/ mmc structure (high-pressure phase) is stable for OsB 2. We expect the phase transition can be further confirmed by the experimental work.

  5. Pressure Induced Phase Transformations in Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Reimanis, Ivar [Colorado School of Mines, Golden, CO (United States); Cioabanu, Cristian [Colorado School of Mines, Golden, CO (United States)

    2017-10-15

    The study of materials with unusual properties offers new insight into structure-property relations as well as promise for the design of novel composites. In this spirit, the PIs seek to (1) understand fundamental mechanical phenomena in ceramics that exhibit pressure-induced phase transitions, negative coefficient of thermal expansion (CTE), and negative compressibility, and (2) explore the effect of these phenomena on the mechanical behavior of composites designed with such ceramics. The broad and long-term goal is to learn how to utilize these unusual behaviors to obtain desired mechanical responses. While the results are expected to be widely applicable to many ceramics, most of the present focus is on silicates, as they exhibit remarkable diversity in structure and properties. Eucryptite, a lithium aluminum silicate (LiAlSiO4), is specifically targeted because it exhibits a pressure-induced phase transition at a sufficiently low pressure to be accessible during conventional materials processing. Thus, composites with eucryptite may be designed to exhibit a novel type of transformation toughening. The PIs have performed a combination of activities that encompass synthesis and processing to control structures, atomistic modeling to predict and understand structures, and characterization to study mechanical behavior. Several materials behavior discoveries were made. It was discovered that small amounts of Zn (as small as 0.1 percent by mol) reverse the sign of the coefficient of thermal expansion of beta-eucryptite from negative to slightly positive. The presence of Zn also significantly mitigates microcracking that occurs during thermal cycling of eucryptite. It is hypothesized that Zn disrupts the Li ordering in beta-eucryptite, thereby altering the thermal expansion behavior. A nanoindentation technique developed to characterize incipient plasticity was applied to examine the initial stages of the pressure induced phase transformation from beta to

  6. Pressure induced phase transition behaviour in -electron based ...

    Indian Academy of Sciences (India)

    The present review on the high pressure phase transition behaviour of ... For instance, closing of energy gaps lead to metal–insulator transitions [4], shift in energy ... systematic study of the pressure induced structural sequences has become ...

  7. Prediction of pressure induced structural phase transitions and internal mode frequency changes in solid N2+

    International Nuclear Information System (INIS)

    Etters, R.D.; Kobashi, K.; Chandrasekharan, V.

    1983-01-01

    A rhombohedral distortion of the Pm3n structure is introduced which shows that a low temperature phase transition occurs from P4 2 /mnm into the R3c calcite structure at P approx. = 19.2 kbar with a volume change of 0.125 cm 3 /mole. This transition agrees with recent Raman scattering measurements. Another transition from R3c into R3m is predicted at P approx. = 67.5 kbar, with a volume change of 0.1 cm 3 /mole. The pressure dependence of the intramolecular mode frequencies for the R3c structure is in reasonably good agreement with the two main branches observed experimentally

  8. Pressure induced structural phase transition in solid oxidizer KClO3: A first-principles study

    Science.gov (United States)

    Yedukondalu, N.; Ghule, Vikas D.; Vaitheeswaran, G.

    2013-05-01

    High pressure behavior of potassium chlorate (KClO3) has been investigated from 0 to 10 GPa by means of first principles density functional theory calculations. The calculated ground state parameters, transition pressure, and phonon frequencies using semiempirical dispersion correction scheme are in excellent agreement with experiment. It is found that KClO3 undergoes a pressure induced first order phase transition with an associated volume collapse of 6.4% from monoclinic (P21/m) → rhombohedral (R3m) structure at 2.26 GPa, which is in good accord with experimental observation. However, the transition pressure was found to underestimate (0.11 GPa) and overestimate (3.57 GPa) using local density approximation and generalized gradient approximation functionals, respectively. Mechanical stability of both the phases is explained from the calculated single crystal elastic constants. In addition, the zone center phonon frequencies have been calculated using density functional perturbation theory at ambient as well as at high pressure and the lattice modes are found to soften under pressure between 0.6 and 1.2 GPa. The present study reveals that the observed structural phase transition leads to changes in the decomposition mechanism of KClO3 which corroborates with the experimental results.

  9. Pressure induced magneto-structural phase transitions in layered RMn2X2 compounds (invited)

    International Nuclear Information System (INIS)

    Kennedy, Shane; Wang, Jianli; Campbell, Stewart; Hofmann, Michael; Dou, Shixue

    2014-01-01

    We have studied a range of pseudo-ternaries derived from the parent compound PrMn 2 Ge 2 , substituting for each constituent element with a smaller one to contract the lattice. This enables us to observe the magneto-elastic transitions that occur as the Mn-Mn nearest neighbour distance is reduced and to assess the role of Pr on the magnetism. Here, we report on the PrMn 2 Ge 2−x Si x , Pr 1−x Y x Mn 2 Ge 2 , and PrMn 2−x Fe x Ge 2 systems. The pressure produced by chemical substitution in these pseudo-ternaries is inherently non-uniform, with local pressure variations dependent on the local atomic distribution. We find that concentrated chemical substitution on the R or X site (e.g., in Pr 0.5 Y 0.5 Mn 2 Ge 2 and PrMn 2 Ge 0.8 Si 1.2 ) can produce a separation into two distinct magnetic phases, canted ferromagnetic and canted antiferromagnetic, with a commensurate phase gap in the crystalline lattice. This phase gap is a consequence of the combination of phase separation and spontaneous magnetostriction, which is positive on transition to the canted ferromagnetic phase and negative on transition to the canted antiferromagnetic phase. Our results show that co-existence of canted ferromagnetic and antiferromagnetic phases depends on chemical pressure from the rare earth and metalloid sites, on local lattice strain distributions and on applied magnetic field. We demonstrate that the effects of chemical pressure bear close resemblance to those of mechanical pressure on the parent compound

  10. Pressure-induced Td to 1T′ structural phase transition in WTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yonghui [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Chen, Xuliang, E-mail: xlchen@hmfl.ac.cn, E-mail: zryang@issp.ac.cn; Zhang, Ranran; Wang, Xuefei; An, Chao; Zhou, Ying [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Li, Nana [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); Pan, Xingchen [National Laboratory of Solid State Microstructures, College of Physics, Nanjing University, Nanjing 210093 (China); Song, Fengqi; Wang, Baigeng [National Laboratory of Solid State Microstructures, College of Physics, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Yang, Wenge [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); High Pressure Synergetic Consortium, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, IL 60439 (United States); Yang, Zhaorong, E-mail: xlchen@hmfl.ac.cn, E-mail: zryang@issp.ac.cn [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Zhang, Yuheng [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-07-15

    WTe{sub 2} is provoking immense interest owing to its extraordinary properties, such as large positive magnetoresistance, pressure-driven superconductivity and possible type-II Weyl semimetal state. Here we report results of high-pressure synchrotron X-ray diffraction (XRD), Raman and electrical transport measurements on WTe{sub 2}. Both the XRD and Raman results reveal a structural transition upon compression, starting at 6.0 GPa and completing above 15.5 GPa. We have determined that the high-pressure lattice symmetry is monoclinic 1T′ with space group of P2{sub 1}/m. This transition is related to a lateral sliding of adjacent Te-W-Te layers and results in a collapse of the unit cell volume by ∼20.5%. The structural transition also casts a pressure range with the broadened superconducting transition, where the zero resistance disappears.

  11. A theoretical study of pressure-induced phase transitions and electronic band structure of anti-A-sesquioxide type γ-Be3N2

    International Nuclear Information System (INIS)

    Paliwal, Uttam; Joshi, Kunj Bihari

    2011-01-01

    Structural parameters and electronic band structure of anti-A-sesquioxide (aAs) type γ-Be 3 N 2 are presented following the first-principles linear combination of atomic orbitals method within the framework of a posteriori density-functional theory implemented in the CRYSTAL code. Pressure-induced phase transitions among the four polymorphs α, β, cubic-γ and aAs-γ of Be 3 N 2 are examined. Enthalpy-pressure curves do not show the possibility of pressure-induced structural phase transition to the cubic-γ phase. However, α → aAs-γ and β → aAs-γ structural phase transitions are observed at 139 GPa and 93 GPa, respectively. Band structure calculations predict that aAs-γ Be 3 N 2 is an indirect semiconductor with 4.73 eV bandgap at L point. Variation of bandgap with pressure and deformation potentials are studied for the α, β and aAs-γ polymorphs. Pressure-dependent band structure calculations reveal that, within the low-pressure limit, bandgaps of β and aAs-γ increase with pressure unlike α-Be 3 N 2 .

  12. Hierarchical structures and phase nucleation and growth during pressure-induced crystallization of polypropylene containing dispersion of nanoclay: The impact on physical and mechanical properties

    International Nuclear Information System (INIS)

    Misra, R.D.K.; Yuan, Q.; Chen, J.; Yang, Y.

    2010-01-01

    The objective of this study is to describe the evolution of structure and phases during pressure-induced crystallization of polymers containing dispersion of nanoparticles, in the pressure range of 0.1-200 MPa. The model material for nanoparticles is nanoclay and the model polymer is polypropylene, which can potentially form several crystalline phases. While the phase selection in polypropylene is dictated by pressure and temperature, however, the introduction of nanoparticles alters the nucleation and growth of phases via nanoparticle interface driven evolution. To delineate and separate the effects of applied crystallization pressure from nanoparticle effects, a relative comparison is made between neat polypropylene and polypropylene containing dispersion of nanoclay under similar experimental conditions. The significant finding is that nanoclay interacts with the host polypropylene in a manner such that it alters the structural morphology of α- and γ-crystals of polypropylene. Furthermore, nanoclay promotes the formation of γ-phase at ambient pressure suggesting its role as structure and morphology director in the stabilization of the less accessible γ-phase, and with the possibility of epitaxial growth that enhances toughness. The equilibrium melting point measurements point to thermodynamic interaction between nanoclay and polypropylene, which is supported by the change in glass transition temperature. Thus, the two components, nanoclay and pressure, together provide a unique opportunity to tune hierarchical structures and phase evolution, which has significant implication on physico-chemical and mechanical properties.

  13. Pressure-induced structural phase transition and elastic properties in rare earth CeBi and LaBi

    International Nuclear Information System (INIS)

    Mankad, Venu; Gupta, Sanjay D.; Gupta, Sanjeev K.; Jha, Prafulla

    2011-01-01

    Pressure is one of the external parameters by which the interplay of the f-electrons with the normal conduction electrons may be varied. At ambient conditions the rare-earth compounds are characterized by a fixed f n configuration of atomic-like f-electrons, but the decreased lattice spacing resulting from the application of pressure eventually leads to the destabilization of the f-shell. The theoretical description of this electronic transition remains a challenge. The present study reports a comprehensive study on structural, electronic band structures, elastic and lattice dynamical properties of rare earth monopnictides CeBi and LaBi using first principles density functional calculations within the pseudopotential approximation. Both compounds possess NaCI (B1) structure at ambient pressure and transform either to CsCI or body centered tetragonal (BCT) structure. Our results concerning equilibrium lattice parameter and bulk modulus agree well with the available experimental and previous theoretical data. The volume change at the crystallographic transition is attributed to a decrease of the cerium valence or a lowering of the p-f hybridization due to the larger interatomic distances in both high pressure phases. The equation of state for rare earth bismuth compounds are calculated and compared with available experimental results. From the total energy and relative volume one can clearly see the relative stabilities of the high pressure phases of both compounds. As the primitive tetragonal phase of both compounds. As the primitive tetragonal phase can be viewed as a CsCl structure, one may think of a transition from B1 to B2. We have also calculated band structure for both phase and here we have presented for B1 case. The narrow bands originating above the Fermi level are mainly due to Ce 'f'-like states, and the major contribution to the density of states is mainly from Ce 'd'-like states. Furthermore, in high-pressure CsCI phase, there is an appreciable

  14. Structural relative stabilities and pressure-induced phase transitions for lanthanide trihydrides REH{sub 3} (RE=Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu)

    Energy Technology Data Exchange (ETDEWEB)

    Kong Bo, E-mail: kong79@yeah.net [National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900 (China); College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Zhang Lin, E-mail: zhanglinbox@263.net [National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900 (China); Chen Xiangrong [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Zeng Tixian [College of Physics and Electronic Information, China West Normal University, Nanchong 637002 (China); Cai Lingcang [National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900 (China)

    2012-06-15

    The structures, structural relative stabilities, pressure-induced phase transitions, and equations of state for lanthanide trihydrides REH{sub 3} (RE=Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu) are systematically studied using ab initio calculations under a core state model (CSM). The obtained ground-state parameters, such as lattice constants and bulk modulus, agree well with the available data. Among the P6{sub 3}/mm, P3-bar c1, and P6{sub 3}cm structures, the P6{sub 3}cm structure is found to be the most stable structure for lanthanide trihydride via the comparison of the calculated total energies. With the help of Birch-Murnaghan equation of state, the structural transitions from hexagonal to cubic for REH{sub 3} (RE=Sm, Gd, Ho, Er, and Lu) under pressure are affirmed; especially, the similar behavior of REH{sub 3} (RE= Tb, Dy, and Tm) is reasonably predicted for the first time by this means. For the transitions, the repulsive interactions of H-H atoms may play an important role in terms of the analysis of the structures in the vicinity of the theoretical phase transition.

  15. Pressure-induced Td to 1T' structural phase transition in WTe2

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yonghui; Chen, Xuliang; Li, Nana; Zhang, Ranran; Wang, Xuefei; An, Chao; Zhou, Ying; Pan, Xingchen; Song, Fengqi; Wang, Baigeng; Yang, Wenge; Yang, Zhaorong; Zhang, Yuheng (CIW); (Chinese Aca. Sci.); (CHPSTAR- China); (Nanjing)

    2016-11-21

    WTe2 is provoking immense interest owing to its extraordinary properties, such as large positive magnetoresistance, pressure-driven superconductivity and possible type-II Weyl semimetal state. Here we report results of high-pressure synchrotron X-ray diffraction (XRD), Raman and electrical transport measurements on WTe2. Both the XRD and Raman results reveal a structural transition upon compression, starting at 6.0 GPa and completing above 15.5 GPa. We have determined that the high-pressure lattice symmetry is monoclinic 1T' with space group of P21/m. This transition is related to a lateral sliding of adjacent Te-W-Te layers and results in a collapse of the unit cell volume by ~20.5%. The structural transition also casts a pressure range with the broadened superconducting transition, where the zero resistance disappears.

  16. Pressure induced reactions amongst calcium aluminate hydrate phases

    KAUST Repository

    Moon, Ju-hyuk

    2011-06-01

    The compressibilities of two AFm phases (strätlingite and calcium hemicarboaluminate hydrate) and hydrogarnet were obtained up to 5 GPa by using synchrotron high-pressure X-ray powder diffraction with a diamond anvil cell. The AFm phases show abrupt volume contraction regardless of the molecular size of the pressure-transmitting media. This volume discontinuity could be associated to a structural transition or to the movement of the weakly bound interlayer water molecules in the AFm structure. The experimental results seem to indicate that the pressure-induced dehydration is the dominant mechanism especially with hygroscopic pressure medium. The Birch-Murnaghan equation of state was used to compute the bulk modulus of the minerals. Due to the discontinuity in the pressure-volume diagram, a two stage bulk modulus of each AFm phase was calculated. The abnormal volume compressibility for the AFm phases caused a significant change to their bulk modulus. The reliability of this experiment is verified by comparing the bulk modulus of hydrogarnet with previous studies. © 2011 Elsevier Ltd. All rights reserved.

  17. Pressure-induced changes in the electronic structure of solids

    International Nuclear Information System (INIS)

    McMahan, A.K.

    1985-07-01

    A variety of high-pressure metalization and metal-semimetal transitions, crystallographic phase transitions, and equation of state and lattice vibrational anomalies are reviewed in terms of the concepts of electronic transition and pressure-induced loss of covalency. 46 refs., 10 figs

  18. Multiple pathways in pressure-induced phase transition of coesite

    Science.gov (United States)

    Liu, Wei; Wu, Xuebang; Liu, Changsong; Miranda, Caetano R.; Scandolo, Sandro

    2017-01-01

    High-pressure single-crystal X-ray diffraction method with precise control of hydrostatic conditions, typically with helium or neon as the pressure-transmitting medium, has significantly changed our view on what happens with low-density silica phases under pressure. Coesite is a prototype material for pressure-induced amorphization. However, it was found to transform into a high-pressure octahedral (HPO) phase, or coesite-II and coesite-III. Given that the pressure is believed to be hydrostatic in two recent experiments, the different transformation pathways are striking. Based on molecular dynamic simulations with an ab initio parameterized potential, we reproduced all of the above experiments in three transformation pathways, including the one leading to an HPO phase. This octahedral phase has an oxygen hcp sublattice featuring 2 × 2 zigzag octahedral edge-sharing chains, however with some broken points (i.e., point defects). It transforms into α-PbO2 phase when it is relaxed under further compression. We show that the HPO phase forms through a continuous rearrangement of the oxygen sublattice toward hcp arrangement. The high-pressure amorphous phases can be described by an fcc and hcp sublattice mixture. PMID:29162690

  19. Pressure-induced ferroelectric to antiferroelectric phase transformation in porous PZT95/5 ceramics

    International Nuclear Information System (INIS)

    Zeng, T.; Dong, X.L.; Chen, X.F.; Yao, C.H.; He, H.L.

    2007-01-01

    The hydrostatic pressure-induced ferroelectric to antiferroelectric (FE-AFE) phase transformation of PZT95/5 ceramics was investigated as a function of porosity, pore shape and pore size. FE-AFE phase transformations were more diffuse and occurred at lower hydrostatic pressures with increasing porosity. The porous PZT95/5 ceramics with spherical pores exhibited higher transformation pressures than those with irregular pores. Moreover, FE-AFE phase transformations of porous PZT95/5 ceramics with polydisperse irregular pores were more diffuse than those of porous PZT95/5 ceramics with monodisperse irregular pores. The relation between pore structure and hydrostatic pressure-induced FE-AFE transformation was established according to stress concentration theory. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Pressure-induced phase transitions in single-crystalline Cu4Bi4S9 nanoribbons

    International Nuclear Information System (INIS)

    Hu Jing-Yu; Li Jing; Zhao Qing; Shi Li-Jie; Zou Bing-Suo; Zhang Si-Jia; Zhao Hao-Fei; Zhang Qing-Hua; Yao Yuan; Zhu Ke; Liu Yu-Long; Jin Chang-Qing; Yu Ri-Cheng; Li Yan-Chun; Li Xiao-Dong; Liu Jing

    2013-01-01

    In situ angle dispersive synchrotron X-ray diffraction and Raman scattering measurements under pressure are employed to study the structural evolution of Cu 4 Bi 4 S 9 nanoribbons, which are fabricated by using a facile solvothermal method. Both experiments show that a structural phase transition occurs near 14.5 GPa, and there is a pressure-induced reversible amorphization at about 25.6 GPa. The electrical transport property of a single Cu 4 Bi 4 S 9 nanoribbon under different pressures is also investigated

  1. Pressure-induced phase transformations in L-alanine crystals

    DEFF Research Database (Denmark)

    Olsen, J. Staun; Gerward, Leif; Freire, P.T.C.

    2008-01-01

    Raman scattering and synchrotron X-ray diffraction have been used to investigate the high-pressure behavior of L-alanine. This study has confirmed a structural phase transition observed by Raman scattering at 2.3 GPa and identified it as a change from orthorhombic to tetragonal structure. Another...... phase transformation from tetragonal to monoclinic structure has been observed at about 9 GPa. From the equation of state, the zero-pressure bulk modulus and its pressure derivative have been determined as (31.5 +/- 1.4) GPa and 4.4 +/- 0.4, respectively....

  2. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    1988-12-01

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.

  3. Pressure-induced phase transformation of HfO2

    International Nuclear Information System (INIS)

    Arashi, H.

    1992-01-01

    This paper reports on the pressure dependence of the Raman spectra of HfO 2 that was measured by a micro-Raman technique using a single-crystal specimen in the pressure range from 0 to 10 GPa at room temperature. The symmetry assignment of Raman bands of the monoclinic phase was experimentally accomplished from the polarization measurements for the single crystal. With increased pressure, a phase transformation for the monoclinic phase took place at 4.3 ± 0.3 GPa. Nineteen Raman bands were observed for the high-pressure phase. The spectral structure of the Raman bands for the high-pressure phase was similar with those reported previously for ZrO 2 . The space group for the high pressure phase of HfO 2 was determined as Pbcm, which was the same as that of the high-pressure phase for ZrO 2 on the basis of the number and the spectral structure of the Raman bands

  4. A computational study of pressure-induced structural transition in ThSb

    International Nuclear Information System (INIS)

    Trinadh, Ch.U.M.; Rajagopalan, M.; Natarajan, S.

    1997-01-01

    The pressure induced phase transition from NaCl-type to CsCl-type structure in ThSb was studied using total energy calculations by tight-binding linear muffin tin orbital (TBLMTO) method within atomic sphere approximation (ASA). The density of states (DOS) at ambient pressure was compared with resonant photoemission studies (PES). The variation in interatomic distances during the transition was found to be in agreement with high pressure x-ray diffraction (HPXRD) studies. (author)

  5. Pressure induced phase transition in HfTiO4

    International Nuclear Information System (INIS)

    Mishra, A.K.; Garg, Nandini; Sharma, Surinder M.; Panneerselvam, G.

    2012-01-01

    Hafnium titanate is a low thermal expansion ceramic with a very good absorption cross section for thermal neutrons and a high refractoriness, thus making it a desirable nuclear material. At ambient conditions it crystallizes with the orthorhombic structure (space group Pbcn). The material properties of this ceramic have been studied as a function of temperature. However, apart from a lone shock study several decades ago there is no study at static high pressure on this compound. Since this ceramic is used as control rods in nuclear reactors it is important to understand its phase stability at different thermodynamic conditions. Therefore to understand the high pressure behaviour of hafnium titanate we have carried out diamond anvil cell based X-ray diffraction studies up to ∼20 GPa. The studies on this ceramic show that its structure is stable till 11 GPa. However, at ∼11.7 GPa appearance of new diffraction peaks indicate that it undergoes a structural phase transition to a low symmetry structure

  6. Ab initio molecular dynamics study of pressure-induced phase transition in ZnS

    International Nuclear Information System (INIS)

    Martinez, Israel; Durandurdu, Murat

    2006-01-01

    The pressure-induced phase transition in zinc sulfide is studied using a constant-pressure ab initio technique. The reversible phase transition from the zinc-blende structure to a rock-salt structure is successfully reproduced through the simulations. The transformation mechanism at the atomistic level is characterized and found to be due to a monoclinic modification of the simulation cell, similar to that obtained in SiC. This observation supports the universal transition state of high-pressure zinc-blende to rock-salt transition in semiconductor compounds. We also study the role of stress deviations on the transformation mechanism and find that the system follows the same transition pathway under nonhydrostatic compressions as well

  7. Pressure-induced phase transitions in acentric BaHf(BO{sub 3}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mączka, Mirosław, E-mail: m.maczka@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Szymborska-Małek, Katarzyna [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Sousa Pinheiro, Gardenia de [Departamento de Física, Universidade Federal do Piauí, Teresina, PI 64049-550 (Brazil); Cavalcante Freire, Paulo Tarso [Departamento de Fisica, Universidade Federal do Ceara, Fortaleza CE-60455-970 (Brazil); Majchrowski, Andrzej [Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warszawa (Poland)

    2015-08-15

    High-pressure Raman scattering studies revealed that BaHf(BO{sub 3}){sub 2} is more compressible than calcite-type orthoborates and calcite, aragonite or dolomite carbonates. It undergoes a first-order reversible pressure-induced phase transition in the 3.9–4.4 GPa pressure range. Second structural change is observed at 9.2 GPa. The intermediate phase is most likely trigonal. However, Raman results suggest increase in the number of distinct BO{sub 3} groups from two in the ambient pressure phase to at least three in the intermediate phase. This intermediate phase is also strongly compressible and strong pressure dependence of the lattice modes proves that the main changes under pressure occur within the layers built from BaO{sub 6} and HfO{sub 6} octahedra. The second phase transition leads most likely to lowering of the trigonal symmetry, as evidenced by significant increase of the number of observed bands. The pressure coefficients of the Raman bands of the high-pressure phase are relatively small, suggesting more dense arrangement of the metal–oxygen polyhedra and BO{sub 3} groups in this phase. It is worth noting that the high-pressure phase was not reached in the second compression experiment up to 10 GPa. This behavior can be most likely attributed to worse hydrostatic conditions of the first experiment. - Graphical abstract: Raman spectra of BaHf(BO{sub 3}){sub 2} recorded at different pressures during compression showing onset of pressure-induced phase transitions. - Highlights: • High-pressure Raman spectra were measured for BaHf(BO{sub 3}){sub 2.} • BaHf(BO{sub 3}){sub 2} undergoes a reversible first-order phase transition at 3.9–4.4 GPa into a trigonal phase. • The intermediate trigonal phase is strongly compressible second structural transformation is observed at 9.2 GPa under non-perfect hydrostatic conditions.

  8. Pressure induced reactions amongst calcium aluminate hydrate phases

    KAUST Repository

    Moon, Ju-hyuk; Oh, Jae Eun; Balonis, Magdalena; Glasser, Fredrik P.; Clark, Simon M.; Monteiro, Paulo J.M.

    2011-01-01

    The compressibilities of two AFm phases (strätlingite and calcium hemicarboaluminate hydrate) and hydrogarnet were obtained up to 5 GPa by using synchrotron high-pressure X-ray powder diffraction with a diamond anvil cell. The AFm phases show abrupt

  9. Pressure-induced phase transitions in nanocrystalline ReO3

    International Nuclear Information System (INIS)

    Biswas, Kanishka; Muthu, D V S; Sood, A K; Kruger, M B; Chen, B; Rao, C N R

    2007-01-01

    Pressure-induced phase transitions in the nanocrystals of ReO 3 with an average diameter of ∼12 nm have been investigated in detail by using synchrotron x-ray diffraction and the results compared with the literature data of bulk samples of ReO 3 . The study shows that the ambient-pressure cubic I phase (space group Pm3-barm) transforms to a monoclinic phase (space group C 2/c), then to a rhombohedral I phase (space group R3-barc), and finally to another rhombohedral phase (rhombohedral II, space group R3-barc) with increasing pressure over the 0.0-20.3 GPa range. The cubic I to monoclinic transition is associated with the largest volume change (∼5%), indicative of a reconstructive transition. The transition pressures are generally lower than those known for bulk ReO 3 . The cubic II (Im3-bar) or tetragonal (P4/mbm) phases do not occur at lower pressures. The nanocrystals are found to be more compressible than bulk ReO 3 . On decompression to ambient pressure, the structure does not revert back to the cubic I structure

  10. Pressure-induced phase transition of 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6

    Science.gov (United States)

    Takekiyo, Takahiro; Hatano, Naohiro; Imai, Yusuke; Abe, Hiroshi; Yoshimura, Yukihiro

    2011-03-01

    We have investigated the pressure-induced Raman spectral change of 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) using Raman spectroscopy. The relative Raman intensity at 590 cm-1 of the CH2 rocking band assigned to the gauche conformer of the NCCC dihedral angle of the butyl group in the [bmim]+ cation increases when the pressure-induced liquid-crystalline phase transition occurs, while that at 610 cm-1 assigned to the trans conformer decreases. Our results show that the high-pressure phase transition of [bmim][PF6] causes the increase of the gauche conformer of the [bmim]+ cation.

  11. Hydrostatic-pressure induced phase transition of phonons in single-walled nanotubes

    International Nuclear Information System (INIS)

    Feng Peng; Meng Qingchao

    2009-01-01

    We study the effect of the hydrostatic pressure on the phonons in single-walled carbon nanotubes (SWNTs) in a magnetic field. We calculate the magnetic moments of the phonons using a functional integral technique, and find that the phonons in SWNTs undergo a pressure-induced phase transition from the paramagnetic phase to the diamagnetic phase under hydrostatic pressure 2 GPa. We explain the mechanism of generating this phase transition.

  12. Pressure-induced irreversible metallization accompanying the phase transitions in S b2S3

    Science.gov (United States)

    Dai, Lidong; Liu, Kaixiang; Li, Heping; Wu, Lei; Hu, Haiying; Zhuang, Yukai; Yang, Linfei; Pu, Chang; Liu, Pengfei

    2018-01-01

    We have revealed S b2S3 to have two phase transitions and to undergo metallization using a diamond anvil cell at around 5.0, 15.0, and 34.0 GPa, respectively. These results were obtained on the basis of high-pressure Raman spectroscopy, temperature-dependent conductivity measurements, atomic force microscopy, high-resolution transmission electron microscopy, and first-principles calculations. The first phase transition at ˜5.0 GPa is an isostructural phase transition, which is manifested in noticeable changes in five Raman-active modes and the slope of the conductivity because of a change in the electronic structure. The second pressure-induced phase transition was characterized by a discontinuous change in the slope of conductivity and a new low-intensity Raman mode at ˜15.0 GPa . Furthermore, a semiconductor-to-metal transition was found at ˜34.0 GPa , which was accompanied by irreversible metallization, and it could be attributed to the permanently plastic deformation of the interlayer spacing. This high-pressure behavior of S b2S3 will help us to understand the universal crystal structure evolution and electrical characteristics for A2B3 -type compounds, and to facilitate their application in electronic devices.

  13. Pressure-induced phase transition in KxFe2-yS2

    International Nuclear Information System (INIS)

    Tsuchiya, Yuu; Ikeda, Shugo; Kobayashi, Hisao; Zhang, Xiao-Wei; Kishimoto, Shunji; Kikegawa, Takumi; Hirao, Naohisa; Kawaguchi, Saori I.; Ohishi, Yasuo

    2017-01-01

    The structural and electronic properties of high-quality K 0.66(6) Fe 1.75(10) S 2 single crystals have been investigated by angle-resolved X-ray diffraction and 57 Fe nuclear forward scattering using synchrotron radiation under pressure at room temperature. The samples exhibit phase separation into antiferromagnetic ordered K 2 Fe 4 S 5 and nonmagnetic K x Fe 2 S 2 phases. It was found that a pressure-induced phase transition occurs at p c = 5.9(4) GPa with simultaneous suppression of the antiferromagnetic and Fe vacancy orders. >From the results of 57 Fe nuclear forward scattering, the refined magnetic hyperfine field remains unchanged with pressure below p c , suggesting that the Néel temperature does not decrease with pressure up to p c . Above p c , all Fe atoms in K 0.66 Fe 1.75 S 2 are in the same nonmagnetic state. A discontinuous increase in the center shift was observed at p c , reflecting a change in the Fe electronic state in K 0.66 Fe 1.75 S 2 . (author)

  14. Pressure-induced phase transitions in silicon studied by neural network-based metadynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Behler, Joerg [Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Lugano (Switzerland); Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Martonak, Roman [Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Lugano (Switzerland); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F2, 84248 Bratislava (Slovakia); Donadio, Davide [Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Lugano (Switzerland); Department of Chemistry, UC Davis, One Shields Ave., Davis, CA 95616 (United States); Parrinello, Michele [Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Lugano (Switzerland)

    2008-12-15

    We present a combination of the metadynamics method for the investigation of pressure-induced phase transitions in solids with a neural network representation of high-dimensional density-functional theory (DFT) potential-energy surfaces. In a recent illustration of the method for the complex high-pressure phase diagram of silicon[Behler et al., Phys. Rev. Lett. 100, 185501 (2008)] we have shown that the full sequence of phases can be reconstructed by a series of subsequent simulations. In the present paper we give a detailed account of the underlying methodology and discuss the scope and limitations of the approach, which promises to be a valuable tool for the investigation of a variety of inorganic materials. The method is several orders of magnitude faster than a direct coupling of metadynamics with electronic structure calculations, while the accuracy is essentially maintained, thus providing access to extended simulations of large systems. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Pressure-induced phase transitions of multiferroic BiFeO3

    OpenAIRE

    XiaoLi, Zhang; Ye, Wu; Qian, Zhang; JunCai, Dong; Xiang, Wu; Jing, Liu; ZiYu, Wu; DongLiang, Chen

    2013-01-01

    Pressure-induced phase transitions of multiferroic BiFeO3 have been investigated using synchrotron radiation X-ray diffraction with diamond anvil cell technique at room temperature. Present experimental data clearly show that rhombohedral (R3c) phase of BiFeO3 first transforms to monoclinic (C2/m) phase at 7 GPa, then to orthorhombic (Pnma) phase at 11 GPa, which is consistent with recent theoretical ab initio calculation. However, we observe another peak at 2{\\theta}=7{\\deg} in the pressure ...

  16. Pressure-Induced Polymerization of Acetylene: Structure-Directed Stereoselectivity and a Possible Route to Graphane.

    Science.gov (United States)

    Sun, Jiangman; Dong, Xiao; Wang, Yajie; Li, Kuo; Zheng, Haiyan; Wang, Lijuan; Cody, George D; Tulk, Christopher A; Molaison, Jamie J; Lin, Xiaohuan; Meng, Yufei; Jin, Changqing; Mao, Ho-Kwang

    2017-06-01

    Geometric isomerism in polyacetylene is a basic concept in chemistry textbooks. Polymerization to cis-isomer is kinetically preferred at low temperature, not only in the classic catalytic reaction in solution but also, unexpectedly, in the crystalline phase when it is driven by external pressure without a catalyst. Until now, no perfect reaction route has been proposed for this pressure-induced polymerization. Using in situ neutron diffraction and meta-dynamic simulation, we discovered that under high pressure, acetylene molecules react along a specific crystallographic direction that is perpendicular to those previously proposed. Following this route produces a pure cis-isomer and more surprisingly, predicts that graphane is the final product. Experimentally, polycyclic polymers with a layered structure were identified in the recovered product by solid-state nuclear magnetic resonance and neutron pair distribution functions, which indicates the possibility of synthesizing graphane under high pressure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Pressure-induced phase transitions of multiferroic BiFeO3

    International Nuclear Information System (INIS)

    Zhang Xiaoli; Dong Juncai; Liu Jing; Chen Dongliang; Wu Ye; Zhang Qian; Wu Xiang; Wu Ziyu

    2013-01-01

    Pressure-induced phase transitions of multiferroic BiFeO 3 have been investigated using synchrotron radiation X-ray diffraction with diamond anvil cell technique at room temperature. Present experimental data clearly show that rhombohedral (R3c) phase of BiFeO 3 first transforms to monoclinic (C2/m) phase at 7 GPa, then to orthorhombic (Pnma) phase at 11 GPa, which is consistent with recent theoretical ab initio calculation. However, we observe another peak at 2θ=7° in the pressure range of 5-7 GPa that has not been reported previously. Further analysis reveals that this reflection peak is attributed to the orthorhombic (Pbam) phase, indicating the coexistence of monoclinic phase with orthorhombic phase in low pressure range. (authors)

  18. Pressure-induced structural change in liquid GaIn eutectic alloy

    DEFF Research Database (Denmark)

    Yu, Q.; Ahmad, A. S.; Ståhl, Kenny

    2017-01-01

    Synchrotron x-ray diffraction reveals a pressure induced crystallization at about 3.4 GPa and a polymorphic transition near 10.3 GPa when compressed a liquid GaIn eutectic alloy up to ~13 GPa at room temperature in a diamond anvil cell. Upon decompression, the high pressure crystalline phase...

  19. Pressure-induced crystallization and phase transformation of amorphous selenium: Raman spectroscopy and x-ray diffraction studies

    International Nuclear Information System (INIS)

    Yang Kaifeng; Cui Qiliang; Hou Yuanyuan; Liu Bingbing; Zhou Qiang; Hu Jingzhu; Mao, H-K; Zou Guangtian

    2007-01-01

    High-pressure Raman spectroscopy studies have been carried out on amorphous Se (a-Se) at room temperature in a diamond anvil cell with an 830 nm exciting line. Raman evidence for the pressure-induced crystallization of a-Se and the coexistence of the unknown high-pressure phase with the hexagonal phase is presented for the first time. Further experimental proof of high-pressure angle-dispersive x-ray diffraction studies for a-Se indicates that the unknown high-pressure phase is also a mixture phase of the tetragonal I4 1 /acd and Se IV structure. Our Raman and x-ray diffraction results suggest that hexagonal Se I undergoes a direct transition to triclinic Se III at about 19 GPa, which is in good agreement with the theoretical prediction

  20. Pressure-induced change of the electronic state in the tetragonal phase of CaFe2As2

    International Nuclear Information System (INIS)

    Sakaguchi, Yui; Ikeda, Shugo; Kuse, Tetsuji; Kobayashi, Hisao

    2014-01-01

    We have investigated the electronic states of single-crystal CaFe 2 As 2 under hydrostatic pressure using 57 Fe Mössbauer spectroscopy and magnetization measurements. The center shift and the quadrupole splitting were refined from observed 57 Fe Mössbauer spectra using the single-crystalline sample under pressure at room temperature. A discontinuous decrease in the pressure dependence of the refined center shift was observed at 0.33 GPa without any anomaly in the pressure dependence of the refined quadrupole splitting, indicating a purely electronic state change in CaFe 2 As 2 with a tetragonal structure. Such a change is shown to be reflected in the peak-like anomalies observed in the pressure dependences of the magnetic susceptibility at 0.26 GPa above 150 K. Our results reveal that this pressure-induced electronic state change suppresses the tetragonal-to-orthorhombic structural phase transition accompanied by an antiferromagnetic ordering. We further observed superconductivity in CaFe 2 As 2 below ∼8 K around 0.33 GPa although our sample was not in a single phase at this pressure. These findings suggest that the electronic state change observed in CaFe 2 As 2 with the tetragonal structure is relevant to the appearance of the pressure-induced superconductivity in AFe 2 As 2 . (paper)

  1. Pressure-induced phase transitions and templating effect in three-dimensional organic-inorganic hybrid perovskites

    Science.gov (United States)

    Lee, Yongjae; Mitzi, David; Barnes, Paris; Vogt, Thomas

    2003-07-01

    Pressure-induced structural changes of conducting halide perovskites (CH3NH3)SnI3, (CH3NH3)0.5(NH2CH=NH2)0.5SnI3, and (NH2CH=NH2)SnI3, have been investigated using synchrotron x-ray powder diffraction. In contrast to low-temperature structural changes, no evidence of an increased ordering of the organic cations was observed under pressure. Instead, increase in pressure results first in a ReO3-type doubling of the primitive cubic unit cell, followed by a symmetry distortion, and a subsequent amorphization above 4 GPa. This process is reversible and points towards a pressure-induced templating role of the organic cation. Bulk compressions are continuous across the phase boundaries. The compressibilities identify these hybrids as the most compressible perovskite system ever reported. However, the Sn-I bond compressibility in (CH3NH3)SnI3 shows a discontinuity within the supercell phase. This is possibly due to an electronic localization.

  2. Pressure-induced decoupling of the order-disorder and displacive contributions to the phase transition in diguanidinium tetrachlorostannate

    DEFF Research Database (Denmark)

    Szafranski, M.; Ståhl, Kenny

    2000-01-01

    The crystals of diguanidinium tetrachlorostannate [C(NH2)(3)](2)(+).SnCl4-2, were studied by single-crystal x-ray diffraction at various temperatures and by calorimetric and dielectric measurements at ambient and high hydrostatic pressures. At room temperature the crystal structure is orthorhombic......) cations. At ambient pressure the crystals undergo two first-order phase transitions at 354.8 and 395.4 K. The former, between two orthorhombic phases (Pbca --> Cmca), is characterized by antiphase displacement of the double sheets along the b direction of the low-temperature unit cell which is coupled...... to dynamical disordering of G(2) and transformation of its hydrogen bonding scheme. At elevated pressures the coupling between the displacive and order-disorder contributions is modified and its breaking near a triple point at 180 MPa and 270 K results in a pressure-induced phase observed between Pbca and Cmca...

  3. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure

    Science.gov (United States)

    Spaulding, Dylan K.; Weck, Gunnar; Loubeyre, Paul; Datchi, Fréderic; Dumas, Paul; Hanfland, Michael

    2014-12-01

    New topochemistry in simple molecular systems can be explored at high pressure. Here we examine the binary nitrogen/hydrogen system using Raman spectroscopy, synchrotron X-ray diffraction, synchrotron infrared microspectroscopy and visual observation. We find a eutectic-type binary phase diagram with two stable high-pressure van der Waals compounds, which we identify as (N2)6(H2)7 and N2(H2)2. The former represents a new type of van der Waals host-guest compound in which hydrogen molecules are contained within channels in a nitrogen lattice. This compound shows evidence for a gradual, pressure-induced change in bonding from van der Waals to ionic interactions near 50 GPa, forming an amorphous dinitrogen network containing ionized ammonia in a room-temperature analogue of the Haber-Bosch process. Hydrazine is recovered on decompression. The nitrogen-hydrogen system demonstrates the potential for new pressure-driven chemistry in high-pressure structures and the promise of tailoring molecular interactions for materials synthesis.

  4. Pressure-induced drastic structural change in liquid CdTe

    International Nuclear Information System (INIS)

    Kinoshita, T.; Hattori, T.; Narushima, T.; Tsuji, K.

    2005-01-01

    We investigate the structure of liquid CdTe at pressures up to 6 GPa by synchrotron x-ray diffraction. The structure factor, S(Q), and the pair distribution function, g(r), change drastically within a small pressure interval of about 1 GPa (between 1.8 and 3 GPa). The S(Q),g(r), and other structural parameters, such as the average coordination number, CN, and the ratios of peak positions in S(Q) or g(r), reveal that the change originates from the pressure-induced modification in the local structure from the zinc-blende-like form into the rocksaltlike one. The liquid CdTe shows a high-pressure behavior similar to that in the crystalline counterpart in terms of the sharpness of the structural change and the high-pressure sequence in the local structure

  5. Pressure-induced structural, magnetic and transport transitions in Sr2FeO3 from first-principles

    Directory of Open Access Journals (Sweden)

    Ting Jia

    2017-05-01

    Full Text Available The serial system Srn+1FenO2n+1(n=1,2,3… with the FeO4 square planar motif exhibits abundant phase transitions under pressure. In this work, we investigate the pressure-induced structural, magnetic and transport transitions in Sr2FeO3 from first-principles. Our results show that the system undergoes a structural transition from Immm to Ammm when the volume decreases by 30%, together with a spin-state transition (SST from high-spin (S = 2 to intermediate-spin (S = 1, an antiferromagnetic-to-ferromagnetic transition and an insulator-to-metal transition (IMT. Besides, the IMT here is a bandwidth controlled transition, but little influenced by the SST.

  6. Pressure-induced structural change from hexagonal to fcc metal lattice in scandium trihydride

    International Nuclear Information System (INIS)

    Ohmura, A.; Machida, A.; Watanuki, T.; Aoki, K.; Nakano, S.; Takemura, K.

    2007-01-01

    We synthesized scandium hydrides by hydrogenation of a scandium foil with hydrogen fluid under high pressure at ambient temperature. Scandium dihydride (ScH 2 ) and trihydride (ScH 3 ) were prepared near 4 and 5 GPa, respectively. The hydrogenation process and pressure-induced structural changes in ScH 3 were investigated by synchrotron radiation X-ray diffraction measurements up to 54.7 GPa. A structural transition from hexagonal to the fcc lattice began at 30 GPa and was completed at 46 GPa via an intermediate state similar to those reported for other hexagonal trihydrides. The intermediate state was not interpreted in terms of a coexisting state for the low-pressure hexagonal and the high-pressure fcc structures. The onset transition pressure of ScH 3 supported the previously proposed relation that the hexagonal-fcc transition pressure is inversely proportional to the ionic radius of the trihydride

  7. Structural response in FeCl2 (iron chloride) to pressure-induced electro-magnetic transitions

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R D [Los Alamos National Laboratory; Rozenberg, G Kh [TEL AVIV UNIV; Pasternak, M P [TEL AVIV UNIV; Gorodetsky, P [TEL AVIV UNIV; Xu, W M [TEL AVIV UNIV; Dubrovinsky, L S [UNIV OF BAYREUTH; Le Bihan, T L [FRANCE

    2009-01-01

    High pressure (HP) synchrotron x-ray diffraction studies were carried out in FeCl{sub 2} together with resistivity (R) studies, at various temperatures and pressures to 65 GPa using diamond anvil cells. This work follows a previous HP {sup 57}Fe Mossbauer study in which two pressure-induced (PI) electronic transitions were found interpreted as: (i) quenching of the orbital-term contribution to the hyperfine field concurring with a tilting of the magnetic moment by 55 degrees and (ii) collapse of the magnetism concurring with a sharp decrease of the isomer shift (IS). The R(P,T) studies affirm that the cause the collapse of the magnetism is a PI p-d correlation breakdown, leading to an insulator-metal transition at {approx}45 GPa and is not due to a spi-Ir,crossover (S=2 {yields} S=0). The structure response to the pressure evolution of the two electronic phase transitions starting at low pressures (LP), through an intermediate phase (IP) 30-57 GPa, and culminating in a high-pressure phase (HP), P >32 GPa, can clearly be quantified. The IP-HP phases coexist through the 32-57 GPa range in which the HP abundance increases monotonically at the expense of the IP phase. At the LP-IP interface no volume change is detected, yet the c-axis increases and the a-axis shrinks by 0.21 Angstroms and 0.13 Angstroms, respectively. The fit of the equation of state of the combined LP-IP phases yields a bulk modulus K{sub 0} = 35.3(1.8) GPa. The intralayer CI-CI distances increases, but no change is observed in Fe-CI bond-length nor are there substantial changes in the interlayer spacing. The pressure-induced electronic IP-HP transition leads to a first-order structural phase transition characterized by a decrease in Fe-CI bond length and an abrupt drop in V(P) by {approx}3.5% accompanying the correlation breakdown. In this transition no symmetry change is detected,and the XRD data could be satisfactorily fitted with the CdI{sub 2} structure. The bulk modulus of the HP phase is

  8. Pressure-induced magnetic collapse and metallization of molecular oxygen: The ζ-O2 phase

    International Nuclear Information System (INIS)

    Serra, S.; Chiarotti, G.; Scandolo, S.; Tosatti, E.

    1998-01-01

    The behavior of solid oxygen in the pressure range between 5-116 GPa is studied by ab-initio simulations, showing a spontaneous phase transformation from the antiferromagnetic insulating δ-O 2 phase to a non-magnetic, metallic molecular phase. The calculated static structure factor of this phase is in excellent agreement with X-ray diffraction data in the metallic ζ-O 2 phase above 96 GPa. We thus propose that ζ-O 2 should be base centered monoclinic with space group C2/m and 4 molecules per cell, suggesting a re-indexing of the experimental diffraction peaks. Physical constraints on the intermediate-pressure ε - O 2 phase are also obtained. (author)

  9. Incorporation of uranium in pyrochlore oxides and pressure-induced phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F.X., E-mail: zhangfx@umich.edu [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Lang, M.; Tracy, C.; Ewing, R.C. [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Gregg, D.J.; Lumpkin, G.R. [Institute of Materials Engineering, ANSTO, Locked Bag 2001, Kirrawee DC 2232, NSW (Australia)

    2014-11-15

    Uranium-doped gadolinium zirconates with pyrochlore structure were studied at ambient and high-pressure conditions up to 40 GPa. The bonding environment of uranium in the structure was determined by x-ray photoelectron and Raman spectroscopies and x-ray diffraction. The uranium valence for samples prepared in air is mainly U{sup 6+}, but U{sup 4+} is present in pyrochlores fabricated in an argon atmosphere. Rietveld refinement of the XRD pattern suggests that uranium ions in pyrochlores are on the 16d site in 6-fold coordination with oxygen. At pressures greater than 22 GPa, the pyrochlore structure transformed to a cotunnite-type phase. The cotunnite high-pressure phase transformed to a defect fluorite structure on the release of pressure. - Graphical abstract: In U-bearing pyrochlore, U ions mainly occupy the 16d site and replace the smaller Zr{sup 4+}, part of the oxygen will occupy the 8b site, which is empty to most pyrochlores. At pressure of 22 GPa, the pyrochlore lattice is not stable and transforms to a cotunnite-type structure. The high-pressure structure is not stable and transform to a fluorite or back to the pyrochlore structure when pressure is released. - Highlights: • We found that U ions mainly occupy the smaller cation site in U-bearing pyrochlore. • Pyrochlore structure is not stable at pressure of more than 20 GPa. • The quenched sample has a pyrochlore or a disordered fluorite structure.

  10. X-ray diffraction study on pressure-induced phase transformations and the equation of state of ZnGa{sub 2}Te{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100 Valencia (Spain); Kumar, R. S. [High Pressure Science and Engineering Center, Department of Physics and Astronomy, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada 89154-4002 (United States); Gomis, O. [Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Manjón, F. J. [Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Ursaki, V. V.; Tiginyanu, I. M. [Institute of Applied Physics, Academy of Sciences of Moldova, 2028 Chisinau (Moldova, Republic of)

    2013-12-21

    We report on high-pressure x-ray diffraction measurements up to 19.8 GPa in zinc digallium telluride (ZnGa{sub 2}Te{sub 4}) at room temperature. An irreversible structural phase transition takes place at pressures above 12.1 GPa and upon decompression a third polymorph of ZnGa{sub 2}Te{sub 4} was recovered as a metastable phase at pressures below 2.9 GPa. Rietveld refinements were carried out for the three detected polymorphs, being their possible crystal structures reported. The axial compressibilities for the low-pressure phase of ZnGa{sub 2}Te{sub 4} have been determined as well as the equation of state of the low- and high-pressure phases. The reported results are compared with those available in the literature for related compounds. Pressure-induced coordination changes and transition mechanisms are also discussed.

  11. Pressure-induced phase transitions in Zr-rich PbZr{sub 1-x}Ti{sub x}O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Souza Filho, A.G. [Departamento de Fisica, Universidade Federal do Ceara, Fortaleza, Ceara (Brazil)]. E-mail: agsf@fisica.ufc.br; Faria, J.L.B.; Freire, P.T.C.; Ayala, A.P.; Sasaki, J.M.; Melo, F.E.A.; Mendes Filho, J. [Departamento de Fisica, Universidade Federal do Ceara, Fortaleza, Ceara (Brazil); Araujo, E.B. [Departamento de Fisica e Quimica, Universidade Estadual de Sao Paulo, Campus de Ilha Solteira, Ilha Solteira, SP (Brazil); Eiras, J.A. [Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)

    2001-08-20

    A Raman study of structural changes in the Zr-rich PbZr{sub 1-x}Ti{sub x}O{sub 3} (PZT) system under hydrostatic pressures up to 5.0 GPa is presented. We observe that externally applied pressure induces several phase transitions in PZT ceramics among phases with orthorhombic (A{sub O}), rhombohedral low-temperature (R{sub LT}), and rhombohedral high-temperature (R{sub HT}) symmetries (all found in PZT at ambient pressure and room temperature). Each of the compositions investigated (0.02{<=}x{<=}0.14) exhibits a high-pressure phase with orthorhombic (O{sub I'}) symmetry. We further report a detailed study of the pressure dependence of Raman frequencies to elucidate the phase transitions and to provide a set of pressure coefficients for the high-pressure phases. (author)

  12. Kinetics of pressure induced structural phase transitions—A review

    Indian Academy of Sciences (India)

    Unknown

    The experimental technique using the diamond anvil cell (DAC) and image processing gets spe- cial mention as it promises to impart a new .... cal picture of the microscopic changes accompanying a transition. In fact, the major strides made ... 1983, 1986; Vohra et al 1986; Mao et al 1990; Yousuf. 1998). Also, in shock wave ...

  13. Structure of dense shock-melted alkali halides: Evidence for a continuous pressure-induced structural transition in the melt

    International Nuclear Information System (INIS)

    Ross, M.; Rogers, F.J.

    1985-01-01

    Hypernetted-chain equation calculations have been made for the ion-ion pair distribution functions in shock-melted CsI, CsBr, KBr, KCl, NaCl, and LiF. The results show that the melt undergoes a gradual pressure-induced structural change from an open NaCl-like structure with six nearest neighbors of opposite charge to one that has a rare-gas close-packed-like arrangement containing about 12 neighbors of mixed charge. These effects are most pronounced for the larger ions in which the short-range repulsions are stronger relative to long-range Coulomb attractions

  14. Pressure induced phase transition in Pb6Bi2S9

    DEFF Research Database (Denmark)

    Olsen, Lars Arnskov; Friese, Karen; Makovicky, Emil

    2011-01-01

    consists of two types of moduli with SnS/TlI archetype structure in which the Pb and Bi lone pairs are strongly expressed. The mechanism of the phase transition is described in detail and the results are compared to the closely related phase transition in Pb3Bi2S6 (lillianite).......The crystal structure of Pb6Bi2S9 is investigated at pressures between 0 and 5.6 GPa with X-ray diffraction on single-crystals. The pressure is applied using diamond anvil cells. Heyrovskyite (Bbmm, a = 13.719(4) Å, b = 31.393(9) Å, c = 4.1319(10) Å, Z = 4) is the stable phase of Pb6Bi2S9...... at ambient conditions and is built from distorted moduli of PbS-archetype structure with a low stereochemical activity of the Pb2+ and Bi3+ lone electron pairs. Heyrovskyite is stable until at least 3.9 GPa and a first-order phase transition occurs between 3.9 and 4.8 GPa. A single-crystal is retained after...

  15. Theoretical studies of the pressure-induced phase transition and elastic properties of BeS

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Xu [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Yu, Yang, E-mail: yuyang@scu.edu.cn [Department of Logistics Management, Sichuan University, Chengdu 610065 (China); Ji, Junyi [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Long, Jianping [College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China); Chen, Jianjun; Liu, Daijun [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China)

    2015-02-25

    Highlights: • Transition pressure from B3 to B8 of BeS is 58.86 GPa. • Elastic properties of BeS under pressure are predicted for the first time. • Elastic moduli of BeS increase monotonically with increasing pressure. • Elastic anisotropy of BeS has been investigated. - Abstract: First-principles calculations were performed to investigate the structural, electronic and elastic properties of BeS in both B3 and B8 structures. The structural phase transition from B3 to B8 occurs at 58.86 GPa with a volume decrease of 10.74%. The results of the electronic band structure show that the energy gap is indirect for B3 and B8 phases. The pressure dependence of the direct and indirect band gaps for BeS has been investigated. Especially, the elastic constants of B8 BeS under high pressure have been studied for the first time. The mechanical stability of the two phases has been discussed based on the pressure dependence of the elastic constants. In addition, the pressure dependence of bulk modulus, shear modulus, Young’s modulus, elastic wave velocities and brittle–ductile behavior of BeS are all successfully obtained. Finally, the elastic anisotropy has been investigated by using two different methods.

  16. A pressure-induced displacive phase transition in Tris(ethylenediamine) Nickel(II) nitrate

    OpenAIRE

    Cameron, C.A.; Allan, D.R.; Kamenev, K.V.; Moggach, S.A.; Murrie, M.; Parsons, S.

    2014-01-01

    [Ni(en)(3)] [NO3](2) undergoes a displacive phase transition from P6(3)22 at ambient pressure to a lower symmetry P6(1)22/P6(5)22 structure between 0.82 and 0.87 GPa, which is characterized by a tripling of the unit cell c-axis and the number of molecules per unit cell. The same transition has been previously observed at 108 K. The application of pressure leads to a general shortening of O H hydrogen bonding interactions in the structure, with the greatest contraction (24%) occurring diagonal...

  17. Pressure-induced structural transformations in the molybdate Sc-2(MoO4)(3)

    DEFF Research Database (Denmark)

    Paraguassu, W.; Maczka, M.; Filho, A. G. Sonza

    2004-01-01

    High pressure Raman scattering and x-ray diffraction studies of the molybdate Sc-2(MoO4)(3) are presented. A sequence of changing symmetry effects is observed through two structural phase transitions ending up with an amorphous state. The observed two structural phase transformations are reversible...

  18. Theoretical studies of the pressure-induced zinc-blende to cinnabar phase transition in CdTe and thermodynamical properties of each phase

    International Nuclear Information System (INIS)

    Brik, M.G.; Łach, P.; Karczewski, G.; Wojtowicz, T.; Kamińska, A.; Suchocki, A.

    2013-01-01

    Luminescence of CdTe quantum dots embedded in ZnTe is quenched at pressure of about 4.5 GPa in the high-pressure experiments. This pressure-induced quenching is attributed to the “zinc-blende–cinnabar” phase transition in CdTe, which was confirmed by the first-principles calculations. Theoretical analysis of the pressure at which the phase transition occurs for CdTe was performed using the CASTEP module of Materials Studio package with both generalized gradient approximation (GGA) and local density approximation (LDA). The calculated phase transition pressures are equal to about 4.4 GPa and 2.6 GPa, according to the GGA and LDA calculations, respectively, which is in a good agreement with the experimental value. Theoretically estimated value of the pressure coefficient of the band-gap luminescence in zinc-blende structure is in very good agreement with that recently measured in the QDs structures. The calculated Debye temperature, elastic constants and specific heat capacity for the zinc-blend structure agree well with the experimental data; the data for the cinnabar phase are reported here for the first time to the best of the authors' knowledge. - Highlights: • Quenching of luminescence of CdTe quantum dots embedded in ZnTe is theoretically explained. • The theoretical calculation of elastic and thermodynamic properties of CdTe by two types of ab-initio methods. • Theoretical calculations of some optical properties of CdTe under pressure in zinc-blende and cinnabar phases

  19. Pressure-induced magneto-structural transition in iron via a modified solid-state nudged elastic band method

    Science.gov (United States)

    Zarkevich, Nikolai A.; Johnson, Duane D.

    2015-03-01

    Materials under pressure may exhibit critical electronic and structural transitions that affect equation of states, as known for superconductors and the magneto-structural transformations of iron with both geophysical and planetary implications. While experiments often use constant-pressure (diamond-anvil cell, DAC) measurements, many theoretical results address a constant-volume transitions, which avoid issues with magnetic collapse but cannot be directly compared to experiment. We establish a modified solid-state nudge elastic band (MSS-NEB) method to handle magnetic systems that may exhibit moment (and volume) collapse during transformation. We apply it to the pressure-induced transformation in iron between the low-pressure body-centered cubic (bcc) and the high-pressure hexagonal close-packed (hcp) phases, find the bcc-hcp equilibrium coexistence pressure and a transitional pathway, and compare to shock and DAC experiments. We use methods developed with support by the U.S. Department of Energy (DE-FG02-03ER46026 and DE-AC02-07CH11358). Ames Laboratory is operated for the DOE by Iowa State University under contract DE-AC02-07CH11358.

  20. Pressure-induced phase transition and octahedral tilt system change of Ba2BiSbO6

    International Nuclear Information System (INIS)

    Lufaso, Michael W.; Macquart, Rene B.; Lee, Yongjae; Vogt, Thomas; Loye, Hans-Conrad zur

    2006-01-01

    High-resolution X-ray synchrotron powder diffraction studies under high-pressure conditions are reported for the ordered double perovskite Ba 2 BiSbO 6 . Near 4GPa, the oxide undergoes a pressure-induced phase transition. The symmetry of the material changes during the phase transition from space group R3-bar to space group I2/m, which is consistent with a change in the octahedral tilting distortion from an a - a - a - type to a 0 b - b - type using the Glazer notation. A fit of the volume-pressure data using the Birch-Murnagaham equation of state yielded a bulk modulus of 144(8)GPa for the rhombohedral phase

  1. The pressure-induced structural response of rare earth hafnate and stannate pyrochlore from 0.1-50 GPa

    Science.gov (United States)

    Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.

    2017-12-01

    Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. These compounds are under consideration for applications including as a proposed waste-form for actinides generated in the nuclear fuel cycle. High-pressure transformations in rare earth hafnates (A2Hf2O7, A=Sm, Eu, Gd, Dy, Y, Yb) and stannates (A2Sn2O7, A=Nd, Gd, Er) were investigated to 50 GPa by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Rare-earth hafnates form the pyrochlore structure for A=La-Tb and the defect-fluorite structure for A=Dy-Lu. Lanthanide stannates form the pyrochlore structure. Raman spectra revealed that at ambient pressure all compositions have pyrochlore-type short-range order. Stannate compositions show a larger degree of pyrochlore-type short-range ordering relative to hafnates. In situ high-pressure synchrotron XRD showed that rare earth hafnates and stannates underwent a pressure-induced phase transition to a cotunnite-like (Pnma) structure that begins between 18-25 GPa in hafnates and between 30-33 GPa in stannates. The phase transition is not complete at 50 GPa, and upon decompression, XRD indicates that all compositions transform to defect-fluorite with an amorphous component. In situ Raman spectroscopy showed that disordering in stannates and hafnates occurs gradually upon compression. Pyrochlore-structured hafnates retain short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Hafnates and stannates decompressed from 50 GPa show Raman spectra consistent with weberite-type structures, also reported in irradiated stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of 250 GPa for hafnate compositions with the pyrochlore structure, and 400 GPa for hafnate compositions with the defect-fluorite structure. Stannates have a lower bulk modulus relative to hafnates (between 80-150 GPa

  2. Theoretical study of the partial molar volume change associated with the pressure-induced structural transition of ubiquitin.

    Science.gov (United States)

    Imai, Takashi; Ohyama, Shusaku; Kovalenko, Andriy; Hirata, Fumio

    2007-09-01

    The partial molar volume (PMV) change associated with the pressure-induced structural transition of ubiquitin is analyzed by the three-dimensional reference interaction site model (3D-RISM) theory of molecular solvation. The theory predicts that the PMV decreases upon the structural transition, which is consistent with the experimental observation. The volume decomposition analysis demonstrates that the PMV reduction is primarily caused by the decrease in the volume of structural voids in the protein, which is partially canceled by the volume expansion due to the hydration effects. It is found from further analysis that the PMV reduction is ascribed substantially to the penetration of water molecules into a specific part of the protein. Based on the thermodynamic relation, this result implies that the water penetration causes the pressure-induced structural transition. It supports the water penetration model of pressure denaturation of proteins proposed earlier.

  3. Pressure induced Amorphization of Ln1/3(Nb,Ta)O3

    International Nuclear Information System (INIS)

    Melchior, A.; Noked, O.; Sterer, E.; Shuker, R.

    2014-01-01

    The research focuses on the phenomenon of pressure induced amorphization (PIA) in Ln1/3MO3, Ln - La,Pr,Nd and M-Nb,Ta. In most pressure induced phase transitions the material changes from a crystalline phase to another crystalline phase. However, if this transition is kinetically hindered, the increased free energy due to the applied pressure will result in a structural collapse to an amorphous intermediate phase. This phenomenon is known as pressure induced amorphization

  4. Pressure-induced phase transition in C sub 6 O sub 2 I sub 4

    CERN Document Server

    Nakayama, A; Takemura, K; Aoki, K; Carlon, R P

    2002-01-01

    Powder x-ray diffraction measurements on iodanil (C sub 6 O sub 2 I sub 4) have been carried out at pressures up to 39 GPa at room temperature with a diamond-anvil cell under the best hydrostatic conditions using helium as the pressure-transmitting medium. The diffraction patterns up to 23.3 GPa were fitted with a space group P 2 sub 1 /c. New peaks appeared above 26.8 GPa and their intensities increased with increasing pressure while the original ones observed for the low-pressure phase were gradually depressed. This phase transition was accompanied with a mixed state of low- and high-pressure phases over the wide pressure range between 26.8 and at least 39 GPa.

  5. High-pressure Raman and optical absorption studies on lead pyroniobate (Pb2Nb2O7) and pressure-induced phase transitions

    International Nuclear Information System (INIS)

    Jayaraman, A.; Kourouklis, G.A.; Cooper, A.S.; Espinosa, G.P.

    1990-01-01

    High-pressure Raman scattering and optical absorption studies have been carried out on lead pyroniobate (Pb 2 Nb 2 O 7 ) up to 33 GPa, using a gasketed diamond anvil cell. The Raman study reveals the occurrence of two, possibly three, pressure-induced phase changes; a rather subtle change is indicated near 4.5 GPa. The transition near 13 GPa is attributed to a structural transition from the rhombohedral to the cubic pyrochlore structure. The third phase change occurs near 20 GPa. From the broad Raman feature that is observed at about 800 cm -1 , it is concluded that the system turns amorphous at pressures above 20 GPa. The amorphous phase recrystallizes to the original rhombohedral phase, on release of pressure. The broad Raman peaks of the recrystallized phase indicate a high degree of disorder in the material. Lead pyroniobate turns deep red near 30 GPa, from light yellow at ambient pressure. Semi quantitative absorption measurements show that the energy gap shifts red at a rate of 30 meV/GPa. This shift is attributed to the downward motion of the 5d (es) conduction band of Pb

  6. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs.

    Science.gov (United States)

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K; Rüegg, Christian; Susner, Michael A; Sefat, Athena S; Zhigadlo, Nikolai D; Morenzoni, Elvezio

    2015-09-08

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5 magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc(3.2) as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  7. Pressure induced phase transitions in transition metal nitrides: Ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Anurag; Chauhan, Mamta [Advanced Material Research Lab, Indian Institute of Information Technology and Management, Gwalior 474010 (India); Singh, R.K. [Department of Physics, ITM University, Gurgaon 122017 (India)

    2011-12-15

    We have analyzed the stability of transition metal nitrides (TMNs) XN (X = Ti, Zr, Hf, V, Nb, Ta) in their original rocksalt (B1) and hypothetical CsCl (B2) type phases under high compression. The ground state total energy calculation approach of the system has been used through the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) type parameterization as exchange correlation functional. In the whole series of nitrides taken into consideration, tantalum nitride is found to be the most stable. We have observed that under compression the original B1-type phase of these nitrides transforms to a B2-type phase. We have also discussed the computation of ground state properties, like the lattice constant (a), bulk modulus (B{sub 0}) and first order pressure derivative of the bulk modulus (B'{sub 0}) of the TMNs and their host elements. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Pressure-induced quantum phase transition in the itinerant ferromagnet UCoGa

    Czech Academy of Sciences Publication Activity Database

    Míšek, Martin; Prokleška, J.; Opletal, P.; Proschek, P.; Kaštil, Jiří; Kamarád, Jiří; Sechovský, V.

    2017-01-01

    Roč. 7, č. 5 (2017), s. 1-4, č. článku 055712. ISSN 2158-3226 R&D Projects: GA ČR GA16-06422S Institutional support: RVO:68378271 Keywords : quantum phase transition * high pressure * itinerant ferromagnet * UCoGa Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.568, year: 2016 http://aip.scitation.org/doi/10.1063/1.4976300

  9. Pressure-Induced Structural Evolution and Band Gap Shifts of Organometal Halide Perovskite-Based Methylammonium Lead Chloride.

    Science.gov (United States)

    Wang, Lingrui; Wang, Kai; Xiao, Guanjun; Zeng, Qiaoshi; Zou, Bo

    2016-12-15

    Organometal halide perovskites are promising materials for optoelectronic devices. Further development of these devices requires a deep understanding of their fundamental structure-property relationships. The effect of pressure on the structural evolution and band gap shifts of methylammonium lead chloride (MAPbCl 3 ) was investigated systematically. Synchrotron X-ray diffraction and Raman experiments provided structural information on the shrinkage, tilting distortion, and amorphization of the primitive cubic unit cell. In situ high pressure optical absorption and photoluminescence spectra manifested that the band gap of MAPbCl 3 could be fine-tuned to the ultraviolet region by pressure. The optical changes are correlated with pressure-induced structural evolution of MAPbCl 3 , as evidenced by band gap shifts. Comparisons between Pb-hybrid perovskites and inorganic octahedra provided insights on the effects of halogens on pressure-induced transition sequences of these compounds. Our results improve the understanding of the structural and optical properties of organometal halide perovskites.

  10. Pressure-induced phase transformations in the Ba8Si46 clathrate

    DEFF Research Database (Denmark)

    Yang, Lirong; Ma, Y.M.; Iitaka, T.

    2006-01-01

    The nature of isostructural transformations of a type-I Ba8Si46 clathrate has been studied by in situ high-pressure angle-dispersive x-ray powder diffraction using liquid He as pressure transmitting medium. The good quality of the diffraction data permitted refinement of structural and thermal...

  11. Pressure-induced changes in the electronic structure of americium metal

    Science.gov (United States)

    Söderlind, Per; Moore, K. T.; Landa, A.; Sadigh, B.; Bradley, J. A.

    2011-08-01

    We have conducted electronic-structure calculations for Am metal under pressure to investigate the behavior of the 5f-electron states. Density-functional theory (DFT) does not reproduce the experimental photoemission spectra for the ground-state phase where the 5f electrons are localized, but the theory is expected to be correct when 5f delocalization occurs under pressure. The DFT prediction is that peak structures of the 5f valence band will merge closer to the Fermi level during compression indicating the presence of itinerant 5f electrons. Existence of such 5f bands is argued to be a prerequisite for the phase transitions, particularly to the primitive orthorhombic AmIV phase, but does not agree with modern dynamical-mean-field theory (DMFT) results. Our DFT model further suggests insignificant changes of the 5f valence under pressure in agreement with recent resonant x-ray emission spectroscopy, but in contradiction to the DMFT predictions. The influence of pressure on the 5f valency in the actinides is discussed and is shown to depend in a nontrivial fashion on 5f-band position and occupation relative to the spd valence bands.

  12. Uniaxial pressure-induced half-metallic ferromagnetic phase transition in LaMnO3

    Science.gov (United States)

    Rivero, Pablo; Meunier, Vincent; Shelton, William

    2016-03-01

    We use first-principles theory to predict that the application of uniaxial compressive strain leads to a transition from an antiferromagnetic insulator to a ferromagnetic half-metal phase in LaMnO3. We identify the Q2 Jahn-Teller mode as the primary mechanism that drives the transition, indicating that this mode can be used to tune the lattice, charge, and spin coupling. Applying ≃6 GPa of uniaxial pressure along the [010] direction activates the transition to a half-metallic pseudocubic state. The half-metallicity opens the possibility of producing colossal magnetoresistance in the stoichiometric LaMnO3 compound at significantly lower pressure compared to recently observed investigations using hydrostatic pressure.

  13. Pressure-induced structural transformations and polymerization in ThC2

    Science.gov (United States)

    Guo, Yongliang; Yu, Cun; Lin, Jun; Wang, Changying; Ren, Cuilan; Sun, Baoxing; Huai, Ping; Xie, Ruobing; Ke, Xuezhi; Zhu, Zhiyuan; Xu, Hongjie

    2017-04-01

    Thorium-carbon systems have been thought as promising nuclear fuel for Generation IV reactors which require high-burnup and safe nuclear fuel. Existing knowledge on thorium carbides under extreme condition remains insufficient and some is controversial due to limited studies. Here we systematically predict all stable structures of thorium dicarbide (ThC2) under the pressure ranging from ambient to 300 GPa by merging ab initio total energy calculations and unbiased structure searching method, which are in sequence of C2/c, C2/m, Cmmm, Immm and P6/mmm phases. Among these phases, the C2/m is successfully observed for the first time via in situ synchrotron XRD measurements, which exhibits an excellent structural correspondence to our theoretical predictions. The transition sequence and the critical pressures are predicted. The calculated results also reveal the polymerization behaviors of the carbon atoms and the corresponding characteristic C-C bonding under various pressures. Our work provides key information on the fundamental material behavior and insights into the underlying mechanisms that lay the foundation for further exploration and application of ThC2.

  14. Density-functional theory study of the pressure-induced phase transition in hydronitrogen compound N{sub 4}H{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi-Jun, E-mail: qijunliu@home.swjtu.edu.cn [Bond and Band Engineering Group, Sichuan Provincial Key Laboratory (for Universities) of High Pressure Science and Technology, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhang, Ning-Chao; Sun, Yan-Yun; Zhang, Ming-Jian; Liu, Fu-Sheng [Bond and Band Engineering Group, Sichuan Provincial Key Laboratory (for Universities) of High Pressure Science and Technology, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Liu, Zheng-Tang [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)

    2014-03-01

    Using first-principles density-functional theory, we have investigated the pressure-induced phase transition in hydronitrogen compound N{sub 4}H{sub 4} and discussed the potential tetragonal structure. We find that tetragonal structure with P4{sub 2}/n space group is mechanically stable and ductile. The thermodynamic stability of Pmna>P1{sup ¯}>P4{sub 2}/n>P2{sub 1}/m has been obtained. With increasing pressure, the phase transition pressures of T{sub Pmna→P4{sub 2/n}}, T{sub P4{sub 2/n→Pmna}}, T{sub Pmna→P1{sup ¯}} and T{sub P1{sup ¯}→P2{sub 1/m}} are 5.6, 15.0, 30.0 and 69.2 GPa, respectively, which are in agreement with the available data. Moreover, the mechanical stability of four structures under pressure has been analyzed.

  15. Pressure-Induced Structural and Optical Properties of Inorganic Halide Perovskite CsPbBr3.

    Science.gov (United States)

    Zhang, Long; Zeng, Qingxin; Wang, Kai

    2017-08-17

    Perovskite photovoltaic materials are gaining sustained attention because of their excellent photovoltaic properties and extensive practical applicability. In this Letter, we discuss the changes in the structure and optical properties of CsPbBr 3 under high pressure. As the pressure increased, the band gap initially began to red shift before 1.0 GPa followed by a continuous blue shift until the crystal was completely amorphized. An isostructural phase transition at 1.2 GPa was determined by high-pressure synchrotron X-ray and Raman spectroscopy. The result could be attributed to bond length shrinkage and PbBr 6 octahedral distortion under high pressure. The amorphization of the crystal was due to the severe distortion and tilt of the PbBr 6 octahedron, leading to broken long-range order. Changes in optical properties are closely related to the evolution of the crystal structure. Our discussion shows that high-pressure study can be used as an effective means to tune the structure and properties of all-inorganic halide perovskites.

  16. Pressure-induced structural and semiconductor-semiconductor transitions in C o0.5M g0.5C r2O4

    Science.gov (United States)

    Rahman, S.; Saqib, Hajra; Zhang, Jinbo; Errandonea, D.; Menéndez, C.; Cazorla, C.; Samanta, Sudeshna; Li, Xiaodong; Lu, Junling; Wang, Lin

    2018-05-01

    The effect of pressure on the structural, vibrational, and electronic properties of Mg-doped Cr bearing spinel C o0.5M g0.5C r2O4 was studied up to 55 GPa at room-temperature using x-ray diffraction, Raman spectroscopy, electrical transport measurements, and ab initio calculations. We found that the ambient-pressure phase is cubic (spinel-type, F d 3 ¯m ) and underwent a pressure-induced structural transition to a tetragonal phase (space group I 4 ¯m 2 ) above 28 GPa. The ab initio calculation confirmed this first-order phase transition. The resistivity of the sample decreased at low pressures with the existence of a low-pressure (LP) phase and started to increase with the emergence of a high-pressure (HP) phase. The temperature dependent resistivity experiments at different pressures illustrated the wide band gap semiconducting nature of both the LP and HP phases with different activation energies, suggesting a semiconductor-semiconductor transition at HP. No evidence of chemical decomposition or a semiconductor-metal transition was observed in our studies.

  17. Pressure-induced phase transformation in ZrW2O8 - Compressibility and thermal expansion of the orthorhombic phase

    International Nuclear Information System (INIS)

    Hu, Z.; Jorgensen, J.D.; Teslic, S.; Short, S.; Argyriou, D.N.

    1997-01-01

    In situ neutron powder diffraction has been used to show that the application of hydrostatic pressure at room temperature produces a transformation of ZrW 2 O 8 from the cubic to an orthorhombic phase beginning at 2.1 kbar and completed by 3.1 kbar, with a 5% reduction in volume. After release of pressure, the orthorhombic phase is retained at room temperature. Its thermal expansion is negative below room temperature, but is positive above room temperature with a transformation back to the cubic phase at about 390 K. The WO 4 groups are found to play the dominant role in both phase transformations. The volume compressibilities of the cubic and orthorhombic phases are 1.38 x 10 -3 and 1.53 x 10 -3 kbar -1 , respectively. (orig.)

  18. Pressure-induced structural change of liquid InAs and the systematics of liquid III-V compounds

    International Nuclear Information System (INIS)

    Hattori, T.; Tsuji, K.; Miyata, Y.; Sugahara, T.; Shimojo, F.

    2007-01-01

    To understand the pressure-induced structural changes of liquid III-V compounds systematically, the pressure dependence of l-InAs was investigated using the synchrotron x-ray diffraction and an ab initio molecular-dynamics simulation (AIMD). The x-ray diffraction experiments revealed that the liquid changes its compression behavior from a nearly uniform type to a nonuniform one around 9 GPa. Corresponding to this change, the coordination number (China), which is maintained up to 9 GPa, markedly increases from 6.0 to 7.5. The AIMD simulation revealed that this change is related to the change in the pressure dependence of all three pair correlations. In particular, a marked change is observed in the As-As correlation; in the low-pressure region, the position of the first peak in g AsAs (r), r AsAs , increases while maintaining the CN AsAs , but in the high-pressure region, the r AsAs stops increasing and the CN AsAs begins to increase. The AIMD simulation also revealed that each partial structure of l-InAs is similar to that for the pure-element liquid with the same valence electron number. Upon compression, each partial structure approaches the respective one for a heavier element in the same group. These findings suggest that the structures of liquid compounds are locally controlled by the number of the valence electrons in each ion pair and that the change in each partial structure obeys the empirical rule that the high-pressure state resembles the ambient state of a heavier element in the same group. Comparing the pressure-induced structural change of l-InAs to those of other liquid III-V compounds (GaSb and InSb) has revealed that, although the high-pressure behaviors of these three liquids are apparently different, their structural changes are systematically understood by a common structural sequence. This systematics originates from the same effect on each partial structure between increasing the atomic number and the pressurization

  19. Gradual pressure-induced change in the magnetic structure of the noncollinear antiferromagnet Mn3Ge

    Science.gov (United States)

    Sukhanov, A. S.; Singh, Sanjay; Caron, L.; Hansen, Th.; Hoser, A.; Kumar, V.; Borrmann, H.; Fitch, A.; Devi, P.; Manna, K.; Felser, C.; Inosov, D. S.

    2018-06-01

    By means of powder neutron diffraction we investigate changes in the magnetic structure of the coplanar noncollinear antiferromagnet Mn3Ge caused by an application of hydrostatic pressure up to 5 GPa. At ambient conditions the kagomé layers of Mn atoms in Mn3Ge order in a triangular 120∘ spin structure. Under high pressure the spins acquire a uniform out-of-plane canting, gradually transforming the magnetic texture to a noncoplanar configuration. With increasing pressure the canted structure fully transforms into the collinear ferromagnetic one. We observed that magnetic order is accompanied by a noticeable magnetoelastic effect, namely, spontaneous magnetostriction. The latter induces an in-plane magnetostrain of the hexagonal unit cell at ambient pressure and flips to an out-of-plane strain at high pressures in accordance with the change of the magnetic structure.

  20. Studies of the pressure-induced phase transition of C sub 3 N sub 6 H sub 6

    CERN Document Server

    Ma Hong An; Cui Qi Liang; Pan Yue Wu; Zhu Pin Wen; Guo Wei; Chen Li Xue; Ren Guo Zheng; Zou Guang Tian; LiuJing

    2002-01-01

    In situ high pressure energy dispersive X-ray diffraction experiments have been carried out on C sub 3 N sub 6 H sub 6 by using diamond anvil cell (DAC) device with synchrotron radiation source. Two structural phase transitions of C sub 3 N sub 6 H sub 6 have been observed within 14.7 GPa pressure range, from monoclinic to triclinic structure at 1.3 GPa and from triclinic to orthorhombic structure at 8.2 GPa, respectively

  1. Reversible pressure-induced crystal-amorphous structural transformation in ice Ih

    Science.gov (United States)

    English, Niall J.; Tse, John S.

    2014-08-01

    Molecular dynamics (MD) simulation of depressurised high-density amorphous ice (HDA) at 80 K and at negative pressures has been performed. Over several attempts, HDA recrystallised to a form close to hexagonal ice Ih, albeit with some defects. The results support the hypothesis that compression of ice-Ih to HDA is a reversible first-order phase transition, with a large hysteresis. Therefore, it would appear that LDA is not truly amorphous. The elastic energy estimated from the area of the hysteresis loop is ca. 4.5 kJ/mol, in some way consistent with experimentally-determined accumulated successive heats of transformations from recovered HDA → ice Ih.

  2. Pressure-induced structural changes and insulator-metal transition in layered bismuth triiodide, BiI3: a combined experimental and theoretical study

    International Nuclear Information System (INIS)

    Devidas, T R; Chandra Shekar, N V; Sundar, C S; Chithaiah, P; Rao, C N R; Sorb, Y A; Bhadram, V S; Chandrabhas, N; Pal, K; Waghmare, U V

    2014-01-01

    Noting that BiI 3 and the well-known topological insulator (TI) Bi 2 Se 3 have the same high symmetry parent structures, and that it is desirable to find a wide-band gap TI, we determine here the effects of pressure on the structure, phonons and electronic properties of rhombohedral BiI 3 . We report a pressure-induced insulator-metal transition near 1.5 GPa, using high pressure electrical resistivity and Raman measurements. X-ray diffraction studies, as a function of pressure, reveal a structural peculiarity of the BiI 3 crystal, with a drastic drop in c/a ratio at 1.5 GPa, and a structural phase transition from rhombohedral to monoclinic structure at 8.8 GPa. Interestingly, the metallic phase, at relatively low pressures, exhibits minimal resistivity at low temperatures, similar to that in Bi 2 Se 3 . We corroborate these findings with first-principles calculations and suggest that the drop in the resistivity of BiI 3 in the 1–3 GPa range of pressure arises possibly from the appearance of an intermediate crystal phase with a lower band-gap and hexagonal crystal structure. Calculated Born effective charges reveal the presence of metallic states in the structural vicinity of rhombohedral BiI 3 . Changes in the topology of the electronic bands of BiI 3 with pressure, and a sharp decrease in the c/a ratio below 2 GPa, are shown to give rise to changes in the slope of phonon frequencies near that pressure. (paper)

  3. Pressure-induced phase transformation in zircon-type orthovanadate SmVO4 from experiment and theory

    International Nuclear Information System (INIS)

    Popescu, C; Garg, Alka B; Errandonea, D; Sans, J A; Rodriguez-Hernández, P; Radescu, S; Muñoz, A; Achary, S N; Tyagi, A K

    2016-01-01

    The compression behavior of zircon-type samarium orthovanadate, SmVO 4 , has been investigated using synchrotron-based powder x-ray diffraction and ab initio calculations of up to 21 GPa. The results indicate the instability of ambient zircon phase at around 6 GPa, which transforms to a high-density scheelite-type phase. The high-pressure phase remains stable up to 21 GPa, the highest pressure reached in the present investigations. On pressure release, the scheelite phase is recovered. The crystal structure of the high-pressure phase and the equations of state for the zircon- and scheelite-type phases have been determined. Various compressibilities, such as the bulk, axial and bond compressibilities, estimated from the experimental data are found to be in good agreement with the results obtained from theoretical calculations. The calculated elastic constants show that the zircon structure becomes mechanically unstable beyond the transition pressure. Overall there is good agreement between the experimental and theoretical findings. (paper)

  4. First-principle study of pressure-induced phase transitions and electronic properties of electride Y2C

    Science.gov (United States)

    Feng, Caihui; Shan, Jingfeng; Xu, Aoshu; Xu, Yang; Zhang, Meiguang; Lin, Tingting

    2017-10-01

    Trigonal yttrium hypocarbide (Y2C), crystallizing in a layered hR3 structure, is an intriguing quasi-two-dimensional electride metal with potential application for the next generation of electronics. By using an efficient structure search method in combination with first-principles calculations, we have extensively explored the phase transitions and electronic properties of Y2C in a wide pressure range of 0-200 GPa. Three structural transformations were predicted, as hR3 → oP12 → tI12 → mC12. Calculated pressures of phase transition are 20, 118, and 126 GPa, respectively. The high-pressure oP12 phase exhibits a three-dimensional extended C-Y network built up from face- and edge-sharing CY8 hendecahedrons, whereas both the tI12 and mC12 phases are featured by the presence of C2 units. No anionic electrons confined to interstitial spaces have been found in the three predicted high-pressure phases, indicating that they are not electrides. Moreover, Y2C is dynamically stable and also energetically stable relative to the decomposition into its elemental solids.

  5. Pressure induced structural transitions in Lead Chalcogenides and its influence on thermoelectric properties

    Science.gov (United States)

    Petersen, John; Spinks, Michael; Borges, Pablo; Scolfaro, Luisa

    2012-03-01

    Lead chalcogenides, most notably PbTe and PbSe, have become an active area of research due to their thermoelectric (TE) properties. The high figure of merit (ZT) of these materials has brought much attention to them, due to their ability to convert waste heat into electricity, with a possible application being in engine exhaust. Here, we examine the effects of altering the lattice parameter on total ground state energy and the band gap using first principles calculations performed within Density Functional Theory and the Projector Augmented Wave approach and the Vienna Ab-initio Simulation Package (VASP-PAW) code. Both PbTe and PbSe, in NaCl, orthorhombic, and CsCl structures are considered. It is found that altering the lattice parameter, which is analogous to applying external pressure on the material experimentally, has notable effects on both ground state energy and the band gap. The implications of this behavior in the TE properties of these materials are analyzed.

  6. Pressure-induced phase transitions in organic molecular crystals: a combination of x-ray single-crystal and powder diffraction, raman and IR-spectroscopy

    International Nuclear Information System (INIS)

    Boldyreva, E V; Goryainov, S V; Seryotkin, Y V; Kolesnik, E N; Shakhtshneider, T P; Ivashevskaya, S N; Drebushchak, T N; Sowa, H; Ahsbahs, H; Chernyshev, V V; Dmitriev, V P

    2008-01-01

    The contribution summarizes the results of recent studies of phase transitions induced by high pressure in a number of molecular organic crystals, such as polymorphs of paracetamol, chlorpropamide, polymorphs of glycine, L- and DL-serine, β-alanine. The main attention is paid to the following topics: (1) Reversible / irreversible transformations; (2) Different behavior of single crystals / powders; (3) The role of pressure-transmitting liquid; (4) The role of the kinetic factors: phase transitions on decompression, or after a long storage at a selected pressure; (5) Isosymmetric phase transitions; (6) The role of the changes in the hydrogen bond networks / intramolecular conformational changes in the phase transitions; (7) Superstructures / nanostructures formed as a result of pressure-induced phase transitions

  7. Pressure-induced phase transitions in organic molecular crystals: a combination of x-ray single-crystal and powder diffraction, raman and IR-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Boldyreva, E V; Goryainov, S V; Seryotkin, Y V; Kolesnik, E N; Shakhtshneider, T P; Ivashevskaya, S N; Drebushchak, T N [Research and Education Center ' Molecular Design and Ecologically Safe Technologies' , REC-008, Novosibirsk State University (Russian Federation); Sowa, H [Goettingen University (Germany); Ahsbahs, H; Chernyshev, V V [Marburg University (Germany); Dmitriev, V P [Swiss-Norwegian Beamline ESRF, Grenoble (France)], E-mail: boldyrev@nsu.ru

    2008-07-15

    The contribution summarizes the results of recent studies of phase transitions induced by high pressure in a number of molecular organic crystals, such as polymorphs of paracetamol, chlorpropamide, polymorphs of glycine, L- and DL-serine, {beta}-alanine. The main attention is paid to the following topics: (1) Reversible / irreversible transformations; (2) Different behavior of single crystals / powders; (3) The role of pressure-transmitting liquid; (4) The role of the kinetic factors: phase transitions on decompression, or after a long storage at a selected pressure; (5) Isosymmetric phase transitions; (6) The role of the changes in the hydrogen bond networks / intramolecular conformational changes in the phase transitions; (7) Superstructures / nanostructures formed as a result of pressure-induced phase transitions.

  8. Pressure-induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO3.

    Science.gov (United States)

    Wu, Zhigang; Cohen, Ronald E

    2005-07-15

    We find an unexpected tetragonal-to-monoclinic-to-rhombohedral-to-cubic phase transition sequence induced by pressure, and a morphotropic phase boundary in a pure compound using first-principles calculations. Huge dielectric and piezoelectric coupling constants occur in the transition regions, comparable to those observed in the new complex single-crystal solid-solution piezoelectrics such as Pb(Mg(1/3)Nb(2/3))O3-PbTiO3, which are expected to revolutionize electromechanical applications. Our results show that morphotropic phase boundaries and giant piezoelectric effects do not require intrinsic disorder, and open the possibility of studying this effect in simple systems.

  9. Pressure-induced valence and structure change in some anti-Th3P4 structure rare earth compounds

    International Nuclear Information System (INIS)

    Werner, A.; Hochheimer, H.D.; Jayaraman, A.; Bucher, E.

    1981-01-01

    The anti-Th 3 P 4 structure compounds Yb 4 Bi 3 and Yb 4 Sb 3 have been investigated to 350 kbar by high pressure X-ray diffraction, using the diamond anvil cell. From the P-V data it is found that Yb 4 Bi 3 and Yb 4 Sb 3 are much more compressible, compared to Sm 4 Bi 3 before the valence transition. This suggests that a continuous change in the valence state of Yb takes place with pressure in the two compounds and that they may be in the mixed valent state already at ambient pressure. The ''collapsed'' anti-Th 3 P 4 structure becomes unstable in Yb 4 Bi 3 and Yb 4 Sb 3 and new lines appear at high pressure, that fit the NaCl structure. The latter structure change seems to occur also in the electronically collapsed Sm 4 Bi 3 . The results are presented and discussed. (Auth.)

  10. Structural and electronic phase transitions of ThS2 from first-principles calculations

    International Nuclear Information System (INIS)

    Guo, Yongliang; Wang, Changying; Qiu, Wujie; Ke, Xuezhi

    2016-01-01

    Performed a systematic study using first-principles methods of the pressure-induced structural and electronic phase transitions in ThS_2, which may play an important role in the next generation nuclear energy fuel technology.

  11. Pressure-induced suppression of ferromagnetic phase and conduction in CaMn1-xRuxO3

    International Nuclear Information System (INIS)

    Markovich, V.; Fita, I.; Puzniak, R.; Rozenberg, E.; Martin, C.; Wisniewski, A.; Maignan, A.; Raveau, B.; Yuzhelevskii, Y.; Gorodetsky, G.

    2005-01-01

    Magnetic and transport properties of polycrystalline CaMn 1-x Ru x O 3 (x=0-0.4) perovskites were investigated under pressures up to 12kbar. It was found that an applied pressure suppresses ferromagnetism and increases resistivity. The results are discussed in the context of phase separation and valence effects

  12. Mechanical Anisotropy and Pressure Induced Structural Changes in Piroxicam Crystals Probed by In Situ Indentation and Raman Spectroscopy

    Science.gov (United States)

    Manimunda, Praveena; Hintsala, Eric; Asif, Syed; Mishra, Manish Kumar

    2017-01-01

    The ability to correlate mechanical and chemical characterization techniques in real time is both lacking and powerful tool for gaining insights into material behavior. This is demonstrated through use of a novel nanoindentation device equipped with Raman spectroscopy to explore the deformation-induced structural changes in piroxicam crystals. Mechanical anisotropy was observed in two major faces ( 0bar{1}1 ) and (011), which are correlated to changes in the interlayer interaction from in situ Raman spectra recorded during indentation. The results of this study demonstrate the considerable potential of an in situ Raman nanoindentation instrument for studying a variety of topics, including stress-induced phase transformation mechanisms, mechanochemistry, and solid state reactivity under mechanical forces that occur in molecular and pharmaceutical solids.

  13. Theoretical investigation of pressure-induced structural transitions in americium using GGA+U and hybrid density functional theory methods

    DEFF Research Database (Denmark)

    Verma, Ashok K.; Modak, P.; Sharma, Surinder M.

    2013-01-01

    First-principles calculations have been performed for americium (Am) metal using the generalized gradient approximation + orbital-dependent onsite Coulomb repulsion via Hubbard interaction (GGA+U) and hybrid density functional theory (HYB-DFT) methods to investigate various ground state properties......-I to Am-II transition. Good agreement was found between calculated and experimental equations of states for all phases, but the first three phases need larger U (α) parameters (where α represents the fraction of Hartree-Fock exchange energy replacing the DFT exchange energy) than the fourth phase in order...

  14. Pressure-induced Formation of Energetic and Structural Extended Solids with Quench-recovery to Ambient Conditions

    Science.gov (United States)

    2014-06-12

    Duck Young Kim. Synthesis of Mg2C: A Magnesium Methanide, Angewandte Chemie International Edition, (08 2013): 0. doi: 10.1002/anie.201303463 TOTAL...Polymorph of2 Magnesium Sesquicarbide, Inorganic Chemistry (02 2014) DuckYoung Kim, Stevce Stefanoski, Oleksandr O. Kurakevych, Timothy A. Strobel...new phase was discovered in the Li+C system. Figure 6 shows x‐ray diffraction and Raman spectra obtained from this phase, which cannot be

  15. X-ray-absorption fine structure determination of pressure-induced bond-angle changes in ReO3

    International Nuclear Information System (INIS)

    Houser, B.; Ingalls, R.

    2000-01-01

    We report here on a Marquardt-type method to fit the x-ray absorption fine structure (XAFS) of ReO 3 . We find that, when the ambient-pressure structure of ReO 3 is used as a starting point, the pressure dependence of the angle of the Re-O-Re bond in ReO 3 is fairly straightforwardly and robustly determined using FEFF curved-wave, multiple-scattering programs and is accurate to about ±1.5 degree sign or better. We present an argument that XAFS and scattering experiments fundamentally differ in what they measure in the case of nearly linear atomic bridges. Focussed multiple-scattering paths involving the Re-O-Re bridge make a contribution to the XAFS spectrum that is sensitive to the rms deviation of oxygen from the [100]-type directions. Fits to simulated spectra back up our contention that for XAFS experiments the effective position of the oxygen atom is its rms displacement whether the average displacement is zero or not. (c) 2000 The American Physical Society

  16. Simulation of phase structures

    International Nuclear Information System (INIS)

    Lawson, J.

    1995-01-01

    This memo outlines a procedure developed by the author to extract information from phase measurements and produce a simulated phase structure for use in modeling optical systems, including characteristic optics for the Beamlet and NIF laser systems. The report includes an IDL program listing

  17. Pressure induced magnetic phase transition in RhFe{sub 3}N and IrFe{sub 3}N: An ab-initio study

    Energy Technology Data Exchange (ETDEWEB)

    Puvaneswari, S. [Department of physics, E.M.G.Yadava women’s college, Madurai, Tamilnadu-625014 (India); Manikandan, M. [Department of physics, N.M.S.S.V.N college, Madurai, Tamilnadu-625019 (India); Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com

    2016-05-06

    The structural, electronic, elastic and magnetic properties of RhFe{sub 3}N and IrFe{sub 3}N are investigated using ab-initio calculations based on density functional theory as implemented in VASP code within the gradient generalized approximation. The non-spin polarized and spin polarized calculations are performed for these nitrides at normal and high pressures. It is found that these ternary nitrides are stable in ferromagnetic state at normal pressure. The lattice constant and bulk modulus values are calculated. The electronic structure reveals that these nitrides are metallic at normal pressure. The calculated elastic constants indicate that they are mechanically stable at ambient pressure. Ferromagnetic to nonmagnetic phase transition is observed in RhFe{sub 3}N and IrFe{sub 3}N at high pressure. Ferromagnetism is quenched in these nitrides at high pressure.

  18. Pressure-induced structural transition and thermodynamic properties of RhN2 and the effect of metallic bonding on its hardness

    International Nuclear Information System (INIS)

    Liu Jun; Kuang Xiao-Yu; Wang Zhen-Hua; Huang Xiao-Fen

    2012-01-01

    The elastic constant, structural phase transition, and effect of metallic bonding on the hardness of RhN 2 under high pressure are investigated through the first-principles calculation by means of the pseudopotential plane-wave method. Three structures are chosen to investigate for RhN 2 , namely, simple hexagonal P6/mmm (denoted as SH), orthorhombic Pnnm (marcasite), and simple tetragonal P4/mbm (denoted as ST). Our calculations show that the SH phase is energetically more stable than the other two phases at zero pressure. On the basis of the third-order Birch—Murnaghan equation of states, we find that the phase transition pressures from an SH to a marcasite structure and from a marcasite to an ST structure are 1.09 GPa and 354.57 GPa, respectively. Elastic constants, formation enthalpies, shear modulus, Young's modulus, and Debye temperature of RhN 2 are derived. The calculated values are, generally speaking, in good agreement with the previous theoretical results. Meanwhile, it is found that the pressure has an important influence on physical properties. Moreover, the effect of metallic bonding on the hardness of RhN 2 is investigated. This is a quantitative investigation on the structural properties of RhN 2 , and it still awaits experimental confirmation. (condensed matter: structural, mechanical, and thermal properties)

  19. Isosymmetric pressure-induced bonding increase changes compression behavior of clinopyroxenes across jadeite-aegirine solid solution in subduction zones: ISOSYMMETRIC PHASE TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jingui [Key Laboratory of High Temperature and High Pressure Study of the Earth' s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang China; Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai' i at Mānoa, Honolulu Hawaii USA; University of Chinese Academy of Sciences, Beijing China; Zhang, Dongzhou [Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai' i at Mānoa, Honolulu Hawaii USA; Fan, Dawei [Key Laboratory of High Temperature and High Pressure Study of the Earth' s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang China; Downs, Robert T. [Department of Geosciences, University of Arizona, Tucson Arizona USA; Hu, Yi [Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai' i at Mānoa, Honolulu Hawaii USA; Dera, Przemyslaw K. [Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai' i at Mānoa, Honolulu Hawaii USA

    2017-01-01

    Pyroxenes are among the most important minerals of Earth's crust and upper mantle and play significant role in controlling subduction at convergent margins. In this study, synchrotron-based single-crystal X-ray diffraction experiments were carried out on a natural aegirine [NaFe3+Si2O6] sample at ambient temperature and high pressures to 60 GPa, simulating conditions within the coldest part of a subduction zone consisting of old lithosphere. The diffraction data reveal no obvious sign of structural phase transition in aegirine within this pressure range; however, several relevant structural parameter trends change noticeably at approximately 24 GPa, indicating the presence of the previously predicted isosymmetric bonding change, related to increase of coordination number of Na+ at M2 site. The pressure-volume data, fit with third-order Birch-Murnaghan (BM3) equation of state over the whole pressure range, yields KT0 = 126(2) GPa and K'T0 = 3.3(1), while separate BM3 fits performed for the 0–24.0 GPa and 29.9–60.4 GPa pressure ranges give KT0 = 118(3) GPa, K'T0 = 4.2(3) and KT0 = 133(2) GPa, K'T0 = 3.0(1), suggesting that the structure stiffens as a result of the new bond formation. Aegirine exhibits strong anisotropic compression with unit strain axial ratios ε1:ε2:ε3 = 1.00:2.44:1.64. Structural refinements reveal that NaO8 polyhedron is the most compressible and SiO4 tetrahedron has the lowest compressibility. The consequence of bonding transition is that the compressional behavior of aegirine below ~24 GPa and above that pressure is quite different, with likely consequences for relevant thermodynamic parameters and ion diffusion coefficients.

  20. Melting and Pressure-Induced Amorphization of Quartz

    OpenAIRE

    Badro, James; Gillet, Philippe; Barrat, Jean-Louis

    1997-01-01

    It has recently been shown that amorphization and melting of ice were intimately linked. In this letter, we infer from molecular dynamics simulations on the SiO2 system that the extension of the quartz melting line in the metastable pressure-temperature domain is the pressure-induced amorphization line. It seems therefore likely that melting is the physical phenomenon responsible for pressure induced amorphization. Moreover, we show that the structure of a "pressure glass" is similar to that ...

  1. Comparative study of pressure-induced polymerization in C60 nanorods and single crystals

    International Nuclear Information System (INIS)

    Hou Yuanyuan; Liu Bingbing; Wang Lin; Yu Shidan; Yao Mingguang; Chen Ao; Liu Dedi; Zou Yonggang; Li Zepeng; Zou Bo; Cui Tian; Zou Guangtian; Iwasiewicz-Wabnig, Agnieszka; Sundqvist, Bertil

    2007-01-01

    In this paper, we report a comparative study of pressure-induced polymerization in C 60 nanorods and bulk single crystals, treated simultaneously under various pressures and temperatures in the same experiment. For both materials, orthorhombic, tetragonal and rhombohedral phases have been produced under high pressure and high temperature. The structures have been identified and compared between the two sample types by Raman and photoluminescence spectroscopy. There are differences between the Raman and photoluminescence spectra from the two types of materials for all polymeric phases, but especially for the tetragonal phase. From the comparison between nanorods and bulk samples, we tentatively assign photoluminescence peaks for various polymeric phases

  2. The pressure-temperature phase diagram of pressure induced organic superconductors β-(BDA-TTP){2}MCl{4} (M = Ga, Fe)

    Science.gov (United States)

    Choi, E. S.; Graf, D.; Brooks, J. S.; Yamada, J.; Tokumoto, M.

    2004-04-01

    We investigate the pressure-temperature phase diagram of β -(BDA-TTP){2}MCl{4} (M=Ga, Fe), which shows a metal-insulator (MI) transition around 120 K at ambient pressure. By applying pressure, the insulating phase is suppressed. When the pressure is higher than 5.5 kbar, the superconducting phase appears in both salts with Tc ˜ 3 K for M=Ga and 2.2 K for M=Fe. We also observed Shubnikov-de Haas (SdH) oscillations at high magnetic field in both salts, where the SdH frequencies are found to be very similar each other. Key words. organic superconductor, pressure, phase diagram.

  3. Phase diagram of pressure-induced superconductor β-(BDA-TTP)2MX4 (M=Fe, Ga and X=Cl, Br) with localized magnetic moments

    Science.gov (United States)

    Choi, E. S.; Graf, D.; Tokumoto, T.; Brooks, J. S.; Yamada, Jun-Ichi

    2007-03-01

    We have investigated transport and magnetization properties of β-(BDA-TTP)2MX4 (M=Fe, Ga and X=Cl, Br) as a function of pressure, temperature and magnetic field. The title material undergoes metal-insulator transitions above 100 K at ambient pressure. The insulating phase is suppressed with pressure and superconductivity eventually appears above Pc= 4.5 kbar (X=Cl) and 13 kbar (X=Br). The general temperature-pressure (TP) phase diagram is similar each other, while higher pressure is required for X=Br compounds to suppress the insulating state and induce the superconductivity. Pressure dependent DC magnetization studies on β-(BDA-TTP)2FeCl4 compound revealed that the AFM ordering persist well above Pc. In spite of similarity of phase diagram between M=Fe and M=Ga compounds, magnetoresistance results show distinct behaviors, which indicates the magnetic interaction with the conduction electrons are still effective. The comparison between X=Cl and X=Br compounds suggests the anion-size effect rather than the existence of localized magnetic moments plays more important role in determining the ground state.

  4. Chemical and Hydrostatic Pressure in Natrolites: Pressure Induced Hydration of an Aluminogermanate Natrolite

    International Nuclear Information System (INIS)

    Lee, Y.; Kao, C.; Seoung, D.H.; Bai, J.; Kao, C.C.; Parise, J.B.; Vogt, T.

    2010-01-01

    The ambient structure and pressure-induced structural changes of a synthetic sodium aluminogermanate with a natrolite (NAT) framework topology (Na-AlGe-NAT) were characterized by using Rietveld refinements of high-resolution synchrotron X-ray powder diffraction data at ambient and high pressures. Unlike a previously established model for Na 8 Al 8 Ge 12 O 40 · 8H 2 O based on a single-crystal study, the ambient structure of the Na-AlGe-NAT is found to adopt a monoclinic space group Cc (or Fd) with a ca. 6% expanded unit cell. The refined ambient structure of Na 8 Al 8 Ge 12 O 40 · 12H 2 O indicates an increased water content of 50%, compared to the single-crystal structure. The unit-cell volume and water-content relationships observed between the two Na-AlGe-NAT structures at ambient conditions with 8 and 12 H 2 O respectively seem to mirror the ones found under hydrostatic pressure between the Na 8 Al 8 Ge 12 O 40 · 8H 2 O and the parantrolite phase Na 8 Al 8 Ge 12 O 40 · 12H 2 O. Under hydrostatic pressures mediated by a pore-penetrating alcohol and water mixture, the monoclinic Na-AlGe-NAT exhibits a gradual decrease of the unit-cell volume up to ca. 2.0 GPa, where the unit-cell volume then contracts abruptly by ca. 4.6%. This is in marked contrast to what is observed in the Na-AlSi-NAT and Na-GaSi-NAT systems, where one observes a pressure-induced hydration and volume expansion due to the auxetic nature of the frameworks. Above 2 GPa, the monoclinic phase of Na-AlGe-NAT transforms into a tetragonal structure with the unit-cell composition of Na 8 Al 8 Ge 12 O 40 · 16H 2 O, revealing pressure-induced hydration and a unit cell volume contraction. Unlike in the Na-Al,Si-paranatrolite phase, however, the sodium cations in the Na-AlGe-NAT maintain a 6-fold coordination in the monoclinic structure and only become 7-fold coordinated at higher pressures in the tetragonal structure. When comparing the pressure-induced hydration in the observed natrolite

  5. Pressure-induced structural change in MgSiO3 glass at pressures near the Earth's core-mantle boundary.

    Science.gov (United States)

    Kono, Yoshio; Shibazaki, Yuki; Kenney-Benson, Curtis; Wang, Yanbin; Shen, Guoyin

    2018-02-20

    Knowledge of the structure and properties of silicate magma under extreme pressure plays an important role in understanding the nature and evolution of Earth's deep interior. Here we report the structure of MgSiO 3 glass, considered an analog of silicate melts, up to 111 GPa. The first (r1) and second (r2) neighbor distances in the pair distribution function change rapidly, with r1 increasing and r2 decreasing with pressure. At 53-62 GPa, the observed r1 and r2 distances are similar to the Si-O and Si-Si distances, respectively, of crystalline MgSiO 3 akimotoite with edge-sharing SiO 6 structural motifs. Above 62 GPa, r1 decreases, and r2 remains constant, with increasing pressure until 88 GPa. Above this pressure, r1 remains more or less constant, and r2 begins decreasing again. These observations suggest an ultrahigh-pressure structural change around 88 GPa. The structure above 88 GPa is interpreted as having the closest edge-shared SiO 6 structural motifs similar to those of the crystalline postperovskite, with densely packed oxygen atoms. The pressure of the structural change is broadly consistent with or slightly lower than that of the bridgmanite-to-postperovskite transition in crystalline MgSiO 3 These results suggest that a structural change may occur in MgSiO 3 melt under pressure conditions corresponding to the deep lower mantle.

  6. Low pressure-induced secondary structure transitions of regenerated silk fibroin in its wet film studied by time-resolved infrared spectroscopy.

    Science.gov (United States)

    He, Zhipeng; Liu, Zhao; Zhou, Xiaofeng; Huang, He

    2018-06-01

    The secondary structure transitions of regenerated silk fibroin (RSF) under different external perturbations have been studied extensively, except for pressure. In this work, time-resolved infrared spectroscopy with the attenuated total reflectance (ATR) accessory was employed to follow the secondary structure transitions of RSF in its wet film under low pressure. It has been found that pressure alone is favorable only to the formation of β-sheet structure. Under constant pressure there is an optimum amount of D 2 O in the wet film (D 2 O : film = 2:1) so as to provide the optimal condition for the reorganization of the secondary structure and to have the largest formation of β-sheet structure. Under constant amount of D 2 O and constant pressure, the secondary structure transitions of RSF in its wet film can be divided into three stages along with time. In the first stage, random coil, α-helix, and β-turn were quickly transformed into β-sheet. In the second stage, random coil and β-turn were relatively slowly transformed into β-sheet and α-helix, and the content of α-helix was recovered to the value prior to the application of pressure. In the third and final stage, no measurable changes can be found for each secondary structure. This study may be helpful to understand the secondary structure changes of silk fibroin in silkworm's glands under hydrostatic pressure. © 2018 Wiley Periodicals, Inc.

  7. Phase Diagram and Electronic Structure of Praseodymium and Plutonium

    Directory of Open Access Journals (Sweden)

    Nicola Lanatà

    2015-01-01

    Full Text Available We develop a new implementation of the Gutzwiller approximation in combination with the local density approximation, which enables us to study complex 4f and 5f systems beyond the reach of previous approaches. We calculate from first principles the zero-temperature phase diagram and electronic structure of Pr and Pu, finding good agreement with the experiments. Our study of Pr indicates that its pressure-induced volume-collapse transition would not occur without change of lattice structure—contrarily to Ce. Our study of Pu shows that the most important effect originating the differentiation between the equilibrium densities of its allotropes is the competition between the Peierls effect and the Madelung interaction and not the dependence of the electron correlations on the lattice structure.

  8. High pressure structural phase transitions of TiO2 nanomaterials

    International Nuclear Information System (INIS)

    Li Quan-Jun; Liu Bing-Bing

    2016-01-01

    Recently, the high pressure study on the TiO 2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO 2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO 2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO 2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO 2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets, and nanoporous materials, and pressure-induced amorphization (PIA) and polyamorphism in ultrafine nanoparticles and TiO 2 -B nanoribbons. Various TiO 2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO 2 nanoribbons, α -PbO 2 -type TiO 2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO 2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO 2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications. (topical review)

  9. Structural relaxation and thermal conductivity of high-pressure formed, high-density di-n-butyl phthalate glass and pressure induced departures from equilibrium state.

    Science.gov (United States)

    Johari, G P; Andersson, Ove

    2017-06-21

    We report a study of structural relaxation of high-density glasses of di-n-butyl phthalate (DBP) by measuring thermal conductivity, κ, under conditions of pressure and temperature (p,T) designed to modify both the vibrational and configurational states of a glass. Various high-density glassy states of DBP were formed by (i) cooling the liquid under a fixed high p and partially depressurizing the glass, (ii) isothermal annealing of the depressurized glass, and (iii) pressurizing the glass formed by cooling the liquid under low p. At a given low p, κ of the glass formed by cooling under high p is higher than that of the glass formed by cooling under low p, and the difference increases as glass formation p is increased. κ of the glass formed under 1 GPa is ∼20% higher at ambient p than κ of the glass formed at ambient p. On heating at low p, κ decreases until the glass to liquid transition range is reached. This is the opposite of the increase in κ observed when a glass formed under a certain p is heated under the same p. At a given high p, κ of the low-density glass formed by cooling at low p is lower than that of the high-density glass formed by cooling at that high p. On heating at high p, κ increases until the glass to liquid transition range is reached. The effects observed are due to a thermally assisted approach toward equilibrium at p different from the glass formation p. In all cases, the density, enthalpy, and entropy would change until the glasses become metastable liquids at a fixed p, thus qualitatively relating κ to variation in these properties.

  10. Pressure-induced polyamorphism in lanthanide-solute metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangliang; Li, Renfeng; Liu, Haozhe [Harbin Institute of Technology, Harbin (China); Center for High Pressure Science Technology Advanced Research, Changchun (China); Wang, Luhong [Harbin Institute of Technology, Harbin (China); Qu, Dongdong [School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD (Australia); Zhao, Haiyan [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States); Center for Advanced Energy Studies, University of Idaho, Idaho Falls, ID (United States); Chapman, Karena W.; Chupas, Peter J. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States)

    2017-06-15

    The electronic structure inheritance of lanthanide-solvent atoms in lanthanide-based metallic glasses has been proposed. Is a polyamorphism possible in lanthanide-solute metallic glasses? So far, polyamorphic phase transitions in metallic glass containing lanthanide have been observed only in lanthanide-solvent metallic glasses. Here, a pressure-induced transition between two distinct amorphous states, accompanied by a 7% volume collapse at ambient pressure, was observed in La{sub 43.4}Pr{sub 18.6}Al{sub 14}Cu{sub 24} metallic glass, with low lanthanide content, by using in situ X-ray total scattering method. The transformation also indicated by changes in short range and medium range order. Thus, it is proposed that the lanthanide-solute metallic glasses also inherit 4f electronic transition from pure lanthanide element in polyamorphic transition. This discovery offers a supplement to research on lanthanide-based metallic glasses, which further provides a new perspective of the polyamorphic transformation in metallic glasses containing lanthanide element. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Berry's Phase and Fine Structure

    CERN Document Server

    Binder, B

    2002-01-01

    Irrational numbers can be assigned to physical entities based on iterative processes of geometric objects. It is likely that iterative round trips of vector signals include a geometric phase component. If so, this component will couple back to the round trip frequency or path length generating an non-linear feedback loop (i.e. induced by precession). In this paper such a quantum feedback mechanism is defined including generalized fine structure constants in accordance with the fundamental gravitomagnetic relation of spin-orbit coupling. Supported by measurements, the general relativistic and topological background allows to propose, that the deviation of the fine structure constant from 1/137 could be assigned to Berry's phase. The interpretation is straightforward: spacetime curvature effects can be greatly amplified by non-linear phase-locked feedback-loops adjusted to single-valued phase relationships in the quantum regime.

  12. Persistent Fe moments in the normal-state collapsed-tetragonal phase of the pressure-induced superconductor Ca0.67Sr0.33Fe2As2

    Science.gov (United States)

    Jeffries, J. R.; Butch, N. P.; Lipp, M. J.; Bradley, J. A.; Kirshenbaum, K.; Saha, S. R.; Paglione, J.; Kenney-Benson, C.; Xiao, Y.; Chow, P.; Evans, W. J.

    2014-10-01

    Using nonresonant Fe Kβ x-ray emission spectroscopy, we reveal that Sr substitution into CaFe2As2 decouples the Fe moment from the volume collapse transition, yielding a collapsed-tetragonal, paramagnetic normal state out of which superconductivity develops. X-ray diffraction measurements implicate the c-axis lattice parameter as the controlling criterion for the Fe moment, promoting a generic description for the appearance of pressure-induced superconductivity in the alkaline-earth-based 122 ferropnictides (AFe2As2). The evolution of Tc with pressure lends support to theories for superconductivity involving unconventional pairing mediated by magnetic fluctuations.

  13. Pressure induced deep tissue injury explained

    NARCIS (Netherlands)

    Oomens, C.W.J.; Bader, D.L.; Loerakker, S.; Baaijens, F.P.T.

    The paper describes the current views on the cause of a sub-class of pressure ulcers known as pressure induced deep tissue injury (DTI). A multi-scale approach was adopted using model systems ranging from single cells in culture, tissue engineered muscle to animal studies with small animals. This

  14. Theoretical analysis of the structural phase transformation in the ZnO under high pressure

    Science.gov (United States)

    Verma, Saligram; Jain, Arvind; Nagarch, R. K.; Shah, S.; Kaurav, Netram

    2018-05-01

    We report a phenomenological model based calculation of pressure-induced structural phase transition and elastic properties of ZnO compound. Gibb's free energy is obtained as a function of pressure by applying an effective inter ionic interaction potential, which includes the long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach. From the present study, we predict a structural phase transition from ZnS structure (B3) to NaCl structure (B1) at 8.5 GPa. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data. The variations of elastic constants with pressure follow a systematic trend identical to that observed in others compounds of ZnS type structure family.

  15. Origins of pressure-induced protein transitions.

    Science.gov (United States)

    Chalikian, Tigran V; Macgregor, Robert B

    2009-12-18

    The molecular mechanisms underlying pressure-induced protein denaturation can be analyzed based on the pressure-dependent differences in the apparent volume occupied by amino acids inside the protein and when they are exposed to water in an unfolded conformation. We present here an analysis for the peptide group and the 20 naturally occurring amino acid side chains based on volumetric parameters for the amino acids in the interior of the native state, the micelle-like interior of the pressure-induced denatured state, and the unfolded conformation modeled by N-acetyl amino acid amides. The transfer of peptide groups from the protein interior to water becomes increasingly favorable as pressure increases. Thus, solvation of peptide groups represents a major driving force in pressure-induced protein denaturation. Polar side chains do not appear to exhibit significant pressure-dependent changes in their preference for the protein interior or solvent. The transfer of nonpolar side chains from the protein interior to water becomes more unfavorable as pressure increases. We conclude that a sizeable population of nonpolar side chains remains buried inside a solvent-inaccessible core of the pressure-induced denatured state. At elevated pressures, this core may become packed almost as tightly as the interior of the native state. The presence and partial disappearance of large intraglobular voids is another driving force facilitating pressure-induced denaturation of individual proteins. Our data also have implications for the kinetics of protein folding and shed light on the nature of the folding transition state ensemble.

  16. Phase gradients in acceleration structures

    International Nuclear Information System (INIS)

    Decker, F.J.; Jobe, R.K.

    1990-05-01

    In linear accelerators with two or more bunches the beam loading of one bunch will influence the energy and energy spread the following bunches. This can be corrected by quickly changing the phase of a travelling wave structure, so that each bunch recieves a slightly different net phase. At the SLAC Linear Collider (SLC) three bunches, two (e + ,e - ) for the high energy collisions and one (e - -scavenger) for producing positrons should sit at different phases, due to their different tasks. The two e - -bunches are extracted from the damping ring at the same cycle time about 60 ns apart. Fast phase switching of the RF to the bunch length compressor in the Ring-To-Linac (RTL) section can produce the necessary advance of the scavenger bunch (about 6 degree in phase). This allows a low energy spread of this third bunch at the e + -production region at 2/3 of the linac length, while the other bunches are not influenced. The principles and possible other applications of this fast phase switching as using it for multi-bunches, as well as the experimental layout for the actual RTL compressor are presented

  17. Experimental and first-principles calculation study of the pressure-induced transitions to a metastable phase in GaP O4 and in the solid solution AlP O4-GaP O4

    Science.gov (United States)

    Angot, E.; Huang, B.; Levelut, C.; Le Parc, R.; Hermet, P.; Pereira, A. S.; Aquilanti, G.; Frapper, G.; Cambon, O.; Haines, J.

    2017-08-01

    α -Quartz-type gallium phosphate and representative compositions in the AlP O4-GaP O4 solid solution were studied by x-ray powder diffraction and absorption spectroscopy, Raman scattering, and by first-principles calculations up to pressures of close to 30 GPa. A phase transition to a metastable orthorhombic high-pressure phase along with some of the stable orthorhombic C m c m CrV O4 -type material is found to occur beginning at 9 GPa at 320 ∘C in GaP O4 . In the case of the AlP O4-GaP O4 solid solution at room temperature, only the metastable orthorhombic phase was obtained above 10 GPa. The possible crystal structures of the high-pressure forms of GaP O4 were predicted from first-principles calculations and the evolutionary algorithm USPEX. A predicted orthorhombic structure with a P m n 21 space group with the gallium in sixfold and phosphorus in fourfold coordination was found to be in the best agreement with the combined experimental data from x-ray diffraction and absorption and Raman spectroscopy. This method is found to very powerful to better understand competition between different phase transition pathways at high pressure.

  18. Pressure induced Ag{sub 2}Te polymorphs in conjunction with topological non trivial to metal transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.; Zhang, S. J., E-mail: sjzhang@iphy.ac.cn, E-mail: jin@iphy.ac.cn; Yu, X. H.; Yu, R. C.; Jin, C. Q., E-mail: sjzhang@iphy.ac.cn, E-mail: jin@iphy.ac.cn; Dai, X.; Fang, Z. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Oganov, A. R. [Department of Geosciences, University of New York at Stony Brook (United States); Feng, W. X.; Yao, Y. G. [Department of Physics, Beijing Institute of Technology, Beijing (China); Zhu, J. L. [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 (United States); Zhao, Y. S. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); South University of Science and Technology of China, Shenzhen, Guangdong (China)

    2016-08-15

    Silver telluride (Ag{sub 2}Te) is well known as superionic conductor and topological insulator with polymorphs. Pressure induced three phase transitions in Ag{sub 2}Te have been reported in previous. Here, we experimentally identified high pressure phase above 13 GPa of Ag{sub 2}Te by using high pressure synchrotron x ray diffraction method in combination with evolutionary crystal structure prediction, showing it crystallizes into a monoclinic structure of space group C2/m with lattice parameters a = 6.081Å, b = 5.744Å, c = 6.797 Å, β = 105.53°. The electronic properties measurements of Ag{sub 2}Te reveal that the topologically non-trivial semiconducting phase I and semimetallic phase II previously predicated by theory transformed into bulk metals for high pressure phases in consistent with the first principles calculations.

  19. Giant Pressure-Induced Enhancement of Seebeck Coefficient and Thermoelectric Efficiency in SnTe

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Jason; Kumar, Ravhi; Park, Changyong; Kenney-Benson, Curtis; Cornelius, Andrew; Velisavljevic, Nenad (CIW); (LANL); (UNLV)

    2017-10-30

    The thermoelectric properties of polycrystalline SnTe have been measured up to 4.5 GPa at 330 K. SnTe shows an enormous enhancement in Seebeck coefficient, greater than 200 % after 3 GPa, which correlates to a known pressure-induced structural phase transition that is observed through simultaneous in situ X-ray diffraction measurement. Electrical resistance and relative changes to the thermal conductivity were also measured, enabling the determination of relative changes in the dimensionless figure of merit (ZT), which increases dramatically after 3 GPa, reaching 350 % of the lowest pressure ZT value. The results demonstrate a fundamental relationship between structure and thermoelectric behaviours and suggest that pressure is an effective tool to control them.

  20. Structural phase transition and dynamical properties of PbTiO3 simulated by molecular dynamics

    International Nuclear Information System (INIS)

    Costa, S C; Pizani, P S; Rino, J P; Borges, D S

    2005-01-01

    The temperature- and pressure-induced structural phase transition in PbTiO 3 is studied with the isoenthalpic-isobaric molecular-dynamics method, using an effective two-body interaction potential. The tetragonal to cubic transformation is successfully reproduced with both temperature and pressure. The behaviour of lattice parameters, vibrational density of states, and phonon anharmonicity with temperature and pressure are in very good agreement with experimental data. Two- and three-body correlations were analysed through pair distribution functions, coordination numbers and bond-angle distributions

  1. First-principles study of lattice dynamics, structural phase transition, and thermodynamic properties of barium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huai-Yong; Zhao, Ying-Qin; Lu, Qing [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Zeng, Zhao-Yi [Chongqing Normal Univ. (China). College of Physics and Electronic Engineering; Chinese Academy of Engineering Physics, Mianyang (China). National Key Laboratory for Shock Wave and Detonation Physics Research; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Sichuan Univ., Chengdu (China). Key Laboratory of High Energy Density Physics and Technology of Ministry of Education

    2016-11-01

    Lattice dynamics, structural phase transition, and the thermodynamic properties of barium titanate (BaTiO{sub 3}) are investigated by using first-principles calculations within the density functional theory (DFT). It is found that the GGA-WC exchange-correlation functional can produce better results. The imaginary frequencies that indicate structural instability are observed for the cubic, tetragonal, and orthorhombic phases of BaTiO{sub 3} and no imaginary frequencies emerge in the rhombohedral phase. By examining the partial phonon density of states (PDOSs), we find that the main contribution to the imaginary frequencies is the distortions of the perovskite cage (Ti-O). On the basis of the site-symmetry consideration and group theory, we give the comparative phonon symmetry analysis in four phases, which is useful to analyze the role of different atomic displacements in the vibrational modes of different symmetry. The calculated optical phonon frequencies at Γ point for the four phases are in good agreement with other theoretical and experimental data. The pressure-induced phase transition of BaTiO{sub 3} among four phases and the thermodynamic properties of BaTiO{sub 3} in rhombohedral phase have been investigated within the quasi-harmonic approximation (QHA). The sequence of the pressure-induced phase transition is rhombohedral → orthorhombic → tetragonal → cubic, and the corresponding transition pressure is 5.17, 5.92, 6.65 GPa, respectively. At zero pressure, the thermal expansion coefficient α{sub V}, heat capacity C{sub V}, Grueneisen parameter γ, and bulk modulus B of the rhombohedral phase BaTiO{sub 3} are estimated from 0 K to 200 K.

  2. Indirect phase transition of TiC, ZrC, and HfC crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Abavare, Eric K.K.; Dodoo, Samuel N.A. [Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); Uchida, Kazuyuki; Oshiyama, Atsushi [Department of Applied Physics, The University of Tokyo, Hongo, Tokyo (Japan); Nkurumah-Buandoh, George K.; Yaya, Abu [Department of Physics, University of Ghana, Legon (Ghana)

    2016-06-15

    We have performed first-principles calculations to analyze the electronic structures, static, and dynamical structural stabilities of the pressure-induced phase transformation of refractory compounds (transition-metal carbides) from NaCl-type (B1) to CsCl-type (B2) via zinc-blende phase using the plane-wave pseudopotential approach in the framework of the generalized gradient approximation (GGA) for the exchange and correlation functional. The ground-state properties, equilibrium lattice constant, bulk moduli, and band structures are determined for the stoichiometry of the compounds and compared with known experimental and theoretical values. We find that the phase-transition pressure for the indirect phase transition from B1→B2 via zinc-blende structure is about 17-fold for TiC, 12-fold for both ZrC and HfC, respectively, when compared with the direct phase transition. Calculated phonon instability exists for the CsCl-B2 phase, which can prevent the structures from forming and contrary to the zinc-blende and the NaCl-B1 phases. The band dispersion and electronic density of states for B1 and B2 crystal phases were explored and found to indicate metallic character in contrast with the zinc-blende phase, which has a pseudogap opening in the bandgap region suggesting a semiconducting property and also a frequency gap in the phonon spectrum. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Structural phase transition and elastic properties of AnAs (An= Th, U, Np, Pu) compounds at high pressure

    International Nuclear Information System (INIS)

    Aynyas, Mahendra; Arya, B.S.; Srivastava, Vipul; Sanyal, Sankar P.

    2006-01-01

    The high pressure behavior and pressure induced structural phase transition of mono arsenides (AnAs; An = Th, U, Np, Pu) have been investigated by using a three body interaction potential (TBI). This method has been found quite satisfactory in the case of other Rare-Earth compounds. The calculated compression curves of mono-arsenides obtained so have been compared with high pressure X-ray diffraction work. The theoretically predicted phase transition pressure and other structural properties for these compounds agree reasonably well with the measured values. (author)

  4. Pressure-induced magnetic transition in Fe sub 4 N probed by Fe K-edge XMCD measurement

    CERN Document Server

    Ishimatsu, N; Maruyama, H; Kawamura, N; Suzuki, M; Ohishi, Y; Ito, M; Nasu, S; Kawakami, T

    2003-01-01

    X-ray magnetic circular dichroism (XMCD) of gamma'-iron nitride (Fe sub 4 N) was recorded at Fe K-edge under high pressure up to 27 GPa. The XMCD intensity decreased remarkably with pressure, and vanished at 24 GPa. Compressibility was measured by the X-ray diffraction method. These results indicate that Fe sub 4 N undergoes a second-order phase transition from the ferromagnetic state to a paramagnetic state without any structural change. The pressure-induced demagnetizing process is discussed in terms of the Fe magnetic states in the local environment.

  5. Pressure-induced transition in Tl2MoO4

    International Nuclear Information System (INIS)

    Machon, Denis; Friese, Karen; Breczewski, Tomasz; Grzechnik, Andrzej

    2010-01-01

    Tl 2 MoO 4 has been studied under high-pressure by X-ray diffraction, Raman spectroscopy, and optical absorption measurements. A first-order phase transition is observed at 3.5±0.5 GPa. The nature (ordered vs. disordered) of the high-pressure phase strongly depends on the local hydrostatic conditions. Optical absorption measurements tend to show that this transition is concomitant with an electronic structure transformation. Prior to the transition, single crystal X-ray diffraction shows that pressure induces interactions between MoO 4 fragments and the Mo coordination number tends to increase. In addition, the stereoactivity of the lone-pair electrons on the three symmetrically independent Tl-sites is not uniform; while for two sites the stereoactivity decreases with increasing pressures for the third site the stereoactivity increases. - Graphical Abstract: (up) Structural evolutions of Tl 2 MoO 4 in the low-pressure phase. (Down) Optical properties of the high-pressure phase as a function of pressure. Display Omitted

  6. Structural phase transition and elastic properties of mercury chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Shriya, S. [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria)

    2012-08-15

    Pressure induced structural transition and elastic properties of ZnS-type (B3) to NaCl-type (B1) structure in mercury chalcogenides (HgX; X = S, Se and Te) are presented. An effective interionic interaction potential (EIOP) with long-range Coulomb, as well charge transfer interactions, Hafemeister and Flygare type short-range overlap repulsion extended up to the second neighbor ions and van der Waals interactions are considered. Emphasis is on the evaluation of the pressure dependent Poisson's ratio {nu}, the ratio R{sub BT/G} of B (bulk modulus) over G (shear modulus), anisotropy parameter, Shear and Young's modulus, Lame constant, Kleinman parameter, elastic wave velocity and thermodynamical property as Debye temperature. The Poisson's ratio behavior infers that Mercury chalcogenides are brittle in nature. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of elastic and thermodynamical properties explicitly the ductile (brittle) nature of HgX and still awaits experimental confirmations. Highlights: Black-Right-Pointing-Pointer Vast volume discontinuity in phase diagram infers transition from ZnS to NaCl structure. Black-Right-Pointing-Pointer The shear elastic constant C{sub 44} is nonzero confirms the mechanical stability. Black-Right-Pointing-Pointer Pressure dependence of {theta}{sub D} infers the softening of lattice with increasing pressure. Black-Right-Pointing-Pointer Estimated bulk, shear and tetragonal moduli satisfied elastic stability criteria. Black-Right-Pointing-Pointer In both B3 and B1 phases, C{sub 11} and C{sub 12} increase linearly with pressure.

  7. Phase equilibria and phase structures of polymer blends

    International Nuclear Information System (INIS)

    Chalykh, Anatolii E; Gerasimov, Vladimir K

    2004-01-01

    Experimental, methodical and theoretical studies dealing with phase equilibria and phase structures of polymer blends are generalised. The general and specific features of the change in solubility of polymers with changes in the molecular mass and copolymer composition and upon the formation of three-dimensional cross-linked networks are described. The results of the effect of the prehistory on the phase structure and the non-equilibrium state of polymer blends are considered in detail.

  8. Pressure induced anomalies in an As-Al-Te glass

    International Nuclear Information System (INIS)

    Mohan, Murali; Giridhar, A.; Mahadevan, Sudha

    1995-01-01

    The pressure and temperature dependences of the electrical resistance of As 34.4 Al 4 Te 61.6 and As 16.67 Al 16.67 Te 66.66 glasses have been investigated using an opposed anvil setup. The resistance of the glasses exhibit ∼ 10 6 fold decrease with increasing pressure up to 7 GPa at 300 K. This behaviour can be traced to the corresponding changes with pressure of the activation energy for electrical conduction, ΔE(p). The As 34.4 Al 4 Te 61.6 glass exhibits pressure induced anomalies at 2 GPa in the pressure variation of ΔE(p) and the pressure coefficient of electrical resistance. Such an anomaly is not seen for the As 16.67 Al 16.67 Te 66.66 glass. The anomalies point to a pressure induced morphological structural transformation in the As 34.4 Al 4 Te 61.6 glass. (author)

  9. Synthesizing lattice structures in phase space

    International Nuclear Information System (INIS)

    Guo, Lingzhen; Marthaler, Michael

    2016-01-01

    In one dimensional systems, it is possible to create periodic structures in phase space through driving, which is called phase space crystals (Guo et al 2013 Phys. Rev. Lett. 111 205303). This is possible even if for particles trapped in a potential without periodicity. In this paper we discuss ultracold atoms in a driven optical lattice, which is a realization of such a phase space crystals. The corresponding lattice structure in phase space is complex and contains rich physics. A phase space lattice differs fundamentally from a lattice in real space, because its coordinate system, i.e., phase space, has a noncommutative geometry, which naturally provides an artificial gauge (magnetic) field. We study the behavior of the quasienergy band structure and investigate the dissipative dynamics. Synthesizing lattice structures in phase space provides a new platform to simulate the condensed matter phenomena and study the intriguing phenomena of driven systems far away from equilibrium. (paper)

  10. The effect of relativity on stability of Copernicium phases, their electronic structure and mechanical properties

    Science.gov (United States)

    Čenčariková, Hana; Legut, Dominik

    2018-05-01

    The phase stability of the various crystalline structures of the super-heavy element Copernicium was determined based on the first-principles calculations with different levels of the relativistic effects. We utilized the Darwin term, mass-velocity, and spin-orbit interaction with the single electron framework of the density functional theory while treating the exchange and correlation effects using local density approximations. It is found that the spin-orbit coupling is the key component to stabilize the body-centered cubic (bcc) structure over the hexagonal closed packed (hcp) structure, which is in accord with Sol. Stat. Comm. 152 (2012) 530, but in contrast to Atta-Fynn and Ray (2015) [11], Gaston et al. (2007) [10], Papaconstantopoulos (2015) [9]. It seems that the main role here is the correct description of the semi-core relativistic 6p1/2 orbitals. The all other investigated structures, i.e. face-centered cubic (fcc) , simple cubic (sc) as well as rhombohedral (rh) structures are higher in energy. The criteria of mechanical stability were investigated based on the calculated elastic constants, identifying the phase instability of fcc and rh structures, but surprisingly confirm the stability of the energetically higher sc structure. In addition, the pressure-induced structural transition between two stable sc and bcc phases has been detected. The ground-state bcc structure exhibits the highest elastic anisotropy from single elements of the Periodic table. At last, we support the experimental findings that Copernicium is a metal.

  11. Computing optimal interfacial structure of modulated phases

    OpenAIRE

    Xu, Jie; Wang, Chu; Shi, An-Chang; Zhang, Pingwen

    2016-01-01

    We propose a general framework of computing interfacial structures between two modulated phases. Specifically we propose to use a computational box consisting of two half spaces, each occupied by a modulated phase with given position and orientation. The boundary conditions and basis functions are chosen to be commensurate with the bulk structures. It is observed that the ordered nature of modulated structures stabilizes the interface, which enables us to obtain optimal interfacial structures...

  12. Structural Nervous System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — GTL's SNS technology aids in the operation of new or existing structural health monitoring (SHM) systems by integrating data and power pathways into the structure....

  13. Structural phase transitions and Huang scattering

    International Nuclear Information System (INIS)

    Yamada, Yasusada

    1980-01-01

    The usefulness of the application of the concept of Huang scattering to the understandings of the origin of diffuse scatterings near structural phase transitions are discussed. It is pointed out that in several phase transitions, the observed diffuse scatterings can not be interpreted in terms of critical fluctuations of the order parameters associated with the structural phase transitions, and that they are rather interpreted as Huang scattering due to random distribution of individual order parameter which is 'dressed' by strain fields. Examples to show effective applications of this concept to analyze the experimental X-ray data and whence to understand microscopic mechanisms of structural phase transitions are presented. (author)

  14. X-ray diffraction and molecular-dynamics studies: Structural analysis of phases in diglyceride monolayers

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Larsen, Niels Bent; Bjørnholm, T.

    1998-01-01

    We report a detailed structural analysis of the phases of 1,2-sn-dipalmitoylglycerol Langmuir monolayers at room temperature. Pressure-induced transitions have been investigated by combination of molecular-dynamics simulations and grazing-incidence x-ray diffraction (XRD). The diglyceride film...... undergoes two phase transitions occurring at 38.3 and 39.8 Angstrom(2)/molecule. Simulation indicates that the first transition involves a reorientation of the headgroups while simulation and XRD show that in the second transition the order parameter is the tilt angle of the alkyl chains. A methodology......; At the lowest pressure the tilt angle reaches approximate to 14 degrees in a direction close to a nearest neighbor direction. Both arrangements of the alkyl chains are confirmed by XRD. For higher order and fractional order Bragg peaks, simulations predict higher intensities than observed with XRD. This may...

  15. An absorbing phase transition from a structured active particle phase

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Cristobal [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain); Ramos, Francisco [Departamento de Electromagnetismo y Fisica de la Materia and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hernandez-GarcIa, Emilio [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain)

    2007-02-14

    In this work we study the absorbing state phase transition of a recently introduced model for interacting particles with neighbourhood-dependent reproduction rates. The novelty of the transition is that as soon as the active phase is reached by increasing a control parameter a periodically arranged structure of particle clusters appears. A numerical study in one and two dimensions shows that the system falls into the directed percolation universality class.

  16. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase

    International Nuclear Information System (INIS)

    Nagae, Takayuki; Kawamura, Takashi; Chavas, Leonard M. G.; Niwa, Ken; Hasegawa, Masashi; Kato, Chiaki; Watanabe, Nobuhisa

    2012-01-01

    Structures of 3-isopropylmalate dehydrogenase were determined at pressures ranging from 0.1 to 650 MPa. Comparison of these structures gives a detailed picture of the swelling of a cavity at the dimer interface and the generation of a new cleft on the molecular surface, which are accompanied by water penetration. Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH

  17. The Structural Phase Transition in Solid DCN

    DEFF Research Database (Denmark)

    Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.

    1975-01-01

    Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase change from a tetragonal to an orthorhombic form at 160K is a first-order transition. A transverse acoustic phonon mode, which has the symmetry of the phase change, was observed at very low energies...

  18. The Structural Phase Transition in Octaflournaphtalene

    DEFF Research Database (Denmark)

    Mackenzie, Gordon A.; Arthur, J. W.; Pawley, G. S.

    1977-01-01

    The phase transition in octafluoronaphthalene has been investigated by Raman scattering and neutron powder diffraction. The weight of the experimental evidence points to a unit cell doubling in the a direction, but with no change in space group symmetry. Lattice dynamics calculations support...... this evidence and indicate that the mechanism of the phase transition may well be the instability of a zone boundary acoustic mode of librational character. The structure of the low-temperature phase has been refined and the Raman spectra of the upper and lower phases are reported....

  19. Structural Phase Transition and Compressibility of CaF2 Nanocrystals under High Pressure

    Directory of Open Access Journals (Sweden)

    Jingshu Wang

    2018-05-01

    Full Text Available The structural phase transition and compressibility of CaF2 nanocrystals with size of 23 nm under high pressure were investigated by synchrotron X-ray diffraction measurement. A pressure-induced fluorite to α-PbCl2-type phase transition starts at 9.5 GPa and completes at 20.2 GPa. The phase-transition pressure is lower than that of 8 nm CaF2 nanocrystals and closer to bulk CaF2. Upon decompression, the fluorite and α-PbCl2-type structure co-exist at the ambient pressure. The bulk modulus B0 of the 23 nm CaF2 nanocrystals for the fluorite and α-PbCl2-type phase are 103(2 and 78(2 GPa, which are both larger than those of the bulk CaF2. The CaF2 nanocrystals exhibit obviously higher incompressibility compare to bulk CaF2. Further analysis demonstrates that the defect effect in our CaF2 nanocrystals plays a dominant role in the structural stability.

  20. Reconstructive structural phase transitions in dense Mg

    International Nuclear Information System (INIS)

    Yao Yansun; Klug, Dennis D

    2012-01-01

    The question raised recently about whether the high-pressure phase transitions of Mg follow a hexagonal close-packed (hcp) → body centered cubic (bcc) or hcp → double hexagonal close-packed (dhcp) → bcc sequence at room temperature is examined by the use of first principles density functional methods. Enthalpy calculations show that the bcc structure replaces the hcp structure to become the most stable structure near 48 GPa, whereas the dhcp structure is never the most stable structure in the pressure range of interest. The characterized phase-transition mechanisms indicate that the hcp → dhcp transition is also associated with a higher enthalpy barrier. At room temperature, the structural sequence hcp → bcc is therefore more energetically favorable for Mg. The same conclusion is also reached from the simulations of the phase transitions using metadynamics methods. At room temperature, the metadynamics simulations predict the onset of a hcp → bcc transition at 40 GPa and the transition becomes more prominent upon further compression. At high temperatures, the metadynamics simulations reveal a structural fluctuation among the hcp, dhcp, and bcc structures at 15 GPa. With increasing pressure, the structural evolution at high temperatures becomes more unambiguous and eventually settles to a bcc structure once sufficient pressure is applied. (paper)

  1. Evidence for a pressure-induced spin transition in olivine-type LiFePO4 triphylite

    Science.gov (United States)

    Núñez Valdez, Maribel; Efthimiopoulos, Ilias; Taran, Michail; Müller, Jan; Bykova, Elena; McCammon, Catherine; Koch-Müller, Monika; Wilke, Max

    2018-05-01

    We present a combination of first-principles and experimental results regarding the structural and magnetic properties of olivine-type LiFePO4 under pressure. Our investigations indicate that the starting P b n m phase of LiFePO4 persists up to 70 GPa. Further compression leads to an isostructural transition in the pressure range of 70-75 GPa, inconsistent with a former theoretical study. Considering our first-principles prediction for a high-spin to low-spin transition of Fe2 + close to 72 GPa, we attribute the experimentally observed isostructural transition to a change in the spin state of Fe2 + in LiFePO4. Compared to relevant Fe-bearing minerals, LiFePO4 exhibits the largest onset pressure for a pressure-induced spin state transition.

  2. The Physics of Structural Phase Transitions

    CERN Document Server

    Fujimoto, Minoru

    2005-01-01

    Phase transitions in which crystalline solids undergo structural changes present an interesting problem in the interplay between the crystal structure and the ordering process that is typically nonlinear. Intended for readers with prior knowledge of basic condensed-matter physics, this book emphasizes the physics behind spontaneous structural changes in crystals. Starting with the relevant thermodynamic principles, the text discusses the nature of order variables in collective motion in structural phase transitions, where a singularity in such a collective mode is responsible for lattice instability as revealed by soft phonons. In this book, critical anomalies at second-order structural transitions are first analyzed with the condensate model. Discussions on the nonlinear ordering mechanism are followed with the soliton theory, thereby interpreting the role of long-range order. Relevant details for nonlinear mathematics are therefore given for minimum necessity. The text also discusses experimental methods fo...

  3. Pressure induced superconductivity in the antiferromagnetic Dirac material BaMnBi2.

    Science.gov (United States)

    Chen, Huimin; Li, Lin; Zhu, Qinqing; Yang, Jinhu; Chen, Bin; Mao, Qianhui; Du, Jianhua; Wang, Hangdong; Fang, Minghu

    2017-05-09

    The so-called Dirac materials such as graphene and topological insulators are a new class of matter different from conventional metals and (doped) semiconductors. Superconductivity induced by doing or applying pressure in these systems may be unconventional, or host mysterious Majorana fermions. Here, we report a successfully observation of pressure-induced superconductivity in an antiferromagnetic Dirac material BaMnBi 2 with T c of ~4 K at 2.6 GPa. Both the higher upper critical field, μ 0 H c2 (0) ~ 7 Tesla, and the measured current independent of T c precludes that superconductivity is ascribed to the Bi impurity. The similarity in ρ ab (B) linear behavior at high magnetic fields measured at 2 K both at ambient pressure (non-superconductivity) and 2.6 GPa (superconductivity, but at the normal state), as well as the smooth and similar change of resistivity with pressure measured at 7 K and 300 K in zero field, suggests that there may be no structure transition occurred below 2.6 GPa, and superconductivity observed here may emerge in the same phase with Dirac fermions. Our findings imply that BaMnBi 2 may provide another platform for studying SC mechanism in the system with Dirac fermions.

  4. Pressure-induced amorphization of La1/3TaO3

    International Nuclear Information System (INIS)

    Noked, O.; Melchior, A.; Shuker, R.; Livneh, T.; Steininger, R.; Kennedy, B.J.; Sterer, E.

    2013-01-01

    La 1/3 TaO 3 , an A-site cation deficient perovskite, has been studied under pressure by synchrotron X-ray powder diffraction and Raman spectroscopy. It undergoes irreversible pressure induced amorphization at P=18.5 GPa. An almost linear unit cell volume decrease vs. pressure is observed from ambient pressure up to the phase transition. The Raman spectroscopy also shows amorphization at the same pressure, with positive shifts of all modes as a function of pressure. The pressure dependence of the E g and A 1g Raman modes arising from the octahedral oxygen network is discussed. - Graphical abstract: La 1/3 Tao 3 exhibits linear pressure–volume relation until irreversible pressure induced amorphization at 18.5 Gpa. - Highlights: • La 1/3 TaO 3 has been studied under pressure by synchrotron XRD and Raman spectroscopy. • La 1/3 TaO 3 undergoes irreversible pressure induced amorphization around 18.5 GPa. • The transition is manifested in both XRD and Raman measurements. • A linear P–V relation is observed from ambient pressure up to the phase transition

  5. Pressure-induced polymerization of phenoxyethyl acrylate

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, K; Wrzalik, R; Paluch, M; Ziolo, J [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland); Roland, C M [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States)

    2008-06-18

    Polymerization of phenoxyethyl acrylate was induced without catalyst or initiators by the application of hydrostatic pressure at elevated temperature. Broadband dielectric and infrared spectroscopy were employed to follow the course of the reaction, which reached a degree of conversion of 60%. The structure of the obtained polymer was determined from density functional theory calculations.

  6. Pressure-Induced Polyamorphic Transition in Nanoscale TiO2

    International Nuclear Information System (INIS)

    Swamy, Varghese; Muddle, Barry C.

    2009-01-01

    The detection and characterization of pressure-induced amorphization in 20 GPa and ambient temperature is documented. The characterization employed in situ high-pressure angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy in diamond-anvil cells. Comparative Raman spectroscopy allows the local structures of the high-density amorphous (HDA) form obtained at high pressures and its low-pressure (<10-15 GPa) low-density amorphous (LDA) analogue to be related to the baddeleyite-TiO2 and TiO2-II structures, respectively. The pressure-induced amorphization and the HDA-LDA transition in nanoscale TiO2 bear broad similarities to transitions in the Si and H2O systems.

  7. Periodic orbits and TDHF phase space structure

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Yukio; Iwasawa, Kazuo [Tsukuba Univ., Ibaraki (Japan). Inst. of Physics; Tsukuma, Hidehiko; Sakata, Fumihiko

    1998-03-01

    The collective motion of atomic nuclei is closely coupled with the motion of nucleons, therefore, it is nonlinear, and the contents of the motion change largely with the increase of its amplitude. As the framework which describes the collective motion accompanied by the change of internal structure, time-dependent Hurtley Fock (TDHF) method is suitable. At present, the authors try to make the method for studying the large region structure in quantum system by utilizing the features of the TDHF phase space. The studies made so far are briefed. In this report, the correspondence of the large region patterns appearing in the band structure chart of three-level model with the periodic orbit group in the TDHF phase space is described. The Husimi function is made, and it possesses the information on the form of respective corresponding intrinsic state. The method of making the band structure chart is explained. There are three kinds of the tendency in the intrinsic state group. The E-T charts are made for the band structure charts to quantitatively express the large region tendency. The E-T chart and the T{sub r}-T chart are drawn for a selected characteristic orbit group. It became to be known that the large region properties of the quantum intrinsic state group of three-level model can be forecast by examining the properties of the periodic orbit group in the TDHF phase space. (K.I.)

  8. Pressure-induced melting of micellar crystal

    DEFF Research Database (Denmark)

    Mortensen, K.; Schwahn, D.; Janssen, S.

    1993-01-01

    that pressure improves the solvent quality of water, thus resulting in decomposition of the micelles and consequent melting of the micellar crystal. The combined pressure and temperature dependence reveals that in spite of the apparent increase of order on the 100 angstrom length scale upon increasing......Aqueous solutions of triblock copolymers of poly(ethylene oxide) and poly(propylene oxide) aggregate at elevated temperatures into micelles which for polymer concentrations greater-than-or-equal-to 20% make a hard sphere crystallization to a cubic micellar crystal. Structural studies show...... temperature (decreasing pressure) the overall entropy increases through the inverted micellar crystallization characteristic....

  9. Pressure-induced polymerization in substituted acetylenes

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa, Raja S.; Dattelbaum, Dana M.; Sheffield, Stephen; Robbins, David (LANL)

    2012-04-10

    A fundamental understanding of shock-induced chemical reactions in organics is still lacking and there are limited studies devoted to determining reaction mechanisms, evolution of bonding, and effect of functional group substitutions. The fast timescale of reactions occurring during shock compression create significant experimental challenges (diagnostics) to fully quantify the mechanisms involved. Static compression combined with temperature provides a complementary route to investigate the equilibrium phase space and metastable intermediates under extreme P-T conditions. In this study, we present our results from our ongoing high pressure in situ synchrotron x-ray diffraction experiments on substituted acetylenes: tert-butyl acetylene [TBA: (CH{sub 3}){sub 3}-C=CH] and ethynyl trimethylsilane [ETMS: (CH{sub 3}){sub 3}-SiC=CH]. We observed that the onset pressure of chemical reactions (at room temperature) in these compounds is higher under static compression (TBA: 12 GPa and ETMS: 17.6 GPa) when compared to shock input pressures (TBA: 6.1 GPa and ETMS: 6.6 GPa). At elevated temperatures, reactivity was observed to occur at pressures comparable to shock conditions. The products were polymeric in nature, recovered to ambient conditions with little degradation.

  10. Theory of pressure-induced islands and self-healing in three-dimensional toroidal magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Bhattacharjee, A.; Hayashi, T.; Hegna, C.C.; Nakajima, N.; Sato, T.

    1994-11-01

    The role of singular currents in three-dimensional toroidal equilibria and their resolution by magnetic island formation is discussed from both analytical and computational points of view. Earlier analytical results are extended to include small vacuum islands which may, in general, have different phases with respect to pressure-induced islands. In currentless stellarators, the formation of islands is shown to depend on the resistive parameter D R as well as the integrated effect of global Pfirsch-Schlueter currents. It is demonstrated that the pressure-induced 'self-healing' effect, recently discovered computationally, is also predicted by analytical theory. (author)

  11. Phase transitions and structures of methylammonium compounds

    International Nuclear Information System (INIS)

    Yamamuro, Osamu; Onoda-Yamamuro, Noriko; Matsuo, Takasuke; Suga, Hiroshi; Kamiyama, Takashi; Asano, Hajime; Ibberson, R.M.; David, W.I.F.

    1993-01-01

    The structures of CD 3 ND 3 Cl, CD 3 ND 3 I, CD 3 ND 3 BF 4 , (CD 3 ND 3 ) 2 SnCl 6 , and CD 3 ND 3 SnBr 3 crystals were studied with time-of-flight type high-resolution powder diffractometers using spallation pulsed neutron sources. The orientations of the CD 3 ND 3 cations, including the positions of the D atoms, were determined at all the room temperature phases and at the low temperature phases of CD 3 ND 3 I and (CD 3N D 3 ) 2 SnCl 6 . The heat capacity experiments were also performed for both protonated and deuterated analogs of these compounds. From both structural and thermodynamic points of view, it was found that the transitions are mainly associated with the order-disorder change of the orientations of the CD 3 ND 3 cations. (author)

  12. Total energy calculations for structural phase transformations

    International Nuclear Information System (INIS)

    Ye, Y.Y.; Chan, C.T.; Ho, K.M.; Harmon, B.N.

    1990-01-01

    The structural integrity and physical properties of crystalline solids are frequently limited or enhanced by the occurrence of phase transformations. Martensitic transformations involve the collective displacement of atoms from one ordered state to another. Modern methods to determine the microscopic electronic changes as the atoms move are now accurate enough to evaluate the very small energy differences involved. Extensive first principles calculations for the prototypical martensitic transformation from body-centered cubic (bcc) to closepacked 9R structure in sodium metal are described. The minimum energy coordinate or configuration path between the bcc and 9R structures is determined as well as paths to other competing close-packed structures. The energy barriers and important anharmonic interactions are identified and general conclusions drawn. The calculational methods used to solve the Schrodinger equation include pseudopotentials, fast Fourier transforms, efficient matrix diagnonalization, and supercells with many atoms

  13. Structural phase transitions in niobium oxide nanocrystals

    Science.gov (United States)

    Yuvakkumar, R.; Hong, Sun Ig

    2015-09-01

    Niobium oxide nanocrystals were successfully synthesized employing the green synthesis method. Phase formation, microstructure and compositional properties of 1, 4 and 7 days incubation treated samples after calcinations at 450 °C were examined using X-ray diffraction, Raman, photoluminescence (PL), infrared, X-ray photoelectron spectra and transmission electron microscopic characterizations. It was observed that phase formation of Nb2O5 nanocrystals was dependent upon the incubation period required to form stable metal oxides. The characteristic results clearly revealed that with increasing incubation and aging, the transformation of cubic, orthorhombic and monoclinic phases were observed. The uniform heating at room temperature (32 °C) and the ligation of niobium atoms due to higher phenolic constituents of utilized rambutan during aging processing plays a vital role in structural phase transitions in niobium oxide nanocrystals. The defects over a period of incubation and the intensities of the PL spectra changing over a period of aging were related to the amount of the defects induced by the phase transition.

  14. About the dynamics of structural phase transitions

    International Nuclear Information System (INIS)

    Medeiros, J.T.N.

    1975-01-01

    The dynamics of structural phase transitions with a fourth order interaction between the soft phonon fields is studied in the 1/n approximation, using many body methods at finite temperatures. Two limits are considered: high transition temperature T sub(c) (classical limit) and T sub(c) = 0 (quantum limit). The dynamical contribution to the critical coefficient eta of the correlation function is calculated in these limits. It is found that there is no dynamical contribution to eta in the classical limit, whereas in the quantum limit eta is non-zero only for dimensions of the system d [pt

  15. Pressure-induced magnetic structures in UNiGa

    Czech Academy of Sciences Publication Activity Database

    Sechovský, V.; Prokeš, K.; Honda, F.; Ouladdiaf, B.; Kulda, Jiří

    2002-01-01

    Roč. 74, č. 1 (2002), s. S834-S836 ISSN 0947-8396 R&D Projects: GA AV ČR KSK1010104 Keywords : magnetoelastic phenomena Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.231, year: 2002

  16. Pressure-induced changes in the structural and absorption ...

    Indian Academy of Sciences (India)

    and intramolecular interactions between nitro, amino, and nitramine ... approach is the atomistic simulation, an effective way ... zone sampling was performed by using the Monkhost- ..... thus the intermolecular interactions are enhanced with.

  17. Soft modes and structural phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, G [Reactor Research Centre, Kalpakkam (India)

    1979-12-01

    A survey of soft modes and their relationship to structural phase transitions is presented. After introducing the concept of a soft mode, the origin of softening is considered from a lattice-dynamical point. The Landau theory approach to structural transitions is then discussed, followed by a generalisation of the soft-mode concept through the use of the dynamic order-parameter susceptibility. The relationship of soft modes to broken symmetry is also examined. Experimental results for several classes of crystals are next presented, bringing out various features such as the co-operative Jahn-Teller effect. The survey concludes with a discussion of the central peak, touching upon both the experimental results and the theoretical speculations.

  18. Pressure-induced transformations in amorphous silicon: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Garcez, K. M. S., E-mail: kmgarcez@ufma.br [Universidade Federal do Maranhão, 65700-000 Bacabal, Maranhão (Brazil); Antonelli, A., E-mail: aantone@ifi.unicamp.br [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, UNICAMP, 13083-859 Campinas, São Paulo (Brazil)

    2014-02-14

    We study the transformations between amorphous phases of Si through molecular simulations using the environment dependent interatomic potential (EDIP) for Si. Our results show that upon pressure, the material undergoes a transformation from the low density amorphous (LDA) Si to the high density amorphous (HDA) Si. This transformation can be reversed by decompressing the material. This process, however, exhibits clear hysteresis, suggesting that the transformation LDA ↔ HDA is first-order like. The HDA phase is predominantly five-fold coordinated, whereas the LDA phase is the normal tetrahedrally bonded amorphous Si. The HDA phase at 400 K and 20 GPa was submitted to an isobaric annealing up to 800 K, resulting in a denser amorphous phase, which is structurally distinct from the HDA phase. Our results also show that the atomic volume and structure of this new amorphous phase are identical to those of the glass obtained by an isobaric quenching of the liquid in equilibrium at 2000 K and 20 GPa down to 400 K. The similarities between our results and those for amorphous ices suggest that this new phase is the very high density amorphous Si.

  19. Pressure-induced transformations in amorphous silicon: A computational study

    Science.gov (United States)

    Garcez, K. M. S.; Antonelli, A.

    2014-02-01

    We study the transformations between amorphous phases of Si through molecular simulations using the environment dependent interatomic potential (EDIP) for Si. Our results show that upon pressure, the material undergoes a transformation from the low density amorphous (LDA) Si to the high density amorphous (HDA) Si. This transformation can be reversed by decompressing the material. This process, however, exhibits clear hysteresis, suggesting that the transformation LDA ↔ HDA is first-order like. The HDA phase is predominantly five-fold coordinated, whereas the LDA phase is the normal tetrahedrally bonded amorphous Si. The HDA phase at 400 K and 20 GPa was submitted to an isobaric annealing up to 800 K, resulting in a denser amorphous phase, which is structurally distinct from the HDA phase. Our results also show that the atomic volume and structure of this new amorphous phase are identical to those of the glass obtained by an isobaric quenching of the liquid in equilibrium at 2000 K and 20 GPa down to 400 K. The similarities between our results and those for amorphous ices suggest that this new phase is the very high density amorphous Si.

  20. Pressure-induced weak ferromagnetism in uranium dioxide, UO2

    International Nuclear Information System (INIS)

    Sakai, H; Kato, H; Tokunaga, Y; Kambe, S; Walstedt, R E; Nakamura, A; Tateiwa, N; Kobayashi, T C

    2003-01-01

    The dc magnetization of insulating UO 2 under high pressure up to ∼1 GPa has been measured using a piston-cylinder cell. Pressure-induced weak ferromagnetism appeared at low pressure (∼0.2 GPa). Both the remanent magnetization and the coercive force increase as pressure increases. This weak ferromagnetism may come from spin canting or from uncompensated moments around grain boundaries

  1. Radiation pressure induced difference-sideband generation beyond linearized description

    OpenAIRE

    Xiong, Hao; Fan, Y. W.; Yang, X.; Wu, Y.

    2016-01-01

    We investigate radiation-pressure induced generation of the frequency components at the difference-sideband in an optomechanical system, which beyond the conventional linearized description of optomechanical interactions between cavity fields and the mechanical oscillation. We analytically calculate amplitudes of these signals, and identify a simple square-root law for both the upper and lower difference-sideband generation which can describe the dependence of the intensities of these signals...

  2. Thin film structures and phase stability

    International Nuclear Information System (INIS)

    Clemens, B.M.; Johnson, W.L.

    1990-01-01

    This was a two day symposium, with invited and contributed papers as well as an evening poster session. The first day concentrated on solid state reactions with invited talks by Lindsay Greer from the University of Cambridge, King Tu from IBM Yorktown Heights, and Carl Thompson from MIT. Professor Greer observed that the diffusion of Zr is 10 6 times slower than that of Ni in amorphous NiZr, confirming that Ni is the mobile species in solid state amorphization. King Tu explained the formation of metastable phases in this film diffusion couples by the concept of maximum rate of free energy change. Carl Thompson discussed the formation of amorphous phases in metal silicon systems, and discussed a two stage nucleation and growth process. The contributed papers also generated discussion on topics such as phase segregation, amorphous silicide formation, room temperature oxidation of silicon, and nucleation during ion beam irradiation. There was a lively poster session on Monday evening with papers on a wide variety of topics covering the general area of thin film science. The second day had sessions Epitaxy and Multilayer Structure I and II, with the morning focussing on epitaxial and heteroepitaxial growth of thin films. Robin Farrow of IBM Almaden led off with an invited talk where he reported on some remarkable success he and his co-workers have had in growing single crystal epitaxial thin films and superlattices of silver, iron, cobalt and platinum on GaAs. This was followed by several talks on epitaxial growth and characterization. The afternoon focused on interfaces and structure of multilayered materials. A session on possible stress origins of the supermodulus effect was highlighted by lively interaction from the audience. Most of the papers presented at the symposium are presented in this book

  3. Shape Memory Alloy-Based Periodic Cellular Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular structures...

  4. Molecular structure of the lecithin ripple phase

    Science.gov (United States)

    de Vries, Alex H.; Yefimov, Serge; Mark, Alan E.; Marrink, Siewert J.

    2005-04-01

    Molecular dynamics simulations of lecithin lipid bilayers in water as they are cooled from the liquid crystalline phase show the spontaneous formation of rippled bilayers. The ripple consists of two domains of different length and orientation, connected by a kink. The organization of the lipids in one domain of the ripple is found to be that of a splayed gel; in the other domain the lipids are gel-like and fully interdigitated. In the concave part of the kink region between the domains the lipids are disordered. The results are consistent with the experimental information available and provide an atomic-level model that may be tested by further experiments. molecular dynamics simulation | structural model

  5. Formamidinium iodide: crystal structure and phase transitions

    Directory of Open Access Journals (Sweden)

    Andrey A. Petrov

    2017-04-01

    Full Text Available At a temperature of 100 K, CH5N2+·I− (I, crystallizes in the monoclinic space group P21/c. The formamidinium cation adopts a planar symmetrical structure [the r.m.s. deviation is 0.002 Å, and the C—N bond lengths are 1.301 (7 and 1.309 (8 Å]. The iodide anion does not lie within the cation plane, but deviates from it by 0.643 (10 Å. The cation and anion of I form a tight ionic pair by a strong N—H...I hydrogen bond. In the crystal of I, the tight ionic pairs form hydrogen-bonded zigzag-like chains propagating toward [20-1] via strong N—H...I hydrogen bonds. The hydrogen-bonded chains are further packed in stacks along [100]. The thermal behaviour of I was studied by different physicochemical methods (thermogravimetry, differential scanning calorimetry and powder diffraction. Differential scanning calorimetry revealed three narrow endothermic peaks at 346, 387 and 525 K, and one broad endothermic peak at ∼605 K. The first and second peaks are related to solid–solid phase transitions, while the third and fourth peaks are attributed to the melting and decomposition of I. The enthalpies of the phase transitions at 346 and 387 K are estimated as 2.60 and 2.75 kJ mol−1, respectively. The X-ray powder diffraction data collected at different temperatures indicate the existence of I as the monoclinic (100–346 K, orthorhombic (346–387 K and cubic (387–525 K polymorphic modifications.

  6. [Effects of pressure induced retinal ischemia on ERG in rabbit].

    Science.gov (United States)

    Song, G; Yang, X; Zhang, Z; Zhang, D

    2001-12-01

    To observe the effects of pressure induced retinal ischemia on electroretinogram(ERG) in rabbit. Retinal ischemia was induced in rabbits by increasing intraocular pressure at 30 mmHg, 60 mmHg, 90 mmHg, 120 mmHg for 45 minutes, and retinal function was monitored by eletroretinography. There was no difference on ERG before or after the experiment both in 30 mmHg group and control one. In 60 mmHg pressure induced ischemia eyes, the amplitudes of the b-wave and OPs wave reduced significantly. Four hours after reperfusion, they were totally recovered. After an ischemic insult of 90 mmHg or 120 mmHg for 45 minutes, there was no response of ERG. Four hours later, the amplitudes of the b-wave and OPs wave were 66.912 +/- 20.157 and 16.423 +/- 3.965 the former, 38.852 +/- 23.438 and 8.610 +/- 12.090 the latter, respectively. These results suggest that higher intraocular pressure causes more severe retina ischemic damage, and less recovery ability.

  7. Pressure-induced drastic collapse of a high oxygen coordination shell in quartz-like α-GeO2

    International Nuclear Information System (INIS)

    Dong, Juncai; Zhang, Xiaoli; Wu, Ziyu; Chen, Dongliang; Zhang, Qian; Wu, Ye; Wu, Xiang

    2014-01-01

    With the combination of a single crystal diamond anvil cell and a polycapillary half-lens, the local structural evolution around germanium in tetrahedrally networked quartz-like α-GeO 2 has been investigated using extended x-ray absorption fine structure spectroscopy of up to 14 GPa by multiple-scattering analysis method. While the first shell Ge–O bond distances show a slight contraction with increasing pressure, the third shell Ge–O bond distances are found to decrease dramatically. The sluggish lengthening of the first shell Ge–O bond distances, initiated by coordination increase from fourfold to sixfold, occurs in the 7–14 GPa range just when the third shell Ge–O bond distances fall in the region of the second shell Ge–Ge bond distances. Moreover, these features are accompanied by the closing of intertetrahedral Ge–O–Ge angles and the opening of two intratetrahedral O–Ge–O angles, whose topological configuration surprisingly exhibits a helical chirality along the c axis that is opposite to the double helices of the corner-linked GeO 4 tetrahedra. These results suggest that the high-pressure phase transitions in quartz and quartz-like materials could be associated with a structural instability that is driven by the drastic collapse of the next-nearest-neighbour anion shell, which is consistent with the emergence of high-symmetry anion sublattice. Our findings provide crucial insights into the densification mechanisms of quartz-like oxides, which would have broad implications for our understanding of the metastability of various post-quartz crystalline phases and pressure-induced amorphization. (paper)

  8. Phase transitions and domain structures in multiferroics

    Science.gov (United States)

    Vlahos, Eftihia

    2011-12-01

    Thin film ferroelectrics and multiferroics are two important classes of materials interesting both from a scientific and a technological prospective. The volatility of lead and bismuth as well as environmental issues regarding the toxicity of lead are two disadvantages of the most commonly used ferroelectric random access memory (FeRAM) materials such as Pb(Zr,Ti)O3 and SrBi2Ta2O9. Therefore lead-free thin film ferroelectrics are promising substitutes as long as (a) they can be grown on technologically important substrates such as silicon, and (b) their T c and Pr become comparable to that of well established ferroelectrics. On the other hand, the development of functional room temperature ferroelectric ferromagnetic multiferroics could lead to very interesting phenomena such as control of magnetism with electric fields and control of electrical polarization with magnetic fields. This thesis focuses on the understanding of material structure-property relations using nonlinear optical spectroscopy. Nonlinear spectroscopy is an excellent tool for probing the onset of ferroelectricity, and domain dynamics in strained ferroelectrics and multiferroics. Second harmonic generation was used to detect ferroelectricity and the antiferrodistortive phase transition in thin film SrTiO3. Incipient ferroelectric CaTiO3 has been shown to become ferroelectric when strained with a combination of SHG and dielectric measurements. The tensorial nature of the induced nonlinear polarization allows for probing of the BaTiO3 and SrTiO3 polarization contributions in nanoscale BaTiO3/SrTiO3 superlattices. In addition, nonlinear optics was used to demonstrate ferroelectricity in multiferroic EuTiO3. Finally, confocal SHG and Raman microscopy were utilized to visualize polar domains in incipient ferroelectric and ferroelastic CaTiO3.

  9. Dynamics and Structural Details of Amorphous Phases of Ice Determined by Incoherent Inelastic Neutron Scattering

    International Nuclear Information System (INIS)

    Klug, D.D.; Tulk, C.A.; Svensson, E.C.; Loong, C.

    1999-01-01

    Incoherent-inelastic neutron scattering data are obtained over the energy range of lattice and internal vibrations of water molecules in phases of ice prepared by pressure-induced amorphization (high-density amorphous ice, hda), by thermal annealing of hda (low-density amorphous ice, lda), and by rapidly cooling water, as well as in ice Ih and Ic . Hydrogen bonding interactions in lda differ significantly from those in the glass obtained by rapid quenching, which has hydrogen-bond interactions characteristic of highly supercooled water. Hydrogen-bond interactions in hda are weaker than in the low-density phases. copyright 1999 The American Physical Society

  10. Neutron diffraction study of the pressure-induced magnetic ordering in the spin gap system TlCuCl3

    International Nuclear Information System (INIS)

    Oosawa, Akira; Osakabe, Toyotaka; Kakurai, Kazuhisa; Tanaka, Hidekazu

    2003-01-01

    Neutron elastic scattering measurements have been performed under a hydrostatic pressure in order to investigate the spin structure of the pressure-induced magnetic ordering in the spin gap system TlCuCl 3 . Below the ordering temperature T N = 16.9 K for the hydrostatic pressure P = 1.48 GPa, magnetic Bragg reflections were observed at reciprocal lattice points Q = (h, 0, l) with integer h and odd l, which are equivalent to those points with the lowest magnetic excitation energy at ambient pressure. This indicates that the spin gap close due to the applied pressure. The spin structure of the pressure-induced magnetic ordered state for P = 1.48 GPa was determined. (author)

  11. Radiation pressure induced difference-sideband generation beyond linearized description

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Hao, E-mail: haoxiong1217@gmail.com; Fan, Yu-Wan; Yang, Xiaoxue; Wu, Ying, E-mail: yingwu2@126.com [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-08-08

    We investigate radiation-pressure induced generation of the frequency components at the difference-sideband in an optomechanical system, which beyond the conventional linearized description of optomechanical interactions between cavity fields and the mechanical oscillation. We analytically calculate amplitudes of these signals, and identify a simple square-root law for both the upper and lower difference-sideband generation which can describe the dependence of the intensities of these signals on the pump power. Further calculation shows that difference-sideband generation can be greatly enhanced via achieving the matching conditions. The effect of difference-sideband generation, which may have potential application for manipulation of light, is especially suited for on-chip optomechanical devices, where nonlinear optomechanical interaction in the weak coupling regime is within current experimental reach.

  12. Shape Memory Alloy Adaptive Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will demonstrate and scale up an innovative manufacturing process that yields aerospace grade shape memory alloy (SMA) solids and periodic...

  13. Pressure-induced transformations of molecular boron hydride

    International Nuclear Information System (INIS)

    Nakano, Satoshi; Hemley, Russell J; Gregoryanz, Eugene A; Goncharov, Alexander F; Mao, Ho-kwang

    2002-01-01

    Decaborane, a molecular boron hydride, was compressed to 131 GPa at room temperature to explore possible non-molecular phases in this system and their physical properties. Decaborane changed its colour from transparent yellow to orange/red above 50 GPa and then to black above 100 GPa, suggesting some transformations. Raman scattering and infrared (IR) absorption spectroscopy reveal significant structural changes. Above 100 GPa, B-B skeletal, B-H and B-H-B Raman/IR peaks gradually disappeared, which implies a transformation into a non-molecular phase in which conventional borane-type bonding is lost. The optical band gap of the material at 100 GPa was estimated to be about 1.0 eV

  14. Pressure-induced transformations of molecular boron hydride

    CERN Document Server

    Nakano, S; Gregoryanz, E A; Goncharov, A F; Mao Ho Kwang

    2002-01-01

    Decaborane, a molecular boron hydride, was compressed to 131 GPa at room temperature to explore possible non-molecular phases in this system and their physical properties. Decaborane changed its colour from transparent yellow to orange/red above 50 GPa and then to black above 100 GPa, suggesting some transformations. Raman scattering and infrared (IR) absorption spectroscopy reveal significant structural changes. Above 100 GPa, B-B skeletal, B-H and B-H-B Raman/IR peaks gradually disappeared, which implies a transformation into a non-molecular phase in which conventional borane-type bonding is lost. The optical band gap of the material at 100 GPa was estimated to be about 1.0 eV.

  15. Pressure-induced transformations in computer simulations of glassy water

    Science.gov (United States)

    Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas

    2013-11-01

    Glassy water occurs in at least two broad categories: low-density amorphous (LDA) and high-density amorphous (HDA) solid water. We perform out-of-equilibrium molecular dynamics simulations to study the transformations of glassy water using the ST2 model. Specifically, we study the known (i) compression-induced LDA-to-HDA, (ii) decompression-induced HDA-to-LDA, and (iii) compression-induced hexagonal ice-to-HDA transformations. We study each transformation for a broad range of compression/decompression temperatures, enabling us to construct a "P-T phase diagram" for glassy water. The resulting phase diagram shows the same qualitative features reported from experiments. While many simulations have probed the liquid-state phase behavior, comparatively little work has examined the transitions of glassy water. We examine how the glass transformations relate to the (first-order) liquid-liquid phase transition previously reported for this model. Specifically, our results support the hypothesis that the liquid-liquid spinodal lines, between a low-density and high-density liquid, are extensions of the LDA-HDA transformation lines in the limit of slow compression. Extending decompression runs to negative pressures, we locate the sublimation lines for both LDA and hyperquenched glassy water (HGW), and find that HGW is relatively more stable to the vapor. Additionally, we observe spontaneous crystallization of HDA at high pressure to ice VII. Experiments have also seen crystallization of HDA, but to ice XII. Finally, we contrast the structure of LDA and HDA for the ST2 model with experiments. We find that while the radial distribution functions (RDFs) of LDA are similar to those observed in experiments, considerable differences exist between the HDA RDFs of ST2 water and experiment. The differences in HDA structure, as well as the formation of ice VII (a tetrahedral crystal), are a consequence of ST2 overemphasizing the tetrahedral character of water.

  16. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    Science.gov (United States)

    He, Jin-Song; Yang, Hongwei; Zhu, Wanpeng; Mu, Tai-Hua

    2010-03-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum Im and the corresponding wavenumber qm could be described in terms of the power-law relationship as Im~fβ and qm~f-α, respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  17. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    International Nuclear Information System (INIS)

    He Jinsong; Yang Hongwei; Zhu Wanpeng; Mu Taihua

    2010-01-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum I m and the corresponding wavenumber q m could be described in terms of the power-law relationship as I m ∼f β and q m ∼f -α , respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  18. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    Energy Technology Data Exchange (ETDEWEB)

    He Jinsong; Yang Hongwei; Zhu Wanpeng [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Mu Taihua, E-mail: mutaihuacaas@126.co [Institute of Agro-Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100094 (China)

    2010-03-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum I{sub m} and the corresponding wavenumber q{sub m} could be described in terms of the power-law relationship as I{sub m}{approx}f{sup {beta}} and q{sub m}{approx}f{sup -}{alpha}, respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  19. Structural Changes of PVDF Membranes by Phase Separation Control

    International Nuclear Information System (INIS)

    Lee, Semin; Kim, Sung Soo

    2016-01-01

    Thermally induced phase separation (TIPS) and nonsolvent induced phase separation (NIPS) were simultaneously induced for the preparation of flat PVDF membranes. N-methyl-2-pyrrolidone (NMP) was used as a solvent and dibutyl-phthlate (DBP) was used as a diluent for PVDF. When PVDF was melt blended with NMP and DBP, crystallization temperature was lowered for TIPS and unstable region was expanded for NIPS. Ratio of solvent to diluent changed the phase separation mechanism to obtain the various membrane structures. Contact mode of dope solution with nonsolvent determined the dominant phase separation behavior. Since heat transfer rate was greater than mass transfer rate, surface structure was formed by NIPS and inner structure was by TIPS. Quenching temperature of dope solution also affected the phase separation mechanism and phase separation rate to result in the variation of structure

  20. Pressure-induced forces and shear stresses on rubble mound breakwater armour layers in regular waves

    DEFF Research Database (Denmark)

    Jensen, Bjarne; Christensen, Erik Damgaard; Sumer, B. Mutlu

    2014-01-01

    This paper presents the results from an experimental investigation of the pressure-induced forces in the core material below the main armour layer and shear stresses on the armour layer for a porous breakwater structure. Two parallel experiments were performed which both involved pore pressure...... structure i.e. no additional filter layers were applied. For both experiments, high-speed video recordings were synchronised with the pressure measurements for a detailed investigation of the coupling between the run-up and run-down flow processes and the measured pressure variations. Outward directed...... and turbulence measurements showed that the large outward directed pressure gradients in general coincide, both in time and space, with the maximum bed-shear stresses on the armour layer based on the Reynolds-stresses. The bed-shear stresses were found to result in a Shields parameter in the same order...

  1. The crystal structure and the phase transitions of pyridinium trifluoromethanesulfonate

    International Nuclear Information System (INIS)

    Jesariew, Dominik; Ilczyszyn, Maria M; Pietraszko, Adam

    2014-01-01

    The calorimetric and optical studies and the structural properties of pyridinium trifluoromethanesulfonate (abbreviated as PyHOTf) are reported. A sequence of four fully reversible solid–solid phase transitions, at 223.0, 309.0, 359.9 and 394.3 K, has been discovered. The phase transition sequence was confirmed by x-ray diffraction data. The crystal structures of three phases (V, IV and III) have been determined from the single crystal x-ray diffraction data. Structural properties of the high temperature phases are characterized using powder x-ray diffraction data measured in the 290–425 K temperature range. The structural changes triggered by the temperature change are discussed in relation to the phase transitions. Two low temperature phases (V and IV) belong to the P4 3 2 1 2 space group of the tetragonal system. The intermediate phases (III and II) are monoclinic and the prototype high temperature phase (I) is a pseudo-cubic (tetragonal) one. The low temperature phases (V and IV) are well ordered. The crystal structure of intermediate (III and II) and prototype (I) phases are characterized by high disorder of the pyridinium cations and triflate anions. (papers)

  2. Electronic structure theory of alloy phase stability

    International Nuclear Information System (INIS)

    Turchi, P.E.A.; Sluiter, M.

    1992-01-01

    We present a brief overview of the advanced methodology which has been developed and applied to the study of phase stability properties in substitutional alloys. The approach is based on the real space version of the Generalized Perturbation Method within the Korringa-Kohn-Rostoker multiple scattering formulation of the Coherent Potential Approximation. Temperature effects are taken into account with a generalized meanfield approach, namely the Cluster Variation Method, or with Monte-Carlo simulations. We show that this approach is well suited for studying ground state properties of substitutional alloys, for calculating energies of idealized interfaces and antiphase boundaries, and finally to compute alloy phase diagrams

  3. Pressure-driven phase transitions in TiOCl and the family (Ca, Sr, Ba)Fe2As2

    International Nuclear Information System (INIS)

    Zhang YuZhong; Opahle, Ingo; Jeschke, Harald O; ValentI, Roser

    2010-01-01

    Motivated by recent experimental measurements on pressure-driven phase transitions in Mott insulators as well as the new iron pnictide superconductors, we show that first principles Car-Parrinello molecular dynamics calculations are a powerful method to describe the microscopic origin of such transitions. We present results for (i) the pressure-induced insulator to metal phase transition in the prototypical Mott insulator TiOCl as well as (ii) the pressure-induced structural and magnetic phase transitions in the family of correlated metals AFe 2 As 2 (A = Ca, Sr, Ba). Comparison of our predictions with existing experimental results yields very good agreement.

  4. Problem of phase transitions in nuclear structure

    International Nuclear Information System (INIS)

    Scharff-Goldhaber, G.

    1980-01-01

    Phase transitions between rotational and vibrational nuclei are discussed from the point of view of the variable moment of inertia model. A three-dimensional plot of the ground-state moments of inertia of even-even nuclei vs N and Z is shown. 3 figures

  5. On the structure of phase synchronized chaos

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Zhusubaliyev, Zhanybai T.; Laugesen, Jakob L.

    2013-01-01

    It is well-known that the transition to chaotic phase synchronization for a periodically driven chaotic oscillator of spiral type involves a dense set of saddle-node bifurcations. However, the way of formation and precise organization of these saddle node bifurcation curves have only recently bee...

  6. Molecular structure of the lecithin ripple phase

    NARCIS (Netherlands)

    de Vries, AH; Yefimov, S; Mark, AE; Marrink, SJ

    2005-01-01

    Molecular dynamics simulations of lecithin lipid bilayers in water as they are cooled from the liquid crystalline phase show the spontaneous formation of rippled bilayers. The ripple consists of two domains of different length and orientation, connected by a kink. The organization of the lipids in

  7. Neutrino opacities and the pasta phase structure

    International Nuclear Information System (INIS)

    Menezes, D.P.; Alloy, M.D.

    2011-01-01

    The diffusion coefficients that are related to the neutrino opacities are calculated in such a way that the formation of nuclear pasta and homogeneous matter at low densities are taken into account. Two methods are developed to build the pasta phase and their differences are outlined. One of them is chosen as part of a complete equation of state used in the calculation of the diffusion coefficients. Our results show that the mean free paths are significantly altered by the presence of nuclear pasta in stellar matter when compared with the results obtained with pure homogeneous matter. These differences in neutrino opacities will have consequences in the calculation of the Kelvin-Helmholtz phase of protoneutron stars. (author)

  8. Lightweight Structures Utilizing CNFs, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — AxNano proposes a novel method for producing robust, high-volume, cost-effective carbon fibers in support of next-generation materials for structural composite space...

  9. Expandable Habitat Outfit Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Topic H3.01 captures the need for robust, multipurpose deployable structures with high packing efficiencies for next generation orbital habitats. Multiple launch and...

  10. NONA Cure of Prepreg Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — CRG's no-oven, no-autoclave (NONA) cure of OoA or autoclave prepreg materials allows the manufacture of large composite structures without the expensive and...

  11. Nano-Engineered Structural Joints, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A versatile class of high-performance structural joints is proposed where massive interatomic bonds over the large surface areas of nanostructured surfaces...

  12. Phase structure of strongly correlated Fermi gases

    International Nuclear Information System (INIS)

    Roscher, Dietrich

    2015-01-01

    Strongly correlated fermionic many-body systems are ubiquitous in nature. Their theoretical description poses challenging problems which are further complicated when imbalances in, e.g., the particle numbers of the involved species or their masses are introduced. In this thesis, a number of different approaches is developed and applied in order to obtain predictions for physical observables of such systems that mutually support and confirm each other. In a first step, analytically well-founded mean-field analyses are carried through. One- and three-dimensional ultracold Fermi gases with spin and mass imbalance as well as Gross-Neveu and NJL-type relativistic models at finite baryon chemical potential are investigated with respect to their analytic properties in general and the occurrence of spontaneous breaking of translational invariance in particular. Based on these studies, further methods are devised or adapted allowing for investigations also beyond the mean-field approximation. Lattice Monte Carlo simulations with imaginary imbalance parameters are employed to surmount the infamous sign problem and compute the equation of state of the respective unitary Fermi gases. Moreover, in-medium two-body analyses are used to confirm and explain the characteristics of inhomogeneously ordered phases. Finally, functional RG methods are applied to the unitary Fermi gas with spin and mass imbalance. Besides quantitatively competitive predictions for critical temperatures for the superfluid state, strong hints on the stability of inhomogeneous phases with respect to order parameter fluctuations in the regime of large mass imbalance are obtained. Combining the findings from these different theoretical studies suggests the possibility to find such phases in experiments presently in preparation.

  13. Transdermal deferoxamine prevents pressure-induced diabetic ulcers.

    Science.gov (United States)

    Duscher, Dominik; Neofytou, Evgenios; Wong, Victor W; Maan, Zeshaan N; Rennert, Robert C; Inayathullah, Mohammed; Januszyk, Michael; Rodrigues, Melanie; Malkovskiy, Andrey V; Whitmore, Arnetha J; Walmsley, Graham G; Galvez, Michael G; Whittam, Alexander J; Brownlee, Michael; Rajadas, Jayakumar; Gurtner, Geoffrey C

    2015-01-06

    There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation.

  14. Transdermal deferoxamine prevents pressure-induced diabetic ulcers

    Science.gov (United States)

    Duscher, Dominik; Neofytou, Evgenios; Wong, Victor W.; Maan, Zeshaan N.; Rennert, Robert C.; Januszyk, Michael; Rodrigues, Melanie; Malkovskiy, Andrey V.; Whitmore, Arnetha J.; Galvez, Michael G.; Whittam, Alexander J.; Brownlee, Michael; Rajadas, Jayakumar; Gurtner, Geoffrey C.

    2015-01-01

    There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation. PMID:25535360

  15. Discontinuous structural phase transition of liquid metal and alloys (2)

    International Nuclear Information System (INIS)

    Wang, Li; Liu, Jiantong

    2004-01-01

    The diameter (d f ) of diffusion fluid cluster before and after phase transition has been calculated in terms of the paper ''Discontinuous structural phase transition of liquid metal and alloy (1)'' Physics Letters. A 326 (2004) 429-435, to verify quantitatively the discontinuity of structural phase transition; the phenomena of thermal contraction and thermal expansion during the phase transition, together with the evolution model of discontinuous structural phase transition are also discussed in this Letter to explore further the nature of structural transition; In addition, based on the viscosity experimental result mentioned in paper [Y. Waseda, The Structure of Non-Crystalline Materials--Liquids and Amorphous Solids, McGraw-Hill, New York, 1980], we present an approach to draw an embryo of the liquid-liquid (L-L) phase diagram for binary alloys above liquidus in the paper, expecting to guide metallurgy process so as to improve the properties of alloys. The idea that controls amorphous structure and its properties by means of the L-L phase diagram for alloys and by the rapid cooling technique to form the amorphous alloy has been brought forward in the end

  16. Phase structure rewrite systems in information retrieval

    Science.gov (United States)

    Klingbiel, P. H.

    1985-01-01

    Operational level automatic indexing requires an efficient means of normalizing natural language phrases. Subject switching requires an efficient means of translating one set of authorized terms to another. A phrase structure rewrite system called a Lexical Dictionary is explained that performs these functions. Background, operational use, other applications and ongoing research are explained.

  17. Composite Structure Monitoring using Direct Write Sensors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA SBIR Phase II project seeks to develop and demonstrate a suite of sensor products to monitor the health of composite structures. Sensors will be made using...

  18. Structural Integrity Inspection and Visualization System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on the successful feasibility demonstration in Phase I, Physical Optics Corporation (POC) proposes to continue the development of a novel Structural Integrity...

  19. Higher Strength, Lighter Weight Aluminum Spacecraft Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I program proposes to develop a bulk processing technology for producing ultra fine grain (UFG) aluminum alloy structures. The goal is to demonstrate...

  20. Shape Memory Alloy-Based Periodic Cellular Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II effort will continue to develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular...

  1. Structure determination at room temperature and phase transition ...

    Indian Academy of Sciences (India)

    Unknown

    Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India. MS received 9 May 2002 ... exhibit a ferroelectric–paraelectric phase transition at ele- ..... The pattern decomposition and peak extraction methods ...

  2. Simulating Nonlinear Dynamics of Deployable Space Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To support NASA's vital interest in developing much larger solar array structures over the next 20 years, MotionPort LLC's Phase I SBIR project will strengthen...

  3. Phase relations, crystal structures and physical properties of nuclear fuels

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki; Fujino, Takeo; Tateno, Jun

    1975-07-01

    Phase relations, crystal structures and physical properties of the compounds for nuclear fuels are presented, including melting point, thermal expansion, diffusion and magnetic and electric properties. Emphasis is on oxides, carbides and nitrides of thorium, uranium and plutonium. (auth.)

  4. Traveling wave accelerating structures with a large phase advance

    International Nuclear Information System (INIS)

    Paramonov, V.V.

    2012-01-01

    The cells RF parameters for the well known Disk Loaded Waveguide (DLW) are considered in higher pass bands of TM01 wave, providing operating phase advance between 180 o - 1230 o per cell. With an appropriate shape optimization and some additional elements proposed traveling wave structures with such large phase advance overlap the classical first band DLW in RF efficiency. Examples of proposed structures together with RF and dispersion properties are presented.

  5. Phase space structure of triatomic molecules

    International Nuclear Information System (INIS)

    Lu, Z.; Kellman, M.E.

    1997-01-01

    The bifurcation structure is investigated for a Hamiltonian for the three coupled nonlinear vibrations of a highly excited triatomic molecule. The starting point is a quantum Hamiltonian used to fit experimental spectra. This Hamiltonian includes 1:1 Darling endash Dennison resonance coupling between the stretches, and 2:1 Fermi resonance coupling between the stretches and bend. A classical Hamiltonian is obtained using the Heisenberg correspondence principle. Surfaces of section show a pronounced degree of chaos at high energies, with a mixture of chaotic and regular dynamics. The large-scale bifurcation structure is found semianalytically, without recourse to numerical solution of Hamilton close-quote s equations, by taking advantage of the fact that the spectroscopic Hamiltonian has a conserved polyad quantum number, corresponding to an approximate constant of the motion of the molecule. Bifurcation diagrams are analyzed for a number of molecules including H 2 O, D 2 O, NO 2 , ClO 2 , O 3 , and H 2 S. copyright 1997 American Institute of Physics

  6. Gas phase structure of transition metal dihydrides

    International Nuclear Information System (INIS)

    Demuynck, J.; Schaefer, H.F. III

    1980-01-01

    ESR and infrared spectroscopic measurements on matrix isolated MnH 2 and CrH 2 have recently suggested that these simple molecules may be bent. This result would be the opposite of that found experimentally for the transition metal dihalides MX 2 , known to be linear. Here the geometrical structure of MnH 2 has been investigated by molecular electronic structure theory. A large contracted Gaussian basis set [Mn(14s11p6p/9s8p3d), H(5s1p/3s1p)] was used in conjunction with self-consistent field and configuration interaction methods. These suggest that the 6 A 1 ground state of MnH 2 is linear. Further studies of the 3 A 1 state (one of several low-lying states) of TiH 2 also favor linearity, although this potential energy surface is extremely flat with respect to bending. Thus it appears probable that most MH 2 molecules, like the related MX 2 family, are linear

  7. Simulation studies of GST phase change alloys

    Science.gov (United States)

    Martyna, Glenn

    2008-03-01

    In order to help drive post-Moore's Law technology development, switching processes involving novel materials, in particular, GeSbTe (GST) alloys are being investigated for use in memory and eFuse applications. An anneal/quench thermal process crystallizes/amorphosizes a GST alloy which then has a low/high resistance and thereby forms a readable/writeable bit; for example, a ``one'' might be the low resistance, conducting crystalline state and a ``zero'' might be the high resistance, glassy state. There are many open questions about the precise nature of the structural transitions and the coupling to electronic structure changes. Computational and experimental studies of the effect of pressure on the GST materials were initiated in order to probe the physics behind the thermal switching process. A new pathway to reversible phase change involving pressure-induced structural metal insulator transitions was discovered. In a binary GS system, a room-temperature, direct, pressure-induced transformation from the high resistance amorphous phase to the low resistance crystalline phase was observed experimentally while the reverse process under tensile load was demonstrated via ab initio MD simulations performed on IBM's Blue Gene/L enabled by massively parallel software. Pressure induced transformations of the ternary material GST-225 (Ge2Sb2Te5) were, also, examined In the talk, the behavior of the two systems will be compared and insight into the nature of the phase change given.

  8. Neutron scattering studies of pretransitional phenomena in structural phase transformations

    International Nuclear Information System (INIS)

    Shapiro, S.M.

    1979-03-01

    Materials exhibiting structural phase transformations are well known to possess pretransitional phenomena. Below the transition temperature, T/sub c/, an order parameter appears and the pretransitional effects are associated with the fluctuations of the order parameter. Neutron scattering techniques have proved invaluable in studying the temporal and spatial dependence of these fluctuations. SrTiO 3 is the prototypical example of a structural phase transformation exhibiting features observable in other transformations such as martensitic and order-disorder. The experimental evolution of the understanding of the phase transformation in SrTiO 3 will be reviewed and the features observed will be shown to typify other systems

  9. Theoretical description of the properties of magnetization fluctuations in the vicinity of phase transition from paramagnetic phase to ferromagnetic phase with domain structure

    International Nuclear Information System (INIS)

    Wasilewski, W.

    1983-08-01

    This paper presents a theoretical description of the phase transition from a paramagnetic phase P to the homogeneous and domain structure ferromagnetic phases within the phenomenological theory of phase transitions

  10. Pressure-induced amorphization of NaVO/sub 3 at room temperature and its re-crystallization

    International Nuclear Information System (INIS)

    Shen, Z.X.; Ong, C.W.; Tang, S.H.; Kuok, M.H.

    1994-01-01

    Pressure-induced amorphization is the subject of intense study for the past few years because of its importance in material science and in solid state physics. We reported a crystalline-amorphous phase transition at ca 60kbar in NaVO1/3, which is the lowest pressure for such transitions in ionic crystals. The transition is marked by the sudden appearance of very broad bands at the 800 and 350 cm/sup -1 regions. The amorphization includes the complete breaking up of the infinite chains of corner-linked tetrahedral VO/sub 4, most likely into VO/sup -/sub 3. On decompression, the amorphous phase transforms to another phase, probably also amorphous at ca 40 kbar. It reverts to the stable ambient condition α-phase upon heating. Here we report on the details of the transtitional region and the re-linking of the VO/sub 4 chains upon heating. (authors)

  11. Revealing the hidden structural phases of FeRh

    Science.gov (United States)

    Kim, Jinwoong; Ramesh, R.; Kioussis, Nicholas

    2016-11-01

    Ab initio electronic structure calculations reveal that tetragonal distortion has a dramatic effect on the relative stability of the various magnetic structures (C-, A-, G-, A'-AFM, and FM) of FeRh giving rise to a wide range of novel stable/metastable structures and magnetic phase transitions between these states. We predict that the cubic G-AFM structure, which was believed thus far to be the ground state, is metastable and that the tetragonally expanded G-AFM is the stable structure. The low energy barrier separating these states suggests phase coexistence at room temperature. We propose an A'-AFM phase to be the global ground state among all magnetic phases which arises from the strain-induced tuning of the exchange interactions. The results elucidate the underlying mechanism for the recent experimental findings of electric-field control of magnetic phase transition driven via tetragonal strain. The magnetic phase transitions open interesting prospects for exploiting strain engineering for the next-generation memory devices.

  12. Corundum-to-spinel structural phase transformation in alumina

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Shogo [Department of Materials Science and Engineering, Kyushu Institute of Technology, Fukuoka 804-8550 (Japan); Ishimaru, Manabu, E-mail: ishimaru@post.matsc.kyutech.ac.jp [Department of Materials Science and Engineering, Kyushu Institute of Technology, Fukuoka 804-8550 (Japan); Sina, Younes; McHargue, Carl J.; Sickafus, Kurt E. [Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996-2200 (United States); Alves, Eduardo [Unit of Physics and Accelerators, Ion Beam Laboratory, Instituto Superior Técnico/Instituto Tecnológico e Nuclear, EN. 10 2686-953 Sacavém (Portugal)

    2015-09-01

    Several polymorphs exist in alumina (Al{sub 2}O{sub 3}), and they transform to a stable α-phase with a hexagonal corundum structure on thermal annealing. This structural change is irreversible as a function of temperature, and transformation of corundum to another metastable crystalline phase has never been observed by heat treatments. In this study, we irradiated single crystals of Al{sub 2}O{sub 3} with Zr ions and obtained an irradiated microstructure consisting of a buried α-Al{sub 2}O{sub 3} layer surrounded on top and bottom by layers of a defect cubic spinel Al{sub 2}O{sub 3} phase. We examined the thermal stability of this microstructure using transmission electron microscopy and X-ray diffraction. We found that the corundum phase completely transforms to the spinel phase following annealing at 1173 K for 1 h: the thermodynamically stable phase transforms to the metastable phase by heat treatments. We discuss this unusual structural change within the context of our results as well as previous observations.

  13. Pressure-induced transformations in glassy water: A computer simulation study using the TIP4P/2005 model

    Science.gov (United States)

    Wong, Jessina; Jahn, David A.; Giovambattista, Nicolas

    2015-08-01

    We study the pressure-induced transformations between low-density amorphous (LDA) and high-density amorphous (HDA) ice by performing out-of-equilibrium molecular dynamics (MD) simulations. We employ the TIP4P/2005 water model and show that this model reproduces qualitatively the LDA-HDA transformations observed experimentally. Specifically, the TIP4P/2005 model reproduces remarkably well the (i) structure (OO, OH, and HH radial distribution functions) and (ii) densities of LDA and HDA at P = 0.1 MPa and T = 80 K, as well as (iii) the qualitative behavior of ρ(P) during compression-induced LDA-to-HDA and decompression-induced HDA-to-LDA transformations. At the rates explored, the HDA-to-LDA transformation is less pronounced than in experiments. By studying the LDA-HDA transformations for a broad range of compression/decompression temperatures, we construct a "P-T phase diagram" for glassy water that is consistent with experiments and remarkably similar to that reported previously for ST2 water. This phase diagram is not inconsistent with the possibility of TIP4P/2005 water exhibiting a liquid-liquid phase transition at low temperatures. A comparison with previous MD simulation studies of SPC/E and ST2 water as well as experiments indicates that, overall, the TIP4P/2005 model performs better than the SPC/E and ST2 models. The effects of cooling and compression rates as well as aging on our MD simulations results are also discussed. The MD results are qualitatively robust under variations of cooling/compression rates (accessible in simulations) and are not affected by aging the hyperquenched glass for at least 1 μs. A byproduct of this work is the calculation of TIP4P/2005 water's diffusion coefficient D(T) at P = 0.1 MPa. It is found that, for T ≥ 210 K, D(T) ≈ (T - TMCT)-γ as predicted by mode coupling theory and in agreement with experiments. For TIP4P/2005 water, TMCT = 209 K and γ = 2.14, very close to the corresponding experimental values TMCT = 221 K

  14. Structural phase transition and electronic properties in samarium chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, Y. S., E-mail: yspanwar2011@gmail.com [Department of Physics, Govt. New Science College Dewas-455001 (India); Aynyas, Mahendra [Department of Physics, C.S.A. Govt. P.G. College, Sehore, 466001 (India); Pataiya, J.; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal, 462026 (India)

    2016-05-06

    The electronic structure and high pressure properties of samarium monochalcogenides SmS, SmSe and SmTe have been reported by using tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). The total energy as a function of volume is evaluated. It is found that these monochalcogenides are stable in NaCl-type structure under ambient pressure. We predict a structural phase transition from NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-type) structure for these compounds. Phase transition pressures were found to be 1.7, 4.4 and 6.6 GPa, for SmS, SmSe and SmTe respectively. Apart from this, the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed that these compounds exhibit metallic character. The calculated values of equilibrium lattice parameter and phase transition pressure are in general good agreement with available data.

  15. Notes on qubit phase space and discrete symplectic structures

    International Nuclear Information System (INIS)

    Livine, Etera R

    2010-01-01

    We start from Wootter's construction of discrete phase spaces and Wigner functions for qubits and more generally for finite-dimensional Hilbert spaces. We look at this framework from a non-commutative space perspective and we focus on the Moyal product and the differential calculus on these discrete phase spaces. In particular, the qubit phase space provides the simplest example of a four-point non-commutative phase space. We give an explicit expression of the Moyal bracket as a differential operator. We then compare the quantum dynamics encoded by the Moyal bracket to the classical dynamics: we show that the classical Poisson bracket does not satisfy the Jacobi identity thus leaving the Moyal bracket as the only consistent symplectic structure. We finally generalize our analysis to Hilbert spaces of prime dimensions d and their associated d x d phase spaces.

  16. Atomic structure of a decagonal Al-Pd-Mn phase

    Science.gov (United States)

    Mihalkovič, Marek; Roth, Johannes; Trebin, Hans-Rainer

    2017-12-01

    We present a detailed structure solution for the 16 -Å decagonal quasicrystal in the Al-Pd-Mn system by means of cluster decoration and ab initio energy minimization. It is based on structure models of the ɛ and other approximant phases. The ɛ phases can be represented as subsets of a hexagon-boat-star (HBS) tiling. The decagonal phase comprises further HBS tiles. We have constructed several fictitious HBS approximants and optimized their structures individually. All tiles are decorated by two types of atomic clusters: the pseudo-Mackay icosahedron (PMI) and the large bicapped pentagonal prism (LBPP). It turns out that, whereas the PMI clusters can be kept essentially unchanged, the LBPP clusters must be adjusted in occupancy with Al atoms depending on their positions in the various tiles. In this way we obtain cluster decorations for all tiles of the decagonal quasicrystal. The calculations were confirmed by evaluation of an effective tile Hamiltonian.

  17. Structural and phase studies of stainless wire after electroplastic drawing

    International Nuclear Information System (INIS)

    Troitskij, O.A.; Baldokhin, Yu.V.; Kir'yanchev, N.E.; Ryzhkov, V.G.; Kalugin, V.D.; Sokolov, N.V.; Klekovkin, A.A.; Klevtsur, S.A.

    1983-01-01

    Structural and phase properties of the 12Kh18N10T steel wire are studied after usual and electroplastic drawing from 0.40 up to 0.11 mm with 18-22% reduction per pass with passing 250 A/mm 2 electric current. The earlier made observation on a sharp decrease in content of deformation-induced martensite of α-phase takes place in the wire from stainless metastable austenitic steel as a result of electroplastic drawing. Distribution of the remained α-phase by the wire cross section is established

  18. Phase structure of the SU(5) Coleman-Weinberg theory

    International Nuclear Information System (INIS)

    Tkachev, I.I.

    1984-01-01

    The phase structure of the SU(5) Coleman-Weinberg theory in the one-loop approximation is obtained with account of temperature and space-time curvature. We show that the most essential contribution is that from the interaction between 5 and 24 scalar fields which reflects the existence of two strongly different mass scales in the model. A stability boundary of the SU(3) x SU(2) x U(1) phase is found. It is shown that the SU(4) x U(1) phase in the Coleman-Weinberg theory is unstable. (orig.)

  19. High pressure structural phase transition of neodymium mono pnictides

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Ojha, P.; Sanyal, S.P.; Aynyas, Mahendra

    2007-01-01

    We have investigated theoretically the high-pressure structural phase transition of two neodymium mono NdX (X=As, Sb) using an interionic potential theory with necessary modification to include the effect of Coulomb screening by the delocalized f electrons of Nd ion. These compounds exhibits first order crystallographic phase transition from their NaCl (B 1 ) phase to body centered tetragonal (BCT) at 27 GPa and 15.3 GPa respectively. We also calculated the Nd-Nd distance as a function of pressure. (author)

  20. Phase structure of lattice QCD for general number of flavors

    International Nuclear Information System (INIS)

    Iwasaki, Y.; Kanaya, K.; Yoshie, T.; Kaya, S.; Sakai, S.

    2004-01-01

    We investigate the phase structure of lattice QCD for the general number of flavors in the parameter space of gauge coupling constant and quark mass, employing the one-plaquette gauge action and the standard Wilson quark action. Performing a series of simulations for the number of flavors N F =6-360 with degenerate-mass quarks, we find that when N F ≥7 there is a line of a bulk first order phase transition between the confined phase and a deconfined phase at a finite current quark mass in the strong coupling region and the intermediate coupling region. The massless quark line exists only in the deconfined phase. Based on these numerical results in the strong coupling limit and in the intermediate coupling region, we propose the following phase structure, depending on the number of flavors whose masses are less than Λ d which is the physical scale characterizing the phase transition in the weak coupling region: When N F ≥17, there is only a trivial IR fixed point and therefore the theory in the continuum limit is free. On the other hand, when 16≥N F ≥7, there is a nontrivial IR fixed point and therefore the theory is nontrivial with anomalous dimensions, however, without quark confinement. Theories which satisfy both quark confinement and spontaneous chiral symmetry breaking in the continuum limit exist only for N F ≤6

  1. Heterophase fluctuation of omega phase and X-ray diffuse scattering from dual phase structure

    International Nuclear Information System (INIS)

    Farjami, Susan; Kubo, Hiroshi

    2003-01-01

    Heterophase fluctuation of athermal omega embryos has been analyzed by assuming a dual phase structure of omega embryos composed of omega and bcc matrix phase. The two-dimensional modulation of dual phase was suggested from the quantitative estimation of coherent free energy of omega embryos using microscopic theory of elasticity and the Landau anharmonic theory for phase transformation. The X-ray diffraction theory was developed in connection to the formation of omega embryos having the dual phase structure. The offset of the diffuse peak position from the ideal omega point in the X-ray diffraction pattern is attributed to the dual phase (incommensurate phase) of omega embryos. It was also shown that the ellipsoidal shape of the diffuse intensity tailing toward the fundamental spot of the matrix phase is originated from the equilibrium shape of the omega embryo. The quantitative estimation of elastic energy modulus (EEM) in the disordered bcc matrix and in the ordered bcc matrix indicates a difference in the deviation amount of the minimum point k(q m ) from the ideal omega point k(q ω ) and a difference in the elliptical shape of embryos

  2. Structural formation of aluminide phases on titanium alloy during annealing

    International Nuclear Information System (INIS)

    Mamaeva, A.A.; Romankov, S.E.; Sagdoldina, Zh.

    2006-01-01

    Full text: The aluminum layer on the surface of titanium alloy has been formed by thermal deposition. The structural formation of aluminide phases on the surface has been studied. The sequence of structural transformations at the Ti/Al interface is limited by the reaction temperature and time. The sequence of aluminide phase formation is occurred in compliance with Ti-Al equilibrium phase diagram. At the initial stages at the Ti/Al interface the Al3Ti alloy starts forming as a result of interdiffusion, and gradually the whole aluminum films is spent on the formation of this layer. The Al3Ti layer decomposes with the increase of temperature (>600C). At 800C the two-phase (Ti3Al+TiAl) layer is formed on the titanium surface. The TiAl compound is unstable and later on with the increase of the exposure time at 800C gradually transforms into the Ti3Al. The chain of these successive transformations leads to the formation of the continuous homogeneous layer consisting of the Ti3Al compound on the surface. At temperatures exceeding the allotropic transformation temperature (>900C) the Ti3Al compound starts decomposing. All structural changes taking place at the Ti/Al interface are accompanied by considerable changes in micro hardness. The structure of initial substrate influences on kinetics of phase transformation and microstructure development. (author)

  3. Pressure-induced effects on the spectroscopic properties of Nd{sup 3+} in MgO:LiNbO{sub 3} single crystal. A crystal field approach

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz Santiuste, J.E., E-mail: jems@fis.uc3m.es [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28913 Leganés, Madrid (Spain); MALTA Consolider Team (Spain); Lavín, V.; Rodríguez-Mendoza, U.R. [MALTA Consolider Team (Spain); Departamento de Física, INM and IUdEA, Universidad de La Laguna, Apdo. 456. E-38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Tardio, M.M.; Ramírez-Jiménez, R. [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28913 Leganés, Madrid (Spain)

    2017-04-15

    The effects of pressure on the Nd{sup 3+}-doped MgO:LiNbO{sub 3} single crystal have been studied by luminescence spectroscopy at low temperature and high pressures from ambient conditions up to 33 GPa. Specifically, the pressure-induced evolution of the emission spectra, corresponding to the {sup 4}F{sub 3/2}→{sup 4}I{sub 9/2},{sup 4}I{sub 11/2} transitions, and the excitation spectra, corresponding to the {sup 4}I{sub 9/2}→{sup 4}F{sub 5/2}+{sup 2}H{sub 9/2}, and {sup 4}I{sub 9/2}→{sup 4}F{sub 7/2}+{sup 4}S{sub 3/2} transitions, show a gradual red-shift that follows a linear pressure dependence and a decrease in the intensity of the spectra with increasing pressure. The initial effect of increasing pressure on the MgO:LiNbO{sub 3} crystal is the modification of the relative amount of the several centers in the sample. At pressures around 20 GPa the characteristic multicenter Nd{sup 3+} structure eventually disappears indicating that all the centers have very similar environments near this pressure. At higher pressures, observed changes seem to have a different origin. The evolution of Nd{sup 3+} luminescence is studied in the frame of crystal-field theory in order to evaluate its capability of monitoring the pressure-induced structural changes. Crystal-field analysis, under approximated C{sub 3v} symmetry, shows a smooth increase of the overall crystal-field strength on the luminescent ion, which can be related to the volume reduction as pressure increases. Crystal-field parameters also show a general monotonic behavior with pressure that indicates a structural modification of the local structure that, maintaining the trigonal symmetry around the impurity ion, evolves towards a lower axial character. No evidences of a phase transition have been observed in the studied pressure range.

  4. Microstructure and structural phase transitions in iron-based superconductors

    International Nuclear Information System (INIS)

    Wang Zhen; Cai Yao; Yang Huai-Xin; Tian Huan-Fang; Wang Zhi-Wei; Ma Chao; Chen Zhen; Li Jian-Qi

    2013-01-01

    Crystal structures and microstructural features, such as structural phase transitions, defect structures, and chemical and structural inhomogeneities, are known to have profound effects on the physical properties of superconducting materials. Recently, many studies on the structural properties of Fe-based high-T c superconductors have been published. This review article will mainly focus on the typical microstructural features in samples that have been well characterized by physical measurements. (i) Certain common structural features are discussed, in particular, the crystal structural features for different superconducting families, the local structural distortions in the Fe 2 Pn 2 (Pn = P As, Sb) or Fe 2 Ch 2 (Ch = S, Se, Te) blocks, and the structural transformations in the 122 system. (ii) In FeTe(Se) (11 family), the superconductivity, chemical and structural inhomogeneities are investigated and discussed in correlation with superconductivity. (iii) In the K 0.8 Fe 1.6+x Se 2 system, we focus on the typical compounds with emphasis on the Fe-vacancy order and phase separations. The microstructural features in other superconducting materials are also briefly discussed. (topical review - iron-based high temperature superconductors)

  5. Ice Ih anomalies: Thermal contraction, anomalous volume isotope effect, and pressure-induced amorphization

    Science.gov (United States)

    Salim, Michael A.; Willow, Soohaeng Yoo; Hirata, So

    2016-05-01

    Ice Ih displays several anomalous thermodynamic properties such as thermal contraction at low temperatures, an anomalous volume isotope effect (VIE) rendering the volume of D2O ice greater than that of H2O ice, and a pressure-induced transition to the high-density amorphous (HDA) phase. Furthermore, the anomalous VIE increases with temperature, despite its quantum-mechanical origin. Here, embedded-fragment ab initio second-order many-body perturbation (MP2) theory in the quasiharmonic approximation (QHA) is applied to the Gibbs energy of an infinite, proton-disordered crystal of ice Ih at wide ranges of temperatures and pressures. The quantum effect of nuclei moving in anharmonic potentials is taken into account from first principles without any empirical or nonsystematic approximation to either the electronic or vibrational Hamiltonian. MP2 predicts quantitatively correctly the thermal contraction at low temperatures, which is confirmed to originate from the volume-contracting hydrogen-bond bending modes (acoustic phonons). It qualitatively reproduces (but underestimates) the thermal expansion at higher temperatures, caused by the volume-expanding hydrogen-bond stretching (and to a lesser extent librational) modes. The anomalous VIE is found to be the result of subtle cancellations among closely competing isotope effects on volume from all modes. Consequently, even ab initio MP2 with the aug-cc-pVDZ and aug-cc-pVTZ basis sets has difficulty reproducing this anomaly, yielding qualitatively varied predictions of the sign of the VIE depending on such computational details as the choice of the embedding field. However, the temperature growth of the anomalous VIE is reproduced robustly and is ascribed to the librational modes. These solid-state MP2 calculations, as well as MP2 Born-Oppenheimer molecular dynamics, find a volume collapse and a loss of symmetry and long-range order in ice Ih upon pressure loading of 2.35 GPa or higher. Concomitantly, rapid softening of

  6. Ice Ih anomalies: Thermal contraction, anomalous volume isotope effect, and pressure-induced amorphization

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Michael A.; Willow, Soohaeng Yoo; Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States)

    2016-05-28

    Ice Ih displays several anomalous thermodynamic properties such as thermal contraction at low temperatures, an anomalous volume isotope effect (VIE) rendering the volume of D{sub 2}O ice greater than that of H{sub 2}O ice, and a pressure-induced transition to the high-density amorphous (HDA) phase. Furthermore, the anomalous VIE increases with temperature, despite its quantum-mechanical origin. Here, embedded-fragment ab initio second-order many-body perturbation (MP2) theory in the quasiharmonic approximation (QHA) is applied to the Gibbs energy of an infinite, proton-disordered crystal of ice Ih at wide ranges of temperatures and pressures. The quantum effect of nuclei moving in anharmonic potentials is taken into account from first principles without any empirical or nonsystematic approximation to either the electronic or vibrational Hamiltonian. MP2 predicts quantitatively correctly the thermal contraction at low temperatures, which is confirmed to originate from the volume-contracting hydrogen-bond bending modes (acoustic phonons). It qualitatively reproduces (but underestimates) the thermal expansion at higher temperatures, caused by the volume-expanding hydrogen-bond stretching (and to a lesser extent librational) modes. The anomalous VIE is found to be the result of subtle cancellations among closely competing isotope effects on volume from all modes. Consequently, even ab initio MP2 with the aug-cc-pVDZ and aug-cc-pVTZ basis sets has difficulty reproducing this anomaly, yielding qualitatively varied predictions of the sign of the VIE depending on such computational details as the choice of the embedding field. However, the temperature growth of the anomalous VIE is reproduced robustly and is ascribed to the librational modes. These solid-state MP2 calculations, as well as MP2 Born–Oppenheimer molecular dynamics, find a volume collapse and a loss of symmetry and long-range order in ice Ih upon pressure loading of 2.35 GPa or higher. Concomitantly, rapid

  7. Collapsing cycloidal structures in the magnetic phase diagram of erbium

    DEFF Research Database (Denmark)

    Jehan, D.A.; McMorrow, D.F.; Simpson, J.A.

    1994-01-01

    The magnetic structure of Er with a magnetic field applied in the hexagonal basal plane has been studied using a combination of experimental techniques and mean-field modeling. From neutron-scattering and magnetization measurements, phase diagrams are constructed. At temperatures above...... approximately 20 K, the application of a field is found to favor cycloidal structures with modulation wave vectors of q(c) = (6/23)c*, (4/15)c*, and (2/7)c*. For fields above almost-equal-to 40 kOe, the (2/7) structure dominates the phase diagram. From a detailed study of this most stable cycloid, we determine...... how it distorts as the field is increased. In low fields, there is a spin reorientation, so that the plane of the cycloid becomes perpendicular to the applied field, while in larger fields, the cycloid collapses through a series of fanlike structures. At lower temperatures, as the field is increased...

  8. Negative thermal expansion near two structural quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Occhialini, Connor A.; Handunkanda, Sahan U.; Said, Ayman; Trivedi, Sudhir; Guzmán-Verri, G. G.; Hancock, Jason N.

    2017-12-01

    Recent experimental work has revealed that the unusually strong, isotropic structural negative thermal expansion in cubic perovskite ionic insulator ScF3 occurs in excited states above a ground state tuned very near a structural quantum phase transition, posing a question of fundamental interest as to whether this special circumstance is related to the anomalous behavior. To test this hypothesis, we report an elastic and inelastic x-ray scattering study of a second system Hg2I2 also tuned near a structural quantum phase transition while retaining stoichiometric composition and high crystallinity. We find similar behavior and significant negative thermal expansion below 100 K for dimensions along the body-centered-tetragonal c axis, bolstering the connection between negative thermal expansion and zero-temperature structural transitions.We identify the common traits between these systems and propose a set of materials design principles that can guide discovery of newmaterials exhibiting negative thermal expansion

  9. Crystal structure of the Al2CuIr phase

    International Nuclear Information System (INIS)

    Meshi, L.; Ezersky, V.; Kapush, D.; Grushko, B.

    2010-01-01

    A new ternary Al 2 CuIr phase was revealed in the Al-Cu-Ir system. It is formed below 1063 o C from the β-phase (CsCl-type structure) extending at elevated temperatures from AlIr. The crystal structure of the Al 2 CuIr phase was determined using a combination of precession electron diffraction and X-ray powder diffraction techniques. The phase has an orthorhombic C-centered unit cell with lattice parameters a = 8.1196(7) A, b = 5.0646(2) A and c = 5.18513(3) A; its crystal symmetry can be described by the Cmme (no. 67) space group (Pearson symbol oC16). The unit cell of the new phase contains 8 Al, 4 Cu and 4 Ir atoms and exhibits a new structure type. The reliability factors characterizing the Rietveld refinement procedure are: R p = 4.45%, R wp = 6.45%, R B = 3.69% and R f = 2.41%.

  10. Structural phase transitions in BaMo6S8: Evidence for an incommensurate phase

    International Nuclear Information System (INIS)

    Jorgensen, J.D.; Hinks, D.G.; Hatch, D.M.; Putnam, R.M.

    1986-01-01

    The structure of BaMo 6 S 8 has been studied over the temperature range 19 K to 573 K by time-of-flight neutron powder diffraction. Below 175 K the data can be suitably refined in a triclinic, P1, cell with volume equal to the rhombohedral, R3, cell common to most Chevrel-phase structures. At temperatures immediately above 175 K, the rhombohedral, R3, Bragg peaks are broadened by satellite reflections which appear to be identical to those recently observed at low temperature in PbMo 6 S 8 and SnMo 6 S 8 . An abrupt change in the sign of the temperature dependence of the hexagonal c axis (∂c/∂T) signals the transition to an undistorted rhombohedral, R3, structure at temperatures above about 350 K. An extended Landau theory determines both continuous and discontinuous transitions from R3 induced by a single order parameter. Analysis of the order parameters inducing commensurate transitions imposes symmetry restrictions on the atomic displacements in the lower symmetry phases. The assumption of an R3 commensurate phase is not consistent with the bond lengths obtained for the distortions to the P1 (or P1) phase for any of the possible cells preserving order parameters. Thus the phase immediately above 175 K cannot be a commensurate R3 structure. This is consistent with experimental evidence. 25 refs., 11 figs., 8 tabs

  11. Ultrafast photoinduced structure phase transition in antimony single crystals

    NARCIS (Netherlands)

    Fausti, Daniele; Misochko, Oleg V.; van Loosdrecht, Paul H. M.

    2009-01-01

    Picosecond Raman scattering is used to study the photoinduced ultrafast dynamics in Peierls distorted antimony. We find evidence for an ultrafast nonthermal reversible structural phase transition. Most surprisingly, we find evidence that this transition evolves toward a lower symmetry in contrast to

  12. The influence of phase transfer catalyst structure on reaction selectivity

    International Nuclear Information System (INIS)

    Demlov, Eh.V.

    1995-01-01

    A concise review is given of systematic studies which are concerned with the tuning of regio, frequentio-, chemo-, and diastereoselectivity by the structure or type of phase transfer catalyst. Use of MEI as an alkylating agent is described. Refs. 36, figs. 11

  13. Spontaneous phase transitions in magnetic films with a modulated structure

    International Nuclear Information System (INIS)

    Arzamastseva, G. V.; Evtikhov, M. G.; Lisovskii, F. V.; Mansvetova, E. G.

    2011-01-01

    The influence of monoperiodic and biperiodic bias fields on the nucleation of domain structures in quasi-uniaxial magnetic films near the Curie point has been studied experimentally. The main types of observed nonuniform magnetic moment distributions have been established and chains of a devil’s staircase phase transitions are shown to be realized when the films are slowly cooled.

  14. Phase stability and electronic structure of transition-metal aluminides

    International Nuclear Information System (INIS)

    Carlsson, A.E.

    1992-01-01

    This paper will describe the interplay between die electronic structure and structural energetics in simple, complex, and quasicrystalline Al-transition metal (T) intermetallics. The first example is the Ll 2 -DO 22 competition in Al 3 T compounds. Ab-initio electronic total-energy calculations reveal surprisingly large structural-energy differences, and show that the phase stability of both stoichiometric and ternary-substituted compounds correlates closely with a quasigap in the electronic density of states (DOS). Secondly, ab-initio calculations for the structural stability of the icosahedrally based Al 12 W structure reveal similar quasigap effects, and provide a simple physical explanation for the stability of the complex aluminide structures. Finally, parametrized tight-binding model calculations for the Al-Mn quasicrystal reveal a large spread in the local Mn DOS behavior, and support a two-site model for the quasicrystal's magnetic behavior

  15. Pressure-induced α->ω transition in titanium metal: a systematic study of the effects of uniaxial stress

    International Nuclear Information System (INIS)

    Errandonea, Daniel; Meng, Y.; Somayazulu, M.; Haeusermann, D.

    2005-01-01

    The effects of uniaxial stress on the pressure-induced α->ω transition in pure titanium (Ti) are investigated by means of angle dispersive X-ray diffraction in a diamond-anvil cell. Experiments under four different pressure environments reveal that: (1) the onset of the transition depends on the pressure medium used, going from 4.9GPa (no pressure medium) to 10.5GPa (argon pressure medium); (2) the α and ω phases coexist over a rather large pressure range, which depends on the pressure medium employed; (3) the hysteresis and quenchability of the ω phase is affected by differences in the sample pressure environment; and (4) a short-term laser heating of Ti lowers the α->ω transition pressure. Possible transition mechanisms are discussed in the light of the present results, which clearly demonstrate the influence of uniaxial stress in the α->ω transition

  16. A phase transition in energy-filtered RNA secondary structures

    DEFF Research Database (Denmark)

    Han, Hillary Siwei; reidys, Christian

    2012-01-01

    In this paper we study the effect of energy parameters on minimum free energy (mfe) RNA secondary structures. Employing a simplified combinatorial energy model, that is only dependent on the diagram representation and that is not sequence specific, we prove the following dichotomy result. Mfe...... this phase transition from a discrete limit to a central limit distribution and subsequently put our result into the context of quantifying the effect of sparsification of the folding of these respective mfe-structures. We show that the sparsification of realistic mfe-structures leads to a constant time...

  17. Pressure-induced organic topological nodal-line semimetal in the three-dimensional molecular crystal Pd (dddt) 2

    Science.gov (United States)

    Liu, Zhao; Wang, Haidi; Wang, Z. F.; Yang, Jinlong; Liu, Feng

    2018-04-01

    The nodal-line semimetal represents a class of topological materials characterized with highest band degeneracy. It is usually found in inorganic materials of high crystal symmetry or a minimum symmetry of inversion aided with accidental band degeneracy [Phys. Rev. Lett. 118, 176402 (2017), 10.1103/PhysRevLett.118.176402]. Based on first-principles band structure, Wannier charge center, and topological surface state calculations, here we predict a pressure-induced topological nodal-line semimetal in the absence of spin-orbit coupling (SOC) in the synthesized single-component 3D molecular crystal Pd (dddt) 2 . We show a Γ -centered single nodal line undulating within a narrow energy window across the Fermi level. This intriguing nodal line is generated by pressure-induced accidental band degeneracy, without protection from any crystal symmetry. When SOC is included, the fourfold degenerated nodal line is gapped and Pd (dddt) 2 becomes a strong 3D topological metal with an Z2 index of (1;000). However, the tiny SOC gap makes it still possible to detect the nodal-line properties experimentally. Our findings afford an attractive route for designing and realizing topological states in 3D molecular crystals, as they are weakly bonded through van der Waals forces with a low crystal symmetry so that their electronic structures can be easily tuned by pressure.

  18. Diffusion in porous structures containing three fluid phases

    International Nuclear Information System (INIS)

    Galani, A.N.; Kainourgiakis, M.E.; Stubos, A.K.; Kikkinides, E.S.

    2005-01-01

    In the present study, the tracer diffusion in porous media filled by three fluid phases (a non-wetting, an intermediate wetting and a wetting phase) is investigated. The disordered porous structure of porous systems like random sphere packing and the North Sea chalk, is represented by three-dimensional binary images. The random sphere pack is generated by a standard ballistic deposition procedure, while the chalk matrix by a stochastic reconstruction technique. Physically sound spatial distributions of the three phases filling the pore space are determined by the use of a simulated annealing algorithm, where those phases are initially randomly distributed in the pore space and trial-and-error swaps are performed in order to attain the global minimum of the total interfacial energy. The acceptance rule for a trial move during the annealing is modified properly improving the efficiency of the technique. The diffusivities of the resulting domains are computed by a random walk method. A parametric study with respect to the pore volume fraction occupied by each fluid phase and the ratio of the diffusivities in the fluid phases is performed. (authors)

  19. Certain peculiarities of structural inheritance in phase recrystallization of steel

    International Nuclear Information System (INIS)

    Mukhamedov, A.A.

    1978-01-01

    The structural inheritance in phase recrystallization of previously overheated to various temperatures industrially melted 40Kh steel and of Armco-iron has been investigated. The steels have been heated to 100O, 11O0, 1200 and 1260 deg C and cooled in the air, and in some instances, hardened (quenched) in water. The physical broadening of X-ray lines points to a nonmonotonous variation of fine structure parameters as a function of the temperature and the heating time. The inheritance effect of fine structure defects affects the steel properties obtained in a final heat treatment. The structural inheritance effect has an important bearing upon the wear resistance of steel. A purpose-oriented use of the structural inheritance effect can enhance service properties of steel parts

  20. Pressure-induced spin reorientation transition in layered ferromagnetic insulator Cr2Ge2Te6

    Science.gov (United States)

    Lin, Zhisheng; Lohmann, Mark; Ali, Zulfikhar A.; Tang, Chi; Li, Junxue; Xing, Wenyu; Zhong, Jiangnan; Jia, Shuang; Han, Wei; Coh, Sinisa; Beyermann, Ward; Shi, Jing

    2018-05-01

    The anisotropic magnetoresistance (AMR) of Cr2Ge2Te6 (CGT), a layered ferromagnetic insulator, is investigated under an applied hydrostatic pressure up to 2 GPa. The easy-axis direction of the magnetization is inferred from the AMR saturation feature in the presence and absence of an applied pressure. At zero applied pressure, the easy axis is along the c direction or perpendicular to the layer. Upon application of a hydrostatic pressure > 1 GPa, the uniaxial anisotropy switches to easy-plane anisotropy which drives the equilibrium magnetization from the c axis to the a b plane at zero magnetic field, which amounts to a giant magnetic anisotropy energy change (> 100%). As the temperature is increased across the Curie temperature, the characteristic AMR effect gradually decreases and disappears. Our first-principles calculations confirm the giant magnetic anisotropy energy change with moderate pressure and assign its origin to the increased off-site spin-orbit interaction of Te atoms due to a shorter Cr-Te distance. Such a pressure-induced spin reorientation transition is very rare in three-dimensional ferromagnets, but it may be common to other layered ferromagnets with similar crystal structures to CGT, and therefore offers a unique way to control magnetic anisotropy.

  1. Simulations of rapid pressure-induced solidification in molten metals

    International Nuclear Information System (INIS)

    Patel, Mehul V.; Streitz, Frederick H.

    2004-01-01

    The process of interest in this study is the solidification of a molten metal subjected to rapid pressurization. Most details about solidification occurring when the liquid-solid coexistence line is suddenly transversed along the pressure axis remain unknown. We present preliminary results from an ongoing study of this process for both simple models of metals (Cu) and more sophisticated material models (MGPT potentials for Ta). Atomistic (molecular dynamics) simulations are used to extract details such as the time and length scales that govern these processes. Starting with relatively simple potential models, we demonstrate how molecular dynamics can be used to study solidification. Local and global order parameters that aid in characterizing the phase have been identified, and the dependence of the solidification time on the phase space distance between the final (P,T) state and the coexistence line has been characterized

  2. Cationic Phospholipids Forming Cubic Phases: Lipoplex Structure and Transfection Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Koynova, Rumiana; Wang, Li; MacDonald, Robert C. (NWU)

    2008-10-29

    The transfection activity and the phase behavior of two novel cationic O-alkyl-phosphatidylcholines, 1,2-dioleoyl-sn-glycero-3-hexylphosphocholine (C6-DOPC) and 1,2-dierucoyl-sn-glycero-3-ethylphosphocholine (di22:1-EPC), have been examined with the aim of more completely understanding the mechanism of lipid-mediated DNA delivery. Both lipids form cubic phases: C6-DOPC in the entire temperature range from -10 to 90 C, while di22:1-EPC exhibits an irreversible lamellar-cubic transition between 50 and 70 C on heating. The lipoplexes formed by C6-DOPC arrange into hexagonal phase, while the lipoplexes of di22:1-EPC are lamellar. Both lipids exhibit lower transfection activity than the lamellar-forming 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EDOPC). Thus, for the studied cationic phospholipid-DNA systems, the lipoplex phase state is a factor that does not seem to correlate with transfection activity. The parameter that exhibits better correlation with the transfection activity within the present data set is the phase state of the lipid dispersion prior to the addition of DNA. Thus, the lamellar lipid dispersion (EDOPC) produces more efficient lipoplexes than the dispersion with coexisting lamellar and cubic aggregates (diC22:1-EPC), which is even more efficient than the purely cubic dispersions (C6-DOPC; diC22:1-EPC after heating). It could be inferred from these data and from previous research that cubic phase lipid aggregates are unlikely to be beneficial to transfection. The lack of correlation between the phase state of lipoplexes and their transfection activity observed within the present data set does not mean that lipid phase state is generally unimportant for lipofection: a viewpoint now emerging from our previous studies is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids.

  3. Cationic phospholipids forming cubic phases: lipoplex structure and transfection efficiency.

    Science.gov (United States)

    Koynova, Rumiana; Wang, Li; Macdonald, Robert C

    2008-01-01

    The transfection activity and the phase behavior of two novel cationic O-alkyl-phosphatidylcholines, 1,2-dioleoyl- sn-glycero-3-hexylphosphocholine (C6-DOPC) and 1,2-dierucoyl- sn-glycero-3-ethylphosphocholine (di22:1-EPC), have been examined with the aim of more completely understanding the mechanism of lipid-mediated DNA delivery. Both lipids form cubic phases: C6-DOPC in the entire temperature range from -10 to 90 degrees C, while di22:1-EPC exhibits an irreversible lamellar-cubic transition between 50 and 70 degrees C on heating. The lipoplexes formed by C6-DOPC arrange into hexagonal phase, while the lipoplexes of di22:1-EPC are lamellar. Both lipids exhibit lower transfection activity than the lamellar-forming 1,2-dioleoyl- sn-glycero-3-ethylphosphocholine (EDOPC). Thus, for the studied cationic phospholipid-DNA systems, the lipoplex phase state is a factor that does not seem to correlate with transfection activity. The parameter that exhibits better correlation with the transfection activity within the present data set is the phase state of the lipid dispersion prior to the addition of DNA. Thus, the lamellar lipid dispersion (EDOPC) produces more efficient lipoplexes than the dispersion with coexisting lamellar and cubic aggregates (diC22:1-EPC), which is even more efficient than the purely cubic dispersions (C6-DOPC; diC22:1-EPC after heating). It could be inferred from these data and from previous research that cubic phase lipid aggregates are unlikely to be beneficial to transfection. The lack of correlation between the phase state of lipoplexes and their transfection activity observed within the present data set does not mean that lipid phase state is generally unimportant for lipofection: a viewpoint now emerging from our previous studies is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids.

  4. Crystal structure and phase transitions of sodium potassium niobate perovskites

    Science.gov (United States)

    Tellier, J.; Malic, B.; Dkhil, B.; Jenko, D.; Cilensek, J.; Kosec, M.

    2009-02-01

    This paper presents the crystal structure and the phase transitions of K xNa 1- xNbO 3 (0.4 ≤ x ≤ 0.6). X-ray diffraction measurements were used to follow the change of the unit-cell parameters and the symmetry in the temperature range 100-800 K. At room temperature all the compositions exhibited a monoclinic metric of the unit cell with a small monoclinic distortion (90.32° ≤ β ≤ 90.34°). No major change of symmetry was evidenced in the investigated compositional range, which should be characteristic of the morphotropic phase-boundary region. With increasing temperature, the samples underwent first-order monoclinic-tetragonal and tetragonal-cubic transitions. Only the potassium-rich phases were rhombohedral at 100 K.

  5. Hamiltonian flow over saddles for exploring molecular phase space structures

    Science.gov (United States)

    Farantos, Stavros C.

    2018-03-01

    Despite using potential energy surfaces, multivariable functions on molecular configuration space, to comprehend chemical dynamics for decades, the real happenings in molecules occur in phase space, in which the states of a classical dynamical system are completely determined by the coordinates and their conjugate momenta. Theoretical and numerical results are presented, employing alanine dipeptide as a model system, to support the view that geometrical structures in phase space dictate the dynamics of molecules, the fingerprints of which are traced by following the Hamiltonian flow above saddles. By properly selecting initial conditions in alanine dipeptide, we have found internally free rotor trajectories the existence of which can only be justified in a phase space perspective. This article is part of the theme issue `Modern theoretical chemistry'.

  6. Boron incorporation into rutile: phase equilibria and structural considerations

    International Nuclear Information System (INIS)

    Grey, I.E.; Li, C.; MacRae, C.M.; Bursill, L.A.

    1997-01-01

    Reduction of rutile in the presence of borate flux stabilised the rutile phase relative to reduced rutiles due to incorporation of boron from the flux. In the presence of borates the rutile phase is stabilised to oxygen fugacities that are lower by almost two orders of magnitude compared with fugacities at the limit of the single-phase rutile phase field in the pure Ti-O system. Boron incorporation is accompanied by reduction of titanium to the trivalent state, according to the charge compensation relation: 3Ti 4+ ≡ 3 Ti 3+ + B 3+ . Results of powder X-ray diffraction and transmission electron microscopy studies on samples prepared in the temperature range 1100 to 1300 deg C have been used to establish a model for boron incorporation. It is proposed that at the temperatures studied, local defects in boron doped rutile result from displacement of titanium atoms to adjacent interstitial sites coupled with occupation by boron of the triangular face of the vacated octahedral sites. This atomic grouping represents a small element of the TiBO 3 (calcite-type) structure. Annealing at a lower temperature results in ordering of the local defects to form (101) r planar intergrowths of rutile and calcite-type structures. 14 refs., 3 tabs., 8 figs

  7. Boron incorporation into rutile: phase equilibria and structural considerations

    Energy Technology Data Exchange (ETDEWEB)

    Grey, I.E.; Li, C.; MacRae, C.M. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Melbourne, VIC (Australia). Div of Minerals; Bursill, L.A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-06-01

    Reduction of rutile in the presence of borate flux stabilised the rutile phase relative to reduced rutiles due to incorporation of boron from the flux. In the presence of borates the rutile phase is stabilised to oxygen fugacities that are lower by almost two orders of magnitude compared with fugacities at the limit of the single-phase rutile phase field in the pure Ti-O system. Boron incorporation is accompanied by reduction of titanium to the trivalent state, according to the charge compensation relation: 3Ti{sup 4+}{identical_to} 3 Ti{sup 3+} + B{sup 3+}. Results of powder X-ray diffraction and transmission electron microscopy studies on samples prepared in the temperature range 1100 to 1300 deg C have been used to establish a model for boron incorporation. It is proposed that at the temperatures studied, local defects in boron doped rutile result from displacement of titanium atoms to adjacent interstitial sites coupled with occupation by boron of the triangular face of the vacated octahedral sites. This atomic grouping represents a small element of the TiBO{sub 3} (calcite-type) structure. Annealing at a lower temperature results in ordering of the local defects to form (101){sub r} planar intergrowths of rutile and calcite-type structures. 14 refs., 3 tabs., 8 figs.

  8. Phase synchronization on small-world networks with community structure

    International Nuclear Information System (INIS)

    Xiao-Hua, Wang; Li-Cheng, Jiao; Jian-She, Wu

    2010-01-01

    In this paper, we propose a simple model that can generate small-world network with community structure. The network is introduced as a tunable community organization with parameter r, which is directly measured by the ratio of inter- to intra-community connectivity, and a smaller r corresponds to a stronger community structure. The structure properties, including the degree distribution, clustering, the communication efficiency and modularity are also analysed for the network. In addition, by using the Kuramoto model, we investigated the phase synchronization on this network, and found that increasing the fuzziness of community structure will markedly enhance the network synchronizability; however, in an abnormal region (r ≤ 0.001), the network has even worse synchronizability than the case of isolated communities (r = 0). Furthermore, this network exhibits a remarkable synchronization behaviour in topological scales: the oscillators of high densely interconnected communities synchronize more easily, and more rapidly than the whole network. (general)

  9. Invariant molecular-dynamics approach to structural phase transitions

    International Nuclear Information System (INIS)

    Wentzcovitch, R.M.

    1991-01-01

    Two fictitious Lagrangians to be used in molecular-dynamics simulations with variable cell shape and suitable to study problems like structural phase transitions are introduced. Because they are invariant with respect to the choice of the simulation cell edges and eliminate symmetry breaking associated with the fictitious part of the dynamics, they improve the physical content of numerical simulations that up to now have been done by using Parrinello-Rahman dynamics

  10. Charge density wave instabilities and incommensurate structural phase transformations

    International Nuclear Information System (INIS)

    Axe, J.D.

    1977-10-01

    Incommensurate structural phase transformations involve the appearance of modulated atomic displacements with spatial periodicity unrelated to the fundamental periodicity of the basic lattice. In the case of some quasi one- or two-dimensional metals such transformations are the result of Fermi-surface instabilities that also produce electronic charge density waves (CDW's) and soft phonon modes due to metallic electron screening singularities. Incommensurate soft mode instabilities have been found in insulators as well. Recent neutron scattering studies of both the statics and dynamics of incommensurate structural instabilities will be reviewed

  11. Elucidating the vacuum structure of the Aoki phase

    International Nuclear Information System (INIS)

    Azcoiti, Vicente; Di Carlo, Giuseppe; Follana, Eduardo; Vaquero, Alejandro

    2013-01-01

    In this paper, we discuss the vacuum structure of QCD with two flavors of Wilson fermions, inside the Aoki phase. We provide numerical evidence, coming from HMC simulations in 4 4 , 6 4 and 8 4 lattices, supporting a vacuum structure for this model at strong coupling more complex than the one assumed in the standard wisdom, with new vacua where the expectation value of iψ ¯ γ 5 ψ can take non-zero values, and which can not be connected with the Aoki vacua by parity–flavor symmetry transformations

  12. Pressure-induced polymerization of P(CN){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Huiyang, E-mail: hgou@ciw.edu, E-mail: tstrobel@ciw.edu; Kim, Duck Young; Strobel, Timothy A., E-mail: hgou@ciw.edu, E-mail: tstrobel@ciw.edu [Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, NW, Washington, DC 20015 (United States); Yonke, Brendan L. [NRC Postdoctoral Associate, Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, DC 20375 (United States); Epshteyn, Albert [Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, DC 20375 (United States); Smith, Jesse S. [High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States)

    2015-05-21

    Motivated to explore the formation of novel extended carbon-nitrogen solids via well-defined molecular precursor pathways, we studied the chemical reactivity of highly pure phosphorous tricyanide, P(CN){sub 3}, under conditions of high pressure at room temperature. Raman and infrared (IR) spectroscopic measurements reveal a series of phase transformations below 10 GPa, and several low-frequency vibrational modes are reported for the first time. Synchrotron powder X-ray diffraction measurements taken during compression show that molecular P(CN){sub 3} is highly compressible, with a bulk modulus of 10.0 ± 0.3 GPa, and polymerizes into an amorphous solid above ∼10.0 GPa. Raman and IR spectra, together with first-principles molecular-dynamics simulations, show that the amorphization transition is associated with polymerization of the cyanide groups into CN bonds with predominantly sp{sup 2} character, similar to known carbon nitrides, resulting in a novel phosphorous carbon nitride (PCN) polymeric phase, which is recoverable to ambient pressure.

  13. Two-phase flow induced parametric vibrations in structural systems

    International Nuclear Information System (INIS)

    Hara, Fumio

    1980-01-01

    This paper is divided into two parts concerning piping systems and a nuclear fuel pin system. The significant experimental results concerning the random vibration induced in an L-shaped pipe by air-water two-phase flow and the theoretical analysis of the vibration are described in the first part. It was clarified for the first time that the parametric excitation due to the periodic changes of system mass, centrifugal force and Coriolis force was the mechanism of exciting the vibration. Moreover, the experimental and theoretical analyses of the mechanism of exciting vibration by air-water two-phase flow in a straight, horizontal pipe were carried out, and the first natural frequency of the piping system was strongly related to the dominant frequency of void signals. The experimental results on the vibration of a nuclear fuel pin model in parallel air-water two-phase flow are reported in the latter part. The relations between vibrational strain variance and two-phase flow velocity or pressure fluctuation, and the frequency characteristics of vibrational strain variance were obtained. The theoretical analysis of the dynamic interaction between air-water two-phase flow and a fuel pin structure, and the vibrational instability of fuel pins in alternate air and water slugs or in large bubble flow are also reported. (Kako, I.)

  14. Duality, phase structures, and dilemmas in symmetric quantum games

    International Nuclear Information System (INIS)

    Ichikawa, Tsubasa; Tsutsui, Izumi

    2007-01-01

    Symmetric quantum games for 2-player, 2-qubit strategies are analyzed in detail by using a scheme in which all pure states in the 2-qubit Hilbert space are utilized for strategies. We consider two different types of symmetric games exemplified by the familiar games, the Battle of the Sexes (BoS) and the Prisoners' Dilemma (PD). These two types of symmetric games are shown to be related by a duality map, which ensures that they share common phase structures with respect to the equilibria of the strategies. We find eight distinct phase structures possible for the symmetric games, which are determined by the classical payoff matrices from which the quantum games are defined. We also discuss the possibility of resolving the dilemmas in the classical BoS, PD, and the Stag Hunt (SH) game based on the phase structures obtained in the quantum games. It is observed that quantization cannot resolve the dilemma fully for the BoS, while it generically can for the PD and SH if appropriate correlations for the strategies of the players are provided

  15. Neutron diffraction study of the pressure-induced magnetic ordering in the spin gap system TlCuCl{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Oosawa, Akira; Osakabe, Toyotaka; Kakurai, Kazuhisa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fujisawa, Masashi [Tokyo Inst. of Technology, Dept. of Physics, Tokyo (Japan); Tanaka, Hidekazu [Tokyo Inst. of Technolgy, Research Center for Low Temperature Physics, Tokyo (Japan)

    2003-05-01

    Neutron elastic scattering measurements have been performed under a hydrostatic pressure in order to investigate the spin structure of the pressure-induced magnetic ordering in the spin gap system TlCuCl{sub 3}. Below the ordering temperature T{sub N} = 16.9 K for the hydrostatic pressure P = 1.48 GPa, magnetic Bragg reflections were observed at reciprocal lattice points Q = (h, 0, l) with integer h and odd l, which are equivalent to those points with the lowest magnetic excitation energy at ambient pressure. This indicates that the spin gap close due to the applied pressure. The spin structure of the pressure-induced magnetic ordered state for P = 1.48 GPa was determined. (author)

  16. Neutron diffraction study of the pressure-induced magnetic ordering in the spin gap system TlCuCl sub 3

    CERN Document Server

    Oosawa, A; Kakurai, K; Fujisawa, M; Tanaka, H

    2003-01-01

    Neutron elastic scattering measurements have been performed under a hydrostatic pressure in order to investigate the spin structure of the pressure-induced magnetic ordering in the spin gap system TlCuCl sub 3. Below the ordering temperature T sub N = 16.9 K for the hydrostatic pressure P = 1.48 GPa, magnetic Bragg reflections were observed at reciprocal lattice points Q = (h, 0, l) with integer h and odd l, which are equivalent to those points with the lowest magnetic excitation energy at ambient pressure. This indicates that the spin gap close due to the applied pressure. The spin structure of the pressure-induced magnetic ordered state for P = 1.48 GPa was determined. (author)

  17. Pressure-induced americium valence fluctuations revealed by electrical resistivity

    Czech Academy of Sciences Publication Activity Database

    Kolomiets, A. V.; Griveau, J.C.; Heathman, S.; Shick, Alexander; Wastin, F.; Faure, P.; Klosek, V.; Genestier, C.; Baclet, N.; Havela, L.

    2008-01-01

    Roč. 82, č. 5 (2008), 57007/1-57007/5 ISSN 0295-5075 R&D Projects: GA MŠk OC 144; GA ČR GA202/07/0644 Grant - others:EU(XE) RITA -CT-2006-026176 Institutional research plan: CEZ:AV0Z10100520 Keywords : electrical conductivity * strong electron interactions * electronic structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.203, year: 2008

  18. ITER vacuum vessel structural analysis completion during manufacturing phase

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.-M., E-mail: jean-marc.martinez@live.fr [ITER Organization, Route Vinon sur Verdon, CS 90046, 13067, St. Paul lez Durance, Cedex (France); Alekseev, A.; Sborchia, C.; Choi, C.H.; Utin, Y.; Jun, C.H.; Terasawa, A.; Popova, E.; Xiang, B.; Sannazaro, G.; Lee, A.; Martin, A.; Teissier, P.; Sabourin, F. [ITER Organization, Route Vinon sur Verdon, CS 90046, 13067, St. Paul lez Durance, Cedex (France); Caixas, J.; Fernandez, E.; Zarzalejos, J.M. [F4E, c/Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019, Barcelona (Spain); Kim, H.-S.; Kim, Y.G. [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Privalova, E. [NTC “Sintez”, Efremov Inst., 189631 Metallostroy, St. Petersburg (Russian Federation); and others

    2016-11-01

    Highlights: • ITER Vacuum Vessel (VV) is a part of the first barrier to confine the plasma. • A Nuclear Pressure Equipment necessitates Agreed Notified Body to assure design, fabrication, and conformance testing and quality assurance. • Some supplementary RCC-MR margin targets have been considered to guarantee considerable structural margins in areas not inspected in operation. • Many manufacturing deviation requests (MDR) and project change requests (PCR) impose to re-evaluate the structural margin. • Several structural analyses were performed with global and local models to guarantee the structural integrity of the whole ITER Vacuum Vessel. - Abstract: Some years ago, analyses were performed by ITER Organization Central Team (IO-CT) to verify the structural integrity of the ITER vacuum vessel baseline design fixed in 2010 and classified as a Protection Important Component (PIC). The manufacturing phase leads the ITER Organization domestic agencies (IO-DA) and their contracted manufacturers to propose detailed design improvements to optimize the manufacturing or inspection process. These design and quality inspection changes can affect the structural margins with regards to the Codes&Standards and thus oblige to evaluate one more time the modified areas. This paper proposes an overview of the additional analyses already performed to guarantee the structural integrity of the manufacturing designs. In this way, CT and DAs have been strongly involved to keep the considerable margins obtained previously which were used to fix reasonable compensatory measures for the lack of In Service Inspections of a Nuclear Pressure Equipment (NPE).

  19. ITER vacuum vessel structural analysis completion during manufacturing phase

    International Nuclear Information System (INIS)

    Martinez, J.-M.; Alekseev, A.; Sborchia, C.; Choi, C.H.; Utin, Y.; Jun, C.H.; Terasawa, A.; Popova, E.; Xiang, B.; Sannazaro, G.; Lee, A.; Martin, A.; Teissier, P.; Sabourin, F.; Caixas, J.; Fernandez, E.; Zarzalejos, J.M.; Kim, H.-S.; Kim, Y.G.; Privalova, E.

    2016-01-01

    Highlights: • ITER Vacuum Vessel (VV) is a part of the first barrier to confine the plasma. • A Nuclear Pressure Equipment necessitates Agreed Notified Body to assure design, fabrication, and conformance testing and quality assurance. • Some supplementary RCC-MR margin targets have been considered to guarantee considerable structural margins in areas not inspected in operation. • Many manufacturing deviation requests (MDR) and project change requests (PCR) impose to re-evaluate the structural margin. • Several structural analyses were performed with global and local models to guarantee the structural integrity of the whole ITER Vacuum Vessel. - Abstract: Some years ago, analyses were performed by ITER Organization Central Team (IO-CT) to verify the structural integrity of the ITER vacuum vessel baseline design fixed in 2010 and classified as a Protection Important Component (PIC). The manufacturing phase leads the ITER Organization domestic agencies (IO-DA) and their contracted manufacturers to propose detailed design improvements to optimize the manufacturing or inspection process. These design and quality inspection changes can affect the structural margins with regards to the Codes&Standards and thus oblige to evaluate one more time the modified areas. This paper proposes an overview of the additional analyses already performed to guarantee the structural integrity of the manufacturing designs. In this way, CT and DAs have been strongly involved to keep the considerable margins obtained previously which were used to fix reasonable compensatory measures for the lack of In Service Inspections of a Nuclear Pressure Equipment (NPE).

  20. Nanocrystalline Fe-Pt alloys. Phase transformations, structure and magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, J.V.

    2006-12-21

    This work has been devoted to the study of phase transformations involving chemical ordering and magnetic properties evolution in bulk Fe-Pt alloys composed of nanometersized grains. Nanocrystalline Fe{sub 100-x}Pt{sub x} (x=40-60) alloys have been prepared by mechanical ball milling of elemental Fe and Pt powders at liquid nitrogen temperature. The as-milled Fe-Pt alloys consist of {proportional_to} 100 {mu}m sized particles constituted by randomly oriented grains having an average size in the range of 10-40 nm. Depending on the milling time, three major microstructure types have been obtained: samples with a multilayer-type structure of Fe and Pt with a thickness of 20-300 nm and a very thin (several nanometers) A1 layer at their interfaces (2 h milled), an intermediate structure, consisting of finer lamellae of Fe and Pt (below approximately 100 nm) with the A1 layer thickness reaching several tens of nanometers (4 h milled) and alloys containing a homogeneous A1 phase (7 h milled). Subsequent heat treatment at elevated temperatures is required for the formation of the L1{sub 0} FePt phase. The ordering develops via so-called combined solid state reactions. It is accompanied by grain growth and thermally assisted removal of defects introduced by milling and proceeds rapidly at moderate temperatures by nucleation and growth of the ordered phases with a high degree of the long-range order. In a two-particle interaction model elaborated in the present work, the existence of hysteresis in recoil loops has been shown to arise from insufficient coupling between the low- and the high-anisotropy particles. The model reveals the main features of magnetisation reversal processes observed experimentally in exchange-coupled systems. Neutron diffraction has been used for the investigation of the magnetic structure of ordered and partially ordered nanocrystalline Fe-Pt alloys. (orig.)

  1. An Overview of 2014 SBIR Phase I and Phase II Materials Structures for Extreme Environments

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Materials and Structures for Extreme Environments. The technologies cover a wide spectrum of applications such as high temperature environmental barrier coating systems, deployable space structures, solid oxide fuel cells, and self-lubricating hard coatings for extreme temperatures. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  2. Phase domain structures in cylindrical magnets under conditions of a first-order magnetic phase transition

    International Nuclear Information System (INIS)

    Dzhezherya, Yu.I.; Klymuk, O.S.

    2011-01-01

    The magnetic and resonance properties of cylindrical magnets at first-order phase transition from paramagnetic to ferromagnetic state were theoretically studied. It has been shown that in the external magnetic field directed perpendicularly to the rotation axis, formation of a specific domain structure of paramagnetic and ferromagnetic layers can be energetically favorable. The parameters of cylindrical phase domains as well as their dependences on temperature, magnetic field and material characteristics have been calculated. Peculiarities of the magnetic resonance spectra appearing as a result of the phase domain formation have been considered. Dependence of the resonance field of the system of ferromagnetic domains on magnetization and temperature has been obtained. - Highlights: → Parameters of the equilibrium system of cylindrical phase domains are calculated. → The range of fields for PM and FM phases coexistence is found. → FMR field of the disk domains is found to be lower than that of the PMR field.→ The resonance field increases with the decrease of temperature lower than T || .

  3. Structural phase transitions in boron carbide under stress

    International Nuclear Information System (INIS)

    Korotaev, P; Pokatashkin, P; Yanilkin, A

    2016-01-01

    Structural transitions in boron carbide B 4 C under stress were studied by means of first-principles molecular dynamics in the framework of density functional theory. The behavior depends strongly on degree of non-hydrostatic stress. Under hydrostatic stress continuous bending of the three-atom C–B–C chain was observed up to 70 GPa. The presence of non-hydrostatic stress activates abrupt reversible chain bending, which is displacement of the central boron atom in the chain with the formation of weak bonds between this atom and atoms in the nearby icosahedra. Such structural change can describe a possible reversible phase transition in dynamical loading experiments. High non-hydrostatic stress achieved in uniaxial loading leads to disordering of the initial structure. The formation of carbon chains is observed as one possible transition route. (paper)

  4. High-Pressure-Induced Comminution and Recrystallization of CH3 NH3 PbBr3 Nanocrystals as Large Thin Nanoplates.

    Science.gov (United States)

    Yin, Tingting; Fang, Yanan; Chong, Wee Kiang; Ming, Koh Teck; Jiang, Shaojie; Li, Xianglin; Kuo, Jer-Lai; Fang, Jiye; Sum, Tze Chien; White, Timothy J; Yan, Jiaxu; Shen, Ze Xiang

    2018-01-01

    High pressure (HP) can drive the direct sintering of nanoparticle assemblies for Ag/Au, CdSe/PbS nanocrystals (NCs). Instead of direct sintering for the conventional nanocrystals, this study experimentally observes for the first time high-pressure-induced comminution and recrystallization of organic-inorganic hybrid perovskite nanocrystals into highly luminescent nanoplates with a shorter carrier lifetime. Such novel pressure response is attributed to the unique structural nature of hybrid perovskites under high pressure: during the drastic cubic-orthorhombic structural transformation at ≈2 GPa, (301) the crystal plane fully occupied by organic molecules possesses a higher surface energy, triggering the comminution of nanocrystals into nanoslices along such crystal plane. Beyond bulk perovskites, in which pressure-induced modifications on crystal structures and functional properties will disappear after pressure release, the pressure-formed variants, i.e., large (≈100 nm) and thin (perovskite nanoplates, are retained and these exhibit simultaneous photoluminescence emission enhancing (a 15-fold enhancement in the photoluminescence) and carrier lifetime shortening (from ≈18.3 ± 0.8 to ≈7.6 ± 0.5 ns) after releasing of pressure from 11 GPa. This pressure-induced comminution of hybrid perovskite NCs and a subsequent amorphization-recrystallization treatment offer the possibilities of engineering the advanced hybrid perovskites with specific properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Analysis of Lipoplex Structure and Lipid Phase Changes

    Energy Technology Data Exchange (ETDEWEB)

    Koynova, Rumiana

    2012-07-18

    Efficient delivery of genetic material to cells is needed for tasks of utmost importance in the laboratory and clinic, such as gene transfection and gene silencing. Synthetic cationic lipids can be used as delivery vehicles for nucleic acids and are now considered the most promising nonviral gene carriers. They form complexes (lipoplexes) with the polyanionic nucleic acids. A critical obstacle for clinical application of the lipid-mediated DNA delivery (lipofection) is its unsatisfactory efficiency for many cell types. Understanding the mechanism of lipid-mediated DNA delivery is essential for their successful application, as well as for a rational design and synthesis of novel cationic lipoid compounds for enhanced gene delivery. A viewpoint now emerging is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids. In particular, recent studies showed that the phase evolution of lipoplex lipids upon interaction and mixing with membrane lipids appears to be decisive for transfection success: specifically, lamellar lipoplex formulations, which were readily susceptible to undergoing lamellar-nonlamellar phase transition upon mixing with cellular lipids and were found rather consistently associated with superior transfection potency, presumably as a result of facilitated DNA release. Thus, understanding the lipoplex structure and the phase changes upon interacting with membrane lipids is important for the successful application of the cationic lipids as gene carriers.

  6. Multipodal Structure and Phase Transitions in Large Constrained Graphs

    Science.gov (United States)

    Kenyon, Richard; Radin, Charles; Ren, Kui; Sadun, Lorenzo

    2017-07-01

    We study the asymptotics of large, simple, labeled graphs constrained by the densities of two subgraphs. It was recently conjectured that for all feasible values of the densities most such graphs have a simple structure. Here we prove this in the special case where the densities are those of edges and of k-star subgraphs, k≥2 fixed. We prove that under such constraints graphs are "multipodal": asymptotically in the number of vertices there is a partition of the vertices into M < ∞ subsets V_1, V_2, \\ldots , V_M, and a set of well-defined probabilities g_{ij} of an edge between any v_i \\in V_i and v_j \\in V_j. For 2≤ k≤ 30 we determine the phase space: the combinations of edge and k-star densities achievable asymptotically. For these models there are special points on the boundary of the phase space with nonunique asymptotic (graphon) structure; for the 2-star model we prove that the nonuniqueness extends to entropy maximizers in the interior of the phase space.

  7. Phase structure of NJL model with weak renormalization group

    Science.gov (United States)

    Aoki, Ken-Ichi; Kumamoto, Shin-Ichiro; Yamada, Masatoshi

    2018-06-01

    We analyze the chiral phase structure of the Nambu-Jona-Lasinio model at finite temperature and density by using the functional renormalization group (FRG). The renormalization group (RG) equation for the fermionic effective potential V (σ ; t) is given as a partial differential equation, where σ : = ψ bar ψ and t is a dimensionless RG scale. When the dynamical chiral symmetry breaking (DχSB) occurs at a certain scale tc, V (σ ; t) has singularities originated from the phase transitions, and then one cannot follow RG flows after tc. In this study, we introduce the weak solution method to the RG equation in order to follow the RG flows after the DχSB and to evaluate the dynamical mass and the chiral condensate in low energy scales. It is shown that the weak solution of the RG equation correctly captures vacuum structures and critical phenomena within the pure fermionic system. We show the chiral phase diagram on temperature, chemical potential and the four-Fermi coupling constant.

  8. Pressure induced increase of the exciton phonon interaction in ZnO/(ZnMg)O quantum wells

    International Nuclear Information System (INIS)

    Jarosz, D.; Suchocki, A.; Kozanecki, A.; Teisseyre, H.; Kamińska, A.

    2016-01-01

    It is a well-established experimental fact that exciton-phonon coupling is very efficient in ZnO. The intensities of the phonon-replicas in ZnO/(ZnMg)O quantum structures strongly depend on the internal electric field. We performed high-pressure measurements on the single ZnO/(ZnMg)O quantum well. We observed a strong increase of the intensity of the phonon-replicas relative to the zero phonon line. In our opinion this effect is related to pressure induced increase of the strain in quantum structure. As a consequence, an increase of the piezoelectric component of the electric field is observed which leads to an increase of the intensity of the phonon-replicas.

  9. Osmotic pressure induced tensile forces in tendon collagen.

    Science.gov (United States)

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J; Fratzl, Peter

    2015-01-22

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.

  10. Interfacial structures in downward two-phase bubbly flow

    International Nuclear Information System (INIS)

    Paranjape, S.S.; Kim, S.; Ishii, M.; Kelly, J.

    2003-01-01

    Downward two-phase flow was studied considering its significance in view of Light Water Reactor Accidents (LWR) such as Loss of Heat Sink (LOHS) by feed water loss or secondary pipe break. The flow studied, was an adiabatic, air-water, co-current, vertically downward two-phase flow. The experimental test sections had internal hydraulic diameters of 25.4 mm and 50.8 mm. Flow regime map was obtained using the characteristic signals obtained from an impedance void meter, employing neural network based identification methodology to minimize the subjective judgment in determining the flow regimes. A four sensor conductivity probe was used to measure the local two phase flow parameters, which characterize the interfacial structures. The local time averaged two-phase flow parameters measured were: void fraction (α), interfacial area concentration (a i ), bubble velocity (v g ), and Sauter mean diameter (D Sm ). The flow conditions were from the bubbly flow regime. The local profiles of these parameters as well as their axial development revealed the nature of the interfacial structures and the bubble interaction mechanisms occurring in the flow. Furthermore, this study provided a good database for the development of the interfacial area transport equation, which dynamically models the changes in the interfacial area along the flow field. An interfacial area transport equation was developed for downward flow based on that developed for the upward flow, with certain modifications in the bubble interaction terms. The area averaged values of the interfacial area concentration were compared with those predicted by the interfacial area transport model. (author)

  11. Pressure-induced transition in the grain boundary of diamond

    Science.gov (United States)

    Chen, J.; Tang, L.; Ma, C.; Fan, D.; Yang, B.; Chu, Q.; Yang, W.

    2017-12-01

    Equation of state of diamond powder with different average grain sizes was investigated using in situ synchrotron x-ray diffraction and a diamond anvil cell (DAC). Comparison of compression curves was made for two samples with average grain size of 50nm and 100nm. The two specimens were pre-pressed into pellets and loaded in the sample pressure chamber of the DAC separately to minimized differences of possible systematic errors for the two samples. Neon gas was used as pressure medium and ruby spheres as pressure calibrant. Experiments were conducted at room temperature and high pressures up to 50 GPa. Fitting the compression data in the full pressure range into the third order Birch-Murnaghan equation of state yields bulk modulus (K) and its pressure derivative (K') of 392 GPa and 5.3 for 50nm sample and 398GPa and 4.5 for 100nm sample respectively. Using a simplified core-shell grain model, this result indicates that the grain boundary has an effective bulk modulus of 54 GPa. This value is similar to that observed for carbon nanotube[1] validating the recent theoretical diamond surface modeling[2]. Differential analysis of the compression cures demonstrates clear relative compressibility change at the pressure about 20 GPa. When fit the compression data below and above this pressure separately, the effect of grain size on bulk modulus reverses in the pressure range above 20 GPa. This observation indicates a possible transition of grain boundary structure, likely from sp2 hybridization at the surface[2] towards sp3like orbital structure which behaves alike the inner crystal. [1] Jie Tang, Lu-Chang Qin, Taizo Sasaki, Masako Yudasaka, Akiyuki Matsushita, and Sumio Iijima, Compressibility and Polygonization of Single-Walled Carbon Nanotubes under Hydrostatic Pressure, Physical Review Letters, 85(9), 1187-1198, 2000. [2] Shaohua Lu, Yanchao Wang, Hanyu Liu, Mao-sheng Miao, and Yanming Ma, Self-assembled ultrathin nanotubes on diamond (100) surface, Nature

  12. Intraocular Pressure Induced Retinal Changes Identified Using Synchrotron Infrared Microscopy.

    Directory of Open Access Journals (Sweden)

    Hsin-Hui Shen

    Full Text Available Infrared (IR spectroscopy has been used to quantify chemical and structural characteristics of a wide range of materials including biological tissues. In this study, we examined spatial changes in the chemical characteristics of rat retina in response to intraocular pressure (IOP elevation using synchrotron infrared microscopy (SIRM, a non-destructive imaging approach. IOP elevation was induced by placing a suture around the eye of anaesthetised rats. Retinal sections were collected onto transparent CaF2 slides 10 days following IOP elevation. Using combined SIRM spectra and chemical mapping approaches it was possible to quantify IOP induced changes in protein conformation and chemical distribution in various layers of the rat retina. We showed that 10 days following IOP elevation there was an increase in lipid and protein levels in the inner nuclear layer (INL and ganglion cell layer (GCL. IOP elevation also resulted in an increase in nucleic acids in the INL. Analysis of SIRM spectra revealed a shift in amide peaks to lower vibrational frequencies with a more prominent second shoulder, which is consistent with the presence of cell death in specific layers of the retina. These changes were more substantial in the INL and GCL layers compared with those occurring in the outer nuclear layer. These outcomes demonstrate the utility of SIRM to quantify the effect of IOP elevation on specific layers of the retina. Thus SIRM may be a useful tool for the study of localised tissue changes in glaucoma and other eye diseases.

  13. Structural stability, electronic structure and mechanical properties of actinide carbides AnC (An = U, Np)

    International Nuclear Information System (INIS)

    Manikandan, M.; Santhosh, M.; Rajeswarapalanichamy, R.

    2016-01-01

    Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of actinide carbides AnC (An=U, Np) for three different crystal structures, namely NaCl, CsCl and ZnS. Among the considered structures, NaCl structure is found to be the most stable structure for these carbides at normal pressure. A pressure induced structural phase transition from NaCl to ZnS is observed. The electronic structure reveals that these carbides are metals. The calculated elastic constants indicate that these carbides are mechanically stable at normal pressure.

  14. Ab initio molecular crystal structures, spectra, and phase diagrams.

    Science.gov (United States)

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  15. Phase-Field Simulations of Topological Structures and Topological Phase Transitions in Ferroelectric Oxide Heterostructures

    Science.gov (United States)

    Zijian Hong

    Ferroelectrics are materials that exhibit spontaneous electric polarization which can be switched between energy-degenerated states by external stimuli (e.g., mechanical force and electric field) that exceeds a critical value. They have wide potential applications in memories, capacitors, piezoelectric and pyroelectric sensors, and nanomechanical systems. Topological structures and topological phase transitions have been introduced to the condensed matter physics in the past few decades and have attracted broad attentions in various disciplines due to the rich physical insights and broad potential applications. Ferromagnetic topological structures such as vortex and skyrmion are known to be stabilized by the antisymmetric chiral interaction (e.g., Dzyaloshinskii-Moriya interaction). Without such interaction, ferroelectric topological structures (i.e., vortex, flux-closure, skyrmions, and merons) have been studied only recently with other designing strategies, such as reducing the dimension of the ferroelectrics. The overarching goal of this dissertation is to investigate the topological structures in ferroelectric oxide perovskites as well as the topological phase transitions under external applied forces. Pb(Zr,Ti)O3 (PZT) with morphotropic phase boundary is widely explored for high piezoelectric and dielectric properties. The domain structure of PZT tetragonal/rhombohedral (T/R) bilayer is investigated. Strong interfacial coupling is shown, with large polarization rotation to a lower symmetry phase near the T/R interface. Interlayer domain growth can also be captured, with T-domains in the R layer and R-domains in the T layer. For thin PZT bilayer with 5nm of T-layer and 20 nm of R-layer, the a1/a 2 twin domain structure is formed in the top T layer, which could be fully switched to R domains under applied bias. While a unique flux-closure pattern is observed both theoretically and experimentally in the thick bilayer film with 50 nm of thickness for both T and R

  16. Phase Structure and Dynamics of QCD–A Functional Perspective

    International Nuclear Information System (INIS)

    Strodthoff, Nils

    2017-01-01

    The understanding of the phase structure and the fundamental properties of QCD matter from its microscopic description requires appropriate first-principle approaches. Here I review the progress towards a quantitative first-principle continuum approach within the framework of the Functional Renormalization group established by the fQCD collaboration. I focus on recent quantitative results for quenched QCD and Yang-Mills in the vacuum before addressing the calculation of dynamical quantities such as spectral functions and transport coefficients in this framework. (paper)

  17. Positron annihilation and pressure-induced electronic s-d transition

    International Nuclear Information System (INIS)

    McMahan, A.K.; Skriver, H.L.

    1985-06-01

    The polycrystalline, partial annihilation rates for positrons in compressed cesium have been calculated using the linear muffin-tin orbitals method. These results suggest that the pressure-induced electronic s-d transition in Cs should be directly observable by momentum sensitive positron annihilation experiments

  18. Structural control of void formation in dual phase steels

    DEFF Research Database (Denmark)

    Azuma, Masafumi

    The objective of this study is to explore the void formation mechanisms and to clarify the influence of the hardness and structural parameters (volume fraction, size and morphology) of martensite particles on the void formation and mechanical properties in dual phase steels composed of ferrite...... and (iii) strain localization. The critical strain for void formation depends on hardness of the martensite, but is independent of the volume fraction, shape, size and distribution of the martensite. The strain partitioning between the martensite and ferrite depends on the volume fraction and hardness...... of the martensite accelerates the void formation in the martensite by enlarging the size of voids both in the martensite and ferrite. It is suggested that controlling the hardness and structural parameters associated with the martensite particles such as morphology, size and volume fraction are the essential...

  19. Slow and fast light in SOA-EA structures for phased-array antennas

    DEFF Research Database (Denmark)

    Sales, S.; Öhman, Filip; Bermejo, A.

    We present an SOA-EA structure for controlling the phase and amplitude of optically fed phased-array antennas. Phase shifts of 40 degrees are obtained through slow and fast light effects by changing only the reverse voltage....

  20. Comprehensive Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 3. Relating Solution-Phase to Gas-Phase Structures.

    Science.gov (United States)

    Kondalaji, Samaneh Ghassabi; Khakinejad, Mahdiar; Valentine, Stephen J

    2018-06-01

    Molecular dynamics (MD) simulations have been utilized to study peptide ion conformer establishment during the electrospray process. An explicit water model is used for nanodroplets containing a model peptide and hydronium ions. Simulations are conducted at 300 K for two different peptide ion charge configurations and for droplets containing varying numbers of hydronium ions. For all conditions, modeling has been performed until production of the gas-phase ions and the resultant conformers have been compared to proposed gas-phase structures. The latter species were obtained from previous studies in which in silico candidate structures were filtered according to ion mobility and hydrogen-deuterium exchange (HDX) reactivity matches. Results from the present study present three key findings namely (1) the evidence from ion production modeling supports previous structure refinement studies based on mobility and HDX reactivity matching, (2) the modeling of the electrospray process is significantly improved by utilizing initial droplets existing below but close to the calculated Rayleigh limit, and (3) peptide ions in the nanodroplets sample significantly different conformers than those in the bulk solution due to altered physicochemical properties of the solvent. Graphical Abstract ᅟ.

  1. [Fungal community structure in phase II composting of Volvariella volvacea].

    Science.gov (United States)

    Chen, Changqing; Li, Tong; Jiang, Yun; Li, Yu

    2014-12-04

    To understand the fungal community succession during the phase II of Volvariella volvacea compost and clarify the predominant fungi in different fermentation stages, to monitor the dynamic compost at the molecular level accurately and quickly, and reveal the mechanism. The 18S rDNA-denaturing gradient gel electrophoresis (DGGE) and sequencing methods were used to analyze the fungal community structure during the course of compost. The DGGE profile shows that there were differences in the diversity of fungal community with the fermentation progress. The diversity was higher in the stages of high temperature. And the dynamic changes of predominant community and relative intensity was observed. Among the 20 predominant clone strains, 9 were unknown eukaryote and fungi, the others were Eurotiales, Aspergillus sp., Melanocarpus albomyces, Colletotrichum sp., Rhizomucor sp., Verticillium sp., Penicillium commune, Microascus trigonosporus and Trichosporon lactis. The 14 clone strains were detected in the stages of high and durative temperature. The fungal community structure and predominant community have taken dynamic succession during the phase II of Volvariella volvacea compost.

  2. Structural phase transitions and superconductivity in lanthanum copper oxides

    International Nuclear Information System (INIS)

    Crawford, M.K.; Harlow, R.L.; McCarron, E.M.

    1996-01-01

    Despite the enormous effort expended over the past ten years to determine the mechanism underlying high temperature superconductivity in cuprates there is still no consensus on the physical origin of this fascinating phenomenon. This is a consequence of a number of factors, among which are the intrinsic difficulties in understanding the strong electron correlations in the copper oxides, determining the roles played by antiferromagnetic interactions and low dimensionality, analyzing the complex phonon dispersion relationships, and characterizing the phase diagrams which are functions of the physical parameters of temperature and pressure, as well as the chemical parameters of stoichiometry and hole concentration. In addition to all of these intrinsic difficulties, extrinsic materials issues such as sample quality and homogeneity present additional complications. Within the field of high temperature superconductivity there exists a subfield centered around the material originally reported to exhibit high temperature superconductivity by Bednorz and Mueller, Ba doped La 2 CuO 4 . This is structurally the simplest cuprate superconductor. The authors report on studies of phase differences observed between such base superconductors doped with Ba or Sr. What these studies have revealed is a fascinating interplay of structural, magnetic and superconducting properties which is unique in the field of high temperature superconductivity and is summarized in this paper

  3. Pressure induced B3 → B1 phase transition in ZrN

    International Nuclear Information System (INIS)

    Srivastava, Anurag; Chauhan, Mamta

    2011-01-01

    Zirconium nitride belongs to a large community of high-melting transition d-metal nitrides, which possess an unusual combination of thermo mechanical properties like an increased mechanical strength and a high melting temperature with intriguing electromagnetic and thermal emission characteristics and are of great scientific and technological interest

  4. X-ray diffraction study on pressure-induced phase transformation in nanocrystalline GaAs

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Olsen, J. S.; Gerward, Leif

    2002-01-01

    We have shown that the onset and transition pressures of the GaAs I --> II transition are 17 GPa and 20 GPa, respectively, for both bulk and nanophase material. The observed gradual change in resistivity of nanophase GaAs,at the semiconductor-to-metal transition is explained by the two-component ......We have shown that the onset and transition pressures of the GaAs I --> II transition are 17 GPa and 20 GPa, respectively, for both bulk and nanophase material. The observed gradual change in resistivity of nanophase GaAs,at the semiconductor-to-metal transition is explained by the two...

  5. Steering Charge Kinetics of Tin Niobate Photocatalysts: Key Roles of Phase Structure and Electronic Structure.

    Science.gov (United States)

    Huang, Shushu; Wang, Chunyan; Sun, Hao; Wang, Xiaojing; Su, Yiguo

    2018-05-23

    Tin niobate photocatalysts with the phase structures of froodite (SnNb 2 O 6 ) and pyrochlore (Sn 2 Nb 2 O 7 ) were obtained by a facile solvothermal method in order to explore the impact of phase structure and electronic structure on the charge kinetics and photocatalytic performance. By employing tin niobate as a model compound, the effects of phase structure over electronic structure, photocatalytic activity toward methyl orange solution and hydrogen evolution were systematically investigated. It is found that the variation of phase structure from SnNb 2 O 6 to Sn 2 Nb 2 O 7 accompanied with modulation of particle size and band edge potentials that has great consequences on photocatalytic performance. In combination with the electrochemical impedance spectroscopy (EIS), transient photocurrent responses, transient absorption spectroscopy (TAS), and the analysis of the charge-carrier dynamics suggested that variation of electronic structure has great impacts on the charge separation and transfer rate of tin niobate photocatalysts and the subsequent photocatalytic performance. Moreover, the results of the X-ray photoelectron spectroscopy (XPS) indicated that the existent of Sn 4+ species in Sn 2 Nb 2 O 7 could result in a decrease in photocatalytic activity. Photocatalytic test demonstrated that the SnNb 2 O 6 (froodite) catalyst possesses a higher photocatalytic activity toward MO degradation and H 2 evolution compared with the sample of Sn 2 Nb 2 O 7 (pyrochlore). On the basis of spin resonance measurement and trapping experiment, it is expected that photogenerated holes, O 2 -• , and OH • active species dominate the photodegradation of methyl orange.

  6. Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing.

    Science.gov (United States)

    Terwilliger, Thomas C; Bunkóczi, Gábor; Hung, Li Wei; Zwart, Peter H; Smith, Janet L; Akey, David L; Adams, Paul D

    2016-03-01

    A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. A simple theoretical framework for describing measurements of anomalous differences and the resulting useful anomalous correlation and anomalous signal in a SAD experiment is presented. Here, the useful anomalous correlation is defined as the correlation of anomalous differences with ideal anomalous differences from the anomalous substructure. The useful anomalous correlation reflects the accuracy of the data and the absence of minor sites. The useful anomalous correlation also reflects the information available for estimating crystallographic phases once the substructure has been determined. In contrast, the anomalous signal (the peak height in a model-phased anomalous difference Fourier at the coordinates of atoms in the anomalous substructure) reflects the information available about each site in the substructure and is related to the ability to find the substructure. A theoretical analysis shows that the expected value of the anomalous signal is the product of the useful anomalous correlation, the square root of the ratio of the number of unique reflections in the data set to the number of sites in the substructure, and a function that decreases with increasing values of the atomic displacement factor for the atoms in the substructure. This means that the ability to find the substructure in a SAD experiment is increased by high data quality and by a high ratio of reflections to sites in the substructure, and is decreased by high atomic displacement factors for the substructure.

  7. QUANTITATIVE ANALYSIS OF BANDED STRUCTURES IN DUAL-PHASE STEELS

    Directory of Open Access Journals (Sweden)

    Benoit Krebs

    2011-05-01

    Full Text Available Dual-Phase (DP steels are composed of martensite islands dispersed in a ductile ferrite matrix, which provides a good balance between strength and ductility. Current processing conditions (continuous casting followed by hot and cold rolling generate 'banded structures' i.e., irregular, parallel and alternating bands of ferrite and martensite, which are detrimental to mechanical properties and especially for in-use properties. We present an original and simple method to quantify the intensity and wavelength of these bands. This method, based on the analysis of covariance function of binary images, is firstly tested on model images. It is compared with ASTM E-1268 standard and appears to be more robust. Then it is applied on real DP steel microstructures and proves to be sufficiently sensitive to discriminate samples resulting from different thermo-mechanical routes.

  8. Phase structure of generalized Cross-Neveu models

    International Nuclear Information System (INIS)

    Klimenko, K.G.

    1987-01-01

    A phase structure of models with n spinor multiplets has been considered in the space-time of dimension D=2,3. In the case when n=2 and D=3 there may occur vaccums | +> violating chiral invariance, as well as |-> violating P,T symmetry of the model. At D,n=2 depending on the sign of the constant g 12 there also exist two different vacua. It is shown here, that at sufficiently small g 12 the description of the model with the help of the leading order of 1/N expansion is incorrect (there appear tachyons). The properties of Gross-Neveu model have been dealt with at D=3, n=1 and the temperature and chemical potential not equal to zero

  9. Electronic structure, phase transitions and diffusive properties of elemental plutonium

    Science.gov (United States)

    Setty, Arun; Cooper, B. R.

    2003-03-01

    We present a SIC-LDA-LMTO based study of the electronic structure of the delta, alpha and gamma phases of plutonium, and also of the alpha and gamma phases of elemental cerium. We find excellent agreement with the experimental densities and magnetic properties [1]. Furthermore, detailed studies of the computational densities of states for delta plutonium, and comparison with the experimental photoemission spectrum [2], provide evidence for the existence of an unusual fluctuating valence state. Results regarding the vacancy formation and self-diffusion in delta plutonium will be presented. Furthermore, a study of interface diffusion between plutonium and steel (technologically relevant in the storage of spent fuel) or other technologically relevant alloys will be included. Preliminary results regarding gallium stabilization of delta plutonium, and of plutonium alloys will be presented. [1] M. Dormeval et al., private communication (2001). [2] A. J. Arko, J. J. Joyce, L. Morales, J. Wills, and J. Lashley et. al., Phys. Rev. B, 62, 1773 (2000). [3] B. R. Cooper et al, Phil. Mag. B 79, 683 (1999); B.R. Cooper, Los Alamos Science 26, 106 (2000)); B.R. Cooper, A.K. Setty and D.L.Price, to be published.

  10. Electronic structure and phase equilibria in ternary substitutional alloys

    International Nuclear Information System (INIS)

    Traiber, A.J.S.; Allen, S.M.; Waterstrat, R.M.

    1996-01-01

    A reliable, consistent scheme to study phase equilibria in ternary substitutional alloys based on the tight-binding approximation is presented. With electronic parameters from linear muffin-tin orbital calculations, the computed density of states and band structures compare well with those from more accurate abinitio calculations. Disordered alloys are studied within the tight-binding coherent-potential approximation extended to alloys; energetics of ordered systems are obtained through effective pair interactions computed with the general perturbation method; and partially ordered alloys are studied with a novel simplification of the molecular coherent-potential approximation combined with the general perturbation method. The formalism is applied to bcc-based Zr-Ru-Pd alloys which are promising candidates for medical implant devices. Using energetics obtained from the above scheme, we apply the cluster- variation method to study phase equilibria for particular pseudo- binary alloys and show that results are consistent with observed behavior of electronic specific heat coefficient with composition for Zr 0.5 (Ru, Pd) 0.5

  11. Structure and single-phase regime of boron carbides

    International Nuclear Information System (INIS)

    Emin, D.

    1988-01-01

    The boron carbides are composed of twelve-atom icosahedral clusters which are linked by direct covalent bonds and through three-atom intericosahedral chains. The boron carbides are known to exist as a single phase with carbon concentrations from about 8 to about 20 at. %. This range of carbon concentrations is made possible by the substitution of boron and carbon atoms for one another within both the icosahedra and intericosahedral chains. The most widely accepted structural model for B 4 C (the boron carbide with nominally 20% carbon) has B/sub 11/C icosahedra with C-B-C intericosahedral chains. Here, the free energy of the boron carbides is studied as a function of carbon concentration by considering the effects of replacing carbon atoms within B 4 C with boron atoms. It is concluded that entropic and energetic considerations both favor the replacement of carbon atoms with boron atoms within the intericosahedral chains, C-B-C→C-B-B. Once the carbon concentration is so low that the vast majority of the chains are C-B-B chains, near B/sub 13/C 2 , subsequent substitutions of carbon atoms with boron atoms occur within the icosahedra, B/sub 11/C→B/sub 12/. Maxima of the free energy occur at the most ordered compositions: B 4 C,B/sub 13/C 2 ,B/sub 14/C. This structural model, determined by studying the free energy, agrees with that previously suggested by analysis of electronic and thermal transport data. These considerations also provide an explanation for the wide single-phase regime found for boron carbides

  12. Phase Space Dissimilarity Measures for Structural Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bubacz, Jacob A [ORNL; Chmielewski, Hana T [ORNL; Pape, Alexander E [ORNL; Depersio, Andrew J [ORNL; Hively, Lee M [ORNL; Abercrombie, Robert K [ORNL; Boone, Shane [ORNL

    2011-11-01

    A novel method for structural health monitoring (SHM), known as the Phase Space Dissimilarity Measures (PSDM) approach, is proposed and developed. The patented PSDM approach has already been developed and demonstrated for a variety of equipment and biomedical applications. Here, we investigate SHM of bridges via analysis of time serial accelerometer measurements. This work has four aspects. The first is algorithm scalability, which was found to scale linearly from one processing core to four cores. Second, the same data are analyzed to determine how the use of the PSDM approach affects sensor placement. We found that a relatively low-density placement sufficiently captures the dynamics of the structure. Third, the same data are analyzed by unique combinations of accelerometer axes (vertical, longitudinal, and lateral with respect to the bridge) to determine how the choice of axes affects the analysis. The vertical axis is found to provide satisfactory SHM data. Fourth, statistical methods were investigated to validate the PSDM approach for this application, yielding statistically significant results.

  13. Pressure induced superconductivity in the antiferromagnetic Dirac material BaMnBi2

    OpenAIRE

    Huimin Chen; Lin Li; Qinqing Zhu; Jinhu Yang; Bin Chen; Qianhui Mao; Jianhua Du; Hangdong Wang; Minghu Fang

    2017-01-01

    The so-called Dirac materials such as graphene and topological insulators are a new class of matter different from conventional metals and (doped) semiconductors. Superconductivity induced by doing or applying pressure in these systems may be unconventional, or host mysterious Majorana fermions. Here, we report a successfully observation of pressure-induced superconductivity in an antiferromagnetic Dirac material BaMnBi2 with T c of ~4?K at 2.6?GPa. Both the higher upper critical field, ? 0 H...

  14. Candesartan restores pressure-induced vasodilation and prevents skin pressure ulcer formation in diabetic mice.

    Science.gov (United States)

    Danigo, Aurore; Nasser, Mohamad; Bessaguet, Flavien; Javellaud, James; Oudart, Nicole; Achard, Jean-Michel; Demiot, Claire

    2015-02-18

    Angiotensin II type 1 receptor (AT1R) blockers have beneficial effects on neurovascular complications in diabetes and in organ's protection against ischemic episodes. The present study examines whether the AT1R blocker candesartan (1) has a beneficial effect on diabetes-induced alteration of pressure-induced vasodilation (PIV, a cutaneous physiological neurovascular mechanism which could delay the occurrence of tissue ischemia), and (2) could be protective against skin pressure ulcer formation. Male Swiss mice aged 5-6 weeks were randomly assigned to four experimental groups. In two groups, diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ, 200 mg.kg(-1)). After 6 weeks, control and STZ mice received either no treatment or candesartan (1 mg/kg-daily in drinking water) during 2 weeks. At the end of treatment (8 weeks of diabetes duration), C-fiber mediated nociception threshold, endothelium-dependent vasodilation and PIV were assessed. Pressure ulcers (PUs) were then induced by pinching the dorsal skin between two magnetic plates for three hours. Skin ulcer area development was assessed during three days, and histological examination of the depth of the skin lesion was performed at day three. After 8 weeks of diabetes, the skin neurovascular functions (C-fiber nociception, endothelium-dependent vasodilation and PIV) were markedly altered in STZ-treated mice, but were fully restored by treatment with candesartan. Whereas in diabetes mice exposure of the skin to pressure induced wide and deep necrotic lesions, treatment with candersartan restored their ability to resist to pressure-induced ulceration as efficiently as the control mice. Candesartan decreases the vulnerability to pressure-induced ulceration and restores skin neurovascular functions in mice with STZ-induced established diabetes.

  15. Evolution of the structure and the phase composition of a bainitic structural steel during plastic deformation

    Science.gov (United States)

    Nikitina, E. N.; Glezer, A. M.; Ivanov, Yu. F.; Aksenova, K. V.; Gromov, V. E.; Kazimirov, S. A.

    2017-10-01

    The evolution of the phase composition and the imperfect substructure of the 30Kh2N2MFA bainitic structural steel subjected to compressive deformation by 36% is quantitatively analyzed. It is shown that deformation is accompanied by an increase in the scalar dislocation density, a decrease in the longitudinal fragment sizes, an increase in the number of stress concentrators, the dissolution of cementite particles, and the transformation of retained austenite.

  16. Structural, electrical and luminescent characteristics of ultraviolet light emitting structures grown by hydride vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    A.Y. Polyakov

    2017-03-01

    Full Text Available Electrical and luminescent properties of near-UV light emitting diode structures (LEDs prepared by hydride vapor phase epitaxy (HVPE were studied. Variations in photoluminescence and electroluminescence efficiency observed for LEDs grown under nominally similar conditions could be attributed to the difference in the structural quality (dislocation density, density of dislocations agglomerates of the GaN active layers, to the difference in strain relaxation achieved by growth of AlGaN/AlGaN superlattice and to the presence of current leakage channels in current confining AlGaN layers of the double heterostructure.

  17. Structural property of platinum mononitride

    International Nuclear Information System (INIS)

    Yu, L.H.; Yao, K.L.; Liu, Z.L.; Zhang, Y.S.

    2007-01-01

    The structural stability and pressure-induced structural phase transition of platinum mononitride (PtN), as well as its electronic structure, were studied using the full potential augmented plane wave plus local orbitals method with the generalized gradient approximation (GGA) exchange-correlation functional. The total energy calculations show that the optimized wurtzite structure is most stable energetically among four structures: zinc blende, rocksalt, CsCl and wurtzite, which reveals the platinum mononitride PtN perhaps crystallizes in the wurtzite structure; the pressure of phase transition from wurtzite to rocksalt is predicted to be 41.4 GPa.The calculated bulk modulus of the wurtzite structure is 99.41 GPa, which is smaller than that of the other three structures and face-centered cubic Pt. The band structure calculations show wurtzite PtN is metallic

  18. Ternary systems Sr-{Ni,Cu}-Si: Phase equilibria and crystal structure of ternary phases

    International Nuclear Information System (INIS)

    Nasir, Navida; Melnychenko-Koblyuk, Nataliya; Grytsiv, Andriy; Rogl, Peter; Giester, Gerald; Wosik, Jaroslaw; Nauer, Gerhard E.

    2010-01-01

    Phase relations were established in the Sr-poor part of the ternary systems Sr-Ni-Si (900 deg. C) and Sr-Cu-Si (800 deg. C) by light optical microscopy, electron probe microanalysis and X-ray diffraction on as cast and annealed alloys. Two new ternary compounds SrNiSi 3 (BaNiSn 3 -type) and SrNi 9-x Si 4+x (own-type) were found in the Sr-Ni-Si system along with previously reported Sr(Ni x Si 1-x ) 2 (AlB 2 -type). The crystal structure of SrNi 9-x Si 4+x (own-type, x=2.7, a=0.78998(3), c=1.1337(2) nm; space group P4/nbm) was determined from X-ray single crystal counter to be a low symmetry derivative of the cubic, parent NaZn 13 -type. At higher Si-content X-ray Rietveld refinements reveal the formation of a vacant site (□) corresponding to a formula SrNi 5.5 Si 6.5 □ 1.0 . Phase equilibria in the Sr-Cu-Si system are characterized by the compounds SrCu 2-x Si 2+x (ThCr 2 Si 2 -type), Sr(Cu x Si 1-x ) 2 (AlB 2 -type), SrCu 9-x Si 4+x (0≤x≤1.0; CeNi 8.5 Si 4.5 -type) and SrCu 13-x Si x (4≤x≤1.8; NaZn 13 -type). The latter two structure types appear within a continuous solid solution. Neither a type-I nor a type-IX clathrate compound was encountered in the Sr-{Cu,Ni}-Si systems. Structural details are furthermore given for about 14 new ternary compounds from related alloy systems with Ba. - Graphical abstract: The crystal structure of SrNi 9-x Si 4+x (own-type, x=2.7, a=0.78998(3), c=1.1337(2) nm; space group P4/nbm) was determined from X-ray single crystal counter to be a low symmetry derivative of the cubic, parent NaZn 13 -type and is related to CeNi 8.5 Si 4.5 -type.

  19. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects

    Science.gov (United States)

    Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim

    2017-12-01

    This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.

  20. Autobiographical memory and structural brain changes in chronic phase TBI.

    Science.gov (United States)

    Esopenko, Carrie; Levine, Brian

    2017-04-01

    Traumatic brain injury (TBI) is associated with a range of neuropsychological deficits, including attention, memory, and executive functioning attributable to diffuse axonal injury (DAI) with accompanying focal frontal and temporal damage. Although the memory deficit of TBI has been well characterized with laboratory tests, comparatively little research has examined retrograde autobiographical memory (AM) at the chronic phase of TBI, with no prior studies of unselected patients drawn directly from hospital admissions for trauma. Moreover, little is known about the effects of TBI on canonical episodic and non-episodic (e.g., semantic) AM processes. In the present study, we assessed the effects of chronic-phase TBI on AM in patients with focal and DAI spanning the range of TBI severity. Patients and socioeconomic- and age-matched controls were administered the Autobiographical Interview (AI) (Levine, Svoboda, Hay, Winocur, & Moscovitch, 2002) a widely used method for dissociating episodic and semantic elements of AM, along with tests of neuropsychological and functional outcome. Measures of episodic and non-episodic AM were compared with regional brain volumes derived from high-resolution structural magnetic resonance imaging (MRI). Severe TBI (but not mild or moderate TBI) was associated with reduced recall of episodic autobiographical details and increased recall of non-episodic details relative to healthy comparison participants. There were no significant associations between AM performance and neuropsychological or functional outcome measures. Within the full TBI sample, autobiographical episodic memory was associated with reduced volume distributed across temporal, parietal, and prefrontal regions considered to be part of the brain's AM network. These results suggest that TBI-related distributed volume loss affects episodic autobiographical recollection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Crustal Viscosity Structure Estimated from Multi-Phase Mixing Theory

    Science.gov (United States)

    Shinevar, W. J.; Behn, M. D.; Hirth, G.

    2014-12-01

    Estimates of lower crustal viscosity are typically constrained by analyses of isostatic rebound, post seismic creep, and laboratory-derived flow laws for crustal rocks and minerals. Here we follow a new approach for calculating the viscosity structure of the lower continental crust. We use Perple_X to calculate mineral assemblages for different crustal compositions. Effective viscosity is then calculated using the rheologic mixing model of Huet et al. (2014) incorporating flow laws for each mineral phase. Calculations are performed along geotherms appropriate for the Basin and Range, Tibetan Plateau, Colorado Plateau, and the San Andreas Fault. To assess the role of crustal composition on viscosity, we examined two compositional gradients extending from an upper crust with ~67 wt% SiO2 to a lower crust that is either: (i) basaltic with ~53 wt% SiO2 (Rudnick and Gao, 2003), or (ii) andesitic with ~64% SiO2 (Hacker et al., 2011). In all cases, the middle continental crust has a viscosity that is 2-3 orders of magnitude greater than that inferred for wet quartz, a common proxy for mid-crustal viscosities. An andesitic lower crust results in viscosities of 1020-1021 Pa-s and 1021-1022 Pa-s for hotter and colder crustal geotherms, respectively. A mafic lower crust predicts viscosities that are an order of magnitude higher for the same geotherm. In all cases, the viscosity calculated from the mixing model decreases less with depth compared to single-phase estimates. Lastly, for anhydrous conditions in which alpha quartz is stable, we find that there is a strong correlation between Vp/Vs and bulk viscosity; in contrast, little to no correlation exists for hydrous conditions.

  2. High-pressure structural behaviour of Cu0.5Fe0.5Cr2S4

    DEFF Research Database (Denmark)

    Waśkowska, A.; Gerward, Leif; Staun Olsen, J.

    2013-01-01

    -pressure behaviour. We report here the first experimental and theoretical determinations of the bulk modulus: B0=106(2)GPa and B′'0=4.0 (experimental), and B0=96GPa and B′0=3.9 (calculated). Moreover, a pressure-induced structural and electronic phase transformation occurs at 14.5GPa accompanied by a volume collapse...

  3. A Quasi-Type-1 Phase-Locked Loop Structure

    DEFF Research Database (Denmark)

    Golestan, Saeed; Fernandez, Francisco Daniel Freijedo; Vidal, Ana

    2014-01-01

    The grid voltage phase and frequency are crucial information in control of most grid connected power electronic based equipment. Most often, a phase-locked loop (PLL) is employed for this purpose. A PLL is a closed-loop feedback control system that the phase of its output signal is related...... to the phase of its input signal. Arguably, the simplest PLL is a type-1 PLL. The type-1 PLLs are characterized by having only one integrator in their control loop and therefore having a high stability margin. However, they suffer from a serious drawback: they cannot achieve zero average steady-state phase...

  4. Pressure induced polymorphism in ammonium azide (NH{sub 4}N{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Medvedev, S.A., E-mail: s.medvedev@mpic.de [Max-Planck-Institute for Chemistry, Postfach 3060, D-55020 Mainz (Germany); Institute fuer Anorganische und Analytische Chemie, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Eremets, M.I. [Max-Planck-Institute for Chemistry, Postfach 3060, D-55020 Mainz (Germany); Evers, J.; Klapoetke, T.M. [Energetic Materials Research, Ludwig-Maximilian University Munich (LMU), Butenandtstrasse 5-13(D), D-81377 Munich (Germany); Palasyuk, T. [Max-Planck-Institute for Chemistry, Postfach 3060, D-55020 Mainz (Germany); Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Trojan, I.A. [Max-Planck-Institute for Chemistry, Postfach 3060, D-55020 Mainz (Germany)

    2011-07-28

    Graphical abstract: Polymorph phase transition is observed in NH{sub 4}N{sub 3} at {approx}3 GPa by pressure dependent Raman studies. The strength of hydrogen bond appears to be modified at the phase transition as illustrated by dependence of N-H stretching frequency on pressure shown on figure. Highlights: {yields} Ammonium azide (NH{sub 4}N{sub 3}) studied at high pressures by Raman spectroscopy. {yields} Phase transition is observed at pressure {approx}3 GPa. {yields} Strength of hydrogen bond appears to be modified at the phase transition. {yields} NH{sub 4}N{sub 3} remain in molecular form up to pressures above 50 GPa. - Abstract: Pressure-dependent Raman spectroscopy studies reveal polymorph phase transition in simple molecular ionic crystal NH{sub 4}N{sub 3} at pressure {approx}3 GPa unobserved by recent abinitio evolutionary structure searches. Hydrogen bonding is spectroscopically evident in both low- and high-pressure phases. The strength of hydrogen bond appears to be modified at the phase transition: in the low-pressure phase NH{sub 4}N{sub 3} behaves as system with very strong hydrogen bonding whereas changes of spectra with pressure in the high-pressure phase are indicative of weak or medium-strength hydrogen bonds. The high pressure phase is most likely thermodynamically stable at least up to pressure {approx}55 GPa contradicting the abinitio studies predicting transformation of NH{sub 4}N{sub 3} to nonmolecular hydronitrogen solid at 36 GPa.

  5. Structural Phase Transition Nomenclature, Report of an IUCr Working Group on Phase Transition Nomenclature

    NARCIS (Netherlands)

    Toleddano, J.C.; Glazer, A.M.; Hahn, Th.; Parthe, E.; Roth, R.S.; Berry, R.S.; Metselaar, R.; Abrahams, S.C.

    1998-01-01

    A compact and intuitive nomenclature is recommended for naming each phase formed by a given material in a sequence of phase transitions as a function of temperature and/or pressure. The most commonly used label for each phase in a sequence, such as [alpha], [beta], ..., I, II, ... etc., is included

  6. Engineered Alloy Structures by Friction Stir Reaction Processing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort examines the feasibility of an innovative surface modification technology incorporating friction stir reaction processing for producing...

  7. Sensitivity of Spores of Eight Bacillus Cereus Strains to Pressure-Induced Germination by Moderate Hydrostatic Pressure, Time and Temperature

    National Research Council Canada - National Science Library

    Kalchayanand, Norasak; Ray, Bibek; Dunne, C. P; Sikes, Anthony

    2005-01-01

    The spores of eight Bacillus cereus strains were pressurized at 138 to 483 MPa for 5 to 20 min at 25 to 70 C in order to determine the sensitive and the resistant strains to pressure-induced germination...

  8. Structural-Phase Transformations of CuZn Alloy Under Thermal-Impact Cycling

    Science.gov (United States)

    Potekaev, A. I.; Chaplygina, A. A.; Kulagina, V. V.; Chaplygin, P. A.; Starostenkov, M. D.; Grinkevich, L. S.

    2017-02-01

    Using the Monte Carlo method, special features of structural - phase transformations in β-brass are investigated during thermal impact using thermal cycling as an example (a number of successive order - disorder and disorder - order phase transitions in the course of several heating - cooling cycles). It is shown that a unique hysteresis is observed after every heating and cooling cycle, whose presence indicates irreversibility of the processes, which suggests a difference in the structural - phase states both in the heating and cooling stages. A conclusion is drawn that the structural - phase transformations in the heating and cooling stages occur within different temperature intervals, where the thermodynamic stimuli of one or the other structural - phase state are low. This is also demonstrated both in the plots of configurational energy, long- and short-range order parameter, atomic structure variations, and structural - phase state distributions. Simultaneously, there coexist ordered and disordered phases and a certain collection of superstructure domains. This implies the presence of low - stability states in the vicinity of the order - disorder phase transition. The results of investigations demonstrate that the structural - phase transitions within two successive heating and cooling cycles at the same temperature are different in both stages. These changes, though not revolutionary, occur in every cycle and decrease with the increasing cycle number. In fact, the system undergoes training with a tendency towards a certain sequence of structural - phase states.

  9. Seismic Safety Margins Research Program (Phase I). Project IV. Structural building response; Structural Building Response Review

    International Nuclear Information System (INIS)

    Healey, J.J.; Wu, S.T.; Murga, M.

    1980-02-01

    As part of the Phase I effort of the Seismic Safety Margins Research Program (SSMRP) being performed by the University of California Lawrence Livermore Laboratory for the US Nuclear Regulatory Commission, the basic objective of Subtask IV.1 (Structural Building Response Review) is to review and summarize current methods and data pertaining to seismic response calculations particularly as they relate to the objectives of the SSMRP. This material forms one component in the development of the overall computational methodology involving state of the art computations including explicit consideration of uncertainty and aimed at ultimately deriving estimates of the probability of radioactive releases due to seismic effects on nuclear power plant facilities

  10. Geometric structure and information change in phase transitions

    Science.gov (United States)

    Kim, Eun-jin; Hollerbach, Rainer

    2017-06-01

    We propose a toy model for a cyclic order-disorder transition and introduce a geometric methodology to understand stochastic processes involved in transitions. Specifically, our model consists of a pair of forward and backward processes (FPs and BPs) for the emergence and disappearance of a structure in a stochastic environment. We calculate time-dependent probability density functions (PDFs) and the information length L , which is the total number of different states that a system undergoes during the transition. Time-dependent PDFs during transient relaxation exhibit strikingly different behavior in FPs and BPs. In particular, FPs driven by instability undergo the broadening of the PDF with a large increase in fluctuations before the transition to the ordered state accompanied by narrowing the PDF width. During this stage, we identify an interesting geodesic solution accompanied by the self-regulation between the growth and nonlinear damping where the time scale τ of information change is constant in time, independent of the strength of the stochastic noise. In comparison, BPs are mainly driven by the macroscopic motion due to the movement of the PDF peak. The total information length L between initial and final states is much larger in BPs than in FPs, increasing linearly with the deviation γ of a control parameter from the critical state in BPs while increasing logarithmically with γ in FPs. L scales as |lnD | and D-1 /2 in FPs and BPs, respectively, where D measures the strength of the stochastic forcing. These differing scalings with γ and D suggest a great utility of L in capturing different underlying processes, specifically, diffusion vs advection in phase transition by geometry. We discuss physical origins of these scalings and comment on implications of our results for bistable systems undergoing repeated order-disorder transitions (e.g., fitness).

  11. Structural, electronic, superconducting and mechanical properties of ReC and TcC

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, M.; Priyanga, G. Sudha; Rajeswarapalanichamy, R., E-mail: rajeswarapalanichamy@gmail.com; Santhosh, M. [Department of Physics, N.M.S.S.V.N College, Madurai, Tamilnadu-625019 (India)

    2015-06-24

    The structural, electronic, superconducting and mechanical properties of ReC and TcC are investigated using density functional theory calculations. The lattice constants, bulk modulus, and the density of states are obtained. The calculated lattice parameters are in good agreement with the available results. The density of states reveals that ReC and TcC exhibit metallic behavior at ambient condition. A pressure-induced structural phase transition is observed in both materials.

  12. Pressure-induced transition-temperature reduction in ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yang Cuizhuo; Liu Yanguo; Sun Hongyu; Guo Defeng; Li Xiaohong; Li Wei; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao (China); Liu Baoting [College of Physics Science and Technology, Hebei University, 071002 Baoding (China)], E-mail: xyzh66@ysu.edu.cn

    2008-03-05

    The study of the structural transition in nanoscale materials is of particular interest for their potential applications. In the present study, we have observed a lower temperature T = 250 deg. C for the phase transition from the sphalerite structure to the wurtzite structure in ZnS nanoparticles under a pressure of 1 GPa, as compared to those, T = 400 and 1020 deg. C, for ZnS nanoparticles and bulk ZnS under normal pressure, respectively. The reduced transition temperature is attributed to the applied pressure leading to tight particle-particle contacts, which change the surface (or interfacial) environment of the nanoparticles and thus their surface (or interfacial) energy.

  13. Pressure-induced transition-temperature reduction in ZnS nanoparticles

    International Nuclear Information System (INIS)

    Yang Cuizhuo; Liu Yanguo; Sun Hongyu; Guo Defeng; Li Xiaohong; Li Wei; Zhang Xiangyi; Liu Baoting

    2008-01-01

    The study of the structural transition in nanoscale materials is of particular interest for their potential applications. In the present study, we have observed a lower temperature T = 250 deg. C for the phase transition from the sphalerite structure to the wurtzite structure in ZnS nanoparticles under a pressure of 1 GPa, as compared to those, T = 400 and 1020 deg. C, for ZnS nanoparticles and bulk ZnS under normal pressure, respectively. The reduced transition temperature is attributed to the applied pressure leading to tight particle-particle contacts, which change the surface (or interfacial) environment of the nanoparticles and thus their surface (or interfacial) energy

  14. Metal Matrix Composite Enchanced Aluminum Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed research pursues a path for reducing structural weight, increasing structural performance, and reducing fabrication cost while also minimizing...

  15. Metal Matrix Composite Enchanced Aluminum Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed research pursues a path for reducing structural weight, increasing structural performance, and reducing fabrication cost while also minimizing...

  16. Dynamics Assessment of Advanced Single-Phase PLL Structures

    DEFF Research Database (Denmark)

    Golestan, Saeed; Monfarad, Mohammad; Freijedo, Francisco D.

    2013-01-01

    Recently, several advanced phase locked loop (PLL) techniques have been proposed for single-phase applications. Among these, the Park-PLL, and the second order generalized integrator (SOGI) based PLL are very attractive, owing to their simple digital implementation, low computational burden...

  17. Structural evolution of calcite at high temperatures: Phase V unveiled

    Science.gov (United States)

    Ishizawa, Nobuo; Setoguchi, Hayato; Yanagisawa, Kazumichi

    2013-01-01

    The calcite form of calcium carbonate CaCO3 undergoes a reversible phase transition between Rc and Rm at ~1240 K under a CO2 atmosphere of ~0.4 MPa. The joint probability density function obtained from the single-crystal X-ray diffraction data revealed that the oxygen triangles of the CO3 group in the high temperature form (Phase V) do not sit still at specified positions in the space group Rm, but migrate along the undulated circular orbital about carbon. The present study also shows how the room temperature form (Phase I) develops into Phase V through an intermediate form (Phase IV) in the temperature range between ~985 K and ~1240 K. PMID:24084871

  18. Crystal structure of the commensurately modulated ζ phase of PAMC

    DEFF Research Database (Denmark)

    Harris, P.; Larsen, F.K.; Lebech, B.

    1994-01-01

    phase, indicating a 'lock-in' and phase shift between adjacent modulated layers. The modulation waves do not change much from the values of the epsilon phase, which confirms the lock-in of the modulation vector; only some components of the modulations of the propylammonium chains appear......The commensurately modulated zeta low-temperature phase of bis(propylammonium) tetrachloromanganate(II), [NH3(C3H7)]2MnCl4, has been determined at 8 K. a = 7.437 (5), b = 7.082 (5), c = 13.096 (8) Angstrom, alpha = 105.59 (1)degrees. Superspace group P2(1)/b(0 beta 0)(1) over bar s, with beta = 1...... to be significantly different, these chains appear to be responsible for the phase shift across the layers....

  19. Structural phase transition in monolayer MoTe2 driven by electrostatic doping

    Science.gov (United States)

    Wang, Ying; Xiao, Jun; Zhu, Hanyu; Li, Yao; Alsaid, Yousif; Fong, King Yan; Zhou, Yao; Wang, Siqi; Shi, Wu; Wang, Yuan; Zettl, Alex; Reed, Evan J.; Zhang, Xiang

    2017-10-01

    Monolayers of transition-metal dichalcogenides (TMDs) exhibit numerous crystal phases with distinct structures, symmetries and physical properties. Exploring the physics of transitions between these different structural phases in two dimensions may provide a means of switching material properties, with implications for potential applications. Structural phase transitions in TMDs have so far been induced by thermal or chemical means; purely electrostatic control over crystal phases through electrostatic doping was recently proposed as a theoretical possibility, but has not yet been realized. Here we report the experimental demonstration of an electrostatic-doping-driven phase transition between the hexagonal and monoclinic phases of monolayer molybdenum ditelluride (MoTe2). We find that the phase transition shows a hysteretic loop in Raman spectra, and can be reversed by increasing or decreasing the gate voltage. We also combine second-harmonic generation spectroscopy with polarization-resolved Raman spectroscopy to show that the induced monoclinic phase preserves the crystal orientation of the original hexagonal phase. Moreover, this structural phase transition occurs simultaneously across the whole sample. This electrostatic-doping control of structural phase transition opens up new possibilities for developing phase-change devices based on atomically thin membranes.

  20. Pressure-induced metal-insulator transition in spinel compound CuV2S4

    International Nuclear Information System (INIS)

    Okada, H.; Koyama, K.; Hedo, M.; Uwatoko, Y.; Watanabe, K.

    2008-01-01

    In order to investigate the pressure effect on electrical properties of CuV 2 S 4 , we performed the electrical resistivity measurements under high pressures up to 8 GPa for a high-quality polycrystalline sample. The charge density wave (CDW) transition temperatures increase with increasing pressure. The residual resistivity rapidly increases with increasing pressure over 4 GPa, and the temperature dependence of the electrical resistivity at 8 GPa exhibits a semiconducting behavior below about 150 K, indicating that a pressure-induced metal-insulator transition occurs in CuV 2 S 4 at 8 GPa

  1. Pressure-induced preferential growth of nanocrystals in amorphous Nd9Fe85B6

    International Nuclear Information System (INIS)

    Wu Wei; Li Wei; Sun Hongyu; Li Hui; Zhang Xiangyi; Li Xiaohong; Liu Baoting

    2008-01-01

    Control over the growth and crystallographic orientation of nanocrystals in amorphous alloys is of particular importance for the development of advanced nanocrystalline materials. In the present study, Nd 2 Fe 14 B nanocrystals with a strong crystallographic texture along the [410] direction have been produced in Nd-lean amorphous Nd 9 Fe 85 B 6 under a high pressure of 6 GPa at 923 K. This is attributed to the high pressure inducing the preferential growth of Nd 2 Fe 14 B nanocrystals in the alloy. The present study demonstrates the potential application of high-pressure technology in controlling nanocrystalline orientation in amorphous alloys

  2. Phase structure and critical properties of an abelian gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Sjur

    2001-12-01

    The main new results are presented in the form of three papers at the end of this thesis. The main topic is Monte-Carlo studies of the phase structure and critical properties of the phenomenological Ginzburg-Landau model, i.e. an abelian gauge theory. However, the first paper is totally different and deals with microscopic theory for lattice-fermions in a magnetic field. Paper I is about ''Fermion-pairing on a square lattice in extreme magnetic fields''. We consider the Cooper-problem on a two-dimensional, square lattice with a uniform, perpendicular magnetic field. Only rational flux fractions are considered. An extended (real-space) Hubbard model including nearest and next nearest neighbor interactions is transformed to ''k-space'', or more precisely, to the space of eigenfunctions of Harper's equation, which constitute basis functions of the magnetic translation group for the lattice. A BCS-like truncation of the interaction term is performed. Expanding the interactions in the basis functions of the irreducible representations of the point group C{sub 4{nu}} of the square lattice simplify calculations. The numerical results indicate enhanced binding compared to zero magnetic field, and thus re-entrant superconducting pairing at extreme magnetic fields, well beyond the point where the usual semi-classical treatment of the magnetic field breaks down. Paper II is about the ''Hausdorff dimension of critical fluctuations in abelian gauge theories''. Here we analyze the geometric properties of the line-like critical fluctuations (vortex loops) in the Ginzburg-Landau model in zero magnetic background field. By using a dual description, we obtain scaling relations between exponents of geometric arid thermodynamic nature. In particular we connect the anomalous scaling dimension {eta} of the dual matter field to the Hausdorff or fractal dimension D{sub H} of the critical fluctuations, in the original model

  3. [Phase transition in polymer blends and structure of ionomers and copolymers

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The main thrust of the program in the past 3 years are summarized: SAXS instrumentation development; structure and dynamics of macro- and supra-molecules, phase transitions in polymer blends and solutions, structure of ionomers, and fractals and anisotropic systems.

  4. Two-phase flow structure in large diameter pipes

    International Nuclear Information System (INIS)

    Smith, T.R.; Schlegel, J.P.; Hibiki, T.; Ishii, M.

    2012-01-01

    Highlights: ► Local profiles of various quantities measured in large diameter pipe. ► Database for interfacial area in large pipes extended to churn-turbulent flow. ► Flow regime map confirms previous models for flow regime transitions. ► Data will be useful in developing interfacial area transport models for large pipes. - Abstract: Flow in large pipes is important in a wide variety of applications. In the nuclear industry in particular, understanding of flow in large diameter pipes is essential in predicting the behavior of reactor systems. This is especially true of natural circulation Boiling Water Reactor (BWR) designs, where a large-diameter chimney above the core provides the gravity head to drive circulation of the coolant through the reactor. The behavior of such reactors during transients and during normal operation will be predicted using advanced thermal–hydraulics analysis codes utilizing the two-fluid model. Essential to accurate two-fluid model calculations is reliable and accurate computation of the interfacial transfer terms. These interfacial transfer terms can be expressed as the product of one term describing the potential driving the transfer and a second term describing the available surface area for transfer, or interfacial area concentration. Currently, the interfacial area is predicted using flow regime dependent empirical correlations; however the interfacial area concentration is best computed through the use of the one-dimensional interfacial area transport equation (IATE). To facilitate the development of IATE source and sink term models in large-diameter pipes a fundamental understanding of the structure of the two-phase flow is essential. This understanding is improved through measurement of the local void fraction, interfacial area concentration and gas velocity profiles in pipes with diameters of 0.102 m and 0.152 m under a wide variety of flow conditions. Additionally, flow regime identification has been performed to

  5. Bulk Nano-structured Materials for Turbomachinery Components, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort seeks to exploit some of the tremendous benefits that could be attained from a revolutionary new approach to grain refinement in bulk...

  6. A Study of Phase Composition and Structure of Alloys of the Al - Mg - Si - Fe System

    Science.gov (United States)

    Mailybaeva, A. D.; Zolotorevskii, V. S.; Smagulov, D. U.; Islamkulov, K. M.

    2017-03-01

    The Thermo-Calc software is used to compute the phase transformations occurring during cooling of alloys. Polythermal and isothermal sections of the phase diagram of the Al - Mg - Si - Fe system are plotted. The phase composition and the structure of aluminum alloys in cast condition and after a heat treatment are studied experimentally.

  7. The study of structural phase transitions and static properties using transition metal model pseudopotential (TMMP) for Ca and Sr

    Energy Technology Data Exchange (ETDEWEB)

    Rakhecha, Shalu, E-mail: shalurakhecha@yahoo.com; Vyas, P. R.; Gohel, V. B. [Department of Physics, School of Sciences, Gujarat University, Ahmedabad - 380009, Gujarat (India); Bhatt, N. K. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar - 388120, Gujarat (India)

    2016-05-06

    In the present communication, we have computed static and dynamic properties (binding energy-E, bulk modulus-B and second moment- <ω{sup 2}>) as well as first order pressure induced phase transition (FCC-BCC) using local form of pseudopotential for Calcium and Strontium. The form of pseudopotential used for the computation is directly extracted from Generalized Pseudopotential Theory (GPT) which contains three parameters (r{sub c}, r{sub d} and β). We have suggested a simple method using which pseudopotential is determined by single parameter (β). Our computed results for binding energy and bulk modulii are in excellent agreement with experimental findings and are better than other theoretical results. The present study confirms that s-d hybridization is accounted properly in the presently used pseudopotential and can be extended for the study of lattice mechanical properties of these metals.

  8. Light-pressure-induced nonlinear dispersion of a laser field interacting with an atomic gas

    International Nuclear Information System (INIS)

    Grimm, R.; Mlynek, J.

    1990-01-01

    We report on detailed studies of the effect of resonant light pressure on the optical response of an atomic gas to a single monochromatic laser field. In this very elementary situation of laser spectroscopy, the redistribution of atomic velocities that is induced by spontaneous light pressure leads to a novel contribution to the optical dispersion curve of the medium. This light-pressure-induced dispersion phenomenon displays a pronounced nonlinear dependence on the laser intensity. Moreover, for a given intensity, its strength is closely related to the laser beam diameter. As most important feature, this light-pressure-induced dispersion displays an even symmetry with respect to the optical detuning from line center. As a result, the total Doppler-broadened dispersion curve of the gas can become asymmetric, and a significant shift of the dispersion line center can occur. In addition to a detailed theoretical description of the phenomenon, we report on its experimental investigation on the λ=555.6 nm 1 S 0 - 3 P 1 transition in atomic ytterbium vapor with the use of frequency-modulation spectroscopy. The experimental findings are in good quantitative agreement with theoretical predictions

  9. Get phases from arsenic anomalous scattering: de novo SAD phasing of two protein structures crystallized in cacodylate buffer.

    Directory of Open Access Journals (Sweden)

    Xiang Liu

    Full Text Available The crystal structures of two proteins, a putative pyrazinamidase/nicotinamidase from the dental pathogen Streptococcus mutans (SmPncA and the human caspase-6 (Casp6, were solved by de novo arsenic single-wavelength anomalous diffraction (As-SAD phasing method. Arsenic (As, an uncommonly used element in SAD phasing, was covalently introduced into proteins by cacodylic acid, the buffering agent in the crystallization reservoirs. In SmPncA, the only cysteine was bound to dimethylarsinoyl, which is a pentavalent arsenic group (As (V. This arsenic atom and a protein-bound zinc atom both generated anomalous signals. The predominant contribution, however, was from the As anomalous signals, which were sufficient to phase the SmPncA structure alone. In Casp6, four cysteines were found to bind cacodyl, a trivalent arsenic group (As (III, in the presence of the reducing agent, dithiothreitol (DTT, and arsenic atoms were the only anomalous scatterers for SAD phasing. Analyses and discussion of these two As-SAD phasing examples and comparison of As with other traditional heavy atoms that generate anomalous signals, together with a few arsenic-based de novo phasing cases reported previously strongly suggest that As is an ideal anomalous scatterer for SAD phasing in protein crystallography.

  10. Heating- and pressure-induced transformations in amorphous and hexagonal ice: A computer simulation study using the TIP4P/2005 model

    Science.gov (United States)

    Engstler, Justin; Giovambattista, Nicolas

    2017-08-01

    We characterize the phase behavior of glassy water by performing extensive out-of-equilibrium molecular dynamics simulations using the TIP4P/2005 water model. Specifically, we study (i) the pressure-induced transformations between low-density (LDA) and high-density amorphous ice (HDA), (ii) the pressure-induced amorphization (PIA) of hexagonal ice (Ih), (iii) the heating-induced LDA-to-HDA transformation at high pressures, (iv) the heating-induced HDA-to-LDA transformation at low and negative pressures, (v) the glass transition temperatures of LDA and HDA as a function of pressure, and (vi) the limit of stability of LDA upon isobaric heating and isothermal decompression (at negative pressures). These transformations are studied systematically, over a wide range of temperatures and pressures, allowing us to construct a P-T phase diagram for glassy TIP4P/2005 water. Our results are in qualitative agreement with experimental observations and with the P-T phase diagram obtained for glassy ST2 water that exhibits a liquid-liquid phase transition and critical point. We also discuss the mechanism for PIA of ice Ih and show that this is a two-step process where first, the hydrogen-bond network (HBN) is distorted and then the HBN abruptly collapses. Remarkably, the collapse of the HB in ice Ih occurs when the average molecular orientations order, a measure of the tetrahedrality of the HBN, is of the same order as in LDA, suggesting a common mechanism for the LDA-to-HDA and Ih-to-HDA transformations.

  11. High Temperature Structures With Inherent Protection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The hot structures for current space vehicles require an atmospheric entry thermal protection system. Reusable hot structures that can function without requiring any...

  12. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures, such as b......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  13. Mechanical and structural behaviour of uranium α, β, γ phases during plastic deformation

    International Nuclear Information System (INIS)

    Prunier, C.; Collot, C.

    1981-06-01

    High temperature behaviour of rich and poor uranium alloys in α, β and γ crystalline structures is studied: dynamic recrystallization phenomena begins only in α and β phases high temperature range, high strength and brittle β phase shows a very large ductility above 700 0 C. Dynamic recrystallization in γ phase rich alloys is observed only if large energy is available. Recrystallization is a thermal actived phenomena localised at grain boundary, dependant with alloy concentration and crystalline structure. β phase activation energy and deformation rate for dynamic recrystallization beginning are the most important in relation with structure complexity; both temperature and rate deformation are dynamic recrystallization factors [fr

  14. Low-temperature structural phase transition in deuterated and protonated lithium acetate dihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F., E-mail: schroeder@kristall.uni-frankfurt.d [Goethe-Universitaet Frankfurt am Main, Institut fuer Geowissenschaften, Abt. Kristallographie, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Winkler, B.; Haussuehl, E. [Goethe-Universitaet Frankfurt am Main, Institut fuer Geowissenschaften, Abt. Kristallographie, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Cong, P.T.; Wolf, B. [Goethe-Universitaet Frankfurt am Main, Physikalisches Institut, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Avalos-Borja, M. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C. Camino a la Presa San Jose 2055, Col. Lomas 4 seccion CP 78216, San Luis Potosi (Mexico); Quilichini, M.; Hennion, B. [Laboratoire Leon Brillouin, CEN Saclay, 91191 Gif-sur-Yvette (France)

    2010-08-15

    Heat capacity measurements of protonated lithium acetate dihydrate show a structural phase transition at T = 12 K. This finding is in contrast to earlier work, where it was thought that only the deuterated compound undergoes a low temperature structural phase transition. This finding is confirmed by low temperature ultrasound spectroscopy, where the structural phase transition is associated with a velocity decrease of the ultrasonic waves, i.e. with an elastic softening. We compare the thermodynamic properties of the protonated and deuterated compounds and discuss two alternatives for the mechanism of the phase transition based on the thermal expansion measurements.

  15. Structure analysis of turbulent liquid phase by POD and LSE techniques

    Energy Technology Data Exchange (ETDEWEB)

    Munir, S., E-mail: shahzad-munir@comsats.edu.pk; Muthuvalu, M. S.; Siddiqui, M. I. [Department of Fundamental and Applied Science, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Heikal, M. R., E-mail: morgan.heikal@petronas.com.my; Aziz, A. Rashid A., E-mail: morgan.heikal@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia)

    2014-10-24

    In this paper, vortical structures and turbulence characteristics of liquid phase in both single liquid phase and two-phase slug flow in pipes were studied. Two dimensional velocity vector fields of liquid phase were obtained by Particle image velocimetry (PIV). Two cases were considered one single phase liquid flow at 80 l/m and second slug flow by introducing gas at 60 l/m while keeping liquid flow rate same. Proper orthogonal decomposition (POD) and Linear stochastic estimation techniques were used for the extraction of coherent structures and analysis of turbulence in liquid phase for both cases. POD has successfully revealed large energy containing structures. The time dependent POD spatial mode coefficients oscillate with high frequency for high mode numbers. The energy distribution of spatial modes was also achieved. LSE has pointed out the coherent structured for both cases and the reconstructed velocity fields are in well agreement with the instantaneous velocity fields.

  16. Structure analysis of turbulent liquid phase by POD and LSE techniques

    International Nuclear Information System (INIS)

    Munir, S.; Muthuvalu, M. S.; Siddiqui, M. I.; Heikal, M. R.; Aziz, A. Rashid A.

    2014-01-01

    In this paper, vortical structures and turbulence characteristics of liquid phase in both single liquid phase and two-phase slug flow in pipes were studied. Two dimensional velocity vector fields of liquid phase were obtained by Particle image velocimetry (PIV). Two cases were considered one single phase liquid flow at 80 l/m and second slug flow by introducing gas at 60 l/m while keeping liquid flow rate same. Proper orthogonal decomposition (POD) and Linear stochastic estimation techniques were used for the extraction of coherent structures and analysis of turbulence in liquid phase for both cases. POD has successfully revealed large energy containing structures. The time dependent POD spatial mode coefficients oscillate with high frequency for high mode numbers. The energy distribution of spatial modes was also achieved. LSE has pointed out the coherent structured for both cases and the reconstructed velocity fields are in well agreement with the instantaneous velocity fields

  17. Phase-structure of SU(3) lattice gauge-higgs model

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Mitrjushkin, V.K.; Zadorozhny, A.M.

    1985-01-01

    Phase structure is investigated of SU(3) symmetric gauge-Higgs theory with a defrost radial mode. The Higgs fields are considered in the fundamental representation of SU(3) group. It is shown that the phase structures of SU(3) and SU(2) symmetric coincide qualitatively

  18. Anatomy of a pressure-induced, ferromagnetic-to-paramagnetic transition in pyrrhotite: Implications for the formation pressure of diamonds

    Science.gov (United States)

    Gilder, Stuart A.; Egli, Ramon; Hochleitner, Rupert; Roud, Sophie C.; Volk, Michael W. R.; Le Goff, Maxime; de Wit, Maarten

    2011-10-01

    Meteorites and diamonds encounter high pressures during their formation or subsequent evolution. These materials commonly contain magnetic inclusions of pyrrhotite. Because magnetic properties are sensitive to strain, pyrrhotite can potentially record the shock or formation pressures of its host. Moreover, pyrrhotite undergoes a pressure-induced phase transition between 1.6 and 6.2 GPa, but the magnetic signature of this transition is poorly known. Here we report room temperature magnetic measurements on multidomain and single-domain pyrrhotite under nonhydrostatic pressure. Magnetic remanence in single-domain pyrrhotite is largely insensitive to pressure until 2 GPa, whereas the remanence of multidomain pyrrhotite increases 50% over that of initial conditions by 2 GPa, and then decreases until only 33% of the original remanence remains by 4.5 GPa. In contrast, magnetic coercivity increases with increasing pressure to 4.5 GPa. Below ˜1.5 GPa, multidomain pyrrhotite obeys Néel theory with a positive correlation between coercivity and remanence; above ˜1.5 GPa, it behaves single domain-like yet distinctly different from uncompressed single-domain pyrrhotite. The ratio of magnetic coercivity and remanence follows a logarithmic law with respect to pressure, which can potentially be used as a geobarometer. Owing to the greater thermal expansion of pyrrhotite with respect to diamond, pyrrhotite inclusions in diamonds experience a confining pressure at Earth's surface. Applying our experimentally derived magnetic geobarometer to pyrrhotite-bearing diamonds from Botswana and the Central African Republic suggests the pressures of the pyrrhotite inclusions in the diamonds range from 1.3 to 2.1 GPa. These overpressures constrain the mantle source pressures from 5.4 to 9.5 GPa, depending on which bulk modulus and thermal expansion coefficients of the two phases are used.

  19. Phase structure and phase transition of the SU(2) Higgs model in three dimensions

    International Nuclear Information System (INIS)

    Buchmueller, W.; Philipsen, O.

    1994-11-01

    We derive a set of gauge independent gap equations for Higgs boson and vector boson masses for the SU(2) Higgs model in three dimensions. The solutions can be associated with the Higgs phase and the symmetric phase, respectively. In the Higgs phase the calculated masses are in agreement with results from perturbation theory. In the symmetric phase a non-perturbative vector boson mass is generated by the non-abelian gauge interactions, whose value is rather independent of the scalar self-coupling λ. For small values of λ the phase transition is first-order. Its strength decreases with increasing λ, and at a critical value λ c the first-order transition changes to a crossover. Based on a perturbative matching the three-dimensional theory is related to the four-dimensional theory at high temperatures. The critical Higgs mass m H c , corresponding to the critical coupling λ c , is estimated to be below 100 GeV. The ''symmetric phase'' of the theory can be interpreted as a Higgs phase whose parameters are determined non-perturbatively. The obtained Higgs boson and vector boson masses are compared with recent results from lattice Monte Carlo simulations. (orig.)

  20. Differences between pressure-induced densification of LiCl-H{sub 2}O glass and polyamorphic transition of H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshiharu; Mishima, Osamu [Polyamorphism Group, Advanced Nano Materials Laboratory, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki, 305-0044 (Japan)], E-mail: SUZUKI.Yoshiharu@nims.go.jp

    2009-04-15

    We perform volumetric measurements of LiCl aqueous solution up to 1.00 GPa in the 100-170 K range, examine the pressure-induced vitrification and densification, and draw the pressure-temperature-volume surface. The pressure-induced vitrification of the solution corresponds to the cooling-induced vitrification of the liquid. We found that the volumetric decrease of glassy solution during the densification is continuous and this behavior depends on the glassy state before the compression. Raman profiles of the glassy solutions before and after the densification are similar. In contrast, the polyamorphic transition from low-density amorphous ice (LDA) to high-density amorphous ice (HDA) is discontinuous and their Raman profile before and after the transition is distinct. These results suggest that the densification relates to the structural relaxation and differs intrinsically from the polyamorphic transition. Furthermore, the densification of HDA is observed under high pressure, suggesting that very high-density amorphous ice (VHDA) may be the densified HDA. In order to recognize a polyamorphic transition under a non-equilibrium condition correctly, evidence of not only large volume change but also some distinct structural changes in glassy state is necessary.

  1. Differences between pressure-induced densification of LiCl-H2O glass and polyamorphic transition of H2O

    International Nuclear Information System (INIS)

    Suzuki, Yoshiharu; Mishima, Osamu

    2009-01-01

    We perform volumetric measurements of LiCl aqueous solution up to 1.00 GPa in the 100-170 K range, examine the pressure-induced vitrification and densification, and draw the pressure-temperature-volume surface. The pressure-induced vitrification of the solution corresponds to the cooling-induced vitrification of the liquid. We found that the volumetric decrease of glassy solution during the densification is continuous and this behavior depends on the glassy state before the compression. Raman profiles of the glassy solutions before and after the densification are similar. In contrast, the polyamorphic transition from low-density amorphous ice (LDA) to high-density amorphous ice (HDA) is discontinuous and their Raman profile before and after the transition is distinct. These results suggest that the densification relates to the structural relaxation and differs intrinsically from the polyamorphic transition. Furthermore, the densification of HDA is observed under high pressure, suggesting that very high-density amorphous ice (VHDA) may be the densified HDA. In order to recognize a polyamorphic transition under a non-equilibrium condition correctly, evidence of not only large volume change but also some distinct structural changes in glassy state is necessary.

  2. Phase flow and statistical structure of Galton-board systems

    International Nuclear Information System (INIS)

    Lue, A.; Brenner, H.

    1993-01-01

    Galton boards, found in museum exhibits devoted to science and technology, are often used to demonstrate visually the ubiquity of so-called ''laws of probability'' via an experimental realization of normal distributions. A detailed theoretical study of Galton-board phase-space dynamics and statistical behavior is presented. The study is based on a simple inelastic-collision model employing a particle fall- ing through a spatially periodic lattice of rigid, convex scatterers. We show that such systems exhibit indeterminate behavior through the presence of strange attractors or strange repellers in phase space; nevertheless, we also show that these systems exhibit regular and predictable behavior under specific circumstances. Phase-space strange attractors, periodic attractors, and strange repellers are present in numerical simulations, confirming results anticipated from geometric analysis. The system's geometry (dictated by lattice geometry and density as well as the direction of gravity) is observed to play a dominant role in stability, phase-flow topology, and statistical observations. Smale horseshoes appear to exist in the low-lattice-density limit and may exist in other regimes. These horseshoes are generated by homoclinic orbits whose existence is dictated by system characteristics. The horseshoes lead directly to deterministic chaos in the system. Strong evidence exists for ergodicity in all attractors. Phase-space complexities are manifested at all observed levels, particularly statistical ones. Consequently, statistical observations are critically dependent upon system details. Under well-defined circumstances, these observations display behavior which does not constitute a realization of the ''laws of probability.''

  3. Theoretical potential for low energy consumption phase change memory utilizing electrostatically-induced structural phase transitions in 2D materials

    Science.gov (United States)

    Rehn, Daniel A.; Li, Yao; Pop, Eric; Reed, Evan J.

    2018-01-01

    Structural phase-change materials are of great importance for applications in information storage devices. Thermally driven structural phase transitions are employed in phase-change memory to achieve lower programming voltages and potentially lower energy consumption than mainstream nonvolatile memory technologies. However, the waste heat generated by such thermal mechanisms is often not optimized, and could present a limiting factor to widespread use. The potential for electrostatically driven structural phase transitions has recently been predicted and subsequently reported in some two-dimensional materials, providing an athermal mechanism to dynamically control properties of these materials in a nonvolatile fashion while achieving potentially lower energy consumption. In this work, we employ DFT-based calculations to make theoretical comparisons of the energy required to drive electrostatically-induced and thermally-induced phase transitions. Determining theoretical limits in monolayer MoTe2 and thin films of Ge2Sb2Te5, we find that the energy consumption per unit volume of the electrostatically driven phase transition in monolayer MoTe2 at room temperature is 9% of the adiabatic lower limit of the thermally driven phase transition in Ge2Sb2Te5. Furthermore, experimentally reported phase change energy consumption of Ge2Sb2Te5 is 100-10,000 times larger than the adiabatic lower limit due to waste heat flow out of the material, leaving the possibility for energy consumption in monolayer MoTe2-based devices to be orders of magnitude smaller than Ge2Sb2Te5-based devices.

  4. Unusual pressure dependence of the crystallographic structure in RNiO{sub 3} perovskites (R = rare earth)

    Energy Technology Data Exchange (ETDEWEB)

    Medarde, M.; Mesot, J.; Rosenkranz, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Lacorre, P. [Lab. Fluorures, Le Mans (France); Marshall, W.; Loveday, J.S. [Edinburgh Univ. (United Kingdom); Klotz, S.; Hamel, G. [Paris-6 Univ., 75 (France)

    1997-09-01

    We report the first experimental observation of a pressure-induced structural phase transition in the RNiO{sub 3} series (R = rare earth). At {approx_equal} 40 kbar, the space group of NdNiO{sub 3} changes from Pbnm(orthorhombic) to the PrNiO{sub 3} indicating that the symmetry of the structure increases with pressure. (author) 1 fig., 7 refs.

  5. Diffusionless phase transitions and related structures in oxides

    International Nuclear Information System (INIS)

    Boulesteix, C.

    1992-01-01

    The relative importance of oxides in the field of materials science has been spectacularly increasing during the last twenty years. First the study of ferroelectrics kept the attention of scientists. Nevertheless this domain is far from being worked out and a lot of new results and of new fields of interest were recently discovered. Other ferroic oxides, especially ferroelastics, have also been the subject of a very great number of new results. In these cases the properties of oxides are at room temperature very tightly related to the phase transition that is generally occurring a few hundred of degrees above this room temperature. In many other cases also properties of oxides can be related to the existence of a phase transition or to a rather similar phenomenon. This book has been specially devoted to the study of the properties of oxides which are in some way related to the existence of a phase transition. The first chapters are focussed on general considerations: the first one is devoted to a general study of phase transitions, the second one to the twinning phenomenon which is of special interest for many oxides. Chapters 3 and 4 are focussed on ferroelectric and ferroelastic materials. These four chapters consitute the first part of the book. Chapters 5 to 8 are devoted to the study of oxides of special interest which have some of their properties related to a phase transition or to a rather similar phenomenon: rare earth oxides, oxides with a diffuse phase transition, zirconia and alumina systems, tungsten oxides and their relatives. These four chapters constitute the second part of the book. (orig.)

  6. Analysis and Design Tools for Fluid-Structure Interaction with Multi-Body Flexible Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this proposal (Phases I and II) is to develop a robust and accurate solver for fluid-structure interaction computations capable of...

  7. Structural phase transitions in Zn(CN)2 under high pressures

    International Nuclear Information System (INIS)

    Poswal, H.K.; Tyagi, A.K.; Lausi, Andrea; Deb, S.K.; Sharma, Surinder M.

    2009-01-01

    High pressure behavior of zinc cyanide (Zn(CN) 2 ) has been investigated with the help of synchrotron-based X-ray diffraction measurements. Our studies reveal that under pressure this compound undergoes phase transformations and the structures of the new phases depend on whether the pressure is hydrostatic or not. Under hydrostatic conditions, Zn(CN) 2 transforms from cubic to orthorhombic to cubic-II to amorphous phases. In contrast, the non-hydrostatic pressure conditions drive the ambient cubic phase to a partially disordered crystalline phase, which eventually evolves to a substantially disordered phase. The final disordered phase in the latter case is distinct from the amorphous phase observed under the hydrostatic pressures. - Graphical abstract: High pressure X-ray diffraction investigations on Zn(CN) 2 show three phase transformations i.e., cubic→orthorhombic→cubic-II→amorphous. However, the results strongly depend upon the nature of stress

  8. Variable Fidelity Aeroelastic Toolkit - Structural Model, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a methodology to incorporate variable fidelity structural models into steady and unsteady aeroelastic and aeroservoelastic analyses in...

  9. Reflexive Aero Structures for Enhanced Survivability, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Cornerstone Research Group Inc. (CRG) will develop an advanced reflexive structure technology system to increase the survivability of future systems constructed of...

  10. Simulating CubeSat Structure Deployment Dynamics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There is high value in simulating the nonlinear dynamics of stowing, deploying, and performance of deployable space structures, especially given the profound...

  11. Reflexive Aero Structures for Enhanced Survivability, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Cornerstone Research Group Inc. (CRG) proposes to develop an advanced reflexive structure system to increase the survivability of aerostructures. This reflexive...

  12. Refractory Coated/Lined Low Density Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses the development of refractory coated or lined low density structures applicable for advanced future propulsion system technologies. The...

  13. Structural phase transitions and piezoelectric anomalies in ordered ...

    Indian Academy of Sciences (India)

    TECS

    InN and AlN have been the focus of intensive research for physical and ... nuously varying band gap led to the fabrication of opto- electronic devices such as ... compressive in-plane phase close to 3⋅4%, at which a huge enhancement of ...

  14. Atomic structure calculations using the relativistic random phase approximation

    International Nuclear Information System (INIS)

    Cheng, K.T.; Johnson, W.R.

    1981-01-01

    A brief review is given for the relativistic random phase approximation (RRPA) applied to atomic transition problems. Selected examples of RRPA calculations on discrete excitations and photoionization are given to illustrate the need of relativistic many-body theories in dealing with atomic processes where both relativity and correlation are important

  15. Crystal growth, structure and phase studies on gold halides

    NARCIS (Netherlands)

    Janssen, Eugenius Maria Wilhelmus Janssen

    1977-01-01

    Only very corrosive substances attack gold, the most noble metal. In this study the reactivity and the phase diagrams of gold with the halogens chlorine, bromine and iodine have been investigated. owing to the noble behaviour of gold, its halides are sensitive to heat; on heating they decompose into

  16. The gas phase structure of α -pinene, a main biogenic volatile organic compound

    Science.gov (United States)

    Neeman, Elias M.; Avilés Moreno, Juan Ramón; Huet, Thérèse R.

    2017-12-01

    The gas phase structure of the bicyclic atmospheric aerosol precursor α-pinene was investigated employing a combination of quantum chemical calculation and Fourier transform microwave spectroscopy coupled to a supersonic jet expansion. The very weak rotational spectra of the parent species and all singly substituted 13C in natural abundance have been identified, from 2 to 20 GHz, and fitted to Watson's Hamiltonian model. The rotational constants were used together with geometrical parameters from density functional theory and ab initio calculations to determine the rs, r0, and rm(1 ) structures of the skeleton, without any structural assumption in the fit concerning the heavy atoms. The double C=C bond was found to belong to a quasiplanar skeleton structure containing 6 carbon atoms. Comparison with solid phase structure is reported. The significant differences of α-pinene in gas phase and other gas phase bicyclic monoterpene structures (β-pinene, nopinone, myrtenal, and bicyclo[3.1.1]heptane) are discussed.

  17. Electronic structure and optical properties of prominent phases of ...

    Indian Academy of Sciences (India)

    Santosh singh

    2017-06-19

    Jun 19, 2017 ... Our calculated band structure shows that there is a significant presence of O-2p and Ti-3d hybridization in the valence bands. ... (E ) to the c-axis, a high degree of fine structure exists ..... [4] S B Zhang, J. Phys. Condens.

  18. Structures and Phase Transitions in Ordered Double Perovskites

    International Nuclear Information System (INIS)

    Kennedy, Brendan; Zhou, Qingdi; Cheah, Melina

    2005-01-01

    Full text: The basic perovskite structure is ubiquitous in the study of metal oxides, yet very few oxides actually adopt the archetypal cubic structure. The perovskite structure is based on corner sharing octahedra and in most cases cooperative rotations of successive octahedra lower the symmetry of the perovskite structure. Solid State Chemists have been fascinated by these distortions for many years, not only for their intrinsic interest but also to understand how these distortions control the electronic and magnetic properties of perovskite oxides. In this presentation we will describe the use of high-resolution powder diffraction methods to unravel the temperature and composition dependence of the structures in two series of double perovskites, Sr 1-x A x NiWO 6 (A = Ba, Ca) where there is essentially complete ordering of Ni and W cations and in Sr 1-x Ca x CrNbO 6 where there is extensive disorder of the Cr and Nb cations. (authors)

  19. Lattice instabilities and structural phase transformations in La2CuO4 superconductors and insulators

    International Nuclear Information System (INIS)

    Axe, J.D.

    1991-01-01

    Soft-mode structural phase transformations, common in many perovskite-based materials, are also found in La 2 CuO 4 and structurally related oxides. The resulting phase behavior is rather complex, but is a natural consequence of the degeneracy of the soft phonon order parameters. This paper reviews the structural and lattice-dynamical results and their interpretation based upon mean-field statistical mechanical models

  20. Effect of Large Negative Phase of Blast Loading on Structural Response of RC Elements

    Directory of Open Access Journals (Sweden)

    Syed Zubair Iman

    2016-01-01

    Full Text Available Structural response of reinforced concrete (RC elements for analysis and design are often obtained using the positive phase of the blast pressure curve disregarding the negative phase assuming insignificant contribution from the negative phase of the loading. Although, some insight on the effect of negative phase of blast pressure based on elastic single-degree-of-freedom (SDOF analysis was presented before, the influence of negative phase on different types of resistance functions of SDOF models and on realistic finite element analysis has not been explored. In this study, the effects of inclusion of pulse negative phase on structural response of RC elements from SDOF analysis and from more detailed finite element analysis have been investigated. Investigation of SDOF part has been conducted using MATLAB code that utilizes non-linear resistance functions of SDOF model. Detailed numerical investigation using finite element code DIANA was conducted on the significance of the negative phase on structural response. In the FE model, different support stiffness was used to explore the effect of support stiffness on the structural response due to blast negative phase. Results from SDOF and FE analyses present specific situations where the effect of large negative phase was found to be significant on the structural response of RC elements.

  1. Phase change - memory materials - composition, structure, and properties

    Czech Academy of Sciences Publication Activity Database

    Frumar, M.; Frumarová, Božena; Wágner, T.; Hrdlička, M.

    2007-01-01

    Roč. 18, suppl.1 (2007), S169-S174 ISSN 0957-4522. [International Conference on Optical and Optoelectronic Properties of Materials and Applications 2006. Darwin, 16.06.2006-20.06.2006] R&D Projects: GA ČR GA203/06/0627 Institutional research plan: CEZ:AV0Z40500505 Keywords : phase change memory Subject RIV: CA - Inorganic Chemistry Impact factor: 0.947, year: 2007

  2. Structure of the ripple phase of phospholipid multibilayers

    International Nuclear Information System (INIS)

    Sengupta, Kheya; Raghunathan, V.A.; Katsaras, John

    2003-01-01

    We present electron density maps (EDMs) of the ripple phase formed by phosphorylcholine lipids such as dimyristoyl phosphatidylcholine (DMPC), palmitoyl-oleoyl phosphatidylcholine (POPC), dihexadecyl phosphatidylcholine, and dilauroyl phosphatidylcholine (DLPC). With the exception of DLPC, the rippled bilayers have a sawtooth shape in all the systems, with one arm being almost twice as long as the other. For DMPC and POPC bilayers, EDMs have been obtained at different temperatures at a fixed relative humidity, and the overall shape of the ripples and the ratio of the lengths of the two arms are found to be insensitive to temperature. EDMs of all the systems with saturated hydrocarbon chains suggest the existence of a mean chain tilt along the ripple wave vector. In the literature it is generally assumed that the asymmetry of the rippled bilayers (absence of a mirror plane normal to the ripple wave vector) arises from a sawtoothlike height profile. However, in the case of DLPC, the height profile is found to be almost symmetric and the asymmetry results mainly from different bilayer thicknesses in the two arms of the ripple. We also present EDMs of the metastable ripple phase of dipalmitoyl phosphatidylcholine, formed on cooling from the L α phase

  3. Phase structure of (φ4)3 field theory at finite temperature

    International Nuclear Information System (INIS)

    Efimov, G.V.

    1992-01-01

    Phase structure of φ 4 field theory in the space-time R 3 is investigated at arbitrary coupling constant and temperature. The critical values of the coupling constant and temperature, corresponding to the phase transitions in the system, are calculated by the canonical transformation method within formalism of thermo field dynamics. The Hamiltonians describing the system in each phase are obtained straightforwardly. Comparison with the two-dimensional case shows a crucial influence of higher order renormalization on the phase structure of the model. 13 refs.; 5 figs

  4. Electron crystallography applied to the structure determination of Nb(Cu,Al,X) Laves phases.

    Science.gov (United States)

    Gigla, M; Lelatko, J; Krzelowski, M; Morawiec, H

    2006-09-01

    The presence of primary precipitates of the Laves phases considerably improves the mechanical properties and the resistance to thermal degradation of the high-temperature shape memory Cu-Al-Nb alloys. The structure analysis of the Laves phases was carried out on particles contained in the ternary and quaternary alloys as well on synthesized compounds related to the composition of the Nb(Cu,Al,X)(2) phase, where X = Ni, Co, Cr, Ti and Zr. The precise structure determination of the Laves phases was carried out by the electron crystallography method using the CRISP software.

  5. Pressure-induced absorption coefficients for radiative transfer calculations in Titan's atmosphere

    Science.gov (United States)

    Courtin, Regis

    1988-01-01

    The semiempirical theory of Birnbaum and Cohen (1976) is used to calculate the FIR pressure-induced absorption (PIA) spectra of N2, CH4, N2 + Ar, N2 + CH4, and N2 + H2 under conditions like those in the Titan troposphere. The results are presented graphically and compared with published data from laboratory measurements of PIA in the same gases and mixtures (Dagg et al., 1986; Dore et al., 1986). Good agreement is obtained, with only a slight underestimation of PIA at 300-400/cm in the case of CH4. The absorption coefficients are presented in tables, and it is suggested that the present findings are of value for evaluating the effects of tropospheric clouds on the Titan FIR spectrum and studying the greenhouse effect near the Titan surface.

  6. Pressure-induced referred pain areas are more expansive in individuals with a recovered fracture

    DEFF Research Database (Denmark)

    Doménech-García, Víctor; Skuli Palsson, Thorvaldur; Boudreau, Shellie Ann

    2018-01-01

    the shoulder region was induced by a 60-s pressure stimulation (PPT+20%) at the infraspinatus muscle and recorded on an electronic body chart. Following Day-0 assessments, delayed onset muscle soreness (DOMS) was induced to challenge the pain systems by exercising the external rotators of the recovered...... a shoulder fracture and 20 age/gender matched controls participated in two experimental sessions (Day-0, Day-1) separated by 24 hours. On both days, pressure pain thresholds (PPTs) were measured bilaterally at infraspinatus, supraspinatus, trapezius, and gastrocnemius muscles. Referred pain towards....../dominant shoulder. The size of pressure-induced pain referral on Day-0 did not differ between groups although there was a tendency for a smaller referred pain area in recovered group. PPTs at the infraspinatus muscle on the DOMS side was reduced on Day-1 in both groups (P=0.03). An expansion of pressure...

  7. Modelling the pressurization induced by solar radiation on above ground installations of LPG pipeline systems

    Science.gov (United States)

    Leporini, M.; Terenzi, A.; Marchetti, B.; Giacchetta, G.; Polonara, F.; Corvaro, F.; Cocci Grifoni, R.

    2017-11-01

    Pipelining Liquefied Petroleum Gas (LPG) is a mode of LPG transportation more environmentally-friendly than others due to the lower energy consumption and exhaust emissions. Worldwide, there are over 20000 kilometers of LPG pipelines. There are a number of codes that industry follows for the design, fabrication, construction and operation of liquid LPG pipelines. However, no standards exist to modelling particular critical phenomena which can occur on these lines due to external environmental conditions like the solar radiation pressurization. In fact, the solar radiation can expose above ground pipeline sections at pressure values above the maximum Design Pressure with resulting risks and problems. The present work presents an innovative practice suitable for the Oil & Gas industry to modelling the pressurization induced by the solar radiation on above ground LPG pipeline sections with the application to a real case.

  8. Poverty and Family Structure - Phase II | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Understanding the dynamics of change in family structure is critical in poverty diagnosis, ... And, how could public social security be conceived to protect the most vulnerable? ... IDRC invites applications for the IDRC Research Awards 2019.

  9. In Situ Guided Wave Structural Health Monitoring System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Corrosion and fatigue induced metal-loss and cracks are common problems for missiles and aircraft structures. A wide range of field conditions such as humidity,...

  10. New Analysis and Theory of Deployable Folded Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A recently developed mathematical theory has great value for deployable space structures and in situ manufacture of large beams, panels, cylinders and other...

  11. New Analysis and Theory of Deployable Folded Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A recently developed mathematical folding theory has great value for deployable space structures and in situ manufacture of large beams, panels and cylinders. The...

  12. Alternative materials for FDOT sign structures : phase I literature review.

    Science.gov (United States)

    2012-05-01

    Inspections of tubular sign structures by the Florida Department of Transportation (FDOT) have : revealed occurrences of premature corrosion on the inside of galvanized steel tubes. As a result, FDOT : engineers are seeking alternative materials that...

  13. Quantifiable and Reliable Structural Health Management Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Under Project Constellation, NASA is developing a new generation of spacecraft for human spaceflight. A significant percentage of the structures used in these...

  14. Inflatable Habitat with Integrated Primary and Secondary Structure, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Paragon Space Development Corp (Paragon) and Thin Red Line Aerospace (TRLA) proposes to explore the utilization of inflatable structures by designing a habitation...

  15. Durability performance of submerged concrete structures - phase 2.

    Science.gov (United States)

    2015-09-01

    This project determined that severe corrosion of steel can occur in the submerged : portions of reinforced concrete structures in marine environments. Field studies of decommissioned : pilings from Florida bridges revealed multiple instances of stron...

  16. Quantifiable and Reliable Structural Health Management Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Major concerns for implementing a practical built-in structural health monitoring system are prediction accuracy and data reliability. It is proposed to develop...

  17. Structure and Phase Transformation in the Giant Magnetostriction Laves-Phase SmFe2

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaonan; Lin, Kun; Gao, Qilong; Zhu, He; Li, Qiang; Cao, Yili; Liu, Zhanning; You, Li; Chen, Jun; Ren, Yang [Argonne National Laboratory, X-Ray Science Division, Argonne, Illinois 60439, United States; Huang, Rongjin [Key Laboratory; Lapidus, Saul H. [Argonne National Laboratory, X-Ray Science Division, Argonne, Illinois 60439, United States; Xing, Xianran

    2017-10-13

    As one class of the most important intermetallic compounds, the binary Laves-phase is well-known for their abundant magnetic properties. Samarium-iron alloy system, SmFe2, is a prototypical Laves compound that shows strong negative magnetostriction but relatively weak magnetocrystalline anisotropy. SmFe2 has been identified as a cubic Fd$ \\overline{3}\\ $m structure at room temperature, however, the cubic symmetry does not match the spontaneous magnetization along the [111]cubic direction. Here we studied the crystal structure of SmFe2 by high-resolution synchrotron X-ray powder diffraction and X-ray total scattering methods. SmFe2 is found to adopt a centrosymmetric trigonal R$ \\overline{3}\\ $m structure at room temperature, which transforms to an orthorhombic Imma structure at 200 K. This transition is in agreement with the changes of easy magnetization direction from [111]cubic to [110]cubic direction, and is further evidenced by the inflexion of thermal expansion behavior, the sharp decline of the magnetic susceptibility in the FC-ZFC curve, and the anomaly in the specific heat capacity measurement. The revised structure and phase transformation of SmFe2 could be useful to understand the magnetostriction and related physical properties of other RM2-type pseudo-cubic Laves-phase intermetallic compounds.

  18. q-deformed phase-space and its lattice structure

    International Nuclear Information System (INIS)

    Wess, J.

    1998-01-01

    Quantum groups lead to an algebraic structure that can be realized on quantum spaces. These are non-commutative spaces that inherit a well-defined mathematical structure from the quantum group symmetry. In turn, such quantum spaces can be interpreted as non-commutative configuration spaces for physical systems. We study the non-commutative Euclidean space that is based on the quantum group SO q (3)

  19. Arterial Blood Pressure Induces Transient C4b-Binding Protein in Human Saphenous Vein Grafts.

    Science.gov (United States)

    Kupreishvili, Koba; Meischl, Christof; Vonk, Alexander B A; Stooker, Wim; Eijsman, Leon; Blom, Anna M; Quax, Paul H A; van Hinsbergh, Victor W M; Niessen, Hans W M; Krijnen, Paul A J

    2017-05-01

    Complement is an important mediator in arterial blood pressure-induced vein graft failure. Previously, we noted activation of cell protective mechanisms in human saphenous veins too. Here we have analyzed whether C4b-binding protein (C4bp), an endogenous complement inhibitor, is present in the vein wall. Human saphenous vein segments obtained from patients undergoing coronary artery bypass grafting (n = 55) were perfused in vitro at arterial blood pressure with either autologous blood for 1, 2, 4, or 6 hr or with autologous blood supplemented with reactive oxygen species scavenger N-acetylcysteine. The segments were subsequently analyzed quantitatively for presence of C4bp and complement activation product C3d using immunohistochemistry. Perfusion induced deposition of C3d and C4bp within the media of the vessel wall, which increased reproducibly and significantly over a period of 4 hr up to 3.8% for C3d and 81% for C4bp of the total vessel area. Remarkably after 6 hr of perfusion, the C3d-positive area decreased significantly to 1.3% and the C4bp-positive area to 19% of the total area of the vein. The areas positive for both C4bp and C3d were increased in the presence of N-acetylcysteine. Exposure to arterial blood pressure leads to a transient presence of C4bp in the vein wall. This may be part of a cell-protective mechanism to counteract arterial blood pressure-induced cellular stress and inflammation in grafted veins. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Kinetics and mechanism of solid-phase reactions of formation of yttrium ferrite with garnet structure

    Energy Technology Data Exchange (ETDEWEB)

    Pashchenko, V P; Yakushevskaya, F T; Chalyi, V P

    1977-04-01

    The perovskite phase is formed in the process of ferrogarnet formation both from the mixture of Y and Fe oxides and from mutually precipitated carbonates. The amount of the perovskite phase decreases with increasing duration of annealing. The process of the ferritoformation in the investigated systems can be presented as isovalent cationic substitution on the basis of the crystalline structure of Y/sub 2/O/sub 3/ with the formation of the perovskite structure. When the Fe concentration in orthoferrite increases, the phase with a garnet structure is formed.

  1. Analysis of the phase structure in extended Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Seniuch, M.

    2006-07-07

    We study the generation of the baryon asymmetry in the context of electroweak baryogenesis in two different extensions of the Standard Model. First, we consider an effective theory, in which the Standard Model is augmented by an additional dimension-six Higgs operator. The effects of new physics beyond a cut-off scale are parameterized by this operator. The second model is the two-Higgs-doublet model, whose particle spectrum is extended by two further neutral and two charged heavy Higgs bosons. In both cases we focus on the properties of the electroweak phase transition, especially on its strength and the profile of the nucleating bubbles. After reviewing some general aspects of the electroweak phase transition and baryogenesis we derive the respective thermal effective potentials to one-loop order. We systematically study the parameter spaces, using numerical methods, and compute the strength of the phase transition and the wall thickness as a function of the Higgs masses. We find a strong first order transition for a light Higgs state with a mass up to about 200 GeV. In case of the dimension-six model the cut-off scale has to stay between 500 and 850 GeV, in the two-Higgs-doublet model one needs at least one heavy Higgs mass of 300 GeV. The wall thickness varies for both theories in the range roughly from two to fifteen, in units of the inverse critical temperature. We also estimate the size of the electron and neutron electric dipole moments, since new sources of CP violation give rise to them. In wide ranges of the parameter space we are not in conflict with the experimental bounds. Finally the baryon asymmetry, which is predicted by these models, is related to the Higgs mass and the other appropriate input parameters. In both models the measured baryon asymmetry can be achieved for natural values of the model parameters. (orig.)

  2. Structural phase transformation in K2SeO4

    International Nuclear Information System (INIS)

    Iizumi, M.; Axe, J.D.; Shirane, G.; Shimaoka, K.

    1977-01-01

    Successive phase transformations in K 2 SeO 4 at T 1 = 130 K and T/sub c/ = 93 K were studied by the neutron-scattering technique. The superlattice reflections in the intermediate phase were found to be incommensurate with the lattice periodicity. The wave vector characterizing the reflections is q/sub delta/ = (1-delta) a*/3 with delta = 0.07 at 122.5 K. The deviation delta decreases with decreasing temperature with an apparently discontinuous jump to zero at T/sub c/. Below this temperature, the crystal remains commensurate and is known to be ferroelectric. The incommensurate-commensurate transition and the simultaneous occurrence of the commensurate phase and the spontaneous polarization are discussed using a Landau-type expansion of the free energy in which a term proportional to Q 3 (q/sub delta/) P/sub z/ (q 3 /sub delta/) plays an essential role in driving the incommensurate-commensurate phase transformation and in inducing the spontaneous polarization. Here, Q (q/sub delta/) is the amplitude of the primary atomic displacements with wave vector q/sub delta/ and P/sub z/(q 3 /sub delta/) is the polarization wave with wave vector q 3 /sub delta/ = 3delta (a*/3) and becomes the macroscopic polarization below T/sub c/. Above T/sub i/, a Σ 2 optic-phonon branch along (xi,0,0) shows a striking softening and ω/sub j/(q) for q approx. (1/3,0,0) tends to zero at T/sub i/. The softening results from a temperature-dependent decrease of the interlayer forces with ranges a/2 and a (a is one unit-cell length along the a axis) in the presence of strong and persisting forces with a range 3a/2. The intensities of the soft phonon were measured about different reciprocal-lattice points and were used to determine the nature of the soft-phonon mode and suggest a coupled translation of potassium ions with rotational motion of SeO 4 groups to be the origin of the lattice instability

  3. Analysis of phases in the structure determination of an icosahedral virus

    Energy Technology Data Exchange (ETDEWEB)

    Plevka, Pavel; Kaufmann, Bärbel; Rossmann, Michael G. (Purdue)

    2012-03-15

    The constraints imposed on structure-factor phases by noncrystallographic symmetry (NCS) allow phase improvement, phase extension to higher resolution and hence ab initio phase determination. The more numerous the NCS redundancy and the greater the volume used for solvent flattening, the greater the power for phase determination. In a case analyzed here the icosahedral NCS phasing appeared to have broken down, although later successful phase extension was possible when the envelope around the NCS region was tightened. The phases from the failed phase-determination attempt fell into four classes, all of which satisfied the NCS constraints. These four classes corresponded to the correct solution, opposite enantiomorph, Babinet inversion and opposite enantiomorph with Babinet inversion. These incorrect solutions can be seeded from structure factors belonging to reciprocal-space volumes that lie close to icosahedral NCS axes where the structure amplitudes tend to be large and the phases tend to be 0 or {pi}. Furthermore, the false solutions can spread more easily if there are large errors in defining the envelope designating the region in which NCS averaging is performed.

  4. Probing the glycosidic linkage: secondary structures in the gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Simons, John P; Cristina Stanca-Kaposta, E; Cocinero, Emilio J; Liu, B [Chemistry Department, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ (United Kingdom); Davis, Benjamin G; Gamblin, David P [Chemistry Department, Chemical Research Laboratory, 12 Mansfield Road, Oxford OX1 4TA (United Kingdom); Kroemer, Romano T [Sanofi-Aventis, CRVA, 13 quai Jules Guesde, BP14, 94403 Vitry-sur-Seine (France)], E-mail: John.Simons@chem.ox.ac.uk

    2008-10-15

    The functional importance of carbohydrates in biological processes, particularly those involving specific molecular recognition, is immense. Characterizing the three-dimensional (3D) structures of carbohydrates and glycoproteins, and their interactions with other molecules, not least the ubiquitous solvent, water, is a key starting point for understanding these processes. The combination of laser-based electronic and vibrational spectroscopy of mass-selected carbohydrate molecules and their hydrated complexes, conducted under molecular beam conditions, with ab initio computation is providing a uniquely powerful means of characterizing 3D carbohydrate conformations; the structures of their hydrated complexes, the hydrogen-bonded networks they support (or which support them); and the factors that determine their conformational and structural preferences.

  5. Probing the glycosidic linkage: secondary structures in the gas phase

    International Nuclear Information System (INIS)

    Simons, John P; Cristina Stanca-Kaposta, E; Cocinero, Emilio J; Liu, B; Davis, Benjamin G; Gamblin, David P; Kroemer, Romano T

    2008-01-01

    The functional importance of carbohydrates in biological processes, particularly those involving specific molecular recognition, is immense. Characterizing the three-dimensional (3D) structures of carbohydrates and glycoproteins, and their interactions with other molecules, not least the ubiquitous solvent, water, is a key starting point for understanding these processes. The combination of laser-based electronic and vibrational spectroscopy of mass-selected carbohydrate molecules and their hydrated complexes, conducted under molecular beam conditions, with ab initio computation is providing a uniquely powerful means of characterizing 3D carbohydrate conformations; the structures of their hydrated complexes, the hydrogen-bonded networks they support (or which support them); and the factors that determine their conformational and structural preferences.

  6. Structural phase transition and elastic properties of samarium monopnictides

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Chouhan, Sunil Singh; Soni, Pooja; Sanyal, Sankar P.

    2011-01-01

    In recent years the monopnictides and monochalcogenides of the rare-earth elements with rocksalt structure (B 1 ) have aroused intensive interest due to the presence of strongly correlated f electrons in them. Under pressure, the nature of f-electrons of these compounds can be changed from localized to itinerant leading to significant changes in physical and chemical properties. These unusual structural, electronic, and high-pressure properties make them candidates for advanced industrial applications. For these applications they provide unique physical properties which cannot be achieved with other materials

  7. Pressure-induced localisation of the hydrogen-bond network in KOH-VI

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, Andreas, E-mail: a.hermann@ed.ac.uk; Nelmes, Richard J.; Loveday, John S. [Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Guthrie, Malcolm [Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); European Spallation Source AB, P.O. Box 176, SE-22100 Lund (Sweden)

    2015-12-28

    Using a combination of ab initio crystal structure prediction and neutron diffraction techniques, we have solved the full structure of KOH-VI at 7 GPa. Rather than being orthorhombic and proton-ordered as had previously be proposed, we find that this high-pressure phase of potassium hydroxide is tetragonal (space group I4/mmm) and proton disordered. It has an unusual hydrogen bond topology, where the hydroxyl groups form isolated hydrogen-bonded square planar (OH){sub 4} units. This structure is stable above 6.5 GPa and, despite being macroscopically proton-disordered, local ice rules enforce microscopic order of the hydrogen bonds. We suggest the use of this novel type of structure to study concerted proton tunneling in the solid state, while the topology of the hydrogen bond network could conceivably be exploited in data storage applications based solely on the manipulations of hydrogen bonds. The unusual localisation of the hydrogen bond network under applied pressure is found to be favored by a more compact packing of the constituents in a distorted cesium chloride structure.

  8. Pasta Structures of Quark-Hadron Phase Transition in Proto-Neutron Stars

    International Nuclear Information System (INIS)

    Yasutake, Nobutoshi; Maruyama, Toshiki; Tatsumi, Toshitaka

    2011-01-01

    We study the quark-hadron mixed phase in proto-neutron stars with the finite-size effects. In the calculations of pasta structures appeared in the mixed phase, the Gibbs conditions require the pressure balance and chemical equilibrium between two phases besides the thermal equilibrium. We find that the region of the mixed phase is limited due to thermal instability. Moreover, we study the effects of neutrinos to the pasta structures. As a result, we find that the existence of neutrinos make the pasta structures unstable, too. These characteristic features of the hadron-quark mixed phase should be important for the middle stage of the evolutions of proto-neutron stars.

  9. Phase space structure of generalized Gaussian cat states

    International Nuclear Information System (INIS)

    Nicacio, Fernando; Maia, Raphael N.P.; Toscano, Fabricio; Vallejos, Raul O.

    2010-01-01

    We analyze generalized Gaussian cat states obtained by superposing arbitrary Gaussian states. The structure of the interference term of the Wigner function is always hyperbolic, surviving the action of a thermal reservoir. We also consider certain superpositions of mixed Gaussian states. An application to semiclassical dynamics is discussed.

  10. Comparing two tetraalkylammonium ionic liquids. I. Liquid phase structure

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.; Ribeiro, Mauro C. C., E-mail: mccribei@iq.usp.br [Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05513-970 São Paulo, SP (Brazil); Giles, Carlos [Departamento de Física da Matéria Condensada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas, SP (Brazil)

    2016-06-14

    X-ray scattering experiments at room temperature were performed for the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1114}][NTf{sub 2}], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1444}][NTf{sub 2}]. The peak in the diffraction data characteristic of charge ordering in [N{sub 1444}][NTf{sub 2}] is shifted to longer distances in comparison to [N{sub 1114}][NTf{sub 2}], but the peak characteristic of short-range correlations is shifted in [N{sub 1444}][NTf{sub 2}] to shorter distances. Molecular dynamics (MD) simulations were performed for these ionic liquids using force fields available from the literature, although with new sets of partial charges for [N{sub 1114}]{sup +} and [N{sub 1444}]{sup +} proposed in this work. The shifting of charge and adjacency peaks to opposite directions in these ionic liquids was found in the static structure factor, S(k), calculated by MD simulations. Despite differences in cation sizes, the MD simulations unravel that anions are allowed as close to [N{sub 1444}]{sup +} as to [N{sub 1114}]{sup +} because anions are located in between the angle formed by the butyl chains. The more asymmetric molecular structure of the [N{sub 1114}]{sup +} cation implies differences in partial structure factors calculated for atoms belonging to polar or non-polar parts of [N{sub 1114}][NTf{sub 2}], whereas polar and non-polar structure factors are essentially the same in [N{sub 1444}][NTf{sub 2}]. Results of this work shed light on controversies in the literature on the liquid structure of tetraalkylammonium based ionic liquids.

  11. Small angle neutron scattering form polymer melts: structural investigation and phase behaviour

    International Nuclear Information System (INIS)

    Ertugrul, O.

    2004-01-01

    The Small-Angle Neutron Scattering (SANS) techniques have been used to study the structural properties and phase behavior of polymer melts. A model based on Random Phase Approximation (RPA) is proposed to predict the experimental data. By fitting the model to data we could be able to obtain radius of gyration (a measure of size of a polymer) and phase transition for the sample. (author)

  12. Structural redetermination of the ThNi phase

    International Nuclear Information System (INIS)

    Fornasini, M.L.

    1983-01-01

    Msub(r) = 290.8, orthorhombic, Pnma, a = 14.146(6), b = 4.286(3), c = 5.702(3) A, V = 345.7 A 3 , Z = 8, Dsub(x) = 11.17 Mg m - 3 , F(000) = 944, room temperature, lambda (Mo Kα) = 0.71069 A, μ(Mo Kα) = 138 mm - 1 , final R = 0.049 for 306 observed reflections. Contrary to the report of Florio, Baenziger and Rundle [Acta Cryst. (1956), 9, 367-372], ThNi was found to crystallize in a stacking variant of the CrB-FeB types with trigonal-prismatic coordination of the Ni atoms, and recognized to be isotypic with the SrAg phase, having stacking code (hc) 2 . (Auth.)

  13. Broadband reflected wavefronts manipulation using structured phase gradient metasurfaces

    Directory of Open Access Journals (Sweden)

    Xiao-Peng Wang

    2016-06-01

    Full Text Available Acoustic metasurface (AMS is a good candidate to manipulate acoustic waves due to special acoustic performs that cannot be realized by traditional materials. In this paper, we design the AMS by using circular-holed cubic arrays. The advantages of our AMS are easy assemble, subwavelength thickness, and low energy loss for manipulating acoustic waves. According to the generalized Snell’s law, acoustic waves can be manipulated arbitrarily by using AMS with different phase gradients. By selecting suitable hole diameter of circular-holed cube (CHC, some interesting phenomena are demonstrated by our simulations based on finite element method, such as the conversion of incoming waves into surface waves, anomalous reflections (including negative reflection, acoustic focusing lens, and acoustic carpet cloak. Our results can provide a simple approach to design AMSes and use them in wavefront manipulation and manufacturing of acoustic devices.

  14. Dynamical phases of attractive particles sliding on a structured surface

    International Nuclear Information System (INIS)

    Hasnain, J; Jungblut, S; Dellago, C

    2015-01-01

    Inspired by experiments on quartz crystal microbalance setups, we study the mobility of a monolayer of Lennard-Jones particles driven over a hexagonal external potential. We pay special attention to the changes in the dynamical phases that arise when the lattice constant of the external substrate potential and the Lennard-Jones interaction are mismatched. We find that if the average particle separation is such that the particles repel each other, or interact harmonically, the qualitative behavior of the system is akin to that of a monolayer of purely repulsive Yukawa particles. On the other hand, if the particles typically attract each other, the ensuing dynamical states are determined entirely by the relative strength of the Lennard-Jones interaction with respect to that of the external potential. (paper)

  15. Crystal structure and elasticity of Al-bearing phase H under high pressure

    Directory of Open Access Journals (Sweden)

    Guiping Liu

    2018-05-01

    Full Text Available Al has significant effect on properties of minerals. We reported crystal structure and elasticity of phase H, an important potential water reservoir in the mantle, which contains different Al using first principles simulations for understanding the effect of Al on the phase H. The crystal and elastic properties of Al end-member phase H (Al2O4H2 are very different from Mg end-member (MgSiO4H2 phase H and two aluminous phase H (Mg0.875Si0.875Al0.25O4H2 (12.5at%Al and Mg0.75Si0.75Al0.5O4H2 (25at% Al. However differences between Mg end-member phase H and aluminous phase H are slight except for the O-H bond length and octahedron volume. Al located at different crystal positions (original Mg or Si position of aluminous phase H has different AlO6 octahedral volumes. For three Al-bearing phase H, bulk modulus (K, shear modulus (G, compressional wave velocity (Vp and shear wave velocity (Vs increase with increasing Al content. Under high pressure, density of phase H increases with increasing Al content. The Al content affects the symmetry of the phase H and then affects the density and elastic constants of phase H. The total ground energy of phase H also increases with increasing Al content. So an energy barrier for the formation of solid solution of phase H with δ-phase AlOOH is expected. However, if the phase H with δ-phase AlOOH solid solution does exit in the mantle, it may become an important component of the mantle or leads to a low velocity layer at the mantle.

  16. Phase equilibria, crystal structure and oxygen content of intermediate phases in the Y-Ba-Co-O system

    OpenAIRE

    Urusova, A. S.; Cherepanov, V. A.; Aksenova, T. V.; Gavrilova, L. Y.; Kiselev, E. A.

    2013-01-01

    The phase equilibria in the Y-Ba-Co-O system were systematically studied at 1373 K in air. The intermediate phases formed in the Y-Ba-Co-O system at 1373 K in air were: YBaCo2O5+δ, YBaCo4O 7 and BaCo1-yYyO3-δ (0.09≤y≤0.42). It was shown that YBaCo2O5+δ possesses tetragonal structure with the 3ap×3a p×2ap superstructure (sp. gr. P4/mmm). High-temperature X-ray diffraction analysis of the YBaCo2O 5+δ in the temperature range from 298 K up to 1073 K under Po2=0.21 atm has not shown any phase tra...

  17. Kinetic and collision process effects on magnetic structures in pre-disruption phase of tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Farshi, Esmaeil [Kyushu Univ., Advanced Energy Engineering Sciences, Kasuga, Fukuoka (Japan); Goudarzi, Shervin [AEOI, Plasma Physics Department, Tehran (Iran); Amrollahi, Reza [K-N Toosi Univ. of Technology, Tehran (Iran); Sato, Kohnosuke [Kyushu Univ., Research Institute for Applied Mechanics, Kasuga, Fukuoka (Japan)

    2001-07-01

    Oscillations of the parallel and perpendicular neutral fluxes that are observed during pre-disruption stage in recent experiments, show possibility of a structure in pre-disruption phase of tokamak plasmas. This structure oscillates simultaneously with the m=2 mode until the damping of this mode. The perpendicular component of this structure is greater than the parallel one. From other side, there are a good correlation between MHD activity and behavior of charge exchange neutrals, and an enough good correlation between time behavior of charge exchange flux with high energy and OV line radiation in pre-disruption phase. These may witness possibility of a mechanism of losses-excitation of inner transition with help of heavy particles in pre-disruption phase. This mechanism plays an important role in magnetic structures in pre-disruption phase. (author)

  18. Innovative Structural and Material Concepts for Low-Weight Low-Drag Aircraft Design, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this multi-phase project is to explore, develop, integrate, and test several innovative structural design concepts and new material...

  19. Synchrotron radiation : characteristics and application in structural studies and phase transformations of materials

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1984-01-01

    The main characteristics of the synchrotron radiation for studying atomic structure and phase transformations in materials are presented. Some specific applications in alloys, glass and solids are described. (E.G.) [pt

  20. Printed Ultra-High Temperature NDE Sensors for Complex Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposal will address the use of innovative additive manufacturing technologies applicable to Non-Destructive Evaluation (NDE) and Structural...

  1. Phase structure of hot and/or dense QCD with the Schwinger-Dyson equation

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Satoshi [Nagoya Univ., Nagoya, Aichi (Japan)

    2002-09-01

    We investigate the phase structure of the hot and/or dense QCD using the Schwinger-Dyson equation (SDE) with the improved ladder approximation in the Landau gauge. We solve the coupled SDE for the Majorana masses of the quark and antiquark (separately from the SDE for the Dirac mass) in the finite temperature and/or chemical potential region. The resultant phase structure is rather different from those by other analyses. In addition to this analysis we investigate the phase structure with the different two types of the SDE, in one of which the Majorana mass gap of the antiquark is neglected, while in the other of which the Majorana mass gap of the quark and that of the antiquark are set to be equal. The effect of the Debye mass of the gluon on the phase structure is also investigated. (author)

  2. Kinetic and collision process effects on magnetic structures in pre-disruption phase of tokamak plasmas

    International Nuclear Information System (INIS)

    Farshi, Esmaeil; Goudarzi, Shervin; Amrollahi, Reza; Sato, Kohnosuke

    2001-01-01

    Oscillations of the parallel and perpendicular neutral fluxes that are observed during pre-disruption stage in recent experiments, show possibility of a structure in pre-disruption phase of tokamak plasmas. This structure oscillates simultaneously with the m=2 mode until the damping of this mode. The perpendicular component of this structure is greater than the parallel one. From other side, there are a good correlation between MHD activity and behavior of charge exchange neutrals, and an enough good correlation between time behavior of charge exchange flux with high energy and OV line radiation in pre-disruption phase. These may witness possibility of a mechanism of losses-excitation of inner transition with help of heavy particles in pre-disruption phase. This mechanism plays an important role in magnetic structures in pre-disruption phase. (author)

  3. Structures, phase stabilities, and electrical potentials of Li-Si battery anode materials

    KAUST Repository

    Tipton, William W.; Bealing, Clive R.; Mathew, Kiran; Hennig, Richard G.

    2013-01-01

    of composition, and a genetic algorithm coupled to density-functional theory searches the Li-Si binary phase diagram for small-cell, metastable crystal structures. Calculations of the phonon densities of states using density-functional perturbation theory

  4. On the phase structure of lattice SU(2) Gauge-Higgs theory

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Mitryushkin, V.K.; Zadorozhnyj, A.M.; Ilchev, A.S.

    1985-01-01

    The results on the phase structure of SU(2) gauge theory coupled with radially active Higgs fields are iscussed. It is shown that obtained results are not in contradiction with the known ones. The first order phase transitions observed are confirmed by the Monte Carlo calcUlations and by the analysis of an approximate effective potential

  5. On the crystal structure of Z-phase Cr(V,Nb)N

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson; Hald, John; Grumsen, Flemming Bjerg

    2006-01-01

    The Z-phase Cr(YNb)N particles in various 9 to 12 pct Cr creep-resistant steels were investigated with electron diffraction, energy dispersive spectroscopy (EDS), and electron energy loss spectroscopy(EELS). In addition to the well-known tetragonal crystal structure for Z phase, a cubic crystal s...

  6. Phase structure of lattice gauge theories for non-abelian subgroups of SU(3)

    International Nuclear Information System (INIS)

    Grosse, H.; Kuehnelt, H.

    1981-01-01

    The authors study the phase structure of Euclidean lattice gauge theories in four dimensions for certain non-abelian subgroups of SU(3) by using Monte-Carlo simulations and strong coupling expansions. As the order of the group increases a splitting of one phase transition into two is observed. (Auth.)

  7. Crystalline structure in the confined-deconfined mixed phase: Neutron stars as an example

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1996-01-01

    We review the differences in first order phase transition of single and multi-component systems, and then discuss the crystalline structure expected to exist in the mixed confined deconfined phase of hadronic matter. The particular context of neutron stars is chosen for illustration. The qualitative results are general and apply for example to the vapor-liquid transition in subsaturated asymmetric nuclear matter

  8. A direct comparison of protein structure in the gas and solution phase: the Trp-cage

    DEFF Research Database (Denmark)

    Patriksson, Alexandra; Adams, Christopher M; Kjeldsen, Frank

    2007-01-01

    Molecular dynamics simulations of zwitterions of the Trp-cage protein in the gas phase show that the most stable ion in vacuo has preserved the charge locations acquired in solution. A direct comparison of the gas and solution-phase structures reveals that, despite the similarity in charge location...

  9. Confinement of light in periodic structures with negative phase velocity

    International Nuclear Information System (INIS)

    Driss Bria; Abdelmajid Essadqui; Bahram Djafari-Rouhani; Mohamed Azizi; Abdellah Daoudi; Abdelkrim Nougaoui

    2008-08-01

    We discuss unusual features of wave propagation in periodic arrays of slabs made of transparent left-handed metamaterials with simultaneously negative dielectric permittivity and magnetic permeability, and demonstrate the possibility of light confinement due to the appearance of complete photonic band-gaps in such one-dimensional structures. With an appropriate choice of the parameters, we show that it is possible to realize an absolute (or omnidirectional) band gap for either transverse electric (TE) or transverse magnetic (TM) polarizations of the electromagnetic waves. A combination of two multilayer structures composed of right-handed material (RHM) and left-handed metamaterials LHM is proposed to realize, in a certain range of frequency, an omnidirectional reflector of light for both polarizations. (author)

  10. ACOSS Eight (Active Control of Space Structures), Phase 2

    Science.gov (United States)

    1981-09-01

    A-2 A-2 Nominal Model - Equipment Section and Solar Panels ....... A-3 A-3 Nominal Model - Upper Support .-uss ...... ............ A-4 A...sensitivity analysis technique ef selecting critical system parameters is applied tc the Diaper tetrahedral truss structure (See Section 4-2...and solar panels are omitted. The precision section is mounted on isolators to inertially r•" I fixed rigid support. The mode frequencies of this

  11. Code Development for Control Design Applications: Phase I: Structural Modeling

    International Nuclear Information System (INIS)

    Bir, G. S.; Robinson, M.

    1998-01-01

    The design of integrated controls for a complex system like a wind turbine relies on a system model in an explicit format, e.g., state-space format. Current wind turbine codes focus on turbine simulation and not on system characterization, which is desired for controls design as well as applications like operating turbine model analysis, optimal design, and aeroelastic stability analysis. This paper reviews structural modeling that comprises three major steps: formation of component equations, assembly into system equations, and linearization

  12. Structural phase transition at 205 K in stoichiometric vanadium nitride

    International Nuclear Information System (INIS)

    Kubel, F.; Lengauer, W.; Yvon, K.; Knorr, K.; Junod, A.

    1988-01-01

    Vanadium nitride (NaCl structure, [N]/[V]≥0.99, space group Fm3-barm, a = 4.1328(3) A at 298 K) transforms at 205(5) K into a tetragonal, noncentrosymmetric low-temperature modification [space group P4-bar2m, a = 4.1314(3) A, c = 4.1198(3) A at 45 K]. The low-temperature structure was refined from single-crystal x-ray diffraction data collected at two different temperatures (150 K, R = 2.3% for 301 reflections; 20 K, R = 3.9% for 393 reflections). It is characterized by a clustering of the metal atoms into tetrahedral V 4 units with V-V intracluster distances of 2.8534(9) and 2.8515(7) A, and V-V intercluster distances in the range of 2.9147(9) and 2.9853(7) A at 20 K. High-resolution heat-capacity data are presented (20--330 K). A discontinuity is observed at the onset of structural transformation, 204 +- 1 K

  13. Polymer confined in membrane phases: influences on stability, structure and dynamics

    International Nuclear Information System (INIS)

    Javierre, Isabelle

    1999-01-01

    The addition of a hydrosoluble polymer to the different structures obtained with mixtures of water/surfactant/alcohol/oil alters the thermodynamic stability of microemulsion and lamellar phases. The reverse sponge phase disappears while one can observe the occurrence of a new phase, labelled L5, at intermediate polymer concentration. In polymer-'doped' solvent lamellar phase, the polymer induces an attractive contribution to the interaction between bilayers while in polymer-'doped' bilayers lamellar phase, the polymer increases the flexibility. The L5 phase exhibits symmetric sponge properties and furthermore presents very strong symmetry fluctuations. The relaxation of these fluctuations were experimentally evidenced for the first time. This unusual dynamic behaviour was confronted to the one of other sponge phases, in a large range of concentrations. (author) [fr

  14. Molecular structure determination of cyclootane by ab initio and electron diffraction methods in the gas phase

    OpenAIRE

    De Almeida, Wagner B.

    2000-01-01

    The determination of the molecular structure of molecules is of fundamental importance in chemistry. X-rays and electron diffraction methods constitute in important tools for the elucidation of the molecular structure of systems in the solid state and gas phase, respectively. The use of quantum mechanical molecular orbital ab initio methods offer an alternative for conformational analysis studies. Comparison between theoretical results and those obtained experimentally in the gas phase can ma...

  15. Probing Protein Structure and Folding in the Gas Phase by Electron Capture Dissociation

    Science.gov (United States)

    Schennach, Moritz; Breuker, Kathrin

    2015-07-01

    The established methods for the study of atom-detailed protein structure in the condensed phases, X-ray crystallography and nuclear magnetic resonance spectroscopy, have recently been complemented by new techniques by which nearly or fully desolvated protein structures are probed in gas-phase experiments. Electron capture dissociation (ECD) is unique among these as it provides residue-specific, although indirect, structural information. In this Critical Insight article, we discuss the development of ECD for the structural probing of gaseous protein ions, its potential, and limitations.

  16. Accelerated safety analyses - structural analyses Phase I - structural sensitivity evaluation of single- and double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Becker, D.L.

    1994-11-01

    Accelerated Safety Analyses - Phase I (ASA-Phase I) have been conducted to assess the appropriateness of existing tank farm operational controls and/or limits as now stipulated in the Operational Safety Requirements (OSRs) and Operating Specification Documents, and to establish a technical basis for the waste tank operating safety envelope. Structural sensitivity analyses were performed to assess the response of the different waste tank configurations to variations in loading conditions, uncertainties in loading parameters, and uncertainties in material characteristics. Extensive documentation of the sensitivity analyses conducted and results obtained are provided in the detailed ASA-Phase I report, Structural Sensitivity Evaluation of Single- and Double-Shell Waste Tanks for Accelerated Safety Analysis - Phase I. This document provides a summary of the accelerated safety analyses sensitivity evaluations and the resulting findings

  17. Theory of structural phase transition in MgTi{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Talanov, V. M., E-mail: valtalanov@mail.ru [South Russian State Polytechnical University (Russian Federation); Shirokov, V. B. [Russian Academy of Sciences, South Science Centre (Russian Federation); Ivanov, V. V. [South Russian State Polytechnical University (Russian Federation); Talanov, M. V. [South Federal University (Russian Federation)

    2015-01-15

    A theory of phase transition in MgTi{sub 2}O{sub 4} is proposed based on a study of the order-parameter symmetry, thermodynamics, and mechanisms of formation of the atomic and orbital structure of the low-symmetry MgTi{sub 2}O{sub 4} phase. The critical order parameter (which induces a phase transition) is determined. It is shown that the calculated MgTi{sub 2}O{sub 4} tetragonal structure is a result of displacements of magnesium, titanium, and oxygen atoms; ordering of oxygen atoms; and the participation of d{sub xy}, d{sub xz}, and d{sub yz} orbitals. The contribution of noncritical representations to ion displacements is proven to be insignificant. The existence of various metal clusters in the tetragonal phase has been established by calculation in correspondence with experimental data. It is shown (within the Landau theory of phase transitions) that phase states can be changed as a result of both first- and second-order phase transitions: the high-symmetry phase borders two low-symmetry phases by second-order transition lines, while the border between low-symmetry phases is a first-order transition line.

  18. Local structure, composition, and crystallization mechanism of a model two-phase “composite nanoglass”

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Soma; Shibata, Tomohiro [CSRRI-IIT, MRCAT, Sector 10, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kelly, S. D. [EXAFS Analysis, Bolingbrook, Illinois 60440 (United States); Balasubramanian, M. [Sector 20 XOR, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Srinivasan, S. G.; Du, Jincheng; Banerjee, Rajarshi [Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203-5017 (United States); Ayyub, Pushan, E-mail: pushan@tifr.res.in [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2016-02-14

    We report a detailed study of the local composition and structure of a model, bi-phasic nanoglass with nominal stoichiometry Cu{sub 55}Nb{sub 45}. Three dimensional atom probe data suggest a nanoscale-phase-separated glassy structure having well defined Cu-rich and Nb-rich regions with a characteristic length scale of ≈3 nm. However, extended x-ray absorption fine structure analysis indicates subtle differences in the local environments of Cu and Nb. While the Cu atoms displayed a strong tendency to cluster and negligible structural order beyond the first coordination shell, the Nb atoms had a larger fraction of unlike neighbors (higher chemical order) and a distinctly better-ordered structural environment (higher topological order). This provides the first experimental indication that metallic glass formation may occur due to frustration arising from the competition between chemical ordering and clustering. These observations are complemented by classical as well as ab initio molecular dynamics simulations. Our study indicates that these nanoscale phase-separated glasses are quite distinct from the single phase nanoglasses (studied by Gleiter and others) in the following three respects: (i) they contain at least two structurally and compositionally distinct, nanodispersed, glassy phases, (ii) these phases are separated by comparatively sharp inter-phase boundaries, and (iii) thermally induced crystallization occurs via a complex, multi-step mechanism. Such materials, therefore, appear to constitute a new class of disordered systems that may be called a composite nanoglass.

  19. Revision of the Ge–Ti phase diagram and structural stability of the new phase Ge4Ti5

    International Nuclear Information System (INIS)

    Bittner, Roland W.; Colinet, Catherine; Tedenac, Jean-Claude; Richter, Klaus W.

    2013-01-01

    Highlights: •New compound Ge 4 Ti 5 found by experiments and by DFT ground state calculations. •Enthalpies of formation calculated for different Ge–Ti compounds. •Modifications of the Ge–Ti phase diagram suggested. -- Abstract: The binary phase diagram Ge–Ti was investigated experimentally by powder X-ray diffraction, scanning electron microscopy including EDX analysis, and differential thermal analysis. Total energies of the compounds GeTi 3 , GeTi 2 , Ge 3 Ti 5 , Ge 4 Ti 5 , Ge 5 Ti 6 , GeTi and Ge 2 Ti were calculated for various structure types employing electronic density-functional theory (DFT). Experimental studies as well as electronic calculations show the existence of a new phase Ge 4 Ti 5 (Ge 4 Sm 5 -type, oP36, Pnma) which is formed in a solid state reaction Ge 3 Ti 5 + Ge 5 Ti 6 = Ge 4 Ti 5 . In addition, a significant homogeneity range was observed for the compound Ge 3 Ti 5 and the composition of the liquid phase in the eutectic reaction L = Ge + Ge 2 Ti was found to be at significant higher Ge-content (97.5 at.% Ge) than reported in previous studies. Based on these new results, a modified phase diagram Ge–Ti is suggested. The zero-temperature lattice parameters and the formation enthalpies determined by DTF calculations were found to be in good agreement with experimental data

  20. Phase field theory of proper displacive phase transformations: Structural anisotropy and directional flexibility, a vector model, and the transformation kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Rao Weifeng [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854 (United States); Khachaturyan, Armen G., E-mail: khach@jove.rutgers.edu [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854 (United States)

    2011-06-15

    A phase field theory of proper displacive transformations is developed to address the microstructure evolution and its response to applied fields in decomposing and martensitic systems. The theory is based on the explicit equation for the non-equilibrium free energy function of the transformation strain obtained by a consistent separation of the total strain into transformation and elastic strains. The transformation strain is considered to be a relaxing long-range order parameter evolving in accordance with the system energetics rather than as a fixed material constant used in the conventional Eshelby theory of coherent inclusions. The elastic strain is defined as a coherency strain recovering the crystal lattice compatibility. The obtained free energy function of the transformation strain leads to the concepts of structural anisotropy and directional flexibility of low symmetry phases. The formulated vector model of displacive transformation makes apparent a similarity between proper displacive transformation and ferromagnetic/ferroelectric transformation and, in particular, a similarity between the structural anisotropy and magnetic/polar anisotropy of ferromagnetic/ferroelectric materials. It even predicts the feasibility of a glass-like structural state with unlimited directional flexibility of the transformation strain that is conceptually similar to a ferromagnetic glass. The thermodynamics of the equilibrium between low symmetry phases and the thermodynamic conditions leading to the formation of adaptive states are formulated.

  1. Swelling, Structure, and Phase Stability of Soft, Compressible Microgels

    Science.gov (United States)

    Denton, Alan R.; Urich, Matthew

    Microgels are soft colloidal particles that swell when dispersed in a solvent. The equilibrium particle size is governed by a delicate balance of osmotic pressures, which can be tuned by varying single-particle properties and externally controlled conditions, such as temperature, pH, ionic strength, and concentration. Because of their tunable size and ability to encapsulate dye or drug molecules, microgels have practical relevance for biosensing, drug delivery, carbon capture, and filtration. Using Monte Carlo simulation, we model suspensions of microgels that interact via Hertzian elastic interparticle forces and can expand or contract via trial size changes governed by the Flory-Rehner free energy of cross-linked polymer gels. We analyze the influence of particle compressibility and size fluctuations on bulk structural and thermal properties by computing swelling ratios, radial distribution functions, static structure factors, osmotic pressures, and freezing densities. With increasing density, microgels progressively deswell and their intrinsic polydispersity broadens, while compressibility acts to forestall crystallization. This work was supported by the National Science Foundation under Grant No. DMR- 1106331.

  2. Ramsdellite-structured LiTiO 2: A new phase predicted from ab initio calculations

    Science.gov (United States)

    Koudriachova, M. V.

    2008-06-01

    A new phase of highly lithiated titania with potential application as an anode in Li-rechargeable batteries is predicted on the basis of ab initio calculations. This phase has a composition LiTiO2 and may be accessed through electrochemical lithiation of ramsdellite-structured TiO2 at the lowest potential reported for titanium dioxide based materials. The potential remains constant over a wide range of Li-concentrations. The new phase is metastable with respect to a tetragonally distorted rock salt structure, which hitherto has been the only known polymorph of LiTiO2.

  3. Structural stability, electronic, mechanical and superconducting properties of CrC and MoC

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, M.; Sudha Priyanga, G. [Department of Physics, N.M.S.S.V.N College, Madurai 625019, Tamilnadu (India); Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com [Department of Physics, N.M.S.S.V.N College, Madurai 625019, Tamilnadu (India); Iyakutti, K. [Department of Physics and Nanotechnology, SRM University, Chennai 603203, Tamilnadu (India)

    2016-02-01

    The structural, electronic, mechanical and superconducting properties of chromium carbide (CrC) and molybdenum carbide (MoC) are investigated using first principles calculations based on density functional theory (DFT). The computed ground state properties like equilibrium lattice constants and cell volume are in good agreement with available theoretical and experimental data. A pressure induced structural phase transition from tungsten carbide phase (WC) to zinc blende phase (ZB) and then zinc blende phase (ZB) to nickel arsenide phase (NiAs) are observed in both chromium and molybdenum carbides. Electronic structure reveals that these carbides are metallic at ambient condition. All the calculated elastic constants obey the Born–Huang stability criteria, suggesting that they are mechanically stable at normal and high pressure. The super conducting transition temperatures for CrC and MoC in WC phase are found to be 31.12 K and 17.14 K respectively at normal pressure. - Highlights: • Electronic and mechanical properties of CrC and MoC are investigated. • Pressure induced structural phase transition is predicted at high pressure. • Electronic structure reveals that these materials exhibit metallic behaviour. • Debye temperature values are computed for CrC and MoC. • Superconducting transition temperature values are computed.

  4. Structural phase transition and precursor phenomena in V3Si

    International Nuclear Information System (INIS)

    Kobayashi, T.; Fukase, T.; Toyota, N.; Muto, Y.

    1982-01-01

    Thermal dilation experiments on the transforming single crystals V 3 Si indicated that the precursor of the structural transformation at Tsub(m) of about 21 K starts at anomalously high temperatures (proportional70 K) and grows drastically near Tsub(m). This anomaly is also accompanied by the critical increment of electrical resistivity showing a sharp peak at Tsub(m). The application of the uniaxial stress suppresses the resistivity anomaly and makes the superconducting transition width narrower. We propose a model for the precursor phenomena in terms of (1) the directional strain fields (non-cubic) pinned near the defects and (2) the memory effect of orientation of the tetragonal domains born by the defects such as dislocations. (orig.)

  5. Direct phase selection of initial phases from single-wavelength anomalous dispersion (SAD) for the improvement of electron density and ab initio structure determination

    International Nuclear Information System (INIS)

    Chen, Chung-De; Huang, Yen-Chieh; Chiang, Hsin-Lin; Hsieh, Yin-Cheng; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Chen, Chun-Jung

    2014-01-01

    A novel direct phase-selection method to select optimized phases from the ambiguous phases of a subset of reflections to replace the corresponding initial SAD phases has been developed. With the improved phases, the completeness of built residues of protein molecules is enhanced for efficient structure determination. Optimization of the initial phasing has been a decisive factor in the success of the subsequent electron-density modification, model building and structure determination of biological macromolecules using the single-wavelength anomalous dispersion (SAD) method. Two possible phase solutions (ϕ 1 and ϕ 2 ) generated from two symmetric phase triangles in the Harker construction for the SAD method cause the well known phase ambiguity. A novel direct phase-selection method utilizing the θ DS list as a criterion to select optimized phases ϕ am from ϕ 1 or ϕ 2 of a subset of reflections with a high percentage of correct phases to replace the corresponding initial SAD phases ϕ SAD has been developed. Based on this work, reflections with an angle θ DS in the range 35–145° are selected for an optimized improvement, where θ DS is the angle between the initial phase ϕ SAD and a preliminary density-modification (DM) phase ϕ DM NHL . The results show that utilizing the additional direct phase-selection step prior to simple solvent flattening without phase combination using existing DM programs, such as RESOLVE or DM from CCP4, significantly improves the final phases in terms of increased correlation coefficients of electron-density maps and diminished mean phase errors. With the improved phases and density maps from the direct phase-selection method, the completeness of residues of protein molecules built with main chains and side chains is enhanced for efficient structure determination

  6. A search for the ground state structure and the phase stability of tantalum pentoxide

    International Nuclear Information System (INIS)

    Pérez-Walton, S; Valencia-Balvín, C; Padilha, A C M; Dalpian, G M; Osorio-Guillén, J M

    2016-01-01

    Tantalum pentoxide (Ta 2 O 5 ) is a wide-gap semiconductor that presents good catalytic and dielectric properties, conferring to this compound promising prospective use in a variety of technological applications. However, there is a lack of understanding regarding the relations among its crystalline phases, as some of them are not even completely characterized and there is currently no agreement about which models better explain the crystallographic data. Additionally, its phase diagram is unknown. In this work we performed first-principles density functional theory calculations to study the structural properties of the different phases and models of Ta 2 O 5 , the equation of state and the zone-centered vibrational frequencies. From our results, we conclude that the phases that are built up from only distorted octahedra instead of combinations with pentagonal and/or hexagonal bipyramids are energetically more favorable and dynamically stable. More importantly, this study establishes that, given the pressure range considered, the B-phase is the most favorable structure and there is no a crystallographic phase transition to another phase at high-pressure. Additionally, for the equilibrium volume of the B-phase and the λ-model, the description of the electronic structure and optical properties were performed using semi-local and hybrid functionals. (paper)

  7. Nano-phase separation and structural ordering in silica-rich mixed network former glasses.

    Science.gov (United States)

    Liu, Hao; Youngman, Randall E; Kapoor, Saurabh; Jensen, Lars R; Smedskjaer, Morten M; Yue, Yuanzheng

    2018-06-13

    We investigate the structure, phase separation, glass transition, and crystallization in a mixed network former glass series, i.e., B2O3-Al2O3-SiO2-P2O5 glasses with varying SiO2/B2O3 molar ratio. All the studied glasses exhibit two separate glassy phases: droplet phase (G1) with the size of 50-100 nm and matrix phase (G2), corresponding to a lower calorimetric glass transition temperature (Tg1) and a higher one (Tg2), respectively. Both Tg values decrease linearly with the substitution of B2O3 for SiO2, but the magnitude of the decrease is larger for Tg1. Based on nuclear magnetic resonance and Raman spectroscopy results, we infer that the G1 phase is rich in boroxol rings, while the G2 phase mainly involves the B-O-Si network. Both phases contain BPO4- and AlPO4-like units. Ordered domains occur in G2 upon isothermal and dynamic heating, driven by the structural heterogeneity in the as-prepared glasses. The structural ordering lowers the activation energy of crystal growth, thus promoting partial crystallization of G2. These findings are useful for understanding glass formation and phase separation in mixed network former oxide systems, and for tailoring their properties.

  8. Distortion of Local Atomic Structures in Amorphous Ge-Sb-Te Phase Change Materials

    Science.gov (United States)

    Hirata, A.; Ichitsubo, T.; Guan, P. F.; Fujita, T.; Chen, M. W.

    2018-05-01

    The local atomic structures of amorphous Ge-Sb-Te phase-change materials have yet to be clarified and the rapid crystal-amorphous phase change resulting in distinct optical contrast is not well understood. We report the direct observation of local atomic structures in amorphous Ge2Sb2Te5 using "local" reverse Monte Carlo modeling dedicated to an angstrom-beam electron diffraction analysis. The results corroborated the existence of local structures with rocksalt crystal-like topology that were greatly distorted compared to the crystal symmetry. This distortion resulted in the breaking of ideal octahedral atomic environments, thereby forming local disordered structures that basically satisfied the overall amorphous structure factor. The crystal-like distorted octahedral structures could be the main building blocks in the formation of the overall amorphous structure of Ge-Sb-Te.

  9. Systematic comparison of crystalline and amorphous phases: Charting the landscape of water structures and transformations

    International Nuclear Information System (INIS)

    Pietrucci, Fabio; Martoňák, Roman

    2015-01-01

    Systematically resolving different crystalline phases starting from the atomic positions, a mandatory step in algorithms for the prediction of structures or for the simulation of phase transitions, can be a non-trivial task. Extending to amorphous phases and liquids which lack the discrete symmetries, the problem becomes even more difficult, involving subtle topological differences at medium range that, however, are crucial to the physico-chemical and spectroscopic properties of the corresponding materials. Typically, system-tailored order parameters are devised, like global or local symmetry indicators, ring populations, etc. We show that a recently introduced metric provides a simple and general solution to this intricate problem. In particular, we demonstrate that a map can be traced displaying distances among water phases, including crystalline as well as amorphous states and the liquid, consistently with experimental knowledge in terms of phase diagram, structural features, and preparation routes

  10. Phase and structural transformations in annealed copper coatings in relation to oxide whisker growth

    Energy Technology Data Exchange (ETDEWEB)

    Dorogov, M.V.; Priezzheva, A.N. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Vlassov, S., E-mail: vlassovs@ut.ee [Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Kink, I.; Shulga, E. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Dorogin, L.M. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); ITMO University, Kronverkskiy 49, 197101 Saint Petersburg (Russian Federation); Lõhmus, R. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Tyurkov, M.N.; Vikarchuk, A.A. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Romanov, A.E. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); ITMO University, Kronverkskiy 49, 197101 Saint Petersburg (Russian Federation); Ioffe Physical Technical Institute, RAS, Polytechnicheskaya 26, 194021 Saint Petersburg (Russian Federation)

    2015-08-15

    Highlights: • Coatings prepared by Cu microparticle electrodeposition. • Structural and phase transformation in Cu coatings annealed at 400 °C. • Annealing is accompanied by intensive growth of CuO whiskers. • Layered oxide phases (Cu{sub 2}O and CuO) in the coating are characterized. • Formation of volumetric defects in the coating is demonstrated. - Abstract: We describe structural and phase transformation in copper coatings made of microparticles during heating and annealing in air in the temperature range up to 400 °C. Such thermal treatment is accompanied by intensive CuO nanowhisker growth on the coating surface and the formation of the layered oxide phases (Cu{sub 2}O and CuO) in the coating interior. X-ray diffraction and focused ion beam (FIB) are employed to characterize the multilayer structure of annealed copper coatings. Formation of volumetric defects such as voids and cracks in the coating is demonstrated.

  11. Shear-induced structural transitions in Newtonian non-Newtonian two-phase flow

    Science.gov (United States)

    Cristobal, G.; Rouch, J.; Colin, A.; Panizza, P.

    2000-09-01

    We show the existence under shear flow of steady states in a two-phase region of a brine-surfactant system in which lyotropic dilute lamellar (non-Newtonian) and sponge (Newtonian) phases are coexisting. At high shear rates and low sponge phase-volume fractions, we report on the existence of a dynamic transition corresponding to the formation of a colloidal crystal of multilamellar vesicles (or ``onions'') immersed in the sponge matrix. As the sponge phase-volume fraction increases, this transition exhibits a hysteresis loop leading to a structural bistability of the two-phase flow. Contrary to single phase lamellar systems where it is always 100%, the onion volume fraction can be monitored continuously from 0 to 100 %.

  12. Stability of Hydrogen-Bonded Supramolecular Architecture under High Pressure Conditions: Pressure-Induced Amorphization in Melamine-Boric Acid Adduct

    International Nuclear Information System (INIS)

    Wang, K.; Duan, D.; Wang, R.; Lin, A.; Cui, Q.; Liu, B.; Cui, T.; Zou, B.; Zhang, X.

    2009-01-01

    The effects of high pressure on the structural stability of the melamine-boric acid adduct (C3N6H6 2H3BO3, M 2B), a three-dimensional hydrogen-bonded supramolecular architecture, were studied by in situ synchrotron X-ray diffraction (XRD) and Raman spectroscopy. M 2B exhibited a high compressibility and a strong anisotropic compression, which can be explained by the layerlike crystal packing. Furthermore, evolution of XRD patterns and Raman spectra indicated that the M 2B crystal undergoes a reversible pressure-induced amorphization (PIA) at 18 GPa. The mechanism for the PIA was attributed to the competition between close packing and long-range order. Ab initio calculations were also performed to account for the behavior of hydrogen bonding under high pressure.

  13. The Age-ility Project (Phase 1): Structural and functional imaging and electrophysiological data repository

    NARCIS (Netherlands)

    Karayanidis, F.; Keuken, M.C.; Wong, A.; Rennie, J.L.; de Hollander, G.; Cooper, P.S.; Fulham, W.R.; Lenroot, R.; Parsons, M.; Philips, N.; Michie, P.T.; Forstmann, B.U.

    2015-01-01

    Our understanding of the complex interplay between structural and functional organisation of brain networks is being advanced by the development of novel multi-modal analyses approaches. The Age-ility Project (Phase 1) data repository offers open access to structural MRI, diffusion MRI, and

  14. Phase structure of three- and four-dimensional φ4 field theory

    International Nuclear Information System (INIS)

    Efimov, G.V.

    1991-01-01

    Strong coupling regime of gφ theory in space-time R d for d=3,4 is investigated by the methods of canonical transformations and renormalization group. Comparison with the case d=2 shows a crucial influence of the renormalization structure of the theory of its phase structure. 19 refs.; 7 figs.; 1 tab

  15. Large scale electronic structure calculations in the study of the condensed phase

    NARCIS (Netherlands)

    van Dam, H.J.J.; Guest, M.F.; Sherwood, P.; Thomas, J.M.H.; van Lenthe, J.H.; van Lingen, J.N.J.; Bailey, C.L.; Bush, I.J.

    2006-01-01

    We consider the role that large-scale electronic structure computations can now play in the modelling of the condensed phase. To structure our analysis, we consider four distict ways in which today's scientific targets can be re-scoped to take advantage of advances in computing resources: 1. time to

  16. Pressure-induced reversal between thermal contraction and expansion in ferroelectric PbTiO3.

    Science.gov (United States)

    Zhu, Jinlong; Zhang, Jianzhong; Xu, Hongwu; Vogel, Sven C; Jin, Changqing; Frantti, Johannes; Zhao, Yusheng

    2014-01-15

    Materials with zero/near zero thermal expansion coefficients are technologically important for applications in thermal management and engineering. To date, this class of materials can only be produced by chemical routes, either by changing chemical compositions or by composting materials with positive and negative thermal expansion. Here, we report for the first time a physical route to achieve near zero thermal expansion through application of pressure. In the stability field of tetragonal PbTiO3 we observed pressure-induced reversals between thermal contraction and expansion between ambient pressure and 0.9 GPa. This hybrid behavior leads to a mathematically infinite number of crossover points in the pressure-volume-temperature space and near-zero thermal expansion coefficients comparable to or even smaller than those attained by chemical routes. The observed pressures for this unusual phenomenon are within a small range of 0.1-0.9 GPa, potentially feasible for designing stress-engineered materials, such as thin films and nano-crystals, for thermal management applications.

  17. Unexpected pressure induced ductileness tuning in sulfur doped polycrystalline nickel metal

    Directory of Open Access Journals (Sweden)

    Cheng Guo

    2018-02-01

    Full Text Available The sulfur induced embrittlement of polycrystalline nickel (Ni metal has been a long-standing mystery. It is suggested that sulfur impurity makes ductile Ni metal brittle in many industry applications due to various mechanisms, such as impurity segregation and disorder-induced melting etc. Here we report an observation that the most ductile measurement occurs at a critical sulfur doping concentration, 14 at.% at pressure from 14 GPa up to 29 GPa through texture evolution analysis. The synchrotron-based high pressure texturing measurements using radial diamond anvil cell (rDAC X-ray diffraction (XRD techniques reveal that the activities of slip systems in the polycrystalline nickel metal are affected by sulfur impurities and external pressures, giving rise to the changes in the plastic deformation of the nickel metal. Dislocation dynamics (DD simulation on dislocation density and velocity further confirms the pressure induced ductilization changes in S doped Ni metal. This observation and simulation suggests that the ductilization of the doped polycrystalline nickel metal can be optimized by engineering the sulfur concentration under pressure, shedding a light on tuning the mechanical properties of this material for better high pressure applications.

  18. The pressure-induced, lactose-dependent changes in the composition and size of casein micelles.

    Science.gov (United States)

    Wang, Pengjie; Jin, Shaoming; Guo, Huiyuan; Zhao, Liang; Ren, Fazheng

    2015-04-15

    The effects of lactose on the changes in the composition and size of casein micelles induced by high-pressure treatment and the related mechanism of action were investigated. Dispersions of ultracentrifuged casein micelle pellets with 0-10% (w/v) lactose were subjected to high pressure (400 MPa) at 20 °C for 40 min. The results indicated that the level of non-sedimentable caseins was positively related to the amount of lactose added prior to pressure treatment, and negatively correlated to the size. A mechanism for the pressure-induced, lactose-dependent changes in the casein micelles is proposed. Lactose inhibits the hydrophobic interactions between the micellar fragments during or after pressure release, through the hydrophilic layer formed by their hydrogen bonds around the micellar fragments. In addition, lactose does not favour the association between calcium and the casein aggregates after pressure release. Due to these two functions, lactose inhibited the formation of larger micelles after pressure treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Pressure-induced valence change and moderate heavy fermion state in Eu-compounds

    Science.gov (United States)

    Honda, Fuminori; Okauchi, Keigo; Sato, Yoshiki; Nakamura, Ai; Akamine, Hiromu; Ashitomi, Yosuke; Hedo, Masato; Nakama, Takao; Takeuchi, Tetsuya; Valenta, Jaroslav; Prchal, Jiri; Sechovský, Vladimir; Aoki, Dai; Ōnuki, Yoshichika

    2018-05-01

    A pressure-induced valence transition has attracted much attention in Eu-compounds. Among them, EuRh2Si2, EuNi2Ge2, and EuCo2Ge2 reveal the valence transition around 1, 2, and 3 GPa, respectively. We have succeeded in growing single crystals of EuT2X2 (T: transition metal, X: Si, Ge) and studied electronic properties under pressure. EuRh2Si2 indicates a first-order valence transition between 1 and 2 GPa, with a large and prominent hysteresis in the electrical resistivity. At higher pressures, the first-order valence transition changes to a cross-over regime with an intermediate valence state. Tuning of the valence state with pressure is reflected in a drastic change of the temperature dependence of the electrical resistivity in EuRh2Si2 single crystals. Effect of pressure on the valence states on EuRh2Si2, EuIr2Si2, EuNi2Ge2, and EuCo2Ge2, as well as an isostructural related compound EuGa4, are reviewed.

  20. Unexpected pressure induced ductileness tuning in sulfur doped polycrystalline nickel metal

    Science.gov (United States)

    Guo, Cheng; Yang, Yan; Tan, Liuxi; Lei, Jialin; Guo, Shengmin; Chen, Bin; Yan, Jinyuan; Yang, Shizhong

    2018-02-01

    The sulfur induced embrittlement of polycrystalline nickel (Ni) metal has been a long-standing mystery. It is suggested that sulfur impurity makes ductile Ni metal brittle in many industry applications due to various mechanisms, such as impurity segregation and disorder-induced melting etc. Here we report an observation that the most ductile measurement occurs at a critical sulfur doping concentration, 14 at.% at pressure from 14 GPa up to 29 GPa through texture evolution analysis. The synchrotron-based high pressure texturing measurements using radial diamond anvil cell (rDAC) X-ray diffraction (XRD) techniques reveal that the activities of slip systems in the polycrystalline nickel metal are affected by sulfur impurities and external pressures, giving rise to the changes in the plastic deformation of the nickel metal. Dislocation dynamics (DD) simulation on dislocation density and velocity further confirms the pressure induced ductilization changes in S doped Ni metal. This observation and simulation suggests that the ductilization of the doped polycrystalline nickel metal can be optimized by engineering the sulfur concentration under pressure, shedding a light on tuning the mechanical properties of this material for better high pressure applications.

  1. Causal Correlation Functions and Fourier Transforms: Application in Calculating Pressure Induced Shifts

    Science.gov (United States)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2012-01-01

    By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.

  2. PPARγ ligands decrease hydrostatic pressure-induced platelet aggregation and proinflammatory activity.

    Directory of Open Access Journals (Sweden)

    Fang Rao

    Full Text Available Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ. We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg or increased (120, 180, 240 mmHg hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg. The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs. These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure.

  3. PPARγ ligands decrease hydrostatic pressure-induced platelet aggregation and proinflammatory activity.

    Science.gov (United States)

    Rao, Fang; Yang, Ren-Qiang; Chen, Xiao-Shu; Xu, Jin-Song; Fu, Hui-Min; Su, Hai; Wang, Ling

    2014-01-01

    Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ). We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg) or increased (120, 180, 240 mmHg) hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa) binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L) was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg). The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs). These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure.

  4. Patients with vestibular loss, tullio phenomenon, and pressure-induced nystagmus: vestibular atelectasis?

    Science.gov (United States)

    Wenzel, Angela; Ward, Bryan K; Schubert, Michael C; Kheradmand, Amir; Zee, David S; Mantokoudis, Georgios; Carey, John Patrick

    2014-06-01

    To propose an etiology for a syndrome of bilateral vestibular hypofunction and sound and/or pressure-evoked eye movements with normal hearing thresholds. Retrospective case series. Tertiary care referral center. Four patients with bilateral vestibular hypofunction, sound and/or pressure-evoked nystagmus and normal hearing thresholds were identified over a 3-year period. No evidence of other known vestibular disorders was identified. None of these patients presented with a history of exposure to toxins, radiation, aminoglycosides or chemotherapy; head trauma; or a family history of inherited vestibular loss. All patients underwent high-resolution CT scan of the temporal bones to evaluate for labyrinthine dehiscence. Additionally, all individuals underwent audiometric testing to ANSI standards, vestibular-evoked myogenic potentials (VEMP) testing using either click stimulus cervical VEMPs (cVEMPs), or tone burst ocular VEMPs (oVEMPs). Bithermal caloric stimulation was used to measure horizontal semicircular canal function, with either videonystagmography (VNG) or electronystagmography (ENG) to record eye movements. Individual responses of each of the 6 semicircular canals (SCC) to rapid head rotations were tested with the bedside head impulse test. We identified 4 patients with a combination of bilateral vestibular hypofunction and sound and/or pressure-induced eye movements, normal-hearing thresholds and no evidence for any other vestibular disorder. We suggest that this unique combination of symptoms should be considered as the clinical presentation of vestibular atelectasis, which has been previously described histologically as collapse of the endolymph-containing portions of the labyrinth.

  5. Phosphotyrosine phosphatase and tyrosine kinase inhibition modulate airway pressure-induced lung injury.

    Science.gov (United States)

    Parker, J C; Ivey, C L; Tucker, A

    1998-11-01

    We determined whether drugs which modulate the state of protein tyrosine phosphorylation could alter the threshold for high airway pressure-induced microvascular injury in isolated perfused rat lungs. Lungs were ventilated for successive 30-min periods with peak inflation pressures (PIP) of 7, 20, 30, and 35 cmH2O followed by measurement of the capillary filtration coefficient (Kfc), a sensitive index of hydraulic conductance. In untreated control lungs, Kfc increased by 1.3- and 3.3-fold relative to baseline (7 cmH2O PIP) after ventilation with 30 and 35 cmH2O PIP. However, in lungs treated with 100 microM phenylarsine oxide (a phosphotyrosine phosphatase inhibitor), Kfc increased by 4.7- and 16.4-fold relative to baseline at these PIP values. In lungs treated with 50 microM genistein (a tyrosine kinase inhibitor), Kfc increased significantly only at 35 cmH2O PIP, and the three groups were significantly different from each other. Thus phosphotyrosine phosphatase inhibition increased the susceptibility of rat lungs to high-PIP injury, and tyrosine kinase inhibition attenuated the injury relative to the high-PIP control lungs.

  6. Gas Phase Structure of Amino Acids: La-Mb Studies

    Science.gov (United States)

    Mata, I. Pena S.; Sanz, M. E.; Vaquero, V.; Cabezas, C.; Perez, C.; Blanco, S.; López, J. C.; Alonso, J. L.

    2009-06-01

    Recent improvements in our laser ablation molecular beam Fourier transform microwave (LA-MB-FTMW) spectrometer such as using Laval-type nozzles and picoseconds Nd:YAG lasers (30 to 150 ps) have allowed a major step forward in the capabilities of this experimental technique as demonstrated by the last results in serine cysteine and threonine^a for which seven, six and seven conformers have been respectively identified. Taking advantage of these improvements we have investigated the natural amino acids metionine, aspartic and glutamic acids and the γ-aminobutyric acid (GABA) with the aim of identify and characterize their lower energy conformers. Searches in the rotational spectra have lead to the identification of seven conformers of metionine, six and five of aspartic and glutamic acids, respectively, and seven for the γ-aminobutyric. These conformers have been unambiguously identified by their spectroscopic constants. In particular the ^{14}N nuclear quadrupole coupling constants, that depend heavily on the orientation of the amino group with respect to the principal inertial axes of the molecule, prove to be a unique tool to distinguish unambigously between conformations with similar rotational constants. For the γ-aminobutyric acid two of the seven observed structures are stablized by an intramolecular interaction n-π*. Two new conformers of proline have been identified together with the two previously observed. J. L. Alonso, C. Pérez, M. E. Sanz, J. C. López, S. Blanco, Phys.Chem.Chem.Phys., 2009, 11, 617. D. B. Atkinson, M. A. Smith, Rev. Sci. Instrum. 1995, 66, 4434 S. Blanco, M. E. Sanz, J. C. López, J. L. Alonso, Proc. Natl. Acad. Sci. USA2007, 104, 20183. M. E. Sanz, S. Blanco, J. C. López, J. L. Alonso, Angew. Chem. Int. Ed.,2008, 120, 6312. A. Lesarri, S. Mata, E. J. Cocinero, S. Blanco, J.C. López, J. L. Alonso, Angew. Chem. Int. Ed. , 2002, 41, 4673

  7. Commensurate and incommensurate '5M' modulated crystal structures in Ni-Mn-Ga martensitic phases

    International Nuclear Information System (INIS)

    Righi, L.; Albertini, F.; Pareti, L.; Paoluzi, A.; Calestani, G.

    2007-01-01

    It is well known that the composition of ferromagnetic shape memory Ni-Mn-Ga Heusler alloys determines both temperature of martensitic transformations and the structure type of the product phase. In the present work we focused our attention on the structural study of the so-called '5M' modulated structure. In particular, the structure of Ni 1.95 Mn 1.19 Ga 0.86 martensitic phase is analysed by powder X-ray diffraction (PXRD) and compared with that of the stoichiometric Ni 2 MnGa martensite. The study of the diffraction data reveals the occurrence of commensurate (C) structural modulation in Ni 1.95 Mn 1.19 Ga 0.86 ; this contrasts with Ni 2 MnGa, where an incommensurate (IC) structural modulation was evident. The two phases also differ in the symmetry of the fundamental martensitic lattice. In fact, the incommensurate modulation is related to an orthorhombic basic structure, while the commensurate variant presents a monoclinic symmetry. The commensurate modulated structure has been investigated by using the superspace approach already adopted to solve the structure of Ni 2 MnGa martensite. The structure has been determined by Rietveld refinement of PXRD data

  8. Electronic structure and high pressure phase transition in LaSb and CeSb

    International Nuclear Information System (INIS)

    Mathi Jaya, S.; Sanyal, S.P.

    1992-09-01

    The electronic structure and high pressure structural phase transition in cerium and lanthanum antimonides have been investigated using the tight binding LMTO method. The calculation of total energy reveals that the simple tetragonal structure is found to be stable at high pressures for both the compounds. In the case of LaSb, the calculated value of the equilibrium cell volume and the cell volume at which phase transition occurs are found to have a fairly good agreement with the experimental results. However, in the case of CeSb, the agreement is not as good as in LaSb. We also predicted the most favoured c/a value in the high pressure phase (simple tetragonal) for these compounds. Further we present the calculated results on the electronic structure of these systems at the equilibrium as well as at the reduced cell volumes. (author). 8 refs, 11 figs, 1 tab

  9. Application of Ultrasonic Phased Array Technology to the Detection of Defect in Composite Stiffened-structures

    Science.gov (United States)

    Zhou, Yuan-Qi; Zhan, Li-Hua

    2016-05-01

    Composite stiffened-structure consists of the skin and stringer has been widely used in aircraft fuselage and wings. The main purpose of the article is to detect the composite material reinforced structure accurately and explore the relationship between defect formation and structural elements or curing process. Based on ultrasonic phased array inspection technology, the regularity of defects in the manufacture of composite materials are obtained, the correlation model between actual defects and nondestructive testing are established. The article find that the forming quality of deltoid area in T-stiffened structure is obviously improved by pre-curing, the defects of hat-stiffened structure are affected by the mandrel. The results show that the ultrasonic phased array inspection technology can be an effectively way for the detection of composite stiffened-structures, which become an important means to control the defects of composite and improve the quality of the product.

  10. Structural properties of the metastable state of phase change materials investigated by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Merkelbach, Philipp; Eijk, Julia van; Wuttig, Matthias [I. Phys. Institut (IA), RWTH Aachen, 52056 Aachen (Germany); Braun, Carolin [Institut fuer Anorg. Chemie, CAU Kiel, 24098 Kiel (Germany)

    2008-07-01

    Phase change alloys are among the most promising materials for novel data storage devices. Since several years Phase Change Materials based on Ge-Sb-Te- alloys have been used in optical data storage solutions like rewriteable CDs and DVDs. Recently these alloys have been explored as potential candidates for fast nonvolatile electrical data storage devices in Phase Change Random Access Memory (PCRAM). Besides attracting considerable interest from the commercial point of view phase change materials are very interesting also due to their remarkable physical properties. They have the ability to be reversibly switched within a few nanoseconds between the amorphous and the crystalline phase, while changing their physical properties such as optical reflectivity and electrical resistivity significantly. Even though the electronic properties show a drastical contrast such fast transitions can only be caused by small atomic rearrangements. This behavior calls for a deeper understanding of the structural properties of the alloys. We have performed powder diffraction measurements of the crystal phase of various GeSbTe alloys, to determine the structural similarities and differences of several alloys. Understanding the crystal structure of phase change materials is a key to a deeper insight into the properties of these promising materials.

  11. Binocular contrast-gain control for natural scenes: Image structure and phase alignment.

    Science.gov (United States)

    Huang, Pi-Chun; Dai, Yu-Ming

    2018-05-01

    In the context of natural scenes, we applied the pattern-masking paradigm to investigate how image structure and phase alignment affect contrast-gain control in binocular vision. We measured the discrimination thresholds of bandpass-filtered natural-scene images (targets) under various types of pedestals. Our first experiment had four pedestal types: bandpass-filtered pedestals, unfiltered pedestals, notch-filtered pedestals (which enabled removal of the spatial frequency), and misaligned pedestals (which involved rotation of unfiltered pedestals). Our second experiment featured six types of pedestals: bandpass-filtered, unfiltered, and notch-filtered pedestals, and the corresponding phase-scrambled pedestals. The thresholds were compared for monocular, binocular, and dichoptic viewing configurations. The bandpass-filtered pedestal and unfiltered pedestals showed classic dipper shapes; the dipper shapes of the notch-filtered, misaligned, and phase-scrambled pedestals were weak. We adopted a two-stage binocular contrast-gain control model to describe our results. We deduced that the phase-alignment information influenced the contrast-gain control mechanism before the binocular summation stage and that the phase-alignment information and structural misalignment information caused relatively strong divisive inhibition in the monocular and interocular suppression stages. When the pedestals were phase-scrambled, the elimination of the interocular suppression processing was the most convincing explanation of the results. Thus, our results indicated that both phase-alignment information and similar image structures cause strong interocular suppression. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Structures, phase stabilities, and electrical potentials of Li-Si battery anode materials

    KAUST Repository

    Tipton, William W.

    2013-05-28

    The Li-Si materials system holds promise for use as an anode in Li-ion battery applications. For this system, we determine the charge capacity, voltage profiles, and energy storage density solely by ab initio methods without any experimental input. We determine the energetics of the stable and metastable Li-Si phases likely to form during the charging and discharging of a battery. Ab initio molecular dynamics simulations are used to model the structure of amorphous Li-Si as a function of composition, and a genetic algorithm coupled to density-functional theory searches the Li-Si binary phase diagram for small-cell, metastable crystal structures. Calculations of the phonon densities of states using density-functional perturbation theory for selected structures determine the importance of vibrational, including zero-point, contributions to the free energies. The energetics and local structural motifs of these metastable Li-Si phases closely resemble those of the amorphous phases, making these small unit cell crystal phases good approximants of the amorphous phase for use in further studies. The charge capacity is estimated, and the electrical potential profiles and the energy density of Li-Si anodes are predicted. We find, in good agreement with experimental measurements, that the formation of amorphous Li-Si only slightly increases the anode potential. Additionally, the genetic algorithm identifies a previously unreported member of the Li-Si binary phase diagram with composition Li5Si2 which is stable at 0 K with respect to previously known phases. We discuss its relationship to the partially occupied Li7Si3 phase. © 2013 American Physical Society.

  13. Structural Phase Transitions of Mg(BH4)2 under Pressure

    International Nuclear Information System (INIS)

    George, L.; Drozd, V.; Saxena, S.; Bardaji, E.; Fichtner, M.

    2009-01-01

    The structural stability of Mg(BH4)2, a promising hydrogen storage material, under pressure has been investigated in a diamond anvil cell up to 22 GPa with combined synchrotron X-ray diffraction and Raman spectroscopy. The analyses show a structural phase transition around 2.5 GPa and again around 14.4 GPa. An ambient-pressure phase of Mg(BH4)2 has a hexagonal structure (space group P61, a = 10.047(3) A, c = 36.34(1) A, and V = 3176(1) A3 at 0.2 GPa), which agrees well with early reports. The structure of high-pressure phase is found to be different from reported theoretical predictions; it also does not match the high-temperature phase. The high-pressure polymorph of Mg(BH4)2 is found to be stable on decompression, similar to the case of the high-temperature phase. Raman spectroscopic study shows a similarity in high-pressure behavior of as-prepared Mg(BH4)2 and its high-temperature phase.

  14. Hierarchical phase space structure of dark matter haloes: Tidal debris, caustics, and dark matter annihilation

    International Nuclear Information System (INIS)

    Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund

    2009-01-01

    Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ∝ΔJ -1.6 in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.

  15. Hierarchical phase space structure of dark matter haloes: Tidal debris, caustics, and dark matter annihilation

    Science.gov (United States)

    Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund

    2009-04-01

    Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ∝ΔJ-1.6 in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.

  16. Structural and morphological characterization of fullerite crystals prepared from the vapor phase

    International Nuclear Information System (INIS)

    Haluska, M.; Fejdi, P.; Vybornov, M.; Kuzmany, H.

    1993-01-01

    Crystal structure, habits and surface structures of fullerite crystals prepared from vapor phase were characterized by X-ray analysis, interfacial angle measurements and optical and scanning electron microscopy (SEM). The study of selected C 60 crystals confirmed the fcc structure at room temperature. The crystal habit is determined by two types of morphological faces, namely {100} and {111}. SEM was used for the observation of thermal etched surfaces. (orig.)

  17. Direct determination of triplet phases and enantiomorphs of non-centrosymmetric structures. Pt. 2

    International Nuclear Information System (INIS)

    Huemmer, K.; Weckert, E.; Bondza, H.

    1989-01-01

    Direct measurements of triplet phase relationships for non-centrosymmetric light-atom organic structures with medium-size unit cells are reported. The phase information can be extracted from the three-beam profiles of a Renninger ψ-scan experiment. The measurements were carried out with a special ψ-circle diffractometer installed on a rotating Cu-anode generator. The incident-beam divergence is reduced to 0.02 0 . The experimental results confirm the theoretical considerations of paper I of this work. As triplet phases of ±90 0 can be distinguished, the absolute structure can be determined unambiguously. The measurements show that the triplet-phase-dependent interference effects may be superposed on phase-independent Umweganregung or Aufhellung effects. By a comparison of the ψ-scan profiles of two centrosymmetrically related three-beam cases, the triplet phases of which have opposite signs, it is possible to evaluate the phase-independent effects and to determine the value of the triplet phase with an accuracy of at least 90 0 . (orig.)

  18. Formation of secondary phases during deep geological final disposal of research reactor fuel elements. Structure and phase analysis

    International Nuclear Information System (INIS)

    Neumann, Andreas

    2012-01-01

    For the assessment of a confident und sustainable final disposal of high level radioactive waste - fuel elements of german research reactors also account for such waste - in suitable, deep geological facilities, processes of the alteration of the disposed of waste and therefore the formation of the corrosion products, i. e. secondary phases must be well understood considering an accident scenario of a potential water inflow. In order to obtain secondary phases non-irradiated research reactor fuel elements (FR-BE) consisting of UAl x -Al were subjected to magnesium chloride rich brine (brine 2, salt repository) and to clay pore solution, respectively and furthermore of the type U 3 Si 2 -Al were solely subjected to magnesium chloride rich brine. Considering environmental aspects of final repositories the test conditions of the corrosion experiments were adjusted in a way that the temperature was kept constant at 90 C and a reducing anaerobic environment was ensured. As major objective of this research secondary phases, obtained from the autoclave experiments after appropriate processing and grain size separation have been identified and quantified. Powder X-ray diffraction (PXRD) and the application of Rietveld refinement methods allowed the identification of the corrosion products and a quantitative assessment of crystalline and amorphous contents. Scanning and transmission electron microscopy were additionally applied as a complementary method for the characterisation of the secondary phases. The qualitative phase analysis of the preprocessed secondary phases of the systems UAl x -Al and U 3 Si 2 -Al in brine 2 shows many similarities. Lesukite - an aluminium chloro hydrate - was observed for the first time considering the given experimental conditions. Further on different layered structures of the LDH type, iron oxyhydroxide and possibly iron chlorides, uncorroded residues of nuclear fuel and elementary iron were identified as well. Depending on preceding

  19. {sup 3}He retention and structural evolution in erbium tritides: Phase and aging effects

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.S., E-mail: zlxs77@163.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Thin Film Centre, Scottish Universities Physics Alliance (SUPA), University of West of Scotland, Paisley PA1 2BE, Scotland (United Kingdom); Zhang, L.; Wang, W.D.; Liu, Q. [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Peng, S.M., E-mail: pengshuming@caep.cn [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Ding, W.; Long, X.G.; Cheng, G.J.; Liang, J.H. [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Fu, Y.Q. [Thin Film Centre, Scottish Universities Physics Alliance (SUPA), University of West of Scotland, Paisley PA1 2BE, Scotland (United Kingdom)

    2015-06-15

    Highlights: • Effects of phase changes on {sup 3}He retention of Er tritide films were investigated. • The α phase in Er tritide films had no apparent effect on {sup 3}He release/retention. • Tritium content in the β phase showed significant effects on {sup 3}He retention. • Evolution of {sup 3}He in the β phase was apparently influenced by the γ phase. • Effects of phase changes on structure evolution of Er tritides were investigated. - Abstract: Effects of phase changes on {sup 3}He release/retention and crystal lattice evolution during aging of erbium (Er) tritide films were investigated using X-ray diffraction. The contents of α phase and γ phase in the Er tritide films showed significant different effects on {sup 3}He release/retention. The initial tritium stoichiometry or excess tritium atoms accommodated in the octahedral sites and the microstructure (i.e., the texture and Er{sub 2}O{sub 3} oxide inclusions) played an important role for the {sup 3}He release and the evolution of {sup 3}He bubbles in the β phase Er tritide films. In the β + γ region, evolution of {sup 3}He in the β phase was apparently influenced by the γ phase, which could result in a strongly anisotropic lattice dilation and an earlier inflection point of the expansion rate of (1 1 1) lattice parameter. A preferred occupation of {sup 3}He in basal plane of the hexagonal γ phase and the lattice expansion along the hexagonal direction were identified.

  20. Neutron and X-ray Scattering Study of Structure and Dynamics of Condensed Matters

    Science.gov (United States)

    Fujii, Yasuhiko

    In this article, I have reviewed a series of research on a various phase transitions such as (1) structural phase transitions of perovskite compounds driven by soft phonons, (2) pressure-induced molecular dissociation and metallization observed in solid halogens, and (3) the “Devil's Flower” type phase diagram observed in two compounds with frustrating interactions. Also commented is on the so-called “Small Science at Large Facility” typically symbolized by neutron and synchrotron radiation experiments like the present research.

  1. Structural and electronic properties of high pressure phases of lead chalcogenides

    Science.gov (United States)

    Petersen, John; Scolfaro, Luisa; Myers, Thomas

    2012-10-01

    Lead chalcogenides, most notably PbTe and PbSe, have become an active area of research due to their thermoelectric properties. The high figure of merit (ZT) of these materials has brought much attention to them, due to their ability to convert waste heat into electricity. Variation in synthesis conditions gives rise to a need for analysis of structural and thermoelectric properties of these materials at different pressures. In addition to the NaCl structure at ambient conditions, lead chalcogenides have a dynamic orthorhombic (Pnma) intermediate phase and a higher pressure yet stable CsCl phase. By altering the lattice constant, we simulate the application of external pressure; this has notable effects on ground state total energy, band gap, and structural phase. Using the General Gradient Approximation (GGA) in Density Functional Theory (DFT), we calculate the phase transition pressures by finding the differences in enthalpy from total energy calculations. For each phase, elastic constants, bulk modulus, shear modulus, Young's modulus, and hardness are calculated, using two different approaches. In addition to structural properties, we analyze the band structure and density of states at varying pressures, paying special note to thermoelectric implications.

  2. The study of the structural stability of the spiral laser beams propagation through inhomogeneous phase medium

    Science.gov (United States)

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2015-06-01

    This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity structure during propagation and focusing. Spiral laser beams are a family of laser beams that preserve the structural stability up to scale and rotation with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Functionality laser manipulators can be significantly enhanced by using spiral beams whose intensity remains invariable. It is well known, that these beams has non-zero orbital angular momentum. Spiral beams have a complicated phase distribution in cross section. In this paper we investigate the structural stability of the laser beams having a spiral phase structure by passing them through an inhomogeneous phase medium. Laser beam is passed through a medium is characterized by a random distribution of phase in the range 0..2π. The modeling was performed using VirtualLab 5.0 (manufacturer LightTrans GmbH). Compared the intensity distribution of the spiral and ordinary laser beam after the passage of the inhomogeneous medium. It is shown that the spiral beams exhibit a significantly better structural stability during the passage phase heterogeneous environments than conventional laser beams. The results obtained in the simulation are tested experimentally. Experimental results show good agreement with the theoretical results.

  3. Thermoelectric power and phase transitions in lanthanides under pressure up to 20 GPa

    International Nuclear Information System (INIS)

    Ovsyannikov, Sergey V.; Shchennikov, Vladimir V.; Goshchitskii, Boris N.

    2007-01-01

    Pressure dependencies of thermopower S of rare-earth metals (Ce and Pr) in a pressure P range of 0-20 GPa and at room temperature are reported. A non-monotonic behaviour of S(P) has been established both at pressure-induced phase transitions: fcc → modified fcc → monoclinic → tetragonal lattice for Ce, and double hexagonal close packed (dhcp) → fcc → modified fcc → monoclinic for Pr. S kept a positive sign for the all high-pressure phases mentioned. Simultaneous measurements of sample contraction have revealed anomalies in the vicinity of the transitions in qualitative agreement with diffraction volumetric data published before. The S(P) dependencies were analysed on the basis of the known results of electronic structure calculation for the Ce and Pr phases. An advantage was demonstrated of the thermopower method in the study of phase transitions and electronic structure of high-pressure phases

  4. Electronic structure and phase stability during martensitic transformation in Al-doped ZrCu intermetallics

    International Nuclear Information System (INIS)

    Qiu Feng; Shen Ping; Liu Tao; Lin Qiaoli; Jiang Qichuan

    2010-01-01

    Martensitic transformation, phase stability and electronic structure of Al-doped ZrCu intermetallics were investigated by experiments and first-principles calculations using the pseudopotentials plane wave method. The formation energy calculations indicate that the stability of the ZrCu phase increases with the increasing Al content. Al plays a decisive role in controlling the formation and microstructures of the martensite phases in Zr-Cu-Al alloys. The total energy difference between ZrCu (B2) austenite and ZrCu martensite plays an important role in the martensitic transformation. The phase stability is dependent on its electronic structure. The densities of states (DOS) of the intermetallics were discussed in detail.

  5. Formation of structural steady states in lamellar/sponge phase-separating fluids under shear flow

    Science.gov (United States)

    Panizza, P.; Courbin, L.; Cristobal, G.; Rouch, J.; Narayanan, T.

    2003-05-01

    We investigate the effect of shear flow on a lamellar-sponge phase-separating fluid when subjected to shear flow. We show the existence of two different steady states (droplets and ribbons structures) whose nature does not depend on the way to reach the two-phase unstable region of the phase diagram (temperature quench or stirring). The transition between ribbons and droplets is shear thickening and its nature strongly depends on what dynamical variable is imposed. If the stress is fixed, flow visualization shows the existence of shear bands at the transition, characteristic of coexistence in the cell between ribbons and droplets. In this shear-banding region, the viscosity oscillates. When the shear rate is fixed, no shear bands are observed. Instead, the transition exhibits a hysteretic behavior leading to a structural bi-stability of the phase-separating fluid under flow.

  6. Formation and structural phase transition in Co atomic chains on a Cu(775) surface

    International Nuclear Information System (INIS)

    Syromyatnikov, A. G.; Kabanov, N. S.; Saletsky, A. M.; Klavsyuk, A. L.

    2017-01-01

    The formation of Co atomic chains on a Cu(775) surface is investigated by the kinetic Monte Carlo method. It is found that the length of Co atomic chains formed as a result of self-organization during epitaxial growth is a random quantity and its mean value depends on the parameters of the experiment. The existence of two structural phases in atomic chains is detected using the density functional theory. In the first phase, the separations between an atom and its two nearest neighbors in a chain are 0.230 and 0.280 nm. In the second phase, an atomic chain has identical atomic spacings of 0.255 nm. It is shown that the temperature of the structural phase transition depends on the length of the atomic chain.

  7. Formation and structural phase transition in Co atomic chains on a Cu(775) surface

    Energy Technology Data Exchange (ETDEWEB)

    Syromyatnikov, A. G.; Kabanov, N. S.; Saletsky, A. M.; Klavsyuk, A. L., E-mail: klavsyuk@physics.msu.ru [Moscow State University (Russian Federation)

    2017-01-15

    The formation of Co atomic chains on a Cu(775) surface is investigated by the kinetic Monte Carlo method. It is found that the length of Co atomic chains formed as a result of self-organization during epitaxial growth is a random quantity and its mean value depends on the parameters of the experiment. The existence of two structural phases in atomic chains is detected using the density functional theory. In the first phase, the separations between an atom and its two nearest neighbors in a chain are 0.230 and 0.280 nm. In the second phase, an atomic chain has identical atomic spacings of 0.255 nm. It is shown that the temperature of the structural phase transition depends on the length of the atomic chain.

  8. Noninvasive 3D Structural Analysis of Arthropod by Synchrotron X-Ray Phase Contrast Tomography

    International Nuclear Information System (INIS)

    Yao, S.; Zong, Y.; Fan, J.; Sun, Z.; Jiang, H.

    2015-01-01

    X-ray imaging techniques significantly advanced our understanding of materials and biology, among which phase contrast X-ray microscopy has obvious advantages in imaging biological specimens which have low contrast by conventional absorption contrast microscopy. In this paper, three-dimensional microstructure of arthropod with high contrast has been demonstrated by synchrotron X-ray in-line phase contrast tomography. The external morphology and internal structures of an earthworm were analyzed based upon tomographic reconstructions with and without phase retrieval. We also identified and characterized various fine structural details such as the musculature system, the digestive system, the nervous system, and the circulatory system. This work exhibited the high efficiency, high precision, and wide potential applications of synchrotron X-ray phase contrast tomography in nondestructive investigation of low-density materials and biology.

  9. Supercooling suppression of microencapsulated phase change materials by optimizing shell composition and structure

    International Nuclear Information System (INIS)

    Cao, Fangyu; Yang, Bao

    2014-01-01

    Highlights: • A new method for supercooling suppression of microPCMs by optimizing the structure of the microcapsule shell. • Large effective latent heat (up to 213 J/g) of the microPCMs, much higher than those using additive as nucleating agents. • Change of shell composition and structure significantly affects the phase transition processes of the encapsulated PCMs. • The latent heat of the shell-induced phase transition is maximized, reaching 83.7% of the latent heat of bulk octadecane. • Hollow spheres with porous rather than solid resin shell are also formed when the SDS concentration is very high. - Abstract: A new method for supercooling suppression of microencapsulated phase change materials (PCMs) has been developed by optimizing the composition and structure of the microcapsule resin shell. The microcapsules comprising paraffin octadecane encapsulated in melamine–formaldehyde resin shell were synthesized with the use the oil-in-water emulsion technique. These PCM microcapsules are 5–15 μm in diameter. The supercooling of these octadecane microcapsules can be as large as 13.6 °C, when the homogeneous nucleation is dominant during the melt crystallization into the thermodynamically stable triclinic phase. It is discovered that the homogeneous nucleation can be mediated by shell-induced nucleation of the triclinic phase and the metastable rotator phase when the shell composition and structure are optimized, without need of any nucleating additives. The effects of synthesis parameters, such as ratio of melamine to formaldehyde, pH of pre-polymer, and pH of emulsion, on the phase transition properties of the octadecane microcapsules have been investigated systemically. The optimum synthesis conditions have been identified in terms of minimizing the supercooling while maintaining heat capacity. Potential applications of this type of phase changeable microcapsules include high heat capacity thermal fluids, thermal management in smart buildings

  10. Structural evolution of epitaxial SrCoOx films near topotactic phase transition

    OpenAIRE

    Hyoungjeen Jeen; Ho Nyung Lee

    2015-01-01

    Control of oxygen stoichiometry in complex oxides via topotactic phase transition is an interesting avenue to not only modifying the physical properties, but utilizing in many energy technologies, such as energy storage and catalysts. However, detailed structural evolution in the close proximity of the topotactic phase transition in multivalent oxides has not been much studied. In this work, we used strontium cobaltites (SrCoOx) epitaxially grown by pulsed laser epitaxy (PLE) as a model syste...

  11. Strongly correlated electron systems and neutron scattering. Magnetism, superconductivity, structural phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Katano, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron scattering experiments in our group on strongly correlated electron systems are reviewed Metal-insulator transitions caused by structural phase transitions in (La{sub 1-x}Sr{sub x}) MnO{sub 3}, a novel magnetic transition in the CeP compound, correlations between antiferromagnetism and superconductivity in UPd{sub 2}Al{sub 3} and so forth are discussed. Here, in this note, the phase transition of Mn-oxides was mainly described. (author)

  12. Scanning moiré and spatial-offset phase-stepping for surface inspection of structures

    Science.gov (United States)

    Yoneyama, S.; Morimoto, Y.; Fujigaki, M.; Ikeda, Y.

    2005-06-01

    In order to develop a high-speed and accurate surface inspection system of structures such as tunnels, a new surface profile measurement method using linear array sensors is studied. The sinusoidal grating is projected on a structure surface. Then, the deformed grating is scanned by linear array sensors that move together with the grating projector. The phase of the grating is analyzed by a spatial offset phase-stepping method to perform accurate measurement. The surface profile measurements of the wall with bricks and the concrete surface of a structure are demonstrated using the proposed method. The change of geometry or fabric of structures and the defects on structure surfaces can be detected by the proposed method. It is expected that the surface profile inspection system of tunnels measuring from a running train can be constructed based on the proposed method.

  13. Structural phase transition and magnetic properties of Er-doped BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Li, Y T; Zhang, H G; Dong, X G; Li, Q; Mao, W W; Dong, C L; Ren, S L; Li, X A; Wei, S Q

    2013-01-01

    The structural phase transition and local structural distortion of Er-doped BiFeO 3 nanoparticles have been discussed in order to understand the variation of magnetic properties in this system. The X-ray diffraction patterns and X-ray absorption fine structure of these samples demonstrate that there is structural phase transition and no obvious local structural distortion with the increasing of doping concentration. Unfortunately, no ferromagnetic properties have been observed even at a lower temperature. And the X-ray absorption spectra of Fe 2p core level of these samples are totally same, especially the energy positions do not shift which means the consistent valence states of Fe ions.

  14. A neutron diffraction study on deuterated Rochelle salt structure at - 195degC paraelectric phase

    International Nuclear Information System (INIS)

    Iwata, Yutaka; Mitani, Shigeshi; Fukui, Susumu; Shibuya, Iwao

    1989-01-01

    Neutron diffraction study on the low temperature paraelectric phase of Rochelle salt was performed using deuterated single crystal specimen. Large anisotropic thermal motions of atoms are found to be prevailing in the lower paraelectric phase. This indicates the disordering of atoms and the analysis by two-site split-atom method showed that a split atom model holds equally well with an ordinary non-split model. By connecting split positions selectively, a disordered paraelectric structure, which is composed of half-occupied units, was obtained. These units can be regarded as ones in the ferroelectric phase according to a deduction from an order-disorder phase transition scheme. A possibility of existence of the 'local disorder' of O(5)-H group in the tartrate molecule was examined by Fourier method and a result proved to be negative. Present disordered model gives better understanding to the phase transition scheme of Rochelle salt than the local disorder model case. (author)

  15. Polymorphism of a lipid extract from Pseudomonas fluorescens: Structure analysis of a hexagonal phase and of a novel cubic phase of extinction symbol Fd--

    International Nuclear Information System (INIS)

    Mariani, P.; Rivas, E.; Delacroix, H.; Luzzati, V.

    1990-01-01

    The phase diagram of the Pseudomonas fluorescens lipid extract is unusual, in the sense that it displays a cubic phase straddled by a hexagonal phase. The hexagonal phase was studied over an extended concentration range, and the reflections were phased on the assumption that the structure contains circular cylinders of known radius. The cubic phase, whose extinction symbol is Fd--, was analyzed by reference to space group No. 227 (Fd3m). The phases of the reflections were determined by using a novel pattern recognition approach, based upon the notion that the average fourth power of the electron density contrast 4 > is dependent on chemical composition but not on physical structure, provided that the function Δr(r) satisfies the constraints = 0 and 2 > = 1. The authors analyzed two cubic samples of different composition: for each of them they generated all the phase combinations compatible with the X-ray scattering data and they searched for those whose 4 > best agrees with the hexagonal phase. They concluded that the chemical composition of the phases being compared must be identical, that the X-ray scattering data should not be truncated artificially, and that the apodization must be mild so that the curvature takes a value intermediate between those corresponding to the raw data of the two phases. The structure may be visualized as a 3D generalization of the lipid monolayer. The structure, moreover, does not belong to the class of the infinite periodic surfaces without intersections

  16. Group Lifting Structures For Multirate Filter Banks, II: Linear Phase Filter Banks

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, Christopher M [Los Alamos National Laboratory

    2008-01-01

    The theory of group lifting structures is applied to linear phase lifting factorizations for the two nontrivial classes of two-channel linear phase perfect reconstruction filter banks, the whole-and half-sample symmetric classes. Group lifting structures defined for the reversible and irreversible classes of whole-and half-sample symmetric filter banks are shown to satisfy the hypotheses of the uniqueness theorem for group lifting structures. It follows that linear phase lifting factorizations of whole-and half-sample symmetric filter banks are therefore independent of the factorization methods used to compute them. These results cover the specification of user-defined whole-sample symmetric filter banks in Part 2 of the ISO JPEG 2000 standard.

  17. Phase discrimination in CdSe structures by means of Raman scattering

    International Nuclear Information System (INIS)

    Cusco, R.; Artus, L.; Consonni, V.; Bellet-Amalric, E.; Andre, R.

    2017-01-01

    Raman spectra of epitaxial layers of CdSe grown by molecular beam epitaxy have been measured for the cubic (zincblende) and hexagonal (wurtzite) phases. The Raman spectra are examined in the light of density functional calculations for these two highly similar structures. Characteristic Raman frequencies and spectral features associated with the different symmetry are discussed and reliable criteria for phase discrimination based on Raman spectroscopy are proposed. Although LO frequencies are virtually identical in both structures and may be affected by size effects, the observation of a low energy E 2 mode at 33 cm -1 unambiguously identifies the wurtzite structure and can be used as a specific fingerprint to distinguish between these two phases in CdSe-based nanostructures. The slightly lower LO frequency measured in the zincblende epitaxial layer is ascribed to residual tensile strain. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Average Structure Evolution of δ-phase Pu-Ga Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Alice Iulia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Page, Katharine L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Gourdon, Olivier [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Siewenie, Joan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Richmond, Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Saleh, Tarik A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramos, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schwartz, Daniel S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-30

    [Full Text] Plutonium metal is a highly unusual element, exhibiting six allotropes at ambient pressure, from room temperature to its melting point. Many phases of plutonium metal are unstable with temperature, pressure, chemical additions, and time. This strongly affects structure and properties, and becomes of high importance, particularly when considering effects on structural integrity over long time periods. The fcc δ-phase deserves additional attention, not only in the context of understanding the electronic structure of Pu, but also as one of the few high-symmetry actinide phases that can be stabilized down to ambient pressure and room temperature by alloying it with trivalent elements. We will present results on recent work on aging of Pu-2at.%Ga and Pu-7at.%Ga alloys

  19. Modeling of structural and thermodynamics properties of sigma-phase for the Fe-Cr system

    Directory of Open Access Journals (Sweden)

    Udovskya A.

    2012-01-01

    Full Text Available The three- sub-lattice model (3SLM for description of atom’s distribution of two components with different coordination numbers (12, 14 and 15, into s-phase structure depended on composition and temperature is depictured in this paper. Energetic parameters of 3SLM were calculated by fitting procedure fixed to results obtained by ab-initio calculations conducted for paramagnetic states of differently ordered complexes stayed at the sigma-phase’s crystal structure for Fe-Cr system at 0 K. Respective algorithm and computer program have allowed to calculate an atom distribution of components upon the sub-lattices of s-phase at 300 - 1100 K. There is satisfactory agreement between calculated results and the experimental data obtained by neutron and structural research methods. Obtained results demonstrate satisfactory agreement between calculated and experimental data of BCC solutions and sigma - phase of the Fe-Cr system stayed at an equilibrium state.

  20. Molecular structure determination of cyclooctane by Ab Initio and electron diffraction methods in the gas phase

    International Nuclear Information System (INIS)

    Almeida, Wagner B. de

    2000-01-01

    The determination of the molecular structure of molecules is of fundamental importance in chemistry. X-rays and electron diffraction methods constitute in important tools for the elucidation of the molecular structure of systems in the solid state and gas phase, respectively. The use of quantum mechanical molecular orbital ab initio methods offer an alternative for conformational analysis studies. Comparison between theoretical results and those obtained experimentally in the gas phase can make a significant contribution for an unambiguous determination of the geometrical parameters. In this article the determination for an unambiguous determination of the geometrical parameters. In this article the determination of the molecular structure of the cyclooctane molecule by electron diffraction in the gas phase an initio calculations will be addressed, providing an example of a comparative analysis of theoretical and experimental predictions. (author)

  1. Phase discrimination in CdSe structures by means of Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Cusco, R.; Artus, L. [Institut Jaume Almera (ICTJA-CSIC), Consejo Superior de Investigaciones Cientificas, Lluis Sole i Sabaris s.n., 08028 Barcelona (Spain); Consonni, V. [Universite Grenoble Alpes and CNRS, LMGP, 38016 Grenoble (France); Bellet-Amalric, E. [Universite Grenoble Alpes and CEA, INAC-PHEILQS, Nanophysique et Semiconducteurs Group, 38000 Grenoble (France); Andre, R. [Universite Grenoble Alpes and CNRS, Institut Neel, Nanophysique et Semiconducteurs Group, 38000 Grenoble (France)

    2017-05-15

    Raman spectra of epitaxial layers of CdSe grown by molecular beam epitaxy have been measured for the cubic (zincblende) and hexagonal (wurtzite) phases. The Raman spectra are examined in the light of density functional calculations for these two highly similar structures. Characteristic Raman frequencies and spectral features associated with the different symmetry are discussed and reliable criteria for phase discrimination based on Raman spectroscopy are proposed. Although LO frequencies are virtually identical in both structures and may be affected by size effects, the observation of a low energy E{sub 2} mode at 33 cm{sup -1} unambiguously identifies the wurtzite structure and can be used as a specific fingerprint to distinguish between these two phases in CdSe-based nanostructures. The slightly lower LO frequency measured in the zincblende epitaxial layer is ascribed to residual tensile strain. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Holographic entanglement entropy and the extended phase structure of STU black holes

    International Nuclear Information System (INIS)

    Caceres, Elena; Nguyen, Phuc H.; Pedraza, Juan F.

    2015-01-01

    We study the extended thermodynamics, obtained by considering the cosmological constant as a thermodynamic variable, of STU black holes in 4-dimensions in the fixed charge ensemble. The associated phase structure is conjectured to be dual to an RG-flow on the space of field theories. We find that for some charge configurations the phase structure resembles that of a Van der Waals gas: the system exhibits a family of first order phase transitions ending in a second order phase transition at a critical temperature. We calculate the holographic entanglement entropy for several charge configurations and show that for the cases where the gravity background exhibits Van der Waals behavior, the entanglement entropy presents a transition at the same critical temperature. To further characterize the phase transition we calculate appropriate critical exponents and show that they coincide. Thus, the entanglement entropy successfully captures the information of the extended phase structure. Finally, we discuss the physical interpretation of the extended space in terms of the boundary QFT and construct various holographic heat engines dual to STU black holes.

  3. Biofilm structure and mass transfer in a gas phase trickle-bed biofilter.

    Science.gov (United States)

    Zhu, X; Suidan, M T; Alonso, C; Yu, T; Kim, B J; Kim, B R

    2001-01-01

    Mass transport phenomena occurring in the biofilms of gas phase trickle-bed biofilters are investigated in this study. The effect of biofilm structure on mass transfer mechanisms is examined using experimental observation from the operating of biofilters, microelectrode techniques and microscopic examination. Since the biofilms of biofilters used for waste gas treatment are not completely saturated with water, there is not a distinguishable liquid layer outside the biofilm. Results suggest that due to this characteristic, gas phase substrates (such as oxygen or volatile organic compounds) may not be limited by the aqueous phase because transport of the compound into the biofilm can occur directly through non-wetted areas. On the other hand, for substrates that are present only in the liquid phase, such as nitrate, the mass transfer limitation is more serious because of the limited liquid supply. Microscopic observations show that a layered structure with void spaces exists within the biofilm. Oxygen concentration distributions along the depth of the biofilms are examined using an oxygen microelectrode. Results indicate that there are some high dissolved oxygen zones inside the biofilm, which suggests the existence of passages for oxygen transfer into the deeper sections of the biofilm in a gas phase trickle-bed biofilter. Both the low gas-liquid mass transfer resistance and the resulting internal structure contribute to the high oxygen penetration within the biofilms in gas phase trickle-bed biofilters.

  4. Structure-phase transformations in 36NXTYu highly deformed alloy during aging

    International Nuclear Information System (INIS)

    Plotnikov, S.V.; Radashin, M.V.; Alontseva, D.L.

    2001-01-01

    The 36NXTYu alloy - containing 35.39% Ni, 12.43% Cr, 3.08% Ti, 1.22% Al, 0.93% Mn, 0.36% Si, 0.09% Cu , 0.03% C, 0.12% P, 0.09% S and the rest iron - has been examined. Under aging beginning in the alloy the Ni 3 (Al,Yi) type metastable γ'-phase release of with L12 structure is taking place, and then the stable η-phase (Ni 3 Ti, DO 24 ) is occurring. The thin foils structure and micro-diffraction analysis were observed with help of the electron microscope. Fractography has been watched on the scanning electron microscope. For study both phase content and samples texture the DRON-3 diffractometer was applied. The mechanical testing include one-axis static expansion with measurement of a strength limit, conventional fluidity limit, relational extension up to sample breakage. It is shown, that rolling deep levels in the 36NXTYu alloy, in the common case, do not change the structure-phase transformation morphology, but instead of γ'-phase the η-phase is discretely releasing

  5. The effect warming time of mechanical properties and structural phase aluminum alloy nickel

    International Nuclear Information System (INIS)

    Husna Al Hasa, M.; Anwar Muchsin

    2011-01-01

    Ferrous aluminum alloys as fuel cladding will experience the process of heat treatment above the recrystallization temperature. Temperature and time of heat treatment will affect the nature of the metal. Heating time allows will affect change in mechanical properties, thermal and structure of the metal phase. This study aims to determine the effect of time of heat treatment on mechanical properties and phase metal alloys. Testing the mechanical properties of materials, especially violence done by the method of Vickers. Observation of microstructural changes made by metallographic-optical and phase structure were analyzed Based on the x-ray diffraction patterns Elemental analysis phase alloy compounds made by EDS-SEM. Test results show the nature of violence AlFeNiMg alloy by heating at 500°C with a warm-up time 1 hour, 2 hours and 3 hours respectively decreased range 94.4 HV, 87.6 HV and 85.1 HV. The nature of violence AlFeNi alloy showed a decrease in line with the longer heating time. Metallographic-optical observations show the microstructural changes with increasing heating time. Microstructure shows the longer the heating time trend equi axial shaped grain structure of growing and the results showed a trend analyst diffraction pattern formation and phase θ α phase (FeAl3) in the alloy. (author)

  6. Structural and phase changes in copper-fullerene films by ion implantation and annealing

    International Nuclear Information System (INIS)

    Shpilevsky, E.M.; Baran, L.V.; Okatova, G.P.; Jakimovich, A.V.

    2001-01-01

    The structural and phase changes and the electrical properties of copper - fullerene (Cu-C 60 ) films by the ion implantation(B + , E=80 keV, D 5·10 21 m -2 ) and the thermal annealing are described. We found the copper-fullerene solid supersaturated solution formed in process of the two-component films obtaining. The result of the thermal annealing is the phase segregation of fullerene. It has been established the ion implantation adduces to the partial fragmentation of fullerene, to the destruction of the C 60 molecules and to the formation of the CuB 24 , B 25 C and B 4 C phases

  7. Structural contributions to the third-law entropy of uranyl phases

    International Nuclear Information System (INIS)

    Chen, F.; Ewing, R.C.

    1999-01-01

    Entropies that are used in geochemical calculations are usually based on calorimetric measurements. However, because of the contributions of neglected residual entropies which cannot be determined by calorimetric measurements, the true third-law entropies for many phases may be quite different from those derived from thermal data. The residual entropies are caused by site-mixing, structural disorder and magnetic spin disorder and may result in a considerable contribution to the third-law entropy of solid phases. Magnetic spin-configurational entropy is not expected to be significant in uranyl phases. However, because most uranyl phases are based on sheet or chain structures and usually contain several molecular water groups, site-mixing, vacancies, as well as disorder in the orientation of hydrogen bonds and the polar H 2 O molecules may occur. Calculations of the ideal site-mixing configurational entropy for some uranyl phases indicate that the residual contributions that arise from substitution and vacancies to the third-law entropies of uranyl phases may be large. A brief examination of the crystal chemistry of water molecules in uranyl phases suggests that considerable residual entropy may be caused by the disorder of hydrogen bonds associated with interstitial H 2 O groups

  8. Structure and phase behaviour of diblock copolymer monolayers investigated by means of Monte Carlo simulation

    International Nuclear Information System (INIS)

    Słyk, Edyta; Rżysko, Wojciech; Bryk, Paweł

    2015-01-01

    We use grand canonical Monte Carlo simulation paired with multiple histogram reweighting, hyperparallel tempering and finite size scaling to investigate the structure and phase behaviour of monolayers of diblock copolymers. The chain molecules are arranged on the square lattice and we consider both fully flexible and rod-coil polymer models. In contrast to the majority of previous studies we assume that the interactions between the segments belonging to one of the two subunits are weaker than the remaining segment–segment interactions. We find that when the diblock copolymer is fully flexible, this choice of the interactions leads to a suppression of the ordered phase, and the phase behaviour is analogous to that of the fully flexible homopolymer model. However, when one of the subunits is rigid, we observe the formation of a novel hairpin chessboard ordered structure with fully stretched chains bent in the middle. The topology of the phase diagram depends on the chain length. For shorter chains the global phase diagram features a critical point and a triple point. For longer chains the gas—disordered liquid phase transition is suppressed and only the order–disorder transition remains stable. The resulting phase diagram is of the swan neck type. (paper)

  9. Phase space interrogation of the empirical response modes for seismically excited structures

    Science.gov (United States)

    Paul, Bibhas; George, Riya C.; Mishra, Sudib K.

    2017-07-01

    Conventional Phase Space Interrogation (PSI) for structural damage assessment relies on exciting the structure with low dimensional chaotic waveform, thereby, significantly limiting their applicability to large structures. The PSI technique is presently extended for structure subjected to seismic excitations. The high dimensionality of the phase space for seismic response(s) are overcome by the Empirical Mode Decomposition (EMD), decomposing the responses to a number of intrinsic low dimensional oscillatory modes, referred as Intrinsic Mode Functions (IMFs). Along with their low dimensionality, a few IMFs, retain sufficient information of the system dynamics to reflect the damage induced changes. The mutually conflicting nature of low-dimensionality and the sufficiency of dynamic information are taken care by the optimal choice of the IMF(s), which is shown to be the third/fourth IMFs. The optimal IMF(s) are employed for the reconstruction of the Phase space attractor following Taken's embedding theorem. The widely referred Changes in Phase Space Topology (CPST) feature is then employed on these Phase portrait(s) to derive the damage sensitive feature, referred as the CPST of the IMFs (CPST-IMF). The legitimacy of the CPST-IMF is established as a damage sensitive feature by assessing its variation with a number of damage scenarios benchmarked in the IASC-ASCE building. The damage localization capability, remarkable tolerance to noise contamination and the robustness under different seismic excitations of the feature are demonstrated.

  10. Structural phase transition and opto-electronic properties of NaZnAs

    International Nuclear Information System (INIS)

    Djied, A.; Seddik, T.; Merabiha, O.; Murtaza, G.; Khenata, R.; Ahmed, R.; Bin-Omran, S.; Uğur, Ş.; Bouhemadou, A.

    2015-01-01

    Highlights: • First competent characterizations of NaZnAs at the level of FP-LAPW+lo. • NaZnAs, a potential alternative candidate to III-V for photovoltaic applications. • NaZnAs, a cheaper and abundantly available direct band gap semiconductor. • Potential material for solar radiation absorber from infrared to ultraviolet. - Abstract: In this study, we predict the structural phase transitions as well as opto-electronic properties of the filled-tetrahedral (Nowotny-Juza) NaZnAs compound. Calculations employ the full potential (FP) linearized augmented plane wave (LAPW) plus local orbitals (lo) scheme. The exchange-correlation potential is treated within the generalized gradient approximation of Perdew-Burke and Ernzerhof (GGA-PBE). In addition, Tran and Blaha (TB) modified Becke-Johnson (mBJ) potential is also used to obtain more accurate optoelectronic properties. Geometry optimization is performed to obtain reliable total energies and other structural parameters for each NaZnAs phase. In our study, the sequence of the structural phase transition on compression is Cu 2 Sb-type → β → α phase. NaZnAs is a direct (Γ-Γ) band gap semiconductor for all the structural phases. However, compared to PBE-GGA, the mBJ approximation reproduces better fundamental band gaps. Moreover, for insight into its potential for photovoltaic applications, different optical parameters are studied

  11. Structural phase transition and opto-electronic properties of NaZnAs

    Energy Technology Data Exchange (ETDEWEB)

    Djied, A.; Seddik, T.; Merabiha, O. [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 (Algeria); Murtaza, G. [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 (Algeria); Ahmed, R., E-mail: rashidahmed@utm.my [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Bin-Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Uğur, Ş. [Department of Physics, Faculty of Sciences, Gazi University, 06500 Teknikokullar, Ankara (Turkey); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University Setif 1, 19000 Setif (Algeria)

    2015-02-15

    Highlights: • First competent characterizations of NaZnAs at the level of FP-LAPW+lo. • NaZnAs, a potential alternative candidate to III-V for photovoltaic applications. • NaZnAs, a cheaper and abundantly available direct band gap semiconductor. • Potential material for solar radiation absorber from infrared to ultraviolet. - Abstract: In this study, we predict the structural phase transitions as well as opto-electronic properties of the filled-tetrahedral (Nowotny-Juza) NaZnAs compound. Calculations employ the full potential (FP) linearized augmented plane wave (LAPW) plus local orbitals (lo) scheme. The exchange-correlation potential is treated within the generalized gradient approximation of Perdew-Burke and Ernzerhof (GGA-PBE). In addition, Tran and Blaha (TB) modified Becke-Johnson (mBJ) potential is also used to obtain more accurate optoelectronic properties. Geometry optimization is performed to obtain reliable total energies and other structural parameters for each NaZnAs phase. In our study, the sequence of the structural phase transition on compression is Cu{sub 2}Sb-type → β → α phase. NaZnAs is a direct (Γ-Γ) band gap semiconductor for all the structural phases. However, compared to PBE-GGA, the mBJ approximation reproduces better fundamental band gaps. Moreover, for insight into its potential for photovoltaic applications, different optical parameters are studied.

  12. Phase Structure Of Fuzzy Field Theories And Multi trace Matrix Models

    International Nuclear Information System (INIS)

    Tekel, J.

    2015-01-01

    We review the interplay of fuzzy field theories and matrix models, with an emphasis on the phase structure of fuzzy scalar field theories. We give a self-contained introduction to these topics and give the details concerning the saddle point approach for the usual single trace and multi trace matrix models. We then review the attempts to explain the phase structure of the fuzzy field theory using a corresponding random matrix ensemble, showing the strength and weaknesses of this approach. We conclude with a list of challenges one needs to overcome and the most interesting open problems one can try to solve. (author)

  13. Structures of the K- and Na-components of two-phase feldspar from Primorskii Krai

    International Nuclear Information System (INIS)

    Organova, N.I.; Marsii, I.M.; Zakharov, N.D.; Nasedkin, V.V.; Borisovskii, S.B.; Rozhdestvenskaya, I.V.; Ivanova, T.I.

    1999-01-01

    The structures of two components of the decomposed solid solution of an alkali feldspar are refined. These structures exhibit at least two specific features: (1) the complete phase separation into pure K and pure Na phases and (2) an anomalous distribution of Al atoms over four crystallographically independent positions of silicon-aluminum tetrahedra in the Na-component (different from its usual distribution). To explain the results obtained, the ideas of synergetics are invoked (the geological history of the specimen includes a powerful explosion, which threw out the material from the volcano to the Earth's surface)

  14. Structure and phase behavior of a confined nanodroplet composed of the flexible chain molecules.

    Science.gov (United States)

    Kim, Soon-Chul; Kim, Eun-Young; Seong, Baek-Seok

    2011-04-28

    A polymer density functional theory has been employed for investigating the structure and phase behaviors of the chain polymer, which is modelled as the tangentially connected sphere chain with an attractive interaction, inside the nanosized pores. The excess free energy of the chain polymer has been approximated as the modified fundamental measure-theory for the hard spheres, the Wertheim's first-order perturbation for the chain connectivity, and the mean-field approximation for the van der Waals contribution. For the value of the chemical potential corresponding to a stable liquid phase in the bulk system and a metastable vapor phase, the flexible chain molecules undergo the liquid-vapor transition as the pore size is reduced; the vapor is the stable phase at small volume, whereas the liquid is the stable phase at large volume. The wide liquid-vapor coexistence curve, which explains the wide range of metastable liquid-vapor states, is observed at low temperature. The increase of temperature and decrease of pore size result in a narrowing of liquid-vapor coexistence curves. The increase of chain length leads to a shift of the liquid-vapor coexistence curve towards lower values of chemical potential. The coexistence curves for the confined phase diagram are contained within the corresponding bulk liquid-vapor coexistence curve. The equilibrium capillary phase transition occurs at a higher chemical potential than in the bulk phase.

  15. N-cadherin and integrin blockade inhibit arteriolar myogenic reactivity but not pressure-induced increases in intracellular Ca2+

    Directory of Open Access Journals (Sweden)

    Teresa Y. Jackson

    2010-12-01

    Full Text Available The vascular myogenic response is characterized by arterial constriction in response to an increase in intraluminal pressure and dilatation to a decrease in pressure. This mechanism is important for the regulation of blood flow, capillary pressure and arterial pressure. The identity of the mechanosensory mechanism(s for this response is incompletely understood but has been shown to include the integrins as cell-extracellular matrix receptors. The possibility that a cell-cell adhesion receptor is involved has not been studied. Thus, we tested the hypothesis that N-cadherin, a cell-cell adhesion molecule in vascular smooth muscle cells (VSMCs, was important for myogenic responsiveness. The purpose of this study was to investigate:
    1. whether cadherin inhibition blocks myogenic responses to increases in intraluminal pressure and 2. the effect of the cadherin or integrin blockade on pressure-induced changes in [Ca2+]i. Cadherin blockade was tested in isolated rat cremaster arterioles on myogenic responses to acute pressure steps from 60 – 100 mmHg and changes in VSMC Ca2+ were measured using fura-2. In the presence of a synthetic cadherin inhibitory peptide or a function blocking antibody, myogenic responses were inhibited. In contrast, during N-cadherin blockade, pressure-induced changes in [Ca2+]i were not altered. Similarly, vessels treated with function-blocking β1- or β3-integrin antibodies maintained pressure-induced [Ca2+]i responses despite inhibition of myogenic constriction. Collectively, these data suggest that both cadherins and integrins play a fundamental role in mediating myogenic constriction but argue against their direct involvement in mediating pressure-induced [Ca2+]i increases.

  16. Improved wound healing in pressure-induced decubitus ulcer with controlled release of basic fibroblast growth factor

    International Nuclear Information System (INIS)

    Jiang Wei; Wang Hailun; Jin Faguang; Yu Chunyan; Chu Dongling; Wang Lin; Lu Xian

    2008-01-01

    The purpose was to evaluate the efficacy of the wound dressing containing basic fibroblast growth factor (bFGF)-loaded microspheres on promoting healing in pressure-induced decubitus ulcer. In this study, the pressure-induced ulcer in swine was used as a model to demonstrate the hypothesis that controlled release of bFGF has the potential to provide optimal healing milieu for chronic wounds in the repair process. Average size of the microspheres was 14.36 ± 3.56 μm and the network gelatin sponges were characterized with an average pore size of 80-160 μm. Both the in vitro release efficiency and the protein bioactivity revealed that bFGF was released from the microspheres in a controlled manner and it was biologically active as assessed by its ability to induce the proliferation of fibroblasts. Pressure-induced ulcer was created at 500 g/cm 2 pressure loaded on swine dorsal skin 12 h daily for 2 consecutive days. After removal of the pressure load, the gelatin sponge containing bFGF gelatin microspheres or bFGF in solution was implanted into the wound. Swine were sacrificed at 7, 14, and 21 days after implantation, and a full-thickness biopsy was taken and stained for histological analysis. It was observed that controlled release of bFGF provided an accelerated recovery in the wound areas. Histological investigations showed that the dressings were biocompatible and had capability of proliferating fibroblasts and inducing neovascularisation. The present study implied the clinical potential of gelatin sponge with bFGF microspheres to promote the healing in pressure-induced decubitus ulcer

  17. Improved wound healing in pressure-induced decubitus ulcer with controlled release of basic fibroblast growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Wei [Department of Respiratory Diseases, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Wang Hailun [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Jin Faguang [Department of Respiratory Diseases, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China)], E-mail: nidewenzhang@163.com; Yu Chunyan [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Chu Dongling [Department of Respiratory Diseases, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Wang Lin [Department of Internal Medicine, 316 Hospital of PLA, Beijing 100093 (China); Lu Xian [93942 Unit Hospital of PLA, Xianyang 710012 (China)

    2008-07-14

    The purpose was to evaluate the efficacy of the wound dressing containing basic fibroblast growth factor (bFGF)-loaded microspheres on promoting healing in pressure-induced decubitus ulcer. In this study, the pressure-induced ulcer in swine was used as a model to demonstrate the hypothesis that controlled release of bFGF has the potential to provide optimal healing milieu for chronic wounds in the repair process. Average size of the microspheres was 14.36 {+-} 3.56 {mu}m and the network gelatin sponges were characterized with an average pore size of 80-160 {mu}m. Both the in vitro release efficiency and the protein bioactivity revealed that bFGF was released from the microspheres in a controlled manner and it was biologically active as assessed by its ability to induce the proliferation of fibroblasts. Pressure-induced ulcer was created at 500 g/cm{sup 2} pressure loaded on swine dorsal skin 12 h daily for 2 consecutive days. After removal of the pressure load, the gelatin sponge containing bFGF gelatin microspheres or bFGF in solution was implanted into the wound. Swine were sacrificed at 7, 14, and 21 days after implantation, and a full-thickness biopsy was taken and stained for histological analysis. It was observed that controlled release of bFGF provided an accelerated recovery in the wound areas. Histological investigations showed that the dressings were biocompatible and had capability of proliferating fibroblasts and inducing neovascularisation. The present study implied the clinical potential of gelatin sponge with bFGF microspheres to promote the healing in pressure-induced decubitus ulcer.

  18. The structural phases and vibrational properties of Mo1-xWxTe2 alloys

    Science.gov (United States)

    Oliver, Sean M.; Beams, Ryan; Krylyuk, Sergiy; Kalish, Irina; Singh, Arunima K.; Bruma, Alina; Tavazza, Francesca; Joshi, Jaydeep; Stone, Iris R.; Stranick, Stephan J.; Davydov, Albert V.; Vora, Patrick M.

    2017-12-01

    The structural polymorphism in transition metal dichalcogenides (TMDs) provides exciting opportunities for developing advanced electronics. For example, MoTe2 crystallizes in the 2H semiconducting phase at ambient temperature and pressure, but transitions into the 1T‧ semimetallic phase at high temperatures. Alloying MoTe2 with WTe2 reduces the energy barrier between these two phases, while also allowing access to the T d Weyl semimetal phase. The \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloy system is therefore promising for developing phase change memory technology. However, achieving this goal necessitates a detailed understanding of the phase composition in the MoTe2-WTe2 system. We combine polarization-resolved Raman spectroscopy with x-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) to study bulk \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloys over the full compositional range x from 0 to 1. We identify Raman and XRD signatures characteristic of the 2H, 1T‧, and T d structural phases that agree with density-functional theory (DFT) calculations, and use them to identify phase fields in the MoTe2-WTe2 system, including single-phase 2H, 1T‧, and T d regions, as well as a two-phase 1T‧  +  T d region. Disorder arising from compositional fluctuations in \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloys breaks inversion and translational symmetry, leading to the activation of an infrared 1T‧-MoTe2 mode and the enhancement of a double-resonance Raman process in \\text{2H-M}{{\\text{o}}1-\\text{x}} WxTe2 alloys. Compositional fluctuations limit the phonon correlation length, which we estimate by fitting the observed asymmetric Raman lineshapes with a phonon confinement model. These observations reveal the important role of disorder in \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloys, clarify the structural phase boundaries, and provide a foundation for future explorations of phase transitions and electronic phenomena in this

  19. Formation of metastable phases and nanocomposite structures in rapidly solidified Al-Fe alloys

    International Nuclear Information System (INIS)

    Nayak, S.S.; Chang, H.J.; Kim, D.H.; Pabi, S.K.; Murty, B.S.

    2011-01-01

    Highlights: → Structures of nanocomposites in rapidly solidified Al-Fe alloys were investigated. → Nanoquasicrystalline, amorphous and intermetallics phases coexist with α-Al. → Nanoquasicrystalline phase was observed for the first time in the dilute Al alloys. → Thermodynamic driving force plays dominant role in precipitation of Fe-rich phases. → High hardness (3.57 GPa) was observed for nanocomposite of Al-10Fe alloy. - Abstract: In the present work the structure and morphology of the phases of nanocomposites formed in rapidly solidified Al-Fe alloys were investigated in details using analytical transmission electron microscopy and X-ray diffraction. Nanoquasicrystalline phases, amorphous phase and intermetallics like Al 5 Fe 2 , Al 13 F 4 coexisted with α-Al in nanocomposites of the melt spun alloys. It was seen that the Fe supersaturation in α-Al diminished with the increase in Fe content and wheel speed indicating the dominant role of the thermodynamic driving force in the precipitation of Fe-rich phases. Nanoquasicrystalline phases were observed for the first time in the dilute Al alloys like Al-2.5Fe and Al-5Fe as confirmed by high resolution TEM. High hardness (3.57 GPa) was measured in nanocomposite of Al-10Fe alloy, which was attributed to synergistic effect of solid solution strengthening due to high solute content (9.17 at.% Fe), dispersion strengthening by high volume fraction of nanoquasicrystalline phase; and Hall-Petch strengthening from finer cell size (20-30 nm) of α-Al matrix.

  20. Proceedings of the users meeting on structure and phase transition of phospholipid membrane

    International Nuclear Information System (INIS)

    Hatta, Ichiro; Amemiya, Yoshiyuki

    1994-06-01

    On the occasion that the persons of three groups that have carried out the research on the structure and the phase transition of phospholipid membranes have carried out the experiment successively, the users meeting was held on November 1, 1993 at National Laboratory for High Energy Physics. Lectures were given on the L βI structure of DPPC/alcohol system, the self gathering and intermolecular cooperation phenomenon of glycero phospholipid, the phase transition of DEPE/water system, the structure of DMPA/polylysine, the development of X-ray television, the ripple structure of DMPC/cholesterol system and the simultaneous measurement of X-ray diffraction/DSC. To have the chance like this is very meaningful because sufficient discussion can be done among usually busy researchers at the synchrotron radiation experiment facility. (K.I.)