WorldWideScience

Sample records for preprototype vapor compression

  1. Photovoltaic driven vapor compression cycles

    Science.gov (United States)

    Anand, D. K.

    Since the vast majority of heat pumps, air conditioning and refrigeration equipment employs the vapor compression cycle (VCC), the use of renewable energy represents a significant opportunity. As discussed in this report, it is clear that the use of photovoltaics (PV) to drive the VCC has more potential than any other active solar cooling approach. This potential exists due to improvements in not only the PV cells but VCC machinery and control algorithms. It is estimated that the combined improvements will result in reducing the PV cell requirements by as much as one half.

  2. Combined rankine and vapor compression cycles

    Science.gov (United States)

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  3. New Regenerative Cycle for Vapor Compression Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Bergander

    2005-08-29

    The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient of performance for geothermal heat pumps based on a new regenerative thermodynamic cycle as comparing to existing technology. In order to demonstrate the improved performance of the prototype, it will be compared to published parameters of commercially available geothermal heat pumps manufactured by US and foreign companies. Other objectives are to optimize the design parameters and to determine the economic viability of the new technology. Background (as stated in the proposal): The proposed technology closely relates to EERE mission by improving energy efficiency, bringing clean, reliable and affordable heating and cooling to the residential and commercial buildings and reducing greenhouse gases emission. It can provide the same amount of heating and cooling with considerably less use of electrical energy and consequently has a potential of reducing our nations dependence on foreign oil. The theoretical basis for the proposed thermodynamic cycle was previously developed and was originally called a dynamic equilibrium method. This theory considers the dynamic equations of state of the working fluid and proposes the methods for modification of T-S trajectories of adiabatic transformation by changing dynamic properties of gas, such as flow rate, speed and acceleration. The substance of this proposal is a thermodynamic cycle characterized by the regenerative use of the potential energy of two-phase flow expansion, which in traditional systems is lost in expansion valves. The essential new features of the process are: (1) The application of two-step throttling of the working fluid and two-step compression of its vapor phase. (2) Use of a compressor as the initial step compression and a jet device as a second step, where throttling and compression are combined. (3) Controlled ratio of a working fluid at the first and

  4. Helium liquefier cycles with saturated vapor compression

    Science.gov (United States)

    Minta, M.; Smith, J. L., Jr.

    The three refrigeration stages of the conventional helium liquefaction cycle are related to liquid nitrogen precooling, the use of expansion engines, and a J-T expansion. For an operation of helium refrigerators at temperatures below 4.2 K reduced pressure levels are required. Such an operation makes it necessary to enhance the compressor size and the heat exchanger surface area. In the case of 1.8 K refrigerators, practical cycles with three pressure levels are employed. It is pointed out that the saturated-vapor-compression (SVC) helium cycle provides an alternative solution to these problems. The present investigation is concerned with the design study of a SVC helium liquifier operating at elevated pressures. The study was conducted to demonstrate the potential of the SVC cycle on the basis of a direct comparison with a conventional cycle using the same precooling expanders and a supercritical wet expander instead of a J-T valve.

  5. Improved waste water vapor compression distillation technology. [for Spacelab

    Science.gov (United States)

    Johnson, K. L.; Nuccio, P. P.; Reveley, W. F.

    1977-01-01

    The vapor compression distillation process is a method of recovering potable water from crewman urine in a manned spacecraft or space station. A description is presented of the research and development approach to the solution of the various problems encountered with previous vapor compression distillation units. The design solutions considered are incorporated in the preliminary design of a vapor compression distillation subsystem. The new design concepts are available for integration in the next generation of support systems and, particularly, the regenerative life support evaluation intended for project Spacelab.

  6. Performance Enhancement Technology for the Vapor Compression Refrigeration Cycle

    Science.gov (United States)

    Man'o, Tatsunori

    High efficiency refrigerator have been developed. For energy saving that is concerned with against global warming, performance enhancement of vapor compression refrigerator is required in field of air condition and refrigeration facility. In this paper, a review of recent performance enhancement technologies for the vapor compression refrigeration cycle is presented. This review contains high performance cycles of large sized centrifugal chiller, small to middle sized chiller and packaged air conditioner. Moreover, researches and developments of the refrigeration cycle recovering throttling loss, applications of ejector to boost in compressor suction pressure and to recirculate vapor refrigerant in the evaporator for heat transfer enhancement, and applications of expander to employ expansion work for compression work, are reviewed.

  7. Role of the vapor compression cycle in solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Kush, Jr, E A

    1978-01-01

    The vapor compression cycle lends itself to solar energy utilization in two important ways. Its ability to utilize a relatively low temperature heat supply to produce space heating via heat pumps allows the use of solar input to the evaporator to provide potential Coefficients of Performance which are 2 to 3 times higher than present electric driven heat pumps, and the use of relatively inexpensive solar collectors is possible since the collection temperatures can be low grade. Secondly, the compression process of the vapor cycle can be powered by a solar-driven heat engine, typically using a Rankine cycle, for solar cooling purposes. Discriminating coupling of solar with vapor compression allows the well-developed technology and manufacturing capability of the vapor compression industry to be brought into play in the solar field, widening its base and promoting its diversification. The cycle thermodynamics, potential practical hardware, and R and D projects in both of these areas are reviewed. Particular attention is given to the Solar Assisted Heat Pump and its characteristics and the heat pump simulator activities at Brookhaven National Laboratory.

  8. Determination of a Vapor Compression Refrigeration System Refrigerant Charge

    Institute of Scientific and Technical Information of China (English)

    YangChun-Xin; DangChao-Bin

    1995-01-01

    A physical model is established in this paper to describe the heat transfer and two phase flow of a refrigerant in the evaporator and condenser of a vapor compression refrigeration system.The model in then used to determine the refrigerant charge in vapor compression units.The model is used for a sensitivity analysis to determine the effect that varing design parameters on the refrigerant charge,The model is also used to evaluate the effect of refrigerant charge and the thermal physical properties on the refrigeration cycle,The predicted value of the refigerant charge and experimental data agree well The model and the method presented in this paper could be used to design vapour compression units such as domestic refrigeratirs and air conditioners.

  9. Performance Analysis of Organic Rankine-vapor Compression Ice Maker Utilizing Food Industry Waste Heat

    National Research Council Canada - National Science Library

    Hu, Bing; Cao, Yuanshu; Ma, Weibin

    2015-01-01

    To develop the organic Rankine-vapor compression ice maker driven by food industry exhaust gases and engine cooling water, an organic Rankine-vapor compression cycle system was employed for ice making...

  10. Open-cycle vapor compression heat pump

    Science.gov (United States)

    Becker, F. E.; Ruggles, A. E.

    1985-03-01

    Large quantities of low-grade energy in the form of low-pressure steam and low-temperature heat are often discharged to the environment by industry. The practical and economical recovery of energy from these sources is often limited by the number of applications that can directly use low-temperature heat. Thermo Electron has developed an open-cycle steam heat pump system capable of the direct recovery and upgrading of low-grade waste energy. The system compresses low-pressure waste steam (or steam made from sources of low-temperature waste heat) to produce high-pressure steam suitable for use in industrial processes. A prototype system has been developed that is capable of recovering and recompressing up to 10,000 lb/hr of waste steam, while using only 50 percent of the fuel that would be required to produce comparable steam in a boiler.

  11. Control structure selection for vapor compression refrigeration cycle

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiaohong; Li, Shaoyuan [Shanghai Jiao Tong Univ., Shanghai (China). Dept. of Automation; Shandong Jianzhu Univ., Jinan (China). School of Information and Electrical Engineering; Cai, Wenjian; Ding, Xudong [Nanyang Technological Univ., Singapore (Singapore). School of Electrical and Electronic Engineering

    2013-07-01

    A control structure selection criterion which can be used to evaluate the control performance of different control structures for the vapor compression refrigeration cycle is proposed in this paper. The calculation results of the proposed criterion based on the different reduction models are utilized to determine the optimized control model structure. The effectiveness of the criterion is verified by the control effects of the model predictive control (MPC) controllers which are designed based on different model structures. The response of the different controllers applied on the actual vapor compression refrigeration system indicate that the best model structure is in consistent with the one obtained by the proposed structure selection criterion which is a trade-off between computation complexity and control performance.

  12. Vapor-Compression Heat Pumps for Operation Aboard Spacecraft

    Science.gov (United States)

    Ruemmele, Warren; Ungar, Eugene; Cornwell, John

    2006-01-01

    Vapor-compression heat pumps (including both refrigerators and heat pumps) of a proposed type would be capable of operating in microgravity and would be safe to use in enclosed environments like those of spacecraft. The designs of these pumps would incorporate modifications of, and additions to, vapor-compression cycles of heat pumps now used in normal Earth gravitation, in order to ensure efficiency and reliability during all phases of operation, including startup, shutdown, nominal continuous operation, and peak operation. Features of such a design might include any or all of the following: (1) Configuring the compressor, condenser, evaporator, valves, capillary tubes (if any), and controls to function in microgravitation; (2) Selection of a working fluid that satisfies thermodynamic requirements and is safe to use in a closed crew compartment; (3) Incorporation of a solenoid valve and/or a check valve to prevent influx of liquid to the compressor upon startup (such influx could damage the compressor); (4) Use of a diode heat pipe between the cold volume and the evaporator to limit the influx of liquid to the compressor upon startup; and (5) Use of a heated block to vaporize any liquid that arrives at the compressor inlet.

  13. Thermoeconomic optimization of subcooled and superheated vapor compression refrigeration cycle

    Energy Technology Data Exchange (ETDEWEB)

    Selbas, Resat; Kizilkan, OEnder; Sencan, Arzu [Technical Education Faculty, Department of Mechanical Education, Sueleyman Demirel University, Isparta 32260 (Turkey)

    2006-09-15

    An exergy-based thermoeconomic optimization application is applied to a subcooled and superheated vapor compression refrigeration system. The advantage of using the exergy method of thermoeconomic optimization is that various elements of the system - i.e., condenser, evaporator, subcooling and superheating heat exchangers - can be optimized on their own. The application consists of determining the optimum heat exchanger areas with the corresponding optimum subcooling and superheating temperatures. A cost function is specified for the optimum conditions. All calculations are made for three refrigerants: R22, R134a, and R407c. Thermodynamic properties of refrigerants are formulated using the Artificial Neural Network methodology. (author)

  14. A novel vapor compression cooling cycle using controlled expansion

    Energy Technology Data Exchange (ETDEWEB)

    Labinov, M.S.; Sgamboti, C.T. [United Technologies Research Center, East Hartford, CT (United States)

    1995-12-31

    The paper presents a novel configuration for the vapor compression cycle. This configuration introduces a controlled expansion process as an alternative to the traditional practice of using an expansion valve. Expansion takes place along the retrograde condensation line in the two-phase zone. The line is temperature dependent and unique for any pure substance. This new cycle change makes it possible to raise the cooling COP of the cycle and to maintain full capacity when ambient conditions change giving an important advantage over conventional cycles that tend to lose capacity significantly with a rise in ambient temperature. Higher COP and steady capacity features lead eventually to lower energy use.

  15. The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.; Dirks, James A.; Fernandez, Nicholas; Stout, Tyson E.

    2010-03-31

    Five alternatives to vapor compression technology were qualitatively evaluated to determine their prospects for being better than vapor compression for space cooling and food refrigeration applications. The results of the assessment are summarized in the report. Overall, thermoacoustic and magnetic technologies were judged to have the best prospects for competing with vapor compression technology, with thermotunneling, thermoelectric, and thermionic technologies trailing behind in that order.

  16. Thermodynamic Analysis of Combined Vapor Compression and Vapor Absorption Refrigeration System

    Directory of Open Access Journals (Sweden)

    AAMIR SHAIKH

    2017-07-01

    Full Text Available Two of the popular refrigeration cycles, VC (Vapor Compression, and VA (Vapor Absorption are used extensively for refrigeration purposes. In this paper, a system is proposed that works using both cycles powered by an IC (Internal Combustion engine, where mechanical energy is used to run the VC cycle while exhaust gasses are used to operate the VA cycle. The VC cycle works on R12 refrigerant while LiBr-H2O combination is selected for operation of VA cycle. Firstly, the refrigeration system is modeled, followed by a parametric study to investigate the impacts of various operating parameters on the system performance. The results exhibit that for maximum chilling and overall performance, the condenser and evaporator pressures in the VC cycle are obtained as 710 and 340 kPa, respectively, whereas generator and absorber temperatures in VA cycle are 85 and 20oC, respectively

  17. A Dynamic Model of a Vapor Compression Refrigeration Cycle

    Science.gov (United States)

    Yasuda, Hiromu; Yanagisawa, Tetsuji; Izushi, Minetoshi

    A dynamic model of a vapor compression refrigeration cycle composed of a compressor with a high-pressure chamber, cross finned heat exchangers, an expansion valve and pipes is developed. In order to prove the effectiveness of the model, start-up simulation results are compared with experimental result obtained for a prototype refrigeration cycle. In these experiments, the refrigerant mass distribution in the refrigeration cycle is set and two start-up operations are performed. One operation is called "hot-start", which means starting-up from a high temperature in the compressor chamber. The other is called "cold-start", which means starting-up from a low temperature. The simulation results well support the experimental results for both operations and prove the effectiveness of the developed model.

  18. Analysis of Transient Behavior of a Vapor Compression Refrigeration Cycle

    Science.gov (United States)

    Fukushima, Toshihiko; Miyamoto, Seigo

    A mathematical model for a vapor compression refrigeration cycle for automotive air conditioner is developed, which basically consists of compressor, condenser, receiver, expansion valve, evaporator, suction pressure control valve and piping. The main purpose of this model is to provide the designer with a tool for improving cooling capacity and investigating capacity control of the refrigeration cycle at transient conditions. A lumped parameter system is used for the mathematical model of the condenser and the evaporator, that is obtained with volume integral of the equation of continuity and energy over a bounded volume region. The compressor model and the piping models are also lumped parameter systems, and heat capacity of their walls are taken into account. The theoretical solutions of this model are in good agreement with the experimental results.

  19. Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-03-01

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. This Building Technologies Office report: --Identifies alternatives to vapor-compression technology in residential and commercial HVAC applications --Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems --Makes specific research, development, and deployment (RD&D) recommendations to support further development of these technologies, should DOE choose to support non-vapor-compression technology further.

  20. First Law Analysis of a Two-stage Ejector-vapor Compression Refrigeration Cycle working with R404A

    National Research Council Canada - National Science Library

    Feiza Memet; Daniela-Elena Mitu

    2011-01-01

    The traditional two-stage vapor compression refrigeration cycle might be replaced by a two-stage ejector-vapor compression refrigeration cycle if it is aimed the decrease of irreversibility during expansion...

  1. AN EXPERIMENTAL STUDY ON A VAPOR COMPRESSION REFRIGERATION CYCLE BY ADDING INTERNAL HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Muhammad Asmail Eleiwi

    2013-05-01

    Full Text Available Thispaper presents practical study to improve the indication COP of a vaporcompression refrigeration cycle in instrumented automobile air conditioner bydesigning internal heat exchanger and installing it in the vapor compressionrefrigeration cycle.  Two cases of  vapor compression refrigeration cycle were takenin this paper:  the first case is thatthe vapor compression refrigeration cycle without internal heat exchanger andin  the second case the vapor compressionrefrigeration cycle with heat exchanger ; in these two cases, the temperatureat each point of  a vapor compressionrefrigeration cycle, the low and the high pressure ,the indoor temperature andthe outdoor temperature were measured at each time at compressor speed 1450 rpmand 2900 rpm for each blower speed 1, blower speed 2 and blower speed 3.Therefrigerant fluid was used in the vapor compression refrigeration cycle withoutIHE and with IHE is R134a..

  2. THERMODYNAMIC ANALYSIS OF REFRIGERANT MIXTURES IN VAPOR COMPRESSION REFRIGERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Erol ARCAKLIOĞLU

    2003-02-01

    Full Text Available In this study, performance analysis of vapor-compression refrigeration system with suction/liquid line heat exchanger has been realized with the calculations of the coefficient of performance, and volumetric refrigeration capacity values using different refrigerant mixtures. Refrigerants R12, R22, and R502 of CFCs, R134a, R152a, R125, R143a, and R32 of HFCs, R600a, and R290 of HCs, and their binary, ternary, and mixtures of different mass ratios have been used as working fluids. In order to decrease global pollution due to CFCs in accordance with Montreal Protocol in 1987, it is considered to use the refrigerant mixtures of HFCs, and HCs instead of CFCs (R12, R22, and R502. For this reason, the performance comparison of the new mixtures with CFC refrigerants has been done in the frame of this study. To compare the performance values, constant temperature method has been used. Thermodynamic properties of refrigerants that were used in the performance calculations have been taken from REFPROP 6.01. For this aim, new software has written in FORTRAN programing language using sub-programs of REFPROP, and all related calculations of performance have been achieved by this software.

  3. Effect of evaporator temperature on vapor compression refrigeration system

    Directory of Open Access Journals (Sweden)

    Abdullah A.A.A. Al-Rashed

    2011-12-01

    Full Text Available This paper presents a comparable evaluation of R600a (isobutane, R290 (propane, R134a, R22, for R410A, and R32 an optimized finned-tube evaporator, and analyzes the evaporator effect on the system coefficient of performance (COP. Results concerning the response of a refrigeration system simulation software to an increase in the amount of oil flowing with the refrigerant are presented. It is shown that there is optima of the apparent overheat value, for which either the exchanged heat or the refrigeration coefficient of performance (COP is maximized: consequently, it is not possible to optimize both the refrigeration COP and the evaporator effect. The obtained evaporator optimization results were incorporated in a conventional analysis of the vapor compression system. For a theoretical cycle analysis without accounting for evaporator effects, the COP spread for the studied refrigerants was as high as 11.7%. For cycle simulations including evaporator effects, the COP of R290 was better than that of R22 by up to 3.5%, while the remaining refrigerants performed approximately within a 2% COP band of the R22 baseline for the two condensing temperatures considered.

  4. Thermodynamic analysis of a Rankine cycle powered vapor compression ice maker using solar energy

    National Research Council Canada - National Science Library

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working...

  5. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    National Research Council Canada - National Science Library

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

      To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working...

  6. The p-h diagram and the vapor-compression cycle

    Energy Technology Data Exchange (ETDEWEB)

    Klausner, J.F.; Mei, R. (Florida Univ., Gainesville, FL (United States). Dept. of Mechanical Engineering)

    1991-02-01

    This paper reports that the representation of the p-h diagram for the thermodynamic vapor-compression cycle found in educational textbooks is misleading, and a suggestion for future presentation is made.

  7. Characteristics of a Mixed Refrigerant Vapor Compression Cycle

    Science.gov (United States)

    Hihara, Eiji; Muneta, Yoshihiro; Saito, Takamoto

    In comparison with conventional refrigerants, the use of non-azeotropic binary mixtures of refrigerants in vapor compression refrigerating systems can result in extension of the application limits, higher reliability, and savings in power consumption. This paper discusses the high temperature heat pump system performance operating with mixed refrigerants. In order to survey the system performances with various mixtures, six kinds of mixtures are examined : R22-R1l4, R22-R11, R12-R114, R12-R11, R 12-R113, and R22-R12. Thermodynamic properties of the first five mixtures are calculated from the Peng-Robinson equation of state with the mixing rules proposed by Ototake, and R22-R12 mixtures by the BWR type equation of state proposed by Kagawa et al. When counter-flow heat exchangers with large surface areas are used for the evaporator and the condenser, the temperature differences between the refrigerant and the heat sink / source fluids can be reduced, and so the energy waste resulting from irreversible heat trasfer can be reduced. Comparing the mixed refrigerants with the pure ones by fixing the refrigerant temperature at the evaporator inlet and the dewpoint temperature at the condenser, higher coefficients of performance (COP), lower condensing pressures, and lower pressure ratios in the refrigerant compressor can be realized. But the performances of the mixtures with R114 as a less volatile component are not so good. When the heat transfer surface area is not large, the mean temperature difference becomes large. If the dewpoint temperatures at the evaporator and the condenser fixed, the range of composition for the improvement of the COP is restricted.

  8. Performance Analysis of Organic Rankine-vapor Compression Ice Maker Utilizing Food Industry Waste Heat

    OpenAIRE

    Bing Hu; Yuanshu Cao; Weibin Ma

    2015-01-01

    To develop the organic Rankine-vapor compression ice maker driven by food industry exhaust gases and engine cooling water, an organic Rankine-vapor compression cycle system was employed for ice making and a thermodynamic model was developed and the effects of working fluid types, hot water temperature and condensation temperature on the system performance were analyzed and the ice making capacity from unit mass hot water and unit power waste heat were evaluated. The calculated results show th...

  9. Retrofit device and method to improve humidity control of vapor compression cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2016-08-16

    A method and device for improving moisture removal capacity of a vapor compression system is disclosed. The vapor compression system is started up with the evaporator blower initially set to a high speed. A relative humidity in a return air stream is measured with the evaporator blower operating at the high speed. If the measured humidity is above the predetermined high relative humidity value, the evaporator blower speed is reduced from the initially set high speed to the lowest possible speed. The device is a control board connected with the blower and uses a predetermined change in measured relative humidity to control the blower motor speed.

  10. Thermodynamics of a vapor-compression refrigeration cycle with mechanical subcooling

    Energy Technology Data Exchange (ETDEWEB)

    Zubair, S.M. (King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Mechanical Engineering)

    1994-06-01

    A vapor-compression refrigeration cycle with a mechanical subcooling loop to increase system performance and reduce energy consumption is investigated by using both the first and second laws of thermodynamics. Although the first-law approach shows improvement in the system coefficient of performance with an increase in the temperature difference between the condenser and evaporator, it fails to locate sources of losses. A second-law analysis has been carried out for both the simple and vapor-compression refrigeration cycle with a mechanical subcooling loop. The performance significantly improved by reducing the irreversibilities due to the expansion process. (author)

  11. Means and method for the recovery of expansion work in a vapor compression cycle device

    Energy Technology Data Exchange (ETDEWEB)

    Vakil, H.B.

    1981-12-08

    Recovery of substantially all of the work associated with the expansion of a multi-component working fluid mixture in a vapor compression cycle device is enabled by conveying working fluid in a liquid phase from a condenser to a coldest portion of an evaporator assembly in a countercurrent heat exchange relationship with fluid flowing through the evaporator assembly.

  12. Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation

    Science.gov (United States)

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2015-12-08

    A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.

  13. Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2015-12-08

    A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.

  14. Thermodynamic analysis of a Rankine cycle powered vapor compression ice maker using solar energy.

    Science.gov (United States)

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m(-2) and 7.61 kg m(-2) day(-1) at the generation temperature of 140 °C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker.

  15. Exergy analysis of vapor compression refrigeration cycle with two-stage and intercooler

    Science.gov (United States)

    Kılıç, Bayram

    2012-07-01

    In this study, exergy analyses of vapor compression refrigeration cycle with two-stage and intercooler using refrigerants R507, R407c, R404a were carried out. The necessary thermodynamic values for analyses were calculated by Solkane program. The coefficient of performance, exergetic efficiency and total irreversibility rate of the system in the different operating conditions for these refrigerants were investigated. The coefficient of performance, exergetic efficiency and total irreversibility rate for alternative refrigerants were compared.

  16. Exergy analysis of vapor compression refrigeration cycle with two-stage and intercooler

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Bayram [Mehmet Akif Ersoy University, Bucak Emin Guelmez Vocational School, Bucak, Burdur (Turkey)

    2012-07-15

    In this study, exergy analyses of vapor compression refrigeration cycle with two-stage and intercooler using refrigerants R507, R407c, R404a were carried out. The necessary thermodynamic values for analyses were calculated by Solkane program. The coefficient of performance, exergetic efficiency and total irreversibility rate of the system in the different operating conditions for these refrigerants were investigated. The coefficient of performance, exergetic efficiency and total irreversibility rate for alternative refrigerants were compared. (orig.)

  17. Development of a preprototype times wastewater recovery subsystem

    Science.gov (United States)

    Roebelen, G. J., Jr.; Dehner, G. F.

    1982-01-01

    A three-man wastewater recovery preprototype subsystem using a hollow fiber membrane evaporator with a thermoelectric heat pump to provide efficient potable water recovery from wastewater on extended duration space flights was designed, fabricated, and tested at one-gravity. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem. The tubular hollow fiber elements provide positive liquid/gas phase control with no moving parts, and provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery. Application and integration of these key elements solved problems inherent in all previous reclamation subsystem designs.

  18. Performance Analysis of Organic Rankine-vapor Compression Ice Maker Utilizing Food Industry Waste Heat

    Directory of Open Access Journals (Sweden)

    Bing Hu

    2015-05-01

    Full Text Available To develop the organic Rankine-vapor compression ice maker driven by food industry exhaust gases and engine cooling water, an organic Rankine-vapor compression cycle system was employed for ice making and a thermodynamic model was developed and the effects of working fluid types, hot water temperature and condensation temperature on the system performance were analyzed and the ice making capacity from unit mass hot water and unit power waste heat were evaluated. The calculated results show that the working fluid type and the temperatures of heat source and condensation have important effects on the system performance. The system can achieve optimal performance when use R245fa as power and refrigeration medium. The ice quantity generated from per ton hot water is 86.42 kg and the ice-making rate for per kW waste heat is 2.27 kg/h, when the temperatures of hot water and condensation are respectively 100 and 40°C. A conclusion can be draw by the calculation and analysis that using organic Rankine-vapor compression system for ice making from food industry waste heat is feasible.

  19. First Law Analysis of a Two-stage Ejector-vapor Compression Refrigeration Cycle working with R404A

    OpenAIRE

    Feiza Memet; Daniela-Elena Mitu

    2011-01-01

    The traditional two-stage vapor compression refrigeration cycle might be replaced by a two-stage ejector-vapor compression refrigeration cycle if it is aimed the decrease of irreversibility during expansion. In this respect, the expansion valve is changed with an ejector. The performance improvement is searched in the case of choosing R404A as a refrigerant. Using the ejector as an expansion device ensures a higher value for COP compared to the traditional case. On the basis...

  20. RAMGEN ROTOR CARTRIDGE FOR THE PRE-PROTOTYPE RAMGEN ENGINE

    Energy Technology Data Exchange (ETDEWEB)

    Aaron Koopman

    2003-09-01

    The research and development of a unique combustion engine is presented. The engine converts the thrust from ramjet modules located on the rim of a disk into shaft torque, which in turn can be used for electrical power generation or mechanical drive applications. A test program was undertaken that included evaluation of the pre-prototype engine and incorporation of improvements to the thrust modules and supporting systems. Fuel mixing studies with vortex generators and bluff body flame holders demonstrated the importance of increasing the shear-layer area and spreading angle to augment flame volume. Evaluation of flame-holding configurations (with variable fuel injection methods) concluded that the heat release zone, and therefore combustion efficiency, could be manipulated by judicious selection of bluff body geometry, and is less influenced by fuel injection distribution. Finally, successful operation of novel fuel and cooling air delivery systems have resolved issues of gas (fuel and air) delivery to the individual rotor segments. The lessons learned from the pre-prototype engine are currently being applied to the development of a 2.8MW engine.

  1. Performance Analysis of Solar Combined Ejector-Vapor Compression Cycle Using Environmental Friendly Refrigerants

    Directory of Open Access Journals (Sweden)

    A. B. Kasaeian

    2013-04-01

    Full Text Available In this study, a new model of a solar combined ejector-vapor compression refrigeration system has been considered. The system is equipped with an internal heat exchanger to enhance the performance of the cycle. The effects of working fluid and operating conditions on the system performance including COP, entrainment ratio (ω, compression ratio (rp and exergy efficiency were investigated. Some working fluids suggested are: R114, R141b, R123, R245fa, R600a, R365mfc, R1234ze(e and R1234ze(z. The results show that R114 and R1234ze(e yield the highest COP and exergy efficiency followed by R123, R245fa, R365mfc, R141b, R152a and R600a. It is noticed that the COP value of the new solar ejector-vapor compression refrigeration cycle is higher than that of the conventional ejector cycle with R1234ze(e for all operating conditions. This paper also demonstrates that R1234ze(e will be a suitable refrigerant in the solar combined ejector-vapor compression refrigeration system, due to its environmental friendly properties and better performance. ABSTRAK: Kajian ini menganalisa model baru sistem penyejukan mampatan gabungan ejektor-wap solar.Sistem ini dilengkapi dengan penukar haba dalaman untuk meningkatkan prestasi kitaran.Kesan bendalir bekerja dan keadaan operasi pada prestasi sistem termasuk COP, nisbah pemerangkapan (ω, nisbah mampatan (rp dan kecekapan eksergi telah disiasat.Beberapa bendalir bekerja yang dicadangkan adalah: R114, R141b, R123, R245fa, R600a, R365mfc, R1234ze(e dan R1234ze(z.Hasil kajian menunjukkan R114 dan R1234ze(e menghasilkan COP dan kecekapan eksergi tertinggi diikuti oleh R123, R245fa, R365mfc, R141b, R152a dan R600a.Didapati nilai COP kitaran penyejukan mampatan bagi ejektor-wap solar baru adalah lebih tinggi daripada kitaran ejektor konvensional dengan R1234ze(e bagi semua keadaan operasi.Kertas kerja ini juga menunjukkan bahawa R1234ze(e boleh menjadi penyejuk yang sesuai dalam sistem penyejukan mampatan gabungan ejektor

  2. Development of vapor compression refrigeration cycle with a natural-circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Takashi; Sumida, Yoshihiro; Matsushita, Akihiro

    1999-07-01

    Vapor compression refrigeration cycle with a natural-circulation loop (VCNC) has been developed to save energy for an air conditioner of shelters of electronic facilities. VCNC consists of a compressor, a condenser, a liquid pipe, an evaporator, a gas pipe, an accumulator and three valves. VCNC has two operating modes; vapor compression mode and natural-circulation mode, which are easily changed by the values. The experiments were carried out to evaluate the cycle performance in natural-circulation mode, and calculations were performed to examine the energy consumption of VCNC using the profile of seasonal environmental temperature in Tokyo. The experimental results indicated that the cooling capacity in natural-circulation mode depended on the amount of charged refrigerant and took a maximum value in the case that the refrigerant at the outlet of the evaporator became saturated vapor. Also, the cooling capacity in natural-circulation mode linearly increased as the outdoor temperature decreased. The calculated results indicated that the operating ratio of the compressor of VCNC was approximately 70% smaller than that of conventional air conditioners (VC). Furthermore, the energy consumption of VCNC was approximately 50% lower than that of VC.

  3. Analysis of an evaporator-condenser-separated mechanical vapor compression system

    Science.gov (United States)

    Wu, Hong; Li, Yulong; Chen, Jiang

    2013-04-01

    An evaporator-condenser-separated mechanical vapor compression (MVC) system was presented. The better effect of descaling and antiscaling was obtained by the new system. This study focused on the method of thermodynamic analysis, and the energy and exergy flow diagrams were established by using the first and second law of thermodynamics analysis. The results show that the energy utilization rate is very high and the specific power consumption is low. Exergy analysis indicates that the exergy efficiency is low, and the largest exergy loss occurs within the evaporator -condenser and the compressor.

  4. Development and experimental study of a miniature vapor compression refrigeration equipment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A miniature vapor compression refrigeration equipment prototype was developed for a range of microclimate control applications, including man portable cooling and distributed space conditioning. The miniature refrigeration equipment has dimensions of 260 mm × 250 mm × 120 mm, and weighs approximately 2.85 kg. The optimal motor and its transmission ratio, the optimal dimension of capillary tube and the optimal quantity of refrigerant charge were obtained by matching and operating performance experimental study. Experimental results show that the miniature refrigeration equipment can provide 300 W cooling, and its COPc is above 2.0.

  5. Computer modeling of the vapor compression cycle with constant flow area expansion device

    Science.gov (United States)

    Domanski, P.; Didion, D.

    1983-05-01

    An analysis of the vapor compression cycle and the main components of an air source heat pump during steady state operator was performed with emphasis on fundamental phenomena taking place between key locations in the refrigerant system. The basis of the general heat pump model formulation is the logic which links the analytical models of heat pump components together in a format requiring an iterative solution of refrigerant pressure, enthalpy and mass balances. The modeling effort emphasis was on the local thermodynamic phenomena which were described by fundamental heat transfer equations and equation of state relationships among material properties.

  6. Open-cycle desiccant air conditioning as an alternative to vapor compression cooling in residential applications

    Energy Technology Data Exchange (ETDEWEB)

    Jurinak, J.J.; Beckman, W.A.; Mitchell, J.W.

    1984-08-01

    The performance of open-cycle desiccant air conditioners for residential applications is evaluated. The performance of these systems is compared to that of vapor compression air conditioners on the basis of primary energy use and cost. Systems with improved dehumidifiers can achieve seasonal COP's on the order of 1.1. These systems, when coupled with a solar energy system to supply regeneration energy, are significantly better than conventional air conditioners on a primary energy basis, but are not presently cost-competitive.

  7. Development and experimental study of a miniature vapor compression refrigeration equipment

    Institute of Scientific and Technical Information of China (English)

    ZHONG XiaoHui; GOU YuJun; WU YuTing; MA ChongFang

    2008-01-01

    A miniature vapor compression refrigeration equipment prototype was developed for a range of microclimate control applications,including man portable cooling and distributed space conditioning.The miniature refrigeration equipment has di-mensions of 260 mm×250 mm×120 mm,and weighs approximately 2.85 kg.The optimal motor and its transmission ratio,the optimal dimension of capillary tube and the optimal quantity of refrigerant charge were obtained by matching and op-erating performance experimental study.Experimental results show that the miniature refrigeration equipment can provide 300 W cooling,and its COPc is above 2.0.

  8. Performance evaluation of a vapor compression heat pump cycle using binary zeotropic refrigerant mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Shigeru; Yara, Tomoyasu

    1999-07-01

    The HCFC refrigerants such as R22 have been used widely as working fluids in refrigeration and air-conditioning systems until now. These refrigerants, however, should be phased out early in the next century to prevent the depletion of the ozone layer. In this situation, binary and/or ternary mixtures composed of HFC and/or natural refrigerants have attracted a great deal of attention due to the following possibilities: (1) to improve the coefficient of performance, COP, by utilizing the temperature glide during phase change processes; (2) to keep the system in more suitable condition for given temperature levels of heat source and heat sink by selecting the combination and composition of refrigerants, etc. From this point of view, in the present study, the performance prediction of a vapor compression heat pump cycle using binary zeotropic refrigerant mixtures is carried out to clarify the effects of the combination of refrigerants, the composition of refrigerants and the size of heat exchangers on COP. In the prediction calculation, a vapor compression heat pump cycle, which consists of a compressor, a vertical plate-fin condenser, an expansion valve, a liquid-vapor separator and a vertical plate-fin evaporator is treated, and the following assumptions are employed: (1) the compression process is isentropic, (2) the expansion process is isenthalpic, (3) the refrigerant is a saturated liquid at the condenser outlet and a superheated vapor at the evaporator outlet, (4) the pressure drop in the condenser is negligible, while that in the evaporator is considered, (5) the local heat transfer characteristics in heat exchangers are considered. The prediction calculation is done for the binary zeotropic refrigerant mixtures of HFC134a/HCFC123 on condition that the heat source water temperature at the condenser outlet, the heat sink water temperature at the evaporator inlet, the water temperature change through condenser and evaporator, the heat load of condenser, the

  9. Comparative study of air conditioning systems with vapor compression chillers using the concept of green buildings

    Directory of Open Access Journals (Sweden)

    Gutenberg da Silva Pereira

    2015-10-01

    Full Text Available This paper sets out to compare two different cooling systems that use vapor compression chillers for air conditioning environments. It was proposed to compare different operations in isolated and combined action operations. These operations are evaluated in the concepts of green buildings. A mathematical model was developed based on the principles of mass and energy conservation and complemented by various functions so as to determine the thermophysical properties and efficiencies of the compressors. The equations of the model were solved by the EES (Engineering Equation Solver program. The model evaluates the influence of the main HVAC operating parameters of the chilled water system when operating under three different configurations. The results showed that the system with a differentiated compression presents a COP equal to that of the system with screw chillers in the range  0-300 RTs, and a COP hat is on average 9% higher in the range 400-800 RTs.

  10. Advanced vapor compression heat pump cycle utilizing non-azeotropic working fluid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Radermacher, R.

    1988-02-16

    A method of transferring heat from a first fluid having a temperature T/sub 1/ to a second fluid having a temperature T/sub 2/, when the temperature T/sub 2/ is greater than the temperature T/sub 1/ is described comprising: providing a third fluid, comprising a mixture of a higher boiling component and a lower boiling component, having a temperature T/sub A/, T/sub A/ being less than T/sub 1/; adding heat to the third fluid to raise the temperature of the third fluid to a temperature T/sub B/, T/sub B/ being greater than T/sub A/ and less than or substantially equal to T/sub 1/; separating the first liquid from the first vapor; compressing the first vapor to form a secondary pressurized vapor stream; pumping the first liquid into contact with the secondary pressurized vapor stream to form a pressurized fourth fluid having a temperature T/sub C/, T/sub C/ being greater than T/sub 2/; removing heat from the fourth fluid to lower the temperature of the fourth fluid to a temperature T/sub D/, T/sub D/ being less than T/sub C/ and greater than or substantially equal to T/sub 2/, whereby the secondary pressurized vapor stream is absorbed to form in admixture with the first liquid, a pressurized second liquid, the temperature T/sub D/ being greater than T/sub A/ and less than T/sub B/, the temperature T/sub B/ being greater than T/sub D/ and less than T/sub C/; expanding the pressurized second liquid to form the third fluid.

  11. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    Directory of Open Access Journals (Sweden)

    Bing Hu

    2014-01-01

    Full Text Available To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker.

  12. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    Science.gov (United States)

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker. PMID:25202735

  13. Combined vapor compression/absorption heat pump cycles for engine-driven heat pumps

    Science.gov (United States)

    Radermacher, Reinhard; Herold, Keith E.; Howe, Lawrence A.

    1988-12-01

    The performance of three combined absorption/vapor compression cycles for gas-fired internal combustion engine driven heat pumps was theoretically assessed. Two cycles were selected for the preliminary design of breadboard systems using only off-the-shelf components. The first cycle, based on the working pair ammonia/water, is termed the simple-cycle. The second cycle, based on the working pair lithium-bromide/water, is termed the compressor enhanced double-effect chiller. Both cycles are found to be technically feasible. The coefficient of performance and the capacity are increased by up to 21 percent for cooling in the first case (compressor efficiency of 0.7) and by up to 14 percent in the second (compressor efficiency of 0.5). Both were compared against the engine drive R22 vapor compression heat pump. The performance of actual machinery for both cycles is, in the current design, hampered by the fact that the desired oil-free compressors have poor isentropic efficiencies. Oil lubricated compressors together with very effective oil separators would improve the performance of the combined LiBr/water cycle to 23 percent.

  14. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  15. Vapor Compression and Thermoelectric Heat Pumps for a Cascade Distillation Subsystem: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2012-01-01

    Humans on a spacecraft require significant amounts of water for drinking, food, hydration, and hygiene. Maximizing the reuse of wastewater while minimizing the use of consumables is critical for long duration space exploration. One of the more promising consumable-free methods of reclaiming wastewater is the distillation/condensation process used in the Cascade Distillation Subsystem (CDS). The CDS heats wastewater to the point of vaporization then condenses and cools the resulting water vapor. The CDS wastewater flow requires heating for evaporation and the product water flow requires cooling for condensation. Performing the heating and cooling processes separately would require two separate units, each of which would demand large amounts of electrical power. Mass, volume, and power efficiencies can be obtained by heating the wastewater and cooling the condensate in a single heat pump unit. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the CDS system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump analysis and performance tests are provided. The mass, volume, and power requirement for each heat pump option is compared and the advantages and disadvantages of each system are listed.

  16. Development of a Water Based, Critical Flow, Non-Vapor Compression cooling Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Mohammad H.

    2014-03-30

    Expansion of a high-pressure liquid refrigerant through the use of a thermostatic expansion valve or other device is commonplace in vapor-compression cycles to regulate the quality and flow rate of the refrigerant entering the evaporator. In vapor-compression systems, as the condensed refrigerant undergoes this expansion, its pressure and temperature drop, and part of the liquid evaporates. We (researchers at Kansas State University) are developing a cooling cycle that instead pumps a high-pressure refrigerant through a supersonic converging-diverging nozzle. As the liquid refrigerant passes through the nozzle, its velocity reaches supersonic (or critical-flow) conditions, substantially decreasing the refrigerant’s pressure. This sharp pressure change vaporizes some of the refrigerant and absorbs heat from the surrounding conditions during this phase change. Due to the design of the nozzle, a shockwave trips the supersonic two-phase refrigerant back to the starting conditions, condensing the remaining vapor. The critical-flow refrigeration cycle would provide space cooling, similar to a chiller, by running a secondary fluid such as water or glycol over one or more nozzles. Rather than utilizing a compressor to raise the pressure of the refrigerant, as in a vapor-cycle system, the critical-flow cycle utilizes a high-pressure pump to drive refrigerant liquid through the cooling cycle. Additionally, the design of the nozzle can be tailored for a given refrigerant, such that environmentally benign substances can act as the working fluid. This refrigeration cycle is still in early-stage development with prototype development several years away. The complex multi-phase flow at supersonic conditions presents numerous challenges to fully understanding and modeling the cycle. With the support of DOE and venture-capital investors, initial research was conducted at PAX Streamline, and later, at Caitin. We (researchers at Kansas State University) have continued development

  17. Performance Evaluation of An Innovative-Vapor- Compression-Desalination System

    Directory of Open Access Journals (Sweden)

    Mirna R. Lubis

    2012-04-01

    Full Text Available Two dominant desalination methods are reverse osmosis (RO and multi-stage flash (MSF. RO requires large capital investment and maintenance, whereas MSF is too energy-intensive. Innovative system of vapor compression desalination is proposed in this study. Comprehensive mathematics model for evaporator is also described. From literature study, it is indicated that very high overall-heat-transfer coefficient for evaporator can be obtained at specific condition by using dropwise condensation in the steam side, and pool boiling in the liquid side. Smooth titanium surface is selected in order to increase dropwise condensation, and resist corrosion. To maximize energy efficiency, a cogeneration scheme of a combined cycle consisting of gas turbine, boiler heat recovery, and steam turbine that drivescompressor is used. The resource for combined cycle is relatively too high for the compressor requirement. Excess power can be used to generate electricity for internal and/or externalconsumptions, and sold to open market. Four evaporator stages are used. Evaporator is fed by seawater, with assumption of 3.5% salt contents. Boiling brine (7% salt is boiled in low pressure side of the heat exchanger, and condensed vapor is condensed in high pressure side of the heat exchanger. Condensed steam flows at velocity of 1.52 m/s, so that it maximize the heat transfer coefficient. This unit is designed in order to produce 10 million gallon/day, and assumed it is financed with 5%, 30 years of passive obligation. Three cases are evaluated in order to determine recommended condition to obtain the lowest fixed capital investment. Based on the evaluation, it is possible to establish four-stage unit of mechanical vapor compression distillation with capital $31,723,885.

  18. First Law Analysis of a Two-stage Ejector-vapor Compression Refrigeration Cycle working with R404A

    Directory of Open Access Journals (Sweden)

    Feiza Memet

    2011-10-01

    Full Text Available The traditional two-stage vapor compression refrigeration cycle might be replaced by a two-stage ejector-vapor compression refrigeration cycle if it is aimed the decrease of irreversibility during expansion. In this respect, the expansion valve is changed with an ejector. The performance improvement is searched in the case of choosing R404A as a refrigerant. Using the ejector as an expansion device ensures a higher value for COP compared to the traditional case. On the basis of the ejector approach it possible to identify the highest COP value for a given condensation temperature, when the evaporation temperature varies.

  19. Vapor compression CuCl heat pump integrated with a thermochemical water splitting cycle

    Energy Technology Data Exchange (ETDEWEB)

    Zamfirescu, C., E-mail: Calin.Zamfirescu@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada); Naterer, G.F., E-mail: Greg.Naterer@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada); Dincer, I., E-mail: Ibrahim.Dincer@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada)

    2011-01-10

    In this paper, the feasibility of using cuprous chloride (CuCl) as a working fluid in a new high temperature heat pump with vapor compression is analyzed. The heat pump is integrated with a copper-chlorine (Cu-Cl) thermochemical water splitting cycle for internal heat recovery, temperature upgrades and hydrogen production. The minimum temperature of heat supply necessary for driving the water splitting cycle can be lowered because the heat pump increases the working fluid temperature from 755 K up to {approx}950 K, at a high COP of {approx}6.5. Based on measured data available in past literature, the authors have determined the T-s diagram of CuCl, which is then used for the thermodynamic modeling of the cycle. In the heat pump cycle, molten CuCl is flashed in a vacuum where the vapor quality reaches {approx}2.5%, and then it is boiled to produce saturated vapor. The vapor is then compressed in stages (with inter-cooling and heat recovery), and condensed in a direct contact heat exchanger to transfer heat at a higher temperature. The heat pump is then integrated with a copper-chlorine water splitting plant. The heat pump evaporator is connected thermally with the hydrogen production reactor of the water splitting plant, which performs an exothermic reaction that generates heat at 760 K. Additional source heat is obtained from heat recovery from the hot reaction products of the oxy-decomposer. The heat pump transfers heat at {approx}950 K to the oxy-decomposer to drive its endothermic chemical reaction. It is shown that the heat required at the heat pump source can be obtained completely from internal heat recovery within the plant. First and second law analyses and a parametric study are performed for the proposed system to study the influence of the compressor's isentropic efficiency and temperature levels on the heat pump's COP. Two new indicators are presented: one represents the heat recovery ratio (the ratio between the thermal energy obtained by

  20. Study on Operating Performance of Stirling Engine-Driven Vapor Compression Heat Pump System

    Science.gov (United States)

    Kagawa, Noboru

    Stirling engines have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration. On the other hand, heat pump systems are very attractive for space heating and cooling, and industrial usage. There are several environmental merits of Stirling driven vapor compression (SDVC) systems. A design method for the SDVC, which is based on mathematical methods for Stirling and Ranking cycles, has been developed. The attractive SDVC performance using conventional and alternative refrigerants was shown. From the calculated Total Equivalent Warming Impact (TEWI) and operating costs, it became clear that the SDVC system with the alternative refrigerant has a higher potential as the future air-conditioning system.

  1. Performance Analysis of Stirling Engine-Driven Vapor Compression Heat Pump System

    Science.gov (United States)

    Kagawa, Noboru

    Stirling engine-driven vapor compression systems have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration which can play an important role in alleviating environmental and energy problems. This paper introduces a design method for the systems based on reliable mathematical methods for Stirling and Rankin cycles using reliable thermophysical information for refrigerants. The model deals with a combination of a kinematic Stirling engine and a scroll compressor. Some experimental coefficients are used to formulate the model. The obtained results show the performance behavior in detail. The measured performance of the actual system coincides with the calculated results. Furthermore, the calculated results clarify the performance using alternative refrigerants for R-22.

  2. Exergy Analysis of Vapor Compression Cycle Driven by Organic Rankine Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Hoon [Kumoh Nat' l Institute of Technology, Gumi (Korea, Republic of)

    2013-12-15

    In this study, exergy analysis of a thermally activated refrigeration cycle, a combined organic Rankine cycle (ORC), and a vapor compression cycle (VCC) were conducted. It is considered that a system uses a low-temperature heat source in the form of sensible heat, such as various renewable energy sources or waste heat from industries, and one of eight working fluids: R143a, R22, R134a, propane, isobutane, butane, R245fa, or R123. The effects of turbine inlet pressure and the working fluid selected on the exergy destructions (anergies) at various system components as well as the COP and exergy efficiency of the system were analyzed and discussed. The results show that the component of the greatest exergy destruction in the system varies sensitively with the turbine inlet pressure and/or working fluid.

  3. Performance Characteristics of Vapor Compression Refrigeration Cycle Based on Ericsson Cycle

    Science.gov (United States)

    Ino, Nobumi; Kishi, Takayuki; Nishio, Toshio

    The purpose of this research and investigation is to confirm and clarify the performance characteristics of the vapor compression refrigeration cycle based on the Ericsson Cycle (referred to hereinafter as "this cycle" in this paper). The theoretical analysis and comparison in performance of the conventional refrigeration cycle with this cycle using 12 different but typical refrigerants, produced the following essential and interesting results, i.e., (1) there are conditions for maximizing the COP of this cycle using the expansion valve, (2)both the COP and refrigeration capacity using this cycle showed improvement for all refrigerants other than R717 and R32, (3)the improvement rate for the COP and the refrigeration capacity becomes larger as the specific heat ratio at the gas outlet point of the regenerative heat exchanger becomes smaller, with the rate value differing according to the type of refrigerant.

  4. Second law analysis of a solar powered Rankine cycle/vapor compression cycle

    Energy Technology Data Exchange (ETDEWEB)

    Egrican, A.N.; Karakas, A.

    1986-01-01

    Conversion of solar heat energy to power or air conditioning is a difficult and costly process. Only two practical means of solar cooling are presently state-of-the-art. These are by use of the Rankine cycle/vapor compression cycle (RC/VCC) and the absorption refrigeration cycle. RC/VCC solar cooling systems convert collected solar heat into a cooling effect. In the present study, the second law analysis is given, the maximum reversible work, lost work and availability for each component are calculated. The use of lost work or irreversibility and availability analysis in a real thermodynamic and heat transfer problem is very important in at least two regards. The first one is that in most cases accomplishing a real problem with the less irreversibility is directly proportional to the less cost. The second one is that availability is one of our natural resources. The conservation and effective use of availability reserves result in the decrease irreversibilities.

  5. A Dynamic Model of a Vapor Compression Refrigeration Cycle using Zeotropic Refrigerant Mixtures

    Science.gov (United States)

    Unezaki, Fumitake; Matsuoka, Fumio

    In order to prove the effectiveness of the developed model, reported in the first report, about dynamics of a vapor compression refrigeration cycle with zeotropic refrigerant mixtures, simulation results are compared with the experimental results obtained for R-407C (R-32/R-125/R-134a=23/25/52wt%).The simulation results are consistent well with the experimental results. As a result of the numerical analysis of dynamic characteristics of composition changing, the variation of compositions in the refrigeration cycle is caused by the variation of the existing compositions of accumulator. The time constant of the composition is approximately equal to the time constant of the pressure and the mass distribution.

  6. Cycle simulation of the low-temperature triple-effect absorption chiller with vapor compression unit

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.S.; Lee, H.

    1999-07-01

    The construction of a triple-effect absorption chiller machine using the lithium bromide-water solution as a working fluid is strongly limited by corrosion problems caused by the high generator temperature. In this work, three new cycles having the additional vapor compression units were suggested in order to lower the generator temperature of a triple-effect absorption chiller. Each new cycle has one compressor located at the different position which was used to elevate the pressure of the refrigerant vapor. Computer simulations were carried out in order to examine both the basic triple-effect cycle and three new cycles. All types of triple-effect absorption chiller cycles were found to be able to lower the temperature of high-temperature generator to the more favorable operation range. The COPs of three cycles calculated by considering the additional compressor works showed a small level of decrease or increase compared with that of the basic triple-effect cycle. Consequently, a low-temperature triple-effect absorption chiller can be possibly constructed by adapting one of three new cycles. A great advantage of these new cycles over the basic one is that the conventionally used lithium bromide-water solution can be successfully used as a working fluid without the danger of corrosion.

  7. Open-cycle vapor compression heat pump. Annual progress report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    Sakhuja, R.; Becker, F.E.

    1981-05-05

    Approximately 10 percent of U.S. energy is used by industry in the form of process steam at 100 psi or less. In many industrial plants, a portion of this steam is simply vented to the atmosphere or condensed after use in the process because it cannot be fully utilized or economically recovered. Also, a great amount of low-grade heat energy is wasted because it cannot be economically recovered. Recovery and upgrading of these low-grade steam or waste heat sources offers a great potential of energy conservation. Thermo Electron is developing an open cycle vapor compression steam heat pump to meet this objective. The system utilizes excess low-pressure steam or that produced from an industrial excess heat source with a waste heat boiler and compresses this steam to the desired pressure level for process use. The compressor is driven by a prime mover such as a gas turbine, gas engine, etc. The prime mover exhaust heat also can be recovered to generate additional process steam. The fuel consumption of this system can be as low as 30 to 50 percent in comparison to a direct-fired boiler over the expected range of process conditions. Simple payback periods as low as one year can be achieved.

  8. THE USE OF POROUS CERAMICS FOR EVAPORATIVE AND EVAPORATIVE – VAPORCOMPRESSION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Cheban D.N.

    2013-04-01

    Full Text Available The use of natural evaporative cooling is one of technical solutions of problem of energy efficiency in air conditioning systems. The use of evaporative cooling in the first combined cooling stage allows reducing the load on the condenser of the cooling machine due to reducing of the condensing temperature. This combination allows the use of this type of system in any climatic conditions, including regions with small water resources. Multi-porous ceramic structure is used in evaporative air coolers and water coolers in this case. The objective of this paper is to show advantages of the using of porous ceramic as a working attachment, and to show advantages of the proposed scheme of compression-evaporation systems in comparison with standard vapor compression systems. Experimental research proved the fact, that in the film mode cooling efficiency of air flow is between EA=0,6÷0,7 and is slightly dependent of water flow. For countries with hot and dry climate where reserves of water are limited, it is recommended to use cyclical regime with EA≈0,65 value, or to use channel regime with a value of EA≈0,55. This leads to considerable energy savings. It has been determined, that combined air conditioning system is completely closed on the consumption of water at the parameters of the outside air equal to tA =32ºC and XA>13g/kg (in system with direct evaporative cooling machine, and tA=32ºC and XA>12g/kg (in system with indirect evaporative cooling machine. With these parameters, the cost of water in evaporative cooling stage can be fully compensated by condensate from the evaporator chiller.

  9. A sharp interface method for compressible liquid–vapor flow with phase transition and surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Zeiler, Christoph, E-mail: Christoph.Zeiler@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)

    2017-05-01

    The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevant physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.

  10. A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension

    Science.gov (United States)

    Fechter, Stefan; Munz, Claus-Dieter; Rohde, Christian; Zeiler, Christoph

    2017-05-01

    The numerical approximation of non-isothermal liquid-vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevant physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.

  11. Energy-Saving Study of a System for Ammonium Sulfate Recovery from Wastewater with Mechanical Vapor Compression (MVC

    Directory of Open Access Journals (Sweden)

    Lin Liang

    2011-11-01

    Full Text Available In this study, a new two stage Mechanical Vapor Compression (MVC system which is used to recycle ammonium sulfate is investigated. In evaporation process, there are many efficient ways such as multiple-effect evaporation, multi-stage flash, thermal vapor compression, and mechanical vapor compression and so on. In these ways MVC is considered to be more effective. Now, almost all of the MVC systems in the literatures are about one stage structure. However, in the other process such as continuous crystallizer, if one stage MVC system is adopted, a lot of energy will be wasted. Therefore, in order to further save energy, a new system should be proposed. In this study, a new two stage MVC system is proposed and analyzed using the software of ASPEN PLUS. The first stage is a forcible recycle evaporator with MVC and the second one is a forcible recycle crystallizer with MVC. The energy consumption is discussed as a function of the middle concentration and the operating temperature. The results show that the compressor power decreases with the increase in the operating temperature and the optimal compressor power is obtained when the mass concentration is about 32%. Compared with one stage MVC system the running cost of the new system can be saved 29.2% and more than 25.8% of the energy can be saved. Additionally, it can save running cost over 42.2% and save energy more than 59.6% compared with the conventional multi-effect system.

  12. A dynamic model of a vapor compression cycle with shut-down and start-up operations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin; Alleyne, Andrew G. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, MC-244, Urbana, IL 61801 (United States)

    2010-05-15

    This paper presents an advanced switched modeling approach for vapor compression cycle (VCC) systems used in Air Conditioning and Refrigeration. Building upon recent work (), a complete dynamic VCC model is presented that is able to describe the severe transient behaviors in heat exchangers (condenser/evaporator), while maintaining the moving-boundary framework, under compressor shut-down and start-up operations. The heat exchanger models retain a constant structure, but accommodate different model representations. Novel switching schemes between different representations and pseudo-state variables are introduced to accommodate the transitions of dynamic states in heat exchangers while keeping track of the vapor and liquid refrigerant zones during the stop-start transients. Two model validation studies on an experimental system show that the complete dynamic model developed in Matlab/Simulink can well predict the system dynamics in shut-down and start-up transients. (author)

  13. DEVELOPMENT AND TESTING OF A PRE-PROTOTYPE RAMGEN ENGINE

    Energy Technology Data Exchange (ETDEWEB)

    Aaron Koopman

    2003-07-01

    The research and development effort of a new kind of compressor and engine is presented. The superior performance of these two products arises from the superior performance of rotating supersonic shock-wave compression. Several tasks were performed in compliance with the DOE award objectives. A High Risk Technology review was conducted and evaluated by a team of 20 senior engineers and scientists representing various branches of the federal government. The conceptual design of a compression test rig, test rotors, and test cell adaptor was completed. The work conducted lays the foundation for the completed design and testing of the compression test rig, and the design of a supersonic shock-wave compressor matched to a conventional combustor and turbine.

  14. Distribution of coniferin in differentiating normal and compression woods using MALDI mass spectrometric imaging coupled with osmium tetroxide vapor treatment.

    Science.gov (United States)

    Yoshinaga, Arata; Kamitakahara, Hiroshi; Takabe, Keiji

    2016-05-01

    Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) was employed to detect monolignol glucosides in differentiating normal and compression woods of two Japanese softwoods, Chamaecyparis obtusa and Cryptomeria japonica Comparison of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry collision-induced dissociation fragmentation analysis and structural time-of-flight (MALDI-TOF CID-FAST) spectra between coniferin and differentiating xylem also confirmed the presence of coniferin in differentiating xylem. However, as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and MALDI-TOF CID-FAST spectra of sucrose were similar to those of coniferin, it was difficult to distinguish the distribution of coniferin and sucrose using MALDI-MSI and collision-induced dissociation measurement only. To solve this problem, osmium tetroxide vapor was applied to sections of differentiating xylem. This vapor treatment caused peak shifts corresponding to the introduction of two hydroxyl groups to the C=C double bond in coniferin. The treatment did not cause a peak shift for sucrose, and therefore was effective in distinguishing coniferin and sucrose. Thus, it was found that MALDI-MSI combined with osmium tetroxide vapor treatment is a useful method to detect coniferin in differentiating xylem.

  15. Impact of Oil Solubility and Refrigerant Flashing on the Performance of Transcritical CO2 Vapor Compression Systems with Oil Flooding and Regeneration

    OpenAIRE

    Bell, Ian; Groll, Eckhard; Braun, James; Horton, W. Travis

    2010-01-01

    Flooding the compressor of a vapor compression system with oil can allow for a more isothermal compression process. This can lead to significant improvements in performance, particularly when combined with a regenerative heat exchanger. For CO2 cycles with supercritical heat rejection, the superheat horn and throttle are major sources of irreversibility. The combination of flooding and regeneration attacks both of these losses with a relatively small impact on system costs. The improveme...

  16. Numerical simulation of the effects of a suction line heat exchanger on vapor compression refrigeration cycle performance

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ji Hwan; Park, Sang Goo; Sarker, Debasish [Pusan National University, Busan (Korea, Republic of); Chang, Keun Sun [Sunmoon University, Asan (Korea, Republic of)

    2012-04-15

    Most modern refrigerators incorporate heat transfer between the refrigerant in a capillary tube and the refrigerant in a suction line. This heat transfer is achieved by a non-adiabatic capillary tube called a capillary tube-suction line heat exchanger and is supposed to improve the performance of the small vapor compression refrigeration cycle by removing some enthalpy of the refrigerant at the evaporator entrance. To investigate the effects of this heat transfer on the refrigeration cycle, a computer program was developed based on conservation equations of mass, momentum, and energy. The non-adiabatic capillary tube model is based on a homogeneous two-phase flow model. The simulation results show that both the location and length of the heat exchange section influence the coefficient of performance (COP) as well as the cooling capacity. It is noteworthy that the influence was not monotonic; that is, the performance may be deteriorated under certain conditions.

  17. Theoretical evaluation of the vapor compression cycle with a liquid-line/suction-line heat exchanger, economizer, and ejector

    Energy Technology Data Exchange (ETDEWEB)

    Domanski, P.A.

    1995-03-01

    The report presents a theoretical analysis of three vapor compression cycles which are derived from the Rankine cycle by incorporating a liquid-line/suction-line heat exchanger, economizer, or ejector. These addendums to the basic cycle reduce throttling losses using different principles, and they require different mechanical hardware of different complexity and cost. The theoretical merits of the three modified cycles were evaluated in relation to the reversed Carnot and Rankine cycle. Thirty-eight fluids were included in the study using the Carnahan-Starling-DeSantis equation of state. In general, the benefit of these addendums increases with the amount of the throttling losses realized by the refrigerant in the Rankine cycle.

  18. Testbeam studies of pre-prototype silicon strip sensors for the LHCb UT upgrade project

    CERN Document Server

    Abba, Andrea; Blusk, Steven; Britton, Thomas; Davis, Adam; Dendek, Adam; Dey, Biplab; Ely, Scott; Evans, T.; Fu, Jinlin; Gandini, Paolo; Lionetto, Federica; Manning, Peter Michael; Meadows, Brian; Mountain, Raymond; Neri, Nicola; Petruzzo, Marco; Pikies, Malgorzata; Skwarnicki, Tomasz; Szumlak, Tomasz; Wang, Jianchun

    2016-01-01

    The LHCb experiment is preparing for a major upgrade in 2018-2019. One of the key components in the upgrade is a new silicon tracker situated upstream of the analysis magnet of the experiment. The Upstream Tracker (UT) will consist of four planes of silicon strip detectors, with each plane covering an area of about 2m$^2$. An important consideration of these detectors is their performance after they have been exposed to a large radiation dose. In this article we present test beam results of pre-prototype n-in-p and p-in-n sensors that have been irradiated with doses up to 23.3 MRad.

  19. A multiscale method for compressible liquid-vapor flow with surface tension*

    Directory of Open Access Journals (Sweden)

    Jaegle Felix

    2013-01-01

    Full Text Available Discontinuous Galerkin methods have become a powerful tool for approximating the solution of compressible flow problems. Their direct use for two-phase flow problems with phase transformation is not straightforward because this type of flows requires a detailed tracking of the phase front. We consider the fronts in this contribution as sharp interfaces and propose a novel multiscale approach. It combines an efficient high-order Discontinuous Galerkin solver for the computation in the bulk phases on the macro-scale with the use of a generalized Riemann solver on the micro-scale. The Riemann solver takes into account the effects of moderate surface tension via the curvature of the sharp interface as well as phase transformation. First numerical experiments in three space dimensions underline the overall performance of the method.

  20. FUZZY THERMOECONOMIC APPROACH TO NANOFLUID SELECTION IN VAPOR COMPRESSION REFRIGERATION CYCLE

    Directory of Open Access Journals (Sweden)

    D. Kuleshov

    2014-06-01

    Full Text Available The working fluid selection in the vapour compression refrigeration cycles has been studied as a fuzzy thermoeconomic optimization problem. Three criteria: thermodynamic (COP Coefficient Of Performance, economic (LCC Life Cycle Cost, and ecologic (GWP – Global Warming Potential are chosen as target functions. The decision variables X as an information characteristics of desired refrigerant are presented by its critical parameters and normal boiling temperature. Local criteria are expressed via thermodynamic properties restored from information characteristics of refrigerant X, as well as life cycle costs are calculated by the standard economic relationships. GWP values are taken from the refrigerant database. Class of substances under consideration is presented by the natural refrigerant R600a embedded with nanostructured materials.

  1. Open-cycle vapor compression heat pump. Annual technical report Jan-Dec 82

    Energy Technology Data Exchange (ETDEWEB)

    Becker, F.E.; Ruggles, A.E.

    1983-04-01

    Large quantities of low-grade energy are wasted by industry in the form of low-pressure steam and low-temperature heat. The practical and economical recovery of energy from these sources is restricted by the limited number of useful applications for low-grade energy, and is further complicated by contamination of the waste streams. Thermo Electron has developed an open-cycle steam heat pump system capable of the direct recovery and upgrading of low-grade waste steam. The system compresses low-pressure waste steam (or steam made from sources of low-temperature waste heat) to produce high-pressure steam suitable for use in industrial processes.

  2. The Effects of Internal and External Irreversibility of a Vapor Compression Refrigeration Cycle

    Science.gov (United States)

    Wang, Fu-Jen; Chiou, Jeng-Shing

    The concept of finite-time thermodynamics is employed to investigate the optimal refrigeration rate for an irreversible refrigeration cycle. The heat transfer between the system (internal) fluid and cooling (external) fluid takes place at the actual heat exchanger, which has the finite-size heat transfer area and the realistic heat transfer effectiveness. The internal irreversibility results from the compression process and the expansion process are also considered. The optimal refrigeration rate is calculated and expressed in terms of the irreversibility parameter (Ir), coefficient of performance (COP), the time ratio(γ) of heat transfer processes and the effectiveness of heat exchanger. The derived COP which consider both the external and internal irreversibility can thus be considered as the benchmark value for a practical refrigeration cycle, and the parametric study can provide the basis for both determination of optimal operating conditions and design of a practical refrigeration cycle.

  3. Experimental determination and prediction of the compressibility factor of high CO2 content natural gas with and without water vapor

    Institute of Scientific and Technical Information of China (English)

    Xiaoqiang Bian; Zhimin Du; YongTang

    2011-01-01

    In order to study the effect of different CO2 contents on gas compressibility factor (Z-factor),the JEFRI-PVT apparatus has been used to measure the Z-factor of dry natural gas with CO2 content range from 10.74 to 70.42 mol% at the temperature range from 301.2 to 407.3 K and pressure range from 7 to 44 MPa.The results show that Z-factor decreases with increasing CO2 content in natural gas at constant temperature and increases with increasing temperature for natural gas with the same CO2 content.In addition,the Z-factor of water-saturated natural gas with high CO2 content has been measured.A comparison of the Z-factor between natural gas with and without saturated water vapor indicates that the former shows a higher Z-factor than the latter.Furthermore,Peng-Robinson,Hall-Yarborough,and Soave-Benedict-WebbRubin equations of state (EoS) are used for the calculation of Z-factor of high CO2 content natural gas with and without water vapor.The optimal binary interaction parameters (BIP) for PR EoS are presented.The measured Z-factor is compared with the calculated Z-factor based on three models,which shows that PR EoS combined with van der Waals mixing rule for gas without water and Huron-Vidal mixing rule for water-saturated gas,are in good agreement with the experimental data.

  4. Open-cycle vapor-compression heat pump. Annual report, April 1983-April 1984

    Energy Technology Data Exchange (ETDEWEB)

    Becker, F.E.; Ruggles, A.E.

    1984-05-01

    Large quantities of low-grade energy in the form of low-pressure steam and low-temperature heat are wasted by industry. The practical and economical recovery of energy from these sources is often limited by the number of applications for the use of low-temperature heat. Thermo Electron has developed an open-cycle steam-heat-pump system capable of the direct recovery and upgrading of low-grade waste steam. The system compresses low-pressure waste steam (or steam made from sources of low-temperature waste heat) to produce high-pressure steam suitable for use in industrial processes. A prototype system has been developed that is capable of recovering and recompressing up to 10,000 lb/hr of waste steam, while using only 50 percent of the fuel that would be required to produce comparable steam in a boiler. The prototype steam recompression system, using a 2200-cfm rotary screw compressor driven by a 500-hp natural-gas engine, was tested at Thermo Electron and then installed at the Monsanto Company in western Massachusetts for a yearlong field test.

  5. Open-cycle vapor compression heat pump. Final report, January 1979-January 1985

    Energy Technology Data Exchange (ETDEWEB)

    Becker, F.E.; Ruggles, A.E.

    1985-03-01

    Large quantities of low-grade energy in the form of low-pressure steam and low-temperature heat are often discharged to the environment by industry. The practical and economical recovery of energy from these sources is often limited by the number of applications that can directly use low-temperature heat. Thermo Electron has developed an open-cycle steam heat-pump system capable of the direct recovery and upgrading of low-grade waste energy. The system compresses low-pressure waste steam (or steam made from sources of low-temperature waste heat) to produce high-pressure steam suitable for use in industrial processes. A prototype system has been developed that is capable of recovering and recompressing up to 10,000 lb/hr of waste steam, while using only 50% of the fuel that would be required to produce comparable steam in a boiler. The prototype steam-recompression system, using a 2200-cfm rotary-screw compressor, driven by a 500-hp natural-gas engine, was tested at Thermo Electron and then installed at the Monsanto Company in western Massachusetts for a year-long field test.

  6. Experimental Validation of the Simulation Model of a DOAS Equipped with a Desiccant Wheel and a Vapor Compression Refrigeration System

    Directory of Open Access Journals (Sweden)

    Pedro J. Martínez

    2017-09-01

    Full Text Available A dedicated outdoor air system (DOAS can be designed to supply 100% of the outside air and meet the latent load of the room with dry air. The objectives of this study were to develop a model of a DOAS equipped with a desiccant wheel and a vapor-compression refrigeration system, build a prototype, validate the model with experimental data, and gain knowledge about the system operation. The test facility was designed with the desiccant wheel downstream of the cooling coil to take advantage of the operating principles of cooling coils and desiccants. A model of the DOAS was developed in the TRNSYS environment. The root mean standard error (RMSE was used for model validation by comparing the measured air and refrigerant properties with the corresponding calculated values. The results obtained with the developed model showed that the DOAS was able to maintain an indoor humidity ratio depending on outdoor conditions. Laboratory tests were also used to investigate the effect of changes in the regeneration air temperature and the process airflow rate on the process air humidity ratio at the outlet of the wheel. The results are consistent with the technical literature.

  7. Life Testing of the Vapor Compression Distillation Urine Processing Assembly (VCD/UPA) at the Marshall Space Flight Center

    Science.gov (United States)

    Wieland, Paul O.

    1998-01-01

    Wastewater and urine generated on the International Space Station will be processed to recover pure water. The method selected is vapor compression distillation (VCD). To verify the long-term reliability and performance of the VCD Urine Processing Assembly (UPA), accelerated life testing was performed at the Marshall Space Flight Center (MSFC) from January 1993 to April 1996. Two UPAS, the VCD-5 and VCD-5A, were tested for 204 days and 665 days, respectively. The compressor gears and the distillation centrifuge drive belt were found to have an operating life of approximately 4800 hours. Precise alignment of the flex-spline of the fluids pump is essential to avoid failure of the pump after about 400 hours of operation. Also, leakage around the seals of the drive shaft of the fluids pump and purge pump must be eliminated for continued good performance. Results indicate that, with some design and procedural modifications and suitable quality control, the required performance and operational life can be met with the VCD/UPA.

  8. REFRIG-12: A graphics-augmented interactive program for designing vapor-compression refrigeration/heat pump cycles

    Science.gov (United States)

    Davis, B. W.

    1984-09-01

    REFRIG-12 is an interactive program that serves as a tool for designing and analyzing thermodynamic vapor compression refrigeration/heatpump cycles. Graphic and alphanumeric responses to design decisions are displayed simultaneously on separate monitors. Temperature-Entropy property coordinates are used to describe the thermodynamic processes Freon-12 undergoes as it passes through the various mechanical components which ultimately produce the cycle. The processes are displayed graphically as the user makes the decisions to design a refrigeration cycle. When a design has been completed, REFRIG-12 offers the user an opportunity to make changes. The effects of design changes become graphically discernible through successive overlays on the graphics monitor. DOTPLOT can be executed to produce a hard copy of the graphics monitor display. Summaries of the cycle performance, pertinent energy transfers, and other engineering consequences of the design specifications can also be presented - at user option - on both the CRT and the printer. REFRIG-12 is organized so that a relatively small main program controls 25 subroutines. Each subroutine has stand alone characteristics and may be used with programs having other primary purposes. The subroutines can be conveniently merged (or chained) into system memory as needed.

  9. Development of a preprototype thermoelectric integrated membrane evaporation subsystem for water recovery

    Science.gov (United States)

    Winkler, H. E.; Roebelen, G. J., Jr.

    1980-01-01

    A three-man urine water recovery preprototype subsystem using a new concept to provide efficient potable water recovery from waste fluids on extended duration space flights has been designed, fabricated, and tested. Low power, compactness, and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber polysulfone membrane evaporator with a thermoelectric heat pump. Application and integration of these key elements have solved problems inherent in previous reclamation subsystem designs. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than a waste liquid recirculation pump and a product water withdrawal pump. Tubular membranes provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery.

  10. NASA preprototype redox storage system for a photovoltaic stand-alone application

    Science.gov (United States)

    Hagedorn, N. H.

    1981-01-01

    A 1-kW preprototype redox storage system that has undergone characterization tests and been operated as the storage device for a 5-kW (peak) photovoltaic array is described and performance data are presented. Loss mechanisms are discussed, and simple design changes leading to appreciable increases in efficiency are suggested. The effects on system performance of nonequilibrium between the predominant species of complexed chromic ion in the negative electrode reactant solution are summarized. It is noted that with the aid of the prototype system, control concepts have been shown to be valid and trouble free and some insight has been gained into interactions at the mutual interfaces of the redox system, the photovoltaic array, the load, and the control devices.

  11. Experimental Study of Ambient Air Temperature Effects on The Performance of a General Vapor-Compression Refrigeration Cycle

    Directory of Open Access Journals (Sweden)

    Ayad T. Mustafa

    2013-05-01

    Full Text Available         In this work an experimental study for the vaporcompression refrigeration cycle has been performed under temperature range of  9.7-32°C. The effect of      varying temperature on heat exchangers pressures, cooling capacity, net power consumption, and coefficient of performance COP are studied .                                   The results indicated that condenser pressure, evaporator pressure, and power consumption increased with the increase of temperature. The data also indicated that cooling capacity increased as temperature increased until 15.6°C then after it decreased with further temperature increase. Also COP follow the same tread of cooling capacity.                                                                                                              

  12. Investigation of the liquid/vapor composition of compressed liquid CO2 with N2 and O2 in integrated pollutant removal systems for coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Oryshchyn, Danylo B.; Ochs, Thomas L.; Summers, Cathy A.; Penner, Larry R.; Gerdemann, Stephen J.

    2005-01-01

    Accurate prediction of the processes in Integrated Pollutant Removal (IPR) using compression and condensation of coal combustion products requires an understanding of the liquid/vapor ternary CO2/O2/N2 system. At conditions close to the critical point of CO2 the existing equations of state deviate from the sparse measured results available in the literature. Building on existing data and procedures, the USDOE/Albany Research Center has designed an apparatus for examining compositions in this region. The design of the apparatus and planned initial experiments are presented.

  13. Calculation Model of Vapor Compress Flash Seawater Desalination Equipment%压汽闪蒸法海水淡化装置的工艺计算模型

    Institute of Scientific and Technical Information of China (English)

    侴乔力; 金从卓; 束鹏程

    2011-01-01

    Among the modem seawater desalination methods, this article firstly analyzes and compares and induces the questions of the second vapor condensing latent heat loss of the open heat process in multi-stage flash and multi-effect distillation, and the questions of producing dirty and corrosion in distillation, and the questions of seawater pretreatment and unstable product water quality in reverse-osmosis. Then this article synthesizes their merits and proposes for the first time the newest and the best and integrated vapor compress flash seawater desalination method, in witch a flash with the best product water quality is driven by a vapor compress with the highest heat-power efficiency, with technical superiorities such as the lowest investment cost and independent flash operation and modularization combination production and so on. This method is mature and comprehensive as a result of integrated technology, its equipments run safely and reliably, and it will certainly replace each existing method gradually as a result of its remarkable technology and economy, unify the seawater desalination market, and lead the seawater desalination revolution I This artic has set up the calculation model of vapor compress flash seawater desalination equipment.%压汽闪蒸法海水淡化装置可规避现有海水淡化方法(多级闪蒸法和多效蒸馏法)中,在开路热焓过程中二次蒸汽的凝结潜热损失问题;蒸馏法的结垢与腐蚀问题;反渗透法的海水前处理与产品水质不稳定问题,从而实现海水淡化方法的最优技术整合:提供一种由热功效率最高的压汽法,来驱动产品水质最好的闪蒸法,这样一种全新、集成的海水淡化工艺;并兼具投资成本最低、独立闪蒸操作、模块化组合生产等主要技术优势.由于集成技术的成熟而全面,装置运行安全而可靠,必将以卓越的技术、经济性,逐步取代现有各种方法,统一海水淡化市场,引导海水淡

  14. A Theoretical investigation on HC Mixtures as Possible Alternatives to R134a in Vapor Compression Refrigeration

    Directory of Open Access Journals (Sweden)

    Feiza Memet

    2014-07-01

    Full Text Available This paper provides a theoretical comparison of the performance of refrigerants in use in a vapor comparison cycle. It is about the phase-out of R134a from actual refrigeration system, comparison being performed for this chemical and two more ecological mixtures: R290/R600a described as (30/70 and (40/60. Were investigated effects of condensation temperatures and evaporation temperatures on performance measures as COP (Coefficient of Performance and VCC (volumetric cooling capacity. COP is a measure of the performance of the refrigeration cycle, while VCC is an indicator of compressor size. Results of this study will reveal that R290/R600a (30/70 is a good option when it is about substitution of R134a, from energy efficiency point of view, in terms of COP. R290/R600a (40/60 has VCC values bellow the ones of R134a, but comparable.

  15. Microbiological test results of the environmental control and life support systems vapors compression distillation subsystem recycle tank components following various pretreatment protocols

    Science.gov (United States)

    Huff, Tim

    1993-01-01

    Microbiological samples were collected from the recycle tank of the vapor compression distillation (VCD) subsystem of the water recovery test at NASA MSFC following a 68-day run. The recycle tank collects rejected urine brine that was pretreated with a commercially available oxidant (Oxone) and sulfuric acid and pumps it back to the processing component of the VCD. Samples collected included a water sample and two swab samples, one from the particulate filter surface and a second from material floating on the surface of the water. No bacteria were recovered from the water sample. Both swab samples contained a spore-forming bacterium, Bacillus insolitus. A filamentous fungus was isolated from the floating material. Approximately 1 month after the pretreatment chemicals were changed to sodium hypochlorite and sulfuric acid, a swab of the particulate filter was again analyzed for microbial content. One fungus was isolated, and spore-forming bacteria were observed. These results indicate the inability of these pretreatments to inhibit surface attachment. The implications of the presence of these organisms are discussed.

  16. Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy.

    Science.gov (United States)

    Saleh, B

    2016-09-01

    The potential use of many common hydrofluorocarbons and hydrocarbons as well as new hydrofluoroolefins, i.e. R1234yf and R1234ze(E) working fluids for a combined organic Rankine cycle and vapor compression refrigeration (ORC-VCR) system activated by low-grade thermal energy is evaluated. The basic ORC operates between 80 and 40 °C typical for low-grade thermal energy power plants while the basic VCR cycle operates between 5 and 40 °C. The system performance is characterized by the overall system coefficient of performance (COPS) and the total mass flow rate of the working fluid for each kW cooling capacity ([Formula: see text]). The effects of different working parameters such as the evaporator, condenser, and boiler temperatures on the system performance are examined. The results illustrate that the maximum COPS values are attained using the highest boiling candidates with overhanging T-s diagram, i.e. R245fa and R600, while R600 has the lowest [Formula: see text] under the considered operating conditions. Among the proposed candidates, R600 is the best candidate for the ORC-VCR system from the perspectives of environmental issues and system performance. Nevertheless, its flammability should attract enough attention. The maximum COPS using R600 is found to reach up to 0.718 at a condenser temperature of 30 °C and the basic values for the remaining parameters.

  17. Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy

    Directory of Open Access Journals (Sweden)

    B. Saleh

    2016-09-01

    Full Text Available The potential use of many common hydrofluorocarbons and hydrocarbons as well as new hydrofluoroolefins, i.e. R1234yf and R1234ze(E working fluids for a combined organic Rankine cycle and vapor compression refrigeration (ORC-VCR system activated by low-grade thermal energy is evaluated. The basic ORC operates between 80 and 40 °C typical for low-grade thermal energy power plants while the basic VCR cycle operates between 5 and 40 °C. The system performance is characterized by the overall system coefficient of performance (COPS and the total mass flow rate of the working fluid for each kW cooling capacity (ṁtotal. The effects of different working parameters such as the evaporator, condenser, and boiler temperatures on the system performance are examined. The results illustrate that the maximum COPS values are attained using the highest boiling candidates with overhanging T-s diagram, i.e. R245fa and R600, while R600 has the lowest ṁtotal under the considered operating conditions. Among the proposed candidates, R600 is the best candidate for the ORC-VCR system from the perspectives of environmental issues and system performance. Nevertheless, its flammability should attract enough attention. The maximum COPS using R600 is found to reach up to 0.718 at a condenser temperature of 30 °C and the basic values for the remaining parameters.

  18. The vapor compression refrigeration cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pannkoke, T.

    1995-11-01

    This article is a review of the basic principles of a cycle widely used to create the refrigeration effect that provides both human comfort and process cooling. While a semantic differentiation often is made for cooling and dehumidifying air for human comfort (air conditioning) and cooling for products and processes (refrigeration), all mechanical cooling applications depend on the previously mentioned refrigeration effect.

  19. 单效蒸发机械压汽海水淡化系统热力性能分析%Thermal performance analysis of single-effect evaporation mechanical vapor compression seawater desalination system

    Institute of Scientific and Technical Information of China (English)

    刘鹏; 王永青

    2012-01-01

    As the only thermal desalination process is run by mechanical energy, the mechanical vapor compression distillation system has advantages of higher quality of production water, higher energy efficiency T and lower thermal pollution to the environment. A thermal performance analysis of a single-effect evaporation mechanical vapor compression (SEE-MVC) seawater desalination system was presented. The mathematic model was built, and a parametric analysis was performed. The results show that lower compression ratio, higher isentropic efficiency of compressor and lower evaporation temperature of seawater lead to lower power consumption and higher recovery rate of water production. The suitable range of evaporation temperature is 55-70℃ , and that of compression ratio is 1.2-1.3. Taking the minimum specific work consumption as objective function, the main parameters of several cases were given for reference.%机械压汽蒸馏海水淡化是唯一消耗机械能的热蒸馏海水淡化方式.文中以单效蒸发机械压汽(SEE-MVC)系统为研究对象,建立了数学模型,分析了重要参数对热力性能的影响,结果表明:压缩机增压比越低、定熵效率越高、蒸发温度越低,则产永比功耗越低、系统回收率越高;综合考虑各种因素,系统蒸发温度在55-70℃、增压比在1.2-1.3为宜.文中还给出了典型条件下对应最小比功耗的系统参数,并讨论了参数特点,可供设计时参考.

  20. Hybrid Vapor Stripping-Vapor Permeation Process for Recovery and Dehydration of 1-Butanol and Acetone/Butanol/Ethanol from Dilute Aqueous Solutions. Part 2. Experimental Validation with Simple Mixtures and Actual Fermentation Broth

    Science.gov (United States)

    BACKGROUND: In Part1 of this work, a process integrating vapor stripping, vapor compression, and a vapor permeation membrane separation step, Membrane Assisted Vapor Stripping (MAVS), was predicted to produce energy savings compared to traditional distillation systems for separat...

  1. Hybrid Vapor Stripping-Vapor Permeation Process for Recovery and Dehydration of 1-Butanol and Acetone/Butanol/Ethanol from Dilute Aqueous Solutions. Part 2. Experimental Validation with Simple Mixtures and Actual Fermentation Broth

    Science.gov (United States)

    BACKGROUND: In Part1 of this work, a process integrating vapor stripping, vapor compression, and a vapor permeation membrane separation step, Membrane Assisted Vapor Stripping (MAVS), was predicted to produce energy savings compared to traditional distillation systems for separat...

  2. SIMULACIÓN HORARIA DE UN SISTEMA DE REFRIGERACIÓN COMBINADO EYECTOR-COMPRESIÓN DE VAPOR ASISTIDO POR ENERGÍA SOLAR Y GAS NATURAL HOURLY SIMULATION OF A COMBINED EJECTOR-VAPOR COMPRESSION REFRIGERATION SYSTEM ASSISTED BY SOLAR ENERGY AND NATURAL GAS

    Directory of Open Access Journals (Sweden)

    Humberto Vidal

    2009-04-01

    double stage ejector cooling cycle assisted by solar energy system appears as an attractive solution to this problem. The first stage is performed by a mechanical compression cycle with R-134a as the working fluid, while the second stage is performed by a thermally driven ejector cycle with R-141b. Flat plate collectors and an auxiliary energy burner provide heat to the ejector cycle. This paper describes the hourly simulation of a combined ejector-vapor compression refrigeration system assisted by solar energy and natural gas. The combined solar refrigeration system is modeled using the TRNSYS-EES simulation tool and the typical meteorological year data containing the weather data of Florianópolis Brazil. The results obtained from the computational simulation performed in this system show that the combined ejector-vapor compression cooling cycle is more advantageous than the simple ejector cooling cycle. Finally, the computational model developed in this paper might be used to perform a thermo-economical optimization of the system in future works.

  3. Analisis of a marine mechanical vapor compression desalination system%船舶机械蒸汽压缩海水淡化装置性能分析

    Institute of Scientific and Technical Information of China (English)

    陈金增; 李光华; 李雁飞

    2011-01-01

    In the present work, by analizing the process of marine mechanical vapor desalination, the mathmatic models were gotten. As an example, the fresh water flowrate and work consumption at different evaporate temperature of a type of 5 t/d desalination system were calculation. The conclusion is that with the increasing of evaporate remperature, the flowrate of fresh water and work consumption are increasing accordingly.%在分析机械蒸汽压缩海水淡化装置工作过程基础上,给出了该型装置的数学模型.以产水量5 t/d的装置为例,分析了装置工作性能随蒸发温度的变化规律.结果表明,随着蒸发温度的提高,产水量增大,压缩机耗功相应增大.

  4. Experimental Validation of Hybrid Distillation-Vapor Permeation Process for Energy Efficient Ethanol-Water Separation

    Science.gov (United States)

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step,...

  5. Experimental Validation of Hybrid Distillation-Vapor Permeation Process for Energy Efficient Ethanol-Water Separation

    Science.gov (United States)

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step,...

  6. Membrane-assisted vapor stripping: energy efficient hybrid distillation-vapor permeation process for alcohol-water separation

    Science.gov (United States)

    BACKGROUND: Energy efficient alternatives to distillation for alcohol recovery from dilute solution are needed to improve biofuel sustainability. A process integrating steam stripping with a vapor compression step and a vapor permeation membrane separation step is proposed. The...

  7. Membrane-assisted vapor stripping: energy efficient hybrid distillation-vapor permeation process for alcohol-water separation

    Science.gov (United States)

    BACKGROUND: Energy efficient alternatives to distillation for alcohol recovery from dilute solution are needed to improve biofuel sustainability. A process integrating steam stripping with a vapor compression step and a vapor permeation membrane separation step is proposed. The...

  8. Energy Efficiency Evaluation and Economic Feasibility Analysis of a Geothermal Heating and Cooling System with a Vapor-Compression Chiller System

    Directory of Open Access Journals (Sweden)

    Muharrem Imal

    2015-09-01

    Full Text Available Increasing attention has been given to energy utilization in Turkey. In this report, we present an energy efficiency evaluation and economic feasibility analysis of a geothermal heating and cooling system (GSHP and a mechanical compression water chiller system (ACHP to improve the energy utilization efficiency and reduce the primary energy demand for industrial use. Analyses of a mechanical water chiller unit, GSW 180, and geothermal heating and cooling system, EAR 431 SK, were conducted in experimental working areas of the office buildings in a cigarette factory in Mersin, Turkey. The heating and cooling loads of the cigarette factory building were calculated, and actual thermal data were collected and analyzed. To calculate these loads, the cooling load temperature difference method was used. It was concluded that the geothermal heating and cooling system was more useful and productive and provides substantial economic benefits.

  9. Process simulation and analysis of mechanical vapor compression based oilfield waste water desalination systems%基于机械蒸汽压缩蒸发的油田污水脱盐系统及分析

    Institute of Scientific and Technical Information of China (English)

    李清方; 刘中良; 庞会中; 张建; 祝威

    2011-01-01

    A mechanical vapor compression (MVC) based desalination system for oilfield waste water is proposed to combat the difficulties resulted from complicated and strongly polluting pollutants of the waste water in using membrane methods. The complete mathematical model for process simulation and design is developed for the MVC-based oilfield waste water desalination system and the influences of the heat transfer temperature difference of falling-film evaporators, waste water temperature and evaporation temperature on the system performance are analyzed. The results show that the temperature difference is the controlling factor that determines the specific heat transfer area and the specific compression work of the system. Reducing this temperature difference will directly decrease the specific compression work and increase the specific heat transfer area. Higher waste water temperature results in a slight decrease in the specific heat transfer area, which demonstrates that the system is highly perfect in thermodynamics. The results also show that increasing evaporation temperature may significantly improve the performance of the system.%针对油田污水污染物成分复杂、污染性强不适合膜法脱盐的特点,提出用机械蒸汽压缩蒸发(MVC)技术对油田污水进行脱盐处理的技术方案.建立了基于MVC的油田污水脱盐系统的工艺流程设计计算模型,系统分析了降膜蒸发器传热温差、油田污水温度和蒸发温度的影响.结果表明:传热温差是影响系统装置规模和运行电耗的控制因素,减小传热温差可以明显降低压缩机比电耗,付出的代价是系统比传热面积的增大;MVC系统的热力完善度高,无废热排放,油田污水温度越高,系统比传热面积减小;在其他条件允许的条件下,提高系统的运行温度有利于改善系统的性能.

  10. Numerical analysis on transcritical CO2 vapor compression/ejection refrigeration cycle%跨临界CO2蒸气压缩/喷射制冷循环的数值分析

    Institute of Scientific and Technical Information of China (English)

    黄惠兰; 韩美健; 李刚; 郑克敏

    2014-01-01

    为了更合理的描述喷射器扩压室内的压力变化特性,对已有的跨临界CO2蒸气压缩/喷射制冷循环的热力学模型做了改进,并对扩压室新定义了一种压力系数ηd。建立了相应的数学模型并进行数值模拟,考察了该压力系数ηd 对制冷循环喷射系数和系统性能系数COP的影响,其结果与常规的扩压效率ηk 的影响作用有很好的一致性,说明所改进的热力学模型是可行的;应用该模型分析了压力系数对相关重要参数的影响,结果表明:随压力系数的增大,喷射系数基本不变;COP、压缩机进口温度、喷射器的增压比和喷射器效率增大;压缩机出口温度和压缩比减小;当工作流体压力为9 MPa时,相关参数发生了显著的变化。该压力系数取决于系统喷射器扩压室进出口的压力,方便测量确定。研究方法能够为跨临界CO2蒸气压缩/喷射制冷循环的性能分析提供有益参考。%A thermodynamic model of transcritical CO2 vapor-compression/ejection refrigeration cy-cle was modified to display the pressure variation in diffuser chamber of the ejector. A new pressure coefficient ηd for diffuser chamber was defined. And the corresponding mathematical model was es-tablished for calculated analysis. The effects of the pressure coefficientηd to the ejector entrainment ratio and the coefficient of performance ( COP) of the refrigeration cycle were studied. The results are in good agreement with the effects of common diffuser efficiencyηk . It is shown that the modified thermodynamic model is feasible. The influences of the pressure coefficient on several important pa-rameters were investigated. The results show that the ejector entrainment ratio almost unchanged with the increasing pressure coefficient. And the cycle COP, compressor inlet temperature, ejector pres-sure ratio and ejector efficiency increase with the increasing pressure coefficient. The compressor

  11. Experimental Evaluation of Hybrid Distillation-Vapor Permeation Process for Efficient Ethanol Recovery from Ethanol-Water Mixtures

    Science.gov (United States)

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions [1]. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation ...

  12. Experimental Evaluation of Hybrid Distillation-Vapor Permeation Process for Efficient Ethanol Recovery from Ethanol-Water Mixtures

    Science.gov (United States)

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions [1]. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation ...

  13. Vapor Bubbles

    Science.gov (United States)

    Prosperetti, Andrea

    2017-01-01

    This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.

  14. Open cycle vapor compression heat pump

    Science.gov (United States)

    Sakhuja, R.; Becker, F. E.

    1980-07-01

    A compressor test facility was built incorporating a screw compressor modified for steam service. The compressor was tested over a wide range of operating conditions with experimental results showing excellent agreement with predicted performance. The compressor operation with wet steam and water injection was completely satisfactory, demonstrating its suitability for use in a steam heat pump system.

  15. New Regenerative Cycle for Vapor Compression Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Bergander, Mark J [Magnetic Development, Inc.; Butrymowicz, Dariusz [Polish Academy of Scinces

    2010-01-26

    This project was a continuation of Category 1 project, completed in August 2005. Following the successful bench model demonstration of the technical feasibility and economic viability, the main objective in this stage was to fabricate the prototype of the heat pump, working on the new thermodynamic cycle. This required further research to increase the system efficiency to the level consistent with theoretical analysis of the cycle. Another group of objectives was to provide the foundation for commercialization and included documentation of the manufacturing process, preparing the business plan, organizing sales network and raising the private capital necessary to acquire production facilities.

  16. [Anesthetic machine leakage from vaporizer by external force derived from keyboard of electronic medical records].

    Science.gov (United States)

    Ikegami, Hiromi; Goto, Ryokichi; Sakamoto, Syotarou; Kohama, Hanako

    2012-11-01

    We experienced the leakage from the vaporizer of the anesthetic machine despite the normalities on performing the initial leak test. The vaporizer of the anesthetic machine was compressed by computer keyboard of EMR which caused a leak from vaporizer. After computer keyboard and the vaporizer were set at normal position, the leak stopped.

  17. "Compressed" Compressed Sensing

    CERN Document Server

    Reeves, Galen

    2010-01-01

    The field of compressed sensing has shown that a sparse but otherwise arbitrary vector can be recovered exactly from a small number of randomly constructed linear projections (or samples). The question addressed in this paper is whether an even smaller number of samples is sufficient when there exists prior knowledge about the distribution of the unknown vector, or when only partial recovery is needed. An information-theoretic lower bound with connections to free probability theory and an upper bound corresponding to a computationally simple thresholding estimator are derived. It is shown that in certain cases (e.g. discrete valued vectors or large distortions) the number of samples can be decreased. Interestingly though, it is also shown that in many cases no reduction is possible.

  18. Vapor Compressor Driven Hybrid Two-Phase Loop Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase I project successfully demonstrated the feasibility of the vapor compression hybrid two-phase loop (VCHTPL). The test results showed the high...

  19. Water vapor and gas transport through polymeric membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air). Dep

  20. Water vapor and Gas Transport through Polymeric Membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air).

  1. A Dynamic Modeling Toolbox for Air Vehicle Vapor Cycle Systems (Postprint)

    Science.gov (United States)

    2013-10-01

    Transcritical Vapor Compression Systems.” Journal of Dynamic Systems, Measurement, and Control, 2004: 54-64. 7. Li, B, Otten, R, Chandan, V, Mohs , W...and Trystram, G. “Low Order Dynamic Model os a Vapor Compression Cycle for Process Control Design.” Journal of Food Process, 2003: 193-199. 13

  2. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  3. Efficient ethanol recovery from fermentation broths with integrated distillation-vapor permeation hybrid process

    Science.gov (United States)

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...

  4. Efficient ethanol recovery from fermentation broths with integrated distillation-vapor permeation hybrid process

    Science.gov (United States)

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...

  5. Wellhead compression

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Joe [Sertco Industries, Inc., Okemah, OK (United States); Vazquez, Daniel [Hoerbiger Service Latin America Inc., Deerfield Beach, FL (United States); Jacobs, Denis Richard [Hoerbiger do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)

    2012-07-01

    Over time, all wells experience a natural decline in oil and gas production. In gas wells, the major problems are liquid loading and low downhole differential pressures which negatively impact total gas production. As a form of artificial lift, wellhead compressors help reduce the tubing pressure resulting in gas velocities above the critical velocity needed to surface water, oil and condensate regaining lost production and increasing recoverable reserves. Best results come from reservoirs with high porosity, high permeability, high initial flow rates, low decline rates and high total cumulative production. In oil wells, excessive annulus gas pressure tends to inhibit both oil and gas production. Wellhead compression packages can provide a cost effective solution to these problems by reducing the system pressure in the tubing or annulus, allowing for an immediate increase in production rates. Wells furthest from the gathering compressor typically benefit the most from wellhead compression due to system pressure drops. Downstream compressors also benefit from higher suction pressures reducing overall compression horsepower requirements. Special care must be taken in selecting the best equipment for these applications. The successful implementation of wellhead compression from an economical standpoint hinges on the testing, installation and operation of the equipment. Key challenges and suggested equipment features designed to combat those challenges and successful case histories throughout Latin America are discussed below.(author)

  6. Compressive beamforming

    DEFF Research Database (Denmark)

    Xenaki, Angeliki; Mosegaard, Klaus

    2014-01-01

    Sound source localization with sensor arrays involves the estimation of the direction-of-arrival (DOA) from a limited number of observations. Compressive sensing (CS) solves such underdetermined problems achieving sparsity, thus improved resolution, and can be solved efficiently with convex...

  7. Compression-absorption (resorption) refrigerating machinery. Modeling of reactors; Machine frigorifique a compression-absorption (resorption). Modelisation des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Lottin, O.; Feidt, M.; Benelmir, R. [LEMTA-UHP Nancy-1, 54 - Vandoeuvre-les-Nancy (France)

    1997-12-31

    This paper is a series of transparencies presenting a comparative study of the thermal performances of different types of refrigerating machineries: di-thermal with vapor compression, tri-thermal with moto-compressor, with ejector, with free piston, adsorption-type, resorption-type, absorption-type, compression-absorption-type. A prototype of ammonia-water compression-absorption heat pump is presented and modeled. (J.S.)

  8. Three-dimensional calculation of pollutant migration via compressible two-phase flow, for analysis of the methods of in situ air sparging and soil vapor extraction; Raeumliche Berechnung des Schadstofftransportes mit einer kompressiblen Zweiphasenstroemung zur Untersuchung der Drucklufteinblasung und Bodenluftabsaugung

    Energy Technology Data Exchange (ETDEWEB)

    Kuepper, S.

    1997-12-01

    In this study an analysis method is presented which allows numerical simulation of in situ air sparging coupled with soil vapor extraction. The improved FE-program takes the following phenomena into account: - Two-phase flow of compressible air and incompressible water - convective-dispersive contamination migration with air and water - transfer of volatile components from liquid phase to gas and water phase - sorption of contaminants onto soil - transfer of contaminants between air and water phase - biological processes. By means of back calculations of the results of laboratory experiments made by Eisele (1989) it was shown that with the developed program GWLCOND some of the necessary parameters for the numerical simulation of remedial systems can be determined. (orig./SR) [Deutsch] In dieser Arbeit wird ein Verfahren vorgestellt, mit dem eine numerische Simulation der Drucklufteinblasung und Bodenluftabsaugung durchgefuehrt werden kann. Das weiterentwickelte FE-Programmsystem beinhaltet folgende Ablaeufe: - Zweiphasenstroemung der kompressiblen Luft- und der inkompressiblen Wasserphase - Konvektiv-dispersiver Schadstofftransport mit der Gas- und der Wasserphase - Uebergang fluessiger Schadstoffe in die Gas- und in die Wasserphase - Sorption der Schadstoffe an der Feststoffphase - Uebergang der Schadstoffe zwischen der Gas- und der Wasserphase - Biologischer Abbau. Anhand der Nachrechnung eines Laborversuches von Eisele (1989) wird gezeigt, wie mit dem entwickelten Transportprogramm GWLCOND ein Teil der fuer die numerische Simulation des Sanierungsverfahrens benoetigten Kennwerte ermittelt werden kann. (orig./SR)

  9. 带有高压储液器的制冷系统建模研究%Dynamic modeling of vapor-compression refrigeration system with a high pressure receiver

    Institute of Scientific and Technical Information of China (English)

    翟文鹏; 吴爱国; 由玉文

    2012-01-01

    通过对制冷系统循环特性、变工况特性和参数间耦合特性的分析,遵循热力学基本定律和能量、动量、质量守恒定律,采用稳态和动态建模相结合的方法建立压缩式制冷系统的数学模型.针对换热器建模难点采用分相区和移动边界相结合的方法建立其集总参数动态模型,并且冷凝器与高压储液器相结合,构成冷凝器加储液器的整体部件,文中建立的制冷系统的整体模型,反映了制冷系统工况变化时制冷剂质量的重新分配及其对状态变量的影响,提高了系统建模的精度,最后通过实验对所建模型的准确性进行了验证.%Firstly, cycle characteristics, variable condition characteristics and coupling characteristics between parameters of the refrigeration system were analyzed. Next, basic laws of thermodynamics, energy conservation, momentum conservation, and mass conservation were followed. Then, using combination methods of steady state and dynamic modeling, the paper established a model of compression refrigeration system. Steady - state models of compressor and electronic expansion valve compared with heat exchangers with moving boundary, lumped parameter models of evaporator and condenser were established. Different dynamic mathematical models were established for high pressure liquid receiver, which is combined with condenser. The proposed model of the refrigeration system reflects the refrigerant mass redistribution and its impact on other components ( state variables) , which improve the accuracy of system modeling. Experiments show the accuracy of the model.

  10. On the acoustic properties of vaporized submicron perfluorocarbon droplets.

    Science.gov (United States)

    Reznik, Nikita; Lajoinie, Guillaume; Shpak, Oleksandr; Gelderblom, Erik C; Williams, Ross; de Jong, Nico; Versluis, Michel; Burns, Peter N

    2014-06-01

    The acoustic characteristics of microbubbles created from vaporized submicron perfluorocarbon droplets with fluorosurfactant coating are examined. Utilizing ultra-high-speed optical imaging, the acoustic response of individual microbubbles to low-intensity diagnostic ultrasound was observed on clinically relevant time scales of hundreds of milliseconds after vaporization. It was found that the vaporized droplets oscillate non-linearly and exhibit a resonant bubble size shift and increased damping relative to uncoated gas bubbles due to the presence of coating material. Unlike the commercially available lipid-coated ultrasound contrast agents, which may exhibit compression-only behavior, vaporized droplets may exhibit expansion-dominated oscillations. It was further observed that the non-linearity of the acoustic response of the bubbles was comparable to that of SonoVue microbubbles. These results suggest that vaporized submicron perfluorocarbon droplets possess the acoustic characteristics necessary for their potential use as ultrasound contrast agents in clinical practice.

  11. Compressive Sensing Over Networks

    CERN Document Server

    Feizi, Soheil; Effros, Michelle

    2010-01-01

    In this paper, we demonstrate some applications of compressive sensing over networks. We make a connection between compressive sensing and traditional information theoretic techniques in source coding and channel coding. Our results provide an explicit trade-off between the rate and the decoding complexity. The key difference of compressive sensing and traditional information theoretic approaches is at their decoding side. Although optimal decoders to recover the original signal, compressed by source coding have high complexity, the compressive sensing decoder is a linear or convex optimization. First, we investigate applications of compressive sensing on distributed compression of correlated sources. Here, by using compressive sensing, we propose a compression scheme for a family of correlated sources with a modularized decoder, providing a trade-off between the compression rate and the decoding complexity. We call this scheme Sparse Distributed Compression. We use this compression scheme for a general multi...

  12. Compression limits in cascaded quadratic soliton compression

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Krolikowski, Wieslaw;

    2008-01-01

    Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency.......Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency....

  13. Satellite data compression

    CERN Document Server

    Huang, Bormin

    2011-01-01

    Satellite Data Compression covers recent progress in compression techniques for multispectral, hyperspectral and ultra spectral data. A survey of recent advances in the fields of satellite communications, remote sensing and geographical information systems is included. Satellite Data Compression, contributed by leaders in this field, is the first book available on satellite data compression. It covers onboard compression methodology and hardware developments in several space agencies. Case studies are presented on recent advances in satellite data compression techniques via various prediction-

  14. Modeling of vapor-liquid-liquid equilibria in binary mixtures

    NARCIS (Netherlands)

    Tzabar, Nir; ter Brake, Hermanus J.M.

    2016-01-01

    Vapor compression and Joule–Thomson (JT) cycles provide cooling power at the boiling temperatures of the refrigerants. Maintaining a fixed pressure in the evaporator allows for a stable cooling temperature at the boiling point of a pure refrigerant. In these coolers enhanced cooling power can be ach

  15. Battery powered portable vapor compression cycle system with PCM condenser

    Science.gov (United States)

    DeNardo, Nicholas M.

    Additive manufacturing, or 3D printing, encompasses manufacturing processes that construct a geometry by depositing or solidifying material only where it is needed in the absence of a mold. The ability to manufacture complex geometries on demand directly from a digital file, as well as the decreasing equipment costs due to increased competition in the market, have resulted in the AM industry experiencing rapid growth in the past decade. Many companies have emerged with novel technologies well suited to improve products and/or save costs in various industries. Until recently, the applications of polymer additive manufacturing have been mainly limited to prototyping. This can be attributed to multiple factors, namely the high cost of the machines and materials, long print times, and anisotropy of printed parts. In addition, the low unit cost and cycle time of competing processes such as injection molding further skew the economics in favor of other processes. The addition of fiber-reinforcement into polymers used in additive manufacturing processes significantly increases the strength of parts, and also allows larger parts to be manufactured. In 2014, large-scale additive manufacturing of fiber-reinforced polymers was pioneered, and has generated significant attention from both academia and industry. Commercial machines that incorporate high throughput extruders on gantry systems are now available. New applications that require high temperature polymers with low coefficients of thermal expansion and high stiffness are being targeted, for example tooling used in the manufacturing of composite components. The state of the art of this new paradigm in additive manufacturing as well as the target applications will be discussed in detail. Many new challenges arise as AM scales and reinforced polymers are incorporated. One of the most notable challenges is the presence of large temperature gradients induced in parts during the manufacturing process, which lead to residual stresses and sometimes detrimental warpage. The current solution to this problem has been to print faster in order to lessen the temperature gradients, however very high extrusion speeds are likely not ideal for achieving optimal material properties. The high shear rates induce further damage to fibers, and entrapped air during the extrusion process may not escape, leading to high void content. Another significant challenge is overcoming the anisotropy in printed parts, which arises due to the stiff reinforcing fibers orienting primarily in the print direction. This complicates the use in demanding applications such as composite tooling, where high stiffness and low CTE are desirable in all directions. In 2014, a group of graduate students at Purdue University was formed to develop a better understanding of large-scale additive manufacturing processes incorporating high temperature and high fiber content polymer composites. The team spent more than one year designing, developing, and optimizing a lab-scale system that offers full control over all processing parameters, and has begun studying the relevant phenomena and developing models to predict the outcome of printing processes. This thesis will summarizes the system development process, printing process, composite tooling applications, as well as the mechanical, structural, and viscoelastic properties of printed materials, making it one of the most comprehensive documents written in large-scale additive manufacturing of fiber-reinforced polymers to date. The properties of 50 weight percent carbon fiber-reinforced PPS, a material of high interest in the field, will be presented in detail. The viscoelastic properties will be measured and discussed in the context of both stress relaxation during the printing process and the required performance metrics of composite tooling. A summary of the major results and recommendations can be found in chapter 7.

  16. STRUCTURAL THERMODYNAMIC ANALYSIS OF VAPOR COMPRESSION REFRIGERATION MACHINE

    OpenAIRE

    Д. Х. ХАРЛАМПИДИ; Тарасова, В. А.

    2014-01-01

    Reported about a method for conducting a structural analysis of the thermodynamic refrigerating machine on the basis of separation exergy of destruction on the external and internal independent parts, as well as removable and its components are inevitable. The methodology has allowed complex take into account the influence on the efficiency of the refrigerating machine thermal-hydraulic losses and estimates the components of the exergy destruction in the basic elements. The analysis of charac...

  17. Open-cycle centrifugal vapor-compression heat pump

    Science.gov (United States)

    Burgmeier, L. R.; Horner, J. E.

    1987-11-01

    The objectives of the program were: (1) to develop an open cycle, high lift, centrifugal steam compressor system that can be efficiently retrofitted to existing multi-effect and high temperature differential evaporators while maintaining the cost benefits of a single stage centrifugal compressor, and (2) to demonstrate the energy saving cost benefits of driving the compressor with a natural gas fueled gas turbine engine. The turbine exhaust was to be used for final drying of the product that was evaporated. The installation of the system is described along with the test activities through May 1987.

  18. Open cycle vapor compression heat pump. Annual report for 1979

    Energy Technology Data Exchange (ETDEWEB)

    Sakhuja, R.; Becker, F.E.

    1980-07-01

    A compressor test facility was built incorporating a screw compressor modified for steam service. The compressor was tested over a wide range of operating conditions with experimental results showing excellent agreement with predicted performance. The compressor operation with wet steam and water injection was completely satisfactory, demonstrating its suitability for use in a steam heat pump system.

  19. Evaluation of vapor compression cycles using nonazeotropic refrigerant mixtures

    Science.gov (United States)

    Merriam, Richard L.

    A comprehensive investigation is carried out, on a systematic and consistent basis, to explore a range of advanced heat pump cycle concepts using nonazeotropic refrigerants for COP enhancement and capacity modulation along with the trade-offs associated with refrigerant mixture selection. The objectives of the study were to: identify candidate nonazeotropic mixtures and advanced heat pump cycle concepts with emphasis on their potential for single-speed capacity modulation with mixture composition control; assess the effect of conjunction with nonazeotropic mixture cycles; evaluate the cycles analytically and recommend the most promising cycles and mixtures for further development; and provide recommendations relating to the needs for additional refrigerant property data, experimental studies of basic heat transfer phenomena with mixed refrigerants, development of system components, and/or more detailed modeling of specific components.

  20. Open-cycle vapor compression heat pump. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Becker, F.E.; Ruggles, A.E.

    1981-01-01

    A prototype gas-fired steam heat pump has been developed. The system utilizes a dry screw compressor driven by a 500-hp natural gas industrial engine. The system can recompress 10,000 lb/hr of clean steam over a 3 to 1 pressure ratio. The fuel consumption of this system is approximately 50 percent that of a direct-fired boiler. A similar size system capable of operating with contaminated steam is also being developed.

  1. Open-cycle vapor compression heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Becker, F.E.

    1983-06-01

    Waste energy in the form of low pressure waste steam and low grade waste heat can be efficiently recovered and upgraded to high pressure steam by means of an open-cycle steam heat pump system. Thermo Electron has developed a steam heat pump system. A description of the system highlights the rotary screw compressor, the gas engine prime mover, the speed increaser, and the control system. The amount of energy saved by the system is dependent on the performance of the prime mover as well as the compressor. Energy savings of 40 to 70 percent are predicted. A demonstration system was installed at Monsanto in Indian Orchard, Massachusetts. Energy savings of over 63% compared to current steam generation efficiency is expected.

  2. AMTEC vapor-vapor series connected cells

    Science.gov (United States)

    Underwood, Mark L.; Williams, Roger M.; Ryan, Margaret A.; Nakamura, Barbara J.; Oconnor, Dennis E.

    1995-08-01

    An alkali metal thermoelectric converter (AMTEC) having a plurality of cells structurally connected in series to form a septum dividing a plenum into two chambers, and electrically connected in series, is provided with porous metal anodes and porous metal cathodes in the cells. The cells may be planar or annular, and in either case a metal alkali vapor at a high temperature is provided to the plenum through one chamber on one side of the wall and returned to a vapor boiler after condensation at a chamber on the other side of the wall in the plenum. If the cells are annular, a heating core may be placed along the axis of the stacked cells. This arrangement of series-connected cells allows efficient generation of power at high voltage and low current.

  3. Gasoline Vapor Recovery

    Science.gov (United States)

    1979-01-01

    Gasoline is volatile and some of it evaporates during storage, giving off hydrocarbon vapor. Formerly, the vapor was vented into the atmosphere but anti-pollution regulations have precluded that practice in many localities, so oil companies and storage terminals are installing systems to recover hydrocarbon vapor. Recovery provides an energy conservation bonus in that most of the vapor can be reconverted to gasoline. Two such recovery systems are shown in the accompanying photographs (mid-photo at right and in the foreground below). They are actually two models of the same system, although.configured differently because they are customized to users' needs. They were developed and are being manufactured by Edwards Engineering Corporation, Pompton Plains, New Jersey. NASA technological information proved useful in development of the equipment.

  4. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  5. Vapor Control Layer Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-09-08

    This information sheet describes the level of vapor control required on the interior side of framed walls with typical fibrous cavity insulation (fibreglass, rockwool, or cellulose, based on DOE climate zone of construction.

  6. Focus on Compression Stockings

    Science.gov (United States)

    ... the stocking every other day with a mild soap. Do not use Woolite™ detergent. Use warm water ... compression clothing will lose its elasticity and its effectiveness. Compression stockings last for about 4-6 months ...

  7. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix

    2014-06-22

    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  8. Microbunching and RF Compression

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-05-23

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  9. Vapor pressures and enthalpies of vaporization of azides

    Energy Technology Data Exchange (ETDEWEB)

    Verevkin, Sergey P., E-mail: sergey.verevkin@uni-rostock.de [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Emel' yanenko, Vladimir N. [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Algarra, Manuel [Centro de Geologia do Porto, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Manuel Lopez-Romero, J. [Department of Organic Chemistry, University of Malaga. Campus de Teatinos s/n, 29071 Malaga (Spain); Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G. [Centro de Investigacao em Quimica (CIQ-UP), Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2011-11-15

    Highlights: > We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. > We examined consistency of new and available in the literature data. > Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization {Delta}{sub l}{sup g}H{sub m} of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  10. Hyperspectral data compression

    CERN Document Server

    Motta, Giovanni; Storer, James A

    2006-01-01

    Provides a survey of results in the field of compression of remote sensed 3D data, with a particular interest in hyperspectral imagery. This work covers topics such as compression architecture, lossless compression, lossy techniques, and more. It also describes a lossless algorithm based on vector quantization.

  11. Compressed gas manifold

    Science.gov (United States)

    Hildebrand, Richard J.; Wozniak, John J.

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  12. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter

    2008-01-01

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  13. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Rune Hansen, Esben; Srinivasa Rao, S.; Tiedemann, Peter

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  14. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter

    2008-01-01

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  15. Vapor concentration monitor

    Science.gov (United States)

    Bayly, John G.; Booth, Ronald J.

    1977-01-01

    An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

  16. Passive Vaporizing Heat Sink

    Science.gov (United States)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  17. Lossless Medical Image Compression

    Directory of Open Access Journals (Sweden)

    Nagashree G

    2014-06-01

    Full Text Available Image compression has become an important process in today‟s world of information exchange. Image compression helps in effective utilization of high speed network resources. Medical Image Compression is very important in the present world for efficient archiving and transmission of images. In this paper two different approaches for lossless image compression is proposed. One uses the combination of 2D-DWT & FELICS algorithm for lossy to lossless Image Compression and another uses combination of prediction algorithm and Integer wavelet Transform (IWT. To show the effectiveness of the methodology used, different image quality parameters are measured and shown the comparison of both the approaches. We observed the increased compression ratio and higher PSNR values.

  18. Celiac Artery Compression Syndrome

    Directory of Open Access Journals (Sweden)

    Mohammed Muqeetadnan

    2013-01-01

    Full Text Available Celiac artery compression syndrome is a rare disorder characterized by episodic abdominal pain and weight loss. It is the result of external compression of celiac artery by the median arcuate ligament. We present a case of celiac artery compression syndrome in a 57-year-old male with severe postprandial abdominal pain and 30-pound weight loss. The patient eventually responded well to surgical division of the median arcuate ligament by laparoscopy.

  19. Compressed sensing & sparse filtering

    CERN Document Server

    Carmi, Avishy Y; Godsill, Simon J

    2013-01-01

    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  20. Wavelet image compression

    CERN Document Server

    Pearlman, William A

    2013-01-01

    This book explains the stages necessary to create a wavelet compression system for images and describes state-of-the-art systems used in image compression standards and current research. It starts with a high level discussion of the properties of the wavelet transform, especially the decomposition into multi-resolution subbands. It continues with an exposition of the null-zone, uniform quantization used in most subband coding systems and the optimal allocation of bitrate to the different subbands. Then the image compression systems of the FBI Fingerprint Compression Standard and the JPEG2000 S

  1. Stiffness of compression devices

    Directory of Open Access Journals (Sweden)

    Giovanni Mosti

    2013-03-01

    Full Text Available This issue of Veins and Lymphatics collects papers coming from the International Compression Club (ICC Meeting on Stiffness of Compression Devices, which took place in Vienna on May 2012. Several studies have demonstrated that the stiffness of compression products plays a major role for their hemodynamic efficacy. According to the European Committee for Standardization (CEN, stiffness is defined as the pressure increase produced by medical compression hosiery (MCH per 1 cm of increase in leg circumference.1 In other words stiffness could be defined as the ability of the bandage/stockings to oppose the muscle expansion during contraction.

  2. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  3. Coabsorbent and thermal recovery compression heat pumping technologies

    CERN Document Server

    Staicovici, Mihail-Dan

    2014-01-01

    This book introduces two of the most exciting heat pumping technologies, the coabsorbent and the thermal recovery (mechanical vapor) compression, characterized by a high potential in primary energy savings and environmental protection. New cycles with potential applications of nontruncated, truncated, hybrid truncated, and multi-effect coabsorbent types are introduced in this work.   Thermal-to-work recovery compression (TWRC) is the first of two particular methods explored here, including how superheat is converted into work, which diminishes the compressor work input. In the second method, thermal-to-thermal recovery compression (TTRC), the superheat is converted into useful cooling and/or heating, and added to the cycle output effect via the coabsorbent technology. These and other methods of discharge gas superheat recovery are analyzed for single-, two-, three-, and multi-stage compression cooling and heating, ammonia and ammonia-water cycles, and the effectiveness results are given.  The author presen...

  4. Compression Ratio Adjuster

    Science.gov (United States)

    Akkerman, J. W.

    1982-01-01

    New mechanism alters compression ratio of internal-combustion engine according to load so that engine operates at top fuel efficiency. Ordinary gasoline, diesel and gas engines with their fixed compression ratios are inefficient at partial load and at low-speed full load. Mechanism ensures engines operate as efficiently under these conditions as they do at highload and high speed.

  5. Spectral Animation Compression

    Institute of Scientific and Technical Information of China (English)

    Chao Wang; Yang Liu; Xiaohu Guo; Zichun Zhong; Binh Le; Zhigang Deng

    2015-01-01

    This paper presents a spectral approach to compress dynamic animation consisting of a sequence of homeomor-phic manifold meshes. Our new approach directly compresses the field of deformation gradient defined on the surface mesh, by decomposing it into rigid-body motion (rotation) and non-rigid-body deformation (stretching) through polar decompo-sition. It is known that the rotation group has the algebraic topology of 3D ring, which is different from other operations like stretching. Thus we compress these two groups separately, by using Manifold Harmonics Transform to drop out their high-frequency details. Our experimental result shows that the proposed method achieves a good balance between the reconstruction quality and the compression ratio. We compare our results quantitatively with other existing approaches on animation compression, using standard measurement criteria.

  6. Isentropic Compression of Multicomponent Mixtures of Fuels and Inert Gases

    Science.gov (United States)

    Barragan, Michelle; Julien, Howard L.; Woods, Stephen S.; Wilson, D. Bruce; Saulsberry, Regor L.

    2000-01-01

    In selected aerospace applications of the fuels hydrazine and monomethythydrazine, there occur conditions which can result in the isentropic compression of a multicomponent mixture of fuel and inert gas. One such example is when a driver gas such as helium comes out of solution and mixes with the fuel vapor, which is being compressed. A second example is when product gas from an energetic device mixes with the fuel vapor which is being compressed. Thermodynamic analysis has shown that under isentropic compression, the fuels hydrazine and monomethylhydrazine must be treated as real fluids using appropriate equations of state. The appropriate equations of state are the Peng-Robinson equation of state for hydrazine and the Redlich-Kwong-Soave equation of state for monomethylhydrazine. The addition of an inert gas of variable quantity and input temperature and pressure to the fuel compounds the problem for safety design or analysis. This work provides the appropriate thermodynamic analysis of isentropic compression of the two examples cited. In addition to an entropy balance describing the change of state, an enthalpy balance is required. The presence of multicomponents in the system requires that appropriate mixing rules are identified and applied to the analysis. This analysis is not currently available.

  7. Vascular compression syndromes.

    Science.gov (United States)

    Czihal, Michael; Banafsche, Ramin; Hoffmann, Ulrich; Koeppel, Thomas

    2015-11-01

    Dealing with vascular compression syndromes is one of the most challenging tasks in Vascular Medicine practice. This heterogeneous group of disorders is characterised by external compression of primarily healthy arteries and/or veins as well as accompanying nerval structures, carrying the risk of subsequent structural vessel wall and nerve damage. Vascular compression syndromes may severely impair health-related quality of life in affected individuals who are typically young and otherwise healthy. The diagnostic approach has not been standardised for any of the vascular compression syndromes. Moreover, some degree of positional external compression of blood vessels such as the subclavian and popliteal vessels or the celiac trunk can be found in a significant proportion of healthy individuals. This implies important difficulties in differentiating physiological from pathological findings of clinical examination and diagnostic imaging with provocative manoeuvres. The level of evidence on which treatment decisions regarding surgical decompression with or without revascularisation can be relied on is generally poor, mostly coming from retrospective single centre studies. Proper patient selection is critical in order to avoid overtreatment in patients without a clear association between vascular compression and clinical symptoms. With a focus on the thoracic outlet-syndrome, the median arcuate ligament syndrome and the popliteal entrapment syndrome, the present article gives a selective literature review on compression syndromes from an interdisciplinary vascular point of view.

  8. Critical Data Compression

    CERN Document Server

    Scoville, John

    2011-01-01

    A new approach to data compression is developed and applied to multimedia content. This method separates messages into components suitable for both lossless coding and 'lossy' or statistical coding techniques, compressing complex objects by separately encoding signals and noise. This is demonstrated by compressing the most significant bits of data exactly, since they are typically redundant and compressible, and either fitting a maximally likely noise function to the residual bits or compressing them using lossy methods. Upon decompression, the significant bits are decoded and added to a noise function, whether sampled from a noise model or decompressed from a lossy code. This results in compressed data similar to the original. For many test images, a two-part image code using JPEG2000 for lossy coding and PAQ8l for lossless coding produces less mean-squared error than an equal length of JPEG2000. Computer-generated images typically compress better using this method than through direct lossy coding, as do man...

  9. Prediction by Compression

    CERN Document Server

    Ratsaby, Joel

    2010-01-01

    It is well known that text compression can be achieved by predicting the next symbol in the stream of text data based on the history seen up to the current symbol. The better the prediction the more skewed the conditional probability distribution of the next symbol and the shorter the codeword that needs to be assigned to represent this next symbol. What about the opposite direction ? suppose we have a black box that can compress text stream. Can it be used to predict the next symbol in the stream ? We introduce a criterion based on the length of the compressed data and use it to predict the next symbol. We examine empirically the prediction error rate and its dependency on some compression parameters.

  10. LZW Data Compression

    Directory of Open Access Journals (Sweden)

    Dheemanth H N

    2016-07-01

    Full Text Available Lempel–Ziv–Welch (LZW is a universal lossless data compression algorithm created by Abraham Lempel, Jacob Ziv, and Terry Welch. LZW compression is one of the Adaptive Dictionary techniques. The dictionary is created while the data are being encoded. So encoding can be done on the fly. The dictionary need not be transmitted. Dictionary can be built up at receiving end on the fly. If the dictionary overflows then we have to reinitialize the dictionary and add a bit to each one of the code words. Choosing a large dictionary size avoids overflow, but spoils compressions. A codebook or dictionary containing the source symbols is constructed. For 8-bit monochrome images, the first 256 words of the dictionary are assigned to the gray levels 0-255. Remaining part of the dictionary is filled with sequences of the gray levels.LZW compression works best when applied on monochrome images and text files that contain repetitive text/patterns.

  11. Shocklets in compressible flows

    Institute of Scientific and Technical Information of China (English)

    袁湘江; 男俊武; 沈清; 李筠

    2013-01-01

    The mechanism of shocklets is studied theoretically and numerically for the stationary fluid, uniform compressible flow, and boundary layer flow. The conditions that trigger shock waves for sound wave, weak discontinuity, and Tollmien-Schlichting (T-S) wave in compressible flows are investigated. The relations between the three types of waves and shocklets are further analyzed and discussed. Different stages of the shocklet formation process are simulated. The results show that the three waves in compressible flows will transfer to shocklets only when the initial disturbance amplitudes are greater than the certain threshold values. In compressible boundary layers, the shocklets evolved from T-S wave exist only in a finite region near the surface instead of the whole wavefront.

  12. Reference Based Genome Compression

    CERN Document Server

    Chern, Bobbie; Manolakos, Alexandros; No, Albert; Venkat, Kartik; Weissman, Tsachy

    2012-01-01

    DNA sequencing technology has advanced to a point where storage is becoming the central bottleneck in the acquisition and mining of more data. Large amounts of data are vital for genomics research, and generic compression tools, while viable, cannot offer the same savings as approaches tuned to inherent biological properties. We propose an algorithm to compress a target genome given a known reference genome. The proposed algorithm first generates a mapping from the reference to the target genome, and then compresses this mapping with an entropy coder. As an illustration of the performance: applying our algorithm to James Watson's genome with hg18 as a reference, we are able to reduce the 2991 megabyte (MB) genome down to 6.99 MB, while Gzip compresses it to 834.8 MB.

  13. Deep Blind Compressed Sensing

    OpenAIRE

    Singh, Shikha; Singhal, Vanika; Majumdar, Angshul

    2016-01-01

    This work addresses the problem of extracting deeply learned features directly from compressive measurements. There has been no work in this area. Existing deep learning tools only give good results when applied on the full signal, that too usually after preprocessing. These techniques require the signal to be reconstructed first. In this work we show that by learning directly from the compressed domain, considerably better results can be obtained. This work extends the recently proposed fram...

  14. Reference Based Genome Compression

    OpenAIRE

    Chern, Bobbie; Ochoa, Idoia; Manolakos, Alexandros; No, Albert; Venkat, Kartik; Weissman, Tsachy

    2012-01-01

    DNA sequencing technology has advanced to a point where storage is becoming the central bottleneck in the acquisition and mining of more data. Large amounts of data are vital for genomics research, and generic compression tools, while viable, cannot offer the same savings as approaches tuned to inherent biological properties. We propose an algorithm to compress a target genome given a known reference genome. The proposed algorithm first generates a mapping from the reference to the target gen...

  15. Alternative Compression Garments

    Science.gov (United States)

    Stenger, M. B.; Lee, S. M. C.; Ribeiro, L. C.; Brown, A. K.; Westby, C. M.; Platts, S. H.

    2011-01-01

    Orthostatic intolerance after spaceflight is still an issue for astronauts as no in-flight countermeasure has been 100% effective. Future anti-gravity suits (AGS) may be similar to the Shuttle era inflatable AGS or may be a mechanical compression device like the Russian Kentavr. We have evaluated the above garments as well as elastic, gradient compression garments of varying magnitude and determined that breast-high elastic compression garments may be a suitable replacement to the current AGS. This new garment should be more comfortable than the AGS, easy to don and doff, and as effective a countermeasure to orthostatic intolerance. Furthermore, these new compression garments could be worn for several days after space flight as necessary if symptoms persisted. We conducted two studies to evaluate elastic, gradient compression garments. The purpose of these studies was to evaluate the comfort and efficacy of an alternative compression garment (ACG) immediately after actual space flight and 6 degree head-down tilt bed rest as a model of space flight, and to determine if they would impact recovery if worn for up to three days after bed rest.

  16. Solvents and vapor intrusion pathways.

    Science.gov (United States)

    Phillips, Scott D; Krieger, Gary R; Palmer, Robert B; Waksman, Javier C

    2004-08-01

    Vapor intrusion must be recognized appropriately as a separate pathway of contamination. Although many issues resemble those of other forms of contamination (particularly its entryway, which is similar to that of radon seepage), vapor intrusion stands apart as a unique risk requiring case-specific action. This article addresses these issues and the current understanding of the most appropriate and successful remedial actions.

  17. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  18. Vapor phase heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Hedstrom, J.C.; Neeper, D.A.

    1985-09-01

    This report describes progress in theoretical and experimental investigations of various forms of a vapor transport system for solar space heating, which could also be applied to service water heating. Refrigerant is evaporated in a solar collector, which may be located on the external wall or roof of a building. The vapor is condensed in a passively discharged thermal storage unit located within the building. The condensed liquid can be returned to the collector either by a motor-driven pump or by a completely passive self-pumping mechanism in which the vapor pressure lifts the liquid from the condenser to the collector. The theoretical investigation analyzes this self-pumping scheme. Experiments in solar test cells compare the operation of both passive and active forms of the vapor system with the operation of a passive water wall. The vapor system operates as expected, with potential advantages over other passive systems in design flexibility and energy yield.

  19. 33 CFR 154.828 - Vapor recovery and vapor destruction units.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vapor recovery and vapor... SECURITY (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Vapor Control Systems § 154.828 Vapor recovery and vapor destruction units. (a) The inlet to a vapor recovery unit...

  20. Dynamic compression of synthetic diamond windows (final report for LDRD project 93531).

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Daniel H.,

    2008-09-01

    Diamond is an attractive dynamic compression window for many reasons: high elastic limit,large mechanical impedance, and broad transparency range. Natural diamonds, however, aretoo expensive to be used in destructive experiments. Chemical vapor deposition techniquesare now able to produce large single-crystal windows, opening up many potential dynamiccompression applications. This project studied the behavior of synthetic diamond undershock wave compression. The results suggest that synthetic diamond could be a usefulwindow in this field, though complete characterization proved elusive.3

  1. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  2. A Citizen's Guide to Vapor Intrusion Mitigation

    Science.gov (United States)

    This guide describes how vapor intrusion is the movement of chemical vapors from contaminated soil and groundwater into nearby buildings.Vapors primarily enter through openings in the building foundation or basement walls.

  3. A Lithium Vapor Box similarity experiment employing water vapor

    Science.gov (United States)

    Schwartz, Ja; Jagoe, C.; Goldston, Rj; Jaworski, Ma

    2016-10-01

    Handling high power loads and heat flux in the divertor is a major challenge for fusion power plants. A detached plasma will likely be required. However, hydrogenic and impurity puffing experiments show that detached operation leads easily to X-point MARFEs, impure plasmas, degradation in confinement, and lower helium pressure at the exhaust. The concept of the Lithium Vapor Box Divertor is to use local evaporation and strong differential pumping through condensation to localize the gas-phase material that absorbs the plasma heat flux, and so avoid those difficulties. In order to design such a box first the vapor without plasma must be simulated. The density of vapor required can be estimated using the SOL power, major radius, poloidal box length, and cooling energy per lithium atom. For an NSTX-U-sized machine, the Knudsen number Kn spans 0.01 to 1, the transitional flow regime. This regime cannot handled by fluid codes or collisionless Monte Carlo codes, but can be handled by Direct Simulation Monte Carlo (DSMC) codes. To validate a DSMC model, we plan to build a vapor box test stand employing more-convenient water vapor instead of lithium vapor as the working fluid. Transport of vapor between the chambers at -50C will be measured and compared to the model. This work supported by DOE Contract No. DE-AC02-09CH11466.

  4. Transverse Compression of Tendons.

    Science.gov (United States)

    Salisbury, S T Samuel; Buckley, C Paul; Zavatsky, Amy B

    2016-04-01

    A study was made of the deformation of tendons when compressed transverse to the fiber-aligned axis. Bovine digital extensor tendons were compression tested between flat rigid plates. The methods included: in situ image-based measurement of tendon cross-sectional shapes, after preconditioning but immediately prior to testing; multiple constant-load creep/recovery tests applied to each tendon at increasing loads; and measurements of the resulting tendon displacements in both transverse directions. In these tests, friction resisted axial stretch of the tendon during compression, giving approximately plane-strain conditions. This, together with the assumption of a form of anisotropic hyperelastic constitutive model proposed previously for tendon, justified modeling the isochronal response of tendon as that of an isotropic, slightly compressible, neo-Hookean solid. Inverse analysis, using finite-element (FE) simulations of the experiments and 10 s isochronal creep displacement data, gave values for Young's modulus and Poisson's ratio of this solid of 0.31 MPa and 0.49, respectively, for an idealized tendon shape and averaged data for all the tendons and E = 0.14 and 0.10 MPa for two specific tendons using their actual measured geometry. The compression load versus displacement curves, as measured and as simulated, showed varying degrees of stiffening with increasing load. This can be attributed mostly to geometrical changes in tendon cross section under load, varying according to the initial 3D shape of the tendon.

  5. SYMBOLIC VERSOR COMPRESSION ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Li Hongbo

    2009-01-01

    In an inner-product space, an invertible vector generates a reflection with re-spect to a hyperplane, and the Clifford product of several invertible vectors, called a versor in Clifford algebra, generates the composition of the corresponding reflections, which is an orthogonal transformation. Given a versor in a Clifford algebra, finding another sequence of invertible vectors of strictly shorter length but whose Clifford product still equals the input versor, is called versor compression. Geometrically, versor compression is equivalent to decomposing an orthogoual transformation into a shorter sequence of reflections. This paper proposes a simple algorithm of compressing versors of symbolic form in Clifford algebra. The algorithm is based on computing the intersections of lines with planes in the corresponding Grassmann-Cayley algebra, and is complete in the case of Euclidean or Minkowski inner-product space.

  6. Image compression for dermatology

    Science.gov (United States)

    Cookson, John P.; Sneiderman, Charles; Colaianni, Joseph; Hood, Antoinette F.

    1990-07-01

    Color 35mm photographic slides are commonly used in dermatology for education, and patient records. An electronic storage and retrieval system for digitized slide images may offer some advantages such as preservation and random access. We have integrated a system based on a personal computer (PC) for digital imaging of 35mm slides that depict dermatologic conditions. Such systems require significant resources to accommodate the large image files involved. Methods to reduce storage requirements and access time through image compression are therefore of interest. This paper contains an evaluation of one such compression method that uses the Hadamard transform implemented on a PC-resident graphics processor. Image quality is assessed by determining the effect of compression on the performance of an image feature recognition task.

  7. Preliminary characterization of an expanding flow of siloxane vapor MDM

    Science.gov (United States)

    Spinelli, A.; Cozzi, F.; Cammi, G.; Zocca, M.; Gaetani, P.; Dossena, V.; Guardone, A.

    2017-03-01

    The early experimental results on the characterization of expanding flows of siloxane vapor MDM (C8H24O2Si3, octamethyltrisiloxane) are presented. The measurements were performed on the Test Rig for Organic VApors (TROVA) at the CREA Laboratory of Politecnico di Milano. The TROVA test-rig was built in order to investigate the non-ideal compressible-fluid behavior of typical expanding flows occurring within organic Rankine cycles (ORC) turbine passages. The test rig implements a batch Rankine cycle where a planar converging-diverging nozzle replaces the turbine and represents a test section. Investigations related to both fields of non-ideal compressible-fluid dynamics fundamentals and turbomachinery are allowed. The nozzle can be operated with different working fluids and operating conditions aiming at measuring independently the pressure, the temperature and the velocity field and thus providing data to verify the thermo-fluid dynamic models adopted to predict the behavior of these flows. The limiting values of pressure and temperature are 50 bar and 400 °C respectively. The early measurements are performed along the nozzle axis, where an isentropic process is expected to occur. In particular, the results reported here refer to the nozzle operated in adapted conditions using the siloxane vapor MDM as working fluid in thermodynamic regions where mild to medium non-ideal compressible-fluid effects are present. Both total temperature and total pressure of the nozzle are measured upstream of the test section, while static pressure are measured along the nozzle axis. Schlieren visualizations are also carried out in order to complement the pressure measurement with information about the 2D density gradient field. The Laser Doppler Velocimetry technique is planned to be used in the future for velocity measurements. The measured flow field has also been interpreted by resorting to the quasi-one-dimensional theory and two dimensional CFD viscous calculation. In both cases

  8. Compressive Shift Retrieval

    Science.gov (United States)

    Ohlsson, Henrik; Eldar, Yonina C.; Yang, Allen Y.; Sastry, S. Shankar

    2014-08-01

    The classical shift retrieval problem considers two signals in vector form that are related by a shift. The problem is of great importance in many applications and is typically solved by maximizing the cross-correlation between the two signals. Inspired by compressive sensing, in this paper, we seek to estimate the shift directly from compressed signals. We show that under certain conditions, the shift can be recovered using fewer samples and less computation compared to the classical setup. Of particular interest is shift estimation from Fourier coefficients. We show that under rather mild conditions only one Fourier coefficient suffices to recover the true shift.

  9. Graph Compression by BFS

    Directory of Open Access Journals (Sweden)

    Alberto Apostolico

    2009-08-01

    Full Text Available The Web Graph is a large-scale graph that does not fit in main memory, so that lossless compression methods have been proposed for it. This paper introduces a compression scheme that combines efficient storage with fast retrieval for the information in a node. The scheme exploits the properties of the Web Graph without assuming an ordering of the URLs, so that it may be applied to more general graphs. Tests on some datasets of use achieve space savings of about 10% over existing methods.

  10. Image data compression investigation

    Science.gov (United States)

    Myrie, Carlos

    1989-01-01

    NASA continuous communications systems growth has increased the demand for image transmission and storage. Research and analysis was conducted on various lossy and lossless advanced data compression techniques or approaches used to improve the efficiency of transmission and storage of high volume stellite image data such as pulse code modulation (PCM), differential PCM (DPCM), transform coding, hybrid coding, interframe coding, and adaptive technique. In this presentation, the fundamentals of image data compression utilizing two techniques which are pulse code modulation (PCM) and differential PCM (DPCM) are presented along with an application utilizing these two coding techniques.

  11. Image compression in local helioseismology

    CERN Document Server

    Löptien, Björn; Gizon, Laurent; Schou, Jesper

    2014-01-01

    Context. Several upcoming helioseismology space missions are very limited in telemetry and will have to perform extensive data compression. This requires the development of new methods of data compression. Aims. We give an overview of the influence of lossy data compression on local helioseismology. We investigate the effects of several lossy compression methods (quantization, JPEG compression, and smoothing and subsampling) on power spectra and time-distance measurements of supergranulation flows at disk center. Methods. We applied different compression methods to tracked and remapped Dopplergrams obtained by the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory. We determined the signal-to-noise ratio of the travel times computed from the compressed data as a function of the compression efficiency. Results. The basic helioseismic measurements that we consider are very robust to lossy data compression. Even if only the sign of the velocity is used, time-distance helioseismology is still...

  12. Multiwavelength Strontium Vapor Lasers

    Science.gov (United States)

    Soldatov, A. N.; Yudin, N. A.

    2016-08-01

    Based on an analysis of experimental and theoretical works, modern notion on conditions of forming of population density inversion on self-terminating IR transitions of alkali-earth metals is given. It is demonstrated that there is a significant difference in the inversion formation in lasers on self-terminating transitions in the visible and near-IR ranges and lasers on self-terminating transitions of alkali-earth metals lasing IR lines in the mid-IR range. It is shown that in the discharge circuit of lasers on self-terminating metal atom transitions (LSMT) there are processes strengthening the influence of the known mechanism limiting the frequency and energy characteristics (FEC) of radiation caused by the presence of prepulse electron concentration. The mechanism of influence of these processes on FEC of the LSMT and technical methods of their neutralization are considered. The possibility of obtaining average lasing power of ~200 W from one liter volume of the active medium of the strontium vapor laser is demonstrated under conditions of neutralization of these processes.

  13. Archimedes Mass Filter Vaporizer

    Science.gov (United States)

    Putvinski, S.; Agnew, A. F.; Cluggish, B. P.; Ohkawa, T.; Sevier, L.; Umstadter, K. R.; Dresvin, S. V.; Kuteev, B. V.; Feygenson, O. N.; Ivanov, D. V.; Zverev, S. G.; Miroshnikov, I. V.; Egorov, S. M.; Kiesewetter, D. V.; Maliugin, V. I.

    2001-10-01

    Archimedes Technology Group, Inc., is developing a plasma mass separator called the Archimedes Filter that separates waste oxide mixtures ion by ion into two mass groups: light and heavy. Since high-level waste at Hanford has 99.9its radioactivity associated with heavy elements, the Archimedes Filter can effectively decontaminate over three-quarters of that waste. The Filter process involves some preprocessing followed by volatilization and separation by the magnetic and electric fields of the main plasma. This presentation describes the approach to volatilization of the waste oxy-hydroxide mixture by means of a very high heat flux (q > 10 MW/m2). Such a high heat flux is required to ensure congruent evaporation of the complex oxy-hydroxide mixture and is achieved by injection of small droplets of molten waste into an inductively coupled plasma (ICP) torch. This presentation further addresses different issues related to evaporation of the waste including modeling of droplet evaporation, estimates of parameters of plasma torch, and 2D modeling of the plasma. The experimental test bed for oxide vaporization and results of the initial experiments on oxide evaporation in 60 kW ICP torch will also be described.

  14. Vapor Intrusion Facilities - South Bay

    Data.gov (United States)

    U.S. Environmental Protection Agency — POINT locations for the South Bay Vapor Instrusion Sites were derived from the NPL data for Region 9. One site, Philips Semiconductor, was extracted from the...

  15. Understanding Latent Heat of Vaporization.

    Science.gov (United States)

    Linz, Ed

    1995-01-01

    Presents a simple exercise for students to do in the kitchen at home to determine the latent heat of vaporization of water using typical household materials. Designed to stress understanding by sacrificing precision for simplicity. (JRH)

  16. Modeling vapor dominated geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Marconcini, R.; McEdwards, D.; Neri, G.; Ruffilli, C.; Schroeder, R.; Weres, O.; Witherspoon, P.

    1977-09-12

    The unresolved questions with regard to vapor-dominated reservoir production and longevity are reviewed. The simulation of reservoir behavior and the LBL computer program are discussed. The geology of Serrazzano geothermal field and its reservoir simulation are described. (MHR)

  17. Fingerprints in Compressed Strings

    DEFF Research Database (Denmark)

    Bille, Philip; Cording, Patrick Hagge; Gørtz, Inge Li

    2013-01-01

    The Karp-Rabin fingerprint of a string is a type of hash value that due to its strong properties has been used in many string algorithms. In this paper we show how to construct a data structure for a string S of size N compressed by a context-free grammar of size n that answers fingerprint queries...

  18. Multiple snapshot compressive beamforming

    DEFF Research Database (Denmark)

    Gerstoft, Peter; Xenaki, Angeliki; Mecklenbrauker, Christoph F.

    2015-01-01

    For sound fields observed on an array, compressive sensing (CS) reconstructs the multiple source signals at unknown directions-of-arrival (DOAs) using a sparsity constraint. The DOA estimation is posed as an underdetermined problem expressing the field at each sensor as a phase-lagged superposition...

  19. Compressive CFAR radar detection

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Rossum, W.L. van; Maleki, A.; Baraniuk, R.

    2012-01-01

    In this paper we develop the first Compressive Sensing (CS) adaptive radar detector. We propose three novel architectures and demonstrate how a classical Constant False Alarm Rate (CFAR) detector can be combined with ℓ1-norm minimization. Using asymptotic arguments and the Complex Approximate Messag

  20. Compressive CFAR Radar Processing

    NARCIS (Netherlands)

    Anitori, L.; Rossum, W.L. van; Otten, M.P.G.; Maleki, A.; Baraniuk, R.

    2013-01-01

    In this paper we investigate the performance of a combined Compressive Sensing (CS) Constant False Alarm Rate (CFAR) radar processor under different interference scenarios using both the Cell Averaging (CA) and Order Statistic (OS) CFAR detectors. Using the properties of the Complex Approximate Mess

  1. Beamforming Using Compressive Sensing

    Science.gov (United States)

    2011-10-01

    dB to align the peak at 7.3o. Comparing peaks to val- leys , compressive sensing provides a greater main to interference (and noise) ratio...elements. Acknowledgments This research was supported by the Office of Naval Research. The authors would like to especially thank of Roger Gauss and Joseph

  2. Dispensing fuel with aspiration of condensed vapors

    Energy Technology Data Exchange (ETDEWEB)

    Butkovich, M.S.; Strock, D.J.

    1993-08-10

    A vapor recovery process is described, comprising the steps of: fueling a motor vehicle with gasoline by discharging gasoline into a fill opening or filler pipe of a tank of said vehicle through a fuel outlet conduit of a nozzle; emitting gasoline vapors from said tank during said fueling; substantially collecting said vapors during said fueling with a vapor return conduit of said nozzle and passing said vapors through said vapor return conduit in counter current flow relationship to said discharging gasoline in said fuel conduit; conveying said vapors from said vapor return conduit to a vapor return hose; at least some of said vapors condensing to form condensate in said vapor return hose; substantially removing said condensate from said vapor return hose during said fueling with a condensate pickup tube from said nozzle by passing said condensate through said condensate pickup tube in counter current flow relationship to said conveying vapors in said vapor return hose; sensing the presence of gasoline with a liquid sensing tube in said vapor return conduit of said nozzle between inner and outer spouts of said nozzle to detect when said tank of said vehicle is filled with said fuel conduit being within the inner spout of said nozzle; and automatically shutting off said fueling and condensate removing when said liquid sensing tube detects when said tank of said vehicle is filled and fuel enters said vapor return conduit.

  3. Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion

    Science.gov (United States)

    Nigmatulin, Robert I.; Akhatov, Iskander Sh.; Topolnikov, Andrey S.; Bolotnova, Raisa Kh.; Vakhitova, Nailya K.; Lahey, Richard T.; Taleyarkhan, Rusi P.

    2005-10-01

    This paper provides the theoretical basis for energetic vapor bubble implosions induced by a standing acoustic wave. Its primary goal is to describe, explain, and demonstrate the plausibility of the experimental observations by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] of thermonuclear fusion for imploding cavitation bubbles in chilled deuterated acetone. A detailed description and analysis of these data, including a resolution of the criticisms that have been raised, together with some preliminary HYDRO code simulations, has been given by Nigmatulin et al. [Vestnik ANRB (Ufa, Russia) 4, 3 (2002); J. Power Energy 218-A, 345 (2004)] and Lahey et al. [Adv. Heat Transfer (to be published)]. In this paper a hydrodynamic shock (i.e., HYDRO) code model of the spherically symmetric motion for a vapor bubble in an acoustically forced liquid is presented. This model describes cavitation bubble cluster growth during the expansion period, followed by a violent implosion during the compression period of the acoustic cycle. There are two stages of the bubble dynamics process. The first, low Mach number stage, comprises almost all the time of the acoustic cycle. During this stage, the radial velocities are much less than the sound speeds in the vapor and liquid, the vapor pressure is very close to uniform, and the liquid is practically incompressible. This process is characterized by the inertia of the liquid, heat conduction, and the evaporation or condensation of the vapor. The second, very short, high Mach number stage is when the radial velocities are the same order, or higher, than the sound speeds in the vapor and liquid. In this stage high temperatures, pressures, and densities of the vapor and liquid take place. The model presented herein has realistic equations of state for the compressible liquid and vapor phases, and accounts for nonequilibrium evaporation/condensation kinetics at the liquid/vapor interface. There are interacting

  4. Randomness Testing of Compressed Data

    CERN Document Server

    Chang, Weiling; Yun, Xiaochun; Wang, Shupeng; Yu, Xiangzhan

    2010-01-01

    Random Number Generators play a critical role in a number of important applications. In practice, statistical testing is employed to gather evidence that a generator indeed produces numbers that appear to be random. In this paper, we reports on the studies that were conducted on the compressed data using 8 compression algorithms or compressors. The test results suggest that the output of compression algorithms or compressors has bad randomness, the compression algorithms or compressors are not suitable as random number generator. We also found that, for the same compression algorithm, there exists positive correlation relationship between compression ratio and randomness, increasing the compression ratio increases randomness of compressed data. As time permits, additional randomness testing efforts will be conducted.

  5. TEM Video Compressive Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Andrew J.; Kovarik, Libor; Abellan, Patricia; Yuan, Xin; Carin, Lawrence; Browning, Nigel D.

    2015-08-02

    One of the main limitations of imaging at high spatial and temporal resolution during in-situ TEM experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1ms, the cameras are expensive and must replace existing detectors. In this paper, we examine the use of coded aperture compressive sensing methods [1, 2, 3, 4] to increase the framerate of any camera with simple, low-cost hardware modifications. The coded aperture approach allows multiple sub-frames to be coded and integrated into a single camera frame during the acquisition process, and then extracted upon readout using statistical compressive sensing inversion. Our simulations show that it should be possible to increase the speed of any camera by at least an order of magnitude. Compressive Sensing (CS) combines sensing and compression in one operation, and thus provides an approach that could further improve the temporal resolution while correspondingly reducing the electron dose rate. Because the signal is measured in a compressive manner, fewer total measurements are required. When applied to TEM video capture, compressive imaging couled improve acquisition speed and reduce the electron dose rate. CS is a recent concept, and has come to the forefront due the seminal work of Candès [5]. Since the publication of Candès, there has been enormous growth in the application of CS and development of CS variants. For electron microscopy applications, the concept of CS has also been recently applied to electron tomography [6], and reduction of electron dose in scanning transmission electron microscopy (STEM) imaging [7]. To demonstrate the applicability of coded aperture CS video reconstruction for atomic level imaging, we simulate compressive sensing on observations of Pd nanoparticles and Ag nanoparticles during exposure to high temperatures and other environmental

  6. A Review of Vapor Intrusion Models

    OpenAIRE

    Yao, Yijun; Suuberg, Eric M.

    2013-01-01

    A complete vapor intrusion (VI) model, describing vapor entry of volatile organic chemicals (VOCs) into buildings located on contaminated sites, generally consists of two main parts-one describing vapor transport in the soil and the other its entry into the building. Modeling the soil vapor transport part involves either analytically or numerically solving the equations of vapor advection and diffusion in the subsurface. Contaminant biodegradation must often also be included in this simulatio...

  7. Recent advances in vapor intrusion site investigations.

    Science.gov (United States)

    McHugh, Thomas; Loll, Per; Eklund, Bart

    2017-02-22

    Our understanding of vapor intrusion has evolved rapidly since the discovery of the first high profile vapor intrusion sites in the late 1990s and early 2000s. Research efforts and field investigations have improved our understanding of vapor intrusion processes including the role of preferential pathways and natural barriers to vapor intrusion. This review paper addresses recent developments in the regulatory framework and conceptual model for vapor intrusion. In addition, a number of innovative investigation methods are discussed.

  8. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.;

    2015-01-01

    We introduce a new compression scheme for labeled trees based on top trees. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...

  9. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.

    2013-01-01

    We introduce a new compression scheme for labeled trees based on top trees [3]. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...

  10. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.

    2015-01-01

    We introduce a new compression scheme for labeled trees based on top trees. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...

  11. Reinterpreting Compression in Infinitary Rewriting

    NARCIS (Netherlands)

    Ketema, J.; Tiwari, Ashish

    2012-01-01

    Departing from a computational interpretation of compression in infinitary rewriting, we view compression as a degenerate case of standardisation. The change in perspective comes about via two observations: (a) no compression property can be recovered for non-left-linear systems and (b) some standar

  12. Lossless Compression of Broadcast Video

    DEFF Research Database (Denmark)

    Martins, Bo; Eriksen, N.; Faber, E.

    1998-01-01

    We investigate several techniques for lossless and near-lossless compression of broadcast video.The emphasis is placed on the emerging international standard for compression of continous-tone still images, JPEG-LS, due to its excellent compression performance and moderatecomplexity. Except for one...

  13. Building indifferentiable compression functions from the PGV compression functions

    DEFF Research Database (Denmark)

    Gauravaram, P.; Bagheri, Nasour; Knudsen, Lars Ramkilde

    2016-01-01

    Preneel, Govaerts and Vandewalle (PGV) analysed the security of single-block-length block cipher based compression functions assuming that the underlying block cipher has no weaknesses. They showed that 12 out of 64 possible compression functions are collision and (second) preimage resistant. Black...... cipher is ideal. We address the problem of building indifferentiable compression functions from the PGV compression functions. We consider a general form of 64 PGV compression functions and replace the linear feed-forward operation in this generic PGV compression function with an ideal block cipher...... independent of the one used in the generic PGV construction. This modified construction is called a generic modified PGV (MPGV). We analyse indifferentiability of the generic MPGV construction in the ideal cipher model and show that 12 out of 64 MPGV compression functions in this framework...

  14. Compressive Principal Component Pursuit

    CERN Document Server

    Wright, John; Min, Kerui; Ma, Yi

    2012-01-01

    We consider the problem of recovering a target matrix that is a superposition of low-rank and sparse components, from a small set of linear measurements. This problem arises in compressed sensing of structured high-dimensional signals such as videos and hyperspectral images, as well as in the analysis of transformation invariant low-rank recovery. We analyze the performance of the natural convex heuristic for solving this problem, under the assumption that measurements are chosen uniformly at random. We prove that this heuristic exactly recovers low-rank and sparse terms, provided the number of observations exceeds the number of intrinsic degrees of freedom of the component signals by a polylogarithmic factor. Our analysis introduces several ideas that may be of independent interest for the more general problem of compressed sensing and decomposing superpositions of multiple structured signals.

  15. On Network Functional Compression

    CERN Document Server

    Feizi, Soheil

    2010-01-01

    In this paper, we consider different aspects of the network functional compression problem where computation of a function (or, some functions) of sources located at certain nodes in a network is desired at receiver(s). The rate region of this problem has been considered in the literature under certain restrictive assumptions, particularly in terms of the network topology, the functions and the characteristics of the sources. In this paper, we present results that significantly relax these assumptions. Firstly, we consider this problem for an arbitrary tree network and asymptotically lossless computation. We show that, for depth one trees with correlated sources, or for general trees with independent sources, a modularized coding scheme based on graph colorings and Slepian-Wolf compression performs arbitrarily closely to rate lower bounds. For a general tree network with independent sources, optimal computation to be performed at intermediate nodes is derived. We introduce a necessary and sufficient condition...

  16. Hamming Compressed Sensing

    CERN Document Server

    Zhou, Tianyi

    2011-01-01

    Compressed sensing (CS) and 1-bit CS cannot directly recover quantized signals and require time consuming recovery. In this paper, we introduce \\textit{Hamming compressed sensing} (HCS) that directly recovers a k-bit quantized signal of dimensional $n$ from its 1-bit measurements via invoking $n$ times of Kullback-Leibler divergence based nearest neighbor search. Compared with CS and 1-bit CS, HCS allows the signal to be dense, takes considerably less (linear) recovery time and requires substantially less measurements ($\\mathcal O(\\log n)$). Moreover, HCS recovery can accelerate the subsequent 1-bit CS dequantizer. We study a quantized recovery error bound of HCS for general signals and "HCS+dequantizer" recovery error bound for sparse signals. Extensive numerical simulations verify the appealing accuracy, robustness, efficiency and consistency of HCS.

  17. Compressive Spectral Renormalization Method

    CERN Document Server

    Bayindir, Cihan

    2016-01-01

    In this paper a novel numerical scheme for finding the sparse self-localized states of a nonlinear system of equations with missing spectral data is introduced. As in the Petviashivili's and the spectral renormalization method, the governing equation is transformed into Fourier domain, but the iterations are performed for far fewer number of spectral components (M) than classical versions of the these methods with higher number of spectral components (N). After the converge criteria is achieved for M components, N component signal is reconstructed from M components by using the l1 minimization technique of the compressive sampling. This method can be named as compressive spectral renormalization (CSRM) method. The main advantage of the CSRM is that, it is capable of finding the sparse self-localized states of the evolution equation(s) with many spectral data missing.

  18. Speech Compression and Synthesis

    Science.gov (United States)

    1980-10-01

    phonological rules combined with diphone improved the algorithms used by the phonetic synthesis prog?Im for gain normalization and time... phonetic vocoder, spectral template. i0^Th^TreprtTörc"u’d1sTuV^ork for the past two years on speech compression’and synthesis. Since there was an...from Block 19: speech recognition, pnoneme recogmtion. initial design for a phonetic recognition program. We also recorded ana partially labeled a

  19. Stage 2 vapor recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Koch, W.H.; Strock, D.J.; Butkovich, M.S.; Hartman, H.B.

    1993-05-25

    A vapor recovery system is described, comprising: a set of elongated underground storage tanks, each storage tank containing a different grade of gasoline; vent pipes; a series of dispensing units; fuel flow lines; vapor return lines; an array of fuel pumps for pumping gasoline from said storage tanks to said dispenser units; an elongated condensate liquid pickup tube; an elongated inner spout providing a fuel conduit and having an outer tip defining a fuel outlet for discharging gasoline into a filler pipe of a motor vehicle tank during fueling; an outer spout assembly; extending into and engaging said spout-receiving socket, said outer spout assembly comprising an outer spout providing a vapor return conduit and defining apertures providing a vapor inlet spaced from said fuel outlet for withdrawing, removing, and returning a substantial amount of gasoline vapors emitted during said fueling; an elongated liquid sensing tube; a manually operable level; a flow control valve assembly; an automatic shutoff valve assembly; and a venturi sleeve assembly positioned in said venturi sleeve receiving chamber.

  20. The Lithium Vapor Box Divertor

    Science.gov (United States)

    Goldston, Robert; Hakim, Ammar; Hammett, Gregory; Jaworski, Michael; Myers, Rachel; Schwartz, Jacob

    2015-11-01

    Projections of scrape-off layer width to a demonstration power plant suggest an immense parallel heat flux, of order 12 GW/m2, which will necessitate nearly fully detached operation. Building on earlier work by Nagayama et al. and by Ono et al., we propose to use a series of differentially pumped boxes filled with lithium vapor to isolate the buffering vapor from the main plasma chamber, allowing stable detachment. This powerful differential pumping is only available for condensable vapors, not conventional gases. We demonstrate the properties of such a system through conservation laws for vapor mass and enthalpy, and then include plasma entrainment and ultimately an estimate of radiated power. We find that full detachment should be achievable with little leakage of lithium to the main plasma chamber. We also present progress towards solving the Navier-Stokes equation numerically for the chain of vapor boxes, including self-consistent wall boundary conditions and fully-developed shocks, as well as concepts for an initial experimental demonstration-of-concept. This work supported by DOE Contract No. DE-AC02-09CH11466.

  1. Shock compression of nitrobenzene

    Science.gov (United States)

    Kozu, Naoshi; Arai, Mitsuru; Tamura, Masamitsu; Fujihisa, Hiroshi; Aoki, Katsutoshi; Yoshida, Masatake; Kondo, Ken-Ichi

    1999-06-01

    The Hugoniot (4 - 30 GPa) and the isotherm (1 - 7 GPa) of nitrobenzene have been investigated by shock and static compression experiments. Nitrobenzene has the most basic structure of nitro aromatic compounds, which are widely used as energetic materials, but nitrobenzene has been considered not to explode in spite of the fact its calculated heat of detonation is similar to TNT, about 1 kcal/g. Explosive plane-wave generators and diamond anvil cell were used for shock and static compression, respectively. The obtained Hugoniot consists of two linear lines, and the kink exists around 10 GPa. The upper line agrees well with the Hugoniot of detonation products calculated by KHT code, so it is expected that nitrobenzene detonates in that area. Nitrobenzene solidifies under 1 GPa of static compression, and the isotherm of solid nitrobenzene was obtained by X-ray diffraction technique. Comparing the Hugoniot and the isotherm, nitrobenzene is in liquid phase under experimented shock condition. From the expected phase diagram, shocked nitrobenzene seems to remain metastable liquid in solid phase region on that diagram.

  2. Compressed sensing electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Leary, Rowan, E-mail: rkl26@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Saghi, Zineb; Midgley, Paul A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Holland, Daniel J. [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA (United Kingdom)

    2013-08-15

    The recent mathematical concept of compressed sensing (CS) asserts that a small number of well-chosen measurements can suffice to reconstruct signals that are amenable to sparse or compressible representation. In addition to powerful theoretical results, the principles of CS are being exploited increasingly across a range of experiments to yield substantial performance gains relative to conventional approaches. In this work we describe the application of CS to electron tomography (ET) reconstruction and demonstrate the efficacy of CS–ET with several example studies. Artefacts present in conventional ET reconstructions such as streaking, blurring of object boundaries and elongation are markedly reduced, and robust reconstruction is shown to be possible from far fewer projections than are normally used. The CS–ET approach enables more reliable quantitative analysis of the reconstructions as well as novel 3D studies from extremely limited data. - Highlights: • Compressed sensing (CS) theory and its application to electron tomography (ET) is described. • The practical implementation of CS–ET is outlined and its efficacy demonstrated with examples. • High fidelity tomographic reconstruction is possible from a small number of images. • The CS–ET reconstructions can be more reliably segmented and analysed quantitatively. • CS–ET is applicable to different image content by choice of an appropriate sparsifying transform.

  3. Ultraspectral sounder data compression review

    Institute of Scientific and Technical Information of China (English)

    Bormin HUANG; Hunglung HUANG

    2008-01-01

    Ultraspectral sounders provide an enormous amount of measurements to advance our knowledge of weather and climate applications. The use of robust data compression techniques will be beneficial for ultraspectral data transfer and archiving. This paper reviews the progress in lossless compression of ultra-spectral sounder data. Various transform-based, pre-diction-based, and clustering-based compression methods are covered. Also studied is a preprocessing scheme for data reordering to improve compression gains. All the coding experiments are performed on the ultraspectral compression benchmark dataset col-lected from the NASA Atmospheric Infrared Sounder (AIRS) observations.

  4. Engineering Relative Compression of Genomes

    CERN Document Server

    Grabowski, Szymon

    2011-01-01

    Technology progress in DNA sequencing boosts the genomic database growth at faster and faster rate. Compression, accompanied with random access capabilities, is the key to maintain those huge amounts of data. In this paper we present an LZ77-style compression scheme for relative compression of multiple genomes of the same species. While the solution bears similarity to known algorithms, it offers significantly higher compression ratios at compression speed over a order of magnitude greater. One of the new successful ideas is augmenting the reference sequence with phrases from the other sequences, making more LZ-matches available.

  5. Vapor Flow Patterns During a Start-Up Transient in Heat Pipes

    Science.gov (United States)

    Issacci, F.; Ghoniem, N, M.; Catton, I.

    1996-01-01

    The vapor flow patterns in heat pipes are examined during the start-up transient phase. The vapor core is modelled as a channel flow using a two dimensional compressible flow model. A nonlinear filtering technique is used as a post process to eliminate the non-physical oscillations of the flow variables. For high-input heat flux, multiple shock reflections are observed in the evaporation region. The reflections cause a reverse flow in the evaporation and circulations in the adiabatic region. Furthermore, each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe.

  6. Optimization of metal vapor lasers

    Science.gov (United States)

    Buchanov, V. V.; Molodykh, E. I.; Tykotskii, V. V.

    1983-03-01

    The method proposed here for performing numerical calculations on a computer in order to predict and optimize the characteristics of metal vapor lasers is based on the use of a universal program for numerical experiments designed expressly for metal vapor lasers and on a simultaneous application of an algorithm for multifactor optimization of the output parameters. The latter, in turn, is based on the complex Boks method (Himmelblau, 1970) and on the Gel'fand-Tsetlin ravine method (Himmelblau, 1970). Calculations carried out for a metal with a copper vapor in neon reveal that for optimization with respect to the geometry of the active zone and the parameters of the electrical circuits (including the voltage pulses and excitation frequency) it is sufficient to use the Boks method. The objective function optimum regarding the concentration of the metal particles and the buffer gas found using this algorithm calls for further refinement; this can be performed efficiently with the Gel'fand-Tsetlin ravine method.

  7. Investigating Vaporization of Silica through Laser Driven Shock Wave Experiments

    Science.gov (United States)

    Kraus, R. G.; Swift, D. C.; Stewart, S. T.; Smith, R.; Bolme, C. A.; Spaulding, D. K.; Hicks, D.; Eggert, J.; Collins, G.

    2010-12-01

    Giant impacts melt and vaporize a significant amount of the bolide and target body. However, our ability to determine how much melt or vapor a given impact creates depends strongly on our understanding of the liquid-vapor phase boundary of geologic materials. Our current knowledge of the liquid-vapor equilibrium for one of the most important minerals, SiO2, is rather limited due to the difficulty of performing experiments in this area of phase space. In this study, we investigate the liquid-vapor coexistence region by shocking quartz into a supercritical fluid state and allowing it to adiabatically expand to a state on the liquid-vapor phase boundary. Although shock compression and release has been used to study the liquid-vapor equilibrium of metals [1], few attempts have been made at studying geologic materials by this method [2]. Shock waves were produced by direct ablation of the quartz sample using the Jupiter Laser Facility of Lawrence Livermore National Laboratory. Steady shock pressures of 120-360 GPa were produced in the quartz samples: high enough to force the quartz into a supercritical fluid state. As the shock wave propagates through the sample, we measure the shock velocity using a line imaging velocity interferometer system for any reflector (VISAR) and shock temperature using a streaked optical pyrometer (SOP). When the shock wave reaches the free surface of the sample, the material adiabatically expands. Upon breakout of the shock at the free surface, the SOP records a distinct drop in radiance due to the lower temperature of the expanded material. For a subset of experiments, a LiF window is positioned downrange of the expanding silica. When the expanding silica impacts the LiF window, the velocity at the interface between the expanding silica and LiF window is measured using the VISAR. From the shock velocity measurements, we accurately determine the shocked state in the quartz. The post-shock radiance measurements are used to constrain the

  8. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  9. Ultrasound beamforming using compressed data.

    Science.gov (United States)

    Li, Yen-Feng; Li, Pai-Chi

    2012-05-01

    The rapid advancements in electronics technologies have made software-based beamformers for ultrasound array imaging feasible, thus facilitating the rapid development of high-performance and potentially low-cost systems. However, one challenge to realizing a fully software-based system is transferring data from the analog front end to the software back end at rates of up to a few gigabits per second. This study investigated the use of data compression to reduce the data transfer requirements and optimize the associated trade-off with beamforming quality. JPEG and JPEG2000 compression techniques were adopted. The acoustic data of a line phantom were acquired with a 128-channel array transducer at a center frequency of 3.5 MHz, and the acoustic data of a cyst phantom were acquired with a 64-channel array transducer at a center frequency of 3.33 MHz. The receive-channel data associated with each transmit event are separated into 8 × 8 blocks and several tiles before JPEG and JPEG2000 data compression is applied, respectively. In one scheme, the compression was applied to raw RF data, while in another only the amplitude of baseband data was compressed. The maximum compression ratio of RF data compression to produce an average error of lower than 5 dB was 15 with JPEG compression and 20 with JPEG2000 compression. The image quality is higher with baseband amplitude data compression than with RF data compression; although the maximum overall compression ratio (compared with the original RF data size), which was limited by the data size of uncompressed phase data, was lower than 12, the average error in this case was lower than 1 dB when the compression ratio was lower than 8.

  10. The compression of liquids

    Science.gov (United States)

    Whalley, E.

    The compression of liquids can be measured either directly by applying a pressure and noting the volume change, or indirectly, by measuring the magnitude of the fluctuations of the local volume. The methods used in Ottawa for the direct measurement of the compression are reviewed. The mean-square deviation of the volume from the mean at constant temperature can be measured by X-ray and neutron scattering at low angles, and the meansquare deviation at constant entropy can be measured by measuring the speed of sound. The speed of sound can be measured either acoustically, using an acoustic transducer, or by Brillouin spectroscopy. Brillouin spectroscopy can also be used to study the shear waves in liquids if the shear relaxation time is > ∼ 10 ps. The relaxation time of water is too short for the shear waves to be studied in this way, but they do occur in the low-frequency Raman and infrared spectra. The response of the structure of liquids to pressure can be studied by neutron scattering, and recently experiments have been done at Atomic Energy of Canada Ltd, Chalk River, on liquid D 2O up to 15.6 kbar. They show that the near-neighbor intermolecular O-D and D-D distances are less spread out and at shorter distances at high pressure. Raman spectroscopy can also provide information on the structural response. It seems that the O-O distance in water decreases much less with pressure than it does in ice. Presumably, the bending of O-O-O angles tends to increase the O-O distance, and so to largely compensate the compression due to the direct effect of pressure.

  11. Compressive Transient Imaging

    KAUST Repository

    Sun, Qilin

    2017-04-01

    High resolution transient/3D imaging technology is of high interest in both scientific research and commercial application. Nowadays, all of the transient imaging methods suffer from low resolution or time consuming mechanical scanning. We proposed a new method based on TCSPC and Compressive Sensing to achieve a high resolution transient imaging with a several seconds capturing process. Picosecond laser sends a serious of equal interval pulse while synchronized SPAD camera\\'s detecting gate window has a precise phase delay at each cycle. After capturing enough points, we are able to make up a whole signal. By inserting a DMD device into the system, we are able to modulate all the frames of data using binary random patterns to reconstruct a super resolution transient/3D image later. Because the low fill factor of SPAD sensor will make a compressive sensing scenario ill-conditioned, We designed and fabricated a diffractive microlens array. We proposed a new CS reconstruction algorithm which is able to denoise at the same time for the measurements suffering from Poisson noise. Instead of a single SPAD senor, we chose a SPAD array because it can drastically reduce the requirement for the number of measurements and its reconstruction time. Further more, it not easy to reconstruct a high resolution image with only one single sensor while for an array, it just needs to reconstruct small patches and a few measurements. In this thesis, we evaluated the reconstruction methods using both clean measurements and the version corrupted by Poisson noise. The results show how the integration over the layers influence the image quality and our algorithm works well while the measurements suffer from non-trival Poisson noise. It\\'s a breakthrough in the areas of both transient imaging and compressive sensing.

  12. Statistical Mechanical Analysis of Compressed Sensing Utilizing Correlated Compression Matrix

    CERN Document Server

    Takeda, Koujin

    2010-01-01

    We investigate a reconstruction limit of compressed sensing for a reconstruction scheme based on the L1-norm minimization utilizing a correlated compression matrix with a statistical mechanics method. We focus on the compression matrix modeled as the Kronecker-type random matrix studied in research on multi-input multi-output wireless communication systems. We found that strong one-dimensional correlations between expansion bases of original information slightly degrade reconstruction performance.

  13. Compressive full waveform lidar

    Science.gov (United States)

    Yang, Weiyi; Ke, Jun

    2017-05-01

    To avoid high bandwidth detector, fast speed A/D converter, and large size memory disk, a compressive full waveform LIDAR system, which uses a temporally modulated laser instead of a pulsed laser, is studied in this paper. Full waveform data from NEON (National Ecological Observatory Network) are used. Random binary patterns are used to modulate the source. To achieve 0.15 m ranging resolution, a 100 MSPS A/D converter is assumed to make measurements. SPIRAL algorithm with canonical basis is employed when Poisson noise is considered in the low illuminated condition.

  14. Metal Hydride Compression

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bowman, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Anovitz, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jensen, Craig [Hawaii Hydrogen Carriers LLC, Honolulu, HI (United States)

    2017-07-01

    Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methods of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H2) gas compressor with a

  15. Beamforming using compressive sensing.

    Science.gov (United States)

    Edelmann, Geoffrey F; Gaumond, Charles F

    2011-10-01

    Compressive sensing (CS) is compared with conventional beamforming using horizontal beamforming of at-sea, towed-array data. They are compared qualitatively using bearing time records and quantitatively using signal-to-interference ratio. Qualitatively, CS exhibits lower levels of background interference than conventional beamforming. Furthermore, bearing time records show increasing, but tolerable, levels of background interference when the number of elements is decreased. For the full array, CS generates signal-to-interference ratio of 12 dB, but conventional beamforming only 8 dB. The superiority of CS over conventional beamforming is much more pronounced with undersampling.

  16. Final OSWER Vapor Intrusion Guidance

    Science.gov (United States)

    EPA is preparing to finalize its guidance on assessing and addressing vapor intrusion, which is defined as migration of volatile constituents from contaminated media in the subsurface (soil or groundwater) into the indoor environment. In November 2002, EPA issued draft guidance o...

  17. Simple Chemical Vapor Deposition Experiment

    Science.gov (United States)

    Pedersen, Henrik

    2014-01-01

    Chemical vapor deposition (CVD) is a process commonly used for the synthesis of thin films for several important technological applications, for example, microelectronics, hard coatings, and smart windows. Unfortunately, the complexity and prohibitive cost of CVD equipment makes it seldom available for undergraduate chemistry students. Here, a…

  18. Hydrazine vapor inactivates Bacillus spores

    Science.gov (United States)

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.

    2016-05-01

    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  19. Boiler for generating high quality vapor

    Science.gov (United States)

    Gray, V. H.; Marto, P. J.; Joslyn, A. W.

    1972-01-01

    Boiler supplies vapor for use in turbines by imparting a high angular velocity to the liquid annulus in heated rotating drum. Drum boiler provides a sharp interface between boiling liquid and vapor, thereby, inhibiting the formation of unwanted liquid droplets.

  20. Compressive sensing in medical imaging.

    Science.gov (United States)

    Graff, Christian G; Sidky, Emil Y

    2015-03-10

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.

  1. Speech Compression Using Multecirculerletet Transform

    Directory of Open Access Journals (Sweden)

    Sulaiman Murtadha

    2012-01-01

    Full Text Available Compressing the speech reduces the data storage requirements, leading to reducing the time of transmitting the digitized speech over long-haul links like internet. To obtain best performance in speech compression, wavelet transforms require filters that combine a number of desirable properties, such as orthogonality and symmetry.The MCT bases functions are derived from GHM bases function using 2D linear convolution .The fast computation algorithm methods introduced here added desirable features to the current transform. We further assess the performance of the MCT in speech compression application. This paper discusses the effect of using DWT and MCT (one and two dimension on speech compression. DWT and MCT performances in terms of compression ratio (CR, mean square error (MSE and peak signal to noise ratio (PSNR are assessed. Computer simulation results indicate that the two dimensions MCT offer a better compression ratio, MSE and PSNR than DWT.

  2. libpolycomp: Compression/decompression library

    Science.gov (United States)

    Tomasi, Maurizio

    2016-04-01

    Libpolycomp compresses and decompresses one-dimensional streams of numbers by means of several algorithms. It is well-suited for time-ordered data acquired by astronomical instruments or simulations. One of the algorithms, called "polynomial compression", combines two widely-used ideas (namely, polynomial approximation and filtering of Fourier series) to achieve substantial compression ratios for datasets characterized by smoothness and lack of noise. Notable examples are the ephemerides of astronomical objects and the pointing information of astronomical telescopes. Other algorithms implemented in this C library are well known and already widely used, e.g., RLE, quantization, deflate (via libz) and Burrows-Wheeler transform (via libbzip2). Libpolycomp can compress the timelines acquired by the Planck/LFI instrument with an overall compression ratio of ~9, while other widely known programs (gzip, bzip2) reach compression ratios less than 1.5.

  3. Image Compression using GSOM Algorithm

    Directory of Open Access Journals (Sweden)

    SHABBIR AHMAD

    2015-10-01

    Full Text Available compression. Conventional techniques such as Huffman coding and the Shannon Fano method, LZ Method, Run Length Method, LZ-77 are more recent methods for the compression of data. A traditional approach to reduce the large amount of data would be to discard some data redundancy and introduce some noise after reconstruction. We present a neural network based Growing self-organizing map technique that may be a reliable and efficient way to achieve vector quantization. Typical application of such algorithm is image compression. Moreover, Kohonen networks realize a mapping between an input and an output space that preserves topology. This feature can be used to build new compression schemes which allow obtaining better compression rate than with classical method as JPEG without reducing the image quality .the experiment result show that proposed algorithm improve the compression ratio in BMP, JPG and TIFF File.

  4. Data compression on the sphere

    CERN Document Server

    McEwen, J D; Eyers, D M; 10.1051/0004-6361/201015728

    2011-01-01

    Large data-sets defined on the sphere arise in many fields. In particular, recent and forthcoming observations of the anisotropies of the cosmic microwave background (CMB) made on the celestial sphere contain approximately three and fifty mega-pixels respectively. The compression of such data is therefore becoming increasingly important. We develop algorithms to compress data defined on the sphere. A Haar wavelet transform on the sphere is used as an energy compression stage to reduce the entropy of the data, followed by Huffman and run-length encoding stages. Lossless and lossy compression algorithms are developed. We evaluate compression performance on simulated CMB data, Earth topography data and environmental illumination maps used in computer graphics. The CMB data can be compressed to approximately 40% of its original size for essentially no loss to the cosmological information content of the data, and to approximately 20% if a small cosmological information loss is tolerated. For the topographic and il...

  5. Energy transfer in compressible turbulence

    Science.gov (United States)

    Bataille, Francoise; Zhou, YE; Bertoglio, Jean-Pierre

    1995-01-01

    This letter investigates the compressible energy transfer process. We extend a methodology developed originally for incompressible turbulence and use databases from numerical simulations of a weak compressible turbulence based on Eddy-Damped-Quasi-Normal-Markovian (EDQNM) closure. In order to analyze the compressible mode directly, the well known Helmholtz decomposition is used. While the compressible component has very little influence on the solenoidal part, we found that almost all of the compressible turbulence energy is received from its solenoidal counterpart. We focus on the most fundamental building block of the energy transfer process, the triadic interactions. This analysis leads us to conclude that, at low turbulent Mach number, the compressible energy transfer process is dominated by a local radiative transfer (absorption) in both inertial and energy containing ranges.

  6. Perceptually Lossless Wavelet Compression

    Science.gov (United States)

    Watson, Andrew B.; Yang, Gloria Y.; Solomon, Joshua A.; Villasenor, John

    1996-01-01

    The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter, which we call DWT uniform quantization noise. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2(exp -1), where r is display visual resolution in pixels/degree, and L is the wavelet level. Amplitude thresholds increase rapidly with spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from low-pass to horizontal/vertical to diagonal. We propose a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a 'perceptually lossless' quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  7. Compressive Sensing DNA Microarrays

    Directory of Open Access Journals (Sweden)

    Richard G. Baraniuk

    2009-01-01

    Full Text Available Compressive sensing microarrays (CSMs are DNA-based sensors that operate using group testing and compressive sensing (CS principles. In contrast to conventional DNA microarrays, in which each genetic sensor is designed to respond to a single target, in a CSM, each sensor responds to a set of targets. We study the problem of designing CSMs that simultaneously account for both the constraints from CS theory and the biochemistry of probe-target DNA hybridization. An appropriate cross-hybridization model is proposed for CSMs, and several methods are developed for probe design and CS signal recovery based on the new model. Lab experiments suggest that in order to achieve accurate hybridization profiling, consensus probe sequences are required to have sequence homology of at least 80% with all targets to be detected. Furthermore, out-of-equilibrium datasets are usually as accurate as those obtained from equilibrium conditions. Consequently, one can use CSMs in applications in which only short hybridization times are allowed.

  8. Compressive light field sensing.

    Science.gov (United States)

    Babacan, S Derin; Ansorge, Reto; Luessi, Martin; Matarán, Pablo Ruiz; Molina, Rafael; Katsaggelos, Aggelos K

    2012-12-01

    We propose a novel design for light field image acquisition based on compressive sensing principles. By placing a randomly coded mask at the aperture of a camera, incoherent measurements of the light passing through different parts of the lens are encoded in the captured images. Each captured image is a random linear combination of different angular views of a scene. The encoded images are then used to recover the original light field image via a novel Bayesian reconstruction algorithm. Using the principles of compressive sensing, we show that light field images with a large number of angular views can be recovered from only a few acquisitions. Moreover, the proposed acquisition and recovery method provides light field images with high spatial resolution and signal-to-noise-ratio, and therefore is not affected by limitations common to existing light field camera designs. We present a prototype camera design based on the proposed framework by modifying a regular digital camera. Finally, we demonstrate the effectiveness of the proposed system using experimental results with both synthetic and real images.

  9. Splines in Compressed Sensing

    Directory of Open Access Journals (Sweden)

    S. Abhishek

    2016-07-01

    Full Text Available It is well understood that in any data acquisition system reduction in the amount of data reduces the time and energy, but the major trade-off here is the quality of outcome normally, lesser the amount of data sensed, lower the quality. Compressed Sensing (CS allows a solution, for sampling below the Nyquist rate. The challenging problem of increasing the reconstruction quality with less number of samples from an unprocessed data set is addressed here by the use of representative coordinate selected from different orders of splines. We have made a detailed comparison with 10 orthogonal and 6 biorthogonal wavelets with two sets of data from MIT Arrhythmia database and our results prove that the Spline coordinates work better than the wavelets. The generation of two new types of splines such as exponential and double exponential are also briefed here .We believe that this is one of the very first attempts made in Compressed Sensing based ECG reconstruction problems using raw data.  

  10. Vapor Pressure Data Analysis and Statistics

    Science.gov (United States)

    2016-12-01

    VAPOR PRESSURE DATA ANALYSIS AND STATISTICS ECBC-TR-1422 Ann Brozena RESEARCH AND TECHNOLOGY DIRECTORATE...DATE XX-12-2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) Nov 2015 – Apr 2016 4. TITLE Vapor Pressure Data Analysis and Statistics 5a...1 VAPOR PRESSURE DATA ANALYSIS AND STATISTICS 1. INTRODUCTION Knowledge of the vapor pressure of materials as a function of temperature is

  11. q-ary compressive sensing

    OpenAIRE

    Mroueh, Youssef; Rosasco, Lorenzo

    2013-01-01

    We introduce q-ary compressive sensing, an extension of 1-bit compressive sensing. We propose a novel sensing mechanism and a corresponding recovery procedure. The recovery properties of the proposed approach are analyzed both theoretically and empirically. Results in 1-bit compressive sensing are recovered as a special case. Our theoretical results suggest a tradeoff between the quantization parameter q, and the number of measurements m in the control of the error of the resulting recovery a...

  12. Introduction to compressible fluid flow

    CERN Document Server

    Oosthuizen, Patrick H

    2013-01-01

    IntroductionThe Equations of Steady One-Dimensional Compressible FlowSome Fundamental Aspects of Compressible FlowOne-Dimensional Isentropic FlowNormal Shock WavesOblique Shock WavesExpansion Waves - Prandtl-Meyer FlowVariable Area FlowsAdiabatic Flow with FrictionFlow with Heat TransferLinearized Analysis of Two-Dimensional Compressible FlowsHypersonic and High-Temperature FlowsHigh-Temperature Gas EffectsLow-Density FlowsBibliographyAppendices

  13. Compressive sensing of sparse tensors.

    Science.gov (United States)

    Friedland, Shmuel; Li, Qun; Schonfeld, Dan

    2014-10-01

    Compressive sensing (CS) has triggered an enormous research activity since its first appearance. CS exploits the signal's sparsity or compressibility in a particular domain and integrates data compression and acquisition, thus allowing exact reconstruction through relatively few nonadaptive linear measurements. While conventional CS theory relies on data representation in the form of vectors, many data types in various applications, such as color imaging, video sequences, and multisensor networks, are intrinsically represented by higher order tensors. Application of CS to higher order data representation is typically performed by conversion of the data to very long vectors that must be measured using very large sampling matrices, thus imposing a huge computational and memory burden. In this paper, we propose generalized tensor compressive sensing (GTCS)-a unified framework for CS of higher order tensors, which preserves the intrinsic structure of tensor data with reduced computational complexity at reconstruction. GTCS offers an efficient means for representation of multidimensional data by providing simultaneous acquisition and compression from all tensor modes. In addition, we propound two reconstruction procedures, a serial method and a parallelizable method. We then compare the performance of the proposed method with Kronecker compressive sensing (KCS) and multiway compressive sensing (MWCS). We demonstrate experimentally that GTCS outperforms KCS and MWCS in terms of both reconstruction accuracy (within a range of compression ratios) and processing speed. The major disadvantage of our methods (and of MWCS as well) is that the compression ratios may be worse than that offered by KCS.

  14. Uncommon upper extremity compression neuropathies.

    Science.gov (United States)

    Knutsen, Elisa J; Calfee, Ryan P

    2013-08-01

    Hand surgeons routinely treat carpal and cubital tunnel syndromes, which are the most common upper extremity nerve compression syndromes. However, more infrequent nerve compression syndromes of the upper extremity may be encountered. Because they are unusual, the diagnosis of these nerve compression syndromes is often missed or delayed. This article reviews the causes, proposed treatments, and surgical outcomes for syndromes involving compression of the posterior interosseous nerve, the superficial branch of the radial nerve, the ulnar nerve at the wrist, and the median nerve proximal to the wrist. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Image Compression Algorithms Using Dct

    Directory of Open Access Journals (Sweden)

    Er. Abhishek Kaushik

    2014-04-01

    Full Text Available Image compression is the application of Data compression on digital images. The discrete cosine transform (DCT is a technique for converting a signal into elementary frequency components. It is widely used in image compression. Here we develop some simple functions to compute the DCT and to compress images. An image compression algorithm was comprehended using Matlab code, and modified to perform better when implemented in hardware description language. The IMAP block and IMAQ block of MATLAB was used to analyse and study the results of Image Compression using DCT and varying co-efficients for compression were developed to show the resulting image and error image from the original images. Image Compression is studied using 2-D discrete Cosine Transform. The original image is transformed in 8-by-8 blocks and then inverse transformed in 8-by-8 blocks to create the reconstructed image. The inverse DCT would be performed using the subset of DCT coefficients. The error image (the difference between the original and reconstructed image would be displayed. Error value for every image would be calculated over various values of DCT co-efficients as selected by the user and would be displayed in the end to detect the accuracy and compression in the resulting image and resulting performance parameter would be indicated in terms of MSE , i.e. Mean Square Error.

  16. Weather and climate analyses using improved global water vapor observations

    National Research Council Canada - National Science Library

    Vonder Haar, Thomas H; Bytheway, Janice L; Forsythe, John M

    2012-01-01

    The NASA Water Vapor Project (NVAP) dataset is a global (land and ocean) water vapor dataset created by merging multiple sources of atmospheric water vapor to form a global data base of total and layered precipitable water vapor...

  17. New refrigeration system using CO2 vapor-solid as refrigerant

    Institute of Scientific and Technical Information of China (English)

    Dongping HUANG; Guoliang DING; Hans QUACK

    2008-01-01

    A refrigerant must be in the vapor-liquid phase in a vapor-compression refrigeration system, therefore, CO2 cannot be used as a refrigerant for temperatures lower than -56℃ because solid CO2 will form under the triple point temperature of -56℃. A refrigeration system with CO2 vapor-solid particles as refrigerant is put forward, by which a temperature lower than the triple point is achieved. An adjustable nozzle, a sublimator, a high-pressure regulating valve and a low-pressure regulat-ing valve are used to replace the conventional evaporator. Theoretical cycle analysis of the refrigeration system shows that its COP can be 50% higher than that of the conventional one.

  18. An underwater acoustic data compression method based on compressed sensing

    Institute of Scientific and Technical Information of China (English)

    郭晓乐; 杨坤德; 史阳; 段睿

    2016-01-01

    The use of underwater acoustic data has rapidly expanded with the application of multichannel, large-aperture underwater detection arrays. This study presents an underwater acoustic data compression method that is based on compressed sensing. Underwater acoustic signals are transformed into the sparse domain for data storage at a receiving terminal, and the improved orthogonal matching pursuit (IOMP) algorithm is used to reconstruct the original underwater acoustic signals at a data processing terminal. When an increase in sidelobe level occasionally causes a direction of arrival estimation error, the proposed compression method can achieve a 10 times stronger compression for narrowband signals and a 5 times stronger compression for wideband signals than the orthogonal matching pursuit (OMP) algorithm. The IOMP algorithm also reduces the computing time by about 20% more than the original OMP algorithm. The simulation and experimental results are discussed.

  19. A copper vapor laser by using a copper-vapor-complex reaction at a low temperature

    OpenAIRE

    Kano, Toshiyuki; Taniguchi, Hiroshi; Saito, Hiroshi

    1987-01-01

    A copper vapor laser performance by using ametal-vapor-complex reaction (Cu+AlBr3) is reported. The laser operation is obtained at a low temperature without externalheating because of the AlBr3 vapors evaporating at a room temperature. The copper vapor laser using this metal-vapor-complex reaction has an advantage of deposition-free of a metallic copper to the laser tube wall, which is different from the copper halide and the organometallic copper lasers.

  20. TPC data compression

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Jens; Frankenfeld, Ulrich; Lindenstruth, Volker; Plamper, Patrick; Roehrich, Dieter; Schaefer, Erich; W. Schulz, Markus; M. Steinbeck, Timm; Stock, Reinhard; Sulimma, Kolja; Vestboe, Anders; Wiebalck, Arne E-mail: wiebalck@kip.uni-heidelberg.de

    2002-08-21

    In the collisions of ultra-relativistic heavy ions in fixed-target and collider experiments, multiplicities of several ten thousand charged particles are generated. The main devices for tracking and particle identification are large-volume tracking detectors (TPCs) producing raw event sizes in excess of 100 Mbytes per event. With increasing data rates, storage becomes the main limiting factor in such experiments and, therefore, it is essential to represent the data in a way that is as concise as possible. In this paper, we present several compression schemes, such as entropy encoding, modified vector quantization, and data modeling techniques applied on real data from the CERN SPS experiment NA49 and on simulated data from the future CERN LHC experiment ALICE.

  1. TPC data compression

    CERN Document Server

    Berger, Jens; Lindenstruth, Volker; Plamper, Patrick; Röhrich, Dieter; Schafer, Erich; Schulz, M W; Steinbeck, T M; Stock, Reinhard; Sulimma, Kolja; Vestbo, Anders S; Wiebalck, Arne

    2002-01-01

    In the collisions of ultra-relativistic heavy ions in fixed-target and collider experiments, multiplicities of several ten thousand charged particles are generated. The main devices for tracking and particle identification are large-volume tracking detectors (TPCs) producing raw event sizes in excess of 100 Mbytes per event. With increasing data rates, storage becomes the main limiting factor in such experiments and, therefore, it is essential to represent the data in a way that is as concise as possible. In this paper, we present several compression schemes, such as entropy encoding, modified vector quantization, and data modeling techniques applied on real data from the CERN SPS experiment NA49 and on simulated data from the future CERN LHC experiment ALICE.

  2. TPC data compression

    Science.gov (United States)

    Berger, Jens; Frankenfeld, Ulrich; Lindenstruth, Volker; Plamper, Patrick; Röhrich, Dieter; Schäfer, Erich; Schulz, Markus W.; Steinbeck, Timm M.; Stock, Reinhard; Sulimma, Kolja; Vestbø, Anders; Wiebalck, Arne

    2002-08-01

    In the collisions of ultra-relativistic heavy ions in fixed-target and collider experiments, multiplicities of several ten thousand charged particles are generated. The main devices for tracking and particle identification are large-volume tracking detectors (TPCs) producing raw event sizes in excess of 100 Mbytes per event. With increasing data rates, storage becomes the main limiting factor in such experiments and, therefore, it is essential to represent the data in a way that is as concise as possible. In this paper, we present several compression schemes, such as entropy encoding, modified vector quantization, and data modeling techniques applied on real data from the CERN SPS experiment NA49 and on simulated data from the future CERN LHC experiment ALICE.

  3. Waves and compressible flow

    CERN Document Server

    Ockendon, Hilary

    2016-01-01

    Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications.  New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises.  Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science.   Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, ...

  4. Central cooling: compressive chillers

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1978-03-01

    Representative cost and performance data are provided in a concise, useable form for three types of compressive liquid packaged chillers: reciprocating, centrifugal, and screw. The data are represented in graphical form as well as in empirical equations. Reciprocating chillers are available from 2.5 to 240 tons with full-load COPs ranging from 2.85 to 3.87. Centrifugal chillers are available from 80 to 2,000 tons with full load COPs ranging from 4.1 to 4.9. Field-assemblied centrifugal chillers have been installed with capacities up to 10,000 tons. Screw-type chillers are available from 100 to 750 tons with full load COPs ranging from 3.3 to 4.5.

  5. Compressive Fatigue in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben;

    1999-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four...... frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation...... is observed between stiffness reduction and accumulated creep. A failure model based on the total work during the fatigue life is rejected, and a modified work model based on elastic, viscous and non-recovered viscoelastic work is experimentally supported, and an explanation at a microstructural level...

  6. Compression-based Similarity

    CERN Document Server

    Vitanyi, Paul M B

    2011-01-01

    First we consider pair-wise distances for literal objects consisting of finite binary files. These files are taken to contain all of their meaning, like genomes or books. The distances are based on compression of the objects concerned, normalized, and can be viewed as similarity distances. Second, we consider pair-wise distances between names of objects, like "red" or "christianity." In this case the distances are based on searches of the Internet. Such a search can be performed by any search engine that returns aggregate page counts. We can extract a code length from the numbers returned, use the same formula as before, and derive a similarity or relative semantics between names for objects. The theory is based on Kolmogorov complexity. We test both similarities extensively experimentally.

  7. Adaptively Compressed Exchange Operator

    CERN Document Server

    Lin, Lin

    2016-01-01

    The Fock exchange operator plays a central role in modern quantum chemistry. The large computational cost associated with the Fock exchange operator hinders Hartree-Fock calculations and Kohn-Sham density functional theory calculations with hybrid exchange-correlation functionals, even for systems consisting of hundreds of atoms. We develop the adaptively compressed exchange operator (ACE) formulation, which greatly reduces the computational cost associated with the Fock exchange operator without loss of accuracy. The ACE formulation does not depend on the size of the band gap, and thus can be applied to insulating, semiconducting as well as metallic systems. In an iterative framework for solving Hartree-Fock-like systems, the ACE formulation only requires moderate modification of the code, and can be potentially beneficial for all electronic structure software packages involving exchange calculations. Numerical results indicate that the ACE formulation can become advantageous even for small systems with tens...

  8. Adaptive compressive sensing camera

    Science.gov (United States)

    Hsu, Charles; Hsu, Ming K.; Cha, Jae; Iwamura, Tomo; Landa, Joseph; Nguyen, Charles; Szu, Harold

    2013-05-01

    We have embedded Adaptive Compressive Sensing (ACS) algorithm on Charge-Coupled-Device (CCD) camera based on the simplest concept that each pixel is a charge bucket, and the charges comes from Einstein photoelectric conversion effect. Applying the manufactory design principle, we only allow altering each working component at a minimum one step. We then simulated what would be such a camera can do for real world persistent surveillance taking into account of diurnal, all weather, and seasonal variations. The data storage has saved immensely, and the order of magnitude of saving is inversely proportional to target angular speed. We did design two new components of CCD camera. Due to the matured CMOS (Complementary metal-oxide-semiconductor) technology, the on-chip Sample and Hold (SAH) circuitry can be designed for a dual Photon Detector (PD) analog circuitry for changedetection that predicts skipping or going forward at a sufficient sampling frame rate. For an admitted frame, there is a purely random sparse matrix [Φ] which is implemented at each bucket pixel level the charge transport bias voltage toward its neighborhood buckets or not, and if not, it goes to the ground drainage. Since the snapshot image is not a video, we could not apply the usual MPEG video compression and Hoffman entropy codec as well as powerful WaveNet Wrapper on sensor level. We shall compare (i) Pre-Processing FFT and a threshold of significant Fourier mode components and inverse FFT to check PSNR; (ii) Post-Processing image recovery will be selectively done by CDT&D adaptive version of linear programming at L1 minimization and L2 similarity. For (ii) we need to determine in new frames selection by SAH circuitry (i) the degree of information (d.o.i) K(t) dictates the purely random linear sparse combination of measurement data a la [Φ]M,N M(t) = K(t) Log N(t).

  9. What Good is Raman Water Vapor Lidar?

    Science.gov (United States)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  10. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  11. Active Hydrazine Vapor Sampler (AHVS)

    Science.gov (United States)

    Young, Rebecca C.; Mcbrearty, Charles F.; Curran, Daniel J.

    1993-01-01

    The Active Hydrazine Vapor Sampler (AHVS) was developed to detect vapors of hydrazine (HZ) and monomethylhydrazine (MMH) in air at parts-per-billion (ppb) concentration levels. The sampler consists of a commercial personal pump that draws ambient air through paper tape treated with vanillin (4-hydroxy-3-methoxybenzaldehyde). The paper tape is sandwiched in a thin cardboard housing inserted in one of the two specially designed holders to facilitate sampling. Contaminated air reacts with vanillin to develop a yellow color. The density of the color is proportional to the concentration of HZ or MMH. The AHVS can detect 10 ppb in less than 5 minutes. The sampler is easy to use, low cost, and intrinsically safe and contains no toxic material. It is most beneficial for use in locations with no laboratory capabilities for instrumentation calibration. This paper reviews the development, laboratory test, and field test of the device.

  12. Vapor stabilizing surfaces for superhydrophobicity

    Science.gov (United States)

    Patankar, Neelesh

    2010-11-01

    The success of rough substrates designed for superhydrophobicity relies crucially on the presence of air pockets in the roughness grooves. This air is supplied by the surrounding environment. However, if the rough substrates are used in enclosed configurations, such as in fluidic networks, the air pockets may not be sustained in the roughness grooves. In this work a design approach based on sustaining a vapor phase of the liquid in the roughness grooves, instead of relying on the presence of air, is explored. The resulting surfaces, referred to as vapor stabilizing substrates, are deemed to be robust against wetting transition even if no air is present. Applications of this approach include low drag surfaces, nucleate boiling, and dropwise condensation heat transfer, among others.

  13. Vaporization chambers and associated methods

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Shunn, Lee P.

    2017-02-21

    A vaporization chamber may include at least one conduit and a shell. The at least one conduit may have an inlet at a first end, an outlet at a second end and a flow path therebetween. The shell may surround a portion of each conduit and define a chamber surrounding the portion of each conduit. Additionally, a plurality of discrete apertures may be positioned at longitudinal intervals in a wall of each conduit, each discrete aperture of the plurality of discrete apertures sized and configured to direct a jet of fluid into each conduit from the chamber. A liquid may be vaporized by directing a first fluid comprising a liquid into the inlet at the first end of each conduit, directing jets of a second fluid into each conduit from the chamber through discrete apertures in a wall of each conduit and transferring heat from the second fluid to the first fluid.

  14. Internal Water Vapor Photoacoustic Calibration

    Science.gov (United States)

    Pilgrim, Jeffrey S.

    2009-01-01

    Water vapor absorption is ubiquitous in the infrared wavelength range where photoacoustic trace gas detectors operate. This technique allows for discontinuous wavelength tuning by temperature-jumping a laser diode from one range to another within a time span suitable for photoacoustic calibration. The use of an internal calibration eliminates the need for external calibrated reference gases. Commercial applications include an improvement of photoacoustic spectrometers in all fields of use.

  15. Application specific compression : final report.

    Energy Technology Data Exchange (ETDEWEB)

    Melgaard, David Kennett; Byrne, Raymond Harry; Myers, Daniel S.; Harrison, Carol D.; Lee, David S.; Lewis, Phillip J.; Carlson, Jeffrey J.

    2008-12-01

    With the continuing development of more capable data gathering sensors, comes an increased demand on the bandwidth for transmitting larger quantities of data. To help counteract that trend, a study was undertaken to determine appropriate lossy data compression strategies for minimizing their impact on target detection and characterization. The survey of current compression techniques led us to the conclusion that wavelet compression was well suited for this purpose. Wavelet analysis essentially applies a low-pass and high-pass filter to the data, converting the data into the related coefficients that maintain spatial information as well as frequency information. Wavelet compression is achieved by zeroing the coefficients that pertain to the noise in the signal, i.e. the high frequency, low amplitude portion. This approach is well suited for our goal because it reduces the noise in the signal with only minimal impact on the larger, lower frequency target signatures. The resulting coefficients can then be encoded using lossless techniques with higher compression levels because of the lower entropy and significant number of zeros. No significant signal degradation or difficulties in target characterization or detection were observed or measured when wavelet compression was applied to simulated and real data, even when over 80% of the coefficients were zeroed. While the exact level of compression will be data set dependent, for the data sets we studied, compression factors over 10 were found to be satisfactory where conventional lossless techniques achieved levels of less than 3.

  16. Streaming Compression of Hexahedral Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Isenburg, M; Courbet, C

    2010-02-03

    We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

  17. Data Compression with Linear Algebra

    OpenAIRE

    Etler, David

    2015-01-01

    A presentation on the applications of linear algebra to image compression. Covers entropy, the discrete cosine transform, thresholding, quantization, and examples of images compressed with DCT. Given in Spring 2015 at Ocean County College as part of the honors program.

  18. Compressed sensing for body MRI.

    Science.gov (United States)

    Feng, Li; Benkert, Thomas; Block, Kai Tobias; Sodickson, Daniel K; Otazo, Ricardo; Chandarana, Hersh

    2017-04-01

    The introduction of compressed sensing for increasing imaging speed in magnetic resonance imaging (MRI) has raised significant interest among researchers and clinicians, and has initiated a large body of research across multiple clinical applications over the last decade. Compressed sensing aims to reconstruct unaliased images from fewer measurements than are traditionally required in MRI by exploiting image compressibility or sparsity. Moreover, appropriate combinations of compressed sensing with previously introduced fast imaging approaches, such as parallel imaging, have demonstrated further improved performance. The advent of compressed sensing marks the prelude to a new era of rapid MRI, where the focus of data acquisition has changed from sampling based on the nominal number of voxels and/or frames to sampling based on the desired information content. This article presents a brief overview of the application of compressed sensing techniques in body MRI, where imaging speed is crucial due to the presence of respiratory motion along with stringent constraints on spatial and temporal resolution. The first section provides an overview of the basic compressed sensing methodology, including the notion of sparsity, incoherence, and nonlinear reconstruction. The second section reviews state-of-the-art compressed sensing techniques that have been demonstrated for various clinical body MRI applications. In the final section, the article discusses current challenges and future opportunities. 5 J. Magn. Reson. Imaging 2017;45:966-987. © 2016 International Society for Magnetic Resonance in Medicine.

  19. Water vapor diffusion membrane development

    Science.gov (United States)

    Tan, M. K.

    1977-01-01

    An application of the water vapor diffusion technique is examined whereby the permeated water vapor is vented to space vacuum to alleviate on-board waste storage and provide supplemental cooling. The work reported herein deals primarily with the vapor diffusion-heat rejection (VD-HR) as it applies to the Space Shuttle. A stack configuration was selected, designed and fabricated. An asymmetric cellulose acetate membrane, used in reverse osmosis application was selected and a special spacer was designed to enhance mixing and promote mass transfer. A skid-mount unit was assembled from components used in the bench unit although no attempt was made to render it flight-suitable. The operating conditions of the VD-HR were examined and defined and a 60-day continuous test was carried out. The membranes performed very well throughout the test; no membrane rupture and no unusual flux decay was observed. In addition, a tentative design for a flight-suitable VD-HR unit was made.

  20. Critical points of metal vapors

    Energy Technology Data Exchange (ETDEWEB)

    Khomkin, A. L., E-mail: alhomkin@mail.ru; Shumikhin, A. S. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-09-15

    A new method is proposed for calculating the parameters of critical points and binodals for the vapor–liquid (insulator–metal) phase transition in vapors of metals with multielectron valence shells. The method is based on a model developed earlier for the vapors of alkali metals, atomic hydrogen, and exciton gas, proceeding from the assumption that the cohesion determining the basic characteristics of metals under normal conditions is also responsible for their properties in the vicinity of the critical point. It is proposed to calculate the cohesion of multielectron atoms using well-known scaling relations for the binding energy, which are constructed for most metals in the periodic table by processing the results of many numerical calculations. The adopted model allows the parameters of critical points and binodals for the vapor–liquid phase transition in metal vapors to be calculated using published data on the properties of metals under normal conditions. The parameters of critical points have been calculated for a large number of metals and show satisfactory agreement with experimental data for alkali metals and with available estimates for all other metals. Binodals of metals have been calculated for the first time.

  1. Compression Maps and Stable Relations

    CERN Document Server

    Price, Kenneth L

    2011-01-01

    Balanced relations were defined by G. Abrams to extend the convolution product used in the construction of incidence rings. We define stable relations,which form a class between balanced relations and preorders. We also define a compression map to be a surjective function between two sets which preserves order, preserves off-diagonal relations, and has the additional property every transitive triple is the image of a transitive triple. We show a compression map preserves the balanced and stable properties but the compression of a preorder may be stable and not transitive. We also cover an example of a stable relation which is not the compression of a preorder. In our main theorem we provide necessary and sufficient conditions for a finite stable relation to be the compression of a preorder.

  2. Compressive Sensing for Quantum Imaging

    Science.gov (United States)

    Howland, Gregory A.

    This thesis describes the application of compressive sensing to several challenging problems in quantum imaging with practical and fundamental implications. Compressive sensing is a measurement technique that compresses a signal during measurement such that it can be dramatically undersampled. Compressive sensing has been shown to be an extremely efficient measurement technique for imaging, particularly when detector arrays are not available. The thesis first reviews compressive sensing through the lens of quantum imaging and quantum measurement. Four important applications and their corresponding experiments are then described in detail. The first application is a compressive sensing, photon-counting lidar system. A novel depth mapping technique that uses standard, linear compressive sensing is described. Depth maps up to 256 x 256 pixel transverse resolution are recovered with depth resolution less than 2.54 cm. The first three-dimensional, photon counting video is recorded at 32 x 32 pixel resolution and 14 frames-per-second. The second application is the use of compressive sensing for complementary imaging---simultaneously imaging the transverse-position and transverse-momentum distributions of optical photons. This is accomplished by taking random, partial projections of position followed by imaging the momentum distribution on a cooled CCD camera. The projections are shown to not significantly perturb the photons' momenta while allowing high resolution position images to be reconstructed using compressive sensing. A variety of objects and their diffraction patterns are imaged including the double slit, triple slit, alphanumeric characters, and the University of Rochester logo. The third application is the use of compressive sensing to characterize spatial entanglement of photon pairs produced by spontaneous parametric downconversion. The technique gives a theoretical speedup N2/log N for N-dimensional entanglement over the standard raster scanning technique

  3. Performances of electrically heated microgroove vaporizers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An electrically heated microgroove vaporizer was proposed. The vaporizer mainly comprised an outer tube, an inner tube and an electrical heater cartridge. Microgrooves were fabricated on the external surface of the inner tube by micro-cutting method,which formed the flow passage for fluid between the external surface of the inner tube and the internal surface of the outer tube.Experiments related to the temperature rise response of water and the thermal conversion efficiency of vaporizer were done to estimate the influences of microgroove's direction, feed flow rate and input voltage on the performances of the vaporizer. The results indicate that the microgroove's direction dominates the vaporizer performance at a lower input voltage. The longitudina lmicrogroove vaporizer exhibits the best performances for the temperature rise response of water and thermal conversion efficiency of vaporizer. For a moderate input voltage, the microgroove's direction and the feed flow rate of water together govern the vaporizer performances. The input voltage becomes the key influencing factor when the vaporizer works at a high input voltage, resulting in the similar performances of longitudinal, oblique and latitudinal microgroove vaporizers.

  4. Mass transport measurements and modeling for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Chiang, D.Y.; Fiadzo, O.G.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1997-12-01

    This project involves experimental and modeling investigation of densification behavior and mass transport in fiber preforms and partially densified composites, and application of these results to chemical vapor infiltration (CVI) process modeling. This supports work on-going at ORNL in process development for fabrication of ceramic matrix composite (CMC) tubes. Tube-shaped composite preforms are fabricated at ORNL with Nextel{trademark} 312 fiber (3M Corporation, St. Paul, MN) by placing and compressing several layers of braided sleeve on a tubular mandrel. In terms of fiber architecture these preforms are significantly different than those made previously with Nicalon{trademark} fiber (Nippon Carbon Corp., Tokyo, Japan) square weave cloth. The authors have made microstructure and permeability measurements on several of these preforms and a few partially densified composites so as to better understand their densification behavior during CVI.

  5. Strain relaxation in graphene grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Troppenz, Gerald V., E-mail: gerald.troppenz@helmholtz-berlin.de; Gluba, Marc A.; Kraft, Marco; Rappich, Jörg; Nickel, Norbert H. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institut für Silizium Photovoltaik, Kekuléstr. 5, D-12489 Berlin (Germany)

    2013-12-07

    The growth of single layer graphene by chemical vapor deposition on polycrystalline Cu substrates induces large internal biaxial compressive strain due to thermal expansion mismatch. Raman backscattering spectroscopy and atomic force microscopy were used to study the strain relaxation during and after the transfer process from Cu foil to SiO{sub 2}. Interestingly, the growth of graphene results in a pronounced ripple structure on the Cu substrate that is indicative of strain relaxation of about 0.76% during the cooling from the growth temperature. Removing graphene from the Cu substrates and transferring it to SiO{sub 2} results in a shift of the 2D phonon line by 27 cm{sup −1} to lower frequencies. This translates into additional strain relaxation. The influence of the processing steps, used etching solution and solvents on strain, is investigated.

  6. Advances in compressible turbulent mixing

    Energy Technology Data Exchange (ETDEWEB)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

  7. A new compression design that increases proximal locking screw bending resistance in femur compression nails.

    Science.gov (United States)

    Karaarslan, Ahmet Adnan; Karakaşli, Ahmet; Karci, Tolga; Aycan, Hakan; Yildirim, Serhat; Sesli, Erhan

    2015-06-01

    The aim is to present our new method of compression, a compression tube instead of conventional compression screw and to investigate the difference of proximal locking screw bending resistance between compression screw application (6 mm wide contact) and compression tube (two contact points with 13 mm gap) application. We formed six groups each consisting of 10 proximal locking screws. On metal cylinder representing lesser trochanter level, we performed 3-point bending tests with compression screw and with compression tube. We determined the yield points of the screws in 3-point bending tests using an axial compression testing machine. We determined the yield point of 5 mm screws as 1963±53 N (mean±SD) with compression screw, and as 2929±140 N with compression tubes. We found 51% more locking screw bending resistance with compression tube than with compression screw (p=0,000). Therefore compression tubes instead of compression screw must be preferred at femur compression nails.

  8. Compressed Submanifold Multifactor Analysis.

    Science.gov (United States)

    Luu, Khoa; Savvides, Marios; Bui, Tien; Suen, Ching

    2016-04-14

    Although widely used, Multilinear PCA (MPCA), one of the leading multilinear analysis methods, still suffers from four major drawbacks. First, it is very sensitive to outliers and noise. Second, it is unable to cope with missing values. Third, it is computationally expensive since MPCA deals with large multi-dimensional datasets. Finally, it is unable to maintain the local geometrical structures due to the averaging process. This paper proposes a novel approach named Compressed Submanifold Multifactor Analysis (CSMA) to solve the four problems mentioned above. Our approach can deal with the problem of missing values and outliers via SVD-L1. The Random Projection method is used to obtain the fast low-rank approximation of a given multifactor dataset. In addition, it is able to preserve the geometry of the original data. Our CSMA method can be used efficiently for multiple purposes, e.g. noise and outlier removal, estimation of missing values, biometric applications. We show that CSMA method can achieve good results and is very efficient in the inpainting problem as compared to [1], [2]. Our method also achieves higher face recognition rates compared to LRTC, SPMA, MPCA and some other methods, i.e. PCA, LDA and LPP, on three challenging face databases, i.e. CMU-MPIE, CMU-PIE and Extended YALE-B.

  9. The OMV Data Compression System Science Data Compression Workshop

    Science.gov (United States)

    Lewis, Garton H., Jr.

    1989-01-01

    The Video Compression Unit (VCU), Video Reconstruction Unit (VRU), theory and algorithms for implementation of Orbital Maneuvering Vehicle (OMV) source coding, docking mode, channel coding, error containment, and video tape preprocessed space imagery are presented in viewgraph format.

  10. Wearable EEG via lossless compression.

    Science.gov (United States)

    Dufort, Guillermo; Favaro, Federico; Lecumberry, Federico; Martin, Alvaro; Oliver, Juan P; Oreggioni, Julian; Ramirez, Ignacio; Seroussi, Gadiel; Steinfeld, Leonardo

    2016-08-01

    This work presents a wearable multi-channel EEG recording system featuring a lossless compression algorithm. The algorithm, based in a previously reported algorithm by the authors, exploits the existing temporal correlation between samples at different sampling times, and the spatial correlation between different electrodes across the scalp. The low-power platform is able to compress, by a factor between 2.3 and 3.6, up to 300sps from 64 channels with a power consumption of 176μW/ch. The performance of the algorithm compares favorably with the best compression rates reported up to date in the literature.

  11. Context-Aware Image Compression.

    Directory of Open Access Journals (Sweden)

    Jacky C K Chan

    Full Text Available We describe a physics-based data compression method inspired by the photonic time stretch wherein information-rich portions of the data are dilated in a process that emulates the effect of group velocity dispersion on temporal signals. With this coding operation, the data can be downsampled at a lower rate than without it. In contrast to previous implementation of the warped stretch compression, here the decoding can be performed without the need of phase recovery. We present rate-distortion analysis and show improvement in PSNR compared to compression via uniform downsampling.

  12. Compressive sensing for urban radar

    CERN Document Server

    Amin, Moeness

    2014-01-01

    With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates.Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracki

  13. Designing experiments through compressed sensing.

    Energy Technology Data Exchange (ETDEWEB)

    Young, Joseph G.; Ridzal, Denis

    2013-06-01

    In the following paper, we discuss how to design an ensemble of experiments through the use of compressed sensing. Specifically, we show how to conduct a small number of physical experiments and then use compressed sensing to reconstruct a larger set of data. In order to accomplish this, we organize our results into four sections. We begin by extending the theory of compressed sensing to a finite product of Hilbert spaces. Then, we show how these results apply to experiment design. Next, we develop an efficient reconstruction algorithm that allows us to reconstruct experimental data projected onto a finite element basis. Finally, we verify our approach with two computational experiments.

  14. Compressive myelopathy in fluorosis: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.K. [MR Section, Department of Radiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow-226014 (India); Agarwal, P. [MR Section, Department of Radiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow-226014 (India); Kumar, S. [MR Section, Department of Radiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow-226014 (India); Surana, P.K. [Department of Neurology, SGPGIMS, Lucknow-226014 (India); Lal, J.H. [MR Section, Department of Radiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow-226014 (India); Misra, U.K. [Department of Neurology, SGPGIMS, Lucknow-226014 (India)

    1996-05-01

    We examined four patients with fluorosis, presenting with compressive myelopathy, by MRI, using spin-echo and fast low-angle shot sequences. Cord compression due to ossification of the posterior longitudinal ligament (PLL) and ligamentum flavum (LF) was demonstrated in one and ossification of only the LF in one. Marrow signal was observed in the PLL and LF in all the patients on all pulse sequences. In patients with compressive myelopathy secondary to ossification of PLL and/or LF, fluorosis should be considered as a possible cause, especially in endemic regions. (orig.). With 2 figs., 1 tab.

  15. Partial transparency of compressed wood

    Science.gov (United States)

    Sugimoto, Hiroyuki; Sugimori, Masatoshi

    2016-05-01

    We have developed novel wood composite with optical transparency at arbitrary region. Pores in wood cells have a great variation in size. These pores expand the light path in the sample, because the refractive indexes differ between constituents of cell and air in lumen. In this study, wood compressed to close to lumen had optical transparency. Because the condition of the compression of wood needs the plastic deformation, wood was impregnated phenolic resin. The optimal condition for high transmission is compression ratio above 0.7.

  16. Compressive phase-only filtering at extreme compression rates

    Science.gov (United States)

    Pastor-Calle, David; Pastuszczak, Anna; Mikołajczyk, Michał; Kotyński, Rafał

    2017-01-01

    We introduce an efficient method for the reconstruction of the correlation between a compressively measured image and a phase-only filter. The proposed method is based on two properties of phase-only filtering: such filtering is a unitary circulant transform, and the correlation plane it produces is usually sparse. Thanks to these properties, phase-only filters are perfectly compatible with the framework of compressive sensing. Moreover, the lasso-based recovery algorithm is very fast when phase-only filtering is used as the compression matrix. The proposed method can be seen as a generalization of the correlation-based pattern recognition technique, which is hereby applied directly to non-adaptively acquired compressed data. At the time of measurement, any prior knowledge of the target object for which the data will be scanned is not required. We show that images measured at extremely high compression rates may still contain sufficient information for target classification and localization, even if the compression rate is high enough, that visual recognition of the target in the reconstructed image is no longer possible. The method has been applied by us to highly undersampled measurements obtained from a single-pixel camera, with sampling based on randomly chosen Walsh-Hadamard patterns.

  17. Photoelectron spectroscopy of phthalocyanine vapors

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, J.

    1979-01-01

    The He(I) photoelectron spectra of several metal phthalocyanines and metal-free phthalocyanine vapor shows that: a sharp peak at 4.99 eV is an artifact due to ionization of atomic He by He(II) radiation; the first phthalocyanine peak (metal-containing or metal-free) occurs at 6.4 eV; and the metal-like d orbitals lie at least 1 to 2 eV deeper, except in the case of Fe. (DLC)

  18. Efficient Lossy Compression for Compressive Sensing Acquisition of Images in Compressive Sensing Imaging Systems

    Directory of Open Access Journals (Sweden)

    Xiangwei Li

    2014-12-01

    Full Text Available Compressive Sensing Imaging (CSI is a new framework for image acquisition, which enables the simultaneous acquisition and compression of a scene. Since the characteristics of Compressive Sensing (CS acquisition are very different from traditional image acquisition, the general image compression solution may not work well. In this paper, we propose an efficient lossy compression solution for CS acquisition of images by considering the distinctive features of the CSI. First, we design an adaptive compressive sensing acquisition method for images according to the sampling rate, which could achieve better CS reconstruction quality for the acquired image. Second, we develop a universal quantization for the obtained CS measurements from CS acquisition without knowing any a priori information about the captured image. Finally, we apply these two methods in the CSI system for efficient lossy compression of CS acquisition. Simulation results demonstrate that the proposed solution improves the rate-distortion performance by 0.4~2 dB comparing with current state-of-the-art, while maintaining a low computational complexity.

  19. Efficient lossy compression for compressive sensing acquisition of images in compressive sensing imaging systems.

    Science.gov (United States)

    Li, Xiangwei; Lan, Xuguang; Yang, Meng; Xue, Jianru; Zheng, Nanning

    2014-12-05

    Compressive Sensing Imaging (CSI) is a new framework for image acquisition, which enables the simultaneous acquisition and compression of a scene. Since the characteristics of Compressive Sensing (CS) acquisition are very different from traditional image acquisition, the general image compression solution may not work well. In this paper, we propose an efficient lossy compression solution for CS acquisition of images by considering the distinctive features of the CSI. First, we design an adaptive compressive sensing acquisition method for images according to the sampling rate, which could achieve better CS reconstruction quality for the acquired image. Second, we develop a universal quantization for the obtained CS measurements from CS acquisition without knowing any a priori information about the captured image. Finally, we apply these two methods in the CSI system for efficient lossy compression of CS acquisition. Simulation results demonstrate that the proposed solution improves the rate-distortion performance by 0.4~2 dB comparing with current state-of-the-art, while maintaining a low computational complexity.

  20. Influence of compression on water sorption, glass transition, and enthalpy relaxation behavior of freeze-dried amorphous sugar matrices.

    Science.gov (United States)

    Imamura, Koreyoshi; Kagotani, Ryo; Nomura, Mayo; Tanaka, Kazuhiro; Kinugawa, Kohshi; Nakanishi, Kazuhiro

    2011-04-15

    An amorphous matrix comprised of sugar molecules are frequently used in the pharmaceutical industry. The compression of the amorphous sugar matrix improves the handling. Herein, the influence of compression on the water sorption of an amorphous sugar matrix was investigated. Amorphous sugar samples were prepared by freeze-drying, using several types of sugars, and compressed at 0-443 MPa. The compressed amorphous sugar samples as well as uncompressed samples were rehumidified at given RHs, and the equilibrium water content and glass transition temperature (T(g)) were then measured. Compression resulted in a decrease in the equilibrium water content of the matrix, the magnitude of which was more significant for smaller sized sugars. Diffusivity of water vapor in the sample was also decreased to one-hundredth by the compression. The T(g) value for a given RH remained unchanged, irrespective of the compression. Accordingly, the decrease in T(g) with increasing water content increased as the result of compression. The structural relaxation of the amorphous sugar matrices were also examined and found to be accelerated to the level of a non-porous amorphous sugar matrix as the result of the compression. The findings indicate that pores contained in freeze-dried sugar samples interfere with the propagation of structural relaxation.

  1. Compressive Acquisition of Dynamic Scenes

    CERN Document Server

    Sankaranarayanan, Aswin C; Chellappa, Rama; Baraniuk, Richard G

    2012-01-01

    Compressive sensing (CS) is a new approach for the acquisition and recovery of sparse signals and images that enables sampling rates significantly below the classical Nyquist rate. Despite significant progress in the theory and methods of CS, little headway has been made in compressive video acquisition and recovery. Video CS is complicated by the ephemeral nature of dynamic events, which makes direct extensions of standard CS imaging architectures and signal models difficult. In this paper, we develop a new framework for video CS for dynamic textured scenes that models the evolution of the scene as a linear dynamical system (LDS). This reduces the video recovery problem to first estimating the model parameters of the LDS from compressive measurements, and then reconstructing the image frames. We exploit the low-dimensional dynamic parameters (the state sequence) and high-dimensional static parameters (the observation matrix) of the LDS to devise a novel compressive measurement strategy that measures only the...

  2. Normalized Compression Distance of Multiples

    CERN Document Server

    Cohen, Andrew R

    2012-01-01

    Normalized compression distance (NCD) is a parameter-free similarity measure based on compression. The NCD between pairs of objects is not sufficient for all applications. We propose an NCD of finite multisets (multiples) of objacts that is metric and is better for many applications. Previously, attempts to obtain such an NCD failed. We use the theoretical notion of Kolmogorov complexity that for practical purposes is approximated from above by the length of the compressed version of the file involved, using a real-world compression program. We applied the new NCD for multiples to retinal progenitor cell questions that were earlier treated with the pairwise NCD. Here we get significantly better results. We also applied the NCD for multiples to synthetic time sequence data. The preliminary results are as good as nearest neighbor Euclidean classifier.

  3. Compression fractures of the back

    Science.gov (United States)

    Taking steps to prevent and treat osteoporosis is the most effective way to prevent compression or insufficiency fractures. Getting regular load-bearing exercise (such as walking) can help you avoid bone loss.

  4. Compressed sensing for distributed systems

    CERN Document Server

    Coluccia, Giulio; Magli, Enrico

    2015-01-01

    This book presents a survey of the state-of-the art in the exciting and timely topic of compressed sensing for distributed systems. It has to be noted that, while compressed sensing has been studied for some time now, its distributed applications are relatively new. Remarkably, such applications are ideally suited to exploit all the benefits that compressed sensing can provide. The objective of this book is to provide the reader with a comprehensive survey of this topic, from the basic concepts to different classes of centralized and distributed reconstruction algorithms, as well as a comparison of these techniques. This book collects different contributions on these aspects. It presents the underlying theory in a complete and unified way for the first time, presenting various signal models and their use cases. It contains a theoretical part collecting latest results in rate-distortion analysis of distributed compressed sensing, as well as practical implementations of algorithms obtaining performance close to...

  5. Preprocessing of compressed digital video

    Science.gov (United States)

    Segall, C. Andrew; Karunaratne, Passant V.; Katsaggelos, Aggelos K.

    2000-12-01

    Pre-processing algorithms improve on the performance of a video compression system by removing spurious noise and insignificant features from the original images. This increases compression efficiency and attenuates coding artifacts. Unfortunately, determining the appropriate amount of pre-filtering is a difficult problem, as it depends on both the content of an image as well as the target bit-rate of compression algorithm. In this paper, we explore a pre- processing technique that is loosely coupled to the quantization decisions of a rate control mechanism. This technique results in a pre-processing system that operates directly on the Displaced Frame Difference (DFD) and is applicable to any standard-compatible compression system. Results explore the effect of several standard filters on the DFD. An adaptive technique is then considered.

  6. Compressed gas fuel storage system

    Energy Technology Data Exchange (ETDEWEB)

    Wozniak, John J. (Columbia, MD); Tiller, Dale B. (Lincoln, NE); Wienhold, Paul D. (Baltimore, MD); Hildebrand, Richard J. (Edgemere, MD)

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  7. Shock compression of polyvinyl chloride

    Science.gov (United States)

    Neogi, Anupam; Mitra, Nilanjan

    2016-04-01

    This study presents shock compression simulation of atactic polyvinyl chloride (PVC) using ab-initio and classical molecular dynamics. The manuscript also identifies the limits of applicability of classical molecular dynamics based shock compression simulation for PVC. The mechanism of bond dissociation under shock loading and its progression is demonstrated in this manuscript using the density functional theory based molecular dynamics simulations. The rate of dissociation of different bonds at different shock velocities is also presented in this manuscript.

  8. Bridgman's concern (shock compression science)

    Science.gov (United States)

    Graham, R. A.

    1994-07-01

    In 1956 P. W. Bridgman published a letter to the editor in the Journal of Applied Physics reporting results of electrical resistance measurements on iron under static high pressure. The work was undertaken to verify the existence of a polymorphic phase transition at 130 kbar (13 GPa) reported in the same journal and year by the Los Alamos authors, Bancroft, Peterson, and Minshall for high pressure, shock-compression loading. In his letter, Bridgman reported that he failed to find any evidence for the transition. Further, he raised some fundamental concerns as to the state of knowledge of shock-compression processes in solids. Later it was determined that Bridgman's static pressure scale was in error, and the shock observations became the basis for calibration of pressure values in static high pressure apparatuses. In spite of the error in pressure scales, Bridgman's concerns on descriptions of shock-compression processes were perceptive and have provided the basis for subsequent fundamental studies of shock-compressed solids. The present paper, written in response to receipt of the 1993 American Physical Society Shock-Compression Science Award, provides a brief contemporary assessment of those shock-compression issues which were the basis of Bridgman's 1956 concerns.

  9. Hidden force opposing ice compression

    CERN Document Server

    Sun, Chang Q; Zheng, Weitao

    2012-01-01

    Coulomb repulsion between the unevenly-bound bonding and nonbonding electron pairs in the O:H-O hydrogen-bond is shown to originate the anomalies of ice under compression. Consistency between experimental observations, density functional theory and molecular dynamics calculations confirmed that the resultant force of the compression, the repulsion, and the recovery of electron-pair dislocations differentiates ice from other materials in response to pressure. The compression shortens and strengthens the longer-and-softer intermolecular O:H lone-pair virtual-bond; the repulsion pushes the bonding electron pair away from the H+/p and hence lengthens and weakens the intramolecular H-O real-bond. The virtual-bond compression and the real-bond elongation symmetrize the O:H-O as observed at ~60 GPa and result in the abnormally low compressibility of ice. The virtual-bond stretching phonons ( 3000 cm-1) softened upon compression. The cohesive energy of the real-bond dominates and its loss lowers the critical temperat...

  10. Influence of Soil Moisture on Soil Gas Vapor Concentration for Vapor Intrusion

    OpenAIRE

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    Mathematical models have been widely used in analyzing the effects of various environmental factors in the vapor intrusion process. Soil moisture content is one of the key factors determining the subsurface vapor concentration profile. This manuscript considers the effects of soil moisture profiles on the soil gas vapor concentration away from any surface capping by buildings or pavement. The “open field” soil gas vapor concentration profile is observed to be sensitive to the soil moisture di...

  11. Compression Stripping of Flue Gas with Energy Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Ochs, Thomas L.; O' Connor, William K.

    2005-05-31

    A method of remediating and recovering energy from combustion products from a fossil fuel power plant having at least one fossil fuel combustion chamber, at least one compressor, at least one turbine, at least one heat exchanger and a source of oxygen. Combustion products including non-condensable gases such as oxygen and nitrogen and condensable vapors such as water vapor and acid gases such as SOX and NOX and CO2 and pollutants are produced and energy is recovered during the remediation which recycles combustion products and adds oxygen to support combustion. The temperature and/or pressure of the combustion products are changed by cooling through heat exchange with thermodynamic working fluids in the power generation cycle and/or compressing and/or heating and/or expanding the combustion products to a temperature/pressure combination below the dew point of at least some of the condensable vapors to condense liquid having some acid gases dissolved and/or entrained and/or directly condense acid gas vapors from the combustion products and to entrain and/or dissolve some of the pollutants while recovering sensible and/or latent heat from the combustion products through heat exchange between the combustion products and thermodynamic working fluids and/or cooling fluids used in the power generating cycle. Then the CO2, SO2, and H2O poor and oxygen enriched remediation stream is sent to an exhaust and/or an air separation unit and/or a turbine.

  12. Development of a preprototype hyperfiltration wash water recovery subsystem

    Science.gov (United States)

    1981-01-01

    The use of hyperfiltration as a mode of reclamation of waste water on board an extended mission spacecraft was investigated. Two basic approaches are considered with respect to hyperfiltration of wash water recovery. The initial approach involves the use of a hollow fiber permeator and a tubular module, operating at ambient temperature. In this system, relatively large doses of biocides are used to control microbial activity. Since biocides require a long contact time, and many have adverse dematological effects as well as many interact with membrane material, a second approach is considered which involves operating at pasturization temperature.

  13. Optical Sensor for Diverse Organic Vapors at ppm Concentration Ranges

    Directory of Open Access Journals (Sweden)

    Dora M. Paolucci

    2011-03-01

    Full Text Available A broadly responsive optical organic vapor sensor is described that responds to low concentrations of organic vapors without significant interference from water vapor. Responses to several classes of organic vapors are highlighted, and trends within classes are presented. The relationship between molecular properties (vapor pressure, boiling point, polarizability, and refractive index and sensor response are discussed.

  14. Comparing image compression methods in biomedical applications

    Directory of Open Access Journals (Sweden)

    Libor Hargas

    2004-01-01

    Full Text Available Compression methods suitable for image processing are described in this article in biomedical applications. The compression is often realized by reduction of irrelevance or redundancy. There are described lossless and lossy compression methods which can be use for compress of images in biomedical applications and comparison of these methods based on fidelity criteria.

  15. 29 CFR 1917.154 - Compressed air.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Compressed air. 1917.154 Section 1917.154 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.154 Compressed air. Employees shall be... this part during cleaning with compressed air. Compressed air used for cleaning shall not exceed...

  16. Vapor Pressures of Several Commercially Used Alkanolamines

    NARCIS (Netherlands)

    Klepacova, Katarina; Huttenhuis, Patrick J. G.; Derks, Peter W. J.; Versteeg, Geert F.; Klepáčová, Katarína

    2011-01-01

    For the design of acid gas treating processes, vapor-liquid equilibrium (VLE) data must be available of the solvents to be applied. In this study the vapor pressures of seven frequently industrially used alkanolamines (diethanolamine, N-methylethanolamine, N,N-dimethylethanolamine, N,N-diethylethano

  17. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  18. Water Vapor Forecasting for Chilean Sites

    Science.gov (United States)

    Marín, Julio C.; Cuevas, O.; Pozo, D.; Curé, M.

    2017-09-01

    "A number of observatories in Chile operate in the infrared region of the electromagnetic spectrum. Therefore, it is very important to them to accurately know the water vapor content of the atmosphere for a better observational planning. This talk provides an overview of the methods used to forecast water vapor over astronomical sites in Chile using observations and atmospheric numerical modeling."

  19. Can a drawover vaporizer be a pushover?

    Science.gov (United States)

    Taylor, J C; Restall, J

    1994-10-01

    Bench testing was carried out to establish whether the vapour output from an OMV50 vaporizer, as used in the Triservice apparatus, differs according to whether the carrier gas is either drawn or pushed through the vaporizer. Results show that the differences in output concentration between the two modes were clinically insignificant.

  20. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2013-01-01

    Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and

  1. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Science.gov (United States)

    2010-07-01

    ... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... pressure has been relieved from that part of the system to be repaired. (d) At no time shall compressed air... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air; general; compressed air systems...

  2. Tungsten chemical vapor deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Kiichi; Takeda, Nobuo.

    1993-07-13

    A tungsten chemical vapor deposition method is described, comprising: a first step of selectively growing a first thin tungsten film of a predetermined thickness in a desired region on the surface of a silicon substrate by reduction of a WF[sub 6] gas introduced into an atmosphere of a predetermined temperature containing said silicon substrate; and a second step of selectively growing a second tungsten film of a predetermined thickness on said first thin tungsten film by reduction of said WF[sub 6] with a silane gas further introduced into said atmosphere, wherein the surface state of said substrate is monitored by a pyrometer and the switching from said first step to said second step is performed when the emissivity of infrared light from the substrate surfaces reaches a predetermined value.

  3. Soil vapor extraction with dewatering

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, N.R. [Univ. of Waterloo, Ontario (Canada)

    1996-08-01

    The physical treatment technology of soil vapor extraction (SVE) is reliable, safe, robust, and able to remove significant amounts of mass at a relatively low cost. SVE combined with a pump-and-treat system to create a dewatered zone has the opportunity to remove more mass with the added cost of treating the extracted groundwater. Various limiting processes result in a significant reduction in the overall mass removal rates from a SVE system in porous media. Only pilot scale, limited duration SVE tests conducted in low permeability media have been reported in the literature. It is expected that the presence of a fracture network in low permeability media will add another complexity to the limiting conditions surrounding the SVE technology. 20 refs., 4 figs.

  4. Engineering vapor-deposited polyimides

    Science.gov (United States)

    Tsai, Feng-Yu

    The vapor deposition polymerization (VDP) of PMDA-ODA polyimide was studied parametrically to produce microcapsules and thin films with desirable properties and quality for the Inertial Confinement Fusion (ICF) experiments. The mechanical properties and gas permeability were determined at temperatures from 10 to 573 K. The VDP polyimide possessed distinct properties including lower gas permeability and stronger tensile properties from those of solution-cast Kapton, which were attributed to the presence of cross-linking. Processing parameters determining the properties of the VDP polyimide were identified: (1) utilizing air instead of nitrogen as the atmosphere of imidization increased the permeability by 140%, lowered the activation energy for permeation, and reduced the tensile strength by 30% without affecting the Young's modulus; (2) imidizing at faster heating rates increased the permeability by up to 50% and reduced the activation energy for permeation with 50% lowered tensile strength and impervious Young's modulus; (3) bi-axial stretching increased the permeability by up to three orders of magnitude. Analyses via IR spectroscopy, X-ray diffraction, and density measurement revealed that the effects of the processing parameters were results of the modifications in the crystallinity and molecular weight. The VDP polyimide underwent minor degradation in the tensile strength and elongation at break with unaffected Young's modulus and permeability upon absorbing 120 MGy of beta-radiation. Substituting a fluorinated dianhydride monomer, 6FDA, for PMDA in the optimized VDP process yielded 6FDA-ODA polyimide microcapsules and films with 50-fold increased permeability and comparable mechanical properties. The results of this study enable the production of polyimide microcapsules that will greatly facilitate the ICF experiments, and will broaden the applications of vapor-deposited polyimides in other technology fields.

  5. Vapor-barrier Vacuum Isolation System

    Science.gov (United States)

    Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)

    2014-01-01

    A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.

  6. Word-Based Text Compression

    CERN Document Server

    Platos, Jan

    2008-01-01

    Today there are many universal compression algorithms, but in most cases is for specific data better using specific algorithm - JPEG for images, MPEG for movies, etc. For textual documents there are special methods based on PPM algorithm or methods with non-character access, e.g. word-based compression. In the past, several papers describing variants of word-based compression using Huffman encoding or LZW method were published. The subject of this paper is the description of a word-based compression variant based on the LZ77 algorithm. The LZ77 algorithm and its modifications are described in this paper. Moreover, various ways of sliding window implementation and various possibilities of output encoding are described, as well. This paper also includes the implementation of an experimental application, testing of its efficiency and finding the best combination of all parts of the LZ77 coder. This is done to achieve the best compression ratio. In conclusion there is comparison of this implemented application wi...

  7. HANFORD CHEMICAL VAPORS WORKER CONCERNS & EXPOSURE EVALUATION

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON, T.J.

    2006-12-20

    Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank headspaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns. risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits-(OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors.

  8. Microbial growth with vapor-phase substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hanzel, Joanna; Thullner, Martin; Harms, Hauke [UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig (Germany); Wick, Lukas Y., E-mail: lukas.wick@ufz.de [UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig (Germany)

    2011-04-15

    Limited information exists on influences of the diffusive transport of volatile organic contaminants (VOC) on bacterial activity in the unsaturated zone of the terrestrial subsurface. Diffusion of VOC in the vapor-phase is much more efficient than in water and results in effective VOC transport and high bioavailability despite restricted mobility of bacteria in the vadose zone. Since many bacteria tend to accumulate at solid-water, solid-air and air-water interfaces, such phase boundaries are of a special interest for VOC-biodegradation. In an attempt to evaluate microbial activity toward air-borne substrates, this study investigated the spatio-temporal interplay between growth of Pseudomonas putida (NAH7) on vapor-phase naphthalene (NAPH) and its repercussion on vapor-phase NAPH concentrations. Our data demonstrate that growth rates of strain PpG7 were inversely correlated to the distance from the source of vapor-phase NAPH. Despite the high gas phase diffusivity of NAPH, microbial growth was absent at distances above 5 cm from the source when sufficient biomass was located in between. This indicates a high efficiency of suspended bacteria to acquire vapor-phase compounds and influence headspace concentration gradients at the centimeter-scale. It further suggests a crucial role of microorganisms as biofilters for gas-phase VOC emanating from contaminated groundwater or soil. - Research highlights: > Suspended bacteria have a high efficiency to degrade vapor-phase naphthalene. > Bacteria influence NAPH vapor-phase concentration gradients at centimeter-scale. > Microbial growth on vapor-phase naphthalene is inversely correlated to its source. > Bacteria are good biofilters for gas-phase NAPH emanating from contaminated sites. - Suspended bacteria have a high efficiency to degrade vapor-phase naphthalene and effectively influence vapor-phase naphthalene concentration gradients at the centimeter scale.

  9. Morphological Transform for Image Compression

    Directory of Open Access Journals (Sweden)

    Luis Pastor Sanchez Fernandez

    2008-05-01

    Full Text Available A new method for image compression based on morphological associative memories (MAMs is presented. We used the MAM to implement a new image transform and applied it at the transformation stage of image coding, thereby replacing such traditional methods as the discrete cosine transform or the discrete wavelet transform. Autoassociative and heteroassociative MAMs can be considered as a subclass of morphological neural networks. The morphological transform (MT presented in this paper generates heteroassociative MAMs derived from image subblocks. The MT is applied to individual blocks of the image using some transformation matrix as an input pattern. Depending on this matrix, the image takes a morphological representation, which is used to perform the data compression at the next stages. With respect to traditional methods, the main advantage offered by the MT is the processing speed, whereas the compression rate and the signal-to-noise ratio are competitive to conventional transforms.

  10. Compressive Sensing in Communication Systems

    DEFF Research Database (Denmark)

    Fyhn, Karsten

    2013-01-01

    Wireless communication is omnipresent today, but this development has led to frequency spectrum becoming a limited resource. Furthermore, wireless devices become more and more energy-limited, due to the demand for continual wireless communication of higher and higher amounts of information....... The need for cheaper, smarter and more energy efficient wireless devices is greater now than ever. This thesis addresses this problem and concerns the application of the recently developed sampling theory of compressive sensing in communication systems. Compressive sensing is the merging of signal...... acquisition and compression. It allows for sampling a signal with a rate below the bound dictated by the celebrated Shannon-Nyquist sampling theorem. In some communication systems this necessary minimum sample rate, dictated by the Shannon-Nyquist sampling theorem, is so high it is at the limit of what...

  11. Compressive Sensing for MIMO Radar

    CERN Document Server

    Yu, Yao; Poor, H Vincent

    2009-01-01

    Multiple-input multiple-output (MIMO) radar systems have been shown to achieve superior resolution as compared to traditional radar systems with the same number of transmit and receive antennas. This paper considers a distributed MIMO radar scenario, in which each transmit element is a node in a wireless network, and investigates the use of compressive sampling for direction-of-arrival (DOA) estimation. According to the theory of compressive sampling, a signal that is sparse in some domain can be recovered based on far fewer samples than required by the Nyquist sampling theorem. The DOA of targets form a sparse vector in the angle space, and therefore, compressive sampling can be applied for DOA estimation. The proposed approach achieves the superior resolution of MIMO radar with far fewer samples than other approaches. This is particularly useful in a distributed scenario, in which the results at each receive node need to be transmitted to a fusion center for further processing.

  12. Compressive Sensing with Optical Chaos

    Science.gov (United States)

    Rontani, D.; Choi, D.; Chang, C.-Y.; Locquet, A.; Citrin, D. S.

    2016-12-01

    Compressive sensing (CS) is a technique to sample a sparse signal below the Nyquist-Shannon limit, yet still enabling its reconstruction. As such, CS permits an extremely parsimonious way to store and transmit large and important classes of signals and images that would be far more data intensive should they be sampled following the prescription of the Nyquist-Shannon theorem. CS has found applications as diverse as seismology and biomedical imaging. In this work, we use actual optical signals generated from temporal intensity chaos from external-cavity semiconductor lasers (ECSL) to construct the sensing matrix that is employed to compress a sparse signal. The chaotic time series produced having their relevant dynamics on the 100 ps timescale, our results open the way to ultrahigh-speed compression of sparse signals.

  13. Compressive behavior of fine sand.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  14. Instability of ties in compression

    DEFF Research Database (Denmark)

    Buch-Hansen, Thomas Cornelius

    2013-01-01

    Masonry cavity walls are loaded by wind pressure and vertical load from upper floors. These loads results in bending moments and compression forces in the ties connecting the outer and the inner wall in a cavity wall. Large cavity walls are furthermore loaded by differential movements from...... the temperature gradient between the outer and the inner wall, which results in critical increase of the bending moments in the ties. Since the ties are loaded by combined compression and moment forces, the loadbearing capacity is derived from instability equilibrium equations. Most of them are iterative, since......-connectors in cavity walls was developed. The method takes into account constraint conditions limiting the free length of the wall tie, and the instability in case of pure compression which gives an optimal load bearing capacity. The model is illustrated with examples from praxis....

  15. Development of High-Efficiency Low-Lift Vapor Compression System - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, Srinivas; Armstrong, Peter; Wang, Weimin; Fernandez, Nicholas; Cho, Heejin; Goetzler, W.; Burgos, J.; Radhakrishnan, R.; Ahlfeldt, C.

    2010-03-31

    PNNL, with cofunding from the Bonneville Power Administration (BPA) and Building Technologies Program, conducted a research and development activity targeted at addressing the energy efficiency goals targeted in the BPA roadmap. PNNL investigated an integrated heating, ventilation and air conditioning (HVAC) system option referred to as the low-lift cooling system that potentially offers an increase in HVAC energy performance relative to ASHRAE Standard 90.1-2004.

  16. Refrigerant Charge Management and Control for Next-Generation Aircraft Vapor Compression Systems (Postprint)

    Science.gov (United States)

    2013-09-01

    Compressor Oil Separator Condenser Receiver VCSRF System (R134a) Liquid Injection Cooling Glycol Load Oil Filter / Driers T TT T P, T P, T...Advanced electronic packages are challenging aircraft thermal management systems (TMS) in terms of higher cooling loads. This trend is forecast to...includes a variable speed screw compressor from Fairchild Controls Corporation, a Danfoss 70kW condenser (B3-095-72-H), two Emerson expansion valves

  17. Cryogenic Microcooling, A micromachined cold stage operating with a sorption compressor in a vapor compression cycle

    NARCIS (Netherlands)

    Burger, Johannes Faas

    2001-01-01

    Cryocoolers are refrigerators capable of reaching temperatures below roughly 120 kelvin. Such coolers are used for cooling of, for instance, superconducting electronics and magnets, (infrared) detectors, and cryopumps. Low-temperature applications requiring very little cooling power, such as a

  18. Mini-channel evaporator/heat pipe assembly for a chip cooling vapor compression refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Guilherme B.; Barbosa, Jader R. Jr.; Prata, Alvaro T. [Polo - Research Laboratories for Emerging Technologies in Cooling and Thermophysics, Department of Mechanical Engineering, Campus Universitario, Trindade, Federal University of Santa Catarina, Florianopolis, SC 88040900 (Brazil)

    2010-11-15

    We investigate a novel evaporator design for a small-scale refrigeration system whose function is to assist the existing heat pipe technology currently used in chip cooling of portable computers. A heat transfer model for the evaporator/heat pipe assembly was devised specifically for sizing the evaporator in order to keep the chip surface temperature below a certain value. A prototype was tested with R-600a at saturation temperatures of 45 and 55 C, mass flow rates between 0.5 and 1.5 kg h{sup -1} and heat transfer rates between 30 and 60 W. The experimental results demonstrated that the average refrigerant-side heat transfer coefficient is more sensitive to a change in the refrigerant mass flux than to changes in the saturation temperature and heat transfer rate. The agreement between the calculated heat transfer coefficient and the data was within {+-}10% for the conditions evaluated. (author)

  19. Computer modeling of the vapor compression cycle with constant flow area expansion device: Appendix J

    Science.gov (United States)

    Dormanski, P.; Didion, D.

    1983-05-01

    The modeling effort emphasis was on the local thermodynamic phenomena which were described by fundamental heat transfer equations and equation of state relationships among material properties. In the compressor model several refrigerant locations were identified and the processes taking place between these locations accounted for all significant heat and pressure losses. Evaporator and condenser models were developed on a tube by tube basis where performance of each coil tube is computed separately by considering the cross flow heat transfer with the external air stream and the appropriate heat and mass transfer relationships. A capillary tube model was formulated with the aid of Fanino flow theory.

  20. Cryogenic microcooling. A micromachined cold stage operating with a sorption compressor in a vapor compression cycle

    Energy Technology Data Exchange (ETDEWEB)

    Burger, J.F.

    2001-01-12

    The development of a micromachined cryocooler was the initial project goal. To make this wide and ambitious goal more specific, the following four project goals were defined: (1) Investigate the opportunities and limitations of the miniaturization of common thermodynamic fluid cooling cycles ('top-down' approach); (2) Investigate how micromechanical techniques and components can be used to build a small cryocooler or cryocooler components ('bottom-up' approach); (3) Choose a cooling cycle that can be used to define specifications for the development of small cooler components; and (4) Develop the necessary components for this demonstrator cooling system and, if possible, combine the components into a working system. Chapter 2 presents an overview of a number of cooling cycles that can be applied in cryocoolers. Emphasis is put on thermodynamic theory, conceptual operation and possible loss mechanisms. This chapter serves as a conceptual framework on cryocooler theory which is referred to throughout this thesis. In chapter 2 also a new regenerative cooling cycle is proposed which appears particularly suitable to be applied on micro-scale. Miniaturization of cryocoolers is discussed in chapter 3. It is divided in three sub-topics: microfabrication, the influence of downscaling on the different fields that play a role in coolers, and the possible miniaturization of the cooling cycles that were discussed in chapter 2. Chapter 4 presents the operation and thermodynamic analysis of a sorption cooler, which consists of a sorption compressor and a Linde-Hampson cold stage. This cooling cycle was chosen for the development of small cooler elements because it appeared suitable to be applied on a small scale. The remainder of the thesis discusses the components that were developed; the requirements for the individual components are based on the specifications of the cooling cycle which are presented in section 4.7. Chapter 5 discusses the operation of a gas-gap heat switch as well as the fabrication of a thin-film metal hydride layer that can be used to control the hydrogen pressure in the gas gap. Chapter 6 describes the design, fabrication and testing of the individual sorption compressor cells. Chapter 7 deals with the development of miniature high pressure check valves, which are required in the sorption compressor. Finally, chapter 8 presents the design and operation of two different miniature cold stages, both employing Joule Thomson expansion. Conclusions and a future outlook are given in chapter 9.

  1. Open-cycle centrifugal vapor-compression heat pump. Final report, January 1986-May 1987

    Energy Technology Data Exchange (ETDEWEB)

    Burgmeier, L.R.; Horner, J.E.

    1987-11-30

    The objectives of the program were (1) to develop an open-cycle, high-lift, centrifugal steam-compressor system that can be efficiently retrofitted to existing multi-effect and high-temperature differential evaporators while maintaining the cost benefits of a single-stage centrifugal compressor, and (2) to demonstrate the energy saving and cost benefits of driving the compressor with a natural-gas-fueled gas-turbine engine. The turbine exhaust was to be used for final drying of the product that was evaporated. The report describes the installation of the system and the test activities through May 1987.

  2. Open-cycle centrifugal vapor-compression heat pump. Annual report, March 1984-February 1985

    Energy Technology Data Exchange (ETDEWEB)

    Iles, T.L.; Burgmeier, L.R.; Liu, A.Y.

    1985-04-01

    The objectives of the program are to (1) develop an open-cycle high-lift centrifugal steam compressor system that can be efficiently retrofitted to existing multi-effect and high-temperature differential evaporators while maintaining the cost benefits of a single-stage centrifugal compressor and (2) demonstrate the energy saving and cost benefits of driving the compressor with a natural-gas-fueled gas turbine engine. The turbine exhaust will be used for final drying of the product that was evaporated. This report describes the design and fabrication of the system and the test activities through February 1985.

  3. Open-cycle centrifugal vapor-compression heat pump. Annual report, March 1983-February 1984

    Energy Technology Data Exchange (ETDEWEB)

    Iles, T.L.; Burgmeier, L.R.; Stanko, J.E.

    1984-04-01

    The objectives of this program are: (1) to develop an open-cycle high-lift centrifugal steam compressor system that can be efficiently retrofitted to existing multi-effect and high-temperature differential evaporators while maintaining the cost benefits of a single-stage centrifugal compressor and (2) to demonstrate the energy saving and cost benefits of driving the compressor with a natural-gas-fueled gas turbine engine. The turbine exhaust will be used for final drying of the product that was evaporated. This report describes the design and fabrication of the system and the test activities through February 1984.

  4. Vapor Compression Refrigeration Loop with Spray Cooling for High Heat Flux Thermal Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Laser diodes are the key component in many space-based applications ranging from communication systems to optical sensors/detectors. Laser diode emitters however...

  5. Fast, efficient lossless data compression

    Science.gov (United States)

    Ross, Douglas

    1991-01-01

    This paper presents lossless data compression and decompression algorithms which can be easily implemented in software. The algorithms can be partitioned into their fundamental parts which can be implemented at various stages within a data acquisition system. This allows for efficient integration of these functions into systems at the stage where they are most applicable. The algorithms were coded in Forth to run on a Silicon Composers Single Board Computer (SBC) using the Harris RTX2000 Forth processor. The algorithms require very few system resources and operate very fast. The performance of the algorithms with the RTX enables real time data compression and decompression to be implemented for a wide range of applications.

  6. [Vascular compression of the duodenum].

    Science.gov (United States)

    Acosta, B; Guachalla, G; Martínez, C; Felce, S; Ledezma, G

    1991-01-01

    The acute vascular compression of the duodenum is a well-recognized clinical entity, characterized by recurrent vomiting, abdominal distention, weight loss, post prandial distress. The cause of compression is considered to be effect produced as a result of the angle formed by the superior mesenteric vessels and sometimes by one of its first two branches, and vertebrae and paravertebral muscles, when the angle between superior mesenteric vessels and the aorta it's lower than 18 degrees we can saw this syndrome. The duodenojejunostomy is the best treatment, as well as in our patient.

  7. GPU-accelerated compressive holography.

    Science.gov (United States)

    Endo, Yutaka; Shimobaba, Tomoyoshi; Kakue, Takashi; Ito, Tomoyoshi

    2016-04-18

    In this paper, we show fast signal reconstruction for compressive holography using a graphics processing unit (GPU). We implemented a fast iterative shrinkage-thresholding algorithm on a GPU to solve the ℓ1 and total variation (TV) regularized problems that are typically used in compressive holography. Since the algorithm is highly parallel, GPUs can compute it efficiently by data-parallel computing. For better performance, our implementation exploits the structure of the measurement matrix to compute the matrix multiplications. The results show that GPU-based implementation is about 20 times faster than CPU-based implementation.

  8. Compressing the Inert Doublet Model

    CERN Document Server

    Blinov, Nikita; Morrissey, David E; de la Puente, Alejandro

    2015-01-01

    The Inert Doublet Model relies on a discrete symmetry to prevent couplings of the new scalars to Standard Model fermions. This stabilizes the lightest inert state, which can then contribute to the observed dark matter density. In the presence of additional approximate symmetries, the resulting spectrum of exotic scalars can be compressed. Here, we study the phenomenological and cosmological implications of this scenario. We derive new limits on the compressed Inert Doublet Model from LEP, and outline the prospects for exclusion and discovery of this model at dark matter experiments, the LHC, and future colliders.

  9. High quality plasma-enhanced chemical vapor deposited silicon nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Cotler, T.J.; Chapple-Sokol, J. (IBM General Technology Division, Hopewell Junction, NY (United States))

    1993-07-01

    The qualities of plasma-enhanced chemical vapor deposited (PECVD) silicon nitride films can be improved by increasing the deposition temperature. This report compares PECVD silicon nitride films to low pressure chemical vapor deposited (LPCVD) films. The dependence of the film properties on process parameters, specifically power and temperature, are investigated. The stress is shown to shift from tensile to compressive with increasing temperature and power. The deposition rate, uniformity, wet etch rate, index of refraction, composition, stress, hydrogen content, and conformality are considered to evaluate the film properties. Temperature affects the hydrogen content in the films by causing decreased incorporation of N-H containing species whereas the dependence on power is due to changes in the gas-phase precursors. All PECVD film properties, with the exception of conformality, are comparable to those of LPCVD films.

  10. Modeling Two-Phase Flow and Vapor Cycles Using the Generalized Fluid System Simulation Program

    Science.gov (United States)

    Smith, Amanda D.; Majumdar, Alok K.

    2017-01-01

    This work presents three new applications for the general purpose fluid network solver code GFSSP developed at NASA's Marshall Space Flight Center: (1) cooling tower, (2) vapor-compression refrigeration system, and (3) vapor-expansion power generation system. These systems are widely used across engineering disciplines in a variety of energy systems, and these models expand the capabilities and the use of GFSSP to include fluids and features that are not part of its present set of provided examples. GFSSP provides pressure, temperature, and species concentrations at designated locations, or nodes, within a fluid network based on a finite volume formulation of thermodynamics and conservation laws. This paper describes the theoretical basis for the construction of the models, their implementation in the current GFSSP modeling system, and a brief evaluation of the usefulness of the model results, as well as their applicability toward a broader spectrum of analytical problems in both university teaching and engineering research.

  11. Wavelet and wavelet packet compression of electrocardiograms.

    Science.gov (United States)

    Hilton, M L

    1997-05-01

    Wavelets and wavelet packets have recently emerged as powerful tools for signal compression. Wavelet and wavelet packet-based compression algorithms based on embedded zerotree wavelet (EZW) coding are developed for electrocardiogram (ECG) signals, and eight different wavelets are evaluated for their ability to compress Holter ECG data. Pilot data from a blind evaluation of compressed ECG's by cardiologists suggest that the clinically useful information present in original ECG signals is preserved by 8:1 compression, and in most cases 16:1 compressed ECG's are clinically useful.

  12. A Case Study of a Low Powervapour Compression Refrigeration System

    Science.gov (United States)

    Abinav, R.; Nambiar, G. K.; Sahu, Debjyoti

    2016-09-01

    Reported in this paper is a case study on a normal vapor compression refrigeration system which is expected to be run by photovoltaic panels to utilize minimum grid power. A small 120 W refrigerator is fabricated out of commercially available components and run by an inverter and battery connected to solar photovoltaic panel as well as grid. Temperature at several points was measured and the performance was evaluated. The Coefficient of performance (COP) to run such refrigerator is estimated after numerical simulation of major components namely, evaporator, condenser and a capillary tube. The simulation was done to obtain an effective cooling temperature and the results were compared with measured temperatures. Calculation proves to be in conformity with the actual model.

  13. Maxwell's Demon and Data Compression

    CERN Document Server

    Hosoya, Akio; Shikano, Yutaka

    2011-01-01

    In an asymmetric Szilard engine model of Maxwell's demon, we show the equivalence between information theoretical and thermodynamic entropies when the demon erases information optimally. The work gain by the engine can be exactly canceled out by the work necessary to reset demon's memory after optimal data compression a la Shannon before the erasure.

  14. Grid-free compressive beamforming

    DEFF Research Database (Denmark)

    Xenaki, Angeliki; Gerstoft, Peter

    2015-01-01

    The direction-of-arrival (DOA) estimation problem involves the localization of a few sources from a limited number of observations on an array of sensors, thus it can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve high...

  15. LIDAR data compression using wavelets

    Science.gov (United States)

    Pradhan, B.; Mansor, Shattri; Ramli, Abdul Rahman; Mohamed Sharif, Abdul Rashid B.; Sandeep, K.

    2005-10-01

    The lifting scheme has been found to be a flexible method for constructing scalar wavelets with desirable properties. In this paper, it is extended to the LIDAR data compression. A newly developed data compression approach to approximate the LIDAR surface with a series of non-overlapping triangles has been presented. Generally a Triangulated Irregular Networks (TIN) are the most common form of digital surface model that consists of elevation values with x, y coordinates that make up triangles. But over the years the TIN data representation has become a case in point for many researchers due its large data size. Compression of TIN is needed for efficient management of large data and good surface visualization. This approach covers following steps: First, by using a Delaunay triangulation, an efficient algorithm is developed to generate TIN, which forms the terrain from an arbitrary set of data. A new interpolation wavelet filter for TIN has been applied in two steps, namely splitting and elevation. In the splitting step, a triangle has been divided into several sub-triangles and the elevation step has been used to 'modify' the point values (point coordinates for geometry) after the splitting. Then, this data set is compressed at the desired locations by using second generation wavelets. The quality of geographical surface representation after using proposed technique is compared with the original LIDAR data. The results show that this method can be used for significant reduction of data set.

  16. Compressed Blind De-convolution

    CERN Document Server

    Saligrama, V

    2009-01-01

    Suppose the signal x is realized by driving a k-sparse signal u through an arbitrary unknown stable discrete-linear time invariant system H. These types of processes arise naturally in Reflection Seismology. In this paper we are interested in several problems: (a) Blind-Deconvolution: Can we recover both the filter $H$ and the sparse signal $u$ from noisy measurements? (b) Compressive Sensing: Is x compressible in the conventional sense of compressed sensing? Namely, can x, u and H be reconstructed from a sparse set of measurements. We develop novel L1 minimization methods to solve both cases and establish sufficient conditions for exact recovery for the case when the unknown system H is auto-regressive (i.e. all pole) of a known order. In the compressed sensing/sampling setting it turns out that both H and x can be reconstructed from O(k log(n)) measurements under certain technical conditions on the support structure of u. Our main idea is to pass x through a linear time invariant system G and collect O(k lo...

  17. Compressing spatio-temporal trajectories

    DEFF Research Database (Denmark)

    Gudmundsson, Joachim; Katajainen, Jyrki; Merrick, Damian

    2009-01-01

    A trajectory is a sequence of locations, each associated with a timestamp, describing the movement of a point. Trajectory data is becoming increasingly available and the size of recorded trajectories is getting larger. In this paper we study the problem of compressing planar trajectories such tha...

  18. Range Compressed Holographic Aperture Ladar

    Science.gov (United States)

    2017-06-01

    digital holography, laser, active imaging, remote sensing, laser imaging 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 8...slow speed tunable lasers, while relaxing the need to precisely track the transceiver or target motion. In the following section we describe a scenario...contrast targets. As shown in Figure 28, augmenting holographic ladar with range compression relaxes the dependence of image reconstruction on

  19. Compressive passive millimeter wave imager

    Science.gov (United States)

    Gopalsami, Nachappa; Liao, Shaolin; Elmer, Thomas W; Koehl, Eugene R; Heifetz, Alexander; Raptis, Apostolos C

    2015-01-27

    A compressive scanning approach for millimeter wave imaging and sensing. A Hadamard mask is positioned to receive millimeter waves from an object to be imaged. A subset of the full set of Hadamard acquisitions is sampled. The subset is used to reconstruct an image representing the object.

  20. El vapor de ruedas "Cid": de pionero de la navegación comercial a vapor a primer vapor hospital

    Directory of Open Access Journals (Sweden)

    O. González García

    Full Text Available La aparición de la máquina de vapor había hecho realidad el sueño de navegar sin depender de las fuerzas de la naturaleza. La carrera por lograr un vapor comercial eficiente había comenzado. Con retraso por la Guerra de la Independencia, España se incorporó a la carrera. Entre los primeros vapores comerciales estaba el vapor "Cid". En 1859, en la Guerra de África, ante la necesidad de una evacuación regular de bajas se designa al "Cid" como buque hospital, fue la primera vez en el mundo que se usó un vapor hospital. El Dr. Nicasio Landa fue el responsable de realizar la misión con una organización moderna, eficaz y ejemplar. Pronto los vapores de ruedas perdieron su batalla con los de hélice y el "Cid" quedó obsoleto. Sin embargo, a pesar de su corta vida operativa, poco más de quince años, escribió una importante página en la historia de la navegación en España.

  1. Analytical modeling of the subsurface volatile organic vapor concentration in vapor intrusion.

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G; Suuberg, Eric M

    2014-01-01

    The inhalation of volatile and semi-volatile organic compounds that intrude from a subsurface contaminant source into indoor air has become the subject of health and safety concerns over the last twenty years. Building subslab and soil gas contaminant vapor concentration sampling have become integral parts of vapor intrusion field investigations. While numerical models can be of use in analyzing field data and in helping understand the subslab and soil gas vapor concentrations, they are not widely used due to the perceived effort in setting them up. In this manuscript, we present a new closed-form analytical expression describing subsurface contaminant vapor concentrations, including subslab vapor concentrations. The expression was derived using Schwarz-Christoffel mapping. Results from this analytical model match well the numerical modeling results. This manuscript also explores the relationship between subslab and exterior soil gas vapor concentrations, and offers insights on what parameters need to receive greater focus in field studies.

  2. Semantic Source Coding for Flexible Lossy Image Compression

    National Research Council Canada - National Science Library

    Phoha, Shashi; Schmiedekamp, Mendel

    2007-01-01

    Semantic Source Coding for Lossy Video Compression investigates methods for Mission-oriented lossy image compression, by developing methods to use different compression levels for different portions...

  3. Water Vapor Corrosion in EBC Constituent Materials

    Science.gov (United States)

    Kowalski, Benjamin; Fox, Dennis; Jacobson, Nathan S.

    2017-01-01

    Environmental Barrier Coating (EBC) materials are sought after to protect ceramic matrix composites (CMC) in high temperature turbine engines. CMCs are particularly susceptible to degradation from oxidation, Ca-Al-Mg-Silicate (CMAS), and water vapor during high temperature operation which necessitates the use of EBCs. However, the work presented here focuses on water vapor induced recession in EBC constituent materials. For example, in the presence of water vapor, silica will react to form Si(OH)4 (g) which will eventually corrode the material away. To investigate the recession rate in EBC constituent materials under high temperature water vapor conditions, thermal gravimetric analysis (TGA) is employed. The degradation process can then be modeled through a simple boundary layer expression. Ultimately, comparisons are made between various single- and poly-crystalline materials (e.g. TiO2, SiO2) against those found in literature.

  4. Static Water Vapor Feed Electrolyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a static vapor feed electrolyzer utilizing an advanced bipolar plate that produces sub-saturated H2 and O2 is proposed. This novel bipolar design can...

  5. Leidenfrost Vapor Layer Stabilization on Superhydrophobic Surfaces

    Science.gov (United States)

    Vakarelski, Ivan; Patankar, Neelesh; Marston, Jeremy; Chan, Derek; Thoroddsen, Sigurdur

    2012-11-01

    We have performed experiments to investigate the influence of the wettability of a superheated metallic sphere on the stability of a thin vapor layer during the cooling of a sphere immersed in water. For high enough sphere temperatures, a continuous vapor layer (Leidenfrost regime) is observed on the surface of non-superhydrophobic spheres, but below a critical sphere temperature the layer becomes unstable and explosively switches to nuclear boiling regime. In contrast, when the sphere surface is textured and superhydrophobic, the vapor layer is stable and gradually relaxes to the sphere surface until the complete cooling of the sphere, thus avoiding the nuclear boiling transition altogether. This finding could help in the development of heat exchange devices and of vapor layer based drag reducing technologies.

  6. Colorometric detection of ethylene glycol vapor

    Science.gov (United States)

    Helm, C.; Mosier, B.; Verostko, C. E.

    1970-01-01

    Very low concentrations of ethylene glycol in air or other gases are detected by passing a sample through a glass tube with three partitioned compartments containing reagents which successively convert the ethylene glycol vapor into a colored compound.

  7. DMSP SSMT/2 - Atmospheric Water Vapor Profiler

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/T-2 sensor is a five channel, total power microwave radiometer with three channels situated symmetrically about the 183.31 GHz water vapor resonance line and...

  8. Static Water Vapor Feed Electrolyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a static vapor feed electrolyzer utilizing an advanced bipolar plate that produces sub-saturated H2 and O2 is proposed. This novel bipolar design can...

  9. Analytical modeling of the subsurface volatile organic vapor concentration in vapor intrusion

    OpenAIRE

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    The inhalation of volatile and semi-volatile organic compounds that intrude from a subsurface contaminant source into indoor air has become the subject of health and safety concerns over the last twenty years. Building subslab and soil gas contaminant vapor concentration sampling have become integral parts of vapor intrusion field investigations. While numerical models can be of use in analyzing field data and in helping understand the subslab and soil gas vapor concentrations, they are not w...

  10. Infraspinatus muscle atrophy from suprascapular nerve compression.

    Science.gov (United States)

    Cordova, Christopher B; Owens, Brett D

    2014-02-01

    Muscle weakness without pain may signal a nerve compression injury. Because these injuries should be identified and treated early to prevent permanent muscle weakness and atrophy, providers should consider suprascapular nerve compression in patients with shoulder muscle weakness.

  11. Binary Schemes of Vapor Bubble Growth

    Science.gov (United States)

    Zudin, Yu. B.

    2015-05-01

    A problem on spherically symmetric growth of a vapor bubble in an infi nite volume of a uniformly superheated liquid is considered. A description of the limiting schemes of bubble growth is presented. A binary inertial-thermal bubble growth scheme characterized by such specifi c features as the "three quarters" growth law and the effect of "pressure blocking" in a vapor phase is considered.

  12. Vapor Pressure of 2-Chlorovinyl Dichloroarsine (Lewisite)

    Science.gov (United States)

    2009-02-01

    Streams of Compounds for Determining Vapor Pressure 11 3. Vapor Pressure of Lewisite I from Multiple Sources: Conant, Sumner, Lewis, Keyes, Price ...number of publications in the open literature by Green and Price ,4 Lewis and Perkins,5 Mann and Pope, Mohler and Polya7 and Gibson and Johnson.8...point. (2) Banks et al.,14 reported that during the fractional distillation of the reaction products of phenyl dichloroarsine and acetylene , 2

  13. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    Energy Technology Data Exchange (ETDEWEB)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity

  14. Evolution of acoustically vaporized microdroplets in gas embolotherapy

    KAUST Repository

    Qamar, Adnan

    2012-01-01

    Acoustic vaporization dynamics of a superheated dodecafluoropentane (DDFP) microdroplet inside a microtube and the resulting bubble evolution is investigated in the present work. This work is motivated by a developmental gas embolotherapy technique that is intended to treat cancers by infarcting tumors using gas bubbles. A combined theoretical and computational approach is utilized and compared with the experiments to understand the evolution process and to estimate the resulting stress distribution associated with vaporization event. The transient bubble growth is first studied by ultra-high speed imaging and then theoretical and computational modeling is used to predict the entire bubble evolution process. The evolution process consists of three regimes: an initial linear rapid spherical growth followed by a linear compressed oval shaped growth and finally a slow asymptotic nonlinear spherical bubble growth. Although the droplets are small compared to the tube diameter, the bubble evolution is influenced by the tube wall. The final bubble radius is found to scale linearly with the initial droplet radius and is approximately five times the initial droplet radius. A short pressure pulse with amplitude almost twice as that of ambient conditions is observed. The width of this pressure pulse increases with increasing droplet size whereas the amplitude is weakly dependent. Although the rise in shear stress along the tube wall is found to be under peak physiological limits, the shear stress amplitude is found to be more prominently influenced by the initial droplet size. The role of viscous dissipation along the tube wall and ambient bulk fluid pressure is found to be significant in bubble evolution dynamics. © 2012 American Society of Mechanical Engineers.

  15. Evolution of acoustically vaporized microdroplets in gas embolotherapy.

    Science.gov (United States)

    Qamar, Adnan; Wong, Zheng Z; Fowlkes, J Brian; Bull, Joseph L

    2012-03-01

    Acoustic vaporization dynamics of a superheated dodecafluoropentane (DDFP) microdroplet inside a microtube and the resulting bubble evolution is investigated in the present work. This work is motivated by a developmental gas embolotherapy technique that is intended to treat cancers by infarcting tumors using gas bubbles. A combined theoretical and computational approach is utilized and compared with the experiments to understand the evolution process and to estimate the resulting stress distribution associated with vaporization event. The transient bubble growth is first studied by ultra-high speed imaging and then theoretical and computational modeling is used to predict the entire bubble evolution process. The evolution process consists of three regimes: an initial linear rapid spherical growth followed by a linear compressed oval shaped growth and finally a slow asymptotic nonlinear spherical bubble growth. Although the droplets are small compared to the tube diameter, the bubble evolution is influenced by the tube wall. The final bubble radius is found to scale linearly with the initial droplet radius and is approximately five times the initial droplet radius. A short pressure pulse with amplitude almost twice as that of ambient conditions is observed. The width of this pressure pulse increases with increasing droplet size whereas the amplitude is weakly dependent. Although the rise in shear stress along the tube wall is found to be under peak physiological limits, the shear stress amplitude is found to be more prominently influenced by the initial droplet size. The role of viscous dissipation along the tube wall and ambient bulk fluid pressure is found to be significant in bubble evolution dynamics.

  16. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    Science.gov (United States)

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  17. Considerations and Algorithms for Compression of Sets

    DEFF Research Database (Denmark)

    Larsson, Jesper

    compression algorithm that allows transparent incorporation of various estimates for probability distribution. Our experimental results allow the conclusion that set compression can benefit from incorporat- ing statistics, using our method or variants of previously known techniques.......We consider compression of unordered sets of distinct elements. After a discus- sion of the general problem, we focus on compressing sets of fixed-length bitstrings in the presence of statistical information. We survey techniques from previous work, suggesting some adjustments, and propose a novel...

  18. Cascaded quadratic soliton compression at 800 nm

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Moses, Jeffrey;

    2007-01-01

    We study soliton compression in quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion.......We study soliton compression in quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion....

  19. Still image and video compression with MATLAB

    CERN Document Server

    Thyagarajan, K

    2010-01-01

    This book describes the principles of image and video compression techniques and introduces current and popular compression standards, such as the MPEG series. Derivations of relevant compression algorithms are developed in an easy-to-follow fashion. Numerous examples are provided in each chapter to illustrate the concepts. The book includes complementary software written in MATLAB SIMULINK to give readers hands-on experience in using and applying various video compression methods. Readers can enhance the software by including their own algorithms.

  20. Simultaneous denoising and compression of multispectral images

    Science.gov (United States)

    Hagag, Ahmed; Amin, Mohamed; Abd El-Samie, Fathi E.

    2013-01-01

    A new technique for denoising and compression of multispectral satellite images to remove the effect of noise on the compression process is presented. One type of multispectral images has been considered: Landsat Enhanced Thematic Mapper Plus. The discrete wavelet transform (DWT), the dual-tree DWT, and a simple Huffman coder are used in the compression process. Simulation results show that the proposed technique is more effective than other traditional compression-only techniques.

  1. Image quality (IQ) guided multispectral image compression

    Science.gov (United States)

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  2. Brain image Compression, a brief survey

    Directory of Open Access Journals (Sweden)

    Saleha Masood

    2013-01-01

    Full Text Available Brain image compression is known as a subfield of image compression. It allows the deep analysis and measurements of brain images in different modes. Brain images are compressed to analyze and diagnose in an effective manner while reducing the image storage space. This survey study describes the different existing techniques regarding brain image compression. The techniques come under different categories. The study also discusses these categories.

  3. Position index preserving compression of text data

    OpenAIRE

    Akhtar, Nasim; Rashid, Mamunur; Islam, Shafiqul; Kashem, Mohammod Abul; Kolybanov, Cyrll Y.

    2011-01-01

    Data compression offers an attractive approach to reducing communication cost by using available bandwidth effectively. It also secures data during transmission for its encoded form. In this paper an index based position oriented lossless text compression called PIPC ( Position Index Preserving Compression) is developed. In PIPC the position of the input word is denoted by ASCII code. The basic philosopy of the secure compression is to preprocess the text and transform it into some intermedia...

  4. Pure component vapor pressures of organic isomers

    Science.gov (United States)

    Dang, Caroline; Bannan, Thomas; Topping, David

    2017-04-01

    Atmospheric aerosols affect the Earth's climate directly through light scattering and absorption as well as indirectly by affecting cloud formation. There are many unanswered questions about how material properties of organic aerosols affect the climate. Predicting the formation of secondary organic aerosol (SOA), arising from gas to particle partitioning of potentially millions of compounds, remains one of the most challenging aspects in this regards. Of particular importance on predicting SOA formation is the saturation vapor pressure of each component. This property is typically obtained from group contribution methods (GCMs). However, it is currently unclear as to what level of accuracy is required or attainable from such techniques. Researchers have recently been able to measure low vapor pressures (lower limit of 10-8 Pa) experimentally using various techniques, and the University of Manchester Knudsen Effusion Mass Spectrometer (KEMS) has previously been used to measure vapor pressure of low volatility organics. Our recent KEMS work shows that functional group positioning has an effect on vapor pressure that is not accurately captured with estimation methods, and that experimental vapor pressures are 1-4 orders of magnitudes lower than predictive techniques. This has atmospheric impact through the variable amount of organic aerosol that is predicted to condense. In this study we present new measurements from the KEMS that can then be used to refine different experimental vapor pressure techniques as well as to provide data sets for building regression models to improve current predictive techniques.

  5. Bioeffects due to acoustic droplet vaporization

    Science.gov (United States)

    Bull, Joseph

    2015-11-01

    Encapsulated micro- and nano-droplets can be vaporized via ultrasound, a process termed acoustic droplet vaporization. Our interest is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular microdroplets. Additionally, the microdroplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Early timescale vaporization events, including phase change, are directly visualized using ultra-high speed imaging, and the influence of acoustic parameters on droplet/bubble dynamics is discussed. Acoustic and fluid mechanics parameters affecting the severity of endothelial cell bioeffects are explored. These findings suggest parameter spaces for which bioeffects may be reduced or enhanced, depending on the objective of the therapy. This work was supported by NIH grant R01EB006476.

  6. Sparsity-driven tomographic reconstruction of atmospheric water vapor using GNSS and InSAR observations

    Science.gov (United States)

    Heublein, Marion; Alshawaf, Fadwa; Zhu, Xiao Xiang; Hinz, Stefan

    2016-04-01

    An accurate knowledge of the 3D distribution of water vapor in the atmosphere is a key element for weather forecasting and climate research. On the other hand, as water vapor causes a delay in the microwave signal propagation within the atmosphere, a precise determination of water vapor is required for accurate positioning and deformation monitoring using Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). However, due to its high variability in time and space, the atmospheric water vapor distribution is difficult to model. Since GNSS meteorology was introduced about twenty years ago, it has increasingly been used as a geodetic technique to generate maps of 2D Precipitable Water Vapor (PWV). Moreover, several approaches for 3D tomographic water vapor reconstruction from GNSS-based estimates using the simple least squares adjustment were presented. In this poster, we present an innovative and sophisticated Compressive Sensing (CS) concept for sparsity-driven tomographic reconstruction of 3D atmospheric wet refractivity fields using data from GNSS and InSAR. The 2D zenith wet delay (ZWD) estimates are obtained by a combination of point-wise estimates of the wet delay using GNSS observations and partial InSAR wet delay maps. These ZWD estimates are aggregated to derive realistic wet delay input data of 100 points as if corresponding to 100 GNSS sites within an area of 100 km × 100 km in the test region of the Upper Rhine Graben. The made-up ZWD values can be mapped into different elevation and azimuth angles. Using the Cosine transform, a sparse representation of the wet refractivity field is obtained. In contrast to existing tomographic approaches, we exploit sparsity as a prior for the regularization of the underdetermined inverse system. The new aspects of this work include both the combination of GNSS and InSAR data for water vapor tomography and the sophisticated CS estimation. The accuracy of the estimated 3D water

  7. Vapor Hydrogen Peroxide Sterilization Certification

    Science.gov (United States)

    Chen, Fei; Chung, Shirley; Barengoltz, Jack

    For interplanetary missions landing on a planet of potential biological interest, United States NASA planetary protection currently requires that the flight system must be assembled, tested and ultimately launched with the intent of minimizing the bioload taken to and deposited on the planet. Currently the only NASA approved microbial reduction method is dry heat sterilization process. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements. The VHP sterilization technology is widely used by the medical industry, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal of our study is determine the minimum VHP process conditions for PP acceptable microbial reduction levels. A series of experiments were conducted using Geobacillus stearothermophilus to determine VHP process parameters that provided significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters -hydrogen peroxide concentration, number of pulses, and exposure duration -the investigation also considered the possible effect of environmental pa-rameters. Temperature, relative humidity, and material substrate effects on lethality were also studied. Based on the results, a most conservative D value was recommended. This recom-mended D value was also validated using VHP "hardy" strains that were isolated from clean-rooms and environmental populations collected from spacecraft relevant areas. The efficiency of VHP at ambient condition as well as VHP material compatibility will also be

  8. Saturn's Stratospheric Water Vapor Distribution

    Science.gov (United States)

    Hesman, B. E.

    2015-12-01

    Water is a sought after commodity in the solar system. It is used as an indication of life, planetary formation timescales, and signatures of past cometary impacts. In Saturn's atmosphere there are two sources of water: an internal primordial reservoir that is confined to the troposphere, and an external source of unknown origin that delivers water to the stratosphere. Potential sources of stratospheric water include: Saturn's main rings (via neutral infall and/or ions transported along magnetic field lines - "Ring Rain"), interplanetary dust particles, and the E-ring that is supplied with water from the plumes of Enceladus. Measuring the latitudinal and seasonal variation of H2O on Saturn will constrain the source of Saturn's stratospheric water. Cassini's Composite InfraRed Spectrometer (CIRS) has detected emission lines of H2O on Saturn at wavelengths of 40 and 50 microns. CIRS also retrieves the temperature of the stratosphere using CH4 lines at 7.7 microns. Using our retrieved temperatures, we derive the mole fraction of H2O at the 0.5-5 mbar level for comparison with water-source models. The latitudinal variation of stratospheric water vapor between 2004-2009 will be presented as a first step in understanding the external source of water on Saturn. The observed local maximum near Saturn's equator supports either a neutral infall from the rings or a source in the E-ring. We will look for secondary maxima at mid-latitudes to determine whether "Ring Rain" also contributes to the inventory of water in Saturn's upper atmosphere.

  9. 33 CFR 154.808 - Vapor control system, general.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vapor control system, general... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Vapor Control Systems § 154.808 Vapor control system, general. (a) A vapor control system design and installation must...

  10. H.264/AVC Video Compression on Smartphones

    Science.gov (United States)

    Sharabayko, M. P.; Markov, N. G.

    2017-01-01

    In this paper, we studied the usage of H.264/AVC video compression tools by the flagship smartphones. The results show that only a subset of tools is used, meaning that there is still a potential to achieve higher compression efficiency within the H.264/AVC standard, but the most advanced smartphones are already reaching the compression efficiency limit of H.264/AVC.

  11. BPCS steganography using EZW lossy compressed images

    OpenAIRE

    Spaulding, Jeremiah; Noda, Hideki; Shirazi, Mahdad N.; Kawaguchi, Eiji

    2002-01-01

    This paper presents a steganography method based on an embedded zerotree wavelet (EZW) compression scheme and bit-plane complexity segmentation (BPCS) steganography. The proposed steganography enables us to use lossy compressed images as dummy files in bit-plane-based steganographic algorithms. Large embedding rates of around 25% of the compressed image size were achieved with little noticeable degradation in image quality.

  12. Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films

    Science.gov (United States)

    Magnfält, D.; Fillon, A.; Boyd, R. D.; Helmersson, U.; Sarakinos, K.; Abadias, G.

    2016-02-01

    Intrinsic stresses in vapor deposited thin films have been a topic of considerable scientific and technological interest owing to their importance for functionality and performance of thin film devices. The origin of compressive stresses typically observed during deposition of polycrystalline metal films at conditions that result in high atomic mobility has been under debate in the literature in the course of the past decades. In this study, we contribute towards resolving this debate by investigating the grain size dependence of compressive stress magnitude in dense polycrystalline Mo films grown by magnetron sputtering. Although Mo is a refractory metal and hence exhibits an intrinsically low mobility, low energy ion bombardment is used during growth to enhance atomic mobility and densify the grain boundaries. Concurrently, the lateral grain size is controlled by using appropriate seed layers on which Mo films are grown epitaxially. The combination of in situ stress monitoring with ex situ microstructural characterization reveals a strong, seemingly linear, increase of the compressive stress magnitude on the inverse grain size and thus provides evidence that compressive stress is generated in the grain boundaries of the film. These results are consistent with models suggesting that compressive stresses in metallic films deposited at high homologous temperatures are generated by atom incorporation into and densification of grain boundaries. However, the underlying mechanisms for grain boundary densification might be different from those in the present study where atomic mobility is intrinsically low.

  13. Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Magnfält, D., E-mail: danma@ifm.liu.se; Sarakinos, K. [Nanoscale Engineering Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Fillon, A.; Abadias, G. [Institut P' , Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, SP2MI, Téléport 2, Bd M. et P. Curie, F-86962 Chasseneuil-Futuroscope (France); Boyd, R. D.; Helmersson, U. [Plasma and Coatings Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2016-02-07

    Intrinsic stresses in vapor deposited thin films have been a topic of considerable scientific and technological interest owing to their importance for functionality and performance of thin film devices. The origin of compressive stresses typically observed during deposition of polycrystalline metal films at conditions that result in high atomic mobility has been under debate in the literature in the course of the past decades. In this study, we contribute towards resolving this debate by investigating the grain size dependence of compressive stress magnitude in dense polycrystalline Mo films grown by magnetron sputtering. Although Mo is a refractory metal and hence exhibits an intrinsically low mobility, low energy ion bombardment is used during growth to enhance atomic mobility and densify the grain boundaries. Concurrently, the lateral grain size is controlled by using appropriate seed layers on which Mo films are grown epitaxially. The combination of in situ stress monitoring with ex situ microstructural characterization reveals a strong, seemingly linear, increase of the compressive stress magnitude on the inverse grain size and thus provides evidence that compressive stress is generated in the grain boundaries of the film. These results are consistent with models suggesting that compressive stresses in metallic films deposited at high homologous temperatures are generated by atom incorporation into and densification of grain boundaries. However, the underlying mechanisms for grain boundary densification might be different from those in the present study where atomic mobility is intrinsically low.

  14. A Finite Element Method for Simulation of Compressible Cavitating Flows

    Science.gov (United States)

    Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad

    2016-11-01

    This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.

  15. Stability of compressible boundary layers

    Science.gov (United States)

    Nayfeh, Ali H.

    1989-01-01

    The stability of compressible 2-D and 3-D boundary layers is reviewed. The stability of 2-D compressible flows differs from that of incompressible flows in two important features: There is more than one mode of instability contributing to the growth of disturbances in supersonic laminar boundary layers and the most unstable first mode wave is 3-D. Whereas viscosity has a destabilizing effect on incompressible flows, it is stabilizing for high supersonic Mach numbers. Whereas cooling stabilizes first mode waves, it destabilizes second mode waves. However, second order waves can be stabilized by suction and favorable pressure gradients. The influence of the nonparallelism on the spatial growth rate of disturbances is evaluated. The growth rate depends on the flow variable as well as the distance from the body. Floquet theory is used to investigate the subharmonic secondary instability.

  16. Conservative regularization of compressible flow

    CERN Document Server

    Krishnaswami, Govind S; Thyagaraja, Anantanarayanan

    2015-01-01

    Ideal Eulerian flow may develop singularities in vorticity w. Navier-Stokes viscosity provides a dissipative regularization. We find a local, conservative regularization - lambda^2 w times curl(w) of compressible flow and compressible MHD: a three dimensional analogue of the KdV regularization of the one dimensional kinematic wave equation. The regulator lambda is a field subject to the constitutive relation lambda^2 rho = constant. Lambda is like a position-dependent mean-free path. Our regularization preserves Galilean, parity and time-reversal symmetries. We identify locally conserved energy, helicity, linear and angular momenta and boundary conditions ensuring their global conservation. Enstrophy is shown to remain bounded. A swirl velocity field is identified, which transports w/rho and B/rho generalizing the Kelvin-Helmholtz and Alfven theorems. A Hamiltonian and Poisson bracket formulation is given. The regularized equations are used to model a rotating vortex, channel flow, plane flow, a plane vortex ...

  17. Compressing DNA sequence databases with coil

    Directory of Open Access Journals (Sweden)

    Hendy Michael D

    2008-05-01

    Full Text Available Abstract Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.

  18. Antiproton compression and radial measurements

    Science.gov (United States)

    Andresen, G. B.; Bertsche, W.; Bowe, P. D.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Fujiwara, M. C.; Funakoshi, R.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jenkins, M. J.; Jørgensen, L. V.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Page, R. D.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; El Nasr, S. Seif; Silveira, D. M.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2008-08-01

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile, and its relation to that of the electron plasma. We also measure the outer radial profile by ejecting antiprotons to the trap wall using an octupole magnet.

  19. Compressibility effects on turbulent mixing

    Science.gov (United States)

    Panickacheril John, John; Donzis, Diego

    2016-11-01

    We investigate the effect of compressibility on passive scalar mixing in isotropic turbulence with a focus on the fundamental mechanisms that are responsible for such effects using a large Direct Numerical Simulation (DNS) database. The database includes simulations with Taylor Reynolds number (Rλ) up to 100, turbulent Mach number (Mt) between 0.1 and 0.6 and Schmidt number (Sc) from 0.5 to 1.0. We present several measures of mixing efficiency on different canonical flows to robustly identify compressibility effects. We found that, like shear layers, mixing is reduced as Mach number increases. However, data also reveal a non-monotonic trend with Mt. To assess directly the effect of dilatational motions we also present results with both dilatational and soleniodal forcing. Analysis suggests that a small fraction of dilatational forcing decreases mixing time at higher Mt. Scalar spectra collapse when normalized by Batchelor variables which suggests that a compressive mechanism similar to Batchelor mixing in incompressible flows might be responsible for better mixing at high Mt and with dilatational forcing compared to pure solenoidal mixing. We also present results on scalar budgets, in particular on production and dissipation. Support from NSF is gratefully acknowledged.

  20. Laser Compression of Nanocrystalline Metals

    Science.gov (United States)

    Meyers, M. A.; Jarmakani, H. N.; Bringa, E. M.; Earhart, P.; Remington, B. A.; Vo, N. Q.; Wang, Y. M.

    2009-12-01

    Shock compression in nanocrystalline nickel is simulated over a range of pressures (10-80 GPa) and compared with experimental results. Laser compression carried out at Omega and Janus yields new information on the deformation mechanisms of nanocrystalline Ni. Although conventional deformation does not produce hardening, the extreme regime imparted by laser compression generates an increase in hardness, attributed to the residual dislocations observed in the structure by TEM. An analytical model is applied to predict the critical pressure for the onset of twinning in nanocrystalline nickel. The slip-twinning transition pressure is shifted from 20 GPa, for polycrystalline Ni, to 80 GPa, for Ni with g. s. of 10 nm. Contributions to the net strain from the different mechanisms of plastic deformation (partials, perfect dislocations, twinning, and grain boundary shear) were quantified in the nanocrystalline samples through MD calculations. The effect of release, a phenomenon often neglected in MD simulations, on dislocation behavior was established. A large fraction of the dislocations generated at the front are annihilated.

  1. Permeability of starch gel matrices and select films to solvent vapors.

    Science.gov (United States)

    Glenn, Gregory M; Klamczynski, Artur P; Ludvik, Charles; Shey, Justin; Imam, Syed H; Chiou, Bor-Sen; McHugh, Tara; DeGrandi-Hoffman, Gloria; Orts, William; Wood, Delilah; Offeman, Rick

    2006-05-03

    Volatile agrochemicals such as 2-heptanone have potential in safely and effectively controlling important agricultural pests provided that they are properly delivered. The present study reports the permeability of starch gel matrices and various coatings, some of which are agricultural-based, that could be used in controlled release devices. Low-density, microcellular starch foam was made from wheat, Dent corn, and high amylose corn starches. The foam density ranged from 0.14 to 0.34 g/cm3, the pore volume ranged from 74 to 89%, and the loading capacity ranged from 2.3 to 7.2 times the foam weight. The compressive properties of the foam were not markedly affected by saturating the pore volume with silicone oil. The vapor transmission rate (VTR) and vapor permeability (VP) were measured in dry, porous starch foam and silicone-saturated starch gels. VTR values were highest in foam samples containing solvents with high vapor pressures. Silicone oil-saturated gels had lower VTR and VP values as compared to the dry foam. However, the silicone oil gel did not markedly reduce the VP for 2-heptanone and an additional vapor barrier or coating was needed to adequately reduce the evaporation rate. The VP of films of beeswax, paraffin, ethylene vinyl alcohol, a fruit film, and a laminate comprised of beeswax and fruit film was measured. The fruit film had a relatively high VP for polar solvents and a very low VP for nonpolar solvents. The laminate film provided a low VP for polar and nonpolar solvents. Perforating the fruit film portion of the laminate provided a method of attaining the target flux rate of 2-heptanone. The results demonstrate that the vapor flux rate of biologically active solvents can be controlled using agricultural materials.

  2. Image Compression Using Discrete Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Mohammad Mozammel Hoque Chowdhury

    2012-07-01

    Full Text Available Image compression is a key technology in transmission and storage of digital images because of vast data associated with them. This research suggests a new image compression scheme with pruning proposal based on discrete wavelet transformation (DWT. The effectiveness of the algorithm has been justified over some real images, and the performance of the algorithm has been compared with other common compression standards. The algorithm has been implemented using Visual C++ and tested on a Pentium Core 2 Duo 2.1 GHz PC with 1 GB RAM. Experimental results demonstrate that the proposed technique provides sufficient high compression ratios compared to other compression techniques.

  3. Compression Waves and Phase Plots: Simulations

    CERN Document Server

    Orlikowski, Daniel

    2011-01-01

    Compression wave analysis started nearly 50 years ago with Fowles.[1] Coperthwaite and Williams [2] gave a method that helps identify simple and steady waves. We have been developing a method that gives describes the non-isentropic character of compression waves, in general.[3] One result of that work is a simple analysis tool. Our method helps clearly identify when a compression wave is a simple wave, a steady wave (shock), and when the compression wave is in transition. This affects the analysis of compression wave experiments and the resulting extraction of the high-pressure equation of state.

  4. Mathematical theory of compressible fluid flow

    CERN Document Server

    Von Mises, Richard

    2012-01-01

    Mathematical Theory of Compressible Fluid Flow covers the conceptual and mathematical aspects of theory of compressible fluid flow. This five-chapter book specifically tackles the role of thermodynamics in the mechanics of compressible fluids. This text begins with a discussion on the general theory of characteristics of compressible fluid with its application. This topic is followed by a presentation of equations delineating the role of thermodynamics in compressible fluid mechanics. The discussion then shifts to the theory of shocks as asymptotic phenomena, which is set within the context of

  5. Video compressive sensing using Gaussian mixture models.

    Science.gov (United States)

    Yang, Jianbo; Yuan, Xin; Liao, Xuejun; Llull, Patrick; Brady, David J; Sapiro, Guillermo; Carin, Lawrence

    2014-11-01

    A Gaussian mixture model (GMM)-based algorithm is proposed for video reconstruction from temporally compressed video measurements. The GMM is used to model spatio-temporal video patches, and the reconstruction can be efficiently computed based on analytic expressions. The GMM-based inversion method benefits from online adaptive learning and parallel computation. We demonstrate the efficacy of the proposed inversion method with videos reconstructed from simulated compressive video measurements, and from a real compressive video camera. We also use the GMM as a tool to investigate adaptive video compressive sensing, i.e., adaptive rate of temporal compression.

  6. Compression therapy in elderly and overweight patients.

    Science.gov (United States)

    Reich-Schupke, Stefanie; Murmann, Friederike; Altmeyer, Peter; Stücker, Markus

    2012-03-01

    According to the current demography of the western population, age and weight will have increasing impact on medical therapies. The aim of the analysis was to examine if there are differences in the use of compression therapy depending on age and BMI. Questioning of 200 consecutive phlebological patients (C2-C6) with a compression therapy time of > 2 weeks. Analysis of 110 returned questionnaires. Sub-analysis according to age (≥ 60 years vs. 60 years even need the help of another person to apply compression. Patients ≥ 25 kg/m2 have an ulcer stocking significantly more often (15 % vs. 4.3 %, p = 0.05) and need the help of family members to put on the compression therapy (11.7 % vs. 2.1 %, p = 0.04). There is a tendency of patients ≥ 25 kg/m2 to complain more often about a constriction of compression therapy (35 % vs. 19.2 %, p = 0.06). There are special aspects that have to be regarded for compression therapy in elderly and overweight patients. Data should encourage prescribers, sellers and manufacturers of compression therapy to use compression in a very differentiated way for these patients and to consider: Is the recommended compression therapy right for this patient (pressure, material, type)? What advice and adjuvants do the patients need to get along more easily with the compression therapy? Are there any new materials or adjuvants that allow those increasing groups of people to get along with compression therapy alone?

  7. Chapter 22: Compressed Air Evaluation Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Benton, N.

    2014-11-01

    Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: high-efficiency/variable speed drive (VSD) compressor replacing modulating compressor; compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.

  8. Binary-phase compression of stretched pulses

    Science.gov (United States)

    Lozovoy, Vadim V.; Nairat, Muath; Dantus, Marcos

    2017-10-01

    Pulse stretching and compression are essential for the energy scale-up of ultrafast lasers. Here, we consider a radical approach using spectral binary phases, containing only two values (0 and π) for stretching and compressing laser pulses. We numerically explore different strategies and present results for pulse compression of factors up to a million back to the transform limit and experimentally obtain results for pulse compression of a factor of one hundred, in close agreement with numerical calculations. Imperfections resulting from binary-phase compression are addressed by considering cross-polarized wave generation filtering, and show that this approach leads to compressed pulses with contrast ratios greater than ten orders of magnitude. This new concept of binary-phase stretching and compression, if implemented in a multi-layer optic, could eliminate the need for traditional pulse stretchers and more importantly expensive compressors.

  9. Bit-Optimal Lempel-Ziv compression

    CERN Document Server

    Ferragina, Paolo; Venturini, Rossano

    2008-01-01

    One of the most famous and investigated lossless data-compression scheme is the one introduced by Lempel and Ziv about 40 years ago. This compression scheme is known as "dictionary-based compression" and consists of squeezing an input string by replacing some of its substrings with (shorter) codewords which are actually pointers to a dictionary of phrases built as the string is processed. Surprisingly enough, although many fundamental results are nowadays known about upper bounds on the speed and effectiveness of this compression process and references therein), ``we are not aware of any parsing scheme that achieves optimality when the LZ77-dictionary is in use under any constraint on the codewords other than being of equal length'' [N. Rajpoot and C. Sahinalp. Handbook of Lossless Data Compression, chapter Dictionary-based data compression. Academic Press, 2002. pag. 159]. Here optimality means to achieve the minimum number of bits in compressing each individual input string, without any assumption on its ge...

  10. Envera Variable Compression Ratio Engine

    Energy Technology Data Exchange (ETDEWEB)

    Charles Mendler

    2011-03-15

    Aggressive engine downsizing, variable compression ratio and use of the Atkinson cycle are being combined to improve fuel economy by up to 40 percent relative to port fuel injected gasoline engines, while maintaining full engine power. Approach Engine downsizing is viewed by US and foreign automobile manufacturers as one of the best options for improving fuel economy. While this strategy has already demonstrated a degree of success, downsizing and fuel economy gains are currently limited. With new variable compression ratio technology however, the degree of engine downsizing and fuel economy improvement can be greatly increased. A small variable compression ratio (VCR) engine has the potential to return significantly higher vehicle fuel economy while also providing high power. Affordability and potential for near term commercialization are key attributes of the Envera VCR engine. VCR Technology To meet torque and power requirements, a smaller engine needs to do more work per stroke. This is typically accomplished by boosting the incoming charge with either a turbo or supercharger so that more energy is present in the cylinder per stroke to do the work. With current production engines the degree of engine boosting (which correlates to downsizing) is limited by detonation (combustion knock) at high boost levels. Additionally, the turbo or supercharger needs to be responsive and efficient while providing the needed boost. VCR technology eliminates the limitation of engine knock at high load levels by reducing compression ratio to {approx}9:1 (or whatever level is appropriate) when high boost pressures are needed. By reducing the compression ratio during high load demand periods there is increased volume in the cylinder at top dead center (TDC) which allows more charge (or energy) to be present in the cylinder without increasing the peak pressure. Cylinder pressure is thus kept below the level at which the engine would begin to knock. When loads on the engine are low

  11. Influence of Soil Moisture on Soil Gas Vapor Concentration for Vapor Intrusion.

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G; Suuberg, Eric M

    2013-10-01

    Mathematical models have been widely used in analyzing the effects of various environmental factors in the vapor intrusion process. Soil moisture content is one of the key factors determining the subsurface vapor concentration profile. This manuscript considers the effects of soil moisture profiles on the soil gas vapor concentration away from any surface capping by buildings or pavement. The "open field" soil gas vapor concentration profile is observed to be sensitive to the soil moisture distribution. The van Genuchten relations can be used for describing the soil moisture retention curve, and give results consistent with the results from a previous experimental study. Other modeling methods that account for soil moisture are evaluated. These modeling results are also compared with the measured subsurface concentration profiles in the U.S. EPA vapor intrusion database.

  12. Digital image compression in dermatology: format comparison.

    Science.gov (United States)

    Guarneri, F; Vaccaro, M; Guarneri, C

    2008-09-01

    Digital image compression (reduction of the amount of numeric data needed to represent a picture) is widely used in electronic storage and transmission devices. Few studies have compared the suitability of the different compression algorithms for dermatologic images. We aimed at comparing the performance of four popular compression formats, Tagged Image File (TIF), Portable Network Graphics (PNG), Joint Photographic Expert Group (JPEG), and JPEG2000 on clinical and videomicroscopic dermatologic images. Nineteen (19) clinical and 15 videomicroscopic digital images were compressed using JPEG and JPEG2000 at various compression factors and TIF and PNG. TIF and PNG are "lossless" formats (i.e., without alteration of the image), JPEG is "lossy" (the compressed image has a lower quality than the original), JPEG2000 has a lossless and a lossy mode. The quality of the compressed images was assessed subjectively (by three expert reviewers) and quantitatively (by measuring, point by point, the color differences from the original). Lossless JPEG2000 (49% compression) outperformed the other lossless algorithms, PNG and TIF (42% and 31% compression, respectively). Lossy JPEG2000 compression was slightly less efficient than JPEG, but preserved image quality much better, particularly at higher compression factors. For its good quality and compression ratio, JPEG2000 appears to be a good choice for clinical/videomicroscopic dermatologic image compression. Additionally, its diffusion and other features, such as the possibility of embedding metadata in the image file and to encode various parts of an image at different compression levels, make it perfectly suitable for the current needs of dermatology and teledermatology.

  13. Explosive vapor detection payload for small robots

    Science.gov (United States)

    Stimac, Phil J.; Pettit, Michael; Wetzel, John P.; Haas, John W.

    2013-05-01

    Detection of explosive hazards is a critical component of enabling and improving operational mobility and protection of US Forces. The Autonomous Mine Detection System (AMDS) developed by the US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) is addressing this challenge for dismounted soldiers. Under the AMDS program, ARA has developed a vapor sampling system that enhances the detection of explosive residues using commercial-off-the-shelf (COTS) sensors. The Explosives Hazard Trace Detection (EHTD) payload is designed for plug-and-play installation and operation on small robotic platforms, addressing critical Army needs for more safely detecting concealed or exposed explosives in areas such as culverts, walls and vehicles. In this paper, we describe the development, robotic integration and performance of the explosive vapor sampling system, which consists of a sampling "head," a vapor transport tube and an extendable "boom." The sampling head and transport tube are integrated with the boom, allowing samples to be collected from targeted surfaces up to 7-ft away from the robotic platform. During sample collection, an IR lamp in the sampling head is used to heat a suspected object/surface and the vapors are drawn through the heated vapor transport tube to an ion mobility spectrometer (IMS) for detection. The EHTD payload is capable of quickly (less than 30 seconds) detecting explosives such as TNT, PETN, and RDX at nanogram levels on common surfaces (brick, concrete, wood, glass, etc.).

  14. Vapor scavenging by atmospheric aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, E.

    1996-05-01

    Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

  15. Distribution of tropical tropospheric water vapor

    Science.gov (United States)

    Sun, De-Zheng; Lindzen, Richard S.

    1993-01-01

    Utilizing a conceptual model for tropical convection and observational data for water vapor, the maintenance of the vertical distribution of the tropical tropospheric water vapor is discussed. While deep convection induces large-scale subsidence that constrains the turbulent downgradient mixing to within the convective boundary layer and effectively dries the troposphere through downward advection, it also pumps hydrometeors into the upper troposphere, whose subsequent evaporation appears to be the major source of moisture for the large-scale subsiding motion. The development of upper-level clouds and precipitation from these clouds may also act to dry the outflow, thus explaining the low relative humidity near the tropopause. A one-dimensional model is developed to simulate the mean vertical structure of water vapor in the tropical troposphere. It is also shown that the horizontal variation of water vapor in the tropical troposphere above the trade-wind boundary layer can be explained by the variation of a moisture source that is proportional to the amount of upper-level clouds. Implications for the nature of water vapor feedback in global warming are discussed.

  16. Thermodynamics and Kinetics of Silicate Vaporization

    Science.gov (United States)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  17. A Numerical Investigation of Vapor Intrusion — the Dynamic Response of Contaminant Vapors to Rainfall Events

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1 m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in

  18. A numerical investigation of vapor intrusion--the dynamic response of contaminant vapors to rainfall events.

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G; Suuberg, Eric M

    2012-10-15

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in determining

  19. Analysis of supercritical vapor explosions using thermal detonation wave theory

    Energy Technology Data Exchange (ETDEWEB)

    Shamoun, B.I.; Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    The interaction of certain materials such as Al{sub 2}O{sub 3} with water results in vapor explosions with very high (supercritical) pressures and propagation velocities. A quasi-steady state analysis of supercritical detonation in one-dimensional multiphase flow was applied to analyze experimental data of the KROTOS (26-30) set of experiments conducted at the Joint Research Center at Ispra, Italy. In this work we have applied a new method of solution which allows for partial fragmentation of the fuel in the shock adiabatic thermodynamic model. This method uses known experiment values of the shock pressure and propagation velocity to estimate the initial mixing conditions of the experiment. The fuel and coolant were both considered compressible in this analysis. In KROTOS 26, 28, 29, and 30 the measured values of the shock pressure by the experiment were found to be higher than 25, 50, 100, and 100 Mpa respectively. Using the above data for the wave velocity and our best estimate for the values of the pressure, the predicted minimum values of the fragmented mass of the fuel were found to be 0.026. 0.04, 0.057, and 0.068 kg respectively. The predicted values of the work output corresponding to the above fragmented masses of the fuel were found to be 40, 84, 126, and 150 kJ respectively, with predicted initial void fractions of 112%, 12.5%, 8%, and 6% respectively.

  20. Direct bonding for dissimilar metals assisted by carboxylic acid vapor

    Science.gov (United States)

    Song, Jenn-Ming; Huang, Shang-Kun; Akaike, Masatake; Suga, Tadatomo

    2015-03-01

    This study developed a low-temperature low-vacuum direct bonding process for dissimilar metals via surface modification with formic acid vapor. Robust Cu/Ag and Cu/Zn bonding with a shear strength higher than 25 MPa can be achieved by thermal compression at 275 and 300 °C, respectively. CuZn5 and Cu5Zn8 formed at the interface of Cu/Zn joints, while no distinct interdiffusion layers appeared at the Cu/Ag interface. At elevated temperatures, the shear strength of Cu/Zn joints decreased significantly and turned to be weaker than Cu/Ag at 250 °C due to the softening of Zn. All the joints performed well subjected to thermal cycling up to 1000 times. However, compared with Cu/Ag joints with stable mechanical performance suffering aging at 250 °C, the shear strength of Cu/Zn degraded drastically up to 200 h, and after that it remained almost constant, which can be ascribed to the competitive growth between CuZn5 and Cu5Zn8, resulting in collapse and oxidation of CuZn5.

  1. Refraction of microwave signals by water vapor

    Science.gov (United States)

    Goldfinger, A. D.

    1980-01-01

    Tropospheric water vapor causes a refractive path length effect which is typically 5-10% of the 'dry' tropospheric effect and as large as several meters at elevation angles below 5 deg. The vertical water vapor profile is quite variable, and measurements of intensive atmospheric parameters such as temperature and humidity limited to the surface do not adequately predict the refractive effect. It is suggested that a water vapor refraction model that is a function of the amount of precipitable water alone can be successful at low elevation angles. From an extensive study of numerical ray tracings through radiosonde balloon data, such a model has been constructed. The model predicts the effect at all latitudes and elevation angles between 2 and 10 deg to an accuracy of better than 4% (11 cm at 3 deg elevation angle).

  2. Possible seasonal variability of mesospheric water vapor

    Science.gov (United States)

    Bevilacqua, R. M.; Schwartz, P. R.; Wilson, W. J.; Ricketts, W. B.; Howard, R. J.

    1985-01-01

    Ground-based spectral line measurements of the 22.2 GHz water vapor line in atmospheric emission were made at the Jet Propulsion Laboratory, which have been used to deduce the mesospheric water vapor profile. The measurements were made nearly continuously in the spring and early summer of 1984. The results indicate a temporal increase in the water vapor mixing ratio in the upper mesosphere from April through June. At 75 km, this increase is nearly by a factor of 2. Comparison of the present results with the results of a similar series of measurements made at the Haystack (radio astronomy) Observatory indicate that this temporal increase is part of a seasonal variation.

  3. Water vapor release from biofuel combustion

    Directory of Open Access Journals (Sweden)

    R. S. Parmar

    2008-03-01

    Full Text Available We report on the emission of water vapor from biofuel combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are compared to carbon in the biofuel. Fuel types included hardwood (oak and African musasa, softwood (pine and spruce, partly with green needles, and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 combustion experiments ranged from 1.2 to 3.7 on average, indicating the presence of water that is not chemically bound. This biofuel moisture content ranged from 33% in the dry African hardwood, musasa, to 220% in fresh pine branches with needles. The moisture content from fresh biofuel contributes distinctly to the water vapor in biomass burning emissions, and its influence on meteorology needs to be evaluated.

  4. Water vapor release from biofuel combustion

    Science.gov (United States)

    Parmar, R. S.; Welling, M.; Andreae, M. O.; Helas, G.

    2008-03-01

    We report on the emission of water vapor from biofuel combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are compared to carbon in the biofuel. Fuel types included hardwood (oak and African musasa), softwood (pine and spruce, partly with green needles), and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 combustion experiments ranged from 1.2 to 3.7 on average, indicating the presence of water that is not chemically bound. This biofuel moisture content ranged from 33% in the dry African hardwood, musasa, to 220% in fresh pine branches with needles. The moisture content from fresh biofuel contributes distinctly to the water vapor in biomass burning emissions, and its influence on meteorology needs to be evaluated.

  5. Water vapor release from biomass combustion

    Science.gov (United States)

    Parmar, R. S.; Welling, M.; Andreae, M. O.; Helas, G.

    2008-10-01

    We report on the emission of water vapor from biomass combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are referenced to carbon in the biomass. The investigated fuel types include hardwood (oak and African musasa), softwood (pine and spruce, partly with green needles), and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 combustion experiments ranged from 1.2 to 3.7, indicating the presence of water that is not chemically bound. This non-bound biomass moisture content ranged from 33% in the dry African hardwood, musasa, to 220% in fresh pine branches with needles. The moisture content from fresh biomass contributes significantly to the water vapor in biomass burning emissions, and its influence on the behavior of fire plumes and pyro-cumulus clouds needs to be evaluated.

  6. Algorithmic height compression of unordered trees.

    Science.gov (United States)

    Ben-Naoum, Farah; Godin, Christophe

    2016-01-21

    By nature, tree structures frequently present similarities between their sub-parts. Making use of this redundancy, different types of tree compression techniques have been designed in the literature to reduce the complexity of tree structures. A popular and efficient way to compress a tree consists of merging its isomorphic subtrees, which produces a directed acyclic graph (DAG) equivalent to the original tree. An important property of this method is that the compressed structure (i.e. the DAG) has the same height as the original tree, thus limiting partially the possibility of compression. In this paper we address the problem of further compressing this DAG in height. The difficulty is that compression must be carried out on substructures that are not exactly isomorphic as they are strictly nested within each-other. We thus introduced a notion of quasi-isomorphism between subtrees that makes it possible to define similar patterns along any given path in a tree. We then proposed an algorithm to detect these patterns and to merge them, thus leading to compressed structures corresponding to DAGs augmented with return edges. In this way, redundant information is removed from the original tree in both width and height, thus achieving minimal structural compression. The complete compression algorithm is then illustrated on the compression of various plant-like structures.

  7. Instability of ties in compression

    DEFF Research Database (Denmark)

    Buch-Hansen, Thomas Cornelius

    2013-01-01

    Masonry cavity walls are loaded by wind pressure and vertical load from upper floors. These loads results in bending moments and compression forces in the ties connecting the outer and the inner wall in a cavity wall. Large cavity walls are furthermore loaded by differential movements from...... exact instability solutions are complex to derive, not to mention the extra complexity introducing dimensional instability from the temperature gradients. Using an inverse variable substitution and comparing an exact theory with an analytical instability solution a method to design tie...

  8. Ab initio compressive phase retrieval

    CERN Document Server

    Marchesini, S

    2008-01-01

    Any object on earth has two fundamental properties: it is finite, and it is made of atoms. Structural information about an object can be obtained from diffraction amplitude measurements that account for either one of these traits. Nyquist-sampling of the Fourier amplitudes is sufficient to image single particles of finite size at any resolution. Atomic resolution data is routinely used to image molecules replicated in a crystal structure. Here we report an algorithm that requires neither information, but uses the fact that an image of a natural object is compressible. Intended applications include tomographic diffractive imaging, crystallography, powder diffraction, small angle x-ray scattering and random Fourier amplitude measurements.

  9. Lossless Compression of Digital Images

    DEFF Research Database (Denmark)

    Martins, Bo

    Presently, tree coders are the best bi-level image coders. The currentISO standard, JBIG, is a good example.By organising code length calculations properly a vast number of possible models (trees) can be investigated within reasonable time prior to generating code.A number of general-purpose coders...... version that is substantially faster than its precursorsand brings it close to the multi-pass coders in compression performance.Handprinted characters are of unequal complexity; recent work by Singer and Tishby demonstrates that utilizing the physiological process of writing one can synthesize cursive...

  10. Antiproton compression and radial measurements

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jorgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page R D; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile, and its relation to that of the electron plasma. We also measure the outer radial profile by ejecting antiprotons to the trap wall using an octupole magnet.

  11. Lossless Compression of Broadcast Video

    DEFF Research Database (Denmark)

    Martins, Bo; Eriksen, N.; Faber, E.

    1998-01-01

    complexity, difficult but natural material is compressed up to 20\\% better than with coding using lossless JPEG-LS. More complex schemes lower the bit rate even further. A real-time implementation of JPEG-LS may be carried out in a DSP environment or a FPGA environment. Conservative analysis supported...... with actual measurements on a DSP suggests that a real-time implementation may be carried out using about 5 DSPs. An FPGA based solution is estimated to demand 4 or 6 FPGAs (each 40.000 gate equivalent)...

  12. Image Quality Meter Using Compression

    Directory of Open Access Journals (Sweden)

    Muhammad Ibrar-Ul-Haque

    2016-01-01

    Full Text Available This paper proposed a new technique to compressed image blockiness/blurriness in frequency domain through edge detection method by applying Fourier transform. In image processing, boundaries are characterized by edges and thus, edges are the problems of fundamental importance. The edges have to be identified and computed thoroughly in order to retrieve the complete illustration of the image. Our novel edge detection scheme for blockiness and blurriness shows improvement of 60 and 100 blocks for high frequency components respectively than any other detection technique.

  13. Low temperature vapor phase digestion of graphite

    Science.gov (United States)

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  14. Drag Reduction by Leidenfrost Vapor Layers

    Science.gov (United States)

    Vakarelski, Ivan U.; Marston, Jeremy O.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T.

    2011-05-01

    We demonstrate and quantify a highly effective drag reduction technique that exploits the Leidenfrost effect to create a continuous and robust lubricating vapor layer on the surface of a heated solid sphere moving in a liquid. Using high-speed video, we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development of related energy saving technologies.

  15. Guidance on Soil Vapor Extraction Optimization

    Science.gov (United States)

    2001-06-01

    343 Table LNAPL DNAPL Source: after USEPA 1991 draw\\$vehandbk3.cdr aee p1 4/5/01 M~ssive Clay ) . ’C. ~AA_··’’’· --V,V~ . >:’ .’ ’·Sand...for removing orgamc contaminants with a vapor pressure greater than 0.5 mm mercury (Hg) at 200 Celsius (C). This includes common chlorinated solvents...liquids ( DNAPLs ), solvent vapors, or dissolved contaminants. • Depth to groundwater, seasonal variations, recharge and discharge information including

  16. Water vapor release from biomass combustion

    OpenAIRE

    Parmar, R. S.; Welling, M.; Andreae, M. O.; G. Helas

    2008-01-01

    We report on the emission of water vapor from biomass combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are referenced to carbon in the biomass. The investigated fuel types include hardwood (oak and African musasa), softwood (pine and spruce, partly with green needles), and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the ...

  17. Water vapor release from biofuel combustion

    OpenAIRE

    Parmar, R. S.; Welling, M.; Andreae, M. O.; G. Helas

    2008-01-01

    We report on the emission of water vapor from biofuel combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are compared to carbon in the biofuel. Fuel types included hardwood (oak and African musasa), softwood (pine and spruce, partly with green needles), and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 ...

  18. The vertical distribution of Mars water vapor

    Science.gov (United States)

    Davies, D. W.

    1979-01-01

    Analysis of observations made from the Viking 1 Orbiter indicates that the water vapor over the Viking 1 landing site is uniformly mixed with the atmosphere and not concentrated near the surface. The analysis incorporates the effects of atmospheric scattering and explains why previous earth-based observations showed a strong diurnal variation in water content. It also explains the lack of an early morning fog and removes the necessity of daily exchange of large amounts of water between the surface and the atmosphere. A water vapor volume mixing ratio of 1.5 x 10 to the -4th is inferred for the Viking 1 site in late summer.

  19. Drag Reduction by Leidenfrost Vapor Layers

    KAUST Repository

    Vakarelski, Ivan Uriev

    2011-05-23

    We demonstrate and quantify a highly effective drag reduction technique that exploits the Leidenfrost effect to create a continuous and robust lubricating vapor layer on the surface of a heated solid sphere moving in a liquid. Using high-speed video, we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development of related energy saving technologies.

  20. Simulation Research of Vaporization and Pressure Variation in a Cryogenic Propellant Tank at the Launch Site

    Science.gov (United States)

    Chen, Liang; Liang, Guo-zhu

    2013-12-01

    In order to improve depiction of pressure variation and investigate the interrelation among the physical processes in propellant tanks, a 2D axial symmetry Volume-of-Fluid (VOF) CFD model is established to simulate a large-sized liquid propellant tank when the rocket is preparing for launch with propellant loaded at the launch site. The numerical model is considered with propellant free convection, heat transfer between the tank and the external environment, thermal exchange between propellant and inner tank wall surfaces, gas compressibility, and phase change modeled under the assumption of thermodynamic equilibrium. Vaporization rate of the vented LH2 tank and prediction of pressure change in the tank pressurized with GHe are obtained through simulation. We analysis the distributions of phase, temperature, and velocity vectors to reveal interactions among the propellant's own convection motion, heat transfer and phase change. The results show that the vaporization rate is mainly affected by heat leaks though the tank wall when the tank is vented, but it does not completely accord with the trend of the leakage because of convection motion and temperature nonuniformity of the liquid propellant in the tank. We also find that the main factors on pressure variation in the pressurized tank are the heat transfer on the tank wall surface bonding the ullage and propellant vaporization which has comparatively less influence.

  1. Compression des fichiers son de type wave.

    OpenAIRE

    BAKLI, Meriem

    2014-01-01

    Ce travail de projet de fin d’étude s’intéresse à une étude comparative sur la compression d’un fichier son. La compression est l'action utilisée pour réduire la taille physique d'un bloc d'information.. Il existe plusieurs algorithmes pour la compression comme HUFFMAN, …etc. Nous avons fait la compression d’un fichier son de format WAVE non compressé à un fichier MP3 compressé avec différent format de codage, différent frame et quelque soit le fichier mono où stéréo. A partir ...

  2. Direct numerical simulation of compressible isotropic turbulence

    Institute of Scientific and Technical Information of China (English)

    LI; Xinliang(李新亮); FU; Dexun(傅德薰); MAYanwen(马延文)

    2002-01-01

    Direct numerical simulation (DNS) of decaying compressible isotropic turbulence at tur-bulence Mach numbers of Mt = 0.2-0.7 and Taylor Reynolds numbers of 72 and 153 is per-formed by using the 7th order upwind-biased difference and 8th order center difference schemes.Results show that proper upwind-biased difference schemes can release the limit of "start-up"problem to Mach numbers.Compressibility effects on the statistics of turbulent flow as well as the mechanics of shockletsin compressible turbulence are also studied, and the conclusion is drawn that high Mach numberleads to more dissipation. Scaling laws in compressible turbulence are also analyzed. Evidence isobtained that scaling laws and extended self similarity (ESS) hold in the compressible turbulentflow in spite of the presence of shocklets, and compressibility has little effect on scaling exponents.

  3. Accelerating Lossless Data Compression with GPUs

    CERN Document Server

    Cloud, R L; Ward, H L; Skjellum, A; Bangalore, P

    2011-01-01

    Huffman compression is a statistical, lossless, data compression algorithm that compresses data by assigning variable length codes to symbols, with the more frequently appearing symbols given shorter codes than the less. This work is a modification of the Huffman algorithm which permits uncompressed data to be decomposed into indepen- dently compressible and decompressible blocks, allowing for concurrent compression and decompression on multiple processors. We create implementations of this modified algorithm on a current NVIDIA GPU using the CUDA API as well as on a current Intel chip and the performance results are compared, showing favorable GPU performance for nearly all tests. Lastly, we discuss the necessity for high performance data compression in today's supercomputing ecosystem.

  4. Image Compression Using Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Ryan Rey M. Daga

    2012-09-01

    Full Text Available Image compression techniques are important and useful in data storage and image transmission through the Internet. These techniques eliminate redundant information in an image which minimizes the physical space requirement of the image. Numerous types of image compression algorithms have been developed but the resulting image is still less than the optimal. The Harmony search algorithm (HSA, a meta-heuristic optimization algorithm inspired by the music improvisation process of musicians, was applied as the underlying algorithm for image compression. Experiment results show that it is feasible to use the harmony search algorithm as an algorithm for image compression. The HSA-based image compression technique was able to compress colored and grayscale images with minimal visual information loss.

  5. Industrial Compressed Air System Energy Efficiency Guidebook.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1993-12-01

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  6. LDPC Codes for Compressed Sensing

    CERN Document Server

    Dimakis, Alexandros G; Vontobel, Pascal O

    2010-01-01

    We present a mathematical connection between channel coding and compressed sensing. In particular, we link, on the one hand, \\emph{channel coding linear programming decoding (CC-LPD)}, which is a well-known relaxation of maximum-likelihood channel decoding for binary linear codes, and, on the other hand, \\emph{compressed sensing linear programming decoding (CS-LPD)}, also known as basis pursuit, which is a widely used linear programming relaxation for the problem of finding the sparsest solution of an under-determined system of linear equations. More specifically, we establish a tight connection between CS-LPD based on a zero-one measurement matrix over the reals and CC-LPD of the binary linear channel code that is obtained by viewing this measurement matrix as a binary parity-check matrix. This connection allows the translation of performance guarantees from one setup to the other. The main message of this paper is that parity-check matrices of "good" channel codes can be used as provably "good" measurement ...

  7. Hemifacial spasm and neurovascular compression.

    Science.gov (United States)

    Lu, Alex Y; Yeung, Jacky T; Gerrard, Jason L; Michaelides, Elias M; Sekula, Raymond F; Bulsara, Ketan R

    2014-01-01

    Hemifacial spasm (HFS) is characterized by involuntary unilateral contractions of the muscles innervated by the ipsilateral facial nerve, usually starting around the eyes before progressing inferiorly to the cheek, mouth, and neck. Its prevalence is 9.8 per 100,000 persons with an average age of onset of 44 years. The accepted pathophysiology of HFS suggests that it is a disease process of the nerve root entry zone of the facial nerve. HFS can be divided into two types: primary and secondary. Primary HFS is triggered by vascular compression whereas secondary HFS comprises all other causes of facial nerve damage. Clinical examination and imaging modalities such as electromyography (EMG) and magnetic resonance imaging (MRI) are useful to differentiate HFS from other facial movement disorders and for intraoperative planning. The standard medical management for HFS is botulinum neurotoxin (BoNT) injections, which provides low-risk but limited symptomatic relief. The only curative treatment for HFS is microvascular decompression (MVD), a surgical intervention that provides lasting symptomatic relief by reducing compression of the facial nerve root. With a low rate of complications such as hearing loss, MVD remains the treatment of choice for HFS patients as intraoperative technique and monitoring continue to improve.

  8. Dual compression is not an uncommon type of iliac vein compression syndrome.

    Science.gov (United States)

    Shi, Wan-Yin; Gu, Jian-Ping; Liu, Chang-Jian; Lou, Wen-Sheng; He, Xu

    2017-03-13

    Typical iliac vein compression syndrome (IVCS) is characterized by compression of left common iliac vein (LCIV) by the overlying right common iliac artery (RCIA). We described an underestimated type of IVCS with dual compression by right and left common iliac arteries (LCIA) simultaneously. Thirty-one patients with IVCS were retrospectively included. All patients received trans-catheter venography and computed tomography (CT) examinations for diagnosing and evaluating IVCS. Late venography and reconstructed CT were used for evaluating the anatomical relationship among LCIV, RCIA and LCIA. Imaging manifestations as well as demographic data were collected and evaluated by two experienced radiologists. Sole and dual compression were found in 32.3% (n = 10) and 67.7% (n = 21) of 31 patients respectively. No statistical differences existed between them in terms of age, gender, LCIV diameter at the maximum compression point, pressure gradient across stenosis, and the percentage of compression level. On CT and venography, sole compression was commonly presented with a longitudinal compression at the orifice of LCIV while dual compression was usually presented as two types: one had a lengthy stenosis along the upper side of LCIV and the other was manifested by a longitudinal compression near to the orifice of external iliac vein. The presence of dual compression seemed significantly correlated with the tortuous LCIA (p = 0.006). Left common iliac vein can be presented by dual compression. This type of compression has typical manifestations on late venography and CT.

  9. Efficiency of Compressed Air Energy Storage

    OpenAIRE

    Elmegaard, Brian; Brix, Wiebke

    2011-01-01

    The simplest type of a Compressed Air Energy Storage (CAES) facility would be an adiabatic process consisting only of a compressor, a storage and a turbine, compressing air into a container when storing and expanding when producing. This type of CAES would be adiabatic and would if the machines were reversible have a storage efficiency of 100%. However, due to the specific capacity of the storage and the construction materials the air is cooled during and after compression in practice, making...

  10. Technique for chest compressions in adult CPR

    Directory of Open Access Journals (Sweden)

    Rajab Taufiek K

    2011-12-01

    Full Text Available Abstract Chest compressions have saved the lives of countless patients in cardiac arrest as they generate a small but critical amount of blood flow to the heart and brain. This is achieved by direct cardiac massage as well as a thoracic pump mechanism. In order to optimize blood flow excellent chest compression technique is critical. Thus, the quality of the delivered chest compressions is a pivotal determinant of successful resuscitation. If a patient is found unresponsive without a definite pulse or normal breathing then the responder should assume that this patient is in cardiac arrest, activate the emergency response system and immediately start chest compressions. Contra-indications to starting chest compressions include a valid Do Not Attempt Resuscitation Order. Optimal technique for adult chest compressions includes positioning the patient supine, and pushing hard and fast over the center of the chest with the outstretched arms perpendicular to the patient's chest. The rate should be at least 100 compressions per minute and any interruptions should be minimized to achieve a minimum of 60 actually delivered compressions per minute. Aggressive rotation of compressors prevents decline of chest compression quality due to fatigue. Chest compressions are terminated following return of spontaneous circulation. Unconscious patients with normal breathing are placed in the recovery position. If there is no return of spontaneous circulation, then the decision to terminate chest compressions is based on the clinical judgment that the patient's cardiac arrest is unresponsive to treatment. Finally, it is important that family and patients' loved ones who witness chest compressions be treated with consideration and sensitivity.

  11. Compression Techniques for Improved Algorithm Computational Performance

    Science.gov (United States)

    Zalameda, Joseph N.; Howell, Patricia A.; Winfree, William P.

    2005-01-01

    Analysis of thermal data requires the processing of large amounts of temporal image data. The processing of the data for quantitative information can be time intensive especially out in the field where large areas are inspected resulting in numerous data sets. By applying a temporal compression technique, improved algorithm performance can be obtained. In this study, analysis techniques are applied to compressed and non-compressed thermal data. A comparison is made based on computational speed and defect signal to noise.

  12. Wavelet transform approach to video compression

    Science.gov (United States)

    Li, Jin; Cheng, Po-Yuen; Kuo, C.-C. Jay

    1995-04-01

    In this research, we propose a video compression scheme that uses the boundary-control vectors to represent the motion field and the embedded zerotree wavelet (EZW) to compress the displacement frame difference. When compared to the DCT-based MPEG, the proposed new scheme achieves a better compression performance in terms of the MSE (mean square error) value and visual perception for the same given bit rate.

  13. Quantum Data Compression of a Qubit Ensemble

    OpenAIRE

    Rozema, Lee A.; Mahler, Dylan H.; Hayat, Alex; Turner, Peter S.; Steinberg, Aephraim M.

    2014-01-01

    Data compression is a ubiquitous aspect of modern information technology, and the advent of quantum information raises the question of what types of compression are feasible for quantum data, where it is especially relevant given the extreme difficulty involved in creating reliable quantum memories. We present a protocol in which an ensemble of quantum bits (qubits) can in principle be perfectly compressed into exponentially fewer qubits. We then experimentally implement our algorithm, compre...

  14. Image Processing by Compression: An Overview

    OpenAIRE

    2012-01-01

    International audience; This article aims to present the various applications of data compression in image processing. Since some time ago, several research groups have been developing methods based on different data compression techniques to classify, segment, filter and detect digital images fakery. It is necessary to analyze the relationship between different methods and put them into a framework to better understand and better exploit the possibilities that compression provides us respect...

  15. New Theory and Algorithms for Compressive Sensing

    Science.gov (United States)

    2009-03-06

    are compressed by a factor of 10 or more when expressed in terms of their largest Fourier or wavelet coefficients. The usual approach to acquiring a...information conversion 2.2.1 Compressive sensing background Compressive Sensing (CS) provides a framework for acquisition of an N × 1 discrete -time signal...1) This optimization problem, also known as Basis Pursuit with Denoising (BPDN) [10] can be solved with tradi- tional convex programming techniques

  16. Comparing biological networks via graph compression

    Directory of Open Access Journals (Sweden)

    Hayashida Morihiro

    2010-09-01

    Full Text Available Abstract Background Comparison of various kinds of biological data is one of the main problems in bioinformatics and systems biology. Data compression methods have been applied to comparison of large sequence data and protein structure data. Since it is still difficult to compare global structures of large biological networks, it is reasonable to try to apply data compression methods to comparison of biological networks. In existing compression methods, the uniqueness of compression results is not guaranteed because there is some ambiguity in selection of overlapping edges. Results This paper proposes novel efficient methods, CompressEdge and CompressVertices, for comparing large biological networks. In the proposed methods, an original network structure is compressed by iteratively contracting identical edges and sets of connected edges. Then, the similarity of two networks is measured by a compression ratio of the concatenated networks. The proposed methods are applied to comparison of metabolic networks of several organisms, H. sapiens, M. musculus, A. thaliana, D. melanogaster, C. elegans, E. coli, S. cerevisiae, and B. subtilis, and are compared with an existing method. These results suggest that our methods can efficiently measure the similarities between metabolic networks. Conclusions Our proposed algorithms, which compress node-labeled networks, are useful for measuring the similarity of large biological networks.

  17. Stability of compressible reacting mixing layer

    Science.gov (United States)

    Shin, D. S.; Ferziger, J. H.

    1991-01-01

    Linear instability of compressible reacting mixing layers is analyzed with emphasis on the effects of heat release and compressibility. Laminar solutions of the compressible boundary-layer equations are used as the base flows. The parameters of this study are the adiabatic flame temperature, the Mach number of the upper stream, frequency, wavenumber, and the direction of propagation of the disturbance wave. Stability characteristics of the flow are presented. Three groups of unstable modes are found when the Mach number and/or heat release are large. Finally, it is shown that the unstable modes are two-dimensional for large heat release even in highly compressible flow.

  18. The applicability of the wind compression model

    CERN Document Server

    Cariková, Zuzana

    2014-01-01

    Compression of the stellar winds from rapidly rotating hot stars is described by the wind compression model. However, it was also shown that rapid rotation leads to rotational distortion of the stellar surface, resulting in the appearance of non-radial forces acting against the wind compression. In this note we justify the wind compression model for moderately rotating white dwarfs and slowly rotating giants. The former could be conducive to understanding density/ionization structure of the mass outflow from symbiotic stars and novae, while the latter can represent an effective mass-transfer mode in the wide interacting binaries.

  19. Compression Properties of Polyester Needlepunched Fabric

    Directory of Open Access Journals (Sweden)

    Sanjoy Debnath, Ph.D.

    2009-12-01

    Full Text Available In the present paper, a study of the effects of fabricweight, fiber cross-sectional shapes (round, hollowand trilobal and presence of reinforcing materialon the compression properties (initial thickness,percentage compression, percentage thickness lossand percentage compression resilience of polyesterneedle punched industrial nonwoven fabrics ispresented. It was found that for fabrics with noreinforcing material, the initial thickness,compression, and thickness loss were higher thanfabrics with reinforcing material, irrespectiveoffiber cross-section. Compression resilience datashowed the reverse trend. Initial thickness fortrilobal cross-sectional fabric sample was highestfollowed by round and hollow cross-sectionedpolyester needle punched fabrics. The polyesterfabric made from hollow cross-sectioned fibersshowed the least percentage compression at everylevel of fabric weights. The trilobal cross-sectionedpolyester fabric sample showed higher thicknessloss followed by round and hollow cross-sectionedpolyester fabric samples respectively. The hollowcross-sectioned polyester fabric samples showedmaximum compression resilience followed byround and trilobal cross-sectioned polyestersamples irrespective of fabric weights. The initialthickness increases, but percentage compression,thickness loss and compression resilience decreaseswith the increase in fabric weight irrespective offiber cross-sectional shapes.

  20. Spinal cord compression due to ethmoid adenocarcinoma.

    Science.gov (United States)

    Johns, D R; Sweriduk, S T

    1987-10-15

    Adenocarcinoma of the ethmoid sinus is a rare tumor which has been epidemiologically linked to woodworking in the furniture industry. It has a low propensity to metastasize and has not been previously reported to cause spinal cord compression. A symptomatic epidural spinal cord compression was confirmed on magnetic resonance imaging (MRI) scan in a former furniture worker with widely disseminated metastases. The clinical features of ethmoid sinus adenocarcinoma and neoplastic spinal cord compression, and the comparative value of MRI scanning in the neuroradiologic diagnosis of spinal cord compression are reviewed.

  1. Efficient compression of molecular dynamics trajectory files.

    Science.gov (United States)

    Marais, Patrick; Kenwood, Julian; Smith, Keegan Carruthers; Kuttel, Michelle M; Gain, James

    2012-10-15

    We investigate whether specific properties of molecular dynamics trajectory files can be exploited to achieve effective file compression. We explore two classes of lossy, quantized compression scheme: "interframe" predictors, which exploit temporal coherence between successive frames in a simulation, and more complex "intraframe" schemes, which compress each frame independently. Our interframe predictors are fast, memory-efficient and well suited to on-the-fly compression of massive simulation data sets, and significantly outperform the benchmark BZip2 application. Our schemes are configurable: atomic positional accuracy can be sacrificed to achieve greater compression. For high fidelity compression, our linear interframe predictor gives the best results at very little computational cost: at moderate levels of approximation (12-bit quantization, maximum error ≈ 10(-2) Å), we can compress a 1-2 fs trajectory file to 5-8% of its original size. For 200 fs time steps-typically used in fine grained water diffusion experiments-we can compress files to ~25% of their input size, still substantially better than BZip2. While compression performance degrades with high levels of quantization, the simulation error is typically much greater than the associated approximation error in such cases.

  2. Memory hierarchy using row-based compression

    Science.gov (United States)

    Loh, Gabriel H.; O'Connor, James M.

    2016-10-25

    A system includes a first memory and a device coupleable to the first memory. The device includes a second memory to cache data from the first memory. The second memory includes a plurality of rows, each row including a corresponding set of compressed data blocks of non-uniform sizes and a corresponding set of tag blocks. Each tag block represents a corresponding compressed data block of the row. The device further includes decompression logic to decompress data blocks accessed from the second memory. The device further includes compression logic to compress data blocks to be stored in the second memory.

  3. Vaporization of atherosclerotic plaques by spark erosion

    NARCIS (Netherlands)

    C.J. Slager (Cornelis); C.E. Essed; J.C.H. Schuurbiers (Johan); N. Bom (Klaas); P.W.J.C. Serruys (Patrick); G.T. Meester (Geert)

    1985-01-01

    textabstractAn alternative to the laser irradiation of atherosclerotic lesions has been developed. A pulsed electrocardiogram R wave-triggered electrical spark erosion technique is described. Controlled vaporization of fibrous and lipid plaques with minimal thermal side effects was achieved and docu

  4. Steam vaporizers: A danger for paediatric burns.

    Science.gov (United States)

    Lonie, Sarah; Baker, Paul; Teixeira, Rodrigo

    2016-12-01

    Steam vaporizers are used to humidify air in dry environments. They are marketed to moisten children's airway secretions and thus to help relieve symptoms associated with upper respiratory tract infections. Unfortunately the steam emitted from the unit can also pose a significant risk of burns to children. Our study aimed to ascertain patterns of injury and treatment outcomes from steam burns resulting from these devices. Potential preventative measures are discussed. Children who had sustained vaporizer scald burns were identified at the outpatient burns clinic over a 10-month period (November 2014-August 2015). Medical records were reviewed retrospectively and data collected on pattern of injury, management and outcomes. Ten children were treated for vaporizer steam burns over the study period. The mean age was 1.6 years and 8 (80%) patients were male. Operative intervention was undergone in 5 (50%) cases; four acutely and one as a secondary reconstructive procedure. Hand burns accounted for 8 (80%) of cases. Steam vaporizers can cause significant burns in the paediatric population. Toddlers were most at risk, frequently sustaining hand burns that underwent skin grafting. Greater public awareness of the danger is indicated and measures to prevent such injuries should be addressed by appropriate authorities. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  5. Chemical vapor deposition of mullite coatings

    Science.gov (United States)

    Sarin, Vinod; Mulpuri, Rao

    1998-01-01

    This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

  6. Thermodynamics of incongruently vaporizing tungsten diselenide

    Energy Technology Data Exchange (ETDEWEB)

    Schiffman, R.A.; Franzen, H.F.; Ziegler, R.J.

    1982-03-01

    The incongruent vaporization of WSe/sub 2/ was investigated by a simultaneous weight-loss-mass-spectrometric Knudsen effusion technique in the temperature range 1290-1720 K. For the reaction (1/2)WSe/sub 2/(s) ..-->.. (1/2)W(s) + Se(g), ..delta..H/sub 298//sup 0/ = 311 +/- 3 kJ/mol.

  7. Multilead, Vaporization-Cooled Soldering Heat Sink

    Science.gov (United States)

    Rice, John

    1995-01-01

    Vaporization-cooled heat sink proposed for use during soldering of multiple electrical leads of packaged electronic devices to circuit boards. Heat sink includes compliant wicks held in grooves on edges of metal fixture. Wicks saturated with water. Prevents excessive increases in temperature at entrances of leads into package.

  8. Solvent-vapor-assisted imprint lithography

    NARCIS (Netherlands)

    Voicu, Nicoleta E.; Ludwigs, Sabine; Crossland, Edward J. W.; Andrew, Piers; Steiner, Ullrich

    2007-01-01

    Sub-micrometer features are replicated into high-molecular-weight polymer resists by using solvent-assisted nanoimprint lithography (see figure). By swelling the polymer in a controlled solvent-vapor atmosphere, millibar pressures and ambient temperatures are sufficient to achieve high-fidelity

  9. Vaporization of synthetic fuels. Final report. [Thesis

    Energy Technology Data Exchange (ETDEWEB)

    Sirignano, W.A.; Yao, S.C.; Tong, A.Y.; Talley, D.

    1983-01-01

    The problem of transient droplet vaporization in a hot convective environment is examined. The main objective of the present study is to develop an algorithm for the droplet vaporization which is simple enough to be feasibly incorporated into a complete spray combustion analysis and yet will also account for the important physics such as liquid-phase internal circulation, unsteady droplet heating and axisymmetric gas-phase convection. A simplified liquid-phase model has been obtained based on the assumption of the existence of a Hill's spherical vortex inside the droplet together with some approximations made in the governing diffusion equation. The use of the simplified model in a spray situation has also been examined. It has been found that droplet heating and vaporization are essentially unsteady and droplet temperature is nonuniform for a significant portion of its lifetime. It has also been found that the droplet vaporization characteristic can be quite sensitive to the particular liquid-phase and gas-phase models. The results of the various models are compared with the existing experimental data. Due to large scattering in the experimental measurements, particularly the droplet diameter, no definite conclusion can be drawn based on the experimental data. Finally, certain research problems which are related to the present study are suggested for future studies.

  10. Atomic lithium vapor laser isotope separation

    CERN Document Server

    Olivares, I E

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the sup 6 LiD sub 2 and the sup 7 LiD sub 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  11. Vaporization of fault water during seismic slip

    Science.gov (United States)

    Chen, Jianye; Niemeijer, André R.; Fokker, Peter A.

    2017-06-01

    Laboratory and numerical studies, as well as field observations, indicate that phase transitions of pore water might be an important process in large earthquakes. We present a model of the thermo-hydro-chemo-mechanical processes, including a two-phase mixture model to incorporate the phase transitions of pore water, occurring during fast slip (i.e., a natural earthquake) in order to investigate the effects of vaporization on the coseismic slip. Using parameters from typical natural faults, our modeling shows that vaporization can indeed occur at the shallow depths of an earthquake, irrespective of the wide variability of the parameters involved (sliding velocity, friction coefficient, gouge permeability and porosity, and shear-induced dilatancy). Due to the fast kinetics, water vaporization can cause a rapid slip weakening even when the hydrological conditions of the fault zone are not favorable for thermal pressurization, e.g., when permeability is high. At the same time, the latent heat associated with the phase transition causes the temperature rise in the slip zone to be buffered. Our parametric analyses reveal that the amount of frictional work is the principal factor controlling the onset and activity of vaporization and that it can easily be achieved in earthquakes. Our study shows that coseismic pore fluid vaporization might have played important roles at shallow depths of large earthquakes by enhancing slip weakening and buffering the temperature rise. The combined effects may provide an alternative explanation for the fact that low-temperature anomalies were measured in the slip zones at shallow depths of large earthquakes.

  12. Comparative compressibility of hydrous wadsleyite

    Science.gov (United States)

    Chang, Y.; Jacobsen, S. D.; Thomas, S.; Bina, C. R.; Smyth, J. R.; Frost, D. J.; Hauri, E. H.; Meng, Y.; Dera, P. K.

    2010-12-01

    Determining the effects of hydration on the density and elastic properties of wadsleyite, β-Mg2SiO4, is critical to constraining Earth’s global geochemical water cycle. Whereas previous studies of the bulk modulus (KT) have studied either hydrous Mg-wadsleyite, or anhydrous Fe-bearing wadsleyite, the combined effects of hydration and iron are under investigation. Also, whereas KT from compressibility studies is relatively well constrained by equation of state fitting to P-V data, the pressure derivative of the bulk modulus (K’) is usually not well constrained either because of poor data resolution, uncertainty in pressure calibrations, or narrow pressure ranges of previous single-crystal studies. Here we report the comparative compressibility of dry versus hydrous wadsleyite with Fo90 composition containing 1.9(2) wt% H2O, nearly the maximum water storage capacity of this phase. The composition was characterized by EMPA and nanoSIMS. The experiments were carried out using high-pressure, single-crystal diffraction up to 30 GPa at HPCAT, Advanced Photon Source. By loading three crystals each of hydrous and anhydrous wadsleyite together in the same diamond-anvil cell, we achieve good hkl coverage and eliminate the pressure scale as a variable in comparing the relative value of K’ between the dry and hydrous samples. We used MgO as an internal diffraction standard, in addition to recording ruby fluorescence pressures. By using neon as a pressure medium and about 1 GPa pressure steps up to 30 GPa, we obtain high-quality diffraction data for constraining the effect of hydration on the density and K’ of hydrous wadsleyite. Due to hydration, the initial volume of hydrous Fo90 wadsleyite is larger than anhydrous Fo90 wadsleyite, however the higher compressibility of hydrous wadsleyite leads to a volume crossover at 6 GPa. Hydration to 2 wt% H2O reduces the bulk modulus of Fo90 wadsleyite from 170(2) to 157(2) GPa, or about 7.6% reduction. In contrast to previous

  13. Blind compressive sensing dynamic MRI.

    Science.gov (United States)

    Lingala, Sajan Goud; Jacob, Mathews

    2013-06-01

    We propose a novel blind compressive sensing (BCS) frame work to recover dynamic magnetic resonance images from undersampled measurements. This scheme models the dynamic signal as a sparse linear combination of temporal basis functions, chosen from a large dictionary. In contrast to classical compressed sensing, the BCS scheme simultaneously estimates the dictionary and the sparse coefficients from the undersampled measurements. Apart from the sparsity of the coefficients, the key difference of the BCS scheme with current low rank methods is the nonorthogonal nature of the dictionary basis functions. Since the number of degrees-of-freedom of the BCS model is smaller than that of the low-rank methods, it provides improved reconstructions at high acceleration rates. We formulate the reconstruction as a constrained optimization problem; the objective function is the linear combination of a data consistency term and sparsity promoting l1 prior of the coefficients. The Frobenius norm dictionary constraint is used to avoid scale ambiguity. We introduce a simple and efficient majorize-minimize algorithm, which decouples the original criterion into three simpler subproblems. An alternating minimization strategy is used, where we cycle through the minimization of three simpler problems. This algorithm is seen to be considerably faster than approaches that alternates between sparse coding and dictionary estimation, as well as the extension of K-SVD dictionary learning scheme. The use of the l1 penalty and Frobenius norm dictionary constraint enables the attenuation of insignificant basis functions compared to the l0 norm and column norm constraint assumed in most dictionary learning algorithms; this is especially important since the number of basis functions that can be reliably estimated is restricted by the available measurements. We also observe that the proposed scheme is more robust to local minima compared to K-SVD method, which relies on greedy sparse coding. Our

  14. Magnetic Flux Compression in Plasmas

    Science.gov (United States)

    Velikovich, A. L.

    2012-10-01

    Magnetic flux compression (MFC) as a method for producing ultra-high pulsed magnetic fields had been originated in the 1950s by Sakharov et al. at Arzamas in the USSR (now VNIIEF, Russia) and by Fowler et al. at Los Alamos in the US. The highest magnetic field produced by explosively driven MFC generator, 28 MG, was reported by Boyko et al. of VNIIEF. The idea of using MFC to increase the magnetic field in a magnetically confined plasma to 3-10 MG, relaxing the strict requirements on the plasma density and Lawson time, gave rise to the research area known as MTF in the US and MAGO in Russia. To make a difference in ICF, a magnetic field of ˜100 MG should be generated via MFC by a plasma liner as a part of the capsule compression scenario on a laser or pulsed power facility. This approach was first suggested in mid-1980s by Liberman and Velikovich in the USSR and Felber in the US. It has not been obvious from the start that it could work at all, given that so many mechanisms exist for anomalously fast penetration of magnetic field through plasma. And yet, many experiments stimulated by this proposal since 1986, mostly using pulsed-power drivers, demonstrated reasonably good flux compression up to ˜42 MG, although diagnostics of magnetic fields of such magnitude in HED plasmas is still problematic. The new interest of MFC in plasmas emerged with the advancement of new drivers, diagnostic methods and simulation tools. Experiments on MFC in a deuterium plasma filling a cylindrical plastic liner imploded by OMEGA laser beam led by Knauer, Betti et al. at LLE produced peak fields of 36 MG. The novel MagLIF approach to low-cost, high-efficiency ICF pursued by Herrmann, Slutz, Vesey et al. at Sandia involves pulsed-power-driven MFC to a peak field of ˜130 MG in a DT plasma. A review of the progress, current status and future prospects of MFC in plasmas is presented.

  15. Employment of vapor pressure data in the description of vapor-liquid equilibrium with direct method

    Energy Technology Data Exchange (ETDEWEB)

    Morbidelli, M.; Carra, S.

    1981-07-01

    A general procedure for inserting vapor-pressure data of pure components into equations of state provides a straightforward scheme for the extension of direct methods to the study of phase equilibria of polar mixtures and of solutions containing nonvolatile electrolytes. It makes the equation of state applicable to all compounds and to the shole temperature range and more accurate in the prediction of both multicomponent and pure vapor-liquid equilibria.

  16. Geomechanical and water vapor absorption characteristics of clay-bearing soft rocks at great depth

    Institute of Scientific and Technical Information of China (English)

    Zhang Na; Liu Longbiao; Hou Dongwen; He Manchao; Liu Yilei

    2014-01-01

    The geological and physico-mechanical properties characterization of deep soft rocks is one of the critical scientific issues for deep soft rock engineering. In the present study, X-ray diffraction (XRD) analysis, scanning electron microscope (SEM), and mercury intrusion porosimetry experiments were carried out to investigate the mineral compositions, microstructure and porosity characteristics of the 13 clay-bearing soft rock samples collected from a deep coal mine in China. Water vapor absorption and uniaxial compressive experiments were also performed to examine water absorption characteristics and water-induced strength degradation effect of the investigated deep soft rock samples. The results show that the dominant mineral components in mudstone, coarse sandstone and fine sandstone samples were calcite, quartz and clay respectively. The contents of clay minerals in all samples were relatively high and ranged from 12.3% (N-4) to 56.5% (XS-1). Water vapor absorption processes of all the soft rock samples follow an exponential law which is very similar to the water vapor absorption behavior of conglomerate samples reported in our earlier study. Correlation analyses also suggested that there were good positive correlation relationships between water absorptivity and clay minerals for both mudstone and sandstone samples. Furthermore, it was found that vapor absorption was not correlated with the porosity for mudstone, however, positive correlation relationship was found between them for sand-stone. Correlation analysis between UCS, modulus of elasticity and water content demonstrated that both of them tend to decrease with the increase of their water content due to water absorption.

  17. A New Approach for Fingerprint Image Compression

    Energy Technology Data Exchange (ETDEWEB)

    Mazieres, Bertrand

    1997-12-01

    The FBI has been collecting fingerprint cards since 1924 and now has over 200 million of them. Digitized with 8 bits of grayscale resolution at 500 dots per inch, it means 2000 terabytes of information. Also, without any compression, transmitting a 10 Mb card over a 9600 baud connection will need 3 hours. Hence we need a compression and a compression as close to lossless as possible: all fingerprint details must be kept. A lossless compression usually do not give a better compression ratio than 2:1, which is not sufficient. Compressing these images with the JPEG standard leads to artefacts which appear even at low compression rates. Therefore the FBI has chosen in 1993 a scheme of compression based on a wavelet transform, followed by a scalar quantization and an entropy coding : the so-called WSQ. This scheme allows to achieve compression ratios of 20:1 without any perceptible loss of quality. The publication of the FBI specifies a decoder, which means that many parameters can be changed in the encoding process: the type of analysis/reconstruction filters, the way the bit allocation is made, the number of Huffman tables used for the entropy coding. The first encoder used 9/7 filters for the wavelet transform and did the bit allocation using a high-rate bit assumption. Since the transform is made into 64 subbands, quite a lot of bands receive only a few bits even at an archival quality compression rate of 0.75 bit/pixel. Thus, after a brief overview of the standard, we will discuss a new approach for the bit-allocation that seems to make more sense where theory is concerned. Then we will talk about some implementation aspects, particularly for the new entropy coder and the features that allow other applications than fingerprint image compression. Finally, we will compare the performances of the new encoder to those of the first encoder.

  18. Spectral compression of single photons

    CERN Document Server

    Lavoie, Jonathan; Wright, Logan G; Fedrizzi, Alessandro; Resch, Kevin J

    2013-01-01

    Photons are critical to quantum technologies since they can be used for virtually all quantum information tasks: in quantum metrology, as the information carrier in photonic quantum computation, as a mediator in hybrid systems, and to establish long distance networks. The physical characteristics of photons in these applications differ drastically; spectral bandwidths span 12 orders of magnitude from 50 THz for quantum-optical coherence tomography to 50 Hz for certain quantum memories. Combining these technologies requires coherent interfaces that reversibly map centre frequencies and bandwidths of photons to avoid excessive loss. Here we demonstrate bandwidth compression of single photons by a factor 40 and tunability over a range 70 times that bandwidth via sum-frequency generation with chirped laser pulses. This constitutes a time-to-frequency interface for light capable of converting time-bin to colour entanglement and enables ultrafast timing measurements. It is a step toward arbitrary waveform generatio...

  19. Genetic disorders producing compressive radiculopathy.

    Science.gov (United States)

    Corey, Joseph M

    2006-11-01

    Back pain is a frequent complaint seen in neurological practice. In evaluating back pain, neurologists are asked to evaluate patients for radiculopathy, determine whether they may benefit from surgery, and help guide management. Although disc herniation is the most common etiology of compressive radiculopathy, there are many other causes, including genetic disorders. This article is a discussion of genetic disorders that cause or contribute to radiculopathies. These genetic disorders include neurofibromatosis, Paget's disease of bone, and ankylosing spondylitis. Numerous genetic disorders can also lead to deformities of the spine, including spinal muscular atrophy, Friedreich's ataxia, Charcot-Marie-Tooth disease, familial dysautonomia, idiopathic torsional dystonia, Marfan's syndrome, and Ehlers-Danlos syndrome. However, the extent of radiculopathy caused by spine deformities is essentially absent from the literature. Finally, recent investigation into the heritability of disc degeneration and lumbar disc herniation suggests a significant genetic component in the etiology of lumbar disc disease.

  20. Photon counting compressive depth mapping

    CERN Document Server

    Howland, Gregory A; Ware, Matthew R; Howell, John C

    2013-01-01

    We demonstrate a compressed sensing, photon counting lidar system based on the single-pixel camera. Our technique recovers both depth and intensity maps from a single under-sampled set of incoherent, linear projections of a scene of interest at ultra-low light levels around 0.5 picowatts. Only two-dimensional reconstructions are required to image a three-dimensional scene. We demonstrate intensity imaging and depth mapping at 256 x 256 pixel transverse resolution with acquisition times as short as 3 seconds. We also show novelty filtering, reconstructing only the difference between two instances of a scene. Finally, we acquire 32 x 32 pixel real-time video for three-dimensional object tracking at 14 frames-per-second.

  1. Compressed Encoding for Rank Modulation

    CERN Document Server

    Gad, Eyal En; Jiang,; Bruck, Jehoshua

    2011-01-01

    Rank modulation has been recently proposed as a scheme for storing information in flash memories. While rank modulation has advantages in improving write speed and endurance, the current encoding approach is based on the "push to the top" operation that is not efficient in the general case. We propose a new encoding procedure where a cell level is raised to be higher than the minimal necessary subset - instead of all - of the other cell levels. This new procedure leads to a significantly more compressed (lower charge levels) encoding. We derive an upper bound for a family of codes that utilize the proposed encoding procedure, and consider code constructions that achieve that bound for several special cases.

  2. Construction and compression of Dwarf

    Institute of Scientific and Technical Information of China (English)

    XIANG Long-gang; FENG Yu-cai; GUI Hao

    2005-01-01

    There exists an inherent difficulty in the original algorithm for the construction of Dwarf, which prevents it from constructing true Dwarfs. We explained when and why it introduces suffix redundancies into the Dwarf structure. To solve this problem, we proposed a completely new algorithm called PID. It bottom-up computes partitions of a fact table, and inserts them into the Dwarf structure. Ifa partition is an MSV partition, coalesce its sub-Dwarf; otherwise create necessary nodes and cells. Our performance study showed that PID is efficient. For further condensing of Dwarf, we proposed Condensed Dwarf, a more compressed structure, combining the strength of Dwarf and Condensed Cube. By eliminating unnecessary stores of "ALL" cells from the Dwarf structure, Condensed Dwarf could effectively reduce the size of Dwarf, especially for Dwarfs of the real world, which was illustrated by our experiments. Its query processing is still simple and, only two minor modifications to PID are required for the construction of Condensed Dwarf.

  3. Fragment separator momentum compression schemes

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, Laura, E-mail: bandura@anl.gov [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); National Superconducting Cyclotron Lab, Michigan State University, 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Erdelyi, Bela [Argonne National Laboratory, Argonne, IL 60439 (United States); Northern Illinois University, DeKalb, IL 60115 (United States); Hausmann, Marc [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Kubo, Toshiyuki [RIKEN Nishina Center, RIKEN, Wako (Japan); Nolen, Jerry [Argonne National Laboratory, Argonne, IL 60439 (United States); Portillo, Mauricio [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Sherrill, Bradley M. [National Superconducting Cyclotron Lab, Michigan State University, 1 Cyclotron, East Lansing, MI 48824-1321 (United States)

    2011-07-21

    We present a scheme to use a fragment separator and profiled energy degraders to transfer longitudinal phase space into transverse phase space while maintaining achromatic beam transport. The first order beam optics theory of the method is presented and the consequent enlargement of the transverse phase space is discussed. An interesting consequence of the technique is that the first order mass resolving power of the system is determined by the first dispersive section up to the energy degrader, independent of whether or not momentum compression is used. The fragment separator at the Facility for Rare Isotope Beams is a specific application of this technique and is described along with simulations by the code COSY INFINITY.

  4. Fragment separator momentum compression schemes.

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, L.; Erdelyi, B.; Hausmann, M.; Kubo, T.; Nolen, J.; Portillo, M.; Sherrill, B.M. (Physics); (MSU); (Northern Illinois Univ.); (RIKEN)

    2011-07-21

    We present a scheme to use a fragment separator and profiled energy degraders to transfer longitudinal phase space into transverse phase space while maintaining achromatic beam transport. The first order beam optics theory of the method is presented and the consequent enlargement of the transverse phase space is discussed. An interesting consequence of the technique is that the first order mass resolving power of the system is determined by the first dispersive section up to the energy degrader, independent of whether or not momentum compression is used. The fragment separator at the Facility for Rare Isotope Beams is a specific application of this technique and is described along with simulations by the code COSY INFINITY.

  5. Isotropic polarization of compressible flows

    CERN Document Server

    Zhu, Jian-Zhou

    2015-01-01

    The helical absolute equilibrium of a compressible adiabatic flow presents not only the polarization between the two purely helical modes of opposite chiralities but also that between the vortical and acoustic modes, deviating from the equipartition predicted by {\\sc Kraichnan, R. H.} [1955 The Journal of the Acoustical Society of America {\\bf 27}, 438--441.] Due to the existence of the acoustic mode, even if all Fourier modes of one chiral sector in the sharpened Helmholtz decomposition [{\\sc Moses, H. E.} 1971 SIAM ~(Soc. Ind. Appl. Math.) J. Appl. Math. {\\bf 21}, 114--130] are thoroughly truncated, negative temperature and the corresponding large-scale concentration of vortical modes are not allowed, unlike the incompressible case.

  6. Compression molding of aerogel microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Pekala, Richard W. (Pleasant Hill, CA); Hrubesh, Lawrence W. (Pleasanton, CA)

    1998-03-24

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50-800 kg/m.sup.3 (0.05-0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization.

  7. Compression molding of aerogel microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Pekala, R.W.; Hrubesh, L.W.

    1998-03-24

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner is disclosed. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50--800 kg/m{sup 3} (0.05--0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization. 4 figs.

  8. Nonrepetitive Colouring via Entropy Compression

    CERN Document Server

    Dujmović, Vida; Wood, David R

    2011-01-01

    A vertex colouring of a graph is \\emph{nonrepetitive} if there is no path whose first half receives the same sequence of colours as the second half. A graph is nonrepetitively $k$-choosable if given lists of at least $k$ colours at each vertex, there is a nonrepetitive colouring such that each vertex is coloured from its own list. It is known that every graph with maximum degree $\\Delta$ is $c\\Delta^2$-choosable, for some constant $c$. We prove this result with $c=4$. We then prove that every subdivision of a graph with sufficiently many division vertices per edge is nonrepetitively 6-choosable. The proofs of both these results are based on the Moser-Tardos entropy-compression method, and a recent extension by Grytczuk, Kozik and Micek for the nonrepetitive choosability of paths. Finally, we prove that every graph with pathwidth $k$ is nonrepetitively ($2k^2+6k+1$)-colourable.

  9. MIMO Radar Using Compressive Sampling

    CERN Document Server

    Yu, Yao; Poor, H Vincent

    2009-01-01

    A MIMO radar system is proposed for obtaining angle and Doppler information on potential targets. Transmitters and receivers are nodes of a small scale wireless network and are assumed to be randomly scattered on a disk. The transmit nodes transmit uncorrelated waveforms. Each receive node applies compressive sampling to the received signal to obtain a small number of samples, which the node subsequently forwards to a fusion center. Assuming that the targets are sparsely located in the angle- Doppler space, based on the samples forwarded by the receive nodes the fusion center formulates an l1-optimization problem, the solution of which yields target angle and Doppler information. The proposed approach achieves the superior resolution of MIMO radar with far fewer samples than required by other approaches. This implies power savings during the communication phase between the receive nodes and the fusion center. Performance in the presence of a jammer is analyzed for the case of slowly moving targets. Issues rel...

  10. Compressed sensing traction force microscopy.

    Science.gov (United States)

    Brask, Jonatan Bohr; Singla-Buxarrais, Guillem; Uroz, Marina; Vincent, Romaric; Trepat, Xavier

    2015-10-01

    Adherent cells exert traction forces on their substrate, and these forces play important roles in biological functions such as mechanosensing, cell differentiation and cancer invasion. The method of choice to assess these active forces is traction force microscopy (TFM). Despite recent advances, TFM remains highly sensitive to measurement noise and exhibits limited spatial resolution. To improve the resolution and noise robustness of TFM, here we adapt techniques from compressed sensing (CS) to the reconstruction of the traction field from the substrate displacement field. CS enables the recovery of sparse signals at higher resolution from lower resolution data. Focal adhesions (FAs) of adherent cells are spatially sparse implying that traction fields are also sparse. Here we show, by simulation and by experiment, that the CS approach enables circumventing the Nyquist-Shannon sampling theorem to faithfully reconstruct the traction field at a higher resolution than that of the displacement field. This allows reaching state-of-the-art resolution using only a medium magnification objective. We also find that CS improves reconstruction quality in the presence of noise. A great scientific advance of the past decade is the recognition that physical forces determine an increasing list of biological processes. Traction force microscopy which measures the forces that cells exert on their surroundings has seen significant recent improvements, however the technique remains sensitive to measurement noise and severely limited in spatial resolution. We exploit the fact that the force fields are sparse to boost the spatial resolution and noise robustness by applying ideas from compressed sensing. The novel method allows high resolution on a larger field of view. This may in turn allow better understanding of the cell forces at the multicellular level, which are known to be important in wound healing and cancer invasion. Copyright © 2015 Acta Materialia Inc. Published by Elsevier

  11. Survey of data compression techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gryder, R.; Hake, K.

    1991-09-01

    PM-AIM must provide to customers in a timely fashion information about Army acquisitions. This paper discusses ways that PM-AIM can reduce the volume of data that must be transmitted between sites. Although this paper primarily discusses techniques of data compression, it also briefly discusses other options for meeting the PM-AIM requirements. The options available to PM-AIM, in addition to hardware and software data compression, include less-frequent updates, distribution of partial updates, distributed data base design, and intelligent network design. Any option that enhances the performance of the PM-AIM network is worthy of consideration. The recommendations of this paper apply to the PM-AIM project in three phases: the current phase, the target phase, and the objective phase. Each recommendation will be identified as (1) appropriate for the current phase, (2) considered for implementation during the target phase, or (3) a feature that should be part of the objective phase of PM-AIM's design. The current phase includes only those measures that can be taken with the installed leased lines. The target phase includes those measures that can be taken in transferring the traffic from the leased lines to the DSNET environment with minimal changes in the current design. The objective phase includes all the things that should be done as a matter of course. The objective phase for PM-AIM appears to be a distributed data base with data for each site stored locally and all sites having access to all data.

  12. Survey of data compression techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gryder, R.; Hake, K.

    1991-09-01

    PM-AIM must provide to customers in a timely fashion information about Army acquisitions. This paper discusses ways that PM-AIM can reduce the volume of data that must be transmitted between sites. Although this paper primarily discusses techniques of data compression, it also briefly discusses other options for meeting the PM-AIM requirements. The options available to PM-AIM, in addition to hardware and software data compression, include less-frequent updates, distribution of partial updates, distributed data base design, and intelligent network design. Any option that enhances the performance of the PM-AIM network is worthy of consideration. The recommendations of this paper apply to the PM-AIM project in three phases: the current phase, the target phase, and the objective phase. Each recommendation will be identified as (1) appropriate for the current phase, (2) considered for implementation during the target phase, or (3) a feature that should be part of the objective phase of PM-AIM`s design. The current phase includes only those measures that can be taken with the installed leased lines. The target phase includes those measures that can be taken in transferring the traffic from the leased lines to the DSNET environment with minimal changes in the current design. The objective phase includes all the things that should be done as a matter of course. The objective phase for PM-AIM appears to be a distributed data base with data for each site stored locally and all sites having access to all data.

  13. Vapor-modulated heat pipe for improved temperature control

    Science.gov (United States)

    Edwards, D. K.; Eninger, J. E.; Ludeke, E. E.

    1978-01-01

    Dryout induced by vapor throttling makes control of equipment temperature less dependent on variations in sink environment. Mechanism controls flow of vapor in heat pipe by using valve in return path to build difference in pressure and also difference in saturation temperature of the vapor. In steady state, valve closes just enough to produce partial dryout that achieves required temperature drop.

  14. 40 CFR 52.255 - Gasoline transfer vapor control.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.255... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.255 Gasoline transfer vapor control. (a) “Gasoline” means any petroleum distillate having a Reid vapor pressure of 4 pounds or...

  15. 40 CFR 52.787 - Gasoline transfer vapor control.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.787... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.787 Gasoline transfer vapor control. (a) Gasoline means any petroleum distillate having a Reid vapor pressure of 4 pounds or...

  16. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or...

  17. Effects of vapor pressure/velocity and concentration on condensation heat transfer for steam-ethanol vapor mixture

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Junjie; Yang, Yusen; Hu, Shenhua; Zhen, Kejian; Liu, Jiping [Xi' an Jiaotong University, State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an (China)

    2007-11-15

    When a steam-ethanol vapor mixture condenses on a vertical flat plate, the form of the condensate film changes and many drops are created. This non-film condensation is called pseudo-dropwise or Marangoni condensation. This paper aims to study the main influencing factors on the Marangoni condensation of steam-ethanol vapor.The factors include the ethanol concentration, vapor pressure, vapor velocity and vapor-to-surface temperature difference. The experiments show that the heat transfer coefficient has a maximum value of approximately 42 kW/m{sup 2} K when the ethanol concentration is 1%. At the low concentrations of 0.5, 1, 5.1 and 9.8%, the condensation heat transfer is greater than for pure steam. In addition, the heat transfer for all vapor mixtures increases with both the rise of vapor pressure and vapor velocity. (orig.)

  18. Effects of vapor pressure/velocity and concentration on condensation heat transfer for steam-ethanol vapor mixture

    Science.gov (United States)

    Yan, Junjie; Yang, Yusen; Hu, Shenhua; Zhen, Kejian; Liu, Jiping

    2007-11-01

    When a steam-ethanol vapor mixture condenses on a vertical flat plate, the form of the condensate film changes and many drops are created. This non-film condensation is called pseudo-dropwise or Marangoni condensation. This paper aims to study the main influencing factors on the Marangoni condensation of steam-ethanol vapor.The factors include the ethanol concentration, vapor pressure, vapor velocity and vapor-to-surface temperature difference. The experiments show that the heat transfer coefficient has a maximum value of approximately 42 kW/m2 K when the ethanol concentration is 1%. At the low concentrations of 0.5, 1, 5.1 and 9.8%, the condensation heat transfer is greater than for pure steam. In addition, the heat transfer for all vapor mixtures increases with both the rise of vapor pressure and vapor velocity.

  19. Experimental Study of Fractal Image Compression Algorithm

    Directory of Open Access Journals (Sweden)

    Chetan R. Dudhagara

    2012-08-01

    Full Text Available Image compression applications have been increasing in recent years. Fractal compression is a lossy compression method for digital images, based on fractals. The method is best suited for textures and natural images, relying on the fact that parts of an image often resemble other parts of the same image. In this paper, a study on fractal-based image compression and fixed-size partitioning will be made, analyzed for performance and compared with a standard frequency domain based image compression standard, JPEG. Sample images will be used to perform compression and decompression. Performance metrics such as compression ratio, compression time and decompression time will be measured in JPEG cases. Also the phenomenon of resolution/scale independence will be studied and described with examples. Fractal algorithms convert these parts into mathematical data called "fractal codes" which are used to recreate the encoded image. Fractal encoding is a mathematical process used to encode bitmaps containing a real-world image as a set of mathematical data that describes the fractal properties of the image. Fractal encoding relies on the fact that all natural, and most artificial, objects contain redundant information in the form of similar, repeating patterns called fractals.

  20. Bioimpedance of soft tissue under compression.

    Science.gov (United States)

    Dodde, R E; Bull, J L; Shih, A J

    2012-06-01

    In this paper compression-dependent bioimpedance measurements of porcine spleen tissue are presented. Using a Cole-Cole model, nonlinear compositional changes in extracellular and intracellular makeup; related to a loss of fluid from the tissue, are identified during compression. Bioimpedance measurements were made using a custom tetrapolar probe and bioimpedance circuitry. As the tissue is increasingly compressed up to 50%, both intracellular and extracellular resistances increase while bulk membrane capacitance decreases. Increasing compression to 80% results in an increase in intracellular resistance and bulk membrane capacitance while extracellular resistance decreases. Tissues compressed incrementally to 80% show a decreased extracellular resistance of 32%, an increased intracellular resistance of 107%, and an increased bulk membrane capacitance of 64% compared to their uncompressed values. Intracellular resistance exhibits double asymptotic curves when plotted against the peak tissue pressure during compression, possibly indicating two distinct phases of mechanical change in the tissue during compression. Based on these findings, differing theories as to what is happening at a cellular level during high tissue compression are discussed, including the possibility of cell rupture and mass exudation of cellular material.