WorldWideScience

Sample records for pressure potentials decrease

  1. Cathodic over-potential and hydrogen partial pressure coupling in hydrogen evolution reaction of marine steel under hydrostatic pressure

    International Nuclear Information System (INIS)

    Xiong, X.L.; Zhou, Q.J.; Li, J.X.; Volinsky, Alex A.; Su, Y.J.

    2017-01-01

    Highlights: •Hydrostatic pressure increases the Volmer and the Heyrovsky reactions rates. •Hydrostatic pressure decreases the Tafel reaction rate. •Hydrogen adsorption conditions change with pressure under −1.2 and −1.3 V SSE . •Under −1.2 and −1.3 V SSE , the Heyrovsky reaction dominates the hydrogen recombination. •Under −1.0 and −1.1 V SSE , the Tafel reaction dominates the hydrogen recombination. -- Abstract: A new electrochemical impedance spectroscopy (EIS) model, which considers both the Tafel recombination and the Heyrovsky reaction under permeable boundary conditions, was developed to characterize the kinetic parameters of the hydrogen evolution reaction (HER) under hydrostatic pressure. The effect of the hydrostatic pressure on the kinetic parameters of the HER and the permeation of A514 steel in alkaline solution were measured using potentiodynamic polarization, the Devanathan cell hydrogen permeation, and EIS. The hydrostatic pressure accelerates the Volmer reaction and inhibits the Tafel recombination, which increases the number of adsorbed hydrogen atoms. On the other hand, the pressure accelerates the Heyrovsky reaction, which decreases the amount of adsorbed hydrogen atoms. At 10 to 40 MPa hydrostatic pressure within the −1.0 to −1.1 V SSE cathodic potential region, the HER is controlled by hydrogen partial pressure, and hydrogen adsorption is the Langmuir type. Within the −1.2 to −1.3 V SSE cathodic potential region, the HER is controlled by the potential, and hydrogen adsorption gradually transfers from the Langmuir type to the Temkin type with increasing hydrostatic pressure.

  2. Vasopressin and nitroglycerin decrease portal and hepatic venous pressure and hepato-splanchnic blood flow.

    Science.gov (United States)

    Wisén, E; Svennerholm, K; Bown, L S; Houltz, E; Rizell, M; Lundin, S; Ricksten, S-E

    2018-03-26

    Various methods are used to reduce venous blood pressure in the hepato-splanchnic circulation, and hence minimise blood loss during liver surgery. Previous studies show that combination of vasopressin and nitroglycerin reduces portal pressure and flow in patients with portal hypertension, and in this study we investigated this combination in patients with normal portal pressure. In all, 13 patients were studied. Measurements were made twice to confirm baseline (C1 and BL), during vasopressin infusion 4.8 U/h (V), and during vasopressin infusion combined with nitroglycerin infusion (V + N). Portal venous pressure (PVP), hepatic venous pressure (HVP), central haemodynamics and arterial and venous blood gases were obtained at each measuring point, and portal (splanchnic) and hepato-splanchnic blood flow changes were calculated. Vasopressin alone did not affect PVP, whereas HVP increased slightly. In combination with nitroglycerin, PVP decreased from 10.1 ± 1.6 to 8.9 ± 1.3 mmHg (P HVP decreased from 7.9 ± 1.9 to 6.2 ± 1.3 mmHg (P = 0.001). Vasopressin reduced portal blood flow by 47 ± 19% and hepatic venous flow by 11 ± 18%, respectively. Addition of nitroglycerin further reduced portal- and hepatic flow by 55 ± 13% and 30 ± 13%, respectively. Vasopressin alone had minor effects on central haemodynamics, whereas addition of nitroglycerin reduced cardiac index (3.2 ± 0.7 to 2.7 ± 0.5; P < 0.0001). The arterial-portal vein lactate gradient was unaffected. The combination of vasopressin and nitroglycerin decreases portal pressure and hepato-splanchnic blood flow, and could be a potential treatment to reduce bleeding in liver resection surgery. © 2018 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  3. The Soluble Epoxide Hydrolase Inhibitor AR9281 Decreases Blood Pressure, Ameliorates Renal Injury and Improves Vascular Function in Hypertension

    Directory of Open Access Journals (Sweden)

    Sean Shaw

    2009-12-01

    Full Text Available Soluble epoxide hydrolase inhibitors (sEHIs are demonstrating promise as potential pharmaceutical agents for the treatment of cardiovascular disease, diabetes, inflammation, and kidney disease. The present study determined the ability of a first-inclass sEHI, AR9281, to decrease blood pressure, improve vascular function, and decrease renal inflammation and injury in angiotensin hypertension. Rats were infused with angiotensin and AR9281 was given orally during the 14-day infusion period. Systolic blood pressure averaged 180 ± 5 mmHg in vehicle treated and AR9281 treatment significantly lowered blood pressure to 142 ± 7 mmHg in angiotensin hypertension. Histological analysis demonstrated decreased injury to the juxtamedullary glomeruli. Renal expression of inflammatory genes was increased in angiotensin hypertension and two weeks of AR9281 treatment decreased this index of renal inflammation. Vascular function in angiotensin hypertension was also improved by AR9281 treatment. Decreased afferent arteriolar and mesenteric resistance endothelial dependent dilator responses were ameliorated by AR9281 treatment of angiotensin hypertensive rats. These data demonstrate that the first-in-class sEHI, AR9281, lowers blood pressure, improves vascular function and reduces renal damage in angiotensin hypertension.

  4. Intermittent pressure decreases human keratinocyte proliferation in vitro.

    Science.gov (United States)

    Nasca, Maria R; Shih, Alan T; West, Dennis P; Martinez, Wanda M; Micali, Giuseppe; Landsman, Adam S

    2007-01-01

    The aim of this study was to investigate the correlation between pressure changes and keratinocyte proliferation by determining whether keratinocytes exposed to altered mechanical pressures would proliferate at different rates compared to control cells not subjected to pressure changes. Tissue culture flasks of human keratinocytes plated at an approximate density of 15,000 cells/cm(2) undergoing an intermittent cyclic pressure of 362 mm Hg at a frequency of 2.28 or 5.16 cycles/min (0.038 or 0.086 Hz) for 8 h were compared to control flasks grown at ambient room pressure. An in-line pressure transducer was used to monitor and adjust pressure within the cell chambers, using a solenoid valve. A thymidine incorporation assay assessed the amount of cell proliferation in each set of experiments. Differences in proliferation between keratinocytes subjected to cyclic pressure changes and control cells were found to be statistically significant (p < 0.05) in 4 out of 5 proliferation assays. Also, a higher frequency of pressure changes consistently generated a reduced proliferation rate compared to that seen in cells exposed to a lower frequency of pressure changes. These data indicate that keratinocytes undergoing intermittent pressure changes exhibit decreased proliferation rates compared to controls. Furthermore, an increased frequency rate seems to have a greater effect on proliferation than low-frequency rate pressure changes, suggesting that the stress caused by frequently changed pressure may play a greater role in reducing keratinocyte proliferation than the actual magnitude of load applied to the cells. Our results support the current treatment protocol of reducing speed and duration of walking on the site of the wound to promote healing of foot ulcers. (c) 2007 S. Karger AG, Basel.

  5. High-sodium intake prevents pregnancy-induced decrease of blood pressure in the rat.

    Science.gov (United States)

    Beauséjour, Annie; Auger, Karine; St-Louis, Jean; Brochu, Michéle

    2003-07-01

    Despite an increase of circulatory volume and of renin-angiotensin-aldosterone system (RAAS) activity, pregnancy is paradoxically accompanied by a decrease in blood pressure. We have reported that the decrease in blood pressure was maintained in pregnant rats despite overactivation of RAAS following reduction in sodium intake. The purpose of this study was to evaluate the impact of the opposite condition, e.g., decreased activation of RAAS during pregnancy in the rat. To do so, 0.9% or 1.8% NaCl in drinking water was given to nonpregnant and pregnant Sprague-Dawley rats for 7 days (last week of gestation). Increased sodium intakes (between 10- and 20-fold) produced reduction of plasma renin activity and aldosterone in both nonpregnant and pregnant rats. Systolic blood pressure was not affected in nonpregnant rats. However, in pregnant rats, 0.9% sodium supplement prevented the decreased blood pressure. Moreover, an increase of systolic blood pressure was obtained in pregnant rats receiving 1.8% NaCl. The 0.9% sodium supplement did not affect plasma and fetal parameters. However, 1.8% NaCl supplement has larger effects during gestation as shown by increased plasma sodium concentration, hematocrit level, negative water balance, proteinuria, and intrauterine growth restriction. With both sodium supplements, decreased AT1 mRNA levels in the kidney and in the placenta were observed. Our results showed that a high-sodium intake prevents the pregnancy-induced decrease of blood pressure in rats. Nonpregnant rats were able to maintain homeostasis but not the pregnant ones in response to sodium load. Furthermore, pregnant rats on a high-sodium intake (1.8% NaCl) showed some physiological responses that resemble manifestations observed in preeclampsia.

  6. The decrease in yield strength in NiAl due to hydrostatic pressure

    Science.gov (United States)

    Margevicius, R. W.; Lewandowski, J. J.; Locci, I.

    1992-01-01

    The decrease in yield strength in NiAl due to hydrostatic pressure is examined via a comparison of the tensile flow behavior in the low strain regime at 0.1 MPa for NiAl which was cast, extruded, and annealed for 2 hr at 827 C in argon and very slowly cooled to room temperature. Pressurization to 1.4 GPa produces a subsequent reduction at 0.1 MP in proportional limit by 40 percent as well as a 25-percent reduction in the 0.2-percent offset yield strength, while pressurization with lower pressures produces a similar reduction, although smaller in magnitude.

  7. Swelling pressures of a potential buffer material for high-level waste repository

    International Nuclear Information System (INIS)

    Lee, Jae Owan; Cho, Won Jin; Chun, Kwan Sik

    1999-01-01

    The swelling pressure of a potential buffer material was measured and the effect of dry density, bentonite content and initial water content on the swelling pressure was investigated to provide the information for the selection of buffer material in a high-level waste repository. Swelling tests were carried out according to Box-Behnken's experimental design. Measured swelling pressures were in the wide range of 0.7 Kg/cm 2 to 190.2 Kg/cm 2 under given experimental conditions. Based upon the experimental data, a 3-factor polynomial swelling model was suggested to analyze the effect of dry density, bentonite content and initial water content on the swelling pressure. The swelling pressure increased with an increase in the dry density and bentonite content, while it decreased with increasing the initial water content and, beyond about 12 wt.% of the initial water content, levelled to nearly constant value. (author). 21 refs., 10 figs., 4 tabs

  8. Liquid-vapor phase transition upon pressure decrease in the lead-bismuth system

    Science.gov (United States)

    Volodin, V. N.

    2009-11-01

    The liquid-vapor phase transitions boundaries were calculated on the basis of the values of vapor pressure of the components in the lead-bismuth system during the stepwise pressure decrease by one order of magnitude from 105 down to 1 Pa. The emergence of azeotropic liquid under pressure lower than 19.3 kPa was ascertained. The emergence of azeotropic mixture near the lead edge of the phase diagram was concluded to be the reason for technological difficulties in the distillation separation of the system into the components in a vacuum.

  9. Effect of Leaf Water Potential on Internal Humidity and CO2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure.

    Science.gov (United States)

    Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; Salmon, Yann; Nikinmaa, Eero; Hari, Pertti; Hölttä, Teemu

    2017-01-01

    The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO 2 , thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO 2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO 2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO 2 concentration based on leaf gas exchange

  10. PPARγ ligands decrease hydrostatic pressure-induced platelet aggregation and proinflammatory activity.

    Directory of Open Access Journals (Sweden)

    Fang Rao

    Full Text Available Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ. We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg or increased (120, 180, 240 mmHg hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg. The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs. These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure.

  11. PPARγ ligands decrease hydrostatic pressure-induced platelet aggregation and proinflammatory activity.

    Science.gov (United States)

    Rao, Fang; Yang, Ren-Qiang; Chen, Xiao-Shu; Xu, Jin-Song; Fu, Hui-Min; Su, Hai; Wang, Ling

    2014-01-01

    Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ). We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg) or increased (120, 180, 240 mmHg) hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa) binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L) was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg). The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs). These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure.

  12. Clinical Potential of Hyperbaric Pressure-Treated Whey Protein

    Science.gov (United States)

    Piccolomini, André F.; Kubow, Stan; Lands, Larry C.

    2015-01-01

    Whey protein (WP) from cow’s milk is a rich source of essential and branched chain amino acids. Whey protein isolates (WPI) has been demonstrated to support muscle accretion, antioxidant activity, and immune modulation. However, whey is not readily digestible due to its tight conformational structure. Treatment of WPI with hyperbaric pressure results in protein unfolding. This enhances protein digestion, and results in an altered spectrum of released peptides, and greater release of essential and branched chain amino acids. Pressurized whey protein isolates (pWPI), through a series of cell culture, animal models and clinical studies, have been demonstrated to enhance muscle accretion, reduce inflammation, improve immunity, and decrease fatigue. It is also conceivable that pWPI would be more accessible to digestive enzymes, which would allow for a more rapid proteolysis of the proteins and an increased or altered release of small bioactive peptides. The altered profile of peptides released from WP digestion could thus play a role in the modulation of the immune response and tissue glutathione (GSH) concentrations. The research to date presents potentially interesting applications for the development of new functional foods based on hyperbaric treatment of WPI to produce products with more potent nutritional and nutraceutical properties. PMID:27417773

  13. Multicomponent exercise decreases blood pressure, heart rate and double product in normotensive and hypertensive older patients with high blood pressure.

    Science.gov (United States)

    Coelho-Júnior, Hélio José; Asano, Ricardo Yukio; Gonçalvez, Ivan de Oliveira; Brietzke, Cayque; Pires, Flávio Oliveira; Aguiar, Samuel da Silva; Feriani, Daniele Jardim; Caperuto, Erico Chagas; Uchida, Marco Carlos; Rodrigues, Bruno

    2018-02-26

    The present study aimed to investigate the effects of a 6-month multicomponent exercise program on blood pressure, heart rate, and double product of uncontrolled and controlled normotensive and hypertensive older patients. The study included 183 subjects, 97 normotensives, of which 53 were controlled normotensives (CNS), and 44 uncontrolled normotensives (UNS), as well as 86 hypertensives, of which 43 were controlled hypertensives (CHS), and 43 uncontrolled hypertensives (UHS). Volunteers were recruited and blood pressure and heart rate measurements were made before and after a 6-month multicomponent exercise program. The program of physical exercise was performed twice a week for 26 weeks. The physical exercises program was based on functional and walking exercises. Exercise sessions were performed at moderate intensity. The results indicated that UHS showed a marked decrease in systolic (-8.0mmHg), diastolic (-11.1mmHg), mean (-10.1mmHg), and pulse pressures, heart rate (-6.8bpm), and double product (-1640bpmmmHg), when compared to baseline. Similarly, diastolic (-5.5mmHg) and mean arterial (-4.8mmHg) pressures were significantly decreased in UNS. Concomitantly, significant changes could be observed in the body mass index (-0.9kg/m 2 ; -1.5kg/m 2 ) and waist circumference (-3.3cm; only UHS) of UNS and UHS, which may be associated with the changes observed in blood pressure. In conclusion, the data of the present study indicate that a 6-month multicomponent exercise program may lead to significant reductions in blood pressure, heart rate, and double product of normotensive and hypertensive patients with high blood pressure values. Copyright © 2018 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

  14. Dispersed oil decreases the ability of a model fish (Dicentrarchus labrax) to cope with hydrostatic pressure.

    Science.gov (United States)

    Dussauze, Matthieu; Pichavant-Rafini, Karine; Belhomme, Marc; Buzzacott, Peter; Privat, Killian; Le Floch, Stéphane; Lemaire, Philippe; Theron, Michaël

    2017-01-01

    Data on the biological impact of oil dispersion in deep-sea environment are scarce. Hence, the aim of this study was to evaluate the potential interest of a pressure challenge as a new experimental approach for the assessment of consequences of chemically dispersed oil, followed by a high hydrostatic pressure challenge. This work was conducted on a model fish: juvenile Dicentrarchus labrax. Seabass were exposed for 48 h to dispersant alone (nominal concentration (NC) = 4 mg L -1 ), mechanically dispersed oil (NC = 80 mg L -1 ), two chemically dispersed types of oil (NC = 50 and 80 mg L -1 with a dispersant/oil ratio of 1/20), or kept in clean seawater. Fish were then exposed for 30 min at a simulated depth of 1350 m, corresponding to pressure of 136 absolute atmospheres (ATA). The probability of fish exhibiting normal activity after the pressure challenge significantly increased from 0.40 to 0.55 when they were exposed to the dispersant but decreased to 0.26 and 0.11 in the case of chemical dispersion of oil (at 50 and 80 mg L -1 , respectively). The chemical dispersion at 80 mg L -1 also induced an increase in probability of death after the pressure challenge (from 0.08 to 0.26). This study clearly demonstrates the ability of a pressure challenge test to give evidence of the effects of a contaminant on the capacity of fish to face hydrostatic pressure. It opens new perspectives on the analysis of the biological impact of chemical dispersion of oil at depth, especially on marine species performing vertical migrations.

  15. Odors generated from the Maillard reaction affect autonomic nervous activity and decrease blood pressure through the olfactory system.

    Science.gov (United States)

    Zhou, Lanxi; Ohata, Motoko; Owashi, Chisato; Nagai, Katsuya; Yokoyama, Issei; Arihara, Keizo

    2018-02-01

    Systolic blood pressure (SBP) of rats decreases significantly following exposure to the odor generated from the Maillard reaction of protein digests with xylose. This study identified active odorants that affect blood pressure and demonstrated the mechanism of action. Among the four potent odorants that contribute most to the odor of the Maillard reaction sample, 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) and 5-methyl-2-pyrazinemethanol (MPM) decreased SBP significantly. The earliest decrease in blood pressure was observed 5 min after exposure to DMHF. Application of zinc sulfate to the nasal cavity eliminated the effect. Furthermore, gastric vagal (parasympathetic) nerve activity was elevated and renal sympathetic nerve activity was lowered after exposure to DMHF. It is indicated that DMHF affects blood pressure through the olfactory system, and the mechanism for the effect of DMHF on blood pressure involves the autonomic nervous system. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Brittle-fracture potential of irradiated Zircaloy-2 pressure tubes

    Science.gov (United States)

    Huang, F. H.

    1993-12-01

    Neutron irradiation can degrade the fracture toughness of Zircaloy-2 and may cause highly irradiated reactor components of this material to fail in a brittle manner. The effects of radiation embrittlement on the structural integrity of N Reactor pressure tubes are studied by performing KIc and JIc fracture toughness testing on samples cut from the Zircaloy-2 tubes periodically removed from the reactor. A fluence of 6 × 10 25n/ m2 ( E > 1 MeV) reduced the fracture toughness of the material by 40 to 50%. The fracture toughness values appear to saturate at 260°C with fluences above 3 × 10 25n/ m2 ( E > 1 MeV), but continue to decline with increasing fluence at temperatures below 177°C. Present and previous results obtained from irradiated pressure tubes indicate that the brittle-fracture potential of Zircaloy-2 increases with decreasing temperature and increasing fluence. Fractographic examinations of the fracture surfaces of irradiated samples reveal that circumferential hydride formation significantly influenced fracture morphology by providing sites for easy crack nucleation and leaving deep cracks. However, the deep cracks created at the hydride platelets in specimens containing less than 220 ppm hydrogen are not believed to be the major cause of degradation in postirradiation fracture toughness.

  17. The role of ontogeny in physiological tolerance: decreasing hydrostatic pressure tolerance with development in the northern stone crab Lithodes maja.

    Science.gov (United States)

    Munro, Catriona; Morris, James P; Brown, Alastair; Hauton, Chris; Thatje, Sven

    2015-06-22

    Extant deep-sea invertebrate fauna represent both ancient and recent invasions from shallow-water habitats. Hydrostatic pressure may present a significant physiological challenge to organisms seeking to colonize deeper waters or migrate ontogenetically. Pressure may be a key factor contributing to bottlenecks in the radiation of taxa and potentially drive speciation. Here, we assess shifts in the tolerance of hydrostatic pressure through early ontogeny of the northern stone crab Lithodes maja, which occupies a depth range of 4-790 m in the North Atlantic. The zoea I, megalopa and crab I stages were exposed to hydrostatic pressures up to 30.0 MPa (equivalent of 3000 m depth), and the relative fold change of genes putatively coding for the N-methyl-D-aspartate receptor-regulated protein 1 (narg gene), two heat-shock protein 70 kDa (HSP70) isoforms and mitochondrial Citrate Synthase (CS gene) were measured. This study finds a significant increase in the relative expression of the CS and hsp70a genes with increased hydrostatic pressure in the zoea I stage, and an increase in the relative expression of all genes with increased hydrostatic pressure in the megalopa and crab I stages. Transcriptional responses are corroborated by patterns in respiratory rates in response to hydrostatic pressure in all stages. These results suggest a decrease in the acute high-pressure tolerance limit as ontogeny advances, as reflected by a shift in the hydrostatic pressure at which significant differences are observed. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Reverse Trendelenburg position is a safer technique for lowering central venous pressure without decreasing blood pressure than clamping of the inferior vena cava below the liver.

    Science.gov (United States)

    Yoneda, Godai; Katagiri, Satoshi; Yamamoto, Masakazu

    2015-06-01

    Bleeding remains an important intraoperative complication in patients who undergo hepatectomy. It is generally believed that a reduction in central venous pressure will decrease bleeding from the hepatic venous system. To our knowledge, however, no study has compared the effectiveness of these techniques for controlling bleeding. So we compared the effectiveness of central venous pressure control techniques, such as infrahepatic inferior vena cava clamping, changes in surgical position of the patient, and hypoventilation anesthesia, for lowering central venous pressure. The study group comprised 50 patients who underwent hepatectomy in our department from 2012 through 2013. A central venous catheter was inserted into the right internal jugular vein, and the tip was placed in the superior vena cava. A transducer was placed along the mid-axillary line of the left side of the chest. After opening the abdomen, changes in central venous pressure were measured during inferior vena cava clamping, the reverse Trendelenburg position, the Trendelenburg position, and hypoventilation anesthesia. The inclination relative to the transducer, as measured with an inclinometer, was -10 degrees for the Trendelenburg position and +10 degrees for the reverse Trendelenburg position. The tidal volume was set at 10 mL/kg during conventional anesthesia and 5 mL/kg during hypoventilation anesthesia. The mean central venous pressure was 8.0 cm H(2)O in the supine position during conventional anesthesia, 5.0 cm H(2)O during inferior vena cava clamping, 5.6 cm H(2)O during reverse Trendelenburg position, 10.6 cm H(2)O during Trendelenburg position, and 7.6 cm H(2)O during hypoventilation anesthesia. The mean central venous pressure during inferior vena cava clamping and reverse Trendelenburg position was significantly lower than that during supine position (P = 0.0017 and P = 0.0231, respectively). The mean central venous pressure during hypoventilation

  19. Potential Biomarker Peptides Associated with Acute Alcohol-Induced Reduction of Blood Pressure

    Science.gov (United States)

    Wakabayashi, Ichiro; Marumo, Mikio; Nonaka, Daisuke; Shimomura, Tomoko; Eguchi, Ryoji; Lee, Lyang-Ja; Tanaka, Kenji; Hatake, Katsuhiko

    2016-01-01

    The purpose of this study was to explore the peptides that are related to acute reduction of blood pressure after alcohol drinking. Venous blood was collected from male healthy volunteers before and after drinking white wine (3 ml/kg weight) containing 13% of ethanol. Peptidome analysis for serum samples was performed using a new target plate, BLOTCHIP®. Alcohol caused significant decreases in systolic and diastolic blood pressure levels at 45 min. The peptidome analysis showed that the levels of three peptides of m/z 1467, 2380 and 2662 changed significantly after drinking. The m/z 1467 and 2662 peptides were identified to be fragments of fibrinogen alpha chain, and the m/z 2380 peptide was identified to be a fragment of complement C4. The intensities of the m/z 2380 and m/z 1467 peptides before drinking were associated with % decreases in systolic and diastolic blood pressure levels at 45 min after drinking compared with the levels before drinking, while there were no significant correlations between the intensity of the m/z 2662 peptide and % decreases in systolic and diastolic blood pressure levels after drinking. The m/z 1467 and 2380 peptides are suggested to be markers for acute reduction of blood pressure after drinking alcohol. PMID:26815288

  20. Renal denervation decreases blood pressure and renal tyrosine hydroxylase but does not augment the effect of hypotensive drugs.

    Science.gov (United States)

    Skrzypecki, Janusz; Gawlak, Maciej; Huc, Tomasz; Szulczyk, Paweł; Ufnal, Marcin

    2017-01-01

    The effect of renal denervation on the efficacy of antihypertensive drugs has not yet been elucidated. Twenty-week-old spontaneously hypertensive rats were treated with metoprolol, losartan, indapamide, or saline (controls) and assigned to renal denervation or a sham procedure. Acute hemodynamic measurements were performed ten days later. Series showing a significant interaction between renal denervation and the drugs were repeated with chronic telemetry measurements. In the saline series, denervated rats showed a significantly lower mean arterial blood pressure (blood pressure) than the sham-operated rats. In contrast, in the metoprolol series denervated rats showed a significantly higher blood pressure than sham rats. There were no differences in blood pressure between denervated and sham rats in the losartan and indapamide series. In chronic studies, a 4-week treatment with metoprolol caused a decrease in blood pressure. Renal denervation and sham denervation performed 10 days after the onset of metoprolol treatment did not affect blood pressure. Denervated rats showed markedly reduced renal nerve tyrosine hydroxylase levels. In conclusion, renal denervation decreases blood pressure in hypertensive rats. The hypotensive action of metoprolol, indapamide, and losartan is not augmented by renal denervation, suggesting the absence of synergy between renal denervation and the drugs investigated in this study.

  1. Pressure map technology for pressure ulcer patients: can we handle the truth?

    Science.gov (United States)

    Pompeo, Matthew Q

    2013-02-01

    Objective. The purpose of this study was to trial new pressure mapping technology for patients with pressure ulcers. Pressure mapping data was recorded during 3 phases of technology implementation, as nurses became increasingly familiar with pressuremapping technology in a 55-bed, long-term acute care (LTAC) facility in North Texas. Forty-three patients with pressure ulcers were selected for the study. Patients with pressure ulcers, or who were considered at high risk for developing pressure ulcers based on a Braden score of ≤ 12, were selected to utilize a pressure-sensing device system. Turning timeliness improved greatly from the baseline phase to the last phase. The average turning after the 2-hour alarm decreased from 120 minutes to 44 minutes, and the median time to turning decreased from 39 minutes to 17 minutes. If time past 2 hours is considered the most damaging time to tissue, these reductions (average and median) represented 63% and 56% less potential tissue damage. Pressure mapping technology is in its infancy and this paper discusses implications for the future, including barriers to implementation and potential advanced applications. While only changes in nursing practice were measured in this study, the changes observed suggest the technology can be instrumental in reducing hospital-acquired pressure ulcers and improving the healing of pressure wounds in the future. .

  2. Inner ocular blood flow responses to an acute decrease in blood pressure in resting humans

    International Nuclear Information System (INIS)

    Ikemura, Tsukasa; Kashima, Hideaki; Yamaguchi, Yuji; Miyaji, Akane; Hayashi, Naoyuki

    2015-01-01

    Whether inner ocular vessels have an autoregulatory response to acute fluctuations in blood pressure is unclear. We tried to examine the validity of acute hypotension elicited by thigh-cuff release as to assess the dynamic autoregulation in the ocular circulation. Blood flow velocity in the superior nasal and inferior temporal retinal arterioles, and in the retinal and choroidal vasculature were measured with the aid of laser speckle flowgraphy before and immediately after an acute decrease in blood pressure in 20 healthy subjects. Acute hypotension was induced by a rapid release of bilateral thigh occlusion cuffs that had been inflated to 220 mmHg for 2 min. The ratio of the relative change in retinal and choroidal blood flow velocity to the relative change in mean arterial blood pressure (MAP) was calculated. Immediately after cuff release, the MAP and blood flows in the all ocular target vessels decreased significantly from the baseline values obtained before thigh-cuff release. The ratio of the relative change in inner ocular blood flow velocity to that in the MAP exceeded 1% / %mmHg. An explicit dynamic autoregulation in inner ocular vessels cannot be demonstrated in response to an acute hypotension induced by the thigh-cuff release technique. (paper)

  3. Evaluation of a mindfulness-based intervention program to decrease blood pressure in low-income African-American older adults.

    Science.gov (United States)

    Palta, Priya; Page, G; Piferi, R L; Gill, J M; Hayat, M J; Connolly, A B; Szanton, S L

    2012-04-01

    Hypertension affects a large proportion of urban African-American older adults.While there have been great strides in drug development, many older adults do not have access to such medicines or do not take them. Mindfulness-based stress reduction (MBSR)has been shown to decrease blood pressure in some populations. This has not been tested in low-income, urban African-American older adults. Therefore, the primary purpose of this pilot study was to test the feasibility and acceptability of a mindfulness-based program for low income, minority older adults provided in residence. The secondary purpose was to learn if the mindfulness-based program produced differences in blood pressure between the intervention and control groups. Participants were at least 62 years old and residents of a low-income senior residence. All participants were African-American, and one was male.Twenty participants were randomized to the mindfulness-based intervention or a social support control group of the same duration and dose. Blood pressure was measured with the Omron automatic blood pressure machine at baseline and at the end of the 8-week intervention. A multivariate regression analysis was performed on the difference in scores between baseline and post-intervention blood pressure measurements, controlling for age,education, smoking status, and anti-hypertensive medication use. Effect sizes were calculated to quantify the magnitude of the relationship between participation in the mindfulness-based intervention and the outcome variable, blood pressure. Attendance remained 980%in all 8 weeks of both the intervention and the control groups. The average systolic blood pressure decreased for both groups post-intervention. Individuals in the intervention group exhibited a 21.92-mmHg lower systolic blood pressure compared to the social support control group post-intervention and this value was statistically significant(p=0.020). The average diastolic blood pressure decreased in the

  4. The zonal-mean and regional tropospheric pressure responses to changes in ionospheric potential

    Science.gov (United States)

    Zhou, Limin; Tinsley, Brian; Wang, Lin; Burns, Gary

    2018-06-01

    Global reanalysis data reveal daily surface pressure responses to changes in the global ionospheric potential in both polar and sub-polar regions. We use 21 years of data to show that the pressure response to externally-induced ionospheric potential changes, that are due to the interplanetary magnetic field east-west (IMF By) component, are present in two separate decadal intervals, and follow the opposite ionospheric potential changes in the Arctic and Antarctic for a given By. We use the 4 years of available data to show that the pressure responses to changes in internally generated ionospheric potential, that are caused by low-latitude thunderstorms and highly electrified clouds, agree in sign and sensitivity with those externally generated. We have determined that the daily varying pressure responses are stronger in local winter and spring. The pressure responses at polar latitudes are predominantly over the Antarctic and Greenland ice caps, and those at sub-polar latitudes are of opposite sign, mainly over oceans. A lead-lag analysis confirms that the responses maximize within two days of the ionospheric potential input. Regions of surface pressure fluctuating by about 4 hPa in winter are found with ionospheric potential changes of about 40 kV. The consistent pressure response to the independent external and internal inputs strongly supports the reality of a cloud microphysical mechanism affected by the global electric circuit. A speculative mechanism involves the ionosphere-earth current density Jz, which produces space charge at cloud boundaries and electrically charged droplets and aerosol particles. Ultrafine aerosol particles, under the action of electro-anti-scavenging, are enabled to grow to condensation nuclei size, affecting cloud microphysics and cloud opacity and surface pressure on time scales of hours.

  5. Inhaled Beta Agonist Bronchodilator Does Not Affect Trans-diaphragmatic Pressure Gradient but Decreases Lower Esophageal Sphincter Retention Pressure in Patients with Chronic Obstructive Pulmonary Disease (COPD) and Gastroesophageal Reflux Disease (GERD).

    Science.gov (United States)

    Del Grande, Leonardo M; Herbella, Fernando A M; Bigatao, Amilcar M; Jardim, Jose R; Patti, Marco G

    2016-10-01

    Chronic obstructive pulmonary disease (COPD) patients have a high incidence of gastroesophageal reflux disease (GERD) whose pathophysiology seems to be linked to an increased trans-diaphragmatic pressure gradient and not to a defective esophagogastric barrier. Inhaled beta agonist bronchodilators are a common therapy used by patients with COPD. This drug knowingly not only leads to a decrease in the lower esophageal sphincter (LES) resting pressure, favoring GERD, but also may improve ventilatory parameters, therefore preventing GERD. This study aims to evaluate the effect of inhaled beta agonist bronchodilators on the trans-diaphragmatic pressure gradient and the esophagogastric barrier. We studied 21 patients (mean age 67 years, 57 % males) with COPD and GERD. All patients underwent high-resolution manometry and esophageal pH monitoring. Abdominal and thoracic pressure, trans-diaphragmatic pressure gradient (abdominal-thoracic pressure), and the LES retention pressure (LES basal pressure-transdiaphragmatic gradient) were measured before and 5 min after inhaling beta agonist bronchodilators. The administration of inhaled beta agonist bronchodilators leads to the following: (a) a simultaneous increase in abdominal and thoracic pressure not affecting the trans-diaphragmatic pressure gradient and (b) a decrease in the LES resting pressure with a reduction of the LES retention pressure. In conclusion, inhaled beta agonist bronchodilators not only increase the thoracic pressure but also lead to an increased abdominal pressure favoring GERD by affecting the esophagogastric barrier.

  6. Decrease in blood pressure, body mass index and glycemia after aerobic training in elderly women with type 2 diabetes.

    Science.gov (United States)

    Monteiro, Luciana Zaranza; Fiani, Cássio Ricardo Vaz; Freitas, Maria Cristina Foss de; Zanetti, Maria Lúcia; Foss, Milton César

    2010-10-01

    The aging process is associated with the development of several diseases, which can be attenuated by the practice of physical activities. Aerobic training is an effective method to maintain and improve cardiovascular function. Additionally, it has a crucial role in the prevention and treatment of several chronic-degenerative diseases, especially diabetes mellitus. } To verify the effect of a 13-week aerobic training program on blood pressure (BP), body mass index (BMI) and glycemia levels in elderly women with type-2 diabetes mellitus (DM2). Eleven sedentary elderly women with DM2, aged 61.0 ± 9.1 years, were submitted a 13-week aerobic training program, constituting group G2. Eleven controlled elderly women (aged 60.2 ± 6.8 years) were not submitted to the aerobic training, constituting the control group (G1). G1 attended educational lectures once a week, whereas G2 walked three times a week. Both groups presented a significant decrease in glycemia and diastolic blood pressure levels. No significant decreases in BMI were observed after the aerobic training in either group. The 13-week aerobic training program was enough to promote significant decrease in the diastolic blood pressure and glycemia levels; therefore, this type of exercise training decreases the risk factors for cardiovascular and metabolic diseases.

  7. Allopurinol does not decrease blood pressure or prevent the development of hypertension in the deoxycorticosterone acetate-salt rat model.

    Science.gov (United States)

    Szasz, Theodora; Linder, A Elizabeth; Davis, Robert P; Burnett, Robert; Fink, Gregory D; Watts, Stephanie W

    2010-12-01

    Reactive oxygen species play an important role in the pathogenesis of hypertension, disease in which reactive oxygen species levels and markers of oxidative stress are increased. Xanthine oxidase (XO) is a reactive oxygen species-producing enzyme the activity of which may increase during hypertension. Studies on XO inhibition effects on blood pressure have yielded controversial results. We hypothesized that XO inhibition would decrease blood pressure or attenuate the development of deoxycorticosterone acetate (DOCA)-salt hypertension. We administered the XO inhibitor, allopurinol (50 mg/kg per day, orally) or its vehicle to rats during the established or development stages of DOCA-salt hypertension. We validated XO inhibition by high-performance liquid chromatography measurements of XO metabolites in urine, serum, and tissues demonstrating a decrease in products, increase in substrates, and detection of the active metabolite of allopurinol, oxypurinol. We monitored blood pressure continuously through radiotelemetry and performed gross evaluations of target organs of hypertension. Allopurinol treatment did not impact the course of DOCA-salt hypertension regardless of the timing of administration. Aside from a significant decrease in pulse pressure in allopurinol-treated rats, no positive differences were observed between the allopurinol and the vehicle-treated rats. We conclude that XO does not play an important role in the development or maintenance of hypertension in the rat DOCA-salt hypertension model.

  8. Sub-chronic lead exposure produces β1-adrenoceptor downregulation decreasing arterial pressure reactivity in rats.

    Science.gov (United States)

    Toscano, Cindy Medici; Simões, Maylla Ronacher; Alonso, Maria Jesus; Salaices, Mercedes; Vassallo, Dalton Valentim; Fioresi, Mirian

    2017-07-01

    Lead is considered a causative factor for hypertension and other cardiovascular diseases. To investigate the effects of sub-chronic lead exposure on blood pressure reactivity and cardiac β 1 -adrenoceptor activity and to evaluate whether the effects found in vitro are similar to those found in vivo. Male Wistar rats were randomly distributed into two groups: control rats (Ct) and rats administered drinking water containing 100ppm lead (Pb) for 30days. Blood pressure in the Pb rats increased starting from the first week of treatment until the end of the study [systolic blood pressure, Ct: 122±4 vs. Pb: 143±3mmHg; diastolic blood pressure, Ct: 63±4 vs. Pb: 84±4mmHg]. The heart rate was also increased (Ct: 299±11 vs. Pb: 365±11bpm), but the pressure reactivity to phenylephrine was decreased. Losartan and hexamethonium exhibited a greater reduction in blood pressure of Pb rats than in the Ct rats. Isoproterenol increased the left ventricular systolic and end-diastolic pressure, and heart rate only in Ct rats, suggesting that lead induced β 1 -adrenoceptor downregulation. Indomethacin reduced the blood pressure and heart rate in the Pb rats, suggesting the involvement of cyclooxygenase-derived products (which are associated with reduced nitric oxide bioavailability) in this process. These findings offer further evidence that the effects of sub-chronic lead exposure in vitro can be reproduced in vivo-even at low concentrations-thus triggering mechanisms for the development of hypertension. Therefore, lead should be considered an environmental risk factor for cardiovascular disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Potential benefits of exercise on blood pressure and vascular function.

    Science.gov (United States)

    Pal, Sebely; Radavelli-Bagatini, Simone; Ho, Suleen

    2013-01-01

    Physical activity seems to enhance cardiovascular fitness during the course of the lifecycle, improve blood pressure, and is associated with decreased prevalence of hypertension and coronary heart disease. It may also delay or prevent age-related increases in arterial stiffness. It is unclear if specific exercise types (aerobic, resistance, or combination) have a better effect on blood pressure and vascular function. This review was written based on previous original articles, systematic reviews, and meta-analyses indexed on PubMed from years 1975 to 2012 to identify studies on different types of exercise and the associations or effects on blood pressure and vascular function. In summary, aerobic exercise (30 to 40 minutes of training at 60% to 85% of predicted maximal heart rate, most days of the week) appears to significantly improve blood pressure and reduce augmentation index. Resistance training (three to four sets of eight to 12 repetitions at 10 repetition maximum, 3 days a week) appears to significantly improve blood pressure, whereas combination exercise training (15 minutes of aerobic and 15 minutes of resistance, 5 days a week) is beneficial to vascular function, but at a lower scale. Aerobic exercise seems to better benefit blood pressure and vascular function. Copyright © 2013 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  10. On the potential of ultrasound elastography for pressure ulcer early detection.

    OpenAIRE

    Deprez , Jean-François; Brusseau , Elisabeth; Fromageau , Jérémie; Cloutier , Guy; Basset , Olivier

    2011-01-01

    International audience; PURPOSE: Pressure ulcers are areas of soft tissue breakdown induced by a sustained mechanical stress that damages the skin and underlying tissues. They represent a considerable burden to the society in terms of health care and cost. Yet, techniques for prevention and detection of pressure ulcers still remain very limited. In this article, the authors investigated the potential of ultrasound elastography for pressure ulcer early detection. Elastography is an imaging tec...

  11. Pressure overload stimulated cardiac hypertrophy leads to a rapid decrease in the mRNA for creatine kinase

    International Nuclear Information System (INIS)

    Boheler, K.; Popovich, B.; Dillmann, W.H.

    1987-01-01

    Cardiac hypertrophy (CH) leads to a decrease in creatine kinase (CK) enzymatic activity. To determine if the mRNA for CK also decreases with CH, they performed the following studies. Cardiac RNA was isolated from rats subjected to either abdominal aortic stenosis (AS) or sham surgery. Through Northern blot analysis, total cardiac RNA was quantitated with a CK specific 32 P-labelled cDNA clone. At 3 and 8 days post-constriction, the mRNA for CK decreases by 54.6 +/- 7% and 65.3 +/- 18% respectively, whereas the heart weight increases by 19% and 37% relative to controls. Further studies indicate that CK mRNA also decreases by 41.8% in hypothyroid rats (Tx) but decreases by a total of 68.1% in Tx rats subjected to 8 days of AS. Pressure overload stimulated CH leads to a rapid decrease in CK mRNA in normal and Tx rats. This CK mRNA decrease may account for the decreased efficiency of contraction seen in CH

  12. Gynura procumbens Merr. decreases blood pressure in rats by vasodilatation via inhibition of calcium channels

    Directory of Open Access Journals (Sweden)

    See-Ziau Hoe

    2011-01-01

    Full Text Available INTRODUCTION: Gynura procumbens has been shown to decrease blood pressure via inhibition of the angiotensinconverting enzyme. However, other mechanisms that may contribute to the hypotensive effect have not been studied. OBJECTIVES: To investigate the cardiovascular effects of a butanolic fraction of Gynura procumbens in rats. METHODS: Anaesthetized rats were given intravenous bolus injections of butanolic fraction at doses of 2.5-20 mg/kg in vivo. The effect of butanolic fraction on vascular reactivity was recorded in isolated rat aortic rings in vitro. RESULTS: Intravenous administrations of butanolic fraction elicited significant (p<0.001 and dose-dependent decreases in the mean arterial pressure. However, a significant (p<0.05 decrease in the heart rate was observed only at the higher doses (10 and 20 mg/kg. In isolated preparations of rat aortic rings, phenylephrine (1×10-6 M- or potassium chloride (8×10-2 M-precontracted endothelium-intact and -denuded tissue; butanolic fraction (1×10-6-1×10-1 g/ml induced similar concentration-dependent relaxation of the vessels. In the presence of 2.5×10-3 and 5.0×10-3 g/ml butanolic fraction, the contractions induced by phenylephrine (1×10-9-3×10-5 M and potassium chloride (1×10-2-8×10-2 M were significantly antagonized. The calcium-induced vasocontractions (1×10-4-1×10-2 M were antagonized by butanolic fraction concentration-dependently in calcium-free and high potassium (6×10-2 M medium, as well as in calcium- and potassium-free medium containing 1×10-6 M phenylephrine. However, the contractions induced by noradrenaline (1×10-6 M and caffeine (4.5×10-2 M were not affected by butanolic fraction. CONCLUSION: Butanolic fraction contains putative hypotensive compounds that appear to inhibit calcium influx via receptor-operated and/or voltage-dependent calcium channels to cause vasodilation and a consequent fall in blood pressure.

  13. Decreased tongue pressure is associated with sarcopenia and sarcopenic dysphagia in the elderly.

    Science.gov (United States)

    Maeda, Keisuke; Akagi, Junji

    2015-02-01

    The aim of this study was to clarify the association between tongue pressure and factors related to sarcopenia such as aging, activities of daily living, nutritional state, and dysphagia. One-hundred-and-four patients without a history of treatment of stroke and without a diagnosis of neurodegenerative disease (36 men and 68 women), with a mean age of 84.1 ± 5.6 years, hospitalized from May 2013 to June 2013 were included in this study. Maximum voluntary tongue pressure against the palate (MTP) was measured by a device consisting of a disposable oral balloon probe. Nutritional and anthropometric parameters such as serum albumin concentration, Mini-Nutritional Assessment short form (MNA-SF), body mass index, arm muscle area (AMA), and others and presence of sarcopenia and dysphagia were analyzed to evaluate their relationships. Correlation analysis and univariate or multivariate analysis were performed. Simple correlation analysis showed that MTP correlated with Barthel index (BI), MNA-SF, serum albumin concentration, body mass index, and AMA. Univariate and multivariate analysis showed that sarcopenia, BI, MNA-SF, and age were the independent explanatory factors for decreased MTP, and the propensity score for dysphagia, including causes of primary or secondary sarcopenia, and the presence of sarcopenia were significantly associated with the presence of dysphagia. Decreased MTP and dysphagia were related to sarcopenia or the causes of sarcopenia in the studied population. Furthermore, the clinical condition of sarcopenic dysphagia may be partially interpreted as the presence of sarcopenia and causal factors for sarcopenia.

  14. A Markov chain approach to modelling charge exchange processes of an ion beam in monotonically increasing or decreasing potentials

    International Nuclear Information System (INIS)

    Shrier, O; Khachan, J; Bosi, S

    2006-01-01

    A Markov chain method is presented as an alternative approach to Monte Carlo simulations of charge exchange collisions by an energetic hydrogen ion beam with a cold background hydrogen gas. This method was used to determine the average energy of the resulting energetic neutrals along the path of the beam. A comparison with Monte Carlo modelling showed a good agreement but with the advantage that it required much less computing time and produced no numerical noise. In particular, the Markov chain method works well for monotonically increasing or decreasing electrostatic potentials. Finally, a good agreement is obtained with experimental results from Doppler shift spectroscopy on energetic beams from a hollow cathode discharge. In particular, the average energy of ions that undergo charge exchange reaches a plateau that can be well below the full energy that might be expected from the applied voltage bias, depending on the background gas pressure. For example, pressures of ∼20 mTorr limit the ion energy to ∼20% of the applied voltage

  15. Recent decrease in typhoon destructive potential and global warming implications

    Science.gov (United States)

    Lin, I-I; Chan, Johnny C.L.

    2015-01-01

    Typhoons (tropical cyclones) severely impact the half-billion population of the Asian Pacific. Intriguingly, during the recent decade, typhoon destructive potential (Power Dissipation Index, PDI) has decreased considerably (by ∼35%). This decrease, paradoxically, has occurred despite the increase in typhoon intensity and ocean warming. Using the method proposed by Emanuel (in 2007), we show that the stronger negative contributions from typhoon frequency and duration, decrease to cancel the positive contribution from the increasing intensity, controlling the PDI. Examining the typhoons' environmental conditions, we find that although the ocean condition became more favourable (warming) in the recent decade, the atmospheric condition ‘worsened' at the same time. The ‘worsened' atmospheric condition appears to effectively overpower the ‘better' ocean conditions to suppress PDI. This stronger negative contribution from reduced typhoon frequency over the increased intensity is also present under the global warming scenario, based on analysis of the simulated typhoon data from high-resolution modelling. PMID:25990561

  16. Effect of the potential well on low temperature pressure broadening in CO-He

    Science.gov (United States)

    Palma, A.; Green, S.

    1986-01-01

    Previously reported low-temperature pressure-broadening calculations (Green, 1985) for CO-He interacting via an SCF-CI potential are compared with new calculations in which the attractive part of the potential is either reduced by half or eliminated entirely. Results demonstrate that the attractive well is responsible for low-temperature enhancement of pressure-broadening cross sections and suggest that agreement with recent experimental values at 4 K (Messer and DeLucia, 1984) can be obtained by a modest reduction, probably within the expected uncertainty, in the attractive part of the SCF-CI potential.

  17. Tilting-induced decrease in systolic blood pressure in bedridden hypertensive elderly inpatients: effects of azelnidipine.

    Science.gov (United States)

    Morimoto, Shigeto; Takahashi, Takashi; Okaishi, Kohya; Nakahashi, Takeshi; Nomura, Kohji; Kanda, Tsugiyasu; Okuro, Masashi; Murai, Hiroshi; Nishino, Tomoichi; Matsumoto, Masayuki

    2006-12-01

    The object of this study was to examine blood pressure (BP) variability due to postural change in elderly hypertensive patients. The subjects studied were 154 elderly inpatients in a hospital for the elderly (48 male and 106 female; median age: 82 years), consisting of age- and sex-matched bedridden (n=39) and non-bedridden (n=39) normotensive controls and bedridden (n=38) and non-bedridden (n=38) hypertensive patients. BP and pulse rate (PR) were measured in the supine position, then again after a 2-min, 45 deg head-up tilt with the legs horizontal. The decrease in systolic BP (SBP) on tilting in the bedridden hypertensive group (median: -10 mmHg; range: -32 to 9 mmHg) was significantly (pbedridden hypertensive group. Our findings indicate that tilt-induced decrease in SBP is a rather common phenomenon in bedridden elderly hypertensive patients, and that treatment with azelnidipine attenuates tilt-induced decrease in SBP, probably through an improvement of baroreceptor sensitivity.

  18. Linseed oil increases HDL3 cholesterol and decreases blood pressure in patients diagnosed with mild hypercholesterolemia.

    Science.gov (United States)

    Skoczyńska, Anna H; Gluza, Ewa; Wojakowska, Anna; Turczyn, Barbara; Skoczyńska, Marta

    2018-04-24

    Linseed oil has cardio-protective effects. However, its antihypertensive action has not yet been well characterized. The primary purpose of the study was to evaluate the effect of short-term dietary supplementation with linseed oil on blood pressure (BP) and lipid metabolism in patients with mild hypercholesterolemia. The secondary aim was to evaluate the effect of linseed oil on nitric oxide pathway and selected serum trace metals. 150 volunteers: 43 men (49.9±11.5 years) and 107 women (53.2±10.3 years), diagnosed with mild hypercholesterolemia, were assessed prospectively for BP and lipids' levels, before and after lipid-lowering diet plus linseed oil supplementation at a dose of 15 ml daily for 4 weeks (study groups) or 4-weekly lipid-lowering diet (control group). The multivariate logistic regression analysis model was used to determine the effect of linseed oil on BP after adjustment for age, gender, height, body weight, BMI, smoking and alcohol consumption. The supplementation with linseed oil significantly decreased LDL- and non-HDL cholesterol, and increased HDL- and HDL₃- cholesterol levels. Additionally, linseed oil decreased diastolic BP in men (CI:-6.0;-1.1, poil reduced (poil consumption was associated with a decrease in mean BP (aOR 3.85, 95%CI 1.32-11.33). Our findings confirm the benefit of short-term linseed oil use in mild hypercholesterolemia, in particular in patients with increased blood pressure.

  19. CT colonography at low tube potential: using iterative reconstruction to decrease noise

    International Nuclear Information System (INIS)

    Chang, K.J.; Heisler, M.A.; Mahesh, M.; Baird, G.L.; Mayo-Smith, W.W.

    2015-01-01

    Aim: To determine the level of iterative reconstruction required to reduce increased image noise associated with low tube potential computed tomography (CT). Materials and methods: Fifty patients underwent CT colonography with a supine scan at 120 kVp and a prone scan at 100 kVp with other scan parameters unchanged. Both scans were reconstructed with filtered back projection (FBP) and increasing levels of adaptive statistical iterative reconstruction (ASiR) at 30%, 60%, and 90%. Mean noise, soft tissue and tagged fluid attenuation, contrast, and contrast-to-noise ratio (CNR) were collected from reconstructions at both 120 and 100 kVp and compared using a generalised linear mixed model. Results: Decreasing tube potential from 120 to 100 kVp significantly increased image noise by 30–34% and tagged fluid attenuation by 120 HU at all ASiR levels (p<0.0001, all measures). Increasing ASiR from 0% (FBP) to 30%, 60%, and 90% resulted in significant decreases in noise and increases in CNR at both tube potentials (p<0.001, all comparisons). Compared to 120 kVp FBP, ASiR greater than 30% at 100 kVp yielded similar or lower image noise. Conclusions: Iterative reconstruction adequately compensates for increased image noise associated with low tube potential imaging while improving CNR. An ASiR level of approximately 50% at 100 kVp yields similar noise to 120 kVp without ASiR. -- Highlights: •Peak kilovoltage (kVp) can be reduced to decrease radiation dose and increase contrast attenuation at a cost of increased image noise. •Utilizing iterative reconstruction can decrease image noise and increase contrast to noise ratio (CNR) independent of kVp. •Iterative reconstruction adequately compensates for increased image noise associated with low dose low kVp imaging while improving CNR. •An ASiR level of approximately 50% at 100 kVp yields similar noise to 120 kVp without ASiR

  20. Temperature and baryon-chemical-potential-dependent bag pressure for a deconfining phase transition

    International Nuclear Information System (INIS)

    Patra, B.K.; Singh, C.P.

    1996-01-01

    We explore the consequences of a bag model developed by Leonidov et al. for the deconfining phase transition in which the bag pressure is made to depend on the temperature and baryon chemical potential in order to ensure the entropy and baryon number conservation at the phase boundary together with the Gibbs construction for an equilibrium phase transition. We show that the bag pressure thus obtained yields an anomalous increasing behavior with the increasing baryon chemical potential at a fixed temperature which defies a physical interpretation. We demonstrate that the inclusion of the perturbative interactions in the QGP phase removes this difficulty. Further consequences of the modified bag pressure are discussed. copyright 1996 The American Physical Society

  1. Anharmonic effective pair potentials of gold under high pressure and high temperature

    CERN Document Server

    Okube, M; Ohtaka, O; Fukui, H; Katayama, Y; Utsumi, W

    2002-01-01

    In order to examine the effect of pressure on the anharmonicity of Au, extended x-ray absorption fine-structure spectra near the Au L sub 3 edge were measured in the temperature range from 300 to 1100 K under pressures up to 14 GPa using large-volume high-pressure devices and synchrotron radiation. The anharmonic effective pair potentials of Au, V (u) = au sup 2 + bu sup 3 , at 0.1 MPa, 6 and 14 GPa have been calculated. The pressure dependence of the thermal expansion coefficients has also been evaluated. The reliability of the anharmonic correction proposed on the basis of the Anderson scale has been discussed.

  2. Cocoa consumption dose-dependently improves flow-mediated dilation and arterial stiffness decreasing blood pressure in healthy individuals.

    Science.gov (United States)

    Grassi, Davide; Desideri, Giovambattista; Necozione, Stefano; di Giosia, Paolo; Barnabei, Remo; Allegaert, Leen; Bernaert, Herwig; Ferri, Claudio

    2015-02-01

    Cocoa flavonoids exert beneficial vascular effects and reduce the risk of cardiovascular morbidity and mortality. Nevertheless, the involved mechanisms have not been clarified and no study has yet focused on the dose-response effects. We aimed to investigate the effects of different doses of cocoa flavonoids on flow-mediated dilation (FMD), endothelin-1 (ET-1), pulse wave velocity (PWV), and SBP and DBP. According to a randomized, double-blind, controlled, cross-over design, 20 healthy volunteers (1.5% improvement in FMD in 20 individuals: 0.99 at alpha = 0.05) were assigned to receive either five treatments with daily intake of 10 g cocoa (0, 80, 200, 500 and 800 mg cocoa flavonoids/day) in five periods lasting 1 week each. Cocoa dose-dependently increased FMD from 6.2% (control) to 7.3, 7.6, 8.1 and 8.2% after the different flavonoid doses, respectively (P cocoa flavonoids per day increased FMD (P Cocoa dose-dependently decreased PWV (P Cocoa intake decreased office blood pressure (BP) (SBP: -4.8 ± 1.03  mmHg, P cocoa ingestion decreased 24-h (P = 0.05) and daytime (P = 0.038) SBP, and 24-h (P = 0.0064), daytime (P = 0.0088) and night-time (P = 0.0352) pulse pressure. Compared with the control, cocoa dose-dependently decreased ET-1 levels [from 17.1 (control) to 15.2, 14.5, 14.2 and 14.1 pg/ml, after the different flavonoid doses, respectively (P for treatment cocoa dose-dependently improved FMD and decreased PWV and ET-1 also by ameliorating office and monitored BP. Our findings are clinically relevant, suggesting cocoa, with very low calorie intake, might be reasonably incorporated into a dietary approach, representing a consistent tool in cardiovascular prevention.

  3. Study of high-pressure adsorption from supercritical fluids by the potential theory

    DEFF Research Database (Denmark)

    Monsalvo, Matias Alfonso; Shapiro, Alexander

    2009-01-01

    The multicomponent potential theory of adsorption (MPTA), which has been previously used to study low-pressure adsorption of subcritical fluids, is extended to adsorption equilibria from supercritical fluids up to high pressures. The MPTA describes an adsorbed phase as an inhomogeneous fluid...... the adsorbed and the gas phases. We have also evaluated the performance of the classical Soave-Redlich-Kwong (SRK) EoS. The fluid-solid interactions are described by simple Dubinin-Radushkevich-Astakhov (DRA) potentials. In addition, we test the performance of the 10-4-3 Steele potential. It is shown...... that application of sPC-SAFT slightly improves the performance of the MPTA and that in spite of its simplicity, the DRA model can be considered as an accurate potential, especially, for mixture adsorption. We show that, for the sets of experimental data considered in this work, the MPTA is capable of predicting...

  4. Class side effects: decreased pressure in the lower oesophageal and the pyloric sphincters after the administration of dopamine antagonists, neuroleptics, anti-emetics, L-NAME, pentadecapeptide BPC 157 and L-arginine.

    Science.gov (United States)

    Belosic Halle, Zeljka; Vlainic, Josipa; Drmic, Domagoj; Strinic, Dean; Luetic, Kresimir; Sucic, Mario; Medvidovic-Grubisic, Maria; Pavelic Turudic, Tatjana; Petrovic, Igor; Seiwerth, Sven; Sikiric, Predrag

    2017-05-17

    The ulcerogenic potential of dopamine antagonists and L-NAME in rats provides unresolved issues of anti-emetic neuroleptic application in both patients and experimental studies. Therefore, in a 1-week study, we examined the pressures within the lower oesophageal and the pyloric sphincters in rats [assessed manometrically (cm H 2 O)] after dopamine neuroleptics/prokinetics, L-NAME, L-arginine and stable gastric pentadecapeptide BPC 157 were administered alone and/or in combination. Medication (/kg) was given once daily intraperitoneally throughout the 7 days, with the last dose at 24 h before pressure assessment. Given as individual agents to healthy rats, all dopamine antagonists (central [haloperidol (6.25 mg, 16 mg, 25 mg), fluphenazine (5 mg), levomepromazine (50 mg), chlorpromazine (10 mg), quetiapine (10 mg), olanzapine (5 mg), clozapine (100 mg), sulpiride (160 mg), metoclopramide (25 mg)) and peripheral(domperidone (10 mg)], L-NAME (5 mg) and L-arginine (100 mg) decreased the pressure within both sphincters. As a common effect, this decreased pressure was rescued, dose-dependently, by BPC 157 (10 µg, 10 ng) (also note that L-arginine and L-NAME given together antagonized each other's responses). With haloperidol, L-NAME worsened both the lower oesophageal and the pyloric sphincter pressure, while L-arginine ameliorated lower oesophageal sphincter but not pyloric sphincter pressure, and antagonized L-NAME effect. With domperidone, L-arginine originally had no effect, while L-NAME worsened pyloric sphincter pressure. This effect was opposed by L-arginine. All these effects were further reversed towards a stronger beneficial effect, close to normal pressure values, by the addition of BPC 157. In addition, NO level was determined in plasma, sphincters and brain tissue. Thiobarbituric acid reactive substances (TBARS) were also assessed. Haloperidol increased NO levels (in both sphincters, the plasma and brain), consistently producing increased

  5. Decreases in Casz1 mRNA by an siRNA Complex Do not Alter Blood Pressure in Mice.

    Science.gov (United States)

    Ji, Su-Min; Shin, Young-Bin; Park, So-Yon; Lee, Hyeon-Ju; Oh, Bermseok

    2012-03-01

    Recent genomewide association studies of large samples have identified genes that are associated with blood pressure. The Global Blood Pressure Genetics (Global BPgen) and Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) consortiums identified 14 loci that govern blood pressure on a genomewide significance level, one of which is CASZ1 confirmed in both Europeans and Asians. CASZ1 is a zinc finger transcription factor that controls apoptosis and cell fate and suppresses neuroblastoma tumor growth by reprogramming gene expression, like a tumor suppressor. To validate the function of CASZ1 in blood pressure, we decreased Casz1 mRNA levels in mice by siRNA. Casz1 siRNA reduced mRNA levels by 59% in a mouse cell line. A polyethylenimine-mixed siRNA complex was injected into mouse tail veins, reducing Casz1 mRNA expression to 45% in the kidney. However, blood pressure in the treated mice was unaffected, despite a 55% reduction in Casz1 mRNA levels in the kidney on multiple siRNA injections daily. Even though Casz1 siRNA-treated mice did not experience any significant change in blood pressure, our study demonstrates the value of in vivo siRNA injection in analyzing the function of candidate genes identified by genomewide association studies.

  6. Comparison of Optic Nerve Head Blood Flow Autoregulation among Quadrants Induced by Decreased Ocular Perfusion Pressure during Vitrectomy

    Directory of Open Access Journals (Sweden)

    Ryuya Hashimoto

    2017-01-01

    Full Text Available Purpose. The present study aimed to examine changes in optic nerve head (ONH blood flow autoregulation in 4 quadrants (superior, nasal, inferior, and temporal with decreased ocular perfusion pressure (OPP during vitrectomy in order to determine whether there is a significant difference of autoregulatory capacity in response to OPP decrease at each ONH quadrant. Methods. This study included 24 eyes with an epiretinal membrane or macular hole that underwent vitrectomy at Toho University Sakura Medical Center. Following vitrectomy, the tissue mean blur rate (MBR, which reflects ONH blood flow, was measured. Mean tissue MBRs in the four quadrants were generated automatically in the software analysis report. Measurements were conducted before and 5 and 10 min after intraocular pressure (IOP elevation of approximately 15 mmHg in the subjects without systemic disorders. Results. The baseline tissue MBR of the temporal quadrant was significantly lower than that of the other 3 quadrants (all P<0.05. However, the time courses of tissue MBR in response to OPP decrease were not significantly different among the four quadrants during vitrectomy (P=0.23. Conclusions. There is no significant difference in the autoregulatory capacity of the four ONH quadrants in patients without systemic disorders during vitrectomy.

  7. An electrokinetic pressure sensor

    International Nuclear Information System (INIS)

    Kim, Dong-Kwon; Kim, Sung Jin; Kim, Duckjong

    2008-01-01

    A new concept for a micro pressure sensor is demonstrated. The pressure difference between the inlet and the outlet of glass nanochannels is obtained by measuring the electrokinetically generated electric potential. To demonstrate the proposed concept, experimental investigations are performed for 100 nm wide nanochannels with sodium chloride solutions having various concentrations. The proposed pressure sensor is able to measure the pressure difference within a 10% deviation from linearity. The sensitivity of the electrokinetic pressure sensor with 10 −5 M sodium chloride solution is 18.5 µV Pa −1 , which is one order of magnitude higher than that of typical diaphragm-based pressure sensors. A numerical model is presented for investigating the effects of the concentration and the channel width on the sensitivity of the electrokinetic pressure sensor. Numerical results show that the sensitivity increases as the concentration decreases and the channel width increases

  8. Evaluation the potential and energy efficiency of dual stage pressure retarded osmosis process

    International Nuclear Information System (INIS)

    Altaee, Ali; Zaragoza, Guillermo; Drioli, Enrico; Zhou, John

    2017-01-01

    Highlights: •Single and dual stage PRO was evaluated at different membrane configurations. •Impact of increasing module area or numbers on the power efficiency was studied. •DSPRO reduced the impact of CP & restored the osmotic potential of salinity gradient. •DSPRO outperforms single stage PRO process but depends on salinity gradient type. -- Abstract: Power generation by means of Pressure Retarded Osmosis (PRO) has been proposed for harvesting the energy of a salinity gradient. Energy recovery by the PRO process decreases along the membrane module due to depleting of the chemical potential across the membrane and concentration polarization effects. A dual stage PRO (DSPRO) design can be used to rejuvenate the chemical potential difference and reduce the concentration polarization on feed solution. Several design configurations were suggested for the membrane module arrangements in the first and second stage of the PRO process. PRO performance was evaluated for a number of salinity gradients proposed by coupling Dead Sea water or Reverse Osmosis (RO) brine with seawater or wastewater effluent. Maximum specific energy of inlet and outlet feeds was calculated using a developed computer model to identify the amount of recovered and remaining energy. Initially, specific power generation by the PRO process increased by increasing the number of modules of the first stage. Maximum specific energy is calculated along the PRO module to understand the degradation of the maximum specific energy in each module before introducing a second stage PRO process. Adding a second stage PRO process resulted in a sharp increase of the chemical potential difference and the specific energy yield of the process. Between 10% and 13% increase of the specific power generation was achieved by the DSPRO process for the Dead Sea-seawater salinity gradient depending on the dual stage design configuration. For Dead Sea-RO brine, 12–16% increase of the specific power generation was

  9. Effect of hydrostatic pressure on gas solubilization in micelles.

    Science.gov (United States)

    Meng, Bin; Ashbaugh, Henry S

    2015-03-24

    Molecular dynamics simulations of anionic sodium decylsulfate and nonionic pentaethylene glycol monodecyl ether micelles in water have been performed to examine the impact of hydrostatic pressure on argon solubilization as a function of pressure. The potential-of-mean force between the micelles and argon demonstrates that nonpolar gases are attracted to the interiors of both micelles. The affinity of argon for micelle interiors, however, decreases with increasing pressure as a result of the comparatively higher molar volume of argon inside assemblies. We evaluate solubility enhancement coefficients, which describe the drop in the solute chemical potential as a function of the micellized surfactant concentration, to quantify the impact of micellization on gas solubilization. While argon is similarly attracted to the hydrophobic cores of both micelles, the gas is more effectively sequestered within nonionic micelles compared with anionic micelles as a result of salting out by charged head groups and accompanying counterions. The solubility enhancement coefficients of both micelles decrease with increasing pressure, reflecting the changing forces observed in the potentials-of-mean force. An analytical liquid drop model is proposed to describe the pressure dependence of argon solubilization within micelles that captures the simulation solubility enhancement coefficients after fitting an effective micelle radius for each surfactant.

  10. Concomitant administration of nitrous oxide and remifentanil reduces oral tissue blood flow without decreasing blood pressure during sevoflurane anesthesia in rabbits.

    Science.gov (United States)

    Kasahara, Masataka; Ichinohe, Tatsuya; Okamoto, Sota; Okada, Reina; Kanbe, Hiroaki; Matsuura, Nobuyuki

    2015-06-01

    To determine whether continuous administration of nitrous oxide and remifentanil—either alone or together—alters blood flow in oral tissues during sevoflurane anesthesia. Eight male tracheotomized Japanese white rabbits were anesthetized with sevoflurane under mechanical ventilation. Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), common carotid arterial blood flow (CCBF), tongue mucosal blood flow (TMBF), mandibular bone marrow blood flow (BBF), masseter muscle blood flow (MBF), upper alveolar tissue blood flow (UBF), and lower alveolar tissue blood flow (LBF) were recorded in the absence of all test agents and after administration of the test agents (50 % nitrous oxide, 0.4 μg/kg/min remifentanil, and their combination) for 20 min. Nitrous oxide increased SBP, DBP, MAP, CCBF, BBF, MBF, UBF, and LBF relative to baseline values but did not affect HR or TMBF. Remifentanil decreased all hemodynamic variables except DBP. Combined administration of nitrous oxide and remifentanil recovered SBP, DBP, MAP, and CCBF to baseline levels, but HR and oral tissue blood flow remained lower than control values. Our findings suggest that concomitant administration of nitrous oxide and remifentanil reduces blood flow in oral tissues without decreasing blood pressure during sevoflurane anesthesia in rabbits.

  11. Intracranial hemorrhage in normotensive and hypertensive patients receiving streptokinase after decreasing elevated blood pressure

    Directory of Open Access Journals (Sweden)

    H Shemirani

    2005-09-01

    Full Text Available Background: Many patients with suspected acute myocardial infarction (AMI and eligible for thrombolytic therapy may not be treated because of association between hemorrhagic complications especially intracranial hemorrhage (ICH, and severe hypertension (HTN at presentation. Unfortunately, this leads to under use or delay in thrombolytic therapy. We assessed effect of decreasing elevated blood pressure before thrombolytic therapy in order to reduce the incidence of ICH without increasing mortality rate. Methods: This observational and analytical cohort study enrolled 293 patients (215males and 78 female with STsegment elevation (AMI that were hospitalized in emergency department of Noor hospital, Isfahan, Iran. Severe hypertension (blood pressure ≥180/110mmHg was diagnosed in 132 patients. All of them received 1.5 million units streptokinase within one hour intravenously. In the hypertensive group, elevated blood pressure was lowered to less than180/110mmhg before thrombolysis and they were observed to detect development of symptomatic ICH and they underwent Brain CT scan, if required. Results: The incidence of total stroke, ICH and death were 1.4%, 0.7% and 4.8%, respectively. The incidence of death and ICH in patients with severe hypertension was less than control group (P value=0.13 and 0.59, respectively Conclusion: Although we did not find any increase in ICH incidence in severe hypertensive patients treated be streptokinase due to AMI, but we recommend a multi-centric study with more cases and varied thrombolytic protocols. Key words: Acute myocardial infarction, Intracranial hemorrhage, Thrombolytic therapy

  12. The LPL S447X cSNP is associated with decreased blood pressure and plasma triglycerides, and reduced risk of coronary artery disease

    NARCIS (Netherlands)

    Clee, S. M.; Loubser, O.; Collins, J.; Kastelein, J. J.; Hayden, M. R.

    2001-01-01

    Linkage of the lipoprotein lipase (LPL) gene to blood pressure levels has been reported. The LPL S447X single nucleotide polymorphism (cSNP) has been associated with decreased triglycerides (TG), increased high density lipoprotein cholesterol, and a decreased risk of coronary artery disease (CAD),

  13. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    International Nuclear Information System (INIS)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-01-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10 −4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains

  14. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kausik, S. S.; Kakati, B.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402 (India)

    2013-05-15

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10{sup −4} millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  15. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Science.gov (United States)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-05-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10-4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (˜pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  16. Pressure potential and stability analysis in an acoustical noncontact transportation

    Science.gov (United States)

    Li, J.; Liu, C. J.; Zhang, W. J.

    2017-01-01

    Near field acoustic traveling wave is one of the most popular principles in noncontact manipulations and transportations. The stability behavior is a key factor in the industrial applications of acoustical noncontact transportation. We present here an in-depth analysis of the transportation stability of a planar object levitated in near field acoustic traveling waves. To more accurately describe the pressure distributions on the radiation surface, a 3D nonlinear traveling wave model is presented. A closed form solution is derived based on the pressure potential to quantitatively calculate the restoring forces and moments under small disturbances. The physical explanations of the effects of fluid inertia and the effects of non-uniform pressure distributions are provided in detail. It is found that a vibration rail with tapered cross section provides more stable transportation than a rail with rectangular cross section. The present study sheds light on the issue of quantitative evaluation of stability in acoustic traveling waves and proposes three main factors that influence the stability: (a) vibration shape, (b) pressure distribution and (c) restoring force/moment. It helps to provide a better understanding of the physics behind the near field acoustic transportation and provide useful design and optimization tools for industrial applications.

  17. The potential for health risks from intrusion of contaminants into the distribution system from pressure transients.

    Science.gov (United States)

    LeChevallier, Mark W; Gullick, Richard W; Karim, Mohammad R; Friedman, Melinda; Funk, James E

    2003-03-01

    The potential for public health risks associated with intrusion of contaminants into water supply distribution systems resulting from transient low or negative pressures is assessed. It is shown that transient pressure events occur in distribution systems; that during these negative pressure events pipeline leaks provide a potential portal for entry of groundwater into treated drinking water; and that faecal indicators and culturable human viruses are present in the soil and water exterior to the distribution system. To date, all observed negative pressure events have been related to power outages or other pump shutdowns. Although there are insufficient data to indicate whether pressure transients are a substantial source of risk to water quality in the distribution system, mitigation techniques can be implemented, principally the maintenance of an effective disinfectant residual throughout the distribution system, leak control, redesign of air relief venting, and more rigorous application of existing engineering standards. Use of high-speed pressure data loggers and surge modelling may have some merit, but more research is needed.

  18. New perspectives on potential hydrogen storage materials using high pressure.

    Science.gov (United States)

    Song, Yang

    2013-09-21

    In addressing the global demand for clean and renewable energy, hydrogen stands out as the most suitable candidate for many fuel applications that require practical and efficient storage of hydrogen. Supplementary to the traditional hydrogen storage methods and materials, the high-pressure technique has emerged as a novel and unique approach to developing new potential hydrogen storage materials. Static compression of materials may result in significant changes in the structures, properties and performance that are important for hydrogen storage applications, and often lead to the formation of unprecedented phases or complexes that have profound implications for hydrogen storage. In this perspective article, 22 types of representative potential hydrogen storage materials that belong to four major classes--simple hydride, complex hydride, chemical hydride and hydrogen containing materials--were reviewed. In particular, their structures, stabilities, and pressure-induced transformations, which were reported in recent experimental works together with supporting theoretical studies, were provided. The important contextual aspects pertinent to hydrogen storage associated with novel structures and transitions were discussed. Finally, the summary of the recent advances reviewed and the insight into the future research in this direction were given.

  19. Potential high fluence response of pressure vessel internals constructed from austenitic stainless steels

    International Nuclear Information System (INIS)

    Garner, F.A.; Greenwood, L.R.; Harrod, D.L.

    1993-08-01

    Many of the in-core components in pressurized water reactors are constructed of austenitic stainless steels. The potential behavior of these components can be predicted using data on similar steels irradiated at much higher displacement rates in liquid-metal reactors or water-cooled mixed-spectrum reactors. Consideration of the differences between the pressurized water environment and that of the other reactors leads to the conclusion that significant amounts of void swelling, irradiation creep, and embrittlement will occur in some components, and that the level of damage per atomic displacement may be larger in the pressurized water environment

  20. Membrane potential, serum calcium and serum selenium decrease in preeclampsia subjects in Owerri

    Directory of Open Access Journals (Sweden)

    Johnkennedy Nnodim

    2017-08-01

    Full Text Available Background Pre-eclampsia is a serious hypertensive condition of pregnancy associated with high maternal and fetal morbidity and mortality. Women who have had pre-eclampsia have a greater risk of developing hypertension, stroke and ischemic heart disease in later life. The etiology of pre-eclampsia remains unclear. Placental insufficiency plays a key role in the progression of this disease. The aim of this study was to determine membrane potential, serum calcium and serum selenium levels in preeclampsia subjects in Owerri.   Methods A case control study involving 200 primigravida (100 preeclamptic and 100 apparently healthy between the ages of 20 and 32 years attending General Hospital Owerri. Fasting venous blood was collected for the determination of serum selenium and serum calcium while membrane potential was calculated using the Nernst equation. The serum calcium was estimated using Randox Kit and serum selenium by atomic absorption spectrophotometry. The Independent Student t test was used for statistical analysis.   Results The results revealed that membrane potential and serum selenium as well as serum calcium were significantly decreased in preeclampsia when compared with the controls, at p<0.05.   Conclusion Our study demonstrated that the decrease in membrane potential, serum calcium and serum selenium levels may play a critical role in the pathogenesis of pre-eclampsia. There may be a need for increasing the dietary intake of these essential trace metals during pregnancy to prevent pre-eclampsia in Owerri.

  1. Pressure Dependence of the Peierls Stress in Aluminum

    Science.gov (United States)

    Dang, Khanh; Spearot, Douglas

    2018-03-01

    The effect of pressure applied normal to the {111} slip plane on the Peierls stress in Al is studied via atomistic simulations. Edge, screw, 30°, and 60° straight dislocations are created using the Volterra displacement fields for isotropic elasticity. For each dislocation character angle, the Peierls stress is calculated based on the change in the internal energy, which is an invariant measure of the dislocation driving force. It is found that the Peierls stress for dislocations under zero pressure is in general agreement with previous results. For screw and 60° dislocations, the Peierls stress versus pressure relationship has maximum values associated with stacking fault widths that are multiples of the Peierls period. For the edge dislocation, the Peierls stress decreases with increasing pressure from tension to compression. Compared with the Mendelev potential, the Peierls stress calculated from the Mishin potential is more sensitive to changes in pressure.

  2. On local thermal equilibrium and potential gradient vs current characteristic in wall-stabilized argon plasma arc at 0.1 atm pressure

    International Nuclear Information System (INIS)

    Shindo, Haruo; Imazu, Shingo; Inaba, Tsuginori.

    1979-01-01

    In wall-stabilized arc which is a very useful means for determining the transport characteristics of high temperature gases, it is the premise that the inside of arc column is in complete local thermal equilibrium (LTE). In general, the higher the gas pressure, the easier the establishment of LTE, accordingly the experimental investigations on the characteristics of arc discharge as well as the transport characteristics so far were limited to the region of relatively high pressure. However, the authors have found that the theoretical potential vs. current characteristic obtained by the transport characteristic was greatly different from the actually measured one in low pressure region, as the fundamental characteristic of wall-stabilized argon plasma arc below atmospheric pressure. This time, they have clarified this discrepancy at 0.1 atm using the plasma parameters obtained through the spectroscopic measurements. The spectroscopic measurements have been performed through the side observation window at the position 5.5 cm away from the cathode, when arc was ignited vertically at the electrodes distant by 11 cm. Arc radius was 0.5 cm. Electron density and temperature, gas temperature and the excitation density of argon neutral atoms have been experimentally measured. The investigations showed that, in the region of low arc current, where the ratio of current to arc radius is less than 200 A/cm, the fall of gas temperature affected greatly on the decrease of axial electric field of arc column. The non-equilibrium between electron temperature and gas temperature decreased with the increase of arc current, and it was concluded that LTE has been formed at the center portion of arc column above I/R = 300 A/cm. (Wakatsuki, Y.)

  3. Potential impact of enhanced fracture-toughness data on pressurized-thermal-shock analysis

    International Nuclear Information System (INIS)

    Dickson, T.L.; Theiss, T.J.

    1990-01-01

    The Heavy Section Steel Technology (HSST) Program is involved with the generation of ''enhanced'' fracture-initiation toughness and fracture-arrest toughness data of prototypic nuclear reactor vessel steels. These two sets of data are enhanced because they have distinguishing characteristics that could potentially impact PWR pressure vessel integrity assessments for the pressurized-thermal shock (PTS) loading condition which is a major plant-life extension issue to be confronted in the 1990's. Currently, the HSST Program is planning experiments to verify and quantify, for A533B steel, the distinguishing characteristic of elevated initiation-fracture toughness for shallow flaws which has been observed for other steels. Deterministic and probabilistic fracture-mechanics analyses were performed to examine the influence of the enhanced initiation and arrest fracture-toughness data on the cleavage fracture response of a nuclear reactor pressure vessel subjected to PTS loading. The results of the analyses indicated that application of the enhanced K Ia data does reduce the conditional probability of failure P(F|E); however, it does not appear to have the potential to significantly impact the results of PTS analyses. The application of enhanced fracture-initiation-toughness data for shallow flaws also reduces P(F|E), but it does appear to have a potential for significantly affecting the results of PTS analyses. The effect of including Type I warm prestress in probabilistic fracture-mechanics analyses is beneficial. The benefit is transient dependent and, in some cases, can be quite significant. 19 refs., 12 figs., 1 tab

  4. Ingestion of a carbonated beverage decreases lower esophageal sphincter pressure and increases frequency of transient lower esophageal sphincter relaxation in normal subjects.

    Science.gov (United States)

    Shukla, Akash; Meshram, Megha; Gopan, Amrit; Ganjewar, Vaibhav; Kumar, Praveen; Bhatia, Shobna J

    2012-06-01

    Transient lower esophageal sphincter relaxation (tLESR) and decreased basal lower esophageal sphincter (LES) pressure are postulated mechanisms of gastroesophageal reflux (GER). There is conflicting evidence on the effect of carbonated drinks on lower esophageal sphincter function. This study was conducted to assess the effect of a carbonated beverage on tLESR and LES pressure. High resolution manometry tracings (16 channel water-perfused, Trace 1.2, Hebbard, Australia) were obtained in 18 healthy volunteers (6 men) for 30 min each at baseline, and after 200 mL of chilled potable water and 200 mL of chilled carbonated cola drink (Pepsi [Pepsico India Ltd]). The sequence of administration of the drinks was determined by random number method generated by a computer. The analysis of tracings was done using TRACE 1.2 software by a physician who was unaware of the sequence of administration of fluids. The mean (SD) age of the participant was 37.3 (12.9) years. The median (range) frequency of tLESr was higher after the carbonated beverage (10.5 [0-26]) as compared to baseline (0 [0-3], p = 0.005) as well as after water (1 [0-14], p = 0.010). The LES pressure decreased after ingestion of the carbonated beverage (18.5 [11-37] mmHg) compared to baseline (40.5 [25-66] mmHg, p = 0.0001) and after water (34 [15-67] mmHg, p = 0.003). Gastric pressure was not different in the three groups. Ingestion of a carbonated beverage increases tLESr and lowers LES pressure in healthy subjects.

  5. CLASSICAL MUSIC DECREASE STRESS LEVEL AND BLOOD PRESSURE PRIMIGRAVIDA IN THE THIRD TRIMESTER

    Directory of Open Access Journals (Sweden)

    Ni Ketut Alit Armini

    2017-07-01

    Full Text Available Introduction: Many changes in psychology and biology increase primigravida’s stress in the third trimester. The stress response makes blood pressure being unstable, it causes bad effect for pregnancy. Classical music can be used as one of relaxation facilities that can reduce stress. The aimed of this study were to analyze the effect of classical music on stress level and blood pressure. Method: This study was used a quasy experimental purposive sampling design. The sample in this study were 14 pregnancy women in the third trimester in RSIA Cempaka Putih Permata Surabaya. The independent variable in this study was classical music and the dependent variable were stress level and blood pressure. Data were analyzed by Wilcoxon Signed Rank Test, Mann Withney U Test, Paired t Test and Independent t Test with significance level α≤0.05. Result: The result showed that the stress level in controlled group with p=0.567 and intervention group with p=0.025. The result of blood pressure in controlled group with p=0.522 in systolic blood pressure, p=0.35 in diastolic blood pressure and intervention group showed p=0.103 in systolic blood pressure and p=1.00 in diastolic blood pressure. Discussion: It can be concluded that listening classical music can reduce stress level, stabilize blood pressure, although blood pressure hasn’t significant result but mean of blood pressure show that it was stable. Further studies should be considered to used cortisol to identify stress biology response spesifically.

  6. Understanding chemical-potential-related transient pore-pressure response to improve real-time borehole (in)stability predictions

    Energy Technology Data Exchange (ETDEWEB)

    Tare, U. A.; Mody, F. K.; Mese, A. I. [Haliburton Energy Services, TX (United States)

    2002-07-01

    In order to develop a real-time wellbore (in)stability modelling capability, experimental work was carried out to investigate the role of the chemical potential of drilling fluids on transient pore pressure and time-dependent rock property alterations of shale formations. Time-dependent alterations in the pore pressure, acoustic and rock properties of formations subjected to compressive tri-axial test were recorded during the experiments involving the Pore Pressure Transmission (PPT) test. Based on the transient pore pressure of shale exposed to the test fluid presented here, the 20 per cent calcium chloride showed a very low membrane efficiency of 4.45 per cent. The need for a thorough understanding of the drilling fluid/shale interaction prior to applying any chemical potential wellbore (in)stability model to real-time drilling operations was emphasized. 9 refs., 5 figs.

  7. Successive measurements of streaming potential and electroosmotic pressure with the same core-holder

    Science.gov (United States)

    Yin, Chenggang; Hu, Hengshan; Yu, Chunhao; Wang, Jun

    2018-05-01

    Successive measurements of the streaming potential and electroosmotic pressure of each core sample are important for understanding the mechanisms of electrokinetic effects. In previous studies, one plug of the core-holder needs to be replaced in these two experiments, which causes the change of the fluid parameters and the boundary conditions in the core. We design a new core-holder to permit successive experiments without plug replacement, which ensures the consistency of the measurement environment. A two-direction harmonic pressure-driving source is accordingly designed. Using this new equipment, electrokinetic experiments conducted ten core samples at 0.4 mol/L NaCl solution. The results show good agreement between the electrokinetically deduced permeability and premeasured gas permeability. For high salinity saturated samples, the permeability can be inverted from electroosmotic effect instead of the streaming potential.

  8. Kidney function and blood pressure in preschool-aged children exposed to cadmium and arsenic - potential alleviation by selenium

    Energy Technology Data Exchange (ETDEWEB)

    Skröder, Helena [Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Hawkesworth, Sophie [Medical Research Council (MRC), International Nutrition Group, London School of Hygiene and Tropical Medicine, London, UK. (United Kingdom); Kippler, Maria [Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); El Arifeen, Shams [International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka (Bangladesh); Wagatsuma, Yukiko [Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan. (Japan); Moore, Sophie E. [MRC Human Nutrition Research, Cambridge (United Kingdom); Vahter, Marie, E-mail: marie.vahter@ki.se [Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden)

    2015-07-15

    Background: Early-life exposure to toxic compounds may cause long-lasting health effects, but few studies have investigated effects of childhood exposure to nephrotoxic metals on kidney and cardiovascular function. Objectives: To assess effects of exposure to arsenic and cadmium on kidney function and blood pressure in pre-school-aged children, and potential protection by selenium. Methods: This cross-sectional study was part of the 4.5 years of age (range: 4.4–5.4 years) follow-up of the children from a supplementation trial in pregnancy (MINIMat) in rural Bangladesh, and nested studies on early-life metal exposures. Exposure to arsenic, cadmium and selenium from food and drinking water was assessed by concentrations in children's urine, measured by ICP-MS. Kidney function was assessed by the estimated glomerular filtration rate (eGFR, n=1106), calculated from serum cystatin C, and by kidney volume, measured by ultrasound (n=375). Systolic and diastolic blood pressure was measured (n=1356) after five minutes rest. Results: Multivariable-adjusted regression analyzes showed that exposure to cadmium, but not arsenic, was inversely associated with eGFR, particularly in girls. A 0.5 µg/L increase in urinary cadmium among the girls (above spline knot at 0.12) was associated with a decrease in eGFR of 2.6 ml/min/1.73 m{sup 2}, corresponding to 0.2SD (p=0.022). A slightly weaker inverse association with cadmium was also indicated for kidney volume, but no significant associations were found with blood pressure. Stratifying on children's urinary selenium (below or above median of 12.6 µg/L) showed a three times stronger inverse association of U-Cd with eGFR (all children) in the lower selenium stratum (B=−2.8; 95% CI: −5.5, −0.20; p=0.035), compared to those with higher selenium (B=−0.79; 95% CI: −3.0, 1.4; p=0.49). Conclusions: Childhood cadmium exposure seems to adversely affect kidney function, but not blood pressure, in this population of young

  9. Kidney function and blood pressure in preschool-aged children exposed to cadmium and arsenic - potential alleviation by selenium

    International Nuclear Information System (INIS)

    Skröder, Helena; Hawkesworth, Sophie; Kippler, Maria; El Arifeen, Shams; Wagatsuma, Yukiko; Moore, Sophie E.; Vahter, Marie

    2015-01-01

    Background: Early-life exposure to toxic compounds may cause long-lasting health effects, but few studies have investigated effects of childhood exposure to nephrotoxic metals on kidney and cardiovascular function. Objectives: To assess effects of exposure to arsenic and cadmium on kidney function and blood pressure in pre-school-aged children, and potential protection by selenium. Methods: This cross-sectional study was part of the 4.5 years of age (range: 4.4–5.4 years) follow-up of the children from a supplementation trial in pregnancy (MINIMat) in rural Bangladesh, and nested studies on early-life metal exposures. Exposure to arsenic, cadmium and selenium from food and drinking water was assessed by concentrations in children's urine, measured by ICP-MS. Kidney function was assessed by the estimated glomerular filtration rate (eGFR, n=1106), calculated from serum cystatin C, and by kidney volume, measured by ultrasound (n=375). Systolic and diastolic blood pressure was measured (n=1356) after five minutes rest. Results: Multivariable-adjusted regression analyzes showed that exposure to cadmium, but not arsenic, was inversely associated with eGFR, particularly in girls. A 0.5 µg/L increase in urinary cadmium among the girls (above spline knot at 0.12) was associated with a decrease in eGFR of 2.6 ml/min/1.73 m 2 , corresponding to 0.2SD (p=0.022). A slightly weaker inverse association with cadmium was also indicated for kidney volume, but no significant associations were found with blood pressure. Stratifying on children's urinary selenium (below or above median of 12.6 µg/L) showed a three times stronger inverse association of U-Cd with eGFR (all children) in the lower selenium stratum (B=−2.8; 95% CI: −5.5, −0.20; p=0.035), compared to those with higher selenium (B=−0.79; 95% CI: −3.0, 1.4; p=0.49). Conclusions: Childhood cadmium exposure seems to adversely affect kidney function, but not blood pressure, in this population of young

  10. Self-potential observations during hydraulic fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Jeffrey R.; Glaser, Steven D.

    2007-09-13

    The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

  11. Nitrate decreases xanthine oxidoreductase-mediated nitrite reductase activity and attenuates vascular and blood pressure responses to nitrite.

    Science.gov (United States)

    Damacena-Angelis, Célio; Oliveira-Paula, Gustavo H; Pinheiro, Lucas C; Crevelin, Eduardo J; Portella, Rafael L; Moraes, Luiz Alberto B; Tanus-Santos, Jose E

    2017-08-01

    Nitrite and nitrate restore deficient endogenous nitric oxide (NO) production as they are converted back to NO, and therefore complement the classic enzymatic NO synthesis. Circulating nitrate and nitrite must cross membrane barriers to produce their effects and increased nitrate concentrations may attenuate the nitrite influx into cells, decreasing NO generation from nitrite. Moreover, xanthine oxidoreductase (XOR) mediates NO formation from nitrite and nitrate. However, no study has examined whether nitrate attenuates XOR-mediated NO generation from nitrite. We hypothesized that nitrate attenuates the vascular and blood pressure responses to nitrite either by interfering with nitrite influx into vascular tissue, or by competing with nitrite for XOR, thus inhibiting XOR-mediated NO generation. We used two independent vascular function assays in rats (aortic ring preparations and isolated mesenteric arterial bed perfusion) to examine the effects of sodium nitrate on the concentration-dependent responses to sodium nitrite. Both assays showed that nitrate attenuated the vascular responses to nitrite. Conversely, the aortic responses to the NO donor DETANONOate were not affected by sodium nitrate. Further confirming these results, we found that nitrate attenuated the acute blood pressure lowering effects of increasing doses of nitrite infused intravenously in freely moving rats. The possibility that nitrate could compete with nitrite and decrease nitrite influx into cells was tested by measuring the accumulation of nitrogen-15-labeled nitrite ( 15 N-nitrite) by aortic rings using ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS). Nitrate exerted no effect on aortic accumulation of 15 N-nitrite. Next, we used chemiluminescence-based NO detection to examine whether nitrate attenuates XOR-mediated nitrite reductase activity. Nitrate significantly shifted the Michaelis Menten saturation curve to the right, with a 3-fold increase in the

  12. Oxygen-Rich Lithium Oxide Phases Formed at High Pressure for Potential Lithium-Air Battery Electrode.

    Science.gov (United States)

    Yang, Wenge; Kim, Duck Young; Yang, Liuxiang; Li, Nana; Tang, Lingyun; Amine, Khalil; Mao, Ho-Kwang

    2017-09-01

    The lithium-air battery has great potential of achieving specific energy density comparable to that of gasoline. Several lithium oxide phases involved in the charge-discharge process greatly affect the overall performance of lithium-air batteries. One of the key issues is linked to the environmental oxygen-rich conditions during battery cycling. Here, the theoretical prediction and experimental confirmation of new stable oxygen-rich lithium oxides under high pressure conditions are reported. Three new high pressure oxide phases that form at high temperature and pressure are identified: Li 2 O 3 , LiO 2 , and LiO 4 . The LiO 2 and LiO 4 consist of a lithium layer sandwiched by an oxygen ring structure inherited from high pressure ε-O 8 phase, while Li 2 O 3 inherits the local arrangements from ambient LiO 2 and Li 2 O 2 phases. These novel lithium oxides beyond the ambient Li 2 O, Li 2 O 2 , and LiO 2 phases show great potential in improving battery design and performance in large battery applications under extreme conditions.

  13. Estimation of Power Production Potential from Natural Gas Pressure Reduction Stations in Pakistan Using ASPEN HYSYS

    Directory of Open Access Journals (Sweden)

    Imran Nazir Unar

    2015-07-01

    Full Text Available Pakistan is a gas rich but power poor country. It consumes approximately 1, 559 Billion cubic feet of natural gas annually. Gas is transported around the country in a system of pressurized transmission pipelines under a pressure range of 600-1000 psig exclusively operated by two state owned companies i.e. SNGPL (Sui Northern Gas Pipelines Limited and SSGCL (Sui Southern Gas Company Limited. The gas is distributed by reducing from the transmission pressure into distribution pressure up to maximum level of 150 psig at the city gate stations normally called SMS (Sales Metering Station. As a normal practice gas pressure reduction at those SMSs is accomplished in pressure regulators (PCVs or in throttle valves where isenthalpic expansion takes place without producing any energy. Pressure potential of natural gas is an untapped energy resource which is currently wasted by its throttling. This pressure reduction at SMS (pressure drop through SMS may also be achieved by expansion of natural gas in TE, which converts its pressure into the mechanical energy, which can be transmitted any loading device for example electric generator. The aim of present paper is to explore the expected power production potential of various Sales Metering Stations of SSGCL company in Pakistan. The model of sales metering station was developed in a standard flow sheeting software Aspen HYSYS®7.1 to calculate power and study other parameters when an expansion turbine is used instead of throttling valves. It was observed from the simulation results that a significant power (more than 140 KW can be produced at pressure reducing stations of SSGC network with gas flows more than 2.2 MMSCFD and pressure ration more than 1.3.

  14. Transient receptor potential canonical type 3 channels and blood pressure in humans

    DEFF Research Database (Denmark)

    Thilo, Florian; Baumunk, Daniel; Krause, Hans

    2009-01-01

    There is evidence that transient receptor potential canonical type 3 (TRPC3) cation channels are involved in the regulation of blood pressure, but this has not been studied using human renal tissue. We tested the hypothesis that the expression of TRPC3 in human renal tissue is associated with blood...

  15. Tensile strength decreases and perfusion pressure of 3-holed polyamide epidural catheters increases in long-term epidural infusion.

    Science.gov (United States)

    Kim, Pascal; Meyer, Urs; Schüpfer, Guido; Rukwied, Roman; Konrad, Christoph; Gerber, Helmut

    2011-01-01

    Epidural analgesia is an established method for pain management. The failure rate is 8% to 12% due to technical difficulties (catheter dislocation and/or disconnection; partial or total catheter occlusion) and management. The mechanical properties of the catheters, like tensile strength and flow rate, may also be affected by the analgesic solution and/or the tissue environment. We investigated the tensile strength and perfusion pressure of new (n=20), perioperatively (n=30), and postoperatively (n=73) used epidural catheters (20-gauge, polyamide, closed tip, 3 side holes; Perifix [B. Braun]). To prevent dislocation, epidural catheters were taped (n=5) or fixed by suture (n=68) to the skin. After removal, mechanical properties were assessed by a tensile-testing machine (INSTRON 4500), and perfusion pressure was measured at flow rates of 10, 20, and 40 mL/h. All catheters demonstrated a 2-step force transmission. Initially, a minimal increase of length could be observed at 15 N followed by an elongation of several cm at additional forces (7 N). Breakage occurred in the control group at 23.5±1.5 N compared with 22.4±1.6 N in perioperative and 22.4±1.7 N in postoperative catheters (Ptensile strength, whereas perfusion pressure at clinically used flow rates (10 mL/h) increased significantly from 19±1.3 to 44±72 mm Hg during long-term (≥7 days) epidural analgesia (Ptensile strength or perfusion pressure. Epidural catheter use significantly increases the perfusion pressure and decreases the tensile strength. Copyright © 2011 by American Society of Regional Anesthesia and Pain Medicine

  16. Pressurized HxCyOz Cells at ca. 250 °C: Potential and Challenges

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Chatzichristodoulou, Christodoulos; Allebrod, Frank

    2013-01-01

    focus on cells that may have a potential of forming or using HxCyOz in electrolysis or fuel cell mode, respectively. Examples of HxCyOz are hydrogen with (x,y,z) = (2,0,0), carbon monoxide with (x,y,z) = (0,1,1), methane with (x,y,z) = (4,1,0), gasoline with approximately (x,y,z) = (18,8,0), methanol......The increasing need for easy and affordable storage of intermittent renewable energy has encouraged us to explore the possibilities of pressurized electrolysis and fuel cells operating in the temperature range of 200 – 300 °C and pressure from a few bar up to 50 bar and above. Most electrochemical...... rate limiting processes are strongly thermal activated. Also, increased pressure may increase the electrode reaction rates. High pressure means increase energy density in gaseous products. Furthermore, as hydrocarbons, alcohols or ethers - in common denoted HxCyOz - are very convenient fuels, we have...

  17. Corona discharge ion mobility spectrometry at reduced pressures

    International Nuclear Information System (INIS)

    Tabrizchi, Mahmoud; Rouholahnejad, Fereshteh

    2004-01-01

    Ion mobility spectrometers (IMSs) normally operate at ambient pressure. In this work an IMS cell has been designed and constructed to allow the pressure to be reduced inside the IMS cell. In this cell, corona discharge was employed as the ionization source. Reducing pressure affected both the discharge and the performance of the IMS. The discharge current was observed to increase with reducing pressure while the ignition potential decreased. The ion current received at the collector plate was also increased about 50 times when the pressure was reduced from ambient pressure to 15 Torr. The higher ion current can lead to an extended dynamic range. IMS spectra were recorded at various pressures and the results show that the drift times shift perfectly linear with pressure. This suggests that unlike temperature, pressure correction for ion mobility spectra is as simple as multiplying the drift times by a factor of 760/P

  18. Influence of the external conditions on salt retention and pressure-induced electrical potential measured across a composite membrane

    DEFF Research Database (Denmark)

    Benavente, Juana; Jonsson, Gunnar Eigil

    1999-01-01

    Transport on single electrolyte solutions (NaCl and MgCl2) due to pressure gradients across a commercial reverse osmosis membrane was studied by measuring volume flux (J(v)), salt rejection (S) and pressure induced electrical potential (Delta E) in a crossflow cell. The influence on these paramet......Transport on single electrolyte solutions (NaCl and MgCl2) due to pressure gradients across a commercial reverse osmosis membrane was studied by measuring volume flux (J(v)), salt rejection (S) and pressure induced electrical potential (Delta E) in a crossflow cell. The influence......, r = 1, 0.5 and 0.1), respectively. Results show that J(v), S and Delta E values slightly increase when the velocity of the feed solution increases, but the mixed electrolytes strongly affect both salt rejection and pressure-induced electrical potential. A change in the sign of both parameters...... with respect to the value determined with single electrolytes at the same concentration was obtained, which is attributed to a strong coupling among the fluxes of individual ions and their distribution in the membrane when transport of mixed salt is studied. (C) 1999 Elsevier Science B.V. All rights reserved....

  19. Decreases in tanning behaviors following a short online survey: Potential for prevention?

    Science.gov (United States)

    Rodgers, Rachel F; Franko, Debra L; Gottlieb, Mark; Daynard, Richard

    2015-01-01

    To date, tanning prevention programs have led to limited success. The aim of the present study was to investigate potential unexpected prevention effects of completing an online survey focused on tanning attitudes, behaviors, and knowledge among female college tanners. A sample of 92 female undergraduate students from the USA, mean age = 20.09, SD = 1.41 years, who engaged in indoor tanning completed an online survey assessing awareness of tanning-related health risks, appearance-based motivations to tan and not to tan, media literacy related to tanning marketing, and tanning behaviors in 2013. Four months later, participants were invited to complete a follow-up survey assessing tanning intentions and behaviors since completing the initial survey. Fifty-one participants (55%) completed the follow-up questions, of whom 43 (84.3%) reported having decreased or ceased engaging in indoor tanning. In addition participants provided comments indicating that completing the survey had lead to decreases in their tanning behaviors. Our study presents novel and compelling support for using brief online surveys for decreasing health-risk behaviors such as sunbed use. Such measures are extremely cost-effective and easy to disseminate and implement. Replication and extension of these findings are warranted.

  20. Hydrostatic pressure decreases membrane fluidity and lipid desaturase expression in chondrocyte progenitor cells.

    Science.gov (United States)

    Montagne, Kevin; Uchiyama, Hiroki; Furukawa, Katsuko S; Ushida, Takashi

    2014-01-22

    Membrane biomechanical properties are critical in modulating nutrient and metabolite exchange as well as signal transduction. Biological membranes are predominantly composed of lipids, cholesterol and proteins, and their fluidity is tightly regulated by cholesterol and lipid desaturases. To determine whether such membrane fluidity regulation occurred in mammalian cells under pressure, we investigated the effects of pressure on membrane lipid order of mouse chondrogenic ATDC5 cells and desaturase gene expression. Hydrostatic pressure linearly increased membrane lipid packing and simultaneously repressed lipid desaturase gene expression. We also showed that cholesterol mimicked and cholesterol depletion reversed those effects, suggesting that desaturase gene expression was controlled by the membrane physical state itself. This study demonstrates a new effect of hydrostatic pressure on mammalian cells and may help to identify the molecular mechanisms involved in hydrostatic pressure sensing in chondrocytes. © 2013 Elsevier Ltd. All rights reserved.

  1. Non-transferable van der Waals potentials: Insulators at high pressure

    International Nuclear Information System (INIS)

    Maggs, A.C.; Ashcroft, N.W.

    1987-01-01

    For a simple model whose cohesion is dominated by dispersion forces we show that the expansion of the energy in terms of multi-center interactions is ill conditioned at a low density. This density is physically realizable for systems with highly polarizable atoms, and in these circumstances an alternative expression for the internal energy is required. For polarizable systems the requisite densities are readily achievable with the use of modern high pressure capabilities, and have consequences for the interpretation of equation of state data in terms of potential energy functions. 13 refs., 3 figs

  2. Decreasing population blood pressure is not mediated by changes in habitual physical activity. Results from 15 years of follow-up.

    Science.gov (United States)

    Andersen, Ulla Overgaard; Jensen, Gorm

    2007-01-01

    Population blood pressure (PBP) is the average BP shared by all members of a population. In PBP research, the main focus is on the great majority of individuals who are healthy in respect to blood pressure. From previous studies, we know that PBP decreased 2 mmHg during 15 years of follow-up. This decrease leads to significant reductions in cardiovascular (CV) and cerebrovascular risk. The major aim of the present study was to evaluate the effect of habitual physical activity on PBP. Copenhagen City Heart Study is a longitudinal epidemiological study of CV risk in a random population sample. Three surveys were performed with 15 years of follow-up. BP was measured under standardized circumstances. A questionnaire concerning physical exercise was completed. Two scales were used, describing physical activity at work and during leisure-time, respectively. Most of the subjects belonged to the sedentary or low physical activity categories. The population did not change physical activity habits during the observation time. There was no significant difference in either systolic or diastolic BP between the categories. The previously observed reduction in PBP is not explained by a change in the population physical activity habits. This fact illustrates the difference between the high-risk strategy and the population strategy. In the first, the preventive strategy identifies hypertensive individuals and offers them antihypertensive medication and lifestyle modulation such as more and regular physical activity to improve blood pressure and lower individual CV and cerebrovascular risk. In contrast, the "population strategy" seeks to control the determinants of incidence in the population as a whole. This paper demonstrates that physical activity is not a determinant of PBP.

  3. Pressure Effects on the Thermal De-NOx Process

    DEFF Research Database (Denmark)

    Kjærgaard, Karsten; Glarborg, Peter; Dam-Johansen, Kim

    1996-01-01

    effect of the pressure but also cause a slight decrease in the NO reduction potential. The results are consistent with recent atmospheric pressure experiments of thermal de-NOx covering a wide range of reactant partial pressures. Comparisons of the experimental data with the recent chemical kinetic model......The effect of pressure on the thermal de-NOx process has been investigated in flow reactor experiments. The experiments were performed at pressures from 1 to 10 bar and temperatures ranging from 925 to 1375 K. The inlet O-2 level was varied from 1000 ppm to 10%, while NH3 and NO were maintained...... at 1000 and 500 ppm, respectively At the highest pressure, CO was added to shift the regime for NO reduction to lower temperatures. The results show that the pressure affects the location and the width of the temperature window for NO reduction. As the pressure is increased, both the lower and the higher...

  4. PRESSURE EFFECTS IN POLYCYCLIC AROMATIC NITROGENATED HETEROCYCLES (PANHs): DIAGNOSTIC QUALITIES AND COSMOBAROMETRY POTENTIAL

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, Wren; Sephton, Mark A., E-mail: w.montgomery@imperial.ac.uk [Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London SW7 2AZ (United Kingdom)

    2016-03-01

    The influence of polycyclic aromatic nitrogen heterocycles (PANHs), which have been suggested as contributors to the interstellar IR emission bands, on interstellar emission features is difficult to constrain because their infrared characteristics are strongly similar to those for polycyclic aromatic hydrocarbons (PAHs). One possible solution is to seek a means of visualizing the presence of PANHs that provides information that is distinct from that for PAHs. Although PANHs and PAHs have similar infrared characteristics in many settings, this relationship may not be universally maintained. We have used in situ high-pressure synchrotron-source Fourier transform infrared spectroscopy to determine that the responses of two representative molecules, acridine and anthracene, differ at high pressures (>ca. 1 GPa). Because there are a number of high-pressure environments that can be remotely observed by infrared spectroscopy, they represent a potential to glimpse the distribution of PANHs across the cosmos.

  5. Photosynthesis Decrease and Stomatal Control of Gas Exchange in Abies alba Mill. in Response to Vapor Pressure Difference.

    Science.gov (United States)

    Guehl, J M; Aussenac, G

    1987-02-01

    The responses of steady state CO(2) assimilation rate (A), transpiration rate (E), and stomatal conductance (g(s)) to changes in leaf-to-air vapor pressure difference (DeltaW) were examined on different dates in shoots from Abies alba trees growing outside. In Ecouves, a provenance representative of wet oceanic conditions in Northern France, both A and g(s) decreased when DeltaW was increased from 4.6 to 14.5 Pa KPa(-1). In Nebias, which represented the dry end of the natural range of A. alba in southern France, A and g(s) decreased only after reaching peak levels at 9.0 and 7.0 Pa KPa(-1), respectively. The representation of the data in assimilation rate (A) versus intercellular CO(2) partial pressure (C(i)) graphs allowed us to determine how stomata and mesophyll photosynthesis interacted when DeltaW was increased. Changes in A were primarily due to alterations in mesophyll photosynthesis. At high DeltaW, and especially in Ecouves when soil water deficit prevailed, A declined, while C(i) remained approximately constant, which may be interpreted as an adjustment of g(s) to changes in mesophyll photosynthesis. Such a stomatal control of gas exchange appeared as an alternative to the classical feedforward interpretation of E versus DeltaW responses with a peak rate of E. The gas exchange response to DeltaW was also characterized by considerable deviations from the optimization theory of IR Cowan and GD Farquhar (1977 Symp Soc Exp Biol 31: 471-505).

  6. Foot reflexology can increase vagal modulation, decrease sympathetic modulation, and lower blood pressure in healthy subjects and patients with coronary artery disease.

    Science.gov (United States)

    Lu, Wan-An; Chen, Gau-Yang; Kuo, Cheng-Deng

    2011-01-01

    Complementary and alternative medicine (CAM) has long been used by people to postpone the aging process and to reverse disease progression. Reflexology is a CAM method that involves massage to reflex areas in the feet and hands. This study investigated the effect of foot reflexology (FR) on the autonomic nervous modulation in patients with coronary artery disease (CAD) by using heart rate variability analysis. Seventeen people with angiographically patent coronary arteries and 20 patients with CAD scheduled for coronary artery bypass graft surgery were recruited as the control and CAD groups, respectively. The normalized high-frequency power (nHFP) was used as the index of vagal modulation and the normalized very low-frequency power (nVLFP) as the index of vagal withdrawal and renin-angiotensin modulation. In both control and CAD groups, the nHFP was increased significantly whereas the nVLFP was decreased significantly 30 and 60 minutes after FR, as compared with those before FR. The systolic, diastolic, mean arterial, and pulse pressures were significantly decreased after FR in both groups of participants. In the CAD group, the percentage change in heart rate 30 and 60 minutes after FR was smaller than that in the control, and the percentage change in nVLFP 60 minutes after FR was smaller than that in the control. In conclusion, a higher vagal modulation, lower sympathetic modulation, and lower blood pressure can be observed following 60 minutes of FR in both controls and CAD patients. The magnitude of change in the autonomic nervous modulation in CAD patients was slightly smaller than that in the controls. FR may be used as an efficient adjunct to the therapeutic regimen to increase the vagal modulation and decrease blood pressure in both healthy people and CAD patients.

  7. Measurement of compartment elasticity using pressure related ultrasound: a method to identify patients with potential compartment syndrome.

    Science.gov (United States)

    Sellei, R M; Hingmann, S J; Kobbe, P; Weber, C; Grice, J E; Zimmerman, F; Jeromin, S; Gansslen, A; Hildebrand, F; Pape, H C

    2015-01-01

    PURPOSE OF THE STUDY Decision-making in treatment of an acute compartment syndrome is based on clinical assessment, supported by invasive monitoring. Thus, evolving compartment syndrome may require repeated pressure measurements. In suspected cases of potential compartment syndromes clinical assessment alone seems to be unreliable. The objective of this study was to investigate the feasibility of a non-invasive application estimating whole compartmental elasticity by ultrasound, which may improve accuracy of diagnostics. MATERIAL AND METHODS In an in-vitro model, using an artificial container simulating dimensions of the human anterior tibial compartment, intracompartmental pressures (p) were raised subsequently up to 80 mm Hg by infusion of saline solution. The compartmental depth (mm) in the cross-section view was measured before and after manual probe compression (100 mm Hg) upon the surface resulting in a linear compartmental displacement (Δd). This was repeated at rising compartmental pressures. The resulting displacements were related to the corresponding intra-compartmental pressures simulated in our model. A hypothesized relationship between pressures related compartmental displacement and the elasticity at elevated compartment pressures was investigated. RESULTS With rising compartmental pressures, a non-linear, reciprocal proportional relation between the displacement (mm) and the intra-compartmental pressure (mm Hg) occurred. The Pearson's coefficient showed a high correlation (r2 = -0.960). The intraobserver reliability value kappa resulted in a statistically high reliability (κ = 0.840). The inter-observer value indicated a fair reliability (κ = 0.640). CONCLUSIONS Our model reveals that a strong correlation between compartmental strain displacements assessed by ultrasound and the intra-compartmental pressure changes occurs. Further studies are required to prove whether this assessment is transferable to human muscle tissue. Determining the complete

  8. Effects of temperature and pressure on thermodynamic properties of Cd0.50 Zn0.50 Se alloy

    Science.gov (United States)

    Aarifeen, Najm ul; Afaq, A.

    2017-09-01

    Thermodynamic properties of \\text{C}{{\\text{d}}0.50} \\text{Z}{{\\text{n}}0.50} Se alloy are studied using quasi harmonic model for pressure range 0-10 GPa and temperature range 0-1000 K. The structural optimization is obtained by self consistent field calculations and full-potential linear muffin-tin orbital method with GGA+U as an exchange correlation functional where U=2.3427 eV is the hubbard potential. The effects of temperature and pressure on the bulk modulus, Helmholtz free energy, internal energy, entropy, Debye temperature, Grüneisen parameter, thermal expansion coefficient and heat capacities of the material are observed and discussed. The bulk modulus, Helmholtz free energy and Debye temperature are found to decrease with increasing temperature while there is an increasing behavior when the pressure rises. Whereas internal energy has increasing trend with rises in temperature and it almost remains insensitive to pressure. The entropy of the system increases (decreases) with a rise of pressure (temperature).

  9. Considerably decreased risk of cardiovascular disease with combined reductions in HbA1c, blood pressure and blood lipids in type 2 diabetes: Report from the Swedish National Diabetes Register.

    Science.gov (United States)

    Eeg-Olofsson, Katarina; Zethelius, Björn; Gudbjörnsdottir, Soffia; Eliasson, Björn; Svensson, Ann-Marie; Cederholm, Jan

    2016-07-01

    Assess the effect of risk factors changes on risk for cardiovascular disease and mortality in patients with type 2 diabetes selected from the Swedish National Diabetes Register. Observational study of 13,477 females and males aged 30-75 years, with baseline HbA1c 41-67 mmol/mol, systolic blood pressure 122-154 mmHg and ratio non-HDL:HDL 1.7-4.1, followed for mean 6.5 years until 2012. Four groups were created: a reference group (n = 6757) with increasing final versus baseline HbA1c, systolic blood pressure and non-HDL:HDL cholesterol during the study period, and three groups with decreasing HbA1c (n = 1925), HbA1c and systolic blood pressure (n = 2050) or HbA1c and systolic blood pressure and non-HDL:HDL (n = 2745). Relative risk reduction for fatal/nonfatal cardiovascular disease was 35% with decrease in HbA1c only (mean 6 to final 49 mmol/mol), 56% with decrease in HbA1c and systolic blood pressure (mean 12 to final 128 mmHg) and 75% with combined decreases in HbA1c, systolic blood pressure and non-HDL:HDL (mean 0.8 to final 2.1), all p < 0.001 adjusting for clinical characteristics, other risk factors, treatments and previous cardiovascular disease. Similar risk reductions were found for fatal/nonfatal coronary heart disease, fatal cardiovascular disease, all-cause mortality and also in a subgroup of 3038 patients with albuminuria. Considerable risk reductions for cardiovascular disease and mortality were seen with combined long-term risk factor improvement. © The Author(s) 2016.

  10. Impact of an Early Decrease in Systolic Blood Pressure on The Risk of Contrast-Induced Nephropathy after Percutaneous Coronary Intervention.

    Science.gov (United States)

    Li, Hualong; Huang, Shuijin; He, Yiting; Liu, Yong; Liu, Yuanhui; Chen, Jiyan; Zhou, Yingling; Tan, Ning; Duan, Chongyang; Chen, Pingyan

    2016-02-01

    The early postprocedural period was thought to be the rush hour of contrast media excretion, causing rapid and prolonged renal hypoperfusion, which was the critical time window for contrast-induced nephropathy (CIN). 349 consecutive patients were enrolled into the study. The relation between an early postprocedural decrease in systolic blood pressure (SBP) and the risk of CIN was assessed using multivariate logistic regression. A postprocedural decrease in SBP was observed in 63% of patients and CIN developed in 28 (8.0%) patients. The CIN group had a lower postprocedural SBP (114.5±13.5 vs. 123.7±15.6mmHg, P=0.003) and a greater postprocedural decrease in SBP (16.2±19.1 vs. 5.9±18.7mmHg, P=0.005) than the no-CIN group. ROC analysis revealed that the optimum cutoff value for the SBP decrease in detecting CIN was >10mmHg (sensitivity 60.7%, specificity 59.5%, AUC=0.66). Multivariate logistic regression analysis found that a postprocedural decrease in SBP >10mmHg was a significant independent predictor of CIN (OR 2.368, 95%CI: 1.043-5.379, P=0.039), after adjustment for other risk factors. An early moderate postprocedural decrease in SBP may increase the risk of CIN in patients undergoing PCI. Copyright © 2015. Published by Elsevier B.V.

  11. Segmental blood pressure after total hip replacement

    DEFF Research Database (Denmark)

    Gebuhr, Peter Henrik; Soelberg, M; Henriksen, Jens Henrik Sahl

    1992-01-01

    Twenty-nine patients due to have a total hip replacement had their systemic systolic and segmental blood pressures measured prior to operation and 1 and 6 weeks postoperatively. No patients had signs of ischemia. The segmental blood pressure was measured at the ankle and at the toes. A significant...... drop was found in all pressures 1 week postoperatively. The decrease followed the systemic pressure and was restored to normal after 6 weeks. In a group of six patients with preoperatively decreased ankle pressure, a significant transient further decrease in the ankle-toe gradient pressure was found...... on the operated side. None of the patients had symptoms from the lowered pressure. We conclude that in patients without signs of ischemia, the postoperative segmental pressure decrease is reversible and therefore not dangerous....

  12. Deep tissue injury in development of pressure ulcers: a decrease of inflammasome activation and changes in human skin morphology in response to aging and mechanical load.

    Directory of Open Access Journals (Sweden)

    Olivera Stojadinovic

    Full Text Available Molecular mechanisms leading to pressure ulcer development are scarce in spite of high mortality of patients. Development of pressure ulcers that is initially observed as deep tissue injury is multifactorial. We postulate that biomechanical forces and inflammasome activation, together with ischemia and aging, may play a role in pressure ulcer development. To test this we used a newly-developed bio-mechanical model in which ischemic young and aged human skin was subjected to a constant physiological compressive stress (load of 300 kPa (determined by pressure plate analyses of a person in a reclining position for 0.5-4 hours. Collagen orientation was assessed using polarized light, whereas inflammasome proteins were quantified by immunoblotting. Loaded skin showed marked changes in morphology and NLRP3 inflammasome protein expression. Sub-epidermal separations and altered orientation of collagen fibers were observed in aged skin at earlier time points. Aged skin showed significant decreases in the levels of NLRP3 inflammasome proteins. Loading did not alter NLRP3 inflammasome proteins expression in aged skin, whereas it significantly increased their levels in young skin. We conclude that aging contributes to rapid morphological changes and decrease in inflammasome proteins in response to tissue damage, suggesting that a decline in the innate inflammatory response in elderly skin could contribute to pressure ulcer pathogenesis. Observed morphological changes suggest that tissue damage upon loading may not be entirely preventable. Furthermore, newly developed model described here may be very useful in understanding the mechanisms of deep tissue injury that may lead towards development of pressure ulcers.

  13. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    Science.gov (United States)

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. ALLOPURINOL DOES NOT DECREASE BLOOD PRESSURE OR PREVENT THE DEVELOPMENT OF HYPERTENSION IN THE DOCA-SALT RAT MODEL

    Science.gov (United States)

    Szasz, Theodora; Linder, A. Elizabeth; Davis, Robert P.; Burnett, Robert; Fink, Gregory D.; Watts, Stephanie W.

    2010-01-01

    Reactive oxygen species (ROS) play an important role in the pathogenesis of hypertension, disease in which ROS levels and markers of oxidative stress are increased. Xanthine oxidase (XO) is a ROS-producing enzyme the activity of which may increase during hypertension. Studies on XO inhibition effects on BP have yielded controversial results. We hypothesized that XO inhibition would decrease BP or attenuate the development of DOCA-salt hypertension. We administered the XO inhibitor, allopurinol (50 mg/kg/day, orally) or its vehicle to rats during the established or development stages of DOCA-salt hypertension. We validated XO inhibition by HPLC measurements of XO metabolites in urine, serum and tissues demonstrating decrease in products, increase in substrates and detection of the active metabolite of allopurinol, oxypurinol. We monitored BP continuously via radiotelemetry and performed gross evaluations of target organs of hypertension. Allopurinol treatment did not impact the course of DOCA-salt hypertension, regardless of the timing of administration. Aside from a significant decrease in pulse pressure in allopurinol-treated rats, no positive differences were observed between the allopurinol and the vehicle-treated rats. We conclude that XO does not play an important role in the development or maintenance of hypertension in the rat DOCA-salt hypertension model. PMID:20881613

  15. Effects of Abrupt Variations of Solar Wind Dynamic Pressure on the High-Latitude Ionosphere

    Directory of Open Access Journals (Sweden)

    Igino Coco

    2011-01-01

    Full Text Available We show the results of a statistical study on the effects in the high-latitude ionosphere of abrupt variations of solar wind dynamic pressure, using Super Dual Auroral Radar Network (SuperDARN data in both hemispheres. We find that, during periods of quiet ionospheric conditions, the amount of radar backscatter increases when a variation in the dynamic pressure occurs, both positive (increase of the pressure and negative (decrease of the pressure. We also investigate the behaviour of the Cross-Polar Cap Potential (CPCP during pressure variations and show preliminary results.

  16. Effect of plasma colloid osmotic pressure on intraocular pressure during haemodialysis

    OpenAIRE

    Tokuyama, T.; Ikeda, T.; Sato, K.

    1998-01-01

    BACKGROUND—In a previous case report, it was shown that an increase in plasma colloid osmotic pressure induced by the removal of fluid during haemodialysis was instrumental in decreasing intraocular pressure. The relation between changes in intraocular pressure, plasma osmolarity, plasma colloid osmotic pressure, and body weight before and after haemodialysis is evaluated.
METHODS—Intraocular pressure, plasma osmolarity, plasma colloid osmotic pressure, and body weight were evaluated before a...

  17. Implementation of a new policy results in a decrease of pressure ulcer frequency.

    NARCIS (Netherlands)

    Laat, E.H. de; Schoonhoven, L.; Pickkers, P.; Verbeek, A.L.M.; Achterberg, T. van

    2006-01-01

    OBJECTIVE: To determine the effects of a new policy on the efficiency of pressure ulcer care. DESIGN: Series of 1-day pressure ulcer surveys before and after the implementation. SETTING: A 900-bed University Medical Centre in The Netherlands. PARTICIPANTS: On the days of the surveys, 657 patients

  18. Population dynamics and in vitro antibody pressure of porcine parvovirus indicate a decrease in variability.

    Science.gov (United States)

    Streck, André Felipe; Homeier, Timo; Foerster, Tessa; Truyen, Uwe

    2013-09-01

    To estimate the impact of porcine parvovirus (PPV) vaccines on the emergence of new phenotypes, the population dynamic history of the virus was calculated using the Bayesian Markov chain Monte Carlo method with a Bayesian skyline coalescent model. Additionally, an in vitro model was performed with consecutive passages of the 'Challenge' strain (a virulent field strain) and NADL2 strain (a vaccine strain) in a PK-15 cell line supplemented with polyclonal antibodies raised against the vaccine strain. A decrease in genetic diversity was observed in the presence of antibodies in vitro or after vaccination (as estimated by the in silico model). We hypothesized that the antibodies induced a selective pressure that may reduce the incidence of neutral selection, which should play a major role in the emergence of new mutations. In this scenario, vaccine failures and non-vaccinated populations (e.g. wild boars) may have an important impact in the emergence of new phenotypes.

  19. A Statistical Study on the Effect of Hydrostatic Pressure on Metastable Pitting Corrosion of X70 Pipeline Steel.

    Science.gov (United States)

    Yang, Zixuan; Kan, Bo; Li, Jinxu; Qiao, Lijie; Volinsky, Alex A; Su, Yanjing

    2017-11-14

    Hydrostatic pressure effects on pitting initiation and propagation in X70 steel are investigated by evaluating metastable pitting probability using electrochemical methods and immersion corrosion tests in containing chlorine ion solution. Potentiodynamic tests indicated that hydrostatic pressure can decrease the breakdown potential and lead to a reduced transpassivity region. Metastable test results revealed that hydrostatic pressure can increase metastable pitting formation frequency and promote stabilization of metastable pitting growth. Electrochemical impedance spectroscopy (EIS) results indicate that Hydrostatic pressure decreases the charge transfer resistance and increases the dissolution rate within the cavities. Corrosion test results also indicated that pitting initiation and propagation are accelerated by hydrostatic pressure. Result validity was verified by evaluating metastable pitting to predict pitting corrosion resistance.

  20. ''Cs-tetra-ferri-annite:'' High-pressure and high-temperature behavior of a potential nuclear waste disposal phase

    International Nuclear Information System (INIS)

    Comodi, P.; Zanazzi, P.F.

    1999-01-01

    Structure deformations induced by pressure and temperature in synthetic Cs-tetra-ferri-annite 1M [Cs 1.78 (Fe 2+ 5.93 Fe 3+ 0.07 )(Si 6.15 Fe 3+ 1.80 Al 0.05 )O 20 (OH) 4 ], space group C2/m, were analyzed to investigate the capability of the mica structure to store the radiogenic isotopes 135 Cs and 137 Cs. Cs-tetra-ferri-annite is not a mineral name, but for the sake of brevity is used here to designate a synthetic analog of the mineral tetra-ferri-annite. The bulk modulus and its pressure derivative determined by fitting the unit-cell volumes between 0 a/nd 47 kbar to a third-order Birch-Murnaghan equation of state are K 0 = 257(8) kbar and K' 0 = 21(1), respectively. Between 23 C and 582 C, the a and b lattice parameters remain essentially unchanged, but the thermal expansion coefficient of the c axis is α c = 3.12(9) x 10 -5 degree C -1 . High pressure (P) and high temperature (T) produce limited internal strain in the structure. The tetrahedral rotation angle, α, is very small and does not change significantly throughout the P and T range investigated. Above 450 C in air, Cs-tetra-ferri-annite underwent an oxidation of octahedral iron in the M2cis site, balanced by the loss of H and shown by a decrease of the unit-cell volume. Independent isobaric data on thermal expansion and isothermal compressibility data define the geometric equation of state for Cs-tetra-ferri-annite. On the whole, the data confirm that the structure of Cs-tetra-ferri-annite may be a suitable candidate for the storage of large ions, such as Cs in the interlayer and should be considered as a potential Synroc component

  1. Effect of pressure on the second-order Raman scattering intensities of zincblende semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Trallero-Giner, C.; Syassen, K. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany)

    2010-01-15

    A microscopic description of the two-phonon scattering intensities in direct-gap zincblende-type semiconductors as a function of hydrostatic pressure and for non-resonant excitation is presented. The calculations were performed according to the electron-two-phonon deformation potential interaction for the {gamma}{sub 1} and {gamma}{sub 15} components of the Raman tensor. It is shown that the effect of pressure on the Raman scattering cross-section exhibits a complex behavior according to the contribution of the acoustical or optical phonons to the overtones and combinations. Second-order scattering intensities via acoustical modes could decrease or increase with increasing hydrostatic pressure, while for combinations or overtones of optical phonons a decreasing intensity is obtained. Calculations of the effect of pressure on second-order Raman intensities are compared to experimental results for ZnTe. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. Anatomy of a pressure-induced, ferromagnetic-to-paramagnetic transition in pyrrhotite: Implications for the formation pressure of diamonds

    Science.gov (United States)

    Gilder, Stuart A.; Egli, Ramon; Hochleitner, Rupert; Roud, Sophie C.; Volk, Michael W. R.; Le Goff, Maxime; de Wit, Maarten

    2011-10-01

    Meteorites and diamonds encounter high pressures during their formation or subsequent evolution. These materials commonly contain magnetic inclusions of pyrrhotite. Because magnetic properties are sensitive to strain, pyrrhotite can potentially record the shock or formation pressures of its host. Moreover, pyrrhotite undergoes a pressure-induced phase transition between 1.6 and 6.2 GPa, but the magnetic signature of this transition is poorly known. Here we report room temperature magnetic measurements on multidomain and single-domain pyrrhotite under nonhydrostatic pressure. Magnetic remanence in single-domain pyrrhotite is largely insensitive to pressure until 2 GPa, whereas the remanence of multidomain pyrrhotite increases 50% over that of initial conditions by 2 GPa, and then decreases until only 33% of the original remanence remains by 4.5 GPa. In contrast, magnetic coercivity increases with increasing pressure to 4.5 GPa. Below ˜1.5 GPa, multidomain pyrrhotite obeys Néel theory with a positive correlation between coercivity and remanence; above ˜1.5 GPa, it behaves single domain-like yet distinctly different from uncompressed single-domain pyrrhotite. The ratio of magnetic coercivity and remanence follows a logarithmic law with respect to pressure, which can potentially be used as a geobarometer. Owing to the greater thermal expansion of pyrrhotite with respect to diamond, pyrrhotite inclusions in diamonds experience a confining pressure at Earth's surface. Applying our experimentally derived magnetic geobarometer to pyrrhotite-bearing diamonds from Botswana and the Central African Republic suggests the pressures of the pyrrhotite inclusions in the diamonds range from 1.3 to 2.1 GPa. These overpressures constrain the mantle source pressures from 5.4 to 9.5 GPa, depending on which bulk modulus and thermal expansion coefficients of the two phases are used.

  3. Potential for a solids fire during an ITP waste tank deflagration and the impact on gas pressure

    International Nuclear Information System (INIS)

    Thomas, J.K.

    1993-07-01

    During the In-Tank Precipitation (ITP) process, solid deposits may form at the water-line on internal waste tank surfaces. These solids may be combustible due to the presence of tetraphenylborate compounds and hence there is a potential that a waste tank deflagration could ignite a solids fire. The work described in this report evaluates the potential for a waste tank deflagration to ignite a solids fire and the subsequent effect on gas pressure. Thermal analyses were performed using a one-dimensional conduction model, radiative heat flux values calculated with the Deflagration Pressure Analysis Code (DPAC), and effective deposit properties calculated from the component properties. It was shown that a solids fire could only be ignited by a waste tank deflagration for a limited range of cases. For the best-estimate mixtures, a solids fire could not be ignited prior to the time the peak gas pressure is reached and would not increase the peak pressure. For the upper-bound mixtures, the thickness of the solid layer which could be ignited is insufficient to increase the energy released by the deflagration by a significant amount. It was also shown that these conclusions are relatively insensitive to uncertainties related to deposit composition. Thus, the contribution from a solids fire to the gas pressure resulting from a waste tank deflagration may be neglected

  4. Resistance exercise performed with repetitions until failure affects nocturnal blood pressure decreases in hypertensive women

    Directory of Open Access Journals (Sweden)

    Marilia de Almeida Correia

    2015-12-01

    Full Text Available Studies have shown that resistance exercise reduces 24-hour blood pressure to levels below resting values, although this is not a universal finding. The number of repetitions has been shown to influence this response. Thus, the aim of the study was to analyze the effects of resistance exercise performed until failure (UF on 24-hour blood pressure in hypertensive women. Thirteen hypertensive women underwent three experimental sessions in random order: UF, resistance exercise with repetitions before concentric failure (BF and control (C. Prior to and up to 24 hours after the sessions, cardiovascular variables, as well as the nocturnal fall in blood pressure, the morning surge, and the presence or absence of a blood pressure dip pattern were established using an ambulatory blood pressure monitor. In both wakefulness and sleep there was no significant difference among the three groups. However, after UF and C fewer patients presented a dip in blood pressure (46% and 38%, respectively compared BF (77%, p=0.047. In conclusion, the UF attenuated blood pressure dips at night in hypertensive patients.

  5. Line pressure effects on differential pressure measurements

    International Nuclear Information System (INIS)

    Neff, G.G.; Evans, R.P.

    1982-01-01

    The performance of differential pressure transducers in experimental pressurized water reactor (PWR) systems was evaluated. Transient differential pressure measurements made using a simple calibration proportionality relating differential pressure to output voltage could have large measurement uncertainties. A more sophisticated calibration equation was derived to incorporate the effects of zero shifts and sensitivity shifts as pressure in the pressure sensing line changes with time. A comparison made between the original calibration proportionality equation and the derived compensation equation indicates that potential measurement uncertainties can be reduced

  6. High pressure injection of dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Glensvig, M.; Sorenson, S.C.; Abata, D.L.

    1997-08-01

    The purpose of this investigation was to achieve a better understanding of the fundamental spray behavior of DME (Dimenthyl Ether) using a standard diesel pump with pintle and hole nozzles. Fundamental spray behavior was characterized by determining fuel spray penetration and angle, atomization and evaporation. The influences of opening pressure, nozzle geometry and ambient pressure above and below the critical pressure of the fuel on the spray behavior were investigated. The influence of opening pressures on the spray characteristics for the hole nozzle was investigated. The results showed that for opening pressures of 120 bar and 180 bar the spray has a similar appearance. For the higher opening pressure (200 bar and 240 bar), the initial spray breaks up very rapidly giving a high initial spray angle. The opening pressure had little influence on spray penetration. The spray angle later in the injection increased as the opening pressure was decreased. Above the critical pressure, the spray from the hole nozzle had a more irregular shape. Penetration decreased and the spray angle increased above the critical pressure. Three pintle nozzles with different geometries and opening pressures were tested. The appearance of the three sprays were very similar. The sprays seemed to be more sharply pointed as the nozzle hole angle decreased. The nozzle with the 4 deg. hole nozzle angle and an opening pressure of 280 bar had the highest penetration and highest initial spray angle. The pintle nozzle with the 12 deg. hole nozzle angle and opening pressure of approx. 450 bar was tested above the critical ambient pressure. Penetration was very similar for injection above and below the critical ambient pressure, while the spray angle decreased for the spray above the critical ambient pressure. (au)

  7. Plantar Pressure Variation during Jogging with Different Heel Height

    Directory of Open Access Journals (Sweden)

    Y. D. Gu

    2013-01-01

    Full Text Available This paper presents the key testing and analysis results of an investigation on the effect of heel height on the plantar pressure over different foot areas in jogging. It is important in improving the understanding of jogging with high heels and damage/injury prevention. It can also potentially guide the development of suitable/adaptive exercise schemes in between daily activities with high heels. In this work, plantar pressure data were collected from 10 habituated healthy female subjects (aged 21–25 years at their natural jogging speed with three different conditions: flat heeled shoes (0.8 cm, low heeled shoes (4.0 cm, and high heeled shoes (6.6 cm. Data analysis showed significantly differences in plantar pressure distribution associated with the heel heights with increased pressure in the first metatarsal region and decreased pressure in the lateral metatarsal and midfoot sections. However, there is no significant alteration of plantar pressure in the central area of the forefoot with jogging gait.

  8. High blood pressure in older subjects with cognitive impairment.

    Science.gov (United States)

    Mossello, Enrico; Simoni, David

    2016-06-22

    High blood pressure and cognitive impairment often coexist in old age, but their pathophysiological association is complex. Several longitudinal studies have shown that high blood pressure at midlife is a risk factor for cognitive impairment and dementia, although this association is much less clear in old age. The effect of blood pressure lowering in reducing the risk of dementia is only borderline significant in clinical trials of older subjects, partly due to the insufficient follow-up time. Conversely, dementia onset is associated with a decrease of blood pressure values, probably secondary to neurodegeneration. Prognostic effect of blood pressure values in cognitively impaired older subjects is still unclear, with aggressive blood pressure lowering being potentially harmful in this patients category. Brief cognitive screening, coupled with simple motor assessment, are warranted to identify frail older subjects who need a more cautious approach to antihypertensive treatment. Values obtained with ambulatory blood pressure monitoring seem more useful than clinical ones to predict the outcome of cognitively impaired older subjects. Future studies should identify the most appropriate blood pressure targets in older subjects with cognitive impairment.

  9. Estimation of power production potential from natural gas pressure reduction stations in pakistan using aspen hysys

    International Nuclear Information System (INIS)

    Unar, I.N.; Aftab, A.

    2015-01-01

    Pakistan is a gas rich but power poor country. It consumes approximately 1, 559 Billion cubic feet of natural gas annually. Gas is transported around the country in a system of pressurized transmission pipelines under a pressure-range of 600-1 000 psig exclusively operated by two state owned companies i.e. SNGPL (Sui Northern Gas Pipelines Limited) and SSGCL (Sui Southern Gas Company Limited). The gas is distributed by reducing from the transmission pressure into distribution pressure up to maximum level of 150 psig at the city gate stations normally called SMS (Sales Metering Station). As a normal practice gas pressure reduction at those SMSs is accomplished in pressure regulators (PCVs or in of natural gas is an untapped energy resource which is currently wasted by its throttling. This pressure reduction at SMS (pressure drop through SMS) may also be achieved by expansion of natural gas in TE, which converts its pressure into the mechanical energy, which can be transmitted any loading device for example electric generator. The aim of present paper is to explore the expected power production potential of various Sales Metering Stations of SSGCL company in Pakistan. The model of sales metering station was developed in a standard flow sheeting software Aspen HYSYS at the rate 7.1 to calculate power and study other parameters when an expansion turbine is used instead of throttling valves. It was observed from the simulation results that a significant power (more than 140 KW) can be produced at pressure reducing stations of SSGC network with gas flows more than 2.2 MMSCFD and pressure ration more than 1.3. (author)

  10. Arterial wave reflection decreases gradually from supine to upright

    DEFF Research Database (Denmark)

    van den Bogaard, Bas; Westerhof, Berend E; Best, Hendrik

    2011-01-01

    BACKGROUND. An increase in total peripheral resistance (TPR) usually increases arterial wave reflection. During passive head-up tilt (HUT), however, arterial wave reflection decreases with increasing TPR. This study addressed whether arterial wave reflection gradually decreases during HUT. METHODS....... In 10 healthy volunteers (22-39 years, nine males), we recorded finger arterial pressures in supine position (0°), and 30°and 70°degrees HUT and active standing (90°). Aortic pressure was constructed from the finger pressure signal and hemodynamics were calculated. Arterial wave reflection...... from 0.9 dyn s/cm(5) at 0? to 1.2, 1.4 and 1.4 dyn s/cm(5) at 30°, 70° and 90° (p wave reflection...

  11. Endomorphins potentiate acid-sensing ion channel currents and enhance the lactic acid-mediated increase in arterial blood pressure: effects amplified in hindlimb ischaemia.

    Science.gov (United States)

    Farrag, Mohamed; Drobish, Julie K; Puhl, Henry L; Kim, Joyce S; Herold, Paul B; Kaufman, Marc P; Ruiz-Velasco, Victor

    2017-12-01

    Chronic limb ischaemia, characterized by inflammatory mediator release and a low extracellular pH, leads to acid-sensing ion channel (ASIC) activation and reflexively increases mean arterial pressure; endomorphin release is also increased under inflammatory conditions. We examined the modulation of ASIC currents by endomorphins in sensory neurons from rats with freely perfused and ligated femoral arteries: peripheral artery disease (PAD) model. Endomorphins potentiated sustained ASIC currents in both groups of dorsal root ganglion neurons, independent of mu opioid receptor stimulation or G protein activation. Intra-arterial administration of lactic acid (to simulate exercising muscle and evoke a pressor reflex), endomorphin-2 and naloxone resulted in a significantly greater pressor response than lactic acid alone, while administration of APETx2 inhibited endomorphin's enhancing effect in both groups. These results suggest a novel role for endomorphins in modulating ASIC function to effect lactic acid-mediated reflex increase in arterial pressure in patients with PAD. Chronic muscle ischaemia leads to accumulation of lactic acid and other inflammatory mediators with a subsequent drop in interstitial pH. Acid-sensing ion channels (ASICs), expressed in thin muscle afferents, sense the decrease in pH and evoke a pressor reflex known to increase mean arterial pressure. The naturally occurring endomorphins are also released by primary afferents under ischaemic conditions. We examined whether high affinity mu opioid receptor (MOR) agonists, endomorphin-1 (E-1) and -2 (E-2), modulate ASIC currents and the lactic acid-mediated pressor reflex. In rat dorsal root ganglion (DRG) neurons, exposure to E-2 in acidic solutions significantly potentiated ASIC currents when compared to acidic solutions alone. The potentiation was significantly greater in DRG neurons isolated from rats whose femoral arteries were ligated for 72 h. Sustained ASIC current potentiation was also observed

  12. Response of the water status of soybean to changes in soil water potentials controlled by the water pressure in microporous tubes

    Science.gov (United States)

    Steinberg, S. L.; Henninger, D. L.

    1997-01-01

    Water transport through a microporous tube-soil-plant system was investigated by measuring the response of soil and plant water status to step change reductions in the water pressure within the tubes. Soybeans were germinated and grown in a porous ceramic 'soil' at a porous tube water pressure of -0.5 kpa for 28 d. During this time, the soil matric potential was nearly in equilibrium with tube water pressure. Water pressure in the porous tubes was then reduced to either -1.0, -1.5 or -2.0 kPa. Sap flow rates, leaf conductance and soil, root and leaf water potentials were measured before and after this change. A reduction in porous tube water pressure from -0.5 to -1.0 or -1.5 kPa did not result in any significant change in soil or plant water status. A reduction in porous tube water pressure to -2.0 kPa resulted in significant reductions in sap flow, leaf conductance, and soil, root and leaf water potentials. Hydraulic conductance, calculated as the transpiration rate/delta psi between two points in the water transport pathway, was used to analyse water transport through the tube-soil-plant continuum. At porous tube water pressures of -0.5 to-1.5 kPa soil moisture was readily available and hydraulic conductance of the plant limited water transport. At -2.0 kPa, hydraulic conductance of the bulk soil was the dominant factor in water movement.

  13. Origin of the pressure-dependent Tc valley in superconducting simple cubic phosphorus

    Science.gov (United States)

    Wu, Xianxin; Jeschke, Harald O.; Di Sante, Domenico; von Rohr, Fabian O.; Cava, Robert J.; Thomale, Ronny

    2018-03-01

    Motivated by recent experiments, we investigate the pressure-dependent electronic structure and electron-phonon (e-ph) coupling for simple cubic phosphorus by performing first-principles calculations within the full potential linearized augmented plane-wave method. As a function of increasing pressure, our calculations show a valley feature in Tc, followed by an eventual decrease for higher pressures. We demonstrate that this Tc valley at low pressures is due to two nearby Lifshitz transitions, as we analyze the band-resolved contributions to the e-ph coupling. Below the first Lifshitz transition, the phonon hardening and shrinking of the γ Fermi surface with s -orbital character results in a decreased Tc with increasing pressure. After the second Lifshitz transition, the appearance of δ Fermi surfaces with 3 d -orbital character generate strong e-ph interband couplings in α δ and β δ channels, and hence lead to an increase of Tc. For higher pressures, the phonon hardening finally dominates, and Tc decreases again. Our study reveals that the intriguing Tc valley discovered in experiment can be attributed to Lifshitz transitions, while the plateau of Tc detected at intermediate pressures appears to be beyond the scope of our analysis. This strongly suggests that aside from e-ph coupling, electronic correlations along with plasmonic contributions may be relevant for simple cubic phosphorus. Our findings hint at the notion that increasing pressure can shift the low-energy orbital weight towards d character, and as such even trigger an enhanced importance of orbital-selective electronic correlations despite an increase of the overall bandwidth.

  14. Decreasing electrical resistivity of silver along the melting boundary up to 5 GPa

    Science.gov (United States)

    Littleton, Joshua A. H.; Secco, Richard A.; Yong, Wenjun

    2018-04-01

    The electrical resistivity of Ag was experimentally measured at high pressures up to 5 GPa and at temperatures up to ∼300 K above melting. The resistivity decreased as a function of pressure and increased as a function of temperature as expected and is in very good agreement with 1 atm data. Observed melting temperatures at high pressures also agree well with previous experimental and theoretical studies. The main finding of this study is that resistivity of Ag decreases along the pressure- and temperature-dependent melting boundary, in conflict with prediction of resistivity invariance. This result is discussed in terms of the dominant contribution of the increasing energy separation between the Fermi level and 4d-band as a function of pressure. Calculated from the resistivity using the Wiedemann-Franz law, the electronic thermal conductivity increased as a function of pressure and decreased as a function of temperature as expected. The decrease in the high pressure thermal conductivity in the liquid phase as a function of temperature contrasts with the behavior of the 1 atm data.

  15. Clinical study on influences of enteric coated aspirin on blood pressure and blood pressure variability.

    Science.gov (United States)

    Ji, A-L; Chen, W-W; Huang, W-J

    2016-12-01

    We investigated the effects of oral administration of enteric coated aspirin (ASA) on blood pressure and blood pressure variability of hypertension patients before sleep. We observed 150 hypertension cases, classified as Grade 1-2, from September 2006 to March 2008. They are divided into a control group with 30 cases, ASA I group with 60 cases and ASA II group with 60 cases randomly. Subjects in the control group had proper diets, were losing weight, exercising and maintaining a healthy mentality and were taking 30 mg Adalat orally once a day. Based on the treatment of control group, patients in ASA I group were administered 0.1 g Bayaspirin (produced by Bayer Company) at drought in the morning. Also, based on the treatment of control group, patients in ASA II group were administered 0.1 g Bayaspirin at draught before sleep. The course of treatment is 3 months and then after the treatment, decreasing blood pressure and blood pressure variability conditions in three groups will be compared. Through the comparison of ASA II group with the control group, they have differences in terms of systolic blood pressure (SBP), diastolic blood pressure (DBP), decreasing range of blood pressure and blood pressure variability (p sleep has synergistic effects on decreasing blood pressure of hypertension patients and improving blood pressure variability.

  16. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo

    International Nuclear Information System (INIS)

    Betts, R.A.

    2000-01-01

    Carbon uptake by forestation is one method proposed to reduce net carbon dioxide emissions to the atmosphere and so limit the radiative forcing of climate change. But the overall impact of forestation on climate will also depend on other effects associated with the creation of new forests. In particular the albedo of a forested landscape is generally lower than that of cultivated land, especially when snow is lying, and decreasing albedo exerts a positive radiative forcing on climate. Here I simulate the radiative forcings associated with changes in surface albedo as a result of forestation in temperate and boreal forest areas, and translate these forcings into equivalent changes in local carbon stock for comparison with estimated carbon sequestration potentials. I suggest that in many boreal forest areas, the positive forcing induced by decreases in albedo can offset the negative forcing that is expected from carbon sequestration. Some high-latitude forestation activities may therefore increase climate change, rather that mitigating it as intended

  17. Numerical simulation of pore pressure changes in levee under flood conditions

    Science.gov (United States)

    Stanisz, Jacek; Borecka, Aleksandra; Pilecki, Zenon; Kaczmarczyk, Robert

    2017-11-01

    The article discusses the potential for using numerical simulation to assess the development of deformation and pore pressure changes in a levee as a result of the increase and decrease of the flood wave. The simulation made in FLAC 2D did not take into account the filter-erosion deformation associated with seepage in the levee. The simulations were carried out for a field experimental storage consisting of two combined levees, which was constructed with the help of homogeneous cohesive materials with different filtration coefficients. Calculated and measured pore pressure changes were analysed at 4 monitoring points. The water level was increased to 4 m in 96 hours and decreased in 120 hours. The characteristics of the calculated and measured pore pressure changes over time were similar. The maximum values of the calculated and measured pore pressure were almost identical. The only differences were the greater delay of the experimental levee response to changes in water level increase compared to the response of the numerical model. These differences were probably related to filtering-erosion effects during seepage in the levee.

  18. Interesting pressure dependence of power factor in BiTeI

    International Nuclear Information System (INIS)

    Guo, San-Dong; Wang, Jian-Li

    2016-01-01

    We investigate pressure dependence of electronic structures and thermoelectric properties in BiTeI by using a modified Becke and Johnson exchange potential. Spin–orbit coupling (SOC) effects are also included due to giant Rashba splitting. Thermoelectric properties are illuminated through solving Boltzmann transport equations within the constant scattering time approximation. The calculated energy band gap of 0.36 eV agrees well with the experimental value of 0.38 eV. As the pressure increases, the energy band gap first decreases, and then increases. The Rashba energy has the opposite trend with the energy band gap. SOC has obvious detrimental influence on the power factor in both n-type and p-type doping. For low doping concentration, the power factor has the same trend with the energy band gap with increasing pressure, but shows a monotonic changing trend in high doping. It is found that the pressure can induce a significantly enhanced power factor in high n-type doping, which can be understood as pressure leading to two-dimensional-like density of states in the conduction bands. These results suggest that BiTeI may be a potential candidate for efficient thermoelectricity in n-type doping by pressure, turning an ordinary insulator into a topological insulator. (paper)

  19. Osmotic Pressure of Aqueous Electrolyte Solutions via Molecular Simulations of Chemical Potentials: Application to NaCl.

    Czech Academy of Sciences Publication Activity Database

    Smith, W.R.; Moučka, F.; Nezbeda, Ivo

    2016-01-01

    Roč. 407, Sl (2016), s. 76-83 ISSN 0378-3812 Grant - others:NSERC(CA) OGP1041 Institutional support: RVO:67985858 Keywords : osmotic pressure * chemical potential * molecular simulation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.473, year: 2016

  20. A study on the swelling characteristics of a potential buffer material : Effect of ionic strength and temperature on the swelling pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Owan; Cho, Won Jin; Chun, Kwan Sik [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-04-01

    This study is intended to investigate the effect of ionic strength and temperature on the swelling pressure of bentonite. The dry density for compacted bentonite was adjusted between 1.4 Mg/m{sup 3} - 1.8 Mg/m{sup 3}. The effect of temperature was tested at 20 deg C, 40 deg C, 60 deg C, 80 deg C, and the effect of ionic strength with distilled water, synthetic ground water, and 0.01 M - 0.1 M NaCl solution. The swelling pressure decreased with increasing ionic strength, and its dependency got lower at high dry density. Temperature had negligible effect on the swelling pressure of compacted bentonite, which could be explained by the change in hydration pressure, osmotic pressure, and pore water pressure in accordance with temperature. The swelling pressure of compacted bentonite with low dry density was dominated mainly by osmosis. However, hydration was thought to become important at higher dry density, compared with the osmosis. 32 refs., 11 figs., 4 tabs. (Author)

  1. High pressure processing's potential to inactivate norovirus and other fooodborne viruses

    Science.gov (United States)

    High pressure processing (HPP) can inactivate human norovirus. However, all viruses are not equally susceptible to HPP. Pressure treatment parameters such as required pressure levels, initial pressurization temperatures, and pressurization times substantially affect inactivation. How food matrix ...

  2. Visual evoked potentials show strong positive association with intracranial pressure in patients with cryptococcal meningitis

    Directory of Open Access Journals (Sweden)

    Marcelo Adriano da Cunha Silva Vieira

    2015-04-01

    Full Text Available Objective : To verify the relationship between intracranial pressure and flash visual evoked potentials (F-VEP in patients with cryptococcal meningitis. Method The sample included adults diagnosed with cryptococcal meningitis admitted at a reference hospital for infectious diseases. The patients were subjected to F-VEP tests shortly before lumbar puncture. The Pearson’s linear correlation coefficient was calculated and the linear regression analysis was performed. Results : Eighteen individuals were subjected to a total of 69 lumbar punctures preceded by F-VEP tests. At the first lumbar puncture performed in each patient, N2 latency exhibited a strong positive correlation with intracranial pressure (r = 0.83; CI = 0.60 - 0.94; p < 0.0001. The direction of this relationship was maintained in subsequent punctures. Conclusion : The intracranial pressure measured by spinal tap manometry showed strong positive association with the N2 latency F-VEP in patients with cryptococcal meningitis.

  3. Ejector-Enhanced, Pulsed, Pressure-Gain Combustor

    Science.gov (United States)

    Paxson, Daniel E.; Dougherty, Kevin T.

    2009-01-01

    An experimental combination of an off-the-shelf valved pulsejet combustor and an aerodynamically optimized ejector has shown promise as a prototype of improved combustors for gas turbine engines. Despite their name, the constant pressure combustors heretofore used in gas turbine engines exhibit typical pressure losses ranging from 4 to 8 percent of the total pressures delivered by upstream compressors. In contrast, the present ejector-enhanced pulsejet combustor exhibits a pressure rise of about 3.5 percent at overall enthalpy and temperature ratios compatible with those of modern turbomachines. The modest pressure rise translates to a comparable increase in overall engine efficiency and, consequently, a comparable decrease in specific fuel consumption. The ejector-enhanced pulsejet combustor may also offer potential for reducing the emission of harmful exhaust compounds by making it practical to employ a low-loss rich-burn/quench/lean-burn sequence. Like all prior concepts for pressure-gain combustion, the present concept involves an approximation of constant-volume combustion, which is inherently unsteady (in this case, more specifically, cyclic). The consequent unsteadiness in combustor exit flow is generally regarded as detrimental to the performance of downstream turbomachinery. Among other adverse effects, this unsteadiness tends to detract from the thermodynamic benefits of pressure gain. Therefore, it is desirable in any intermittent combustion process to minimize unsteadiness in the exhaust path.

  4. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, G.L.; Palma, R.K.; Brito, J.O.; Sanches, I.C. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil); Irigoyen, M.C. [Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); De Angelis, K. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil)

    2015-03-27

    The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC), sedentary hypertensive (SH), sedentary hypertensive ovariectomized (SHO), and resistance-trained hypertensive ovariectomized (RTHO). Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks) at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR) responses to methylatropine (3 mg/kg, iv) and propranolol (4 mg/kg, iv). Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg), as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm). Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05). The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation.

  5. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    International Nuclear Information System (INIS)

    Shimojo, G.L.; Palma, R.K.; Brito, J.O.; Sanches, I.C.; Irigoyen, M.C.; De Angelis, K.

    2015-01-01

    The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC), sedentary hypertensive (SH), sedentary hypertensive ovariectomized (SHO), and resistance-trained hypertensive ovariectomized (RTHO). Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks) at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR) responses to methylatropine (3 mg/kg, iv) and propranolol (4 mg/kg, iv). Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg), as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm). Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05). The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation

  6. Cocoa, blood pressure, and cardiovascular health.

    Science.gov (United States)

    Ferri, Claudio; Desideri, Giovambattista; Ferri, Livia; Proietti, Ilenia; Di Agostino, Stefania; Martella, Letizia; Mai, Francesca; Di Giosia, Paolo; Grassi, Davide

    2015-11-18

    High blood pressure is an important risk factor for cardiovascular disease and cardiovascular events worldwide. Clinical and epidemiological studies suggest that cocoa-rich products reduce the risk of cardiovascular disease. According to this, cocoa has a high content in polyphenols, especially flavanols. Flavanols have been described to exert favorable effects on endothelium-derived vasodilation via the stimulation of nitric oxide-synthase, the increased availability of l-arginine, and the decreased degradation of NO. Cocoa may also have a beneficial effect by protecting against oxidative stress alterations and via decreased platelet aggregation, decreased lipid oxidation, and insulin resistance. These effects are associated with a decrease of blood pressure and a favorable trend toward a reduction in cardiovascular events and strokes. Previous meta-analyses have shown that cocoa-rich foods may reduce blood pressure. Long-term trials investigating the effect of cocoa products are needed to determine whether or not blood pressure is reduced on a chronic basis by daily ingestion of cocoa. Furthermore, long-term trials investigating the effect of cocoa on clinical outcomes are also needed to assess whether cocoa has an effect on cardiovascular events. A 3 mmHg systolic blood pressure reduction has been estimated to decrease the risk of cardiovascular and all-cause mortality. This paper summarizes new findings concerning cocoa effects on blood pressure and cardiovascular health, focusing on putative mechanisms of action and "nutraceutical " viewpoints.

  7. Intraocular pressure decrease with preservative-free fixed and unfixed combination of tafluprost and timolol in pseudoexfoliative glaucoma.

    Science.gov (United States)

    Holló, Gábor; Ropo, Auli

    2015-01-01

    We investigated the intraocular pressure (IOP) lowering efficacy of preservative-free fixed and non-fixed combination of tafluprost 0.0015% and timolol 0.5% in pseudoexfoliative glaucoma (XFG). A per protocol worse eye analysis was made on all XFG patients who participated in a recent 6 month, prospective, randomized, double-masked, parallel group, multicenter phase III study. The mean time-wise IOP decreased by 8.62 to 10.25 mmHg (31.8 to 36.7%) in the fixed dose combination arm (15 patients) and by 5.38 to 11.35 mmHg (21.3 to 41.2%) in the non-fixed combination arm (13 patients), respectively (p preservative-free fixed dose combination of tafluprost and timolol provides a clinically significant IOP reduction in XFG, and may offer an advantage for the XFG patients with dry eye, due to its preservative-free nature.

  8. Decreased hydrophobicity of iridescent feathers: a potential cost of shiny plumage.

    Science.gov (United States)

    Eliason, Chad M; Shawkey, Matthew D

    2011-07-01

    Honest advertisement models posit that sexually selected traits are costly to produce, maintain or otherwise bear. Brightly coloured feathers are thought to be classic examples of these models, but evidence for a cost in feathers not coloured by carotenoid pigments is scarce. Unlike pigment-based colours, iridescent feather colours are produced by light scattering in modified feather barbules that are characteristically flattened and twisted towards the feather surface. These modifications increase light reflectance, but also expose more surface area for water adhesion, suggesting a potential trade-off between colour and hydrophobicity. Using light microscopy, spectrometry, contact angle goniometry and self-cleaning experiments, we show that iridescent feathers of mallards, Anas platyrhynchos, are less hydrophobic than adjacent non-iridescent feathers, and that this is primarily caused by differences in barbule microstructure. Furthermore, as a result of this decreased hydrophobicity, iridescent feathers are less efficient at self-cleaning than non-iridescent feathers. Together, these results suggest a previously unforeseen cost of iridescent plumage traits that may help to explain the evolution and distribution of iridescence in birds.

  9. Chronic lead exposure decreases the vascular reactivity of rat aortas: the role of hydrogen peroxide.

    Directory of Open Access Journals (Sweden)

    Karolini Zuqui Nunes

    Full Text Available We investigated whether exposure to small concentrations of lead alters blood pressure and vascular reactivity. Male Wistar rats were sorted randomly into the following two groups: control (Ct and treatment with 100 ppm of lead (Pb, which was added to drinking water, for 30 days. Systolic blood pressure (BP was measured weekly. Following treatment, aortic ring vascular reactivity was assessed. Tissue samples were properly stored for further biochemical investigation. The lead concentration in the blood reached approximately 8 μg/dL. Treatment increased blood pressure and decreased the contractile responses of the aortic rings to phenylephrine (1 nM-100 mM. Following N-nitro-L arginine methyl ester (L-NAME administration, contractile responses increased in both groups but did not differ significantly between them. Lead effects on Rmax were decreased compared to control subjects following superoxide dismutase (SOD administration. Catalase, diethyldithiocarbamic acid (DETCA, and apocynin increased the vasoconstrictor response induced by phenylephrine in the aortas of lead-treated rats but did not increase the vasoconstrictor response in the aortas of untreated rats. Tetraethylammonium (TEA potentiated the vasoconstrictor response induced by phenylephrine in aortic segments in both groups, but these effects were greater in lead-treated rats. The co-incubation of TEA and catalase abolished the vasodilatory effect noted in the lead group. The present study is the first to demonstrate that blood lead concentrations well below the values established by international legislation increased blood pressure and decreased phenylephrine-induced vascular reactivity. The latter effect was associated with oxidative stress, specifically oxidative stress induced via increases in hydrogen peroxide levels and the subsequent effects of hydrogen peroxide on potassium channels.

  10. Potential pressure indicators for fishing, and their data requirements

    NARCIS (Netherlands)

    Piet, G.J.; Quirijns, F.J.; Robinson, L.; Greenstreet, S.P.R.

    2007-01-01

    Indicators of fishing pressure are necessary to support an ecosystem approach to fisheries management (EAFM). We present a framework that distinguishes four levels of pressure indicators that move from being a simple description of anthropogenic activity to more precisely describing the actual

  11. Pressure Shift Freezing as Potential Alternative for Generation of Decellularized Scaffolds

    Directory of Open Access Journals (Sweden)

    S. Eichhorn

    2013-01-01

    Full Text Available Background. Protocols using chemical reagents for scaffold decellularization can cause changes in the properties of the matrix, depending on the type of tissue and the chemical reagent. Technologies using physical techniques may be possible alternatives for the production grafts with potential superior matrix characteristics. Material and Methods. We tested four different technologies for scaffold decellularization. Group 1: high hydrostatic pressure (HHP, 1 GPa; Group 2: pressure shift freezing (PSF; Group 3: pulsed electric fields (PEF; Group 4: control group: detergent (SDS. The degree of decellularization was assessed by histological analysis and the measurement of residual DNA. Results. Tissue treated with PSF showed a decellularization with a penetration depth (PD of 1.5 mm and residual DNA content of . HHD treatment caused a PD of 0.2 mm with a residual DNA content of . PD in PEF was 0.5 mm, and the residual DNA content was . In the SDS group, PD was found to be 5 mm, and the DNA content was determined at . Conclusion. PSF showed promising results as a possible technique for scaffold decellularization. The penetration depth of PSF has to be optimized, and the mechanical as well as the biological characteristics of decellularized grafts have to be evaluated.

  12. Modeling of electrochemistry and steam-methane reforming performance for simulating pressurized solid oxide fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Recknagle, Kurtis P.; Ryan, Emily M.; Koeppel, Brian J.; Mahoney, Lenna A.; Khaleel, Moe A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2010-10-01

    This paper examines the electrochemical and direct internal steam-methane reforming performance of the solid oxide fuel cell when subjected to pressurization. Pressurized operation boosts the Nernst potential and decreases the activation polarization, both of which serve to increase cell voltage and power while lowering the heat load and operating temperature. A model considering the activation polarization in both the fuel and the air electrodes was adopted to address this effect on the electrochemical performance. The pressurized methane conversion kinetics and the increase in equilibrium methane concentration are considered in a new rate expression. The models were then applied in simulations to predict how the distributions of direct internal reforming rate, temperature, and current density are effected within stacks operating at elevated pressure. A generic 10 cm counter-flow stack model was created and used for the simulations of pressurized operation. The predictions showed improved thermal and electrical performance with increased operating pressure. The average and maximum cell temperatures decreased by 3% (20 C) while the cell voltage increased by 9% as the operating pressure was increased from 1 to 10 atm. (author)

  13. Pancreatic tissue fluid pressure during drainage operations for chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Madsen, P

    1990-01-01

    Pancreatic tissue fluid pressure was measured in 10 patients undergoing drainage operations for painful chronic pancreatitis. The pressure was measured by the needle technique in the three anatomic regions of the pancreas before and at different stages of the drainage procedure, and the results...... were compared with preoperative endoscopic retrograde cholangiopancreatography (ERCP) morphology. The preoperatively elevated pressure decreased in all patients but one, to normal or slightly elevated values. The median pressure decrease was 50% (range, 0-90%; p = 0.01). The drainage anastomosis (a...... a decrease in pancreatic tissue fluid pressure during drainage operations for pain in chronic pancreatitis. Regional pressure decrease were apparently unrelated to ERCP findings....

  14. High pressure and high temperature EXAFS and diffraction study of AgI

    International Nuclear Information System (INIS)

    Yoshiasa, Akira; Arima, Hiroshi; Fukui, Hiroshi; Okube, Maki; Katayama, Yoshinori; Ohtaka, Osamu

    2009-01-01

    We have determined the precise P-T phase diagram of AgI by in-situ high-pressure high-temperature synchrotron experiments. X-ray diffraction and XAFS measurements were performed up to 6.0 GPa and 1100 K using a multi-anvil high-pressure device and synchrotron radiation from SPring-8. In the disordered rock-salt phase, Ag ions occupy both octahedral and tetrahedral sites and twenty percent of Ag ions occupy the tetrahedral site as a maximum value at 2 GPa. From the viewpoint of the local structure analyses, some sudden changes are recognized near broad phase transition point. Analysis of EXAFS Debye-Waller factor is useful because the force constant can be decided directly even at high pressure and high temperature. Pressure influences greatly the effective potential and anharmonicity decreases with increasing pressure. (author)

  15. Pressure-Dependent Photoluminescence Study of Wurtzite InP Nanowires.

    Science.gov (United States)

    Chauvin, Nicolas; Mavel, Amaury; Patriarche, Gilles; Masenelli, Bruno; Gendry, Michel; Machon, Denis

    2016-05-11

    The elastic properties of InP nanowires are investigated by photoluminescence measurements under hydrostatic pressure at room temperature and experimentally deduced values of the linear pressure coefficients are obtained. The pressure-induced energy shift of the A and B transitions yields a linear pressure coefficient of αA = 88.2 ± 0.5 meV/GPa and αB = 89.3 ± 0.5 meV/GPa with a small sublinear term of βA = βB = -2.7 ± 0.2 meV/GPa(2). Effective hydrostatic deformation potentials of -6.12 ± 0.04 and -6.2 ± 0.04 eV are derived from the results for the A and B transitions, respectively. A decrease of the integrated intensity is observed above 0.5 GPa and is interpreted as a carrier transfer from the first to the second conduction band of the wurtzite InP.

  16. Decreasing systolic blood pressure and declining mortality rates in an untreated population

    DEFF Research Database (Denmark)

    Andersen, Ulla O; Marott, Jacob L; Jensen, Gorm B

    2011-01-01

    The aim of the present study was to evaluate developments in 30 years mortality risk that may be associated with developments in population systolic blood pressure (SBP) and to evaluate possible secular trends in BP-associated mortality risk in the untreated population....

  17. ω-3 Polyunsaturated fatty acids prevent pressure overload-induced ventricular dilation and decrease in mitochondrial enzymes despite no change in adiponectin

    Directory of Open Access Journals (Sweden)

    O'Shea Karen M

    2010-09-01

    Full Text Available Abstract Background Pathological left ventricular (LV hypertrophy frequently progresses to dilated heart failure with suppressed mitochondrial oxidative capacity. Dietary marine ω-3 polyunsaturated fatty acids (ω-3 PUFA up-regulate adiponectin and prevent LV dilation in rats subjected to pressure overload. This study 1 assessed the effects of ω-3 PUFA on LV dilation and down-regulation of mitochondrial enzymes in response to pressure overload; and 2 evaluated the role of adiponectin in mediating the effects of ω-3 PUFA in heart. Methods Wild type (WT and adiponectin-/- mice underwent transverse aortic constriction (TAC and were fed standard chow ± ω-3 PUFA for 6 weeks. At 6 weeks, echocardiography was performed to assess LV function, mice were terminated, and mitochondrial enzyme activities were evaluated. Results TAC induced similar pathological LV hypertrophy compared to sham mice in both strains on both diets. In WT mice TAC increased LV systolic and diastolic volumes and reduced mitochondrial enzyme activities, which were attenuated by ω-3 PUFA without increasing adiponectin. In contrast, adiponectin-/- mice displayed no increase in LV end diastolic and systolic volumes or decrease in mitochondrial enzymes with TAC, and did not respond to ω-3 PUFA. Conclusion These findings suggest ω-3 PUFA attenuates cardiac pathology in response to pressure overload independent of an elevation in adiponectin.

  18. Numerical Studies on the Effects of the Channel-Inlet-Pressure Difference in the Pressure-Retarded Osmosis (PRO) Power System

    International Nuclear Information System (INIS)

    Hong, Sung Soo; Ryoo, Won; Chung, Gui Yung; Chun, Myung-Suk

    2014-01-01

    In the spiral wound module of the pressure-retarded osmosis (PRO) system for the salinity gradient power generation, effects of the inlet pressure differences between feed-channel and draw-channel were studied. Fluxes of water and solute through membrane and power were estimated. The water flux through membrane decreased along the x-direction and increased along the y-direction with the increase of inlet pressure differences between two channels. On the other hand, the solute flux through membrane showed the opposite trend. The concentration of flow in the feed-channel increased a lot along the y-direction and that in the draw-channel decreased along the x-direction. In our system, for the inlet pressure differences of 1-11 atm, the flow rate in the feed-channel decreased about 8-13% and that in the draw-channel increased by the same amount. The power density increased and then decreased with the increasing inlet pressure difference

  19. Numerical Studies on the Effects of the Channel-Inlet-Pressure Difference in the Pressure-Retarded Osmosis (PRO) Power System

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Soo; Ryoo, Won; Chung, Gui Yung [Hong-Ik University, Seoul (Korea, Republic of); Chun, Myung-Suk [Korea Institute of Science and Technology (KIST), Seoul (Korea, Republic of)

    2014-02-15

    In the spiral wound module of the pressure-retarded osmosis (PRO) system for the salinity gradient power generation, effects of the inlet pressure differences between feed-channel and draw-channel were studied. Fluxes of water and solute through membrane and power were estimated. The water flux through membrane decreased along the x-direction and increased along the y-direction with the increase of inlet pressure differences between two channels. On the other hand, the solute flux through membrane showed the opposite trend. The concentration of flow in the feed-channel increased a lot along the y-direction and that in the draw-channel decreased along the x-direction. In our system, for the inlet pressure differences of 1-11 atm, the flow rate in the feed-channel decreased about 8-13% and that in the draw-channel increased by the same amount. The power density increased and then decreased with the increasing inlet pressure difference.

  20. Peroxisome Proliferator-Activated Receptor-α Activation Decreases Mean Arterial Pressure, Plasma Interleukin-6, and COX-2 While Increasing Renal CYP4A Expression in an Acute Model of DOCA-Salt Hypertension

    Directory of Open Access Journals (Sweden)

    Dexter L. Lee

    2011-01-01

    Full Text Available Peroxisome proliferator-activated receptor-alpha (PPAR-α activation by fenofibrate reduces blood pressure and sodium retention during DOCA-salt hypertension. PPAR-α activation reduces the expression of inflammatory cytokines, such as interleukin-6 (IL-6. Fenofibrate also induces cytochrome P450 4A (CYP4A and increases 20-hydroxyeicosatetraenoic acid (20-HETE production. This study tested whether the administration of fenofibrate would reduce blood pressure by attenuating plasma IL-6 and renal expression of cyclooxygenase-2 (COX-2, while increasing expression of renal CYP4A during 7 days of DOCA-salt hypertension. We performed uni-nephrectomy on 12–14 week old male Swiss Webster mice and implanted biotelemetry devices in control, DOCA-salt (1.5 mg/g treated mice with or without fenofibrate (500 mg/kg/day in corn oil, intragastrically. Fenofibrate significantly decreased mean arterial pressure and plasma IL-6. In kidney homogenates, fenofibrate increased CYP4A and decreased COX-2 expression. There were no differences in renal cytochrome P450, family 2, subfamily c, polypeptide 23 (CYP2C23 and soluble expoxide hydrolase (sEH expression between the groups. Our results suggest that the blood pressure lowering effect of PPAR-α activation by fenofibrate involves the reduction of plasma IL-6 and COX-2, while increasing CYP4A expression during DOCA-salt hypertension. Our results may also suggest that PPAR-α activation protects the kidney against renal injury via decreased COX-2 expression.

  1. Traditional Japanese Formula Kigikenchuto Accelerates Healing of Pressure-Loading Skin Ulcer in Rats

    Directory of Open Access Journals (Sweden)

    Mari Kimura

    2011-01-01

    Full Text Available We evaluated the effect of kigikenchuto (KKT, a traditional Japanese formula, in a modified rat pressure-loading skin ulcer model. Rats were divided into three groups, KKT extract orally administered (250 or 500 mg/kg/day for 35 days and control. KKT shortened the duration until healing. Immunohistochemically, KKT increased CD-31-positive vessels in early phase and increased α-smooth muscle actin-(α-SMA- positive fibroblastic cells in early phase and decreased them in late phase of wound healing. By Western blotting, KKT showed the potential to decrease inflammatory cytokines (MCP-1, IL-1β, and TNF-α in early phase, decrease vascular endothelial growth factor in early phase and increase it in late phase, and modulate the expression of extracellular protein matrix (α-SMA, TGF-β1, bFGF, collagen III, and collagen I. These results suggested the possibility that KKT accelerates pressure ulcer healing through decreases of inflammatory cytokines, increase of angiogenesis, and induction of extracellular matrix remodeling.

  2. The decrease of cardiac chamber volumes and output during positive-pressure ventilation

    DEFF Research Database (Denmark)

    Kristensen, Kasper Kyhl; Ahtarovski, Kiril Aleksov; Iversen, Kasper

    2013-01-01

    the effect of PPV on the central circulation by studying cardiac chamber volumes with cardiac magnetic resonance imaging (CMR). We hypothesized that PPV lowers cardiac output (CO) mainly via the Frank-Starling relationship. In 18 healthy volunteers, cardiac chamber volumes and flow in aorta and the pulmonary...... artery were measured by CMR during PPV levels of 0, 10, and 20 cmH2O applied via a respirator and a face mask. All cardiac chamber volumes decreased in proportion to the level of PPV. Following 20-cmH2O PPV, the total diastolic and systolic cardiac volumes (±SE) decreased from 605 (±29) ml to 446 (±29......) ml (P volume decreased by 27 (±4) ml/beat; heart rate increased by 7 (±2) beats/min; and CO decreased by 1.0 (±0.4) l/min (P

  3. Vertical sleeve gastrectomy reduces blood pressure and hypothalamic endoplasmic reticulum stress in mice

    Directory of Open Access Journals (Sweden)

    Anne K. McGavigan

    2017-03-01

    Full Text Available Bariatric surgery, such as vertical sleeve gastrectomy (VSG, causes remarkable improvements in cardiometabolic health, including hypertension remission. However, the mechanisms responsible remain undefined and poorly studied. Therefore, we developed and validated the first murine model of VSG that recapitulates the blood pressure-lowering effect of VSG using gold-standard radiotelemetry technology. We used this model to investigate several potential mechanisms, including body mass, brain endoplasmic reticulum (ER stress signaling and brain inflammatory signaling, which are all critical contributors to the pathogenesis of obesity-associated hypertension. Mice fed on a high-fat diet underwent sham or VSG surgery and radiotelemeter implantation. Sham mice were fed ad libitum or were food restricted to match their body mass to VSG-operated mice to determine the role of body mass in the ability of VSG to lower blood pressure. Blood pressure was then measured in freely moving unstressed mice by radiotelemetry. VSG decreased energy intake, body mass and fat mass. Mean arterial blood pressure (MAP was reduced in VSG-operated mice compared with both sham-operated groups. VSG-induced reductions in MAP were accompanied by a body mass-independent decrease in hypothalamic ER stress, hypothalamic inflammation and sympathetic nervous system tone. Assessment of gut microbial populations revealed VSG-induced increases in the relative abundance of Gammaproteobacteria and Enterococcus, and decreases in Adlercreutzia. These results suggest that VSG reduces blood pressure, but this is only partly due to the reduction in body weight. VSG-induced reductions in blood pressure may be driven by a decrease in hypothalamic ER stress and inflammatory signaling, and shifts in gut microbial populations.

  4. Accounting for the Decreasing Reaction Potential of Heterogeneous Aquifers in a Stochastic Framework of Aquifer-Scale Reactive Transport

    Science.gov (United States)

    Loschko, Matthias; Wöhling, Thomas; Rudolph, David L.; Cirpka, Olaf A.

    2018-01-01

    Many groundwater contaminants react with components of the aquifer matrix, causing a depletion of the aquifer's reactivity with time. We discuss conceptual simplifications of reactive transport that allow the implementation of a decreasing reaction potential in reactive-transport simulations in chemically and hydraulically heterogeneous aquifers without relying on a fully explicit description. We replace spatial coordinates by travel-times and use the concept of relative reactivity, which represents the reaction-partner supply from the matrix relative to a reference. Microorganisms facilitating the reactions are not explicitly modeled. Solute mixing is neglected. Streamlines, obtained by particle tracking, are discretized in travel-time increments with variable content of reaction partners in the matrix. As exemplary reactive system, we consider aerobic respiration and denitrification with simplified reaction equations: Dissolved oxygen undergoes conditional zero-order decay, nitrate follows first-order decay, which is inhibited in the presence of dissolved oxygen. Both reactions deplete the bioavailable organic carbon of the matrix, which in turn determines the relative reactivity. These simplifications reduce the computational effort, facilitating stochastic simulations of reactive transport on the aquifer scale. In a one-dimensional test case with a more detailed description of the reactions, we derive a potential relationship between the bioavailable organic-carbon content and the relative reactivity. In a three-dimensional steady-state test case, we use the simplified model to calculate the decreasing denitrification potential of an artificial aquifer over 200 years in an ensemble of 200 members. We demonstrate that the uncertainty in predicting the nitrate breakthrough in a heterogeneous aquifer decreases with increasing scale of observation.

  5. Decreased heart rate variability responses during early postoperative mobilization

    DEFF Research Database (Denmark)

    Jans, Øivind; Brinth, Louise; Kehlet, Henrik

    2015-01-01

    in relation to postural change. METHODS: A standardized mobilization protocol before, 6 and 24 h after surgery was performed in 23 patients scheduled for elective THA. Beat-to-beat arterial blood pressure was measured by photoplethysmography and HRV was derived from pulse wave interbeat intervals and analysed......BACKGROUND: Intact orthostatic blood pressure regulation is essential for early mobilization after surgery. However, postoperative orthostatic hypotension and intolerance (OI) may delay early ambulation. The mechanisms of postoperative OI include impaired vasopressor responses relating...... and postural responses in arterial pressures decreased compared to preoperative conditions. During standing HF variation increased by 16.7 (95 % CI 8.0-25.0) normalized units (nu) at 6 h and 10.7 (2.0-19.4) nu at 24 h compared to the preoperative evaluation. At 24 h the LF/HF ratio decreased from 1.8 (1...

  6. Effect of the atmospheric pressure nonequilibrium plasmas on the conformational changes of plasmid DNA

    International Nuclear Information System (INIS)

    Yan Xu; He Guangyuan; Shi Mengjun; Gao Xuan; Li Yin; Ma Fengyun; Yu Men; Wang Changdong; Wang Yuesheng; Yang Guangxiao; Zou Fei; Lu Xinpei; Xiong Qing; Xiong Zilan

    2009-01-01

    The cold atmospheric pressure plasma, which has been widely used for biomedical applications, may potentially affect the conformation of DNA. In this letter, an atmospheric pressure plasma plume is used to investigate its effects on the conformational changes of DNA of plasmid pAHC25. It is found that the plasma plume could cause plasmid DNA topology alteration, resulting in the percentage of the supercoiled plasmid DNA form decreased while that of the open circular and linearized form of plasmid DNA increased as detected by agrose gel electrophoresis. On the other hand, further investigation by using polymerase chain reaction method shows that the atmospheric pressure plasma jet treatments under proper conditions does not affect the genes of the plasmid DNA, which may have potential application in increasing the transformation frequency by genetic engineering.

  7. The Influence Of Temperature And Pressure On AP600 Pressure Vessel Analysis By Two Dimensional Finite Element Method

    International Nuclear Information System (INIS)

    Utaya

    1996-01-01

    Pressure vessel is an important part of nuclear power plan, and its function is as pressure boundary of cooling water and reactor core. The pressure vessel wall will get pressure and thermal stress. The pressure and thermal stress analysis at the simplified AP600 wall was done. The analysis is carried out by finite method, and then solved by computer. The analysis result show, that the pressure will give the maximum stress at the inner wall (1837 kg/cm 2 ) and decreased to the outer wall (1685 kg/cm 2 ). The temperature will decreased the stress at the inner wall (1769 kg/cm 2 ) and increased the stress at the outer wall (1749 kg/cm 2 )

  8. Hydrogen pressure dependence of the fracture mode transition in nickel

    International Nuclear Information System (INIS)

    Jones, R.H.; Baer, D.R.; Bruemmer, S.M.; Thomas, M.T.

    1983-01-01

    A relationship between fracture mode, grain boundary composition, and hydrogen pressure has been determined for nickel straining electrode samples tested at cathodic potentials. This relationship can be expressed as C /SUB S/ α P /SUP -n/ /SUB H2/ where C /SUB S/ is the critical grain boundary sulfur concentration corresponding to 50% transgranular and 50% intergranular fracture and P /SUB H2/ is the hydrogen pressure. The value of n was found to be between 0.34 and 0.9. This expression was derived by relating C /SUB S/ to the hydrogen overpotential with the Nernst equation. At a cathodic test potential of -0.3 V (SCE), C /SUB S/ was equal to 0.20 monolayers of sulfur and at higher cathodic potentials or higher hydrogen pressures, C /SUB S/ decreased such that at -0.72 V (SCE) C /SUB S/ was equal to 0.045 monolayers of sulfur. The inverse hydrogen pressure dependence observed with cathodic hydrogen is similar to that for the hydrogen permeation rate or a critical hydrogen concentration derived by Gerberich et al. for gaseous hydrogen. This similarity between gaseous and cathodic hydrogen suggests that grain boundary impurities contribute to the hydrogen embrittlement process without altering the embrittlement process although this result does not indicate whether decohesion or plasticity dependent processes are responsible for the combined sulfur-hydrogen effect on the intergranular fracture of nickel

  9. Twenty-four-Hour Ambulatory Blood Pressure Monitor Heart Rate: A Potential Marker for Gestational Hypertension in at-Risk Women

    Science.gov (United States)

    Booker, Corenthian J.; Dodson, William C.; Kunselman, Allen R.; Repke, John T.; Legro, Richard S.

    2013-01-01

    We prospectively correlated the 24-hour ambulatory blood pressure measurements (ABPM) to conventional sphygmomanometer blood pressure measurements (CSM) in women at risk for gestational hypertensive disorders (GHTNDs) and identified predictive factors from ABPM for GHTND. We analyzed 73 women with ≥1 risk factor for developing a GHTND. Using both the CSM and ABPM, the systolic blood pressure, diastolic blood pressure, mean arterial pressure (MAP), and heart rate (HR) were measured for 24 hours during three periods (14 to 24 weeks; 24 to 32 weeks; and 33 weeks to delivery). Correlation between the CSM and ABPM lessened as pregnancy progressed. Seventeen (25%) of women developed a GHTND. MAP variability increased in the GHTND group versus those without a GHTND. The odds of developing a GHTND increased 1.5 times for every 1 beat per minute increase in the ABPM 24-hour HR at visit 1 and reversed by visit 3. In women at risk for a GHTND, CSM and ABPM correlate less well as pregnancy advances. HR changes in at-risk women may be a marker for the development of a GHTND and may reflect increased sympathetic activity and/or decreased baroreceptor sensitivity. PMID:22147639

  10. The analysis of energy efficiency in water electrolysis under high temperature and high pressure

    Science.gov (United States)

    Hourng, L. W.; Tsai, T. T.; Lin, M. Y.

    2017-11-01

    This paper aims to analyze the energy efficiency of water electrolysis under high pressure and high temperature conditions. The effects of temperature and pressure on four different kinds of reaction mechanisms, namely, reversible voltage, activation polarization, ohmic polarization, and concentration polarization, are investigated in details. Results show that the ohmic and concentration over-potentials are increased as temperature is increased, however, the reversible and activation over-potentials are decreased as temperature is increased. Therefore, the net efficiency is enhanced as temperature is increased. The efficiency of water electrolysis at 350°C/100 bars is increased about 17%, compared with that at 80°C/1bar.

  11. Potentiation by aminopeptidase P of blood pressure response to bradykinin.

    OpenAIRE

    Kitamura, S; Carbini, L A; Carretero, O A; Simmons, W H; Scicli, A G

    1995-01-01

    We examined whether a specific aminopeptidase P (APP) inhibitor, apstatin, increases vasodepressor responses to bradykinin in anaesthetized rats, and whether it would augment blood pressure responses further after treatment with the angiotensin-converting enzyme inhibitor (ACEi), lisinopril. Apstatin doubled the maximum blood pressure response to bradykinin. The area under the curve (AUC), which incorporates both peak blood pressure changes and duration of response, was doubled in apstatin-tr...

  12. Characterization of Fractured Reservoirs Using a Combination of Downhole Pressure and Self-Potential Transient Data

    Directory of Open Access Journals (Sweden)

    Yuji Nishi

    2012-01-01

    Full Text Available In order to appraise the utility of self-potential (SP measurements to characterize fractured reservoirs, we carried out continuous SP monitoring using multi Ag-AgCl electrodes installed within two open holes at the Kamaishi Mine, Japan. The observed ratio of SP change to pressure change associated with fluid flow showed different behaviors between intact host rock and fractured rock regions. Characteristic behavior peculiar to fractured reservoirs, which is predicted from numerical simulations of electrokinetic phenomena in MINC (multiple interacting continua double-porosity media, was observed near the fractures. Semilog plots of the ratio of SP change to pressure change observed in one of the two wells show obvious transition from intermediate time increasing to late time stable trends, which indicate that the time required for pressure equilibration between the fracture and matrix regions is about 800 seconds. Fracture spacing was estimated to be a few meters assuming several micro-darcies (10-18 m2 of the matrix region permeability, which is consistent with geological and hydrological observations.

  13. Mercury-free electrodeless discharge lamp: effect of xenon pressure and plasma parameters on luminance

    International Nuclear Information System (INIS)

    Nazri Dagang Ahmad; Kondo, Akira; Motomura, Hideki; Jinno, Masafumi

    2009-01-01

    Since there is much concern about environmental preservation, the authors have paid attention to the uses of mercury in lighting application. They have focused on the application of the xenon low-pressure inductively coupled plasma (ICP) discharge in developing cylindrical type mercury-free light sources. ICP can be operated at low filling gas pressures and demonstrates significant potential in producing high density plasma. Xenon pressure was varied from 0.1 to 100 Torr and the lamp luminance was measured. The gas pressure dependence shows an increase in luminance at pressures below 1 Torr. In order to clarify this behaviour, measurement of plasma parameters was carried out using the double probe method and its relation to lamp luminance is discussed. As the gas pressure is decreased (from 1 to 0.01 Torr), the electron temperature increases while the electron density decreases while at the same time the lamp luminance increases. There are several factors that are believed to contribute to the increase in luminance in the very low pressure region. Increases in luminance are considered to be due to the electron-ion recombination process which brings a strong recombination radiation in continuum in the visible region and also due to the effect of stochastic heating.

  14. The trend of pressure ulcer prevalence rates in German hospitals: results of seven cross-sectional studies.

    Science.gov (United States)

    Kottner, Jan; Wilborn, Doris; Dassen, Theo; Lahmann, Nils

    2009-05-01

    Pressure ulcer prevalence rates provide useful information about the magnitude of this health problem. Only limited information on pressure ulcers in Germany was available before 2001. The purpose of this study was to compare results of seven pressure ulcer prevalence surveys which were conducted annually between 2001 and 2007 and to explore whether pressure ulcer prevalence rates decreased. The second aim was to evaluate if the measured prevalence rates of our sample could be generalised for all German hospitals. Results of seven point pressure ulcer prevalence studies conducted in 225 German hospitals were analysed. Chi-square tests, chi-square trend tests and one-way ANOVA to assess differences and trends across the years were applied. The sample was stratified according to pressure ulcer risk and speciality. Finally, study samples were compared with the potential population. In total data of 40,247 hospital patients were analysed. The overall pressure ulcer prevalence rate in German hospitals was 10.2%. Patient samples of each year were comparable regarding gender, age and pressure ulcer risk. Pressure ulcer prevalence rates decreased from 13.9% (year 2001) to 7.3% (year 2007) (pcare units remained stable. With some limitations our study results are representative for all hospitals within Germany. It is highly probable that the decrease of prevalence rates was due to an increased awareness of the pressure ulcer problem in Germany and subsequent efforts to improve pressure ulcer prevention and treatment. The quality of clinical practice regarding pressure ulcer prevention and treatment has improved. However, pressure ulcers are still relevant and require attention. In 2007, one out of 10 hospital patients who were at pressure ulcer risk had at least one pressure related skin damage.

  15. SGLT2 inhibitors: their potential reduction in blood pressure.

    Science.gov (United States)

    Maliha, George; Townsend, Raymond R

    2015-01-01

    The sodium glucose co-transporter 2 (SGLT2) inhibitors represent a promising treatment option for diabetes and its common comorbidity, hypertension. Emerging data suggests that the SGLT2 inhibitors provide a meaningful reduction in blood pressure, although the precise mechanism of the blood pressure drop remains incompletely elucidated. Based on current data, the blood pressure reduction is partially due to a combination of diuresis, nephron remodeling, reduction in arterial stiffness, and weight loss. While current trials are underway focusing on cardiovascular endpoints, the SGLT2 inhibitors present a novel treatment modality for diabetes and its associated hypertension as well as an opportunity to elucidate the pathophysiology of hypertension in diabetes. Copyright © 2015 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  16. Temperature and Pressure Dependences of the Elastic Properties of Tantalum Single Crystals Under Tensile Loading: A Molecular Dynamics Study

    Science.gov (United States)

    Li, Wei-bing; Li, Kang; Fan, Kan-qi; Zhang, Da-xing; Wang, Wei-dong

    2018-04-01

    Atomistic simulations are capable of providing insights into physical mechanisms responsible for mechanical properties of the transition metal of Tantalum (Ta). By using molecular dynamics (MD) method, temperature and pressure dependences of the elastic properties of Ta single crystals are investigated through tensile loading. First of all, a comparative study between two types of embedded-atom method (EAM) potentials is made in term of the elastic properties of Ta single crystals. The results show that Ravelo-EAM (Physical Review B, 2013, 88: 134101) potential behaves well at different hydrostatic pressures. Then, the MD simulation results based on the Ravelo-EAM potential show that Ta will experience a body-centered-cubic (BCC) to face-centered-cubic (FCC) phase transition before fracture under tensile loading at 1 K temperature, and model size and strain rate have no obvious effects on tensile behaviors of Ta. Next, from the simulation results at the system temperature from 1 to 1500 K, it can be derived that the elastic modulus of E 100 linearly decrease with the increasing temperature, while the yielding stress decrease with conforming a quadratic polynomial formula. Finally, the pressure dependence of the elastic properties is performed from 0 to 140 GPa and the observations show that the elastic modulus increases with the increasing pressure overall.

  17. Pressure vessel failure at high internal pressure

    International Nuclear Information System (INIS)

    Laemmer, H.; Ritter, B.

    1995-01-01

    A RPV failure due to plastic instability was investigated using the ABAQUS finite element code together with a material model of thermal plasticity for large deformations. Not only rotational symmetric temperature distributions were studied, but also 'hot spots'. Calculations show that merely by the depletion of strength of the material - even at internal wall temperatures well below the melting point of the fuel elements of about 2000/2400 C - the critical internal pressure can decrease to values smaller than the operational pressure of 16 Mpa. (orig.)

  18. Cost-effectiveness of milk powder fortified with potassium to decrease blood pressure and prevent cardiovascular events among the adult population in China: a Markov model.

    Science.gov (United States)

    Dainelli, Livia; Xu, Tingting; Li, Min; Zimmermann, Diane; Fang, Hai; Wu, Yangfeng; Detzel, Patrick

    2017-09-25

    To model the long-term cost-effectiveness of consuming milk powder fortified with potassium to decrease systolic blood pressure (SBP) and prevent cardiovascular events. A best case scenario analysis using a Markov model was conducted. 8.67% of 50-79 year olds who regularly consume milk in China, including individuals with and without a prior diagnosis of hypertension. The model simulated the potential impact of a daily intake of two servings of milk powder fortified with potassium (+700 mg/day) vs the consumption of a milk powder without potassium fortification, assuming a market price equal to 0.99 international dollars (intl$; the consumption of a milk powder without potassium fortification, assuming a market price equal to intl$0.99 for the latter and to intl$1.12 for the first (+13.13%). Both deterministic and probabilistic sensitivity analyses were conducted to test the robustness of the results. Estimates of the incidence of cardiovascular events and subsequent mortality in China were derived from the literature as well as the effect of increasing potassium intake on blood pressure. The incremental cost-effectiveness ratio (ICER) was used to determine the cost-effectiveness of a milk powder fortified with potassium taking into consideration the direct medical costs associated with the cardiovascular events, loss of working days and health utilities impact. With an ICER equal to int$4711.56 per QALY (quality-adjusted life year) in the best case scenario and assuming 100% compliance, the daily consumption of a milk powder fortified with potassium shown to be a cost-effective approach to decrease SBP and reduce cardiovascular events in China. Healthcare savings due to prevention would amount to intl$8.41 billion. Sensitivity analyses showed the robustness of the results. Together with other preventive interventions, the consumption of a milk powder fortified with potassium could represent a cost-effective strategy to attenuate the rapid rise in

  19. Pressure pressure-balanced pH sensing system for high temperature and high pressure water

    International Nuclear Information System (INIS)

    Tachibana, Koji

    1995-01-01

    As for the pH measurement system for high temperature, high pressure water, there have been the circumstances that first the reference electrodes for monitoring corrosion potential were developed, and subsequently, it was developed for the purpose of maintaining the soundness of metallic materials in high temperature, high pressure water in nuclear power generation. In the process of developing the reference electrodes for high temperature water, it was clarified that the occurrence of stress corrosion cracking in BWRs is closely related to the corrosion potential determined by dissolved oxygen concentration. As the types of pH electrodes, there are metal-hydrogen electrodes, glass electrodes, ZrO 2 diaphragm electrodes and TiO 2 semiconductor electrodes. The principle of pH measurement using ZrO 2 diaphragms is explained. The pH measuring system is composed of YSZ element, pressure-balanced type external reference electrode, pressure balancer and compressed air vessel. The stability and pH response of YSZ elements are reported. (K.I.)

  20. Development of a Super-Pressure Balloon with an Improved Design

    Science.gov (United States)

    Izutsu, Naoki; Akita, Daisuke; Fuke, Hideyuki; Iijima, Issei; Kato, Yoichi; Kawada, Jiro; Matsushima, Kiyoho; Matsuzaka, Yukihiko; Mizuta, Eiichi; Nakada, Takashi; Nonaka, Naoki; Saito, Yoshitaka; Takada, Atsushi; Tamura, Keisuke; Yamada, Kazuhiko; Yoshida, Tetsuya

    A zero-pressure balloon used for scientific observation in the stratosphere has an unmanageable limitation that its floating altitude decreases during a nighttime because of temperature drop of the lifting gas. Since a super-pressure balloon may not change its volume, the lifetime can extend very long. We had introduced so called the ‘lobed-pumpkin’ type of super-pressure balloon that can realize a full-scale long-duration balloon and it will be in practical use in the very near future. As for larger super-pressure balloons, however, we still have some potential difficulties to be resolved. We here propose a new design suitable for a larger super-pressure balloon, which is roughly ‘lobed pumpkin with lobed cylinder’ and can adapt a single design for balloons of a wide range of volumes. Indoor inflation tests were successfully carried out with balloons designed and made by the method. It has been shown that the limit of the resisting pressure differential for a new designed balloon is same as that of a normal lobed-pumpkin balloon.

  1. Automated high pressure cell for pressure jump x-ray diffraction.

    Science.gov (United States)

    Brooks, Nicholas J; Gauthe, Beatrice L L E; Terrill, Nick J; Rogers, Sarah E; Templer, Richard H; Ces, Oscar; Seddon, John M

    2010-06-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  2. Automated high pressure cell for pressure jump x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M. [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Terrill, Nick J. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Rogers, Sarah E. [ISIS, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2010-06-15

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  3. Automated high pressure cell for pressure jump x-ray diffraction

    International Nuclear Information System (INIS)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.; Terrill, Nick J.; Rogers, Sarah E.

    2010-01-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  4. Influence of the helium-pressure on diode-pumped alkali-vapor laser

    Science.gov (United States)

    Gao, Fei; Chen, Fei; Xie, Ji-jiang; Zhang, Lai-ming; Li, Dian-jun; Yang, Gui-long; Guo, Jing

    2013-05-01

    Diode-pumped alkali-vapor laser (DPAL) is a kind of laser attracted much attention for its merits, such as high quantum efficiency, excellent beam quality, favorable thermal management, and potential scalability to high power and so on. Based on the rate-equation theory of end-pumped DPAL, the performances of DPAL using Cs-vapor collisionally broadened by helium are simulated and studied. With the increase of helium pressure, the numerical results show that: 1) the absorption line-width increases and the stimulated absorption cross-section decreases contrarily; 2) the threshold pumping power decreases to minimum and then rolls over to increase linearly; 3) the absorption efficiency rises to maximum initially due to enough large stimulated absorption cross-section in the far wings of collisionally broadened D2 transition (absorption transition), and then begins to reduce; 4) an optimal value of helium pressure exists to obtain the highest output power, leading to an optimal optical-optical efficiency. Furthermore, to generate the self-oscillation of laser, a critical value of helium pressure occurs when small-signal gain equals to the threshold gain.

  5. L-tyrosine hydrochloride crystals under high pressures via Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Santos, C.A.A.S.; Facanha Filho, P.F.; Santos, A.O. dos; Ribeiro, L.H.L.; Victor, F.M.S.; Abreu, D.C.; Carvalho, J.O.; Soares, R.A.; Sousa, J.C.F.; Lima, R.C.; Cavaignac, A.O. [Universidade Federal do Maranhao (UFMA), MA (Brazil)

    2016-07-01

    Full text: Amino acid single crystals have been attracted researchers in recent years due to their potential applications as second harmonic generator. The goal of this work is to produce semi organic single crystals of L-tyrosine hydrochloride (LTHCl) and verify the behavior of their vibrational normal modes under high pressures and the stability of material in these conditions extremes. The LTHCl single crystals were produced for solubilization of amino acid L-tyrosine in hydrochloric acid by slow evaporation technique of the solvent in room temperature. The technique of X-ray diffraction (XRD) and the refinement of structure by the Rietveld method were used to confirm the crystal structure. The LTHCl crystal belongs to the monoclinic crystal system having two molecules per unit cell. The refinement by the Rietveld method showed good results with Rwp = 8.49% and Rp = 6.29% with S = 1.13. Raman scattering measurements as a function of pressure was performed in a piece of crystal from the ambient pressure to 7.2 GPa and Nujol was used as pressure medium. It was observed the appearance of a weak band around 163 cm-1 between pressures of 0.5 and 1.0 GPa, which characterize an phase transition undergone by the crystal. Moreover, this band gains intensity as pressure increases while gradual decreasing relative intensity of the very strong band at 123 cm-1 for all range of pressure also was observed. In fact, almost all bands of the spectra have undergone strong decreasing up to 7.2 GPa. However, on release of pressure the crystal has reached the original phase again. Therefore, the results showed this material cannot be suitable for the application (NLO) in this range of pressure. (author)

  6. Reduction of Blood Pressure Following After Renal Artery Adventitia Stripping During Total Nephroureterectomy: Potential Effect of Renal Sympathetic Denervation.

    Science.gov (United States)

    Okamura, Keisuke; Satou, Shunsuke; Setojima, Keita; Shono, Shinjiro; Miyajima, Shigero; Ishii, Tatsu; Shirai, Kazuyuki; Urata, Hidenori

    2018-05-16

    BACKGROUND Catheter-based renal sympathetic denervation has been reported to be effective for treatment resistance hypertension in Australia and Europe. However, in the blinded SYMPLICITY HTN-3 trial, renal denervation did not achieve a significant decrease in blood pressure (BP) in comparison to sham controls. There have been various discussions on the factors that influenced this result. CASE REPORT Two men on antihypertensive therapy underwent unilateral radical nephroureterectomy for cancer of the renal pelvis. When the renal artery adventitia was stripped and cauterized just before renal artery ligation, the measured BP of the 2 men increased after stripping adventitia and decreased gradually after cauterization of the renal artery. This was presumably due to removal of renal artery sympathetic nerves, similar to the mechanism of catheter-based renal sympathetic denervation, although anesthesia, fluid infusion, and/or mesenteric traction may have had an influence. CONCLUSIONS A similar strategy involving thoracolumbar sympathectomy was reported about 50 years ago. The clinically significant blood pressure reduction in these patients suggests renal denervation is effective.

  7. Interpolating a consumption variable for scaling and generalizing potential population pressure on urbanizing natural areas

    Science.gov (United States)

    Varanka, Dalia; Jiang, Bin; Yao, Xiaobai

    2010-01-01

    Measures of population pressure, referring in general to the stress upon the environment by human consumption of resources, are imperative for environmental sustainability studies and management. Development based on resource consumption is the predominant factor of population pressure. This paper presents a spatial model of population pressure by linking consumption associated with regional urbanism and ecosystem services. Maps representing relative geographic degree and extent of natural resource consumption and degree and extent of impacts on surrounding areas are new, and this research represents the theoretical research toward this goal. With development, such maps offer a visualization tool for planners of various services, amenities for people, and conservation planning for ecologist. Urbanization is commonly generalized by census numbers or impervious surface area. The potential geographical extent of urbanism encompasses the environmental resources of the surrounding region that sustain cities. This extent is interpolated using kriging of a variable based on population wealth data from the U.S. Census Bureau. When overlayed with land-use/land-cover data, the results indicate that the greatest estimates of population pressure fall within mixed forest areas. Mixed forest areas result from the spread of cedar woods in previously disturbed areas where further disturbance is then suppressed. Low density areas, such as suburbanization and abandoned farmland are characteristic of mixed forest areas.

  8. Water ingestion decreases cardiac workload time-dependent in healthy adults with no effect of gender.

    Science.gov (United States)

    Monnard, Cathriona Rosemary; Grasser, Erik Konrad

    2017-08-11

    Ingestion of water entails a variety of cardiovascular responses. However, the precise effect remains elusive. We aimed to determine in healthy adults the effect of water on cardiac workload and to investigate potential gender differences. We pooled data from two controlled studies where blood pressure (BP) and heart rate (HR) were continuously recorded before and after the ingestion of 355 mL of tap water. Additionally, we calculated double product by multiplying systolic BP with HR and evaluated spectral parameters referring to vagal tone. All parameters were investigated for potential differences based on gender. In response to water, HR, systolic BP, and double product decreased significantly during the first 30 min. However, these effects were attenuated for HR and double product and even abolished for systolic BP over the subsequent 30 min. Over the entire post-drink period (60 min), decreases in HR and double product (all P fashion, cardiac workload and that these responses appear not to be influenced by gender.

  9. Grain temperature, radiation pressure and electric potential in the vicinity of main sequence and white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Leiknes, J.; Havnes, O. (University of Tromso, Auroral Observatory (Norway))

    1984-08-01

    We present results of calculations of the grain physical parameters temperature, lifetime against evaporation, radiation pressure and electric potential for spherical grains near main sequence stars, hydrogen type (DA) white dwarfs and helium type (DB) white dwarfs. These parameters are essential in determining the behaviour of grains near such stars. The grain temperature as a function of stellar distance is calculated for grains of sizes 0.1 and 1 ..mu.. (micron) for grain materials of silicate (obsidian), iron and graphite. The lifetime due to thermal evaporation as a function of grain temperature of these materials is also given. The radiation pressure is given for grain sizes from 0.01 to 10 ..mu.. for the same three grain materials. Grain potentials have been calculated as functions of stellar distance for one photoelectron high yield material (silicate) and one low yield material (graphite) for grains of radius 0.1 ..mu.. embedded in a thermal plasma of temperature T = 10/sup 4/ K.

  10. Brachial blood flow under relative levels of blood flow restriction is decreased in a nonlinear fashion.

    Science.gov (United States)

    Mouser, J Grant; Ade, Carl J; Black, Christopher D; Bemben, Debra A; Bemben, Michael G

    2018-05-01

    Blood flow restriction (BFR), the application of external pressure to occlude venous return and restrict arterial inflow, has been shown to increase muscular size and strength when combined with low-load resistance exercise. BFR in the research setting uses a wide range of pressures, applying a pressure based upon an individual's systolic pressure or a percentage of occlusion pressure; not a directly determined reduction in blood flow. The relationship between relative pressure and blood flow has not been established. To measure blood flow in the arm under relative levels of BFR. Forty-five people (18-40 years old) participated. Arterial occlusion pressure in the right arm was measured using a 5-cm pneumatic cuff. Blood flow in the brachial artery was measured at rest and at pressures between 10% and 90% of occlusion using ultrasound. Blood flow decreased in a nonlinear, stepped fashion. Blood flow decreased at 10% of occlusion and remained constant until decreasing again at 40%, where it remained until 90% of occlusion. The decrease in brachial blood flow is not proportional to the applied relative pressure. The prescription of blood flow restriction should take into account the stimulus provided at each relative level of blood flow. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  11. Comparison of ionospheric convection and the transpolar potential before and after solar wind dynamic pressure fronts: implications for magnetospheric reconnection

    Science.gov (United States)

    Boudouridis, A.; Zesta, E.; Lyons, L. R.; Kim, H.-J.; Lummerzheim, D.; Wiltberger, M.; Weygand, J. M.; Ruohoniemi, J. M.; Ridley, A. J.

    2012-04-01

    The solar wind dynamic pressure, both through its steady state value and through its variations, plays an important role in the determination of the state of the terrestrial magnetosphere and ionosphere, its effects being only secondary to those of the Interplanetary Magnetic Field (IMF). Recent studies have demonstrated the significant effect solar wind dynamic pressure enhancements have on ionospheric convection and the transpolar potential. Further studies have shown a strong response of the polar cap boundary and thus the open flux content of the magnetosphere. These studies clearly illustrate the strong coupling of solar wind dynamic pressure fronts to the terrestrial magnetosphere-ionosphere system. We present statistical studies of the response of Super Dual Auroral Radar Network (SuperDARN) flows, and Assimilative Mapping of Ionospheric Electrodynamics (AMIE) transpolar potentials to sudden enhancements in solar wind dynamic pressure. The SuperDARN results show that the convection is enhanced within both the dayside and nightside ionosphere. The dayside response is more clear and immediate, while the response on the nightside is slower and more evident for low IMF By values. AMIE results show that the overall convection, represented by the transpolar potential, has a strong response immediately after an increase in pressure, with magnitude and duration modulated by the background IMF Bz conditions. We compare the location of the SuperDARN convection enhancements with the location and motion of the polar cap boundary, as determined by POLAR Ultra-Violet Imager (UVI) images and runs of the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic model for specific events. We find that the boundary exhibits a poleward motion after the increase in dynamic pressure. The enhanced ionospheric flows and the poleward motion of the boundary on the nightside are both signatures of enhanced tail reconnection, a conclusion that is reinforced by the observation of the

  12. The high-pressure behavior of bloedite

    DEFF Research Database (Denmark)

    Comodi, Paola; Nazzareni, Sabrina; Balic Zunic, Tonci

    2014-01-01

    High-pressure single-crystal synchrotron X‑ray diffraction was carried out on a single crystal of bloedite [Na2Mg(SO4)24H2O] compressed in a diamond-anvil cell. The volume-pressure data, collected up to 11.2 GPa, were fitted by a second- and a third-order Birch-Murnaghan equation of state (EOS....... Pressure decreases significantly the distortion of Na coordination. Up to 10 GPa, the donor-acceptor oxygen distances decrease significantly and the difference between the two water molecules decreases with an increase in the strengths of hydrogen bonds. At the same time, the bond lengths from Na and Mg...... to O atoms of the water molecules decrease faster than other bonds to these cations suggesting that there is a coupling between the Na-Ow and Mg-Ow bond strengths and the “hydrogen transfer” to acceptor O atoms....

  13. Hydrogen pressure dependence of the fracture mode transition in nickel

    International Nuclear Information System (INIS)

    Jones, R.H.; Baer, D.R.; Bruemmer, S.M.; Thomas, M.T.

    1983-01-01

    A relationship between fracture mode, grain boundary composition, and hydrogen pressure has been determined for nickel straining electrode samples tested at cathodic potentials. This relationship can be expressed as C /SUB s/ α P /SUP -n/ /SUB H2/ where C /SUB s/ is the critical grain boundary sulfur concentration corresponding to 50 pct transgranular and 50 pct intergranular fracture and P /SUB H2/ is the hydrogen pressure. The value of n was found to be between 0.34 and 0.9. This expression was derived by relating C /SUB s/ to th hydrogen overpotential with the Nernst equation. At a cathodic test potential of -0.3 V (SCE). C /SUB s/ was equal to 0.20 monolayers of sulfur and at higher cathodic potentials or higher hydrogen pressures, C /SUB s/ decreased such that at -0.72 V (SCE) C /SUB s/ was equal to 0.045 monolayers of sulfur. The inverse hydrogen pressure dependence observed with cathodic hydrogen is similar to that for the hydrogen permeation rate or a critical hydrogen concentration derived by Gerberich et al. for gaseous hydrogen. This similarity between gaseous and cathodic hydrogen suggests that grain boundary impurities contribute to the hydrogen embrittlement process without altering the embrittlement process although this result does not indicate whether decohesion or plasticity dependent processes are responsible for the combined sulfur-hydrogen effect on the intergranular fracture of nickel

  14. Ocular blood flow decreases during passive heat stress in resting humans.

    Science.gov (United States)

    Ikemura, Tsukasa; Miyaji, Akane; Kashima, Hideaki; Yamaguchi, Yuji; Hayashi, Naoyuki

    2013-12-06

    Heat stress induces various physiological changes and so could influence ocular circulation. This study examined the effect of heat stress on ocular blood flow. Ocular blood flow, end-tidal carbon dioxide (P(ET)CO2) and blood pressure were measured for 12 healthy subjects wearing water-perfused tube-lined suits under two conditions of water circulation: (1) at 35 °C (normothermia) for 30 min and (2) at 50 °C for 90 min (passive heat stress). The blood-flow velocities in the superior temporal retinal arteriole (STRA), superior nasal retinal arteriole (SNRA), and the retinal and choroidal vessels (RCV) were measured using laser-speckle flowgraphy. Blood flow in the STRA and SNRA was calculated from the integral of a cross-sectional map of blood velocity. PETCO2 was clamped at the normothermia level by adding 5% CO2 to the inspired gas. Passive heat stress had no effect on the subjects' blood pressures. The blood-flow velocity in the RCV was significantly lower after 30, 60 and 90 min of passive heat stress than the normothermic level, with a peak decrease of 18 ± 3% (mean ± SE) at 90 min. Blood flow in the STRA and SNRA decreased significantly after 90 min of passive heat stress conditions, with peak decreases of 14 ± 3% and 14 ± 4%, respectively. The findings of this study suggest that passive heat stress decreases ocular blood flow irrespective of the blood pressure or arterial partial pressure of CO2.

  15. Characterization of Fractured Reservoirs Using a Combination of Downhole Pressure and Self-Potential Transient Data

    OpenAIRE

    Yuji Nishi; Tsuneo Ishido

    2012-01-01

    In order to appraise the utility of self-potential (SP) measurements to characterize fractured reservoirs, we carried out continuous SP monitoring using multi Ag-AgCl electrodes installed within two open holes at the Kamaishi Mine, Japan. The observed ratio of SP change to pressure change associated with fluid flow showed different behaviors between intact host rock and fractured rock regions. Characteristic behavior peculiar to fractured reservoirs, which is predicted from numerical simulati...

  16. Pressure dependence of dynamical heterogeneity in water

    International Nuclear Information System (INIS)

    Teboul, Victor

    2008-01-01

    Using molecular dynamics simulations we investigate the effect of pressure on the dynamical heterogeneity in water. We show that the effect of a pressure variation in water is qualitatively different from the effect of a temperature variation on the dynamical heterogeneity in the liquid. We observe a strong decrease of the aggregation of molecules of low mobility together with a decrease of the characteristic time associated with this aggregation. However, the aggregation of the most mobile molecules and the characteristic time of this aggregation are only slightly affected. In accordance with this result, the non-Gaussian parameter shows an important decrease with pressure while the characteristic time t* of the non-Gaussian parameter is only slightly affected. These results highlight then the importance of pressure variation investigations in low temperature liquids on approach to the glass transition

  17. Thermodynamic analysis of synthetic hydrocarbon fuel production in pressurized solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Sun, Xiufu; Chen, Ming; Jensen, Søren Højgaard

    2012-01-01

    A promising way to store wind and solar electricity is by electrolysis of H2O and CO2 using solid oxide electrolysis cells (SOECs) to produce synthetic hydrocarbon fuels that can be used in existing fuel infrastructure. Pressurized operation decreases the cell internal resistance and enables...... improved system efficiency, potentially lowering the fuel production cost significantly. In this paper, we present a thermodynamic analysis of synthetic methane and dimethyl ether (DME) production using pressurized SOECs, in order to determine feasible operating conditions for producing the desired......, and outlet gas composition. For methane production, low temperature and high pressure operation could improve the system efficiency, but might lead to a higher capital cost. For DME production, high pressure SOEC operation necessitates higher operating temperature in order to avoid carbon formation at higher...

  18. Cavity Pressure Behaviour in Micro Injection Moulding

    DEFF Research Database (Denmark)

    Griffiths, C.A.; Dimov, S.S.; Scholz, S.

    2010-01-01

    as well as with the filling of the cavity by the polymer melt. In this paper, two parameters derived from cavity pressure over time (i.e. pressure work). The influence of four µIM parameters (melt temperature, mould temperature, injection speed, aand packing pressure) on the two pressure-related outputs...... has been investigated by moulding a micro fluidic component on three different polymers (PP, ABS, PC) using the design of experiment approach. Similar trends such as the effects of a higher injection speed in decreasing the pressure work and of a lower temperature in decreasing pressure rate have been......Process monitoring of micro injection moulding (µIM) is of crusial importance to analyse the effect of different parameter settings on the process and to assess its quality. Quality factors related to cavity pressure can provide useful information directly connected with the dyanmics of the process...

  19. A novel pressure variation study on electronic structure, mechanical stability and thermodynamic properties of potassium based fluoroperovskite

    Science.gov (United States)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-09-01

    The effect of pressure variation on stability, structural parameters, elastic constants, mechanical, electronic and thermodynamic properties of cubic SrKF3 fluoroperovskite have been investigated by using the full-potential linearized augmented plane wave (FP-LAPW) method combined with Quasi-harmonic Debye model in which the phonon effects are considered. The calculated lattice parameters show a prominent decrease in lattice constant and bonds length with the increase in pressure. The application of pressure from 0 to 25 GPa reveals a predominant characteristic associated with widening of bandgap with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The influence of pressure on elastic constants and their related mechanical parameters have been discussed in detail. Apart of linear dependence of elastic coefficients, transition from brittle to ductile behavior is also observed at elevated pressure ranges. We have successfully computed variation of lattice constant, volume expansion, bulk modulus, Debye temperature and specific heat capacities at pressure and temperature in the range of 0-25 GPa and 0-600 K.

  20. Polymerization of nitrogen in cesium azide under modest pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoli, E-mail: use126126@126.com, E-mail: lijianfu@lyu.edu.cn [Institute of Condensed Matter Physics, Linyi University, Linyi 276005 (China); Beijing Computational Science Research Center, Beijing 100084 (China); State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012 (China); Li, Jianfu, E-mail: use126126@126.com, E-mail: lijianfu@lyu.edu.cn [Institute of Condensed Matter Physics, Linyi University, Linyi 276005 (China); Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Zhu, Hongyang [State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012 (China); Chen, Li [Institute of Condensed Matter Physics, Linyi University, Linyi 276005 (China); Lin, Haiqing [Beijing Computational Science Research Center, Beijing 100084 (China)

    2014-07-28

    Alkali metal azides can be used as starting materials in the synthesis of polymeric nitrogen, a potential high-energy-density material. The structural evolutionary behaviors of nitrogen in CsN{sub 3} have been studied up to 200 GPa using particle swarm optimization structure search combining with density functional theory. Three stable new phases with C2/m, P2{sub 1}/m, and P-1 structure at pressure of 6, 13, and 51 GPa are identified for the first time. The phase transition to chain like structure (P-1 phase) occurs at a modest pressure 51 GPa, the azide ions N{sub 3}{sup −} (linear chains of three N atoms with covalent bonds and interact weakly with each other) begin to show remarkable polymeric N properties in the CsN{sub 3} system. Throughout the stable pressure range, the structure is metallic and consists of N atoms in sp{sup 2} hybridizations. Our study completes the structural evolution of CsN{sub 3} under pressure and reveals that the introduced Cs atoms are responsible for the decreased synthesis pressure comparing to pure molecular nitrogen under compression.

  1. Impact of the duct static pressure reset control strategy on the energy consumption by the HVAC system

    Directory of Open Access Journals (Sweden)

    Walaszczyk Juliusz

    2017-01-01

    Full Text Available This article addresses different duct static pressure control strategies which could be implemented in variable air volume air-conditioning systems (VAV. Two pressure reset control strategies are compared to the commonly used control solution based on the “Constant static pressure” method. First pressure reset control strategy, known as PID Control, uses signals from VAV boxes controllers to reset duct static pressure in a way that one of the VAV dampers is maintained almost entirely open. Second strategy decreases static pressure setpoint until an adjustable number of pressure requests occur. As a response to the certain amount of requests, static pressure setpoint is increased. This strategy is called Trim & Respond. Both static pressure reset control strategies described in this paper are considered to have more significant potential for energy savings than the “Constant static pressure” method. In order to validate this potential, several simulations for different control strategies were carried out and the obtained results are compared and analysed. The theoretical limit of the energy savings - set of the optimal control actions, was estimated with Nelder-Mead algorithm and also presented in this article. General description of the static pressure control strategies "Constant static pressure", PID Control and Trim & Respond is given.

  2. Copper Contamination Impairs Herbivore Initiation of Seaweed Inducible Defenses and Decreases Their Effectiveness.

    Directory of Open Access Journals (Sweden)

    Alexandria M Warneke

    Full Text Available Seaweed-herbivore interactions are often mediated by environmental conditions, yet the roles of emerging anthropogenic stressors on these interactions are poorly understood. For example, chemical contaminants have unknown consequences on seaweed inducible resistance and herbivore response to these defenses despite known deleterious effects of contaminants on animal inducible defenses. Here, we investigated the effect of copper contamination on the interactions between a snail herbivore and a brown seaweed that displays inducible resistance to grazing. We examined seaweed inducible resistance and its effectiveness for organisms exposed to copper at two time points, either during induction or after herbivores had already induced seaweed defenses. Under ambient conditions, non-grazed tissues were more palatable than grazed tissues. However, copper additions negated the preference for non-grazed tissues regardless of the timing of copper exposure, suggesting that copper decreased both how herbivores initiated these inducible defenses and their subsequent effectiveness. Copper decreased stimulation of defenses, at least in part, by suppressing snail grazing pressure-the cue that turns inducible defenses on. Copper decreased effectiveness of defenses by preventing snails from preferentially consuming non-grazed seaweed. Thus, contaminants can potentially stress communities by changing seaweed-herbivore interactions mediated via inducible defenses. Given the ubiquity of seaweed inducible resistance and their potential influence on herbivores, we hypothesize that copper contamination may change the impact of these resistant traits on herbivores.

  3. Air Circulation and Heat Exchange Under Reduced Pressures

    Science.gov (United States)

    Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.

    2010-01-01

    Heat exchange rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat exchange rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas exchange of plant. These results represent the extremes of gas exchange conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative exchange components.

  4. Pressure Measurement Techniques for Abdominal Hypertension: Conclusions from an Experimental Model.

    Science.gov (United States)

    Chopra, Sascha Santosh; Wolf, Stefan; Rohde, Veit; Freimann, Florian Baptist

    2015-01-01

    Introduction. Intra-abdominal pressure (IAP) measurement is an indispensable tool for the diagnosis of abdominal hypertension. Different techniques have been described in the literature and applied in the clinical setting. Methods. A porcine model was created to simulate an abdominal compartment syndrome ranging from baseline IAP to 30 mmHg. Three different measurement techniques were applied, comprising telemetric piezoresistive probes at two different sites (epigastric and pelvic) for direct pressure measurement and intragastric and intravesical probes for indirect measurement. Results. The mean difference between the invasive IAP measurements using telemetric pressure probes and the IVP measurements was -0.58 mmHg. The bias between the invasive IAP measurements and the IGP measurements was 3.8 mmHg. Compared to the realistic results of the intraperitoneal and intravesical measurements, the intragastric data showed a strong tendency towards decreased values. The hydrostatic character of the IAP was eliminated at high-pressure levels. Conclusion. We conclude that intragastric pressure measurement is potentially hazardous and might lead to inaccurately low intra-abdominal pressure values. This may result in missed diagnosis of elevated abdominal pressure or even ACS. The intravesical measurements showed the most accurate values during baseline pressure and both high-pressure plateaus.

  5. Pressure-induced magnetic transition in CeP

    International Nuclear Information System (INIS)

    Naka, T.; Matsumoto, T.; Mori, N.; Okayama, Y.; Haga, Y.; Suzuki, T.

    1997-01-01

    Pressure dependence of magnetization in CeP is investigated up to 2 GPa. Multi-step transitions are induced by pressure. An antiferromagnetic transition at T N =11 K below 0.1 GPa develops into two (magnetic) transitions at T L and T H in the region of 0.1 L , T H and T d above 1.3 GPa. For decreasing temperature an abrupt increase of magnetization, M(T), has been observed below T H and a round maximum of magnetization appears at T L for P≥0.4 GPa. Above 1.3 GPa, an anomalous decrease of M(T) begins at T d =10 K. Using previously reported 31 P-NMR shift data it is shown that the pressure dependence of a characteristic temperature, which is proportional to the crystal field splitting in the paramagnetic temperature region, decreases rapidly with increasing pressure. (orig.)

  6. Pressurized transient otoacoustic emissions measured using click and chirp stimuli.

    Science.gov (United States)

    Keefe, Douglas H; Patrick Feeney, M; Hunter, Lisa L; Fitzpatrick, Denis F; Sanford, Chris A

    2018-01-01

    Transient-evoked otoacoustic emission (TEOAE) responses were measured in normal-hearing adult ears over frequencies from 0.7 to 8 kHz, and analyzed with reflectance/admittance data to measure absorbed sound power and the tympanometric peak pressure (TPP). The mean TPP was close to ambient. TEOAEs were measured in the ear canal at ambient pressure, TPP, and fixed air pressures from 150 to -200 daPa. Both click and chirp stimuli were used to elicit TEOAEs, in which the incident sound pressure level was constant across frequency. TEOAE levels were similar at ambient and TPP, and for frequencies from 0.7 to 2.8 kHz decreased with increasing positive and negative pressures. At 4-8 kHz, TEOAE levels were larger at positive pressures. This asymmetry is possibly related to changes in mechanical transmission through the ossicular chain. The mean TEOAE group delay did not change with pressure, although small changes were observed in the mean instantaneous frequency and group spread. Chirp TEOAEs measured in an adult ear with Eustachian tube dysfunction and TPP of -165 daPa were more robust at TPP than at ambient. Overall, results demonstrate the feasibility and clinical potential of measuring TEOAEs at fixed pressures in the ear canal, which provide additional information relative to TEOAEs measured at ambient pressure.

  7. Urethral pressure reflectometry. A method for simultaneous measurements of pressure and cross-sectional area in the female urethra

    DEFF Research Database (Denmark)

    Klarskov, Niels

    2012-01-01

    A novel technique for simultaneous measurements of pressure and cross-sectional area (CA) in the female urethra, denoted Urethral Pressure Reflectometry (UPR), was devised. A very thin and highly flexible polyurethane-bag was placed in the urethra. A pump applied increasing and decreasing pressur...

  8. Blood Pressure Responses to Endovascular Stimulation: A Potential Therapy for Autonomic Disorders With Vasodilatation.

    Science.gov (United States)

    Naksuk, Niyada; Killu, Ammar M; Yogeswaran, Vidhushei; Desimone, Christopher V; Suddendorf, Scott H; Ladewig, Dorothy J; Powers, Joanne M; Weber, Sarah; Madhavan, Malini; Cha, Yong-Mei; Kapa, Suraj; Asirvatham, Samuel J

    2016-09-01

    We have previously shown that sympathetic ganglia stimulation via the renal vein rapidly increases blood pressure. This study further investigated the optimal target sites and effective energy levels for stimulation of the renal vasculatures and nearby sympathetic ganglia for rapid increase in blood pressure. The pre-study protocol for endovascular stimulations included 2 minutes of stimulation (1-150 V and 10 pulses per second) and at least 2 minutes of rest during poststimulation. If blood pressure and/or heart rate were changed during the stimulation, time to return to baseline was allowed prior to the next stimulation. In 11 acute canine studies, we performed 85 renal artery, 30 renal vein, and 8 hepatic vasculature stimulations. The mean arterial pressure (MAP) rapidly increased during stimulation of renal artery (95 ± 18 mmHg vs. 103 ± 15 mmHg; P vein (90 ± 16 mmHg vs. 102 ± 20 mmHg; P = 0.001), and hepatic vasculatures (74 ± 8 mmHg vs. 82 ± 11 mmHg; P = 0.04). Predictors of a significant increase in MAP were energy >10 V focused on the left renal artery, bilateral renal arteries, and bilateral renal veins (especially the mid segment). Overall, heart rate was unchanged, but muscle fasciculation was observed in 22.0% with an output >10 V (range 15-150 V). Analysis after excluding the stimulations that resulted in fasciculation yielded similar results to the main findings. Stimulation of intra-abdominal vasculatures promptly increased the MAP and thus may be a potential treatment option for hypotension in autonomic disorders. Predictors of optimal stimulation include energy delivery and the site of stimulation (for the renal vasculatures), which informs the design of subsequent research. © 2016 Wiley Periodicals, Inc.

  9. Comparison of endotracheal tube cuff pressure values before and after training seminar.

    Science.gov (United States)

    Özcan, Ayça Tuba Dumanlı; Döğer, Cihan; But, Abdülkadir; Kutlu, Işık; Aksoy, Şemsi Mustafa

    2018-06-01

    It is recommended that endotracheal cuff (ETTc) pressure be between 20 and 30 cm H 2 O. In this present study, we intend to observe average cuff pressure values in our clinic and the change in these values after the training seminar. The cuff pressure values of 200 patients intubated following general anesthesia induction in the operating theatre were measured following intubation. One hundred patients whose values were measured before the training seminar held for all physician assistants, and 100 patients whose values were measured after the training seminar were regarded as Group 1 and Group 2, respectively. Cuff pressures of both groups were recorded, and the difference between them was shown. Moreover, cuff pressure values were explored according to the working period of the physician assistants. There was no significant difference between the groups in terms of age, gender and tube diameters. Statistically significant difference was found between cuff pressure values before and after the training (p values decreased, however no statistically significant different was found (p values and potential complications.

  10. Benchtop evaluation of pressure barrier insufflator and standard insufflator systems.

    Science.gov (United States)

    Nepple, Kenneth G; Kallogjeri, Dorina; Bhayani, Sam B

    2013-01-01

    Previous experimental research has reported minimal differences in pressure maintenance between different versions of standard insufflators (SI). However, a recent report identified potential clinical benefits with a valveless pressure barrier insufflator (PBI). We sought to perform a benchtop objective evaluation of SI and PBI systems. A rigid box system with continuous pressure manometry was used to evaluate a PBI (Surgiquest Airseal) and two SIs (SI1 = Stryker PneumoSure High Flow Insufflator and SI2 = Storz SCB Thermoflator). Pressure maintenance of 15 mmHg was evaluated during experimental conditions of leakage from a 5 mm port site, leakage from a 12 mm port site, and continuous suction. With leakage from the 5 mm port site, the PBI maintained pressure of >13 mmHg whereas the pressures dropped moderately with the SI1 (7-13 mmHg) and SI2 insufflators (3-7 mmHg) and did not regain goal pressure until leakage was stopped. With leakage from 12 mm port site, the PBI pressure decreased to 9-11 mmHg, whereas the SI1 and SI2 lost insufflation pressures completely. The PBI maintained pressure of >11 mmHg during continuous suction while the SI1 and SI2 lost pressure entirely, and actually showed negative pressure from air suction into the rigid box system. When evaluated statistically with the mixed model repeated measures ANOVA, the SI1 and SI2 performed similarly while the PBI maintained increased pressure. In the experimental rigid box system, the PBI more successfully maintained pressure in response to leakage and suction than SIs.

  11. Potential application of high hydrostatic pressure to eliminate Escherichia coli O157:H7 on alfalfa sprouted seeds.

    Science.gov (United States)

    Neetoo, Hudaa; Ye, Mu; Chen, Haiqiang

    2008-12-10

    Sprouts eaten raw are increasingly being perceived as hazardous foods as they have been implicated in Escherichia coli O157:H7 outbreaks where the seeds were found to be the likely source of contamination. The objective of our study was to evaluate the potential of using high hydrostatic pressure (HHP) technology for alfalfa seed decontamination. Alfalfa seeds inoculated with a cocktail of five strains of E. coli O157:H7 were subjected to pressures of 500 and 600 MPa for 2 min at 20 degrees C in a dry or wet (immersed in water) state. Immersing seeds in water during pressurization considerably enhanced inactivation of E. coli O157:H7 achieving reductions of 3.5 log and 5.7 log at 500 and 600 MPa, respectively. When dry seeds were pressurized, both pressure levels reduced the counts by 5 log reduction in the population was achieved when 600 MPa was applied for durations of > or =6 min although survivors were still detected by enrichment. When the pressure was stepped up to 650 MPa, the threshold time required to achieve complete elimination was 15 min. Un-inoculated seeds pressure-treated at 650 MPa for 15 min at 20 degrees C successfully sprouted achieving a germination rate identical to untreated seeds after eight days of sprouting. These results therefore demonstrate the promising application of HHP on alfalfa seeds to eliminate the risk of E. coli O157:H7 infections associated with consumption of raw alfalfa sprouts.

  12. Enhancing Documentation of Pressure Ulcer Prevention Interventions: A Quality Improvement Strategy to Reduce Pressure Ulcers.

    Science.gov (United States)

    Jacobson, Therese M; Thompson, Susan L; Halvorson, Anna M; Zeitler, Kristine

    2016-01-01

    Prevention of hospital-acquired pressure ulcers requires the implementation of evidence-based interventions. A quality improvement project was conducted to provide nurses with data on the frequency with which pressure ulcer prevention interventions were performed as measured by documentation. Documentation reports provided feedback to stakeholders, triggering reminders and reeducation. Intervention reports and modifications to the documentation system were effective both in increasing the documentation of pressure ulcer prevention interventions and in decreasing the number of avoidable hospital-acquired pressure ulcers.

  13. Pancreatic tissue fluid pressure during drainage operations for chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Madsen, P

    1990-01-01

    Pancreatic tissue fluid pressure was measured in 10 patients undergoing drainage operations for painful chronic pancreatitis. The pressure was measured by the needle technique in the three anatomic regions of the pancreas before and at different stages of the drainage procedure, and the results...... a decrease in pancreatic tissue fluid pressure during drainage operations for pain in chronic pancreatitis. Regional pressure decrease were apparently unrelated to ERCP findings....

  14. High-Reynolds-number turbulent-boundary-layer wall-pressure fluctuations with dilute polymer solutions

    Science.gov (United States)

    Elbing, Brian R.; Winkel, Eric S.; Ceccio, Steven L.; Perlin, Marc; Dowling, David R.

    2010-08-01

    Wall-pressure fluctuations were investigated within a high-Reynolds-number turbulent boundary layer (TBL) modified by the addition of dilute friction-drag-reducing polymer solutions. The experiment was conducted at the U.S. Navy's Large Cavitation Channel on a 12.9 m long flat-plate test model with the surface hydraulically smooth (k+<0.2) and achieving downstream-distance-based Reynolds numbers to 220×106. The polymer (polyethylene oxide) solution was injected into the TBL through a slot in the surface. The primary flow diagnostics were skin-friction drag balances and an array of flush-mounted dynamic pressure transducers 9.8 m from the model leading edge. Parameters varied included the free-stream speed (6.7, 13.4, and 20.2 m s-1) and the injection condition (polymer molecular weight, injection concentration, and volumetric injection flux). The behavior of the pressure spectra, convection velocity, and coherence, regardless of the injection condition, were determined primarily based on the level of drag reduction. Results were divided into two regimes dependent on the level of polymer drag reduction (PDR), nominally separated at a PDR of 40%. The low-PDR regime is characterized by decreasing mean-square pressure fluctuations and increasing convection velocity with increasing drag reduction. This shows that the decrease in the pressure spectra with increasing drag reduction is due in part to the moving of the turbulent structures from the wall. Conversely, with further increases in drag reduction, the high-PDR regime has negligible variation in the mean-squared pressure fluctuations and convection velocity. The convection velocity remains constant at approximately 10% above the baseline-flow convection velocity, which suggests that the turbulent structures no longer move farther from the wall with increasing drag reduction. In light of recent numerical work, the coherence results indicate that in the low-PDR regime, the turbulent structures are being elongated in

  15. Downstream Hepatic Arterial Blood Pressure Changes Caused by Deployment of the Surefire AntiReflux Expandable Tip

    International Nuclear Information System (INIS)

    Rose, Steven C.; Kikolski, Steven G.; Chomas, James E.

    2013-01-01

    Purpose: The purpose of this work was to evaluate blood pressure changes caused by deployment of the Surefire antireflux expandable tip. The pressure measurements are relevant because they imply changes in hepatoenteric arterial blood flow within this liver compartment during hepatic artery delivery of cytotoxic agents. Methods: After positioning the Surefire antireflux system in the targeted hepatic artery, blood pressure was obtained initially with the tip collapsed (or through a femoral artery sheath), then again after the tip was expanded before chemoembolization or yttrium 90 ( 90 Y) radioembolization. Results: Eighteen patients with liver malignancy underwent 29 procedures in 29 hepatic arteries (3 common hepatic, 22 lobar, 4 segmental). Systolic, diastolic, and mean blood pressure were all decreased by a mean of 29 mm Hg (p = 0.000004), 14 mm Hg (p = 0.0000004), and 22 mm Hg (p = 0.00000001), respectively. Conclusion: When the Surefire expandable tip is deployed to prevent retrograde reflux of agents, it also results in a significant decrease in blood pressure in the antegrade distribution, potentially resulting in hepatopedal blood flow in vessels that are difficult to embolize, such as the supraduodenal arteries

  16. Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask

    Science.gov (United States)

    Kelly, Mark; Pettit, Donald

    2003-01-01

    A device that generates an alarm when the partial pressure of oxygen decreases to less than a preset level has been developed to help prevent hypoxia in a pilot or other crewmember of a military or other high-performance aircraft. Loss of oxygen partial pressure can be caused by poor fit of the mask or failure of a hose or other component of an oxygen distribution system. The deleterious physical and mental effects of hypoxia cause the loss of a military aircraft and crew every few years. The device is installed in the crewmember s oxygen mask and is powered via communication wiring already present in all such oxygen masks. The device (see figure) includes an electrochemical sensor, the output potential of which is proportional to the partial pressure of oxygen. The output of the sensor is amplified and fed to the input of a comparator circuit. A reference potential that corresponds to the amplified sensor output at the alarm oxygen-partial-pressure level is fed to the second input of the comparator. When the sensed partial pressure of oxygen falls below the minimum acceptable level, the output of the comparator goes from the low state (a few millivolts) to the high state (near the supply potential, which is typically 6.8 V for microphone power). The switching of the comparator output to the high state triggers a tactile alarm in the form of a vibration in the mask, generated by a small 1.3-Vdc pager motor spinning an eccentric mass at a rate between 8,000 and 10,000 rpm. The sensation of the mask vibrating against the crewmember s nose is very effective at alerting the crewmember, who may already be groggy from hypoxia and is immersed in an environment that is saturated with visual cues and sounds. Indeed, the sensation is one of rudeness, but such rudeness could be what is needed to stimulate the crewmember to take corrective action in a life-threatening situation.

  17. Blood pressure modifies retinal susceptibility to intraocular pressure elevation.

    Directory of Open Access Journals (Sweden)

    Zheng He

    Full Text Available Primary open angle glaucoma affects more than 67 million people. Elevated intraocular pressure (IOP is a risk factor for glaucoma and may reduce nutrient availability by decreasing ocular perfusion pressure (OPP. An interaction between arterial blood pressure and IOP determines OPP; but the exact contribution that these factors have for retinal function is not fully understood. Here we sought to determine how acute modifications of arterial pressure will affect the susceptibility of neuronal function and blood flow to IOP challenge. Anaesthetized (ketamine:xylazine Long-Evan rats with low (∼60 mmHg, sodium nitroprusside infusion, moderate (∼100 mmHg, saline, or high levels (∼160 mmHg, angiotensin II of mean arterial pressure (MAP, n = 5-10 per group were subjected to IOP challenge (10-120 mmHg, 5 mmHg steps every 3 minutes. Electroretinograms were measured at each IOP step to assess bipolar cell (b-wave and inner retinal function (scotopic threshold response or STR. Ocular blood flow was measured using laser-Doppler flowmetry in groups with similar MAP level and the same IOP challenge protocol. Both b-wave and STR amplitudes decreased with IOP elevation. Retinal function was less susceptible to IOP challenge when MAP was high, whereas the converse was true for low MAP. Consistent with the effects on retinal function, higher IOP was needed to attenuated ocular blood flow in animals with higher MAP. The susceptibility of retinal function to IOP challenge can be ameliorated by acute high BP, and exacerbated by low BP. This is partially mediated by modifications in ocular blood flow.

  18. Theory of mass-discrimination effects in ion extraction from a plasma of wide pressure range

    International Nuclear Information System (INIS)

    Chang, J.-S.; Kodera, K.

    1979-01-01

    Mass-discrimination effects in stagnation-point ion extraction are treated for a plasma with a wide range of Knudsen number, i.e. when the charged particle's mean free path 3 , ion Schmidt numbers, from 0 to 10 4 , the effective Knudsen number K from 0 to infinity, and the Debye ratio Rsub(p)/lambdasub(D) from 0 to 10 -1 . Numerical results show that: (1) for a non-flowing plasma, mass-discrimination effects increase with increasing effective Knudsen number (or gas pressure) and decreasing sampling potential; (2) for a non-flowing plasma, no significant effect of the Debye ratio on mass-discrimination was found; (3) for a flowing plasma, mass-discrimination effects decrease with increasing Reynolds number (or flow velocity) and ion Schmidt number, and with decreasing sampling potential and effective Knudsen number. (Auth.)

  19. Radial profiles of velocity and pressure for condensation-induced hurricanes

    International Nuclear Information System (INIS)

    Makarieva, A.M.; Gorshkov, V.G.

    2011-01-01

    The Bernoulli integral in the form of an algebraic equation is obtained for the hurricane air flow as the sum of the kinetic energy of wind and the condensational potential energy. With an account for the eye rotation energy and the decrease of angular momentum towards the hurricane center it is shown that the theoretical profiles of pressure and velocity agree well with observations for intense hurricanes. The previous order of magnitude estimates obtained in pole approximation are confirmed.

  20. Radial profiles of velocity and pressure for condensation-induced hurricanes

    Science.gov (United States)

    Makarieva, A. M.; Gorshkov, V. G.

    2011-02-01

    The Bernoulli integral in the form of an algebraic equation is obtained for the hurricane air flow as the sum of the kinetic energy of wind and the condensational potential energy. With an account for the eye rotation energy and the decrease of angular momentum towards the hurricane center it is shown that the theoretical profiles of pressure and velocity agree well with observations for intense hurricanes. The previous order of magnitude estimates obtained in pole approximation are confirmed.

  1. Radial profiles of velocity and pressure for condensation-induced hurricanes

    Energy Technology Data Exchange (ETDEWEB)

    Makarieva, A.M., E-mail: ammakarieva@gmail.co [Theoretical Physics Division, Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg (Russian Federation); Gorshkov, V.G. [Theoretical Physics Division, Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg (Russian Federation)

    2011-02-14

    The Bernoulli integral in the form of an algebraic equation is obtained for the hurricane air flow as the sum of the kinetic energy of wind and the condensational potential energy. With an account for the eye rotation energy and the decrease of angular momentum towards the hurricane center it is shown that the theoretical profiles of pressure and velocity agree well with observations for intense hurricanes. The previous order of magnitude estimates obtained in pole approximation are confirmed.

  2. Assessment of the potential for high-pressure melt ejection resulting from a Surry station blackout transient

    International Nuclear Information System (INIS)

    Knudson, D.L.; Dobbe, C.A.

    1993-11-01

    Containment integrity could be challenged by direct heating associated with a high pressure melt ejection (HPME) of core materials following reactor vessel breach during certain severe accidents. Intentional reactor coolant system (RCS) depressurization, where operators latch pressurizer relief valves open, has been proposed as an accident management strategy to reduce risks by mitigating the severity of HPME. However, decay heat levels, valve capacities, and other plant-specific characteristics determine whether the required operator action will be effective. Without operator action, natural circulation flows could heat ex-vessel RCS pressure boundaries (surge line and hot leg piping, steam generator tubes, etc.) to the point of failure before vessel breach, providing an alternate mechanism for RCS depressurization and HPME mitigation. This report contains an assessment of the potential for HPME during a Surry station blackout transient without operator action and without recovery. The assessment included a detailed transient analysis using the SCDAP/RELAP5/MOD3 computer code to calculate the plant response with and without hot leg countercurrent natural circulation, with and without reactor coolant pump seal leakage, and with variations on selected core damage progression parameters. RCS depressurization-related probabilities were also evaluated, primarily based on the code results

  3. Review : Pressure Ulcer and Its treatment

    OpenAIRE

    Bijan Khorasani; Ali Ghafouri

    2004-01-01

    Pressure ulcer is a signifcant problem in elderly and critically ill patients, causing pain, decreasing quality of life and leading to prolonged hospital stay. Treatment of pressure ulcer to improve health status is a cost-effective approach. So, preventing the ulcers will be economical. Pressure ulcer is considered as a damage or necrosis of skin and its layers, which happens when there is a considerable pressure over the tissues. If the capillary arterie's pressure reaches 70 mmHg (2 ti...

  4. Pressure-flow relationships in in vitro model of compartment syndrome.

    Science.gov (United States)

    Shrier, I; Magder, S

    1995-07-01

    Compartment syndrome is a condition in which an increase in intramuscular pressure decreases blood flow to skeletal muscle. According to the Starling resistor (i.e., vascular waterfall) model of blood flow, the decrease in flow could occur through an increase in arterial resistance (Rart) or an increase in the critical closing pressure (Pcrit). To determine which explains the decrease in flow, we pump perfused a canine gastrocnemius muscle placed within an airtight box, controlled box pressures (Pbox) so that flow ranged from 100 to 50%, and measured Pcrit, Rart, arterial compliance, small venular pressure (measured by the double-occlusion technique), and venous pressure. An increase in Pbox limited flow mainly through an increase in Pcrit (75-85%), with only small changes in Rart (15-25%) and no change in arterial compliance. Increases in Pbox also produced a vascular waterfall in the venous circulation, but small venular transmural pressure always remained less than control levels. We conclude that increases in Pbox mostly limit blood flow through increases in Pcrit and that Rart plays a minor role. Transmural pressure across the small venules decreases with increases in intramuscular pressure, which contradicts the currently held belief that compartment syndrome is due to a cycle of swelling-ischemia-swelling.

  5. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    Science.gov (United States)

    He, Weihua; Yang, Wulin; Tian, Yushi; Zhu, Xiuping; Liu, Jia; Feng, Yujie; Logan, Bruce E.

    2016-11-01

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of -0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m-2, with balanced air and water pressures of 10-25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  6. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    KAUST Repository

    He, Weihua

    2016-09-30

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of −0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m, with balanced air and water pressures of 10–25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  7. Improvement of Diurnal Blood Pressure Variation by Azilsartan.

    Science.gov (United States)

    Okamura, Keisuke; Shirai, Kazuyuki; Okuda, Tetsu; Urata, Hidenori

    2018-01-01

    Azilsartan is an angiotensin II receptor blocker with a potent antihypertensive effect. In a multicenter, prospective, open-label study, 265 patients with poor blood pressure control despite treatment with other angiotensin II receptor blockers were switched to 20 mg/day of azilsartan (patients on standard dosages) or 40 mg/day of azilsartan (patients on high dosages). Blood pressure was 149/83 mm Hg before switching and was significantly reduced from 1 month after switching until final assessment (132/76 mm Hg, P < 0.001). The pulse rate was 72/min before switching and increased significantly from 3 months after switching until final assessment (74/min, P < 0.005). A significant decrease of home morning systolic and diastolic pressure was observed from 1 and 3 months, respectively. Home morning blood pressure was 143/82 mm Hg before switching and 130/76 mm Hg at final assessment (P < 0.01). The morning-evening difference of systolic blood pressure decreased from 14.6 to 6.6 mm Hg after switching (P = 0.09). The estimated glomerular filtration rate was significantly decreased at 3, 6, and 12 months after switching, and serum uric acid was significantly increased at 12 months. No serious adverse events occurred. Azilsartan significantly reduced the blood pressure and decreased diurnal variation in patients responding poorly to other angiotensin II receptor blockers.

  8. Potential of high pressure homogenization to induce autolysis of wine yeasts.

    Science.gov (United States)

    Comuzzo, Piergiorgio; Calligaris, Sonia; Iacumin, Lucilla; Ginaldi, Federica; Palacios Paz, Anthony Efrain; Zironi, Roberto

    2015-10-15

    High pressure homogenization (HPH) was tested for inducing autolysis in a commercial strain of Saccharomyces bayanus for winemaking. The effects on cell viability, the release of soluble proteins, glucidic colloids and amino acids in wine-like medium and the volatile composition of the autolysates were investigated after processing, in comparison with thermolysis. HPH seemed a promising technique for inducing autolysis of wine yeasts. One pass at 150 MPa was the best operating conditions. Soluble colloids, proteins and free amino acids were similar after HPH and thermolysis, but the former gave a more interesting volatile composition after processing, with higher concentrations of ethyl esters (fruity odors) and lower fatty acids (potential off-flavors). This might allow different winemaking applications for HPH, such as the production of yeast derivatives for wine ageing. In the conditions tested, HPH did not allow the complete inactivation of yeast cells; the treatment shall be optimized before winemaking use. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Solar radiation pressure and deviations from Keplerian orbits

    Energy Technology Data Exchange (ETDEWEB)

    Kezerashvili, Roman Ya. [Physics Department, New York City College of Technology, the City University of New York, Brooklyn, NY 11201 (United States); Vazquez-Poritz, Justin F. [Physics Department, New York City College of Technology, City University of New York, Brooklyn, NY 11201 (United States)], E-mail: jporitz@gmail.com

    2009-05-04

    Newtonian gravity and general relativity give exactly the same expression for the period of an object in circular orbit around a static central mass. However, when the effects of the curvature of spacetime and solar radiation pressure are considered simultaneously for a solar sail propelled satellite, there is a deviation from Kepler's third law. It is shown that solar radiation pressure affects the period of this satellite in two ways: by effectively decreasing the solar mass, thereby increasing the period, and by enhancing the effects of other phenomena, potentially rendering some of them detectable. In particular, we consider deviations from Keplerian orbits due to spacetime curvature, frame dragging from the rotation of the sun, the oblateness of the sun, a possible net electric charge of the sun, and a very small positive cosmological constant.

  10. Pressure-induced structural change in MgSiO3 glass at pressures near the Earth's core-mantle boundary.

    Science.gov (United States)

    Kono, Yoshio; Shibazaki, Yuki; Kenney-Benson, Curtis; Wang, Yanbin; Shen, Guoyin

    2018-02-20

    Knowledge of the structure and properties of silicate magma under extreme pressure plays an important role in understanding the nature and evolution of Earth's deep interior. Here we report the structure of MgSiO 3 glass, considered an analog of silicate melts, up to 111 GPa. The first (r1) and second (r2) neighbor distances in the pair distribution function change rapidly, with r1 increasing and r2 decreasing with pressure. At 53-62 GPa, the observed r1 and r2 distances are similar to the Si-O and Si-Si distances, respectively, of crystalline MgSiO 3 akimotoite with edge-sharing SiO 6 structural motifs. Above 62 GPa, r1 decreases, and r2 remains constant, with increasing pressure until 88 GPa. Above this pressure, r1 remains more or less constant, and r2 begins decreasing again. These observations suggest an ultrahigh-pressure structural change around 88 GPa. The structure above 88 GPa is interpreted as having the closest edge-shared SiO 6 structural motifs similar to those of the crystalline postperovskite, with densely packed oxygen atoms. The pressure of the structural change is broadly consistent with or slightly lower than that of the bridgmanite-to-postperovskite transition in crystalline MgSiO 3 These results suggest that a structural change may occur in MgSiO 3 melt under pressure conditions corresponding to the deep lower mantle.

  11. Plateau Waves of Intracranial Pressure and Partial Pressure of Cerebral Oxygen.

    Science.gov (United States)

    Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Pickard, John; Czosnyka, Marek

    2016-01-01

    This study investigates 55 intracranial pressure (ICP) plateau waves recorded in 20 patients after severe traumatic brain injury (TBI) with a focus on a moving correlation coefficient between mean arterial pressure (ABP) and ICP, called PRx, which serves as a marker of cerebrovascular reactivity, and a moving correlation coefficient between ABP and cerebral partial pressure of oxygen (pbtO2), called ORx, which serves as a marker for cerebral oxygen reactivity. ICP and ICPamplitude increased significantly during the plateau waves, whereas CPP and pbtO2 decreased significantly. ABP, ABP amplitude, and heart rate remained unchanged. In 73 % of plateau waves PRx increased during the wave. ORx showed an increase during and a decrease after the plateau waves, which was not statistically significant. Our data show profound cerebral vasoparalysis on top of the wave and, to a lesser extent, impairment of cerebral oxygen reactivity. The different behavior of the indices may be due to the different latencies of the cerebral blood flow and oxygen level control mechanisms. While cerebrovascular reactivity is a rapidly reacting mechanism, cerebral oxygen reactivity is slower.

  12. Combination of Glasgow Coma Scale, Age, and Systolic Blood Pressure in Assessing Patients’ Outcomes with Decreased Consciousness

    Directory of Open Access Journals (Sweden)

    Amir S Madjid

    2017-04-01

    Full Text Available Glasgow Coma Scale (GCS is commonly used to assess outcomes of patients with loss of consciousness, but it is insufficient in predicting the outcome of some cases. This study aimed to assess the combination of GCS, systolic blood pressure and age to predict the outcome of patients with decreased consciousness. This was a retrospective cohort observational study of 76 loss of consciousness patients that comes into the Emergency Department of Dr. Cipto Mangunkusumo General Hospital in June-August 2014. Data was obtained from the medical records . GCS, systolic blood pressure and age were recorded when patients were admitted to the triage. Outcome was assessed two weeks after admission in the emergency department. Bivariate analysis on the GCS and age showed significant different between patients with poor outcome group with good outcome group (p<0.05 and no significant different of the systolic blood pressure between both groups (p>0.05. Multivariate analysis on the GCS and age showed good probability equation based on the calibration test and discrimination. The combination of Glasgow Coma Scale and age was accurate in assessing the outcomes of patients with loss of consciousness. Keywords. Glasgow Coma Scale, systolic, age, outcomes     Gabungan Glasgow Coma Scale, Umur, dan Tekanan Darah Sistolik Sebagai Penilai Luaran Pasien Penurunan Kesadaran   Abstrak Glasgow Coma Scale (GCS telah menjadi salah satu penilaian yang digunakan untuk menilai luaran pasien penurunan kesadaran, tetapi dinilai masih belum mampu memprediksi luaran yang terjadi. Penelitian ini bertujuan untuk menilai gabungan GCS, tekanan darah sistolik dan umur untuk memprediksi luaran pasien dengan penurunan kesadaran. Penelitian ini merupakan studi observasional kohort retrospektif yang melibatkan 76 pasien dengan penurunan kesadaran yang datang ke IGD RSUPN Dr. Cipto Mangunkusumo selama bulan Juni-Agustus 2014. Data diambil dari rekam medik. GCS, tekanan darah sistolik dan

  13. Profiling of the Tox21 Chemical Collection for Mitochondrial Function to Identify Compounds that Acutely Decrease Mitochondrial Membrane Potential

    Science.gov (United States)

    Attene-Ramos, Matias S.; Huang, Ruili; Michael, Sam; Witt, Kristine L.; Richard, Ann; Tice, Raymond R.; Simeonov, Anton; Austin, Christopher P.

    2014-01-01

    Background: Mitochondrial dysfunction has been implicated in the pathogenesis of a variety of disorders including cancer, diabetes, and neurodegenerative and cardiovascular diseases. Understanding whether different environmental chemicals and druglike molecules impact mitochondrial function represents an initial step in predicting exposure-related toxicity and defining a possible role for such compounds in the onset of various diseases. Objectives: We sought to identify individual chemicals and general structural features associated with changes in mitochondrial membrane potential (MMP). Methods: We used a multiplexed [two end points in one screen; MMP and adenosine triphosphate (ATP) content] quantitative high throughput screening (qHTS) approach combined with informatics tools to screen the Tox21 library of 10,000 compounds (~ 8,300 unique chemicals) at 15 concentrations each in triplicate to identify chemicals and structural features that are associated with changes in MMP in HepG2 cells. Results: Approximately 11% of the compounds (913 unique compounds) decreased MMP after 1 hr of treatment without affecting cell viability (ATP content). In addition, 309 compounds decreased MMP over a concentration range that also produced measurable cytotoxicity [half maximal inhibitory concentration (IC50) in MMP assay/IC50 in viability assay ≤ 3; p Tice RR, Simeonov A, Austin CP, Xia M. 2015. Profiling of the Tox21 chemical collection for mitochondrial function to identify compounds that acutely decrease mitochondrial membrane potential. Environ Health Perspect 123:49–56; http://dx.doi.org/10.1289/ehp.1408642 PMID:25302578

  14. Intermediate Leg SBLOCA - Long Lasting Pressure Transient

    International Nuclear Information System (INIS)

    Konjarek, D.; Bajs, T.; Vukovic, J.

    2010-01-01

    The basic phenomenology of Small Break Loss of Coolant Accident (SBLOCA) for PWR plant is described with focus on analysis of scenario in which reactor coolant pressure decreases below secondary system pressure. Best estimate light water reactor transient analysis code RELAP5/mod3.3 was used in calculation. Rather detailed model of the plant was used. The break occurs in intermediate leg on lowest elevation near pump suction. The size of the break is chosen to be small enough to cause cycling of safety valves (SVs) on steam generators (SGs) for some time, but, afterwards, it is large enough to remove decay heat through the break, causing cooling the secondary side. In this case of SBLOCA, when primary pressure decreases below secondary pressure, long lasting pressure transients with significant amplitude occur. Reasons for such behavior are explained.(author).

  15. Stomatal closure of Pelargonium × hortorum in response to soil water deficit is associated with decreased leaf water potential only under rapid soil drying.

    Science.gov (United States)

    Boyle, Richard K A; McAinsh, Martin; Dodd, Ian C

    2016-01-01

    Soil water deficits applied at different rates and for different durations can decrease both stomatal conductance (gs ) and leaf water potential (Ψleaf ). Understanding the physiological mechanisms regulating these responses is important in sustainable irrigation scheduling. Glasshouse-grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at various fractions of plant evapotranspiration (100, 75 and 50% ET) for 20 days or irrigation was withheld for 4 days. Xylem sap was collected and gs and Ψleaf were measured on days 15 and 20, and on days 16-19 for the respective treatments. Xylem sap pH and NO3 (-) and Ca(2+) concentrations did not differ between irrigation treatments. Xylem abscisic acid (ABA) concentrations ([ABA]xyl ) increased within 24 h of irrigation being withheld whilst gs and Ψleaf decreased. Supplying irrigation at a fraction of daily ET produced a similar relationship between [ABA]xyl and gs , but did not change Ψleaf . Treatment differences occurred independently of whether Ψleaf was measured in whole leaves with a pressure chamber, or in the lamina with a thermocouple psychrometer. Plants that were irrigated daily showed lower [ABA]xyl than plants from which irrigation was withheld, even at comparable soil moisture content. This implies that regular re-watering attenuates ABA signaling due to maintenance of soil moisture in the upper soil levels. Crucially, detached leaves supplied with synthetic ABA showed a similar relationship between [ABA]xyl and gs as intact plants, suggesting that stomatal closure of P. hortorum in response to soil water deficit is primarily an ABA-induced response, independent of changes in Ψleaf . © 2015 Scandinavian Plant Physiology Society.

  16. Understanding chemical-potential-related transient pore-pressure response to improve real-time borehole (in)stability predictions

    Energy Technology Data Exchange (ETDEWEB)

    Tare, U.A.; Mody, F.K.; Mese, A.I. [Halliburton Energy Services, Cairo (Egypt)

    2000-11-01

    Experimental studies were conducted to explain the concept of a real-time wellbore (in)stability logging methodology. The role of the chemical potential of drilling fluids on transient pore pressure and time-dependent rock property alterations of shale formations was examined by providing details about a pore pressure transmission (PPT) test. The PPT experiments exposed formation (shale) cores under simulated downhole conditions to various salt solutions and drilling fluids. The main objective was to translate the results of the PPT tests to actual drilling conditions. A 20 per cent w/w calcium chloride solution was exposed to a Pierre II shale under high pressure in the PPT apparatus. The PPT test was used to estimate the impact of a drilling fluid on shale pore pressure. The efficiency of the salt solution/shale system was also estimated. Estimates of the dynamic rock properties were made based on the obtained acoustic data. It was determined that in order to accurately model time-dependent wellbore (in)stability in the field, it is important to calibrate representative shale core response to drilling fluids under realistic in-situ conditions. The 20 per cent w/w calcium chloride solution showed very low membrane efficiency of 4.45 per cent. It was concluded that changes in the shale dynamic rock properties as a function of test fluid exposure can be obtained from the simultaneous acquisition of sonic compression and shear wave velocity data. 12 refs., 5 figs.

  17. Acetylcholinesterase activity, cohabitation with floricultural workers, and blood pressure in Ecuadorian children.

    Science.gov (United States)

    Suarez-Lopez, Jose R; Jacobs, David R; Himes, John H; Alexander, Bruce H

    2013-05-01

    Acetylcholinesterase (AChE) inhibitors are commonly used pesticides that can effect hemodynamic changes through increased cholinergic stimulation. Children of agricultural workers are likely to have paraoccupational exposures to pesticides, but the potential physiological impact of such exposures is unclear. We investigated whether secondary pesticide exposures were associated with blood pressure and heart rate among children living in agricultural Ecuadorian communities. This cross-sectional study included 271 children 4-9 years of age [51% cohabited with one or more flower plantation workers (mean duration, 5.2 years)]. Erythrocyte AChE activity was measured using the EQM Test-mate system. Linear regression models were used to estimate associations of systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate with AChE activity, living with flower workers, duration of cohabitation with a flower worker, number of flower workers in the child's home, and number of practices that might increase children's exposure to pesticides. Mean (± SD) AChE activity was 3.14 ± 0.49 U/mL. A 1-U/mL decrease in AChE activity was associated with a 2.86-mmHg decrease in SBP (95% CI: -5.20, -0.53) and a 2.89-mmHg decrease in DBP (95% CI: -5.00, -0.78), after adjustment for potential confounders. Children living with flower workers had lower SBP (-1.72 mmHg; 95% CI: -3.53, 0.08) than other children, and practices that might increase exposure also were associated with lower SBP. No significant associations were found between exposures and heart rate. Our findings suggest that subclinical secondary exposures to pesticides may affect vascular reactivity in children. Additional research is needed to confirm these findings.

  18. Wind-generated Electricity in China: Decreasing Potential, Inter-annual Variability and Association with Changing Climate.

    Science.gov (United States)

    Sherman, Peter; Chen, Xinyu; McElroy, Michael B

    2017-11-24

    China hosts the world's largest market for wind-generated electricity. The financial return and carbon reduction benefits from wind power are sensitive to changing wind resources. Wind data derived from an assimilated meteorological database are used here to estimate what the wind generated electricity in China would have been on an hourly basis over the period 1979 to 2015 at a geographical resolution of approximately 50 km × 50 km. The analysis indicates a secular decrease in generating potential over this interval, with the largest declines observed for western Inner Mongolia (15 ± 7%) and the northern part of Gansu (17 ± 8%), two leading wind investment areas. The decrease is associated with long-term warming in the vicinity of the Siberian High (SH), correlated also with the observed secular increase in global average surface temperatures. The long-term trend is modulated by variability relating to the Pacific Decadal Oscillation (PDO) and the Arctic Oscillation (AO). A linear regression model incorporating indices for the PDO and AO, as well as the declining trend, can account for the interannual variability of wind power, suggesting that advances in long-term forecasting could be exploited to markedly improve management of future energy systems.

  19. New intraocular pressure measurement method using reflected pneumatic pressure from cornea deformed by air puff of ring-type nozzle.

    Science.gov (United States)

    Kim, Hyung Jin; Seo, Yeong Ho; Kim, Byeong Hee

    2017-01-01

    In this study, a non-contact type intraocular pressure (IOP) measuring system using reflected pneumatic pressure is proposed to overcome the disadvantages of existing measurement systems. A ring-type nozzle, a key component in the proposed system, is designed via computational fluid analysis. It predicts the reflected pneumatic pressure based on the nozzle exit angle and inner and outer diameters of the nozzle, which are 30°, 7 mm, and 9 mm, respectively. Performance evaluation is conducted using artificial eyes fabricated using polydimethylsiloxane with the specifications of human eyes. The IOP of the fabricated artificial eyes is adjusted to 10, 30, and 50 mm Hg, and the reflected pneumatic pressure is measured as a function of the distance between the ring-type nozzle and artificial eye. The measured reflected pneumatic pressure is high when the measurement distance is short and eye pressure is low. The cornea of an artificial eye is significantly deformed at a low IOP, and the applied pneumatic pressure is more concentrated in front of the ring-type nozzle because of the deformed cornea. Thus, the reflected pneumatic pressure at a low IOP has more inflows into the pressure sensor inserted inside the nozzle. The sensitivity of the output based on the IOP at measurement distances between 3-5 mm is -0.0027, -0.0022, -0.0018, -0.0015, and -0.0012. Sensitivity decreases as the measurement distance increases. In addition, the reflected pneumatic pressure owing to the misalignment at the measurement distances of 3-5 mm is not affected within a range of 0.5 mm. Therefore, the measurement range is acceptable up to a 1 mm diameter from the center of an artificial eye. However, the accuracy gradually decreases as the reflected pneumatic pressure from a misalignment of 1 mm or more decreases by 26% or more.

  20. Clinical assessment of auto-positive end-expiratory pressure by diaphragmatic electrical activity during pressure support and neurally adjusted ventilatory assist.

    Science.gov (United States)

    Bellani, Giacomo; Coppadoro, Andrea; Patroniti, Nicolò; Turella, Marta; Arrigoni Marocco, Stefano; Grasselli, Giacomo; Mauri, Tommaso; Pesenti, Antonio

    2014-09-01

    Auto-positive end-expiratory pressure (auto-PEEP) may substantially increase the inspiratory effort during assisted mechanical ventilation. Purpose of this study was to assess whether the electrical activity of the diaphragm (EAdi) signal can be reliably used to estimate auto-PEEP in patients undergoing pressure support ventilation and neurally adjusted ventilatory assist (NAVA) and whether NAVA was beneficial in comparison with pressure support ventilation in patients affected by auto-PEEP. In 10 patients with a clinical suspicion of auto-PEEP, the authors simultaneously recorded EAdi, airway, esophageal pressure, and flow during pressure support and NAVA, whereas external PEEP was increased from 2 to 14 cm H2O. Tracings were analyzed to measure apparent "dynamic" auto-PEEP (decrease in esophageal pressure to generate inspiratory flow), auto-EAdi (EAdi value at the onset of inspiratory flow), and IDEAdi (inspiratory delay between the onset of EAdi and the inspiratory flow). The pressure necessary to overcome auto-PEEP, auto-EAdi, and IDEAdi was significantly lower in NAVA as compared with pressure support ventilation, decreased with increase in external PEEP, although the effect of external PEEP was less pronounced in NAVA. Both auto-EAdi and IDEAdi were tightly correlated with auto-PEEP (r = 0.94 and r = 0.75, respectively). In the presence of auto-PEEP at lower external PEEP levels, NAVA was characterized by a characteristic shape of the airway pressure. In patients with auto-PEEP, NAVA, compared with pressure support ventilation, led to a decrease in the pressure necessary to overcome auto-PEEP, which could be reliably monitored by the electrical activity of the diaphragm before inspiratory flow onset (auto-EAdi).

  1. Effect of Hydrostatic Pressure on the Structural, Electronic and Optical Properties of SnS2 with a Cubic Structure: The DFT Approach

    Science.gov (United States)

    Bakhshayeshi, A.; Taghavi Mendi, R.; Majidiyan Sarmazdeh, M.

    2018-02-01

    Recently, a cubic structure of polymorphic SnS2 has been synthesized experimentally, which is stable at room temperature. In this paper, we calculated some structural, electronic and optical properties of the cubic SnS2 structure based on the full potential-linearized augmented plane waves method. We also studied the effect of hydrostatic pressure on the physical properties of the cubic SnS2 structure. Structural results show that the compressibility of the cubic SnS2 phase is greater than its trigonal phase and the compressibility decreases with increasing pressure. Investigations of the electronic properties indicate that pressure changes the density of states and the energy band gap increases with increasing pressure. The variation of energy band gap versus pressure is almost linear. We concluded that cubic SnS2 is a semiconductor with an indirect energy band gap, like its trigonal phase. The optical calculations revealed that the dielectric constant decreases with increasing pressure, and the width of the forbidden energy interval increases for electromagnetic wave propagation. Moreover, plasmonic energy and refractive index are changed with increasing pressure.

  2. Investigating the nucleation of protein crystals with hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kadri, A [Departement ' Mecanismes et Macromolecules de la Synthese Proteique et Cristallogenese' UPR 9002, Institut de Biologie Moleculaire et Cellulaire du CNRS, 15 rue Rene Descartes, F-67084 Strasbourg Cedex (France); Damak, M [Laboratoire de Chimie des Substances Naturelles, Faculte des Sciences de Sfax, BP 802, 3018 Sfax (Tunisia); Jenner, G [Laboratoire de Piezochimie Organique, UMR 7123, Faculte de Chimie, Universite Louis Pasteur, 1 rue Blaise Pascal, F-67008 Strasbourg Cedex (France); Lorber, B [Departement ' Mecanismes et Macromolecules de la Synthese Proteique et Cristallogenese' UPR 9002, Institut de Biologie Moleculaire et Cellulaire du CNRS, 15 rue Rene Descartes, F-67084 Strasbourg Cedex (France); Giege, R [Departement ' Mecanismes et Macromolecules de la Synthese Proteique et Cristallogenese' UPR 9002, Institut de Biologie Moleculaire et Cellulaire du CNRS, 15 rue Rene Descartes, F-67084 Strasbourg Cedex (France)

    2003-12-17

    Hydrostatic pressure in the 0.1-75 MPa range has been used as a non-invasive tool to study the crystallization process of the tetragonal crystal form of the protein thaumatin (M{sub r} 22 200). Crystals were prepared within agarose gel and at temperatures in the range from 283 to 303 K. The solubility, i.e. the concentration of soluble macromolecules remaining in equilibrium with the crystals, decreases when the pressure increases and when the temperature decreases. High pressure was used to probe the nucleation behaviour of thaumatin. The pressure dependence of the nucleation rate leads to an activation volume of -46.5cm{sup 3} mol{sup -1}. It is shown that an increase in pressure decreases the enthalpy, the entropy and the free energy of crystallization of thaumatin. The data are discussed in the light of the results of crystallographic analyses and of the structure of the protein.

  3. Investigating the nucleation of protein crystals with hydrostatic pressure

    International Nuclear Information System (INIS)

    Kadri, A; Damak, M; Jenner, G; Lorber, B; Giege, R

    2003-01-01

    Hydrostatic pressure in the 0.1-75 MPa range has been used as a non-invasive tool to study the crystallization process of the tetragonal crystal form of the protein thaumatin (M r 22 200). Crystals were prepared within agarose gel and at temperatures in the range from 283 to 303 K. The solubility, i.e. the concentration of soluble macromolecules remaining in equilibrium with the crystals, decreases when the pressure increases and when the temperature decreases. High pressure was used to probe the nucleation behaviour of thaumatin. The pressure dependence of the nucleation rate leads to an activation volume of -46.5cm 3 mol -1 . It is shown that an increase in pressure decreases the enthalpy, the entropy and the free energy of crystallization of thaumatin. The data are discussed in the light of the results of crystallographic analyses and of the structure of the protein

  4. The Healthy Skin Project: changing nursing practice to prevent and treat hospital-acquired pressure ulcers.

    Science.gov (United States)

    Armour-Burton, Teri; Fields, Willa; Outlaw, Lanie; Deleon, Elvira

    2013-06-01

    Hospital-acquired pressure ulcers are serious clinical complications that can lead to increased length of stay, pain, infection, and, potentially, death. The surgical progressive care unit at Sharp Grossmont Hospital, San Diego, California, developed the multidisciplinary Healthy Skin Project to decrease the prevalence of hospital-acquired pressure ulcers. The previous treatment plan was reviewed and modified according to current evidence-based practice. The project consisted of 3 components: creation of a position for a unit-based wound liaison nurse, staff education, and involvement of the nursing assistants. The wound liaison nurse developed and conducted bimonthly skin audits, which revealed inconsistencies in clinical practice and documentation. Education for the staff was accomplished via a self-learning module, case presentations, and 1-on-1 training. In addition, a pressure ulcer algorithm tool was developed to demonstrate step-by-step wound management and documentation. From Spring 2003 through Summer 2006, the prevalence of hospital-acquired pressure ulcers ranged from 0.0% to 18.92%, with a mean of 4.85%. After implementation of the project, the prevalence decreased to 0.0% for 17 of 20 quarters, through 2011. Prevention and a multidisciplinary approach are effective in reducing the occurrence of hospital-acquired pressure ulcers.

  5. Effect of Elevated Intracranial Pressure on Amplitudes and Frequency Tuning of Ocular Vestibular Evoked Myogenic Potentials Elicited by Bone-Conducted Vibration.

    Science.gov (United States)

    Gürkov, Robert; Speierer, Guillaume; Wittwer, Luis; Kalla, Roger

    Recently, it could be demonstrated that an increased intracranial pressure causes a modulation of the air conducted sound evoked ocular vestibular evoked myogenic potential (oVEMP). The mechanism for this modulation is not resolved and may depend on a change of either receptor excitability or sound energy transmission. oVEMPs were elicited in 18 healthy subjects with a minishaker delivering 500 and 1000 Hz tone bursts, in supine and tilted positions. The study could confirm the frequency tuning of oVEMP. However, at neither stimulus frequency could a modulating effect of increased intracranial pressure be observed. These data suggest that the observed modulation of the oVEMP response by an increased intracranial pressure is primarily due to the effect of an increased intralabyrinthine pressure onto the stiffness of the inner ear contents and the middle ear-inner ear junction. Future studies on the effect of intracranial pressure on oVEMP should use air-conducted sound and not bone-conducted vibration.

  6. Dynamics of intrarenal pressures and glomerular filtration rate after acetazolamide

    DEFF Research Database (Denmark)

    Leyssac, P P; Karlsen, F M; Skøtt, O

    1991-01-01

    -EDTA and lithium. Proximal tubular pressure (Pprox) increased initially by 1.7 +/- 0.1 mmHg after ACZ, causing a decrease in the hydrostatic pressure difference across the glomerular membrane (delta P). EDC increased, and then RBF, glomerular capillary pressure (Pgc), Pprox, and star vessel pressures (Psv) dropped......The dynamics of intrarenal pressures, early distal tubular fluid conductivity (EDC), and renal flood flow (RBF) were studied in rats given acetazolamide (ACZ), an inhibitor of proximal reabsorption. Glomerular filtration rate (GFR) and end-proximal flow were estimated by clearances of 51Cr...... as a result of afferent vasoconstriction. Pprox decreased less than Pgc, resulting in a further decrease in delta P, which after 25-30 s reached a constant level 3-4 mmHg below control. After a transient increase the pressures declined to a new steady state, in which Pprox was equal to control, Pgc...

  7. Influence of electric field, hydrostatic pressure and temperature on the electric state in a Poschl-Teller quantum well

    International Nuclear Information System (INIS)

    Hakimyfard, A.; Barseghyan, M.G.; Kirakosyan, A.A.; Duque, C.A.

    2010-01-01

    Influence of the electric field and hydrostatic pressure on the electronic states in a Poschl-Teller quantum well is studied. In the framework of variational method the dependences of the ground state energy on the electric field and hydrostatic pressure are calculated for different values of the potential parameters and the temperature. It is shown that the increase in the electric field leads to the increase in the ground state energy, while the increase in the well width leads to the strengthening of the electric field effect. The ground state energy decreases with increasing pressure and increases with increasing temperature

  8. Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure.

    Science.gov (United States)

    Ahmed, Ahmed Khaled Abdella; Sun, Cuizhen; Hua, Likun; Zhang, Zhibin; Zhang, Yanhao; Zhang, Wen; Marhaba, Taha

    2018-07-01

    Generation of gaseous nanobubbles (NBs) by simple, efficient, and scalable methods is critical for industrialization and applications of nanobubbles. Traditional generation methods mainly rely on hydrodynamic, acoustic, particle, and optical cavitation. These generation processes render issues such as high energy consumption, non-flexibility, and complexity. This research investigated the use of tubular ceramic nanofiltration membranes to generate NBs in water with air, nitrogen and oxygen gases. This system injects pressurized gases through a tubular ceramic membrane with nanopores to create NBs. The effects of membrane pores size, surface energy, and the injected gas pressures on the bubble size and zeta potential were examined. The results show that the gas injection pressure had considerable effects on the bubble size, zeta potential, pH, and dissolved oxygen of the produced NBs. For example, increasing the injection air pressure from 69 kPa to 414 kPa, the air bubble size was reduced from 600 to 340 nm respectively. Membrane pores size and surface energy also had significant effects on sizes and zeta potentials of NBs. The results presented here aim to fill out the gaps of fundamental knowledge about NBs and development of efficient generation methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Spinal Cord Injury and Pressure Ulcer Prevention: Using Functional Activity in Pressure Relief

    OpenAIRE

    Stinson, May; Schofield, Rachel; Gillan, Cathy; Morton, Julie; Gardner, Evie; Sprigle, Stephen; Porter-Armstrong, Alison

    2013-01-01

    Background. People with spinal cord injury (SCI) are at increased risk of pressure ulcers due to prolonged periods of sitting. Concordance with pressure relieving movements is poor amongst this population, and one potential alternative to improve this would be to integrate pressure relieving movements into everyday functional activities. Objectives. To investigate both the current pressure relieving behaviours of SCI individuals during computer use and the application of an ergonomically adap...

  10. The dependence of molecular transmembrane electrotransfer efficiency on medium conductivity and osmotic pressure

    OpenAIRE

    Jakutavičiūtė, Milda; Ruzgys, Paulius; Šatkauskas, Saulius

    2014-01-01

    The electrotransfer efficiency was evaluated for different external medium conductivities, osmotic pressures and electric pulse voltages. It was found that increase in conductivity or decrease in electric pulse strength decreases electrotransfer efficiency. Decrease in osmotic pressure tends to decrease electrotransfer efficiency.

  11. Decreased proliferative, migrative and neuro-differentiative potential of postnatal rat enteric neural crest-derived cells during culture in vitro

    International Nuclear Information System (INIS)

    Yu, Hui; Pan, Wei-Kang; Zheng, Bai-Jun; Wang, Huai-Jie; Chen, Xin-Lin; Liu, Yong; Gao, Ya

    2016-01-01

    A growing body of evidence supports the potential use of enteric neural crest-derived cells (ENCCs) as a cell replacement therapy for Hirschsprung's disease. Based on previous observations of robust propagation of primary ENCCs, as opposed to their progeny, it is suggested that their therapeutic potential after in vitro expansion may be restricted. We therefore examined the growth and differentiation activities and phenotypic characteristics of continuous ENCC cultures. ENCCs were isolated from the intestines of postnatal rats and were identified using an immunocytochemical approach. During continuous ENCC culture expansion, proliferation, migration, apoptosis, and differentiation potentials were monitored. The Cell Counting Kit-8 was used for assessment of ENCC vitality, Transwell inserts for cell migration, immunocytochemistry for cell counts and identification, and flow cytometry for apoptosis. Over six continuous generations, ENCC proliferation potency was reduced and with prolonged culture, the ratio of migratory ENCCs was decreased. The percentage of apoptosis showed an upward trend with prolonged intragenerational culture, but showed a downward trend with prolonged culture of combined generations. Furthermore, the percentage of peripherin"+ cells decreased whilst the percentage of GFAP"+ cells increased with age. The results demonstrated that alterations in ENCC growth characteristics occur with increased culture time, which may partially account for the poor results of proposed cell therapies. - Highlights: • Differences were identified between primary and daughter ENCCs. • Daughter ENCCs had reduced proliferation, migration and differentiation. • Daughter ENCCs also had increased apoptosis. • These altered characteristics warrant further investigation.

  12. Decreased proliferative, migrative and neuro-differentiative potential of postnatal rat enteric neural crest-derived cells during culture in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hui [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China); Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi’an Jiaotong University, No 96, Yan Ta Xi Road, Xi’an 710061, Shaanxi (China); Pan, Wei-Kang; Zheng, Bai-Jun; Wang, Huai-Jie [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China); Chen, Xin-Lin; Liu, Yong [Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi’an Jiaotong University, No 96, Yan Ta Xi Road, Xi’an 710061, Shaanxi (China); Gao, Ya, E-mail: ygao@mail.xjtu.edu.cn [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China)

    2016-05-01

    A growing body of evidence supports the potential use of enteric neural crest-derived cells (ENCCs) as a cell replacement therapy for Hirschsprung's disease. Based on previous observations of robust propagation of primary ENCCs, as opposed to their progeny, it is suggested that their therapeutic potential after in vitro expansion may be restricted. We therefore examined the growth and differentiation activities and phenotypic characteristics of continuous ENCC cultures. ENCCs were isolated from the intestines of postnatal rats and were identified using an immunocytochemical approach. During continuous ENCC culture expansion, proliferation, migration, apoptosis, and differentiation potentials were monitored. The Cell Counting Kit-8 was used for assessment of ENCC vitality, Transwell inserts for cell migration, immunocytochemistry for cell counts and identification, and flow cytometry for apoptosis. Over six continuous generations, ENCC proliferation potency was reduced and with prolonged culture, the ratio of migratory ENCCs was decreased. The percentage of apoptosis showed an upward trend with prolonged intragenerational culture, but showed a downward trend with prolonged culture of combined generations. Furthermore, the percentage of peripherin{sup +} cells decreased whilst the percentage of GFAP{sup +} cells increased with age. The results demonstrated that alterations in ENCC growth characteristics occur with increased culture time, which may partially account for the poor results of proposed cell therapies. - Highlights: • Differences were identified between primary and daughter ENCCs. • Daughter ENCCs had reduced proliferation, migration and differentiation. • Daughter ENCCs also had increased apoptosis. • These altered characteristics warrant further investigation.

  13. Unsteady pressures on a blunt trailing edge measured with an embedded pressure scanner

    Science.gov (United States)

    Naughton, Jonathan; Nikoueeyan, Pourya; Hind, Michael; Strike, John; Dahland, Matz; Keeter, Steven

    2017-11-01

    Development of direct-mount pressure scanners can decrease the pneumatic tubing length required to connect the measurement ports to the scanner manifold resulting in improved dynamic range for unsteady pressure measurements. In this work, the performance of a direct-mount pressure scanner for time-resolved pressure measurement is demonstrated in a well-established flow; the pressure fluctuations near the base of flat plate is considered. The additive manufactured model is instrumented with a pressure scanner and flush-mounted high-speed pressure transducers. The configuration of the ports on the model allows for side-by-side comparison of the pressures measured via embedded pneumatic tubing routed to a pressure scanner with that measured by high-speed transducers. Prior to testing, the dynamic response of each embedded pressure port is dynamically calibrated via an in-situ calibration technique. Pressure data is then acquired for fixed angle-of-attack and different dynamic pitching conditions. The dynamic range of the measurements acquired via direct-mount scanner will be compared to those acquired by the high speed transducers for both static and dynamic pitching configurations. The uncertainties associated with Weiner deconvolution are also quantified for the measurements.

  14. Characterization of the startup transient electrokinetic flow in rectangular channels of arbitrary dimensions, zeta potential distribution, and time-varying pressure gradient.

    Science.gov (United States)

    Miller, Andrew; Villegas, Arturo; Diez, F Javier

    2015-03-01

    The solution to the startup transient EOF in an arbitrary rectangular microchannel is derived analytically and validated experimentally. This full 2D transient solution describes the evolution of the flow through five distinct periods until reaching a final steady state. The derived analytical velocity solution is validated experimentally for different channel sizes and aspect ratios under time-varying pressure gradients. The experiments used a time resolved micro particle image velocimetry technique to calculate the startup transient velocity profiles. The measurements captured the effect of time-varying pressure gradient fields derived in the analytical solutions. This is tested by using small reservoirs at both ends of the channel which allowed a time-varying pressure gradient to develop with a time scale on the order of the transient EOF. Results showed that under these common conditions, the effect of the pressure build up in the reservoirs on the temporal development of the transient startup EOF in the channels cannot be neglected. The measurements also captured the analytical predictions for channel walls made of different materials (i.e., zeta potentials). This was tested in channels that had three PDMS and one quartz wall, resulting in a flow with an asymmetric velocity profile due to variations in the zeta potential between the walls. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Tube micro-fouling, boiling and steam pressure after chemical cleaning

    International Nuclear Information System (INIS)

    Hu, M.H.

    1998-01-01

    This paper presents steam pressure trends after chemical cleaning of steam generator tubes at four plants. The paper also presents tube fouling factor that serves as an objective parameter to assess tubing boiling conditions for understanding the steam pressure trend. Available water chemistry data helps substantiate the concept of tube micro-fouling, its effect on tubing boiling, and its impact on steam pressure. All four plants experienced a first mode of decreasing steam pressure in the post-cleaning operation. After 3 to 4 months of operation, the decreasing trend stopped for three plants and then restored to a pre-cleaning value or better. The fourth plant is soil in decreasing trend after 12 months of operation. Dissolved chemicals, such as silica, titanium can precipitate on tube surface. The precipitate micro-fouling can deactivate or eliminate boiling nucleation sites. Therefore, the first phase of the post-cleaning operation suffered a decrease in steam pressure or an increase in fouling factor. It appears that micro fouling by magnetite deposit can activate or create more bubble nucleation sites. Therefore, the magnetite deposit micro-fouling results in a decrease in fouling factor, and a recovery in steam pressure. Fully understanding the boiling characteristics of the tubing at brand new, fouled and cleaned conditions requires further study of tubing surface conditions. Such study should include boiling heat transfer tests and scanning electronic microscope examination. (author)

  16. Associations of ambulatory blood pressure with urinary caffeine and caffeine metabolite excretions.

    Science.gov (United States)

    Guessous, Idris; Pruijm, Menno; Ponte, Belén; Ackermann, Daniel; Ehret, Georg; Ansermot, Nicolas; Vuistiner, Philippe; Staessen, Jan; Gu, Yumei; Paccaud, Fred; Mohaupt, Markus; Vogt, Bruno; Pechère-Bertschi, Antoinette; Pechère-Berstchi, Antoinette; Martin, Pierre-Yves; Burnier, Michel; Eap, Chin B; Bochud, Murielle

    2015-03-01

    Intake of caffeinated beverages might be associated with reduced cardiovascular mortality possibly via the lowering of blood pressure. We estimated the association of ambulatory blood pressure with urinary caffeine and caffeine metabolites in a population-based sample. Families were randomly selected from the general population of Swiss cities. Ambulatory blood pressure monitoring was conducted using validated devices. Urinary caffeine, paraxanthine, theophylline, and theobromine excretions were measured in 24 hours urine using ultrahigh performance liquid chromatography tandem mass spectrometry. We used mixed models to explore the associations of urinary excretions with blood pressure although adjusting for major confounders. The 836 participants (48.9% men) included in this analysis had mean age of 47.8 and mean 24-hour systolic and diastolic blood pressure of 120.1 and 78.0 mm Hg. For each doubling of caffeine excretion, 24-hour and night-time systolic blood pressure decreased by 0.642 and 1.107 mm Hg (both P values theobromine excretion was not associated with blood pressure. Anti-hypertensive therapy, diabetes mellitus, and alcohol consumption modify the association of caffeine urinary excretion with systolic blood pressure. Ambulatory systolic blood pressure was inversely associated with urinary excretions of caffeine and other caffeine metabolites. Our results are compatible with a potential protective effect of caffeine on blood pressure. © 2014 American Heart Association, Inc.

  17. Effects of positive end-expiratory pressure on renal function.

    Science.gov (United States)

    Järnberg, P O; de Villota, E D; Eklund, J; Granberg, P O

    1978-01-01

    The effects were studied positive end-expiratory pressure (PEEP) on renal function in eight patients with acute respiratory failure, requiring mechanical ventilation. On application of PEEP + 10 cm H2O, central venous pressure increased, systolic blood pressure decreased, urine flow and PAH-clearance were reduced, while inulin clearance remained stable. There was a marked increase in fractional sodium reabsorption and a concurrent decrease in fractional osmolal excretion. Fractional free-water clearance and the ratio UOsm/POsm did change.

  18. Decreased in vitro fertility in male rats exposed to fluoride-induced oxidative stress damage and mitochondrial transmembrane potential loss

    International Nuclear Information System (INIS)

    Izquierdo-Vega, Jeannett A.; Sanchez-Gutierrez, Manuel; Razo, Luz Maria del

    2008-01-01

    Fluorosis, caused by drinking water contamination with inorganic fluoride, is a public health problem in many areas around the world. The aim of the study was to evaluate the effect of environmentally relevant doses of fluoride on in vitro fertilization (IVF) capacity of spermatozoa, and its relationship to spermatozoa mitochondrial transmembrane potential (ΔΨ m ). Male Wistar rats were administered at 5 mg fluoride/kg body mass/24 h, or deionized water orally for 8 weeks. We evaluated several spermatozoa parameters in treated and untreated rats: i) standard quality analysis, ii) superoxide dismutase (SOD) activity, iii) the generation of superoxide anion (O 2 ·- ), iv) lipid peroxidation concentration, v) ultrastructural analyses of spermatozoa using transmission electron microscopy, vi) ΔΨ m , vii) acrosome reaction, and viii) IVF capability. Spermatozoa from fluoride-treated rats exhibited a significant decrease in SOD activity (∼ 33%), accompanied with a significant increase in the generation of O 2 · (∼ 40%), a significant decrease in ΔΨ m (∼ 33%), and a significant increase in lipid peroxidation concentration (∼ 50%), relative to spermatozoa from the control group. Consistent with this finding, spermatozoa from fluoride-treated rats exhibited altered plasmatic membrane. In addition, the percentage of fluoride-treated spermatozoa capable of undergoing the acrosome reaction was decreased relative to control spermatozoa (34 vs. 55%), while the percentage fluoride-treated spermatozoa capable of oocyte fertilization was also significantly lower than the control group (13 vs. 71%). These observations suggest that subchronic exposure to fluoride causes oxidative stress damage and loss of mitochondrial transmembrane potential, resulting in reduced fertility

  19. The effect of pressure and shear on tissue viability of human skin in relation to the development of pressure ulcers: a systematic review.

    Science.gov (United States)

    Hoogendoorn, Iris; Reenalda, Jasper; Koopman, Bart F J M; Rietman, Johan S

    2017-08-01

    Pressure ulcers are a significant problem in health care, due to high costs and large impact on patients' life. In general, pressure ulcers develop as tissue viability decreases due to prolonged mechanical loading. The relation between load and tissue viability is highly influenced by individual characteristics. It is proposed that measurements of skin blood flow regulation could provide good assessment of the risk for pressure ulcer development, as skin blood flow is essential for tissue viability. . Therefore, the aim of this systematic review is to gain insight in the relation between mechanical load and the response of the skin and underlying tissue to this loading measured in-vivo with non-invasive techniques. A systematic literature search was performed to identify articles analysing the relation between mechanical load (pressure and/or shear) and tissue viability measured in-vivo. Two independent reviewers scored the methodological quality of the 22 included studies. Methodological information as well as tissue viability parameters during load application and after load removal were extracted from the included articles and used in a meta-analysis. Pressure results in a decrease in skin blood flow parameters, compared to baseline; showing a larger decrease with higher magnitudes of load. The steepness of the decrease is mostly dependent on the anatomical location. After load removal the magnitude of the post-reactive hyperaemic peak is related to the magnitude of pressure. Lastly, shear in addition to pressure, shows an additional negative effect, but the effect is less apparent than pressure on skin viability. Copyright © 2017 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  20. Normal pressure hydrocephalus. Influences on cerebral hemodynamic and cerebrospinal fluid pressure--chemical autoregulation

    International Nuclear Information System (INIS)

    Meyer, J.S.; Tachibana, H.; Hardenberg, J.P.; Dowell, R.E. Jr.; Kitagawa, Y.; Mortel, K.F.

    1984-01-01

    Blood flow in the cerebral gray matter was measured in normal pressure hydrocephalus and Alzheimer disease by 133Xe inhalation. Flow values in the frontal and temporal gray matter increased after lowering cerebrospinal fluid (CSF) pressure by lumbar puncture in normal pressure hydrocephalus (p less than 0.05) and also after shunting. One case with cerebral complications did not improve clinically. In Alzheimer disease the reverse (decreases in flow in the gray matter) occurred after removal of CSF. Normal pressure hydrocephalus was associated with impaired cerebral vasomotor responsiveness during 100% oxygen and 5% carbon dioxide inhalation. This complication was restored toward normal after CSF removal and/or shunting. Cerebral blood flow measurements appear to be useful for confirming the diagnosis of normal pressure hydrocephalus and predicting the clinical benefit from shunting

  1. High-pressure oxidation of ethane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; G. Jacobsen, Jon; Rasmussen, Christian T.

    2017-01-01

    Ethane oxidation at intermediate temperatures and high pressures has been investigated in both a laminar flow reactor and a rapid compression machine (RCM). The flow-reactor measurements at 600–900 K and 20–100 bar showed an onset temperature for oxidation of ethane between 700 and 825 K, depending...... on pressure, stoichiometry, and residence time. Measured ignition delay times in the RCM at pressures of 10–80 bar and temperatures of 900–1025 K decreased with increasing pressure and/or temperature. A detailed chemical kinetic model was developed with particular attention to the peroxide chemistry. Rate...

  2. Hybrid Simulation of Supersonic Flow of Weakly Ionized Plasma along Open Field Magnetic Line Effect of Background Pressure

    Science.gov (United States)

    Laosunthara, Ampan; Akatsuka, Hiroshi

    2016-09-01

    In previous study, we experimentally examined physical properties of supersonic flow of weakly ionized expanding arc-jet plasma through an open magnetic field line (Bmax 0.16T). We found supersonic velocity of helium plasma up to Mach 3 and the space potential drop at the end of the magnets. To understand the plasma in numerical point of view, the flows of ion and neutral are treated by particle-based Direct Simulation Monte Carlo (DSMC) method, electron is treated as a fluid. The previous numerical study, we assumed 2 conditions. Ion and electron temperatures were the same (LTE condition). Ion and electron velocities were the same (current-free condition). We found that ion velocity decreased by collision with residual gas molecules (background pressure). We also found that space potential changing with background pressure. In other words, it was indicated that electric field exists and the current-free assumption is not proper. In this study, we add electron continuity and electron momentum equations to obtain electron velocity and space potential. We find that space potential changing with background pressure slightly. It is indicated that electron is essential to space potential formation than ion.

  3. Pressure propagation in a 2D CDA model by method of near characteristics

    International Nuclear Information System (INIS)

    Jasmin Sudha, A.; Harvey, J.; Kannan, S.E.

    1999-01-01

    Parametric hydrodynamic computations are carried out by method of near characteristics for a simulated core disruptive accidental condition. The model comprises of a rigid cylindrical vessel filled with water up to a certain level, which simulates the coolant, and a high pressure spherical bubble which represents the expanding core. Top lid force, impulse and mid plane pressure time histories are obtained for different initial bubble pressures ranging between 10 MPa and 400 MPa. The impulse per unit work potential of the bubble increases with increase in the bubble pressure up to 40 MPa and then shows a decreasing trend for higher pressures of the bubble. For a given initial bubble pressure, the force and impulse on the top lid are studied at different cover gas volumes which are 6%, 16%, 20% and 25% of the vessel volume. It is observed that larger the cover gas volume lesser the impulse on the top lid. The role of vapour expansion constant of the bubble γ in causing damage to the top lid is assessed for different values of γ, viz. 0.65, 0.72, 0.85, 0.9, 1.4 and 1.67. It is noted that the impulse on the top lid decreases for increasing values of γ. Calculations have been carried out by replacing water medium by sodium at 500 deg C. It is seen that the force and impulse on the top lid are higher in the case of sodium than water by 55% and 10% respectively. (author)

  4. Dynamism or Disorder at High Pressures?

    Science.gov (United States)

    Angel, R. J.; Bismayer, U.; Marshall, W. G.

    2002-12-01

    Phase transitions in minerals at elevated temperatures typically involve dynamics as a natural consequence of the increase in thermal energy available to the system. Classic examples include quartz, cristobalite, and carbonates in which the high-temperature, high symmetry phase is dynamically disordered. This disorder has important thermodynamic consequences, including displacement and curvature of phase boundaries (e.g. calcite-aragonite). In other minerals such as clinopyroxenes and anorthite feldspar, the dynamic behaviour is restricted to the neighbourhood of the phase transition. The fundamental question is whether increasing pressure generally suppresses such dynamic behaviour (as in anorthite; Angel, 1988), or not. In the latter case it must be included in thermodynamic models of high-pressure phase equilibria and seismological modelling of the mantle; the potential dynamics and softening in stishovite may provide the critical observational constraint on the presence or otherwise of free silica in the lower mantle. We have continued to use the lead phosphate as a prototype ferroelastic in which to understand dynamic behaviour, simply because its dynamics and transition behaviour is far better characterised than any mineral. Furthermore, the phase transition is at a pressure where experimental difficulties do not dominate the experimental results. Our previous neutron diffraction study (Angel et al., 2001) revealed that some disorder, either dynamic or static, is retained in the high-symmetry, high-pressure phase just above the phase transition. New neutron diffraction data on the pure material now suggests that this disorder slowly decreases with increasing pressure until at twice the transition pressure it is ordered. Further data for doped material provides insights into the nature of this disorder. Angel (1988) Amer. Mineral. 73:1114. Angel et al (2001) J PhysC 13: 5353.

  5. Mouse housing system using pressurized cages intraventilated by direct-current microfans.

    Science.gov (United States)

    Martinewski, Alexandre; Correia, Caio S C; de Souza, Nívea L; Merusse, José L B

    2012-03-01

    We performed the initial assessment of an alternative pressurized intraventilated (PIV) caging system for laboratory mice that uses direct-current microfans to achieve cage pressurization and ventilation. Twenty-nine pairs of female SPF BALB/c mice were used, with 19 experimental pairs kept in PIV cages and 10 control pairs kept in regular filter-top (FT) cages. Both groups were housed in a standard housing room with a conventional atmospheric control system. For both systems, intracage temperatures were in equilibrium with ambient room temperature. PIV cages showed a significant difference in pressure between days 1 and 8. Air speed (and consequently airflow rate) and the number of air changes hourly in the PIV cages showed decreasing trends. In both systems, ammonia concentrations increased with time, with significant differences between groups starting on day 1. Overall, the data revealed that intracage pressurization and ventilation by using microfans is a simple, reliable system, with low cost, maintenance requirements, and incidence of failures. Further experiments are needed to determine the potential influence of this system on the reproductive performance and pulmonary integrity in mice.

  6. Global Overexpression of ET-1 Decreases Blood Pressure - A Systematic Review and Meta-Analysis of ET-1 Transgenic Mice.

    Science.gov (United States)

    Lu, Yong Ping; Tsuprykov, Oleg; Vignon-Zellweger, Nicolas; Heiden, Susi; Hocher, Berthold

    2016-01-01

    ET-1 has independent effects on blood pressure regulation in vivo, it is involved in tubular water and salt excretion, promotes constriction of smooth muscle cells, modulates sympathetic nerve activity, and activates the liberation of nitric oxide. To determine the net effect of these partially counteracting mechanisms on blood pressure, a systematic meta-analysis was performed. Based on the principles of Cochrane systematic reviews, we searched in major literature databases - MEDLINE (PubMed), Embase, Google Scholar, and the China Biological Medicine Database (CBM-disc) - for articles relevant to the topic of the blood pressure phenotype of endothelin-1 transgenic (ET-1+/+) mice from January 1, 1988 to March 31, 2016. Review Manager Version 5.0 (Rev-Man 5.0) software was applied for statistical analysis. In total thirteen studies reported blood pressure data. The meta-analysis of blood pressure data showed that homozygous ET-1 transgenic mice (ET-1+/+ mice) had a significantly lower blood pressure as compared to WT mice (mean difference: -2.57 mmHg, 95% CI: -4.98∼ -0.16, P = 0.04), with minimal heterogeneity (P = 0.86). A subgroup analysis of mice older than 6 months revealed that the blood pressure difference between ET-1+/+ mice and WT mice was even more pronounced (mean difference: -6.19 mmHg, 95% CI: -10.76∼ -1.62, P = 0.008), with minimal heterogeneity (P = 0.91). This meta-analysis provides robust evidence that global ET-1 overexpression in mice lowers blood pressure in an age-dependent manner. Older ET-1+/+ mice have a somewhat more pronounced reduction of blood pressure. © 2016 The Author(s) Published by S. Karger AG, Basel.

  7. The pressure effects on two-phase anaerobic digestion

    International Nuclear Information System (INIS)

    Chen, Yuling; Rößler, Benjamin; Zielonka, Simon; Lemmer, Andreas; Wonneberger, Anna-Maria; Jungbluth, Thomas

    2014-01-01

    Highlights: • The pressure effect on anaerobic digestion up to 9 bar was examined. • Increasing pressure decreased pH value in the anaerobic filter. • Increasing pressure increased methane content. • Increasing pressure decreased specific methane yield slightly. • The pressurized methane reactor was very stable and performed well. - Abstract: Two-phase pressurized anaerobic digestion is a novel process aimed at facilitating injection of the produced biogas into the natural gas grid by integrating the fermentative biogas production and upgrading it to substitute natural gas. In order to understand the mechanisms, knowledge of pressure effects on anaerobic digestion is required. To examine the effects of pressure on the anaerobic digestion process, a two-phase anaerobic digestion system was built up in laboratory scale, including three acidogenesis-leach-bed-reactors and one pressure-resistant anaerobic filter. Four different pressure levels (the absolute pressure of 1 bar, 3 bar, 6 bar and 9 bar) were applied to the methane reactor in sequence, with the organic loading rate maintained at approximately 5.1 kgCOD m −3 d −1 . Gas production, gas quality, pH value, volatile fatty acids, alcohol, ammonium-nitrogen, chemical oxygen demand (COD) and alkaline buffer capacity were analyzed. No additional caustic chemicals were added for pH adjustment throughout the experiment. With the pressure increasing from 1.07 bar to 8.91 bar, the pH value decreased from 7.2 to 6.5, the methane content increased from 66% to 75%, and the specific methane yield was slightly reduced from 0.33 l N g −1 COD to 0.31 l N g −1 COD. There was almost no acid-accumulation during the entire experiment. The average COD-degradation grade was always more than 93%, and the average alkaline buffering capacity (VFA/TIC ratio) did not exceed 0.2 at any pressure level. The anaerobic filter showed a very stable performance, regardless of the pressure variation

  8. Pressure sores and blood and serum dysmetabolism in spinal cord injury patients.

    Science.gov (United States)

    Scivoletto, G; Fuoco, U; Morganti, B; Cosentino, E; Molinari, M

    2004-08-01

    Spinal cord injury (SCI) patients with pressure sores were studied before and after surgical intervention for ulcer healing and compared with matched SCI patients without sores and with patients with pressure sores and other diseases. To analyse the relationship between pressure sores and anaemia and serum protein alteration in SCI patients. To study the pathogenesis of these alterations and suggest appropriate therapy. Spinal cord unit in Rome, Italy. A total of 13 SCI patients with pressure sores, 13 comparable patients without pressure sores and four patients with other diseases and pressure sores. Haematochemical parameters. Patients with pressure sore showed significant decreased red cells, decreased haemoglobin and haematocrit, increased white cells and ferritin and decreased transferrin and transferrin saturation; total hypoproteinemia and hypoalbuminemia with increased Alfa-1 and gamma globulins increased erythrocyte sedimentation rate and C-reactive protein were also present. The alterations returned to normal after surgical intervention for pressure sore healing. Patients with pressure sores suffer from anaemia and serum protein alteration that fells within the range of metabolic alteration of chronic disorders and neoplastic diseases. The alterations depend on a decreased utilisation of iron stores in the reticuloendothelial system and on inhibition of the hepatic synthesis of albumin. With regard to treatment, iron treatment should be avoided because of the risk of haemochromatosis.

  9. A Calibrated Method of Massage Therapy Decreases Systolic Blood Pressure Concomitant With Changes in Heart Rate Variability in Male Rats.

    Science.gov (United States)

    Spurgin, Kurt A; Kaprelian, Anthony; Gutierrez, Roberto; Jha, Vidyasagar; Wilson, Christopher G; Dobyns, Abigail; Xu, Karen H; Curras-Collazo, Margarita C

    2017-02-01

    The purpose of this study was to develop a method for applying calibrated manual massage pressures by using commonly available, inexpensive sphygmomanometer parts and validate the use of this approach as a quantitative method of applying massage therapy to rodents. Massage pressures were monitored by using a modified neonatal blood pressure (BP) cuff attached to an aneroid gauge. Lightly anesthetized rats were stroked on the ventral abdomen for 5 minutes at pressures of 20 mm Hg and 40 mm Hg. Blood pressure was monitored noninvasively for 20 minutes following massage therapy at 5-minute intervals. Interexaminer reliability was assessed by applying 20 mm Hg and 40 mm Hg pressures to a digital scale in the presence or absence of the pressure gauge. With the use of this method, we observed good interexaminer reliability, with intraclass coefficients of 0.989 versus 0.624 in blinded controls. In Long-Evans rats, systolic BP dropped by an average of 9.86% ± 0.27% following application of 40 mm Hg massage pressure. Similar effects were seen following 20 mm Hg pressure (6.52% ± 1.7%), although latency to effect was greater than at 40 mm Hg. Sprague-Dawley rats behaved similarly to Long-Evans rats. Low-frequency/high-frequency ratio, a widely-used index of autonomic tone in cardiovascular regulation, showed a significant increase within 5 minutes after 40 mm Hg massage pressure was applied. The calibrated massage method was shown to be a reproducible method for applying massage pressures in rodents and lowering BP. Copyright © 2016. Published by Elsevier Inc.

  10. Effect of high pressure hydrogen on low-cycle fatigue

    International Nuclear Information System (INIS)

    Rie, K.T.; Kohler, W.

    1979-01-01

    It has been shown that the fatigue life can be influenced in low-cycle range by high pressure hydrogen while the effect of high pressure hydrogen on high-cycle fatigue will not be as significant. The paper reports the details and the results of the investigations of the effect of high pressure hydrogen on the low-cycle endurance of commercially pure titanium. The results of this study indicate that: 1. The degradation of the fatigue life in low-cycle region for commercially pure titanium under high pressure hydrogen can be described by Nsub(cr)sup(α x Δepsilon)sub(pl)sup(=c) 2. The fatigue life decreases with decreasing strain rate. 3. The fatigue life decreases with increasing hydrogen pressure. It was found that the semilogarithmic plot of the fatigue life versus the hydrogen pressure gives a linear relationship. The Sievert's law does not hold in low-cycle fatigue region. 4. HAC in titanium in low-cycle fatigue region is the result of the disolution of hydrogen at the crack tip and of the strain-induced hybride formation. (orig.) 891 RW/orig. 892 RKD [de

  11. Low-frequency blood pressure oscillations and inotrope treatment failure in premature infants.

    Science.gov (United States)

    Vesoulis, Zachary A; Hao, Jessica; McPherson, Christopher; El Ters, Nathalie M; Mathur, Amit M

    2017-07-01

    The underlying mechanism as to why some hypotensive preterm infants do not respond to inotropic medications remains unclear. For these infants, we hypothesize that impaired vasomotor function is a significant factor and is manifested through a decrease in low-frequency blood pressure variability across regulatory components of vascular tone. Infants born ≤28 wk estimated gestational age underwent prospective recording of mean arterial blood pressure for 72 h after birth. After error correction, root-mean-square spectral power was calculated for each valid 10-min data frame across each of four frequency bands ( B1 , 0.005-0.0095 Hz; B2 , 0.0095-0.02 Hz; B3 , 0.02-0.06 Hz; and B4 , 0.06-0.16) corresponding to different components of vasomotion control. Forty infants (twenty-nine normotensive control and eleven inotrope-exposed) were included with a mean ± SD estimated gestational age of 25.2 ± 1.6 wk and birth weight 790 ± 211 g. 9.7/11.8 Million (82%) data points were error-free and used for analysis. Spectral power across all frequency bands increased with time, although the magnitude was 20% less in the inotrope-exposed infants. A statistically significant increase in spectral power in response to inotrope initiation was noted across all frequency bands. Infants with robust blood pressure response to inotropes had a greater increase compared with those who had limited or no blood pressure response. In this study, hypotensive infants who require inotropes have decreased low-frequency variability at baseline compared with normotensive infants, which increases after inotrope initiation. Low-frequency spectral power does not change for those with inotrope treatment failure, suggesting dysfunctional regulation of vascular tone as a potential mechanism of treatment failure. NEW & NOTEWORTHY In this study, we examine patterns of low-frequency oscillations in blood pressure variability across regulatory components of vascular tone in normotensive and

  12. ANTXR2 is a potential causative gene in the genome-wide association study of the blood pressure locus 4q21.

    Science.gov (United States)

    Park, So Yon; Lee, Hyeon-Ju; Ji, Su-Min; Kim, Marina E; Jigden, Baigalmaa; Lim, Ji Eun; Oh, Bermseok

    2014-09-01

    Hypertension is the most prevalent cardiovascular disease worldwide, but its genetic basis is poorly understood. Recently, genome-wide association studies identified 33 genetic loci that are associated with blood pressure. However, it has been difficult to determine whether these loci are causative owing to the lack of functional analyses. Of these 33 genome-wide association studies (GWAS) loci, the 4q21 locus, known as the fibroblast growth factor 5 (FGF5) locus, has been linked to blood pressure in Asians and Europeans. Using a mouse model, we aimed to identify a causative gene in the 4q21 locus, in which four genes (anthrax toxin receptor 2 (ANTXR2), PR domain-containing 8 (PRDM8), FGF5 and chromosome 4 open reading frame 22 (C4orf22)) were near the lead single-nucleotide polymorphism (rs16998073). Initially, we examined Fgf5 gene by measuring blood pressure in Fgf5-knockout mice. However, blood pressure did not differ between Fgf5 knockout and wild-type mice. Therefore, the other candidate genes were studied by in vivo small interfering RNA (siRNA) silencing in mice. Antxr2 siRNA was pretreated with polyethylenimine and injected into mouse tail veins, causing a significant decrease in Antxr2 mRNA by 22% in the heart. Moreover, blood pressure measured under anesthesia in Antxr2 siRNA-injected mice rose significantly compared with that of the controls. These results suggest that ANTXR2 is a causative gene in the human 4q21 GWAS-blood pressure locus. Additional functional studies of ANTXR2 in blood pressure may identify a novel genetic pathway, thus increasing our understanding of the etiology of essential hypertension.

  13. Burst pressure of super duplex stainless steel pipes subject to combined axial tension, internal pressure and elevated temperature

    International Nuclear Information System (INIS)

    Lasebikan, B.A.; Akisanya, A.R.

    2014-01-01

    The burst pressure of super duplex stainless steel pipe is measured under combined internal pressure, external axial tension and elevated temperature up to 160 °C. The experimental results are compared with existing burst pressure prediction models. Existing models are found to provide reasonable estimate of the burst pressure at room temperature but significantly over estimate the burst pressure at elevated temperature. Increasing externally applied axial stress and elevated temperature reduces the pressure capacity. - Highlights: • The burst pressure of super duplex steel is measured under combined loading. • Effect of elevated temperature on burst pressure is determined. • Burst pressure decreases with increasing temperature. • Existing models are reliable at room temperature. • Burst strength at elevated temperature is lower than predictions

  14. Contrasting pressure effects in Sr2VFeAsO3 and Sr2ScFePO3

    International Nuclear Information System (INIS)

    Kotegawa, Hisashi; Kawazoe, Takayuki; Tou, Hideki; Murata, Keizo; Ogino, Hiraku; Kishio, Kohji; Shimoyama, Jun-ichi

    2009-01-01

    We report the resistivity measurements under pressure of two Fe-based superconductors with a thick perovskite oxide layer, Sr 2 VFeAsO 3 and Sr 2 ScFePO 3 . The superconducting transition temperature T c of Sr 2 VFeAsO 3 markedly increases with increasing pressure. Its onset value, which was T c onset =36.4 K at ambient pressure, increases to T c onset =46.0 K at ∼4 GPa, ensuring the potential of the '21113' system as a high-T c material. However, the superconductivity of Sr 2 ScFePO 3 is strongly suppressed under pressure. The T c onset of ∼16 K decreases to ∼5 K at ∼4 GPa, and the zero-resistance state is almost lost. We discuss the factor that induces this contrasting pressure effect. (author)

  15. Comparing effects of perfusion and hydrostatic pressure on gene profiles of human chondrocyte.

    Science.gov (United States)

    Zhu, Ge; Mayer-Wagner, Susanne; Schröder, Christian; Woiczinski, Matthias; Blum, Helmut; Lavagi, Ilaria; Krebs, Stefan; Redeker, Julia I; Hölzer, Andreas; Jansson, Volkmar; Betz, Oliver; Müller, Peter E

    2015-09-20

    Hydrostatic pressure and perfusion have been shown to regulate the chondrogenic potential of articular chondrocytes. In order to compare the effects of hydrostatic pressure plus perfusion (HPP) and perfusion (P) we investigated the complete gene expression profiles of human chondrocytes under HPP and P. A simplified bioreactor was constructed to apply loading (0.1 MPa for 2 h) and perfusion (2 ml) through the same piping by pressurizing the medium directly. High-density monolayer cultures of human chondrocytes were exposed to HPP or P for 4 days. Controls (C) were maintained in static cultures. Gene expression was evaluated by sequencing (RNAseq) and quantitative real-time PCR analysis. Both treatments changed gene expression levels of human chondrocytes significantly. Specifically, HPP and P increased COL2A1 expression and decreased COL1A1 and MMP-13 expression. Despite of these similarities, RNAseq revealed a list of cartilage genes including ACAN, ITGA10 and TNC, which were differentially expressed by HPP and P. Of these candidates, adhesion related molecules were found to be upregulated in HPP. Both HPP and P treatment had beneficial effects on chondrocyte differentiation and decreased catabolic enzyme expression. The study provides new insight into how hydrostatic pressure and perfusion enhance cartilage differentiation and inhibit catabolic effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A Modern Method to Monitor Office Blood Pressure

    Directory of Open Access Journals (Sweden)

    Emiliya Khazan

    2017-10-01

    Full Text Available The diagnosis and management of hypertension relies on accurate and precise blood pressure (BP measurements and monitoring techniques. Variability in traditional office based BP readings can contribute to misclassification and potential misdiagnosis of hypertension, leading to inappropriate treatment and possibly avoidable adverse drug events. Both home blood pressure monitoring (HBPM and 24-hour ambulatory blood pressure monitoring (ABPM can improve characterization of BP status over traditional office values and can predict cardiovascular morbidity and mortality risk; however, they are limited by availability and/or practical use in many situations. Available in-office blood pressure measuring methods include manual auscultation, automated oscillometric, and automated office blood pressure (AOBP devices. A strong correlation exists between AOBP and awake ABPM measurements and has been linked to better prediction of end-organ damage and white coat response compared to standard office BP methods. While AOBP does not provide nocturnal BP readings, it can be utilized in several outpatient settings, and has the capability to decrease utilization of ABPM, white coat effect, and improve optimization of cardiovascular assessment, evaluation, and therapeutic assessment in clinical practice. Hypertension affects over 80 million adults in the United States (US and is a major risk factor for cardiovascular morbidity and mortality [1]. The condition’s ubiquitous nature and broad impact potentially makes understanding the diagnosis and treatment of hypertension key elements of managing cardiovascular risk. Though much attention is paid to the treatment of hypertension, from 2009 to 2012, 45.9% of US patients with hypertension were uncontrolled [1]. Appreciating the aspects of proper assessment of blood pressure is crucial and creates the foundation for approaching hypertension management. Until recently, hypertension was defined as an appropriately

  17. Recent Decrease in Typhoon Destructive Potential and Global Warming Implications

    Science.gov (United States)

    Lin, I. I.

    2016-02-01

    Despite the severe impact of individual tropical cyclones like Sandy (2012) and Haiyan (2013), global TC activities as a whole have actually dropped considerably since the early 1990's. Especially over the most active and hazardous TC basin on earth, the Western North Pacific (WNP) typhoon Main Development Region (MDR), an evident decrease in TC activity has been observed, as characterised by the drop in the annual Power Dissipation Index (Emanuel 2005). Paradoxically, this decrease occurred despite evident ocean warming, with upper ocean heat content increased by 12% over the western North Pacific MDR (Pun et al. 2013; Lin et al. 2014). This study explores the interesting interplay between atmosphere and ocean on the WNP typhoons. Though ocean may become more favourable (warming) to fuel individual typhoon event through temporal relaxation in the atmosphere condition (e.g. Haiyan in 2013), the overall `worsened' atmospheric condition (e.g. increase in vertical wind shear) can `over-powers' the `better' ocean to suppress the overall WNP typhoon activities. This stronger negative contribution from reduced typhoon frequency over the increased intensity is also present under the global warming scenario, based on analysis of the simulated typhoon data from high-resolution modelling.

  18. The effect of continuous positive airway pressure on blood pressure in patients with obstructive sleep apnea syndrome

    Directory of Open Access Journals (Sweden)

    Giorgiana Dediu

    2017-12-01

    Full Text Available Introduction. Obstructive sleep apnea syndrome (OSAS is a disease with increasing prevalence nowadays, being associated with multiple cardiovascular diseases, such as arterial hypertension. The objective of the study was to evaluate the effect of continuous positive airway pressure (CPAP on blood pressure values. Materials and methods. We performed a prospective interventional study on 52 patients with obstructive sleep apnea syndrome. The patients were divided into 2 groups: Group A (who received both pharmacological and CPAP treatment and Group B (who received only pharmacological treatment, and were followed up at 3 and 6 months. The statistical analysis was made with SPSS and Microsoft Excel. At the same time, using the surrogate marker –RDW, we tried to evaluate the persistence of systemic inflammation, knowing that OSAS is associated with inflammation. Results. The systolic blood pressure values decreased at 6 months in all OSAS patients who have used CPAP, including patients with normal values of blood pressure. At the same time, the lack of OSAS treatment led to increased values of blood pressure by approximately 10 mmHg. We noticed a link between RDW, age and blood pressure values, respectively the increase of RDW and age may result in an increase in blood pressure. Conclusions. The OSAS treatment can decrease the blood pressure values. A higher RDW may be considered a negative prognostic factor for these patients, reflecting the role of systemic inflammation in the appearance of cardiovascular disorders.

  19. Acute stress exposure preceding transient global brain ischemia exacerbates the decrease in cortical remodeling potential in the rat retrosplenial cortex.

    Science.gov (United States)

    Kutsuna, Nobuo; Yamashita, Akiko; Eriguchi, Takashi; Oshima, Hideki; Suma, Takeshi; Sakatani, Kaoru; Yamamoto, Takamitsu; Yoshino, Atsuo; Katayama, Yoichi

    2014-01-01

    Doublecortin (DCX)-immunoreactive (-ir) cells are candidates that play key roles in adult cortical remodeling. We have previously reported that DCX-ir cells decrease after stress exposure or global brain ischemia (GBI) in the cingulate cortex (Cg) of rats. Herein, we investigate whether the decrease in DCX-ir cells is exacerbated after GBI due to acute stress exposure preconditioning. Twenty rats were divided into 3 groups: acute stress exposure before GBI (Group P), non-stress exposure before GBI (Group G), and controls (Group C). Acute stress or GBI was induced by a forced swim paradigm or by transient bilateral common carotid artery occlusion, respectively. DCX-ir cells were investigated in the anterior cingulate cortex (ACC) and retrosplenial cortex (RS). The number of DCX-ir cells per unit area (mm(2)) decreased after GBI with or without stress preconditioning in the ACC and in the RS (ANOVA followed by a Tukey-type test, P<0.001). Moreover, compared to Group G, the number in Group P decreased significantly in RS (P<0.05), though not significantly in ACC. Many of the DCX-ir cells were co-localized with the GABAergic neuronal marker parvalbumin. The present study indicates that cortical remodeling potential of GABAergic neurons of Cg decreases after GBI, and moreover, the ratio of the decrease is exacerbated by acute stress preconditioning in the RS. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  20. Metabolic costs imposed by hydrostatic pressure constrain bathymetric range in the lithodid crab Lithodes maja.

    Science.gov (United States)

    Brown, Alastair; Thatje, Sven; Morris, James P; Oliphant, Andrew; Morgan, Elizabeth A; Hauton, Chris; Jones, Daniel O B; Pond, David W

    2017-11-01

    The changing climate is shifting the distributions of marine species, yet the potential for shifts in depth distributions is virtually unexplored. Hydrostatic pressure is proposed to contribute to a physiological bottleneck constraining depth range extension in shallow-water taxa. However, bathymetric limitation by hydrostatic pressure remains undemonstrated, and the mechanism limiting hyperbaric tolerance remains hypothetical. Here, we assess the effects of hydrostatic pressure in the lithodid crab Lithodes maja (bathymetric range 4-790 m depth, approximately equivalent to 0.1 to 7.9 MPa hydrostatic pressure). Heart rate decreased with increasing hydrostatic pressure, and was significantly lower at ≥10.0 MPa than at 0.1 MPa. Oxygen consumption increased with increasing hydrostatic pressure to 12.5 MPa, before decreasing as hydrostatic pressure increased to 20.0 MPa; oxygen consumption was significantly higher at 7.5-17.5 MPa than at 0.1 MPa. Increases in expression of genes associated with neurotransmission, metabolism and stress were observed between 7.5 and 12.5 MPa. We suggest that hyperbaric tolerance in L maja may be oxygen-limited by hyperbaric effects on heart rate and metabolic rate, but that L maja 's bathymetric range is limited by metabolic costs imposed by the effects of high hydrostatic pressure. These results advocate including hydrostatic pressure in a complex model of environmental tolerance, where energy limitation constrains biogeographic range, and facilitate the incorporation of hydrostatic pressure into the broader metabolic framework for ecology and evolution. Such an approach is crucial for accurately projecting biogeographic responses to changing climate, and for understanding the ecology and evolution of life at depth. © 2017. Published by The Company of Biologists Ltd.

  1. Peer Pressure in Multi-Dimensional Work Tasks

    OpenAIRE

    Felix Ebeling; Gerlinde Fellner; Johannes Wahlig

    2012-01-01

    We study the influence of peer pressure in multi-dimensional work tasks theoretically and in a controlled laboratory experiment. Thereby, workers face peer pressure in only one work dimension. We find that effort provision increases in the dimension where peer pressure is introduced. However, not all of this increase translates into a productivity gain, since the effect is partly offset by a decrease of effort in the work dimension without peer pressure. Furthermore, this tradeoff is stronger...

  2. Change in the work function of zirconium by oxidation at high temperatures and low oxygen pressures

    International Nuclear Information System (INIS)

    Maeno, Yutaka; Yamamoto, Masahiro; Naito, Shizuo; Mabuchi, Mahito; Hashino, Tomoyasu

    1991-01-01

    Changes in the work function of zirconium on oxidation are measured at oxygen pressures of 3.0 x 10 -6 - 3.0 x 10 -4 Pa and at temperatures in the range 426-775 K. The work function first decreases then increases until a final saturation stage is reached. Use of secondary-ion mass spectroscopy (SIMS) shows that the changes correspond to oxygen adsorption, oxide nucleation and oxide growth, respectively. The initial decrease in work function is interpreted by the incorporation of oxygen adatoms into the subsurface. The oxygen adsorption potential of zirconium is evaluated by an effective medium theory, and the physical origin of the incorporation of oxygen adatoms is discussed. The positive change in the work function caused by oxide formation and the temperature and pressure dependences of the change in the work function by oxidation are explained qualitatively. (author)

  3. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply.

    Science.gov (United States)

    Klaysom, Chalida; Cath, Tazhi Y; Depuydt, Tom; Vankelecom, Ivo F J

    2013-08-21

    Osmotically driven membrane processes (ODMP) have gained renewed interest in recent years and they might become a potential solution for the world's most challenging problems of water and energy scarcity. Though the concept of utilizing osmotic pressure difference between high and low salinity streams across semipermeable membranes has been explored for several decades, lack of optimal membranes and draw solutions hindered competition between forward osmosis (FO) and pressure retarded osmosis (PRO) with existing water purification and power generation technologies, respectively. Driven by growing global water scarcity and by energy cost and negative environmental impacts, novel membranes and draw solutions are being developed for ODMPs, mass and heat transfer in osmotic process are becoming better understood, and new applications of ODMPs are emerging. Therefore, OMDPs might become promising green technologies to provide clean water and clean energy from abundantly available renewable resources. This review focuses primarily on new insights into osmotic membrane transport mechanisms and on novel membranes and draw solutions that are currently being developed. Furthermore, the effects of operating conditions on the overall performance of osmotic membranes will be highlighted and future perspectives will be presented.

  4. Long-term inhibition of xanthine oxidase by febuxostat does not decrease blood pressure in deoxycorticosterone acetate (DOCA-salt hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Theodora Szasz

    Full Text Available Xanthine oxidase and its products, uric acid and ROS, have been implicated in the pathogenesis of cardiovascular disease, such as hypertension. We have previously reported that allopurinol inhibition of XO does not alter the progression of deoxycorticosterone acetate (DOCA-salt hypertension in rats. However other researchers have observed a reduction in blood pressure after allopurinol treatment in the same model. To resolve this controversy, in this study we used the newer and more effective XO inhibitor febuxostat, and hypothesized that a more complete XO blockade might impair hypertension development and its end-organ consequences. We used DOCA-salt hypertensive rats and administered vehicle (salt water or febuxostat (orally, 5 mg/kg/day in salt water in a short-term "reversal" experiment (2 weeks of treatment 3 weeks after DOCA-salt beginning and a long-term "prevention" experiment (treatment throughout 4 weeks of DOCA-salt. We confirmed XO inhibition by febuxostat by measuring circulating and tissue levels of XO metabolites. We found an overall increase in hypoxanthine (XO substrate and decrease in uric acid (XO product levels following febuxostat treatment. However, despite a trend for reduced blood pressure in the last week of long-term febuxostat treatment, no statistically significant difference in hemodynamic parameters was observed in either study. Additionally, no change was observed in relative heart and kidney weight. Aortic media/lumen ratio was minimally improved by long-term febuxostat treatment. Additionally, febuxostat incubation in vitro did not modify contraction of aorta or vena cava to norepinephrine, angiotensin II or endothelin-1. We conclude that XO inhibition is insufficient to attenuate hypertension in the rat DOCA-salt model, although beneficial vascular effects are possible.

  5. Long-term inhibition of xanthine oxidase by febuxostat does not decrease blood pressure in deoxycorticosterone acetate (DOCA)-salt hypertensive rats.

    Science.gov (United States)

    Szasz, Theodora; Davis, Robert Patrick; Garver, Hannah S; Burnett, Robert J; Fink, Gregory D; Watts, Stephanie W

    2013-01-01

    Xanthine oxidase and its products, uric acid and ROS, have been implicated in the pathogenesis of cardiovascular disease, such as hypertension. We have previously reported that allopurinol inhibition of XO does not alter the progression of deoxycorticosterone acetate (DOCA)-salt hypertension in rats. However other researchers have observed a reduction in blood pressure after allopurinol treatment in the same model. To resolve this controversy, in this study we used the newer and more effective XO inhibitor febuxostat, and hypothesized that a more complete XO blockade might impair hypertension development and its end-organ consequences. We used DOCA-salt hypertensive rats and administered vehicle (salt water) or febuxostat (orally, 5 mg/kg/day in salt water) in a short-term "reversal" experiment (2 weeks of treatment 3 weeks after DOCA-salt beginning) and a long-term "prevention" experiment (treatment throughout 4 weeks of DOCA-salt). We confirmed XO inhibition by febuxostat by measuring circulating and tissue levels of XO metabolites. We found an overall increase in hypoxanthine (XO substrate) and decrease in uric acid (XO product) levels following febuxostat treatment. However, despite a trend for reduced blood pressure in the last week of long-term febuxostat treatment, no statistically significant difference in hemodynamic parameters was observed in either study. Additionally, no change was observed in relative heart and kidney weight. Aortic media/lumen ratio was minimally improved by long-term febuxostat treatment. Additionally, febuxostat incubation in vitro did not modify contraction of aorta or vena cava to norepinephrine, angiotensin II or endothelin-1. We conclude that XO inhibition is insufficient to attenuate hypertension in the rat DOCA-salt model, although beneficial vascular effects are possible.

  6. Review : Pressure Ulcer and Its treatment

    Directory of Open Access Journals (Sweden)

    Bijan Khorasani

    2004-10-01

    Full Text Available Pressure ulcer is a signifcant problem in elderly and critically ill patients, causing pain, decreasing quality of life and leading to prolonged hospital stay. Treatment of pressure ulcer to improve health status is a cost-effective approach. So, preventing the ulcers will be economical. Pressure ulcer is considered as a damage or necrosis of skin and its layers, which happens when there is a considerable pressure over the tissues. If the capillary arterie's pressure reaches 70 mmHg (2 times more than the normal pressure pressure ulcer happens and depending on the depth of the ulcer, will be divided into 4 stages. The most important point for preventing the ulcers is reducing the pressure. Patients should be repositioned to relieve or minimize the tissue pressure. Considering the type of the ulcer, the necessary treatment (dressing, Antibiotic Therapy, debridement or surgery should be performed.

  7. High pressure inertial focusing for separating and concentrating bacteria at high throughput

    Science.gov (United States)

    Cruz, J.; Hooshmand Zadeh, S.; Graells, T.; Andersson, M.; Malmström, J.; Wu, Z. G.; Hjort, K.

    2017-08-01

    Inertial focusing is a promising microfluidic technology for concentration and separation of particles by size. However, there is a strong correlation of increased pressure with decreased particle size. Theory and experimental results for larger particles were used to scale down the phenomenon and find the conditions that focus 1 µm particles. High pressure experiments in robust glass chips were used to demonstrate the alignment. We show how the technique works for 1 µm spherical polystyrene particles and for Escherichia coli, not being harmful for the bacteria at 50 µl min-1. The potential to focus bacteria, simplicity of use and high throughput make this technology interesting for healthcare applications, where concentration and purification of a sample may be required as an initial step.

  8. Exploring Reaction Mechanism on Generalized Force Modified Potential Energy Surfaces (G-FMPES) for Diels-Alder Reaction

    Science.gov (United States)

    Jha, Sanjiv; Brown, Katie; Subramanian, Gopinath

    We apply a recent formulation for searching minimum energy reaction path (MERP) and saddle point to atomic systems subjected to an external force. We demonstrate the effect of a loading modality resembling hydrostatic pressure on the trans to cis conformational change of 1,3-butadiene, and the simplest Diels-Alder reaction between ethylene and 1,3-butadiene. The calculated MERP and saddle points on the generalized force modified potential energy surface (G-FMPES) are compared with the corresponding quantities on an unmodified potential energy surface. Our study is performed using electronic structure calculations at the HF/6-31G** level as implemented in the AIMS-MOLPRO code. Our calculations suggest that the added compressive pressure lowers the energy of cis butadiene. The activation energy barrier for the concerted Diels-Alder reaction is found to decrease progressively with increasing compressive pressure.

  9. Electrochemical noise measurements under pressurized water reactor conditions

    International Nuclear Information System (INIS)

    Van Nieuwenhove, R.

    2000-01-01

    Electrochemical potential noise measurements on sensitized stainless steel pressure tubes under pressurized water reactor (PWR) conditions were performed for the first time. Very short potential spikes, believed to be associated to crack initiation events, were detected when stressing the sample above the yield strength and increased in magnitude until the sample broke. Sudden increases of plastic deformation, as induced by an increased tube pressure, resulted in slower, high-amplitude potential transients, often accompanied by a reduction in noise level

  10. Effects of two newly synthesized analogues of lidocaine on rat arterial blood pressure and heart rate.

    Science.gov (United States)

    Al Rasheed, N M; Al Sayed, M I; Al Zuhair, H H; Al Obaid, A R; Fatani, A J

    2001-04-01

    Two new analogues of lidocaine were synthesized at the College of Pharmacy, King Saud University: compound I (Methyl-2-[2-(N,N-diethylamino) acetamido]-3-cyano-4,5-dimethylbenzoate) and compound II (Methyl-2-[2-(piperidino) acetamido]-3-cyano-4,5-dimethylbenzoate). Their influence on the arterial blood pressure and the heart rate of urethane-anaesthetized rats was studied and compared with the actions of lidocaine. Compounds I, II and lidocaine induced significant dose-dependent decreases in the arterial blood pressure and heart rate, which usually returned to basal values within 3-5 min. There were significant differences in the potency of the three compounds in producing their effects on blood pressure and heart rate (Plidocaine and compound I, respectively. The results of this study also indicated the ineffectiveness of antagonists of autonomic, histaminergic and 5-HT receptor, and various vasodilators in blocking the actions of the three compounds on blood pressure and heart rate. Pretreatment with CaCl(2)significantly reduced the hypotension and bradycardia induced by the three compounds, suggesting the involvement of calcium channels, probably of the L type. Several possible mechanisms are postulated. In conclusion, the results direct attention to the capability of the two new compounds to decrease blood pressure and heart rate; affects that may have clinical potential. Copyright 2001 Academic Press.

  11. Intraperitoneal pressure: ascitic fluid and splanchnic vascular pressures, and their role in prevention and formation of ascites

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Stage, J G; Schlichting, P

    1980-01-01

    Seventeen patients with ascites due to cirrhosis underwent hepatic venous catheterization and pressure measurement in the ascitic fluid. Intraperitoneal fluid hydrostatic pressure (IFP) ranged 3.5-22, mean 11.2 mm Hg, and correlated closely to the pressure in the inferior vena cava (r = 0.97, P ... that ascitic fluid stems the pressures in the splanchnic venous vascular bed up to a higher level, but that the transmural hydrostatic pressure difference decreases simultaneously. The results are discussed in relation to the local 'oedema-preventing' mechanisms: (a) increased interstitial hydrostatic fluid.......001), which was on average 1.8 mmHg above that of ascitic fluid (P pressure (WHVP) (range 19-43, mean 32 mmHg) correlated directly to IFP (0.89, P

  12. Evaluation of anti-inflammatory activity, effect on blood pressure & gastric tolerability of antidepressants

    Directory of Open Access Journals (Sweden)

    Preeta Kaur Chugh

    2013-01-01

    Full Text Available Background & objectives: Antidepressants are being used as analgesics for various pain related disorders like neuropathic and non neuropathic pain. Although their analgesic activity is well recognized but anti-inflammatory potential of antidepressants is still inconclusive. Since the antidepressants are used for longer duration, it becomes important to elucidate effect of anti-depressants on blood pressure and gastric mucosa. This study was undertaken to evaluate the anti-inflammatory potential of various antidepressant drugs as well as their effect on blood pressure and gastric tolerability on chronic administration in rats. Methods: Rat paw oedema model was used for studying anti-inflammatory activity, single dose of test drug (venlafaxine 20 and 40 mg/kg, amitryptline 25 mg/kg, fluoxetine 20 mg/kg was administered intraperitoneally 45 min prior to administration of 0.1 ml of 1 per cent carrageenan in sub-planter region. Oedema induced in test group was compared with normal saline treated control group. For studying effect on blood pressure and gastric tolerability, test drugs were administered for 14 days. Blood pressure was recorded on days 0, 7 and 14 using tail cuff method. On day 14, 4 h after drug administration, rats were sacrificed and stomach mucosa was examined for ulcerations. Results: Pretreatment of rats with venlafaxine (40 mg/kg resulted in a significant decrease in paw oedema as compared to control (2.4 ± 0.15 to 1.1 ± 0.16 ml, P<0.01. Similarly, in the group pretreated with fluoxetine, significant decrease in paw oedema was observed in comparison to control (P<0.05. Significant change in mean blood pressure was seen in rats pretreated with venlafaxine 40 mg/kg (126.7 ± 4.2 to 155.2 ± 9.7, P<0.05 and fluoxetine (143.5 ± 2.6 to 158.3 ± 1.2, P<0.05 on day 7. No significant difference with regard to gastric tolerability was observed among groups. Interpretation & conclusions: Our findings showed significant anti

  13. Potential hydrogen and oxygen partial pressures in legacy plutonium oxide packages at Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-07

    An approach to estimate the maximum hydrogen and oxygen partial pressures within sealed containers is described and applied to a set of packages containing high-purity plutonium dioxide. The approach uses experimentally determined maximum hydrogen and oxygen partial pressures and scales the experimentally determined pressures to the relevant packaged material properties. The important material properties are the specific wattage and specific surface area (SSA). Important results from the experimental determination of maximum partial pressures are (1) the ratio of hydrogen to oxygen is stoichiometric, and (2) the maximum pressures increase with increasing initial rates of production. The material properties that influence the rates are the material specific wattage and the SSA. The unusual properties of these materials, high specific wattage and high SSA, result in higher predicted maximum pressures than typical plutonium dioxide in storage. The pressures are well within the deflagration range for mixtures of hydrogen and oxygen.

  14. Integral bubble and jet models with pressure forces

    Science.gov (United States)

    Vulfson, A. N.; Nikolaev, P. V.

    2017-07-01

    Modifications of integral bubble and jet models including the pressure force are proposed. Exact solutions are found for the modified model of a stationary convective jet from a point source of buoyancy and momentum. The exact solutions are compared against analytical solutions of the integral models for a stationary jet that are based on the approximation of the vertical boundary layer. It is found that the modified integral models of convective jets retain the power-law dependences on the altitude for the vertical velocity and buoyancy obtained in classical models. For a buoyant jet in a neutrally stratified atmosphere, the inclusion of the pressure force increases the amplitude of buoyancy and decreases the amplitude of vertical velocity. The total amplitude change is about 10%. It is shown that in this model there is a dynamic invariant expressing the law of a uniform distribution of the potential and kinetic energy along the jet axis. For a spontaneous jet rising in an unstably stratified atmosphere, the inclusion of the pressure force retains the amplitude of buoyancy and increases the amplitude of vertical velocity by about 15%. It is shown that in the model of a spontaneous jet there is a dynamic invariant expressing the law of a uniform distribution of the available potential and kinetic energy along the jet axis. The results are of interest for the problems of anthropogenic pollution diffusion in the air and water environments and the formulation of models for statistical and stochastic ensembles of thermals in a mass-flux parameterization of turbulent moments.

  15. Isotropization in Bianchi type-I cosmological model with fermions and bosons interacting via Yukawa potential

    International Nuclear Information System (INIS)

    Ribas, M O; Samojeden, L L; Devecchi, F P; Kremer, G M

    2015-01-01

    In this work we investigate a model for the early Universe in a Bianchi type-I metric, where the sources of the gravitational field are a fermionic and a bosonic field, interacting through a Yukawa potential, following the standard model of elementary particles. It is shown that the fermionic field has a negative pressure, while the boson has a small positive pressure. The fermionic field is the responsible for an accelerated regime at early times, but since the total pressure tends to zero for large times, a transition to a decelerated regime occurs. Here the Yukawa potential answers for the duration of the accelerated regime, since by decreasing the value of its coupling constant the transition accelerated–decelerated occurs in later times. The isotropization which occurs for late times is due to the presence of the fermionic field as one of the sources of the gravitational field. (paper)

  16. Deep Brain Stimulation of the Subthalamic Nucleus Does Not Affect the Decrease of Decision Threshold during the Choice Process When There Is No Conflict, Time Pressure, or Reward.

    Science.gov (United States)

    Leimbach, Friederike; Georgiev, Dejan; Litvak, Vladimir; Antoniades, Chrystalina; Limousin, Patricia; Jahanshahi, Marjan; Bogacz, Rafal

    2018-06-01

    During a decision process, the evidence supporting alternative options is integrated over time, and the choice is made when the accumulated evidence for one of the options reaches a decision threshold. Humans and animals have an ability to control the decision threshold, that is, the amount of evidence that needs to be gathered to commit to a choice, and it has been proposed that the subthalamic nucleus (STN) is important for this control. Recent behavioral and neurophysiological data suggest that, in some circumstances, the decision threshold decreases with time during choice trials, allowing overcoming of indecision during difficult choices. Here we asked whether this within-trial decrease of the decision threshold is mediated by the STN and if it is affected by disrupting information processing in the STN through deep brain stimulation (DBS). We assessed 13 patients with Parkinson disease receiving bilateral STN DBS six or more months after the surgery, 11 age-matched controls, and 12 young healthy controls. All participants completed a series of decision trials, in which the evidence was presented in discrete time points, which allowed more direct estimation of the decision threshold. The participants differed widely in the slope of their decision threshold, ranging from constant threshold within a trial to steeply decreasing. However, the slope of the decision threshold did not depend on whether STN DBS was switched on or off and did not differ between the patients and controls. Furthermore, there was no difference in accuracy and RT between the patients in the on and off stimulation conditions and healthy controls. Previous studies that have reported modulation of the decision threshold by STN DBS or unilateral subthalamotomy in Parkinson disease have involved either fast decision-making under conflict or time pressure or in anticipation of high reward. Our findings suggest that, in the absence of reward, decision conflict, or time pressure for decision

  17. A high pressure x-ray diffraction study of titanium disulfide

    International Nuclear Information System (INIS)

    Aksoy, Resul; Selvi, Emre; Knudson, Russell; Ma Yanzhang

    2009-01-01

    A high pressure angle dispersive synchrotron x-ray diffraction study of titanium disulfide (TiS 2 ) was carried out to pressures of 45.5 GPa in a diamond-anvil cell. We observed a phase transformation of TiS 2 beginning at about 20.7 GPa. The structure of the high pressure phase needs further identification. By fitting the pressure-volume data to the third-order Birch-Murnaghan equation of state, the bulk modulus, K 0T , was determined to be 45.9 ± 0.7 GPa with its pressure derivative, K' 0T , being 9.5 ± 0.3 at pressures lower than 17.8 GPa. It was found that the compression behavior of TiS 2 is anisotropic along the different axes. The compression ratio of the c-axis is about nine times larger than the a-axis when pressures are lower than 1 GPa. It suddenly decreases to three times larger at pressures of about 3 GPa. This ratio shows a linear decrease with a slope of negative 0.048 at pressures below phase transformation.

  18. Size and pressure effects on glass transition temperature of poly (methyl methacrylate) thin films

    International Nuclear Information System (INIS)

    Lang, X.Y.; Zhang, G.H.; Lian, J.S.; Jiang, Q.

    2006-01-01

    A simple and unified model, without any adjustable parameter, is developed for size and pressure effects on glass transition temperatures of nanopolymers. The model is based on a model for size dependent glass transition temperature of nanopolymer glasses under ambient pressure, and a pressure-dependent function of the root of mean-square displacement of atom vibration. It is found that the size- and pressure-dependent glass transition temperatures of free-standing films or supported films having weak interaction with substrates decreases with decreasing of pressure and size. However, the glass transition temperature of supported films having strong interaction with substrates increases with the increase of pressure and the decrease of size. The predicted results correspond with available experimental evidences for atactic-Poly (methyl methacrylate) thin films under hydrostatic pressure or under the pressure induced by supercritical fluid CO 2 . In addition, the predicted glass transition temperature of isotactic-Poly (methyl methacrylate) thin films under ambient pressure is consistent with available experimental evidences

  19. Magnetohydrodynamic pressure drop in a quickly changing magnetic field

    International Nuclear Information System (INIS)

    Xu, Z.Y.; Chen, J.M.; Qian, J.P.; Jiang, W.H.; Pan, C.J.; Li, W.Z.

    1995-01-01

    The magnetohydrodynamic (MHD) pressure drop of 22 Na 78 K flow in a circular duct was measured under a quickly changing magnetic field. The MHD pressure drop reduced with time as the magnetic field strength decreased. However, the dimensionless pressure drop gradient varied with the interaction parameter and had a higher value in the middle of the range of values of the interaction parameter. Therefore, a quickly changing magnetic field is harmful to the structural material in a liquid metal self-cooled blanket of a fusion reactor, since the greater pressure drop gradient may cause a larger stress in the blanket. This is even more harmful if the magnetic field strength decreases very quickly or its distribution in space is greatly non-uniform. (orig.)

  20. Vasodilation increases pulse pressure variation, mimicking hypovolemic status in rabbits

    Directory of Open Access Journals (Sweden)

    Glauco A Westphal

    2010-01-01

    Full Text Available OBJECTIVE: To test the hypothesis that pulse pressure respiratory variation (PPV amplification, observed in hypovolemia, can also be observed during sodium nitroprusside (SNP-induced vasodilation. INTRODUCTION: PPV is largely used for early identification of cardiac responsiveness, especially when hypovolemia is suspected. PPV results from respiratory variation in transpulmonary blood flow and reflects the left ventricular preload variations during respiratory cycles. Any factor that decreases left ventricular preload can be associated with PPV amplification, as seen in hypovolemia. METHODS: Ten anesthetized and mechanically ventilated rabbits underwent progressive hypotension by either controlled hemorrhage (Group 1 or intravenous SNP infusion (Group 2. Animals in Group 1 (n = 5 had graded hemorrhage induced at 10% steps until 50% of the total volume was bled. Mean arterial pressure (MAP steps were registered and assumed as pressure targets to be reached in Group 2. Group 2 (n = 5 was subjected to a progressive SNP infusion to reach similar pressure targets as those defined in Group 1. Heart rate (HR, systolic pressure variation (SPV and PPV were measured at each MAP step, and the values were compared between the groups. RESULTS: SPV and PPV were similar between the experimental models in all steps (p > 0.16. SPV increased earlier in Group 2. CONCLUSION: Both pharmacologic vasodilation and graded hemorrhage induced PPV amplification similar to that observed in hypovolemia, reinforcing the idea that amplified arterial pressure variation does not necessarily represent hypovolemic status but rather potential cardiovascular responsiveness to fluid infusion.

  1. Chronic unpredictable stress decreases expression of brain-derived neurotrophic factor (BDNF) in mouse ovaries: relationship to oocytes developmental potential.

    Science.gov (United States)

    Wu, Li-Min; Hu, Mei-Hong; Tong, Xian-Hong; Han, Hui; Shen, Ni; Jin, Ren-Tao; Wang, Wei; Zhou, Gui-Xiang; He, Guo-Ping; Liu, Yu-Sheng

    2012-01-01

    Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA) axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn't affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress.

  2. Chronic unpredictable stress decreases expression of brain-derived neurotrophic factor (BDNF in mouse ovaries: relationship to oocytes developmental potential.

    Directory of Open Access Journals (Sweden)

    Li-Min Wu

    Full Text Available BACKGROUND: Brain-derived neurotropic factor (BDNF was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. METHODS: Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. RESULTS: Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn't affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. CONCLUSION: BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress.

  3. The electrical signature of rock samples exposed to hydrostatic and triaxial pressures

    Energy Technology Data Exchange (ETDEWEB)

    Heikamp, S.; Nover, G. [Bonn Univ., Bonn (Germany). Mineralogical Institute

    2001-04-01

    The electrical signature of sedimentary (carbonate) and crystalline rock samples was studied in hydrostatic and triaxial pressure experiments up to 300 MPa. The aim was to establish a relation between an electrical signal stimulated by an external pressure acting on the sample and the mechanical stability of the rock. Natural open fractures tend to be closed under hydrostatic pressure conditions, whereas in triaxial pressure experiments new fractures are generated. These contrary processes of either decrease or increase in crack density and geometry, cause a decrease or increase in the inner surface of the sample. Such pressure induced variations in pore geometry were investigated by an interpretation and modelling of the frequency dependence of the complex electrical conductivity. In a series of hydrostatic pressure experiments crack-closure was found in the electrical signature by decrease of the model capacitor C being related to crack geometry. This capacitor increases in the triaxial experiments where new fractures were formed.

  4. Influence of isoflurane on the diastolic pressure-flow relationship and critical occlusion pressure during arterial CABG surgery: a randomized controlled trial.

    Science.gov (United States)

    Hinz, José; Mansur, Ashham; Hanekop, Gerd G; Weyland, Andreas; Popov, Aron F; Schmitto, Jan D; Grüne, Frank F G; Bauer, Martin; Kazmaier, Stephan

    2016-01-01

    The effects of isoflurane on the determinants of blood flow during Coronary Artery Bypass Graft (CABG) surgery are not completely understood. This study characterized the influence of isoflurane on the diastolic Pressure-Flow (P-F) relationship and Critical Occlusion Pressure (COP) during CABG surgery. Twenty patients undergoing CABG surgery were studied. Patients were assigned to an isoflurane or control group. Hemodynamic and flow measurements during CABG surgery were performed twice (15 minutes after the discontinuation of extracorporeal circulation (T15) and again 15 minutes later (T30)). The zero flow pressure intercept (a measure of COP) was extrapolated from a linear regression analysis of the instantaneous diastolic P-F relationship. In the isoflurane group, the application of isoflurane significantly increased the slope of the diastolic P-F relationship by 215% indicating a mean reduction of Coronary Vascular Resistance (CVR) by 46%. Simultaneously, the Mean Diastolic Aortic Pressure (MDAP) decreased by 19% mainly due to a decrease in the systemic vascular resistance index by 21%. The COP, cardiac index, heart rate, Left Ventricular End-Diastolic Pressure (LVEDP) and Coronary Sinus Pressure (CSP) did not change significantly. In the control group, the parameters remained unchanged. In both groups, COP significantly exceeded the CSP and LVEDP at both time points. We conclude that short-term application of isoflurane at a sedative concentration markedly increases the slope of the instantaneous diastolic P-F relationship during CABG surgery implying a distinct decrease with CVR in patients undergoing CABG surgery.

  5. LOFT fuel rod pressure measurement

    International Nuclear Information System (INIS)

    Billeter, T.R.

    1979-01-01

    Pressure sensors selected for measuring fuel rod pressure within the LOFT reactor exhibited stable, repeatable operating characteristics during calibrations at temperatures up to 800 0 F and pressures to 2500 psig. All sensors have a nominal sensitivity of .5 millivolts per psi, decreasing monotonically with temperature. Output signal increases linearly with increasing pressure up to 2000 psig. For imposed slow and rapid temperature variations and for pressure applied during these tests, the sensor indicates a pressure at variance with the actual value by up to 15% of reading. However, the imposed temperature rates of change often exceeded the value of -10 0 F/sec. specified for LOFT. The series of tests in an autoclave permit creation of an environment most closely resembling sensor operating conditions within LOFT. For multiple blowdowns and for longtime durations the sensor continued to provide pressure-related output signals. For temperature rates up to -87 0 F/sec, the indicated pressure measurement error remained less than 13% of reading. Adverse effects caused by heating the 1/16 inch O.D. signal cable to 800 0 F contributed only insignificantly to the noted pressure measurement error

  6. Investigation on the suitable pressure for the preservation of astrocyte

    International Nuclear Information System (INIS)

    Sotome, S; Shimizu, A; Nakajima, K; Yoshimura, Y

    2010-01-01

    The effects of pressure on the survival rate of astrocytes in growth medium (DMEM) were investigated at room temperature and at 4 0 C, in an effort to establish the best conditions for the preservation. Survival rate at 4 0 C was found to be higher than that at room temperature. The survival rate of astrocytes preserved for 4 days at 4 0 C increased with increasing pressure up to 1.6 MPa, but decreased with increasing pressure above 1.6 MPa. At 10 MPa, all astrocytes died. The survival rate of cultured astrocytes decreased significantly following pressurization for 2 hours and the subsequent preservation for 2 days at atmospheric pressure. Therefore, it is necessary to maintain pressure when preserving astrocytes. These results indicate that the cells can be stored at 4 0 C under pressurization without freezing and without adding cryoprotective agents. Moreover, it may be possible to use this procedure as a new preservation method when cryopreservation is impractical.

  7. Electrical streaming potential precursors to catastrophic earthquakes in China

    Directory of Open Access Journals (Sweden)

    F. Qian

    1997-06-01

    Full Text Available The majority of anomalies in self-potential at 7 stations within 160 km from the epicentre showed a similar pattern of rapid onset and slow decay during and before the M 7.8 Tangshan earthquake of 1976. Considering that some of these anomalies associated with episodical spouting from boreholes or the increase in pore pressure in wells, observed anomalies are streaming potential generated by local events of sudden movements and diffusion process of high-pressure fluid in parallel faults. These transient events triggered by tidal forces exhibited a periodic nature and the statistical phenomenon to migrate towards the epicentre about one month before the earthquake. As a result of events, the pore pressure reached its final equilibrium state and was higher than that in the initial state in a large enough section of the fault region. Consequently, local effective shear strength of the material in the fault zone decreased and finally the catastrophic earthquake was induced. Similar phenomena also occurred one month before the M 7.3 Haichen earthquake of 1975. Therefore, a short term earthquake prediction can be made by electrical measurements, which are the kind of geophysical measurements most closely related to pore fluid behaviors of the deep crust.

  8. Plasma potentials and performance of the advanced electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Xie, Z.Q.; Lyneis, C.M.

    1994-01-01

    The mean plasma potential was measured on the LBL advanced electron cyclotron resonance (AECR) ion source for a variety of conditions. The mean potentials for plasmas of oxygen, argon, and argon mixed with oxygen in the AECR were determined. These plasma potentials are positive with respect to the plasma chamber wall and are on the order of tens of volts. Electrons injected into the plasma by an electron gun or from an aluminum oxide wall coating with a very high secondary electron emission reduce the plasma potential as does gas mixing. A lower plasma potential in the AECR source coincides with enhanced production of high charged state ions indicating longer ion confinement times. The effect of the extra electrons from external injection or wall coatings is to lower the average plasma potential and to increase the n e τ i of the ECR plasma. With sufficient extra electrons, the need for gas mixing can be eliminated or reduced to a lower level, so the source can operate at lower neutral pressures. A reduction of the neutral pressure decreases charge exchange between ions and neutrals and enhances the production of high charge state ions. An aluminum oxide coating results in the lowest plasma potential among the three methods discussed and the best source performance

  9. Effect of sputter pressure on magnetotransport properties of FePt nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Shu, E-mail: mishu@buaa.edu.cn; Liu, Rui, E-mail: liurui1987@buaa.edu.cn; Li, Yuanyuan, E-mail: buaaliyuan@163.com; Ye, Jun, E-mail: yejun@iphy.ac.cn; Xie, Yong, E-mail: xiey@buaa.edu.cn; Chen, Ziyu, E-mail: chenzy@buaa.edu.cn

    2016-04-01

    FePt films were prepared by magnetron sputtering deposition using Ar as the sputtering gas under different working pressures (0.3–0.7 Pa). The effect of sputtering gas pressure on the microstructure, magnetic, and magnetoresistance properties has been investigated. The results show that the crystallization of FePt films is strongly dependent on the Ar sputter pressure. With the decrease of Ar working pressures, the fct phase forms and the coercivity (Hc) of FePt films rises under the same annealing temperature. As a result, the giant magnetoresistance (GMR) increases by 20% at the room temperature. At 0.7 Pa, the anisotropy magnetoresistance (AMR) can be observed clearly at a low field. However, as the Ar pressure decreases, the increase of GMR leads to a degradation of AMR effect. We believe that the improvement of GMR effect results from the increase of magnetic anisotropy and spin polarization in the process of transformation from the soft magnetic fcc phase to the hard magnetic fct phase. - Highlights: • FePt films were sputtered under different Ar working pressures. • The low Ar pressure promotes the formation of L1{sub 0} phase. • The Hc of FePt films enlarges with the reduction of Ar pressure. • As the Ar pressure decreases, the MR increases by 20%. • The total MR results from the competition of GMR and AMR.

  10. Effect of sputter pressure on magnetotransport properties of FePt nanocomposites

    International Nuclear Information System (INIS)

    Mi, Shu; Liu, Rui; Li, Yuanyuan; Ye, Jun; Xie, Yong; Chen, Ziyu

    2016-01-01

    FePt films were prepared by magnetron sputtering deposition using Ar as the sputtering gas under different working pressures (0.3–0.7 Pa). The effect of sputtering gas pressure on the microstructure, magnetic, and magnetoresistance properties has been investigated. The results show that the crystallization of FePt films is strongly dependent on the Ar sputter pressure. With the decrease of Ar working pressures, the fct phase forms and the coercivity (Hc) of FePt films rises under the same annealing temperature. As a result, the giant magnetoresistance (GMR) increases by 20% at the room temperature. At 0.7 Pa, the anisotropy magnetoresistance (AMR) can be observed clearly at a low field. However, as the Ar pressure decreases, the increase of GMR leads to a degradation of AMR effect. We believe that the improvement of GMR effect results from the increase of magnetic anisotropy and spin polarization in the process of transformation from the soft magnetic fcc phase to the hard magnetic fct phase. - Highlights: • FePt films were sputtered under different Ar working pressures. • The low Ar pressure promotes the formation of L1 0 phase. • The Hc of FePt films enlarges with the reduction of Ar pressure. • As the Ar pressure decreases, the MR increases by 20%. • The total MR results from the competition of GMR and AMR.

  11. the proportion of lactobacilli and/or decreasing the proportion of potentially pathogenic bacteria and/or yeasts (ID 945) pursuant to Article 13(1) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    claims in relation to Lactobacillus rhamnosus GR-1 (ATCC 55826) in combination with Lactobacillus reuteri RC-14 (ATCC 55845) and defence against vaginal pathogens by increasing the proportion of lactobacilli and/or decreasing the proportion of potentially pathogenic bacteria and/or yeasts. The scientific...... to be the general female population. From the clarifications provided by Member States, the Panel assumes that the claimed effect refers to defence against vaginal pathogens by increasing the number of lactobacilli and/or decreasing potentially pathogenic bacteria and/or yeasts. The Panel considers that defence...... against vaginal pathogens by increasing the proportion of lactobacilli and/or decreasing the proportion of potentially pathogenic bacteria and/or yeasts is a beneficial physiological effect. No references were provided from which conclusions could be drawn for the scientific substantiation of the claim...

  12. Influence of Post-treatment Methods on Pressure Change of Filter Bag

    Directory of Open Access Journals (Sweden)

    Yihua Yin

    2016-01-01

    Full Text Available The PPS needle-punched non-woven filters with different post-treatments were studied by filter testing system. The pressure drop was measured at various filtration velocity, dust deposition time and the temperature during the experiment; and the effect of dust-cleaning as the consequence of pressure of filter bag was measured. The results showed that post-treatments transformed the surfaces of filters, and the dust formation differed greatly. Excessively high filtration velocity decreased the peak pressure in the process of dust-cleaning. The pressure of filter bag was increased as the dust layers were thickened. The higher temperature in filtration rose the peak pressure of filter bag, but decreased the rate of rising.

  13. Measuring and understanding total dissolved gas pressure in groundwater

    Science.gov (United States)

    Ryan, C.; Roy, J. W.; Randell, J.; Castellon, L.

    2009-05-01

    Since dissolved gases are important to a number of aspects of groundwater (e.g. age dating, active or passive bioremediation, greenhouse gas fluxes, understanding biogeochemical processes involving gases, assessing potential impacts of coal bed methane activities), accurate concentration measurements, and understanding of their subsurface behaviour are important. Researchers have recently begun using total dissolved gas pressure (TGP) sensor measurements, more commonly applied for surface water monitoring, in concert with gas composition analyses to estimate more accurate groundwater gas concentrations in wells. We have used hydraulic packers to isolate the well screens where TDP is being measured, and pump tests to indicate that in-well degassing may reduce TDG below background groundwater levels. Thus, in gas-charged groundwater zones, TGPs can be considerably underestimated in the absence of pumping or screen isolation. We have also observed transient decreased TGPs during pumping that are thought to result from ebullition induced when the water table or water level in the well is lowered below a critical hydrostatic pressure.

  14. Analytical and computational methodology to assess the over pressures generated by a potential catastrophic failure of a cryogenic pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, I.; Fradera, J.; Jaskiewicz, F.; Lopez, D.; Hermosa, B.; Aleman, A.; Izquierdo, J.; Buskop, J.

    2014-07-01

    Idom has participated in the risk evaluation of Safety Important Class (SIC) structures due to over pressures generated by a catastrophic failure of a cryogenic pressure vessel at ITER plant site. The evaluation implements both analytical and computational methodologies achieving consistent and robust results. (Author)

  15. Analytical and computational methodology to assess the over pressures generated by a potential catastrophic failure of a cryogenic pressure vessel

    International Nuclear Information System (INIS)

    Zamora, I.; Fradera, J.; Jaskiewicz, F.; Lopez, D.; Hermosa, B.; Aleman, A.; Izquierdo, J.; Buskop, J.

    2014-01-01

    Idom has participated in the risk evaluation of Safety Important Class (SIC) structures due to over pressures generated by a catastrophic failure of a cryogenic pressure vessel at ITER plant site. The evaluation implements both analytical and computational methodologies achieving consistent and robust results. (Author)

  16. Reaction of blood pressure and mesenteric blood flow to infusion of biogenic amines in normal and supralethally x-irradiated rats

    International Nuclear Information System (INIS)

    Timmermans, R.; Gerber, G.B.

    1980-01-01

    The responss of blood pressure and mesenteric blood flow were recorded during infusion of biogenic amines (noradrenaline, dopamine, serotonin, acetylcholine, and histamine) to control and x-irradiated rats (first and third days after 2 kR x irradiation). Responses to different doses of the amines were evaluated, and the results obtained correspond to those seen in other species (e.g., an increase in pressure and a decrease in flow after dopamine, an increase in pressure and a decrease in flow after serotonin, a decrease in pressure and flow after acetylcholine, and a decrease in flow after serotonin, a decrease in pressure and flow after acetylcholine, and a decrease in pressure and an increase in flow after histamine). Irradiated animals are more responsive to pressure-raising agents, in particular to noradrenaline. They also have an altered dose-pressure response curve for dopamine

  17. High-pressure structural behavior of nanocrystalline Ge

    DEFF Research Database (Denmark)

    Wang, H.; Liu, J. F.; Yan, H.

    2007-01-01

    The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse at the transi...

  18. The mechanism of coking pressure generation I: Effect of high volatile matter coking coal, semi-anthracite and coke breeze on coking pressure and plastic coal layer permeability

    Energy Technology Data Exchange (ETDEWEB)

    Seiji Nomura; Merrick Mahoney; Koichi Fukuda; Kenji Kato; Anthony Le Bas; Sid McGuire [Nippon Steel Corporation, Chiba (Japan). Environment and Process Technology Center

    2010-07-15

    One of the most important aspects of the cokemaking process is to control and restrain the coking pressure since excessive coking pressure tends to lead to operational problems and oven wall damage. Therefore, in order to understand the mechanism of coking pressure generation, the permeability of the plastic coal layer and the coking pressure for the same single coal and the same blended coal were measured and the relationship between them was investigated. Then the 'inert' (pressure modifier) effect of organic additives such as high volatile matter coking coal, semi-anthracite and coke breeze was studied. The coking pressure peak for box charging with more uniform bulk density distribution was higher than that for top charging. It was found that the coking pressure peaks measured at different institutions (NSC and BHPBilliton) by box charging are nearly the same. The addition of high volatile matter coking coal, semi-anthracite and coke breeze to a low volatile matter, high coking pressure coal greatly increased the plastic layer permeability in laboratory experiments and correspondingly decreased the coking pressure. It was found that, high volatile matter coking coal decreases the coking pressure more than semi-anthracite at the same plastic coal layer permeability, which indicates that the coking pressure depends not only on plastic coal layer permeability but also on other factors. Coking pressure is also affected by the contraction behavior of the coke layer near the oven walls and a large contraction decreases the coal bulk density in the oven center and hence the internal gas pressure in the plastic layer. The effect of contraction on coking pressure needs to be investigated further. 33 refs., 18 figs., 5 tabs.

  19. Involvement of hypoglossal and recurrent laryngeal nerves on swallowing pressure.

    Science.gov (United States)

    Tsujimura, Takanori; Suzuki, Taku; Yoshihara, Midori; Sakai, Shogo; Koshi, Naomi; Ashiga, Hirokazu; Shiraishi, Naru; Tsuji, Kojun; Magara, Jin; Inoue, Makoto

    2018-05-01

    Swallowing pressure generation is important to ensure safe transport of an ingested bolus without aspiration or leaving residue in the pharynx. To clarify the mechanism, we measured swallowing pressure at the oropharynx (OP), upper esophageal sphincter (UES), and cervical esophagus (CE) using a specially designed manometric catheter in anesthetized rats. A swallow, evoked by punctate mechanical stimulation to the larynx, was identified by recording activation of the suprahyoid and thyrohyoid muscles using electromyography (EMG). Areas under the curve of the swallowing pressure at the OP, UES, and CE from two trials indicated high intrasubject reproducibility. Effects of transecting the hypoglossal nerve (12N) and recurrent laryngeal nerve (RLN) on swallowing were investigated. Following bilateral hypoglossal nerve transection (Bi-12Nx), OP pressure was significantly decreased, and time intervals between peaks of thyrohyoid EMG bursts and OP pressure were significantly shorter. Decreased OP pressure and shortened times between peaks of thyrohyoid EMG bursts and OP pressure following Bi-12Nx were significantly increased and longer, respectively, after covering the hard and soft palates with acrylic material. UES pressure was significantly decreased after bilateral RLN transection compared with that before transection. These results suggest that the 12N and RLN play crucial roles in OP and UES pressure during swallowing, respectively. We speculate that covering the palates with a palatal augmentation prosthesis may reverse the reduced swallowing pressure in patients with 12N or tongue damage by the changes of the sensory information and of the contact between the tongue and a palates. NEW & NOTEWORTHY Hypoglossal nerve transection reduced swallowing pressure at the oropharynx. Covering the hard and soft palates with acrylic material may reverse the reduced swallowing function caused by hypoglossal nerve damage. Recurrent laryngeal nerve transection reduced upper

  20. Evaluation of the a.c. potential drop method to determine J-crack resistance curves for a pressure vessel steel

    International Nuclear Information System (INIS)

    Gibson, G.P.

    1989-01-01

    An evaluation has been carried out of the a.c. potential drop technique for determining J-crack growth resistance curves for a pressure vessel steel. The technique involves passing an alternating current through the specimen and relating the changes in the potential drop across the crack mouth to changes in crack length occuring during the test. The factors investigated were the current and voltage probe positions, the a.c. frequency and the test temperature. In addition, by altering the heat treatment of the material, J-crack resistance curves were obtained under both contained and non-contained yielding conditions. In all situations, accurate J-R curves could be determined. (author)

  1. Relieving dyspnoea by non-invasive ventilation decreases pain thresholds in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Dangers, Laurence; Laviolette, Louis; Georges, Marjolaine; Gonzalez-Bermejo, Jésus; Rivals, Isabelle; Similowski, Thomas; Morelot-Panzini, Capucine

    2017-03-01

    Dyspnoea is a threatening sensation of respiratory discomfort that presents many similarities with pain. Experimental dyspnoea in healthy subjects induces analgesia. This 'dyspnoea-pain counter-irritation' could, in reverse, imply that relieving dyspnoea in patients with chronic respiratory diseases would lower their pain thresholds. We first determined pressure pain thresholds in 25 healthy volunteers (22-31 years; 13 men; handheld algometer), during unloaded breathing (BASELINE) and during inspiratory threshold loading (ITL). Two levels of loading were used, adjusted to induce dyspnoea self-rated at 60% or 80% of a 10 cm visual analogue scale (ITL6 and ITL8). 18 patients with chronic respiratory failure due to amyotrophic lateral sclerosis (ALS) were then studied during unassisted breathing and after 30 and 60 min of non-invasive ventilation-NIV30 and NIV60-(same dyspnoea evaluation). In healthy volunteers, pressure pain thresholds increased significantly in the deltoid during ITL6 (pNIV30 and NIV60 (pNIV in patients with ALS having respiratory failure is associated with decreased pressure pain thresholds. Clinical implications have yet to be determined, but this observation suggests that patients with ALS could become more susceptible to pain after the institution of NIV, hence the need for reinforced attention towards potentially painful diagnostic and therapeutic interventions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. The influence of initial pressure on the characteristics of conical bubble sonoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    He, Shoujie, E-mail: heshouj@hbu.edu.cn [Hebei Key Laboratory of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Ha, Jing [Institute of Science, Hebei Agriculture University, Baoding 071001 (China); Duan, Pingguang [Hebei Key Laboratory of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002 (China)

    2015-12-18

    Based on a conical bubble U-tube, conical bubble sonoluminescence was investigated by using pure water as the working medium. Intense cavitation luminescence can be obtained. With the decrease in initial pressure inside the bubble, the intensity and duration of light emission increased. The spectrum is mainly composed of the spectral bands of H{sub 2}O at the initial pressure of 1000 Pa. With the decrease in initial pressure, a broad continuum background spectrum that is well fitted by blackbody radiation can be detected, on which several spectral bands emitted by water molecules are superimposed. A higher temperature inside the bubble can be obtained with the decrease in initial pressure. Moreover, the intensity of the continuum background spectrum becomes more dominant compared with that of H{sub 2}O emission bands. Finally, we conclude that blackbody radiation and molecular emission contribute to luminescence of conical bubble cavitation. Moreover, the initial pressure inside the conical bubble significantly affects the emission mechanism of conical bubble sonoluminescence. - Highlights: • The spectra and light pulses of CBL are investigated in pure water. • The continuum background spectrum becomes more dominant with decrease of initial pressure. • The mechanism of CBL depends on the initial pressure of bubble. • Blackbody radiation and molecular emission contribute to luminescence of conical bubble cavitation.

  3. Piezoresistive silicon pressure sensors in cryogenic environment

    Science.gov (United States)

    Kahng, Seun K.; Chapman, John J.

    1989-01-01

    This paper presents data on low-temperature measurements of silicon pressure sensors. It was found that both the piezoresistance coefficients and the charge-carrier mobility increase with decreasing temperature. For lightly doped semiconductor materials, the density of free charge carriers decreases with temperature and can freeze out eventually. However, the effect of carrier freeze-out can be minimized by increasing the impurity content to higher levels, at which the temperature dependency of piezoresistance coefficients is reduced. An impurity density of 1 x 10 to the 19th/cu cm was found to be optimal for cryogenic applications of pressure sensor dies.

  4. Transdermal deferoxamine prevents pressure-induced diabetic ulcers.

    Science.gov (United States)

    Duscher, Dominik; Neofytou, Evgenios; Wong, Victor W; Maan, Zeshaan N; Rennert, Robert C; Inayathullah, Mohammed; Januszyk, Michael; Rodrigues, Melanie; Malkovskiy, Andrey V; Whitmore, Arnetha J; Walmsley, Graham G; Galvez, Michael G; Whittam, Alexander J; Brownlee, Michael; Rajadas, Jayakumar; Gurtner, Geoffrey C

    2015-01-06

    There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation.

  5. Too humanlike to increase my appetite: Disposition to anthropomorphize animals relates to decreased meat consumption through empathic concern.

    Science.gov (United States)

    Niemyjska, Aleksandra; Cantarero, Katarzyna; Byrka, Katarzyna; Bilewicz, Michał

    2018-04-12

    People who exclude meat from their diets are not only devoid of situational pressures to disengage morally and deny humanlike mental states to animals but also they may be dispositionally more inclined to ascribe human-like qualities to non-human animals than omnivores. The aim of this research was to test whether individual differences in anthropomorphism are related to empathic connection with non-human animals and hence decreased meat consumption. In two studies (N = 588) we confirmed that decreased meat consumption was associated with both increased recognition of human features of animals and increased empathy to animals. Most importantly, our data support a model in which animals' anthropomorphism predicts empathy. Empathy, in turn, increases the importance that potential animal harm plays in dietary choices regarding meat, leading to reduced meat consumption. Copyright © 2018. Published by Elsevier Ltd.

  6. Saltstone Osmotic Pressure

    International Nuclear Information System (INIS)

    Nichols, Ralph L.; Dixon, Kenneth L.

    2013-01-01

    Recent research into the moisture retention properties of saltstone suggest that osmotic pressure may play a potentially significant role in contaminant transport (Dixon et al., 2009 and Dixon, 2011). The Savannah River Remediation Closure and Disposal Assessments Group requested the Savannah River National Laboratory (SRNL) to conduct a literature search on osmotic potential as it relates to contaminant transport and to develop a conceptual model of saltstone that incorporates osmotic potential. This report presents the findings of the literature review and presents a conceptual model for saltstone that incorporates osmotic potential. The task was requested through Task Technical Request HLW-SSF-TTR-2013-0004. Simulated saltstone typically has very low permeability (Dixon et al. 2008) and pore water that contains a large concentration of dissolved salts (Flach and Smith 2013). Pore water in simulated saltstone has a high salt concentration relative to pore water in concrete and groundwater. This contrast in salt concentration can generate high osmotic pressures if simulated saltstone has the properties of a semipermeable membrane. Estimates of osmotic pressure using results from the analysis of pore water collected from simulated saltstone show that an osmotic pressure up to 2790 psig could be generated within the saltstone. Most semi-permeable materials are non-ideal and have an osmotic efficiency 3 , KNO 3 , Na 3 PO 4 x12H 2 O, and K 3 PO 4 when exposed to a dilute solution. Typically hydraulic head is considered the only driving force for groundwater in groundwater models. If a low permeability material containing a concentrated salt solution is present in the hydrogeologic sequence large osmotic pressures may develop and lead to misinterpretation of groundwater flow and solute transport. The osmotic pressure in the semi-permeable material can significantly impact groundwater flow in the vicinity of the semi-permeable material. One possible outcome is that

  7. Evolution of the microstructure and nanohardness of Ti-48 at.%Al alloy solidified under high pressure

    International Nuclear Information System (INIS)

    Wang, Hongwei; Zhu, Dongdong; Zou, Chunming; Wei, Zunjie

    2012-01-01

    Highlights: → The microstructure of Ti-48Al alloy changes under high pressure. → With increasing pressure, the amount of γ s phase decreases. → High pressure leads to the decreasing of lamellar spacing. → The nanohardness of lamellar structure increases with pressure. -- Abstract: In this work the microstructure and nanohardness of Ti-48 at.%Al alloy solidified under different pressures (normal pressure, 2 GPa, 4 GPa) were experimental investigated by using a tungsten-carbide six-anvil apparatus. The results indicate that high pressure does not change the phase constitution of Ti-48 at.%Al alloy. However, the microstructure changes under high pressure. With increasing pressure, the volume fraction of interdendritic γ (γ s ) phase decreases and Al concentration in lamellae increases. When the pressure is 4 GPa, there is only a little γ s embedded in lamellar structure. The volume fraction of γ s phase is approximately 17.0% for normal pressure, 8.73% for 2 GPa, 0.69% for 4 GPa. The lamellar spacings also decrease with pressure, which are 495 nm, 345 nm, 227 nm under normal pressure, 2 GPa, 4 GPa, respectively. The change in nanohardness was discussed based on the microstructural observations. It shows a certain increase of the nanohardness as the pressure increases from normal pressure to 4 GPa. When the pressure is 4 GPa, the nanohardness increases by 50.2% compared with that of normal pressure.

  8. Praziquantel treatment decreases Schistosoma mansoni genetic diversity in experimental infections.

    Directory of Open Access Journals (Sweden)

    Regina Coeli

    Full Text Available BACKGROUND: Schistosomiasis has a considerable impact on public health in many tropical and subtropical areas. In the new world, schistosomiasis is caused by the digenetic trematode Schistosoma mansoni. Chemotherapy is the main measure for controlling schistosomiasis, and the current drug of choice for treatment is praziquantel (PZQ. Although PZQ is efficient and safe, its repetitive large-scale use in endemic areas may lead to the selection of resistant strains. Isolates less susceptible to PZQ have been found in the field and selected for in the laboratory. The impact of selecting strains with a decreased susceptibility phenotype on disease dynamics and parasite population genetics is not fully understood. This study addresses the impact of PZQ pressure on the genetics of a laboratory population by analyzing frequency variations of polymorphic genetic markers. METHODOLOGY: Infected mice were treated with increasing PZQ doses until the highest dose of 3 × 300 mg/Kg was reached. The effect of PZQ treatment on the parasite population was assessed using five polymorphic microsatellite markers. Parasitological and genetic data were compared with those of the untreated control. After six parasite generations submitted to treatment, it was possible to obtain a S. mansoni population with decreased susceptibility to PZQ. In our experiments we also observed that female worms were more susceptible to PZQ than male worms. CONCLUSIONS: The selective pressure exerted by PZQ led to decreased genetic variability in S. mansoni and increased endogamy. The understanding of how S. mansoni populations respond to successive drug pressure has important implications on the appearance and maintenance of a PZQ resistance phenotype in endemic regions.

  9. A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe-20Cr alloy

    International Nuclear Information System (INIS)

    Zhang Tao; Yang Yange; Shao Yawei; Meng, Guozhe; Wang, Fuhui

    2009-01-01

    The effect of hydrostatic pressure on the pit corrosion behavior of Fe-20Cr alloy was investigated in 3.5% NaCl solution by means of potentiodynamic polarization and potentiostatic technology, and the experiment data was analyzed based on stochastic theory. With the increase of hydrostatic pressure, the pit corrosion resistance of Fe-20Cr alloy was deteriorated, which was distinguished by the decrease of critical pit potential (E cirt ) and the increase of passive current density. The results also demonstrated that there exist two effects of hydrostatic pressure on the corrosion behavior of Fe-20Cr alloy: (1) the pit generation rate was evidently increased compared to that under lower hydrostatic pressure, and the metastable pits become faster and larger. However, it seemed that pit generation mechanism shows no hydrostatic pressure dependence; (2) the probability of pit growth increased with the increase of hydrostatic pressure, which implied that the metastable pit on Fe-20Cr alloy exhibited higher probability to become larger pit cavity during shorter time interval than that under lower hydrostatic pressure.

  10. Convective plasma stability consistent with MHD equilibrium in magnetic confinement systems with a decreasing field

    International Nuclear Information System (INIS)

    Tsventoukh, M. M.

    2010-01-01

    A study is made of the convective (interchange, or flute) plasma stability consistent with equilibrium in magnetic confinement systems with a magnetic field decreasing outward and large curvature of magnetic field lines. Algorithms are developed which calculate convective plasma stability from the Kruskal-Oberman kinetic criterion and in which the convective stability is iteratively consistent with MHD equilibrium for a given pressure and a given type of anisotropy in actual magnetic geometry. Vacuum and equilibrium convectively stable configurations in systems with a decreasing, highly curved magnetic field are calculated. It is shown that, in convectively stable equilibrium, the possibility of achieving high plasma pressures in the central region is restricted either by the expansion of the separatrix (when there are large regions of a weak magnetic field) or by the filamentation of the gradient plasma current (when there are small regions of a weak magnetic field, in which case the pressure drops mainly near the separatrix). It is found that, from the standpoint of equilibrium and of the onset of nonpotential ballooning modes, a kinetic description of convective stability yields better plasma confinement parameters in systems with a decreasing, highly curved magnetic field than a simpler MHD model and makes it possible to substantially improve the confinement parameters for a given type of anisotropy. For the Magnetor experimental compact device, the maximum central pressure consistent with equilibrium and stability is calculated to be as high as β ∼ 30%. It is shown that, for the anisotropy of the distribution function that is typical of a background ECR plasma, the limiting pressure gradient is about two times steeper than that for an isotropic plasma. From a practical point of view, the possibility is demonstrated of achieving better confinement parameters of a hot collisionless plasma in systems with a decreasing, highly curved magnetic field than those

  11. Full scale measurements of pressure equalization on air permeable facade elements

    NARCIS (Netherlands)

    Bentum, C.A. van; Geurts, C.P.W.

    2015-01-01

    Wind-induced pressure differences over rain screens are determined by the external pressures and the pressures inside the cavity. Minimizing this pressure difference decreases the risk of water leakage and also helps to minimize the local loads on the façade elements. Current rules to determine the

  12. Effect of High Pressure and Heat on Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Dirk Margosch

    2005-01-01

    Full Text Available Even though the inactivation of microorganisms by high pressure treatment is a subject of intense investigations, the effect of high pressure on bacterial toxins has not been studied so far. In this study, the influence of combined pressure/temperature treatment (0.1 to 800 MPa and 5 to 121 °C on bacterial enterotoxins was determined. Therefore, heat-stable enterotoxin (STa of cholera toxin (CT from Vibrio cholerae, staphylococcal enterotoxins A-E, haemolysin BL (HBL from Bacillus cereus, and Escherichia coli (STa were subjected to different treatment schemes. Structural alterations were monitored in enzyme immunoassays (EIAs. Cytotoxicity of the pressure treated supernatant of toxigenic B. cereus DSM 4384 was investigated with Vero cells. High pressure of 200 to 800 MPa at 5 °C leads to a slight increase of the reactivity of the STa of E. coli. However, reactivity decreased at 800 MPa and 80 °C to (66±21 % after 30 min and to (44±0.3 % after 128 min. At ambient pressure no decrease in EIA reactivity could be observed after 128 min. Pressurization (0.1 to 800 MPa of heat stable monomeric staphylococcal toxins at 5 and 20 °C showed no effect. A combined heat (80 °C and pressure (0.1 to 800 MPa treatment lead to a decrease in the immuno-reactivity to 20 % of its maximum. For cholera toxin a significant loss in latex agglutination was observable only at 80 °C and 800 MPa for holding times higher than 20 min. Interestingly, the immuno-reactivity of B. cereus HBL toxin increased with the increase of pressure (182 % at 800 MPa, 30 °C, and high pressure showed only minor effects on cytotoxicity to Vero cells. Our results indicate that pressurization can increase inactivation observed by heat treatment, and combined treatments may be effective at lower temperatures and/or shorter incubation time.

  13. Secular trends of blood pressure in A-bomb survivors

    International Nuclear Information System (INIS)

    Sasaki, Hideo; Kodama, Kazunori; Kitano, Koei

    1986-01-01

    There has been controversy about whether or not radiation exposure plays a major role in advancing age. To preliminarily study this relationship, a statistical analysis was made on blood pressure measurements in a cohort of A-bomb survivors for Adult Health Study carried out during a 22-year period from 1958 through 1980. Systolic blood pressure increased with advancing age in both men and women between 30 and 80 years. During the years 1974 through 1980, it tended to increase in both men and women aged in their thirties and fourties. Diastolic blood pressure for men increased between the ages of 30 and 60 years, and decreased between the ages of 60 and 80 years. It tended to increase from year to year for men. For women, it decreased prior to the 1970's, and thereafter, tended to increase. The parameters, including systolic and diastolic blood pressures and pulse pressure, were independent of exposure doses in the subgroups according to age or sex. (Namekawa, K.)

  14. Performance potential of mechanical ventilation systems with minimized pressure loss

    DEFF Research Database (Denmark)

    Terkildsen, Søren; Svendsen, Svend

    2013-01-01

    simulations that quantify fan power consumption, heating demand and indoor environmental conditions. The system was designed with minimal pressure loss in the duct system and heat exchanger. Also, it uses state-of-the-art components such as electrostatic precipitators, diffuse ceiling inlets and demand......In many locations mechanical ventilation has been the most widely used principle of ventilation over the last 50 years but the conventional system design must be revised to comply with future energy requirements. This paper examines the options and describes a concept for the design of mechanical...... ventilation systems with minimal pressure loss and minimal energy use. This can provide comfort ventilation and avoid overheating through increased ventilation and night cooling. Based on this concept, a test system was designed for a fictive office building and its performance was documented using building...

  15. N Reactor pressure tube 1350 postirradiation examination

    International Nuclear Information System (INIS)

    Cook, D.J.

    1977-01-01

    The N Reactor pressure tubes were fabricated from Zircaloy-2 primarily due to the excellent corrosion resistance, low neutron absorption, and high strength properties of this alloy. Irradiation damage mechanisms increase the strength and decrease the ductility of the Zircaloy-2. Irradiation data available at the time the tubes were installed indicated that fast neutron irradiation damage mechanisms would not decrease the ductility to unacceptable levels over the estimated plant life of 25 to 30 years. However, because the tubes are a primary coolant system component and only limited data are available on irradiation effects at high fluences, a Postirradiation Examination (PIE) program was developed to assure that service factors do not compromise pressure tube integrity essential to reactor safety. The PIE program requires that a pressure tube be periodically removed from the reactor for destructive testing. The N Reactor Technical Specifications specify that the frequency of pressure tube removal and examination be based upon the previous PIE test results. Four pressure tubes were examined before tube 1350, and the test results were summarized in individual reports. PIE results on tube 1350 were summarized along with the test results on the previous four tubes in a previous report. The purpose of this report is to present in detail the results on PIE of pressure tube 1350, and, in particular, document the technique by which the fracture toughness of the pressure tube was determined

  16. Time-averaged second-order pressure and velocity measurements in a pressurized oscillating flow prime mover

    Energy Technology Data Exchange (ETDEWEB)

    Paridaens, Richard [DynFluid, Arts et Metiers, 151 boulevard de l' Hopital, Paris (France); Kouidri, Smaine [LIMSI-CNRS, Orsay Cedex (France)

    2016-11-15

    Nonlinear phenomena in oscillating flow devices cause the appearance of a relatively minor secondary flow known as acoustic streaming, which is superimposed on the primary oscillating flow. Knowledge of control parameters, such as the time-averaged second-order velocity and pressure, would elucidate the non-linear phenomena responsible for this part of the decrease in the system's energetic efficiency. This paper focuses on the characterization of a travelling wave oscillating flow engine by measuring the time-averaged second order pressure and velocity. Laser Doppler velocimetry technique was used to measure the time-averaged second-order velocity. As streaming is a second-order phenomenon, its measurement requires specific settings especially in a pressurized device. Difficulties in obtaining the proper settings are highlighted in this study. The experiments were performed for mean pressures varying from 10 bars to 22 bars. Non-linear effect does not constantly increase with pressure.

  17. Child Abuse, Resting Blood Pressure, and Blood Pressure Reactivity to Psychosocial Stress.

    Science.gov (United States)

    Gooding, Holly C; Milliren, Carly E; Austin, S Bryn; Sheridan, Margaret A; McLaughlin, Katie A

    2016-01-01

    Childhood trauma is associated with hypertension in adults. It is unknown whether childhood trauma predicts elevated blood pressure earlier in development. We investigated whether the trauma of child abuse was associated with blood pressure in adolescents. The sample included 145 adolescents aged 13-17 years, 40% with exposure to child abuse. The mean age of participants was 14.93 years (SD = 1.33); 58% were female. The majority self-identified as non-Hispanic White (43%), with the remainder identifying as non-Hispanic Black (17%), Hispanic (17%), or other/mixed race (23%). We used established age/sex/height-specific cutoffs to determine the prevalence of prehypertension and hypertension in the sample. We used two-sample t tests to examine associations of abuse with resting systolic blood pressure (SBP) and diastolic blood pressure (DBP) and blood pressure reactivity to the Trier Social Stress Test and a frustration task. We used linear regression to adjust for potential confounders including sociodemographic variables, body mass index, smoking, and psychopathology. Mean resting SBP and DBP were 114.07 mmHg and 61.35 mmHg in those with a history of abuse and 111.39 mmHg and 56.89 mmHg in those without a history of abuse. This difference was significant for DBP only. Twelve percent of participants met criteria for prehypertension or hypertension based on resting blood pressure values; this did not differ between those with and without an abuse history. Child abuse was associated with lower DBP and SBP reactivity to laboratory stress tasks and reduced DBP reactivity to frustration. These associations were robust to adjustment for potential confounders. Child abuse is associated with higher resting DBP and blunted DBP and SBP reactivity to laboratory stress in adolescence. These findings suggest a potential pathway by which child abuse leads to hypertension. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All

  18. Pressure breathing in fighter aircraft for G accelerations and loss of cabin pressurization at altitude--a brief review.

    Science.gov (United States)

    Lauritzsen, Lars P; Pfitzner, John

    2003-04-01

    The purpose of this brief review is to outline the past and present use of pressure breathing, not by patients but by fighter pilots. Of the historical and recent references quoted, most are from aviation-medicine journals that are not often readily available to anesthesiologists. Pressure breathing at moderate levels of airway pressure gave World War II fighter pilots a tactical altitude advantage. With today's fast and highly maneuverable jet fighters, very much higher airway pressures of the order of 8.0 kPa (identical with 60 mmHg) are used. They are used in conjunction with a counterpressure thoracic vest and an anti-G suit for the abdomen and lower body. Pressurization is activated automatically in response to +Gz accelerations, and to a potentially catastrophic loss of cabin pressurization at altitude. During +Gz accelerations, pressure breathing has been shown to maintain cerebral perfusion by raising the systemic arterial pressure, so increasing the level of G-tolerance that is afforded by the use of anti-G suits and seat tilt-back angles alone. This leaves the pilot less reliant on rigorous, and potentially distracting, straining maneuvers. With loss of cabin pressurization at altitude, pressure breathing of 100% oxygen at high airway pressures enables the pilot's alveolar PO(2) to be maintained at a safe level during emergency descent. Introduced in military aviation, pressure breathing for G-tolerance and pressure breathing for altitude presented as concepts that may be of general physiological interest to many anesthesiologists.

  19. Structural and electrical properties of TmTe under high pressure

    International Nuclear Information System (INIS)

    Tang, Jie; Matsumoto, Takehiko; Kosaka, Takayuki; Matsumura, Takeshi; Suzuki, Takashi; Mori, Nobuo

    1997-01-01

    Pressure-induced valence state of Tm ions in TmTe has been investigated by measurements of electrical resistivity in situ x-ray diffraction and magnetic susceptibility at high pressure. Below 2 GPa, the valence of Tm was confirmed to be 2 + from the results of compressibility and magnetic susceptibility. The pressure dependence of the electrical resistivity up to 2 GPa at room temperature showed an exponential decrease, indicating a linear closing of the energy gap at a rate of -1 meV/GPa. In the pressure range above 2 GPa where the energy gap disappeared, the valence transition from Tm 2+ to Tm 3+ was concluded from the pressure dependence of the lattice parameters. The electrical resistivity showing a logarithmic temperature dependence was reminiscent of Kondo effect. Above 6 GPa at which the pressure dependence of electrical resistivity abruptly decreased, the structure was confirmed to transform from the NaCl-type with Tm 3+ to a tetragonal structure. (author)

  20. Resistome diversity in cattle and the environment decreases during beef production.

    Science.gov (United States)

    Noyes, Noelle R; Yang, Xiang; Linke, Lyndsey M; Magnuson, Roberta J; Dettenwanger, Adam; Cook, Shaun; Geornaras, Ifigenia; Woerner, Dale E; Gow, Sheryl P; McAllister, Tim A; Yang, Hua; Ruiz, Jaime; Jones, Kenneth L; Boucher, Christina A; Morley, Paul S; Belk, Keith E

    2016-03-08

    Antimicrobial resistant determinants (ARDs) can be transmitted from livestock systems through meat products or environmental effluents. The public health risk posed by these two routes is not well understood, particularly in non-pathogenic bacteria. We collected pooled samples from 8 groups of 1741 commercial cattle as they moved through the process of beef production from feedlot entry through slaughter. We recorded antimicrobial drug exposures and interrogated the resistome at points in production when management procedures could potentially influence ARD abundance and/or transmission. Over 300 unique ARDs were identified. Resistome diversity decreased while cattle were in the feedlot, indicating selective pressure. ARDs were not identified in beef products, suggesting that slaughter interventions may reduce the risk of transmission of ARDs to beef consumers. This report highlights the utility and limitations of metagenomics for assessing public health risks regarding antimicrobial resistance, and demonstrates that environmental pathways may represent a greater risk than the food supply.

  1. A common humoral background of intraocular and arterial blood pressure dysregulation.

    Science.gov (United States)

    Skrzypecki, Janusz; Grabska-Liberek, Iwona; Przybek, Joanna; Ufnal, Marcin

    2018-03-01

    It has been postulated that intraocular pressure, an important glaucoma risk factor, correlates positively with arterial blood pressure (blood pressure). However, results of experimental and clinical studies are often contradictory. It is hypothesized that, in some hypertensive patients, disturbances in intraocular pressure regulation may depend on biological effects of blood borne hormones underlying a particular type of hypertension, rather than on blood pressure level itself. This review compares the effects of hormones on blood pressure and intraocular pressure, in order to identify a hormonal profile of hypertensive patients with an increased risk of intraocular pressure surge. The PUBMED database was searched to identify pre-clinical and clinical studies investigating the role of angiotensin II, vasopressin, adrenaline, noradrenaline, prostaglandins, and gaseous transmitters in the regulation of blood pressure and intraocular pressure. Studies included in the review suggest that intraocular and blood pressures often follow a different pattern of response to the same hormone. For example, vasopressin increases blood pressure, but decreases intraocular pressure. In contrast, high level of nitric oxide decreases blood pressure, but increases intraocular pressure. Arterial hypertension is associated with altered levels of blood borne hormones. Contradicting results of studies on the relationship between arterial hypertension and intraocular pressure might be partially explained by diverse effects of hormones on arterial and intraocular pressures. Further studies are needed to evaluate if hormonal profiling may help to identify glaucoma-prone patients.

  2. Photoluminescence study of Congo red molecules under high pressure

    International Nuclear Information System (INIS)

    Wang, Z.P.; Zhang, Z.M.; Ding, Z.J.

    2007-01-01

    Pressure-induced changes on fluorescence spectra of Congo red molecules were examined up to 8.7 GPa using a diamond anvil cell at room temperature. The spectra changes are demonstrated to be sensitive to the pressure and solvent conditions. At hydrostatic pressure and with a solvent used as a pressure transmitting medium the fluorescence spectra show increase of intensity with elevated pressure up to about 2.3 GPa and then drop at higher pressures. For Congo red crystal under quasi-hydrostatic condition without solvent the fluorescence intensity decreases monotonically and the lower energy band becomes dominant with the pressure increasing. The three vibronic bands show red shifts with increase of pressure

  3. Monte Carlo study of one-dimensional confined fluids with Gay-Berne intermolecular potential

    Science.gov (United States)

    Moradi, M.; Hashemi, S.

    2011-11-01

    The thermodynamic quantities of a one dimensional system of particles with Gay-Berne model potential confined between walls have been obtained by means of Monte Carlo computer simulations. For a number of temperatures, the systems were considered and their density profiles, order parameter, pressure, configurational temperature and average potential energy per particle are reported. The results show that by decreasing the temperature, the soft particles become more ordered and they align to the walls and also they don't show any tendency to be near the walls at very low temperatures. We have also changed the structure of the walls by embedding soft ellipses in them, this change increases the total density near the wall whereas, increasing or decreasing the order parameter depend on the angle of embedded ellipses.

  4. Effect of sintering pressure on structure and magnetic properties of Zn0.99Ni0.01O bulk samples synthesized under different pressures

    International Nuclear Information System (INIS)

    Wang, Yongqiang; Yuan, Chaosheng; Su, Lei; Wang, Zheng; Hao, Junhong; Ren, Yufen

    2015-01-01

    A series of Zn 0.99 Ni 0.01 O bulk samples were prepared by a coprecipitation method, and then sintered at 600 °C under various pressures from normal pressure(NP) to 3 GPa. The effects of sintering pressure (P S ) on the structure, morphology and magnetic properties of the doping samples were investigated in detail. The XRD and HRTEM results reveal that all samples are of single-phase hexagonal structure. Compared with the sample sintered at normal pressure, the lattice parameters a and c of the samples sintered at high pressures (HP) show a sharply decrease. With the increase of sintering pressure, the particle size gradually increases as well as the particles get closer to each other. At 300 K, the sample sintered at normal pressure shows a superparamagnetic-like behavior, while the samples sintered at high pressures display typical ferromagnetic behaviors. The saturation magnetization of the samples sintered at high pressures is three orders of magnitude larger than that of the one sintered at normal pressure. Our results reveal that an appropriate sintering pressure can tune the magnetic properties of Ni-doped ZnO system by changing the lattice parameters, particle size and inter-particle spacing, which may be helpful to the practical applications. - Highlights: • A series of Zn 0.99 Ni 0.01 O bulk samples were sintered in different pressures. • The lattice constants of the samples sintered at high pressure clearly decrease. • The particle size increases gradually with the increase of sintering pressure. • The samples sintered at different pressures show different magnetic behaviors. • Appropriate sintering pressure can tune the magnetic properties of Zn–Ni–O system

  5. High-pressure structural behaviour of nanocrystalline Ge

    International Nuclear Information System (INIS)

    Wang, H; Liu, J F; He, Y; Wang, Y; Chen, W; Jiang, J Z; Olsen, J Staun; Gerward, L

    2007-01-01

    The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse at the transition remains constant. Simplified models for the high-pressure structural behaviour are presented, based on the assumption that a large fraction of the atoms reside in grain boundary regions of the nanocrystalline material. The interface structure plays a significant role in affecting the transition pressure and the bulk modulus

  6. Effect of confining pressure on permeability behavior of Beishan granite

    International Nuclear Information System (INIS)

    Ma Like; Li Yunfeng; Zhao Xingguang; Tan Guohuan

    2012-01-01

    By using of the Electro-Hydraulic Servo-controlled Rock Mechanics Testing System (MTS 815.04) in the University of Hong Kong, a series of permeability tests were performed on specimens of Beishan granite at different confining pressures. The result indicates that: (1) there is a decrease of permeability due to progressive closure of initial microcracks and the corresponding volumetric strain is compressive when the confining pressures increase from 2.5 MPa to 15 MPa, (2) when the confining pressures decrease from 15 MPa to 2.5 MPa, there is an increase of permeability in this stage in relation with the volumetric dilation. (authors)

  7. Exploring nuclear magnetic resonance at the highest pressure. Closing the pseudogap under pressure in a high temperature superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Thomas

    2013-05-13

    In the present work, a novel probe design for high pressure NMR experiments in gem anvil cells (GAC) was used which places a small microcoil inside the high pressure volume as the detection coil. Based on tests carried out at ambient pressure and high pressure of 42 kbar it is demonstrated that this approach is indeed feasible and results in an increase of sensitivity by two orders of magnitude compared to previous GAC-NMR designs. The design was then successfully employed in the investigation of the electronic properties of metallic aluminum and the high temperature superconductor YBa{sub 2}Cu{sub 4}O{sub 8} at pressures of up to 101 kbar. Because of its improved sensitivity and the potential to achieve even higher pressures, the microcoil GAC-NMR setup should prove useful in the investigation of materials under high pressure conditions in the future. In the case of metallic aluminum, the effect of pressure on the electronic density of states at the Fermi level was probed via the Knight-shift K and the spin-lattice relaxation time T{sub 1} at room temperature up to a pressure of 101 kbar, extending the pressure range of previous NMR measurements by a factor of 14 [72]. Most notably, a decrease of K(p) by 11% is detected in the investigated pressure range that is inconsistent with a free electron behavior of the density of states. Numerical band structure calculations that are in excellent agreement with the experimental data suggest that the observed changes of K and T{sub 1} are due to a kink in the electronic states at a Lifshitz-transition at about 75 kbar which has not been observed previously. A further decrease of K by a factor of 2 is predicted to occur in the pressure range up to 300 kbar. In addition, an increase of the NMR linewidths of the metallic aluminum signal was observed above about 42 kbar that is inconsistent with a pure dipolar linewidth. Based on an analysis of the field dependence of this effect it was ascribed to a small additional

  8. Exploring nuclear magnetic resonance at the highest pressure. Closing the pseudogap under pressure in a high temperature superconductor

    International Nuclear Information System (INIS)

    Meissner, Thomas

    2013-01-01

    In the present work, a novel probe design for high pressure NMR experiments in gem anvil cells (GAC) was used which places a small microcoil inside the high pressure volume as the detection coil. Based on tests carried out at ambient pressure and high pressure of 42 kbar it is demonstrated that this approach is indeed feasible and results in an increase of sensitivity by two orders of magnitude compared to previous GAC-NMR designs. The design was then successfully employed in the investigation of the electronic properties of metallic aluminum and the high temperature superconductor YBa 2 Cu 4 O 8 at pressures of up to 101 kbar. Because of its improved sensitivity and the potential to achieve even higher pressures, the microcoil GAC-NMR setup should prove useful in the investigation of materials under high pressure conditions in the future. In the case of metallic aluminum, the effect of pressure on the electronic density of states at the Fermi level was probed via the Knight-shift K and the spin-lattice relaxation time T 1 at room temperature up to a pressure of 101 kbar, extending the pressure range of previous NMR measurements by a factor of 14 [72]. Most notably, a decrease of K(p) by 11% is detected in the investigated pressure range that is inconsistent with a free electron behavior of the density of states. Numerical band structure calculations that are in excellent agreement with the experimental data suggest that the observed changes of K and T 1 are due to a kink in the electronic states at a Lifshitz-transition at about 75 kbar which has not been observed previously. A further decrease of K by a factor of 2 is predicted to occur in the pressure range up to 300 kbar. In addition, an increase of the NMR linewidths of the metallic aluminum signal was observed above about 42 kbar that is inconsistent with a pure dipolar linewidth. Based on an analysis of the field dependence of this effect it was ascribed to a small additional quadrupolar broadening which is

  9. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Kazutaka Sawada

    2016-01-01

    Full Text Available Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus. Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation.

  10. Effect of high hydrostatic pressure on overall quality parameters of watermelon juice.

    Science.gov (United States)

    Liu, Y; Zhao, X Y; Zou, L; Hu, X S

    2013-06-01

    High hydrostatic pressure as a kind of non-thermal processing might maintain the quality of thermo-sensitive watermelon juice. So, the effect of high hydrostatic pressure treatment on enzymes and quality of watermelon juice was investigated. After high hydrostatic pressure treatment, the activities of polyphenol oxidase, peroxidase, and pectin methylesterase of juice decreased significantly with the pressure (P  0.05). No significant difference was observed in lycopene and total phenolics after high hydrostatic pressure treatment when compared to the control (P > 0.05). Cloudiness and viscosity increased with pressure (P  0.05). a*- and b*-value both unchanged after high hydrostatic pressure treatment (P > 0.05) while L*-value increased but the values had no significant difference among treated juices. Browning degree after high hydrostatic pressure treatment decreased with increase in pressure and treatment time (P hydrostatic pressure had little effect on color of juice. The results of this study demonstrated the efficacy of high hydrostatic pressure in inactivating enzymes and maintaining the quality of watermelon juice.

  11. The impact of relative humidity and atmospheric pressure on mortality in Guangzhou, China.

    Science.gov (United States)

    Ou, Chun Quan; Yang, Jun; Ou, Qiao Qun; Liu, Hua Zhang; Lin, Guo Zhen; Chen, Ping Yan; Qian, Jun; Guo, Yu Ming

    2014-12-01

    Although many studies have examined the effects of ambient temperatures on mortality, little evidence is on health impacts of atmospheric pressure and relative humidity. This study aimed to assess the impacts of atmospheric pressure and relative humidity on mortality in Guangzhou, China. This study included 213,737 registered deaths during 2003-2011 in Guangzhou, China. A quasi-Poisson regression with a distributed lag non-linear model was used to assess the effects of atmospheric pressure/relative humidity. We found significant effect of low atmospheric pressure/relative humidity on mortality. There was a 1.79% (95% confidence interval: 0.38%-3.22%) increase in non-accidental mortality and a 2.27% (0.07%-4.51%) increase in cardiovascular mortality comparing the 5th and 25th percentile of atmospheric pressure. A 3.97% (0.67%-7.39%) increase in cardiovascular mortality was also observed comparing the 5th and 25th percentile of relative humidity. Women were more vulnerable to decrease in atmospheric pressure and relative humidity than men. Age and education attainment were also potential effect modifiers. Furthermore, low atmospheric pressure and relative humidity increased temperature-related mortality. Both low atmospheric pressure and relative humidity are important risk factors of mortality. Our findings would be helpful to develop health risk assessment and climate policy interventions that would better protect vulnerable subgroups of the population. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  12. Influence of temperature and pressure on the lethality of ultrasound

    International Nuclear Information System (INIS)

    Raso, J.; Pagan, R.; Condon, S.; Sala, F.J.

    1998-01-01

    A specially designed resistometer was constructed, and the lethal effect on Yersinia enterocolitica of ultrasonic waves (UW) at different static pressures (manosonication [MS]) and of combined heat-UW under pressure treatments (manothermosonication [MTS]) was investigated. During MS treatments at 30 degrees C and 200 kPa, the increase in the amplitude of UW of 20 kHz from 21 to 150 micrometers exponentially decreased decimal reduction time values (D(MS)) from 4 to 0.37 min. When pressure was increased from 0 to 600 kPa at a constant amplitude (150 micrometers) and temperature (30 degrees C), D(MS) values decreased from 1.52 to 0.20 min. The magnitude of this decrease in D(MS) declined progressively as pressure was increased. The influence of pressure on D(MS) values was greater with increased amplitude of UW. Pressure alone of as much as 600 kPa did not influence the heat resistance of Y. enterocolitica (D60 = 0.094; zeta = 5.65). At temperatures of as much as 58 degrees C, the lethality of UW under pressure was greater than that of heat treatment alone at the same temperature. At higher temperatures, this difference disappeared. Heat and UW under pressure seemed to act independently. The lethality of MTS treatments appeared to result from the added effects of UW under pressure and the lethal effect of heat. The individual contributions of heat and of UW under pressure to the total lethal effect of MTS depended on temperature. The inactivating effect of UW was not due to titanium particles eroded from the sonication horn. The addition to the MS media of cysteamine did not increase the resistance of Y. enterocolitica to MS treatment. MS treatment caused cell disruption

  13. Increased serum urea to creatinine ratio and its negative correlation with arterial pressure in canine babesiosis.

    Science.gov (United States)

    Zygner, Wojciech; Gójska-Zygner, Olga

    2014-09-01

    The increase of the serum urea to creatinine ratio (UCR) was observed in dogs infected with Babesia canis. Previous studies have suggested that decrease of blood pressure can be one of the reasons for this phenomenon. In this work statistically significant increase of the UCR was observed in dogs with babesiosis. Comparison of the UCR between 23 azotaemic dogs and 25 non-azotaemic dogs infected with Babesia canis showed statistically significantly higher mean of the UCR in azotaemic dogs. Correlations between UCR and systolic, diastolic and mean arterial pressure (SAP, DAP and MAP) in 48 dogs infected with B. canis were negative (UCR and SAP: r = -0.3909; UCR and DAP: r = -0.3182; UCR and MAP: r = -0.3682) and statistically significant (p high, and there was no statistically significant correlation between UCR and arterial pressures in azotaemic dogs. Thus, it seems that decrease of blood pressure in dogs with babesiosis explains only partially the cause of increased UCR in infected dogs. The other authors suggested hyperureagenesis and myocardial injury as a potential reason for the increased UCR in canine babesiosis. Thus, further studies are needed to determine causes of increased UCR in dogs with babesiosis, especially on the connection between UCR changes and the concentrations of plasma cardiac troponins and ammonia, and the occurrence of occult blood on fecal examination.

  14. Transient receptor potential vanilloid-3 (TRPV3) activation plays a central role in cardiac fibrosis induced by pressure overload in rats via TGF-β1 pathway.

    Science.gov (United States)

    Liu, Yan; Qi, Hanping; E, Mingyao; Shi, Pilong; Zhang, Qianhui; Li, Shuzhi; Wang, Ye; Cao, Yonggang; Chen, Yunping; Ba, Lina; Gao, Jingquan; Huang, Wei; Sun, Hongli

    2018-02-01

    Cardiac fibrosis is a common pathologic change along with pressure overload. Recent studies indicated that transient receptor potential (TRP) channels played multiple roles in heart. However, the functional role of transient receptor potential vanilloid-3 (TRPV3) in cardiac fibrosis remained unclear. The present study was designed to investigate the relationship between TRPV3 activation and pressure overload-induced cardiac fibrosis. Pressure overload rats were successfully established by abdominal aortic constriction (AAC), and cardiac fibrosis was simulated by 100 nM angiotensin II (Ang II) in neonatal cardiac fibroblasts. Echocardiographic parameters, cardiac fibroblast proliferation, cell cycle, intracellular calcium concentration ([Ca 2+ ] i ), and the protein expressions of collagen I, collagen III, transforming growth factor beta 1 (TGF-β 1 ), cyclin E, and cyclin-dependent kinase 2 (CDK2) were measured. Echocardiographic and histological measurements suggested that the activation of TRPV3 exacerbated the cardiac dysfunction and increased interstitial fibrosis in pressure overload rats. Further results showed that TRPV3 activation upregulated the expressions of collagen I, collagen III, TGF-β 1 , cyclin E, and CDK2 in vivo and in vitro. At the same time, blocking TGF-β 1 pathway could partially reverse the effect of TRPV3 activation. These results suggested that TRPV3 activation exacerbated cardiac fibrosis by promoting cardiac fibroblast proliferation through TGF-β 1 /CDK2/cyclin E pathway in the pressure-overloaded rat hearts.

  15. Pressure changes in the plasma sheet during substorm injections

    International Nuclear Information System (INIS)

    Kistler, L.M.; Moebuis, E.; Baumjohann, W.; Paschmann, G.; Hamilton, D.C.

    1992-01-01

    The authors have determined the particle pressure and total pressure as a function of radial distance in the plasma sheet for periods before and after the onset of substorm-associated ion enhancements over the radial range 7-19 R E . They have chosen events occurring during times of increasing magnetospheric activity, as determined by an increasing AE index, in which a sudden increase, or injection, of energetic particle flux is observed. During these events the particle energy of maximum contribution to the pressure increases from about 12 to about 27 keV. In addition, the particle pressure increases, and the magnetic pressure decreases, with the total pressure only changing slightly. For radial distances of less than 10 R E the total pressure tends to increase with the injection, while outside 10 R E it tends to decrease or remain the same. Because the fraction of the pressure due to particles has increased and higher energies are contributing to the pressure, a radial gradient is evident in the postinjection, but not preinjection, flux measurements. These observations show that the simulations appearance of energetic particles and changes in the magnetic field results naturally from pressure balance and does not necessarily indicate that the local changing field is accelerating the particles. The changes in the total pressure outside 10 R E are consistent with previous measurements of pressure changes at substorm onset and can be understood in terms of the unloading of energy in the magnetotail and the resulting change in the magnetic field configuration

  16. Solubility and physical properties of sugars in pressurized water

    International Nuclear Information System (INIS)

    Saldaña, Marleny D.A.; Alvarez, Víctor H.; Haldar, Anupam

    2012-01-01

    Highlights: ► Sugar solubility in pressurized water and density at high pressures were measured. ► Glucose solubility was higher than that of lactose as predicted by their σ-profiles. ► Sugar aqueous solubility decreased with an increase in pressure from 15 to 120 bar. ► Aqueous glucose molecular packing shows high sensitivity to pressure. ► The COSMO-SAC model qualitatively predicted the sugar solubility data. - Abstract: In this study, the solubility, density, and refractive index of glucose and lactose in water as a function of temperature were measured. For solubility of sugars in pressurized water, experimental data were obtained at pressures of (15 to 120) bar and temperatures of (373 to 433) K using a dynamic flow high pressure system. Density data for aqueous sugar solutions were obtained at pressures of (1 to 300) bar and temperatures of (298 to 343) K. The refractive index of aqueous sugar solutions was obtained at 293 K and atmospheric pressure. Activity coefficient models, Van Laar and the Conductor-like Screening Model-Segment Activity Coefficient (COSMO-SAC), were used to fit and predict the experimental solubility data, respectively. The results obtained showed that the solubility of both sugars in pressurized water increase with an increase in temperature. However, with the increase of pressure from 15 bar to 120 bar, the solubility of both sugars in pressurized water decreased. The Van Laar model fit the experimental aqueous solubility data with deviations lower than 13 and 53% for glucose and lactose, respectively. The COSMO-SAC model predicted qualitatively the aqueous solubility of these sugars.

  17. Mammographic compression after breast conserving therapy: Controlling pressure instead of force

    International Nuclear Information System (INIS)

    Groot, J. E. de; Branderhorst, W.; Grimbergen, C. A.; Broeders, M. J. M.; Heeten, G. J. den

    2014-01-01

    Purpose: X-ray mammography is the primary tool for early detection of breast cancer and for follow-up after breast conserving therapy (BCT). BCT-treated breasts are smaller, less elastic, and more sensitive to pain. Instead of the current force-controlled approach of applying the same force to each breast, pressure-controlled protocols aim to improve standardization in terms of physiology by taking breast contact area and inelasticity into account. The purpose of this study is to estimate the potential for pressure protocols to reduce discomfort and pain, particularly the number of severe pain complaints for BCT-treated breasts. Methods: A prospective observational study including 58 women having one BCT-treated breast and one untreated nonsymptomatic breast, following our hospital's 18 decanewton (daN) compression protocol was performed. Breast thickness, applied force, contact area, mean pressure, breast volume, and inelasticity (mean E-modulus) were statistically compared between the within-women breast pairs, and data were used as predictors for severe pain, i.e., scores 7 and higher on an 11-point Numerical Rating Scale. Curve-fitting models were used to estimate how pressure-controlled protocols affect breast thickness, compression force, and pain experience. Results: BCT-treated breasts had on average 27% smaller contact areas, 30% lower elasticity, and 30% higher pain scores than untreated breasts (allp 2 decrease in contact area, as well as increased pain sensitivity, BCT-breasts had on average 5.3 times higher odds for severe pain than untreated breasts. Model estimations for a pressure-controlled protocol with a 10 kPa target pressure, which is below normal arterial pressure, suggest an average 26% (range 10%–36%) reduction in pain score, and an average 77% (range 46%–95%) reduction of the odds for severe pain. The estimated increase in thickness is +6.4% for BCT breasts. Conclusions: After BCT, women have hardly any choice in avoiding an annual

  18. Pressure Systems Stored-Energy Threshold Risk Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Paulsen, Samuel S.

    2009-08-25

    Federal Regulation 10 CFR 851, which became effective February 2007, brought to light potential weaknesses regarding the Pressure Safety Program at the Pacific Northwest National Laboratory (PNNL). The definition of a pressure system in 10 CFR 851 does not contain a limit based upon pressure or any other criteria. Therefore, the need for a method to determine an appropriate risk-based hazard level for pressure safety was identified. The Laboratory has historically used a stored energy of 1000 lbf-ft to define a pressure hazard; however, an analytical basis for this value had not been documented. This document establishes the technical basis by evaluating the use of stored energy as an appropriate criterion to establish a pressure hazard, exploring a suitable risk threshold for pressure hazards, and reviewing the methods used to determine stored energy. The literature review and technical analysis concludes the use of stored energy as a method for determining a potential risk, the 1000 lbf-ft threshold, and the methods used by PNNL to calculate stored energy are all appropriate. Recommendations for further program improvements are also discussed

  19. Assessing complexity of skin blood flow oscillations in response to locally applied heating and pressure in rats: Implications for pressure ulcer risk

    Science.gov (United States)

    Liao, Fuyuan; O'Brien, William D.; Jan, Yih-Kuen

    2013-10-01

    The objective of this study was to investigate the effects of local heating on the complexity of skin blood flow oscillations (BFO) under prolonged surface pressure in rats. Eleven Sprague-Dawley rats were studied: 7 rats underwent surface pressure with local heating (△t=10 °C) and 4 rats underwent pressure without heating. A pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The loading period was divided into nonoverlapping 30 min epochs. For each epoch, multifractal detrended fluctuation analysis (MDFA) was utilized to compute DFA coefficients and complexity of endothelial related metabolic, neurogenic, and myogenic frequencies of BFO. The results showed that under surface pressure, local heating led to a significant decrease in DFA coefficients of myogenic frequency during the initial epoch of loading period, a sustained decrease in complexity of myogenic frequency, and a significantly higher degree of complexity of metabolic frequency during the later phase of loading period. Surrogate tests showed that the reduction in complexity of myogenic frequency was associated with a loss of nonlinearity whereas increased complexity of metabolic frequency was associated with enhanced nonlinearity. Our results indicate that increased metabolic activity and decreased myogenic response due to local heating manifest themselves not only in magnitudes of metabolic and myogenic frequencies but also in their structural complexity. This study demonstrates the feasibility of using complexity analysis of BFO to monitor the ischemic status of weight-bearing skin and risk of pressure ulcers.

  20. Surface acoustic wave oxygen pressure sensor

    Science.gov (United States)

    Oglesby, Donald M. (Inventor); Upchurch, Billy T. (Inventor); Leighty, Bradley D. (Inventor)

    1994-01-01

    A transducer for the measurement of absolute gas-state oxygen pressure from pressures of less than 100 Pa to atmospheric pressure (1.01 x 10(exp 5) Pa) is based on a standard surface acoustic wave (SAW) device. The piezoelectric material of the SAW device is coated with a compound which will selectively and reversibly bind oxygen. When oxygen is bound by the coating, the mass of the coating increases by an amount equal to the mass of the bound oxygen. Such an increase in the mass of the coating causes a corresponding decrease in the resonant frequency of the SAW device.

  1. Pressure-induced melting of micellar crystal

    DEFF Research Database (Denmark)

    Mortensen, K.; Schwahn, D.; Janssen, S.

    1993-01-01

    that pressure improves the solvent quality of water, thus resulting in decomposition of the micelles and consequent melting of the micellar crystal. The combined pressure and temperature dependence reveals that in spite of the apparent increase of order on the 100 angstrom length scale upon increasing......Aqueous solutions of triblock copolymers of poly(ethylene oxide) and poly(propylene oxide) aggregate at elevated temperatures into micelles which for polymer concentrations greater-than-or-equal-to 20% make a hard sphere crystallization to a cubic micellar crystal. Structural studies show...... temperature (decreasing pressure) the overall entropy increases through the inverted micellar crystallization characteristic....

  2. The impact of xylem cavitation on water potential isotherms measured by the pressure chamber technique in Metasequoia glyptostroboides Hu & W.C. Cheng.

    Science.gov (United States)

    Yang, Dongmei; Pan, Shaoan; Tyree, Melvin T

    2016-08-01

    Pressure-volume (PV) curve analysis is the most common and accurate way of estimating all components of the water relationships in leaves (water potential isotherms) as summarized in the Höfler diagram. PV curve analysis yields values of osmotic pressure, turgor pressure, and elastic modulus of cell walls as a function of relative water content. It allows the computation of symplasmic/apoplastic water content partitioning. For about 20 years, cavitation in xylem has been postulated as a possible source of error when estimating the above parameters, but, to the best of the authors' knowledge, no one has ever previously quantified its influence. Results in this paper provide independent estimates of osmotic pressure by PV curve analysis and by thermocouple psychrometer measurement. An anatomical evaluation was also used for the first time to compare apoplastic water fraction estimates from PV analysis with anatomical values. Conclusions include: (i) PV curve values of osmotic pressure are underestimated prior to correcting osmotic pressure for water loss by cavitation in Metasequoia glyptostroboides; (ii) psychrometer estimates of osmotic pressure obtained in tissues killed by freezing or heating agreed with PV values before correction for apoplastic water dilution; (iii) after correction for dilution effects, a solute concentration enhancement (0.27MPa or 0.11 osmolal) was revealed. The possible sources of solute enhancement were starch hydrolysis and release of ions from the Donnan free space of needle cell walls. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. The Effect of Varying Atmospheric Pressure upon Habitability and Biosignatures of Earth-like Planets.

    Science.gov (United States)

    Keles, Engin; Grenfell, John Lee; Godolt, Mareike; Stracke, Barbara; Rauer, Heike

    2018-02-01

    Understanding the possible climatic conditions on rocky extrasolar planets, and thereby their potential habitability, is one of the major subjects of exoplanet research. Determining how the climate, as well as potential atmospheric biosignatures, changes under different conditions is a key aspect when studying Earth-like exoplanets. One important property is the atmospheric mass, hence pressure and its influence on the climatic conditions. Therefore, the aim of the present study is to understand the influence of atmospheric mass on climate, hence habitability, and the spectral appearance of planets with Earth-like, that is, N 2 -O 2 dominated, atmospheres orbiting the Sun at 1 AU. This work utilizes a 1D coupled, cloud-free, climate-photochemical atmospheric column model; varies atmospheric surface pressure from 0.5 to 30 bar; and investigates temperature and key species profiles, as well as emission and brightness temperature spectra in a range between 2 and 20 μm. Increasing the surface pressure up to 4 bar leads to an increase in the surface temperature due to increased greenhouse warming. Above this point, Rayleigh scattering dominates, and the surface temperature decreases, reaching surface temperatures below 273 K (approximately at ∼34 bar surface pressure). For ozone, nitrous oxide, water, methane, and carbon dioxide, the spectral response either increases with surface temperature or pressure depending on the species. Masking effects occur, for example, for the bands of the biosignatures ozone and nitrous oxide by carbon dioxide, which could be visible in low carbon dioxide atmospheres. Key Words: Planetary habitability and biosignatures-Atmospheres-Radiative transfer. Astrobiology 18, 116-132.

  4. THE EFFECTS OF AREA CONTRACTION ON SHOCK WAVE STRENGTH AND PEAK PRESSURE IN SHOCK TUBE

    Directory of Open Access Journals (Sweden)

    A. M. Mohsen

    2012-06-01

    Full Text Available This paper presents an experimental investigation into the effects of area contraction on shock wave strength and peak pressure in a shock tube. The shock tube is an important component of the short duration, high speed fluid flow test facility, available at the Universiti Tenaga Nasional (UNITEN, Malaysia. The area contraction was facilitated by positioning a bush adjacent to the primary diaphragm section, which separates the driver and driven sections. Experimental measurements were performed with and without the presence of the bush, at various diaphragm pressure ratios, which is the ratio of air pressure between the driver (high pressure and driven (low pressure sections. The instantaneous static pressure variations were measured at two locations close to the driven tube end wall, using high sensitivity pressure sensors, which allow the shock wave strength, shock wave speed and peak pressure to be analysed. The results reveal that the area contraction significantly reduces the shock wave strength, shock wave speed and peak pressure. At a diaphragm pressure ratio of 10, the shock wave strength decreases by 18%, the peak pressure decreases by 30% and the shock wave speed decreases by 8%.

  5. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors.

    Science.gov (United States)

    Cornelissen, Véronique A; Fagard, Robert H

    2005-10-01

    Previous meta-analyses of randomized controlled trials on the effects of chronic dynamic aerobic endurance training on blood pressure reported on resting blood pressure only. Our aim was to perform a comprehensive meta-analysis including resting and ambulatory blood pressure, blood pressure-regulating mechanisms, and concomitant cardiovascular risk factors. Inclusion criteria of studies were: random allocation to intervention and control; endurance training as the sole intervention; inclusion of healthy sedentary normotensive or hypertensive adults; intervention duration of > or =4 weeks; availability of systolic or diastolic blood pressure; and publication in a peer-reviewed journal up to December 2003. The meta-analysis involved 72 trials, 105 study groups, and 3936 participants. After weighting for the number of trained participants and using a random-effects model, training induced significant net reductions of resting and daytime ambulatory blood pressure of, respectively, 3.0/2.4 mm Hg (Phypertensive study groups (-6.9/-4.9) than in the others (-1.9/-1.6; Pendurance training decreases blood pressure through a reduction of vascular resistance, in which the sympathetic nervous system and the renin-angiotensin system appear to be involved, and favorably affects concomitant cardiovascular risk factors.

  6. Testing for altruism and social pressure in charitable giving.

    Science.gov (United States)

    DellaVigna, Stefano; List, John A; Malmendier, Ulrike

    2012-01-01

    Every year, 90% of Americans give money to charities. Is such generosity necessarily welfare enhancing for the giver? We present a theoretical framework that distinguishes two types of motivation: individuals like to give, for example, due to altruism or warm glow, and individuals would rather not give but dislike saying no, for example, due to social pressure. We design a door-to-door fund-raiser in which some households are informed about the exact time of solicitation with a flyer on their doorknobs. Thus, they can seek or avoid the fund-raiser. We find that the flyer reduces the share of households opening the door by 9% to 25% and, if the flyer allows checking a Do Not Disturb box, reduces giving by 28% to 42%. The latter decrease is concentrated among donations smaller than $10. These findings suggest that social pressure is an important determinant of door-to-door giving. Combining data from this and a complementary field experiment, we structurally estimate the model. The estimated social pressure cost of saying no to a solicitor is $3.80 for an in-state charity and $1.40 for an out-of-state charity. Our welfare calculations suggest that our door-to-door fund-raising campaigns on average lower the utility of the potential donors.

  7. [Effect of hydrostatic pressure on intracellular free calcium concentration and transient receptor potential vanilloid expression in human bladder smooth muscle cells].

    Science.gov (United States)

    Han, Zhenwei; Wang, Kunjie; Chen, Lin; Wei, Tangqiang; Luo, Deyi; Li, Shengfu

    2012-04-01

    To explore the effect of hydrostatic pressure on intracellular free calcium concentration ([Ca2+]i) and the gene expression of transient receptor potential vanilloid (TRPV) in cultured human bladder smooth muscle cells (hb-SMCs), and to preliminarily probe into the possible molecular mechanism of hb-SMCs proliferation stimulated by hydrostatic pressure. The passage 6-7 hb-SMCs were loaded with Ca2+ indicator Fluo-3/AM. When the hb-SMCs were under 0 cm H2O (1cm H2O = 0.098 kPa) (group A) or 200 cm H2O hydrostatic pressure for 30 minutes (group B) and then removing the 200 cm H2O hydrostatic pressure (group C), the [Ca2+]i was measured respectively by inverted laser scanning confocal microscope. When the hb-SMCs were given the 200 cm H2O hydrostatic pressure for 0 hour, 2 hours, 6 hours, 12 hours, and 24 hours, the mRNA expressions of TRPV1, TRPV2, and TRPV4 were detected by RT-PCR technique. The [Ca2+]i of group A, group B, and group C were (100.808 +/- 1.724), (122.008 +/- 1.575), and (99.918 +/- 0.887) U, respectively; group B was significantly higher than groups A and C (P pressure (t = 0.919, P = 0.394). The TRPV1, TRPV2, and TRPV4 genes expressed in hb-SMCs under 200 cm H2O hydrostatic pressure at 0 hour, 2 hours, 6 hours, 12 hours, and 24 hours, but the expressions had no obvious changes with time. There was no significant difference in the expressions of TRPV1, TRPV2, and TRPV4 among 3 groups (P > 0.05). The [Ca2+]i of hb-SMCs increases significantly under high hydrostatic pressure. As possible genes in stretch-activated cation channel, the TRPV1, TRPV2, and TRPV4 express in hb-SMCs under 200 cm H2O hydrostatic pressure. It is possible that the mechanical pressure regulates the [Ca2+]i of hb-SMCs by opening the stretch-activated cation channel rather than up-regulating its expression.

  8. High pressure studies of fluorenone emission in plastic media

    International Nuclear Information System (INIS)

    Mitchell, D.J.; Schuster, G.B.; Drickamer, H.G.

    1977-01-01

    The energy and the quantum efficiency for fluorenone fluorescence in the crystalline state and in polymeric matrices was measured as a function of external pressure over the range 0--140 kbar. The application of high pressure induces changes in the quantum yield, which ranges from 0.001 at low pressure to a maximum of approx.0.1 at high pressure in hydrocarbon plastics. These results are interpreted as arising from the decrease in the energy of the lowest ππ excited singlet state relative to other relevant states as the external pressure is increased

  9. Influence of loading and unloading velocity of confining pressure on strength and permeability characteristics of crystalline sandstone

    Science.gov (United States)

    Zhang, Dong-ming; Yang, Yu-shun; Chu, Ya-pei; Zhang, Xiang; Xue, Yan-guang

    2018-06-01

    The triaxial compression test of crystalline sandstone under different loading and unloading velocity of confining pressure is carried out by using the self-made "THM coupled with servo-controlled seepage apparatus for containing-gas coal", analyzed the strength, deformation and permeability characteristics of the sample, the results show that: with the increase of confining pressures loading-unloading velocity, Mohr's stress circle center of the specimen shift to the right, and the ultimate intensity, peak strain and residual stress of the specimens increase gradually. With the decrease of unloading velocity of confining pressure, the axial strain, the radial strain and the volumetric strain of the sample decrease first and then increases, but the radial strain decreases more greatly. The loading and unloading of confining pressure has greater influence on axial strain of specimens. The deformation modulus decreases rapidly with the increase of axial strain and the Poisson's ratio decreases gradually at the initial stage of loading. When the confining pressure is loaded, the deformation modulus decrease gradually, and the Poisson's ratio increases gradually. When the confining pressure is unloaded, the deformation modulus increase gradually, and the Poisson's ratio decreases gradually. When the specimen reaches the ultimate intensity, the deformation modulus decreases rapidly, while the Poisson's ratio increases rapidly. The fitting curve of the confining pressure and the deformation modulus and the Poisson's ratio in accordance with the distribution of quadratic polynomial function in the loading-unloading confining pressure. There is a corresponding relationship between the evolution of rock permeability and damage deformation during the process of loading and unloading. In the late stage of yielding, the permeability increases slowly, and the permeability increases sharply after the rock sample is destroyed. Fitting the permeability and confining pressure

  10. Pressure Sensitive Sensors Based on Carbon Nanotubes, Graphene, and Its Composites

    Directory of Open Access Journals (Sweden)

    Asar Ali

    2018-01-01

    Full Text Available Carbon nanotubes (CNTs and graphene have attracted a great deal of interest due to their outstanding mechanical, optical, electrical, and structural properties. Most of the scientists and researchers have investigated the optical and electrical properties of these materials. However, due to unique electromechanical properties of these materials, it is required to explore the piezoresistive properties of bulk nanostructured CNTs, graphene, and CNT-graphene composites. We investigated and compared the sensitivities and piezoresistive properties of sandwich-type pure CNT, pure graphene, and CNT-graphene composite pressure sensors. For all the samples, increase in pressure from 0 to 0.183 kNm−2 results in a decrease in the impedance and direct current (DC resistance. Sensitivity and percentage decrease in resistance and impedance of CNT-graphene composite were lower than pure CNT while being higher than pure graphene based sample. Moreover, under the same external applied pressure, the sensitivity and percentage decrease in impedance for pure CNT, pure graphene, and CNT-graphene composite were smaller than the corresponding sensitivity and percentage decrease in resistance. The achieved experimental results of the composite sample were compared with simulated results which exhibit reasonable agreement with each other. The deviations of simulated resistance-pressure and impedance-pressure curves from experimental graphs were 0.029% and 0.105%, respectively.

  11. Impact of pore-pressure cycling on bentonite in constant volume experiments

    International Nuclear Information System (INIS)

    Graham, C.C.; Harrington, J.F.; Cuss, R.J.; Sellin, P.

    2012-01-01

    Document available in extended abstract form only. The SKB safety case for a KBS-3 repository highlights the potential importance of future successive glaciation events on repository functions. One particular uncertainty is the likely affect of elevated pore-water pressures on barrier safety functions. Over the repository lifetime such changes in pore-water pressure are likely to be cyclic in nature, as successive glacial episodes lead to loading and unloading of the engineered barrier. For a clay-water system with the pore-water in thermodynamic equilibrium with an external reservoir of water at pressure, p w , the total stress acting on the surrounding vessel can be expressed as: (1) σ = Π + αp w where Π is the swelling pressure and α is a proportionality constant. We present results from a series of laboratory experiments designed to investigate this relationship, in the context of glacial loading. Blocks of pre-compacted Mx80 bentonite were manufactured by Clay Technology AB (Lund, Sweden), by rapidly compacting bentonite granules in a mould under a one dimensionally applied stress (Johannesson et al., 1995). The blocks were then sub-sampled and cylindrical specimens prepared for testing (120 mm in length and 60 mm in diameter). The experiments were conducted using a specially designed constant volume cell, which allows the evolution of the total stresses acting on the surrounding vessel to be monitored during clay swelling (at three radial and two axial locations). A high precision syringe pump was used to maintain a constant applied pore pressure within the bentonite, while the rate of hydraulic inflow, and consequent stress development, were monitored to determine the point at which hydraulic equilibrium was reached. During the tests each sample was subjected to an incremental series of constant pore-pressure steps, with all samples experiencing at least one loading and unloading cycle. The resulting average total stress data yield alpha values in the

  12. Examination of fluctuations in atmospheric pressure related to migraine.

    Science.gov (United States)

    Okuma, Hirohisa; Okuma, Yumiko; Kitagawa, Yasuhisa

    2015-01-01

    Japan has four seasons and many chances of low atmospheric pressure or approaches of typhoon, therefore it has been empirically known that the fluctuation of weather induces migraine in people. Generally, its mechanism has been interpreted as follows: physical loading, attributed by atmospheric pressure to human bodies, compresses or dilates human blood vessels, which leads to abnormality in blood flow and induces migraine. We report our examination of the stage in which migraine tends to be induced focusing on the variation of atmospheric pressure. Subjects were 34 patients with migraine, who were treated in our hospital. The patients included 31 females and three males, whose mean age was 32 ± 6.7. 22 patients had migraine with aura and 12 patients had migraine without aura. All of patients with migraine maintained a headache diary to record atmospheric pressures when they developed a migraine. The standard atmospheric pressure was defined as 1013 hPa, and with this value as the criterion, we investigated slight fluctuations in the atmospheric pressure when they developed a migraine. It was found that the atmospheric pressure when the patients developed a migraine was within 1003-1007 hPa in the approach of low atmospheric pressure and that the patients developed a migraine when the atmospheric pressure decreased by 6-10 hPa, slightly less than the standard atmospheric pressure. Small decreases of 6-10 hPa relative to the standard atmospheric pressure of 1013 hPa induced migraine attacks most frequently in patients with migraine.

  13. Pressurizer pump reliability analysis high flux isotope reactor

    International Nuclear Information System (INIS)

    Merryman, L.; Christie, B.

    1993-01-01

    During a prolonged outage from November 1986 to May 1990, numerous changes were made at the High Flux Isotope Reactor (HFIR). Some of these changes involved the pressurizer pumps. An analysis was performed to calculate the impact of these changes on the pressurizer system availability. The analysis showed that the availability of the pressurizer system dropped from essentially 100% to approximately 96%. The primary reason for the decrease in availability comes because off-site power grid disturbances sometimes result in a reactor trip with the present pressurizer pump configuration. Changes are being made to the present pressurizer pump configuration to regain some of the lost availability

  14. Numerical simulation of the pressure pulses produced by a pressure screen foil rotor

    International Nuclear Information System (INIS)

    Feng, M.; Ollivier-Gooch, C.; Gooding, R.W.; Olson, J.A.

    2003-01-01

    Pressure screening is the most industrially efficient and effective means of removing contaminants that degrade the appearance and strength of paper and fractionating fibres for selective treatments and specialty products. A critical design component of a screen is the rotor which produces pressure pulses on the screen cylinder surface to keep the screening apertures clear. To understand the effect of the key design and operating variables for a NACA 0012 foil rotor, a computational fluid dynamic (CFD) simulation tool was developed with FLUENT software, and the numerical results were compared with experimental measurements. The computational results of pressure pulses were shown to be in good agreement with experimental pressure measurements over a wide range of foil tip-speeds, clearances and angles of attack. In addition, it was shown that the magnitude of the pressure pulse peak increases as the rotating speed increases linearly with the square of tip-speed for all the angles of attack studied. The maximum negative pressure pulse occurred for the foil at 5 degrees angle of attack. Flow began to separate from foil surface near the screen plate beyond 10 degrees angle of attack. The positive pressure peak near the leading edge of the foil is completely eliminated for foils operating at a positive angle of attack. The magnitude of the negative pressure peak increased as clearance decreased. In addition to, and more important than, these specific results, we have shown that CFD is a viable tool for the optimal design and operation of rotors in industrial pressure screens. (author)

  15. Decreases in tanning behaviors following a short online survey: Potential for prevention?

    Directory of Open Access Journals (Sweden)

    Rachel F. Rodgers

    2015-01-01

    Conclusions: Our study presents novel and compelling support for using brief online surveys for decreasing health-risk behaviors such as sunbed use. Such measures are extremely cost-effective and easy to disseminate and implement. Replication and extension of these findings are warranted.

  16. In situ study starch gelatinization under ultra-high hydrostatic pressure using synchrotron SAXS

    KAUST Repository

    Yang, Zhi

    2015-12-13

    The gelatinization of waxy (very low amylose) corn and potato starches by high hydrostatic pressure (HHP) (up to ∼1 GPa) was investigated in situ using synchrotron small-angle X-ray scattering (SAXS) on samples held in a diamond anvil cell (DAC). The starch pastes, made by mixing starch and water in a 1:1 ratio (by weight), were pressurized and measured at room temperature. During HHP, both SAXS peak areas (corresponding to the lamellar phase) of waxy corn and potato starches decreased suggesting the starch gelatinization increases with increasing pressure. As pressure increased, lamellar peak broadened and the power law exponent increased in low q region. 1D linear correlation function was further employed to analyse SAXS data. For both waxy potato and waxy corn starches, the long period length and the average thickness of amorphous layers decreased when the pressure increased. While for both of waxy starches, the thickness of the crystalline layer first increased, then decreased when the pressure increased. The former is probably due to the out-phasing of starch molecules, and the latter is due to the water penetrating into the crystalline region during gelatinization and to pressure induced compression.

  17. Pressure releasing device for reactor container

    International Nuclear Information System (INIS)

    Takeda, Mika.

    1994-01-01

    In the present invention, dose rate to public caused by radioactive rare gases can be decreased. That is, a reactor container contains a reactor pressure vessel incorporating a reactor core. There are disposed a pressure releasing system for releasing the pressure in the reactor pressure vessel to the outside, and a burning device for burning gases released from the pressure releasing system. An exhaustion pipe is disposed to the pressure releasing system. A burning device is disposed to the exhaustion pipe. It is effective to dispose a ventilation port at a portion of the exhaustion pipe upstream of the burning device. In addition, the burning device may preferably be disposed in a multi-stage in the axial direction of the exhaustion pipe. With such procedures, hydrogen in gases discharged along with the release of the pressure in the container is burned. Buoyancy is caused to the exhaustion gases by heat energy upon burning. Since the exhaustion gases can reach a higher level by the buoyancy, the dose rate due to the rare gases can be reduced. (I.S.)

  18. Water-Pressure Distribution on Seaplane Float

    Science.gov (United States)

    Thompson, F L

    1929-01-01

    The investigation presented in this report was conducted for the purpose of determining the distribution and magnitude of water pressures likely to be experienced on seaplane hulls in service. It consisted of the development and construction of apparatus for recording water pressures lasting one one-hundredth second or longer and of flight tests to determine the water pressures on a UO-1 seaplane float under various conditions of taxiing, taking off, and landing. The apparatus developed was found to operate with satisfactory accuracy and is suitable for flight tests on other seaplanes. The tests on the UO-1 showed that maximum pressures of about 6.5 pounds per square inch occur at the step for the full width of the float bottom. Proceeding forward from the step the maximum pressures decrease in magnitude uniformly toward the bow, and the region of highest pressures narrows toward the keel. Immediately abaft the step the maximum pressures are very small, but increase in magnitude toward the stern and there once reached a value of about 5 pounds per square inch. (author)

  19. The enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure and its effect on bioactivity and characteristics of hydrolysates.

    Science.gov (United States)

    Guan, Haining; Diao, Xiaoqin; Jiang, Fan; Han, Jianchun; Kong, Baohua

    2018-04-15

    Enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure conditions was studied and the effects of hydrolysis on antioxidant and antihypertensive activities were investigated. As observed, high hydrostatic pressure (80-300MPa) enhanced the hydrolytic efficiency of Corolase PP and decreased the surface hydrophobicity of the hydrolysates. Hydrolysates obtained at 200MPa for 4h had higher bioactivities (reducing power, ABTS radical-scavenging and ACE inhibitory activities). The molecular weight (MW) determination indicated that hydrolysis at high hydrostatic pressure could increase the production of small peptides (hydrostatic pressure combined with Corolase PP treatments could be used as a potential technology to produce bioactive peptides from soy protein isolate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Pressure vessel failure at high internal pressure; Untersuchungen zum Versagen des Reaktordruckbehaelters unter hohem Innendruck

    Energy Technology Data Exchange (ETDEWEB)

    Laemmer, H.; Ritter, B.

    1995-08-01

    A RPV failure due to plastic instability was investigated using the ABAQUS finite element code together with a material model of thermal plasticity for large deformations. Not only rotational symmetric temperature distributions were studied, but also `hot spots`. Calculations show that merely by the depletion of strength of the material - even at internal wall temperatures well below the melting point of the fuel elements of about 2000/2400 C - the critical internal pressure can decrease to values smaller than the operational pressure of 16 Mpa. (orig.)

  1. Influence of bronchial diameter change on the airflow dynamics based on a pressure-controlled ventilation system.

    Science.gov (United States)

    Ren, Shuai; Cai, Maolin; Shi, Yan; Xu, Weiqing; Zhang, Xiaohua Douglas

    2018-03-01

    Bronchial diameter is a key parameter that affects the respiratory treatment of mechanically ventilated patients. In this paper, to reveal the influence of bronchial diameter on the airflow dynamics of pressure-controlled mechanically ventilated patients, a new respiratory system model is presented that combines multigeneration airways with lungs. Furthermore, experiments and simulation studies to verify the model are performed. Finally, through the simulation study, it can be determined that in airway generations 2 to 7, when the diameter is reduced to half of the original value, the maximum air pressure (maximum air pressure in lungs) decreases by nearly 16%, the maximum flow decreases by nearly 30%, and the total airway pressure loss (sum of each generation pressure drop) is more than 5 times the original value. Moreover, in airway generations 8 to 16, with increasing diameter, the maximum air pressure, maximum flow, and total airway pressure loss remain almost constant. When the diameter is reduced to half of the original value, the maximum air pressure decreases by 3%, the maximum flow decreases by nearly 5%, and the total airway pressure loss increases by 200%. The study creates a foundation for improvement in respiratory disease diagnosis and treatment. Copyright © 2017 John Wiley & Sons, Ltd.

  2. High pressure effects on a trimetallic Mn(II/III) SMM.

    Science.gov (United States)

    Prescimone, Alessandro; Sanchez-Benitez, Javier; Kamenev, Konstantin V; Moggach, Stephen A; Lennie, Alistair R; Warren, John E; Murrie, Mark; Parsons, Simon; Brechin, Euan K

    2009-09-28

    A combined study of the high pressure crystallography and high pressure magnetism of the complex [Mn3(Hcht)2(bpy)4](ClO4)3.Et2O.2MeCN (1.Et2O.2MeCN) (H3cht is cis,cis-1,3,5-cyclohexanetriol) is presented in an attempt to observe and correlate pressure induced changes in its structural and physical properties. At 0.16 GPa the complex 1.Et2O.2MeCN loses all associated solvent in the crystal lattice, becoming 1. At higher pressures structural distortions occur changing the distances between the metal centres and the bridging oxygen atoms making the magnetic exchange between the manganese ions weaker. No significant variations are observed in the Jahn-Teller axis of the only Mn(III) present in the structure. High pressure dc chiMT plots display a gradual decrease in both the low temperature value and slope. Simulations show a decrease in J with increasing pressure although the ground state is preserved. Magnetisation data do not show any change in |D|.

  3. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities.

    Science.gov (United States)

    Li, Hong-Li; Wang, Yong-Yang; Zhang, Qian; Wang, Pu; Zhang, Ming-Xiang; Yu, Fei-Hai

    2015-01-01

    Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum) with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot) and two levels of water depth (30 cm and 70 cm). Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities.

  4. Transdermal deferoxamine prevents pressure-induced diabetic ulcers

    Science.gov (United States)

    Duscher, Dominik; Neofytou, Evgenios; Wong, Victor W.; Maan, Zeshaan N.; Rennert, Robert C.; Januszyk, Michael; Rodrigues, Melanie; Malkovskiy, Andrey V.; Whitmore, Arnetha J.; Galvez, Michael G.; Whittam, Alexander J.; Brownlee, Michael; Rajadas, Jayakumar; Gurtner, Geoffrey C.

    2015-01-01

    There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation. PMID:25535360

  5. Under Pressure: Financial Effect of the Hospital-Acquired Conditions Initiative-A Statewide Analysis of Pressure Ulcer Development and Payment.

    Science.gov (United States)

    Meddings, Jennifer; Reichert, Heidi; Rogers, Mary A M; Hofer, Timothy P; McMahon, Laurence F; Grazier, Kyle L

    2015-07-01

    To assess the financial effect of the 2008 Hospital-Acquired Conditions Initiative (HACI) pressure ulcer payment changes on Medicare, other payers, and hospitals. Retrospective before-and-after study of all-payer statewide administrative data for more than 2.4 million annual adult discharges in 2007 and 2009 using the Healthcare Cost and Utilization Project State Inpatient Datasets for California. How often and by how much the 2008 payment changes for pressure ulcers affected hospital payment was assessed. Nonfederal acute care California hospitals (N = 311). Adults discharged from acute-care hospitals. Pressure ulcer rates and hospital payment changes. Hospital-acquired pressure ulcer rates were low in 2007 (0.28%) and 2009 (0.27%); present-on-admission pressure ulcer rates increased from 2.3% in 2007 to 3.0% in 2009. According to clinical stage of pressure ulcer (available in 2009), hospital-acquired Stage III and IV ulcers occurred in 603 discharges (0.02%); 60,244 discharges (2.42%) contained other pressure ulcer diagnoses. Payment removal for Stage III and IV hospital-acquired ulcers reduced payment in 75 (0.003%) discharges, for a statewide payment decrease of $310,444 (0.001%) for all payers and $199,238 (0.001%) for Medicare. For all other pressure ulcers, the Hospital-Acquired Conditions Initiative reduced hospital payment in 20,246 (0.81%) cases (including 18,953 cases with present-on-admission ulcers), reducing statewide payment by $62,538,586 (0.21%) for all payers and $47,237,984 (0.32%) for Medicare. The total financial effect of the 2008 payment changes for pressure ulcers was negligible. Most payment decreases occurred by removal of comorbidity payments for present-on-admission pressure ulcers other than Stages III and IV. The removal of payment for hospital-acquired Stage III and IV ulcers by implementation of the HACI policy was 1/200th that of the removal of payment for other types of pressure ulcers that occurred in implementation of the

  6. Development of plant dynamic analysis code for integrated self-pressurized water reactor (ISPDYN), and comparative study of pressure control methods

    International Nuclear Information System (INIS)

    Kusunoki, Tsuyoshi; Yokomura, Takeyoshi; Nabeshima, Kunihiko; Shimazaki, Junya; Shinohara, Yoshikuni.

    1988-01-01

    This report describes the development of plant dynamic analysis code (ISPDYN) for integrated self-pressurized water reactor, and comparative study of pressure control methods with this code. ISPDYN is developed for integrated self-pressurized water reactor, one of the trial design by JAERI. In the transient responses, the calculated results by ISPDYN are in good agreement with the DRUCK calculations. In addition, this report presents some sensitivity studies for selected cases. Computing time of this code is very short so as about one fifth of real time. The comparative study of self-pressurized system with forced-pressurized system by this code, for rapid load decrease and increase cases, has provided useful informations. (author)

  7. Role of hypotension in decreasing cerebral blood flow in porcine endotoxemia

    International Nuclear Information System (INIS)

    Miller, C.F.; Breslow, M.J.; Shapiro, R.M.; Traystman, R.J.

    1987-01-01

    The role of reduced arterial blood pressure (MAP) in decreasing cerebral blood flow (CBF) during endotoxemia was studied in pentobarbital-anesthetized pigs. Microspheres were used to measure regional CBF changes during MAP manipulations in animals with and without endotoxin. Endotoxin decreased MAP to 50 mmHg and decreased blood flow to the cortex and cerebellum without affecting cerebral cortical oxygen consumption (CMRo 2 ). Elevating MAP from 50 to 70 mmHg during endotoxemia with norepinephrine did not change cortical blood flow or CMRo 2 but increased cerebellar blood flow. Brain stem blood flow was not affected by endotoxin or norepinephrine. When MAP was decreased to 50 mmHg by hemorrhage without endotoxin, no change in blood flow to cortex, cerebellum, or brain stem was observed from base-line levels. These results suggest that decreased MAP below a lower limit for cerebral autoregulation does not account for the decreased CBF observed after endotoxin

  8. Pressure Ulcer Prevention: Where Practice and Education Meet.

    Science.gov (United States)

    Bos, Brenda S; Wangen, Tina M; Elbing, Carl E; Rowekamp, Debra J; Kruggel, Heather A; Conlon, Patricia M; Scroggins, Leann M; Schad, Shauna P; Neumann, Julie A; Barth, Melissa M; Grubbs, Pamela L; Sievers, Beth A

    2016-01-01

    This article describes the processes used to implement a pressure ulcer management program in a Midwest academic medical center, which led to a decrease in reportable pressure ulcers. A learning needs assessment was completed, and a workgroup was formed to address the learning needs. Methods, materials, and processes included lectures, technology-enhanced learning, and interactive stations with mannequins and pressure ulcer moulages. The processes and outcome measures used to measure effectiveness of the program are discussed.

  9. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  10. Transition density and pressure in hot neutron stars

    International Nuclear Information System (INIS)

    Xu Jun; Chen Liewen; Ko, Che Ming; Li Baoan

    2010-01-01

    Using the momentum-dependent effective interaction (MDI) for nucleons, we have studied the transition density and pressure at the boundary between the inner crust and the liquid core of hot neutron stars. We find that their values are larger in neutrino-trapped neutron stars than in neutrino-free neutron stars. Furthermore, both are found to decrease with increasing temperature of a neutron star as well as increasing slope parameter of the nuclear symmetry energy, except that the transition pressure in neutrino-trapped neutron stars for the case of small symmetry energy slope parameter first increases and then decreases with increasing temperature. We have also studied the effect of the nuclear symmetry energy on the critical temperature above which the inner crust in a hot neutron star disappears and found that with increasing value of the symmetry energy slope parameter, the critical temperature decreases slightly in neutrino-trapped neutron stars but first decreases and then increases in neutrino-free neutron stars.

  11. Ice nucleation triggered by negative pressure.

    Science.gov (United States)

    Marcolli, Claudia

    2017-11-30

    Homogeneous ice nucleation needs supercooling of more than 35 K to become effective. When pressure is applied to water, the melting and the freezing points both decrease. Conversely, melting and freezing temperatures increase under negative pressure, i.e. when water is stretched. This study presents an extrapolation of homogeneous ice nucleation temperatures from positive to negative pressures as a basis for further exploration of ice nucleation under negative pressure. It predicts that increasing negative pressure at temperatures below about 262 K eventually results in homogeneous ice nucleation while at warmer temperature homogeneous cavitation, i. e. bubble nucleation, dominates. Negative pressure occurs locally and briefly when water is stretched due to mechanical shock, sonic waves, or fragmentation. The occurrence of such transient negative pressure should suffice to trigger homogeneous ice nucleation at large supercooling in the absence of ice-nucleating surfaces. In addition, negative pressure can act together with ice-inducing surfaces to enhance their intrinsic ice nucleation efficiency. Dynamic ice nucleation can be used to improve properties and uniformity of frozen products by applying ultrasonic fields and might also be relevant for the freezing of large drops in rainclouds.

  12. Air Circulation and Heat Exchange under Reduced Pressures

    Science.gov (United States)

    Rygalov, Vadim; Wheeler, Raymond; Dixon, Mike; Hillhouse, Len; Fowler, Philip

    Low pressure atmospheres were suggested for Space Greenhouses (SG) design to minimize sys-tem construction and re-supply materials, as well as system manufacturing and deployment costs. But rarified atmospheres modify heat exchange mechanisms what finally leads to alter-ations in thermal control for low pressure closed environments. Under low atmospheric pressures (e.g., lower than 25 kPa compare to 101.3 kPa for normal Earth atmosphere), convection is becoming replaced by diffusion and rate of heat exchange reduces significantly. During a period from 2001 to 2009, a series of hypobaric experiments were conducted at Space Life Sciences Lab (SLSLab) NASA's Kennedy Space Center and the Department of Space Studies, University of North Dakota. Findings from these experiments showed: -air circulation rate decreases non-linearly with lowering of total atmospheric pressure; -heat exchange slows down with pressure decrease creating risk of thermal stress (elevated leaf tem-peratures) for plants in closed environments; -low pressure-induced thermal stress could be reduced by either lowering system temperature set point or increasing forced convection rates (circulation fan power) within certain limits; Air circulation is an important constituent of controlled environments and plays crucial role in material and heat exchange. Theoretical schematics and mathematical models are developed from a series of observations. These models can be used to establish optimal control algorithms for low pressure environments, such as a space greenhouse, as well as assist in fundamental design concept developments for these or similar habitable structures.

  13. Elastomeric polymer resonant waveguide grating based pressure sensor

    International Nuclear Information System (INIS)

    Song, Fuchuan; Xie, Antonio Jou; Seo, Sang-Woo

    2014-01-01

    In this paper, we demonstrate an elastomeric polymer resonant waveguide grating structure to be used as a pressure sensor. The applied pressure is measured by optical resonance spectrum peak shift. The sensitivity—as high as 86.74 pm psi −1 or 12.58 pm kPa −1 —has been experimentally obtained from a fabricated sensor. Potentially, the sensitivity of the demonstrated sensor can be tuned to different pressure ranges by the choices of elastic properties and layer thicknesses of the waveguide and cladding layers. The simulation results agree well with experimental results and indicate that the dominant effect on the sensor is the change of grating period when external pressure is applied. Based on the two-dimensional planar structure, the demonstrated sensor can be used to measure applied surface pressure optically, which has potential applications for optical ultrasound imaging and pressure wave detection/mapping

  14. Pressure effects on the dissipative behavior of nanocrystalline diamond microelectromechanical resonators

    International Nuclear Information System (INIS)

    Santos, J T; Chu, V; Conde, J P; Holz, T; Fernandes, A J S; Costa, F M

    2015-01-01

    Diamond-based microelectromechanical resonators have the potential of enhanced performance due to the chemical inertness of the diamond structural layer and its high Young’s modulus, high wear resistance, low thermal expansion coefficient, and very high thermal conductivity. In this work, the resonance frequency and quality factor of MEMS resonators based on nanocrystalline diamond films are characterized under different air pressures. The dynamic behavior of 50–300 μm long linear bridges and double ended tuning forks, with resonance frequencies between 0.5 and 15 MHz and quality factors as high as 50 000 are described as a function of measurement pressure from high vacuum(∼10 mTorr) up to atmospheric conditions. The resonance frequencies and quality factors in vacuum show good agreement with the theoretical models including anchor and thermoelastic dissipation (TED). The Young’s moduli for nanocrystalline diamond films extrapolated from experimental data are between 840–920 GPa. The critical pressure values, at which the quality factor starts decreasing due to dissipation in air, are dependent on the resonator length. Longer structures, with quality factors limited by TED and lower resonance frequencies, have low critical pressures, of the order of 1–10 Torr and go from an intrinsic dissipation, to a molecular dissipation regime and finally to a region of viscous dissipation. Shorter resonators, with higher resonance frequencies and quality factors limited by anchor losses, have higher critical pressures, some higher than atmospheric pressure, and enter directly into the viscous dissipation regime from the intrinsic region. (paper)

  15. Pressure-Sensitive Resistor Material

    Science.gov (United States)

    Du Fresne, E. R.

    1986-01-01

    Low-conductivity particles in rubber offer wide dynamic range. Sensor consists of particles of relatively low conductivity embedded in rubber. Resistance of sensor decreases by about 100 times as pressure on it increases from zero to 0.8 MN/M to the second power. Resistor promising candidate as tactile sensor for robots and remote manipulators.

  16. Phase transformation and conductivity in nanocrystal PbS under pressure

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Gerward, Leif; Secco, R.

    2000-01-01

    The grain-size effect on the phase transition induced by pressure in PbS was studied by in situ high-pressure electrical resistance and synchrotron radiation x-ray powder diffraction measurements. The mean transition pressure of the B1-to-B16 phase transformation was found to be 6.3±1.3 GPa in 8...... in terms of a decrease of energy band gap with increasing pressure. ©2000 American Institute of Physics....

  17. Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy

    International Nuclear Information System (INIS)

    Kazanc, S.; Ozgen, S.; Adiguzel, O.

    2003-01-01

    The solid-solid phase transitions in NiAl alloys occur by the temperature changes and application of a pressure on the system. Both types of transitions are called martensitic transformation and have displacive and thermoelastic characters. Pressure effects on thermoelastic transformation in Ni 62.5 Al 37.5 alloy model have been studied by means of molecular dynamics method proposed by Parrinello-Rahman. Interaction forces between atoms in the model system were calculated by Lennard-Jones potential energy function. Thermodynamics and structural analysis of the martensitic transformations under hydrostatic pressure during the quenching processes have been performed. The simulation runs have been carried out in different hydrostatic pressures changing from zero to 40.65 GPa during the quenching process of the model alloy. At the zero and nonzero pressures, the system with B2-type ordered structure undergoes the product phase with L1 0 -type ordered structure by Bain distortion in the first step of martensitic transformation under the quenching process. The increase in hydrostatic pressure causes decrease in the formation time of the product phase, and twin-like lattice distortion is observed in low temperature L1 0 phase

  18. Pressure to kill or pressure to boost: a review on the various effects and applications of hydrostatic pressure in bacterial biotechnology.

    Science.gov (United States)

    Follonier, Stéphanie; Panke, Sven; Zinn, Manfred

    2012-03-01

    Much knowledge has been gained for the last 30 years about the effects of pressure on bacteria, and various pressure-based technologies have been designed. The development of modern molecular biology techniques (e.g., DNA microarrays) as well as the technological advances realized in the manufacturing of robust sampling and high-pressure devices has allowed these advances. Not only the direct effects on cell components (membranes, proteins, and nucleic acids) have been unraveled, but also the cellular response to pressure has been investigated by means of transcriptome and proteome analyses. Initially, research was performed by marine biologists who studied the microorganisms living in the deep sea at pressures of 1,000 bar. In parallel, food technologists developed pressure-based methods for inactivating microorganisms without altering the food properties as much as with temperature treatment. The preservation of specific product properties is also the rationale for pressure-based methods for the disinfection of biomaterials and for vaccine production. Therefore, attention was first focused on the “killing” potential of high pressure. On the other hand, there has been a growing interest in using elevated pressures (up to ~10 bar) for enhancing the productivity of bioprocesses. In this case, no killing effect was sought, but pressure was applied to “boost” the process by enhancing the oxygen transfer to the cell culture. This paper gives an overview on the effects of pressures in the range of 1 bar to 10 kbar on bacteria and presents the major and most recent achievements realized in the development of pressure-based biotechnological applications.

  19. Low Power and High Sensitivity MOSFET-Based Pressure Sensor

    International Nuclear Information System (INIS)

    Zhang Zhao-Hua; Ren Tian-Ling; Zhang Yan-Hong; Han Rui-Rui; Liu Li-Tian

    2012-01-01

    Based on the metal-oxide-semiconductor field effect transistor (MOSFET) stress sensitive phenomenon, a low power MOSFET pressure sensor is proposed. Compared with the traditional piezoresistive pressure sensor, the present pressure sensor displays high performances on sensitivity and power consumption. The sensitivity of the MOSFET sensor is raised by 87%, meanwhile the power consumption is decreased by 20%. (cross-disciplinary physics and related areas of science and technology)

  20. Pulse pressure and diurnal blood pressure variation

    DEFF Research Database (Denmark)

    Knudsen, Søren Tang; Poulsen, Per Løgstrup; Hansen, Klavs Würgler

    2002-01-01

    retinopathy, nephropathy, macrovascular disease, PP, and diurnal BP variation in a group of type 2 diabetic patients. METHODS: In 80 type 2 diabetic patients we performed 24-h ambulatory BP (AMBP) and fundus photographs. Urinary albumin excretion was evaluated by urinary albumin/creatinine ratio. Presence...... or absence of macrovascular disease was assessed by an independent physician. RESULTS: Forty-nine patients had no detectable retinal changes (grade 1), 13 had grade 2 retinopathy, and 18 had more advanced retinopathy (grades 3-6). Compared to patients without retinopathy (grade 1), patients with grades 2......BACKGROUND: In nondiabetic subjects pulse pressure (PP) is an independent predictor of cardiovascular disease and microalbuminuria. Reduced circadian blood pressure (BP) variation is a potential risk factor for the development of diabetic complications. We investigated the association between...

  1. Effects of recruitment maneuver and positive end-expiratory pressure on respiratory mechanics and transpulmonary pressure during laparoscopic surgery.

    Science.gov (United States)

    Cinnella, Gilda; Grasso, Salvatore; Spadaro, Savino; Rauseo, Michela; Mirabella, Lucia; Salatto, Potito; De Capraris, Antonella; Nappi, Luigi; Greco, Pantaleo; Dambrosio, Michele

    2013-01-01

    The authors tested the hypothesis that during laparoscopic surgery, Trendelenburg position and pneumoperitoneum may worsen chest wall elastance, concomitantly decreasing transpulmonary pressure, and that a protective ventilator strategy applied after pneumoperitoneum induction, by increasing transpulmonary pressure, would result in alveolar recruitment and improvement in respiratory mechanics and gas exchange. In 29 consecutive patients, a recruiting maneuver followed by positive end-expiratory pressure 5 cm H(2)O maintained until the end of surgery was applied after pneumoperitoneum induction. Respiratory mechanics, gas exchange, blood pressure, and cardiac index were measured before (T(BSL)) and after pneumoperitoneum with zero positive end-expiratory pressure (T(preOLS)), after recruitment with positive end-expiratory pressure (T(postOLS)), and after peritoneum desufflation with positive end-expiratory pressure (T(end)). Esophageal pressure was used for partitioning respiratory mechanics between lung and chest wall (data are mean ± SD): on T(preOLS), chest wall elastance (E(cw)) and elastance of the lung (E(L)) increased (8.2 ± 0.9 vs. 6.2 ± 1.2 cm H(2)O/L, respectively, on T(BSL); P = 0.00016; and 11.69 ± 1.68 vs. 9.61 ± 1.52 cm H(2)O/L on T(BSL); P = 0.0007). On T(postOLS), both chest wall elastance and E(L) decreased (5.2 ± 1.2 and 8.62 ± 1.03 cm H(2)O/L, respectively; P = 0.00015 vs. T(preOLS)), and Pao(2)/inspiratory oxygen fraction improved (491 ± 107 vs. 425 ± 97 on T(preOLS); P = 0.008) remaining stable thereafter. Recruited volume (the difference in lung volume for the same static airway pressure) was 194 ± 80 ml. Pplat(RS) remained stable while inspiratory transpulmonary pressure increased (11.65 + 1.37 cm H(2)O vs. 9.21 + 2.03 on T(preOLS); P = 0.007). All respiratory mechanics parameters remained stable after abdominal desufflation. Hemodynamic parameters remained stable throughout the study. In patients submitted to laparoscopic surgery in

  2. Spinal Cord Injury and Pressure Ulcer Prevention: Using Functional Activity in Pressure Relief

    Directory of Open Access Journals (Sweden)

    May Stinson

    2013-01-01

    Full Text Available Background. People with spinal cord injury (SCI are at increased risk of pressure ulcers due to prolonged periods of sitting. Concordance with pressure relieving movements is poor amongst this population, and one potential alternative to improve this would be to integrate pressure relieving movements into everyday functional activities. Objectives. To investigate both the current pressure relieving behaviours of SCI individuals during computer use and the application of an ergonomically adapted computer-based activity to reduce interface pressure. Design. Observational and repeated measures design. Setting. Regional Spinal Cord Injury Unit. Participants. Fourteen subjects diagnosed with SCI (12 male, 2 female. Intervention.Comparing normal sitting to seated movements and induced forward reaching positions. Main Outcome Measures. Interface pressure measurements: dispersion index (DI, peak pressure index (PPI, and total contact area (CA. The angle of trunk tilt was also measured. Results. The majority of movements yielded less than 25% reduction in interface pressure compared to normal sitting. Reaching forward by 150% of arm length during an adapted computer activity significantly reduced DI (P<0.05, angle of trunk tilt (p<0.05, and PPI for both ischial tuberosity regions (P<0.001 compared to normal sitting. Conclusion. Reaching forward significantly redistributed pressure at the seating interface, as evidenced by the change in interface pressures compared to upright sitting.

  3. Hydrogenic impurity binding energy in vertically coupled Ga1-xAlxAs quantum-dots under hydrostatic pressure and applied electric field

    International Nuclear Information System (INIS)

    Duque, C.M.; Barseghyan, M.G.; Duque, C.A.

    2009-01-01

    This work deals with a theoretical study, using a variational method and the effective mass approximation, of the ground state binding energy of a hydrogenic donor impurity in a vertically coupled multiple quantum dot structure under the effects of hydrostatic pressure and in-growth direction applied electric field. The low dimensional structure consists of three cylindrical shaped GaAs quantum dots coupled by Ga 1-x Al x As barriers. For the hydrostatic pressure has been considered the Γ-X crossover in the Ga 1-x Al x As material. As a general, the results show that: (1) the binding energy as a function of the impurity position has a similar shape to that shown by the electron wave function without the Coulomb interaction, (2) the presence of the electric field changes dramatically the binding energy profile destroying (favoring) the symmetry in the structures, and (3) depending on the impurity position the binding energy can increase or decrease with the hydrostatic pressure mainly due to increases or decreases of the carrier-wave function symmetry by changing the height of the potential barrier.

  4. Analyses of Decrease in Reactor Coolant Flow Rate in SMART

    International Nuclear Information System (INIS)

    Kim, Hyung Rae; Bae, Kyoo Hwan; Choi, Suhn

    2011-01-01

    SMART is a small integral reactor, which is under development at KAERI to get the standard design approval by the end of 2011. SMART works like a pressurized light-water reactor in principle though it is more compact than large commercial reactors. SMART houses major components such as steam generators, a pressurizer, and reactor coolant pumps inside the reactor pressure vessel. Due to its compact design, SMART adopts a canned-motor type reactor coolant pump which has much smaller rotational inertia than the ones used in commercial reactors. As a consequence, the reactor coolant pump has very short coastdown time and reactor coolant flow rate decreases more severely compared to commercial reactors. The transients initiated by reduction of reactor coolant flow rate have been analyzed to ensure that SMART can be safely shutdown on such transients. The design basis events in this category are complete loss of flow, single pump locked rotor with loss of offsite power, and single pump shaft break with loss of offsite power

  5. Weather forecasting by insects: modified sexual behaviour in response to atmospheric pressure changes.

    Science.gov (United States)

    Pellegrino, Ana Cristina; Peñaflor, Maria Fernanda Gomes Villalba; Nardi, Cristiane; Bezner-Kerr, Wayne; Guglielmo, Christopher G; Bento, José Maurício Simões; McNeil, Jeremy N

    2013-01-01

    Prevailing abiotic conditions may positively or negatively impact insects at both the individual and population levels. For example while moderate rainfall and wind velocity may provide conditions that favour development, as well as movement within and between habitats, high winds and heavy rains can significantly decrease life expectancy. There is some evidence that insects adjust their behaviours associated with flight, mating and foraging in response to changes in barometric pressure. We studied changes in different mating behaviours of three taxonomically unrelated insects, the curcurbit beetle, Diabrotica speciosa (Coleoptera), the true armyworm moth, Pseudaletia unipuncta (Lepidoptera) and the potato aphid, Macrosiphum euphorbiae (Hemiptera), when subjected to natural or experimentally manipulated changes in atmospheric pressure. In response to decreasing barometric pressure, male beetles exhibited decreased locomotory activity in a Y-tube olfactometer with female pheromone extracts. However, when placed in close proximity to females, they exhibited reduced courtship sequences and the precopulatory period. Under the same situations, females of the true armyworm and the potato aphid exhibited significantly reduced calling behaviour. Neither the movement of male beetles nor the calling of armyworm females differed between stable and increasing atmospheric pressure conditions. However, in the case of the armyworm there was a significant decrease in the incidence of mating under rising atmospheric conditions, suggesting an effect on male behaviour. When atmospheric pressure rose, very few M. euphorbiae oviparae called. This was similar to the situation observed under decreasing conditions, and consequently very little mating was observed in this species except under stable conditions. All species exhibited behavioural modifications, but there were interspecific differences related to size-related flight ability and the diel periodicity of mating activity. We

  6. Designing and Constructing Blood Flow Monitoring System to Predict Pressure Ulcers on Heel

    Directory of Open Access Journals (Sweden)

    Akbari H.

    2014-06-01

    Full Text Available Background: A pressure ulcer is a complication related to the need for the care and treatment of primarily disabled and elderly people. With the decrease of the blood flow caused by the pressure loaded, ulcers are formed and the tissue will be wasted with the passage of time. Objective: The aim of this study was to construct blood flow monitoring system on the heel tissue which was under external pressure in order to evaluate the tissue treatment in the ulcer. Methods: To measure the blood flow changes, three infrared optical transmitters were used at the distances of 5, 10, and 15 mm to the receiver. Blood flow changes in heels were assessed in pressures 0, 30, and 60 mmHg. The time features were extracted for analysis from the recorded signal by MATLAB software. Changes of the time features under different pressures were evaluated at the three distances by ANOVA in SPSS software. The level of significance was considered at 0.05. Results: In this study, 15 subjects, including both male and female, with the mean age of 54±7 participated. The results showed that the signal amplitude, power and absolute signal decreased significantly when pressure on the tissue increased in different layers (p<0.05. Heart rate only decreased significantly in pressures more than 30 mmHg (p=0.02. In pressures more than 30 mmHg, in addition to a decrease in the time features, the pattern of blood flow signal changed and it wasn’t the same as noload signal. Conclusion: By detecting the time features, we can reach an early diagnosis to prognosticate the degeneration of the tissue under pressure and it can be recommended as a method to predict bedsores in the heel.

  7. Effect of High Pressure Homogenization on the Physicochemical Properties of Natural Plant-based Model Emulsion Applicable for Dairy Products

    Science.gov (United States)

    Park, Sung Hee; Min, Sang-Gi; Jo, Yeon-Ji; Chun, Ji-Yeon

    2015-01-01

    In the dairy industry, natural plant-based powders are widely used to develop flavor and functionality. However, most of these ingredients are water-insoluble; therefore, emulsification is essential. In this study, the efficacy of high pressure homogenization (HPH) on natural plant (chocolate or vanilla)-based model emulsions was investigated. The particle size, electrical conductivity, Brix, pH, and color were analyzed after HPH. HPH significantly decreased the particle size of chocolate-based emulsions as a function of elevated pressures (20-100 MPa). HPH decreased the mean particle size of chocolate-based emulsions from 29.01 μm to 5.12 μm, and that of vanilla-based emulsions from 4.18 μm to 2.44 μm. Electrical conductivity increased as a function of the elevated pressures after HPH, for both chocolate- and vanilla-based model emulsions. HPH at 100 MPa increased the electrical conductivity of chocolate-based model emulsions from 0.570 S/m to 0.680 S/m, and that of vanilla-based model emulsions from 0.573 S/m to 0.601 S/m. Increased electrical conductivity would be attributed to colloidal phase modification and dispersion of oil globules. Brix of both chocolate- and vanilla-based model emulsions gradually increased as a function of the HPH pressure. Thus, HPH increased the solubility of plant-based powders by decreasing the particle size. This study demonstrated the potential use of HPH for enhancing the emulsification process and stability of the natural plant powders for applications with dairy products. PMID:26761891

  8. Management methodology for pressure equipment

    Science.gov (United States)

    Bletchly, P. J.

    Pressure equipment constitutes a significant investment in capital and a major proportion of potential high-risk plant in many operations and this is particularly so in an alumina refinery. In many jurisdictions pressure equipment is also subject to statutory regulation that imposes obligations on Owners of the equipment with respect to workplace safety. Most modern technical standards and industry codes of practice employ a risk-based approach to support better decision making with respect to pressure equipment. For a management system to be effective it must demonstrate that risk is being managed within acceptable limits.

  9. Decreased systolic blood pressure is associated with increased risk of all-cause mortality in patients with type 2 diabetes and renal impairment: A nationwide longitudinal observational study of 27,732 patients based on the Swedish National Diabetes Register.

    Science.gov (United States)

    Svensson, Maria K; Afghahi, Henri; Franzen, Stefan; Björk, Staffan; Gudbjörnsdottir, Soffia; Svensson, Ann-Marie; Eliasson, Björn

    2017-05-01

    Previous studies have shown a U-shaped relationship between systolic blood pressure and risk of all-cause of mortality in patients with type 2 diabetes and renal impairment. To evaluate the associations between time-updated systolic blood pressure and time-updated change in systolic blood pressure during the follow-up period and risk of all-cause mortality in patients with type 2 diabetes and renal impairment. A total of 27,732 patients with type 2 diabetes and renal impairment in the Swedish National Diabetes Register were followed for 4.7 years. Time-dependent Cox models were used to estimate risk of all-cause mortality. Time-updated mean systolic blood pressure is the average of the baseline and the reported post-baseline systolic blood pressures. A time-updated systolic blood pressure blood pressure > 10 mmHg between the last two observations was associated with higher risk of all-cause mortality (-10 to -25 mmHg; hazard ratio: 1.24, 95% confidence interval: 1.17-1.32). Both low systolic blood pressure and a decrease in systolic blood pressure during the follow-up are associated with a higher risk of all-cause mortality in patients with type 2 diabetes and renal impairment.

  10. A novel approach to office blood pressure measurement: 30-minute office blood pressure vs daytime ambulatory blood pressure

    NARCIS (Netherlands)

    Wel, M.C. van der; Buunk, I.E.; Weel, C. van; Thien, Th.; Bakx, J.C.

    2011-01-01

    PURPOSE: Current office blood pressure measurement (OBPM) is often not executed according to guidelines and cannot prevent the white-coat effect. Serial, automated, oscillometric OBPM has the potential to overcome both these problems. We therefore developed a 30-minute OBPM method that we compared

  11. The Influence of Running on Foot Posture and In-Shoe Plantar Pressures.

    Science.gov (United States)

    Bravo-Aguilar, María; Gijón-Noguerón, Gabriel; Luque-Suarez, Alejandro; Abian-Vicen, Javier

    2016-03-01

    Running can be considered a high-impact practice, and most people practicing continuous running experience lower-limb injuries. The aim of this study was to determine the influence of 45 min of running on foot posture and plantar pressures. The sample comprised 116 healthy adults (92 men and 24 women) with no foot-related injuries. The mean ± SD age of the participants was 28.31 ± 6.01 years; body mass index, 23.45 ± 1.96; and training time, 11.02 ± 4.22 h/wk. Outcome measures were collected before and after 45 min of running at an average speed of 12 km/h, and included the Foot Posture Index (FPI) and a baropodometric analysis. The results show that foot posture can be modified after 45 min of running. The mean ± SD FPI changed from 6.15 ± 2.61 to 4.86 ± 2.65 (P running. Peak plantar pressures in the forefoot decreased after running. The pressure-time integral decreased during the heel strike phase in the internal edge of the foot. In addition, a decrease was found in the pressure-time integral during the heel-off phase in the internal and rearfoot edges. The findings suggest that after 45 min of running, a pronated foot tends to change into a more neutral position, and decreased plantar pressures were found after the run.

  12. Study on the quantitative rod internal pressure design criterion

    International Nuclear Information System (INIS)

    Kim, Kyu Tae; Kim, Oh Hwan; Han, Hee Tak

    1991-01-01

    The current rod internal pressure criterion permits fuel rods to operate with internal pressures in excess of system pressure only if internal overpressure does not cause the diametral gap enlargement. In this study, the generic allowable internal gas pressure not violating this criterion is estimated as a function of rod power. The results show that the generic allowable internal gas pressure decreases linearly with the increase of rod power. Application of the generic allowable internal gas pressure for the rod internal pressure design criterion will result in the simplication of the current design procedure for checking the diametral gap enlargement caused by internal overpressure because according to the current design procedure the cladding creepout rate should be compared with the fuel swelling rate at each axial node at each time step whenever internal pressure exceeds the system pressure. (Author)

  13. Saltstone Osmotic Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Ralph L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, Kenneth L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRN

    2013-09-23

    Recent research into the moisture retention properties of saltstone suggest that osmotic pressure may play a potentially significant role in contaminant transport (Dixon et al., 2009 and Dixon, 2011). The Savannah River Remediation Closure and Disposal Assessments Group requested the Savannah River National Laboratory (SRNL) to conduct a literature search on osmotic potential as it relates to contaminant transport and to develop a conceptual model of saltstone that incorporates osmotic potential. This report presents the findings of the literature review and presents a conceptual model for saltstone that incorporates osmotic potential. The task was requested through Task Technical Request HLW-SSF-TTR- 2013-0004.

  14. Pressure tube reactors

    International Nuclear Information System (INIS)

    Natori, Hisahide.

    1981-01-01

    Purpose: To improve the electrical power generation efficiency in a pressure tube reactor in which coolants and moderators are separated by feedwater heating with heat generated in heavy water and by decreasing the amount of steams to be extracted from the turbine. Constitution: A heat exchanger and a heavy water cooler are additionally provided to a conventional pressure tube reactor. The heat exchanger is disposed at the pre-stage of a low pressure feedwater heater series. High temperature heavy water heated in the core is passed through the primary side of the exchanger, while feedwater is passed through the secondary side. The cooler is disposed on the downstream of the heat exchanger in the flowing direction of the heavy water, in which heavy water from the heat exchanger is passed through the primary side and the auxiliary equipment cooling water is sent to the secondary side thereof. Accordingly, since extraction of heating steams is no more necessary, the steam can be used for the rotation of the turbine, and the electrical power generation efficiency can be improved. (Seki, T.)

  15. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities.

    Directory of Open Access Journals (Sweden)

    Hong-Li Li

    Full Text Available Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot and two levels of water depth (30 cm and 70 cm. Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities.

  16. Skin assessment of patients at risk of pressure ulcers.

    Science.gov (United States)

    Whiteing, Nicola L

    The incidence of pressure ulcers in the community and in acute settings is a concern for patients and healthcare professionals. The high cost to healthcare services of treating individuals with pressure ulcers means prevention is much cheaper than cure. Nurses have a responsibility to implement and participate in prevention programmes to decrease the incidence of pressure ulcers. Assessment is the first stage in prevention. This article focuses on the assessment of pressure areas, providing the reader with the knowledge of where and when skin assessment should take place and what needs to be assessed.

  17. Stress in highly demanding IT jobs: transformational leadership moderates the impact of time pressure on exhaustion and work-life balance.

    Science.gov (United States)

    Syrek, Christine J; Apostel, Ella; Antoni, Conny H

    2013-07-01

    The objective of this article is to investigate transformational leadership as a potential moderator of the negative relationship of time pressure to work-life balance and of the positive relationship between time pressure and exhaustion. Recent research regards time pressure as a challenge stressor; while being positively related to motivation and performance, time pressure also increases employee strain and decreases well-being. Building on the Job Demand-Resources model, we hypothesize that transformational leadership moderates the relationships between time pressure and both employees' exhaustion and work-life balance such that both relationships will be weaker when transformational leadership is higher. Of seven information technology organizations in Germany, 262 employees participated in the study. Established scales for time pressure, transformational leadership, work-life balance, and exhaustion were used, all showing good internal consistencies. The results support our assumptions. Specifically, we find that under high transformational leadership the impact of time pressure on exhaustion and work-life balance was less strong. The results of this study suggest that, particularly under high time pressure, transformational leadership is an important factor for both employees' work-life balance and exhaustion. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  18. Flurbiprofen axetil increases arterial oxygen partial pressure by decreasing intrapulmonary shunt in patients undergoing one-lung ventilation.

    Science.gov (United States)

    Chai, Xiao-Qing; Ma, Jun; Xie, Yan-Hu; Wang, Di; Chen, Kun-Zhou

    2015-12-01

    In the present study, we investigated whether flurbiprofen axetil (FA) alleviates hypoxemia during one-lung ventilation (OLV) by reducing the pulmonary shunt/total perfusion (Q s/Q t) ratio, and examined the relationship between the Q s/Q t ratio and the thromboxane B2 (TXB2)/6-keto-prostaglandin F1α (6-K-PGF1α) ratio. Sixty patients undergoing esophageal resection for carcinoma were randomly assigned to groups F and C (n = 30 for each group). FA and placebo were administered i.v. 15 min before skin incision in groups F and C, respectively. The partial pressure of arterial oxygen (PaO2) was measured and the Q s/Q t ratio was calculated. Serum TXB2, 6-K-PGF1α, and endothelin (ET) were measured by radioimmunoassay. The relationship between TXB2/6-K-PGF1α and Q s/Q t was investigated. Compared with group C, PaO2 was higher and the Q s/Q t ratio was lower during OLV in group F (P < 0.05). After treatment with FA, both serum TXB2 and 6-K-PGF1α decreased significantly (P < 0.05) but the TXB2/6-K-PGF1α ratio increased significantly (P < 0.01). Increases in the TXB2/6-K-PGF1α ratio were correlated with reductions in the Q s/Q t ratio during OLV in group F (r = -0.766, P < 0.01). There was no significant difference in serum ET between groups F and C. Treatment with FA reduced the Q s/Q t ratio and further increased the PaO2 level during OLV, possibly due to upregulation of the vasoactive agent TXB2/6-K-PGF1α ratio.

  19. Behaviour of the ASDEX pressure gauge at high neutral gas pressure and applications for ITER

    International Nuclear Information System (INIS)

    Scarabosio, A.; Haas, G.

    2008-01-01

    The ASDEX Pressure Gauge is, at present, the main candidate for in-vessel neutral pressure measurement in ITER. Although the APG output is found to saturate at around 15 Pa, below the ITER requirement of 20 Pa. We show, here, that with small modifications of the gauge geometry and potentials settings we can achieve satisfactory behaviour up to 30 Pa at 6 T

  20. Endurance training in mild hypertension - effects on ambulatory blood pressure and neural circulatory control.

    Science.gov (United States)

    Narkiewicz; Somers

    1997-10-01

    This review examines the effects of a single bout of exercise and of endurance training on blood pressure in patients with hypertension. Possible autonomic mechanisms that mediate these changes in blood pressure are reviewed briefly. Blood pressure rises during exercise. During the second half hour after exercise blood pressure is lower. This p;ost-exercise reduction in blood pressure is associated with a decrease in muscle sympathetic nerve activity, an increase in baroreflex gain and a reduction in the level of blood pressure (set point) at which baroreflex activation occurs. The post-exercise fall in blood pressure appears to be limited to several hours and is not likely to explain any chronic reduction in blood pressure from endurance training. Endurance training elicits modest (approximately 4-5 mmHg) reductions in blood pressure. Because of the intrinsic variability of blood pressure, the decreases in blood pressure after endurance training is evident, especially when multiple measurements of blood pressure are obtained. Studies using 24 h blood pressure measurements suggest that, although endurance training lowers daytime blood pressure, blood pressure during sleep remains unchanged. The mechanism underlying the reduction in blood pressure in endurance training is not known. Although physical fitness is known to attenuate the sympathetic response to acute exercise, whether resting sympathetic drive is decreased with endurance training remains controversial. The slowing of heart rate that accompanies endurance training is also associated with an increase in variability of heart rate. The slower heart rate, increased variability of heart rate and lower blood pressure after endurance training are accompanied by an increase in baroreflex sensitivity. Even though the antihypertensive effect of endurance training is modest, the favourable effects of physical fitness on other risk factors for cardiovascular disease make exercise training an important approach in

  1. Body size at birth and blood pressure among children in developing countries.

    Science.gov (United States)

    Law, C M; Egger, P; Dada, O; Delgado, H; Kylberg, E; Lavin, P; Tang, G H; von Hertzen, H; Shiell, A W; Barker, D J

    2001-02-01

    Studies in developed countries have shown that reduced fetal growth is related to raised blood pressure in childhood and adult life. Little is known about this association in developing countries, where fetal growth retardation is common. In 1994-1995, we measured blood pressure in 1570 3-6-year-old children living in China, Guatemala, Chile, Nigeria and Sweden. We related their blood pressure to patterns of fetal growth, as measured by body proportions at birth. The children were all born after 37 weeks gestation and weighed more than 2.5 kg at birth. In each country, blood pressure was positively related to the child's current weight. After adjusting for this and gender, systolic pressure was inversely related to size at birth in all countries except Nigeria. In Chile, China and Guatemala, children who were proportionately small at birth had raised systolic pressure. For example, in Chile, systolic pressure adjusted for current weight increased by 4.9 mmHg (95% CI : 2.1, 7.7) for every kilogram decrease in birthweight, by 1 mmHg (95% CI : 0.4, 1.6) for every centimetre decrease in birth length, and by 1.3 mmHg (95% CI : 0.4, 2.2) for every centimetre decrease in head circumference at birth. In Sweden, systolic pressure was higher in children who were disproportionately small, that is thin, at birth. Systolic pressure increased by 0.3 mmHg (95% CI : 0.0, 0.6) for every unit (kg/m3) decrease in ponderal index at birth. These associations were independent of the duration of gestation. Raised blood pressure among children in three samples from China, Central and South America is related to proportionate reduction in body size at birth, which results from reduced growth throughout gestation. The relation between fetal growth and blood pressure may be different in African populations. Proportionately reduced fetal growth is the prevalent pattern of fetal growth retardation in developing countries, and is associated with chronic undernutrition among women. Improvement

  2. Responses to negative pressure surrounding the neck in anesthetized animals.

    Science.gov (United States)

    Wolin, A D; Strohl, K P; Acree, B N; Fouke, J M

    1990-01-01

    Continuous positive pressure applied at the nose has been shown to cause a decrease in upper airway resistance. The present study was designed to determine whether a similar positive transmural pressure gradient, generated by applying a negative pressure at the body surface around the neck, altered upper airway patency. Studies were performed in nine spontaneously breathing anesthetized supine dogs. Airflow was measured with a pneumotachograph mounted on an airtight muzzle placed over the nose and mouth of each animal. Upper airway pressure was measured as the differential pressure between the extrathoracic trachea and the inside of the muzzle. Upper airway resistance was monitored as an index of airway patency. Negative pressure (-2 to -20 cmH2O) was applied around the neck by using a cuirass extending from the jaw to the thorax. In each animal, increasingly negative pressures were transmitted to the airway wall in a progressive, although not linear, fashion. Decreasing the pressure produced a progressive fall in upper airway resistance, without causing a significant change in respiratory drive or respiratory timing. At -5 cmH2O pressure, there occurred a significant fall in upper airway resistance, comparable with the response of a single, intravenous injection of sodium cyanide (0.5-3.0 mg), a respiratory stimulant that produces substantial increases in respiratory drive. We conclude that upper airway resistance is influenced by the transmural pressure across the airway wall and that such a gradient can be accomplished by making the extraluminal pressure more negative.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Quantitative evaluation of the effect of buffer pressure on well output

    Energy Technology Data Exchange (ETDEWEB)

    Kobrushko, A T

    1980-01-01

    In the examples of the Pashninskiy and the Usinskiy fields of the Komi ASSR, a method is presented for determining the possible increase in output of a gusher well on decrease in the buffer pressure. A quantitative evaluation of this increase is presented. The essence of the method is construction of a nomogram for characteristics of a gusher lifter and indicator diagrams of the wells combined in one figure. Mutual intersection of the characteristics and diagrams corresponds to the steady-state operating mode of the bed-well system. Cases are examined of productivity 10, 25, 50 and 100 m/sup 3//day of the MPa for the Pashninskiy and 25, 50, 102 and 200 m/sup 3//day of the MPa for the Usinskiy fields. Despite the broad range of well productivity, and also the significant difference in fields according to gushing conditions, increase of the well output for 0.1 MPa of decrease in buffer pressure differs little. In the interval of buffer pressures 2.00.5 MPa, the specific increase of output from decrease in buffer pressure is very significant and is 7-10 m/sup 3//day. The findings convincingly proved the expediency of using systems of oil and gas recovery at new fields with possibly low pressure in the pipelines.

  4. Laser ignition of liquid petroleum gas at elevated pressures

    Science.gov (United States)

    Loktionov, E.; Pasechnikov, N.; Telekh, V.

    2017-11-01

    Recent development of laser spark plugs for internal combustion engines have shown lack of data on laser ignition of fuel mixtures at multi-bar pressures needed for laser pulse energy and focusing optimisation. Methane and hydrogen based mixtures are comparatively well investigated, but propane and butane based ones (LPG), which are widely used in vehicles, are still almost unstudied. Optical breakdown thresholds in gases decrease with pressure increase up to ca. 100 bar, but breakdown is not a sufficient condition for combustion ignition. So minimum ignition energy (MIE) becomes more important for combustion core onset, and its dependency on mixture composition and pressure has several important features. For example, unlike breakdown threshold, is poorly dependent on laser pulse length, at least in pico- and to microsecond range. We have defined experimentally the dependencies of minimum picosecond laser pulse energies (MIE related value) needed for ignition of LPG based mixtures of 1.0 to 1.6 equivalence ratios and pressure of 1.0 to 3.5 bar. In addition to expected values decrease, low-energy flammability range broadening has been found at pressure increase. Laser ignition of LPG in Wankel rotary engine is reported for the first time.

  5. Decreasing the stable trapping region during geomagnetic storm

    International Nuclear Information System (INIS)

    Mal'tsev, Yu.P.; Feshchenko, E.Yu.

    1998-01-01

    Within the frameworks of the magnetic field model, depending on the solar wind pressure, the B = B s (B s is the magnetic field in the undersolar point) contour behaviour in the equatorial plane is calculated. The boundary of stable trapping in the quiet time is at the distance of 10-11 R E by day and ∼ 7 R E by night. During strong storms this distance may be decreased up 4-5 R E . The calculation results coincide satisfactorily with satellite measurements

  6. High pressure studies of as grown WX2-x single crystals

    International Nuclear Information System (INIS)

    Solanki, G.K.; Agarwal, M.K.; Patel, Yogesh A.

    2011-01-01

    The structural optical and transport properties of tungsten metal dichalogenides having layered structure have been extensively studied in the last two decades. These materials shows highly anisotropic behaviour and have been receiving considerable interest for a variety of applications. Several of these layered semiconductors have attracted attention as a new class of solar cell material. We present here the results of simultaneous resistivity and thermoelectric power (TEP) measurements upto 7 GPa on single crystals of WS 2 , WS 1.9 , WSe 2 and WSe 1.9 grown using Direct Vapour Transport (DVT) technique. The observations clearly shows WS 2 and WS 1.9 are more resistive compared to other two crystals. In all samples an exponential fall of resistivity on increases in pressure upto 2.1 GPa but after 2.2 GPa the resistivity decreases substantially with increases pressure. The TEP of WSe 2 increases steadily and reaches maximum at 0.65 GPa, while for WSe 1.9 TEP increases upto pressure 0.5 GPa. In both the cases after attaining the maximum TEP, then decreases monotonically with increase in pressure. TEP of WS 2 and WS 1.9 increase upto pressure 1.1 GPa, beyond 1.1 GPa pressure in both the cases TEP decreases steadily with further increase in pressure. In all the samples, the sign of TEP is positive indicating that all of them are p-type and remain p-type with increase in pressure. The variation of thermoelectric power factor with pressure has been thoroughly studied. An analysis of the data point out that perfectly stoichiometric crystals of WSe 2 work as superior thermoelectric materials. The results have been presented and implications have been discussed. (author)

  7. Potentiation of Hormonal Responses to Hemorrhage and Fasting, but not Hypoglycemia in Conscious Adrenalectomized Rats

    Science.gov (United States)

    Darlington, Daniel N.; Keil, Lanny C.; Dallman, Mary F.

    1989-01-01

    Bilateral adrenalectomy (ADRX) in rats removes the source of two major stress-responsive hormones, corticosterone and epinephrine. To test how ADRX rats with-stand stress, we performed the following experiments in adult male rats provided with indwelling femoral arterial and venous cannulae and either ADRX or sham-adrenalectomized (Sham) 3 days later and given 0.5% NaCl to drink. Five to 6 days after adrenal surgery the rats were studied after either a 15 ml/kg.5 min hemorrhage or after an overnight fast followed by insulin-induced hypoglycemia. In fed unstressed ADRX rats, basal mean arterial blood pressure was slightly decreased; heart rate was increased; blood volume, vasopressin, and oxytocin concentrations were not different from sham values; and renin and norepinephrine were significantly elevated. The recovery of arterial pressure after hemorrhage in the ADRX rats was similar to that in the sham group over a 5-h period; however, the responses of vasopressin and oxytocin were significantly greater, and those of renin and norepinephrine were markedly potentiated in the ADRX group. Heart rate recovered faster in the ADRX group and was elevated, compared to the sham value, for most of the 5-h period. Restitution of blood volume was attenuated in the ADRX group, although the restitution of plasma protein was not different between the groups. A significant difference in the change in plasma osmolality between groups after hemorrhage may account for the attenuated restitution of blood volume. After an overnight fast, which reduced blood volume in both groups of rats, the plasma renin concentration rose still further in ADRX rats; the differences in other measured variables observed between fed ADRX and sham groups remained the same. The insulin-induced 50% decrease in glucose caused minor effects on arterial blood pressure and heart rate and occasioned responses in renin and norepinephrine of similar magnitudes in the two groups. We conclude that in the absence of

  8. Contribution of the Arterial System and the Heart to Blood Pressure during Normal Aging - A Simulation Study.

    Science.gov (United States)

    Maksuti, Elira; Westerhof, Nico; Westerhof, Berend E; Broomé, Michael; Stergiopulos, Nikos

    2016-01-01

    During aging, systolic blood pressure continuously increases over time, whereas diastolic pressure first increases and then slightly decreases after middle age. These pressure changes are usually explained by changes of the arterial system alone (increase in arterial stiffness and vascular resistance). However, we hypothesise that the heart contributes to the age-related blood pressure progression as well. In the present study we quantified the blood pressure changes in normal aging by using a Windkessel model for the arterial system and the time-varying elastance model for the heart, and compared the simulation results with data from the Framingham Heart Study. Parameters representing arterial changes (resistance and stiffness) during aging were based on literature values, whereas parameters representing cardiac changes were computed through physiological rules (compensated hypertrophy and preservation of end-diastolic volume). When taking into account arterial changes only, the systolic and diastolic pressure did not agree well with the population data. Between 20 and 80 years, systolic pressure increased from 100 to 122 mmHg, and diastolic pressure decreased from 76 to 55 mmHg. When taking cardiac adaptations into account as well, systolic and diastolic pressure increased from 100 to 151 mmHg and decreased from 76 to 69 mmHg, respectively. Our results show that not only the arterial system, but also the heart, contributes to the changes in blood pressure during aging. The changes in arterial properties initiate a systolic pressure increase, which in turn initiates a cardiac remodelling process that further augments systolic pressure and mitigates the decrease in diastolic pressure.

  9. Cystic Fibrosis Transmembrane Conductance Regulator Potentiation as a Therapeutic Strategy for Pulmonary Edema: A Proof-of-Concept Study in Pigs.

    Science.gov (United States)

    Li, Xiaopeng; Vargas Buonfiglio, Luis G; Adam, Ryan J; Stoltz, David A; Zabner, Joseph; Comellas, Alejandro P

    2017-12-01

    To determine the feasibility of using a cystic fibrosis transmembrane conductance regulator potentiator, ivacaftor (VX-770/Kalydeco, Vertex Pharmaceuticals, Boston, MA), as a therapeutic strategy for treating pulmonary edema. Prospective laboratory animal investigation. Animal research laboratory. Newborn and 3 days to 1 week old pigs. Hydrostatic pulmonary edema was induced in pigs by acute volume overload. Ivacaftor was nebulized into the lung immediately after volume overload. Grams of water per grams of dry lung tissue were determined in the lungs harvested 1 hour after volume overload. Ivacaftor significantly improved alveolar liquid clearance in isolated pig lung lobes ex vivo and reduced edema in a volume overload in vivo pig model of hydrostatic pulmonary edema. To model hydrostatic pressure-induced edema in vitro, we developed a method of applied pressure to the basolateral surface of alveolar epithelia. Elevated hydrostatic pressure resulted in decreased cystic fibrosis transmembrane conductance regulator activity and liquid absorption, an effect which was partially reversed by cystic fibrosis transmembrane conductance regulator potentiation with ivacaftor. Cystic fibrosis transmembrane conductance regulator potentiation by ivacaftor is a novel therapeutic approach for pulmonary edema.

  10. Measurement of digital blood pressure after local cooling

    DEFF Research Database (Denmark)

    Nielsen, S L; Lassen, N A

    1977-01-01

    A double-inlet plastic cuff was designed for local cooling and systolic blood pressure measurement on the middle phalanx of the fingers. With a tourniquet on the proximal phalanx of one finger, cooling for 5 min made the digital artery temperature equal the skin temperature. The difference between...... the systolic pressure in a control finger and in the cooled finger give the reopening pressure in the digital arteries. At 30, 25, 20, 15, and 10 degrees C, respectively the percent decrease of the finger pressure was 0.2 (0.2), 1.5 (2.5), 8.5 (3.7), 11.4 (3.4), and 15.3 (3.1) in normal young women...

  11. Ion-neutral potential models in atmospheric pressure ion mobility time-of-flight mass spectrometry IM(tof)MS.

    Science.gov (United States)

    Steiner, Wes E; English, William A; Hill, Herbert H

    2006-02-09

    The ion mobilities and their respective masses of several classes of amines (primary, secondary, and tertiary) were measured by electrospray ionization atmospheric pressure ion mobility time-of-flight mass spectrometry IM(tof)MS. The experimental data obtained were comparatively analyzed by the one-temperature kinetic theory of Chapman-Enskog. Several theoretical models were used to estimate the collision cross-sections; they include the rigid-sphere, polarization-limit, 12-6-4, and 12-4 potential models. These models were investigated to represent the interaction potentials contained within the collision integral that occurs between the polyatomic ions and the neutral drift gas molecules. The effectiveness of these collision cross-section models on predicting the mobility of these amine ions was explored. Moreover, the effects of drift gas selectivity on the reduced-mass term and in the collision cross-section term was examined. Use of a series of drift gases, namely, helium, neon, argon, nitrogen, and carbon dioxide, made it possible to distinguish between mass effects and polarizability effects. It was found that the modified 12-4 potential that compensates for the center of charge not being at the same location as the centers of mass showed improved agreement over the other collision cross-section models with respect to experimental data.

  12. LPG based all plastic pressure sensor

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Lwin, R.; Leon-Saval, S.

    2015-01-01

    A prototype all-plastic pressure sensor is presented and characterized for potential use as an endoscope. The sensor is based on Long Period Gratings (LPG) inscribed with a CO2 laser in 6-ring microstructured PMMA fiber. Through a latex coated, plastic 3D-printed transducer pod, external pressure...... is converted to longitudinal elongation of the pod and therefore of the fiber containing the LPG. The sensor has been characterised for pressures of up to 160 mBar in an in-house built pressure chamber. Furthermore, the influence of the fiber prestrain, fiber thickness and the effect of different glues...

  13. Modeling Thermal Pressurization Around Shallow Dikes Using Temperature-Dependent Hydraulic Properties: Implications for Deformation Around Intrusions

    Science.gov (United States)

    Townsend, Meredith R.

    2018-01-01

    Pressurization and flow of groundwater around igneous intrusions depend in part on the hydraulic diffusivity of the host rocks and processes that enhance diffusivity, such as fracturing, or decrease diffusivity, such as mineral precipitation during chemical alteration. Characterizing and quantifying the coupled effects of alteration, pore pressurization, and deformation have significant implications for deformation around intrusions, geothermal energy, contact metamorphism, and heat transfer at mid-ocean ridges. Fractures around dikes at Ship Rock, New Mexico, indicate that pore pressures in the host rocks exceeded hydrostatic conditions by at least 15 MPa following dike emplacement. Hydraulic measurements and petrographic analysis indicate that mineral precipitation clogged the pores of the host rock, reducing porosity from 0.25 to reducing permeability by 5 orders of magnitude. Field data from Ship Rock are used to motivate and constrain numerical models for thermal pore fluid pressurization adjacent to a meter-scale dike, using temperature-dependent hydraulic properties in the host rock as a proxy for porosity loss by mineral precipitation during chemical alteration. Reduction in permeability by chemical alteration has a negligible effect on pressurization. However, reduction in porosity by mineral precipitation increases fluid pressure by constricting pore volume and is identified as a potentially significant source of pressure. A scaling relationship is derived to determine when porosity loss becomes important; if permeability is low enough, pressurization by porosity loss outweighs pressurization by thermal expansion of fluids.

  14. Conduction mechanism in a novel oxadiazole derivative: effects of temperature and hydrostatic pressure

    International Nuclear Information System (INIS)

    Luo Jifeng; Han Yonghao; Tang Bencheng; Gao Chunxiao; Li Min; Zou Guangtian

    2005-01-01

    The quasi-four-probe resistivity measurement on the microcrystal of 1,4-bis[(4-heptyloxyphenyl)-1,3,4-oxadiazolyl]phenylene (OXD-3) is carried out under variable pressure and temperature conditions using a diamond anvil cell (DAC). Sample resistivity is calculated with a finite element analysis method. The temperature and pressure dependences of the resistivity of OXD-3 microcrystal are measured up to 150 0 C and 15 GPa, and the resistivity of OXD-3 decreases with increasing temperature, indicating that OXD-3 exhibits organic semiconductor transport property in the region of experimental pressure. With an increase of pressure, the resistivity of OXD-3 first increases and reaches a maximum at about 8 GPa, and then begins to decrease at high pressures. From the x-ray diffraction data in DAC under pressure, we can conclude that the anomaly of resistivity variation at 8 GPa results from the pressure-induced amorphism of OXD-3

  15. Sewage sludge solubilization by high-pressure homogenization.

    Science.gov (United States)

    Zhang, Yuxuan; Zhang, Panyue; Guo, Jianbin; Ma, Weifang; Fang, Wei; Ma, Boqiang; Xu, Xiangzhe

    2013-01-01

    The behavior of sludge solubilization using high-pressure homogenization (HPH) treatment was examined by investigating the sludge solid reduction and organics solubilization. The sludge volatile suspended solids (VSS) decreased from 10.58 to 6.67 g/L for the sludge sample with a total solids content (TS) of 1.49% after HPH treatment at a homogenization pressure of 80 MPa with four homogenization cycles; total suspended solids (TSS) correspondingly decreased from 14.26 to 9.91 g/L. About 86.15% of the TSS reduction was attributed to the VSS reduction. The increase of homogenization pressure from 20 to 80 MPa or homogenization cycle number from 1 to 4 was favorable to the sludge organics solubilization, and the protein and polysaccharide solubilization linearly increased with the soluble chemical oxygen demand (SCOD) solubilization. More proteins were solubilized than polysaccharides. The linear relationship between SCOD solubilization and VSS reduction had no significant change under different homogenization pressures, homogenization cycles and sludge solid contents. The SCOD of 1.65 g/L was solubilized for the VSS reduction of 1.00 g/L for the three experimental sludge samples with a TS of 1.00, 1.49 and 2.48% under all HPH operating conditions. The energy efficiency results showed that the HPH treatment at a homogenization pressure of 30 MPa with a single homogenization cycle for the sludge sample with a TS of 2.48% was the most energy efficient.

  16. Assessment of sacrococcygeal pressure ulcers using diffuse correlation spectroscopy

    Science.gov (United States)

    Diaz, David; Lafontant, Alec; Neidrauer, Michael; Weingarten, Michael S.; DiMaria-Ghalili, Rose Ann; Fried, Guy W.; Rece, Julianne; Lewin, Peter A.; Zubkov, Leonid

    2016-03-01

    Microcirculation is essential for proper supply of oxygen and nutritive substances to the biological tissue and the removal of waste products of metabolism. The determination of microcirculatory blood flow (mBF) is therefore of substantial interest to clinicians for assessing tissue health; particularly in pressure ulceration and suspected deep tissue injury. The goal of this pilot clinical study was to assess deep-tissue pressure ulceration by non-invasively measuring mBF using Diffuse Correlation Spectroscopy (DCS). DCS provides information about the flow of red blood cells in the capillary network by measuring the temporal autocorrelation function of scattering light intensity. A novel optical probe was developed in order to obtain measurements under the load of the subject's body as pressure is applied (ischemia) and then released (reperfusion) on sacrococcygeal tissue in a hospital bed. Prior to loading measurements, baseline readings of the sacral region were obtained by measuring the subjects in a side-lying position. DCS measurements from the sacral region of twenty healthy volunteers have been compared to those of two patients who initially had similar non-blanchable redness. The temporal autocorrelation function of scattering light intensity of the patient whose redness later disappeared was similar to that of the average healthy subject. The second patient, whose redness developed into an advanced pressure ulcer two weeks later, had a substantial decrease in blood flow while under the loading position compared to healthy subjects. Preliminary results suggest the developed system may potentially predict whether non-blanchable redness will manifest itself as advanced ulceration or dissipate over time.

  17. Effects of Solvent and Ion Source Pressure on the Analysis of Anabolic Steroids by Low Pressure Photoionization Mass Spectrometry.

    Science.gov (United States)

    Liu, Chengyuan; Zhu, Yanan; Yang, Jiuzhong; Zhao, Wan; Lu, Deen; Pan, Yang

    2017-04-01

    Solvent and ion source pressure were two important factors relating to the photon induced ion-molecule reactions in low pressure photoionization (LPPI). In this work, four anabolic steroids were analyzed by LPPI mass spectrometry. Both the ion species present and their relative abundances could be controlled by switching the solvent and adjusting the ion source pressure. Whereas M •+ , MH + , [M - H 2 O] + , and solvent adducts were observed in positive LPPI, [M - H] - and various oxidation products were abundant in negative LPPI. Changing the solvent greatly affected formation of the ion species in both positive and negative ion modes. The ion intensities of the solvent adduct and oxygen adduct were selectively enhanced when the ion source pressure was elevated from 68 to 800 Pa. The limit of detection could be decreased by increasing the ion source pressure. Graphical Abstract ᅟ.

  18. Effects of Solvent and Ion Source Pressure on the Analysis of Anabolic Steroids by Low Pressure Photoionization Mass Spectrometry

    Science.gov (United States)

    Liu, Chengyuan; Zhu, Yanan; Yang, Jiuzhong; Zhao, Wan; Lu, Deen; Pan, Yang

    2017-04-01

    Solvent and ion source pressure were two important factors relating to the photon induced ion-molecule reactions in low pressure photoionization (LPPI). In this work, four anabolic steroids were analyzed by LPPI mass spectrometry. Both the ion species present and their relative abundances could be controlled by switching the solvent and adjusting the ion source pressure. Whereas M•+, MH+, [M - H2O]+, and solvent adducts were observed in positive LPPI, [M - H]- and various oxidation products were abundant in negative LPPI. Changing the solvent greatly affected formation of the ion species in both positive and negative ion modes. The ion intensities of the solvent adduct and oxygen adduct were selectively enhanced when the ion source pressure was elevated from 68 to 800 Pa. The limit of detection could be decreased by increasing the ion source pressure.

  19. Blood Pressure Control: Stroke and Stroke Prevention

    Directory of Open Access Journals (Sweden)

    Hans-Christoph Diener

    2005-03-01

    Full Text Available Hypertension is the most important modifiable risk factor for primary and secondary stroke prevention.All antihypertensive drugs are effective in primary prevention: the risk reduction for stroke is 30—42%. However, not all classes of drugs have the same effects: there is some indication that angiotensin receptor blockers may be superior to other classes of antihypertensive drugs in stroke prevention.Seventy-five percent of patients who present to hospital with acute stroke have elevated blood pressure within the first 24—48 hours. Extremes of systolic blood pressure (SBP increase the risk of death or dependency. The aim of treatment should be to achieve and maintain the SBP in the range 140—160 mmHg. However, fast and drastic blood pressure lowering can have adverse consequences.The PROGRESS trial of secondary prevention with perindopril + indapamide versus placebo + placebo showed a decrease in numbers of stroke recurrences in patients given both active antihypertensive agents, more impressive for cerebral haemorrhage.There were also indications that active treatment might decrease the development of post-stroke dementia.

  20. Integrated rice-duck farming decreases global warming potential and increases net ecosystem economic budget in central China.

    Science.gov (United States)

    Sheng, Feng; Cao, Cou-Gui; Li, Cheng-Fang

    2018-05-31

    Over the past decades, many attempts have been made to assess the effects of integrated rice-duck farming on greenhouse gas emissions, use efficient of energy, soil fertility, and economic significance. However, very few studies have been focused on the effects of the farming on net ecosystem economic budget (NEEB). Here, a 2-year field experiment was conducted to comprehensively investigate the effects of ducks raised in paddy fields on CH 4 and N 2 O emissions, global warming potential (GWP), rice grain yield, and NEEB in central China. The experiment included two treatments: integrated rice-duck farming (RD) and conventional rice farming (R). The introduction of ducks into the paddy fields markedly increased the rice grain yield due to enhanced tiller number and root bleeding rate. RD treatment significantly elevated the N 2 O emissions (p < 0.05) but decreased CH 4 emissions (p < 0.05) during rice growing seasons compared with R treatment. Analysis of GWP based on CH 4 and N 2 O emissions showed that compared with R treatment, RD treatment significantly decreased the GWP by 28.1 and 28.0% and reduced the greenhouse gas intensity by 30.6 and 29.8% in 2009 and 2010, respectively. In addition, RD treatment increased NEEB by 40.8 and 39.7% respectively in 2009 and 2010 relative to R treatment. Taken together, our results suggest that the integrated rice-duck farming system is an effective strategy to optimize the economic and environmental benefits of paddy fields in central China.

  1. Plastic Deformation of Pressured Metallic Glass

    Directory of Open Access Journals (Sweden)

    Yun Cheng

    2017-11-01

    Full Text Available Although pressured metallic glass (MG has been reported in the literature; there are few studies focusing on pressure effects on the structure; dynamics and its plastic deformation. In this paper; we report on and characterize; via molecular dynamics simulation, the structure and dynamics heterogeneity of pressured MGs, and explore a causal link between local structures and plastic deformation mechanism of pressured glass. The results exhibit that the dynamical heterogeneity of metallic liquid is more pronounced at high pressure, while the MGs were less fragile after the release of external pressure, reflected by the non-Gaussian parameter (NGP. High pressure glass shows better plastic deformation; and the local strain zone distributed more uniformly than of in normal glass. Further research indicates that although the number of icosahedrons in pressured glass was much larger than that in normal glass, while the interpenetrating connections of icosahedra (ICOI exhibited spatial correlations were rather poor; In addition, the number of ‘fast’ atoms indexed by the atoms’ moving distance is larger than that in normal glass; leading to the sharp decreasing in number of icosahedrons during deformation. An uniform distribution of ‘fast’ atoms also contributed to better plastic deformation ability in the pressured glass. These findings may suggest a link between the deformation and destruction of icosahedra with short-range order.

  2. Influence of pressure on pyrolysis of black liquor: 1. Swelling.

    Science.gov (United States)

    Whitty, Kevin; Backman, Rainer; Hupa, Mikko

    2008-02-01

    This is the first of two papers concerning the behavior of black liquor during pyrolysis under pressurized conditions. Two industrial kraft liquors were pyrolyzed in a laboratory-scale pressurized single particle reactor and a pressurized grid heater at temperatures ranging from 650 to 1100 degrees C and at pressures between 1 and 20 bar. The dimensions of the chars produced were measured and the specific swollen volume was calculated. Swelling decreased roughly logarithmically over the pressure range 1-20 r. An expression is developed to predict the specific swollen volume at elevated pressure when the volume at 1 bar is known. The bulk density of the char increased with pressure, indicating that liquors will be entrained less easily at higher pressures.

  3. Investigation of Raman bands vapour of contours of trichloroethylene at high pressure

    International Nuclear Information System (INIS)

    Zaleskaya, G.A.; Ikramov, M.; Shukurov, T.

    1989-01-01

    Investigation of high-pressure extraneous gas on contour comb. band, spreading trichloroethylene steams are in given article. Increasing of extraneous gas pressure brings to decreasing free molecule circling time is shown

  4. Intense laser effects on donor impurity in a cylindrical single and vertically coupled quantum dots under combined effects of hydrostatic pressure and applied electric field

    International Nuclear Information System (INIS)

    Duque, C.A.; Kasapoglu, E.; Sakiroglu, S.; Sari, H.; Soekmen, I.

    2010-01-01

    Using the effective mass and parabolic band approximations and a variational procedure we have calculated the combined effects of intense laser radiation, hydrostatic pressure, and applied electric field on shallow-donor impurity confined in cylindrical-shaped single and double GaAs-Ga 1-x Al x As QD. Several impurity positions and inputs of the heterostructure dimensions, hydrostatic pressure, and applied electric field have been considered. The laser effects have been introduced by a perturbative scheme in which the Coulomb and the barrier potentials are modified to obtain dressed potentials. Our findings suggest that (1) for on-center impurities in single QD the binding energy is a decreasing function of the dressing parameter and for small dot dimensions of the structures (lengths and radius) the binding energy is more sensitive to the dressing parameter, (2) the binding energy is an increasing/decreasing function of the hydrostatic pressure/applied electric field, (3) the effects of the intense laser field and applied electric field on the binding energy are dominant over the hydrostatic pressure effects, (4) in vertically coupled QD the binding energy for donor impurity located in the barrier region is smaller than for impurities in the well regions and can be strongly modified by the laser radiation, and finally (5) in asymmetrical double QD heterostructures the binding energy as a function of the impurity positions follows a similar behavior to the observed for the amplitude of probability of the noncorrelated electron wave function.

  5. Standard values of maximum tongue pressure taken using newly developed disposable tongue pressure measurement device.

    Science.gov (United States)

    Utanohara, Yuri; Hayashi, Ryo; Yoshikawa, Mineka; Yoshida, Mitsuyoshi; Tsuga, Kazuhiro; Akagawa, Yasumasa

    2008-09-01

    It is clinically important to evaluate tongue function in terms of rehabilitation of swallowing and eating ability. We have developed a disposable tongue pressure measurement device designed for clinical use. In this study we used this device to determine standard values of maximum tongue pressure in adult Japanese. Eight hundred fifty-three subjects (408 male, 445 female; 20-79 years) were selected for this study. All participants had no history of dysphagia and maintained occlusal contact in the premolar and molar regions with their own teeth. A balloon-type disposable oral probe was used to measure tongue pressure by asking subjects to compress it onto the palate for 7 s with maximum voluntary effort. Values were recorded three times for each subject, and the mean values were defined as maximum tongue pressure. Although maximum tongue pressure was higher for males than for females in the 20-49-year age groups, there was no significant difference between males and females in the 50-79-year age groups. The maximum tongue pressure of the seventies age group was significantly lower than that of the twenties to fifties age groups. It may be concluded that maximum tongue pressures were reduced with primary aging. Males may become weaker with age at a faster rate than females; however, further decreases in strength were in parallel for male and female subjects.

  6. Pressure-dependent pure- and mixed-gas permeation properties of Nafion®

    KAUST Repository

    Mukaddam, Mohsin Ahmed

    2016-04-20

    The permeation properties of Nafion® at 35 °C are presented for pure gases H2, N2, O2, CH4, CO2, C2H6 and C3H8, as a function of pressure between 2 and 20 atm. The effect of pressure on permeability and selectivity is analyzed to understand two observed phenomena: compression and plasticization. In pure-gas experiments, at increasing feed pressure, compression of the polymer matrix reduced the permeability of low-sorbing penetrants H2, N2, O2, and CH4. In contrast, permeabilities of more soluble penetrants CO2 and C2H6 increased by 18% and 46% respectively, as plasticization effects overcame compression effects. Permeability of C3H8 decreased slightly with increasing pressure up to 4.6 atm as a result of compression, then increased by 3-fold at 9 atm as a result of plasticization associated with high C3H8 solubility. Binary CO2/CH4 (50:50) mixed-gas experiments at total feed pressures up to 36 atm quantified the effect of CO2 plasticization on separation performance. At 10 atm CO2 partial pressure, CH4 permeability increased by 23% relative to its pure-gas value of 0.078 Barrer, while CO2 permeability decreased by 28%. Consequently, CO2/CH4 selectivity decreased to 19, i.e., 42% below its pure-gas value of 32.

  7. Ambulatory Blood Pressure Monitoring in Clinical Practice: A Review

    Science.gov (United States)

    Viera, Anthony J.; Shimbo, Daichi

    2016-01-01

    Ambulatory blood pressure monitoring offers the ability to collect blood pressure readings several times an hour across a 24-hour period. Ambulatory blood pressure monitoring facilitates the identification of white-coat hypertension, the phenomenon whereby certain individuals who are not on antihypertensive medication show elevated blood pressure in a clinical setting but show non-elevated blood pressure averages when assessed by ambulatory blood pressure monitoring. Additionally, readings can be segmented into time windows of particular interest, e.g., mean daytime and nighttime values. During sleep, blood pressure typically decreases, or dips, such that mean sleep blood pressure is lower than mean awake blood pressure. A non-dipping pattern and nocturnal hypertension are strongly associated with increased cardiovascular morbidity and mortality. Approximately 70% of individuals dip ≥10% at night, while 30% have non-dipping patterns, when blood pressure remains similar to daytime average, or occasionally rises above daytime average. The various blood pressure categorizations afforded by ambulatory blood pressure monitoring are valuable for clinical management of high blood pressure since they increase accuracy for diagnosis and the prediction of cardiovascular risk. PMID:25107387

  8. Raised intracranial pressure

    African Journals Online (AJOL)

    is article presents an approach to raised intracranial pressure (ICP) constructed in a question-answer fashion. ..... Given that raised ICP is a serious and potentially life-threatening emergency, fast and reliable referral and transfer mechanisms should be established to ensure patients with this condition are effectively treated.

  9. A Simple Membrane Osmometer System & Experiments that Quantitatively Measure Osmotic Pressure

    Science.gov (United States)

    Marvel, Stephen C.; Kepler, Megan V.

    2009-01-01

    It is important for students to be exposed to the concept of osmotic pressure. Understanding this concept lays the foundation for deeper discussions that lead to more theoretical aspects of water movement associated with the concepts of free energy, water potential, osmotic potential, pressure potential, and osmotic adjustment. The concept of…

  10. Combined effects of high hydrostatic pressure and sodium nitrite on color, water holding capacity and texture of frankfurter

    Science.gov (United States)

    Jonas, G.; Csehi, B.; Palotas, P.; Toth, A.; Kenesei, Gy; Pasztor-Huszar, K.; Friedrich, L.

    2017-10-01

    The aim of this study was to investigate the effect of sodium nitrite and high hydrostatic pressure on the color, water holding capacity (WHC) and texture characteristics of frankfurter. Three hundred, 450 and 600 MPa (5 minutes; 20 °C) and 50, 75, 100 and 125 ppm (calculated on weight of meat) sodium nitrite were applied. Parameters were measured right after the pressure treatment. Data were evaluated with two-way analysis of variance (p 0.05) with pressure levels and sodium nitrite amounts as factors. Nitrite reduction significantly increased lightness (L*) and resulted in decreased redness (a*) value. The pressure treatments decreased the lightness at all nitrite concentrations and did not significantly affect the red color of frankfurters. Fifty and 75 ppm nitrite and pressurization at 300 or 450 MPa improved the water holding property of frankfurter. The pressure treatment did not significantly affect the WHC but changing the nitrite amount had significant effect on it. Interactive effect occurred between pressure levels and nitrite concentrations for hardness. The pressure treatment increased and the nitrite reduction decreased hardness. Significant changes were found in cohesiveness at 450 and 600 MPa in frankfurters containing 50 and 75 ppm nitrite: pressure treatment at higher levels and nitrite reduction decreased the value of cohesiveness.

  11. Effect of tilting on blood pressure and interstitial fluid pressures of bluefish and smooth dogfish.

    Science.gov (United States)

    Ogilvy, C S; DuBois, A B

    1982-01-01

    Tolerance of the circulatory system of fish for gravitational stress has not been measured previously. We examined this in bluefish (Pomatomus saltatrix) and smooth dogfish (Mustelus canis) by placing them horizontally on a V-board in air while their gills were perfused with aerated seawater, then tilting them head up for 0.5 h, and finally returning them to horizontal. Meanwhile, we recorded the blood pressure, pulse pressure, and heart rate in the ventral aorta, and interstitial fluid pressure in the head and tail. All four bluefish tolerated a 30 degrees tilt or even a 60 degrees tilt with little change in blood pressure or interstitial pressure in the anterior and posterior regions. All recovered afterward. However, in the seven dogfish examined, the posterior interstitial fluid pressure increased from 2.8 +/- 1.0 cmH2O before tilting to 11.8 +/- 3.3 cmH2O toward the end of a 30 degrees tilt lasting 30 min. The blood pressure decreased as the pulse pressure approached zero, showing that circulatory insufficiency had developed due to insufficient venous return to the heart. Most of the dogfish died within a few hours after the experiment. These findings are in keeping with the conclusion that the vasculature of bluefish has more rigidity, less permeability, and perhaps more compensatory tone than that of smooth dogfish. We speculate that bluefish may have evolved their circulatory tolerance for gravity as a cross-adaptation to the stresses imposed on the circulation by forward acceleration and by regional differences of transcutaneous pressure occurring during fast carangiform swimming.

  12. Peripheral arterial volume distensibility: significant differences with age and blood pressure measured using an applied external pressure

    International Nuclear Information System (INIS)

    Zheng, Dingchang; Murray, Alan

    2011-01-01

    A new arterial distensibility measurement technique was assessed in 100 healthy normotensive subjects. Arterial transmural pressures on the whole right arm were reduced with a 50 cm long cuff inflated to 10, 20, 30 and 40 mmHg. The electrocardiogram, and finger and ear photoplethysmograms were recorded simultaneously. Arm pulse propagation time, pulse wave velocity (PWV) and arterial volume distensibility were determined. With a 40 mmHg reduction in transmural pressure, arm pulse propagation time increased from 61 to 83 ms, PWV decreased from 12 to 8 m s −1 and arterial distensibility increased from 0.102% to 0.232% per mmHg (all P < 0.0001). At all cuff pressures, arterial distensibility was significantly related to resting mean arterial pressure (MAP), diastolic blood pressure (DBP) and age, and for systolic blood pressure at 30 and 40 mmHg (all P < 0.05). At 40 mmHg cuff pressure, arterial distensibility fell by 54% for a MAP increase from 75 to 105 mmHg, 57% for a DBP increase from 60 to 90 mmHg and 47% for an age increase from 20 to 70 years. These changes were more than double than those without cuff pressure. Our technique showed that systemic volume distensibility of the peripheral arm artery reduced with age, with a greater effect at higher external and lower transmural pressures

  13. Effect of high pressure on the mechanical properties of lithium disilicate glass ceramic

    International Nuclear Information System (INIS)

    Buchner, Silvio; Lepienski, Carlos M.; Jr, Paulo C. Soares; Balzaretti, Naira M.

    2011-01-01

    Research highlights: → High pressure densification of LS2 decreases the mechanical properties. → Densification of LS2 at high temperature improves the mechanical properties. → Hardness and elastic modulus of LS2 densified at high temperature are notably high. - Abstract: Lithium disilicate glass has been submitted to a high pressure treatment associated to a heat treatment, and the effects of densification and crystallization at high pressure on the mechanical properties were evaluated. The hardness and elastic modulus were examined by instrumented indentation using a Berkovich tip. The crack pattern morphology after indentation with a cube corner indenter was also investigated. The hardness and elastic modulus of the samples submitted to high pressure at room temperature decreased with increasing pressure. The hardness and elastic modulus of the samples submitted simultaneously to high pressure (up to 7.7 GPa) and high temperature increased noticeably. The amount, length and type of cracks induced by the cube corner tip changed with increasing pressure. These results indicate that the high temperature treatment under high pressure improved the mechanical properties of LS 2 .

  14. Application of quality assurance guidelines to the high pressure gas system, building 331

    International Nuclear Information System (INIS)

    Hanel, S.

    1976-01-01

    Major improvements have been made to decrease the tritium release potential for LLL's tritium-handling facilities in Bldg. 331. Some of the major problems and solutions in designing and building the High Pressure Gas System, which was the first system to be rebuilt are described. To increase system safety, it was necessary to specify material and processes used in component manufacture, to inspect all materials and processes to ensure compliance with specifications, to use proper joint design, to use secondary containment in cases where specifications could not be met, and to exercise tighter control of operating procedures

  15. Theoretical studies of optical gain tuning by hydrostatic pressure in GaInNAs/GaAs quantum wells

    International Nuclear Information System (INIS)

    Gladysiewicz, M.; Wartak, M. S.; Kudrawiec, R.

    2014-01-01

    In order to describe theoretically the tuning of the optical gain by hydrostatic pressure in GaInNAs/GaAs quantum wells (QWs), the optical gain calculations within kp approach were developed and applied for N-containing and N-free QWs. The electronic band structure and the optical gain for GaInNAs/GaAs QW were calculated within the 10-band kp model which takes into account the interaction of electron levels in the QW with the nitrogen resonant level in GaInNAs. It has been shown that this interaction increases with the hydrostatic pressure and as a result the optical gain for GaInNAs/GaAs QW decreases by about 40% and 80% for transverse electric and transverse magnetic modes, respectively, for the hydrostatic pressure change from 0 to 40 kilobars. Such an effect is not observed for N-free QWs where the dispersion of electron and hole energies remains unchanged with the hydrostatic pressure. This is due to the fact that the conduction and valence band potentials in GaInAs/GaAs QW scale linearly with the hydrostatic pressure

  16. Diel patterns of water potential components for the crassulacean acid metabolism plant Opuntia ficus-indica when well-watered or droughted

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, G.; Ortega, J.K.E.; Nerd, A.; Nobel, P.S. (Univ. of California, Los Angeles (United States))

    1991-01-01

    Under well-watered conditions, chlorenchyma acidity in cladodes of Opuntia ficus-indica increased substantially at night, fully accounting for the 0.26-megapascal nocturnal increase in osmotic pressure in the outer 2 millimeters. Osmotic pressure in the inner part of the chlorenchyma and in the water-storage parenchyma did not change significantly over 24-hour periods. Three months of drought decreased nocturnal acid accumulation by 73% and essentially abolished transpiration; also, 27% of the chlorenchyma water and 61% of the parenchyma water was lost during such drought, but the average tissue osmotic pressure was little affected. Turgor pressure was maintained in the chlorenchyma after 3 months of drought, although it decreased sevenfold in the water-storage parenchyma compared with the well-watered condition. Moreover, the nocturnal increases in turgor pressure of about 0.08 megapascal in the outer part of the chlorenchyma was also unchanged by such drought. The water potential magnitudes favored water movement from the parenchyma to the chlorenchyma at the end of the night and in the reverse direction during the late afternoon. Experiments with tritiated water support this pattern of water movement, which is also in agreement with predictions based on electric-circuit analog models for Crassulacean acid metabolism plants.

  17. The effect of hydrostatic pressure on the physical properties of magnesium arsenide in cubic and hexagonal phases

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, Ali, E-mail: mokhtari@sci.sku.ac.i [Simulation Laboratory, Department of Physics, Faculty of Science, Shahrekord University, P. B. 115, Shahrekord (Iran, Islamic Republic of); Sedighi, Matin [Simulation Laboratory, Department of Physics, Faculty of Science, Shahrekord University, P. B. 115, Shahrekord (Iran, Islamic Republic of)

    2010-04-01

    Full potential-linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT) was applied to study the structural and electronic properties of the magnesium arsenide in both cubic and hexagonal phases. The exchange-correlation functional was approximated as a generalized gradient functional introduced by Perdew-Burke-Ernzerhof (GGA96) and Engel-Vosko (EV-GGA). The lattice parameters, bulk modulus and its pressure derivative, cohesive energy, band structures and effective mass of electrons and holes (EME and EMH) were obtained and compared to the available experimental and theoretical results. A phase transition was predicted at pressure of about 1.63 GPa from the cubic to the hexagonal phase. The effect of hydrostatic pressure on the behavior of the electronic properties such as band gap, valence bandwidths, anti-symmetry gap (the energy gap between two parts of the valence bands), EME and EMH were investigated using both GGA96 and EV-GGA methods. High applied pressure can decrease (increase) the holes mobility of cubic (hexagonal) phase of this compound.

  18. The effect of hydrostatic pressure on the physical properties of magnesium arsenide in cubic and hexagonal phases

    International Nuclear Information System (INIS)

    Mokhtari, Ali; Sedighi, Matin

    2010-01-01

    Full potential-linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT) was applied to study the structural and electronic properties of the magnesium arsenide in both cubic and hexagonal phases. The exchange-correlation functional was approximated as a generalized gradient functional introduced by Perdew-Burke-Ernzerhof (GGA96) and Engel-Vosko (EV-GGA). The lattice parameters, bulk modulus and its pressure derivative, cohesive energy, band structures and effective mass of electrons and holes (EME and EMH) were obtained and compared to the available experimental and theoretical results. A phase transition was predicted at pressure of about 1.63 GPa from the cubic to the hexagonal phase. The effect of hydrostatic pressure on the behavior of the electronic properties such as band gap, valence bandwidths, anti-symmetry gap (the energy gap between two parts of the valence bands), EME and EMH were investigated using both GGA96 and EV-GGA methods. High applied pressure can decrease (increase) the holes mobility of cubic (hexagonal) phase of this compound.

  19. Correlated electron—hole transitions in wurtzite GaN quantum dots: the effects of strain and hydrostatic pressure

    International Nuclear Information System (INIS)

    Zheng Dongmei; Wang Zongchi; Xiao Boqi

    2012-01-01

    Within the effective-mass and finite-height potential barrier approximation, a theoretical study of the effects of strain and hydrostatic pressure on the exciton emission wavelength and electron—hole recombination rate in wurtzite cylindrical GaN/Al x Ga 1−x N quantum dots (QDs) is performed using a variational approach. Numerical results show that the emission wavelength with strain effect is higher than that without strain effect when the QD height is large (> 3.8 nm), but the status is opposite when the QD height is small (< 3.8 nm). The height of GaN QDs must be less than 5.5 nm for an efficient electron—hole recombination process due to the strain effect. The emission wavelength decreases linearly and the electron—hole recombination rate increases almost linearly with applied hydrostatic pressure. The hydrostatic pressure has a remarkable influence on the emission wavelength for large QDs, and has a significant influence on the electron—hole recombination rate for small QDs. Furthermore, the present numerical outcomes are in qualitative agreement with previous experimental findings under zero pressure. (semiconductor physics)

  20. Troubleshooting at Reverse Osmosis performance decrease

    Energy Technology Data Exchange (ETDEWEB)

    Soons, Jan [KEMA (Netherlands)

    2011-07-01

    There are several causes for a decrease in Reverse Osmosis (RO) membrane performance each of which requiring actions to tackle the possible cause. Two of the main factors affecting the performance of the system are the feed quality (poor feed quality can lead to fouling of the membranes) and the operational conditions (including the maximum allowed pressure, minimum cleaning frequencies and types, recovery rate etc, which should be according to the design conditions). If necessary, pre-treatment will be applied in order to remove the fouling agents from the influent, reduce scaling (through the addition of anti-scalants) and for the protection of the membranes (for example, sodium metabisulphite addition for the removal of residual chlorine which can harm the membranes). Fouling is not strictly limited to the use of surface water as feed water, also relatively clean water sources will, over time, lead to organic and inorganic fouling when cleaning is not optimum. When fouling occurs, the TransMembrane Pressure (TMP) increases and more energy will be needed to produce the same amount of product water. Also, the cleaning rate will increase, reducing the production rate and increasing the chemical consumption and the produced waste streams. Furthermore, the quality of the effluent will decrease (lower rejection rates at higher pressures) and the lifetime of the membranes will decrease. Depending on the type of fouling different cleaning regimes will have to be applied: acidic treatment for inorganic fouling, the addition of bases against organic fouling. Therefore, it is very important to have a clear view of the type of fouling that is occurring, in order to apply the correct treatment methods. Another important aspect to be kept in mind is that the chemistry of the water - in the first place ruled by the feed water composition - can change during passage of the modules, in particular in cases where the RO system consists of two or more RO trains, and where the

  1. Increasing preferred step rate during running reduces plantar pressures.

    Science.gov (United States)

    Gerrard, James M; Bonanno, Daniel R

    2018-01-01

    Increasing preferred step rate during running is a commonly used strategy in the management of running-related injuries. This study investigated the effect of different step rates on plantar pressures during running. Thirty-two healthy runners ran at a comfortable speed on a treadmill at five step rates (preferred, ±5%, and ±10%). For each step rate, plantar pressure data were collected using the pedar-X in-shoe system. Compared to running with a preferred step rate, a 10% increase in step rate significantly reduced peak pressure (144.5±46.5 vs 129.3±51 kPa; P=.033) and maximum force (382.3±157.6 vs 334.0±159.8 N; P=.021) at the rearfoot, and reduced maximum force (426.4±130.4 vs 400.0±116.6 N; P=.001) at the midfoot. In contrast, a 10% decrease in step rate significantly increased peak pressure (144.5±46.5 vs 161.5±49.3 kPa; P=.011) and maximum force (382.3±157.6 vs 425.4±155.3 N; P=.032) at the rearfoot. Changing step rate by 5% provided no effect on plantar pressures, and no differences in plantar pressures were observed at the medial forefoot, lateral forefoot or hallux between the step rates. This study's findings indicate that increasing preferred step rate by 10% during running will reduce plantar pressures at the rearfoot and midfoot, while decreasing step rate by 10% will increase plantar pressures at the rearfoot. However, changing preferred step rate by 5% will provide no effect on plantar pressures, and forefoot pressures are unaffected by changes in step rate. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Effect of pressure variation on structural, elastic, mechanical, optoelectronic and thermodynamic properties of SrNaF3 fluoroperovskite

    Science.gov (United States)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-12-01

    The effect of pressure variation on structural, electronic, elastic, mechanical, optical and thermodynamic characteristics of cubic SrNaF3 fluoroperovskite have been investigated by employing first-principles method within the framework of gradient approximation (GGA). For the total energy calculations, we have used the full-potential linearized augmented plane wave (FP-LAPW) method. Thermodynamic properties are computed in terms of quasi-harmonic Debye model. The pressure effects are determined in the range of 0-25 GPa, in which mechanical stability of SrNaF3 fluoroperovskite remains valid. A prominent decrease in lattice constant and bonds length is observed with the increase in pressure from 0 to 25 GPa. The effect of increase in pressure on band structure calculations with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential reveals a predominant characteristic associated with widening of bandgap. The influence of pressure on set of isotropic elastic parameters and their related properties are numerically estimated for SrNaF3 polycrystalline aggregate. Apart of linear dependence of elastic coefficients, transition from brittle to ductile behavior is observed as pressure is increased from 0 to 25 GPa. We have successfully obtained variation of lattice constant, volume expansion, bulk modulus, Debye temperature and specific heat capacities with pressure and temperature in the range of 0-25 GPa and 0-600 K. All the calculated optical properties such as the complex dielectric function ɛ(ω), optical conductivity σ(ω), energy loss function L(ω), absorption coefficient α(w), refractive index n(ω), reflectivity R(ω), and effective number of electrons n eff, via sum rules shift towards the higher energies under the application of pressure.

  3. SCW Pressure-Channel Nuclear Reactor Some Design Features

    Science.gov (United States)

    Pioro, Igor L.; Khan, Mosin; Hopps, Victory; Jacobs, Chris; Patkunam, Ruban; Gopaul, Sandeep; Bakan, Kurtulus

    Concepts of nuclear reactors cooled with water at supercritical pressures were studied as early as the 1950s and 1960s in the USA and Russia. After a 30-year break, the idea of developing nuclear reactors cooled with SuperCritical Water (SCW) became attractive again as the ultimate development path for water cooling. The main objectives of using SCW in nuclear reactors are: 1) to increase the thermal efficiency of modern Nuclear Power Plants (NPPs) from 30-35% to about 45-48%, and 2) to decrease capital and operational costs and hence decrease electrical energy costs (˜1000 US/kW or even less). SCW NPPs will have much higher operating parameters compared to modern NPPs (pressure about 25 MPa and outlet temperature up to 625°C), and a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc., can be eliminated. Also, higher SCW temperatures allow direct thermo-chemical production of hydrogen at low cost, due to increased reaction rates. Pressure-tube or pressure-channel SCW nuclear reactor concepts are being developed in Canada and Russia for some time. Some design features of the Canadian concept related to fuel channels are discussed in this paper. The main conclusion is that the development of SCW pressure-tube nuclear reactors is feasible and significant benefits can be expected over other thermal-energy systems.

  4. Inactivation of Escherichia coli and Listeria innocua in Milk by Combined Treatment with High Hydrostatic Pressure and the Lactoperoxidase System

    Science.gov (United States)

    García-Graells, Cristina; Valckx, Caroline; Michiels, Chris W.

    2000-01-01

    We have studied inactivation of four strains each of Escherichia coli and Listeria innocua in milk by the combined use of high hydrostatic pressure and the lactoperoxidase-thiocyanate-hydrogen peroxide system as a potential mild food preservation method. The lactoperoxidase system alone exerted a bacteriostatic effect on both species for at least 24 h at room temperature, but none of the strains was inactivated. Upon high-pressure treatment in the presence of the lactoperoxidase system, different results were obtained for E. coli and L. innocua. For none of the E. coli strains did the lactoperoxidase system increase the inactivation compared to a treatment with high pressure alone. However, a strong synergistic interaction of both treatments was observed for L. innocua. Inactivation exceeding 7 decades was achieved for all strains with a mild treatment (400 MPa, 15 min, 20°C), which in the absence of the lactoperoxidase system caused only 2 to 5 decades of inactivation depending on the strain. Milk as a substrate was found to have a considerable effect protecting E. coli and L. innocua against pressure inactivation and reducing the effectiveness of the lactoperoxidase system under pressure on L. innocua. Time course experiments showed that L. innocua counts continued to decrease in the first hours after pressure treatment in the presence of the lactoperoxidase system. E. coli counts remained constant for at least 24 h, except after treatment at the highest pressure level (600 MPa, 15 min, 20°C), in which case, in the presence of the lactoperoxidase system, a transient decrease was observed, indicating sublethal injury rather than true inactivation. PMID:11010856

  5. Comparison of under-pressure and over-pressure pulse tests conducted in low-permeability basalt horizons at the Hanford Site, Washington State

    International Nuclear Information System (INIS)

    Thorne, P.D.; Spane, F.A. Jr.

    1984-10-01

    Over-pressure pulse tests (pressurized slug tests have been widely used by others for hydraulic characterization of low-permeability ( -8 m/sec) rock formations. Recent field studies of low-permeability basalt horizons at the Hanford Site, Washington, indicate that the under-pressure pulse technique is also a viable test method for hydraulic characterization studies. For over-pressure pulse tests, fluid within the test system is rapidly pressurized and the associated pressure decay is monitored as compressed fluid within the test system expands and flows into the test formation. Under-pressure pulse tests are conducted in a similar manner by abruptly decreasing the pressure of fluid within the test system, and monitoring the associated increase in pressure as fluid flows from the formation into the test system. Both pulse test methods have been used in conjunction with other types of tests to determine the hydraulic properties of selected low-permeability basalt horizons at Hanford test sites. Results from both pulse test methods generally provide comparable estimates of hydraulic properties and are in good agreement with those from other tests

  6. Dynamics of explosively imploded pressurized tubes

    Science.gov (United States)

    Szirti, Daniel; Loiseau, Jason; Higgins, Andrew; Tanguay, Vincent

    2011-04-01

    The detonation of an explosive layer surrounding a pressurized thin-walled tube causes the formation of a virtual piston that drives a precursor shock wave ahead of the detonation, generating very high temperatures and pressures in the gas contained within the tube. Such a device can be used as the driver for a high energy density shock tube or hypervelocity gas gun. The dynamics of the precursor shock wave were investigated for different tube sizes and initial fill pressures. Shock velocity and standoff distance were found to decrease with increasing fill pressure, mainly due to radial expansion of the tube. Adding a tamper can reduce this effect, but may increase jetting. A simple analytical model based on acoustic wave interactions was developed to calculate pump tube expansion and the resulting effect on the shock velocity and standoff distance. Results from this model agree quite well with experimental data.

  7. Determinants of systemic zero-flow arterial pressure.

    Science.gov (United States)

    Brunner, M J; Greene, A S; Sagawa, K; Shoukas, A A

    1983-09-01

    Thirteen pentobarbital-anesthetized dogs whose carotid sinuses were isolated and perfused at a constant pressure were placed on total cardiac bypass. With systemic venous pressure held at 0 mmHg (condition 1), arterial inflow was stopped for 20 s at intrasinus pressures of 50, 125, and 200 mmHg. Zero-flow arterial pressures under condition 1 were 16.2 +/- 1.3 (SE), 13.8 +/- 1.1, and 12.5 +/- 0.8 mmHg, respectively. In condition 2, the venous outflow tube was clamped at the instant of stopping the inflow, causing venous pressure to rise. The zero-flow arterial pressures were 19.7 +/- 1.3, 18.5 +/- 1.4, and 16.4 +/- 1.2 mmHg for intrasinus pressures of 50, 125, and 200 mmHg, respectively. At all levels of intrasinus pressure, the zero-flow arterial pressure in condition 2 was higher (P less than 0.005) than in condition 1. In seven dogs, at an intrasinus pressure of 125 mmHg, epinephrine increased the zero-flow arterial pressure by 3.0 mmHg, whereas hexamethonium and papaverine decreased the zero-flow arterial pressure by 2 mmHg. Reductions in the hematocrit from 52 to 11% resulted in statistically significant changes (P less than 0.01) in zero-flow arterial pressures. Thus zero-flow arterial pressure was found to be affected by changes in venous pressure, hematocrit, and vasomotor tone. The evidence does not support the literally interpreted concept of the vascular waterfall as the model for the finite arteriovenous pressure difference at zero flow.

  8. Selected reading on introduction to pressure tube technology

    International Nuclear Information System (INIS)

    Causey, A.R.; Coleman, C.E.; Ells, C.E.

    1981-10-01

    Four lectures on pressure tube technology were presented at Sheridan Park, Ontario, on 1981 June 1. The titles were 'Pressure Tubes and Their Operational Environment', 'Fabrication, Inspection and Properties of Current Production Pressure Tubes', 'In-Reactor Deformation of Fuel Channels', and 'Potential Failure Modes in Pressure Tubes'. This report lists the references used in preparing the lectures. It is intended to provide a starting point in reading for people who need to become familiar with pressure tube technology but have little prior knowledge of the topic

  9. Determination of optimum pressurizer level for kori unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong Soo; Lee, Chang Sup; Yong, Lee Jae; Kim, Yo Han; Lee, Dong Hyuk [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    To determine the optimum pressurizer water level during normal operation for Kori unit 1, performance and safety analysis are performed. The methodology is developed by evaluating {sup d}ecrease in secondary heat removal{sup e}vents such as Loss of Normal Feedwater accident. To demonstrate optimum pressurizer level setpoint, RETRAN-03 code is used for performance analysis. Analysis results of RETRAN following reactor trip are compared with the actual plant data to justify RETRAN code modelling. The results of performance and safety analyses show that the newly established level setpoints not only improve the performance of pressurizer during transient including reactor trip but also meet the design bases of the pressurizer volume and pressure. 6 refs., 5 figs. (Author)

  10. Determination of optimum pressurizer level for kori unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong Soo; Lee, Chang Sup; Lee Jae Yong; Kim, Yo Han; Lee, Dong Hyuk [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    To determine the optimum pressurizer water level during normal operation for Kori unit 1, performance and safety analysis are performed. The methodology is developed by evaluating {sup d}ecrease in secondary heat removal{sup e}vents such as Loss of Normal Feedwater accident. To demonstrate optimum pressurizer level setpoint, RETRAN-03 code is used for performance analysis. Analysis results of RETRAN following reactor trip are compared with the actual plant data to justify RETRAN code modelling. The results of performance and safety analyses show that the newly established level setpoints not only improve the performance of pressurizer during transient including reactor trip but also meet the design bases of the pressurizer volume and pressure. 6 refs., 5 figs. (Author)

  11. A carbon nanotube-based pressure sensor

    International Nuclear Information System (INIS)

    Karimov, Kh S; Saleem, M; Khan, Adam; Qasuria, T A; Mateen, A; Karieva, Z M

    2011-01-01

    In this study, a carbon nanotube (CNT)-based Al/CNT/Al pressure sensor was designed, fabricated and investigated. The sensor was fabricated by depositing CNTs on an adhesive elastic polymer tape and placing this in an elastic casing. The diameter of multiwalled nanotubes varied between 10 and 30 nm. The nominal thickness of the CNT layers in the sensors was in the range ∼300-430 μm. The inter-electrode distance (length) and the width of the surface-type sensors were in the ranges 4-6 and 3-4 mm, respectively. The dc resistance of the sensors decreased 3-4 times as the pressure was increased up to 17 kN m -2 . The resistance-pressure relationships were simulated.

  12. Dark chocolate and blood pressure: a novel study from Jordan.

    Science.gov (United States)

    Al-Safi, Saafan A; Ayoub, Nehad M; Al-Doghim, Imad; Aboul-Enein, Faisal H

    2011-11-01

    The goal of this study was to assess the effect of dark chocolate intake on cardiovascular parameters like blood pressure and heart rate values in a normotensive population. This is a randomized cross-sectional study involving a total of 14,310 adults that were selected from various regions of Jordan. Well-trained pharmacy students interviewed participants in the outpatient settings. Participants reported their weekly intake of dark chocolate that has been further classified into mild (1-2 bars/week), moderate (3-4 bars/week), and high intake ( > 4 bars/week). For each participant, the systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate were measured three times with (10-15) minute intervals in the sitting position and the resting state. The arterial blood pressure (ABP) was calculated from the measured SBP and DBP values. All measured blood pressure values were significantly decreased for participants who reported higher dark chocolate consumption. Our results showed that heart rate values were not affected by variable intake of dark chocolate. In addition, increasing dark chocolate intake was associated with a significant decrease of blood pressure values in participants irrespective of the family history of hypertension or the age of the individual. However, heart rate values were unaffected. Higher intake of dark chocolate can be associated with lower values of blood pressure, while its effect on heart rate values was not consistent.

  13. System for Rapid, Precise Modulation of Intraocular Pressure, toward Minimally-Invasive In Vivo Measurement of Intracranial Pressure.

    Directory of Open Access Journals (Sweden)

    Max A Stockslager

    Full Text Available Pathologic changes in intracranial pressure (ICP are commonly observed in a variety of medical conditions, including traumatic brain injury, stroke, brain tumors, and glaucoma. However, current ICP measurement techniques are invasive, requiring a lumbar puncture or surgical insertion of a cannula into the cerebrospinal fluid (CSF-filled ventricles of the brain. A potential alternative approach to ICP measurement leverages the unique anatomy of the central retinal vein, which is exposed to both intraocular pressure (IOP and ICP as it travels inside the eye and through the optic nerve; manipulating IOP while observing changes in the natural pulsations of the central retinal vein could potentially provide an accurate, indirect measure of ICP. As a step toward implementing this technique, we describe the design, fabrication, and characterization of a system that is capable of manipulating IOP in vivo with <0.1 mmHg resolution and settling times less than 2 seconds. In vitro tests were carried out to characterize system performance. Then, as a proof of concept, we used the system to manipulate IOP in tree shrews (Tupaia belangeri while video of the retinal vessels was recorded and the caliber of a selected vein was quantified. Modulating IOP using our system elicited a rapid change in the appearance of the retinal vein of interest: IOP was lowered from 10 to 3 mmHg, and retinal vein caliber sharply increased as IOP decreased from 7 to 5 mmHg. Another important feature of this technology is its capability to measure ocular compliance and outflow facility in vivo, as demonstrated in tree shrews. Collectively, these proof-of-concept demonstrations support the utility of this system to manipulate IOP for a variety of useful applications in ocular biomechanics, and provide a framework for further study of the mechanisms of retinal venous pulsation.

  14. Aerobic Swim Training Restores Aortic Endothelial Function by Decreasing Superoxide Levels in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Camila P. Jordão

    Full Text Available OBJECTIVE: We aimed to determine whether aerobic training decreases superoxide levels, increases nitric oxide levels, and improves endothelium-dependent vasodilation in the aortas of spontaneously hypertensive rats. METHODS: Spontaneously hypertensive rats (SHR and Wistar Kyoto rats (WKY were distributed into 2 groups: sedentary (SHRsd and WKYsd, n=10 each and swimming-trained (SHRtr, n=10 and WKYtr, n=10, respectively. The trained group participated in training sessions 5 days/week for 1 h/day with an additional work load of 4% of the animal’s body weight. After a 10-week sedentary or aerobic training period, the rats were euthanized. The thoracic aortas were removed to evaluate the vasodilator response to acetylcholine (10-10 to 10-4 M with or without preincubation with L-NG-nitro-L-arginine methyl ester hydrochloride (L-NAME; 10-4 M in vitro. The aortic tissue was also used to assess the levels of the endothelial nitric oxide synthase and nicotinamide adenine dinucleotide oxidase subunit isoforms 1 and 4 proteins, as well as the superoxide and nitrite contents. Blood pressure was measured using a computerized tail-cuff system. RESULTS: Aerobic training significantly increased the acetylcholine-induced maximum vasodilation observed in the SHRtr group compared with the SHRsd group (85.9±4.3 vs. 71.6±5.2%. Additionally, in the SHRtr group, superoxide levels were significantly decreased, nitric oxide bioavailability was improved, and the levels of the nicotinamide adenine dinucleotide oxidase subunit isoform 4 protein were decreased compared to the SHRsd group. Moreover, after training, the blood pressure of the SHRtr group decreased compared to the SHRsd group. Exercise training had no effect on the blood pressure of the WKYtr group. CONCLUSIONS: In SHR, aerobic swim training decreased vascular superoxide generation by nicotinamide adenine dinucleotide oxidase subunit isoform 4 and increased nitric oxide bioavailability, thereby improving

  15. Effect of Temperature and Pressure on Correlation Energy in a Triplet State of a Two Electron Spherical Quantum Dot

    Directory of Open Access Journals (Sweden)

    A. Rejo Jeice

    2013-09-01

    Full Text Available The combined effect of hydrostatic pressure and temperature on correlation energy in a triplet state of two electron spherical quantum dot with square well potential is computed. The result is presented taking GaAs dot as an example. Our result shows the correlation energies are inegative in the triplet state contrast to the singlet state ii it increases with increase in pressure  iiifurther decreases due to the application  of temperature iv it approaches zero as dot size approaches infinity and v it contribute 10% decrement in total confined energy to the narrow dots. All the calculations have been carried out with finite models and the results are compared with existing literature.

  16. Effect of oxygen partial pressure on production of animal virus (VSV)

    OpenAIRE

    Lim, Hyun S.; Chang, Kern H.; Kim, Jung H.

    1999-01-01

    The effect of oxygen partial pressure on viral replication was investigated with Vero/VSV system. At 10% oxygen partial pressure in spinner culture, VSV titer was significantly increased 130 fold compared to that obtained at 21%. A similar result was obtained for viral production in 1liter bioreactor. This implies that oxygen partial pressure during viral production has to be low. In low oxygen partial pressure, malondialdehyde concentration was decreased about 5 fold. Thus, low oxygen partia...

  17. Streaming potential of superhydrophobic microchannels.

    Science.gov (United States)

    Park, Hung Mok; Kim, Damoa; Kim, Se Young

    2017-03-01

    For the purpose of gaining larger streaming potential, it has been suggested to employ superhydrophobic microchannels with a large velocity slip. There are two kinds of superhydrophobic surfaces, one having a smooth wall with a large Navier slip coefficient caused by the hydrophobicity of the wall material, and the other having a periodic array of no- shear slots of air pockets embedded in a nonslip wall. The electrokinetic flows over these two superhydrophobic surfaces are modelled using the Navier-Stokes equation and convection-diffusion equations of the ionic species. The Navier slip coefficient of the first kind surfaces and the no-shear slot ratio of the second kind surfaces are similar in the sense that the volumetric flow rate increases as these parameter values increase. However, although the streaming potential increases monotonically with respect to the Navier slip coefficient, it reaches a maximum and afterward decreases as the no-shear ratio increases. The results of the present investigation imply that the characterization of superhydrophobic surfaces employing only the measurement of volumetric flow rate against pressure drop is not appropriate and the fine structure of the superhydrophobic surfaces must be verified before predicting the streaming potential and electrokinetic flows accurately. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Acute effects of consumption of energy drinks on intraocular pressure and blood pressure

    Directory of Open Access Journals (Sweden)

    Ilechie AA

    2011-04-01

    Full Text Available A Alex Ilechie, Sandra TettehDepartment of Optometry, University of Cape Coast, GhanaBackground: Energy drinks contain a wide variety of ingredients including caffeine, for which there have been conflicting reports regarding its effects on intraocular pressure (IOP and blood pressure. The aim of this study was to investigate the acute effects of an energy drink (Red Bull® on the IOP and blood pressure of healthy young adults.Methods: Thirty healthy university students of either gender, aged 18–30 (mean 23.20 ± 2.81 years were randomly selected to participate in this study. The subjects were randomly divided into two groups (experimental and control and were asked to abstain from caffeine for 48 hours prior to and during the study. Baseline IOP and blood pressure were measured. The experimental group (n = 15 consumed one can of the energy drink (containing 85 mg of caffeine in 250 mL and measurements were repeated at 30, 60, and 90 minutes, while the control group drank 250 mL of water and were tested over the same time period.Results: When compared with baseline, a significant decrease (P < 0.05 in mean IOP at 60 and 90 minutes was observed in the experimental group. There was no corresponding change in systolic or diastolic blood pressure.Conclusion: Our results suggest that energy drinks (ie, Red Bull produce a significant reduction in IOP but have no effect on blood pressure. These findings may be interpreted as reflecting the effect of the combination of caffeine and taurine in the Red Bull energy drink. This effect may result from the known hypotensive effect of taurine, and warrants further study.Keywords: acute effect, intraocular pressure, blood pressure, glaucoma, caffeine, taurine

  19. Blood pressure documentation in the emergency department

    Science.gov (United States)

    Daniel, Ana Carolina Queiroz Godoy; Machado, Juliana Pereira; Veiga, Eugenia Velludo

    2017-01-01

    ABSTRACT Objective To analyze the frequency of blood pressure documentation performed by nursing professionals in an emergency department. Methods This is a cross-sectional, observational, descriptive, and analytical study, which included medical records of adult patients admitted to the observation ward of an emergency department, between March and May 2014. Data were obtained through a collection instrument divided into three parts: patient identification, triage data, and blood pressure documentation. For statistical analysis, Pearson’s correlation coefficient was used, with a significance level of α<0.05. Results One hundred fifty-seven records and 430 blood pressure measurements were analyzed with an average of three measurements per patient. Of these measures, 46.5% were abnormal. The mean time from admission to documentation of the first blood pressure measurement was 2.5 minutes, with 42 minutes between subsequent measures. There is no correlation between the systolic blood pressure values and the mean time interval between blood pressure documentations: 0.173 (p=0.031). Conclusion The present study found no correlation between frequency of blood pressure documentation and blood pressure values. The frequency of blood pressure documentation increased according to the severity of the patient and decreased during the length of stay in the emergency department. PMID:28444085

  20. Control rod driving hydraulic pressure device

    International Nuclear Information System (INIS)

    Ogawa, Masahide.

    1993-01-01

    The present invention concerns a control rod driving hydraulic device of a BWR type reactor, and provides an improvement for a means for supplying mechanical seal flashing water of a pump. That is, a mechanical seal flashing pipeline is branched at the downstream of a pressure-reducing orifice and connected to a minimum flow pipeline. With such a constitution, the minimum flow pipeline is connected to a minimum flow pipeline of an auxiliary pump at the downstream of the pressure-reducing orifice and returned to a suction pipeline of the pump. Pressure at the downstream of the pressure-reducing orifice is set, in the orifice, to a pressure required for mechanical seal flashing. Accordingly, the mechanical seal flashing pipeline is connected and a part of minimum flow rate is utilized, thereby enabling to cool mechanical seals. As a result, flow rate of the mechanical flashing water which has been flown out can be saved. The exhaustion amount from the pump can be reduced, to decrease the shaft power and reduce the capacity of the motor. (I.S.)

  1. Force reduction induced by unidirectional transversal muscle loading is independent of local pressure.

    Science.gov (United States)

    Siebert, Tobias; Rode, Christian; Till, Olaf; Stutzig, Norman; Blickhan, Reinhard

    2016-05-03

    Transversal unidirectional compression applied to muscles via external loading affects muscle contraction dynamics in the longitudinal direction. A recent study reported decreasing longitudinal muscle forces with increasing transversal load applied with a constant contact area (i.e., leading to a simultaneous increase in local pressure). To shed light on these results, we examine whether the decrease in longitudinal force depends on the load, the local pressure, or both. To this end, we perform isometric experiments on rat M. gastrocnemius medialis without and with transversal loading (i) changing the local pressure from 1.1-3.2Ncm(-2) (n=9) at a constant transversal load (1.62N) and (ii) increasing the transversal load (1.15-3.45N) at a constant local pressure of 2.3Ncm(-2) (n=7). While we did not note changes in the decrease in longitudinal muscle force in the first experiment, the second experiment resulted in an almost-linear reduction of longitudinal force between 7.5±0.6% and 14.1±1.7%. We conclude that the observed longitudinal force reduction is not induced by local effects such as malfunction of single muscle compartments, but that similar internal stress conditions and myofilament configurations occur when the local pressure changes given a constant load. The decreased longitudinal force may be explained by increased internal pressure and a deformed myofilament lattice that is likely associated with the decomposition of cross-bridge forces on the one hand and the inhibition of cross-bridges on the other hand. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. LH2 tank pressure control by thermodynamic vent system (TVS) at zero gravity

    Science.gov (United States)

    Wang, B.; Huang, Y. H.; Chen, Z. C.; Wu, J. Y.; Li, P.; Sun, P. J.

    2017-02-01

    Thermodynamic vent system (TVS) is employed for pressure control of propellant tanks at zero gravity. An analytical lumped parameter model is developed to predict pressure variation in an 18.09 m3 liquid hydrogen tank equipped with TVS. Mathematical simulations are carried out assuming tank is filled up to 75% volume (liquid mass equals to 945 kg) and is subjected to heat flux of 0.76 W/m2. Tank pressure controls at 165.5-172.4, 165.5-179.3 and 165.5-182.2 kPa are compared with reference to number of vent cycles, vent duration per cycle and loss of hydrogen. Analysis results indicate that the number of vent cycles significantly decreases from 62 to 21 when tank pressure control increases from 6.9 to 20.4 kPa. Also, duration of vent cycle increases from 63 to 152 and cycle duration decreases from 3920 to 3200 s. Further, the analysis result suggests that LH2 evaporation loss per day decreases from 0.17 to 0.14%. Based on the results of analysis, TVS is found effective in controlling the propellant tank pressure in zero gravity.

  3. Peak heart rate decreases with increasing severity of acute hypoxia

    DEFF Research Database (Denmark)

    Lundby, C; Araoz, M; Van Hall, Gerrit

    2001-01-01

    , 459, and 404 mmHg) in a hypobaric chamber and while breathing 9% O(2) in N(2). Thes