WorldWideScience

Sample records for preprocambial cell state

  1. Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study.

    Science.gov (United States)

    de Almeida, Marcilio; de Almeida, Cristina Vieira; Mendes Graner, Erika; Ebling Brondani, Gilvano; Fiori de Abreu-Tarazi, Monita

    2012-08-01

    The direct induction of adventitious buds and somatic embryos from explants is a morphogenetic process that is under the influence of exogenous plant growth regulators and its interactions with endogenous phytohormones. We performed an in vitro histological analysis in peach palm (Bactris gasipaes Kunth) shoot apexes and determined that the positioning of competent cells and their interaction with neighboring cells, under the influence of combinations of exogenously applied growth regulators (NAA/BAP and NAA/TDZ), allows the pre-procambial cells (PPCs) to act in different morphogenic pathways to establish niche competent cells. It is likely that there has been a habituation phenomenon during the regeneration and development of the microplants. This includes promoting the tillering of primary or secondary buds due to culturing in the absence of NAA/BAP or NAA/TDZ after a period in the presence of these growth regulators. Histological analyses determined that the adventitious roots were derived from the dedifferentiation of the parenchymal cells located in the basal region of the adventitious buds, with the establishment of rooting pole, due to an auxin gradient. Furthermore, histological and histochemical analyses allowed us to characterize how the PPCs provide niches for multipotent, pluripotent and totipotent stem-like cells for vascular differentiation, organogenesis and somatic embryogenesis in the peach palm. The histological and histochemical analyses also allowed us to detect the unicellular or multicellular origin of somatic embryogenesis. Therefore, our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells. Our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to

  2. State of the States: Fuel Cells in America

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-06-15

    This 2011 report, written by Fuel Cells 2000 and partially funded by the U.S. Department of Energy's Fuel Cell Technologies Program, provides an update of fuel cell and hydrogen activity in the 50 states and District of Columbia. State activities reported include new policies and funding, recent and planned fuel cell and hydrogen installations, and recent activities by state industries and universities.

  3. State of the States. Fuel Cells in America 2012

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, Sandra [Fuel Cells 2000, Washington, DC (United States); Gangi, Jennifer [Fuel Cells 2000, Washington, DC (United States); Skukowski, Ryan [Fuel Cells 2000, Washington, DC (United States)

    2012-09-01

    This report, written by Fuel Cells 2000 and partially funded by the U.S. Department of Energy's Fuel Cell Technologies Program, continues to build on the April 2010 State of the States report that provided a snapshot of fuel cell and hydrogen activity in the 50 states and District of Columbia. This update report provides more details on the progress and activities that happened since the second report, issued in June 2011. Details reported for each state include new policies and funding, recent and planned fuel cell and hydrogen installations, and recent activity by state industry and universities.

  4. State of the States: Fuel Cells in America, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, Sandra; Delmont, Elizabeth; Gangi, Jennifer

    2010-04-01

    This report, written by Fuel Cells 2000 and partially funded by the U.S. Department of Energy's Fuel Cell Technologies Program, provides a snapshot of fuel cell and hydrogen activity in the 50 states and District of Columbia. It features the top five fuel cell states (in alphabetical order): California, Connecticut, New York, Ohio, and South Carolina. State activities reported include supportive fuel cell and hydrogen policies, installations and demonstrations, road maps, and level of activism.

  5. Visualizing cell state transition using Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Taro Ichimura

    Full Text Available System level understanding of the cell requires detailed description of the cell state, which is often characterized by the expression levels of proteins. However, understanding the cell state requires comprehensive information of the cell, which is usually obtained from a large number of cells and their disruption. In this study, we used Raman spectroscopy, which can report changes in the cell state without introducing any label, as a non-invasive method with single cell capability. Significant differences in Raman spectra were observed at the levels of both the cytosol and nucleus in different cell-lines from mouse, indicating that Raman spectra reflect differences in the cell state. Difference in cell state was observed before and after the induction of differentiation in neuroblastoma and adipocytes, showing that Raman spectra can detect subtle changes in the cell state. Cell state transitions during embryonic stem cell (ESC differentiation were visualized when Raman spectroscopy was coupled with principal component analysis (PCA, which showed gradual transition in the cell states during differentiation. Detailed analysis showed that the diversity between cells are large in undifferentiated ESC and in mesenchymal stem cells compared with terminally differentiated cells, implying that the cell state in stem cells stochastically fluctuates during the self-renewal process. The present study strongly indicates that Raman spectral morphology, in combination with PCA, can be used to establish cells' fingerprints, which can be useful for distinguishing and identifying different cellular states.

  6. State of the States: Fuel Cells in America 2013

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, Sandra; Gangi, Jennifer

    2013-10-31

    This October 2013 report, written by Fuel Cells 2000 and partially funded by the U.S. Department of Energy's Fuel Cell Technologies Office, continues to build on the April 2010 State of the States report that provided a snapshot of fuel cell and hydrogen activity in the 50 states and District of Columbia. This update report provides more details on the progress and activities that happened since the third report, issued in August 2012.

  7. State of the States: Fuel Cells in America 2015

    Energy Technology Data Exchange (ETDEWEB)

    Sandra Curtin and Jennifer Gangi

    2015-12-17

    This December 2015 report, the sixth in a series, provides a comprehensive analysis of state activities supporting fuel cell and hydrogen technology, profiles of leading states, and a catalog of recent installations, policies, funding, and deployments around the country.

  8. The New Federalism: State Policies Regarding Embryonic Stem Cell Research.

    Science.gov (United States)

    Acosta, Nefi D; Golub, Sidney H

    2016-09-01

    Stem cell policy in the United States is an amalgam of federal and state policies. The scientific development of human pluripotent embryonic stem cells (ESCs) triggered a contentious national stem cell policy debate during the administration of President George W. Bush. The Bush "compromise" that allowed federal funding to study only a very limited number of ESC derived cell lines did not satisfy either the researchers or the patient advocates who saw great medical potential being stifled. Neither more restrictive legislation nor expansion of federal funding proved politically possible and the federal impasse opened the door for a variety of state-based experiments. In 2004, California became the largest and most influential state venture into stem cell research by passing "Prop 71," a voter initiative that created a new stem cell agency and funded it with $3 billion. Several states followed suit with similar programs to protect the right of investigators to do stem cell research and in some cases to invest state funding in such projects. Other states devised legislation to restrict stem cell research and in five states, criminal penalties were included. Thus, the US stem cell policy is a patchwork of multiple, often conflicting, state and federal policies. © 2016 American Society of Law, Medicine & Ethics.

  9. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.

    Science.gov (United States)

    Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou

    2015-07-01

    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.

  10. Quantification of mammalian tumor cell state plasticity with digital holographic cytometry

    Science.gov (United States)

    Hejna, Miroslav; Jorapur, Aparna; Zhang, Yuntian; Song, Jun S.; Judson, Robert L.

    2018-02-01

    Individual cells within isogenic tumor populations can exhibit distinct cellular morphologies, behaviors, and molecular profiles. Cell state plasticity refers to the propensity of a cell to transition between these different morphologies and behaviors. Elevation of cell state plasticity is thought to contribute to critical stages in tumor evolution, including metastatic dissemination and acquisition of therapeutic resistance. However, methods for quantifying general plasticity in mammalian cells remain limited. Working with a HoloMonitor M4 digital holographic cytometry platform, we have established a machine learning-based pipeline for high accuracy and label-free classification of adherent cells. We use twenty-six morphological and optical density-derived features for label-free identification of cell state in heterogeneous cultures. The system is housed completely within a mammalian cell incubator, permitting the monitoring of changes in cell state over time. Here we present an application of our approach for studying cell state plasticity. Human melanoma cell lines of known metastatic potential were monitored in standard growth conditions. The rate of feature change was quantified for each individual cell in the populations. We observed that cells of higher metastatic potential exhibited more rapid fluctuation of cell state in homeostatic conditions. The approach we demonstrate will be advantageous for further investigations into the factors that influence cell state plasticity.

  11. Production of betalaines by Myrtillocactus cell cultures. Passage from heterotrophic state to autotrophic state with Asparagus cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Bulard, C; Mary, J; Chaumont, D; Gudin, C

    1982-11-01

    Myrtillocactus tissue cultures are grown from the epicotyl of young plantlets. With an appropriate growing medium it is possible, after transfer of fragments of these cultures to a liquid environment, to obtain dissociation and proliferation of cells. The production of betalaic pigments is induced in solid surroundings by adjustement of the growing medium composition and can be maintained in a liquid environment. The multiplication of pigmented cells in suspension may thus be obtained. The conversion of Asparagus cell suspensions from the heterotrophic state (use of lactose as source of carbon) to the autotrophic state (carbon supplied by CO/sub 2/) is obtained by a gradual reduction in the sugar concentration of the medium combined with a rise in the CO/sub 2/ content of the gas mixture atmosphere injected into the cultivator. The passage to the autotrophic state of a Myrtillocactus suspension would enable the production conditions of a metabolite (Betalaine) to be studied by micro-algae culture techniques.

  12. Fuel cells: state of the art

    International Nuclear Information System (INIS)

    Campanari, S.; Casalegno, A.

    2007-01-01

    This paper deals with the main features at present state-of-the-art fuel cell and hybrid cycle technologies, discussing their actual performance, possible applications, market entry perspectives and potential development [it

  13. State performance in pluripotent and adult stem cell research, 2009-2016.

    Science.gov (United States)

    Surani, Sana H; Levine, Aaron D

    2018-04-01

    To examine how the geographic distribution of pluripotent and adult stem cell research publications within the USA differs from other areas of biomedical research. Publication count data for pluripotent stem cell research, adult stem cell research and a comparison group representative of biomedical research more broadly were collected and analyzed for each US state from 2009 to 2016. The distribution of pluripotent stem cell research differed from the other fields with overperformance in pluripotent stem cell research observed in California, as well as Wisconsin, Massachusetts, Maryland and Connecticut. Our analysis suggests that permissive state stem cell policy may be one of the several factors contributing to strong state performance in pluripotent stem cell research.

  14. Mapping the stem cell state: eight novel human embryonic stem and embryonal carcinoma cell antibodies

    DEFF Research Database (Denmark)

    Wright, A; Andrews, N; Bardsley, K

    2011-01-01

    The antigenic profile of human embryonic stem (ES) and embryonal carcinoma (EC) cells has served as a key element of their characterization, with a common panel of surface and intracellular markers now widely used. Such markers have been used to identify cells within the 'undifferentiated state...... of reactivity for all antibodies against both ES and EC cells, suggesting that these markers will afford recognition of unique sub-states within the undifferentiated stem cell compartment....... and EC cells, and herein describe their characterization. The reactivity of these antibodies against a range of cell lines is reported, as well as their developmental regulation, basic biochemistry and reactivity in immunohistochemistry of testicular germ cell tumours. Our data reveal a range...

  15. Metastable primordial germ cell-like state induced from mouse embryonic stem cells by Akt activation

    Energy Technology Data Exchange (ETDEWEB)

    Yamano, Noriko [Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Kimura, Tohru, E-mail: tkimura@patho.med.osaka-u.ac.jp [Department of Pathology, Medical School, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Watanabe-Kushima, Shoko [Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Shinohara, Takashi [Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501 (Japan); Nakano, Toru, E-mail: tnakano@patho.med.osaka-u.ac.jp [Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Department of Pathology, Medical School, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2010-02-12

    Specification to primordial germ cells (PGCs) is mediated by mesoderm-induction signals during gastrulation. We found that Akt activation during in vitro mesodermal differentiation of embryonic stem cells (ESCs) generated self-renewing spheres with differentiation states between those of ESCs and PGCs. Essential regulators for PGC specification and their downstream germ cell-specific genes were expressed in the spheres, indicating that the sphere cells had commenced differentiation to the germ lineage. However, the spheres did not proceed to spermatogenesis after transplantation into testes. Sphere cell transfer to the original feeder-free ESC cultures resulted in chaotic differentiation. In contrast, when the spheres were cultured on mouse embryonic fibroblasts or in the presence of ERK-cascade and GSK3 inhibitors, reversion to the ESC-like state was observed. These results indicate that Akt signaling promotes a novel metastable and pluripotent state that is intermediate to those of ESCs and PGCs.

  16. Electrochemical cell assembled in discharged state

    Science.gov (United States)

    Yao, Neng-Ping; Walsh, William J.

    1976-01-01

    A secondary, electrochemical cell is assembled in a completely discharged state within a sealed containment. As assembled, the cell includes a positive electrode separated from a negative electrode by a molten salt electrolyte. The positive electrode is contained within a porous structure, permitting passage of molten electrolyte, and includes one or more layers of a metallic mesh, e.g. iron, impregnated with an intimate mixture of lithium sulfide and the electrolyte. The negative electrode is a porous plaque of aluminum metal. Prior to using the cell, an electrical charge forms lithium-aluminum alloy within the negative electrode and metal sulfide within the positive electrode.

  17. Advanced fuel cell development in the United States

    International Nuclear Information System (INIS)

    Ackerman, J.P.

    1984-01-01

    Both molten carbonate and solid oxide fuel cells are being developed in the United States to complement and/or supplant phosphoric acid cells for commercial and utility use. This paper described the two technologies and the programs for their development

  18. Breaking down pluripotency in the porcine embryo reveals both a premature and reticent stem cell state in the inner cell mass and unique expression profiles of the naive and primed stem cell states.

    Science.gov (United States)

    Hall, Vanessa Jane; Hyttel, Poul

    2014-09-01

    To date, it has been difficult to establish bona fide porcine embryonic stem cells (pESC) and stable induced pluripotent stem cells. Reasons for this remain unclear, but they may depend on inappropriate culture conditions. This study reports the most insights to date on genes expressed in the pluripotent cells of the porcine embryo, namely the inner cell mass (ICM), the trophectoderm-covered epiblast (EPI), and the embryonic disc epiblast (ED). Specifically, we reveal that the early porcine ICM represents a premature state of pluripotency due to lack of translation of key pluripotent proteins, and the late ICM enters a transient, reticent pluripotent state which lacks expression of most genes associated with pluripotency. We describe a unique expression profile of the porcine EPI, reflecting the naive stem cell state, including expression of OCT4, NANOG, CRIPTO, and SSEA-1; weak expression of NrOB1 and REX1; but very limited expression of genes in classical pathways involved in regulating pluripotency. The porcine ED, reflecting the primed stem cell state, can be characterized by the expression of OCT4, NANOG, SOX2, KLF4, cMYC, REX1, CRIPTO, and KLF2. Further cell culture experiments using inhibitors against FGF, JAK/STAT, BMP, WNT, and NODAL pathways on cell cultures derived from day 5 and 10 embryos reveal the importance of FGF, JAK/STAT, and BMP signaling in maintaining cell proliferation of pESCs in vitro. Together, this article provides new insights into the regulation of pluripotency, revealing unique stem cell states in the different porcine stem cell populations derived from the early developing embryo.

  19. The phosphorylation state of CD3gamma influences T cell responsiveness and controls T cell receptor cycling

    DEFF Research Database (Denmark)

    Dietrich, J; Bäckström, T; Lauritsen, J P

    1998-01-01

    The T cell receptor (TCR) is internalized following activation of protein kinase C (PKC) via a leucine (Leu)-based motif in CD3gamma. Some studies have indicated that the TCR is recycled back to the cell surface following PKC-mediated internalization. The functional state of recycled TCR and the ......The T cell receptor (TCR) is internalized following activation of protein kinase C (PKC) via a leucine (Leu)-based motif in CD3gamma. Some studies have indicated that the TCR is recycled back to the cell surface following PKC-mediated internalization. The functional state of recycled TCR...... the phosphorylation state of CD3gamma and T cell responsiveness. Based on these observations a physiological role of CD3gamma and TCR cycling is proposed....

  20. Solid-State NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Bardet, Michel; De Paepe, Gael; Hediger, Sabine; Ayala, Isabel; Simorre, Jean-Pierre

    2013-01-01

    Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool. (authors)

  1. Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.

    Science.gov (United States)

    Takahashi, Hiroki; Ayala, Isabel; Bardet, Michel; De Paëpe, Gaël; Simorre, Jean-Pierre; Hediger, Sabine

    2013-04-03

    Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool.

  2. The phosphorylation state of CD3gamma influences T cell responsiveness and controls T cell receptor cycling

    DEFF Research Database (Denmark)

    Dietrich, J; Backstrom, T; Lauritsen, JP

    1998-01-01

    The T cell receptor (TCR) is internalized following activation of protein kinase C (PKC) via a leucine (Leu)-based motif in CD3gamma. Some studies have indicated that the TCR is recycled back to the cell surface following PKC-mediated internalization. The functional state of recycled TCR...... the phosphorylation state of CD3gamma and T cell responsiveness. Based on these observations a physiological role of CD3gamma and TCR cycling is proposed....... and the mechanisms involved in the sorting events following PKC-induced internalization are not known. In this study, we demonstrated that following PKC-induced internalization, the TCR is recycled back to the cell surface in a functional state. TCR recycling was dependent on dephosphorylation of CD3gamma, probably...

  3. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway.

    Science.gov (United States)

    Viswanathan, Vasanthi S; Ryan, Matthew J; Dhruv, Harshil D; Gill, Shubhroz; Eichhoff, Ossia M; Seashore-Ludlow, Brinton; Kaffenberger, Samuel D; Eaton, John K; Shimada, Kenichi; Aguirre, Andrew J; Viswanathan, Srinivas R; Chattopadhyay, Shrikanta; Tamayo, Pablo; Yang, Wan Seok; Rees, Matthew G; Chen, Sixun; Boskovic, Zarko V; Javaid, Sarah; Huang, Cherrie; Wu, Xiaoyun; Tseng, Yuen-Yi; Roider, Elisabeth M; Gao, Dong; Cleary, James M; Wolpin, Brian M; Mesirov, Jill P; Haber, Daniel A; Engelman, Jeffrey A; Boehm, Jesse S; Kotz, Joanne D; Hon, Cindy S; Chen, Yu; Hahn, William C; Levesque, Mitchell P; Doench, John G; Berens, Michael E; Shamji, Alykhan F; Clemons, Paul A; Stockwell, Brent R; Schreiber, Stuart L

    2017-07-27

    Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumours and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood. Here we molecularly characterize this therapy-resistant high-mesenchymal cell state in human cancer cell lines and organoids and show that it depends on a druggable lipid-peroxidase pathway that protects against ferroptosis, a non-apoptotic form of cell death induced by the build-up of toxic lipid peroxides. We show that this cell state is characterized by activity of enzymes that promote the synthesis of polyunsaturated lipids. These lipids are the substrates for lipid peroxidation by lipoxygenase enzymes. This lipid metabolism creates a dependency on pathways converging on the phospholipid glutathione peroxidase (GPX4), a selenocysteine-containing enzyme that dissipates lipid peroxides and thereby prevents the iron-mediated reactions of peroxides that induce ferroptotic cell death. Dependency on GPX4 was found to exist across diverse therapy-resistant states characterized by high expression of ZEB1, including epithelial-mesenchymal transition in epithelial-derived carcinomas, TGFβ-mediated therapy-resistance in melanoma, treatment-induced neuroendocrine transdifferentiation in prostate cancer, and sarcomas, which are fixed in a mesenchymal state owing to their cells of origin. We identify vulnerability to ferroptic cell death induced by inhibition of a lipid peroxidase pathway as a feature of therapy-resistant cancer cells across diverse mesenchymal cell-state contexts.

  4. Molecular control of steady-state dendritic cell maturation and immune homeostasis.

    Science.gov (United States)

    Hammer, Gianna Elena; Ma, Averil

    2013-01-01

    Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.

  5. Control of anode supported SOFCs (solid oxide fuel cells): Part I. mathematical modeling and state estimation within one cell

    International Nuclear Information System (INIS)

    Amedi, Hamid Reza; Bazooyar, Bahamin; Pishvaie, Mahmoud Reza

    2015-01-01

    In this paper, a 3-dimensional mathematical model for one cell of an anode-supported SOFC (solid oxide fuel cells) is presented. The model is derived from the partial differential equations representing the conservation laws of ionic and electronic charges, mass, energy, and momentum. The model is implemented to fully characterize the steady state operation of the cell with countercurrent flow pattern of fuel and air. The model is also used for the comparison of countercurrent with concurrent flow patterns in terms of thermal stress (temperature distribution) and quality of operation (current density). Results reveal that the steady-state cell performance curve and output of simulations qualitatively match experimental data of the literature. Results also demonstrate that countercurrent flow pattern leads to an even distribution of temperature, more uniform current density along the cell and thus is more enduring and superior to the concurrent flow pattern. Afterward, the thorough 3-dimensional model is used for state estimation instead of a real cell. To estimate states, the model is simplified and changed to a 1-dimensional model along flow streams. This simplified model includes uncertainty (because of simplifying assumptions of the model), noise, and disturbance (because of measurements). The behaviors of extended and ensemble Kalman filter as an observer are evaluated in terms of estimating the states and filtering the noises. Results demonstrate that, like extended Kalman filter, ensemble Kalman filter properly estimates the states with 20 sets. - Highlights: • A 3-dimensional model for one cell of SOFC (solid oxide fuel cells) is presented. • Higher voltages and thermal stress in countercurrent than concurrent flow pattern. • State estimation of the cell is examined by ensemble and extended Kalman filters. • Ensemble with 20 sets is as good as extended Kalman filter.

  6. Characterising of solid state electrochemical cells under operation

    DEFF Research Database (Denmark)

    Holtappels, Peter

    2014-01-01

    Compared to significant progress in PEMFC especially regarding the utilization of complex fuels such as methanol significant progress has been made by applying spectroscopic / differential IR and spectrometric techniques to working fuel cells, the processes in solid state high temperature...... electrochemical cells are still a "black box". In order to identify local reaction sites, surface coverage and potential/current introduced materials and surface modifications, in situ techniques are needed to gain a better understanding of the elementary and performance limiting steps for these cells...

  7. Cell kinetics of GM-CFC in the steady state

    International Nuclear Information System (INIS)

    Hagan, M.P.; MacVittie, T.J.; Dodgen, D.P.

    1985-01-01

    The kinetics of cell turnover for myeloid/monocyte cells that form colonies in agar (GM-CFC) were measured through the progressive increase in their sensitivity to 313-nm light during a period of cell labeling with BrdCyd. Two components of cell killing with distinctly separate labeling kinetics revealed both the presence of two generations within the GM-CFC compartment and the properties of the kinetics of the precursors of the GM-CFC. These precursors of the GM-CFC were not assayable in a routine GM-CFC assay when pregnant mouse uterus extract and mouse L-cell-conditioned medium were used to stimulate colony formation but were revealed by the labeling kinetics of the assayable GM-CFC. Further, these precursor cells appeared to enter the assayable GM-CFC population from a noncycling state. This was evidenced by the failure of the majority of these cells to incorporate BrdCyd during five days of infusion. The half-time for cell turnover within this precursor compartment was measured to be approximately 5.5 days. Further, these normally noncycling cells proliferated rapidly in response to endotoxin. High-proliferative-potential colony-forming cells (HPP-CFC) were tested as a candidate for this precursor population. The results of the determination of the kinetics for these cells showed that the HPP-CFC exist largely in a Go state, existing at an average rate of once every four days. The slow turnover time for these cells and their response to endotoxin challenge are consistent with a close relationship between the HPP-CFC and the Go pool of cells that is the direct precursor of the GM-CFC

  8. Derivation of novel human ground state naive pluripotent stem cells.

    Science.gov (United States)

    Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2013-12-12

    Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation

  9. Origin of the OFF state variability in ReRAM cells

    International Nuclear Information System (INIS)

    Salaoru, Iulia; Khiat, Ali; Li, Qingjiang; Prodromakis, Themistoklis; Berdan, Radu; Papavassiliou, Christos

    2014-01-01

    This work exploits the switching dynamics of nanoscale resistive random access memory (ReRAM) cells with particular emphasis on the origin of the observed variability when cells are consecutively cycled/programmed at distinct memory states. It is demonstrated that this variance is a common feature of all ReRAM elements and is ascribed to the formation and rupture of conductive filaments that expand across the active core, independently of the material employed as the active switching core, the causal physical switching mechanism, the switching mode (bipolar/unipolar) or even the unit cells' dimensions. Our hypothesis is supported through both experimental and theoretical studies on TiO 2 and In 2 O 3  : SnO 2 (ITO) based ReRAM cells programmed at three distinct resistive states. Our prototypes employed TiO 2 or ITO active cores over 5 × 5 µm 2 and 100 × 100 µm 2 cell areas, with all tested devices demonstrating both unipolar and bipolar switching modalities. In the case of TiO 2 -based cells, the underlying switching mechanism is based on the non-uniform displacement of ionic species that foster the formation of conductive filaments. On the other hand, the resistive switching observed in the ITO-based devices is considered to be due to a phase change mechanism. The selected experimental parameters allowed us to demonstrate that the observed programming variance is a common feature of all ReRAM devices, proving that its origin is dependent upon randomly oriented local disorders within the active core that have a substantial impact on the overall state variance, particularly for high-resistive states. (paper)

  10. Suspension state increases reattachment of breast cancer cells by up-regulating lamin A/C.

    Science.gov (United States)

    Zhang, Xiaomei; Lv, Yonggang

    2017-12-01

    Extravasation is a rate-limiting step of tumor metastasis, for which adhesion to endothelium of circulating tumor cells (CTCs) is the prerequisite. The suspension state of CTCs undergoing detachment from primary tumor is a persistent biomechanical cue, which potentially regulates the biophysical characteristics and cellular behaviors of tumor cells. In this study, breast tumor cells MDA-MB-231 in suspension culture condition were used to investigate the effect of suspension state on reattachment of CTCs. Our study demonstrated that suspension state significantly increased the adhesion ability of breast tumor cells. In addition, suspension state markedly promoted the formation of stress fibers and focal adhesions and reduced the motility in reattached breast cancer cells. Moreover, lamin A/C was reversibly accumulated at posttranscriptional level under suspension state, improving the cell stiffness of reattached breast cancer cells. Disruption of actin cytoskeleton by cytochalasin D caused lamin A/C accumulation. Conversely, decreasing actomyosin contraction by ROCK inhibitor Y27632 reduced lamin A/C level. Knocking down lamin A/C weakened the suspension-induced increase of adhesion, and also abolished the suspension-induced decrease of motility and increase of stress fibers and focal adhesion in reattaching tumor cells, suggesting a crucial role of lamin A/C. In conclusion, it was demonstrated that suspension state promoted the reattachment of breast tumor cells by up-regulating lamin A/C via cytoskeleton disruption. These findings highlight the important role of suspension state for tumor cells in tumor metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Using measures of single-cell physiology and physiological state to understand organismic aging.

    Science.gov (United States)

    Mendenhall, Alexander; Driscoll, Monica; Brent, Roger

    2016-02-01

    Genetically identical organisms in homogeneous environments have different lifespans and healthspans. These differences are often attributed to stochastic events, such as mutations and 'epimutations', changes in DNA methylation and chromatin that change gene function and expression. But work in the last 10 years has revealed differences in lifespan- and health-related phenotypes that are not caused by lasting changes in DNA or identified by modifications to DNA or chromatin. This work has demonstrated persistent differences in single-cell and whole-organism physiological states operationally defined by values of reporter gene signals in living cells. While some single-cell states, for example, responses to oxygen deprivation, were defined previously, others, such as a generally heightened ability to make proteins, were, revealed by direct experiment only recently, and are not well understood. Here, we review technical progress that promises to greatly increase the number of these measurable single-cell physiological variables and measureable states. We discuss concepts that facilitate use of single-cell measurements to provide insight into physiological states and state transitions. We assert that researchers will use this information to relate cell level physiological readouts to whole-organism outcomes, to stratify aging populations into groups based on different physiologies, to define biomarkers predictive of outcomes, and to shed light on the molecular processes that bring about different individual physiologies. For these reasons, quantitative study of single-cell physiological variables and state transitions should provide a valuable complement to genetic and molecular explanations of how organisms age. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  12. Radio-frequency-modulated Rydberg states in a vapor cell

    Science.gov (United States)

    Miller, S. A.; Anderson, D. A.; Raithel, G.

    2016-05-01

    We measure strong radio-frequency (RF) electric fields using rubidium Rydberg atoms prepared in a room-temperature vapor cell as field sensors. Electromagnetically induced transparency is employed as an optical readout. We RF-modulate the 60{{{S}}}1/2 and 58{{{D}}}5/2 Rydberg states with 50 and 100 MHz fields, respectively. For weak to moderate RF fields, the Rydberg levels become Stark-shifted, and sidebands appear at even multiples of the driving frequency. In high fields, the adjacent hydrogenic manifold begins to intersect the shifted levels, providing rich spectroscopic structure suitable for precision field measurements. A quantitative description of strong-field level modulation and mixing of S and D states with hydrogenic states is provided by Floquet theory. Additionally, we estimate the shielding of DC electric fields in the interior of the glass vapor cell.

  13. Electroluminescence from charge transfer states in Donor/Acceptor solar cells

    DEFF Research Database (Denmark)

    Sherafatipour, Golenaz; Madsen, Morten

    Charge photocurrent generation is a key process in solar energy conversion systems. Effective dissociation of the photo-generated electron-hole pairs (excitons) has a strong influence on the efficiency of the organic solar cells. Charge dissociation takes place at the donor/acceptor interface via...... which the maximum open-circuit voltage can be estimated, and further can be used in the modeling and optimization of the OPV devices. [1] C. Deibe, T. Strobe, and V. Dyakonov, “Role of the charge transfer state in organic donor-acceptor solar cells,” Adv. Mater., vol. 22, pp. 4097–4111, 2010. [2] K...... charge transfer (CT) excitons, which is Coulombically bound interfacial electron- hole pairs residing at the donor/acceptor heterojunctions. The CT state represents an intermediate state between the exciton dissociation and recombination back to the ground state. Since the recombination of photo...

  14. Characterizing steady states of genome-scale metabolic networks in continuous cell cultures.

    Directory of Open Access Journals (Sweden)

    Jorge Fernandez-de-Cossio-Diaz

    2017-11-01

    Full Text Available In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced.

  15. Identifying States along the Hematopoietic Stem Cell Differentiation Hierarchy with Single Cell Specificity via Raman Spectroscopy.

    Science.gov (United States)

    Ilin, Yelena; Choi, Ji Sun; Harley, Brendan A C; Kraft, Mary L

    2015-11-17

    A major challenge for expanding specific types of hematopoietic cells ex vivo for the treatment of blood cell pathologies is identifying the combinations of cellular and matrix cues that direct hematopoietic stem cells (HSC) to self-renew or differentiate into cell populations ex vivo. Microscale screening platforms enable minimizing the number of rare HSCs required to screen the effects of numerous cues on HSC fate decisions. These platforms create a strong demand for label-free methods that accurately identify the fate decisions of individual hematopoietic cells at specific locations on the platform. We demonstrate the capacity to identify discrete cells along the HSC differentiation hierarchy via multivariate analysis of Raman spectra. Notably, cell state identification is accurate for individual cells and independent of the biophysical properties of the functionalized polyacrylamide gels upon which these cells are cultured. We report partial least-squares discriminant analysis (PLS-DA) models of single cell Raman spectra enable identifying four dissimilar hematopoietic cell populations across the HSC lineage specification. Successful discrimination was obtained for a population enriched for long-term repopulating HSCs (LT-HSCs) versus their more differentiated progeny, including closely related short-term repopulating HSCs (ST-HSCs) and fully differentiated lymphoid (B cells) and myeloid (granulocytes) cells. The lineage-specific differentiation states of cells from these four subpopulations were accurately identified independent of the stiffness of the underlying biomaterial substrate, indicating subtle spectral variations that discriminated these populations were not masked by features from the culture substrate. This approach enables identifying the lineage-specific differentiation stages of hematopoietic cells on biomaterial substrates of differing composition and may facilitate correlating hematopoietic cell fate decisions with the extrinsic cues that

  16. A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells

    NARCIS (Netherlands)

    C. Buecker (Christa); H.H. Chen; J.M. Polo (Jose); L. Daheron (Laurence); L. Bu (Lei); T.S. Barakat (Tahsin Stefan); P. Okwieka (Patricia); A. Porter (Andrew); J.H. Gribnau (Joost); K. Hochedlinger (Konrad); N. Geijsen (Niels)

    2010-01-01

    textabstractMurine pluripotent stem cells can exist in two functionally distinct states, LIF-dependent embryonic stem cells (ESCs) and bFGF-dependent epiblast stem cells (EpiSCs). However, human pluripotent cells so far seemed to assume only an epiblast-like state. Here we demonstrate that human

  17. High-resolution solution-state NMR of unfractionated plant cell walls

    Science.gov (United States)

    John Ralph; Fachuang Lu; Hoon Kim; Dino Ress; Daniel J. Yelle; Kenneth E. Hammel; Sally A. Ralph; Bernadette Nanayakkara; Armin Wagner; Takuya Akiyama; Paul F. Schatz; Shawn D. Mansfield; Noritsugu Terashima; Wout Boerjan; Bjorn Sundberg; Mattias Hedenstrom

    2009-01-01

    Detailed structural studies on the plant cell wall have traditionally been difficult. NMR is one of the preeminent structural tools, but obtaining high-resolution solution-state spectra has typically required fractionation and isolation of components of interest. With recent methods for dissolution of, admittedly, finely divided plant cell wall material, the wall can...

  18. Solid state dye-sensitized solar cells. Current state of the art. Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Lenzmann, F.O.; Olson, C.L.; Goris, M.J.A.A.; Kroon, J.M. [ECN Solar Energy, Petten (Netherlands)

    2008-09-15

    The first generation of dye-sensitized solar cell technology is based on a liquid electrolyte component. Today, this technology is on the verge of commercialization. The step towards the market and real applications is supported by the prospect of low manufacturing costs, good efficiency as well as the expectation that the current stability level of this technology is at least sufficient for applications in mobile electronics. These favorable developments may be reinforced and accelerated even further, if the corrosive liquid electrolyte could be replaced by a non-corrosive solid, since this would ease a number of stringent requirements in the production process. A successful exchange of the liquid electrolyte by a solid-state holeconductor requires to at least maintain, preferably improve, the most relevant technical parameters of the solar cell (efficiency, stability, cost). First pioneering work with solid-state hole conductors was carried out 10 years ago with an initial efficiency level below 1%. Until 2007, the record efficiency could be improved to 5%. This paper gives an overview of the solid-state concept as an early stage approach with good perspectives for the mid-term future (5-10 years)

  19. Organic dye for highly efficient solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Mende, L.; Bach, U.; Humphry-Baker, R.; Ito, S.; Graetzel, M. [Institut des Sciences et Ingenierie Chimiques (ISIC), Laboratoire de Photonique et Interfaces (LPI), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Horiuchi, T.; Miura, H. [Technology Research Laboratory, Corporate Research Center, Mitsubishi Paper Mills Limited, 46, Wadai, Tsukuba City, Ibaraki 300-4247 (Japan); Uchida, S. [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1-1 Katahira 2-chome, Aoba-ku, Sendai 980-8577 (Japan)

    2005-04-04

    The feasibility of solid-state dye-sensitized solar cells as a low-cost alternative to amorphous silicon cells is demonstrated. Such a cell with a record efficiency of over 4 % under simulated sunlight is reported, made possible by using a new organic metal-free indoline dye as the sensitizer with high absorption coefficient. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  20. Cord blood mesenchymal stem cells propel human dendritic cells to an intermediate maturation state and boost interleukin-12 production by mature dendritic cells.

    NARCIS (Netherlands)

    Berk, L.C.J. van den; Roelofs, H.; Huijs, T.; Siebers-Vermeulen, K.G.C.; Raymakers, R.A.P.; Kogler, G.; Figdor, C.G.; Torensma, R.

    2009-01-01

    Pathogen-derived entities force the tissue-resident dendritic cells (DCs) towards a mature state, followed by migration to the draining lymph node to present antigens to T cells. Bone marrow mesenchymal stem cells (MSCs) modulate the differentiation, maturation and function of DCs. In umbilical cord

  1. Fuel cell collaboration in the United States. A report to the Danish Partnership for Hydrogen and Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    2011-08-15

    The purpose of this report is to provide members of the Danish Partnership for Hydrogen and Fuel Cells with information regarding collaborative opportunities in the United States. The report is designed to provide an overview of key issues and activities and to provide guidance on strategies for finding U.S. research and commercial partners and gaining access to the U.S. market. Section 1 of this report provides an overview of the key drivers of policy at the federal and state government levels regarding hydrogen and fuel cell technologies and provides a perspective of the U.S. industry and key players. It also suggests three general pathways for accessing U.S. opportunities: enhancing visibility; developing vendor relationships; and establishing a formal presence in the U.S. The next sections summarize focus areas for commercial and research activity that currently are of the greatest interest in the U.S. Section 2 describes major programs within the federal government and national laboratories, and discusses various methods for identifying R and D funding opportunities, with an overview of federal acquisition regulations. Section 3 reviews the efforts of several state governments engaging the fuel cell industry as an economic driver and presents an overview of acquisition at the state level. Section 4 discusses university research and development (R and D) and university-industry partnerships. There are 12 appendices attached to the report. These appendices provide more detailed information regarding the key federal government agencies involved in fuel cells and hydrogen, state-specific policies and activities, national laboratories and universities, and other information regarding the fuel cell and hydrogen industry in the U.S. (Author)

  2. Bistable Epigenetic States Explain Age-Dependent Decline in Mesenchymal Stem Cell Heterogeneity.

    Science.gov (United States)

    Hamidouche, Zahia; Rother, Karen; Przybilla, Jens; Krinner, Axel; Clay, Denis; Hopp, Lydia; Fabian, Claire; Stolzing, Alexandra; Binder, Hans; Charbord, Pierre; Galle, Joerg

    2017-03-01

    The molecular mechanisms by which heterogeneity, a major characteristic of stem cells, is achieved are yet unclear. We here study the expression of the membrane stem cell antigen-1 (Sca-1) in mouse bone marrow mesenchymal stem cell (MSC) clones. We show that subpopulations with varying Sca-1 expression profiles regenerate the Sca-1 profile of the mother population within a few days. However, after extensive replication in vitro, the expression profiles shift to lower values and the regeneration time increases. Study of the promoter of Ly6a unravels that the expression level of Sca-1 is related to the promoter occupancy by the activating histone mark H3K4me3. We demonstrate that these findings can be consistently explained by a computational model that considers positive feedback between promoter H3K4me3 modification and gene transcription. This feedback implicates bistable epigenetic states which the cells occupy with an age-dependent frequency due to persistent histone (de-)modification. Our results provide evidence that MSC heterogeneity, and presumably that of other stem cells, is associated with bistable epigenetic states and suggest that MSCs are subject to permanent state fluctuations. Stem Cells 2017;35:694-704. © The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  3. Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity

    Directory of Open Access Journals (Sweden)

    Evelyne Beerling

    2016-03-01

    Full Text Available Forced overexpression and/or downregulation of proteins regulating epithelial-to-mesenchymal transition (EMT has been reported to alter metastasis by changing migration and stem cell capacity of tumor cells. However, these manipulations artificially keep cells in fixed states, while in vivo cells may adapt transient and reversible states. Here, we have tested the existence and role of epithelial-mesenchymal plasticity in metastasis of mammary tumors without artificially modifying EMT regulators. In these tumors, we found by intravital microscopy that the motile tumor cells have undergone EMT, while their epithelial counterparts were not migratory. Moreover, we found that epithelial-mesenchymal plasticity renders any EMT-induced stemness differences, as reported previously, irrelevant for metastatic outgrowth, because mesenchymal cells that arrive at secondary sites convert to the epithelial state within one or two divisions, thereby obtaining the same stem cell potential as their arrived epithelial counterparts. We conclude that epithelial-mesenchymal plasticity supports migration but additionally eliminates stemness-enhanced metastatic outgrowth differences.

  4. Density of states measurements in a p-i-n solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Crandall, R.S.; Wang, Q. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    The authors describe results of density of states (DOS) profiling in p-i-n solar-cell devices using drive-level capacitance (DLC) techniques. Near the p-i interface the defect density is high, decreasing rapidly into the interior, reaching low values in the central region of the cell, and rising rapidly again at the n-i interface. They show that the states in the central region are neutral dangling-bond defects, whereas those near the interfaces with the doped layers are charged dangling bonds.

  5. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation

    KAUST Repository

    Naganuma, Tamaki

    2014-05-01

    Understanding and controlling cell proliferation on biomaterial surfaces is critical for scaffold/artificial-niche design in tissue engineering. The mechanism by which underlying integrin ligates with functionalized biomaterials to induce cell proliferation is still not completely understood. In this study, poly-l-lactide (PL) scaffold surfaces were functionalized using layers of cerium oxide nanoparticles (CNPs), which have recently attracted attention for use in therapeutic application due to their catalytic ability of Ce4+ and Ce3+ sites. To isolate the influence of Ce valance states of CNPs on cell proliferation, human mesenchymal stem cells (hMSCs) and osteoblast-like cells (MG63) were cultured on the PL/CNP surfaces with dominant Ce4+ and Ce3+ regions. Despite cell type (hMSCs and MG63 cells), different surface features of Ce4+ and Ce3+ regions clearly promoted and inhibited cell spreading, migration and adhesion behavior, resulting in rapid and slow cell proliferation, respectively. Cell proliferation results of various modified CNPs with different surface charge and hydrophobicity/hydrophilicity, indicate that Ce valence states closely correlated with the specific cell morphologies and cell-material interactions that trigger cell proliferation. This finding suggests that the cell-material interactions, which influence cell proliferation, may be controlled by introduction of metal elements with different valence states onto the biomaterial surface. © 2014 Elsevier Ltd.

  6. Cancer cell-soluble factors reprogram mesenchymal stromal cells to slow cycling, chemoresistant cells with a more stem-like state

    Directory of Open Access Journals (Sweden)

    Ahmed El-Badawy

    2017-11-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs play different roles in modulating tumor progression, growth, and metastasis. MSCs are recruited to the tumor site in large numbers and subsequently have an important microenvironmental role in modulating tumor progression and drug sensitivity. However, the effect of the tumor microenvironment on MSC plasticity remains poorly understood. Herein, we report a paracrine effect of cancer cells, in which they secrete soluble factors that promote a more stem-like state in bone marrow mesenchymal stem cells (BM-MSCs. Methods The effect of soluble factors secreted from MCF7, Hela, and HepG2 cancer cell lines on BM-MSCs was assessed using a Transwell indirect coculture system. After 5 days of coculture, BM-MSCs were characterized by flow cytometry for surface marker expression, by qPCR for gene expression profile, and by confocal immunofluorescence for marker expression. We then measured the sensitivity of cocultured BM-MSCs to chemotherapeutic agents, their cell cycle profile, and their response to DNA damage. The sphere formation, invasive properties, and in-vivo performance of BM-MSCs after coculture with cancer cells were also measured. Results Indirect coculture of cancer cells and BM-MSCs, without direct cell contact, generated slow cycling, chemoresistant spheroid stem cells that highly expressed markers of pluripotency, cancer cells, and cancer stem cells (CSCs. They also displayed properties of a side population and enhanced sphere formation in culture. Accordingly, these cells were termed cancer-induced stem cells (CiSCs. CiSCs showed a more mesenchymal phenotype that was further augmented upon TGF-β stimulation and demonstrated a high expression of the β-catenin pathway and ALDH1A1. Conclusions These findings demonstrate that MSCs, recruited to the tumor microenvironment in large numbers, may display cellular plasticity, acquire a more stem-like state, and acquire some properties of CSCs upon

  7. Method of preparing an electrochemical cell in uncharged state

    Science.gov (United States)

    Shimotake, Hiroshi; Bartholme, Louis G.; Arntzen, John D.

    1977-02-01

    A secondary electrochemical cell is assembled in an uncharged state for the preparation of a lithium alloy-transition metal sulfide cell. The negative electrode includes a material such as aluminum or silicon for alloying with lithium as the cell is charged. The positive electrode is prepared by blending particulate lithium sulfide, transition metal powder and electrolytic salt in solid phase. The mixture is simultaneously heated to a temperature in excess of the melting point of the electrolyte and pressed onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within the cell. During the first charge cycle lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode.

  8. Distinct retrosplenial cortex cell populations and their spike dynamics during ketamine-induced unconscious state.

    Directory of Open Access Journals (Sweden)

    Grace E Fox

    Full Text Available Ketamine is known to induce psychotic-like symptoms, including delirium and visual hallucinations. It also causes neuronal damage and cell death in the retrosplenial cortex (RSC, an area that is thought to be a part of high visual cortical pathways and at least partially responsible for ketamine's psychotomimetic activities. However, the basic physiological properties of RSC cells as well as their response to ketamine in vivo remained largely unexplored. Here, we combine a computational method, the Inter-Spike Interval Classification Analysis (ISICA, and in vivo recordings to uncover and profile excitatory cell subtypes within layers 2&3 and 5&6 of the RSC in mice within both conscious, sleep, and ketamine-induced unconscious states. We demonstrate two distinct excitatory principal cell sub-populations, namely, high-bursting excitatory principal cells and low-bursting excitatory principal cells, within layers 2&3, and show that this classification is robust over the conscious states, namely quiet awake, and natural unconscious sleep periods. Similarly, we provide evidence of high-bursting and low-bursting excitatory principal cell sub-populations within layers 5&6 that remained distinct during quiet awake and sleep states. We further examined how these subtypes are dynamically altered by ketamine. During ketamine-induced unconscious state, these distinct excitatory principal cell subtypes in both layer 2&3 and layer 5&6 exhibited distinct dynamics. We also uncovered different dynamics of local field potential under various brain states in layer 2&3 and layer 5&6. Interestingly, ketamine administration induced high gamma oscillations in layer 2&3 of the RSC, but not layer 5&6. Our results show that excitatory principal cells within RSC layers 2&3 and 5&6 contain multiple physiologically distinct sub-populations, and they are differentially affected by ketamine.

  9. Multi-bits memory cell using degenerated magnetic states in a synthetic antiferromagnetic reference layer

    International Nuclear Information System (INIS)

    Fukushima, Akio; Yakushiji, Kay; Konoto, Makoto; Kubota, Hitoshi; Imamura, Hiroshi; Yuasa, Shinji

    2016-01-01

    We newly developed a magnetic memory cell having multi-bit function. The memory cell composed of a perpendicularly magnetized magnetic tunnel junction (MB-pMTJ) and a synthetic antiferromagnetic reference layer. The multi-bit function is realized by combining the freedom of states of the magnetic free layer and that in the antiferromagnetically coupled reference layer. The structure of the reference layer is (FeB/Ta/[Co/Pt]_3)/Ru/([Co/Pt]_6); the top and the bottom layers are coupled through Ru layer where the reference layer has two degrees of freedom of a head-to-head and a bottom-to-bottom magnetic configuration. A four-state memory cell is realized by combination of both degrees of freedom. The states in the reference layer however is hardly detected by the total resistance of MB-pMTJ, because the magnetoresistance effect in the reference layer is negligibly small. That implies that the resistance values for the different states in the reference layer are degenerated. On the other hand, the two different states in the reference layer bring different stray fields to the free layer, which generate two different minor loop with different switching fields. Therefore, the magnetic states in the reference layer can be differentiated by the two-step reading, before and after applying the appropriately pulsed magnetic field which can identify the initial state in the reference layer. This method is similar to distinguishing different magnetic states in an in-plane magnetized spin-valve element. We demonstrated that four different states in the MB-pMTJ can be distinguished by the two-step read-out. The important feature of the two-step reading is a practically large operation margins (large resistance change in reading) which is equal to that of a single MTJ. Even though the two-step reading is a destructive method by which 50% of the magnetic state is changed, this MB-pMTJ is promising for high density non-volatile memory cell with a minor cost of operation speed

  10. Coagulation profile of children with sickle cell anemia in steady state ...

    African Journals Online (AJOL)

    Background: Sickle cell anemia is associated with a hypercoagulable state that may lead to alterations in a coagulation profile. Measurements of coagulation factors are known to have some predictive value for clinical outcome. Objectives: To determine the coagulation profile of children with SCA in steady state and crisis ...

  11. NiF2/NaF:CaF2/Ca Solid-State High-Temperature Battery Cells

    Science.gov (United States)

    West, William; Whitacre, Jay; DelCastillo, Linda

    2009-01-01

    Experiments and theoretical study have demonstrated the promise of all-solid-state, high-temperature electrochemical battery cells based on NiF2 as the active cathode material, CaF2 doped with NaF as the electrolyte material, and Ca as the active anode material. These and other all-solid-state cells have been investigated in a continuing effort to develop batteries for instruments that must operate in environments much hotter than can be withstood by ordinary commercially available batteries. Batteries of this type are needed for exploration of Venus (where the mean surface temperature is about 450 C), and could be used on Earth for such applications as measuring physical and chemical conditions in geothermal wells and oil wells. All-solid-state high-temperature power cells are sought as alternatives to other high-temperature power cells based, variously, on molten anodes and cathodes or molten eutectic salt electrolytes. Among the all-solid-state predecessors of the present NiF2/NaF:CaF2/Ca cells are those described in "Solid-State High-Temperature Power Cells" (NPO-44396), NASA Tech Briefs, Vol. 32, No. 5 (May 2008), page 40. In those cells, the active cathode material is FeS2, the electrolyte material is a crystalline solid solution of equimolar amounts of Li3PO4 and LiSiO4, and the active anode material is Li contained within an alloy that remains solid in the intended high operational temperature range.

  12. Device and Method for Continuously Equalizing the Charge State of Lithium Ion Battery Cells

    Science.gov (United States)

    Schwartz, Paul D. (Inventor); Martin, Mark N. (Inventor); Roufberg, Lewis M. (Inventor)

    2015-01-01

    A method of equalizing charge states of individual cells in a battery includes measuring a previous cell voltage for each cell, measuring a previous shunt current for each cell, calculating, based on the previous cell voltage and the previous shunt current, an adjusted cell voltage for each cell, determining a lowest adjusted cell voltage from among the calculated adjusted cell voltages, and calculating a new shunt current for each cell.

  13. Lessons learned: from dye-sensitized solar cells to all-solid-state hybrid devices.

    Science.gov (United States)

    Docampo, Pablo; Guldin, Stefan; Leijtens, Tomas; Noel, Nakita K; Steiner, Ullrich; Snaith, Henry J

    2014-06-25

    The field of solution-processed photovoltaic cells is currently in its second spring. The dye-sensitized solar cell is a widely studied and longstanding candidate for future energy generation. Recently, inorganic absorber-based devices have reached new record efficiencies, with the benefits of all-solid-state devices. In this rapidly changing environment, this review sheds light on recent developments in all-solid-state solar cells in terms of electrode architecture, alternative sensitizers, and hole-transporting materials. These concepts are of general applicability to many next-generation device platforms. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Association between number of cell phone contracts and brain tumor incidence in nineteen U.S. States.

    Science.gov (United States)

    Lehrer, Steven; Green, Sheryl; Stock, Richard G

    2011-02-01

    Some concern has arisen about adverse health effects of cell phones, especially the possibility that the low power microwave-frequency signal transmitted by the antennas on handsets might cause brain tumors or accelerate the growth of subclinical tumors. We analyzed data from the Statistical Report: Primary Brain Tumors in the United States, 2000-2004 and 2007 cell phone subscription data from the Governing State and Local Sourcebook. There was a significant correlation between number of cell phone subscriptions and brain tumors in nineteen US states (r = 0.950, P cell phone subscriptions and brain tumors could be due solely to the fact that some states, such as New York, have much larger populations than other states, such as North Dakota, multiple linear regression was performed with number of brain tumors as the dependent variable, cell phone subscriptions, population, mean family income and mean age as independent variables. The effect of cell phone subscriptions was significant (P = 0.017), and independent of the effect of mean family income (P = 0.894), population (P = 0.003) and age (0.499). The very linear relationship between cell phone usage and brain tumor incidence is disturbing and certainly needs further epidemiological evaluation. In the meantime, it would be prudent to limit exposure to all sources of electro-magnetic radiation.

  15. Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity

    NARCIS (Netherlands)

    Beerling, Evelyne; Seinstra, Daniëlle; de Wit, Elzo; Kester, Lennart; van der Velden, Daphne; Maynard, Carrie; Schäfer, Ronny; van Diest, Paul; Voest, Emile; van Oudenaarden, Alexander; Vrisekoop, Nienke; van Rheenen, Jacco

    2016-01-01

    Forced overexpression and/or downregulation of proteins regulating epithelial-to-mesenchymal transition (EMT) has been reported to alter metastasis by changing migration and stem cell capacity of tumor cells. However, these manipulations artificially keep cells in fixed states, while in vivo cells

  16. Totipotent Embryonic Stem Cells Arise in Ground-State Culture Conditions

    DEFF Research Database (Denmark)

    Morgani, Sophie M; Canham, Maurice A; Nichols, Jennifer

    2013-01-01

    Embryonic stem cells (ESCs) are derived from mammalian embryos during the transition from totipotency, when individual blastomeres can make all lineages, to pluripotency, when they are competent to make only embryonic lineages. ESCs maintained with inhibitors of MEK and GSK3 (2i) are thought...... not directly support Nanog-positive epiblast-like ESCs. Thus, 2i and LIF support a totipotent state comparable to early embryonic cells that coexpress embryonic and extraembryonic determinants....

  17. An all-solid-state lithium/polyaniline rechargeable cell

    Science.gov (United States)

    Li, Changzhi; Peng, Xinsheng; Zhang, Borong; Wang, Baochen

    1992-07-01

    The performance of an all-solid-state cell having a lithium negative electrode, a modified polyethylene oxide (PEO)-epoxy resin (ER) electrolyte, and a polyaniline (PAn) positive electrode has been studied using cyclic voltammetry, charge/discharge cycling, and polarization curves at various temperatures. The redox reaction of the PAn electrode at the PAn/modified PEO-ER interface exhibits good reversibility. At 50-80 C, the Li/PEO-ER-LiClO4/PAn cell shows more than 40 charge/discharge cycles, 90 percent charge/discharge efficiency, and 54 W h kg discharge energy density (on PAn weight basis) at 50 micro-A between 2 and 4 V. The polarization performance of the battery improves steadily with increase in temperature.

  18. Silicon solar cell technology state of the art and a proposed double sided cell

    International Nuclear Information System (INIS)

    Seddik, M.M.

    1987-08-01

    A review of the silicon technology state of the art is given. It had been found that single crystal silicon efficiency was limitd to ≥ 20%. The reason was identified to be due to the recombination current loss mechanisms. However, use of new technologies such as back-surface field, surface passivation, double anti-reflection coatings and back-surface illumination demonstrated to achieve higher efficiencies. Experiments were carried out to evaluate the effect of back surfaces illumination on the cell efficiency enhancement. It was found that for single cell, back-surface illumination contribute a 12% increase in efficiency whereas for double cell illumination (back-to-back cells) the improvement was 59% increase in efficiency. A V-shaped flat mirror reflector with optimum angle of 45 deg. to the plane of the cell from both sides achieved the ultimate efficiency performance. Finally, a proposed high current - high efficiency solar cell called ''Double Drift'' - Double Sided Illumination Cell'' was presented. The new structures were in the form of n + pn + or p + np + double junctions. The expected efficiency ranges 50-60% with proper material design, double anti-reflection coatings and V-shaped irregular plane mirror reflector illumination. (author). 43 refs, 4 figs, 7 tabs

  19. Solid-state electrochromic cell with anodic iridium oxide film electrodes

    International Nuclear Information System (INIS)

    Dautremont-Smith, W.C.; Beni, G.; Schiavone, L.M.; Shay, J.L.

    1979-01-01

    A new solid-state electrochromic cell has been fabricated using an anodic iridium oxide film (AIROF) display electrode. The cell has the symmetric sandwich structure AIROFvertical-barNafionvertical-barAIROF, with the Nafion solid electrolyte opacified by an in situ precipitation technique. A symmetric square-wave voltage of 1.5 V amplitude produces clearly perceivable color changes from pale to dark blue-gray in approx. =1 sec when viewed in diffuse reflection. Good open-circuit optical memory is exhibited:

  20. Parallel recognition of cancer cells using an addressable array of solid-state micropores.

    Science.gov (United States)

    Ilyas, Azhar; Asghar, Waseem; Kim, Young-tae; Iqbal, Samir M

    2014-12-15

    Early stage detection and precise quantification of circulating tumor cells (CTCs) in the peripheral blood of cancer patients are important for early diagnosis. Early diagnosis improves the effectiveness of the therapy and results in better prognosis. Several techniques have been used for CTC detection but are limited by their need for dye tagging, low throughput and lack of statistical reliability at single cell level. Solid-state micropores can characterize each cell in a sample providing interesting information about cellular populations. We report a multi-channel device which utilized solid-state micropores array assembly for simultaneous measurement of cell translocation. This increased the throughput of measurement and as the cells passed the micropores, tumor cells showed distinctive current blockade pulses, when compared to leukocytes. The ionic current across each micropore channel was continuously monitored and recorded. The measurement system not only increased throughput but also provided on-chip cross-relation. The whole blood was lysed to get rid of red blood cells, so the blood dilution was not needed. The approach facilitated faster processing of blood samples with tumor cell detection efficiency of about 70%. The design provided a simple and inexpensive method for rapid and reliable detection of tumor cells without any cell staining or surface functionalization. The device can also be used for high throughput electrophysiological analysis of other cell types. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Investigations of the functional states of dendritic cells under different conditioned microenvironments by Fourier transformed infrared spectroscopy.

    Science.gov (United States)

    Dong, Rong; Long, Jinhua; Xu, Xiaoli; Zhang, Chunlin; Wen, Zongyao; Li, Long; Yao, Weijuan; Zeng, Zhu

    2014-01-10

    Dendritic cells are potent and specialized antigen presenting cells, which play a crucial role in initiating and amplifying both the innate and adaptive immune responses. The dendritic cell-based vaccination against cancer has been clinically achieved promising successes. But there are still many challenges in its clinical application, especially for how to identify the functional states. The CD14+ monocytes were isolated from human peripheral blood after plastic adherence and purified to approximately 98% with cocktail immunomagnetic beads. The immature dendritic cells and mature dendritic cells were induced by traditional protocols. The resulting dendritic cells were cocultured with normal cells and cancer cells. The functional state of dendritic cells including immature dendritic cells (imDCs) and mature dendritic cells (mDCs) under different conditioned microenvironments were investigated by Fourier transformed infrared spectroscopy (FTIR) and molecular biological methods. The results of Fourier transformed infrared spectroscopy showed that the gene transcription activity and energy states of dendritic cells were specifically suppressed by tumor cells (P Fourier transformed infrared spectroscopy at given wave numbers were closely correlated with the expression levels of NF-κB (R2:0.69 and R2:0.81, respectively). Our results confirmed that the ratios of absorption intensities of Fourier transformed infrared spectroscopy at given wave numbers were positively correlated with the expression levels of NF-κB, suggesting that Fourier transformed infrared spectroscopy technology could be clinically applied to identify the functional states of dendritic cell when performing dendritic cell-based vaccination. It's significant for the simplification and standardization of dendritic cell-based vaccination clinical preparation protocols.

  2. Utilization of human amniotic mesenchymal cells as feeder layers to sustain propagation of human embryonic stem cells in the undifferentiated state.

    Science.gov (United States)

    Zhang, Kehua; Cai, Zhe; Li, Yang; Shu, Jun; Pan, Lin; Wan, Fang; Li, Hong; Huang, Xiaojie; He, Chun; Liu, Yanqiu; Cui, Xiaohui; Xu, Yang; Gao, Yan; Wu, Liqun; Cao, Shanxia; Li, Lingsong

    2011-08-01

    Human embryonic stem (ES) cells are usually maintained in the undifferentiated state by culturing on feeder cells layers of mouse embryonic fibroblasts (MEFs). However, MEFs are not suitable to support human ES cells used for clinical purpose because of risk of zoonosis from animal cells. Therefore, human tissue-based feeder layers need to be developed for human ES cells for clinical purpose. Hereof we report that human amniotic mesenchymal cells (hAMCs) could act as feeder cells for human ES cells, because they are easily obtained and relatively exempt from ethical problem. Like MEFs, hAMCs could act as feeder cells for human ES cells to grow well on. The self-renewal rate of human ES cells cultured on hAMCs feeders was higher than that on MEFs and human amniotic epithelial cells determined by measurement of colonial diameters and growth curve as well as cell cycle analysis. Both immunofluorescence staining and immunoblotting showed that human ES cells cultured on hAMCs expressed stem cell markers such as Oct-3/4, Sox2, and NANOG. Verified by embryoid body formation in vitro and teratoma formation in vivo, we found out that after 20 passages of culture, human ES cells grown on hAMCs feeders could still retain the potency of differentiating into three germ layers. Taken together, our data suggested hAMCs may be safe feeder cells to sustain the propagation of human ES cells in undifferentiated state for future therapeutic use.

  3. Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy

    Science.gov (United States)

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2008-01-01

    A recently described plant cell wall dissolution system has been modified to use perdeuterated solvents to allow direct in-NMR-tube dissolution and high-resolution solution-state NMR of the whole cell wall without derivatization. Finely ground cell wall material dissolves in a solvent system containing dimethylsulfoxide-d6 and 1-methylimidazole-d6 in a ratio of 4:1 (v/...

  4. Single-Cell Analyses of ESCs Reveal Alternative Pluripotent Cell States and Molecular Mechanisms that Control Self-Renewal

    Directory of Open Access Journals (Sweden)

    Dmitri Papatsenko

    2015-08-01

    Full Text Available Analyses of gene expression in single mouse embryonic stem cells (mESCs cultured in serum and LIF revealed the presence of two distinct cell subpopulations with individual gene expression signatures. Comparisons with published data revealed that cells in the first subpopulation are phenotypically similar to cells isolated from the inner cell mass (ICM. In contrast, cells in the second subpopulation appear to be more mature. Pluripotency Gene Regulatory Network (PGRN reconstruction based on single-cell data and published data suggested antagonistic roles for Oct4 and Nanog in the maintenance of pluripotency states. Integrated analyses of published genomic binding (ChIP data strongly supported this observation. Certain target genes alternatively regulated by OCT4 and NANOG, such as Sall4 and Zscan10, feed back into the top hierarchical regulator Oct4. Analyses of such incoherent feedforward loops with feedback (iFFL-FB suggest a dynamic model for the maintenance of mESC pluripotency and self-renewal.

  5. Fuel Cells in Distributed Power Market Applications in the United States

    International Nuclear Information System (INIS)

    Rastler, D.

    2002-01-01

    This paper reviews results from EPRI market analysis, which examined the technical and economic market potential of fuel cells in distributed power markets in the United States. A methodology and approach for developing realistic quantitative estimates of market potential in competitive electricity markets is presented. Market size estimates for phosphoric acid, polymer exchange membrane, high temperature fuel cells (carbonate and solid oxide systems) and ultra-high efficient fuel cell hybrids are estimated. Market potentials are reviewed for fuel cells systems ranging in size from 3 kW up to 20-30 MW in scale and underlying assumptions are provided. The results and implications are discussed in relation to the changing U.S. electric utility market structures. Results will be of value to energy companies and to fuel cell developers seeking to understand revenue sales estimates, market size, and most profitable segments for fuel cells in the competitive US electric markets. (author)

  6. The CD8+ memory T-cell state of readiness is actively maintained and reversible

    Science.gov (United States)

    Allam, Atef; Conze, Dietrich B.; Giardino Torchia, Maria Letizia; Munitic, Ivana; Yagita, Hideo; Sowell, Ryan T.; Marzo, Amanda L.

    2009-01-01

    The ability of the adaptive immune system to respond rapidly and robustly upon repeated antigen exposure is known as immunologic memory, and it is thought that acquisition of memory T-cell function is an irreversible differentiation event. In this study, we report that many phenotypic and functional characteristics of antigen-specific CD8 memory T cells are lost when they are deprived of contact with dendritic cells. Under these circumstances, memory T cells reverted from G1 to the G0 cell-cycle state and responded to stimulation like naive T cells, as assessed by proliferation, dependence upon costimulation, and interferon-γ production, without losing cell surface markers associated with memory. The memory state was maintained by signaling via members of the tumor necrosis factor receptor superfamily, CD27 and 4-1BB. Foxo1, a transcription factor involved in T-cell quiescence, was reduced in memory cells, and stimulation of naive CD8 cells via CD27 caused Foxo1 to be phosphorylated and emigrate from the nucleus in a phosphatidylinositol-3 kinase–dependent manner. Consistent with these results, maintenance of G1 in vivo was compromised in antigen-specific memory T cells in vesicular stomatitis virus-infected CD27-deficient mice. Therefore, sustaining the functional phenotype of T memory cells requires active signaling and maintenance. PMID:19617575

  7. Study of upscaling possibilities for antimony sulfide solid state sensitized solar cells

    Science.gov (United States)

    Nikolakopoulou, Archontoula; Raptis, Dimitrios; Dracopoulos, Vasilios; Sygellou, Lamprini; Andrikopoulos, Konstantinos S.; Lianos, Panagiotis

    2015-03-01

    Solid state solar cells of inverted structure were constructed by successive deposition of nanoparticulate titania, antimony sulfide sensitizer and P3HT on FTO electrodes with PEDOT:PSS:Ag as counter electrode. Sensitized photoanode electrodes were characterized by XRD, Raman, XPS, FESEM and UV-vis. Small laboratory scale cells were first constructed and optimized. Functional cells were obtained by annealing the antimony sulfide film either in air or in inert atmosphere. High short-circuit currents were recorded in both cases with air-annealed sample producing more current but lower voltage. Small unit cells were combined to form cell modules. Connection of unit cells in parallel increased current but not proportionally to that of the unit cell. Connection in series preserved current and generated voltage multiplication. Cells were constructed and studied under ambient conditions, without encapsulation. The results encourage upscaling of antimony sulfide solar cells.

  8. Small-molecule fluorophores to detect cell-state switching in the context of high-throughput screening.

    Science.gov (United States)

    Wagner, Bridget K; Carrinski, Hyman A; Ahn, Young-Hoon; Kim, Yun Kyung; Gilbert, Tamara J; Fomina, Dina A; Schreiber, Stuart L; Chang, Young-Tae; Clemons, Paul A

    2008-04-02

    A small molecule capable of distinguishing the distinct states resulting from cellular differentiation would be of enormous value, for example, in efforts aimed at regenerative medicine. We screened a collection of fluorescent small molecules for the ability to distinguish the differentiated state of a mouse skeletal muscle cell line. High-throughput fluorescence-based screening of C2C12 myoblasts and myotubes resulted in the identification of six compounds with the desired selectivity, which was confirmed by high-content screening in the same cell states. The compound that resulted in the greatest fluorescence intensity difference between the cell states was used as the screening agent in a pilot screen of 84 kinase inhibitors, each present in four doses, for inhibition of myogenesis. Of the kinase inhibitors, 17 resulted in reduction of fluorescence at one or more concentrations; among the "hits" included known inhibitors of myogenesis, confirming that this compound is capable of detecting the differentiated myotube state. We suggest that the strategy of screening for screening agents reported here may be extended more broadly in the future.

  9. Steady state peripheral blood provides cells with functional and metabolic characteristics of real hematopoietic stem cells.

    Science.gov (United States)

    Bourdieu, Antonin; Avalon, Maryse; Lapostolle, Véronique; Ismail, Sadek; Mombled, Margaux; Debeissat, Christelle; Guérinet, Marianne; Duchez, Pascale; Chevaleyre, Jean; Vlaski-Lafarge, Marija; Villacreces, Arnaud; Praloran, Vincent; Ivanovic, Zoran; Brunet de la Grange, Philippe

    2018-01-01

    Hematopoietic stem cells (HSCs), which are located in the bone marrow, also circulate in cord and peripheral blood. Despite high availability, HSCs from steady state peripheral blood (SSPB) are little known and not used for research or cell therapy. We thus aimed to characterize and select HSCs from SSPB by a direct approach with a view to delineating their main functional and metabolic properties and the mechanisms responsible for their maintenance. We chose to work on Side Population (SP) cells which are highly enriched in HSCs in mouse, human bone marrow, and cord blood. However, no SP cells from SSBP have as yet been characterized. Here we showed that SP cells from SSPB exhibited a higher proliferative capacity and generated more clonogenic progenitors than non-SP cells in vitro. Furthermore, xenotransplantation studies on immunodeficient mice demonstrated that SP cells are up to 45 times more enriched in cells with engraftment capacity than non-SP cells. From a cell regulation point of view, we showed that SP activity depended on O 2 concentrations close to those found in HSC niches, an effect which is dependent on both hypoxia-induced factors HIF-1α and HIF-2α. Moreover SP cells displayed a reduced mitochondrial mass and, in particular, a lower mitochondrial activity compared to non-SP cells, while they exhibited a similar level of glucose incorporation. These results provided evidence that SP cells from SSPB displayed properties of very primitive cells and HSC, thus rendering them an interesting model for research and cell therapy. © 2017 Wiley Periodicals, Inc.

  10. MR imaging of sickle cell patients: Comparison during pain-free and crisis states

    International Nuclear Information System (INIS)

    Brogdon, B.G.; Williams, J.P.; Mankad, V.N.; Harpen, M.D.; Moore, R.B.

    1986-01-01

    The MR imaging appearance of long bones and femoral heads of patients with sickle cell disease during a pain-free steady state and during a crisis-pain state was compared with the MR imaging appearance of matched healthy control subjects. A distinctive signal change in the narrow spaces of the long bones of patients with sickle cell disease was seen at all times. Distinct signal changes during pain crises were found in the marrow of a significant number of patients. Changes associated with aseptic necrosis, when present, did not differ from changes seen in aseptic necrosis of other causes

  11. Training echo state networks for rotation-invariant bone marrow cell classification.

    Science.gov (United States)

    Kainz, Philipp; Burgsteiner, Harald; Asslaber, Martin; Ahammer, Helmut

    2017-01-01

    The main principle of diagnostic pathology is the reliable interpretation of individual cells in context of the tissue architecture. Especially a confident examination of bone marrow specimen is dependent on a valid classification of myeloid cells. In this work, we propose a novel rotation-invariant learning scheme for multi-class echo state networks (ESNs), which achieves very high performance in automated bone marrow cell classification. Based on representing static images as temporal sequence of rotations, we show how ESNs robustly recognize cells of arbitrary rotations by taking advantage of their short-term memory capacity. The performance of our approach is compared to a classification random forest that learns rotation-invariance in a conventional way by exhaustively training on multiple rotations of individual samples. The methods were evaluated on a human bone marrow image database consisting of granulopoietic and erythropoietic cells in different maturation stages. Our ESN approach to cell classification does not rely on segmentation of cells or manual feature extraction and can therefore directly be applied to image data.

  12. Fuel cell collaboration in the United States. Follow up report to the Danish Partnership for Hydrogen and Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    Fuel cell technology continues to grow in the United States, with strong sales in stationary applications and early markets such as data centers, materials handling equipment, and telecommunications sites. New fuel cell customers include Fortune 500 companies Apple, eBay, Coca-Cola, and Walmart, who will use fuel cells to provide reliable power to data centers, stores, and facilities. Some are purchasing multi-megawatt (MW) systems, including three of the largest non-utility purchases of stationary fuel cells in the world by AT and T, Apple and eBay - 17 MW, 10 MW and 6 MW respectively. Others are replacing fleets of battery forklifts with fuel cells. Sysco, the food distributor, has more than 700 fuel cell-powered forklifts operating at seven facilities, with more on order. Mega-retailer Walmart now operates more than 500 fuel cell forklifts at three warehouses, including a freezer facility. Although federal government budget reduction efforts are impacting a wide range of departments and programs, fuel cell and hydrogen technology continues to be funded, albeit at a lower level than in past years. The Department of Energy (DOE) is currently funding fuel cell and hydrogen R and D and has nearly 300 ongoing projects at companies, national labs, and universities/institutes universities. The American Recovery and Reinvestment Act (ARRA) of 2009 and DOE's Market Transformation efforts have acted as a government ''catalyst'' for market success of emerging technologies. Early market deployments of about 1,400 fuel cells under the ARRA have led to more than 5,000 additional fuel cell purchases by industry with no DOE funding. In addition, interest in Congress remains high. Senators Richard Blumenthal (D-CT), Chris Coons (D-DE), Lindsey Graham (R-SC) and John Hoeven (R-ND) re-launched the bipartisan Senate Fuel Cell and Hydrogen Caucus in August 2012 to promote the continued development and commercialization of hydrogen and fuel cell technologies

  13. Autopsy findings in sickle cell disease patients in Lagos State ...

    African Journals Online (AJOL)

    Autopsy findings in sickle cell disease patients in Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria. ... The study showed that the most common cause of sudden death was anemia-related (50%) while 21% were due to acute infections, 18.4 % were due to cardiovascular events and 4.6% were due to ...

  14. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes

    International Nuclear Information System (INIS)

    Singh, Pramod Kumar; Bhattacharya, Bhaskar; Nagarale, R K; Pandey, S P; Rhee, H W

    2011-01-01

    Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described. (review)

  15. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes

    Science.gov (United States)

    Singh, Pramod Kumar; Nagarale, R. K.; Pandey, S. P.; Rhee, H. W.; Bhattacharya, Bhaskar

    2011-06-01

    Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described.

  16. Variations in Glycogen Synthesis in Human Pluripotent Stem Cells with Altered Pluripotent States

    Science.gov (United States)

    Chen, Richard J.; Zhang, Guofeng; Garfield, Susan H.; Shi, Yi-Jun; Chen, Kevin G.; Robey, Pamela G.; Leapman, Richard D.

    2015-01-01

    Human pluripotent stem cells (hPSCs) represent very promising resources for cell-based regenerative medicine. It is essential to determine the biological implications of some fundamental physiological processes (such as glycogen metabolism) in these stem cells. In this report, we employ electron, immunofluorescence microscopy, and biochemical methods to study glycogen synthesis in hPSCs. Our results indicate that there is a high level of glycogen synthesis (0.28 to 0.62 μg/μg proteins) in undifferentiated human embryonic stem cells (hESCs) compared with the glycogen levels (0 to 0.25 μg/μg proteins) reported in human cancer cell lines. Moreover, we found that glycogen synthesis was regulated by bone morphogenetic protein 4 (BMP-4) and the glycogen synthase kinase 3 (GSK-3) pathway. Our observation of glycogen bodies and sustained expression of the pluripotent factor Oct-4 mediated by the potent GSK-3 inhibitor CHIR-99021 reveals an altered pluripotent state in hPSC culture. We further confirmed glycogen variations under different naïve pluripotent cell growth conditions based on the addition of the GSK-3 inhibitor BIO. Our data suggest that primed hPSCs treated with naïve growth conditions acquire altered pluripotent states, similar to those naïve-like hPSCs, with increased glycogen synthesis. Furthermore, we found that suppression of phosphorylated glycogen synthase was an underlying mechanism responsible for altered glycogen synthesis. Thus, our novel findings regarding the dynamic changes in glycogen metabolism provide new markers to assess the energetic and various pluripotent states in hPSCs. The components of glycogen metabolic pathways offer new assays to delineate previously unrecognized properties of hPSCs under different growth conditions. PMID:26565809

  17. Calcium doped MAPbI3 with better energy state alignment in perovskite solar cells

    Science.gov (United States)

    Lu, Chaojie; Zhang, Jing; Hou, Dagang; Gan, Xinlei; Sun, Hongrui; Zeng, Zhaobing; Chen, Renjie; Tian, Hui; Xiong, Qi; Zhang, Ying; Li, Yuanyuan; Zhu, Yuejin

    2018-05-01

    The organic-inorganic perovskite material with better energy alignment in the solar cell device will have a profound impact on the solar cell performance. It is valuable to tune the energy states by element substitution and doping in perovskites. Here, we present that Ca2+ is incorporated into CH3NH3PbI3, which up-shifts the valence band maximum and the conduction band minimum, leading to a difference between the bandgap and the Fermi level in the device. Consequently, Ca2+ incorporation results in an enhancement of the photovoltage and photocurrent, achieving a summit efficiency of 18.3% under standard 1 sun (AM 1.5). This work reveals the doped perovskite to improve the solar cell performance by tuning the energy state.

  18. The State of Cell Blocks and Ancillary Testing: Past, Present, and Future.

    Science.gov (United States)

    Saqi, Anjali

    2016-12-01

    Cell blocks are an integral part of cytology, but their utility is recognized probably more now than ever before, largely owing to the significant role they play in ancillary testing, particularly molecular diagnostics. Modifications to improve the cell block method initially introduced more than a century ago have been made over the years. Though their value is acknowledged and they are widely used across laboratories, cell block preparations are not standardized and results of ancillary testing performed on them are inconsistent. This article reviews the state of cell blocks-summarizes the more common, currently available and used methods and their corresponding advantages and shortcomings, outlines the role of alternative techniques (eg, smears), and proposes methods to optimize results.

  19. Profiling stem cell states in three-dimensional biomaterial niches using high content image informatics.

    Science.gov (United States)

    Dhaliwal, Anandika; Brenner, Matthew; Wolujewicz, Paul; Zhang, Zheng; Mao, Yong; Batish, Mona; Kohn, Joachim; Moghe, Prabhas V

    2016-11-01

    A predictive framework for the evolution of stem cell biology in 3-D is currently lacking. In this study we propose deep image informatics of the nuclear biology of stem cells to elucidate how 3-D biomaterials steer stem cell lineage phenotypes. The approach is based on high content imaging informatics to capture minute variations in the 3-D spatial organization of splicing factor SC-35 in the nucleoplasm as a marker to classify emergent cell phenotypes of human mesenchymal stem cells (hMSCs). The cells were cultured in varied 3-D culture systems including hydrogels, electrospun mats and salt leached scaffolds. The approach encompasses high resolution 3-D imaging of SC-35 domains and high content image analysis (HCIA) to compute quantitative 3-D nuclear metrics for SC-35 organization in single cells in concert with machine learning approaches to construct a predictive cell-state classification model. Our findings indicate that hMSCs cultured in collagen hydrogels and induced to differentiate into osteogenic or adipogenic lineages could be classified into the three lineages (stem, adipogenic, osteogenic) with ⩾80% precision and sensitivity, within 72h. Using this framework, the augmentation of osteogenesis by scaffold design exerted by porogen leached scaffolds was also profiled within 72h with ∼80% high sensitivity. Furthermore, by employing 3-D SC-35 organizational metrics, differential osteogenesis induced by novel electrospun fibrous polymer mats incorporating decellularized matrix could also be elucidated and predictably modeled at just 3days with high precision. We demonstrate that 3-D SC-35 organizational metrics can be applied to model the stem cell state in 3-D scaffolds. We propose that this methodology can robustly discern minute changes in stem cell states within complex 3-D architectures and map single cell biological readouts that are critical to assessing population level cell heterogeneity. The sustained development and validation of bioactive

  20. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.

    Science.gov (United States)

    Blanc, Frédéric; Leskes, Michal; Grey, Clare P

    2013-09-17

    Electrochemical cells, in the form of batteries (or supercapacitors) and fuel cells, are efficient devices for energy storage and conversion. These devices show considerable promise for use in portable and static devices to power electronics and various modes of transport and to produce and store electricity both locally and on the grid. For example, high power and energy density lithium-ion batteries are being developed for use in hybrid electric vehicles where they improve the efficiency of fuel use and help to reduce greenhouse gas emissions. To gain insight into the chemical reactions involving the multiple components (electrodes, electrolytes, interfaces) in the electrochemical cells and to determine how cells operate and how they fail, researchers ideally should employ techniques that allow real-time characterization of the behavior of the cells under operating conditions. This Account reviews the recent use of in situ solid-state NMR spectroscopy, a technique that probes local structure and dynamics, to study these devices. In situ NMR studies of lithium-ion batteries are performed on the entire battery, by using a coin cell design, a flat sealed plastic bag, or a cylindrical cell. The battery is placed inside the NMR coil, leads are connected to a potentiostat, and the NMR spectra are recorded as a function of state of charge. (7)Li is used for many of these experiments because of its high sensitivity, straightforward spectral interpretation, and relevance to these devices. For example, (7)Li spectroscopy was used to detect intermediates formed during electrochemical cycling such as LixC and LiySiz species in batteries with carbon and silicon anodes, respectively. It was also used to observe and quantify the formation and growth of metallic lithium microstructures, which can cause short circuits and battery failure. This approach can be utilized to identify conditions that promote dendrite formation and whether different electrolytes and additives can help

  1. Evaluating effect of surface state density at the interfaces in degraded bulk heterojunction organic solar cell

    International Nuclear Information System (INIS)

    Arora, Swati; Singh, Vinamrita; Arora, Manoj; Pal Tandon, Ram

    2012-01-01

    Degradation and short shelf life have been observed experimentally in poly(3-hexylthiophene) (P3HT): 6,6-phenyl C61-butyric acid methyl ester (PCBM) based blend solar cells. Both dark and illuminated current-voltage characteristics could be explained quantitatively with a proposed single model for a typical degraded organic solar cell-glass/ITO/PEDOT:PSS/P3HT:PCBM/Al. It has been found that surface state density, interface thickness, tunneling coefficient and occupation probabilities of the interface states becomes important with the passage of time. To look into the problem the activity at ITO/PEDOT:PSS and P3HT:PCBM/Al interfaces are studied using realistic values of the interfaces. The experimental J-V characteristics is well explained with the inclusion of tunneling current through these surface states and becomes the dominant current component for the degraded cell. It is also found that surface state density increases to 10 12 -10 13 cm -2 eV -1 , which has been verified with C-V measurements and also is in agreement with our proposed model for BHJ solar cell after 150 h of fabrication.

  2. Evaluating effect of surface state density at the interfaces in degraded bulk heterojunction organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Swati, E-mail: drswatia@yahoo.com [Department of Physics, Zakir Husain College, University of Delhi, Delhi 110002 (India); Singh, Vinamrita [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Arora, Manoj [Department of Physics, Ramjas College, University of Delhi, Delhi 110007 (India); Pal Tandon, Ram [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2012-08-01

    Degradation and short shelf life have been observed experimentally in poly(3-hexylthiophene) (P3HT): 6,6-phenyl C61-butyric acid methyl ester (PCBM) based blend solar cells. Both dark and illuminated current-voltage characteristics could be explained quantitatively with a proposed single model for a typical degraded organic solar cell-glass/ITO/PEDOT:PSS/P3HT:PCBM/Al. It has been found that surface state density, interface thickness, tunneling coefficient and occupation probabilities of the interface states becomes important with the passage of time. To look into the problem the activity at ITO/PEDOT:PSS and P3HT:PCBM/Al interfaces are studied using realistic values of the interfaces. The experimental J-V characteristics is well explained with the inclusion of tunneling current through these surface states and becomes the dominant current component for the degraded cell. It is also found that surface state density increases to 10{sup 12}-10{sup 13} cm{sup -2} eV{sup -1}, which has been verified with C-V measurements and also is in agreement with our proposed model for BHJ solar cell after 150 h of fabrication.

  3. Manganese oxidation state mediates toxicity in PC12 cells

    International Nuclear Information System (INIS)

    Reaney, S.H.; Smith, D.R.

    2005-01-01

    The role of the manganese (Mn) oxidation state on cellular Mn uptake and toxicity is not well understood. Therefore, undifferentiated PC12 cells were exposed to 0-200 μM Mn(II)-chloride or Mn(III)-pyrophosphate for 24 h, after which cellular manganese levels were measured along with measures of cell viability, function, and cytotoxicity (trypan blue exclusion, medium lactate dehydrogenase (LDH), 8-isoprostanes, cellular ATP, dopamine, serotonin, H-ferritin, transferrin receptor (TfR), Mn-superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (CuZnSOD) protein levels). Exposures to Mn(III) >10 μM produced 2- to 5-fold higher cellular manganese levels than equimolar exposures to Mn(II). Cell viability and ATP levels both decreased at the highest Mn(II) and Mn(III) exposures (150-200 μM), while Mn(III) exposures produced increases in LDH activity at lower exposures (≥50 μM) than did Mn(II) (200 μM only). Mn(II) reduced cellular dopamine levels more than Mn(III), especially at the highest exposures (50% reduced at 200 μM Mn(II)). In contrast, Mn(III) produced a >70% reduction in cellular serotonin at all exposures compared to Mn(II). Different cellular responses to Mn(II) exposures compared to Mn(III) were also observed for H-ferritin, TfR, and MnSOD protein levels. Notably, these differential effects of Mn(II) versus Mn(III) exposures on cellular toxicity could not simply be accounted for by the different cellular levels of manganese. These results suggest that the oxidation state of manganese exposures plays an important role in mediating manganese cytotoxicity

  4. Hydrogen and fuel cells in the United States Congress

    International Nuclear Information System (INIS)

    Yacobucci, B.D.

    2003-01-01

    Over the past few years, the United States Congress has shown increasing interest in the development of hydrogen fuel and fuel cells for transportation, stationary, and mobile applications The high efficiency of fuel cell systems could address some of the concern over increasing dependence on imported petroleum. Further, lower emissions could help promote air quality goals However, many questions remain, including the affordability, safety, overall fuel-cycle efficiency and emissions. These questions, especially those related to cost, have led Members of Congress to enact legislation to speed the development and commercialization of the technologies. This paper discusses congressional action on hydrogen and fuel cells. It provides an overview of the U.S. Congress, and outlines the role of the appropriations process. It then provides a history of federal hydrogen fuel research and development (R and D), both in terms of legislative and executive initiatives, and it describes pending legislation current as of this writing, including bills on energy policy, transportation policy, tax policy, and appropriations. Finally, the paper presents some of the issues that the pending legislation may raise for industry. (author)

  5. Liver-derived systemic factors drive β-cell hyperplasia in insulin resistant states

    Energy Technology Data Exchange (ETDEWEB)

    El Ouaamari, Abdelfattah; Kawamori, Dan; Dirice, Ercument; Liew, Chong Wee; Shadrach, Jennifer L.; Hu, Jiang; Katsuta, Hitoshi; Hollister-Lock, Jennifer; Qian, Weijun; Wagers, Amy J.; Kulkarni, Rohit N.

    2013-02-21

    Integrative organ cross-talk regulates key aspects of energy homeostasis and its dysregulation may underlie metabolic disorders such as obesity and diabetes. To test the hypothesis that cross-talk between the liver and pancreatic islets modulates β-cell growth in response to insulin resistance, we used the Liver-specific Insulin Receptor Knockout (LIRKO) mouse, a unique model that exhibits dramatic islet hyperplasia. Using complementary in vivo parabiosis and transplantation assays, and in vitro islet culture approaches, we demonstrate that humoral, non-neural, non-cell autonomous factor(s) induce β-cell proliferation in LIRKO mice. Furthermore, we report that a hepatocyte-derived factor(s) stimulates mouse and human β-cell proliferation in ex vivo assays, independent of ambient glucose and insulin levels. These data implicate the liver as a critical source of β-cell growth factors in insulin resistant states.

  6. Density of interface states, excess capacitance and series resistance in the metal-insulator-semiconductor (MIS) solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Altindal, Semsettin; Tataroglu, Adem; Dokme, Ilbilge [Faculty of Arts and Sciences, Physics Department, Gazi University, 06500, Ankara (Turkey)

    2005-01-31

    Dark and illuminated current-voltage (I-V) characteristics of Al/SiO{sub x}/p-Si metal-insulator-semiconductor (MIS) solar cells were measured at room temperature. In addition to capacitance-voltage (C-V) and conductance-voltage (G-V), characteristics are studied at a wide frequency range of 1kHz-10MHz. The dark I-V characteristics showed non-ideal behavior with an ideal factor of 3.2. The density of interface states distribution profiles as a function of (E{sub ss}-E{sub v}) deduced from the I-V measurements at room temperature for the MIS solar cells on the order of 10{sup 13}cm{sup -2}eV{sup -1}. These interface states were responsible for the non-ideal behavior of I-V, C-V and G-V characteristics. Frequency dispersion in capacitance for MIS solar cells can be interpreted only in terms of interface states. The interface states can follow the a.c. signal and yield an excess capacitance, which depends on the relaxation time of interface states and the frequency of the a.c. signal. It was observed that the excess capacitance C{sub o} caused by an interface state decreases with an increase of frequency. The capacitances characteristics of MIS solar cells are affected not only in interface states but also series resistance. Analysis of this data indicated that the high interface states and series resistance leads to lower values of open-circuit voltage, short-circuit current density, and fill factor. Experimental results show that the location of interface states and series resistance have a significant effect on I-V, C-V and G-V characteristics.

  7. The stem cell state in plant development and in response to stress

    Directory of Open Access Journals (Sweden)

    Gideon eGrafi

    2011-10-01

    Full Text Available Stem cells are commonly defined by their developmental capabilities, namely, self-renewal and multitype differentiation, yet the biology of stem cells and their inherent features both in plants and animals are only beginning to be elucidated. In this review article we highlight the stem cell state in plants (with reference to animals and the plastic nature of plant somatic cells (often referred to as totipotency as well as the essence of cellular dedifferentiation. Based on recent published data, we illustrate the picture of stem cells with emphasis on their open chromatin conformation. We discuss the process of dedifferentiation and highlight its transient nature, its distinction from reentry into the cell cycle and its activation following exposure to stress. We also discuss the potential hazard that can be brought about by stress-induced dedifferentiation and its major impact on the genome, which can undergo stochastic, abnormal reorganization leading to genetic variation by means of DNA transposition and/or DNA recombination.

  8. MECHANISMS OF CELL RESISTANCE TO CYTOMEGALOVIRUS ARE CONNECTED WITH CELL PROLIFERATION STATE AND TRANSCRIPTION ACTIVITY OF LEUKOCYTE AND IMMUNE INTERFERON GENES

    Directory of Open Access Journals (Sweden)

    T. M. Sokolova

    2007-01-01

    Full Text Available Abstract. Cytomegalovirus (CMV infection in diploid human fibroblasts (HF and levels of cell resistance to this virus were shown to be in direct correlation with high α-interferon (IFNα gene activity and induction of IFNγ gene transcription. Regulation of IFNα mRNA transcription was revealed to be positively associated with cellular DNA synthesis. At the same time, activities of IFNβ and IFNγ genes were at the constantly low level and were not induced in DNA-synthetic phase (S-phase of the cells. Levels of IFNα mRNA synthesis are quite different for G0- vs S-phase-synchronized HF110044 cell cultures: appropriate values for dividing cells (S-phase proved to be 100-fold higher than in resting state (G0. The mode of CMV infection in resting HF-cell could be considered either as acute, or a productive one. On the contrary, proliferating cells exhibited lagging viral syntheses and delayed cell death. Arrest of CMV replication may be, to some extent, comparable with latent infectious state, being associated with high production of IFNα. Both basal and induced levels of IFNα mRNA in CMV-resistant adult human skin fibroblast cells (HSF-1608 were 10-fold higher than in human embryo lung cell line (HELF-977, which is highly sensitive to CMV. Moreover, a short-time induction of IFNγ genes was observed in resistant cells, whereas no such effect was noticed in highly sensitive cells. CMV reproduction in sensitive cell lines (HELF-977 and HELF-110044 partially inhibits IFNα mRNA transcription at the later stages of infection (24 to 48 hours. Thus, cellular resistance and control of CMV infection in diploid fibroblasts are associated predominantly with high transcription of IFNα gene, and with temporal induction of IFNγ gene. We did not reveal any participation of IFNβ genes in protection of human diploid fibroblasts from CMV.

  9. Dextran based highly conductive hydrogel polysulfide electrolyte for efficient quasi-solid-state quantum dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Chen, Hong-Yan; Lin, Ling; Yu, Xiao-Yun; Qiu, Kang-Qiang; Lü, Xian-Yong; Kuang, Dai-Bin; Su, Cheng-Yong

    2013-01-01

    Highlights: ► Dextran based hydrogel is first used to prepare quasi-solid-state polysulfide electrolyte for quantum dot-sensitized solar cells. ► The ion conductivity of hydrogel electrolyte shows almost the same value as the liquid electrolyte. ► The liquid state at elevated temperature of hydrogel electrolyte allows for a good contact between electrolyte and CdS/CdSe co-sensitized TiO 2 photoanode. ► The hydrogel electrolyte based cell exhibits slightly lower power conversion efficiency than that of liquid electrolyte based cell. ► The dynamic electron transfer mechanism in hydrogel electrolyte based cell is examined in detail by EIS and CIMPS/IMVS. -- Abstract: Highly conductive hydrogel polysulfide electrolyte is first fabricated using dextran as gelator and used as quasi-solid-state electrolyte for quantum dot-sensitized solar cells (QDSSCs). The hydrogel electrolyte with gelator concentration of 15 wt% shows almost the same conductivity as the liquid one. Moreover, its liquid state at elevated temperature allow for the well penetration into the pores in electrodeposited CdS/CdSe co-sensitized TiO 2 photoanode. This gel electrolyte based QDSSC exhibits power conversion efficiency (η) of 3.23% under AG 1.5 G one sun (100 mW cm −2 ) illumination, slightly lower than that of liquid electrolyte based cell (3.69%). The dynamic electron transfer mechanism of the gel and liquid electrolyte based QDSSC are examined by electrochemical impedance spectroscopy (EIS) and controlled intensity modulated photocurrent/photovoltage spectroscopy (CIMPS/IMVS). It is found that the electron transport in gel electrolyte based cell is much faster than the liquid electrolyte based cell but it tends to recombine more easily than the latter. However, these differences fade away with increasing the light intensity, showing declining electron collection efficiency at higher light intensity illumination. As a result, a conversion efficiency of 4.58% is obtained for the gel

  10. Optimizations of large area quasi-solid-state dye-sensitized solar cells

    DEFF Research Database (Denmark)

    Biancardo, M.; West, K.; Krebs, Frederik C

    2006-01-01

    In this paper, we address optimizations of dye sensitized solar cells (DSSCs) through the combination of important issues like semi-transparency, quasi-solid-state constructions and low-cost realization of serially connected modules. DSSCs with a transparency of 50% in the visible region, moderate...... encouraging results. A short circuit current (I-sc) of 4.45 mA cm(-2) with an open circuit voltage (V-oc) of 0.5 V were recorded in standard solar cells sensitized by cis-bis(thiocyano) ruthenium(II)-bis-2, 2'-bipyridine-4, 4'-dicarboxylate. Up-scaling tests demonstrate the easy realization of a 625 cm(2...

  11. Embryonic Stem Cell Culture Conditions Support Distinct States Associated with Different Developmental Stages and Potency

    DEFF Research Database (Denmark)

    Martin Gonzalez, Javier; Morgani, Sophie M; Bone, Robert A

    2016-01-01

    . Conversely, the transcriptome of serum-cultured ESCs correlated with later stages of development (E4.5), at which point embryonic cells are more restricted in their developmental potential. Thus, ESC culture systems are not equivalent, but support cell types that resemble distinct developmental stages. Cells...... derived in one condition can be reprogrammed to another developmental state merely by adaptation to another culture condition....

  12. Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Alejandro Mendez

    2014-07-01

    Full Text Available Autonomous Underwater Vehicles (AUVs are vehicles that are primarily used to accomplish oceanographic research data collection and auxiliary offshore tasks. At the present time, they are usually powered by lithium-ion secondary batteries, which have insufficient specific energies. In order for this technology to achieve a mature state, increased endurance is required. Fuel cell power systems have been identified as an effective means to achieve this endurance but no implementation in a commercial device has yet been realized. This paper summarizes the current state of development of the technology in this field of research. First, the most adequate type of fuel cell for this application is discussed. The prototypes and design concepts of AUVs powered by fuel cells which have been developed in the last few years are described. Possible commercial and experimental fuel cell stack options are analyzed, examining solutions adopted in the analogous aerial vehicle applications, as well as the underwater ones, to see if integration in an AUV is feasible. Current solutions in oxygen and hydrogen storage systems are overviewed and energy density is objectively compared between battery power systems and fuel cell power systems for AUVs. A couple of system configuration solutions are described including the necessary lithium-ion battery hybrid system. Finally, some closing remarks on the future of this technology are given.

  13. Physical Principles of Development of the State Standard of Biological Cell Polarizability

    Science.gov (United States)

    Shuvalov, G. V.; Generalov, K. V.; Generalov, V. M.; Kruchinina, M. V.; Koptev, E. S.; Minin, O. V.; Minin, I. V.

    2018-03-01

    A new state standard of biological cell polarizability based on micron-size latex particles has been developed. As a standard material, it is suggested to use polystyrene. Values of the polarizability calculated for erythrocytes and values of the polarizability of micron-size spherical latex particles measured with measuring-computing complexes agree within the limits of satisfactory relative error. The Standard allows one the unit of polarizability measurements [m3] to be assigned to cells and erythrocytes for the needs of medicine.

  14. Obviating the requirement for oxygen in SnO2-based solid-state dye-sensitized solar cells

    Science.gov (United States)

    Docampo, Pablo; Snaith, Henry J.

    2011-06-01

    Organic semiconductors employed in solar cells are perfectly stable to solar irradiation provided oxygen content can be kept below 1 ppm. Paradoxically, the state-of-the-art molecular hole-transporter-based solid-state dye-sensitized solar cells only operate efficiently if measured in an atmosphere containing oxygen. Without oxygen, these devices rapidly lose photovoltage and photocurrent and are rendered useless. Clearly this peculiar requirement has detrimental implications to the long term stability of these devices. Through characterizing the solar cells in air and in oxygen-free atmospheres, and considering the device architecture, we identify that direct contact between the metallic cathode and the mesoporous metal oxide photo-anode is responsible for a shunting path through the device. This metal-metal oxide contact forms a Schottky barrier under ambient conditions and the barrier is suitably high so as to prevent significant shunting of the solar cells. However, under light absorption in an anaerobic atmosphere the barrier reduces significantly, opening a low resistance shunting path which dominates the current-voltage characteristics in the solar cell. By incorporating an extra interlayer of insulating mesoporous aluminum oxide, on top of the mesoporous semiconducting metal oxide electrode, we successfully block this shunting path and subsequently the devices operate efficiently in an oxygen-free atmosphere, enabling the possibility of long term stability of solid-state dye-sensitized solar cells.

  15. Obviating the requirement for oxygen in SnO2-based solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Docampo, Pablo; Snaith, Henry J

    2011-01-01

    Organic semiconductors employed in solar cells are perfectly stable to solar irradiation provided oxygen content can be kept below 1 ppm. Paradoxically, the state-of-the-art molecular hole-transporter-based solid-state dye-sensitized solar cells only operate efficiently if measured in an atmosphere containing oxygen. Without oxygen, these devices rapidly lose photovoltage and photocurrent and are rendered useless. Clearly this peculiar requirement has detrimental implications to the long term stability of these devices. Through characterizing the solar cells in air and in oxygen-free atmospheres, and considering the device architecture, we identify that direct contact between the metallic cathode and the mesoporous metal oxide photo-anode is responsible for a shunting path through the device. This metal-metal oxide contact forms a Schottky barrier under ambient conditions and the barrier is suitably high so as to prevent significant shunting of the solar cells. However, under light absorption in an anaerobic atmosphere the barrier reduces significantly, opening a low resistance shunting path which dominates the current-voltage characteristics in the solar cell. By incorporating an extra interlayer of insulating mesoporous aluminum oxide, on top of the mesoporous semiconducting metal oxide electrode, we successfully block this shunting path and subsequently the devices operate efficiently in an oxygen-free atmosphere, enabling the possibility of long term stability of solid-state dye-sensitized solar cells.

  16. CARS hyperspectral imaging of cartilage aiming for state discrimination of cell

    Science.gov (United States)

    Shiozawa, Manabu; Shirai, Masataka; Izumisawa, Junko; Tanabe, Maiko; Watanabe, Koichi

    2016-03-01

    Non-invasive cell analyses are increasingly important for medical field. A CARS microscope is one of the non-invasive imaging equipments and enables to obtain images indicating molecular distribution. Some studies on discrimination of cell state by using CARS images of lipid are reported. However, due to low signal intensity, it is still challenging to obtain images of the fingerprint region (800~1800 cm-1), in which many spectrum peaks correspond to compositions of a cell. Here, to identify cell differentiation by using multiplex CARS, we investigated hyperspectral imaging of fingerprint region of living cells. To perform multiplex CARS, we used a prototype of a compact light source, which consists of a microchip laser, a single-mode fiber, and a photonic crystal fiber to generate supercontinuum light. Assuming application to regenerative medicine, we chose a cartilage cell, whose differentiation is difficult to be identified by change of the cell morphology. Because one of the major components of cartilage is collagen, we focused on distribution of proline, which accounts for approximately 20% of collagen in general. The spectrum quality was improved by optical adjustments about power branching ratio and divergence of broadband Stokes light. Hyperspectral images were successfully obtained by the improvement. Periphery of a cartilage cell was highlighted in CARS image of proline, and this result suggests correspondence with collagen generated as extracellular matrix. A possibility of cell analyses by using CARS hyperspectral imaging was indicated.

  17. Solidification of liquid electrolyte with imidazole polymers for quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wang Miao; Lin Yuan; Zhou Xiaowen; Xiao Xurui; Yang Lei; Feng Shujing; Li Xueping

    2008-01-01

    Quasi-solid-state electrolytes were prepared by employing the imidazole polymers to solidify the liquid electrolyte containing lithium iodide, iodine and ethylene carbonate (EC)/propylene carbonate (PC) mixed solvent. The ionic conductivity and diffusion behavior of triiodide in the quasi-solid-state electrolytes were examined in terms of the polymer content. Application of the quasi-solid-state electrolytes to the dye-sensitized solar cells, the maximum energy conversion efficiency of 7.6% (AM 1.5, 100 mW cm -2 ) was achieved. The dependence of the photovoltaic performance on the polymer content and on the different anions of the imidazole polymers was studied by electrochemical impedance spectroscopy and cyclic voltammetry. The results indicate the charge transfer behaviors occurred at nanocrystalline TiO 2 /electrolyte and Pt/electrolyte interface play an important role in influencing the photovoltaic performance of quasi-solid-state dye-sensitized solar cells

  18. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Jung, E. C.; Kim, Hyun Su; Lim, Gwon

    2001-01-01

    we have fabricated solid-state dyes with PMMA and sol-gel materials. We developed single longitudianl mode solid-state dye laser with the linewidth of less than 500MHz. We have constructed a self-seeded laser and observed the increase of the output power because of self-seeding effect. We investigated the operating characteristics of the dualwave laser oscillator and DFDL with solid-state dyes. And we have constructed the 3-color solid-state dye laser oscillator and amplifier system and observed 3-color operation. We also improved the laser oscliiator with disk-type solid-state dye cell which can be translated and rotated with the help of the two stepping motors. With the help of computer control, we could constantly changed the illuminated area of the dye cell and, therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell.

  19. A Cell-to-Cell Equalizer Based on Three-Resonant-State Switched-Capacitor Converters for Series-Connected Battery Strings

    Directory of Open Access Journals (Sweden)

    Yunlong Shang

    2017-02-01

    Full Text Available Due to the low cost, small size, and ease of control, the switched-capacitor (SC battery equalizers are promising among active balancing methods. However, it is difficult to achieve the full cell equalization for the SC equalizers due to the inevitable voltage drops across Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET switches. Moreover, when the voltage gap among cells is larger, the balancing efficiency is lower, while the balancing speed becomes slower as the voltage gap gets smaller. In order to soften these downsides, this paper proposes a cell-to-cell battery equalization topology with zero-current switching (ZCS and zero-voltage gap (ZVG among cells based on three-resonant-state SC converters. Based on the conventional inductor-capacitor (LC converter, an additional resonant path is built to release the charge of the capacitor into the inductor in each switching cycle, which lays the foundations for obtaining ZVG among cells, improves the balancing efficiency at a large voltage gap, and increases the balancing speed at a small voltage gap. A four-lithium-ion-cell prototype is applied to validate the theoretical analysis. Experiment results demonstrate that the proposed topology has good equalization performances with fast equalization, ZCS, and ZVG among cells.

  20. Calcitonin Receptor Signaling Inhibits Muscle Stem Cells from Escaping the Quiescent State and the Niche

    Directory of Open Access Journals (Sweden)

    Masahiko Yamaguchi

    2015-10-01

    Full Text Available Calcitonin receptor (Calcr is expressed in adult muscle stem cells (muscle satellite cells [MuSCs]. To elucidate the role of Calcr, we conditionally depleted Calcr from adult MuSCs and found that impaired regeneration after muscle injury correlated with the decreased number of MuSCs in Calcr-conditional knockout (cKO mice. Calcr signaling maintained MuSC dormancy via the cAMP-PKA pathway but had no impact on myogenic differentiation of MuSCs in an undifferentiated state. The abnormal quiescent state in Calcr-cKO mice resulted in a reduction of the MuSC pool by apoptosis. Furthermore, MuSCs were found outside their niche in Calcr-cKO mice, demonstrating cell relocation. This emergence from the sublaminar niche was prevented by the Calcr-cAMP-PKA and Calcr-cAMP-Epac pathways downstream of Calcr. Altogether, the findings demonstrated that Calcr exerts its effect specifically by keeping MuSCs in a quiescent state and in their location, maintaining the MuSC pool.

  1. Relationship of calcitonin mRNA expression to the differentiation state of HL 60 cells.

    Science.gov (United States)

    Kiefer, P; Bacher, M; Pflüger, K H

    1994-05-01

    Raised plasma levels of immunoreactive human calcitonin (ihCT) can be found in patients with myeloid leukemia and seem to indicate a poor prognosis. High levels were found in acute undifferentiated and acute myeloblastic leukemia. To test whether CT expression could be a marker of myeloid differentiation, we used the promyelocytic leukemia cell line HL 60 which also expresses ihCT as a model system for myeloid differentiation. Exponentially growing HL 60 cells as well as differentiation induced HL 60 cells expressed a single 1.0 Kb CT transcript. The induction of HL 60 cell differentiation along the granulocytic lineage by DMSO or HMBA had no effect on the level of CT transcripts. Induction of monocytic/macrophagic differentiation by TPA resulted in a transient, about 10-fold elevated expression of CT steady state mRNA after 24 h. In contrast to TPA, induction of HL 60 cell differentiation along the monocytic pathway by Vit D3 had no detectable effect on the level of the CT in RNA expression at corresponding time points. These findings suggest that the transient induction of CT steady state mRNA expression by TPA is rather a direct effect of the phorbol ester than commitment along the monocytic line of differentiation.

  2. The recruitability and cell-cycle state of intestinal stem cells

    International Nuclear Information System (INIS)

    Potten, C.S.; Chadwick, C.; Ijiri, K.; Tsubouchi, S.; Hanson, W.R.

    1984-01-01

    Evidence is presented which suggests that the crypts of the small intestine contain at least two discrete but interdependent classes of stem cells, some with discrete cell kinetic properties and some with discrete radiation responses or radiosensitivities. Very low doses of X rays or gamma rays, or neutrons, kill a few cells in the stem cell regions of the crypt in a sensitive dose-dependent manner. Similar doses generate several different cell kinetic responses within either the clonogenic fraction or the cells at the stem cell position within the crypt. The cell kinetic responses range from apparent recruitment of G0 clonogenic cells into cycle, to a marked shortening of the average cell cycle of the cells at the stem cell position. It is suggested that the cell kinetic changes may be the consequence of the cell destruction

  3. Convergence of Ground and Excited State Properties of Divacancy Defects in 4H-SiC with Computational Cell Size

    Science.gov (United States)

    2018-03-01

    SiC with Computational Cell Size by Ariana Beste and DeCarlos E Taylor Approved for public release; distribution is unlimited...Laboratory Convergence of Ground and Excited State Properties of Divacancy Defects in 4H-SiC with Computational Cell Size by Ariana Beste...Ground and Excited State Properties of Divacancy Defects in 4H-SiC with Computational Cell Size 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  4. Canonical Wnt signaling induces a primitive endoderm metastable state in mouse embryonic stem cells.

    Science.gov (United States)

    Price, Feodor D; Yin, Hang; Jones, Andrew; van Ijcken, Wilfred; Grosveld, Frank; Rudnicki, Michael A

    2013-04-01

    Activation of the canonical Wnt signaling pathway synergizes with leukemia inhibitory factor (LIF) to maintain pluripotency of mouse embryonic stem cells (mESCs). However, in the absence of LIF, Wnt signaling is unable to maintain ESCs in the undifferentiated state. To investigate the role of canonical Wnt signaling in pluripotency and lineage specification, we expressed Wnt3a in mESCs and characterized them in growth and differentiation. We found that activated canonical Wnt signaling induced the formation of a reversible metastable primitive endoderm state in mESC. Upon subsequent differentiation, Wnt3a-stimulated mESCs gave rise to large quantities of visceral endoderm. Furthermore, we determined that the ability of canonical Wnt signaling to induce a metastable primitive endoderm state was mediated by Tbx3. Our data demonstrates a specific role for canonical Wnt signaling in promoting pluripotency while at the same time priming cells for subsequent differentiation into the primitive endoderm lineage. Copyright © 2013 AlphaMed Press.

  5. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh; Jim Powers

    2003-10-01

    This report summarizes the work performed for April 2003--September 2003 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U.S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid oxide Fuel Cell Program''. During this reporting period, the conceptual system design activity was completed. The system design, including strategies for startup, normal operation and shutdown, was defined. Sealant and stack materials for the solid oxide fuel cell (SOFC) stack were identified which are capable of meeting the thermal cycling and degradation requirements. A cell module was tested which achieved a stable performance of 0.238 W/cm{sup 2} at 95% fuel utilization. The external fuel processor design was completed and fabrication begun. Several other advances were made on various aspects of the SOFC system, which are detailed in this report.

  6. Full-potential multiple scattering theory with space-filling cells for bound and continuum states.

    Science.gov (United States)

    Hatada, Keisuke; Hayakawa, Kuniko; Benfatto, Maurizio; Natoli, Calogero R

    2010-05-12

    We present a rigorous derivation of a real-space full-potential multiple scattering theory (FP-MST) that is free from the drawbacks that up to now have impaired its development (in particular the need to expand cell shape functions in spherical harmonics and rectangular matrices), valid both for continuum and bound states, under conditions for space partitioning that are not excessively restrictive and easily implemented. In this connection we give a new scheme to generate local basis functions for the truncated potential cells that is simple, fast, efficient, valid for any shape of the cell and reduces to the minimum the number of spherical harmonics in the expansion of the scattering wavefunction. The method also avoids the need for saturating 'internal sums' due to the re-expansion of the spherical Hankel functions around another point in space (usually another cell center). Thus this approach provides a straightforward extension of MST in the muffin-tin (MT) approximation, with only one truncation parameter given by the classical relation l(max) = kR(b), where k is the electron wavevector (either in the excited or ground state of the system under consideration) and R(b) is the radius of the bounding sphere of the scattering cell. Moreover, the scattering path operator of the theory can be found in terms of an absolutely convergent procedure in the l(max) --> ∞ limit. Consequently, this feature provides a firm ground for the use of FP-MST as a viable method for electronic structure calculations and makes possible the computation of x-ray spectroscopies, notably photo-electron diffraction, absorption and anomalous scattering among others, with the ease and versatility of the corresponding MT theory. Some numerical applications of the theory are presented, both for continuum and bound states.

  7. Ground-state splitting of ultrashallow thermal donors with negative central-cell corrections in silicon

    Science.gov (United States)

    Hara, Akito; Awano, Teruyoshi

    2017-06-01

    Ultrashallow thermal donors (USTDs), which consist of light element impurities such as carbon, hydrogen, and oxygen, have been found in Czochralski silicon (CZ Si) crystals. To the best of our knowledge, these are the shallowest hydrogen-like donors with negative central-cell corrections in Si. We observed the ground-state splitting of USTDs by far-infrared optical absorption at different temperatures. The upper ground-state levels are approximately 4 meV higher than the ground-state levels. This energy level splitting is also consistent with that obtained by thermal excitation from the ground state to the upper ground state. This is direct evidence that the wave function of the USTD ground state is made up of a linear combination of conduction band minimums.

  8. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Yi, Jong Hoon; Lee, Kang Soo; Kim, Sung Ho; Lim, Gwon

    2000-01-01

    We have fabricated solid-state dyes with Copolex NK-55, which is the base element of plastic lens, and PMMA. We have measured the longevity of solid-state dyes doped in both polymers and found that PMMA has better properties than Coploex NK-55. We have realized the tuning range of 560-620 nm by doping rhodamine 6Gand rhodamin B in the manufactured solid-state dye laser oscillators. In the standing-wave cavity we achieved the slop efficiency of 10.8 percent and in the grazing incidence cavity, 1.2 percent. We have constructed a very compact grazing- incidence cavity which is only 6 cm long and the linewidth of the laser was less than 1.5 GHz with 3-ns pulse duration. And we have fabricated disk-type solid-state dye cell and installed it in the cavity in which the dye cell can be translated and rotated with the help of the two steeping motors. By this we could constantly changed the illuminated area of the dye cell and , therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell. (author)

  9. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    International Nuclear Information System (INIS)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Yi, Jong Hoon; Lee, Kang Soo; Kim, Sung Ho; Lim, Gwon

    2000-01-01

    We have fabricated solid-state dyes with Copolex NK-55, which is the base element of plastic lens, and PMMA. We have measured the longevity of solid-state dyes doped in both polymers and found that PMMA has better properties than Coploex NK-55. We have realized the tuning range of 560-620 nm by doping rhodamine 6G and rhodamin B in the manufactured solid-state dye laser oscillators. In the standing-wave cavity we achieved the slop efficiency of 10.8 percent and in the grazing incidence cavity, 1.2 percent. We have constructed a very compact grazing- incidence cavity which is only 6 cm long and the linewidth of the laser was less than 1.5 GHz with 3-ns pulse duration. And we have fabricated disk-type solid-state dye cell and installed it in the cavity in which the dye cell can be translated and rotated with the help of the two steeping motors. By this we could constantly changed the illuminated area of the dye cell and , therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell. (author)

  10. Altered Ca fluxes and contractile state during pH changes in cultured heart cells

    International Nuclear Information System (INIS)

    Kim, D.; Smith, T.W.

    1987-01-01

    The authors studied mechanisms underlying changes in myocardial contractile state produced by intracellular (pH/sub i/) or extracellular (pH 0 ) changes in pH using cultured chick embryo ventricular cells. A change in pH 0 of HEPES-buffered medium from 7.4 to 6.0 or to 8.8 changed the amplitude of cell motion by -85 or +60%, and 45 Ca uptake at 10 s by -29 or +22%, respectively. The pH 0 induced change in Ca uptake was not sensitive to nifedipine but was Na gradient dependent. Changes in pH/sub i/ produced by NH 4 Cl or preincubation in media at pH values ranging from 6.0 to 8.8 failed to alter significantly 45 Ca uptake or efflux. However, larger changes in pH/sub i/ were associated with altered Ca uptake. Changes in pH 0 from 7.5 to 6.0 or to 8.8 were associated with initial changes in 45 Ca efflux by +17 or -18%, respectively, and these effects were not Na dependent. Exposure of cells to 20 mM NH 4 Cl produced intracellular alkalinization and a positive inotropic effect, whereas subsequent removal of NH 4 Cl caused intracellular acidification and a negative inotropic effect. There was, however, a lack of close temporal relationships between pH/sub i/ and contractile state. These results indicated that pH 0 -induced changes in contractile state in cultured heart cells are closely correlated with altered transarcolemmal Ca movements and presumably are due to these Ca flux changes

  11. Cell-State Transitions Regulated by SLUG Are Critical for Tissue Regeneration and Tumor Initiation

    Directory of Open Access Journals (Sweden)

    Sarah Phillips

    2014-05-01

    Full Text Available Perturbations in stem cell activity and differentiation can lead to developmental defects and cancer. We use an approach involving a quantitative model of cell-state transitions in vitro to gain insights into how SLUG/SNAI2, a key developmental transcription factor, modulates mammary epithelial stem cell activity and differentiation in vivo. In the absence of SLUG, stem cells fail to transition into basal progenitor cells, while existing basal progenitor cells undergo luminal differentiation; together, these changes result in abnormal mammary architecture and defects in tissue function. Furthermore, we show that in the absence of SLUG, mammary stem cell activity necessary for tissue regeneration and cancer initiation is lost. Mechanistically, SLUG regulates differentiation and cellular plasticity by recruiting the chromatin modifier lysine-specific demethylase 1 (LSD1 to promoters of lineage-specific genes to repress transcription. Together, these results demonstrate that SLUG plays a dual role in repressing luminal epithelial differentiation while unlocking stem cell transitions necessary for tumorigenesis.

  12. Recombination barrier layers in solid-state quantum dot-sensitized solar cells

    KAUST Repository

    Roelofs, Katherine E.

    2012-06-01

    By replacing the dye in the dye-sensitized solar cell design with semiconductor quantum dots as the light-absorbing material, solid-state quantum dot-sensitized solar cells (ss-QDSSCs) were fabricated. Cadmium sulfide quantum dots (QDs) were grown in situ by successive ion layer adsorption and reaction (SILAR). Aluminum oxide recombination barrier layers were deposited by atomic layer deposition (ALD) at the TiO2/hole-conductor interface. For low numbers of ALD cycles, the Al2O3 barrier layer increased open circuit voltage, causing an increase in device efficiency. For thicker Al2O3 barrier layers, photocurrent decreased substantially, leading to a decrease in device efficiency. © 2012 IEEE.

  13. Analysis of the PEDOT:PSS/Si nanowire hybrid solar cell with a tail state model

    Science.gov (United States)

    Ho, Kuan-Ying; Li, Chi-Kang; Syu, Hong-Jhang; Lai, Yi; Lin, Ching-Fuh; Wu, Yuh-Renn

    2016-12-01

    In this paper, the electrical properties of the poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/silicon nanowire hybrid solar cell have been analyzed and an optimized structure is proposed. In addition, the planar PEDOT:PSS/c-Si hybrid solar cell is also modeled for comparison. We first developed a simulation software which is capable of modeling organic/inorganic hybrid solar cells by including Gaussian shape density of states into Poisson and drift-diffusion solver to present the tail states and trap states in the organic material. Therefore, the model can handle carrier transport, generation, and recombination in both organic and inorganic materials. Our results show that at the applied voltage near open-circuit voltage (Voc), the recombination rate becomes much higher at the PEDOT:PSS/Si interface region, which limits the fill factor and Voc. Hence, a modified structure with a p-type amorphous silicon (a-Si) layer attached on the interface of Si layer and an n+-type Si layer inserted near the bottom contact are proposed. The highest conversion efficiency of 16.10% can be achieved if both structures are applied.

  14. Pluripotent cells in farm animals: state of the art and future perspectives.

    Science.gov (United States)

    Nowak-Imialek, Monika; Niemann, Heiner

    2012-01-01

    Pluripotent cells, such as embryonic stem (ES) cells, embryonic germ cells and embryonic carcinoma cells are a unique type of cell because they remain undifferentiated indefinitely in in vitro culture, show self-renewal and possess the ability to differentiate into derivatives of the three germ layers. These capabilities make them a unique in vitro model for studying development, differentiation and for targeted modification of the genome. True pluripotent ESCs have only been described in the laboratory mouse and rat. However, rodent physiology and anatomy differ substantially from that of humans, detracting from the value of the rodent model for studies of human diseases and the development of cellular therapies in regenerative medicine. Recently, progress in the isolation of pluripotent cells in farm animals has been made and new technologies for reprogramming of somatic cells into a pluripotent state have been developed. Prior to clinical application of therapeutic cells differentiated from pluripotent stem cells in human patients, their survival and the absence of tumourigenic potential must be assessed in suitable preclinical large animal models. The establishment of pluripotent cell lines in farm animals may provide new opportunities for the production of transgenic animals, would facilitate development and validation of large animal models for evaluating ESC-based therapies and would thus contribute to the improvement of human and animal health. This review summarises the recent progress in the derivation of pluripotent and reprogrammed cells from farm animals. We refer to our recent review on this area, to which this article is complementary.

  15. High Efficiency Boost Converter with Three State Switching Cell

    DEFF Research Database (Denmark)

    Klimczak, Pawel; Munk-Nielsen, Stig

    2009-01-01

    is on performance improvement of this type of the converter. Use of foil windings helps to reduce conduction losses in magnetic components and to reduce size of these components. Also it has been demonstrated that the regulation range of this type of converter can be increased by operation with duty cycle lower......The boost converter with the three-state switching cell seems to be a good candidate for a dc-dc stage for non-isolated generators based on alternative energy sources. It provides a high voltage gain, a reduced voltage stress on transistors and limited input current ripples. In this paper the focus...

  16. GHz Rabi Flopping to Rydberg States in Hot Atomic Vapor Cells

    International Nuclear Information System (INIS)

    Huber, B.; Baluktsian, T.; Schlagmueller, M.; Koelle, A.; Kuebler, H.; Loew, R.; Pfau, T.

    2011-01-01

    We report on the observation of Rabi oscillations to a Rydberg state on a time scale below 1 ns in thermal rubidium vapor. We use a bandwidth-limited pulsed excitation and observe up to 6 full Rabi cycles within a pulse duration of ∼4 ns. We find good agreement between the experiment and numerical simulations based on a surprisingly simple model. This result shows that fully coherent dynamics with Rydberg states can be achieved even in thermal atomic vapor, thus suggesting small vapor cells as a platform for room-temperature quantum devices. Furthermore, the result implies that previous coherent dynamics in single-atom Rydberg gates can be accelerated by 3 orders of magnitude.

  17. Lycopene Modulates THP1 and Caco2 Cells Inflammatory State through Transcriptional and Nontranscriptional Processes

    Science.gov (United States)

    Makon-Sébastien, Njock; Francis, Fouchier; Eric, Seree; Henri, Villard Pierre; François, Landrier Jean; Laurent, Pechere; Yves, Barra; Serge, Champion

    2014-01-01

    We revisited the action of a carotenoid, the lycopene, on the expression of proinflammatory genes, reactive oxygen species (ROS) production, and metalloprotease (MMP9) activity. THP1 and Caco2 cell lines were used as in vitro models for the two main cell types found in intestine tissue, that is, monocytes and epithelial cells. Proinflammatory condition was induced using either phorbol ester acetate (PMA), lipopolysaccharide (LPS) or tumor necrosis factor (TNF). In THP1 cells, short term pretreatment (2 h) with a low concentration (2 μM) of lycopene reinforce proinflammatory gene expression. The extent of the effect of lycopene is dependent on the proinflammtory stimulus (PMA, LPS or TNF) used. Lycopene enhanced MMP9 secretion via a c-AMP-dependent process, and reduced ROS production at higher concentrations than 2 μM. Cell culture media, conditioned by PMA-treated monocytes and then transferred on CaCo-2 epithelial cells, induced a proinflammatory state in these cells. The extent of this inflammatory effect was reduced when cells has been pretreated (12 h) with lycopene. At low concentration (2 μM or less), lycopene appeared to promote an inflammatory state not correlated with ROS modulation. At higher concentration (5 μM–20 μM), an anti-inflammatory effect takes place as a decrease of ROS production was detected. So, both concentration and time have to be considered in order to define the exact issue of the effect of carotenoids present in meals. PMID:24891766

  18. Structural study of the membrane protein MscL using cell-free expression and solid-state NMR

    Science.gov (United States)

    Abdine, Alaa; Verhoeven, Michiel A.; Park, Kyu-Ho; Ghazi, Alexandre; Guittet, Eric; Berrier, Catherine; Van Heijenoort, Carine; Warschawski, Dror E.

    2010-05-01

    High-resolution structures of membrane proteins have so far been obtained mostly by X-ray crystallography, on samples where the protein is surrounded by detergent. Recent developments of solid-state NMR have opened the way to a new approach for the study of integral membrane proteins inside a membrane. At the same time, the extension of cell-free expression to the production of membrane proteins allows for the production of proteins tailor made for NMR. We present here an in situ solid-state NMR study of a membrane protein selectively labeled through the use of cell-free expression. The sample consists of MscL (mechano-sensitive channel of large conductance), a 75 kDa pentameric α-helical ion channel from Escherichia coli, reconstituted in a hydrated lipid bilayer. Compared to a uniformly labeled protein sample, the spectral crowding is greatly reduced in the cell-free expressed protein sample. This approach may be a decisive step required for spectral assignment and structure determination of membrane proteins by solid-state NMR.

  19. An investigation of changes in element distribution and chemical states during differentiation of embryonic stem cells

    International Nuclear Information System (INIS)

    Sugimoto, T.; Ide-Ektessabi, A.; Ishihara, R.; Tanigaki, M.

    2004-01-01

    Metallic elements and their organic compounds have dynamic regulatory functions in cells. In this study, we implemented a new approach to investigate the mechanism of differentiation of embryonic stem cells, by measuring and analyzing the change in distribution and chemical states of intracellular trace elements. We anticipate that trace metal elements and metalloproteins play important roles in the direction of differentiation, both as active centers, and as factors in the death of neural cells in neurodegenerative disorders. The aim of this study is to analyze the distribution and chemical states of trace elements during the process of differentiation of mouse embryonic stem cells, and to understand how these factors relate to the differentiation process. Using the experimental results, some previously unexplained points are considered, namely (1) how the intracellular elements change during the process of neuronal differentiation, and (2) what the optimal conditions of such elements are for neuronal differentiation. The information obtained during this study is relevant to nervous system development and evolution

  20. An investigation of changes in element distribution and chemical states during differentiation of embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, T.; Ide-Ektessabi, A. E-mail: h51167@sakura.kudpc.kyoto-u.ac.jp; Ishihara, R.; Tanigaki, M

    2004-07-01

    Metallic elements and their organic compounds have dynamic regulatory functions in cells. In this study, we implemented a new approach to investigate the mechanism of differentiation of embryonic stem cells, by measuring and analyzing the change in distribution and chemical states of intracellular trace elements. We anticipate that trace metal elements and metalloproteins play important roles in the direction of differentiation, both as active centers, and as factors in the death of neural cells in neurodegenerative disorders. The aim of this study is to analyze the distribution and chemical states of trace elements during the process of differentiation of mouse embryonic stem cells, and to understand how these factors relate to the differentiation process. Using the experimental results, some previously unexplained points are considered, namely (1) how the intracellular elements change during the process of neuronal differentiation, and (2) what the optimal conditions of such elements are for neuronal differentiation. The information obtained during this study is relevant to nervous system development and evolution.

  1. Surface Design in Solid-State Dye Sensitized Solar Cells: Effects of Zwitterionic Co-adsorbents on Photovoltaic Performance

    KAUST Repository

    Wang, Mingkui; Grä tzel, Carole; Moon, Soo-Jin; Humphry-Baker, Robin; Rossier-Iten, Nathalie; Zakeeruddin, Shaik M.; Grä tzel, Michael

    2009-01-01

    In solid-state dye sensitized solar cells (SSDSCs) charge recombination at the dye-hole transporting material interface plays a critical role in the cell efficiency. For the first time we report on the influence of dipolar coadsorbents

  2. Expansion on stromal cells preserves the undifferentiated state of human hematopoietic stem cells despite compromised reconstitution ability.

    Science.gov (United States)

    Magnusson, Mattias; Sierra, Maria I; Sasidharan, Rajkumar; Prashad, Sacha L; Romero, Melissa; Saarikoski, Pamela; Van Handel, Ben; Huang, Andy; Li, Xinmin; Mikkola, Hanna K A

    2013-01-01

    Lack of HLA-matched hematopoietic stem cells (HSC) limits the number of patients with life-threatening blood disorders that can be treated by HSC transplantation. So far, insufficient understanding of the regulatory mechanisms governing human HSC has precluded the development of effective protocols for culturing HSC for therapeutic use and molecular studies. We defined a culture system using OP9M2 mesenchymal stem cell (MSC) stroma that protects human hematopoietic stem/progenitor cells (HSPC) from differentiation and apoptosis. In addition, it facilitates a dramatic expansion of multipotent progenitors that retain the immunophenotype (CD34+CD38-CD90+) characteristic of human HSPC and proliferative potential over several weeks in culture. In contrast, transplantable HSC could be maintained, but not significantly expanded, during 2-week culture. Temporal analysis of the transcriptome of the ex vivo expanded CD34+CD38-CD90+ cells documented remarkable stability of most transcriptional regulators known to govern the undifferentiated HSC state. Nevertheless, it revealed dynamic fluctuations in transcriptional programs that associate with HSC behavior and may compromise HSC function, such as dysregulation of PBX1 regulated genetic networks. This culture system serves now as a platform for modeling human multilineage hematopoietic stem/progenitor cell hierarchy and studying the complex regulation of HSC identity and function required for successful ex vivo expansion of transplantable HSC.

  3. Expansion on stromal cells preserves the undifferentiated state of human hematopoietic stem cells despite compromised reconstitution ability.

    Directory of Open Access Journals (Sweden)

    Mattias Magnusson

    Full Text Available Lack of HLA-matched hematopoietic stem cells (HSC limits the number of patients with life-threatening blood disorders that can be treated by HSC transplantation. So far, insufficient understanding of the regulatory mechanisms governing human HSC has precluded the development of effective protocols for culturing HSC for therapeutic use and molecular studies. We defined a culture system using OP9M2 mesenchymal stem cell (MSC stroma that protects human hematopoietic stem/progenitor cells (HSPC from differentiation and apoptosis. In addition, it facilitates a dramatic expansion of multipotent progenitors that retain the immunophenotype (CD34+CD38-CD90+ characteristic of human HSPC and proliferative potential over several weeks in culture. In contrast, transplantable HSC could be maintained, but not significantly expanded, during 2-week culture. Temporal analysis of the transcriptome of the ex vivo expanded CD34+CD38-CD90+ cells documented remarkable stability of most transcriptional regulators known to govern the undifferentiated HSC state. Nevertheless, it revealed dynamic fluctuations in transcriptional programs that associate with HSC behavior and may compromise HSC function, such as dysregulation of PBX1 regulated genetic networks. This culture system serves now as a platform for modeling human multilineage hematopoietic stem/progenitor cell hierarchy and studying the complex regulation of HSC identity and function required for successful ex vivo expansion of transplantable HSC.

  4. Wnt/β-catenin signaling promotes self-renewal and inhibits the primed state transition in naïve human embryonic stem cells.

    Science.gov (United States)

    Xu, Zhuojin; Robitaille, Aaron M; Berndt, Jason D; Davidson, Kathryn C; Fischer, Karin A; Mathieu, Julie; Potter, Jennifer C; Ruohola-Baker, Hannele; Moon, Randall T

    2016-10-18

    In both mice and humans, pluripotent stem cells (PSCs) exist in at least two distinct states of pluripotency, known as the naïve and primed states. Our understanding of the intrinsic and extrinsic factors that enable PSCs to self-renew and to transition between different pluripotent states is important for understanding early development. In mouse embryonic stem cells (mESCs), Wnt proteins stimulate mESC self-renewal and support the naïve state. In human embryonic stem cells (hESCs), Wnt/β-catenin signaling is active in naïve-state hESCs and is reduced or absent in primed-state hESCs. However, the role of Wnt/β-catenin signaling in naïve hESCs remains largely unknown. Here, we demonstrate that inhibition of the secretion of Wnts or inhibition of the stabilization of β-catenin in naïve hESCs reduces cell proliferation and colony formation. Moreover, we show that addition of recombinant Wnt3a partially rescues cell proliferation in naïve hESCs caused by inhibition of Wnt secretion. Notably, inhibition of Wnt/β-catenin signaling in naïve hESCs did not cause differentiation. Instead, it induced primed hESC-like proteomic and metabolic profiles. Thus, our results suggest that naïve hESCs secrete Wnts that activate autocrine or paracrine Wnt/β-catenin signaling to promote efficient self-renewal and inhibit the transition to the primed state.

  5. Implementation and Use of State-of-the-Art, Cell-Based In Vitro Assays.

    Science.gov (United States)

    Langer, Gernot

    2016-01-01

    The impressive advances in the generation and interpretation of functional omics data have greatly contributed to a better understanding of the (patho-)physiology of many biological systems and led to a massive increase in the number of specific targets and phenotypes to investigate in both basic and applied research. The obvious complexity revealed by these studies represents a major challenge to the research community and asks for improved target characterisation strategies with the help of reliable, high-quality assays. Thus, the use of living cells has become an integral part of many research activities because the cellular context more closely represents target-specific interrelations and activity patterns. Although still predominant, the use of traditional two-dimensional (2D) monolayer cell culture models has been gradually complemented by studies based on three-dimensional (3D) spheroid (Sutherland 1988) and other 3D tissue culture systems (Santos et al. 2012; Matsusaki et al. 2014) in an attempt to employ model systems more closely representing the microenvironment of cells in the body. Hence, quite a variety of state-of-the-art cell culture models are available for the generation of novel chemical probes or the identification of starting points for drug development in translational research and pharma drug discovery. In order to cope with these information-rich formats and their increasing technical complexity, cell-based assay development has become a scientific research topic in its own right and is used to ensure the provision of significant, reliable and high-quality data outlasting any discussions related to the current "irreproducibility epidemic" (Dolgin 2014; Prinz et al. 2011; Schatz 2014). At the same time the use of cells in microplate assay formats has become state of the art and greatly facilitates rigorous cell-based assay development by providing the researcher with the opportunity to address the multitude of factors affecting the actual

  6. Temporal dynamics of distinct CA1 cell populations during unconscious state induced by ketamine.

    Directory of Open Access Journals (Sweden)

    Hui Kuang

    2010-12-01

    Full Text Available Ketamine is a widely used dissociative anesthetic which can induce some psychotic-like symptoms and memory deficits in some patients during the post-operative period. To understand its effects on neural population dynamics in the brain, we employed large-scale in vivo ensemble recording techniques to monitor the activity patterns of simultaneously recorded hippocampal CA1 pyramidal cells and various interneurons during several conscious and unconscious states such as awake rest, running, slow wave sleep, and ketamine-induced anesthesia. Our analyses reveal that ketamine induces distinct oscillatory dynamics not only in pyramidal cells but also in at least seven different types of CA1 interneurons including putative basket cells, chandelier cells, bistratified cells, and O-LM cells. These emergent unique oscillatory dynamics may very well reflect the intrinsic temporal relationships within the CA1 circuit. It is conceivable that systematic characterization of network dynamics may eventually lead to better understanding of how ketamine induces unconsciousness and consequently alters the conscious mind.

  7. Femtoelectron-Based Terahertz Imaging of Hydration State in a Proton Exchange Membrane Fuel Cell

    Science.gov (United States)

    Buaphad, P.; Thamboon, P.; Kangrang, N.; Rhodes, M. W.; Thongbai, C.

    2015-08-01

    Imbalanced water management in a proton exchange membrane (PEM) fuel cell significantly reduces the cell performance and durability. Visualization of water distribution and transport can provide greater comprehension toward optimization of the PEM fuel cell. In this work, we are interested in water flooding issues that occurred in flow channels on cathode side of the PEM fuel cell. The sample cell was fabricated with addition of a transparent acrylic window allowing light access and observed the process of flooding formation (in situ) via a CCD camera. We then explore potential use of terahertz (THz) imaging, consisting of femtoelectron-based THz source and off-angle reflective-mode imaging, to identify water presence in the sample cell. We present simulations of two hydration states (water and nonwater area), which are in agreement with the THz image results. A line-scan plot is utilized for quantitative analysis and for defining spatial resolution of the image. Implementing metal mesh filtering can improve spatial resolution of our THz imaging system.

  8. A Practical Circuit-based Model for State of Health Estimation of Li-ion Battery Cells in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Long

    2011-08-23

    In this thesis the development of the state of health of Li-ion battery cells under possible real-life operating conditions in electric cars has been characterised. Furthermore, a practical circuit-based model for Li-ion cells has been developed that is capable of modelling the cell voltage behaviour under various operating conditions. The Li-ion cell model can be implemented in simulation programs and be directly connected to a model of the rest of the electronic system in electric vehicles. Most existing battery models are impractical for electric vehicle system designers and require extensive background knowledge of electrochemistry to be implemented. Furthermore, many models do not take the effect of regenerative braking into account and are obtained from testing fully charged cells. However, in real-life applications electric vehicles are not always fully charged and utilise regenerative braking to save energy. To obtain a practical circuit model based on real operating conditions and to model the state of health of electric vehicle cells, numerous 18650 size LiFePO4 cells have been tested under possible operating conditions. Capacity fading was chosen as the state of health parameter, and the capacity fading of different cells was compared with the charge processed instead of cycles. Tests have shown that the capacity fading rate is dependent on temperature, charging C-rate, state of charge and depth of discharge. The obtained circuit model is capable of simulating the voltage behaviour under various temperatures and C-rates with a maximum error of 14mV. However, modelling the effect of different temperatures and C-rates increases the complexity of the model. The model is easily adjustable and the choice is given to the electric vehicle system designer to decide which operating conditions to take into account. By combining the test results for the capacity fading and the proposed circuit model, recommendations to optimise the battery lifetime are proposed.

  9. Forced-rupture of cell-adhesion complexes reveals abrupt switch between two brittle states

    Science.gov (United States)

    Toan, Ngo Minh; Thirumalai, D.

    2018-03-01

    Cell adhesion complexes (CACs), which are activated by ligand binding, play key roles in many cellular functions ranging from cell cycle regulation to mediation of cell extracellular matrix adhesion. Inspired by single molecule pulling experiments using atomic force spectroscopy on leukocyte function-associated antigen-1 (LFA-1), expressed in T-cells, bound to intercellular adhesion molecules (ICAM), we performed constant loading rate (rf) and constant force (F) simulations using the self-organized polymer model to describe the mechanism of ligand rupture from CACs. The simulations reproduce the major experimental finding on the kinetics of the rupture process, namely, the dependence of the most probable rupture forces (f*s) on ln rf (rf is the loading rate) exhibits two distinct linear regimes. The first, at low rf, has a shallow slope, whereas the slope at high rf is much larger, especially for a LFA-1/ICAM-1 complex with the transition between the two occurring over a narrow rf range. Locations of the two transition states (TSs) extracted from the simulations show an abrupt change from a high value at low rf or constant force, F, to a low value at high rf or F. This unusual behavior in which the CACs switch from one brittle (TS position is a constant over a range of forces) state to another brittle state is not found in forced-rupture in other protein complexes. We explain this novel behavior by constructing the free energy profiles, F(Λ)s, as a function of a collective reaction coordinate (Λ), involving many key charged residues and a critical metal ion (Mg2+). The TS positions in F(Λ), which quantitatively agree with the parameters extracted using the Bell-Evans model, change abruptly at a critical force, demonstrating that it, rather than the molecular extension, is a good reaction coordinate. Our combined analyses using simulations performed in both the pulling modes (constant rf and F) reveal a new mechanism for the two loading regimes observed in the

  10. Design of State-of-the-art Flow Cells for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-31

    The worldwide energy demand is increasing every day and it necessitates rational and efficient usage of renewable energy. Undoubtedly, utilization of renewable energy can address various environmental challenges. However, all current renewable energy resources (wind, solar, and hydroelectric power) are intermittent and fluctuating in their nature that raises an important question of introducing effective energy storage solutions. Utilization of redox flow cells (RFCs) has recently been recognized as a viable technology for large-scale energy storage and, hence, is well suited for integrating renewable energy and balancing electricity grids. In brief, RFC is an electrochemical storage device where energy is stored in chemical bonds, similar to a battery, but with reactants external to the cell. The state-of-the-art in flow cell technology uses an aqueous acidic electrolyte and simple metal redox couples. Thus, there is an urgent call to develop efficient (high-energy density) and low-cost RFCs to meet the efflorescent energy storage demands. To address the first challenge of achieving high-energy density, we plan to design and further modify complexes composed of bifunctional multidentate ligands and specific metal centers, capable of storing as many electrons as possible. In order to address the second challenge of reducing cost of the RFCs, we plan to use iron (Fe) metal as it regularly occupies multiple oxidation states and is the second most abundant metal in the earth’s crust that makes it an ideal metal for improved energy densities, higher potentials, and numbers of electrons per molecule while maintaining potential cost competitiveness. Density functional theory calculations considering solvation effects will be performed to yield accurate predictions of redox potentials.

  11. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-06-01

    This report summarizes the progress made during the September 2001-March 2002 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program''. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. The overall objective of the program is to demonstrate a modular SOFC system that can be configured to create highly efficient, cost-competitive, and environmentally benign power plants tailored to specific markets. When fully developed, the system will meet the efficiency, performance, life, and cost goals for future commercial power plants.

  12. Endoplasmic reticulum redox state is not perturbed by pharmacological or pathological endoplasmic reticulum stress in live pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Irmgard Schuiki

    Full Text Available Accumulation of unfolded, misfolded and aggregated proteins in the endoplasmic reticulum (ER causes ER stress. ER stress can result from physiological situations such as acute increases in secretory protein biosynthesis or pathological conditions that perturb ER homeostasis such as alterations in the ER redox state. Here we monitored ER redox together with transcriptional output of the Unfolded Protein Response (UPR in INS-1 insulinoma cells stably expressing eroGFP (ER-redox-sensor and mCherry protein driven by a GRP78 promoter (UPR-sensor. Live cell imaging, flow cytometry and biochemical characterization were used to examine these parameters in response to various conditions known to induce ER stress. As expected, treatment of the cells with the reducing agent dithiothreitol caused a decrease in the oxidation state of the ER accompanied by an increase in XBP-1 splicing. Unexpectedly however, other treatments including tunicamycin, thapsigargin, DL-homocysteine, elevated free fatty acids or high glucose had essentially no influence on the ER redox state, despite inducing ER stress. Comparable results were obtained with dispersed rat islet cells expressing eroGFP. Thus, unlike in yeast cells, ER stress in pancreatic β-cells is not associated with a more reducing ER environment.

  13. Laminating solution-processed silver nanowire mesh electrodes onto solid-state dye-sensitized solar cells

    KAUST Repository

    Hardin, Brian E.; Gaynor, Whitney; Ding, I-Kang; Rim, Seung-Bum; Peumans, Peter; McGehee, Michael D.

    2011-01-01

    Solution processed silver nanowire meshes (Ag NWs) were laminated on top of solid-state dye-sensitized solar cells (ss-DSCs) as a reflective counter electrode. Ag NWs were deposited in <1 min and were less reflective compared to evaporated Ag

  14. Cell phone recycling experiences in the United States and potential recycling options in Brazil.

    Science.gov (United States)

    Silveira, Geraldo T R; Chang, Shoou-Yuh

    2010-11-01

    This paper presents an overview of cell phone recycling programs currently available in the United States. At the same time, it also provides analyses of the current recycling situation and possible recycling alternatives for Brazil. Although there are several recycling options in the United States, collection rates are still only 10% of all potential devices because customers are not aware of these possibilities. The whole system is financially based on reselling refurbished cell phones and recycled materials to developing countries which represent an effective and strong market. Several recyclers offer funds to collection partners who are either charities or who work with charities while obtaining the materials that they need in order to run their operations. A mobile phone recycling system for Brazil considering the United States experience and the Extended Producer Responsibility (EPR) principle is suggested. A deposit/refund/advance-recycling fee is proposed which might be implemented as a voluntary industrial initiative managed by PRO Brazil, a producer responsibility organization. One widespread public-private agreement will integrate all mobile phone stakeholders, and environmental education actions and promotional events will promote citizen's participation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles

    Energy Technology Data Exchange (ETDEWEB)

    Szymanski, Craig J.; Munusamy, Prabhakaran; Mihai, Cosmin; Xie, Yumei; Hu, Dehong; Gilles, Marry K.; Tyliszczak, T.; Thevuthasan, Suntharampillai; Baer, Donald R.; Orr, Galya

    2015-09-01

    Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce3+/Ce4+ ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce3+/Ce4+ ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of cells.

  16. Selection of metastatic breast cancer cells based on adaptability of their metabolic state.

    Directory of Open Access Journals (Sweden)

    Balraj Singh

    Full Text Available A small subpopulation of highly adaptable breast cancer cells within a vastly heterogeneous population drives cancer metastasis. Here we describe a function-based strategy for selecting rare cancer cells that are highly adaptable and drive malignancy. Although cancer cells are dependent on certain nutrients, e.g., glucose and glutamine, we hypothesized that the adaptable cancer cells that drive malignancy must possess an adaptable metabolic state and that such cells could be identified using a robust selection strategy. As expected, more than 99.99% of cells died upon glutamine withdrawal from the aggressive breast cancer cell line SUM149. The rare cells that survived and proliferated without glutamine were highly adaptable, as judged by additional robust adaptability assays involving prolonged cell culture without glucose or serum. We were successful in isolating rare metabolically plastic glutamine-independent (Gln-ind variants from several aggressive breast cancer cell lines that we tested. The Gln-ind cells overexpressed cyclooxygenase-2, an indicator of tumor aggressiveness, and they were able to adjust their glutaminase level to suit glutamine availability. The Gln-ind cells were anchorage-independent, resistant to chemotherapeutic drugs doxorubicin and paclitaxel, and resistant to a high concentration of a COX-2 inhibitor celecoxib. The number of cells being able to adapt to non-availability of glutamine increased upon prior selection of cells for resistance to chemotherapy drugs or resistance to celecoxib, further supporting a linkage between cellular adaptability and therapeutic resistance. Gln-ind cells showed indications of oxidative stress, and they produced cadherin11 and vimentin, indicators of mesenchymal phenotype. Gln-ind cells were more tumorigenic and more metastatic in nude mice than the parental cell line as judged by incidence and time of occurrence. As we decreased the number of cancer cells in xenografts, lung metastasis

  17. Selection of Metastatic Breast Cancer Cells Based on Adaptability of Their Metabolic State

    Science.gov (United States)

    Singh, Balraj; Tai, Karen; Madan, Simran; Raythatha, Milan R.; Cady, Amanda M.; Braunlin, Megan; Irving, LaTashia R.; Bajaj, Ankur; Lucci, Anthony

    2012-01-01

    A small subpopulation of highly adaptable breast cancer cells within a vastly heterogeneous population drives cancer metastasis. Here we describe a function-based strategy for selecting rare cancer cells that are highly adaptable and drive malignancy. Although cancer cells are dependent on certain nutrients, e.g., glucose and glutamine, we hypothesized that the adaptable cancer cells that drive malignancy must possess an adaptable metabolic state and that such cells could be identified using a robust selection strategy. As expected, more than 99.99% of cells died upon glutamine withdrawal from the aggressive breast cancer cell line SUM149. The rare cells that survived and proliferated without glutamine were highly adaptable, as judged by additional robust adaptability assays involving prolonged cell culture without glucose or serum. We were successful in isolating rare metabolically plastic glutamine-independent (Gln-ind) variants from several aggressive breast cancer cell lines that we tested. The Gln-ind cells overexpressed cyclooxygenase-2, an indicator of tumor aggressiveness, and they were able to adjust their glutaminase level to suit glutamine availability. The Gln-ind cells were anchorage-independent, resistant to chemotherapeutic drugs doxorubicin and paclitaxel, and resistant to a high concentration of a COX-2 inhibitor celecoxib. The number of cells being able to adapt to non-availability of glutamine increased upon prior selection of cells for resistance to chemotherapy drugs or resistance to celecoxib, further supporting a linkage between cellular adaptability and therapeutic resistance. Gln-ind cells showed indications of oxidative stress, and they produced cadherin11 and vimentin, indicators of mesenchymal phenotype. Gln-ind cells were more tumorigenic and more metastatic in nude mice than the parental cell line as judged by incidence and time of occurrence. As we decreased the number of cancer cells in xenografts, lung metastasis and then primary

  18. Inhibitors Alter the Stochasticity of Regulatory Proteins to Force Cells to Switch to the Other State in the Bistable System.

    Science.gov (United States)

    Jhang, Wun-Sin; Lo, Shih-Chiang; Yeh, Chen-Chao; Shu, Che-Chi

    2017-06-30

    The cellular behaviors under the control of genetic circuits are subject to stochastic fluctuations, or noise. The stochasticity in gene regulation, far from a nuisance, has been gradually appreciated for its unusual function in cellular activities. In this work, with Chemical Master Equation (CME), we discovered that the addition of inhibitors altered the stochasticity of regulatory proteins. For a bistable system of a mutually inhibitory network, such a change of noise led to the migration of cells in the bimodal distribution. We proposed that the consumption of regulatory protein caused by the addition of inhibitor is not the only reason for pushing cells to the specific state; the change of the intracellular stochasticity is also the main cause for the redistribution. For the level of the inhibitor capable of driving 99% of cells, if there is no consumption of regulatory protein, 88% of cells were guided to the specific state. It implied that cells were pushed, by the inhibitor, to the specific state due to the change of stochasticity.

  19. Regulations in the United States for cell transplantation clinical trials in neurological diseases

    Institute of Scientific and Technical Information of China (English)

    He Zhu; Yuanqing Tan; Qi Gu; Weifang Han; Zhongwen Li; Jason S Meyer; Baoyang Hu

    2015-01-01

    Objective: This study aimed to use a systematic approach to evaluate the current utilization, safety, and effectiveness of cell therapies for neurological diseases in human. And review the present regulations, considering United States (US) as a representative country, for cell transplantation in neurological disease and discuss the challenges facing the field of neurology in the coming decades. Methods:A detailed search was performed in systematic literature reviews of cellular‐based therapies in neurological diseases, using PubMed, web of science, and clinical trials. Regulations of cell therapy products used for clinical trials were searched from the Food and Drug Administration (FDA) and the National Institutes of Health (NIH). Results: Seven most common types of cell therapies for neurological diseases have been reported to be relatively safe with varying degrees of neurological recovery. And a series of regulations in US for cellular therapy was summarized including preclinical evaluations, sourcing material, stem cell manufacturing and characterization, cell therapy product, and clinical trials. Conclusions:Stem cell‐based therapy holds great promise for a cure of such diseases and will value a growing population of patients. However, regulatory permitting activity of the US in the sphere of stem cells, technologies of regenerative medicine and substitutive cell therapy are selective, theoretical and does not fit the existing norm and rules. Compiled well‐defined regulations to guide the application of stem cell products for clinical trials should be formulated.

  20. Novel thixotropic gel electrolytes based on dicationic bis-imidazolium salts for quasi-solid-state dye-sensitized solar cells

    Science.gov (United States)

    Kim, Jun Young; Kim, Tae Ho; Kim, Dong Young; Park, Nam-Gyu; Ahn, Kwang-Duk

    Novel thixotropic gel electrolytes have been successfully prepared by utilizing oligomeric poly(ethylene oxide) (PEO)-based bis-imidazolium diiodide salts and hydrophilic silica nanoparticles for application in quasi-solid-state dye-sensitized solar cells (DSSCs). The thixotropic gel-state of the ionic liquid-based composite electrolytes is confirmed by observing the typical hysteresis loop and temporary hydrogen bonding. On using the PEO-based composite electrolyte, a quasi-solid-state DSSC exhibited highly improved properties such as easy penetration of the electrolyte into the cell without leakage, long-term stability, high open-circuit voltage without the use of 4- tert-butylpyridine, and a high energy-conversion efficiency of 5.25% under AM 1.5 illumination (100 mW cm -2).

  1. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    Science.gov (United States)

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  2. Modification of electron states in CdTe absorber due to a buffer layer in CdTe/CdS solar cells

    International Nuclear Information System (INIS)

    Fedorenko, Y. G.; Major, J. D.; Pressman, A.; Phillips, L. J.; Durose, K.

    2015-01-01

    By application of the ac admittance spectroscopy method, the defect state energy distributions were determined in CdTe incorporated in thin film solar cell structures concluded on ZnO, ZnSe, and ZnS buffer layers. Together with the Mott-Schottky analysis, the results revealed a strong modification of the defect density of states and the concentration of the uncompensated acceptors as influenced by the choice of the buffer layer. In the solar cells formed on ZnSe and ZnS, the Fermi level and the energy position of the dominant deep trap levels were observed to shift closer to the midgap of CdTe, suggesting the mid-gap states may act as recombination centers and impact the open-circuit voltage and the fill factor of the solar cells. For the deeper states, the broadening parameter was observed to increase, indicating fluctuations of the charge on a microscopic scale. Such changes can be attributed to the grain-boundary strain and the modification of the charge trapped at the grain-boundary interface states in polycrystalline CdTe

  3. Modification of electron states in CdTe absorber due to a buffer layer in CdTe/CdS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fedorenko, Y. G., E-mail: y.fedorenko@liverpool.ac.uk; Major, J. D.; Pressman, A.; Phillips, L. J.; Durose, K. [Stephenson Institute for Renewable Energy and Department of Physics, School of Physical Sciences, Chadwick Building, University of Liverpool, Liverpool L69 7ZF (United Kingdom)

    2015-10-28

    By application of the ac admittance spectroscopy method, the defect state energy distributions were determined in CdTe incorporated in thin film solar cell structures concluded on ZnO, ZnSe, and ZnS buffer layers. Together with the Mott-Schottky analysis, the results revealed a strong modification of the defect density of states and the concentration of the uncompensated acceptors as influenced by the choice of the buffer layer. In the solar cells formed on ZnSe and ZnS, the Fermi level and the energy position of the dominant deep trap levels were observed to shift closer to the midgap of CdTe, suggesting the mid-gap states may act as recombination centers and impact the open-circuit voltage and the fill factor of the solar cells. For the deeper states, the broadening parameter was observed to increase, indicating fluctuations of the charge on a microscopic scale. Such changes can be attributed to the grain-boundary strain and the modification of the charge trapped at the grain-boundary interface states in polycrystalline CdTe.

  4. Evaluation of drug permeation under fed state conditions using mucus-covered Caco-2 cell epithelium

    DEFF Research Database (Denmark)

    Birch, Ditlev; Diedrichsen, Ragna G; Christophersen, Philip C

    2018-01-01

    The absence of a surface-lining mucus layer is a major pitfall for the Caco-2 epithelial model. However, this can be alleviated by applying biosimilar mucus (BM) to the apical surface of the cell monolayer, thereby constructing a mucosa mimicking in vivo conditions. This study aims to elucidate...... the influence of BM as a barrier towards exogenic compounds such as permeation enhancers, and components of fed state simulated intestinal fluid (FeSSIF). Caco-2 cell monolayers surface-lined with BM were exposed to several compounds with distinct physicochemical properties, and the cell viability...... and permeability of the cell monolayer was compared to that of cell monolayers without BM and well-established mucus-secreting epithelial models (HT29 monolayers and HT29/Caco-2 co-culture monolayers). Exposure of BM-covered cells to constituents from FeSSIF revealed that it comprised a strong, hydrophilic barrier...

  5. Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading

    KAUST Repository

    Ding, I-Kang

    2010-07-01

    We report using doctor-blading to replace conventional spin coating for the deposition of the hole-transport material spiro-OMeTAD (2,20,7,70-tetrakis-(N, N-di-p-methoxyphenylamine)- 9,90-spirobifluorene) in solid-state dye-sensitized solar cells. Doctor-blading is a roll-to-roll compatible, large-area coating technique, is capable of achieving the same spiro-OMeTAD pore filling fraction as spin coating, and uses much less material. The average power conversion efficiency of solid-state dye-sensitized solar cells made from doctorblading is 3.0% for 2-lm thick films and 2.0% for 5-lm thick films, on par with devices made with spin coating. Directions to further improve the filling fraction are also suggested. © 2010 Elsevier B.V. All rights reserved.

  6. The induction, characterization and reversibility of a dormant state of Murine Melanoma cells

    International Nuclear Information System (INIS)

    Theron, E.J.

    1983-11-01

    One of the most neglected areas of tumour biology is the enigmatic process of tumour cell dormancy, whereby transformed cells survive within the hosts body for extended periods in a clinically undetected state. A tissue culture system has been developed whereby aggressive, fast growing, malignant mouse melanoma cells can be manipulated to become dormant. Dormancy was characterized by an inhibition of cell growth and was induced by conditioned media from benign rat hepatoma cells. After two weeks of dormancy, melanoma cells could be aroused to grow rapidly exposure to fresh medium. After 30 days of dormancy the melanoma cells could not be aroused with fresh medium but could resume growth after removal from plastic with trypsin. These cells showed no growth and morphological characteristics, i.e. low saturation density and fibroblast-like, parallel morphology. These characteristics persisted after subsequent sub-culturing and the cells were consequently regarded as a new line and designated F10-BL6-LTD. Conditioned media from F10-BL6-LTD cells could also induce F10-BL6 control melanoma cells to become dormant, even after extensive dialysis against fresh medium. Dormant melanoma cells could survive for extended periods in tissue culture media which had become totally depleted of glucose and contaminated with lactate. The capacity of F10-BL6-LTD conditioned medium to induce dormancy was significantly reduced by ultracentrifugation for longer than one hour at 40 000 r.p.m. Analyses of proteins sedimented at different times and labelled with 35 S-methionine, using SDS-polyacrylamide gel electro phoresis, revealed a polypeptide of 33 000 daltons that may be involved in the induction of dormancy. This model system may be useful in elucidating the induction and characteristics of dormant cells

  7. MnO2/MCMB electrocatalyst for all solid-state alkaline zinc-air cells

    International Nuclear Information System (INIS)

    Zhang, G.Q.; Zhang, X.G.

    2004-01-01

    Nanostructured MnO 2 /mesocarbon microbeads (MCMB) composite has been prepared successfully for use in zinc-air cell as electrocatalyst for oxygen reaction. The scanning electron microscope (SEM) images showed that the MnO 2 nanorods were formed and covered on the surface of MCMB in bird's nest morphology. X-ray diffraction (XRD) pattern indicated that the MnO 2 has the hollandite structure with a composition approximating KMn 8 O 16 . By the cathodic polarization curve tests, the nanostructured material demonstrated excellent electrocatalytic activity as a kind of oxygen electrode electrocatalyst compared with electrolytic MnO 2 . An all solid-state zinc-air cell has been fabricated with this material as electrocatalyst for oxygen electrode and potassium salt of cross-linked poly(acrylic acid) as an alkaline polymer gel electrolyte. The cell has good discharge characteristics at room temperature

  8. State and Kinetic Parameters Estimation of Bio-Ethanol Production with Immobilized Cells

    OpenAIRE

    Mihaylova, Iva; Popova, Silviya; Kostov, Georgi; Ignatova, Maya; Lubenova, Velislava; Naydenova, Vessela; Pircheva, Desislava; Angelov, Mihail

    2013-01-01

    In this paper, state and kinetic parameters estimation based on extended Kalman filter (EKF) is proposed. Experimental data from alcoholic fermentation process with immobilized cells is used. The measurements of glucose and ethanol concentration are used as on-line measurements for observers design and biomass concentration is used for results verification. Biomass, substrate and product concentrations inside immobilized compounds are estimated using the proposed algorithm. Monitoring of the ...

  9. Intrinsic and light induced gap states in a-Si:H materials and solar cells--effects of microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Wronski, C.R.; Pearce, J.M.; Deng, J.; Vlahos, V.; Collins, R.W

    2004-03-22

    The effects of microstructure on the gap states of hydrogen diluted and undiluted hydrogenated amorphous silicon (a-Si:H) thin film materials and their solar cells have been investigated. In characterizing the films the commonly used methodology of relating just the magnitudes of photocurrents and subgap absorption, {alpha}(E), was expanded to take into account states other than those due to dangling bond defects. The electron mobility-lifetime products were characterized as a function of carrier generation rates and analysis was carried out of the entire {alpha}(E) spectra and their evolution with light induced degradation. Two distinctly different defect states at 1.0 and 1.2 eV from the conduction band and their contributions to carrier recombination were identified and their respective evolution under 1 sun illumination characterized. Direct correlations were obtained between the recombination in thin films with that of corresponding solar cells. The effects of the difference in microstructure on the changes in these two gap states in films and solar cells were also identified. It is found that improved stability of protocrystalline Si:H can in part be attributed to the reduction of the 1.2 eV defects. It is also shown that ignoring the presence of multiple defects leads to erroneous conclusions being drawn about the stability of a-Si:H and SWE.

  10. Intrinsic and light induced gap states in a-Si:H materials and solar cells--effects of microstructure

    International Nuclear Information System (INIS)

    Wronski, C.R.; Pearce, J.M.; Deng, J.; Vlahos, V.; Collins, R.W.

    2004-01-01

    The effects of microstructure on the gap states of hydrogen diluted and undiluted hydrogenated amorphous silicon (a-Si:H) thin film materials and their solar cells have been investigated. In characterizing the films the commonly used methodology of relating just the magnitudes of photocurrents and subgap absorption, α(E), was expanded to take into account states other than those due to dangling bond defects. The electron mobility-lifetime products were characterized as a function of carrier generation rates and analysis was carried out of the entire α(E) spectra and their evolution with light induced degradation. Two distinctly different defect states at 1.0 and 1.2 eV from the conduction band and their contributions to carrier recombination were identified and their respective evolution under 1 sun illumination characterized. Direct correlations were obtained between the recombination in thin films with that of corresponding solar cells. The effects of the difference in microstructure on the changes in these two gap states in films and solar cells were also identified. It is found that improved stability of protocrystalline Si:H can in part be attributed to the reduction of the 1.2 eV defects. It is also shown that ignoring the presence of multiple defects leads to erroneous conclusions being drawn about the stability of a-Si:H and SWE

  11. Who actually receives cell phone use while driving citations and how much are these laws enforced among states? A descriptive, cross-sectional study

    OpenAIRE

    Rudisill, Toni M; Zhu, Motao

    2016-01-01

    Objectives While numerous cell phone use while driving laws have been passed among states, little information exists regarding who gets cited for these traffic infractions and how much these laws are enforced at the state-level within the USA. Design Cross-sectional, descriptive study. Setting 14 states and the District of Columbia. Participants Those receiving cell phone use while driving citations within included states from 2007 to 2013. Primary outcome Demographic characteristics of cited...

  12. Novel thixotropic gel electrolytes based on dicationic bis-imidazolium salts for quasi-solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Young [Department of Polymer Science and Engineering, SungKyunKwan University, Suwon, Kyunggi-do 440-746 (Korea); Functional Polymer Lab., Korea Institute of Science and Technology, Seoul 136-791 (Korea); Kim, Tae Ho [Department of Polymer Science and Engineering, SungKyunKwan University, Suwon, Kyunggi-do 440-746 (Korea); Kim, Dong Young; Park, Nam-Gyu [Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Ahn, Kwang-Duk [Functional Polymer Lab., Korea Institute of Science and Technology, Seoul 136-791 (Korea)

    2008-01-03

    Novel thixotropic gel electrolytes have been successfully prepared by utilizing oligomeric poly(ethylene oxide) (PEO)-based bis-imidazolium diiodide salts and hydrophilic silica nanoparticles for application in quasi-solid-state dye-sensitized solar cells (DSSCs). The thixotropic gel-state of the ionic liquid-based composite electrolytes is confirmed by observing the typical hysteresis loop and temporary hydrogen bonding. On using the PEO-based composite electrolyte, a quasi-solid-state DSSC exhibited highly improved properties such as easy penetration of the electrolyte into the cell without leakage, long-term stability, high open-circuit voltage without the use of 4-tert-butylpyridine, and a high energy-conversion efficiency of 5.25% under AM 1.5 illumination (100 mW cm{sup -2}). (author)

  13. Control of Solid-State Dye-Sensitized Solar Cell Performance by Block-Copolymer-Directed TiO2 Synthesis

    KAUST Repository

    Docampo, Pablo; Guldin, Stefan; Stefik, Morgan; Tiwana, Priti; Orilall, M. Christopher; Hü ttner, Sven; Sai, Hiroaki; Wiesner, Ulrich; Steiner, Ulrich; Snaith, Henry J.

    2010-01-01

    Hybrid dye-sensitized solar cells are typically composed of mesoporous titania (TiO2), light-harvesting dyes, and organic molecular hole-transporters. Correctly matching the electronic properties of the materials is critical to ensure efficient device operation. In this study, TiO 2 is synthesized in a welldefined morphological confinement that arises from the self-assembly of a diblock copolymer - poly(isoprene-b-ethylene oxide) (Pl-b-PEO). The crystallization environment, tuned by the inorganic (TiO2 mass) to organic (polymer) ratio, is shown to be a decisive factor in determining the distribution of sub-bandgap electronic states and the associated electronic function in solid-state dye-sensitized solar cells. Interestingly, the tuning of the sub-bandgap states does not appear to strongly influence the charge transport and recombination in the devices. However, increasing the depth and breadth of the density of sub-bandgap states correlates well with an increase in photocurrent generation, suggesting that a high density of these sub-bandgap states is critical for efficient photo-induced electron transfer and charge separation. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Control of Solid-State Dye-Sensitized Solar Cell Performance by Block-Copolymer-Directed TiO2 Synthesis

    KAUST Repository

    Docampo, Pablo

    2010-04-21

    Hybrid dye-sensitized solar cells are typically composed of mesoporous titania (TiO2), light-harvesting dyes, and organic molecular hole-transporters. Correctly matching the electronic properties of the materials is critical to ensure efficient device operation. In this study, TiO 2 is synthesized in a welldefined morphological confinement that arises from the self-assembly of a diblock copolymer - poly(isoprene-b-ethylene oxide) (Pl-b-PEO). The crystallization environment, tuned by the inorganic (TiO2 mass) to organic (polymer) ratio, is shown to be a decisive factor in determining the distribution of sub-bandgap electronic states and the associated electronic function in solid-state dye-sensitized solar cells. Interestingly, the tuning of the sub-bandgap states does not appear to strongly influence the charge transport and recombination in the devices. However, increasing the depth and breadth of the density of sub-bandgap states correlates well with an increase in photocurrent generation, suggesting that a high density of these sub-bandgap states is critical for efficient photo-induced electron transfer and charge separation. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Individual differences in the radiosensitivity of hematopoietic progenitor cells detected in steady-state human peripheral blood

    International Nuclear Information System (INIS)

    Oriya, Asami; Takahashi, Kenji; Kashiwakura, Ikuo; Inanami, Osamu; Kuwabara, Mikinori; Miura, Toshiaki; Abe, Yoshinao

    2008-01-01

    The aim of this study is to evaluate the individual differences in radiosensitivity of lineage-committed myeloid hematopoietic progenitors, colony-forming cells (CFC), detected in steady-state human peripheral blood (PB). Mononuclear cells were prepared from the buffy-coat of 30 individuals PB, and were assayed for CFC by semi-solid culture supplemented with cytokines. X irradiation was performed in the range of 0.5-4 Gy at a dose rate of about 80 cGy/min. The mean number of hematopoietic progenitor cells is 5866±3408 in 1 ml of buffy-coat, suggesting that the erythroid progenitor cells are the major population. The total CFC radiosensitivity parameter D 0 and n value are 1.18±0.24 and 1.89±0.98, respectively. Using a linear regression analysis, a statistically significant correlation is observed between the D 0 value and the surviving fraction at 4 Gy (r=0.611 p 0 parameter and the level of antioxidants, plasma uric acid, plasma bilirubin, and intracellular glutathione. The present study demonstrates that there are large individual differences in the radiosensitivity of hematopoietic progenitor cells as detected in steady-state human PB. These differences demonstrate almost no correlation with plasma or intracellular antioxidants. The prediction of individual differences in radiosensitivity of CFC can only be measured by 4 Gy irradiation. (author)

  16. Who actually receives cell phone use while driving citations and how much are these laws enforced among states? A descriptive, cross-sectional study.

    Science.gov (United States)

    Rudisill, Toni M; Zhu, Motao

    2016-06-14

    While numerous cell phone use while driving laws have been passed among states, little information exists regarding who gets cited for these traffic infractions and how much these laws are enforced at the state-level within the USA. Cross-sectional, descriptive study. 14 states and the District of Columbia. Those receiving cell phone use while driving citations within included states from 2007 to 2013. Demographic characteristics of cited drivers were assessed. Rates of infractions per 100 000 licensed in-state drivers per year for various cell phone use while driving violations were calculated. Drivers were cited for hand-held use violations (n=2.5 million) more than texting (n=14 682) or young driver all cell phone bans (n=342). Among states that provided data for all traffic violations, cell phone use while driving citations comprised 1% of all written citations. Regardless of ban type, males (68.2%) were cited more frequently than females. Drivers 25-64 years of age (90.8%) were more likely to be cited for hand-held phone use. The average yearly rate of infractions per 100 000 licensed in-state drivers from 2010-2013 was 5.8 for texting bans, 2607 for hand-held bans, and 9954 for any traffic violation. Among cited drivers, age and sex differences existed by the type of ban violated. State-level enforcement appeared sparse. Due to the potential serious consequences of cell phone use while driving in the USA, more enforcement and targeted public safety campaigns are likely needed. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. New York State's landmark policies on oversight and compensation for egg donation to stem cell research.

    Science.gov (United States)

    Roxland, Beth E

    2012-05-01

    In 2009, New York became the first US state to implement a policy permitting researchers to use public funds to reimburse women who donate oocytes directly and solely to stem cell research, not only for the woman's out-of-pocket expenses, but also for the time, burden and discomfort associated with the donation process. The debate about the propriety of such compensation was recently renewed with the publication of a stem cell study in which women were provided with compensation for donating their eggs. This article explores the scientific and ethical rationales that led to New York's decision to allow donor compensation. The multifaceted deliberation process and comprehensive policies may serve as a model for other states and countries considering the issue of oocyte donor compensation.

  18. A Simple and Robust Method for Culturing Human-Induced Pluripotent Stem Cells in an Undifferentiated State Using Botulinum Hemagglutinin.

    Science.gov (United States)

    Kim, Mee-Hae; Matsubara, Yoshifumi; Fujinaga, Yukako; Kino-Oka, Masahiro

    2018-02-01

    Clinical and industrial applications of human-induced pluripotent stem cells (hiPSCs) is hindered by the lack of robust culture strategies capable of sustaining a culture in an undifferentiated state. Here, a simple and robust hiPSC-culture-propagation strategy incorporating botulinum hemagglutinin (HA)-mediated selective removal of cells deviating from an undifferentiated state is developed. After HA treatment, cell-cell adhesion is disrupted, and deviated cells detached from the central region of the colony to subsequently form tight monolayer colonies following prolonged incubation. The authors find that the temporal and dose-dependent activity of HA regulated deviated-cell removal and recoverability after disruption of cell-cell adhesion in hiPSC colonies. The effects of HA are confirmed under all culture conditions examined, regardless of hiPSC line and feeder-dependent or -free culture conditions. After routine application of our HA-treatment paradigm for serial passages, hiPSCs maintains expression of pluripotent markers and readily forms embryoid bodies expressing markers for all three germ-cell layers. This method enables highly efficient culturing of hiPSCs and use of entire undifferentiated portions without having to pick deviated cells manually. This simple and readily reproducible culture strategy is a potentially useful tool for improving the robust and scalable maintenance of undifferentiated hiPSC cultures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading

    KAUST Repository

    Ding, I-Kang; Melas-Kyriazi, John; Cevey-Ha, Ngoc-Le; Chittibabu, Kethinni G.; Zakeeruddin, Shaik M.; Grä tzel, Michael; McGehee, Michael D.

    2010-01-01

    We report using doctor-blading to replace conventional spin coating for the deposition of the hole-transport material spiro-OMeTAD (2,20,7,70-tetrakis-(N, N-di-p-methoxyphenylamine)- 9,90-spirobifluorene) in solid-state dye-sensitized solar cells

  20. A sleep state in Drosophila larvae required for neural stem cell proliferation

    Science.gov (United States)

    Szuperak, Milan; Churgin, Matthew A; Borja, Austin J; Raizen, David M; Fang-Yen, Christopher

    2018-01-01

    Sleep during development is involved in refining brain circuitry, but a role for sleep in the earliest periods of nervous system elaboration, when neurons are first being born, has not been explored. Here we identify a sleep state in Drosophila larvae that coincides with a major wave of neurogenesis. Mechanisms controlling larval sleep are partially distinct from adult sleep: octopamine, the Drosophila analog of mammalian norepinephrine, is the major arousal neuromodulator in larvae, but dopamine is not required. Using real-time behavioral monitoring in a closed-loop sleep deprivation system, we find that sleep loss in larvae impairs cell division of neural progenitors. This work establishes a system uniquely suited for studying sleep during nascent periods, and demonstrates that sleep in early life regulates neural stem cell proliferation. PMID:29424688

  1. Actin retrograde flow controls natural killer cell response by regulating the conformation state of SHP-1.

    Science.gov (United States)

    Matalon, Omri; Ben-Shmuel, Aviad; Kivelevitz, Jessica; Sabag, Batel; Fried, Sophia; Joseph, Noah; Noy, Elad; Biber, Guy; Barda-Saad, Mira

    2018-03-01

    Natural killer (NK) cells are a powerful weapon against viral infections and tumor growth. Although the actin-myosin (actomyosin) cytoskeleton is crucial for a variety of cellular processes, the role of mechanotransduction, the conversion of actomyosin mechanical forces into signaling cascades, was never explored in NK cells. Here, we demonstrate that actomyosin retrograde flow (ARF) controls the immune response of primary human NK cells through a novel interaction between β-actin and the SH2-domain-containing protein tyrosine phosphatase-1 (SHP-1), converting its conformation state, and thereby regulating NK cell cytotoxicity. Our results identify ARF as a master regulator of the NK cell immune response. Since actin dynamics occur in multiple cellular processes, this mechanism might also regulate the activity of SHP-1 in additional cellular systems. © 2018 The Authors.

  2. Parameters influencing charge separation in solid-state dye-sensitized solar cells using novel hole conductors

    NARCIS (Netherlands)

    Kroeze, J.E.; Hirata, N.; Schmidt-Mende, L.; Orizu, C.; Ogier, S.D.; Carr, K.; Grätzel, M.; Durrant, J.R.

    2006-01-01

    Solid-state dye-sensitized solar cells employing a solid organic hole-transport material (HTM) are currently under intensive investigation, since they offer a number of practical advantages over liquid-electrolyte junction devices. Of particular importance to the design of such devices is the

  3. Hand-held cell phone use while driving legislation and observed driver behavior among population sub-groups in the United States.

    Science.gov (United States)

    Rudisill, Toni M; Zhu, Motao

    2017-05-12

    Cell phone use behaviors are known to vary across demographic sub-groups and geographic locations. This study examined whether universal hand-held calling while driving bans were associated with lower road-side observed hand-held cell phone conversations across drivers of different ages (16-24, 25-59, ≥60 years), sexes, races (White, African American, or other), ruralities (suburban, rural, or urban), and regions (Northeast, Midwest, South, and West). Data from the 2008-2013 National Occupant Protection Use Survey were merged with states' cell phone use while driving legislation. The exposure was presence of a universal hand-held cell phone ban at time of observation. Logistic regression was used to assess the odds of drivers having a hand-held cell phone conversation. Sub-groups differences were assessed using models with interaction terms. When universal hand-held cell phone bans were effective, hand-held cell phone conversations were lower across all driver demographic sub-groups and regions. Sub-group differences existed among the sexes (p-value, phone bans, the adjusted odds ratio (aOR) of a driver hand-held phone conversation was 0.34 [95% confidence interval (CI): 0.28, 0.41] for females versus 0.47 (CI 0.40, 0.55) for males and 0.31 (CI 0.25, 0.38) for drivers in Western states compared to 0.47 (CI 0.30, 0.72) in the Northeast and 0.50 (CI 0.38, 0.66) in the South. The presence of universal hand-held cell phone bans were associated lower hand-held cell phone conversations across all driver sub-groups and regions. Hand-held phone conversations were particularly lower among female drivers and those from Western states when these bans were in effect. Public health interventions concerning hand-held cell phone use while driving could reasonably target all drivers.

  4. Correlation between the Open-Circuit Voltage and Charge Transfer State Energy in Organic Photovoltaic Cells.

    Science.gov (United States)

    Zou, Yunlong; Holmes, Russell J

    2015-08-26

    In order to further improve the performance of organic photovoltaic cells (OPVs), it is essential to better understand the factors that limit the open-circuit voltage (VOC). Previous work has sought to correlate the value of VOC in donor-acceptor (D-A) OPVs to the interface energy level offset (EDA). In this work, measurements of electroluminescence are used to extract the charge transfer (CT) state energy for multiple small molecule D-A pairings. The CT state as measured from electroluminescence is found to show better correlation to the maximum VOC than EDA. The difference between EDA and the CT state energy is attributed to the Coulombic binding energy of the CT state. This correlation is demonstrated explicitly by inserting an insulating spacer layer between the donor and acceptor materials, reducing the binding energy of the CT state and increasing the measured VOC. These results demonstrate a direct correlation between maximum VOC and CT state energy.

  5. Coexistence of a two-states organization for a cell-penetrating peptide in lipid bilayer.

    Science.gov (United States)

    Plénat, Thomas; Boichot, Sylvie; Dosset, Patrice; Milhiet, Pierre-Emmanuel; Le Grimellec, Christian

    2005-12-01

    Primary amphipathic cell-penetrating peptides transport cargoes across cell membranes with high efficiency and low lytic activity. These primary amphipathic peptides were previously shown to form aggregates or supramolecular structures in mixed lipid-peptide monolayers, but their behavior in lipid bilayers remains to be characterized. Using atomic force microscopy, we have examined the interactions of P(alpha), a primary amphipathic cell-penetrating peptide which remains alpha-helical whatever the environment, with dipalmitoylphosphatidylcholine (DPPC) bilayers. Addition of P(alpha) at concentrations up to 5 mol % markedly modified the supported bilayers topography. Long and thin filaments lying flat at the membrane surface coexisted with deeply embedded peptides which induced a local thinning of the bilayer. On the other hand, addition of P(alpha) only exerted very limited effects on the corresponding liposome's bilayer physical state, as estimated from differential scanning calorimetry and diphenylhexatriene fluorescence anisotropy experiments. The use of a gel-fluid phase separated supported bilayers made of a dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine mixture confirmed both the existence of long filaments, which at low peptide concentration were preferentially localized in the fluid phase domains and the membrane disorganizing effects of 5 mol % P(alpha). The simultaneous two-states organization of P(alpha), at the membrane surface and deeply embedded in the bilayer, may be involved in the transmembrane carrier function of this primary amphipathic peptide.

  6. Layer-by-Layer Formation of Block-Copolymer-Derived TiO2 for Solid-State Dye-Sensitized Solar Cells

    KAUST Repository

    Guldin, Stefan

    2011-12-15

    Morphology control on the 10 nm length scale in mesoporous TiO 2 films is crucial for the manufacture of high-performance dye-sensitized solar cells. While the combination of block-copolymer self-assembly with sol-gel chemistry yields good results for very thin films, the shrinkage during the film manufacture typically prevents the build-up of sufficiently thick layers to enable optimum solar cell operation. Here, a study on the temporal evolution of block-copolymer-directed mesoporous TiO 2 films during annealing and calcination is presented. The in-situ investigation of the shrinkage process enables the establishment of a simple and fast protocol for the fabrication of thicker films. When used as photoanodes in solid-state dye-sensitized solar cells, the mesoporous networks exhibit significantly enhanced transport and collection rates compared to the state-of-the-art nanoparticle-based devices. As a consequence of the increased film thickness, power conversion efficiencies above 4% are reached. Fabrication of sufficiently thick mesoporous TiO 2 photoelectrodes with morphology control on the 10 nm length scale is essential for solid-state dye-sensitized solar cells (ss-DSC). This study of the temporal evolution of block-copolymer-directed mesoporous TiO 2 films during annealing and calcination enables the build-up of sufficiently thick films for high-performance ssDSC devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Electrospun polymethylacrylate nanofibers membranes for quasi-solid-state dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    M. Fathy

    2016-06-01

    Full Text Available Polymethylacrylate (PMA nanofibers membranes are fabricated by electrospinning technique and applied to the polymer matrix in quasi-solid-state electrolytes for dye sensitized solar cells (DSSCs. There is no previous studies reporting the production of PMA nanofibers. The electrospinning parameters such as polymer concentration, applied voltage, feed rate, tip to collector distance and solvent were optimized. Electrospun PMA fibrous membrane with average fiber diameter of 350 nm was prepared from a 10 wt% solution of PMA in a mixture of acetone/N,N-dimethylacetamide (6:4 v/v at an applied voltage of 20 kV. It was then activated by immersing it in 0.5 M LiI, 0.05 M I2, and 0.5 M 4-tert-butylpyridine in 3-methoxyproponitrile to obtain the corresponding membrane electrolyte with an ionic conductivity of 2.4 × 10−3 S cm−1 at 25 °C. Dye sensitized solar cells (DSSCs employing the quasi solid-state electrolyte have an open-circuit voltage (Voc of 0.65 V and a short circuit current (Jsc of 6.5 mA cm−2 and photoelectric energy conversion efficiency (η of 1.4% at an incident light intensity of 100 mW cm−2.

  8. Novel chemically cross-linked solid state electrolyte for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Yin Xiong; Tan Weiwei; Xiang Wangchun; Lin Yuan; Zhang Jingbo; Xiao Xurui; Li Xueping; Zhou Xiaowen; Fang Shibi

    2010-01-01

    Poly(vinylpyridine-co-ethylene glycol methyl ether methacrylate) (P(VP-co-MEOMA)) and α,ω-diiodo poly(ethylene oxide-co-propylene oxide) (I[(EO) 0.8 -co-(PO) 0.2 ] y I) were synthesized and used as chemically cross-linked precursors of the electrolyte for dye-sensitized solar cells. Meanwhile, α-iodo poly(ethylene oxide-co-propylene oxide) methyl ether (CH 3 O[(EO) 0.8 -co-(PO) 0.2 ] x I) was synthesized and added into the electrolyte as an internal plasticizer. Novel polymer electrolyte resulting from chemically cross-linked precursors was obtained by the quaterisation at 90 o C for 30 min. The characteristics for this kind of electrolyte were investigated by means of ionic conductivity, thermogravimetric and photocurrent-voltage. The ambient ionic conductivity was significantly enhanced to 2.3 x 10 -4 S cm -1 after introducing plasticizer, modified-ionic liquid. The weight loss of the solid state electrolyte at 200 o C was 1.8%, and its decomposition temperature was 287 o C. Solid state dye-sensitized solar cell based on chemically cross-linked electrolyte presented an overall conversion efficiency of 2.35% under AM1.5 irradiation (100 mW cm -2 ). The as-fabricated device maintained 88% of its initial performance at room temperature even without sealing for 30 days, showing a good stability.

  9. Stable States of Biological Organisms

    Science.gov (United States)

    Yukalov, V. I.; Sornette, D.; Yukalova, E. P.; Henry, J.-Y.; Cobb, J. P.

    2009-04-01

    A novel model of biological organisms is advanced, treating an organism as a self-consistent system subject to a pathogen flux. The principal novelty of the model is that it describes not some parts, but a biological organism as a whole. The organism is modeled by a five-dimensional dynamical system. The organism homeostasis is described by the evolution equations for five interacting components: healthy cells, ill cells, innate immune cells, specific immune cells, and pathogens. The stability analysis demonstrates that, in a wide domain of the parameter space, the system exhibits robust structural stability. There always exist four stable stationary solutions characterizing four qualitatively differing states of the organism: alive state, boundary state, critical state, and dead state.

  10. Hand-held cell phone use while driving legislation and observed driver behavior among population sub-groups in the United States

    Directory of Open Access Journals (Sweden)

    Toni M. Rudisill

    2017-05-01

    Full Text Available Abstract Background Cell phone use behaviors are known to vary across demographic sub-groups and geographic locations. This study examined whether universal hand-held calling while driving bans were associated with lower road-side observed hand-held cell phone conversations across drivers of different ages (16–24, 25–59, ≥60 years, sexes, races (White, African American, or other, ruralities (suburban, rural, or urban, and regions (Northeast, Midwest, South, and West. Methods Data from the 2008–2013 National Occupant Protection Use Survey were merged with states’ cell phone use while driving legislation. The exposure was presence of a universal hand-held cell phone ban at time of observation. Logistic regression was used to assess the odds of drivers having a hand-held cell phone conversation. Sub-groups differences were assessed using models with interaction terms. Results When universal hand-held cell phone bans were effective, hand-held cell phone conversations were lower across all driver demographic sub-groups and regions. Sub-group differences existed among the sexes (p-value, <0.0001 and regions (p-value, 0.0003. Compared to states without universal hand-held cell phone bans, the adjusted odds ratio (aOR of a driver hand-held phone conversation was 0.34 [95% confidence interval (CI: 0.28, 0.41] for females versus 0.47 (CI 0.40, 0.55 for males and 0.31 (CI 0.25, 0.38 for drivers in Western states compared to 0.47 (CI 0.30, 0.72 in the Northeast and 0.50 (CI 0.38, 0.66 in the South. Conclusions The presence of universal hand-held cell phone bans were associated lower hand-held cell phone conversations across all driver sub-groups and regions. Hand-held phone conversations were particularly lower among female drivers and those from Western states when these bans were in effect. Public health interventions concerning hand-held cell phone use while driving could reasonably target all drivers.

  11. Scattering-layer-induced energy storage function in polymer-based quasi-solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Zhang, Xi; Jiang, Hongrui

    2015-03-09

    Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.

  12. Loss of variation of state detected in soybean metabolic and human myelomonocytic leukaemia cell transcriptional networks under external stimuli

    KAUST Repository

    Sakata, Katsumi

    2016-10-24

    Soybean (Glycine max) is sensitive to flooding stress, and flood damage at the seedling stage is a barrier to growth. We constructed two mathematical models of the soybean metabolic network, a control model and a flooded model, from metabolic profiles in soybean plants. We simulated the metabolic profiles with perturbations before and after the flooding stimulus using the two models. We measured the variation of state that the system could maintain from a state–space description of the simulated profiles. The results showed a loss of variation of state during the flooding response in the soybean plants. Loss of variation of state was also observed in a human myelomonocytic leukaemia cell transcriptional network in response to a phorbol-ester stimulus. Thus, we detected a loss of variation of state under external stimuli in two biological systems, regardless of the regulation and stimulus types. Our results suggest that a loss of robustness may occur concurrently with the loss of variation of state in biological systems. We describe the possible applications of the quantity of variation of state in plant genetic engineering and cell biology. Finally, we present a hypothetical “external stimulus-induced information loss” model of biological systems.

  13. Loss of variation of state detected in soybean metabolic and human myelomonocytic leukaemia cell transcriptional networks under external stimuli

    KAUST Repository

    Sakata, Katsumi; Saito, Toshiyuki; Ohyanagi, Hajime; Okumura, Jun; Ishige, Kentaro; Suzuki, Harukazu; Nakamura, Takuji; Komatsu, Setsuko

    2016-01-01

    Soybean (Glycine max) is sensitive to flooding stress, and flood damage at the seedling stage is a barrier to growth. We constructed two mathematical models of the soybean metabolic network, a control model and a flooded model, from metabolic profiles in soybean plants. We simulated the metabolic profiles with perturbations before and after the flooding stimulus using the two models. We measured the variation of state that the system could maintain from a state–space description of the simulated profiles. The results showed a loss of variation of state during the flooding response in the soybean plants. Loss of variation of state was also observed in a human myelomonocytic leukaemia cell transcriptional network in response to a phorbol-ester stimulus. Thus, we detected a loss of variation of state under external stimuli in two biological systems, regardless of the regulation and stimulus types. Our results suggest that a loss of robustness may occur concurrently with the loss of variation of state in biological systems. We describe the possible applications of the quantity of variation of state in plant genetic engineering and cell biology. Finally, we present a hypothetical “external stimulus-induced information loss” model of biological systems.

  14. Involvement of plant stem cells or stem cell-like cells in dedifferentiation

    Directory of Open Access Journals (Sweden)

    Fangwei eJiang

    2015-11-01

    Full Text Available Dedifferentiation is the transformation of cells from a given differentiated state to a less differentiated or stem cell-like state. Stem cell-related genes play important roles in dedifferentiation, which exhibits similar histone modification and DNA methylation features to stem cell maintenance. Hence, stem cell-related factors possibly synergistically function to provide a specific niche beneficial to dedifferentiation. During callus formation in Arabidopsis petioles, cells adjacent to procambium cells (stem cell-like cells are dedifferentiated and survive more easily than other cell types. This finding indicates that stem cells or stem cell-like cells may influence the dedifferentiating niche. In this paper, we provide a brief overview of stem cell maintenance and dedifferentiation regulation. We also summarize current knowledge of genetic and epigenetic mechanisms underlying the balance between differentiation and dedifferentiation. Furthermore, we discuss the correlation of stem cells or stem cell-like cells with dedifferentiation.

  15. An Organic D-π-A Dye for Record Efficiency Solid-State Sensitized Heterojunction Solar Cells

    KAUST Repository

    Cai, Ning; Moon, Soo-Jin; Cevey-Ha, Lê; Moehl, Thomas; Humphry-Baker, Robin; Wang, Peng; Zakeeruddin, Shaik M.; Grätzel, Michael

    2011-01-01

    The high molar absorption coefficient organic D-π-A dye C220 exhibits more than 6% certified electric power conversion efficiency at AM 1.5G solar irradiation (100 mW cm-2) in a solid-state dye-sensitized solar cell using 2,2′,7,7′-tetrakis

  16. State of the art: stem cells in equine regenerative medicine.

    Science.gov (United States)

    Lopez, M J; Jarazo, J

    2015-03-01

    According to Greek mythology, Prometheus' liver grew back nightly after it was removed each day by an eagle as punishment for giving mankind fire. Hence, contrary to popular belief, the concept of tissue and organ regeneration is not new. In the early 20th century, cell culture and ex vivo organ preservation studies by Alexis Carrel, some with famed aviator Charles Lindbergh, established a foundation for much of modern regenerative medicine. While early beliefs and discoveries foreshadowed significant accomplishments in regenerative medicine, advances in knowledge within numerous scientific disciplines, as well as nano- and micromolecular level imaging and detection technologies, have contributed to explosive advances over the last 20 years. Virtually limitless preparations, combinations and applications of the 3 major components of regenerative medicine, namely cells, biomaterials and bioactive molecules, have created a new paradigm of future therapeutic options for most species. It is increasingly clear, however, that despite significant parallels among and within species, there is no 'one-size-fits-all' regenerative therapy. Likewise, a panacea has yet to be discovered that completely reverses the consequences of time, trauma and disease. Nonetheless, there is no question that the promise and potential of regenerative medicine have forever altered medical practices. The horse is a relative newcomer to regenerative medicine applications, yet there is already a large body of work to incorporate novel regenerative therapies into standard care. This review focuses on the current state and potential future of stem cells in equine regenerative medicine. © 2014 EVJ Ltd.

  17. Comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element

    International Nuclear Information System (INIS)

    Wernsman, Bernard

    1997-01-01

    A comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element (TFE) is made. The single-cell TFE used in this study is the prototype for the 40 kW e space nuclear power system that is similar to the 6 kW e TOPAZ-II. The steady-state I-V measurements influence the emitter temperature due to electron cooling. Therefore, to eliminate the steady-state I-V measurement influence on the TFE and provide a better understanding of the behavior of the thermionic energy converter and TFE characteristics, dynamic I-V measurements are made. The dynamic I-V measurements are made at various input power levels, cesium pressures, collector temperatures, and steady-state current levels. From these measurements, it is shown that the dynamic I-V's do not change the TFE characteristics at a given operating point. Also, the evaluation of the collector work function from the dynamic I-V measurements shows that the collector optimization is not due to a minimum in the collector work function but due to an emission optimization. Since the dynamic I-V measurements do not influence the TFE characteristics, it is believed that these measurements can be done at a system level to understand the influence of TFE placement in the reactor as a function of the core thermal distribution

  18. In vivo MRI discrimination between live and lysed iron-labelled cells using balanced steady state free precession

    International Nuclear Information System (INIS)

    Ribot, E.J.; Foster, P.J.

    2012-01-01

    The goal of this study was to evaluate the ability of balanced steady state free precession (b-SSFP) magnetic resonance imaging sequence to distinguish between live and lysed iron-labelled cells. Human breast cancer cells were labelled with iron oxide nanoparticles. Cells were lysed using sonication. Imaging was performed at 3 T. The timing parameters for b-SSFP and the number of iron-labelled cells in samples were varied to optimise the b-SSFP signal difference between live and lysed iron-labelled cell samples. For in vivo experiments, cells were mixed with Matrigel and implanted into nude mice. Three mice implanted with live labelled cancer cells were irradiated to validate this method. Lysed iron-labelled cells have a significantly higher signal compared with live, intact iron-labelled cells in bSSFP images. The contrast between live and dead cells can be maximised by careful optimisation of timing parameters. A change in the b-SSFP signal was measured 6 days after irradiation, reflecting cell death in vivo. Histology confirmed the presence of dead cells in the implant. Our results show that the b-SSFP sequence can be optimised to allow for the discrimination of live iron-labelled cells and lysed iron-labelled cells in vitro and in vivo. (orig.)

  19. In vivo MRI discrimination between live and lysed iron-labelled cells using balanced steady state free precession

    Energy Technology Data Exchange (ETDEWEB)

    Ribot, E.J. [University of Western Ontario, Imaging Research Laboratories, Robarts Research Institute, London, ON (Canada); Foster, P.J. [University of Western Ontario, Imaging Research Laboratories, Robarts Research Institute, London, ON (Canada); University of Western Ontario, Department of Medical Biophysics, London, ON (Canada)

    2012-09-15

    The goal of this study was to evaluate the ability of balanced steady state free precession (b-SSFP) magnetic resonance imaging sequence to distinguish between live and lysed iron-labelled cells. Human breast cancer cells were labelled with iron oxide nanoparticles. Cells were lysed using sonication. Imaging was performed at 3 T. The timing parameters for b-SSFP and the number of iron-labelled cells in samples were varied to optimise the b-SSFP signal difference between live and lysed iron-labelled cell samples. For in vivo experiments, cells were mixed with Matrigel and implanted into nude mice. Three mice implanted with live labelled cancer cells were irradiated to validate this method. Lysed iron-labelled cells have a significantly higher signal compared with live, intact iron-labelled cells in bSSFP images. The contrast between live and dead cells can be maximised by careful optimisation of timing parameters. A change in the b-SSFP signal was measured 6 days after irradiation, reflecting cell death in vivo. Histology confirmed the presence of dead cells in the implant. Our results show that the b-SSFP sequence can be optimised to allow for the discrimination of live iron-labelled cells and lysed iron-labelled cells in vitro and in vivo. (orig.)

  20. Stochastic Cell Fate Progression in Embryonic Stem Cells

    Science.gov (United States)

    Zou, Ling-Nan; Doyle, Adele; Jang, Sumin; Ramanathan, Sharad

    2013-03-01

    Studies on the directed differentiation of embryonic stem (ES) cells suggest that some early developmental decisions may be stochastic in nature. To identify the sources of this stochasticity, we analyzed the heterogeneous expression of key transcription factors in single ES cells as they adopt distinct germ layer fates. We find that under sufficiently stringent signaling conditions, the choice of lineage is unambiguous. ES cells flow into differentiated fates via diverging paths, defined by sequences of transitional states that exhibit characteristic co-expression of multiple transcription factors. These transitional states have distinct responses to morphogenic stimuli; by sequential exposure to multiple signaling conditions, ES cells are steered towards specific fates. However, the rate at which cells travel down a developmental path is stochastic: cells exposed to the same signaling condition for the same amount of time can populate different states along the same path. The heterogeneity of cell states seen in our experiments therefore does not reflect the stochastic selection of germ layer fates, but the stochastic rate of progression along a chosen developmental path. Supported in part by the Jane Coffin Childs Fund

  1. System Tb-Fe-O: thermodynamic properties of ternary oxides using solid-state electrochemical cells

    International Nuclear Information System (INIS)

    Rakshit, S.K.; Parida, S.C.; Dash, S.; Singh, Ziley; Prasad, R.; Venugopal, V.

    2003-01-01

    The standard molar Gibbs free energies of formation of TbFeO 3 (s) and Tb 3 Fe 5 O 12 (s) have been determined using solid-state electrochemical cell employing different solid electrolytes. The reversible emfs of the following solid-state electrochemical cells have been measured in the temperature range 1050≤T/K≤1250. Cell (I):(-)Pt/{TbFeO 3 (s)+Tb 2 O 3 (s)+Fe(s)}//YDT/CSZ//{Fe(s)+Fe 0.95 O(s)}/Pt(+))) (Cell (II):(-)Pt/{Fe(s)+Fe 0.95 O(s)}//CSZ//{TbFeO 3 (s)+Tb 3 Fe 5 O 12 (s)+Fe 3 O 4 (s)}/Pt(+) The oxygen chemical potentials corresponding to the three-phase equilibria involving the ternary oxides have been computed from the emf data. The standard molar Gibbs free energies of formation of solid TbFeO 3 and Tb 3 Fe 5 O 12 calculated by the least-squares regression analysis of the data obtained in the present study are given by {Δ f G compfn m (TbFeO 3 ,s)/(kJ·mol -1 )±3.2}=-1357.5+0.2531·(T/K); (1050≤T/K≤1548);))and({Δ f G compfn m (Tb 3 Fe 5 O 12 ,s)/(kJ·mol -1 )±3.5}=-4901.7+ 0.9997·(T/K); (1050≤T/K≤1250).)) The uncertainty estimates for Δ f G compfn m include the standard deviation in the emf and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagram and chemical potential diagrams were computed for the system Tb-Fe-O at T=1250 K

  2. The Human Acid-Sensing Ion Channel ASIC1a: Evidence for a Homotetrameric Assembly State at the Cell Surface.

    Directory of Open Access Journals (Sweden)

    Miguel Xavier van Bemmelen

    Full Text Available The chicken acid-sensing ion channel ASIC1 has been crystallized as a homotrimer. We address here the oligomeric state of the functional ASIC1 in situ at the cell surface. The oligomeric states of functional ASIC1a and mutants with additional cysteines introduced in the extracellular pore vestibule were resolved on SDS-PAGE. The functional ASIC1 complexes were stabilized at the cell surface of Xenopus laevis oocytes or CHO cells either using the sulfhydryl crosslinker BMOE, or sodium tetrathionate (NaTT. Under these different crosslinking conditions ASIC1a migrates as four distinct oligomeric states that correspond by mass to multiples of a single ASIC1a subunit. The relative importance of each of the four ASIC1a oligomers was critically dependent on the availability of cysteines in the transmembrane domain for crosslinking, consistent with the presence of ASIC1a homo-oligomers. The expression of ASIC1a monomers, trimeric or tetrameric concatemeric cDNA constructs resulted in functional channels. The resulting ASIC1a complexes are resolved as a predominant tetramer over the other oligomeric forms, after stabilization with BMOE or NaTT and SDS-PAGE/western blot analysis. Our data identify a major ASIC1a homotetramer at the surface membrane of the cell expressing functional ASIC1a channel.

  3. Characterization of Compounds with Tumor-Cell Proliferation Inhibition Activity from Mushroom (Phellinus baumii) Mycelia Produced by Solid-State Fermentation.

    Science.gov (United States)

    Zhang, Henan; Shao, Qian; Wang, Wenhan; Zhang, Jingsong; Zhang, Zhong; Liu, Yanfang; Yang, Yan

    2017-04-27

    The inhibition of tumor-cell proliferationbyan organicsolvent extract from the solid-state fermentation of Phellinus baumii mycelia inoculated in rice medium was investigated in vitro. The active compounds inhibiting tumor-cell proliferation were characterized. Results revealed that all (petroleum ether, chloroform, ethyl acetate, and butanol) fractions inhibited tumor-cell proliferation in a dose-dependent fashion. The ethyl acetate extract had the highest inhibitory effecton tumor-cell proliferation, and the butanol fraction had the lowest. Six compounds were isolated and purified from the ethyl acetate extract of P. baumii mycelia by the tandem application of silica-gel column chromatography (SGCC), high-speed countercurrent chromatography (HSCCC), and preparative HPLC. These compounds were identified by NMR and electrospray ionization-mass spectrometry (ESI-MS) spectroscopic methods as ergosterol (RF1), ergosta-7,22-dien-3β-yl pentadecanoate (RF3), 3,4-dihydroxy benzaldehyde(RF6), inoscavinA (RF7), baicalein(RF10), and 24-ethylcholesta-5,22-dien-3β-ol (RF13). To further clarify the activity of these compounds, the cell-proliferation-inhibition tests of these compounds on various tumor cells were carried out and evaluatedin vitro. Results suggested that compounds RF6, RF7, and RF10 had potent inhibition effects on the proliferation of a series of tumor cell lines, including K562, L1210, SW620, HepG2, LNCaP, and MCF-7cells. These findings indicated that P. baumii mycelia produced by solid-state fermentation in rice canbe used to obtain active compounds with the ability to inhibittumor-cell proliferation.

  4. Characterization of Compounds with Tumor–Cell Proliferation Inhibition Activity from Mushroom (Phellinus baumii Mycelia Produced by Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Henan Zhang

    2017-04-01

    Full Text Available The inhibition of tumor-cell proliferationbyan organicsolvent extract from the solid-state fermentation of Phellinus baumii mycelia inoculated in rice medium was investigated in vitro. The active compounds inhibiting tumor-cell proliferation were characterized. Results revealed that all (petroleum ether, chloroform, ethyl acetate, and butanol fractions inhibited tumor-cell proliferation in a dose-dependent fashion. The ethyl acetate extract had the highest inhibitory effecton tumor-cell proliferation, and the butanol fraction had the lowest. Six compounds were isolated and purified from the ethyl acetate extract of P. baumii mycelia by the tandem application of silica-gel column chromatography (SGCC, high-speed countercurrent chromatography (HSCCC, and preparative HPLC. These compounds were identified by NMR and electrospray ionization-mass spectrometry (ESI-MS spectroscopic methods as ergosterol (RF1, ergosta-7,22-dien-3β-yl pentadecanoate (RF3, 3,4-dihydroxy benzaldehyde(RF6, inoscavinA (RF7, baicalein(RF10, and 24-ethylcholesta-5,22-dien-3β-ol (RF13. To further clarify the activity of these compounds, the cell-proliferation-inhibition tests of these compounds on various tumor cells were carried out and evaluatedin vitro. Results suggested that compounds RF6, RF7, and RF10 had potent inhibition effects on the proliferation of a series of tumor cell lines, including K562, L1210, SW620, HepG2, LNCaP, and MCF-7cells. These findings indicated that P. baumii mycelia produced by solid-state fermentation in rice canbe used to obtain active compounds with the ability to inhibittumor-cell proliferation.

  5. Human adipose cells in vitro are either refractory or responsive to insulin, reflecting host metabolic state.

    Directory of Open Access Journals (Sweden)

    Vladimir A Lizunov

    Full Text Available While intercellular communication processes are frequently characterized by switch-like transitions, the endocrine system, including the adipose tissue response to insulin, has been characterized by graded responses. Yet here individual cells from adipose tissue biopsies are best described by a switch-like transition between the basal and insulin-stimulated states for the trafficking of the glucose transporter GLUT4. Two statistically-defined populations best describe the observed cellular heterogeneity, representing the fractions of refractive and responsive adipose cells. Furthermore, subjects exhibiting high systemic insulin sensitivity indices (SI have high fractions of responsive adipose cells in vitro, while subjects exhibiting decreasing SI have increasing fractions of refractory cells in vitro. Thus, a two-component model best describes the relationship between cellular refractory fraction and subject SI. Since isolated cells exhibit these different response characteristics in the presence of constant culture conditions and milieu, we suggest that a physiological switching mechanism at the adipose cellular level ultimately drives systemic SI.

  6. Current State-of-the-Art 3D Tissue Models and Their Compatibility with Live Cell Imaging.

    Science.gov (United States)

    Bardsley, Katie; Deegan, Anthony J; El Haj, Alicia; Yang, Ying

    2017-01-01

    Mammalian cells grow within a complex three-dimensional (3D) microenvironment where multiple cells are organized and surrounded by extracellular matrix (ECM). The quantity and types of ECM components, alongside cell-to-cell and cell-to-matrix interactions dictate cellular differentiation, proliferation and function in vivo. To mimic natural cellular activities, various 3D tissue culture models have been established to replace conventional two dimensional (2D) culture environments. Allowing for both characterization and visualization of cellular activities within possibly bulky 3D tissue models presents considerable challenges due to the increased thickness and subsequent light scattering features of such 3D models. In this chapter, state-of-the-art methodologies used to establish 3D tissue models are discussed, first with a focus on both scaffold-free and scaffold-based 3D tissue model formation. Following on, multiple 3D live cell imaging systems, mainly optical imaging modalities, are introduced. Their advantages and disadvantages are discussed, with the aim of stimulating more research in this highly demanding research area.

  7. Charge-Transfer Dynamics in the Lowest Excited State of a Pentacene–Fullerene Complex: Implications for Organic Solar Cells

    KAUST Repository

    Joseph, Saju

    2017-10-02

    We characterize the dynamic nature of the lowest excited state in a pentacene/C60 complex on the femtosecond time scale, via a combination of ab initio molecular dynamics and time-dependent density functional theory. We analyze the correlations between the molecular vibrations of the complex and the oscillations in the electron-transfer character of its lowest excited state, which point to vibration-induced coherences between the (pentacene-based) local-excitation (LE) state and the complex charge-transfer (CT) state. We discuss the implications of our results on this model system for the exciton-dissociation process in organic solar cells.

  8. Ex vivo modulation of the Foxo1 phosphorylation state does not lead to dysfunction of T regulatory cells.

    Directory of Open Access Journals (Sweden)

    Kristen Kelley Penberthy

    Full Text Available Peripheral regulatory CD4+ T cells (Treg cells prevent maladaptive inflammatory responses to innocuous foreign antigens. Treg cell dysfunction has been linked to many inflammatory diseases, including allergic airway inflammation. Glucocorticoids that are used to treat allergic airway inflammation and asthma are thought to work in part by promoting Treg cell differentiation; patients who are refractory to these drugs have defective induction of anti-inflammatory Treg cells. Previous observations suggest that Treg cells deficient in the transcription factor FoxO1 are pro-inflammatory, and that FoxO1 activity is regulated by its phosphorylation status and nuclear localization. Here, we asked whether altering the phosphorylation state of FoxO1 through modulation of a regulatory phosphatase might affect Treg cell function. In a mouse model of house dust mite-induced allergic airway inflammation, we observed robust recruitment of Treg cells to the lungs and lymph nodes of diseased mice, without an apparent increase in the Treg cytokine interleukin-10 in the airways. Intriguingly, expression of PP2A, a serine/threonine phosphatase linked to the regulation of FoxO1 phosphorylation, was decreased in the mediastinal lymph nodes of HDM-treated mice, mirroring the decreased PP2A expression seen in peripheral blood monocytes of glucocorticoid-resistant asthmatic patients. When we asked whether modulation of PP2A activity alters Treg cell function via treatment with the PP2A inhibitor okadaic acid, we observed increased phosphorylation of FoxO1 and decreased nuclear localization. However, dysregulation of FoxO1 did not impair Treg cell differentiation ex vivo or cause Treg cells to adopt a pro-inflammatory phenotype. Moreover, inhibition of PP2A activity did not affect the suppressive function of Treg cells ex vivo. Collectively, these data suggest that modulation of the phosphorylation state of FoxO1 via PP2A inhibition does not modify Treg cell function ex

  9. Unraveling surface and bulk trap states in lead halide perovskite solar cells using impedance spectroscopy

    Science.gov (United States)

    Han, Changfeng; Wang, Kai; Zhu, Xixiang; Yu, Haomiao; Sun, Xiaojuan; Yang, Qin; Hu, Bin

    2018-03-01

    Organic-inorganic hybrid perovskites (OIHPs) have been widely recognized as an excellent candidate for next-generation photovoltaic materials because of their highly efficient power conversion. Acquiring a complete understanding of trap states and dielectric properties in OIHP-based solar cells at the steady state is highly desirable in order to further explore and improve their optoelectronic functionalities and properties. We report CH3NH3PbI3-x Cl x -based planar solar cells with a power conversion efficiency (PCE) of 15.8%. The illumination intensity dependence of the current density-voltage (J-V) revealed the presence of trap-assisted recombination at low fluences. Non-destructive ac impedance spectroscopy (ac-IS) was applied to characterize the device at the steady state. The capacitance-voltage (C-V) spectra exhibited some distinct variations at a wide range of ac modulation frequencies with and without photo-excitations. Since the frequency-dependent chemical capacitance ({{C}μ }) is concerned with the surface and bulk related density of states (DOS) in CH3NH3PbI3-x Cl x , we verified this by fitting the corresponding DOS by a Gaussian distribution function. We ascertained that the electronic sub-gap trap states present in the solution processed CH3NH3PbI3-x Cl x and their distribution differs from the surface to the bulk. In fact, we demonstrated that both surfaces that were adjacent to the electron and hole transport layers featured analogous DOS. Despite this, photo- and bias-induced giant dielectric responses (i.e. both real and imaginary parts) were detected. A remarkable reduction of {{C}μ } at higher frequencies (i.e. more than 100 kHz) was ascribed to the effect of dielectric loss in CH3NH3PbI3-x Cl x .

  10. Charge collection and pore filling in solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Snaith, Henry J; Humphry-Baker, Robin; Chen, Peter; Zakeeruddin, Shaik M; Graetzel, Michael; Cesar, Ilkay

    2008-01-01

    The solar to electrical power conversion efficiency for dye-sensitized solar cells (DSCs) incorporating a solid-state organic hole-transporter can be over 5%. However, this is for devices significantly thinner than the optical depth of the active composites and by comparison to the liquid electrolyte based DSCs, which exhibit efficiencies in excess of 10%, more than doubling of this efficiency is clearly attainable if all the steps in the photovoltaic process can be optimized. Two issues are currently being addressed by the field. The first aims at enhancing the electron diffusion length by either reducing the charge recombination or enhancing the charge transport rates. This should enable a larger fraction of photogenerated charges to be collected. The second, though less actively investigated, aims to improve the physical composite formation, which in this instance is the infiltration of mesoporous TiO 2 with the organic hole-transporter 2,2',7,7'-tetrakis(N,N-di-p-methoxypheny-amine)-9,9'-spirobifluorene (spiro-MeOTAD). Here, we perform a broad experimental study to elucidate the limiting factors to the solar cell performance. We first investigate the charge transport and recombination in the solid-state dye-sensitized solar cell under realistic working conditions via small perturbation photovoltage and photocurrent decay measurements. From these measurements we deduce that the electron diffusion length near short-circuit is as long as 20 μm. However, at applied biases approaching open-circuit potential under realistic solar conditions, the diffusion length becomes comparable with the film thickness, ∼2 μm, illustrating that real losses to open-circuit voltage, fill factor and hence efficiency are occurring due to ineffective charge collection. The long diffusion length near short-circuit, on the other hand, illustrates that another process, separate from ineffective charge collection, is rendering the solar cell less than ideal. We investigate the process

  11. Charge collection and pore filling in solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Snaith, Henry J; Humphry-Baker, Robin; Chen, Peter; Cesar, Ilkay; Zakeeruddin, Shaik M; Grätzel, Michael

    2008-10-22

    The solar to electrical power conversion efficiency for dye-sensitized solar cells (DSCs) incorporating a solid-state organic hole-transporter can be over 5%. However, this is for devices significantly thinner than the optical depth of the active composites and by comparison to the liquid electrolyte based DSCs, which exhibit efficiencies in excess of 10%, more than doubling of this efficiency is clearly attainable if all the steps in the photovoltaic process can be optimized. Two issues are currently being addressed by the field. The first aims at enhancing the electron diffusion length by either reducing the charge recombination or enhancing the charge transport rates. This should enable a larger fraction of photogenerated charges to be collected. The second, though less actively investigated, aims to improve the physical composite formation, which in this instance is the infiltration of mesoporous TiO(2) with the organic hole-transporter 2,2',7,7'-tetrakis(N,N-di-p-methoxypheny-amine)-9,9'-spirobifluorene (spiro-MeOTAD). Here, we perform a broad experimental study to elucidate the limiting factors to the solar cell performance. We first investigate the charge transport and recombination in the solid-state dye-sensitized solar cell under realistic working conditions via small perturbation photovoltage and photocurrent decay measurements. From these measurements we deduce that the electron diffusion length near short-circuit is as long as 20 µm. However, at applied biases approaching open-circuit potential under realistic solar conditions, the diffusion length becomes comparable with the film thickness, ∼2 µm, illustrating that real losses to open-circuit voltage, fill factor and hence efficiency are occurring due to ineffective charge collection. The long diffusion length near short-circuit, on the other hand, illustrates that another process, separate from ineffective charge collection, is rendering the solar cell less than ideal. We investigate the

  12. Instability of the Null Steady State: The Fundamental Problem of Inhibiting Malignant Cell Growth

    Science.gov (United States)

    Varfolomeev, S. D.; Lukovenkov, A. V.

    2018-07-01

    Mathematical modeling of the process of inhibiting malignant growth by common chemotherapeutic agents and biological therapeutics is used to investigate the effect kinetic parameters of the model have on the outcome of treatment. It is shown that the ultimate suppression of growth, i.e., the formation of a stable steady-state with no cancer cells, cannot be attained if only the means of classical chemotherapy are used.

  13. IMMUNE STATE IN PATIENTS WITH HEMATOLOGICAL MALIGNANCIES AT LATE TERMS AFTER AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    N. V. Minaeva

    2012-01-01

    Full Text Available Abstract. Autologous hematopoietic stem cell transplantation (auto-HSCT is one of the most effective methods for treatment of patients with various forms of hemoblastoses, both in adults and children. However, high-dose chemotherapy protocols used in this procedure are characterized by pronounced myeloand immunotoxicity. Appropriate data concerning immune state at long terms after high-dose chemotherapy and auto-HSCT are sparse and controversial, and there is no consensus on time dynamics of immune system reconstitution. The aim of this study was a comprehensive evaluation of immunity in recipients of auto-HSCT at longer terms. Clinical and immunological testing was performed in ninety-eight patients with hematological malignancies before starting a high-dose chemotherapy, and at late post-transplant period. The state of cellular immunity was assessed as expression of surface CD3+, CD4+, CD8+, CD16+, CD19+ lymphocyte antigens. Humoral immunity was evaluated by serum IgG, IgA, and IgM levels. The studies have revealed disorders of cellular and humoral immunity, as well as nonspecific immune resistance factors in recipients of autologous hematopoietic stem cells at late terms post-transplant. Immune reconstitution in patients receiving highdose consolidation treatment followed by auto-HSCT takes longer time than in patients who did not receive autologous hematopoietic stem cells. Severity of these disturbances and immune reconstitution rates depend on the type of conditioning regimen, and the source of haematopoietic stem cells used for transplantation.

  14. State-of-Charge Estimation and Active Cell Pack Balancing Design of Lithium Battery Power System for Smart Electric Vehicle

    OpenAIRE

    Gao, Z. C.; Chin, C. S.; Toh, W. D.; Chiew, J.; Jia, J.

    2017-01-01

    This paper presents an integrated state-of-charge (SOC) estimation model and active cell balancing of a 12-cell lithium iron phosphate (LiFePO4) battery power system. The strong tracking cubature extended Kalman filter (STCEKF) gave an accurate SOC prediction compared to other Kalman-based filter algorithms. The proposed groupwise balancing of the multiple SOC exhibited a higher balancing speed and lower balancing loss than other cell balancing designs. The experimental results demonstrated t...

  15. Ambulatory cell phone injuries in the United States: an emerging national concern.

    Science.gov (United States)

    Smith, Daniel C; Schreiber, Kristin M; Saltos, Andreas; Lichenstein, Sarah B; Lichenstein, Richard

    2013-12-01

    Over the past 15 years, the use of cell phones has increased 8-fold in the United States. Cell phone use has been shown to increase crash risks for drivers, but no systematic analyses have described injuries related to ambulatory cell phone use. The purpose of this study is to describe and quantitate injuries and deaths among persons using cell phones while walking. We searched the National Electronic Injury Surveillance System (NEISS) for emergency department (ED) reports of injuries related to phone use. The cases that returned were screened initially using words that would eliminate cases unlikely to be related to cell phone use and walking, possibly linked to distraction. The resulting cases were randomized and evaluated for consistency with predetermined case definitions by two authors blinded to the dates of the incidents. Cases that were disagreed upon were evaluated in a second screening by both authors for final case determination. National ED visit rates were estimated based on NEISS sampling methods. Annual variations were analyzed using linear regression with a restricted maximum likelihood approach. Our screening process identified 5,754 possible cases that occurred between 2000 and 2011, and 310 were agreed on as cases of cell-phone-induced distraction. The majority of the patients were female (68%) and 40 years of age or younger (54%). The primary mechanism of injury was a fall (72%), and most patients were treated and released from the ED (85%). No patients died from their injuries while they were in the ED. Linear modeling by year revealed a statistically significant increase in distraction injury rates over the years of study (pcell phone use has been increasing. More research is needed to determine the risks associated with walking and talking on a cell phone and to develop strategies for intervention. Cell phone use continues to increase both at home and outdoor environments. The use of smart phones, with their more enticing features, increases

  16. Characterization of proton exchange membrane materials for fuel cells by solid state nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Zueqian [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Solid-state nuclear magnetic resonance (NMR) has been used to explore the nanometer-scale structure of Nafion, the widely used fuel cell membrane, and its composites. We have shown that solid-state NMR can characterize chemical structure and composition, domain size and morphology, internuclear distances, molecular dynamics, etc. The newly-developed water channel model of Nafion has been confirmed, and important characteristic length-scales established. Nafion-based organic and inorganic composites with special properties have also been characterized and their structures elucidated. The morphology of Nafion varies with hydration level, and is reflected in the changes in surface-to-volume (S/V) ratio of the polymer obtained by small-angle X-ray scattering (SAXS). The S/V ratios of different Nafion models have been evaluated numerically. It has been found that only the water channel model gives the measured S/V ratios in the normal hydration range of a working fuel cell, while dispersed water molecules and polymer ribbons account for the structures at low and high hydration levels, respectively.

  17. A Panel of Embryonic Stem Cell Lines Reveals the Variety and Dynamic of Pluripotent States in Rabbits

    Directory of Open Access Journals (Sweden)

    Pierre Osteil

    2016-09-01

    Full Text Available Conventional rabbit embryonic stem cell (ESC lines are derived from the inner cell mass (ICM of pre-implantation embryos using methods and culture conditions that are established for primate ESCs. In this study, we explored the capacity of the rabbit ICM to give rise to ESC lines using conditions similar to those utilized to generate naive ESCs in mice. On single-cell dissociation and culture in fibroblast growth factor 2 (FGF2-free, serum-supplemented medium, rabbit ICMs gave rise to ESC lines lacking the DNA-damage checkpoint in the G1 phase like mouse ESCs, and with a pluripotency gene expression profile closer to the rabbit ICM/epiblast profiles. These cell lines can be converted to FGF2-dependent ESCs after culture in conventional conditions. They can also colonize the rabbit pre-implantation embryo. These results indicate that rabbit epiblast cells can be coaxed toward different types of pluripotent stem cells and reveal the dynamics of pluripotent states in rabbit ESCs.

  18. Low ATP level is sufficient to maintain the uncommitted state of multipotent mesenchymal stem cells.

    Science.gov (United States)

    Buravkova, L B; Rylova, Y V; Andreeva, E R; Kulikov, A V; Pogodina, M V; Zhivotovsky, B; Gogvadze, V

    2013-10-01

    Multipotent mesenchymal stromal cells (MMSCs) are minimally differentiated precursors with great potential to transdifferentiate. These cells are quite resistant to oxygen limitation, suggesting that a hypoxic milieu can be physiological for MMSCs. Human MMSCs isolated from adipose tissue were grown at various oxygen concentrations. Alteration in cell immunophenotype was determined by flow cytometry after staining with specific antibodies. Concentrations of glucose and lactate were determined using the Biocon colorimetric test. Cellular respiration was assessed using oxygen electrode. The modes of cell death were analyzed by flow cytometry after staining with Annexin V and propidium iodide. We found that permanent oxygen deprivation attenuated cellular ATP levels in these cells, diminishing mitochondrial ATP production but stimulating glycolytic ATP production. At the same time, permanent hypoxia did not affect MMSCs' viability, stimulated their proliferation and reduced their capacity to differentiate. Further, permanent hypoxia decreased spontaneous cell death by MMSCs. Under hypoxic conditions glycolysis provides sufficient energy to maintain MMSCs in an uncommitted state. These findings are of interest not only for scientific reasons, but also in practical terms. Oxygen concentration makes an essential contribution to MMSC physiology and should be taken into account in the setting of protocols for cellular therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Dickkopf-3 maintains the PANC-1 human pancreatic tumor cells in a dedifferentiated state.

    Science.gov (United States)

    Zenzmaier, Christoph; Hermann, Martin; Hengster, Paul; Berger, Peter

    2012-01-01

    Pancreatic cancer (PaCa) is the fourth leading cause of cancer deaths in Western societies, with pancreatic ductal adenocarcinomas (PDACs) accounting for >90% of such cases. PDAC is a heterogeneous disease that includes a subset showing overexpression of the secreted glycoprotein Dickkopf-related protein 3 (Dkk-3), a protein shown to be downregulated in various cancers of different tissues. The biological function of Dkk-3 in this subset was studied using the Dkk-3 expressing PANC-1 cell line as a model for PDACs. The influence of Dkk-3 overexpression and knockdown on cellular differentiation and proliferation of PANC-1 was investigated. Confocal microscopy showed that Dkk-3 was expressed in a fraction of PANC-1 cells. While lentiviral-mediated overexpression of DKK3 did not alter cellular proliferation, knockdown of DKK3 resulted in significant reduction of cellular proliferation and concomitant induction of cell cycle inhibitors CDKN2B (p15INK4b), CDKN1A (p21CIP1) and CDKN1B (p27KIP1). In parallel, pancreatic epithelial cell differentiation markers AMY2A, CELA1, CTRB1, GCG, GLB1 and INS were significantly upregulated. PANC-1 cells differentiated using exendin-4 showed analogous induction of cell cycle inhibitors and differentiation markers. Thus, we conclude that Dkk-3 is required to maintain a highly dedifferentiated and consequently proliferative state in PANC-1, indicating a similar function in the Dkk-3 overexpressing subset of PDACs. Therefore, Dkk-3 represents a potential target for the treatment of Dkk-3-positive subtypes of PaCa to drive cells into cell cycle arrest and differentiation.

  20. Levels of high-density lipoprotein cholesterol (HDL-C among children with steady-state sickle cell disease

    Directory of Open Access Journals (Sweden)

    Seixas Magda O

    2010-08-01

    Full Text Available Abstract Background The search for sickle cell disease (SCD prognosis biomarkers is a challenge. These markers identification can help to establish further therapy, later severe clinical complications and with patients follow-up. We attempted to study a possible involvement of levels of high-density lipoprotein cholesterol (HDL-C in steady-state children with SCD, once that this lipid marker has been correlated with anti-inflammatory, anti-oxidative, anti-aggregation, anti-coagulant and pro-fibrinolytic activities, important aspects to be considered in sickle cell disease pathogenesis. Methods We prospectively analyzed biochemical, inflammatory and hematological biomarkers of 152 steady-state infants with SCD and 132 healthy subjects using immunochemistry, immunoassay and electronic cell counter respectively. Clinical data were collected from patient medical records. Results Of the 152 infants investigated had a significant positive association of high-density lipoprotein cholesterol with hemoglobin (P Conclusions We hypothesize that some SCD patients can have a specific dyslipidemic subphenotype characterized by low HDL-C with hypertriglyceridemia and high VLDL-C in association with other biomarkers, including those related to inflammation. This represents an important step toward a more reliable clinical prognosis. Additional studies are warranted to test this hypothesis and the probably mechanisms involved in this complex network of markers and their role in SCD pathogenesis.

  1. Multiwall Carbon Nanotube Coated with Conducting Polyaniline Nanocomposites for Quasi-Solid-State Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaul Karim

    2013-01-01

    Full Text Available Multiwalled carbon nanotube (MWNT coated with conducting polyaniline (PAni nanocomposites has been enforced as for quasi-solid-state electrolyte layer in the dye-sensitized solar cells (DSSCs, and the incorporation of MWNT-PAni nanoparticles on the cell performance has been examined. The MWNT-PAni nanoparticles exploited as the extended electron transfer materials, which can reduce charge diffusion length and serve simultaneously as catalyst for the electrochemical reduction of I3-. An ionic liquid of 1-methyl-3-propyl-imidazolium iodide (PMII together with the hybrid MWNT-PAni nanocomposites was placed between the dye-sensitized porous TiO2 and the Pt counter electrode without adding iodine and achieved a moderately higher cell efficiency (3.15%, as compared to that containing bare PMII (0.26%.

  2. Performance enhancement of microbial fuel cell by applying transient-state regulation

    International Nuclear Information System (INIS)

    Liang, Peng; Zhang, Changyong; Jiang, Yong; Bian, Yanhong; Zhang, Helan; Sun, Xueliang; Yang, Xufei; Zhang, Xiaoyuan; Huang, Xia

    2017-01-01

    Highlights: • MFC was operated with transient-state regulation to enhance its performance. • Effects of the TSR parameters on MFC performance were thoroughly investigated. • Long-term operation of MFC in TSR mode allowed 32.7% higher power production. • Anode capacitance helped reduce the MFC’s internal impedance in the TSR mode. - Abstract: A binder-free, pseudocapacitive anode was fabricated by coating reduced graphene oxide (rGO) and manganese oxide (MnO_2) nanoparticles on stainless steel fibre felt (SS). Microbial fuel cell (MFC) equipped with this novel anode yielded a maximum power density of 1045 mW m"−"2, 20 times higher than that of a similar MFC with a bare SS anode (46 mW m"−"2). Transient-state regulation (TSR) was implemented to further improve the MFC’s power generation. The optimal TSR duty cycle ranged from 67% to 95%, and the MFC’s power density increased with TSR frequency. A maximum power density output of 1238 mW m"−"2 was achieved at the TSR duty cycle of 75% and the frequency of 1 Hz, 18.4% greater than that obtained from the steady state operation. The TSR mode delivered better MFC performance especially when the external resistance was small. Long-term operation tests revealed that the current density and power density yielded in the TSR mode were on average 15.0% and 32.7% greater than those in the steady state mode, respectively. The TSR mode was believed to reduce the internal resistance of the MFC while enhance substrate mass transfer and electron transfer within the anode matrix, thereby improving the MFC performance.

  3. Natural Killer/T-cell Neoplasms: Analysis of Incidence, Patient Characteristics, and Survival Outcomes in the United States.

    Science.gov (United States)

    Kommalapati, Anuhya; Tella, Sri Harsha; Ganti, Apar Kishore; Armitage, James O

    2018-05-04

    Limited data are available regarding the incidence, survival patterns, and long-term outcomes of natural killer (NK)/T-cell neoplasms in the United States. We performed a retrospective study of patients with NK/T-cell neoplasms diagnosed from 2001 to 2014 using the Surveillance, Epidemiology, and End Results program database. The Kaplan-Meier method was used to estimate the overall survival difference among the subgroups. Multivariate analyses were used to determine the factors affecting survival. For the 797 patients with NK/T-cell lymphoma, nasal type, the median age at diagnosis was 53 years, and males tended to be younger at diagnosis (P < .0001). The incidence of the disease increased from 0.4 in 2001 to 0.8 in 2014 per 1,000,000 individuals. The incidence was significantly greater in Hispanic patients compared with that in non-Hispanic patients (rate ratio, 3.03; P = .0001). The median overall survival was 20 months (range, 2-73 months) and varied significantly according to the primary site (P < .0001) and the disease stage at diagnosis (P < .0001). NK/T-cell lymphoma patients had an increased risk of acute myeloid leukemia (standardized incidence ratio, 18.77; 95% confidence interval, 2.27-67.81). For the 105 NK/T-cell leukemia patients, the median age at diagnosis was 58 years (range, 4-95 years). The overall incidence of the disease was 0.09 per 1,000,000 individuals and was significantly greater in males (rate ratio, 0.41; P < .0001). Unlike NK/T-cell lymphoma, no racial disparities were found in the incidence. The median overall survival was 17 months (range, 0-36 months). The incidence of NK/T-cell lymphoma, nasal type, in the United States has at least doubled in the past decade, with the greatest predilection among Hispanics. Patients with NK/T-cell lymphoma might have an increased risk of the subsequent development of acute myeloid leukemia. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. BRD4 is associated with raccoon polyomavirus genome and mediates viral gene transcription and maintenance of a stem cell state in neuroglial tumour cells.

    Science.gov (United States)

    Church, Molly E; Estrada, Marko; Leutenegger, Christian M; Dela Cruz, Florante N; Pesavento, Patricia A; Woolard, Kevin D

    2016-11-01

    Polyomavirus infection often results in persistence of the viral genome with little or no virion production. However, infection of certain cell types can result in high viral gene transcription and either cytolysis or neoplastic transformation. While infection by polyomavirus is common in humans and many animals, major questions regarding viral persistence of most polyomaviruses remain unanswered. Specifically, identification of target cells for viral infection and the mechanisms polyomaviruses employ to maintain viral genomes within cells are important not only in ascribing causality to polyomaviruses in disease, but in understanding specific mechanisms by which they cause disease. Here, we characterize the cell of origin in raccoon polyomavirus (RacPyV)-associated neuroglial brain tumours as a neural stem cell. Moreover, we identify an association between the viral genome and the host cell bromodomain protein, BRD4, which is involved in numerous cellular functions, including cell cycle progression, differentiation of stem cells, tethering of persistent DNA viruses, and regulation of viral and host-cell gene transcription. We demonstrate that inhibition of BRD4 by the small molecule inhibitors (+)-JQ1 and IBET-151 (GSK1210151A) results in reduced RacPyV genome within cells in vitro, as well as significant reduction of viral gene transcripts LT and VP1, highlighting its importance in both maintenance of the viral genome and in driving oncogenic transformation by RacPyV. This work implicates BRD4 as a central protein involved in RacPyV neuroglial tumour cell proliferation and in the maintenance of a stem cell state.

  5. Effect of Molecular Packing and Charge Delocalization on the Nonradiative Recombination of Charge-Transfer States in Organic Solar Cells

    KAUST Repository

    Chen, Xiankai

    2016-09-05

    In organic solar cells, a major source of energy loss is attributed to nonradiative recombination from the interfacial charge transfer states to the ground state. By taking pentacene–C60 complexes as model donor–acceptor systems, a comprehensive theoretical understanding of how molecular packing and charge delocalization impact these nonradiative recombination rates at donor–acceptor interfaces is provided.

  6. A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Z.; Lin, J.M.; Huang, M.L.; Hao, S.C. [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, 362021 (China); Sato, T.; Yin, S. [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1-1 Katahira 2-Chome, Aoba-ku, Sendai 980-8577 (Japan); Wu, J.H.

    2007-11-19

    Using poly(acrylic acid)-poly(ethylene glycol) hybrid-absorbing liquid electrolyte, we prepare a novel thermosetting gel electrolyte (TSGE) with ionic conductivity of 6.12 mS cm{sup -1}. Based on the TSGE, a quasi-solid-state dye-sensitized solar cell with a good long-term stability and light-to-electricity conversion efficiency of 6.10 % is attained under AM 1.5 irradiation. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  7. Analysis of changes in energy and redox states in HepG2 hepatoma and C6 glioma cells upon exposure to cadmium

    International Nuclear Information System (INIS)

    Yang, M.S.; Yu, L.C.; Gupta, R.C.

    2004-01-01

    The energy and redox states of the HepG2 hepatoma and the C6 glioma cells were studied by quantifying the levels of ATP, ADP, AMP, GSH, and GSSG. These values were used to calculate the energy charge potential (ECP = [ATP + 0.5ADP]/TAN), total adenosine nucleotides (TAN = ATP + ADP + AMP), total glutathione (TG = [GSH + GSSG]/TAN), and the redox state (GSH/GSSG ratio). For comparison between cell types, the level of each energy metabolite (ATP, ADP, and AMP) was normalized against TAN of the respective cell. The results showed that ATP:ADP:AMP ratio was 0.76:0.11:0.13 for the HepG2 cells and 0.80:0.11:0.09 for the C6 glioma cells. ECP was 0.81 ± 0.01 and 0.85 ± 0.01 for the HepG2 and the C6 glioma cells, respectively. GSH/GSSG ratio was 2.66 ± 0.16 and 3.63 ± 0.48 for HepG2 and C6 glioma cells, respectively. TG was 3.2 ± 0.54 for the HepG2 cells and 2.43 ± 0.18 for the C6 glioma cells, indicating that the level of total glutathione is more than two to three times higher than the total energy metabolites in these cell lines. Following a 3-h incubation in medium containing different concentrations of Cd, there was a dose-dependent decrease in cell viability. The 3-h LC 50 for the HepG2 cells was 0.5 mM and that for the C6 glioma cells was 0.4 mM. Cellular TAN decreased with a decrease in cell viability. Upon careful analysis of the energy state, there was a significant increase in relative amount of ATP and decrease in ADP and AMP in both cells as Cd concentration increased from 0 to 0.1, 0.2, and 0.6 mM. However, ECP in both cell lines increased, which indicated that the level of high energy phosphate was adequate. There was also a significant increase in TG and a significant decrease in GSH/GSSG in the C6 glioma cells when cells were exposed to as low as 0.1 mM Cd, which suggested that the cellular redox state was compromised. The HepG2 cells, on the other hand, showed no significant change in both TG and GSH/GSSG level until Cd concentration reached 0.6 m

  8. Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh

    2006-07-31

    This report summarizes the work performed for Phase I (October 2001 - August 2006) under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled 'Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program'. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. During Phase I of the program significant progress has been made in the area of SOFC technology. A high-efficiency low-cost system was designed and supporting technology developed such as fuel processing, controls, thermal management, and power electronics. Phase I culminated in the successful demonstration of a prototype system that achieved a peak efficiency of 41%, a high-volume cost of $724/kW, a peak power of 5.4 kW, and a degradation rate of 1.8% per 500 hours. . An improved prototype system was designed, assembled, and delivered to DOE/NETL at the end of the program. This prototype achieved an extraordinary peak efficiency of 49.6%.

  9. Differentiation state determines neural effects on microvascular endothelial cells

    International Nuclear Information System (INIS)

    Muffley, Lara A.; Pan, Shin-Chen; Smith, Andria N.; Ga, Maricar; Hocking, Anne M.; Gibran, Nicole S.

    2012-01-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: ► Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. ► Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. ► Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. ► Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell production of nitric oxide. ► Neural progenitor cells and dorsal root

  10. State and Local Government Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Alexander; Rinebold, Joel; Aresta, Paul

    2012-03-30

    The State and Local Government Partnership project has built relationships between the Department of Energy (DOE), regional states, and municipalities. CCAT implemented this project using a structure that included leadership by the DOE. Outreach was undertaken through collaborative meetings, workshops, and briefings; the development of technical models and local energy plans; support for state stakeholder groups; and implementation of strategies to facilitate the deployment of hydrogen and fuel cell technologies. The final guidance documents provided to stakeholders consisted of individual strategic state “Roadmaps” to serve as development plans. These “Roadmaps” confirm economic impacts, identify deployment targets, and compare policies and incentives for facility development in each of the regional states. The partnerships developed through this project have improved the exchange of knowledge between state and local government stakeholders and is expected to increase the deployment of hydrogen and fuel cell technologies in early market applications, consistent with the DOE’s market transformation efforts. Technically accurate and objective information was, and continues to be, provided to improve public and stakeholder perceptions regarding the use of hydrogen and fuel cell technologies. Based on the “Roadmaps” and studies conducted for this project, there is the potential to generate approximately 10.75 million megawatt hours (MWh) of electricity annually from hydrogen and fuel cell technologies at potential host sites in the Northeast regional states, through the development of 1,364 to 1,818 megawatts (MW) of fuel cell electric generation capacity. Currently, the region has approximately 1,180 companies that are part of the growing hydrogen and fuel cell industry supply chain in the region. These companies are estimated to have over $1 billion in annual revenue and investment, contribute more than $51 million in annual state and local tax revenue

  11. Effect of informing the diagnosis on depressive state in patients with non-small cell lung cancer of stage Ⅲ

    Directory of Open Access Journals (Sweden)

    Wei WANG

    2008-10-01

    Full Text Available Background and objective As other tumors, unresectabe lung cancer can cause many psychological problems to the patients, such as depression and anxiety. The present paper aims to evaluate the status of depression before and after knowing the state of illness in patients with non-small cell lung cancer of stage Ⅲ. Methods 43 casesof newly diagnosed non-small cell lung cancer (NSCLC with stage Ⅲ were enrolled in the study. All the patients were distributed into three groups and given different intervention, that was completely unknowing the state of illness (group A, partly knowing the state of illness (group B and completely knowing the state of illness (group C. Before and after knowing the state of illness, the depression status was assessed with the Hamilton depression rating scale for depression(HAMD. Results The mean total score of HAMD was unchanged both in group A and C, while significantly reduced in group B. The scores of anxiety somatization, cognitive disorder, retardation and feeling of despair were all significant lower in the group B after the patients partly knowing the state of illness, while the scores of sleep disorder was obviously higher in group C after the patients completely knowing the state of illness. The hypochondriasis was much severer in the group A, and in the group C, the score of suicidal idea became significantly higher after the patient knowing the diagnosis.Conclusion Depression is very common in the NSCLC patients with stage Ⅲ. Partly knowing the state of illness can obviously ameliorate the symptoms of depression, while completely knowing or completely unknowing the state of illness have no effect on relieving the patients' depression.

  12. Solid state sodium cells. Faststof natriumbatterier

    Energy Technology Data Exchange (ETDEWEB)

    Skaarup, S.; West, K. [eds.

    1989-04-15

    The report describes the results from the project: ''Secondary Sodium Cells with Intercalation Electrodes'' which was financed by the Danish Department of Energy. The work was carried out by the Solid State Electrochemistry Group at the Technical University of Denmark which is formed by collaborators from the Institute of Physical Chemistry and Physics Laboratory III. The use of sodium has several advantages in theory compared to lithium systems: Sodium is much more abundant and lower priced than lithium, it may be easier to find solid electrolytes of sufficiently high conductivity, sodium forms no alloy with aluminium thereby making it possible to use this metal for current collectors instead of the costlier and heavier nickel. The softness of sodium metal may make it easier to achieve and maintain contact to other components in the battery during repeated cycling. This might be of importance for room temperature operation especially. Results from the project have primarily been published in the form of articles in international scientific journals and as contributions to monographs. Copies of these articles form the backbone of the report together with a short commentary to each article. Also included in the report are some general observations, as well as results that are unsuited for publication (e.g. unsuccessful experiments) but which may still contain relevant information for other experimental workers. Lastly, the report includes results on several intercalation compounds that will be published at a later stage as well as some details about the experimental equipment. The report is divided into three main sections, Intercalation Cathode Materials, Polymer Electrolytes and Battery Cycling Equipment. (AB).

  13. Cell cycle arrest and cell survival induce reverse trends of cardiolipin remodeling.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chao

    Full Text Available Cell survival from the arrested state can be a cause of the cancer recurrence. Transition from the arrest state to the growth state is highly regulated by mitochondrial activity, which is related to the lipid compositions of the mitochondrial membrane. Cardiolipin is a critical phospholipid for the mitochondrial integrity and functions. We examined the changes of cardiolipin species by LC-MS in the transition between cell cycle arrest and cell reviving in HT1080 fibrosarcoma cells. We have identified 41 cardiolipin species by MS/MS and semi-quantitated them to analyze the detailed changes of cardiolipin species. The mass spectra of cardiolipin with the same carbon number form an envelope, and the C64, C66, C68, C70 C72 and C74 envelopes in HT1080 cells show a normal distribution in the full scan mass spectrum. The cardiolipin quantity in a cell decreases while entering the cell cycle arrest, but maintains at a similar level through cell survival. While cells awakening from the arrested state and preparing itself for replication, the groups with short acyl chains, such as C64, C66 and C68 show a decrease of cardiolipin percentage, but the groups with long acyl chains, such as C70 and C72 display an increase of cardiolipin percentage. Interestingly, the trends of the cardiolipin species changes during the arresting state are completely opposite to cell growing state. Our results indicate that the cardiolipin species shift from the short chain to long chain cardiolipin during the transition from cell cycle arrest to cell progression.

  14. Design of State-of-the-art Flow Cells for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-29

    The worldwide energy demand is increasing every day and it necessitates rational and efficient usage of renewable energy. Undoubtedly, utilization of renewable energy can address various environmental challenges. However, all current renewable energy resources (wind, solar, and hydroelectric power) are intermittent and fluctuating in their nature that raises an important question of introducing effective energy storage solutions. Utilization of redox flow cells (RFCs) has recently been recognized as a viable technology for large-scale energy storage and, hence, is well suited for integrating renewable energy and balancing electricity grids. In brief, RFC is an electrochemical storage device (Fig. 1), where energy is stored in chemical bonds, similar to a battery, but with reactants external to the cell. The state-of-the-art in flow cell technology uses an aqueous acidic electrolyte and simple metal redox couples. Several of these systems have been commercialized although current technologies, such as vanadium (V) and zinc-bromine (Zn-Br2) RFCs, for grid level energy storage, suffer from a number of drawbacks, i.e. expensive and resource-limited active materials (vanadium RFCc), and low current performance (Zn-Br2 RFCs due to Zn dendrite formation). Thus, there is an urgent call to develop efficient (high-energy density) and low-cost RFCs to meet the efflorescent energy storage demands. Approach: To address the first challenge of achieving high-energy density, we plan to design and further modify complexes composed of bifunctional multidentate ligands and specific metal centers, capable of storing as many electrons as possible.

  15. Tail state-assisted charge injection and recombination at the electron-collecting interface of P3HT:PCBM bulk-heterojunction polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, He [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 (United States); Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 (United States); Shah, Manas [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ganesan, Venkat [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Chabinyc, Michael L. [Materials Department, University of California Santa Barbara, CA 93106 (United States); Loo, Yueh-Lin [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2012-12-15

    The systematic insertion of thin films of P3HT and PCBM at the electron- and hole-collecting interfaces, respectively, in bulk-heterojunction polymer solar cells results in different extents of reduction in device characteristics, with the insertion of P3HT at the electron-collecting interface being less disruptive to the output currents compared to the insertion of PCBM at the hole-collecting interface. This asymmetry is attributed to differences in the tail state-assisted charge injection and recombination at the active layer-electrode interfaces. P3HT exhibits a higher density of tail states compared to PCBM; holes in these tail states can thus easily recombine with electrons at the electron-collection interface during device operation. This process is subsequently compensated by the injection of holes from the cathode into these tail states, which collectively enables net current flow through the polymer solar cell. The study presented herein thus provides a plausible explanation for why preferential segregation of P3HT to the cathode interface is inconsequential to device characteristics in P3HT:PCBM bulk-heterojunction solar cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Dynamics of von Willebrand factor reactivity in sickle cell disease during vaso-occlusive crisis and steady state

    NARCIS (Netherlands)

    Sins, J. W.R.; Schimmel, Marein; Luken, Brenda M.; Nur, Erfan; Zeerleder, S.; van Tuijn, Charlotte F. J.; Brandjes, Dees P. M.; Kopatz, W. F.; Urbanus, R. T.; Meijers, Joost C. M.; Biemond, B. J.; Fijnvandraat, K.

    2017-01-01

    Essentials The role of von Willebrand Factor (VWF) in the pathophysiology of sickle cell disease is unclear. We assessed markers of VWF during admission for vaso-occlusive crisis (VOC) and steady state. VWF reactivity was higher during VOC and was associated with inflammation and neutrophil

  17. Theoretical analysis and simulation study of low-power CMOS electrochemical impedance spectroscopy biosensor in 55 nm deeply depleted channel technology for cell-state monitoring

    Science.gov (United States)

    Itakura, Keisuke; Kayano, Keisuke; Nakazato, Kazuo; Niitsu, Kiichi

    2018-01-01

    We present an impedance-detection complementary metal oxide semiconductor (CMOS) biosensor circuit for cell-state observation. The proposed biosensor can measure the expected impedance values encountered by a cell-state observation measurement system within a 0.1-200 MHz frequency range. The proposed device is capable of monitoring the intracellular conditions necessary for real-time cell-state observation, and can be fabricated using a 55 nm deeply depleted channel CMOS process. Operation of the biosensor circuit with 0.9 and 1.7 V supply voltages is verified via a simulated program with integrated circuit emphasis (SPICE) simulation. The power consumption is 300 µW. Further, the standby power consumption is 290 µW, indicating that this biosensor is a low-power instrument suitable for use in Internet of Things (IoT) devices.

  18. Homeostatic NF-κB Signaling in Steady-State Migratory Dendritic Cells Regulates Immune Homeostasis and Tolerance.

    Science.gov (United States)

    Baratin, Myriam; Foray, Chloe; Demaria, Olivier; Habbeddine, Mohamed; Pollet, Emeline; Maurizio, Julien; Verthuy, Christophe; Davanture, Suzel; Azukizawa, Hiroaki; Flores-Langarica, Adriana; Dalod, Marc; Lawrence, Toby

    2015-04-21

    Migratory non-lymphoid tissue dendritic cells (NLT-DCs) transport antigens to lymph nodes (LNs) and are required for protective immune responses in the context of inflammation and to promote tolerance to self-antigens in steady-state. However, the molecular mechanisms that elicit steady-state NLT-DC maturation and migration are unknown. By comparing the transcriptome of NLT-DCs in the skin with their migratory counterparts in draining LNs, we have identified a novel NF-κB-regulated gene network specific to migratory DCs. We show that targeted deletion of IKKβ in DCs, a major activator of NF-κB, prevents NLT-DC accumulation in LNs and compromises regulatory T cell conversion in vivo. This was associated with impaired tolerance and autoimmunity. NF-κB is generally considered the prototypical pro-inflammatory transcription factor, but this study describes a role for NF-κB signaling in DCs for immune homeostasis and tolerance that could have implications in autoimmune diseases and immunity. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Finite state projection based bounds to compare chemical master equation models using single-cell data

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Zachary [School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Neuert, Gregor [Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 (United States); Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232 (United States); Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee 37232 (United States); Munsky, Brian [School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)

    2016-08-21

    Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort. In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.

  20. Study of Surface States at the Semiconductor/electrolyte Interface of Liquid-Junction Solar Cells.

    Science.gov (United States)

    Siripala, Withana P.

    The existence of surface states at the semiconductor electrolyte interface of photoelectrochemical (PEC) cells plays a major role in determining the performance of the device in regard to the potential distribution and transport mechanisms of photogenerated carriers at the interface. We have investigated the n-TiO(,2)/electrolyte interface using three experimental techniques: relaxation spectrum analysis, photocurrent spectroscopy, and electrolyte electroreflectance (EER) spectroscopy. The effect of Fermi level pinning at the CdIn(,2)SE(,4)/aqueous-polysulfide interface was also studied using EER. Three distinct surface states were observed at the n-TiO(,2)/aqueous-electrolyte interface. The dominant state, which tails from the conduction band edge, is primarily responsible for the surface recombination of photocarriers at the interface. The second surface state, observed at 0.8 eV below the conduction band of TiO(,2), originates in the dark charge transfer intermediates (TiO(,2)-H). It is proposed that the sub-bandgap (SBG) photocurrent-potential behavior is a result of the mechanism of dynamic formation and annihilation of these surface states. The third surface state was at 1.3 eV below the conduction band of TiO(,2), and the SBG EER measurements show this state is "intrinsic" to the surface. These states were detected with SBG EER and impedance measurements in the presence of electrolytes that can adsorb on the surface of TiO(,2). Surface concentration of these states was evaluated with impedance measurements. EER measurements on a CdIn(,2)Se(,4)/polysulfide system have shown that the EER spectrum is sensitive to the surface preparation of the sample. The EER signal was quenched as the surface was driven to strong depletion, owing to Fermi level pinning at the interface in the presence of a high density of surface states. The full analysis of this effect enables us to measure the change in the flatband potential, as a function of the electrode potential, and

  1. Patterns of oriented cell division during the steady-state morphogenesis of the body column in hydra.

    Science.gov (United States)

    Shimizu, H; Bode, P M; Bode, H R

    1995-12-01

    In an adult hydra, the tissue of the body column is in a dynamic state. The epithelial cells of both layers are constantly in the mitotic cycle. As the tissue expands, it is continuously displaced along the body axis in either an apical or basal direction, but not in a circumferential direction. Using a modified whole mount method we examined the orientation of mitotic spindles to determine what role the direction of cell division plays in axial displacement. Surprisingly, the direction of cell division was found to differ in the two epithelial layers. In the ectoderm it was somewhat biased in an axial direction. In the endoderm it was strongly biased in a circumferential direction. For both layers, the directional biases occurred throughout the length of the body column, with some regional variation in its extent. As buds developed into adults, the bias in each layer increased from an almost random distribution to the distinctly different orientations of the adult. Thus, to maintain the observed axial direction of tissue displacement, rearrangement of the epithelial cells of both layers must occur continuously in the adult as well as in developing animals. How the locomotory and contractile behavior of the muscle processes of the epithelial cells may effect changes in cell shape, and thereby influence the direction of cell division in each layer, is discussed.

  2. Ground and excited state properties of high performance anthocyanidin dyes-sensitized solar cells in the basic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Prima, Eka Cahya [Advanced Functional Material Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); International Program on Science Education, Universitas Pendidikan Indonesia (Indonesia); Yuliarto, Brian; Suyatman, E-mail: yatman@tf.itb.ac.id [Advanced Functional Material Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); Dipojono, Hermawan Kresno [Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia)

    2015-09-30

    The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. The results prove that the electronic properties represented by dyes’ LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of −1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell.

  3. Cell growth state determines susceptibility of repair DNA synthesis to inhibition by hydroxyurea and 1-beta-D-arabinofuranosylcytosine

    International Nuclear Information System (INIS)

    Mullinger, A.M.; Collins, A.R.; Johnson, R.T.

    1983-01-01

    The effects of inhibitors of replicative DNA synthesis on repair DNA synthesis have been examined by autoradiography in several different cell types and in cells in different growth states. Hydroxyurea (HU) and 1-beta-D-arabinofuranosylcytosine (ara C), administered together, influence unscheduled DNA synthesis (UDS) in a manner which is independent of the status of the cell culture (normal or transformed) and of the species, but which is strongly affected by whether the cells are proliferating or quiescent. In proliferating human, Chinese hamster and Microtus cell cultures, UDS is not inhibited by HU and ara C, and may even appear to be stimulated. In quiescent cultures of these cells UDS is reduced by HU and ara C. In cells reseeded from a confluent culture and followed during proliferation and back to quiescence the effect of inhibitors parallels the growth pattern. The results are interpreted in terms of changes in the sizes of endogenous DNA precursor pools; they underline the potential problems associated with quantitating UDS in the presence of inhibitors

  4. State of the science of blood cell labeling

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Straub, R.F.

    1989-01-01

    Blood cell labeling can be considered a science in as far as it is based on precise knowledge and can be readily reproduced. This benchmark criterion is applied to all current cell labeling modalities and their relative merits and deficiencies are discussed. Mechanisms are given where they are known as well as labeling yields, label stability, and cell functionality. The focus is on the methodology and its suitability to the clinical setting rather than on clinical applications per se. Clinical results are cited only as proof of efficacy of the various methods. The emphasis is on technetium as the cell label, although comparisons are made between technetium and indium, and all blood cells are covered. 52 refs., 6 figs., 7 tabs

  5. Performance analysis of three-dimensional-triple-level cell and two-dimensional-multi-level cell NAND flash hybrid solid-state drives

    Science.gov (United States)

    Sakaki, Yukiya; Yamada, Tomoaki; Matsui, Chihiro; Yamaga, Yusuke; Takeuchi, Ken

    2018-04-01

    In order to improve performance of solid-state drives (SSDs), hybrid SSDs have been proposed. Hybrid SSDs consist of more than two types of NAND flash memories or NAND flash memories and storage-class memories (SCMs). However, the cost of hybrid SSDs adopting SCMs is more expensive than that of NAND flash only SSDs because of the high bit cost of SCMs. This paper proposes unique hybrid SSDs with two-dimensional (2D) horizontal multi-level cell (MLC)/three-dimensional (3D) vertical triple-level cell (TLC) NAND flash memories to achieve higher cost-performance. The 2D-MLC/3D-TLC hybrid SSD achieves up to 31% higher performance than the conventional 2D-MLC/2D-TLC hybrid SSD. The factors of different performance between the proposed hybrid SSD and the conventional hybrid SSD are analyzed by changing its block size, read/write/erase latencies, and write unit of 3D-TLC NAND flash memory, by means of a transaction-level modeling simulator.

  6. Progress in human embryonic stem cell research in the United States between 2001 and 2010.

    Directory of Open Access Journals (Sweden)

    Keyvan Vakili

    Full Text Available On August 9th, 2001, the federal government of the United States announced a policy restricting federal funds available for research on human embryonic stem cell (hESCs out of concern for the "vast ethical mine fields" associated with the creation of embryos for research purposes. Until the policy was repealed on March 9th, 2009, no U.S. federal funds were available for research on hESCs extracted after August 9, 2001, and only limited federal funds were available for research on a subset of hESC lines that had previously been extracted. This paper analyzes how the 2001 U.S. federal funding restrictions influenced the quantity and geography of peer-reviewed journal publications on hESC. The primary finding is that the 2001 policy did not have a significant aggregate effect on hESC research in the U.S. After a brief lag in early 2000s, U.S. hESC research maintained pace with other areas of stem cell and genetic research. The policy had several other consequences. First, it was tied to increased hESC research funding within the U.S. at the state level, leading to concentration of related activities in a relatively small number of states. Second, it stimulated increased collaborative research between US-based scientists and those in countries with flexible policies toward hESC research (including Canada, the U.K., Israel, China, Spain, and South Korea. Third, it encouraged independent hESC research in countries without restrictions.

  7. Solid-state ZnS quantum dot-sensitized solar cell fabricated by the Dip-SILAR technique

    International Nuclear Information System (INIS)

    Mehrabian, M; Mirabbaszadeh, K; Afarideh, H

    2014-01-01

    Solid-state quantum dot sensitized solar cells (QDSSCs) were fabricated with zinc sulfide quantum dots (ZnS QDs), which served as the light absorber and the recombination blocking layer simultaneously. ZnS QDs were prepared successfully by a novel successive ionic layer adsorption and reaction technique based on dip-coating (Dip-SILAR). The dependences of the photovoltaic parameters on the number of SILAR cycles (n) were investigated. The cell with n = 6 (particle average size ∼9 nm) showed an energy conversion efficiency of 2.72% under the illumination of one sun (AM 1.5, 100 mW cm −2 ). Here we investigate also the cohesion between ZnS QDs and ZnO film to obtain a well-covering QD layer. (paper)

  8. State-of-Charge Estimation and Active Cell Pack Balancing Design of Lithium Battery Power System for Smart Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Z. C. Gao

    2017-01-01

    Full Text Available This paper presents an integrated state-of-charge (SOC estimation model and active cell balancing of a 12-cell lithium iron phosphate (LiFePO4 battery power system. The strong tracking cubature extended Kalman filter (STCEKF gave an accurate SOC prediction compared to other Kalman-based filter algorithms. The proposed groupwise balancing of the multiple SOC exhibited a higher balancing speed and lower balancing loss than other cell balancing designs. The experimental results demonstrated the robustness and performance of the battery when subjected to current load profile of an electric vehicle under varying ambient temperature.

  9. Lycopene inhibits ICAM-1 expression and NF-κB activation by Nrf2-regulated cell redox state in human retinal pigment epithelial cells.

    Science.gov (United States)

    Yang, Po-Min; Wu, Zhi-Zhen; Zhang, Yu-Qi; Wung, Being-Sun

    2016-06-15

    Age-related macular degeneration (AMD) is one of the most common diseases leading to blindness in elderly people. The progression of AMD may be prevented through anti-inflammation and antioxidation in retinal pigment epithelium (RPE) cells. Lycopene, a carotenoid, has been shown to possess both antioxidative and anti-inflammatory properties. This research was conducted to detail the mechanisms of these effects of lycopene-treated RPE cells. We exposed ARPE-19 cells to TNFα after pretreatment with lycopene, and measured monocyte adhesion, ICAM-1 expression, NF-κB nuclear translocation, and transcriptional activity. Cell viability was assayed with Alamar Blue. The cell redox state was tested by glutathione (GSH) and reactive oxygen species (ROS) levels. The importance of the Nrf2 pathway was tested in nuclear translocation, promoter reporter assay, and siRNA. Lycopene could reduce TNF-α-induced monocyte adhesion and H2O2- induced cell damage in RPE cells. Furthermore, lycopene inhibits ICAM-1 expression and abolishes NF-κB activation for up to 12h in TNFα-treated RPE cells. Lycopene upregulates Nrf2 levels in nuclear extracts and increases the transactivity of antioxidant response elements. The use of Nrf2 siRNA blocks the inhibitory effect of lycopene in TNF-α-induced ICAM-1 expression and NF-κB activation. Glutamate-cysteine ligase (GCL) is the rate-limiting enzyme in the de novo synthesis of GSH. We found that lycopene increases intracellular GSH levels and GCL expression. Following lycopene treatment, TNF-α-induced ROS production was abolished. The Nrf2-regulated antioxidant property plays a pivotal role in the anti-inflammatory mechanism underlying the inhibition of NF-κB activation in lycopene-treated ARPE-19 cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Manufacture of endothelial colony-forming progenitor cells from steady-state peripheral blood leukapheresis using pooled human platelet lysate.

    Science.gov (United States)

    Siegel, Georg; Fleck, Erika; Elser, Stefanie; Hermanutz-Klein, Ursula; Waidmann, Marc; Northoff, Hinnak; Seifried, Erhard; Schäfer, Richard

    2018-05-01

    Endothelial colony-forming progenitor cells (ECFCs) are promising candidates for cell therapies. However, ECFC translation to the clinic requires optimized isolation and manufacture technologies according to good manufacturing practice (GMP). ECFCs were manufactured from steady-state peripheral blood (PB) leukapheresis (11 donors), using GMP-compliant technologies including pooled human platelet (PLT) lysate, and compared to human umbilical cord endothelial cells, human aortic endothelial cells, and human cerebral microvascular endothelial cells. Specific variables assessed were growth kinetics, phenotype, trophic factors production, stimulation of tube formation, and Dil-AcLDL uptake. ECFCs could be isolated from PB leukapheresis units with mean processed volume of 5411 mL and mean white blood cell (WBC) concentration factor of 8.74. The mean frequency was 1.44 × 10 -8 ECFCs per WBC, corresponding to a mean of 177.8 ECFCs per apheresis unit. Expandable for up to 12 cumulative population doublings, calculated projection showed that approximately 730 × 10 3 ECFCs could be manufactured from 1 apheresis unit. ECFCs produced epidermal growth factor, hepatocyte growth factor, vascular endothelial growth factor (VEGF)-A, PLT-derived growth factor-B, interleukin-8, and monocyte chemoattractant protein-1, featured high potential for capillary-like tubes formation, and showed no telomerase activity. They were characterized by CD29, CD31, CD44, CD105, CD117, CD133, CD144, CD146, and VEGF-R2 expression, with the most common subpopulation CD34+CD117-CD133-. Compared to controls, ECFCs featured greater Dil-AcLDL uptake and higher expression of CD29, CD31, CD34, CD44, CD144, and VEGF-R2. Here we show that isolation of ECFCs with proangiogenic profile from steady-state PB leukapheresis is feasible, marking a first step toward ECFC product manufacture according to GMP. © 2018 AABB.

  11. RelB+ Steady-State Migratory Dendritic Cells Control the Peripheral Pool of the Natural Foxp3+ Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Anja Döhler

    2017-06-01

    Full Text Available Thymus-derived natural Foxp3+ CD4+ regulatory T cells (nTregs play a key role in maintaining immune tolerance and preventing autoimmune disease. Several studies indicate that dendritic cells (DCs are critically involved in the maintenance and proliferation of nTregs. However, the mechanisms how DCs manage to keep the peripheral pool at constant levels remain poorly understood. Here, we describe that the NF-κB/Rel family transcription factor RelB controls the frequencies of steady-state migratory DCs (ssmDCs in peripheral lymph nodes and their numbers control peripheral nTreg homeostasis. DC-specific RelB depletion was investigated in CD11c-Cre × RelBfl/fl mice (RelBDCko, which showed normal frequencies of resident DCs in lymph nodes and spleen while the subsets of CD103− Langerin− dermal DCs (dDCs and Langerhans cells but not CD103+ Langerin+ dDC of the ssmDCs in skin-draining lymph nodes were increased. Enhanced frequencies and proliferation rates were also observed for nTregs and a small population of CD4+ CD44high CD25low memory-like T cells (Tml. Interestingly, only the Tml but not DCs showed an increase in IL-2-producing capacity in lymph nodes of RelBDCko mice. Blocking of IL-2 in vivo reduced the frequency of nTregs but increased the Tml frequencies, followed by a recovery of nTregs. Taken together, by employing RelBDCko mice with increased frequencies of ssmDCs our data indicate a critical role for specific ssmDC subsets for the peripheral nTreg and IL-2+ Tml frequencies during homeostasis.

  12. Identification of aquatically available carbon from algae through solution-state NMR of whole (13)C-labelled cells.

    Science.gov (United States)

    Akhter, Mohammad; Dutta Majumdar, Rudraksha; Fortier-McGill, Blythe; Soong, Ronald; Liaghati-Mobarhan, Yalda; Simpson, Myrna; Arhonditsis, George; Schmidt, Sebastian; Heumann, Hermann; Simpson, André J

    2016-06-01

    Green algae and cyanobacteria are primary producers with profound impact on food web functioning. Both represent key carbon sources and sinks in the aquatic environment, helping modulate the dissolved organic matter balance and representing a potential biofuel source. Underlying the impact of algae and cyanobacteria on an ecosystem level is their molecular composition. Herein, intact (13)C-labelled whole cell suspensions of Chlamydomonas reinhardtii, Chlorella vulgaris and Synechocystis were studied using a variety of 1D and 2D (1)H/(13)C solution-state nuclear magnetic resonance (NMR) spectroscopic experiments. Solution-state NMR spectroscopy of whole cell suspensions is particularly relevant as it identifies species that are mobile (dissolved or dynamic gels), 'aquatically available' and directly contribute to the aquatic carbon pool upon lysis, death or become a readily available food source on consumption. In this study, a wide range of metabolites and structural components were identified within the whole cell suspensions. In addition, significant differences in the lipid/triacylglyceride (TAG) content of green algae and cyanobacteria were confirmed. Mobile species in algae are quite different from those in abundance in 'classic' dissolved organic matter (DOM) indicating that if algae are major contributors to DOM, considerable selective preservation of minor components (e.g. sterols) or biotransformation would have to occur. Identifying the metabolites and dissolved components within algal cells by NMR permits future studies of carbon transfer between species and through the food chain, whilst providing a foundation to better understand the role of algae in the formation of DOM and the sequestration/transformation of carbon in aquatic environments.

  13. Final Scientifc Report - Hydrogen Education State Partnership Project

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Warren

    2012-02-03

    Under the leadership of the Department of Energy Hydrogen and Fuel Cells program, Clean Energy States Alliance (CESA) educated and worked with state leaders to encourage wider deployment of fuel cell and hydrogen technologies. Through outreach to state policymakers, legislative leaders, clean energy funds, energy agencies, and public utility commissions, CESA worked to accomplish the following objectives of this project: 1. Provide information and technical assistance to state policy leaders and state renewable energy programs in the development of effective hydrogen fuel cell programs. 2. Identify and foster hydrogen program best practices. 3. Identify and promote strategic opportunities for states and the Department of Energy (DOE) to advance hydrogen technology deployment through partnerships, collaboration, and targeted activities. Over the three years of this project, CESA, with our partner National Conference of State Legislatures (NCSL), was able to provide credible information on fuel cell policies, finance, and technical assistance to hundreds of state officials and other stakeholders. CESA worked with its membership network to effectively educate state clean energy policymakers, program managers, and decision makers about fuel cell and hydrogen technologies and the efforts by states to advance those technologies. With the assistance of NCSL, CESA gained access to an effective forum for outreach and communication with state legislators from all 50 states on hydrogen issues and policies. This project worked to educate policymakers and stakeholders with the potential to develop and deploy stationary and portable fuel cell technologies.

  14. Pathophysiological hypoxia affects the redox state and IL-2 signalling of human CD4+ T cells and concomitantly impairs survival and proliferation.

    Science.gov (United States)

    Gaber, Timo; Tran, Cam Loan; Schellmann, Saskia; Hahne, Martin; Strehl, Cindy; Hoff, Paula; Radbruch, Andreas; Burmester, Gerd-Rüdiger; Buttgereit, Frank

    2013-06-01

    Inflamed areas are characterized by infiltration of immune cells, local hypoxia and alterations of cellular redox states. We investigated the impact of hypoxia on survival, proliferation, cytokine secretion, intracellular energy and redox state of human CD4(+) T cells. We found that pathophysiological hypoxia (<2% O2 ) significantly decreased CD4(+) T-cell survival after mitogenic stimulation. This effect was not due to an increased caspase-3/7-mediated apoptosis or adenosine-5'-triphosphate (ATP) consumption/depletion. However, the ability of stimulated T cells to proliferate was reduced under hypoxic conditions, despite increased expression of CD25. Pathophysiological hypoxia was also found to modify intracellular ROS (iROS) levels in stimulated T cells over time as compared with levels found in normoxia. Physiological hypoxia (5% O2 ) did not decrease CD4(+) T-cell survival and proliferation or modify iROS levels as compared with normoxia. We conclude that pathophysiological hypoxia affects T-cell proliferation and viability via disturbed IL-2R signalling downstream of STAT5a phosphorylation, but not as a result of impaired cellular energy homeostasis. We suggest iROS links early events in T-cell stimulation to the inhibition of the lymphoproliferative response under pathophysiological hypoxic conditions. The level of iROS may therefore act as a mediator of immune functions leading to down-regulation of long-term T-cell activity in inflamed tissues. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Newborn blood spot screening for sickle cell disease by using tandem mass spectrometry: implementation of a protocol to identify only the disease states of sickle cell disease.

    Science.gov (United States)

    Moat, Stuart J; Rees, Derek; King, Lawrence; Ifederu, Adeboye; Harvey, Katie; Hall, Kate; Lloyd, Geoff; Morrell, Christine; Hillier, Sharon

    2014-02-01

    The currently recommended technologies of HPLC and isoelectric focusing for newborn blood spot screening for sickle cell disease (SCD) identify both the disease and carrier states, resulting in large numbers of infants being followed up unnecessarily. Analysis of blood spot tryptic peptides performed by using tandem mass spectrometry (MS/MS) is an alternative technology to detect hemoglobin (Hb) variant disorders. We analyzed 2154 residual newborn blood spots and 675 newborn blood spots from infants with Hb variants by using MS/MS after trypsin digestion. Screening cutoffs were developed by using the ratio between the variant peptide-to-wild-type peptide abundance for HbS, C, D(Punjab), O(Arab), Lepore, and E peptides. A postanalytical data analysis protocol was developed using these cutoffs to detect only the disease states of SCD and not to identify carrier states. A parallel study of 13 249 newborn blood spots from a high-prevalence SCD area were analyzed by both MS/MS and HPLC. Screening cutoffs developed distinguished the infants with the disease states of SCD, infants who were carriers of SCD, and infants with normal Hb. In the parallel study no false-negative results were identified, and all clinically relevant cases were correctly identified using the MS/MS protocol. Unblinding the data revealed a total of 328 carrier infants that were successfully excluded by the protocol. The screening protocol developed correctly identified infants with the disease states of SCD. Furthermore, large numbers of sickle cell carrier infants were successfully not identified, thereby avoiding unnecessary follow-up testing and referral for genetic counseling.

  16. Interfacial charge recombination via the triplet state? Mimicry of photoprotection in the photosynthetic process with a dye-sensitized TiO 2 solar cell reaction

    Science.gov (United States)

    Weng, Yu-Xiang; Li, Long; Liu, Yin; Wang, Li; Yang, Guo-Zhen; Sheng, Jian-Qun

    2002-04-01

    Evidence for the photoinduced charge recombination to the excited-triplet state has been observed in chemical solar cell reaction consisting of dye-sensitized TiO 2 colloidal ethanol solution, which mimicks the photoprotection function in the photosynthetic units. The dye is all -trans-retinoic acid, a structural analog of β-carotenoid. Two channels of charge recombination, i.e., through triplet and ground states were observed by nano-second flash photolysis. The possibility of applying the function of photoprotection to the synthetic solar cell is discussed, which provides a potential entry of molecular engineering of the dye to improve the long term stability of the synthetic solar cell.

  17. Synthesis of POSS-based ionic conductors with low glass transition temperatures for efficient solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Zhang, Wei; Wang, Zhong-Sheng

    2014-07-09

    Replacing liquid-state electrolytes with solid-state electrolytes has been proven to be an effective way to improve the durability of dye-sensitized solar cells (DSSCs). We report herein the synthesis of amorphous ionic conductors based on polyhedral oligomeric silsesquioxane (POSS) with low glass transition temperatures for solid-state DSSCs. As the ionic conductor is amorphous and in the elastomeric state at the operating temperature of DSSCs, good pore filling in the TiO2 film and good interfacial contact between the solid-state electrolyte and the TiO2 film can be guaranteed. When the POSS-based ionic conductor containing an allyl group is doped with only iodine as the solid-state electrolyte without any other additives, power conversion efficiency of 6.29% has been achieved with good long-term stability under one-sun soaking for 1000 h.

  18. Licensed pertussis vaccines in the United States: History and current state

    OpenAIRE

    Klein, Nicola P

    2014-01-01

    The United States switched from whole cell to acellular pertussis vaccines in the 1990s following global concerns with the safety of the whole cell vaccines. Despite high levels of acellular pertussis vaccine coverage, the United States and other countries are experiencing large pertussis outbreaks. The aim of this article is to describe the historical context which led to acellular pertussis vaccine development, focusing on vaccines currently licensed in the US, and to review evidence that w...

  19. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR

    Science.gov (United States)

    Romaniuk, Joseph A. H.; Cegelski, Lynette

    2015-01-01

    The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms. PMID:26370936

  20. Atomic Layer Deposition of CdS Quantum Dots for Solid-State Quantum Dot Sensitized Solar Cells

    KAUST Repository

    Brennan, Thomas P.; Ardalan, Pendar; Lee, Han-Bo-Ram; Bakke, Jonathan R.; Ding, I-Kang; McGehee, Michael D.; Bent, Stacey F.

    2011-01-01

    Functioning quantum dot (QD) sensitized solar cells have been fabricated using the vacuum deposition technique atomic layer deposition (ALD). Utilizing the incubation period of CdS growth by ALD on TiO 2, we are able to grow QDs of adjustable size which act as sensitizers for solid-state QDsensitized solar cells (ssQDSSC). The size of QDs, studied with transmission electron microscopy (TEM), varied with the number of ALD cycles from 1-10 nm. Photovoltaic devices with the QDs were fabricated and characterized using a ssQDSSC device architecture with 2,2',7,7'-tetrakis-(N,N-di-p methoxyphenylamine) 9,9'-spirobifluorene (spiro-OMeTAD) as the solid-state hole conductor. The ALD approach described here can be applied to fabrication of quantum-confined structures for a variety of applications, including solar electricity and solar fuels. Because ALD provides the ability to deposit many materials in very high aspect ratio substrates, this work introduces a strategy by which material and optical properties of QD sensitizers may be adjusted not only by the size of the particles but also in the future by the composition. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Atomic Layer Deposition of CdS Quantum Dots for Solid-State Quantum Dot Sensitized Solar Cells

    KAUST Repository

    Brennan, Thomas P.

    2011-10-04

    Functioning quantum dot (QD) sensitized solar cells have been fabricated using the vacuum deposition technique atomic layer deposition (ALD). Utilizing the incubation period of CdS growth by ALD on TiO 2, we are able to grow QDs of adjustable size which act as sensitizers for solid-state QDsensitized solar cells (ssQDSSC). The size of QDs, studied with transmission electron microscopy (TEM), varied with the number of ALD cycles from 1-10 nm. Photovoltaic devices with the QDs were fabricated and characterized using a ssQDSSC device architecture with 2,2\\',7,7\\'-tetrakis-(N,N-di-p methoxyphenylamine) 9,9\\'-spirobifluorene (spiro-OMeTAD) as the solid-state hole conductor. The ALD approach described here can be applied to fabrication of quantum-confined structures for a variety of applications, including solar electricity and solar fuels. Because ALD provides the ability to deposit many materials in very high aspect ratio substrates, this work introduces a strategy by which material and optical properties of QD sensitizers may be adjusted not only by the size of the particles but also in the future by the composition. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Biogovernance Beyond the State: The Shaping of Stem Cell Therapy by Patient Organizations in India.

    Science.gov (United States)

    Heitmeyer, Carolyn

    2017-04-01

    Public engagement through government-sponsored "public consultations" in biomedical innovation, specifically stem cell research and therapy, has been relatively limited in India. However, patient groups are drawing upon collaborations with medical practitioners to gain leverage in promoting biomedical research and the conditions under which patients can access experimental treatments. Based on qualitative fieldwork conducted between 2012 and 2015, I examine the ways in which two patient groups engaged with debates around how experimental stem cell therapy should be regulated, given the current lack of legally binding research guidelines. Such processes of engagement can be seen as an alternative form of biomedical governance which responds to the priorities and exigencies of Indian patients, contrasting with the current measures taken by the Indian state which, instead, are primarily directed at the global scientific and corporate world.

  3. Deliberative Democracy and stem cell research in New York State: the good, the bad, and the ugly.

    Science.gov (United States)

    Sulmasy, Daniel P

    2009-03-01

    Many states in the U.S. have adopted policies regarding human embryonic stem cell (hESC) research in the last few years. Some have arrived at these policies through legislative debate, some by referendum, and some by executive order. New York has chosen a unique structure for addressing policy decisions regarding this morally controversial issue by creating the Empire State Stem Cell Board with two Committees--an Ethics Committee and a Funding Committee. This essay explores the pros and cons of various policy arrangements for making public policy decisions about morally controversial issues in bioethics (as well as other issues) through the lens of Deliberative Democracy, focusing on the principles of reciprocity, publicity, and accountability. Although New York's unique mechanism potentially offers an opportunity to make policy decisions regarding a morally controversial subject like hESC research in accord with the principles of Deliberative Democracy, this essay demonstrates its failure to do so in actual fact. A few relatively simple changes could make New York's program a real model for putting Deliberative Democracy into practice in making policy decisions regarding controversial bioethical issues.

  4. Nanostructured TiO2 microspheres for dye-sensitized solar cells employing a solid state polymer electrolyte

    International Nuclear Information System (INIS)

    Jung, Hun-Gi; Nagarajan, Srinivasan; Kang, Yong Soo; Sun, Yang-Kook

    2013-01-01

    Bimodal mesoporous, anatase TiO 2 microspheres with particle sizes ranging from 0.3 to 2 μm were synthesized using a facile solvothermal method. The photovoltaic performance of TiO 2 microspheres in dye-sensitized solar cells (DSSCs) using a solid state electrolyte was investigated. The solid state electrolyte DSSC device based on the TiO 2 microspheres exhibits an energy conversion efficiency of 4.2%, which is greater than that of commercial P25 TiO 2 (3.6%). The higher photocurrent density was primarily achieved as a result of the greater specific surface area and pore size, which resulted in an increase in the dye uptake of the TiO 2 microspheres and easy transport of solid electrolyte through mesopores. In addition, the greater electron lifetime and superior light scattering ability also enhanced the photovoltaic performance of the TiO 2 microsphere-based, solid state DSSCs

  5. Cell transformation assays for prediction of carcinogenic potential: state of the science and future research needs

    Science.gov (United States)

    Creton, Stuart; Aardema, Marilyn J.; Carmichael, Paul L.; Harvey, James S.; Martin, Francis L.; Newbold, Robert F.; O’Donovan, Michael R.; Pant, Kamala; Poth, Albrecht; Sakai, Ayako; Sasaki, Kiyoshi; Scott, Andrew D.; Schechtman, Leonard M.; Shen, Rhine R.; Tanaka, Noriho; Yasaei, Hemad

    2012-01-01

    Cell transformation assays (CTAs) have long been proposed as in vitro methods for the identification of potential chemical carcinogens. Despite showing good correlation with rodent bioassay data, concerns over the subjective nature of using morphological criteria for identifying transformed cells and a lack of understanding of the mechanistic basis of the assays has limited their acceptance for regulatory purposes. However, recent drivers to find alternative carcinogenicity assessment methodologies, such as the Seventh Amendment to the EU Cosmetics Directive, have fuelled renewed interest in CTAs. Research is currently ongoing to improve the objectivity of the assays, reveal the underlying molecular changes leading to transformation and explore the use of novel cell types. The UK NC3Rs held an international workshop in November 2010 to review the current state of the art in this field and provide directions for future research. This paper outlines the key points highlighted at this meeting. PMID:21852270

  6. Energy Management Strategy Based on Multiple Operating States for a Photovoltaic/Fuel Cell/Energy Storage DC Microgrid

    Directory of Open Access Journals (Sweden)

    Ying Han

    2017-01-01

    Full Text Available It is a great challenge for DC microgrids with stochastic renewable sources and volatility loads to achieve better operation performance. This study proposes an energy management strategy based on multiple operating states for a DC microgrid, which is comprised of a photovoltaic (PV array, a proton exchange membrane fuel cell (PEMFC system, and a battery bank. This proposed strategy can share the power properly and keep the bus voltage steady under different operating states (the state of charge (SOC of the battery bank, loading conditions, and PV array output power. In addition, a microgrids test platform is established. In order to verify the effectiveness of the proposed energy management strategy, the strategy is implemented in a hardware system and experimentally tested under different operating states. The experimental results illustrate the good performance of the proposed control strategy for the DC microgrid under different scenarios of power generation and load demand.

  7. Effect of informing the diagnosis on depressive state in patients with non-small cell lung cancer of stage Ⅲ

    OpenAIRE

    Wei WANG; Ping CHEN; Xianglin PI; Anlan WANG; Xiaoping WEN; Dong HUANG

    2008-01-01

    Background and objective As other tumors, unresectabe lung cancer can cause many psychological problems to the patients, such as depression and anxiety. The present paper aims to evaluate the status of depression before and after knowing the state of illness in patients with non-small cell lung cancer of stage Ⅲ. Methods 43 casesof newly diagnosed non-small cell lung cancer (NSCLC) with stage Ⅲ were enrolled in the study. All the patients were distributed into three groups and given different...

  8. Kinetics and comparison of δ-aminolevulinic-acid-induced endogenous protoporphyrin-IX in single cell by steady state and multiphoton fluorescence imaging

    Science.gov (United States)

    Ganesan, Singaravelu; Elangovan, Masilamani; Periasamy, Ammasi

    2001-04-01

    Photodynamic Therapy has emerged as a new modality in the treatment of various nonmalignant and malignant diseases. It involves the systemic administration of tumor specific photo-sensitizers with the subsequent application of visible light. This combination causes the generation of cytotoxic species, which damage sensitive targets, producing cell injury and tumor destruction. Although, photofrin is the only photosensitizer currently approved for PDT and tumor detection, its concomitant cutaneous photosensitization poses a significant problem. Hence, δ-aminoleuvulinic acid (δ-ALA) a precursor for the endogenous production of Protoporphyrin IX, through heme biosynthesis pathway, has gained significant importance in the Photodynamic Therapy. Though δ-ALA is present naturally in the cells, exogenous δ-ALA helps to synthesis more of PpIX in the tumor cells, as the fast growing tumor cells take up the administered δ-ALA more than the normal cells. Based on these facts, many invasive studies have been reported on the kinetics of δ-ALA at cellular level by chemical extraction of PpIX from the cells. In the present study we have studied the kinetics of δ-ALA induced PpIX fluorescence from Hela cells by perchloric/Methanol extraction method. However, the amount of PpIX synthesized in the cells at different point of incubation time by noninvasive methods has not been reported. Hence we have also used a noninvasive technique of measuring the kinetics δ-ALA induced PPIX fluorescence from Hela, an epithelial cell derived from human cervical cancer by both single photon (steady state) and multi photon excitation. From the studies it is observed that the δ-ALA induced PpIX is more at 2 hours incubation time for 2 mM of δ-ALA concentration. Further, it is observed that with steady state fluorescence imaging method, the excitation light itself cause the Photodynamic damage, due to the prolonged exposure of the cells than in multi photon excitation, leading to the rounding

  9. Solid-state sodium cells - An alternative to lithium cells?

    Science.gov (United States)

    West, K.; Zachau-Christiansen, B.; Jacobsen, T.; Skaarup, S.

    1989-05-01

    The cycling properties of laboratory cells based on the insertion of sodium into vanadium oxides using polymer electrolyte at 80 C are reported. In the best system: Na/PEO, NaClO4/V2O5 (modified), C, high reversibility, and an energy density comparable with the Li/TiS2 system have been obtained.

  10. The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells.

    Science.gov (United States)

    Lankoff, Anna; Sandberg, Wiggo J; Wegierek-Ciuk, Aneta; Lisowska, Halina; Refsnes, Magne; Sartowska, Bożena; Schwarze, Per E; Meczynska-Wielgosz, Sylwia; Wojewodzka, Maria; Kruszewski, Marcin

    2012-02-05

    Nanoparticles (NPs) occurring in the environment rapidly agglomerate and form particles of larger diameters. The extent to which this abates the effects of NPs has not been clarified. The motivation of this study was to examine how the agglomeration/aggregation state of silver (20nm and 200nm) and titanium dioxide (21nm) nanoparticles may affect the kinetics of cellular binding/uptake and ability to induce cytotoxic responses in THP1, HepG2 and A549 cells. Cellular binding/uptake, metabolic activation and cell death were assessed by the SSC flow cytometry measurements, the MTT-test and the propidium iodide assay. The three types of particles were efficiently taken up by the cells, decreasing metabolic activation and increasing cell death in all the cell lines. The magnitude of the studied endpoints depended on the agglomeration/aggregation state of particles, their size, time-point and cell type. Among the three cell lines tested, A549 cells were the most sensitive to these particles in relation to cellular binding/uptake. HepG2 cells showed a tendency to be more sensitive in relation to metabolic activation. THP-1 cells were the most resistant to all three types of particles in relation to all endpoints tested. Our findings suggest that particle features such as size and agglomeration status as well as the type of cells may contribute to nanoparticles biological impact. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Radiolabeled Cu-ATSM as a novel indicator of overreduced intracellular state due to mitochondrial dysfunction: studies with mitochondrial DNA-less ρ0 cells and cybrids carrying MELAS mitochondrial DNA mutation

    International Nuclear Information System (INIS)

    Yoshii, Yukie; Yoneda, Makoto; Ikawa, Masamichi; Furukawa, Takako; Kiyono, Yasushi; Mori, Tetsuya; Yoshii, Hiroshi; Oyama, Nobuyuki; Okazawa, Hidehiko; Saga, Tsuneo; Fujibayashi, Yasuhisa

    2012-01-01

    Objectives: Radiolabeled Cu-diacetyl-bis (N 4 -methylthiosemicarbazone) ( ⁎ Cu-ATSM), including 60/62/64 Cu-ATSM, is a potential imaging agent of hypoxic tumors for positron emission tomography (PET). We have reported that ⁎ Cu-ATSM is trapped in tumor cells under intracellular overreduced states, e.g., hypoxia. Here we evaluated ⁎ Cu-ATSM as an indicator of intracellular overreduced states in mitochondrial disorders using cell lines with mitochondrial dysfunction. Methods: Mitochondrial DNA-less ρ 0 206 cells; the parental 143B human osteosarcoma cells; the cybrids carrying mutated mitochondria from a patient of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) (2SD); and that carrying wild-type one (2SA) were used. Cells were treated under normoxia or hypoxia, and 64 Cu-ATSM uptake was examined to compare it with levels of biological reductant NADH and NADPH. Results: ρ 0 206 cells showed higher 64 Cu-ATSM uptake than control 143B cells under normoxia, whereas 64 Cu-ATSM uptake was not significantly increased under hypoxia in ρ 0 206 cells. Additionally, 64 Cu-ATSM uptake showed correlate change to the NADH and NADPH levels, but not oxygenic conditions. 2SD cells showed increased 64 Cu-ATSM uptake under normoxia as compared with the control 2SA, and 64 Cu-ATSM uptake followed NADH and NADPH levels, but not oxygenic conditions. Conclusions: 64 Cu-ATSM accumulated in cells with overreduced states due to mitochondrial dysfunction, even under normoxia. We recently reported that 62 Cu-ATSM-PET can visualize stroke-like episodes maintaining oxygen supply in MELAS patients. Taken together, our data indicate that ⁎ Cu-ATSM uptake reflects overreduced intracellular states, despite oxygenic conditions; thus, ⁎ Cu-ATSM would be a promising marker of intracellular overreduced states for disorders with mitochondrial dysfunction, such as MELAS, Parkinson's disease and Alzheimer's disease.

  12. Adaptation of HepG2 cells to a steady-state reduction in the content of protein phosphatase 6 (PP6) catalytic subunit

    Energy Technology Data Exchange (ETDEWEB)

    Boylan, Joan M. [Department of Pediatrics, Brown University and Rhode Island Hospital, Providence, RI (United States); Salomon, Arthur R. [Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI (United States); Department of Chemistry, Brown University, Providence, RI (United States); Tantravahi, Umadevi [Division of Genetics, Department of Pathology, Brown University and Women and Infants Hospital, Providence, RI (United States); Gruppuso, Philip A., E-mail: philip_gruppuso@brown.edu [Department of Pediatrics, Brown University and Rhode Island Hospital, Providence, RI (United States); Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI (United States)

    2015-07-15

    Protein phosphatase 6 (PP6) is a ubiquitous Ser/Thr phosphatase involved in an array of cellular processes. To assess the potential of PP6 as a therapeutic target in liver disorders, we attenuated expression of the PP6 catalytic subunit in HepG2 cells using lentiviral-transduced shRNA. Two PP6 knock-down (PP6KD) cell lines (90% reduction of PP6-C protein content) were studied in depth. Both proliferated at a rate similar to control cells. However, flow cytometry indicated G2/M cell cycle arrest that was accounted for by a shift of the cells from a diploid to tetraploid state. PP6KD cells did not show an increase in apoptosis, nor did they exhibit reduced viability in the presence of bleomycin or taxol. Gene expression analysis by microarray showed attenuated anti-inflammatory signaling. Genes associated with DNA replication were downregulated. Mass spectrometry-based phosphoproteomic analysis yielded 80 phosphopeptides representing 56 proteins that were significantly affected by a stable reduction in PP6-C. Proteins involved in DNA replication, DNA damage repair and pre-mRNA splicing were overrepresented among these. PP6KD cells showed intact mTOR signaling. Our studies demonstrated involvement of PP6 in a diverse set of biological pathways and an adaptive response that may limit the effectiveness of targeting PP6 in liver disorders. - Highlights: • Lentiviral-transduced shRNA was used to generate a stable knockdown of PP6 in HepG2 cells. • Cells adapted to reduced PP6; cell proliferation was unaffected, and cell survival was normal. • However, PP6 knockdown was associated with a transition to a tetraploid state. • Genomic profiling showed downregulated anti-inflammatory signaling and DNA replication. • Phosphoproteomic profiling showed changes in proteins associated with DNA replication and repair.

  13. Adaptation of HepG2 cells to a steady-state reduction in the content of protein phosphatase 6 (PP6) catalytic subunit

    International Nuclear Information System (INIS)

    Boylan, Joan M.; Salomon, Arthur R.; Tantravahi, Umadevi; Gruppuso, Philip A.

    2015-01-01

    Protein phosphatase 6 (PP6) is a ubiquitous Ser/Thr phosphatase involved in an array of cellular processes. To assess the potential of PP6 as a therapeutic target in liver disorders, we attenuated expression of the PP6 catalytic subunit in HepG2 cells using lentiviral-transduced shRNA. Two PP6 knock-down (PP6KD) cell lines (90% reduction of PP6-C protein content) were studied in depth. Both proliferated at a rate similar to control cells. However, flow cytometry indicated G2/M cell cycle arrest that was accounted for by a shift of the cells from a diploid to tetraploid state. PP6KD cells did not show an increase in apoptosis, nor did they exhibit reduced viability in the presence of bleomycin or taxol. Gene expression analysis by microarray showed attenuated anti-inflammatory signaling. Genes associated with DNA replication were downregulated. Mass spectrometry-based phosphoproteomic analysis yielded 80 phosphopeptides representing 56 proteins that were significantly affected by a stable reduction in PP6-C. Proteins involved in DNA replication, DNA damage repair and pre-mRNA splicing were overrepresented among these. PP6KD cells showed intact mTOR signaling. Our studies demonstrated involvement of PP6 in a diverse set of biological pathways and an adaptive response that may limit the effectiveness of targeting PP6 in liver disorders. - Highlights: • Lentiviral-transduced shRNA was used to generate a stable knockdown of PP6 in HepG2 cells. • Cells adapted to reduced PP6; cell proliferation was unaffected, and cell survival was normal. • However, PP6 knockdown was associated with a transition to a tetraploid state. • Genomic profiling showed downregulated anti-inflammatory signaling and DNA replication. • Phosphoproteomic profiling showed changes in proteins associated with DNA replication and repair

  14. A complete carbon counter electrode for high performance quasi solid state dye sensitized solar cell

    Science.gov (United States)

    Arbab, Alvira Ayoub; Peerzada, Mazhar Hussain; Sahito, Iftikhar Ali; Jeong, Sung Hoon

    2017-03-01

    The proposed research describes the design and fabrication of a quasi-solid state dye sensitized solar cells (Q-DSSCs) with a complete carbon based counter electrode (CC-CE) and gel infused membrane electrolyte. For CE, the platinized fluorinated tin oxide glass (Pt/FTO) was replaced by the soft cationic functioned multiwall carbon nanotubes (SCF-MWCNT) catalytic layer coated on woven carbon fiber fabric (CFF) prepared on handloom by interlacing of carbon filament tapes. SCF-MWCNT were synthesized by functionalization of cationised lipase from Candida Ragusa. Cationised enzyme solution was prepared at pH ∼3 by using acetic acid. The cationic enzyme functionalization of MWCNT causes the minimum damage to the tubular morphology and assist in fast anchoring of negative iodide ions present in membrane electrolyte. The high electrocatalytic activity and low charge transfer resistance (RCT = 2.12 Ω) of our proposed system of CC-CE shows that the woven CFF coated with cationised lipase treated carbon nanotubes enriched with positive surface ions. The Q-DSSCs fabricated with CC-CE and 5 wt% PEO gel infused PVDF-HFP membrane electrolyte exhibit power conversion efficiency of 8.90% under masking. Our suggested low cost and highly efficient system of CC-CE helps the proposed quasi-solid state DSSCs structure to stand out as sustainable next generation solar cells.

  15. Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells

    NARCIS (Netherlands)

    D. ten Berge (Derk); D. Kurek (Dorota); T. Blauwkamp (Tim); W. Koole (Wouter); A. Maas (Alex); E. Eroglu (Elif); R.K. Siu (Ronald); R. Nusse (Roel)

    2011-01-01

    textabstractPluripotent stem cells exist in naive and primed states, epitomized by mouse embryonic stem cells (ESCs) and the developmentally more advanced epiblast stem cells (EpiSCs; ref.). In the naive state of ESCs, the genome has an unusual open conformation and possesses a minimum of repressive

  16. The role of bulk and interface states on performance of a-Si: H p-i-n solar cells using reverse current-voltage technique

    International Nuclear Information System (INIS)

    Mahmood, S A; Kabir, M Z; Murthy, R V R; Dutta, V

    2009-01-01

    The defect state densities in the bulk of the i-layer and at the p/i interface have been studied in hydrogenated amorphous silicon (a-Si : H) solar cells using reverse current-voltage (J-V) measurements. In this work the cells have been soaked with blue and red lights prior to measurements. The voltage-dependent reverse current has been analysed on the basis of thermal generation of the carriers from midgap states in the i-layer and the carrier injection through the p/i interface. Based on the reverse current behaviour, it has been analysed that at lower reverse bias (reverse voltage, V r r ∼ 25 V) the defect states at the p/i interface are contributing to the reverse currents. The applied reverse bias annealing (RBA) treatment on these cells shows more significant annihilation of defect states at the p/i interface as compared with the bulk of the i-layer. An analytical model is developed to explain the observed behaviour. There is good agreement between the theory and the experimental observations. The fitted defect state densities are 9.1 x 10 15 cm -3 and 8 x 10 18 cm -3 in the bulk of the i-layer and near the p/i interface, respectively. These values decrease to 2.5 x 10 15 cm -3 and 6 x 10 17 cm -3 , respectively, in the samples annealed under reverse bias at 2 V.

  17. Trichoderma Reesei single cell protein production from rice straw pulp in solid state fermentation

    Science.gov (United States)

    Zaki, M.; Said, S. D.

    2018-04-01

    The dependency on fish meal as a major protein source for animal feed can lead toit priceinstability in line with the increasing in meat production and consumption in Indonesia. In order todeal with this problem, an effort to produce an alternative protein sources production is needed. This scenario is possible due to the abundantavailability of agricultural residues such as rice straw whichcould be utilized as substrate for production of single cell proteins as an alternative proteinsource. This work investigated the potential utilization of rice straw pulp and urea mixture as substrate for the production of local Trichoderma reesei single cell protein in solid state fermentation system. Some parameters have been analyzed to evaluate the effect of ratio of rice straw pulp to urea on mixed single cell protein biomass (mixed SCP biomass) composition, such as total crude protein (analyzed by kjedhal method) and lignin content (TAPPI method).The results showed that crude protein content in mixed SCP biomassincreases with the increasing in fermentation time, otherwise it decreases with the increasing insubstrate carbon to nitrogen (C/N) ratio. Residual lignin content in mixed SCP biomass decreases from 7% to 0.63% during fermentationproceeded of 21 days. The highest crude protein content in mixed SCP biomasswas obtained at substrate C/N ratio 20:1 of 25%.

  18. Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function

    NARCIS (Netherlands)

    Ten Kate, O.M.; De Jong, M.; Hintzen, H.T.; Van der Kolk, E.

    2013-01-01

    Solar cells of which the efficiency is not limited by the Shockley-Queisser limit can be obtained by integrating a luminescent spectral conversion layer into the cell structure. We have calculated the maximum efficiency of state-of-the-art c-Si, pc-Si, a-Si, CdTe, GaAs, CIS, CIGS, CGS, GaSb, and Ge

  19. Infiltration of Spiro-MeOTAD hole transporting material into nanotubular TiO{sub 2} electrode for solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmych, Oleksandr, E-mail: alexkuzmych@gmail.com [Faculty of Chemistry, Laboratory of Electrochemistry, University of Warsaw, 02-093 Warsaw (Poland); Johansson, Erik M.J.; Nonomura, Kazuteru [Department of Physical and Analytical Chemistry, Uppsala University, Box 259, 751 05 Uppsala (Sweden); Nyberg, Tomas [The Angstrom Laboratory, Uppsala University, Box 534, 751 21 Uppsala (Sweden); Skompska, Magdalena [Faculty of Chemistry, Laboratory of Electrochemistry, University of Warsaw, 02-093 Warsaw (Poland); Hagfeldt, Anders [Department of Physical and Analytical Chemistry, Uppsala University, Box 259, 751 05 Uppsala (Sweden)

    2014-09-15

    Highlights: • We report infiltration of Spiro-MeOTAD into pores of TiO{sub 2} nanotube (TNT) arrays. • Surface amount of D35 is diffusion limited for TiO{sub 2} mesoporous film but not for TNTs. • Performance of liquid and solid-state solar cells based on TNTs is compared. - Abstract: TiO{sub 2} nanotubes grown by anodic oxidation of Ti thin film deposited on conducting transparent fluoride-doped tin oxide (FTO) substrate were used as a unique geometrically organized template to study the infiltration of Spiro-MeOTAD hole transporting material (HTM) inside straight pores. The TiO{sub 2} nanotube (TNT) array electrode was compared with a mesoporous one in terms of loading with an organic dye of high extinction coefficient. It was shown that it is possible to build a working solid state dye sensitized solar cell device with such a combination of materials and its performance was compared with a device in which the solid state HTM was replaced by a liquid state electrolyte.

  20. Precursor States of Brain Tumor Initiating Cell Lines Are Predictive of Survival in Xenografts and Associated with Glioblastoma Subtypes

    Directory of Open Access Journals (Sweden)

    Carlo Cusulin

    2015-07-01

    Full Text Available In glioblastoma multiforme (GBM, brain-tumor-initiating cells (BTICs with cancer stem cell characteristics have been identified and proposed as primordial cells responsible for disease initiation, recurrence, and therapeutic resistance. However, the extent to which individual, patient-derived BTIC lines reflect the heterogeneity of GBM remains poorly understood. Here we applied a stem cell biology approach and compared self-renewal, marker expression, label retention, and asymmetric cell division in 20 BTIC lines. Through cluster analysis, we identified two subgroups of BTIC lines with distinct precursor states, stem- or progenitor-like, predictive of survival after xenograft. Moreover, stem and progenitor transcriptomic signatures were identified, which showed a strong association with the proneural and mesenchymal subtypes, respectively, in the TCGA cohort. This study proposes a different framework for the study and use of BTIC lines and provides precursor biology insights into GBM.

  1. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Shima P Damodaran

    Full Text Available To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers and a significant subpopulation of slowly dividing cells (slow-growers. These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.

  2. Investigating the reactivity of pMDI with wood cell walls using high-resolution solution-state NMR spectroscopy

    Science.gov (United States)

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2009-01-01

    The objectives of this study are the following: (1) Use solution-state NMR to assign contours in HSQC spectra of the reaction products between pMDI model compounds and: (a) lignin model compounds, (b) milled-wood lignin, (c) ball-milled wood, (d) microtomed loblolly pine; (2) Determine where and to what degree urethane formation occurs with loblolly pine cell wall...

  3. Licensed pertussis vaccines in the United States. History and current state.

    Science.gov (United States)

    Klein, Nicola P

    2014-01-01

    The United States switched from whole cell to acellular pertussis vaccines in the 1990s following global concerns with the safety of the whole cell vaccines. Despite high levels of acellular pertussis vaccine coverage, the United States and other countries are experiencing large pertussis outbreaks. The aim of this article is to describe the historical context which led to acellular pertussis vaccine development, focusing on vaccines currently licensed in the US, and to review evidence that waning protection following licensed acellular pertussis vaccines have been significant factors in the widespread reappearance of pertussis.

  4. Hyperbranched quasi-1D nanostructures for solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Passoni, Luca; Ghods, Farbod; Docampo, Pablo; Abrusci, Agnese; Martí-Rujas, Javier; Ghidelli, Matteo; Divitini, Giorgio; Ducati, Caterina; Binda, Maddalena; Guarnera, Simone; Li Bassi, Andrea; Casari, Carlo Spartaco; Snaith, Henry J; Petrozza, Annamaria; Di Fonzo, Fabio

    2013-11-26

    In this work we demonstrate hyperbranched nanostructures, grown by pulsed laser deposition, composed of one-dimensional anatase single crystals assembled in arrays of high aspect ratio hierarchical mesostructures. The proposed growth mechanism relies on a two-step process: self-assembly from the gas phase of amorphous TiO2 clusters in a forest of tree-shaped hierarchical mesostructures with high aspect ratio; oriented crystallization of the branches upon thermal treatment. Structural and morphological characteristics can be optimized to achieve both high specific surface area for optimal dye uptake and broadband light scattering thanks to the microscopic feature size. Solid-state dye sensitized solar cells fabricated with arrays of hyperbranched TiO2 nanostructures on FTO-glass sensitized with D102 dye showed a significant 66% increase in efficiency with respect to a reference mesoporous photoanode and reached a maximum efficiency of 3.96% (among the highest reported for this system). This result was achieved mainly thanks to an increase in photogenerated current directly resulting from improved light harvesting efficiency of the hierarchical photoanode. The proposed photoanode overcomes typical limitations of 1D TiO2 nanostructures applied to ss-DSC and emerges as a promising foundation for next-generation high-efficiency solid-state devices comprosed of dyes, polymers, or quantum dots as sensitizers.

  5. CLIMATE CHANGE FUEL CELL PROGRAM UNITED STATES COAST GUARD AIR STATION CAPE COD BOURNE, MASSACHUSETTS

    Energy Technology Data Exchange (ETDEWEB)

    John K. Steckel Jr

    2004-06-30

    This report covers the first year of operation of a fuel cell power plant, installed by PPL Spectrum, Inc. (PPL) under contract with the United States Coast Guard (USCG), Research and Development Center (RDC). The fuel cell was installed at Air Station Cape Cod in Bourne, MA. The project had the support of the Massachusetts Technology Collaborative (MTC), the Department of Energy (DOE), and Keyspan Energy. PPL selected FuelCell Energy, Inc. (FCE) and its fuel cell model DFC{reg_sign}300 for the contract. Grant contributions were finalized and a contract between PPL and the USCG for the manufacture, installation, and first year's maintenance of the fuel cell was executed on September 24, 2001. As the prime contractor, PPL was responsible for all facets of the project. All the work was completed by PPL through various subcontracts, including the primary subcontract with FCE for the manufacture, delivery, and installation of the fuel cell. The manufacturing and design phases proceeded in a relatively timely manner for the first half of the project. However, during latter stages of manufacture and fuel cell testing, a variety of issues were encountered that ultimately resulted in several delivery delays, and a number of contract modifications. Final installation and field testing was completed in April and May 2003. Final acceptance of the fuel cell was completed on May 16, 2003. The fuel cell has operated successfully for more than one year. The unit achieved an availability rate of 96%, which exceeded expectations. The capacity factor was limited because the unit was set at 155 kW (versus a nameplate of 250 kW) due to the interconnection with the electric utility. There were 18 shutdowns during the first year and most were brief. The ability of this plant to operate in the island mode improved availability by 3 to 4%. Events that would normally be shutdowns were simply island mode events. The mean time between failure was calculated at 239 hours, or slightly

  6. cgCorrect: a method to correct for confounding cell-cell variation due to cell growth in single-cell transcriptomics

    Science.gov (United States)

    Blasi, Thomas; Buettner, Florian; Strasser, Michael K.; Marr, Carsten; Theis, Fabian J.

    2017-06-01

    Accessing gene expression at a single-cell level has unraveled often large heterogeneity among seemingly homogeneous cells, which remains obscured when using traditional population-based approaches. The computational analysis of single-cell transcriptomics data, however, still imposes unresolved challenges with respect to normalization, visualization and modeling the data. One such issue is differences in cell size, which introduce additional variability into the data and for which appropriate normalization techniques are needed. Otherwise, these differences in cell size may obscure genuine heterogeneities among cell populations and lead to overdispersed steady-state distributions of mRNA transcript numbers. We present cgCorrect, a statistical framework to correct for differences in cell size that are due to cell growth in single-cell transcriptomics data. We derive the probability for the cell-growth-corrected mRNA transcript number given the measured, cell size-dependent mRNA transcript number, based on the assumption that the average number of transcripts in a cell increases proportionally to the cell’s volume during the cell cycle. cgCorrect can be used for both data normalization and to analyze the steady-state distributions used to infer the gene expression mechanism. We demonstrate its applicability on both simulated data and single-cell quantitative real-time polymerase chain reaction (PCR) data from mouse blood stem and progenitor cells (and to quantitative single-cell RNA-sequencing data obtained from mouse embryonic stem cells). We show that correcting for differences in cell size affects the interpretation of the data obtained by typically performed computational analysis.

  7. Laminating solution-processed silver nanowire mesh electrodes onto solid-state dye-sensitized solar cells

    KAUST Repository

    Hardin, Brian E.

    2011-06-01

    Solution processed silver nanowire meshes (Ag NWs) were laminated on top of solid-state dye-sensitized solar cells (ss-DSCs) as a reflective counter electrode. Ag NWs were deposited in <1 min and were less reflective compared to evaporated Ag controls; however, AgNW ss-DSC devices consistently had higher fill factors (0.6 versus 0.69), resulting in comparable power conversion efficiencies (2.7%) compared to thermally evaporated Ag control (2.8%). Laminated Ag NW electrodes enable higher throughput manufacturing and near unity material usage, resulting in a cheaper alternative to thermally evaporated electrodes. © 2011 Elsevier B.V. All rights reserved.

  8. Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte

    International Nuclear Information System (INIS)

    Aram, E.; Ehsani, M.; Khonakdar, H.A.

    2015-01-01

    Graphical abstract: Reduced interfacial resistance of a quasi-solid-state dye sensitized solar cell with PEO/PMMA blend gel electrolytes. - Highlights: • A new polymer gel electrolyte containing PEO/PMMA was developed for DSSCs. • Optimization of polymer gel electrolyte was done for dye sensitized solar cell. • The best ionic conductivity was found in PEO/PMMA blend with 10/90 w/w composition. • The DSSC with the PEO/PMMA based electrolyte showed good photovoltaic performance. • Significant stability improvement for quasi-solid state DSSC was obtained. - Abstract: Polymer blend gel electrolytes based on polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA) as host polymers with various weight ratios, LiI/I 2 as redox couple in electrolyte and 4-tert-butyl pyridine as additive were prepared by solution method. The introduction of PMMA in the PEO gel electrolyte reduced the degree of crystallinity of PEO, which was confirmed by differential scanning calorimetry (DSC). Complexation and ionic conductivity as a function of temperature were investigated with Fourier transform infrared and ionic conductometry, respectively. A good correlation was found between the degree of crystallinity and ionic conductivity. The reduction in crystallinity, governed by blending ratio, led to improvement of ionic conductivity. The best ionic conductivity was attained in PEO/PMMA blend with 10/90 w/w composition. The performance of a quasi-solid-state dye sensitized solar cell using the optimized polymer gel electrolyte was investigated. The optimized system of high ionic conductivity of 7 mS cm −1 , with fill factor of 0.59, short-circuit density of 11.11 mA cm −2 , open-circuit voltage of 0.75 V and the conversion efficiency of 4.9% under air mass 1.5 irradiation (100 mW cm −2 ) was obtained. The long-term stability of the dye-sensitized solar cell (DSSC) during 600 h was improved by using PEO/PMMA gel electrolyte relative to a liquid type electrolyte

  9. Funneled potential and flux landscapes dictate the stabilities of both the states and the flow: Fission yeast cell cycle.

    Directory of Open Access Journals (Sweden)

    Xiaosheng Luo

    2017-09-01

    Full Text Available Using fission yeast cell cycle as an example, we uncovered that the non-equilibrium network dynamics and global properties are determined by two essential features: the potential landscape and the flux landscape. These two landscapes can be quantified through the decomposition of the dynamics into the detailed balance preserving part and detailed balance breaking non-equilibrium part. While the funneled potential landscape is often crucial for the stability of the single attractor networks, we have uncovered that the funneled flux landscape is crucial for the emergence and maintenance of the stable limit cycle oscillation flow. This provides a new interpretation of the origin for the limit cycle oscillations: There are many cycles and loops existed flowing through the state space and forming the flux landscapes, each cycle with a probability flux going through the loop. The limit cycle emerges when a loop stands out and carries significantly more probability flux than other loops. We explore how robustness ratio (RR as the gap or steepness versus averaged variations or roughness of the landscape, quantifying the degrees of the funneling of the underlying potential and flux landscapes. We state that these two landscapes complement each other with one crucial for stabilities of states on the cycle and the other crucial for the stability of the flow along the cycle. The flux is directly related to the speed of the cell cycle. This allows us to identify the key factors and structure elements of the networks in determining the stability, speed and robustness of the fission yeast cell cycle oscillations. We see that the non-equilibriumness characterized by the degree of detailed balance breaking from the energy pump quantified by the flux is the cause of the energy dissipation for initiating and sustaining the replications essential for the origin and evolution of life. Regulating the cell cycle speed is crucial for designing the prevention and curing

  10. Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Aram, E. [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Ehsani, M., E-mail: m.ehsani@ippi.ac.ir [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Khonakdar, H.A. [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Leibniz Institute of Polymer Research, D-01067 Dresden (Germany)

    2015-09-10

    Graphical abstract: Reduced interfacial resistance of a quasi-solid-state dye sensitized solar cell with PEO/PMMA blend gel electrolytes. - Highlights: • A new polymer gel electrolyte containing PEO/PMMA was developed for DSSCs. • Optimization of polymer gel electrolyte was done for dye sensitized solar cell. • The best ionic conductivity was found in PEO/PMMA blend with 10/90 w/w composition. • The DSSC with the PEO/PMMA based electrolyte showed good photovoltaic performance. • Significant stability improvement for quasi-solid state DSSC was obtained. - Abstract: Polymer blend gel electrolytes based on polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA) as host polymers with various weight ratios, LiI/I{sub 2} as redox couple in electrolyte and 4-tert-butyl pyridine as additive were prepared by solution method. The introduction of PMMA in the PEO gel electrolyte reduced the degree of crystallinity of PEO, which was confirmed by differential scanning calorimetry (DSC). Complexation and ionic conductivity as a function of temperature were investigated with Fourier transform infrared and ionic conductometry, respectively. A good correlation was found between the degree of crystallinity and ionic conductivity. The reduction in crystallinity, governed by blending ratio, led to improvement of ionic conductivity. The best ionic conductivity was attained in PEO/PMMA blend with 10/90 w/w composition. The performance of a quasi-solid-state dye sensitized solar cell using the optimized polymer gel electrolyte was investigated. The optimized system of high ionic conductivity of 7 mS cm{sup −1}, with fill factor of 0.59, short-circuit density of 11.11 mA cm{sup −2}, open-circuit voltage of 0.75 V and the conversion efficiency of 4.9% under air mass 1.5 irradiation (100 mW cm{sup −2}) was obtained. The long-term stability of the dye-sensitized solar cell (DSSC) during 600 h was improved by using PEO/PMMA gel electrolyte relative to a liquid type

  11. Room temperature solid-state synthesis of a conductive polymer for applications in stable I₂-free dye-sensitized solar cells.

    Science.gov (United States)

    Kim, Byeonggwan; Koh, Jong Kwan; Kim, Jeonghun; Chi, Won Seok; Kim, Jong Hak; Kim, Eunkyoung

    2012-11-01

    A solid-state polymerizable monomer, 2,5-dibromo-3,4-propylenedioxythiophene (DBProDOT), was synthesized at 25 °C to produce a conducting polymer, poly(3,4-propylenedioxythiophene) (PProDOT). Crystallographic studies revealed a short interplane distance between DBProDOT molecules, which was responsible for polymerization at low temperature with a lower activation energy and higher exothermic reaction than 2,5-dibromo-3,4-ethylenedioxythiophene (DBEDOT) or its derivatives. Upon solid-state polymerization (SSP) of DBProDOT at 25 °C, PProDOT was obtained in a self-doped state with tribromide ions and an electrical conductivity of 0.05 S cm⁻¹, which is considerably higher than that of chemically-polymerized PProDOT (2×10⁻⁶ S cm⁻¹). Solid-state ¹³C NMR spectroscopy and DFT calculations revealed polarons in PProDOT and a strong perturbation of carbon nuclei in thiophenes as a result of paramagnetic broadening. DBProDOT molecules deeply penetrated and polymerized to fill nanocrystalline TiO₂ pores with PProDOT, which functioned as a hole-transporting material (HTM) for I₂-free solid-state dye-sensitized solar cells (ssDSSCs). With the introduction of an organized mesoporous TiO₂ (OM-TiO₂) layer, the energy conversion efficiency reached 3.5 % at 100 mW cm⁻², which was quite stable up to at least 1500 h. The cell performance and stability was attributed to the high stability of PProDOT, with the high conductivity and improved interfacial contact of the electrode/HTM resulting in reduced interfacial resistance and enhanced electron lifetime. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Discarded cell phone lithium ion batteries state of health quick method analysis by galvanostatic intermittent titration technique (GITT concept

    Directory of Open Access Journals (Sweden)

    Paulo Rogério Catarini

    2009-03-01

    Full Text Available The state of health (SOH is a important evaluation parameter to rechargeable batteries, because determine its cycle life and help on electric devices supplied by batteries maintenance. In this work the lithium ion discards cell phones batteries state of health and apparent diffusion coefficient (Dap were measured and correlated which purpose is diminish the batteries analyze time. The apparent diffusion coefficient is a ionic diffusion coefficient modification from GITT technique. The SOH and Dap correlation is well behaved, disclosing a cubic dependency. The time analyze was reduced by more than 1 h.

  13. MyD88 Signaling Regulates Steady-State Migration of Intestinal CD103+ Dendritic Cells Independently of TNF-α and the Gut Microbiota

    DEFF Research Database (Denmark)

    Hägerbrand, Karin; Westlund, Jessica; Yrlid, Ulf

    2015-01-01

    Intestinal homeostasis and induction of systemic tolerance to fed Ags (i.e., oral tolerance) rely on the steady-state migration of smallintestinal lamina propria dendritic cells (DCs) into draining mesenteric lymph nodes (MLN). The majority of these migratory DCs express the α integrin chain CD103......, and in this study we demonstrate that the steady-state mobilization of CD103+ DCs into the MLN is in part governed by the IL-1R family/TLR signaling adaptor molecule MyD88. Similar to mice with complete MyD88 deficiency, specific deletion of MyD88 in DCs resulted in a 50–60% reduction in short-term accumulation......, the proportion and phenotypic composition of DCs were similar in mesentericlymph from germ-free and conventionally housed mice. Although TNF-α was required for CD103+ DC migration to the MLN after oral administration of the TLR7 agonist R848, it was not required for the steady-state migration of these cells...

  14. Quasi Solid-State Dye-Sensitized Solar Cell Incorporating Highly Conducting Polythiophene-Coated Carbon Nanotube Composites in Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaul Karim

    2011-01-01

    Full Text Available Conducting polythiophene (PTh composites with the host filler multiwalled carbon nanotube (MWNT have been used, for the first time, in the dye-sensitized solar cells (DSCs. A quasi solid-state DSCs with the hybrid MWNT-PTh composites, an ionic liquid of 1-methyl-3-propyl imidazolium iodide (PMII, was placed between the dye-sensitized porous TiO2 and the Pt counter electrode without adding iodine and higher cell efficiency (4.76% was achieved, as compared to that containing bare PMII (0.29%. The MWNT-PTh nanoparticles are exploited as the extended electron transfer materials and serve simultaneously as catalyst for the electrochemical reduction of I−3.

  15. Distinct roles of SOM and VIP interneurons during cortical Up states

    Directory of Open Access Journals (Sweden)

    Garrett T. Neske

    2016-07-01

    Full Text Available During cortical network activity, recurrent synaptic excitation among pyramidal neurons is approximately balanced by synaptic inhibition, which is provided by a vast diversity of inhibitory interneurons. The relative contributions of different interneuron subtypes to inhibitory tone during cortical network activity is not well understood. We previously showed that many of the major interneuron subtypes in mouse barrel cortex are highly active during Up states (Neske et al., 2015; while fast-spiking (FS, parvalbumin (PV-positive cells were the most active interneuron subtype, many non-fast-spiking (NFS, PV-negative interneurons were as active or more active than neighboring pyramidal cells. This suggests that the NFS cells could play a role in maintaining or modulating Up states. Here, using optogenetic techniques, we further dissected the functional roles during Up states of two major NFS, PV-negative interneuron subtypes: somatostatin (SOM-positive cells and vasoactive intestinal peptide (VIP-positive cells. We found that while pyramidal cell excitability during Up states significantly increased when SOM cells were optogenetically silenced, VIP cells did not influence pyramidal cell excitability either upon optogenetic silencing or activation. VIP cells failed to contribute to Up states despite their ability to inhibit SOM cells strongly. We suggest that the contribution of VIP cells to the excitability of pyramidal cells may vary with cortical state.

  16. A HIGH CURRENT, HIGH VOLTAGE SOLID-STATE PULSE GENERATOR FOR THE NIF PLASMA ELECTRODE POCKELS CELL

    International Nuclear Information System (INIS)

    Arnold, P A; Barbosa, F; Cook, E G; Hickman, B C; Akana, G L; Brooksby, C A

    2007-01-01

    A high current, high voltage, all solid-state pulse modulator has been developed for use in the Plasma Electrode Pockels Cell (PEPC) subsystem in the National Ignition Facility. The MOSFET-switched pulse generator, designed to be a more capable plug-in replacement for the thyratron-switched units currently deployed in NIF, offers unprecedented capabilities including burst-mode operation, pulse width agility and a steady-state pulse repetition frequency exceeding 1 Hz. Capable of delivering requisite fast risetime, 17 kV flattop pulses into a 6 (Omega) load, the pulser employs a modular architecture characteristic of the inductive adder technology, pioneered at LLNL for use in acceleration applications, which keeps primary voltages low (and well within the capabilities of existing FET technology), reduces fabrication costs and is amenable to rapid assembly and quick field repairs

  17. A population dynamics analysis of the interaction between adaptive regulatory T cells and antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    David Fouchet

    Full Text Available BACKGROUND: Regulatory T cells are central actors in the maintenance of tolerance of self-antigens or allergens and in the regulation of the intensity of the immune response during infections by pathogens. An understanding of the network of the interaction between regulatory T cells, antigen presenting cells and effector T cells is starting to emerge. Dynamical systems analysis can help to understand the dynamical properties of an interaction network and can shed light on the different tasks that can be accomplished by a network. METHODOLOGY AND PRINCIPAL FINDINGS: We used a mathematical model to describe a interaction network of adaptive regulatory T cells, in which mature precursor T cells may differentiate into either adaptive regulatory T cells or effector T cells, depending on the activation state of the cell by which the antigen was presented. Using an equilibrium analysis of the mathematical model we show that, for some parameters, the network has two stable equilibrium states: one in which effector T cells are strongly regulated by regulatory T cells and another in which effector T cells are not regulated because the regulatory T cell population is vanishingly small. We then simulate different types of perturbations, such as the introduction of an antigen into a virgin system, and look at the state into which the system falls. We find that whether or not the interaction network switches from the regulated (tolerant state to the unregulated state depends on the strength of the antigenic stimulus and the state from which the network has been perturbed. CONCLUSION/SIGNIFICANCE: Our findings suggest that the interaction network studied in this paper plays an essential part in generating and maintaining tolerance against allergens and self-antigens.

  18. A Method to Study the Epigenetic Chromatin States of Rare Hematopoietic Stem and Progenitor Cells; MiniChIP–Chip

    Directory of Open Access Journals (Sweden)

    Weishaupt Holger

    2010-01-01

    Full Text Available Abstract Dynamic chromatin structure is a fundamental property of gene transcriptional regulation, and has emerged as a critical modulator of physiological processes during cellular differentiation and development. Analysis of chromatin structure using molecular biology and biochemical assays in rare somatic stem and progenitor cells is key for understanding these processes but poses a great challenge because of their reliance on millions of cells. Through the development of a miniaturized genome-scale chromatin immunoprecipitation method (miniChIP–chip, we have documented the genome-wide chromatin states of low abundant populations that comprise hematopoietic stem cells and immediate progeny residing in murine bone marrow. In this report, we describe the miniChIP methodology that can be used for increasing an understanding of the epigenetic mechanisms underlying hematopoietic stem and progenitor cell function. Application of this method will reveal the contribution of dynamic chromatin structure in regulating the function of other somatic stem cell populations, and how this process becomes perturbed in pathological conditions. Additional file 1 Click here for file

  19. Changes in chromatin state reveal ARNT2 at a node of a tumorigenic transcription factor signature driving glioblastoma cell aggressiveness.

    Science.gov (United States)

    Bogeas, Alexandra; Morvan-Dubois, Ghislaine; El-Habr, Elias A; Lejeune, François-Xavier; Defrance, Matthieu; Narayanan, Ashwin; Kuranda, Klaudia; Burel-Vandenbos, Fanny; Sayd, Salwa; Delaunay, Virgile; Dubois, Luiz G; Parrinello, Hugues; Rialle, Stéphanie; Fabrega, Sylvie; Idbaih, Ahmed; Haiech, Jacques; Bièche, Ivan; Virolle, Thierry; Goodhardt, Michele; Chneiweiss, Hervé; Junier, Marie-Pierre

    2018-02-01

    Although a growing body of evidence indicates that phenotypic plasticity exhibited by glioblastoma cells plays a central role in tumor development and post-therapy recurrence, the master drivers of their aggressiveness remain elusive. Here we mapped the changes in active (H3K4me3) and repressive (H3K27me3) histone modifications accompanying the repression of glioblastoma stem-like cells tumorigenicity. Genes with changing histone marks delineated a network of transcription factors related to cancerous behavior, stem state, and neural development, highlighting a previously unsuspected association between repression of ARNT2 and loss of cell tumorigenicity. Immunohistochemistry confirmed ARNT2 expression in cell sub-populations within proliferative zones of patients' glioblastoma. Decreased ARNT2 expression was consistently observed in non-tumorigenic glioblastoma cells, compared to tumorigenic cells. Moreover, ARNT2 expression correlated with a tumorigenic molecular signature at both the tissue level within the tumor core and at the single cell level in the patients' tumors. We found that ARNT2 knockdown decreased the expression of SOX9, POU3F2 and OLIG2, transcription factors implicated in glioblastoma cell tumorigenicity, and repressed glioblastoma stem-like cell tumorigenic properties in vivo. Our results reveal ARNT2 as a pivotal component of the glioblastoma cell tumorigenic signature, located at a node of a transcription factor network controlling glioblastoma cell aggressiveness.

  20. Hydroxyurea Use in Young Children With Sickle Cell Anemia in New York State.

    Science.gov (United States)

    Anders, David G; Tang, Fei; Ledneva, Tatania; Caggana, Michele; Green, Nancy S; Wang, Ying; Sturman, Lawrence S

    2016-07-01

    This study examined hydroxyurea usage in young children with sickle cell anemia within New York State (NYS). The cohort was 273 children with sickle cell anemia born in NYS in 2006-2009 and enrolled essentially continuously in Medicaid for the first 4 years of life. Medicaid data were used to examine hydroxyurea usage in this group by age at first prescription fill, persistence, region, treatment institution, and year. Log-binomial regression models were used to estimate the likelihood of receiving hydroxyurea treatment. Data from birth through 2014 for all members of the study group were assembled and analyzed in 2015. About 25% of the cohort had at least one filled hydroxyurea prescription by their fifth birthday, and nearly 40% by the end of the study period. The mean proportion of days covered for the first year of therapy was 56.3%. Adherence was also assessed by calculating medication possession ratios for individual treatment periods. Slightly more than one third of treated children showed 80% coverage by these measures. There was a consistent, but not statistically significant, trend toward younger age at first fill. Significant regional and treatment center differences in initiation of hydroxyurea use, but not in persistence after initiation, were noted among NYS centers. Subsequent to clinical studies demonstrating safety, current NYS-wide use of hydroxyurea in young children with sickle cell anemia appears to be widespread and increasing. However, practice differences between treatment centers and inadequate adherence may limit the full disease-modifying effects of hydroxyurea. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  1. BWR simulation in a stationary state for the evaluation of fuel cell design

    International Nuclear Information System (INIS)

    Montes T, J. L.; Ortiz S, J. J.; Perusquia del C, R.; Castillo M, A.

    2014-10-01

    In this paper the simulation of a BWR in order to evaluate the performance of a set of fuel assemblies under stationary state in three dimensions (3-D) is presented. 15 cases selected from a database containing a total of 18225 cases are evaluated. The main selection criteria were based on the results of the design phase of the power cells in two dimensions (2-D) and 3-D initial study. In 2-D studies the parameters that were used to qualify and select the designs were basically the local power peaking factor and neutron multiplication factor of each fuel cell. In the initial 3-D study variables that defined the quality of results, and from which the selection was realized, are the margins to thermal limits of reactor operation and the value of the effective multiplication factor at the end of cycle operation. From the 2-D and 3-D results of the studies described a second 3-D study was realized, where the optimizations of the fuel reload pattern was carried out. The results presented in this paper correspond to this second 3-D study. It was found that the designs of the fuel cell they had a similar behavior to those provided by the fuel supplier of reference BWR. Particularly it noted the impact of reload pattern on the cold shut down margin. An estimate of the operation costs of reference cycle analyzed with each one designed reload batch was also performed. As a result a positive difference (gain) up to 10,347 M/US D was found. (Author)

  2. Cell thickness of UV absorption by the cell: relation to UV action spectrum shift in mammalian cells in culture

    International Nuclear Information System (INIS)

    Sakharov, V.H.; Voronkova, L.N.; Blokhin, A.V.

    1985-01-01

    By means of reconstruction of series half - thin transverse sections the three - dimensional morphometry of SPEV cells for a series of their specific states in culture is performed: for exponential growth in a monolayer, in a merged monolayer, in the mitosis phase, for giant cells and suspension cells. In the monolayer the cell thickness in its central part depended mainly on the nucleus thickness and in average changed but slightly despite a wide range of changes in volumes of nuclei and cells and their density in culture. The cell thickness has noticeably increased in mitosis. For the above states of cells UV radiation absorption spectra are determined. It is shown that a certain shift of action spectrus of death of mammalian cells as compared with that for bacterial cell can be a seguence of selfshielding and not differences in the nature of active chromophores

  3. Under a nonadherent state, bone marrow mesenchymal stem cells can be efficiently induced into functional islet-like cell clusters to normalize hyperglycemia in mice: a control study.

    Science.gov (United States)

    Zhang, Yihua; Dou, Zhongying

    2014-05-08

    Bone marrow mesenchymal stem cells (BMSCs) possess low immunogenicity and immunosuppression as an allograft, can differentiate into insulin-producing cells (IPCs) by in vitro induction, and may be a valuable cell source to regenerate pancreatic islets. However, the very low differentiation efficiency of BMSCs towards IPCs under adherent induction has thus far hindered the clinical exploitation of these cells. The aim of this study is to explore a new way to efficiently induce BMSCs into IPCs and lay the groundwork for their clinical exploitation. In comparison with adherent induction, BMSCs of human first-trimester abortus (hfBMSCs) under a nonadherent state were induced towards IPCs in noncoated plastic dishes using a three-stage induction procedure developed by the authors. Induction effects were evaluated by statistics of the cell clustering rate of induced cells, and ultrastructural observation, dithizone staining, quantitative polymerase chain reaction and immunofluorescence assay, insulin and c-peptide release under glucose stimulus of cell clusters, as well as transplantation test of the cell clusters in diabetic model mice. With (6.175 ± 0.263) × 105 cells in 508.5 ± 24.5 cell clusters, (3.303 ± 0.331) × 105 single cells and (9.478 ± 0.208) × 105 total cell count on average, 65.08 ± 2.98% hfBMSCs differentiated into pancreatic islet-like cell clusters after nonadherent induction. With (3.993 ± 0.344) × 105 cells in 332.3 ± 41.6 cell clusters, (5.437 ± 0.434) × 105 single cells and (9.430 ± 0.340) × 105 total cell count on average, 42.37 ± 3.70% hfBMSCs differentiated into pancreatic islet-like cell clusters after adherent induction (P produced human insulin in recipients. Our studies demonstrate that nonadherent induction can greatly promote BMSCs to form pancreatic islet-like cell clusters, thereby improving the differentiation efficiency of BMSCs towards IPCs.

  4. Improved film morphology reduces charge carrier recombination into the triplet excited state in a small bandgap polymer-fullerene photovoltaic cell

    NARCIS (Netherlands)

    Di Nuzzo, D.; Aguirre de Miguel, A.; Shahid, M.; Gevaerts, Veronique; Meskers, S.C.J.; Janssen, R.A.J.

    2010-01-01

    The use of diiodooctane as processing additive for construction of PCPDTBT:PCBM solar cells results in a profound change in photophysical behavior of this blend. In the improved morphology obtained with the additive, recombination of charge carriers to the lowest triplet excited state is suppressed.

  5. Dissecting Cell-Type Composition and Activity-Dependent Transcriptional State in Mammalian Brains by Massively Parallel Single-Nucleus RNA-Seq.

    Science.gov (United States)

    Hu, Peng; Fabyanic, Emily; Kwon, Deborah Y; Tang, Sheng; Zhou, Zhaolan; Wu, Hao

    2017-12-07

    Massively parallel single-cell RNA sequencing can precisely resolve cellular diversity in a high-throughput manner at low cost, but unbiased isolation of intact single cells from complex tissues such as adult mammalian brains is challenging. Here, we integrate sucrose-gradient-assisted purification of nuclei with droplet microfluidics to develop a highly scalable single-nucleus RNA-seq approach (sNucDrop-seq), which is free of enzymatic dissociation and nucleus sorting. By profiling ∼18,000 nuclei isolated from cortical tissues of adult mice, we demonstrate that sNucDrop-seq not only accurately reveals neuronal and non-neuronal subtype composition with high sensitivity but also enables in-depth analysis of transient transcriptional states driven by neuronal activity, at single-cell resolution, in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. An excited-state intramolecular photon transfer fluorescence probe for localizable live cell imaging of cysteine

    Science.gov (United States)

    Liu, Wei; Chen, Wen; Liu, Si-Jia; Jiang, Jian-Hui

    2017-03-01

    Small molecule probes suitable for selective and specific fluorescence imaging of some important but low-concentration intracellular reactive sulfur species such as cysteine (Cys) pose a challenge in chemical biology. We present a readily available, fast-response fluorescence probe CHCQ-Ac, with 2-(5‧-chloro-2-hydroxyl-phenyl)-6-chloro-4(3 H)-quinazolinone (CHCQ) as the fluorophore and acrylate group as the functional moiety, that enables high-selectivity and high-sensitivity for detecting Cys in both solution and biological system. After specifically reacted with Cys, the probe undergoes a seven-membered intramolecular cyclization and released the fluorophore CHCQ with excited-state intramolecular photon transfer effect. A highly fluorescent, insoluble aggregate was then formed to facilitate high-sensitivity and high-resolution imaging. The results showed that probe CHCQ-Ac affords a remarkably large Stokes shift and can detect Cys under physiological pH condition with no interference from other analytes. Moreover, this probe was proved to have excellent chemical stability, low cytotoxicity and good cell permeability. Our design of this probe provides a novel potential tool to visualize and localize cysteine in bioimaging of live cells that would greatly help to explore various Cys-related physiological and pathological cellular processes in cell biology and diagnostics.

  7. Ground-state magneto-optical resonances in cesium vapor confined in an extremely thin cell

    International Nuclear Information System (INIS)

    Andreeva, C.; Cartaleva, S.; Petrov, L.; Slavov, D.; Atvars, A.; Auzinsh, M.; Blush, K.

    2007-01-01

    Experimental and theoretical studies are presented related to the ground-state magneto-optical resonance observed in cesium vapor confined in an extremely thin cell (ETC), with thickness equal to the wavelength of the irradiating light. It is shown that utilization of the ETC allows one to examine the formation of a magneto-optical resonance on the individual hyperfine transitions, thus distinguishing processes resulting in dark (reduced absorption) or bright (enhanced absorption) resonance formation. We report experimental evidence of bright magneto-optical resonance sign reversal in Cs atoms confined in an ETC. A theoretical model is proposed based on the optical Bloch equations that involves the elastic interaction processes of atoms in the ETC with its walls, resulting in depolarization of the Cs excited state, which is polarized by the exciting radiation. This depolarization leads to the sign reversal of the bright resonance. Using the proposed model, the magneto-optical resonance amplitude and width as a function of laser power are calculated and compared with the experimental ones. The numerical results are in good agreement with those of experiment

  8. Imidazolium-based Block Copolymers as Solid-State Separators for Alkaline Fuel Cells and Lithium Ion Batteries

    Science.gov (United States)

    Nykaza, Jacob Richard

    In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk

  9. The effects of intrinsic noise on the behaviour of bistable cell regulatory systems under quasi-steady state conditions.

    Science.gov (United States)

    de la Cruz, Roberto; Guerrero, Pilar; Spill, Fabian; Alarcón, Tomás

    2015-08-21

    We analyse the effect of intrinsic fluctuations on the properties of bistable stochastic systems with time scale separation operating under quasi-steady state conditions. We first formulate a stochastic generalisation of the quasi-steady state approximation based on the semi-classical approximation of the partial differential equation for the generating function associated with the chemical master equation. Such approximation proceeds by optimising an action functional whose associated set of Euler-Lagrange (Hamilton) equations provides the most likely fluctuation path. We show that, under appropriate conditions granting time scale separation, the Hamiltonian can be re-scaled so that the set of Hamilton equations splits up into slow and fast variables, whereby the quasi-steady state approximation can be applied. We analyse two particular examples of systems whose mean-field limit has been shown to exhibit bi-stability: an enzyme-catalysed system of two mutually inhibitory proteins and a gene regulatory circuit with self-activation. Our theory establishes that the number of molecules of the conserved species is order parameters whose variation regulates bistable behaviour in the associated systems beyond the predictions of the mean-field theory. This prediction is fully confirmed by direct numerical simulations using the stochastic simulation algorithm. This result allows us to propose strategies whereby, by varying the number of molecules of the three conserved chemical species, cell properties associated to bistable behaviour (phenotype, cell-cycle status, etc.) can be controlled.

  10. The effects of intrinsic noise on the behaviour of bistable cell regulatory systems under quasi-steady state conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Roberto; Alarcón, Tomás de la [Centre de Recerca Matemàtica. Edifici C, Campus de Bellaterra, 08193 Bellaterra (Barcelona) (Spain); Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Guerrero, Pilar [Department of Mathematics, University College London, Gower Street, London WC1E 6BT (United Kingdom); Spill, Fabian [Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, Massachusetts 02215 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States)

    2015-08-21

    We analyse the effect of intrinsic fluctuations on the properties of bistable stochastic systems with time scale separation operating under quasi-steady state conditions. We first formulate a stochastic generalisation of the quasi-steady state approximation based on the semi-classical approximation of the partial differential equation for the generating function associated with the chemical master equation. Such approximation proceeds by optimising an action functional whose associated set of Euler-Lagrange (Hamilton) equations provides the most likely fluctuation path. We show that, under appropriate conditions granting time scale separation, the Hamiltonian can be re-scaled so that the set of Hamilton equations splits up into slow and fast variables, whereby the quasi-steady state approximation can be applied. We analyse two particular examples of systems whose mean-field limit has been shown to exhibit bi-stability: an enzyme-catalysed system of two mutually inhibitory proteins and a gene regulatory circuit with self-activation. Our theory establishes that the number of molecules of the conserved species is order parameters whose variation regulates bistable behaviour in the associated systems beyond the predictions of the mean-field theory. This prediction is fully confirmed by direct numerical simulations using the stochastic simulation algorithm. This result allows us to propose strategies whereby, by varying the number of molecules of the three conserved chemical species, cell properties associated to bistable behaviour (phenotype, cell-cycle status, etc.) can be controlled.

  11. Using spectral decomposition of the signals from laurdan-derived probes to evaluate the physical state of membranes in live cells [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Serge Mazeres

    2017-08-01

    Full Text Available Background: We wanted to investigate the physical state of biological membranes in live cells under the most physiological conditions possible. Methods: For this we have been using laurdan, C-laurdan or M-laurdan to label a variety of cells, and a biphoton microscope equipped with both a thermostatic chamber and a spectral analyser. We also used a flow cytometer to quantify the 450/530 nm ratio of fluorescence emissions by whole cells. Results: We find that using all the information provided by spectral analysis to perform spectral decomposition dramatically improves the imaging resolution compared to using just two channels, as commonly used to calculate generalized polarisation (GP. Coupled to a new plugin called Fraction Mapper, developed to represent the fraction of light intensity in the first component in a stack of two images, we obtain very clear pictures of both the intra-cellular distribution of the probes, and the polarity of the cellular environments where the lipid probes are localised. Our results lead us to conclude that, in live cells kept at 37°C, laurdan, and M-laurdan to a lesser extent, have a strong tendency to accumulate in the very apolar environment of intra-cytoplasmic lipid droplets, but label the plasma membrane (PM of mammalian cells ineffectively. On the other hand, C-laurdan labels the PM very quickly and effectively, and does not detectably accumulate in lipid droplets. Conclusions: From using these probes on a variety of mammalian cell lines, as well as on cells from Drosophila and Dictyostelium discoideum, we conclude that, apart from the lipid droplets, which are very apolar, probes in intracellular membranes reveal a relatively polar and hydrated environment, suggesting a very marked dominance of liquid disordered states. PMs, on the other hand, are much more apolar, suggesting a strong dominance of liquid ordered state, which fits with their high sterol contents.

  12. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells.

    Science.gov (United States)

    Wang, Jin; Mora-Seró, Iván; Pan, Zhenxiao; Zhao, Ke; Zhang, Hua; Feng, Yaoyu; Yang, Guang; Zhong, Xinhua; Bisquert, Juan

    2013-10-23

    Searching suitable panchromatic QD sensitizers for expanding the light-harvesting range, accelerating charge separation, and retarding charge recombination is an effective way to improve power conversion efficiency (PCE) of quantum-dot-sensitized solar cells (QDSCs). One possible way to obtain a wide absorption range is to use the exciplex state of a type-II core/shell-structured QDs. In addition, this system could also provide a fast charge separation and low charge-recombination rate. Herein, we report on using a CdTe/CdSe type-II core/shell QD sensitizer with an absorption range extending into the infrared region because of its exciplex state, which is covalently linked to TiO2 mesoporous electrodes by dropping a bifunctional linker molecule mercaptopropionic acid (MPA)-capped QD aqueous solution onto the film electrode. High loading and a uniform distribution of QD sensitizer throughout the film electrode thickness have been confirmed by energy dispersive X-ray (EDX) elemental mapping. The accelerated electron injection and retarded charge-recombination pathway in the built CdTe/CdSe QD cells in comparison with reference CdSe QD-based cells have been confirmed by impedance spectroscopy, fluorescence decay, and intensity-modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) analysis. With the combination of the high QD loading and intrinsically superior optoelectronic properties of type-II core/shell QD (wide absorption range, fast charge separation, and slow charge recombination), the resulting CdTe/CdSe QD-based regenerative sandwich solar cells exhibit a record PCE of 6.76% (J(sc) = 19.59 mA cm(-2), V(oc) = 0.606 V, and FF = 0.569) with a mask around the active film under a full 1 sun illumination (simulated AM 1.5), which is the highest reported to date for liquid-junction QDSCs.

  13. Steady state minority carrier lifetime and defect level occupation in thin film CdTe solar cells

    International Nuclear Information System (INIS)

    Cheng, Zimeng; Delahoy, Alan E.; Su, Zhaoqian; Chin, Ken K.

    2014-01-01

    A model consisting of Shockley Read Hall (SRH) recombination under steady state conditions of constant photon injection is proposed in this work to study the steady state minority carrier lifetime in CdS/CdTe thin film solar cells. The SRH recombination rate versus optical injection level is analytically approximated in the junction and neutral regions. In the neutral region, it is found that the recombination rate through certain defect levels has one constant value under lower optical injection conditions and another constant value under higher optical injection conditions with the transition occurring at a critical optical injection level. By simultaneously solving the equations of charge neutrality, charge conservation and SRH recombination in the neutral region, it is found that the compensation of doping and the reduction of minority carrier lifetime by donors in the p-type semiconductor can each be remedied by optical injection. It is also demonstrated that this optical-dependent SRH recombination is significant in large bandgap thin films. The measured minority carrier diffusion length in a CdS/CdTe solar cells, as determined from the steady-state photo-generated carrier collection efficiency, shows the predicted transition of minority carrier lifetime versus optical injection level. A numerical fitting of the indirectly-measured minority carrier lifetime by assuming the minority carrier mobility gives a non-intuitive picture of the p–n junction with a low free hole concentration but a narrow depletion region width. - Highlights: • Minority carrier lifetimes under different optical injections are solved. • Simplifications of Shockley–Read–Hall recombination equation are discussed. • The compensation of donor can be remedied with optical injection. • The recombination efficiency of donor can be remedied with optical injection. • The minority carrier lifetime transition under illumination was experimentally observed

  14. Passivation of defect states in Si and Si/SiO2 interface states by cyanide treatment: improvement of characteristics of pin-junction amorphous Si and crystalline Si-based metal-oxide-semiconductor junction solar cells

    International Nuclear Information System (INIS)

    Fujiwara, N.; Fujinaga, T.; Niinobe, D.; Maida, O.; Takahashi, M.; Kobayashi, H.

    2003-01-01

    Defect states in Si can be passivated by cyanide treatment which simply involves immersion of Si materials in KCN solutions, followed by rinse. When the cyanide treatment is applied to pin-junction amorphous Si [a-Si] solar cells, the initial conversion efficiency increases. When the crown-ether cyanide treatment using a KCN solution of xylene containing 18-crown-6 is performed on i-a-Si films, decreases in the photo- and dark current densities with the irradiation time are prevented. The cyanide treatment can also passivate interface states present at Si/SiO 2 interfaces, leading to an increase in the conversion efficiency of 2 / Si (100)> solar cells.. Si-CN bonds formed by the reaction of defect states with cyanide ions have a high bond energy of about 4.5 eV and hence heat treatment at 800 0 C does not rupture the bonds, making thermal stability of the cyanide treatment.. When the cyanide treatment is applied to ultrathin SiO 2 /Si structure, the leakage current density is markedly decreased (Authors)

  15. Stem cells and chronic wound healing: state of the art

    Directory of Open Access Journals (Sweden)

    Leavitt T

    2016-03-01

    Full Text Available Tripp Leavitt, Michael S Hu, Clement D Marshall, Leandra A Barnes, Michael T Longaker, H Peter Lorenz Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA Abstract: Currently available treatments for chronic wounds are inadequate. A clearly effective therapy does not exist, and treatment is often supportive. This is largely because the cellular and molecular processes underlying failure of wound repair are still poorly understood. With an increase in comorbidities, such as diabetes and vascular disease, as well as an aging population, the incidence of these intractable wounds is expected to rise. As such, chronic wounds, which are already costly, are rapidly growing as a tremendous burden to the health-care system. Stem cells have garnered much interest as a therapy for chronic wounds due to their inherent ability to differentiate into multiple lineages and promote regeneration. Herein, we discuss the types of stem cells used for chronic wound therapy, as well as the proposed means by which they do so. In particular, we highlight mesenchymal stem cells (including adipose-derived stem cells, endothelial progenitor cells, and induced pluripotent stem cells. We include the results of recent in vitro and in vivo studies in both animal models and human clinical trials. Finally, we discuss the current studies to improve stem cell therapies and the limitations of stem cell-based therapeutics. Stem cells promise improved therapies for healing chronic wounds, but further studies that are well-designed with standardized protocols are necessary for fruition. Keywords: stem cells, chronic wounds, cell therapy, wound healing

  16. State of IgG4-positive plasma cells in the colon mucosa of chronic inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Yu.А. Gaidar

    2017-04-01

    Full Text Available Background. The diagnosis of IgG4-associated sclerosing disease, IgG4-associatied condition, is based on a comprehensive evaluation of characteristic clinical, radiographic, serologic, histological and immunohistochemical features. The histopathological is the main examination in the diagnosis of IgG4-associatied diseases. The purpose of the study was to evaluate the state of IgG4-positive plasma cells in the mucosa of the colon in patients with established morphological and endoscopic diagnosis of ulcerative colitis (UC and Crohn’s disease (CD. Materials and methods. The study used biopsies material from 14 patients treated at the Institute of Gastroenterology, in the department intestine diseases, with established morphological and endoscope diagnosis of UC (8 and CD (6 in the acute stage. All patients had no evidence of autoimmune pancreatitis type I and II. Biopsy were fixed in 10.0% neutral formalin, dehydrated in alcohols of increasing concentration and embedded in paraffin for histological studies. Histological sections of 3–5 µm were colored with hematoxylin and eosin. There were used monoclonal IgG4 antibodies for immunohistochemical studies (Abcam, USA. Results. Our results show that with ulcerative colitis in 37.5 % of cases IgG4-positive plasma cells in the colon mucosa have not been identified. In 25 % of cases, sporadic IgG4-positive plasma cells were identified. In 37.5 % of cases, the groups of IgG4-positive plasma cells not exceeding 5 cells in one group were found. In Crohn’s disease, groups of IgG4-positive plasma cells were observed in all cases, in addition it should be noted that the group included 10 or more cells. Conclusions. It is shown that in UC, IgG4-positive plasma cells may be absent, solitary or gathered in small groups to 5 cells, and in CD, the groups consisting of 10 or more cells are observed.

  17. Solid-state dye-sensitized solar cells based on ZnO nanoparticle and nanorod array hybrid photoanodes

    Directory of Open Access Journals (Sweden)

    Sue Hung-Jue

    2011-01-01

    Full Text Available Abstract The effect of ZnO photoanode morphology on the performance of solid-state dye-sensitized solar cells (DSSCs is reported. Four different structures of dye-loaded ZnO layers have been fabricated in conjunction with poly(3-hexylthiophene. A significant improvement in device efficiency with ZnO nanorod arrays as photoanodes has been achieved by filling the interstitial voids of the nanorod arrays with ZnO nanoparticles. The overall power conversion efficiency increases from 0.13% for a nanorod-only device to 0.34% for a device with combined nanoparticles and nanorod arrays. The higher device efficiency in solid-state DSSCs with hybrid nanorod/nanoparticle photoanodes is originated from both large surface area provided by nanoparticles for dye adsorption and efficient charge transport provided by the nanorod arrays to reduce the recombinations of photogenerated carriers.

  18. State of charge monitoring of vanadium redox flow batteries using half cell potentials and electrolyte density

    Science.gov (United States)

    Ressel, Simon; Bill, Florian; Holtz, Lucas; Janshen, Niklas; Chica, Antonio; Flower, Thomas; Weidlich, Claudia; Struckmann, Thorsten

    2018-02-01

    The operation of vanadium redox flow batteries requires reliable in situ state of charge (SOC) monitoring. In this study, two SOC estimation approaches for the negative half cell are investigated. First, in situ open circuit potential measurements are combined with Coulomb counting in a one-step calibration of SOC and Nernst potential which doesn't need additional reference SOCs. In-sample and out-of-sample SOCs are estimated and analyzed, estimation errors ≤ 0.04 are obtained. In the second approach, temperature corrected in situ electrolyte density measurements are used for the first time in vanadium redox flow batteries for SOC estimation. In-sample and out-of-sample SOC estimation errors ≤ 0.04 demonstrate the feasibility of this approach. Both methods allow recalibration during battery operation. The actual capacity obtained from SOC calibration can be used in a state of health model.

  19. Contributions of cell growth and biochemical reactions to nongenetic variability of cells.

    NARCIS (Netherlands)

    Schwabe, A.; Bruggeman, F.J.

    2014-01-01

    Cell-to-cell variability in the molecular composition of isogenic, steady-state growing cells arises spontaneously from the inherent stochasticity of intracellular biochemical reactions and cell growth. Here, we present a general decomposition of the total variance in the copy number per cell of a

  20. Influence of ion induced local Coulomb field and polarity on charge generation and efficiency in poly(3-hexylthiophene)-based solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Abrusci, Agnese; Snaith, Henry J. [Clarendon Laboratory, Department of Physics, University of Oxford (United Kingdom); Santosh Kumar, R. Sai; Petrozza, Annamaria [Center for Nano Science and Technology of IIT, Milano (Italy); Al-Hashimi, Mohammed; Heeney, Martin [Department of Chemistry and Centre for Plastic Electronics, Imperial College London (United Kingdom)

    2011-07-08

    Dye-sensitized solar cells (DSSC) are a realistic option for converting light to electrical energy. Hybrid architectures offer a vast materials library for device optimization, including a variety of metal oxides, organic and inorganic sensitizers, molecular, polymeric and electrolytic hole-transporter materials. In order to further improve the efficiency of solid-state dye-sensitized solar cells, recent attention has focused on using light absorbing polymers such as poly(3-hexylthiophene) (P3HT), to replace the more commonly used ''transparent'' 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenyl-amine)9,9'spiro-bifluorene (spiro-OMeTAD), in order to enhance the light absorption within thin films. As is the case with spiro-OMeTAD based solid-state DSSC, the P3HT-based devices improve significantly with the addition of lithium bis(trifluoromethylsulfonyl)imide salts (Li-TFSI), although the precise role of these additives has not yet been clarified in solid-state DSCs. Here, we present a thorough study on the effect of Li-TFSI in P3HT based solid-state DSSC incorporating an indolene-based organic sensitizer termed D102. Employing ultrafast transient absorption and cw-emission spectroscopy together with electronic measurements, we demonstrate a fine tuning of the energetic landscape of the active cell components by the local Coulomb field induced by the ions. This increases the charge transfer nature of the excited state on the dye, significantly accelerating electron injection into the TiO{sub 2}. We demonstrate that this ionic influence on the excited state energy is the primary reason for enhanced charge generation with the addition of ionic additives. The deepening of the relative position of the TiO{sub 2} conduction band, which has previously been thought to be the cause for enhanced charge generation in dye sensitized solar cells with the addition of lithium salts, appears to be of minor importance in this system. (Copyright copyright

  1. ZFHX4 interacts with the NuRD core member CHD4 and regulates the glioblastoma tumor-initiating cell state.

    Science.gov (United States)

    Chudnovsky, Yakov; Kim, Dohoon; Zheng, Siyuan; Whyte, Warren A; Bansal, Mukesh; Bray, Mark-Anthony; Gopal, Shuba; Theisen, Matthew A; Bilodeau, Steve; Thiru, Prathapan; Muffat, Julien; Yilmaz, Omer H; Mitalipova, Maya; Woolard, Kevin; Lee, Jeongwu; Nishimura, Riko; Sakata, Nobuo; Fine, Howard A; Carpenter, Anne E; Silver, Serena J; Verhaak, Roel G W; Califano, Andrea; Young, Richard A; Ligon, Keith L; Mellinghoff, Ingo K; Root, David E; Sabatini, David M; Hahn, William C; Chheda, Milan G

    2014-01-30

    Glioblastoma (GBM) harbors subpopulations of therapy-resistant tumor-initiating cells (TICs) that are self-renewing and multipotent. To understand the regulation of the TIC state, we performed an image-based screen for genes regulating GBM TIC maintenance and identified ZFHX4, a 397 kDa transcription factor. ZFHX4 is required to maintain TIC-associated and normal human neural precursor cell phenotypes in vitro, suggesting that ZFHX4 regulates differentiation, and its suppression increases glioma-free survival in intracranial xenografts. ZFHX4 interacts with CHD4, a core member of the nucleosome remodeling and deacetylase (NuRD) complex. ZFHX4 and CHD4 bind to overlapping sets of genomic loci and control similar gene expression programs. Using expression data derived from GBM patients, we found that ZFHX4 significantly affects CHD4-mediated gene expression perturbations, which defines ZFHX4 as a master regulator of CHD4. These observations define ZFHX4 as a regulatory factor that links the chromatin-remodeling NuRD complex and the GBM TIC state. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. ZFHX4 interacts with the NuRD core member CHD4 and regulates the glioblastoma tumor initiating cell state

    Science.gov (United States)

    Chudnovsky, Yakov; Kim, Dohoon; Zheng, Siyuan; Whyte, Warren A.; Bansal, Mukesh; Bray, Mark-Anthony; Gopal, Shuba; Theisen, Matthew A.; Bilodeau, Steve; Thiru, Prathapan; Muffat, Julien; Yilmaz, Omer H.; Mitalipova, Maya; Woolard, Kevin; Lee, Jeongwu; Nishimura, Riko; Sakata, Nobuo; Fine, Howard A.; Carpenter, Anne E.; Silver, Serena J.; Verhaak, Roel G. W.; Califano, Andrea; Young, Richard A.; Ligon, Keith L.; Mellinghoff, Ingo K.; Root, David E.; Sabatini, David M.; Hahn, William C.; Chheda, Milan G.

    2014-01-01

    Summary Glioblastomas (GBM) harbor subpopulations of therapy-resistant tumor initiating cells (TICs) that are self-renewing and multipotent. To understand the regulation of the TIC state, we performed an image-based screen for genes regulating GBM TIC maintenance and identified ZFHX4, a 397-kDa transcription factor. ZFHX4 is required to maintain TIC-associated and normal human neural precursor cell phenotypes in vitro, suggesting that ZFHX4 regulates differentiation, and its suppression increases glioma-free survival in intracranial xenografts. ZFHX4 interacts with CHD4, a core member of the NuRD (nucleosome remodeling and deacetylase) complex. ZFHX4 and CHD4 bind to overlapping sets of genomic loci and control similar gene expression programs. Using expression data derived from GBM patients, we found that ZFHX4 significantly affects CHD4-mediated gene expression perturbations, which defines ZFHX4 as a master regulator of CHD4. These observations define ZFHX4 as a regulatory factor that links the chromatin remodeling NuRD complex and the GBM TIC state. PMID:24440720

  3. ZFHX4 Interacts with the NuRD Core Member CHD4 and Regulates the Glioblastoma Tumor-Initiating Cell State

    Directory of Open Access Journals (Sweden)

    Yakov Chudnovsky

    2014-01-01

    Full Text Available Glioblastoma (GBM harbors subpopulations of therapy-resistant tumor-initiating cells (TICs that are self-renewing and multipotent. To understand the regulation of the TIC state, we performed an image-based screen for genes regulating GBM TIC maintenance and identified ZFHX4, a 397 kDa transcription factor. ZFHX4 is required to maintain TIC-associated and normal human neural precursor cell phenotypes in vitro, suggesting that ZFHX4 regulates differentiation, and its suppression increases glioma-free survival in intracranial xenografts. ZFHX4 interacts with CHD4, a core member of the nucleosome remodeling and deacetylase (NuRD complex. ZFHX4 and CHD4 bind to overlapping sets of genomic loci and control similar gene expression programs. Using expression data derived from GBM patients, we found that ZFHX4 significantly affects CHD4-mediated gene expression perturbations, which defines ZFHX4 as a master regulator of CHD4. These observations define ZFHX4 as a regulatory factor that links the chromatin-remodeling NuRD complex and the GBM TIC state.

  4. Combination of synchrotron radiation X-ray microprobe and nuclear microprobe for chromium and chromium oxidation states quantitative mapping in single cells

    International Nuclear Information System (INIS)

    Ortega, Richard; Deves, Guillaume; Fayard, Barbara; Salome, Murielle; Susini, Jean

    2003-01-01

    Hexavalent chromium compounds are established carcinogens but their mechanism of cell transformation has not been elucidated yet. In this study, chromium oxidation state distribution maps in cells exposed to soluble (Na 2 CrO 4 ), or insoluble (PbCrO 4 ), Cr(VI) compounds have been obtained by use of the ESRF ID-21 X-ray microscope. In addition, the quantitative maps of element distributions in cells have been determined using the nuclear microprobe of Bordeaux-Gradignan. Nuclear microprobe quantitative analysis revealed interesting features on chromium, and lead, cellular uptake. It is suggested that cells can enhance PbCrO 4 solubility, resulting in chromium, but not lead uptake. The differential carcinogenic potential of soluble and insoluble Cr(VI) compounds is discussed with regard to chromium intracellular quantitative distribution

  5. NLRP3 Controls the Development of Gastrointestinal CD11b+ Dendritic Cells in the Steady State and during Chronic Bacterial Infection

    Directory of Open Access Journals (Sweden)

    Isabelle C. Arnold

    2017-12-01

    Full Text Available The gastric lamina propria is largely uncharted immunological territory. Here we describe the evolution and composition of the gastric, small intestinal, and colonic lamina propria mononuclear phagocyte system during the steady state and infection with the gastric pathogen Helicobacter pylori. We show that monocytes, CX3CR1hi macrophages, and CD11b+ dendritic cells are recruited to the infected stomach in a CCR2-dependent manner. All three populations, but not BATF3-dependent CD103+ DCs, sample red fluorescent protein (RFP+ Helicobacter pylori (H. pylori. Mice reconstituted with human hematopoietic stem cells recapitulate several features of the myeloid cell-H. pylori interaction. The differentiation in and/or recruitment to gastrointestinal, lung, and lymphoid tissues of CD11b+ DCs requires NLRP3, but not apoptosis-associated speck-like protein containing a carboxy-terminal CARD (ASC or caspase-1, during steady-state and chronic infection. NLRP3−/− mice fail to generate Treg responses to H. pylori and control the infection more effectively than wild-type mice. The results demonstrate a non-canonical inflammasome-independent function of NLRP3 in DC development and immune regulation.

  6. Panchromatic response composed of hybrid visible-light absorbing polymers and near-IR absorbing dyes for nanocrystalline TiO{sub 2}-based solid-state solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo Joong; Graetzel, Michael; Nazeeruddin, Md. Khaja [Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland); Leventis, Henry C.; Haque, Saif A. [Department of Chemistry, Imperial College of Science Technology and Medicine, London SW72AZ (United Kingdom); Torres, Tomas [Departamento de Quimica Organica, Universidad Autonoma de Madrid (UAM), 28049 Madrid (Spain)

    2011-01-01

    In pursuit of panchromatic sensitizers for mesoporous TiO{sub 2}-based solid-state solar cells, a near-IR absorbing zinc phthalocyanine dye (coded TT1) was firstly adsorbed over relatively thin ({proportional_to}1 {mu}m) TiO{sub 2} mesoporous films and then a visible-light absorbing polymer [regioregular poly(3-hexylthiophene), P3HT] was incorporated into the mesopores as both a second sensitizer and a solid hole conductor. After optimizing some experimental parameters, these hybrid solid-state cells exhibited a clear panchromatic response, and an overall conversion efficiency of around 1% at full sun intensity. (author)

  7. Surface Design in Solid-State Dye Sensitized Solar Cells: Effects of Zwitterionic Co-adsorbents on Photovoltaic Performance

    KAUST Repository

    Wang, Mingkui

    2009-07-10

    In solid-state dye sensitized solar cells (SSDSCs) charge recombination at the dye-hole transporting material interface plays a critical role in the cell efficiency. For the first time we report on the influence of dipolar coadsorbents on the photovoltaic performance of sensitized hetero-junction solar cells. In the present study, we investigated the effect of two zwitterionic butyric acid derivatives differing only in the polar moiety attached to their common 4 carbon-chain acid, i.e., 4-guanidinobutyric acid (GBA) and 4-aminobutyric acid (ABA). These two molecules were implemented as coadsorbents in conjunction with Z907Na dye on the SSDSC. It was found that a Z907Na/GBA dye/co-adsorbent combination increases both the open circuit voltage (V oc) and short-circuit current density ( Jsc) as compared to using Z907Na dye alone. The Z907Na/ABA dye/co-adsorbent combination increases the Jsc. Impedance and transient photovoltage investigations elucidate the cause of these remarkable observations. ©2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ordered patterns of cell shape and orientational correlation during spontaneous cell migration.

    Directory of Open Access Journals (Sweden)

    Yusuke T Maeda

    Full Text Available BACKGROUND: In the absence of stimuli, most motile eukaryotic cells move by spontaneously coordinating cell deformation with cell movement in the absence of stimuli. Yet little is known about how cells change their own shape and how cells coordinate the deformation and movement. Here, we investigated the mechanism of spontaneous cell migration by using computational analyses. METHODOLOGY: We observed spontaneously migrating Dictyostelium cells in both a vegetative state (round cell shape and slow motion and starved one (elongated cell shape and fast motion. We then extracted regular patterns of morphological dynamics and the pattern-dependent systematic coordination with filamentous actin (F-actin and cell movement by statistical dynamic analyses. CONCLUSIONS/SIGNIFICANCE: We found that Dictyostelium cells in both vegetative and starved states commonly organize their own shape into three ordered patterns, elongation, rotation, and oscillation, in the absence of external stimuli. Further, cells inactivated for PI3-kinase (PI3K and/or PTEN did not show ordered patterns due to the lack of spatial control in pseudopodial formation in both the vegetative and starved states. We also found that spontaneous polarization was achieved in starved cells by asymmetric localization of PTEN and F-actin. This breaking of the symmetry of protein localization maintained the leading edge and considerably enhanced the persistence of directed migration, and overall random exploration was ensured by switching among the different ordered patterns. Our findings suggest that Dictyostelium cells spontaneously create the ordered patterns of cell shape mediated by PI3K/PTEN/F-actin and control the direction of cell movement by coordination with these patterns even in the absence of external stimuli.

  9. Hydrazone based molecular glasses for solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Aich, R.; Tran-Van, F.; Goubard, F.; Beouch, L.; Michaleviciute, A.; Grazulevicius, J.V.; Ratier, B.; Chevrot, C.

    2008-01-01

    Biscarbazole and terthiophene based molecular glasses with hydrazone functional goups (named respectively 2CzMPH and 3TDPH) have been synthesized and the thermal, optical and electrochemical properties have been studied. Differential scanning calorimetry characterizations confirm the metastable amorphous properties of these molecules with glass transition temperatures at 80 deg. C for the 3TDPH and 93 deg. C for the 2CzMPH. Their electrochemical properties have been studied and showed the effect of the conjugated hydrazone groups on the electronic delocalization of the structures. The concept of solid state dye-sensitized solar cells using hydrazone based molecular glasses has been verified with the elaboration of a SnO 2 : F/nc-TiO 2 /Ru-dye/2CzMPH /Au devices. Under full sunlight (98 mW/cm 2 , air mass 1.5) the I-V characterization of the device give a short circuit photocurrents I sc = 0.42 mA/cm 2 , open circuit voltage V oc = 500 mV with a fill factor of 0.35

  10. Hydrazone based molecular glasses for solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aich, R. [Laboratoire de Physicochimie des Polymeres et des Interfaces (EA 2528), Universite de Cergy-Pontoise, 5 mail Gay Lussac, 95031 Cergy Pontoise (France); Ecole Electricite de Production et Methodes Industrielles, Cergy Pontoise (France); Tran-Van, F. [Laboratoire de Physicochimie des Polymeres et des Interfaces (EA 2528), Universite de Cergy-Pontoise, 5 mail Gay Lussac, 95031 Cergy Pontoise (France)], E-mail: francois.tran-van@u-cergy.fr; Goubard, F.; Beouch, L. [Laboratoire de Physicochimie des Polymeres et des Interfaces (EA 2528), Universite de Cergy-Pontoise, 5 mail Gay Lussac, 95031 Cergy Pontoise (France); Michaleviciute, A.; Grazulevicius, J.V. [Department of Organic Technology, Kaunas University of Technology, Radvilenu Plentas 19, Kaunas LT-50254 (Lithuania); Ratier, B. [X-LIM., departement MINACOM, UMR 6172, Faculte des Sciences, 123 av. Albert Thomas 87060 Limoges cedex France (France); Chevrot, C. [Laboratoire de Physicochimie des Polymeres et des Interfaces (EA 2528), Universite de Cergy-Pontoise, 5 mail Gay Lussac, 95031 Cergy Pontoise (France)

    2008-08-30

    Biscarbazole and terthiophene based molecular glasses with hydrazone functional goups (named respectively 2CzMPH and 3TDPH) have been synthesized and the thermal, optical and electrochemical properties have been studied. Differential scanning calorimetry characterizations confirm the metastable amorphous properties of these molecules with glass transition temperatures at 80 deg. C for the 3TDPH and 93 deg. C for the 2CzMPH. Their electrochemical properties have been studied and showed the effect of the conjugated hydrazone groups on the electronic delocalization of the structures. The concept of solid state dye-sensitized solar cells using hydrazone based molecular glasses has been verified with the elaboration of a SnO{sub 2}: F/nc-TiO{sub 2}/Ru-dye/2CzMPH /Au devices. Under full sunlight (98 mW/cm{sup 2}, air mass 1.5) the I-V characterization of the device give a short circuit photocurrents I{sub sc} = 0.42 mA/cm{sup 2}, open circuit voltage V{sub oc} = 500 mV with a fill factor of 0.35.

  11. Determination of βS haplotypes in patients with sickle-cell anemia in the state of Rio Grande do Norte, Brazil

    Directory of Open Access Journals (Sweden)

    Cynthia Hatsue Kitayama Cabral

    2011-01-01

    Full Text Available βS haplotypes were studied in 47 non-related patients with sickle-cell anemia from the state of Rio Grande do Norte, Brazil. Molecular analysis was conducted by PCR/RFLP using restriction endonucleases XmnI, HindIII, HincII and HinfI to analyze six polymorphic sites from the beta cluster. Twenty-seven patients (57.5% were identified with genotype CAR/CAR, 9 (19.1% CAR/BEN, 6 (12.8% CAR/CAM, 1 (2.1% BEN/BEN, 2 (4.3% CAR/Atp, 1 (2.1% BEN/Atp and 1 (2.1% with genotype Atp/Atp. The greater frequency of Cameroon haplotypes compared to other Brazilian states suggests the existence of a peculiarity of African origin in the state of Rio Grande do Norte.

  12. 1,2,4-Triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte for all-solid-state fuel cells

    DEFF Research Database (Denmark)

    Luo, Jiangshui; Jensen, Annemette Hindhede; Brooks, Neil R.

    2015-01-01

    1,2,4-Triazolium perfluorobutanesulfonate (1), a novel, pure protic organic ionic plastic crystal (POIPC) with a wide plastic crystalline phase, has been explored as a proof-of-principle anhydrous proton conductor for all-solid-state high temperature hydrogen/air fuel cells. Its physicochemical p...

  13. Efficiency-limiting processes in cyclopentadithiophene-bridged donor-acceptor-type dyes for solid-state dye-sensitized solar cells

    KAUST Repository

    Hinkel, Felix

    2018-01-26

    The charge generation and recombination processes in three novel push-pull photosensitizers for dye-sensitized solar cells (DSSCs) are studied by ps–μs transient absorption (TA) and quasi-steady-state photoinduced absorption (PIA) spectroscopy. The three cyclopentadithiophene-based photosensitizer dye molecules exhibit comparably low power conversion efficiencies ranging from 0.8% to 1.7% in solid-state DSSCs. We find that the photocurrents increase in the presence of Li-salt additives. Both TA and PIA measurements observe long-lived dye cations created by electron injection from the dyes’ excited state for two dyes from the series. However, the third dye shows significantly lower performance as a consequence of the less efficient electron injection even after the addition of Li-salts and faster electron-hole recombination on the ns-μs time scale. In essence, the prerequisites for this class of donor-π bridge-acceptor photosensitizers to reach higher charge generation efficiencies are a combination of strong dipole moments and fine tuning of the electronic landscape at the titania-dye interface by Li-salt addition.

  14. Efficiency-limiting processes in cyclopentadithiophene-bridged donor-acceptor-type dyes for solid-state dye-sensitized solar cells

    KAUST Repository

    Hinkel, Felix; Kim, Yoojin M.; Zagraniarsky, Yulian; Schlü tter, Florian; Andrienko, Denis; Mü llen, Klaus; Laquai, Fré dé ric

    2018-01-01

    The charge generation and recombination processes in three novel push-pull photosensitizers for dye-sensitized solar cells (DSSCs) are studied by ps–μs transient absorption (TA) and quasi-steady-state photoinduced absorption (PIA) spectroscopy. The three cyclopentadithiophene-based photosensitizer dye molecules exhibit comparably low power conversion efficiencies ranging from 0.8% to 1.7% in solid-state DSSCs. We find that the photocurrents increase in the presence of Li-salt additives. Both TA and PIA measurements observe long-lived dye cations created by electron injection from the dyes’ excited state for two dyes from the series. However, the third dye shows significantly lower performance as a consequence of the less efficient electron injection even after the addition of Li-salts and faster electron-hole recombination on the ns-μs time scale. In essence, the prerequisites for this class of donor-π bridge-acceptor photosensitizers to reach higher charge generation efficiencies are a combination of strong dipole moments and fine tuning of the electronic landscape at the titania-dye interface by Li-salt addition.

  15. Functional State of Haemopoietic Stem Cells in the Irradiated Mouse

    Energy Technology Data Exchange (ETDEWEB)

    Silini, G.; Pozzi, Laura V. [Laboratorio di Radiobiologica Animale, Centro Studi Nucleari, Casaccia, Rome (Italy)

    1968-08-15

    The repopulation kinetics of bone marrow in irradiated (C3H x C57BL) F{sub 1} hybrid mice were followed at different time intervals after a single whole-body dose of 150 rad X -rays. The changes in the number of total nucleated cells and of colony-forming cells were estimated and expressed as number of cells per femur shaft of fixed length. For the evaluation of the progenitor cell compartment an exogenous test of transplantation into heavily irradiated hosts followed by spleen colony counts was employed. In an attempt to distinguish between cycling and dormant cells in the progenitor pool, vinblastine was also administered under various schedules of treatment with respect to time and dosage to follow the changes induced by this drug in the irradiated recovering marrow. The depopulation of total bone-m arrow cells caused by vinblastine proceeded at a comparable rate in both the irradiated and the normal mouse. On the other hand, depopulation of the colony-formers is faster in animals irradiated 1 -2 days previously as compared with normal animals or mice irradiated 1 week or 2 weeks earlier. The data were interpreted to show that in the marrow of a newly-irradiated animal more cells are in a fast cycle than in a normal or a recovering animal. Data are finally presented and discussed concerning the use of vinblastine for studies of stem cell kinetics in haemopoietic tissues. (author)

  16. Msx1-modulated muscle satellite cells retain a primitive state and exhibit an enhanced capacity for osteogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ke, E-mail: dingke@med.uestc.edu.cn [Department of Pediatric Surgery, School of medicine, University of Electronic Science and Technology of China, Chengdu 610072 (China); Sichuan Academy of Medical Sciences & Sichuan Provincial People' s Hospital, Chengdu 610072 (China); Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Liu, Wen-ying; Zeng, Qiang; Hou, Fang [Department of Pediatric Surgery, School of medicine, University of Electronic Science and Technology of China, Chengdu 610072 (China); Sichuan Academy of Medical Sciences & Sichuan Provincial People' s Hospital, Chengdu 610072 (China); Xu, Jian-zhong, E-mail: xjzspine@163.com [Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Yang, Zhong, E-mail: zyang1999@163.com [Department of Clinical Hematology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)

    2017-03-01

    Multipotent muscle satellite cells (MuSCs) have been identified as potential seed cells for bone tissue engineering. However, MuSCs exhibit a rapid loss of stemness after in vitro culturing, thereby compromising their therapeutic efficiency. Muscle segment homeobox gene 1 (msx1) has been found to induce the dedifferentiation of committed progenitor cells, as well as terminally differentiated myotubes. In this study, a Tet-off retroviral gene delivery system was used to modulate msx1 expression. After ten passages, MuSCs that did not express msx-1 (e.g., the non-msx1 group) were compared with MuSCs with induced msx-1 expression (e.g., the msx1 group). The latter group exhibited a more juvenile morphology, it contained a significantly lower percentage of senescent cells characterized by positive β-galactosidase staining, and it exhibited increased proliferation and a higher proliferation index. Immunocytochemical stainings further detected a more primitive gene expression profile for the msx1 group, while osteogenic differentiation assays and ectopic bone formation assays demonstrated an improved capacity for the msx1 group to undergo osteogenic differentiation. These results suggest that transient expression of msx1 in MuSCs can retain a primitive state, thereby enhancing their capacity for osteogenic differentiation and restoring the potential for MuSCs to serve as seed cells for bone tissue engineering.

  17. Msx1-modulated muscle satellite cells retain a primitive state and exhibit an enhanced capacity for osteogenic differentiation

    International Nuclear Information System (INIS)

    Ding, Ke; Liu, Wen-ying; Zeng, Qiang; Hou, Fang; Xu, Jian-zhong; Yang, Zhong

    2017-01-01

    Multipotent muscle satellite cells (MuSCs) have been identified as potential seed cells for bone tissue engineering. However, MuSCs exhibit a rapid loss of stemness after in vitro culturing, thereby compromising their therapeutic efficiency. Muscle segment homeobox gene 1 (msx1) has been found to induce the dedifferentiation of committed progenitor cells, as well as terminally differentiated myotubes. In this study, a Tet-off retroviral gene delivery system was used to modulate msx1 expression. After ten passages, MuSCs that did not express msx-1 (e.g., the non-msx1 group) were compared with MuSCs with induced msx-1 expression (e.g., the msx1 group). The latter group exhibited a more juvenile morphology, it contained a significantly lower percentage of senescent cells characterized by positive β-galactosidase staining, and it exhibited increased proliferation and a higher proliferation index. Immunocytochemical stainings further detected a more primitive gene expression profile for the msx1 group, while osteogenic differentiation assays and ectopic bone formation assays demonstrated an improved capacity for the msx1 group to undergo osteogenic differentiation. These results suggest that transient expression of msx1 in MuSCs can retain a primitive state, thereby enhancing their capacity for osteogenic differentiation and restoring the potential for MuSCs to serve as seed cells for bone tissue engineering.

  18. Msx1-modulated muscle satellite cells retain a primitive state and exhibit an enhanced capacity for osteogenic differentiation.

    Science.gov (United States)

    Ding, Ke; Liu, Wen-Ying; Zeng, Qiang; Hou, Fang; Xu, Jian-Zhong; Yang, Zhong

    2017-03-01

    Multipotent muscle satellite cells (MuSCs) have been identified as potential seed cells for bone tissue engineering. However, MuSCs exhibit a rapid loss of stemness after in vitro culturing, thereby compromising their therapeutic efficiency. Muscle segment homeobox gene 1 (msx1) has been found to induce the dedifferentiation of committed progenitor cells, as well as terminally differentiated myotubes. In this study, a Tet-off retroviral gene delivery system was used to modulate msx1 expression. After ten passages, MuSCs that did not express msx-1 (e.g., the non-msx1 group) were compared with MuSCs with induced msx-1 expression (e.g., the msx1 group). The latter group exhibited a more juvenile morphology, it contained a significantly lower percentage of senescent cells characterized by positive β-galactosidase staining, and it exhibited increased proliferation and a higher proliferation index. Immunocytochemical stainings further detected a more primitive gene expression profile for the msx1 group, while osteogenic differentiation assays and ectopic bone formation assays demonstrated an improved capacity for the msx1 group to undergo osteogenic differentiation. These results suggest that transient expression of msx1 in MuSCs can retain a primitive state, thereby enhancing their capacity for osteogenic differentiation and restoring the potential for MuSCs to serve as seed cells for bone tissue engineering. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Comprehensive benchmarking reveals H2BK20 acetylation as a distinctive signature of cell-state-specific enhancers and promoters.

    Science.gov (United States)

    Kumar, Vibhor; Rayan, Nirmala Arul; Muratani, Masafumi; Lim, Stefan; Elanggovan, Bavani; Xin, Lixia; Lu, Tess; Makhija, Harshyaa; Poschmann, Jeremie; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam

    2016-05-01

    Although over 35 different histone acetylation marks have been described, the overwhelming majority of regulatory genomics studies focus exclusively on H3K27ac and H3K9ac. In order to identify novel epigenomic traits of regulatory elements, we constructed a benchmark set of validated enhancers by performing 140 enhancer assays in human T cells. We tested 40 chromatin signatures on this unbiased enhancer set and identified H2BK20ac, a little-studied histone modification, as the most predictive mark of active enhancers. Notably, we detected a novel class of functionally distinct enhancers enriched in H2BK20ac but lacking H3K27ac, which was present in all examined cell lines and also in embryonic forebrain tissue. H2BK20ac was also unique in highlighting cell-type-specific promoters. In contrast, other acetylation marks were present in all active promoters, regardless of cell-type specificity. In stimulated microglial cells, H2BK20ac was more correlated with cell-state-specific expression changes than H3K27ac, with TGF-beta signaling decoupling the two acetylation marks at a subset of regulatory elements. In summary, our study reveals a previously unknown connection between histone acetylation and cell-type-specific gene regulation and indicates that H2BK20ac profiling can be used to uncover new dimensions of gene regulation. © 2016 Kumar et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  1. Modelling of PEM Fuel Cell Performance: Steady-State and Dynamic Experimental Validation

    Directory of Open Access Journals (Sweden)

    Idoia San Martín

    2014-02-01

    Full Text Available This paper reports on the modelling of a commercial 1.2 kW proton exchange membrane fuel cell (PEMFC, based on interrelated electrical and thermal models. The electrical model proposed is based on the integration of the thermodynamic and electrochemical phenomena taking place in the FC whilst the thermal model is established from the FC thermal energy balance. The combination of both models makes it possible to predict the FC voltage, based on the current demanded and the ambient temperature. Furthermore, an experimental characterization is conducted and the parameters for the models associated with the FC electrical and thermal performance are obtained. The models are implemented in Matlab Simulink and validated in a number of operating environments, for steady-state and dynamic modes alike. In turn, the FC models are validated in an actual microgrid operating environment, through the series connection of 4 PEMFC. The simulations of the models precisely and accurately reproduce the FC electrical and thermal performance.

  2. Current state of the art of blood cell labeling

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Straub, R.F.; Meinken, G.E.; Gil, M.C.

    1985-01-01

    An update on some recent developments in the area of blood cell labeling is provided. Specific topics covered include red cell labeling with /sup 99m/Tc, platelet labeling using an antiplatelet monoclonal antibody, and the labeling of leukocytes with /sup 99m/Tc. Mechanistic information, where available, is discussed. A critical evaluation of current techniques, their pitfalls as well as advantages, and the problems that remain to be resolved, is presented. The promise shown by recent results using the antibody approach for cell labeling is emphasized. An assessment of the progress made in these areas is presented. 38 refs., 10 figs., 6 tabs

  3. Epigenetics reloaded: the single-cell revolution.

    Science.gov (United States)

    Bheda, Poonam; Schneider, Robert

    2014-11-01

    Mechanistically, how epigenetic states are inherited through cellular divisions remains an important open question in the chromatin field and beyond. Defining the heritability of epigenetic states and the underlying chromatin-based mechanisms within a population of cells is complicated due to cell heterogeneity combined with varying levels of stability of these states; thus, efforts must be focused toward single-cell analyses. The approaches presented here constitute the forefront of epigenetics research at the single-cell level using classic and innovative methods to dissect epigenetics mechanisms from the limited material available in a single cell. This review further outlines exciting future avenues of research to address the significance of epigenetic heterogeneity and the contributions of microfluidics technologies to single-cell isolation and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The transition of mouse pluripotent stem cells from the naïve to the primed state requires Fas signaling through 3-O sulfated heparan sulfate structures recognized by the HS4C3 antibody

    International Nuclear Information System (INIS)

    Hirano, Kazumi; Van Kuppevelt, Toin H.; Nishihara, Shoko

    2013-01-01

    Highlights: ► Fas transcript increases during the transition from the naïve to the primed state. ► 3OST-5 transcript, the HS4C3 epitope synthesis gene, increases during the transition. ► Fas signaling regulates the transition from the naïve to the primed state. ► HS4C3-binding epitope regulates the transition from the naïve to the primed state. ► Fas signaling is regulated by the HS4C3 epitope during the transition. -- Abstract: The characteristics of pluripotent embryonic stem cells of human and mouse are different. The properties of human embryonic stem cells (hESCs) are similar to those of mouse epiblast stem cells (mEpiSCs), which are in a later developmental pluripotency state, the so-called “primed state” compared to mouse embryonic stem cells (mESCs) which are in a naïve state. As a result of the properties of the primed state, hESCs proliferate slowly, cannot survive as single cells, and can only be transfected with genes at low efficiency. Generating hESCs in the naïve state is necessary to overcome these problems and allow their application in regenerative medicine. Therefore, clarifying the mechanism of the transition between the naïve and primed states in pluripotent stem cells is important for the establishment of stable methods of generating naïve state hESCs. However, the signaling pathways which contribute to the transition between the naïve and primed states are still unclear. In this study, we carried out induction from mESCs to mEpiSC-like cells (mEpiSCLCs), and observed an increase in the activation of Fas signaling during the induction. The expression of Fgf5, an epiblast marker, was diminished by inhibition of Fas signaling using the caspase-8 and -3 blocking peptides, IETD and DEVD, respectively. Furthermore, during the induction, we observed increased expression of 3-O sulfated heparan sulfate (HS) structures synthesized by HS 3-O-sulfotransferase (3OST), which are recognized by the HS4C3 antibody (HS4C3-binding epitope

  5. The transition of mouse pluripotent stem cells from the naïve to the primed state requires Fas signaling through 3-O sulfated heparan sulfate structures recognized by the HS4C3 antibody

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Kazumi [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Van Kuppevelt, Toin H. [Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 280 P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Nishihara, Shoko, E-mail: shoko@soka.ac.jp [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan)

    2013-01-18

    Highlights: ► Fas transcript increases during the transition from the naïve to the primed state. ► 3OST-5 transcript, the HS4C3 epitope synthesis gene, increases during the transition. ► Fas signaling regulates the transition from the naïve to the primed state. ► HS4C3-binding epitope regulates the transition from the naïve to the primed state. ► Fas signaling is regulated by the HS4C3 epitope during the transition. -- Abstract: The characteristics of pluripotent embryonic stem cells of human and mouse are different. The properties of human embryonic stem cells (hESCs) are similar to those of mouse epiblast stem cells (mEpiSCs), which are in a later developmental pluripotency state, the so-called “primed state” compared to mouse embryonic stem cells (mESCs) which are in a naïve state. As a result of the properties of the primed state, hESCs proliferate slowly, cannot survive as single cells, and can only be transfected with genes at low efficiency. Generating hESCs in the naïve state is necessary to overcome these problems and allow their application in regenerative medicine. Therefore, clarifying the mechanism of the transition between the naïve and primed states in pluripotent stem cells is important for the establishment of stable methods of generating naïve state hESCs. However, the signaling pathways which contribute to the transition between the naïve and primed states are still unclear. In this study, we carried out induction from mESCs to mEpiSC-like cells (mEpiSCLCs), and observed an increase in the activation of Fas signaling during the induction. The expression of Fgf5, an epiblast marker, was diminished by inhibition of Fas signaling using the caspase-8 and -3 blocking peptides, IETD and DEVD, respectively. Furthermore, during the induction, we observed increased expression of 3-O sulfated heparan sulfate (HS) structures synthesized by HS 3-O-sulfotransferase (3OST), which are recognized by the HS4C3 antibody (HS4C3-binding epitope

  6. N-acetyl cysteine reverts the proinflammatory state induced by cigarette smoke extract in lung Calu-3 cells

    Directory of Open Access Journals (Sweden)

    Ángel G. Valdivieso

    2018-06-01

    Full Text Available Chronic obstructive pulmonary disease (COPD and cystic fibrosis (CF are lethal pulmonary diseases. Cigarette consumption is the main cause for development of COPD, while CF is produced by mutations in the CFTR gene. Although these diseases have a different etiology, both share a CFTR activity impairment and proinflammatory state even under sterile conditions. The aim of this work was to study the extent of the protective effect of the antioxidant N-acetylcysteine (NAC over the proinflammatory state (IL-6 and IL-8, oxidative stress (reactive oxygen species, ROS, and CFTR levels, caused by Cigarette Smoke Extract (CSE in Calu-3 airway epithelial cells. CSE treatment (100 µg/ml during 24 h decreased CFTR mRNA expression and activity, and increased the release of IL-6 and IL-8. The effect on these cytokines was inhibited by N-acetyl cysteine (NAC, 5 mM or the NF-kB inhibitor, IKK-2 (10 µM. CSE treatment also increased cellular and mitochondrial ROS levels. The cellular ROS levels were normalized to control values by NAC treatment, although significant effects on mitochondrial ROS levels were observed only at short times (5´ and effects on CFTR levels were not observed. In addition, CSE reduced the mitochondrial NADH-cytochrome c oxidoreductase (mCx I-III activity, an effect that was not reverted by NAC. The reduced CFTR expression and the mitochondrial damage induced by CSE could not be normalized by NAC treatment, evidencing the need for a more specific reagent. In conclusion, CSE causes a sterile proinflammatory state and mitochondrial damage in Calu-3 cells that was partially recovered by NAC treatment. Keywords: Cigarette smoke extract, Mitochondria, CFTR, ROS, COPD, Cystic fibrosis

  7. State of the art toward defining the role of radiation therapy in the management of small cell bronchogenic carcinoma

    International Nuclear Information System (INIS)

    Salazar, O.M.; Creech, R.H.

    1980-01-01

    This review article with 70 references discusses the state of the art in defining the role of radiotherapy in managing small cell bronchogenic carcinoma (SCBC). It reviews the history of therapeutic approaches to SCBC. Several issues of particular interest to limited disease are discussed. They are: local radiation therapy for limited disease, combined radiation therapy and chemotherapy in limited disease, combination chemotherapy alone for limited disease, and an overview of the treatment of limited disease. A section on extensive disease discusses the role of radiation therapy and chemotherapy, chemotherapy only for extensive disease, and an overview of the treatment of extensive disease. An additional section discusses the use of elective brain irradiation in small cell bronchogenic carcinoma

  8. Cell reprogramming modelled as transitions in a hierarchy of cell cycles

    International Nuclear Information System (INIS)

    Hannam, Ryan; Annibale, Alessia; Kühn, Reimer

    2017-01-01

    We construct a model of cell reprogramming (the conversion of fully differentiated cells to a state of pluripotency, known as induced pluripotent stem cells, or iPSCs) which builds on key elements of cell biology viz. cell cycles and cell lineages. Although reprogramming has been demonstrated experimentally, much of the underlying processes governing cell fate decisions remain unknown. This work aims to bridge this gap by modelling cell types as a set of hierarchically related dynamical attractors representing cell cycles. Stages of the cell cycle are characterised by the configuration of gene expression levels, and reprogramming corresponds to triggering transitions between such configurations. Two mechanisms were found for reprogramming in a two level hierarchy: cycle specific perturbations and a noise induced switching. The former corresponds to a directed perturbation that induces a transition into a cycle-state of a different cell type in the potency hierarchy (mainly a stem cell) whilst the latter is a priori undirected and could be induced, e.g. by a (stochastic) change in the cellular environment. These reprogramming protocols were found to be effective in large regimes of the parameter space and make specific predictions concerning reprogramming dynamics which are broadly in line with experimental findings. (paper)

  9. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.

    KAUST Repository

    Kim, Hui-Seon

    2012-08-21

    We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH(3)NH(3))PbI(3) as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI(2) and deposited onto a submicron-thick mesoscopic TiO(2) film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (J(SC)) exceeding 17 mA/cm(2), an open circuit photovoltage (V(OC)) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH(3)NH(3))PbI(3) NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO(2) film. The use of a solid hole conductor dramatically improved the device stability compared to (CH(3)NH(3))PbI(3) -sensitized liquid junction cells.

  10. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.

    KAUST Repository

    Kim, Hui-Seon; Lee, Chang-Ryul; Im, Jeong-Hyeok; Lee, Ki-Beom; Moehl, Thomas; Marchioro, Arianna; Moon, Soo-Jin; Humphry-Baker, Robin; Yum, Jun-Ho; Moser, Jacques E; Grä tzel, Michael; Park, Nam-Gyu

    2012-01-01

    We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH(3)NH(3))PbI(3) as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI(2) and deposited onto a submicron-thick mesoscopic TiO(2) film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (J(SC)) exceeding 17 mA/cm(2), an open circuit photovoltage (V(OC)) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH(3)NH(3))PbI(3) NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO(2) film. The use of a solid hole conductor dramatically improved the device stability compared to (CH(3)NH(3))PbI(3) -sensitized liquid junction cells.

  11. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%

    Science.gov (United States)

    Kim, Hui-Seon; Lee, Chang-Ryul; Im, Jeong-Hyeok; Lee, Ki-Beom; Moehl, Thomas; Marchioro, Arianna; Moon, Soo-Jin; Humphry-Baker, Robin; Yum, Jun-Ho; Moser, Jacques E.; Grätzel, Michael; Park, Nam-Gyu

    2012-01-01

    We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH3NH3)PbI3 as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI2 and deposited onto a submicron-thick mesoscopic TiO2 film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (JSC) exceeding 17 mA/cm2, an open circuit photovoltage (VOC) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH3NH3)PbI3 NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO2 film. The use of a solid hole conductor dramatically improved the device stability compared to (CH3NH3)PbI3 -sensitized liquid junction cells. PMID:22912919

  12. Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell turnover and shedding

    NARCIS (Netherlands)

    Goeij, de J.M.; Kluijver, de A.; Duyl, van F.C.; Vacelet, J.; Wijffels, R.H.; Goeij, de A.F.P.M.; Cleutjens, J.P.M.; Schutte, B.

    2009-01-01

    This study reveals the peculiar in vivo cell kinetics and cell turnover of the marine sponge Halisarca caerulea under steady-state conditions. The tropical coral reef sponge shows an extremely high proliferation activity, a short cell cycle duration and massive cell shedding. Cell turnover is

  13. Business oriented EU human cell and tissue product legislation will adversely impact Member States' health care systems.

    Science.gov (United States)

    Pirnay, Jean-Paul; Vanderkelen, Alain; De Vos, Daniel; Draye, Jean-Pierre; Rose, Thomas; Ceulemans, Carl; Ectors, Nadine; Huys, Isabelle; Jennes, Serge; Verbeken, Gilbert

    2013-12-01

    The transplantation of conventional human cell and tissue grafts, such as heart valve replacements and skin for severely burnt patients, has saved many lives over the last decades. The late eighties saw the emergence of tissue engineering with the focus on the development of biological substitutes that restore or improve tissue function. In the nineties, at the height of the tissue engineering hype, industry incited policymakers to create a European regulatory environment, which would facilitate the emergence of a strong single market for tissue engineered products and their starting materials (human cells and tissues). In this paper we analyze the elaboration process of this new European Union (EU) human cell and tissue product regulatory regime-i.e. the EU Cell and Tissue Directives (EUCTDs) and the Advanced Therapy Medicinal Product (ATMP) Regulation and evaluate its impact on Member States' health care systems. We demonstrate that the successful lobbying on key areas of regulatory and policy processes by industry, in congruence with Europe's risk aversion and urge to promote growth and jobs, led to excessively business oriented legislation. Expensive industry oriented requirements were introduced and contentious social and ethical issues were excluded. We found indications that this new EU safety and health legislation will adversely impact Member States' health care systems; since 30 December 2012 (the end of the ATMP transitional period) there is a clear threat to the sustainability of some lifesaving and established ATMPs that were provided by public health institutions and small and medium-sized enterprises under the frame of the EUCTDs. In the light of the current economic crisis it is not clear how social security systems will cope with the inflation of costs associated with this new regulatory regime and how priorities will be set with regard to reimbursement decisions. We argue that the ATMP Regulation should urgently be revised to focus on delivering

  14. Models for cell survival with low LET radiation

    International Nuclear Information System (INIS)

    Payne, M.G.; Garrett, W.R.

    1975-01-01

    A model for cell survival under low LET irradiation was developed in which the cell is considered to have N 0 -independent sensitive sites, each of which can exist in either an undamaged state (state A) or one of two damaged states. Radiation can change the sensitive sites from the undamaged state to either of two damaged states. The first damaged state (state B) can either be repaired or be promoted on the second damaged state (state C), which is irreparable. The promotion from the first damaged state to the second can occur due to any of the following: (1) further radiation damage, (2) an abortive attempt to repair the site, or (3) the arrival at a part of the cell cycle where the damage is ''fixed.'' Subject to the further assumptions that radiation damage can occur either indirectly (i.e., through radiation products) or due to direct interaction, and that repair of the first damaged state is a one-step process, expressions can be derived for P(N/sub A/, N/sub B/,t) = probability that after time t a cell will have N/sub A/ sites in state A and N/sub B/ in state B. The problem of determining P(N/sub A/, N/sub B/, t) is formulated for arbitrary time dependences of the radiation field and of all rate coefficients. A large family of cell-survival models can be described by interpreting the sensitive sites in different ways and by making different choices of rate coefficients and of the combinations of numbers of sites in different states that will lead to cell death. (U.S.)

  15. Metabolism and the Control of Cell Fate Decisions and Stem Cell Renewal

    Science.gov (United States)

    Ito, Kyoko; Ito, Keisuke

    2016-01-01

    Although the stem cells of various tissues remain in the quiescent state to maintain their undifferentiated state, they also undergo cell divisions as required, and if necessary, even a single stem cell is able to provide for lifelong tissue homeostasis. Stem cell populations are precisely controlled by the balance between their symmetric and asymmetric divisions, with their division patterns determined by whether the daughter cells involved retain their self-renewal capacities. Recent studies have reported that metabolic pathways and the distribution of mitochondria are regulators of the division balance of stem cells and that metabolic defects can shift division balance toward symmetric commitment, which leads to stem cell exhaustion. It has also been observed that in asymmetric division, old mitochondria, which are central metabolic organelles, are segregated to the daughter cell fated to cell differentiation, whereas in symmetric division, young and old mitochondria are equally distributed between both daughter cells. Thus, metabolism and mitochondrial biology play important roles in stem cell fate decisions. As these decisions directly affect tissue homeostasis, understanding their regulatory mechanisms in the context of cellular metabolism is critical. PMID:27482603

  16. Direct Reprogramming of Fibroblasts via a Chemically Induced XEN-like State.

    Science.gov (United States)

    Li, Xiang; Liu, Defang; Ma, Yantao; Du, Xiaomin; Jing, Junzhan; Wang, Lipeng; Xie, Bingqing; Sun, Da; Sun, Shaoqiang; Jin, Xueqin; Zhang, Xu; Zhao, Ting; Guan, Jingyang; Yi, Zexuan; Lai, Weifeng; Zheng, Ping; Huang, Zhuo; Chang, Yanzhong; Chai, Zhen; Xu, Jun; Deng, Hongkui

    2017-08-03

    Direct lineage reprogramming, including with small molecules, has emerged as a promising approach for generating desired cell types. We recently found that during chemical induction of induced pluripotent stem cells (iPSCs) from mouse fibroblasts, cells pass through an extra-embryonic endoderm (XEN)-like state. Here, we show that these chemically induced XEN-like cells can also be induced to directly reprogram into functional neurons, bypassing the pluripotent state. The induced neurons possess neuron-specific expression profiles, form functional synapses in culture, and further mature after transplantation into the adult mouse brain. Using similar principles, we were also able to induce hepatocyte-like cells from the XEN-like cells. Cells in the induced XEN-like state were readily expandable over at least 20 passages and retained genome stability and lineage specification potential. Our study therefore establishes a multifunctional route for chemical lineage reprogramming and may provide a platform for generating a diverse range of cell types via application of this expandable XEN-like state. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Cells of the J774 macrophage cell line are primed for antibody-dependent cell-mediated cytotoxicity following exposure to γ-irradiation

    International Nuclear Information System (INIS)

    Duerst, R.; Werberig, K.

    1991-01-01

    Activation of macrophages (M phi) for host defense against tumor cells follows a sequence of priming events followed by an initiating stimulus that results in production and release of cytotoxic molecules that mediate target cell killing. The authors have developed a model to study specific macrophage cytotoxicity in vitro utilizing a cultured murine M phi cell line, J774. Specific cytotoxicity of cultured human gastrointestinal tumor cells is achieved in the presence of murine IgG2a monoclonal antibody (mAb) 17-1-A. The ability of these cells to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) is greatly enhanced following gamma-irradiation. ADCC can be demonstrated at mAb 17-1-A concentrations greater than or equal to 1 microgram/ml and effector/target cell ratios greater than or equal to 2. Exposure to doses greater than or equal to 10 Gy of gamma-irradiation increases ADCC threefold. Varying the duration from J774 M phi exposure to γ-irradiation until addition of antibody-coated target cells showed that the primed state for ADCC is stable for at least 8 days but approximately 24 hr is required for complete development of the primed state. mAb-dependent target cell death begins 8 hr after addition of mAb and labeled target cells to primed effector cells and is complete by 24 hr. Incubation of unirradiated J774 M phi effector cells with recombinant murine interferon-γ (rmIFN-γ) also results in enhanced ADCC, but the extent of target cell killing achieved is less than that following priming by γ-irradiation. Concomitant priming of γ-irradiated J774 M phi with rmIFN-γ increases the extent of ADCC. Further study of irradiated J774 cells may elucidate the molecular pathways utilized by M phi for achieving and maintaining the primed state for ADCC

  18. Electrode of solid state polymer electrolyte type electrochemical cell; Kobunshi kotai denkaisitsugata denki kagaku seru yo denkyo

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, M [Yamanashi, (Japan); Inoue, M [Tanaka Kikinzoku Kogyo, Tokyo (Japan)

    1996-04-12

    The solid state polymer electrolyte type electrochemical cell (PEMFC) has such problem that the gas diffusion from the resin surface to the catalyst surface is prevented when the coating thickness of cation exchange resin on the catalyst particle and the number of micropores which conduct the gas flow in the catalyst layer are reduced. Resultingly, a sufficiently large current cannot be taken out of the cell. This invention solves the problem. The catalyst layer of electrode of PEMFC consists of a mixture of the conductive catalyst carrier coated with cation exchange resin and the conductive carrier coated with fluorinated hydrocarbon polymer. Adding the water repellent material to the electrode in this way improves the air-passing porosity. As for the cation exchange resin, perfluorocarbon sulfonate or perfluorocarbon carboxylate can be used. For the fluorinated hydrocarbon polymer, fluorinated polyethylene is preferably used. 4 figs., 2 tabs.

  19. The human cell atlas

    DEFF Research Database (Denmark)

    Regev, Aviv; Teichmann, Sarah A.; Lander, Eric S.

    2017-01-01

    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international...... collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells...... in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early...

  20. Assay of mouse-cell clones for retrovirus p30 protein by use of an automated solid-state radioimmunoassay

    International Nuclear Information System (INIS)

    Kennel, S.J.; Tnnant, R.W.

    1979-01-01

    A solid-state radioimmunoassay system has been developed that is useful for automated analysis of samples in microtiter plates. Assays for interspecies and type-specific antigenic determinants of the C-type retrovirus protein, p30, have been used to identify clones of cells producing this protein. This method allows testing of at least 1000 clones a day, making it useful for studies of frequencies of virus protein induction, defective virus production, and formation of recombinant viruses

  1. Induction of quiescence (G0) in bone marrow stromal stem cells enhances their stem cell characteristics

    DEFF Research Database (Denmark)

    Rumman, Mohammad; Majumder, Abhijit; Harkness, Linda

    2018-01-01

    Several studies have suggested that bone marrow stromal steam cells (BMSC) exist in a quiescent state (G0) within the in vivo niche; however, an explicit analysis of the biology of G0 state-BMSC has not been reported. We hypothesized that induction of G0 in BMSC might enhance their stem cell...... properties. Thus, we induced quiescence in BMSC in vitro by (a) suspension culture in a viscous medium or (b) culture on soft polyacrylamide substrate; and examined their molecular and functional phenotype. Induction of G0 was confirmed by bromo-deoxyuridine (BrdU) labelling and analysis of cell cycle gene...... expression. Upon reactivation and re-entry into cell cycle, G0 state-BMSC exhibited enhanced clonogenic self-renewal, preferential differentiation into osteoblastic rather than adipocytic cells and increased ectopic bone formation when implanted subcutaneously in vivo in immune-deficient mice, compared...

  2. The influence of gender- and age-related differences in the radiosensitivity of hematopoietic progenitor cells detected in steady-state human peripheral blood

    International Nuclear Information System (INIS)

    Kato, Kengo; Kashiwakura, Ikuo; Kuwabara, Mikinori

    2011-01-01

    To investigate the importance of gender and aging on the individual radiosensitivity of lineage-committed myeloid hematopoietic stem/progenitor cells (HSPCs) detected in mononuclear cells (MNCs) of steady-state human peripheral blood (PB), the clonogenic survival of HPCs, including colony-forming unit-granulocyte macrophage; burst-forming unit-erythroid; colony-forming unit-granulocyte-erythroid-macrophage-megakaryocyte cells derived from MNCs exposed to 0.5 Gy and 2 Gy X-irradiation were estimated. MNCs were prepared from the buffy-coats of 59 healthy individual blood donors. The results showed that large individual differences exist in the number of HSPCs, as well as in the surviving fraction of cells. Furthermore, the number of progenitor cells strongly correlated with their surviving fraction, suggesting that the radiosensitivity of hematopoietic progenitor cells decreases with the number of cells in the 10 5 cells population. A statistically significant negative correlation was observed between the surviving fraction observed at a dose of 0.5 Gy and the age of an individual, however, none of these correlations were observed after 2 Gy irradiation. No statistically significant difference was observed in individual radiosensitivity between males and females at either radiation dose. The present results indicated a correlation between the individual responsiveness of HSPCs to ionizing irradiation, especially to low dose irradiation, and aging. (author)

  3. Characterization of the Viable but Nonculturable (VBNC State in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Mohammad Salma

    Full Text Available The Viable But Non Culturable (VBNC state has been thoroughly studied in bacteria. In contrast, it has received much less attention in other microorganisms. However, it has been suggested that various yeast species occurring in wine may enter in VBNC following sulfite stress.In order to provide conclusive evidences for the existence of a VBNC state in yeast, the ability of Saccharomyces cerevisiae to enter into a VBNC state by applying sulfite stress was investigated. Viable populations were monitored by flow cytometry while culturable populations were followed by plating on culture medium. Twenty-four hours after the application of the stress, the comparison between the culturable population and the viable population demonstrated the presence of viable cells that were non culturable. In addition, removal of the stress by increasing the pH of the medium at different time intervals into the VBNC state allowed the VBNC S. cerevisiae cells to "resuscitate". The similarity between the cell cycle profiles of VBNC cells and cells exiting the VBNC state together with the generation rate of cells exiting VBNC state demonstrated the absence of cellular multiplication during the exit from the VBNC state. This provides evidence of a true VBNC state. To get further insight into the molecular mechanism pertaining to the VBNC state, we studied the involvement of the SSU1 gene, encoding a sulfite pump in S. cerevisiae. The physiological behavior of wild-type S. cerevisiae was compared to those of a recombinant strain overexpressing SSU1 and null Δssu1 mutant. Our results demonstrated that the SSU1 gene is only implicated in the first stages of sulfite resistance but not per se in the VBNC phenotype. Our study clearly demonstrated the existence of an SO2-induced VBNC state in S. cerevisiae and that the stress removal allows the "resuscitation" of VBNC cells during the VBNC state.

  4. The Human Cell Atlas.

    Science.gov (United States)

    Regev, Aviv; Teichmann, Sarah A; Lander, Eric S; Amit, Ido; Benoist, Christophe; Birney, Ewan; Bodenmiller, Bernd; Campbell, Peter; Carninci, Piero; Clatworthy, Menna; Clevers, Hans; Deplancke, Bart; Dunham, Ian; Eberwine, James; Eils, Roland; Enard, Wolfgang; Farmer, Andrew; Fugger, Lars; Göttgens, Berthold; Hacohen, Nir; Haniffa, Muzlifah; Hemberg, Martin; Kim, Seung; Klenerman, Paul; Kriegstein, Arnold; Lein, Ed; Linnarsson, Sten; Lundberg, Emma; Lundeberg, Joakim; Majumder, Partha; Marioni, John C; Merad, Miriam; Mhlanga, Musa; Nawijn, Martijn; Netea, Mihai; Nolan, Garry; Pe'er, Dana; Phillipakis, Anthony; Ponting, Chris P; Quake, Stephen; Reik, Wolf; Rozenblatt-Rosen, Orit; Sanes, Joshua; Satija, Rahul; Schumacher, Ton N; Shalek, Alex; Shapiro, Ehud; Sharma, Padmanee; Shin, Jay W; Stegle, Oliver; Stratton, Michael; Stubbington, Michael J T; Theis, Fabian J; Uhlen, Matthias; van Oudenaarden, Alexander; Wagner, Allon; Watt, Fiona; Weissman, Jonathan; Wold, Barbara; Xavier, Ramnik; Yosef, Nir

    2017-12-05

    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.

  5. Cell-in-Shell Hybrids: Chemical Nanoencapsulation of Individual Cells.

    Science.gov (United States)

    Park, Ji Hun; Hong, Daewha; Lee, Juno; Choi, Insung S

    2016-05-17

    Nature has developed a fascinating strategy of cryptobiosis ("secret life") for counteracting the stressful, and often lethal, environmental conditions that fluctuate sporadically over time. For example, certain bacteria sporulate to transform from a metabolically active, vegetative state to an ametabolic endospore state. The bacterial endospores, encased within tough biomolecular shells, withstand the extremes of harmful stressors, such as radiation, desiccation, and malnutrition, for extended periods of time and return to a vegetative state by breaking their protective shells apart when their environment becomes hospitable for living. Certain ciliates and even higher organisms, for example, tardigrades, and others are also found to adopt a cryptobiotic strategy for survival. A common feature of cryptobiosis is the structural presence of tough sheaths on cellular structures. However, most cells and cellular assemblies are not "spore-forming" and are vulnerable to the outside threats. In particular, mammalian cells, enclosed with labile lipid bilayers, are highly susceptible to in vitro conditions in the laboratory and daily life settings, making manipulation and preservation difficult outside of specialized conditions. The instability of living cells has been a main bottleneck to the advanced development of cell-based applications, such as cell therapy and cell-based sensors. A judicious question arises: can cellular tolerance against harmful stresses be enhanced by simply forming cell-in-shell hybrid structures? Experimental results suggest that the answer is yes. A micrometer-sized "Iron Man" can be generated by chemically forming an ultrathin (cell. Since the report on silica nanoencapsulation of yeast cells, in which cytoprotective yeast-in-silica hybrids were formed, several synthetic strategies have been developed to encapsulate individual cells in a cytocompatible fashion, mimicking the cryptobiotic cell-in-shell structures found in nature, for example

  6. Systems Ln-Fe-O ( Ln=Eu, Gd): thermodynamic properties of ternary oxides using solid-state electrochemical cells

    Science.gov (United States)

    Parida, S. C.; Rakshit, S. K.; Dash, S.; Singh, Ziley; Prasad, R.; Venugopal, V.

    2003-05-01

    The standard molar Gibbs energies of formation of LnFeO 3(s) and Ln3Fe 5O 12(s) where Ln=Eu and Gd have been determined using solid-state electrochemical technique employing different solid electrolytes. The reversible e.m.f.s of the following solid-state electrochemical cells have been measured in the temperature range from 1050 to 1255 K. Cell (I): (-)Pt / { LnFeO 3(s)+ Ln2O 3(s)+Fe(s)} // YDT/CSZ // {Fe(s)+Fe 0.95O(s)} / Pt(+); Cell (II): (-)Pt/{Fe(s)+Fe 0.95O(s)}//CSZ//{ LnFeO 3(s)+ Ln3Fe 5O 12(s)+Fe 3O 4(s)}/Pt(+); Cell (III): (-)Pt/{ LnFeO 3(s)+ Ln3Fe 5O 12(s)+Fe 3O 4(s)}//YSZ//{Ni(s)+NiO(s)}/Pt(+); and Cell(IV):(-)Pt/{Fe(s)+Fe 0.95O(s)}//YDT/CSZ//{ LnFeO 3(s)+ Ln3Fe 5O 12(s)+Fe 3O 4(s)}/Pt(+). The oxygen chemical potentials corresponding to the three-phase equilibria involving the ternary oxides have been computed from the e.m.f. data. The standard Gibbs energies of formation of solid EuFeO 3, Eu 3Fe 5O 12, GdFeO 3 and Gd 3Fe 5O 12 calculated by the least-squares regression analysis of the data obtained in the present study are given by Δ fG°m(EuFeO 3, s) /kJ mol -1 (± 3.2)=-1265.5+0.2687( T/K) (1050 ⩽ T/K ⩽ 1570), Δ fG°m(Eu 3Fe 5O 12, s)/kJ mol -1 (± 3.5)=-4626.2+1.0474( T/K) (1050 ⩽ T/K ⩽ 1255), Δ fG°m(GdFeO 3, s) /kJ mol -1 (± 3.2)=-1342.5+0.2539( T/K) (1050 ⩽ T/K ⩽ 1570), and Δ fG°m(Gd 3Fe 5O 12, s)/kJ·mol -1 (± 3.5)=-4856.0+1.0021( T/K) (1050 ⩽ T/K ⩽ 1255). The uncertainty estimates for Δ fG°m include the standard deviation in the e.m.f. and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagrams for the systems Eu-Fe-O and Gd-Fe-O and chemical potential diagrams for the system Gd-Fe-O were computed at 1250 K.

  7. mRNA expression pattern of selected candidate genes differs in bovine oviductal epithelial cells in vitro compared with the in vivo state and during cell culture passages.

    Science.gov (United States)

    Danesh Mesgaran, Sadjad; Sharbati, Jutta; Einspanier, Ralf; Gabler, Christoph

    2016-08-15

    The mammalian oviduct provides the optimal environment for gamete maturation including sperm capacitation, fertilization, and development of the early embryo. Various cell culture models for primary bovine oviductal epithelial cells (BOEC) were established to reveal such physiological events. The aim of this study was to evaluate 17 candidate mRNA expression patterns in oviductal epithelial cells (1) in transition from in vivo cells to in vitro cells; (2) during three consecutive cell culture passages; (3) affected by the impact of LOW or HIGH glucose content media; and (4) influenced by different phases of the estrous cycle in vivo and in vitro. In addition, the release of a metabolite and proteins from BOEC at two distinct cell culture passage numbers was estimated to monitor the functionality. BOEC from 8 animals were isolated and cultured for three consecutive passages. Total RNA was extracted from in vivo and in vitro samples and subjected to reverse transcription quantitative polymerase chain reaction to reveal mRNA expression of selected candidate genes. The release of prostaglandin E2 (PGE2), oviduct-specific glycoprotein 1 (OVGP1) and interleukin 8 (IL8) by BOEC was measured by EIA or ELISA after 24 h. Almost all candidate genes (prostaglandin synthases, enzymes of cellular metabolism and mucins) mRNA expression pattern differed compared in vivo with in vitro state. In addition, transcription of most candidate genes was influenced by the number of cell culture passages. Different glucose medium content did not affect mRNA expression of most candidate genes. The phase of the estrous cycle altered some candidate mRNA expression in BOEC in vitro at later passages. The release of PGE2 and OVGP1 between passages did not differ. However, BOEC in passage 3 released significantly higher amount of IL8 compared with cells in passage 0. This study supports the hypothesis that candidate mRNA expression in BOEC was influenced by transition from the in vivo situation

  8. IRF8-dependent DCs play a key role in the regulation of CD8 T cell responses to epithelialderived antigen in the steady state but not in inflammation

    DEFF Research Database (Denmark)

    Joeris, Thorsten; Gomez-Casado, C.; Holmkvist, P.

    2016-01-01

    up chimeras using either CD11c-cre.Irf8fl/fl bone marrow, which cannot generate IRF8-DCs, or crenegative Irf8fl/fl control bone marrow. Whereas transfer of Ova-specific CD8 T cells (OT-I cells) tosteady state control chimeras resulted in their rapid tolerization, OT-I cells transferred to CD11ccre.......Irf8fl/fl chimeras spontaneously developed into CTLs, causing epithelial destruction and intestinal inflammation. However, when the TLR7-ligand R848 was applied as an inflammatory trigger mimicking viral infection in addition to OT-I transfer, expansion of CTLs occurred at similar rates in both, CD11......ccre.Irf8fl/fl and control chimeras. Taken together, this demonstrates that IRF8-DCs are crucial for therapid tolerization of CD8 T cells reactive towards epithelial-derived antigen in steady state, but are notessential for the induction of CTLs in an inflammatory setting such as found in infection....

  9. CD24 tracks divergent pluripotent states in mouse and human cells

    NARCIS (Netherlands)

    Shakiba, Nika; White, Carl A; Lipsitz, Yonatan Y; Yachie-Kinoshita, Ayako; Tonge, Peter D; Hussein, Samer M I; Puri, Mira C; Elbaz, Judith; Morrissey-Scoot, James; Li, Mira; Munoz Peralta, Javier; Benevento, Marco; Rogers, Ian M; Hanna, Jacob H; Heck, Albert J R; Wollscheid, Bernd; Nagy, Andras; Zandstra, Peter W

    2015-01-01

    Reprogramming is a dynamic process that can result in multiple pluripotent cell types emerging from divergent paths. Cell surface protein expression is a particularly desirable tool to categorize reprogramming and pluripotency as it enables robust quantification and enrichment of live cells. Here we

  10. Charge transfer state in DBP:C70 organic solar cells

    DEFF Research Database (Denmark)

    Sherafatipour, Golenaz; Benduhn, Johannes; Spoltore, Donato

    -acceptor interface via delocalized charge-transfer (CT) states, which represents an intermediate state between the exciton dissociation and recombination back to the ground state. In this work we perform the electroluminescence (EL) created by bimolecular free career recombination and sensitive external quantum...

  11. Electrochemical state and internal variables estimation using a reduced-order physics-based model of a lithium-ion cell and an extended Kalman filter

    Energy Technology Data Exchange (ETDEWEB)

    Stetzel, KD; Aldrich, LL; Trimboli, MS; Plett, GL

    2015-03-15

    This paper addresses the problem of estimating the present value of electrochemical internal variables in a lithium-ion cell in real time, using readily available measurements of cell voltage, current, and temperature. The variables that can be estimated include any desired set of reaction flux and solid and electrolyte potentials and concentrations at any set of one-dimensional spatial locations, in addition to more standard quantities such as state of charge. The method uses an extended Kalman filter along with a one-dimensional physics-based reduced-order model of cell dynamics. Simulations show excellent and robust predictions having dependable error bounds for most internal variables. (C) 2014 Elsevier B.V. All rights reserved.

  12. Triblock-terpolymer-directed self-assembly of mesoporous TiO{sub 2}: High-performance photoanodes for solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Docampo, Pablo; Gunning, Robert; Snaith, Henry J. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Stefik, Morgan; Wiesner, Ulrich [Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853 (United States); Guldin, Stefan; Yufa, Nataliya A.; Steiner, Ullrich [Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Cai, Ning; Wang, Peng [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-06-15

    A new self-assembly platform for the fast and straightforward synthesis of bicontinuous, mesoporous TiO{sub 2} films is presented, based on the triblock terpolymer poly(isoprene-b-styrene-b-ethylene oxide). This new materials route allows the co-assembly of the metal oxide as a fully interconnected minority phase, which results in a highly porous photoanode with strong advantages over the state-of-the-art nanoparticle-based photoanodes employed in solid-state dye-sensitized solar cells. Devices fabricated through this triblock terpolymer route exhibit a high availability of sub-bandgap states distributed in a narrow and low enough energy band, which maximizes photoinduced charge generation from a state-of-the-art organic dye, C220. As a consequence, the co-assembled mesoporous metal oxide system outperformed the conventional nanoparticle-based electrodes fabricated and tested under the same conditions, exhibiting solar power-conversion efficiencies of over 5%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Solid State Polymer Electrolytes for Dye-sensitized Solar Cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Introduction Over the past decade,Dye-sensitized solar cells (DSSCs) have been intensively investigated as potential alternatives to conventional inorganic photovoltaic devices due to their low production cost and high energy conversion[1-4]. This type of solar cell has achieved an impressive energy conversion efficiency of over 10%,whose electrolyte is a voltaic organic liquid solvent containing iodide/triiodide as redox couple.However,the use of a liquid electrolyte brings difficulties in the practi...

  14. Improving the photovoltaic performance of the all-solid-state TiO2 NR/CuInS2 solar cell by hydrogen plasma treatment

    Science.gov (United States)

    Chen, Bingfeng; Niu, Wenzhe; Lou, Zirui; Ye, Zhizhen; Zhu, Liping

    2018-07-01

    The interfacial properties of the heterojunction between p-type and n-type materials play an important role in the performance of the solar cell. In this paper, a p-type CuInS2 film was deposited on TiO2 nanorod arrays by spin coating to fabricate an all-solid-state solar cell and the TiO2 nanorod arrays were treated with hydrogen plasma(H:TiO2) to ameliorate the interfacial properties. The influence of the hydrogen plasma treatment on the performance of the solar cell was investigated. The short-circuit current density was obviously raised and the power conversion efficiency of the solar cell improved to 0.30%, which is three times that of solar cells without hydrogen plasma treatment. The enhancement of the performance is attributed to not only the enhancement of carrier separation and transport, but the reduction of the recombination of electrons and holes, which is caused by hydrogen plasma treatment.

  15. Improving the photovoltaic performance of the all-solid-state TiO2 NR/CuInS2 solar cell by hydrogen plasma treatment.

    Science.gov (United States)

    Chen, Bingfeng; Niu, Wenzhe; Lou, Zirui; Ye, Zhizhen; Zhu, Liping

    2018-07-06

    The interfacial properties of the heterojunction between p-type and n-type materials play an important role in the performance of the solar cell. In this paper, a p-type CuInS 2 film was deposited on TiO 2 nanorod arrays by spin coating to fabricate an all-solid-state solar cell and the TiO 2 nanorod arrays were treated with hydrogen plasma(H:TiO 2 ) to ameliorate the interfacial properties. The influence of the hydrogen plasma treatment on the performance of the solar cell was investigated. The short-circuit current density was obviously raised and the power conversion efficiency of the solar cell improved to 0.30%, which is three times that of solar cells without hydrogen plasma treatment. The enhancement of the performance is attributed to not only the enhancement of carrier separation and transport, but the reduction of the recombination of electrons and holes, which is caused by hydrogen plasma treatment.

  16. Cell state switching factors and dynamical patterning modules ...

    Indian Academy of Sciences (India)

    Prakash

    segmented, differentiated and additional complex structures, with minimal evolution ...... (b, c) Hematoxylin and Oil-red (lipid specific) staining of low density cell culture grown ..... description to elaborated structural and functional classification;.

  17. Control of density-dependent, cell state-specific signal transduction by the cell adhesion molecule CEACAM1, and its influence on cell cycle regulation

    International Nuclear Information System (INIS)

    Scheffrahn, Inka; Singer, Bernhard B.; Sigmundsson, Kristmundur; Lucka, Lothar; Oebrink, Bjoern

    2005-01-01

    Growth factor receptors, extracellular matrix receptors, and cell-cell adhesion molecules co-operate in regulating the activities of intracellular signaling pathways. Here, we demonstrate that the cell adhesion molecule CEACAM1 co-regulates growth-factor-induced DNA synthesis in NBT-II epithelial cells in a cell-density-dependent manner. CEACAM1 exerted its effects by regulating the activity of the Erk 1/2 MAP kinase pathway and the expression levels of the cyclin-dependent kinase inhibitor p27 Kip1 . Interestingly, both inhibitory and stimulatory effects were observed. Confluent cells continuously exposed to fetal calf serum showed little Erk activity and DNA synthesis compared with sparse cells. Under these conditions, anti-CEACAM1 antibodies strongly stimulated Erk activation, decreased p27 expression, and induced DNA synthesis. In serum-starved confluent cells, re-addition of 10% fetal calf serum activated the Erk pathway, decreased p27 expression, and stimulated DNA synthesis to the same levels as in sparse cells. Under these conditions anti-CEACAM1 antibodies de-activated Erk, restored the level of p27, and inhibited DNA synthesis. These data indicate that CEACAM1 mediates contact inhibition of proliferation in cells that are constantly exposed to growth factors, but co-activates growth-factor-induced proliferation in cells that have been starved for growth factors; exposure to extracellular CEACAM1 ligands reverts these responses

  18. Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells.

    Science.gov (United States)

    Bargaje, Rhishikesh; Trachana, Kalliopi; Shelton, Martin N; McGinnis, Christopher S; Zhou, Joseph X; Chadick, Cora; Cook, Savannah; Cavanaugh, Christopher; Huang, Sui; Hood, Leroy

    2017-02-28

    Steering the differentiation of induced pluripotent stem cells (iPSCs) toward specific cell types is crucial for patient-specific disease modeling and drug testing. This effort requires the capacity to predict and control when and how multipotent progenitor cells commit to the desired cell fate. Cell fate commitment represents a critical state transition or "tipping point" at which complex systems undergo a sudden qualitative shift. To characterize such transitions during iPSC to cardiomyocyte differentiation, we analyzed the gene expression patterns of 96 developmental genes at single-cell resolution. We identified a bifurcation event early in the trajectory when a primitive streak-like cell population segregated into the mesodermal and endodermal lineages. Before this branching point, we could detect the signature of an imminent critical transition: increase in cell heterogeneity and coordination of gene expression. Correlation analysis of gene expression profiles at the tipping point indicates transcription factors that drive the state transition toward each alternative cell fate and their relationships with specific phenotypic readouts. The latter helps us to facilitate small molecule screening for differentiation efficiency. To this end, we set up an analysis of cell population structure at the tipping point after systematic variation of the protocol to bias the differentiation toward mesodermal or endodermal cell lineage. We were able to predict the proportion of cardiomyocytes many days before cells manifest the differentiated phenotype. The analysis of cell populations undergoing a critical state transition thus affords a tool to forecast cell fate outcomes and can be used to optimize differentiation protocols to obtain desired cell populations.

  19. Steady-state levels of G-protein beta-subunit expression are regulated by treatment of cells with bacterial toxins

    International Nuclear Information System (INIS)

    Watkins, D.C.; Northup, J.K.; Malbon, C.C.

    1987-01-01

    Cultures of 3T3-L1 cells were incubated with either 10 ng/ml cholera toxin or 10 ng/ml pertussis toxin from 4 days prior to the initiation of differentiation and throughout the subsequent incubation. Toxin concentrations were sufficient to completely prevent the labelling of alpha-subunits with [ 32 P]NAD + and pertussis toxin and to prevent by more than 90% the labelling with [ 32 P]NAD + and cholera toxin in membranes prepared from these cells. Neither toxin prevented the differentiation to the adipocyte phenotype. Neither toxin prevented the increases in the relative amounts of G-proteins which occur upon differentiation. Both toxins dramatically decreased the amount of beta-subunits. As measured by quantitative immunoblotting with antisera specific for both the 35 kDa and 36 kDa beta-subunits, levels of beta-subunit were decreased by more than 50% of steady-state level of control cells. Thus, bacterial toxins which modifies G-protein alpha-subunits are capable of modulating the levels of beta-subunits in vivo. The basis for the regulation of G-protein subunit expression by bacterial toxins is under study

  20. The parietal cell gastric H, K-ATPase also functions as the Na, K-ATPase and Ca-ATPase in altered states.

    Science.gov (United States)

    Ray, Tushar

    2013-01-01

    This article offers an explanation for the apparent lack of Na, K-ATPase activity in parietal cells although ouabain has been known to inhibit gastric acid secretion since 1962. The gastric H, K-ATPase (proton-pump) seems to be acting in altered states, thus behaving like a Na, K-ATPase (Na-pump) and/or Ca-ATPase (Ca-pump) depending on cellular needs.  This conclusion is based on the following findings. First, parietal cell fractions do not exhibit Na, K-ATPase activity at pH 7.0 but do at pH 8.5. Second, the apical plasma membrane (APM) fraction exhibits a (Ca or Mg)-ATPase activity with negligible H, K-ATPase activity. However, when assayed with Mg alone in presence of the 80 k Da cytosolic proton-pump activator (HAF), the APM fraction reveals remarkably high H, K-ATPase activity, suggesting the observed low affinity of Ca (or Mg)-ATPase is an altered state of the latter. Third, calcium (between 1 and 4 µM) shows both stimulation and inhibition of the HAF-stimulated H, K-ATPase depending on its concentration, revealing a close interaction between the  proton-pump activator and local Ca concentration in gastric H, K-ATPase function. Such interactions suggest that Ca is acting as a terminal member of the intracellular signaling system for the HAF-regulated proton-pump. It appears that during resting state, the HAF-associated H, K-ATPase remains inhibited by Ca (>1 µM) and, prior to resumption of acid secretion the gastric H, K-ATPase acts temporarily as a Ca-pump for removing excess Ca from its immediate environment. This conclusion is consistent with the recent reports of immunochemical co-localization of the gastric H, K-ATPase and Ca-ATPase by superimposition in parietal cells, and a transitory efflux of Ca immediately preceding the onset of acid secretion. These new perspectives on proton-pump function would open new avenues for a fuller understanding of the intracellular regulation of the ubiquitous Na-pump.

  1. Relatively slow stochastic gene-state switching in the presence of positive feedback significantly broadens the region of bimodality through stabilizing the uninduced phenotypic state.

    Science.gov (United States)

    Ge, Hao; Wu, Pingping; Qian, Hong; Xie, Xiaoliang Sunney

    2018-03-01

    Within an isogenic population, even in the same extracellular environment, individual cells can exhibit various phenotypic states. The exact role of stochastic gene-state switching regulating the transition among these phenotypic states in a single cell is not fully understood, especially in the presence of positive feedback. Recent high-precision single-cell measurements showed that, at least in bacteria, switching in gene states is slow relative to the typical rates of active transcription and translation. Hence using the lac operon as an archetype, in such a region of operon-state switching, we present a fluctuating-rate model for this classical gene regulation module, incorporating the more realistic operon-state switching mechanism that was recently elucidated. We found that the positive feedback mechanism induces bistability (referred to as deterministic bistability), and that the parameter range for its occurrence is significantly broadened by stochastic operon-state switching. We further show that in the absence of positive feedback, operon-state switching must be extremely slow to trigger bistability by itself. However, in the presence of positive feedback, which stabilizes the induced state, the relatively slow operon-state switching kinetics within the physiological region are sufficient to stabilize the uninduced state, together generating a broadened parameter region of bistability (referred to as stochastic bistability). We illustrate the opposite phenotype-transition rate dependence upon the operon-state switching rates in the two types of bistability, with the aid of a recently proposed rate formula for fluctuating-rate models. The rate formula also predicts a maximal transition rate in the intermediate region of operon-state switching, which is validated by numerical simulations in our model. Overall, our findings suggest a biological function of transcriptional "variations" among genetically identical cells, for the emergence of bistability and

  2. Kinetic Studies on State of the Art Solid Oxide Cells

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude; Graves, Christopher R.; Hjelm, Johan

    2014-01-01

    of the technology, cell optimization and eventual commercialisation requires a sound understanding of the mechanisms that affect performance and stability. These mechanisms depend on operation conditions like temperature, gas composition, fuel utilisation and current load as well as on gradients along cell...

  3. Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells.

    Science.gov (United States)

    Mortha, Arthur; Burrows, Kyle

    2018-01-01

    Innate lymphoid cells (ILCs) are an essential component of the innate immune system in vertebrates. They are developmentally rooted in the lymphoid lineage and can diverge into at least three transcriptionally distinct lineages. ILCs seed both lymphoid and non-lymphoid tissues and are locally self-maintained in tissue-resident pools. Tissue-resident ILCs execute important effector functions making them key regulator in tissue homeostasis, repair, remodeling, microbial defense, and anti-tumor immunity. Similar to T lymphocytes, ILCs possess only few sensory elements for the recognition of non-self and thus depend on extrinsic cellular sensory elements residing within the tissue. Myeloid cells, including mononuclear phagocytes (MNPs), are key sentinels of the tissue and are able to translate environmental cues into an effector profile that instructs lymphocyte responses. The adaptation of myeloid cells to the tissue state thus influences the effector program of ILCs and serves as an example of how environmental signals are integrated into the function of ILCs via a tissue-resident immune cell cross talks. This review summarizes our current knowledge on the role of myeloid cells in regulating ILC functions and discusses how feedback communication between ILCs and myeloid cells contribute to stabilize immune homeostasis in order to maintain the healthy state of an organ.

  4. The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Yang Hongxun; Huang Miaoliang; Wu Jihuai; Lan Zhang; Hao Sancun; Lin Jianming

    2008-01-01

    Using poly(methyl methacrylate) as polymer host, ethylene carbonate, 1,2-propanediol carbonate and dimethyl carbonate as organic mixture solvents, sodium iodide and iodine as source of I - /I 3 - , a polymer gel electrolyte PMMA-EC/PC/DMC-NaI/I 2 with ionic conductivity of 6.89 mS cm -1 was prepared. Based on the polymer gel electrolyte, a quasi-solid-state dye-sensitized solar cell (DSSC) was fabricated. The quasi-solid-state DSSC possessed a good long-term stability and a light-to-electrical energy conversion efficiency of 4.78% under irradiation of 100 mW cm -2 simulated sunlight, which is almost equal to that of DSSC with a liquid electrolyte

  5. A factor converting viable but nonculturable Vibrio cholerae to a culturable state in eukaryotic cells is a human catalase.

    Science.gov (United States)

    Senoh, Mitsutoshi; Hamabata, Takashi; Takeda, Yoshifumi

    2015-08-01

    In our previous work, we demonstrated that viable but nonculturable (VBNC) Vibrio cholerae O1 and O139 were converted to culturable by coculture with eukaryotic cells. Furthermore, we isolated a factor converting VBNC V. cholerae to culturable (FCVC) from a eukaryotic cell line, HT-29. In this study, we purified FCVC by successive column chromatographies comprising UNO Q-6 anion exchange, Bio-Scale CHT2-1 hydroxyapatite, and Superdex 200 10/300 GL. Homogeneity of the purified FCVC was demonstrated by SDS-PAGE. Nano-LC MS/MS analysis showed that the purified FCVC was a human catalase. An experiment of RNAi knockdown of catalase mRNA from HT-29 cells and treatment of the purified FCVC with a catalase inhibitor, 3-amino-1,2,4-triazole confirmed that the FCVC was a catalase. A possible role of the catalase in converting a VBNC V. cholerae to a culturable state in the human intestine is discussed. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  6. Changes in the contractile state, fine structure and metabolism of cardiac muscle cells during the development of rigor mortis.

    Science.gov (United States)

    Vanderwee, M A; Humphrey, S M; Gavin, J B; Armiger, L C

    1981-01-01

    Transmural slices from the left anterior papillary muscle of dog hearts were maintained for 120 min in a moist atmosphere at 37 degrees C. At 15-min intervals tissue samples were taken for estimation of adenosine triphosphate (ATP) and glucose-6-phosphate (G6P) and for electron microscopic examination. At the same time the deformability under standard load of comparable regions of an adjacent slice of tissue was measured. ATP levels fell rapidly during the first 45 to 75 min after excision of the heart. During a subsequent further decline in ATP, the mean deformability of myocardium fell from 30 to 12% indicating the development of rigor mortis. Conversely, G6P levels increased during the first decline in adenosine triphosphate but remained relatively steady thereafter. Whereas many of the myocardial cells fixed after 5 min contracted on contact with glutaraldehyde, all cells examined after 15 to 40 min were relaxed. A progressive increase in the proportion of contracted cells was observed during the rapid increase in myocardial rigidity. During this late contraction the cells showed morphological evidence of irreversible injury. These findings suggest that ischaemic myocytes contract just before actin and myosin become strongly linked to maintain the state of rigor mortis.

  7. Asymmetric lateral distribution of melanoma and Merkel cell carcinoma in the United States

    Science.gov (United States)

    Paulson, Kelly G; Iyer, Jayasri G; Nghiem, Paul

    2010-01-01

    Background A recent report suggested a trend towards more UV-linked skin cancers arising on the left rather than the right side of the body in the United States. Objective To test whether the reported incidences of two UV-linked skin cancers, malignant melanoma (MM) and Merkel cell carcinoma (MCC), are greater on the left than the right in the US. Methods MMs (n = 82,587) and MCCs (n = 2,384) occurring on the left or right side of the face, arm or leg that were reported in the SE*ER registry between 1986–2006 were included for analysis. Results MM and MCC were significantly more likely to present on the left than the right (p automobile UV exposure (approximately 20-fold stronger on the left than right arm) is a likely contributing factor. It may be prudent to remind skin cancer-prone individuals to take appropriate sun precautions when driving in an automobile. PMID:21514002

  8. Dazlin' pluripotent stem cells

    NARCIS (Netherlands)

    Welling, M.A.

    2014-01-01

    Pluripotent embryonic stem cells (ESCs) can be isolated from the inner cell mass (ICM) of blastocyst embryos and differentiate into all three germ layers in vitro. However, despite their similar origin, mouse embryonic stem cells represent a more naïve ICM-like pluripotent state whereas human

  9. Concise Review: Quiescence in Adult Stem Cells

    DEFF Research Database (Denmark)

    Rumman, M; Dhawan, J; Kassem, Moustapha

    2015-01-01

    Adult stem cells (ASCs) are tissue resident stem cells responsible for tissue homeostasis and regeneration following injury. In uninjured tissues, ASCs exist in a nonproliferating, reversibly cell cycle-arrested state known as quiescence or G0. A key function of the quiescent state is to preserve...... stemness in ASCs by preventing precocious differentiation, and thus maintaining a pool of undifferentiated ASCs. Recent evidences suggest that quiescence is an actively maintained state and that excessive or defective quiescence may lead to compromised tissue regeneration or tumorigenesis. The aim...

  10. International stem cell collaboration: how disparate policies between the United States and the United Kingdom impact research.

    Science.gov (United States)

    Luo, Jingyuan; Flynn, Jesse M; Solnick, Rachel E; Ecklund, Elaine Howard; Matthews, Kirstin R W

    2011-03-08

    As the scientific community globalizes, it is increasingly important to understand the effects of international collaboration on the quality and quantity of research produced. While it is generally assumed that international collaboration enhances the quality of research, this phenomenon is not well examined. Stem cell research is unique in that it is both politically charged and a research area that often generates international collaborations, making it an ideal case through which to examine international collaborations. Furthermore, with promising medical applications, the research area is dynamic and responsive to a globalizing science environment. Thus, studying international collaborations in stem cell research elucidates the role of existing international networks in promoting quality research, as well as the effects that disparate national policies might have on research. This study examined the impact of collaboration on publication significance in the United States and the United Kingdom, world leaders in stem cell research with disparate policies. We reviewed publications by US and UK authors from 2008, along with their citation rates and the political factors that may have contributed to the number of international collaborations. The data demonstrated that international collaborations significantly increased an article's impact for UK and US investigators. While this applied to UK authors whether they were corresponding or secondary, this effect was most significant for US authors who were corresponding authors. While the UK exhibited a higher proportion of international publications than the US, this difference was consistent with overall trends in international scientific collaboration. The findings suggested that national stem cell policy differences and regulatory mechanisms driving international stem cell research in the US and UK did not affect the frequency of international collaborations, or even the countries with which the US and UK most

  11. Simulation of the steady-state behaviour of a new design of a single planar Solid Oxide Fuel Cell

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2016-03-01

    Full Text Available The aim of the work was to develop a mathematical model for computing the steady-state voltage – current characteristics of a planar Solid Oxide Fuel Cell and to determine the performance of a new SOFC design. The design involves cross-flow bipolar plates. Each of the bipolar plates has an air channel system on one side and a fuel channel system on the other side. The proposed model was developed using the ANSYS-Fluent commercial Computational Fluid Dynamics (CFD software supported by additional Fuel Cell module. The results confirm that the model can well simulate the diagonal current path. The effects of temperature and gas flow through the channels and a Membrane Electrode Assembly (MEA structure were taken into account. It was shown that a significant increase of the MEA temperature at high current density can lead to hot spots formation and hence electrode damage.

  12. An in-cell NMR study of monitoring stress-induced increase of cytosolic Ca{sup 2+} concentration in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Hembram, Dambarudhar Shiba Sankar; Haremaki, Takahiro; Hamatsu, Jumpei; Inoue, Jin; Kamoshida, Hajime; Ikeya, Teppei; Mishima, Masaki [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0373 (Japan); Mikawa, Tsutomu [Cellular and Molecular Biology Unit, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan); Hayashi, Nobuhiro [Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B-1, Nagatsuda-chou, Midori-ku, Yokohama, Kanagawa 226-8501 (Japan); Shirakawa, Masahiro [Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Ito, Yutaka, E-mail: ito-yutaka@tmu.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0373 (Japan)

    2013-09-06

    Highlights: •We performed time-resolved NMR observations of calbindin D{sub 9k} in HeLa cells. •Stress-induced increase of cytosolic Ca{sup 2+} concentration was observed by in-cell NMR. •Calbindin D{sub 9k} showed the state-transition from Mg{sup 2+}- to Ca{sup 2+}-bound state in cells. •We provide a useful tool for in situ monitoring of the healthiness of the cells. -- Abstract: Recent developments in in-cell NMR techniques have allowed us to study proteins in detail inside living eukaryotic cells. The lifetime of in-cell NMR samples is however much shorter than that in culture media, presumably because of various stresses as well as the nutrient depletion in the anaerobic environment within the NMR tube. It is well known that Ca{sup 2+}-bursts occur in HeLa cells under various stresses, hence the cytosolic Ca{sup 2+} concentration can be regarded as a good indicator of the healthiness of cells in NMR tubes. In this study, aiming at monitoring the states of proteins resulting from the change of cytosolic Ca{sup 2+} concentration during experiments, human calbindin D{sub 9k} (P47M + C80) was used as the model protein and cultured HeLa cells as host cells. Time-resolved measurements of 2D {sup 1}H–{sup 15}N SOFAST–HMQC experiments of calbindin D{sub 9k} (P47M + C80) in HeLa cells showed time-dependent changes in the cross-peak patterns in the spectra. Comparison with in vitro assignments revealed that calbindin D{sub 9k} (P47M + C80) is initially in the Mg{sup 2+}-bound state, and then gradually converted to the Ca{sup 2+}-bound state. This conversion process initiates after NMR sample preparation. These results showed, for the first time, that cells inside the NMR tube were stressed, presumably because of cell precipitation, the lack of oxygen and nutrients, etc., thereby releasing Ca{sup 2+} into cytosol during the measurements. The results demonstrated that in-cell NMR can monitor the state transitions of stimulated cells through the observation of

  13. The state of organic solar cells-A meta analysis

    DEFF Research Database (Denmark)

    Jørgensen, Mikkel; Carlé, Jon Eggert; Søndergaard, Roar R.

    2013-01-01

    Solar cells that convert sunlight into electrical power have demonstrated a large and consistent growth through several decades. The growth has spawned research on new technologies that potentially enable much faster, less costly and environmentally friendly manufacture from earth abundant materi...... materials. Here we review carbon based solar cells through a complete analysis of all the data that has been reported so far and we highlight what can be expected from carbon based technologies and draw scenarios of how it can be made of immediate use....

  14. Solid oxide fuel cells fueled with reducible oxides

    Science.gov (United States)

    Chuang, Steven S.; Fan, Liang Shih

    2018-01-09

    A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing the solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.

  15. Sixteen-state magnetic memory based on the extraordinary Hall effect

    International Nuclear Information System (INIS)

    Segal, A.; Karpovski, M.; Gerber, A.

    2012-01-01

    We report on a proof-of-concept study of split-cell magnetic storage in which multi-bit magnetic memory cells are composed of several multilevel ferromagnetic dots with perpendicular magnetic anisotropy. Extraordinary Hall effect is used for reading the data. Feasibility of the approach is supported by realization of four-, eight- and sixteen- state cells. - Highlights: ► We propose a novel structure of multi-bit magnetic random access memory. ► Each cell contains several interconnected storage dots. ► Extraordinary Hall effect is used for reading the data. ► Four-, eight- and sixteen-state cells have been realized.

  16. Efficiency enhancement of solid-state PbS quantum dot-sensitized solar cells with Al2O3 barrier layer

    KAUST Repository

    Brennan, Thomas P.; Trejo, Orlando; Roelofs, Katherine E.; Xu, John; Prinz, Fritz B.; Bent, Stacey F.

    2013-01-01

    Atomic layer deposition (ALD) was used to grow both PbS quantum dots and Al2O3 barrier layers in a solid-state quantum dot-sensitized solar cell (QDSSC). Barrier layers grown prior to quantum dots resulted in a near-doubling of device efficiency (0.30% to 0.57%) whereas barrier layers grown after quantum dots did not improve efficiency, indicating the importance of quantum dots in recombination processes. © 2013 The Royal Society of Chemistry.

  17. Growth-direction dependence of steady-state Saffman-Taylor flow in an anisotropic Hele-Shaw cell

    International Nuclear Information System (INIS)

    McCloud, K.V.; Maher, J.V.

    1996-01-01

    Selection of steady-state fingers has been measured in a Hele-Shaw cell perturbed by having a square lattice etched onto one of the plates. Flows at different orientations θ between the direction of flow and the lattice axes have been studied, in a wide range of observable tip velocities where the perturbation was made microscopic in the sense that the capillary length of the flow was much greater than the etched lattice cell size. The full range of dynamically interesting angles for the square lattice was examined, and above a threshold, the microscopic perturbation always results in wider fingers than are selected in the unperturbed case. There is some dependence of the width of the fingers on the orientation of the flow, with fingers at θ=0 degree being the widest with respect to the unperturbed fingers, and fingers at 45 degree being the least wide, although still wider than the unperturbed fingers. All observed solutions are symmetric, centered in the channel, and have the relation between tip-curvature and finger width expected of members of the Saffman-Taylor family of solutions. Selected solutions narrow again at tip velocities where the perturbation can no longer be considered microscopic. copyright 1996 The American Physical Society

  18. Assessment of all-solid-state lithium-ion batteries

    Science.gov (United States)

    Braun, P.; Uhlmann, C.; Weiss, M.; Weber, A.; Ivers-Tiffée, E.

    2018-07-01

    All-solid-state lithium-ion batteries (ASSBs) are considered as next generation energy storage systems. A model might be very useful, which describes all contributions to the internal cell resistance, enables an optimization of the cell design, and calculates the performance of an open choice of cell architectures. A newly developed one-dimensional model for ASSBs is presented, based on a design concept which employs the use of composite electrodes. The internal cell resistance is calculated by linking two-phase transmission line models representing the composite electrodes with an ohmic resistance representing the solid electrolyte (separator). Thereby, electrical parameters, i.e. ionic and electronic conductivity, electrochemical parameters, i.e. charge-transfer resistance at interfaces and lithium solid-state diffusion, and microstructure parameters, i.e. electrode thickness, particle size, interface area, phase composition and tortuosity, are considered as the most important material and design parameters. Subsequently, discharge curves are simulated, and energy- and power-density characteristics of all-solid-state cell architectures are calculated. These model calculations are discussed and compared with experimental data from literature for a high power LiCoO2-Li10GeP2S12/Li10GeP2S12/Li4Ti5O12-Li10GeP2S12 cell.

  19. Differential mechanism of Escherichia coli Inactivation by (+)-limonene as a function of cell physiological state and drug's concentration.

    Science.gov (United States)

    Chueca, Beatriz; Pagán, Rafael; García-Gonzalo, Diego

    2014-01-01

    (+)-limonene is a lipophilic antimicrobial compound, extracted from citrus fruits' essential oils, that is used as a flavouring agent and organic solvent by the food industry. A recent study has proposed a common and controversial mechanism of cell death for bactericidal antibiotics, in which hydroxyl radicals ultimately inactivated cells. Our objective was to determine whether the mechanism of Escherichia coli MG1655 inactivation by (+)-limonene follows that of bactericidal antibiotics. A treatment with 2,000 μL/L (+)-limonene inactivated 4 log10 cycles of exponentially growing E. coli cells in 3 hours. On one hand, an increase of cell survival in the ΔacnB mutant (deficient in a TCA cycle enzyme), or in the presence of 2,2'-dipyridyl (inhibitor of Fenton reaction by iron chelation), thiourea, or cysteamine (hydroxyl radical scavengers) was observed. Moreover, the ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage) was more sensitive to (+)-limonene. Thus, this indirect evidence indicates that the mechanism of exponentially growing E. coli cells inactivation by 2,000 μL/L (+)-limonene is due to the TCA cycle and Fenton-mediated hydroxyl radical formation that caused oxidative DNA damage, as observed for bactericidal drugs. However, several differences have been observed between the proposed mechanism for bactericidal drugs and for (+)-limonene. In this regard, our results demonstrated that E. coli inactivation was influenced by its physiological state and the drug's concentration: experiments with stationary-phase cells or 4,000 μL/L (+)-limonene uncovered a different mechanism of cell death, likely unrelated to hydroxyl radicals. Our research has also shown that drug's concentration is an important factor influencing the mechanism of bacterial inactivation by antibiotics, such as kanamycin. These results might help in improving and spreading the use of (+)-limonene as an antimicrobial compound, and in clarifying the controversy about

  20. Triblock-Terpolymer-Directed Self-Assembly of Mesoporous TiO2: High-Performance Photoanodes for Solid-State Dye-Sensitized Solar Cells

    KAUST Repository

    Docampo, Pablo

    2012-04-30

    A new self-assembly platform for the fast and straightforward synthesis of bicontinuous, mesoporous TiO 2 films is presented, based on the triblock terpolymer poly(isoprene - b - styrene - b - ethylene oxide). This new materials route allows the co-assembly of the metal oxide as a fully interconnected minority phase, which results in a highly porous photoanode with strong advantages over the state-of-the-art nanoparticle-based photoanodes employed in solidstate dye-sensitized solar cells. Devices fabricated through this triblock terpolymer route exhibit a high availability of sub-bandgap states distributed in a narrow and low enough energy band, which maximizes photoinduced charge generation from a state-of-the-art organic dye, C220. As a consequence, the co-assembled mesoporous metal oxide system outperformed the conventional nanoparticle-based electrodes fabricated and tested under the same conditions, exhibiting solar power-conversion efficiencies of over 5%. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Triblock-Terpolymer-Directed Self-Assembly of Mesoporous TiO2: High-Performance Photoanodes for Solid-State Dye-Sensitized Solar Cells

    KAUST Repository

    Docampo, Pablo; Stefik, Morgan; Guldin, Stefan; Gunning, Robert; Yufa, Nataliya A.; Cai, Ning; Wang, Peng; Steiner, Ullrich; Wiesner, Ulrich; Snaith, Henry J.

    2012-01-01

    A new self-assembly platform for the fast and straightforward synthesis of bicontinuous, mesoporous TiO 2 films is presented, based on the triblock terpolymer poly(isoprene - b - styrene - b - ethylene oxide). This new materials route allows the co-assembly of the metal oxide as a fully interconnected minority phase, which results in a highly porous photoanode with strong advantages over the state-of-the-art nanoparticle-based photoanodes employed in solidstate dye-sensitized solar cells. Devices fabricated through this triblock terpolymer route exhibit a high availability of sub-bandgap states distributed in a narrow and low enough energy band, which maximizes photoinduced charge generation from a state-of-the-art organic dye, C220. As a consequence, the co-assembled mesoporous metal oxide system outperformed the conventional nanoparticle-based electrodes fabricated and tested under the same conditions, exhibiting solar power-conversion efficiencies of over 5%. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Strategic Partnerships in Fuel Cell Development

    Science.gov (United States)

    Diab, Dorey

    2006-01-01

    This article describes how forming strategic alliances with universities, emerging technology companies, the state of Ohio, the federal government, and the National Science Foundation, has enabled Stark State College to develop a $5.5 million Fuel Cell Prototyping Center and establish a Fuel Cell Technology program to promote economic development…

  3. Each cell counts: Hematopoiesis and immunity research in the era of single cell genomics.

    Science.gov (United States)

    Jaitin, Diego Adhemar; Keren-Shaul, Hadas; Elefant, Naama; Amit, Ido

    2015-02-01

    Hematopoiesis and immunity are mediated through complex interactions between multiple cell types and states. This complexity is currently addressed following a reductionist approach of characterizing cell types by a small number of cell surface molecular features and gross functions. While the introduction of global transcriptional profiling technologies enabled a more comprehensive view, heterogeneity within sampled populations remained unaddressed, obscuring the true picture of hematopoiesis and immune system function. A critical mass of technological advances in molecular biology and genomics has enabled genome-wide measurements of single cells - the fundamental unit of immunity. These new advances are expected to boost detection of less frequent cell types and fuzzy intermediate cell states, greatly expanding the resolution of current available classifications. This new era of single-cell genomics in immunology research holds great promise for further understanding of the mechanisms and circuits regulating hematopoiesis and immunity in both health and disease. In the near future, the accuracy of single-cell genomics will ultimately enable precise diagnostics and treatment of multiple hematopoietic and immune related diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Mechanical behaviour of PEM fuel cell catalyst layers during regular cell operation

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2010-01-01

    Damage mechanisms in a proton exchange membrane fuel cell are accelerated by mechanical stresses arising during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running, because it consists of the materials with different thermal expansion and swelling coefficients. Therefore, in order to acquire a complete understanding of the mechanical behaviour of the catalyst layers during regular cell operation, mechanical response under steady-state hygro-thermal stresses s...

  5. MgO-hybridized TiO{sub 2} interfacial layers assisting efficiency enhancement of solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Nobuya; Ikegami, Masashi; Miyasaka, Tsutomu, E-mail: miyasaka@toin.ac.jp [Graduate School of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba, Yokohama, Kanagawa 225-8502 (Japan)

    2014-02-10

    Interfacial modification of a thin TiO{sub 2} compact layer (T-CL) by hybridization with MgO enhanced the quantum conversion efficiency of solid-state dye-sensitized solar cells (ssDSSCs) comprising a multilayer structure of transparent electrode/T-CL/dye-sensitized mesoporous TiO{sub 2}/hole conductor/metal counter electrode. The Mg(CH{sub 3}COO){sub 2} treatment was employed to introduce a MgO-TiO{sub 2} CL (T/M-CL), which enhanced the physical connection and conduction between the CL and mesoporous semiconductor layer as a consecutive interface, owing to the dehydration reaction of Mg(CH{sub 3}COO){sub 2}. The photocurrent density of ssDSSC was increased 33% by the T/M-CL compared with the T-CL, using an equivalent amount of adsorbed dye. The ssDSSC with the T/M-CL yielded the highest efficiency of 4.02% under irradiation at 100 mW cm{sup −2}. The electrical impedance spectroscopy showed that the charge-transfer resistance (R{sub ct}) of the photoelectrode with T/M-CL was reduced by 300 Ω from the reference non-treated T-CL electrode. Characterized by the intrinsically low R{sub ct} of the compact layer, the T/M-CL is capable of improving the photovoltaic performance of solid-state sensitized mesoscopic solar cells.

  6. SOX2 co-occupies distal enhancer elements with distinct POU factors in ESCs and NPCs to specify cell state.

    Directory of Open Access Journals (Sweden)

    Michael A Lodato

    Full Text Available SOX2 is a master regulator of both pluripotent embryonic stem cells (ESCs and multipotent neural progenitor cells (NPCs; however, we currently lack a detailed understanding of how SOX2 controls these distinct stem cell populations. Here we show by genome-wide analysis that, while SOX2 bound to a distinct set of gene promoters in ESCs and NPCs, the majority of regions coincided with unique distal enhancer elements, important cis-acting regulators of tissue-specific gene expression programs. Notably, SOX2 bound the same consensus DNA motif in both cell types, suggesting that additional factors contribute to target specificity. We found that, similar to its association with OCT4 (Pou5f1 in ESCs, the related POU family member BRN2 (Pou3f2 co-occupied a large set of putative distal enhancers with SOX2 in NPCs. Forced expression of BRN2 in ESCs led to functional recruitment of SOX2 to a subset of NPC-specific targets and to precocious differentiation toward a neural-like state. Further analysis of the bound sequences revealed differences in the distances of SOX and POU peaks in the two cell types and identified motifs for additional transcription factors. Together, these data suggest that SOX2 controls a larger network of genes than previously anticipated through binding of distal enhancers and that transitions in POU partner factors may control tissue-specific transcriptional programs. Our findings have important implications for understanding lineage specification and somatic cell reprogramming, where SOX2, OCT4, and BRN2 have been shown to be key factors.

  7. An All-vanadium Continuous-flow Photoelectrochemical Cell for Extending State-of-charge in Solar Energy Storage.

    Science.gov (United States)

    Wei, Zi; Shen, Yi; Liu, Dong; Liu, Fuqiang

    2017-04-04

    Greater levels of solar energy storage provide an effective solution to the inherent nature of intermittency, and can substantially improve reliability, availability, and quality of the renewable energy source. Here we demonstrated an all-vanadium (all-V) continuous-flow photoelectrochemical storage cell (PESC) to achieve efficient and high-capacity storage of solar energy, through improving both photocurrent and photocharging depth. It was discovered that forced convective flow of electrolytes greatly enhanced the photocurrent by 5 times comparing to that with stagnant electrolytes. Electrochemical impedance spectroscopy (EIS) study revealed a great reduction of charge transfer resistance with forced convective flow of electrolytes as a result of better mass transport at U-turns of the tortuous serpentine flow channel of the cell. Taking advantage of the improved photocurrent and diminished charge transfer resistance, the all-V continuous-flow PESC was capable of producing ~20% gain in state of charge (SOC) under AM1.5 illumination for ca. 1.7 hours without any external bias. This gain of SOC was surprisingly three times more than that with stagnant electrolytes during a 25-hour period of photocharge.

  8. Different cell fates from cell-cell interactions: core architectures of two-cell bistable networks.

    Science.gov (United States)

    Rouault, Hervé; Hakim, Vincent

    2012-02-08

    The acquisition of different fates by cells that are initially in the same state is central to development. Here, we investigate the possible structures of bistable genetic networks that can allow two identical cells to acquire different fates through cell-cell interactions. Cell-autonomous bistable networks have been previously sampled using an evolutionary algorithm. We extend this evolutionary procedure to take into account interactions between cells. We obtain a variety of simple bistable networks that we classify into major subtypes. Some have long been proposed in the context of lateral inhibition through the Notch-Delta pathway, some have been more recently considered and others appear to be new and based on mechanisms not previously considered. The results highlight the role of posttranscriptional interactions and particularly of protein complexation and sequestration, which can replace cooperativity in transcriptional interactions. Some bistable networks are entirely based on posttranscriptional interactions and the simplest of these is found to lead, upon a single parameter change, to oscillations in the two cells with opposite phases. We provide qualitative explanations as well as mathematical analyses of the dynamical behaviors of various created networks. The results should help to identify and understand genetic structures implicated in cell-cell interactions and differentiation. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Effects of Self-Assembled Monolayers on Solid-State CdS Quantum Dot Sensitized Solar Cells

    KAUST Repository

    Ardalan, Pendar; Brennan, Thomas P.; Lee, Han-Bo-Ram; Bakke, Jonathan R.; Ding, I-Kang; McGehee, Michael D.; Bent, Stacey F.

    2011-01-01

    Quantum dot sensitized solar cells (QDSSCs) are of interest for solar energy conversion because of their tunable band gap and promise of stable, low-cost performance. We have investigated the effects of self-assembled monolayers (SAMs) with phosphonic acid headgroups on the bonding and performance of cadmium sulfide (CdS) solid-state QDSSCs. CdS quantum dots ∼2 to ∼6 nm in diameter were grown on SAM-passivated planar or nanostructured TiO 2 surfaces by successive ionic layer adsorption and reaction (SILAR), and photovoltaic devices were fabricated with spiro-OMeTAD as the solid-state hole conductor. X-ray photoelectron spectroscopy, Auger electron spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, water contact angle measurements, ellipsometry, and electrical measurements were employed to characterize the materials and the resulting device performance. The data indicate that the nature of the SAM tailgroup does not significantly affect the uptake of CdS quantum dots on TiO2 nor their optical properties, but the presence of the SAM does have a significant effect on the photovoltaic device performance. Interestingly, we observe up to ∼3 times higher power conversion efficiencies in devices with a SAM compared to those without the SAM. © 2011 American Chemical Society.

  10. Effects of Self-Assembled Monolayers on Solid-State CdS Quantum Dot Sensitized Solar Cells

    KAUST Repository

    Ardalan, Pendar

    2011-02-22

    Quantum dot sensitized solar cells (QDSSCs) are of interest for solar energy conversion because of their tunable band gap and promise of stable, low-cost performance. We have investigated the effects of self-assembled monolayers (SAMs) with phosphonic acid headgroups on the bonding and performance of cadmium sulfide (CdS) solid-state QDSSCs. CdS quantum dots ∼2 to ∼6 nm in diameter were grown on SAM-passivated planar or nanostructured TiO 2 surfaces by successive ionic layer adsorption and reaction (SILAR), and photovoltaic devices were fabricated with spiro-OMeTAD as the solid-state hole conductor. X-ray photoelectron spectroscopy, Auger electron spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, water contact angle measurements, ellipsometry, and electrical measurements were employed to characterize the materials and the resulting device performance. The data indicate that the nature of the SAM tailgroup does not significantly affect the uptake of CdS quantum dots on TiO2 nor their optical properties, but the presence of the SAM does have a significant effect on the photovoltaic device performance. Interestingly, we observe up to ∼3 times higher power conversion efficiencies in devices with a SAM compared to those without the SAM. © 2011 American Chemical Society.

  11. Free energy analysis of cell spreading.

    Science.gov (United States)

    McEvoy, Eóin; Deshpande, Vikram S; McGarry, Patrick

    2017-10-01

    In this study we present a steady-state adaptation of the thermodynamically motivated stress fiber (SF) model of Vigliotti et al. (2015). We implement this steady-state formulation in a non-local finite element setting where we also consider global conservation of the total number of cytoskeletal proteins within the cell, global conservation of the number of binding integrins on the cell membrane, and adhesion limiting ligand density on the substrate surface. We present a number of simulations of cell spreading in which we consider a limited subset of the possible deformed spread-states assumed by the cell in order to examine the hypothesis that free energy minimization drives the process of cell spreading. Simulations suggest that cell spreading can be viewed as a competition between (i) decreasing cytoskeletal free energy due to strain induced assembly of cytoskeletal proteins into contractile SFs, and (ii) increasing elastic free energy due to stretching of the mechanically passive components of the cell. The computed minimum free energy spread area is shown to be lower for a cell on a compliant substrate than on a rigid substrate. Furthermore, a low substrate ligand density is found to limit cell spreading. The predicted dependence of cell spread area on substrate stiffness and ligand density is in agreement with the experiments of Engler et al. (2003). We also simulate the experiments of Théry et al. (2006), whereby initially circular cells deform and adhere to "V-shaped" and "Y-shaped" ligand patches. Analysis of a number of different spread states reveals that deformed configurations with the lowest free energy exhibit a SF distribution that corresponds to experimental observations, i.e. a high concentration of highly aligned SFs occurs along free edges, with lower SF concentrations in the interior of the cell. In summary, the results of this study suggest that cell spreading is driven by free energy minimization based on a competition between decreasing

  12. Hydrogen Fuel Cell Performance as Telecommunications Backup Power in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sprik, Sam [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-03-01

    Working in collaboration with the U.S. Department of Energy (DOE) and industry project partners, the National Renewable Energy Laboratory (NREL) acts as the central data repository for the data collected from real-world operation of fuel cell backup power systems. With American Recovery and Reinvestment Act of 2009 (ARRA) co-funding awarded through DOE's Fuel Cell Technologies Office, more than 1,300 fuel cell units were deployed over a three-plus-year period in stationary, material handling equipment, auxiliary power, and backup power applications. This surpassed a Fuel Cell Technologies Office ARRA objective to spur commercialization of an early market technology by installing 1,000 fuel cell units across several different applications, including backup power. By December 2013, 852 backup power units out of 1,330 fuel cell units deployed were providing backup service, mainly for telecommunications towers. For 136 of the fuel cell backup units, project participants provided detailed operational data to the National Fuel Cell Technology Evaluation Center for analysis by NREL's technology validation team. NREL analyzed operational data collected from these government co-funded demonstration projects to characterize key fuel cell backup power performance metrics, including reliability and operation trends, and to highlight the business case for using fuel cells in these early market applications. NREL's analyses include these critical metrics, along with deployment, U.S. grid outage statistics, and infrastructure operation.

  13. Cell Control Engineering

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1996-01-01

    The engineering process of creating cell control systems is described, and a Cell Control Engineering (CCE) concept is defined. The purpose is to assist people, representing different disciplines in the organisation, to implement cell controllers by addressing the complexity of having many systems...... in physically and logically different and changing manufacturing environments. The defined CCE concept combines state-of-the-art of commercially available enabling technologies for automation system software development, generic cell control models and guidelines for the complete engineering process...

  14. Radiation-induced cell disintegrations in cultured rat hepatoma cells JTC 2

    International Nuclear Information System (INIS)

    Sakka, Masatoshi

    1979-01-01

    Disintegration of hepatoma cells of rat were recorded by time lapse cinemicrography for more than 5 days and about 1000 pedigrees were analyzed. Five generations were followed up in control and 2 or 3 generations in irradiated cells. Cells were attached on vessel wall spreading themselves in intermitotic phase while they stood up from the wall in mitotic phase taking a roun form. When a cell disintegrates in interphase the disintegration is called D sub( s) and one in mitotic period D sub( r). The frequency of D sub( s)S' is about 3 times as much as D sub( r)S'. An age of a disintegrated cell in generation 1 and 2 was measured as the previous mitosis was age 0. Generation times of the comparable generations of surviving sister branches of the same pedigrees were used as controls. Most disintegration took place at the same age with surviving sisters indicating a determined, not at random, age of cell death. A cell in an initial state flowed to any one of the following states with or without irradiation; surviving, disintegrated, end cell or escaping out of observation field. A single exposure of 400 to 900 R induced a typical reproductive death but effective extinction of clones was observed only in small pedigrees. Temporary hypothermia and hyperthermia immediately after exposure had no remarkable lethal effects on several early generations. (author)

  15. An Organic D-π-A Dye for Record Efficiency Solid-State Sensitized Heterojunction Solar Cells

    KAUST Repository

    Cai, Ning

    2011-04-13

    The high molar absorption coefficient organic D-π-A dye C220 exhibits more than 6% certified electric power conversion efficiency at AM 1.5G solar irradiation (100 mW cm-2) in a solid-state dye-sensitized solar cell using 2,2′,7,7′-tetrakis(N,N-dimethoxyphenylamine)-9,9′- spirobifluorene (spiro-MeOTAD) as the organic hole-transporting material. This contributes to a new record (6.08% by NREL) for this type of sensitized heterojunction photovoltaic device. Efficient charge generation is proved by incident photon-to-current conversion efficiency spectra. Transient photovoltage and photocurrent decay measurements showed that the enhanced performance achieved with C220 partially stems from the high charge collection efficiency over a wide potential range. © 2011 American Chemical Society.

  16. Imposed currents in galvanic cells

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Soestbergen, M.; Bazant, M.Z.

    2009-01-01

    We analyze the steady-state behavior of a general mathematical model for reversible galvanic cells, such as redox flow cells, reversible solid oxide fuel cells, and rechargeable batteries. We consider not only operation in the galvanic discharging mode, spontaneously generating a positive current

  17. Pneumococcal Replicative State in Relation to its Adherence Capacity to A549-cell Line: A Preliminary in vitro Analysis

    Directory of Open Access Journals (Sweden)

    Mohd Desa, M. N.

    2011-01-01

    Full Text Available This study was to compare the replication capacity of pneumococcal isolates (serotypes 1, 7F, 19F and 23F with their adherence pattern to monolayer cells (A549. For standardization purposes, all isolates showed a normal growth curve in both bacteriological (THB + 0.5% yeast extract with and without 2% FBS and cell culture media (RPMI + 2% FBS. In the former media, a shorter lag phase was observed for isolate serotypes 1 and 7F in presence of serum while in the later; growth yield was lower for all isolates with stationary phase approaching OD600 of 0.01 as compared to 1.0 in bacteriological media. In the replicative analysis at different growth phases of the isolates in cell culture media, growth capacity at 3 h post-incubation was frequently twice as that at 1 h, and that at early-log phase was frequently higher than that at mid-log phase at both post-incubation times. Adherence was frequently the least at early-log phase although the isolates were in the most active state of replication to increase the number of pneumococcal cells to adhere. At mid- and late-log phases, pneumococcal adherence was frequently higher although the replication was reduced. This study marks the potential correlation between pneumococcal growth fitness and adherence capacity whereby the later may not be superior during the early growth phase.

  18. State of the art: Multi-fuel reformers for automotive fuel cell applications. Problem identification and research needs

    Energy Technology Data Exchange (ETDEWEB)

    Westerholm, R. [Stockholm Univ. (Sweden). Dept. of Analytical Chemistry; Pettersson, L.J. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    1999-12-01

    On an assignment from the Transport and Communications Research Board (KFB) a literature study and a study trip to the USA and Great Britain have been performed. The literature study and the study trip was made during late spring and autumn 1999.The purpose of the project was to collect available information about the chemical composition of the product gas from a multi-fuel reformer for a fuel cell vehicle. It was furthermore to identify problems and research needs. The report recommends directions for future major research efforts. The results of the literature study and the study trip led to the following general conclusions: With the technology available today it does not seem feasible to develop a highly efficient and reliable multi-fuel reformer for automotive applications, i. e. for applications where all types of fuels ranging from natural gas to heavy diesel fuels can be used. The potential for developing a durable and reliable system is considerably higher if dedicated fuel reformers are used.The authors propose that petroleum-derived fuels should be designed for potential use in mobile fuel cell applications. In the present literature survey and the site visit discussions we found that there are relatively low emissions from fuel cell engines compared to internal combustion engines. However, the major research work on reformers/fuel cells have been performed during steady-state operation. Emissions during start-up, shutdown and transient operation are basically unknown and must be investigated in more detail. The conclusions and findings in this report are based on open/available information, such as discussions at site visits, reports, scientific publications and symposium proceedings.

  19. Carriers in mesenchymal stem cell osteoblast mineralization-State-of-the-art

    DEFF Research Database (Denmark)

    Dahl, Morten; Jørgensen, Niklas Rye; Hørberg, Mette

    2014-01-01

    PURPOSE: Tissue engineering is a new way to regenerate bone tissue, where osteogenic capable cells combine with an appropriate scaffolding material. Our aim was in a Medline Search to evaluate osteoblast mineralization in vitro and in vivo including gene expressing combining mesenchymal stem cells...... (MSCs) and five different carriers, titanium, collagen, calcium carbonate, calcium phosphate and polylactic acid-polyglycolic acid copolymer for purpose of a meta-or a descriptive analysis. MATERIALS AND METHODS: The search included the following MeSH words in different combinations-mesenchymal stem...... cells, alkaline phosphatase, bone regeneration, tissue engineering, drug carriers, tissue scaffolds, titanium, collagen, calcium carbonate, calcium phosphates and polylactic acid-polyglycolic acid copolymer. RESULTS: Two out of 80 articles included numerical values and as control, carriers and cells...

  20. Direct conversion of human amniotic cells into endothelial cells without transitioning through a pluripotent state

    Science.gov (United States)

    Ginsberg, Michael; Schachterle, William; Shido, Koji; Rafii, Shahin

    2016-01-01

    Endothelial cells (ECs) have essential roles in organ development and regeneration, and therefore they could be used for regenerative therapies. However, generation of abundant functional endothelium from pluripotent stem cells has been difficult because ECs generated by many existing strategies have limited proliferative potential and display vascular instability. The latter difficulty is of particular importance because cells that lose their identity over time could be unsuitable for therapeutic use. Here, we describe a 3-week platform for directly converting human mid-gestation lineage-committed amniotic fluid–derived cells (ACs) into a stable and expandable population of vascular ECs (rAC-VECs) without using pluripotency factors. By transient expression of the ETS transcription factor ETV2 for 2 weeks and constitutive expression the ETS transcription factors FLI1 and ERG1, concomitant with TGF-β inhibition for 3 weeks, epithelial and mesenchymal ACs are converted, with high efficiency, into functional rAC-VECs. These rAC-VECs maintain their vascular repertoire and morphology over numerous passages in vitro, and they form functional vessels when implanted in vivo. rAC-VECs can be detected in recipient mice months after implantation. Thus, rAC-VECs can be used to establish a cellular platform to uncover the molecular determinants of vascular development and heterogeneity and potentially represent ideal ECs for the treatment of regenerative disorders. PMID:26540589

  1. Quantifying changes in the cellular thiol-disulfide status during differentiation of B cells into antibody-secreting plasma cells

    DEFF Research Database (Denmark)

    Hansen, Rosa Rebecca Erritzøe; Otsu, Mieko; Braakman, Ineke

    2013-01-01

    by the differentiation, steady-state levels of glutathionylated protein thiols are less than 0.3% of the total protein cysteines, even in fully differentiated cells, and the overall protein redox state is not affected until late in differentiation, when large-scale IgM production is ongoing. A general expansion......Plasma cells produce and secrete massive amounts of disulfide-containing antibodies. To accommodate this load on the secretory machinery, the differentiation of resting B cells into antibody-secreting plasma cells is accompanied by a preferential expansion of the secretory compartments of the cells...... of the ER does not affect global protein redox status until an extensive production of cargo proteins has started....

  2. Directed Secretion by Bone Cells of a Factor that Attracts Breast Cancer Cells

    National Research Council Canada - National Science Library

    Gay, Carol

    2001-01-01

    The hFOB osteoblast cell line was cultured in both undifferentiated and differentiated states and tested for the capacity of the cell layers to occlude fluorescent-tagged dextrans of 4-, 20- and 40 kD molecular weight...

  3. Nanostructured Organic Solar Cells

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Rubahn, Horst-Günter; Madsen, Morten

    Recent forecasts for alternative energy generation predict emerging importance of supporting state of art photovoltaic solar cells with their organic equivalents. Despite their significantly lower efficiency, number of application niches are suitable for organic solar cells. This work reveals...... the principles of bulk heterojunction organic solar cells fabrication as well as summarises major differences in physics of their operation....

  4. New Monoclonal Antibodies to Defined Cell Surface Proteins on Human Pluripotent Stem Cells.

    Science.gov (United States)

    O'Brien, Carmel M; Chy, Hun S; Zhou, Qi; Blumenfeld, Shiri; Lambshead, Jack W; Liu, Xiaodong; Kie, Joshua; Capaldo, Bianca D; Chung, Tung-Liang; Adams, Timothy E; Phan, Tram; Bentley, John D; McKinstry, William J; Oliva, Karen; McMurrick, Paul J; Wang, Yu-Chieh; Rossello, Fernando J; Lindeman, Geoffrey J; Chen, Di; Jarde, Thierry; Clark, Amander T; Abud, Helen E; Visvader, Jane E; Nefzger, Christian M; Polo, Jose M; Loring, Jeanne F; Laslett, Andrew L

    2017-03-01

    The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well-characterized monoclonal antibodies (mAbs) detecting cell-surface epitopes. Here, we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs), confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA-160 and SSEA-4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs, providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition, we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow-derived mesenchymal stem cells (MSCs), normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency, and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. Stem Cells 2017;35:626-640. © 2016 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  5. Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion.

    Directory of Open Access Journals (Sweden)

    Hyun Sik Jang

    Full Text Available Differentiated somatic cells can be reprogrammed into the pluripotent state by cell-cell fusion. In the pluripotent state, reprogrammed cells may then self-renew and differentiate into all three germ layers. Fusion-induced reprogramming also epigenetically modifies the somatic cell genome through DNA demethylation, X chromosome reactivation, and histone modification. In this study, we investigated whether fusion with embryonic stem cells (ESCs also reprograms genomic imprinting patterns in somatic cells. In particular, we examined imprinting changes in parthenogenetic neural stem cells fused with biparental ESCs, as well as in biparental neural stem cells fused with parthenogenetic ESCs. The resulting hybrid cells expressed the pluripotency markers Oct4 and Nanog. In addition, methylation of several imprinted genes except Peg3 was comparable between hybrid cells and ESCs. This finding indicates that reprogramming by cell fusion does not necessarily reverse the status of all imprinted genes to the state of pluripotent fusion partner.

  6. Cell suicide

    International Nuclear Information System (INIS)

    May, E.; Coffigny, H.

    2000-01-01

    In the fight of the cell against the damages caused to its DNA by genotoxic agents and specially by ionizing radiations, the p53 protein plays a central part. It intervenes in the proliferation control and the differentiation but also in the keeping of genome integrity. It can direct the damages cells toward suicide, or apoptosis, to avoid the risk of tumor appearance that would be fatal to the whole organism. That is by the disordered state of cells suicide programs that the tumor cells are going to develop. The knowledge of apoptosis mechanisms, to eventually start them on demand, rises up broad hopes in the cancer therapy. (N.C.)

  7. Cell cycle in egg cell and its progression during zygotic development in rice.

    Science.gov (United States)

    Sukawa, Yumiko; Okamoto, Takashi

    2018-03-01

    Rice egg is arrested at G1 phase probably by OsKRP2. After fusion with sperm, karyogamy, OsWEE1-mediated parental DNA integrity in zygote nucleus, zygote progresses cell cycle to produce two-celled embryo. In angiosperms, female and male gametes exist in gametophytes after the complementation of meiosis and the progression of nuclear/cell division of the haploid cell. Within the embryo sac, the egg cell is specially differentiated for fertilization and subsequent embryogenesis, and cellular programs for embryonic development, such as restarting the cell cycle and de novo gene expression, are halted. There is only limited knowledge about how the cell cycle in egg cells restarts toward zygotic division, although the conversion of the cell cycle from a quiescent and arrested state to an active state is the most evident transition of cell status from egg cell to zygote. This is partly due to the difficulty in direct access and analysis of egg cells, zygotes and early embryos, which are deeply embedded in ovaries. In this study, precise relative DNA amounts in the nuclei of egg cells, developing zygotes and cells of early embryos were measured, and the cell cycle of a rice egg cell was estimated as the G1 phase with a 1C DNA level. In addition, increases in DNA content in zygote nuclei via karyogamy and DNA replication were also detectable according to progression of the cell cycle. In addition, expression profiles for cell cycle-related genes in egg cells and zygotes were also addressed, and it was suggested that OsKRP2 and OsWEE1 function in the inhibition of cell cycle progression in egg cells and in checkpoint of parental DNA integrity in zygote nucleus, respectively.

  8. Decorin expression in quiescent myogenic cells

    International Nuclear Information System (INIS)

    Nishimura, Takanori; Nozu, Kenjiro; Kishioka, Yasuhiro; Wakamatsu, Jun-ichi; Hattori, Akihito

    2008-01-01

    Satellite cells are quiescent muscle stem cells that promote postnatal muscle growth and repair. When satellite cells are activated by myotrauma, they proliferate, migrate, differentiate, and ultimately fuse to existing myofibers. The remainder of these cells do not differentiate, but instead return to quiescence and remain in a quiescent state until activation begins the process again. This ability to maintain their own population is important for skeletal muscle to maintain the capability to repair during postnatal life. However, the mechanisms by which satellite cells return to quiescence and maintain the quiescent state are still unclear. Here, we demonstrated that decorin mRNA expression was high in cell cultures containing a higher ratio of quiescent satellite cells when satellite cells were stimulated with various concentrations of hepatocyte growth factor. This result suggests that quiescent satellite cells express decorin at a high level compared to activated satellite cells. Furthermore, we examined the expression of decorin in reserve cells, which were undifferentiated myoblasts remaining after induction of differentiation by serum-deprivation. Decorin mRNA levels in reserve cells were higher than those in differentiated myotubes and growing myoblasts. These results suggest that decorin participates in the quiescence of myogenic cells

  9. Radiation induced processes in moss cells

    International Nuclear Information System (INIS)

    Doehren, R. v.

    1975-01-01

    The moss F.h. shows apical growth in the protonema cells which spread radially from the spor. Every apical daughter cell during the state of 'Caulonema' and just before in the state of 'Caulonema Primanen' initiates cell division as soon as more than twice the length of the mother cell is reached. All this allows to follow radiation effects in single cells conveniently. UV irradiation on the range of 254 nm and 280 nm delivered at different parts of the cell area delays cell division markedly may suppress it, and is able to stop the process of growing in relation to the delivered dose and to the irradiated area as well. In case of irradiation of the area next to where the membrane is just being formed - that is to say next to the phragmoplast - the new membrane will be wrongly oriented. In particular giant cells are occurring in the case of nucleus irradiation during early prophase. (orig./GSE) [de

  10. Histamine from brain resident MAST cells promotes wakefulness and modulates behavioral states.

    Directory of Open Access Journals (Sweden)

    Sachiko Chikahisa

    Full Text Available Mast cell activation and degranulation can result in the release of various chemical mediators, such as histamine and cytokines, which significantly affect sleep. Mast cells also exist in the central nervous system (CNS. Since up to 50% of histamine contents in the brain are from brain mast cells, mediators from brain mast cells may significantly influence sleep and other behaviors. In this study, we examined potential involvement of brain mast cells in sleep/wake regulations, focusing especially on the histaminergic system, using mast cell deficient (W/W(v mice. No significant difference was found in the basal amount of sleep/wake between W/W(v mice and their wild-type littermates (WT, although W/W(v mice showed increased EEG delta power and attenuated rebound response after sleep deprivation. Intracerebroventricular injection of compound 48/80, a histamine releaser from mast cells, significantly increased histamine levels in the ventricular region and enhanced wakefulness in WT mice, while it had no effect in W/W(v mice. Injection of H1 antagonists (triprolidine and mepyramine significantly increased the amounts of slow-wave sleep in WT mice, but not in W/W(v mice. Most strikingly, the food-seeking behavior observed in WT mice during food deprivation was completely abolished in W/W(v mice. W/W(v mice also exhibited higher anxiety and depression levels compared to WT mice. Our findings suggest that histamine released from brain mast cells is wake-promoting, and emphasizes the physiological and pharmacological importance of brain mast cells in the regulation of sleep and fundamental neurobehavior.

  11. Regularity, variability and bi-stability in the activity of cerebellar purkinje cells.

    Science.gov (United States)

    Rokni, Dan; Tal, Zohar; Byk, Hananel; Yarom, Yosef

    2009-01-01

    Recent studies have demonstrated that the membrane potential of Purkinje cells is bi-stable and that this phenomenon underlies bi-modal simple spike firing. Membrane potential alternates between a depolarized state, that is associated with spontaneous simple spike firing (up state), and a quiescent hyperpolarized state (down state). A controversy has emerged regarding the relevance of bi-stability to the awake animal, yet recordings made from behaving cat Purkinje cells have demonstrated that at least 50% of the cells exhibit bi-modal firing. The robustness of the phenomenon in vitro or in anaesthetized systems on the one hand, and the controversy regarding its expression in behaving animals on the other hand suggest that state transitions are under neuronal control. Indeed, we have recently demonstrated that synaptic inputs can induce transitions between the states and suggested that the role of granule cell input is to control the states of Purkinje cells rather than increase or decrease firing rate gradually. We have also shown that the state of a Purkinje cell does not only affect its firing but also the waveform of climbing fiber-driven complex spikes and the associated calcium influx. These findings call for a reconsideration of the role of Purkinje cells in cerebellar function. In this manuscript we review the recent findings on Purkinje cell bi-stability and add some analyses of its effect on the regularity and variability of Purkinje cell activity.

  12. Regularity, variabilty and bi-stability in the activity of cerebellar Purkinje cells

    Directory of Open Access Journals (Sweden)

    Dan Rokni

    2009-11-01

    Full Text Available Recent studies have demonstrated that the membrane potential of Purkinje cells is bi-stable and that this phenomenon underlies bi-modal simple spike firing. Membrane potential alternates between a depolarized state, that is associated with spontaneous simple spike firing (up state, and a quiescent hyperpolarized state (down state. A controversy has emerged regarding the relevance of bi-stability to the awake animal, yet recordings made from behaving cat Purkinje cells have demonstrated that at least 50% of the cells exhibit bi-modal firing. The robustness of the phenomenon in-vitro or in anaesthetized systems on the one hand, and the controversy regarding its expression in behaving animals on the other hand suggest that state transitions are under neuronal control. Indeed, we have recently demonstrated that synaptic inputs can induce transitions between the states and suggested that the role of granule cell input is to control the states of Purkinje cells rather than increase or decrease firing rate gradually. We have also shown that the state of a Purkinje cell does not only affect its firing but also the waveform of climbing fiber-driven complex spikes and the associated calcium influx. These findings call for a reconsideration of the role of Purkinje cells in cerebellar function. In this manuscript we review the recent findings on Purkinje cell bi-stability and add some analyses of its effect on the regularity and variability of Purkinje cell activity.

  13. Distinct cell clusters touching islet cells induce islet cell replication in association with over-expression of Regenerating Gene (REG protein in fulminant type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Kaoru Aida

    Full Text Available BACKGROUND: Pancreatic islet endocrine cell-supporting architectures, including islet encapsulating basement membranes (BMs, extracellular matrix (ECM, and possible cell clusters, are unclear. PROCEDURES: The architectures around islet cell clusters, including BMs, ECM, and pancreatic acinar-like cell clusters, were studied in the non-diabetic state and in the inflamed milieu of fulminant type 1 diabetes in humans. RESULT: Immunohistochemical and electron microscopy analyses demonstrated that human islet cell clusters and acinar-like cell clusters adhere directly to each other with desmosomal structures and coated-pit-like structures between the two cell clusters. The two cell-clusters are encapsulated by a continuous capsule composed of common BMs/ECM. The acinar-like cell clusters have vesicles containing regenerating (REG Iα protein. The vesicles containing REG Iα protein are directly secreted to islet cells. In the inflamed milieu of fulminant type 1 diabetes, the acinar-like cell clusters over-expressed REG Iα protein. Islet endocrine cells, including beta-cells and non-beta cells, which were packed with the acinar-like cell clusters, show self-replication with a markedly increased number of Ki67-positive cells. CONCLUSION: The acinar-like cell clusters touching islet endocrine cells are distinct, because the cell clusters are packed with pancreatic islet clusters and surrounded by common BMs/ECM. Furthermore, the acinar-like cell clusters express REG Iα protein and secrete directly to neighboring islet endocrine cells in the non-diabetic state, and the cell clusters over-express REG Iα in the inflamed milieu of fulminant type 1 diabetes with marked self-replication of islet cells.

  14. Influence of solvent on the poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and the performance of quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wu, Jihuai; Lan, Zhang; Lin, Jianming; Huang, Miaoliang; Hao, Shancun; Fang, Leqing

    2007-01-01

    The influence of solvents on the property of poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and photovoltaic performance of quasi-solid-state dye-sensitized solar cells (DSSCs) were investigated. Solvents or mixed solvents with large donor number enhance the liquid electrolyte absorbency, which further influences the ionic conductivity of polymer gel electrolyte. A polymer gel electrolyte with ionic conductivity of 4.45 mS cm -1 was obtained by using poly (acrylic acid)-oligo-(ethylene glycol) as polymer matrix, and absorbing 30 vol.% N-methyl pyrrolidone and 70 vol.% γ-butyrolactone with 0.5 M NaI and 0.05 M I 2 . By using this polymer gel electrolyte coupling with 0.4 M pyridine additive, a quasi-solid-state dye-sensitized solar cell with conversion efficiency of 4.74% was obtained under irradiation of 100 mW cm -2 (AM 1.5)

  15. Fuel cell programs in the United States for stationary power applications

    Energy Technology Data Exchange (ETDEWEB)

    Singer, M.

    1996-04-01

    The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. Private sector participants with the Department of Energy include the Electric Power Research Institute (EPRI), the Gas Research institute (GRI), electric and gas utilities, universities, manufacturing companies and their suppliers. through continued government and private sector support, fuel cell systems are emerging power generation technologies which are expected to have significant worldwide impacts. An industry with annual sales of over a billion dollars is envisioned early in the 21st century. PAFC power plants have begun to enter the marketplace and MCFC and SOFC power plants are expected to be ready to enter the marketplace in the late 1990s. In support of the efficient and effective use of our natural resources, the fuel cell program seeks to increase energy efficiency and economic effectiveness of power generation. This is to be accomplished through effectiveness of power generation. This is accomplished through the development and commercialization of cost-effective, efficient and environmentally desirable fuel cell systems which will operate on fossil fuels in multiple and end use sectors.

  16. Hydrodynamics of stratified epithelium: Steady state and linearized dynamics

    Science.gov (United States)

    Yeh, Wei-Ting; Chen, Hsuan-Yi

    2016-05-01

    A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.

  17. Stem cell migration after irradiation

    International Nuclear Information System (INIS)

    Nothdurft, W.; Fliedner, T.M.

    1979-01-01

    The survival rate of irradiated rodents could be significantly improved by shielding only the small parts of hemopoietic tissues during the course of irradiation. The populations of circulating stem cells in adult organisms are considered to be of some importance for the homeostasis between the many sites of blood cell formation and for the necessary flexibility of hemopoietic response in the face of fluctuating demands. Pluripotent stem cells are migrating through peripheral blood as has been shown for several mammalian species. Under steady state conditions, the exchange of stem cells between the different sites of blood cell formation appears to be restricted. Their presence in blood and the fact that they are in balance with the extravascular stem cell pool may well be of significance for the surveilance of the integrity of local stem cell populations. Any decrease of stem cell population in blood below a critical size results in the rapid immigration of circulating stem cells in order to restore local stem cell pool size. Blood stem cells are involved in the regeneration after whole-body irradiation if the stem cell population in bone marrows is reduced to less than 10% of the normal state. In the animals subjected to partial-body irradiation, the circulating stem cells appear to be the only source for the repopulation of the heavily irradiated, aplastic sites of hemopoietic organs. (Yamashita, S.)

  18. Antibodies against major histocompatibility complex class II antigens directly inhibit the growth of T cells infected with Theileria parva without affecting their state of activation

    OpenAIRE

    Eichhorn, M; Prospero, T D; Heussler, Volker; Dobbelaere, D A

    1993-01-01

    We have analyzed the effect of antibodies (Abs) directed against major histocompatibility complex (MHC) class II Abs on the proliferation of Theileria parva-infected (Tpi) T cells. Anti-MHC class II Abs exert a direct effect on Tpi T cells causing an acute block in their proliferation. The inhibition does not involve apoptosis and is also entirely reversible. The rapid arrest of DNA synthesis caused by anti- MHC class II Abs is not due to interference with the state of activation of the T cel...

  19. Status and promise of fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C. [National Energy Technology Lab., Pittsburgh, PA (United States). Dept. of Energy

    2001-09-01

    The niche or early entry market penetration by ONSI and its phosphoric acid fuel cell technology has proven that fuel cells are reliable and suitable for premium power and other opportunity fuel niche market applications. Now, new fuel cell technologies - solid oxide fuel cells, molten carbonate fuel cells, and polymer electrolyte fuel cells - are being developed for near-term distributed generation shortly after 2003. Some of the evolving fuel cell systems are incorporating gas turbines in hybrid configurations. The combination of the gas turbine with the fuel cell promises to lower system costs and increase efficiency to enhance market penetration. Market estimates indicate that significant early entry markets exist to sustain the initially high cost of some distributed generation technologies. However, distributed generation technologies must have low introductory first cost, low installation cost, and high system reliability to be viable options in competitive commercial and industrial markets. In the long-term, solid state fuel cell technology with stack costs under $100/kilowatt (kW) promises deeper and wider market penetration in a range of applications including a residential, auxillary power, and the mature distributed generation markets. The solid state energy conversion alliance (SECA) with its vision for fuel cells in 2010 was recently formed to commercialize solid state fuel cells and realize the full potential of the fuel cell technology. Ultimately, the SECA concept could lead to megawatt-size fuel-cell systems for commercial and industrial applications and Vision 21 fuel cell turbine hybrid energy plants in 2015. (orig.)

  20. Cellular Barcoding Links B-1a B Cell Potential to a Fetal Hematopoietic Stem Cell State at the Single-Cell Level

    DEFF Research Database (Denmark)

    Kristiansen, Trine A; Jaensson Gyllenbäck, Elin; Zriwil, Alya

    2016-01-01

    . Using cellular barcoding for in vivo single-cell fate analyses, we found that fetal liver definitive HSCs gave rise to both B-1a and B-2 cells. Whereas B-1a potential diminished in all HSCs with time, B-2 output was maintained. B-1a and B-2 plasticity could be reinitiated in a subset of adult HSCs...... by ectopic expression of the RNA binding protein LIN28B, a key regulator of fetal hematopoiesis, and this coincided with the clonal reversal to fetal-like elevated self-renewal and repopulation potential. These results anchor the attenuation of B-1a cell output to fetal HSC behavior and demonstrate...

  1. nduced pluripotent stem cells and cell therapy

    Directory of Open Access Journals (Sweden)

    Banu İskender

    2013-12-01

    Full Text Available Human embryonic stem cells are derived from the inner cell mass of a blastocyst-stage embryo. They hold a huge promise for cell therapy with their self-renewing ability and pluripotency, which is known as the potential to differentiate into all cell types originating from three embryonic germ layers. However, their unique pluripotent feature could not be utilised for therapeutic purposes due to the ethical and legal problems during derivation. Recently, it was shown that the cells from adult tissues could be reverted into embryonic state, thereby restoring their pluripotent feature. This has strenghtened the possiblity of directed differentition of the reprogrammed somatic cells into the desired cell types in vitro and their use in regenerative medicine. Although these cells were termed as induced pluripotent cells, the mechanism of pluripotency has yet to be understood. Still, induced pluripotent stem cell technology is considered to be significant by proposing novel approaches in disease modelling, drug screening and cell therapy. Besides their self-renewing ability and their potential to differentiate into all cell types in a human body, they arouse a great interest in scientific world by being far from the ethical concerns regarding their embryonic counterparts and their unique feature of being patient-specific in prospective cell therapies. In this review, induced pluripotent stem cell technology and its role in cell-based therapies from past to present will be discussed. J Clin Exp Invest 2013; 4 (4: 550-561

  2. Internal magnesium, 2,3-diphosphoglycerate, and the regulation of the steady-state volume of human red blood cells by the Na/K/2Cl cotransport system

    Science.gov (United States)

    1992-01-01

    This study is concerned with the relationship between the Na/K/Cl cotransport system and the steady-state volume (MCV) of red blood cells. Cotransport rate was determined in unfractionated and density- separated red cells of different MCV from different donors to see whether cotransport differences contribute to the difference in the distribution of MCVs. Cotransport, studied in cells at their original MCVs, was determined as the bumetanide (10 microM)-sensitive 22Na efflux in the presence of ouabain (50 microM) after adjusting cellular Na (Nai) and Ki to achieve near maximal transport rates. This condition was chosen to rule out MCV-related differences in Nai and Ki that might contribute to differences in the net chemical driving force for cotransport. We found that in both unfractionated and density-separated red cells the cotransport rate was inversely correlated with MCV. MCV was correlated directly with red cell 2,3-diphosphoglycerate (DPG), whereas total red cell Mg was only slightly elevated in cells with high MCV. Thus intracellular free Mg (Mgifree) is evidently lower in red cells with high 2,3-DPG (i.e., high MCV) and vice versa. Results from flux measurements at their original MCVs, after altering Mgifree with the ionophore A23187, indicated a high Mgi sensitivity of cotransport: depletion of Mgifree inhibited and an elevation of Mgifree increased the cotransport rate. The apparent K0.5 for Mgifree was approximately 0.4 mM. Maximizing Mgifree at optimum Nai and Ki minimized the differences in cotransport rates among the different donors. It is concluded that the relative cotransport rate is regulated for cells in the steady state at their original cell volume, not by the number of copies of the cotransporter but by differences in Mgifree. The interindividual differences in Mgifree, determined primarily by differences in the 2,3-DPG content, are responsible for the differences in the relative cotransport activity that results in an inverse relationship

  3. Fuel cell opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Harris, K. [Hydrogenics Corporation, Mississauga, ON (Canada)

    2002-07-01

    The opportunities for fuel cell development are discussed. Fuel cells are highly efficient, reliable and require little maintenance. They also produce virtually zero emissions. The author stated that there are some complicated issues to resolve before fuel cells can be widely used. These include hydrogen availability and infrastructure. While the cost of fuel cells is currently very high, these costs are constantly coming down. The industry is still in the early stages of development. The driving forces for the development of fuel cells are: deregulation of energy markets, growing expectations for distributed power generation, discontinuity between energy supply and demand, and environmental concerns. 12 figs.

  4. An Expandable, Inducible Hemangioblast State Regulated by Fibroblast Growth Factor

    Directory of Open Access Journals (Sweden)

    David T. Vereide

    2014-12-01

    Full Text Available During development, the hematopoietic and vascular lineages are thought to descend from common mesodermal progenitors called hemangioblasts. Here we identify six transcription factors, Gata2, Lmo2, Mycn, Pitx2, Sox17, and Tal1, that “trap” murine cells in a proliferative state and endow them with a hemangioblast potential. These “expandable” hemangioblasts (eHBs are capable, once released from the control of the ectopic factors, to give rise to functional endothelial cells, multilineage hematopoietic cells, and smooth muscle cells. The eHBs can be derived from embryonic stem cells, from fetal liver cells, or poorly from fibroblasts. The eHBs reveal a central role for fibroblast growth factor, which not only promotes their expansion, but also facilitates their ability to give rise to endothelial cells and leukocytes, but not erythrocytes. This study serves as a demonstration that ephemeral progenitor states can be harnessed in vitro, enabling the creation of tractable progenitor cell lines.

  5. Identification of Human Cutaneous Basal Cell Carcinoma Cancer Stem Cells.

    Science.gov (United States)

    Morgan, Huw; Olivero, Carlotta; Patel, Girish K

    2018-04-20

    The cancer stem cell model states that a subset of tumor cells, called "cancer stem cells," can initiate and propagate tumor growth through self-renewal, high proliferative capacity, and their ability to recreate tumor heterogeneity. In basal cell carcinoma (BCC), we have shown that tumor cells that express the cell surface protein CD200 fulfill the cancer stem cell hypothesis. CD200+ CD45- BCC cells represent 0.05-3.96% of all BCC cells and reside in small clusters at the tumor periphery. Using a novel, reproducible in vivo xenograft growth assay, we determined that tumor-initiating cell (TIC) frequencies are approximately 1 per 1.5 million unsorted BCC cells. The CD200+ CD45- BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200+ CD45- cells, representing ~1500-fold enrichment. The methods used to identify and purify CD200+ CD45- BCC cells, as well as characterize gene expression, are described herein.

  6. Steady state and transient simulation of anion exchange membrane fuel cells

    Science.gov (United States)

    Dekel, Dario R.; Rasin, Igal G.; Page, Miles; Brandon, Simon

    2018-01-01

    We present a new model for anion exchange membrane fuel cells. Validation against experimental polarization curve data is obtained for current densities ranging from zero to above 2 A cm-2. Experimental transient data is also successfully reproduced. The model is very flexible and can be used to explore the system's sensitivity to a wide range of material properties, cell design specifications, and operating parameters. We demonstrate the impact of gas inlet relative humidity (RH), operating current density, ionomer loading and ionomer ion exchange capacity (IEC) values on cell performance. In agreement with the literature, high air RH levels are shown to improve cell performance. At high current densities (>1 A cm-2) this effect is observed to be especially significant. Simulated hydration number distributions across the cell reveal the related critical dependence of cathode hydration on air RH and current density values. When exploring catalyst layer design, optimal intermediate ionomer loading values are demonstrated. The benefits of asymmetric (cathode versus anode) electrode design are revealed, showing enhanced performance using higher cathode IEC levels. Finally, electrochemical reaction profiles across the electrodes uncover inhomogeneous catalyst utilization. Specifically, at high current densities the cathodic reaction is confined to a narrow region near the membrane.

  7. Basal metabolic state governs AIF-dependent growth support in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Scott, Andrew J.; Wilkinson, Amanda S.; Wilkinson, John C.

    2016-01-01

    Apoptosis-inducing factor (AIF), named for its involvement in cell death pathways, is a mitochondrial protein that regulates metabolic homeostasis. In addition to supporting the survival of healthy cells, AIF also plays a contributory role to the development of cancer through its enzymatic activity, and we have previously shown that AIF preferentially supports advanced-stage prostate cancer cells. Here we further evaluated the role of AIF in tumorigenesis by exploring its function in pancreatic cancer, a disease setting that most often presents at an advanced stage by the time of diagnosis. A bioinformatics approach was first employed to investigate AIF mRNA transcript levels in pancreatic tumor specimens vs. normal tissues. AIF-deficient pancreatic cancer cell lines were then established via lentiviral infection. Immunoblot analysis was used to determine relative protein quantities within cells. Cell viability was measured by flow cytometry; in vitro and Matrigel™ growth/survival using Coulter™ counting and phase contrast microscopy; and glucose consumption in the absence and presence of Matrigel™ using spectrophotometric methods. Archival gene expression data revealed a modest elevation of AIF transcript levels in subsets of pancreatic tumor specimens, suggesting a possible role in disease progression. AIF expression was then suppressed in a panel of five pancreatic cancer cell lines that display diverse metabolic phenotypes. AIF ablation selectively crippled the growth of cells in vitro in a manner that directly correlated with the loss of mitochondrial respiratory chain subunits and altered glucose metabolism, and these effects were exacerbated in the presence of Matrigel™ substrate. This suggests a critical metabolic role for AIF to pancreatic tumorigenesis, while the spectrum of sensitivities to AIF ablation depends on basal cellular metabolic phenotypes. Altogether these data indicate that AIF supports the growth and survival of metabolically defined

  8. A Nuclear Role for miR-9 and Argonaute Proteins in Balancing Quiescent and Activated Neural Stem Cell States

    Directory of Open Access Journals (Sweden)

    Shauna Katz

    2016-10-01

    Full Text Available Throughout life, adult neural stem cells (NSCs produce new neurons and glia that contribute to crucial brain functions. Quiescence is an essential protective feature of adult NSCs; however, the establishment and maintenance of this state remain poorly understood. We demonstrate that in the adult zebrafish pallium, the brain-enriched miR-9 is expressed exclusively in a subset of quiescent NSCs, highlighting a heterogeneity within these cells, and is necessary to maintain NSC quiescence. Strikingly, miR-9, along with Argonaute proteins (Agos, is localized to the nucleus of quiescent NSCs, and manipulating their nuclear/cytoplasmic ratio impacts quiescence. Mechanistically, miR-9 permits efficient Notch signaling to promote quiescence, and we identify the RISC protein TNRC6 as a mediator of miR-9/Agos nuclear localization in vivo. We propose a conserved non-canonical role for nuclear miR-9/Agos in controlling the balance between NSC quiescence and activation, a key step in maintaining adult germinal pools.

  9. Colloidal Sb2S3 Nanocrystals: Synthesis, Characterization and Fabrication of Solid-State Semiconductor Sensitized Solar Cell

    KAUST Repository

    Abulikemu, Mutalifu

    2015-12-26

    Inorganic nanocrystals composed of earth-abundant and non-toxic elements are crucial to fabricated sustainable photovoltaic devices in large scale. In this study, various-shaped and different phases of antimony sulfide nanocrystals, which is composed of non-scarce and non-toxic elements, are synthesized using hot-injection colloidal method. The effect of various synthetic parameters on the final morphology is explored. Also, foreign ion (Chlorine) effects on the morphology of Sb2S3 nanocrystals have been observed. Structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using as-prepared nanocrystals. We achieved promising power conversion efficiencies of 1.48%.

  10. Colloidal Sb2S3 Nanocrystals: Synthesis, Characterization and Fabrication of Solid-State Semiconductor Sensitized Solar Cell

    KAUST Repository

    Abulikemu, Mutalifu; Del Gobbo, Silvano; Anjum, Dalaver H.; Malik, Mohammad A; Bakr, Osman

    2015-01-01

    Inorganic nanocrystals composed of earth-abundant and non-toxic elements are crucial to fabricated sustainable photovoltaic devices in large scale. In this study, various-shaped and different phases of antimony sulfide nanocrystals, which is composed of non-scarce and non-toxic elements, are synthesized using hot-injection colloidal method. The effect of various synthetic parameters on the final morphology is explored. Also, foreign ion (Chlorine) effects on the morphology of Sb2S3 nanocrystals have been observed. Structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using as-prepared nanocrystals. We achieved promising power conversion efficiencies of 1.48%.

  11. Pluripotent stem cells and reprogrammed cells in farm animals.

    Science.gov (United States)

    Nowak-Imialek, Monika; Kues, Wilfried; Carnwath, Joseph W; Niemann, Heiner

    2011-08-01

    Pluripotent cells are unique because of their ability to differentiate into the cell lineages forming the entire organism. True pluripotent stem cells with germ line contribution have been reported for mice and rats. Human pluripotent cells share numerous features of pluripotentiality, but confirmation of their in vivo capacity for germ line contribution is impossible due to ethical and legal restrictions. Progress toward derivation of embryonic stem cells from domestic species has been made, but the derived cells were not able to produce germ line chimeras and thus are termed embryonic stem-like cells. However, domestic animals, in particular the domestic pig (Sus scrofa), are excellent large animals models, in which the clinical potential of stem cell therapies can be studied. Reprogramming technologies for somatic cells, including somatic cell nuclear transfer, cell fusion, in vitro culture in the presence of cell extracts, in vitro conversion of adult unipotent spermatogonial stem cells into germ line derived pluripotent stem cells, and transduction with reprogramming factors have been developed with the goal of obtaining pluripotent, germ line competent stem cells from domestic animals. This review summarizes the present state of the art in the derivation and maintenance of pluripotent stem cells in domestic animals.

  12. Tissue-specific stem cells: Lessons from the skeletal muscle satellite cell

    Science.gov (United States)

    Brack, Andrew S.; Rando, Thomas A.

    2012-01-01

    In 1961, the satellite cell was first identified when electron microscopic examination of skeletal muscle demonstrated a cell wedged between the plasma membrane of the muscle fiber and the basement membrane. In recent years it has been conclusively demonstrated that the satellite cell is the primary cellular source for muscle regeneration and is equipped with the potential to self renew, thus functioning as a bone fide skeletal muscle stem cell (MuSC). As we move past the 50th anniversary of the satellite cell, we take this opportunity to discuss the current state of the art and dissect the unknowns in the MuSC field. PMID:22560074

  13. Dynamically constrained pipeline for tracking neural progenitor cells

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Dahl, Anders; Holm, Peter

    2013-01-01

    . A mitosis detector constructed from empirical observations of cells in a pre-mitotic state interacts with the graph formulation to dynamically allow for cell mitosis when appropriate. Track consistency is ensured by introducing pragmatic constraints and the notion of blob states. We validate the proposed...

  14. DNA methylation in states of cell physiology and pathology.

    Directory of Open Access Journals (Sweden)

    Lech Chyczewski

    2007-10-01

    Full Text Available DNA methylation is one of epigenetic mechanisms regulating gene expression. The methylation pattern is determined during embryogenesis and passed over to differentiating cells and tissues. In a normal cell, a significant degree of methylation is characteristic for extragenic DNA (cytosine within the CG dinucleotide while CpG islands located in gene promoters are unmethylated, except for inactive genes of the X chromosome and the genes subjected to genomic imprinting. The changes in the methylation pattern, which may appear as the organism age and in early stages of cancerogenesis, may lead to the silencing of over ninety endogenic genes. It has been found, that these disorders consist not only of the methylation of CpG islands, which are normally unmethylated, but also of the methylation of other dinucleotides, e.g. CpA. Such methylation has been observed in non-small cell lung cancer, in three regions of the exon 5 of the p53 gene (so-called "non-CpG" methylation. The knowledge of a normal methylation process and its aberrations appeared to be useful while searching for new markers enabling an early detection of cancer. With the application of the Real-Time PCR technique (using primers for methylated and unmethylated sequences five new genes which are potential biomarkers of lung cancer have been presented.

  15. Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents

    DEFF Research Database (Denmark)

    Xiao, Fei; Fofana, Isabel; Heydmann, Laura

    2014-01-01

    Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies....... In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV...... genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host...

  16. Clusters of conserved beta cell marker genes for assessment of beta cell phenotype

    DEFF Research Database (Denmark)

    Martens, Geert A; Jiang, Lei; Hellemans, Karine H

    2011-01-01

    The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those...... of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser capture...

  17. Laser-Raman spectroscopy of living cells

    International Nuclear Information System (INIS)

    Webb, S.J.

    1980-01-01

    Investigations into the laser-Raman shift spectra of bacterial and mammalian cells have revealed that many Raman lines observed at 4-6 K, do not appear in the spectra of cells held at 300 K. At 300 K, Raman activity, at set frequencies, is observed only when the cells are metabolically active; however, the actual live cell spectrum, between 0 and 3400 cm -1 , has been found to alter in a specific way with time as the cells' progress through their life cycles. Lines above 300 cm -1 , from in vivo Raman active states, appear to shift to higher wave numbers whereas those below 300 cm -1 seem to shift to lower ones. The transient nature of many shift lines observed and the intensity of them when present in the spectrum indicates that, in, vivo, a metabolically induced condensation of closely related states occurs at a set time in the life of a living cell. In addition, the calculated ratio between the intensities of Stokes and anti-Stokes lines observed suggests that the metabolically induced 'collective' Raman active states are produced, in vivo, by non thermal means. It appears, therefore, that the energetics of the well established cell 'time clock' may be studied by laser-Raman spectroscopy; moreover, Raman spectroscopy may yield a new type of information regarding the physics of such biological phenomena as nutrition, virus infection and oncogenesis. (orig.)

  18. Hybrid unscented particle filter based state-of-charge determination for lead-acid batteries

    International Nuclear Information System (INIS)

    Shen, Yanqing

    2014-01-01

    Accurate prediction of cell SOC (state of charge) is important for the safety and functional capabilities of the battery energy storage application system. This paper presents a hybrid UPF (unscented particle filter) based SOC determination combined model for batteries. To simulate the entire dynamic electrical characteristics of batteries, a novel combined state space model, which takes current as a control input and let SOC and two constructed parameters as state variables, is advanced to represent cell behavior. Besides that, an improved UPF method is used to evaluate cell SOC. Taking lead-acid batteries for example, we apply the established model for test. Results show that the evolved combined state space cell model simulates battery dynamics robustly with high accuracy and the prediction value based on the improved UPF method converges to the real SOC very quickly within the error of±2%. - Highlights: • This paper introduces a hybrid UPF based SOC determination model for batteries. • The evolved model takes SOC and two constructed parameters as state variables. • The combined state space cell model simulates battery dynamics robustly. • NLMS based method is employed to lessen search space and fasten convergence process. • Novel model converges to the real SOC robustly and quickly with fewer particles

  19. Detection and quantification of subtle changes in red blood cell density using a cell phone.

    Science.gov (United States)

    Felton, Edward J; Velasquez, Anthony; Lu, Shulin; Murphy, Ryann O; ElKhal, Abdala; Mazor, Ofer; Gorelik, Pavel; Sharda, Anish; Ghiran, Ionita C

    2016-08-16

    Magnetic levitation has emerged as a technique that offers the ability to differentiate between cells with different densities. We have developed a magnetic levitation system for this purpose that distinguishes not only different cell types but also density differences in cells of the same type. This small-scale system suspends cells in a paramagnetic medium in a capillary placed between two rare earth magnets, and cells levitate to an equilibrium position determined solely by their density. Uniform reference beads of known density are used in conjunction with the cells as a means to quantify their levitation positions. In one implementation images of the levitating cells are acquired with a microscope, but here we also introduce a cell phone-based device that integrates the magnets, capillary, and a lens into a compact and portable unit that acquires images with the phone's camera. To demonstrate the effectiveness of magnetic levitation in cell density analysis we carried out levitation experiments using red blood cells with artificially altered densities, and also levitated those from donors. We observed that we can distinguish red blood cells of an anemic donor from those that are healthy. Since a plethora of disease states are characterized by changes in cell density magnetic cell levitation promises to be an effective tool in identifying and analyzing pathologic states. Furthermore, the low cost, portability, and ease of use of the cell phone-based system may potentially lead to its deployment in low-resource environments.

  20. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system.

    Science.gov (United States)

    Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo

    2015-11-17

    Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells.

  1. The Androgen Receptor Bridges Stem Cell-Associated Signaling Nodes in Prostate Stem Cells

    Directory of Open Access Journals (Sweden)

    Alastair H. Davies

    2016-01-01

    Full Text Available The therapeutic potential of stem cells relies on dissecting the complex signaling networks that are thought to regulate their pluripotency and self-renewal. Until recently, attention has focused almost exclusively on a small set of “core” transcription factors for maintaining the stem cell state. It is now clear that stem cell regulatory networks are far more complex. In this review, we examine the role of the androgen receptor (AR in coordinating interactions between signaling nodes that govern the balance of cell fate decisions in prostate stem cells.

  2. Recycled Cell Phones - A Treasure Trove of Valuable Metals

    Science.gov (United States)

    Sullivan, Daniel E.

    2006-01-01

    This U.S. Geological Survey (USGS) Fact Sheet examines the potential value of recycling the metals found in obsolete cell phones. Cell phones seem ubiquitous in the United States and commonplace throughout most of the world. There were approximately 1 billion cell phones in use worldwide in 2002. In the United States, the number of cell phone subscribers increased from 340,000 in 1985 to 180 million in 2004. Worldwide, cell phone sales have increased from slightly more than 100 million units per year in 1997 to an estimated 779 million units per year in 2005. Cell phone sales are projected to exceed 1 billion units per year in 2009, with an estimated 2.6 billion cell phones in use by the end of that year. The U.S. Environmental Protection Agency estimated that, by 2005, as many as 130 million cell phones would be retired annually in the United States. The nonprofit organization INFORM, Inc., anticipated that, by 2005, a total of 500 million obsolete cell phones would have accumulated in consumers' desk drawers, store rooms, or other storage, awaiting disposal. Typically, cell phones are used for only 1 1/2 years before being replaced. Less than 1 percent of the millions of cell phones retired and discarded annually are recycled. When large numbers of cell phones become obsolete, large quantities of valuable metals end up either in storage or in landfills. The amount of metals potentially recoverable would make a significant addition to total metals recovered from recycling in the United States and would supplement virgin metals derived from mining.

  3. Effects of crown ethers in nanocomposite silica-gel electrolytes on the performance of quasi-solid-state dye-sensitized solar cells

    KAUST Repository

    Huang, Kuan-Chieh

    2010-04-01

    The effects of crown ethers (CEs) on the performance of quasi-solid-state dye-sensitized solar cells (DSSCs) have been investigated. Nanocomposite silica was used to form gel matrices in the electrolytes, which contained lithium iodide (LiI) and iodine (I2) in 3-methoxypropionitrile (MPN) solvent. Three types of CEs, 12-crown-4 (12-C-4), 15-crown-5 (15-C-5), and 18-crown-6 (18-C-6) were used as additives to the gel electrolytes. DSSCs containing CEs showed enhancements in solar-to-electricity conversion efficiencies (η), with reference to the one without them. The crown ether, 15-C-5, with a size of cavity matching with the size of Li+ in the electrolyte rendered for its DSSC the best performance with an η of 3.60%, under 100 mW/cm2 illumination, as compared to 2.44% for the cell without any CE. Enhancements in the photovoltaic parameters of the cells with the CEs were explained based on the binding abilities of the CEs with lithium ions (Li+) in the electrolyte. Linear sweep voltammetry (LSV) measurements and electrochemical impedance spectra were used to substantiate the explanations. © 2009 Elsevier B.V. All rights reserved.

  4. Enhanced performance of a quasi-solid-state dye-sensitized solar cell with aluminum nitride in its gel polymer electrolyte

    KAUST Repository

    Huang, Kuan-Chieh

    2011-08-01

    The effects of incorporation of aluminum nitride (AlN) in the gel polymer electrolyte (GPE) of a quasi-solid-state dye-sensitized solar cell (DSSC) were studied in terms of performance of the cell. The electrolyte, consisting of lithium iodide (LiI), iodine (I2), and 4-tert-butylpyridine (TBP) in 3-methoxypropionitrile (MPN), was solidified with poly(vinyidene fluoride-co-hexafluoro propylene) (PVDF-HFP). The 0.05, 0.1, 0.3, and 0.5 wt% of AlN were added to the electrolyte for this study. XRD analysis showed a reduction of crystallinity in the polymer PVDF-HFP for all the additions of AlN. The DSSC fabricated with a GPE containing 0.1 wt% AlN showed a short-circuit current density (JSC) and power-conversion efficiency (η) of 12.92±0.54 mA/cm2 and 5.27±0.23%, respectively, at 100 mW/cm2 illumination, in contrast to the corresponding values of 11.52±0.21 mA/cm2 and 4.75±0.08% for a cell without AlN. The increases both in JSC and in η of the promoted DSSC are attributed to the higher apparent diffusion coefficient of I- in its electrolyte (3.52×10-6 cm2/s), compared to that in the electrolyte without AlN of a DSSC (2.97×10-6 cm 2/s). At-rest stability of the quasi-solid-state DSSC with 0.1 wt% of AlN was found to decrease hardly by 5% and 7% at room temperature and at 40 °C, respectively, after 1000 h duration. The DSSC with a liquid electrolyte showed a decrease of about 40% at room temperature, while it virtually lost its performance in about 150 h at 40 °C. Explanations are further substantiated by means of electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and by porosity measurements. © 2010 Elsevier B.V.

  5. Metformin induces an intracellular reductive state that protects oesophageal squamous cell carcinoma cells against cisplatin but not copper-bis(thiosemicarbazones)

    International Nuclear Information System (INIS)

    Damelin, Leonard Howard; Jivan, Rupal; Veale, Robin Bruce; Rousseau, Amanda Louise; Mavri-Damelin, Demetra

    2014-01-01

    Oesophageal squamous cell carcinoma (OSCC) is a highly aggressive carcinoma with a poor survival rate. One of the most commonly used chemotherapeutic drugs, cisplatin, displays varied and often poor efficacy in vivo. Therefore, alternative, cost-effective and more efficacious treatments are required. Metformin has been previously shown to reduce proliferative rates in various carcinoma cell lines. We report for the first time, the effect of metformin on OSCC cell proliferation and show that it antagonises cisplatin-induced but not copper-bis(thiosemicarbazone)-induced cytotoxicity in OSCC cells. Cell proliferation and stage of the cell cycle were quantified by trypan blue counts and flow cytometry, respectively. All cytotoxicity measurements were made using the tetrazolium based MTT assay. Metabolic alterations to cells were determined as follows: glycolysis via a lactate dehydrogenase assay, reducing equivalents by MTT reduction and reduced intracellular thiols by monobromobimane-thiol fluorescence, and glutathione depletion using buthionine sulfoximine. Inductively coupled plasma mass spectrometry was used to quantify cisplatin-DNA adduct formation. Metformin was found to reduce cell proliferation significantly in all OSCC cell lines, with an accumulation of cells in G0/G1 phase of the cell cycle. However, metformin significantly protected OSCC cells against cisplatin toxicity. Our results indicate that a major mechanism of metformin-induced cisplatin resistance results from a significant increase in glycolysis, intracellular NAD(P)H levels with a concomitant increase in reduced intracellular thiols, leading to decreased cisplatin-DNA adduct formation. The glutathione synthesis inhibitor buthionine sulfoximine significantly ablated the protective effect of metformin. We subsequently show that the copper-bis(thiosemicarbazones), Cu-ATSM and Cu-GTSM, which are trapped in cells under reducing conditions, cause significant OSCC cytotoxicity, both alone and in

  6. Solid-state NMR Reveals the Carbon-based Molecular Architecture of Cryptococcus neoformans Fungal Eumelanins in the Cell Wall*

    Science.gov (United States)

    Chatterjee, Subhasish; Prados-Rosales, Rafael; Itin, Boris; Casadevall, Arturo; Stark, Ruth E.

    2015-01-01

    Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment “ghosts” and applied 2D 13C-13C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics. PMID:25825492

  7. Solid-state NMR Reveals the Carbon-based Molecular Architecture of Cryptococcus neoformans Fungal Eumelanins in the Cell Wall.

    Science.gov (United States)

    Chatterjee, Subhasish; Prados-Rosales, Rafael; Itin, Boris; Casadevall, Arturo; Stark, Ruth E

    2015-05-29

    Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment "ghosts" and applied 2D (13)C-(13)C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease

    DEFF Research Database (Denmark)

    Fox, Ira J; Daley, George Q; Goldman, Steven A

    2014-01-01

    Pluripotent stem cells (PSCs) directed to various cell fates holds promise as source material for treating numerous disorders. The availability of precisely differentiated PSC-derived cells will dramatically affect blood component and hematopoietic stem cell therapies and should facilitate......, and industry is critical for generating new stem cell-based therapies....... treatment of diabetes, some forms of liver disease and neurologic disorders, retinal diseases, and possibly heart disease. Although an unlimited supply of specific cell types is needed, other barriers must be overcome. This review of the state of cell therapies highlights important challenges. Successful...

  9. Clusters of conserved beta cell marker genes for assessment of beta cell phenotype

    DEFF Research Database (Denmark)

    Martens, Geert A; Jiang, Lei; Hellemans, Karine H

    2011-01-01

    The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those...... of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser capture...... microdissected beta cells, monitor adaptations of the beta cell phenotype to fasting, and retrieve possible conserved transcriptional regulators....

  10. Interleukin-7 Availability Is Maintained by a Hematopoietic Cytokine Sink Comprising Innate Lymphoid Cells and T Cells.

    Science.gov (United States)

    Martin, Christopher E; Spasova, Darina S; Frimpong-Boateng, Kwesi; Kim, Hee-Ok; Lee, Minji; Kim, Kwang Soon; Surh, Charles D

    2017-07-18

    Interleukin-7 (IL-7) availability determines the size and proliferative state of the resting T cell pool. However, the mechanisms that regulate steady-state IL-7 amounts are unclear. Using experimental lymphopenic mouse models and IL-7-induced homeostatic proliferation to measure IL-7 availability in vivo, we found that radioresistant cells were the source of IL-7 for both CD4 + and CD8 + T cells. Hematopoietic lineage cells, although irrelevant as a source of IL-7, were primarily responsible for limiting IL-7 availability via their expression of IL-7R. Unexpectedly, innate lymphoid cells were found to have a potent influence on IL-7 amounts in the primary and secondary lymphoid tissues. These results demonstrate that IL-7 homeostasis is achieved through consumption by multiple subsets of innate and adaptive immune cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Hematopoietic Stem Cell Transplantation Activity in Pediatric Cancer between 2008 and 2014 in the United States: A Center for International Blood and Marrow Transplant Research Report.

    Science.gov (United States)

    Khandelwal, Pooja; Millard, Heather R; Thiel, Elizabeth; Abdel-Azim, Hisham; Abraham, Allistair A; Auletta, Jeffery J; Boulad, Farid; Brown, Valerie I; Camitta, Bruce M; Chan, Ka Wah; Chaudhury, Sonali; Cowan, Morton J; Angel-Diaz, Miguel; Gadalla, Shahinaz M; Gale, Robert Peter; Hale, Gregory; Kasow, Kimberly A; Keating, Amy K; Kitko, Carrie L; MacMillan, Margaret L; Olsson, Richard F; Page, Kristin M; Seber, Adriana; Smith, Angela R; Warwick, Anne B; Wirk, Baldeep; Mehta, Parinda A

    2017-08-01

    This Center for International Blood and Marrow Transplant Research report describes the use of hematopoietic stem cell transplantation (HSCT) in pediatric patients with cancer, 4408 undergoing allogeneic (allo) and3076 undergoing autologous (auto) HSCT in the United States between 2008 and 2014. In both settings, there was a greater proportion of boys (n = 4327; 57%), children reports of transplant practices in the United States. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  12. Muscle Stem Cell Fate Is Controlled by the Cell-Polarity Protein Scrib

    Directory of Open Access Journals (Sweden)

    Yusuke Ono

    2015-02-01

    Full Text Available Satellite cells are resident skeletal muscle stem cells that supply myonuclei for homeostasis, hypertrophy, and repair in adult muscle. Scrib is one of the major cell-polarity proteins, acting as a potent tumor suppressor in epithelial cells. Here, we show that Scrib also controls satellite-cell-fate decisions in adult mice. Scrib is undetectable in quiescent cells but becomes expressed during activation. Scrib is asymmetrically distributed in dividing daughter cells, with robust accumulation in cells committed to myogenic differentiation. Low Scrib expression is associated with the proliferative state and preventing self-renewal, whereas high Scrib levels reduce satellite cell proliferation. Satellite-cell-specific knockout of Scrib in mice causes a drastic and insurmountable defect in muscle regeneration. Thus, Scrib is a regulator of tissue stem cells, controlling population expansion and self-renewal with Scrib expression dynamics directing satellite cell fate.

  13. Impairment of Several Immune Functions and Redox State in Blood Cells of Alzheimer’s Disease Patients. Relevant Role of Neutrophils in Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Carmen Vida

    2018-01-01

    Full Text Available Since aging is considered the most risk factor for sporadic Alzheimer’s Disease (AD, the age-related impairment of the immune system (immunosenescence, based on a chronic oxidative-inflammatory stress situation, could play a key role in the development and progression of AD. Although AD is accompanied by systemic disturbance, reflecting the damage in the brain, the changes in immune response and redox-state in different types of blood cells in AD patients have been scarcely studied. The aim was to analyze the variations in several immune functions and oxidative-inflammatory stress and damage parameters in both isolated peripheral neutrophils and mononuclear blood cells, as well as in whole blood cells, from patients diagnosed with mild (mAD and severe AD, and of age-matched controls (elderly healthy subjects as well as of adult controls. The cognitive decline of all subjects was determined by Mini-Mental State Examination (MMSE test (mAD stage was established at 20 ≤ MMSE ≤ 23 score; AD stage at <18 MMSE; elderly subjects >27 MMSE. The results showed an impairment of the immune functions of human peripheral blood neutrophils and mononuclear cells of mAD and AD patients in relation to healthy elderly subjects, who showed the typical immunosenescence in comparison with the adult individuals. However, several alterations were only observed in severe AD patients (lower chemotaxis, lipopolysaccharide lymphoproliferation, and interleukin (IL-10 release; higher basal proliferation, tumor necrosis factor (TNF-α release, and IL-10/TNF-α ratio, others only in mAD subjects (higher adherence, meanwhile others appeared in both mAD and AD patients (lower phytohemaglutinin lymphoproliferation and higher IL-6 release. This impairment of immune functions could be mediated by: (1 the higher oxidative stress and damage also observed in blood cells from mAD and AD patients and in isolated neutrophils [lower glutathione (GSH levels, high oxidized

  14. The Palmitoylation State of PMP22 Modulates Epithelial Cell Morphology and Migration

    Directory of Open Access Journals (Sweden)

    Susie J. Zoltewicz

    2012-11-01

    Full Text Available PMP22 (peripheral myelin protein 22, also known as GAS 3 (growth-arrest-specific protein 3, is a disease-linked tetraspan glycoprotein of peripheral nerve myelin and constituent of intercellular junctions in epithelia. To date, our knowledge of the post-translational modification of PMP22 is limited. Using the CSS-Palm 2.0 software we predicted that C85 (cysteine 85, a highly conserved amino acid located between the second and third transmembrane domains, is a potential site for palmitoylation. To test this, we mutated C85S (C85 to serine and established stable cells lines expressing the WT (wild-type or the C85S-PMP22. In Schwann and MDCK (Madin–Darby canine kidney cells mutating C85 blocked the palmitoylation of PMP22, which we monitored using 17-ODYA (17-octadecynoic acid. While palmitoylation was not necessary for processing the newly synthesized PMP22 through the secretory pathway, overexpression of C85S-PMP22 led to pronounced cell spreading and uneven monolayer thinning. To further investigate the functional significance of palmitoylated PMP22, we evaluated MDCK cell migration in a wound-healing assay. While WT-PMP22 expressing cells were resistant to migration, C85S cells displayed lamellipodial protrusions and migrated at a similar rate to vector control. These findings indicate that palmitoylation of PMP22 at C85 is critical for the role of the protein in modulating epithelial cell shape and motility.

  15. Cancer stem cells revisited

    NARCIS (Netherlands)

    Batlle, Eduard; Clevers, Hans

    2017-01-01

    The cancer stem cell (CSC) concept was proposed four decades ago, and states that tumor growth, analogous to the renewal of healthy tissues, is fueled by small numbers of dedicated stem cells. It has gradually become clear that many tumors harbor CSCs in dedicated niches, and yet their

  16. Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells

    NARCIS (Netherlands)

    Semrau, Stefan; Goldmann, Johanna E; Soumillon, Magali; Mikkelsen, Tarjei S; Jaenisch, Rudolf; van Oudenaarden, Alexander

    2017-01-01

    Gene expression heterogeneity in the pluripotent state of mouse embryonic stem cells (mESCs) has been increasingly well-characterized. In contrast, exit from pluripotency and lineage commitment have not been studied systematically at the single-cell level. Here we measure the gene expression

  17. Diffusion inside living human cells

    DEFF Research Database (Denmark)

    Leijnse, N.; Jeon, J. -H.; Loft, Steffen

    2012-01-01

    of the cell or within the nucleus. Also, granules in cells which are stressed by intense laser illumination or which have attached to a surface for a long period of time move in a more restricted fashion than those within healthy cells. For granules diffusing in healthy cells, in regions away from the cell...... cells. For these cells the exact diffusional pattern of a particular granule depends on the physiological state of the cell and on the localization of the granule within the cytoplasm. Granules located close to the actin rich periphery of the cell move less than those located towards to the center...

  18. Programmed cell death

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this conference to provide a multidisciplinary forum for exchange of state-of-the-art information on the role programmed cell death plays in normal development and homeostasis of many organisms. This volume contains abstracts of papers in the following areas: invertebrate development; immunology/neurology; bcl-2 family; biochemistry; programmed cell death in viruses; oncogenesis; vertebrate development; and diseases.

  19. Comparison of six different models describing survival of mammalian cells after irradiation

    International Nuclear Information System (INIS)

    Sontag, W.

    1990-01-01

    Six different cell-survival models have been compared. All models are based on the similar assumption that irradiated cells are able to exist in one of three states. S A is the state of a totally repaired cell, in state S C the cell contains lethal lesions and in state S b the cell contains potentially lethal lesions i.e. those which either can be repaired or converted into lethal lesions. The differences between the six models lie in the different mathematical relationships between the three states. To test the six models, six different sets of experimental data were used which describe cell survival at different repair times after irradiation with sparsely ionizing irradiation. In order to compare the models, a goodness-of-fit function was used. The differences between the six models were tested by use of the nonparametric Mann-Whitney two sample test. Based on the 95% confidence limit, this required separation into three groups. (orig.)

  20. Tuberculosis Therapy Modifies the Cytokine Profile, Maturation State, and Expression of Inhibitory Molecules on Mycobacterium tuberculosis-Specific CD4+ T-Cells.

    Directory of Open Access Journals (Sweden)

    Kapil K Saharia

    Full Text Available Little is known about the expression of inhibitory molecules cytotoxic T-lymphocyte antigen-4 (CTLA-4 and programmed-death-1 (PD-1 on Mycobacterium tuberculosis (Mtb-specific CD4 T-cells and how their expression is impacted by TB treatment.Cryopreserved PBMCs from HIV-TB co-infected and TB mono-infected patients with untreated and treated tuberculosis (TB disease were stimulated for six hours with PPD and stained. Using polychromatic flow cytometry, we characterized the differentiation state, cytokine profile, and inhibitory molecule expression on PPD-specific CD4 T-cells.In our HIV-TB co-infected cohort, TB treatment increased the proportion of PPD-specific CD4 T-cells co-producing IFN-γ+IL-2+TNF-α+ and IFN-γ+IL-2+ (p = 0.0004 and p = 0.0002, respectively while decreasing the proportion of PPD-specific CD4 T-cells co-producing IFN-γ+MIP1-β+TNF-α+ and IFN-γ+MIP1-β+. The proportion of PPD-specific CD4 T-cells expressing an effector memory phenotype decreased (63.6% vs 51.6%, p = 0.0015 while the proportion expressing a central memory phenotype increased (7.8% vs. 21.7%, p = 0.001 following TB treatment. TB treatment reduced the proportion of PPD-specific CD4 T-cells expressing CTLA-4 (72.4% vs. 44.3%, p = 0.0005 and PD-1 (34.5% vs. 29.2%, p = 0.03. Similar trends were noted in our TB mono-infected cohort.TB treatment alters the functional profile of Mtb-specific CD4 T-cells reflecting shifts towards a less differentiated maturational profile and decreases PD-1 and CTLA-4 expression. These could serve as markers of reduced mycobacterial burden. Further study is warranted.

  1. Hispanics have the lowest stem cell transplant utilization rate for autologous hematopoietic cell transplantation for multiple myeloma in the United States: A CIBMTR report.

    Science.gov (United States)

    Schriber, Jeffrey R; Hari, Parameswaran N; Ahn, Kwang Woo; Fei, Mingwei; Costa, Luciano J; Kharfan-Dabaja, Mohamad A; Angel-Diaz, Miguel; Gale, Robert P; Ganguly, Siddharatha; Girnius, Saulius K; Hashmi, Shahrukh; Pawarode, Attaphol; Vesole, David H; Wiernik, Peter H; Wirk, Baldeep M; Marks, David I; Nishihori, Taiga; Olsson, Richard F; Usmani, Saad Z; Mark, Tomer M; Nieto, Yago L; D'Souza, Anita

    2017-08-15

    Race/ethnicity remains an important barrier in clinical care. The authors investigated differences in the receipt of autologous hematopoietic cell transplantation (AHCT) among patients with multiple myeloma (MM) and outcomes based on race/ethnicity in the United States. The Center for International Blood and Marrow Transplant Research database was used to identify 28,450 patients who underwent AHCT for MM from 2008 through 2014. By using data from the National Cancer Institute's Surveillance, Epidemiology, and End Results 18 registries, the incidence of MM was calculated, and a stem cell transplantation utilization rate (STUR) was derived. Post-AHCT outcomes were analyzed among patients ages 18 to 75 years who underwent melphalan-conditioned peripheral cell grafts (N = 24,102). The STUR increased across all groups from 2008 to 2014. The increase was substantially lower among Hispanics (range, 8.6%-16.9%) and non-Hispanic blacks (range, 12.2%-20.5%) compared with non-Hispanic whites (range, 22.6%-37.8%). There were 18,046 non-Hispanic whites, 4123 non-Hispanic blacks, and 1933 Hispanic patients. The Hispanic group was younger (P blacks (42%) compared with non-Hispanic whites (56%). A Karnofsky score 3 were more common in non-Hispanic blacks compared with Hispanic and non-Hispanic whites (P blacks (54%) and non-Hispanic whites (52%; P blacks (45%) and non-Hispanic whites (44%) had a very good partial response or better before transplantation (P = .005). Race/ethnicity did not impact post-AHCT outcomes. Although the STUR increased, it remained low and was significantly lower among Hispanics followed by non-Hispanic blacks compared with non-Hispanic whites. Race/ethnicity did not impact transplantation outcomes. Efforts to increase the rates of transplantation for eligible patients who have MM, with an emphasis on groups that underuse transplantation, are warranted. Cancer 2017;123:3141-9. © 2017 American Cancer Society. © 2017 American Cancer Society.

  2. Induced adult stem (iAS) cells and induced transit amplifying progenitor (iTAP) cells-a possible alternative to induced pluripotent stem (iPS) cells?

    Science.gov (United States)

    Heng, Boon Chin; Richards, Mark; Ge, Zigang; Shu, Yimin

    2010-02-01

    The successful derivation of iPSC lines effectively demonstrates that it is possible to reset the 'developmental clock' of somatic cells all the way back to the initial embryonic state. Hence, it is plausible that this clock may instead be turned back half-way to a less immature developmental stage that is more directly applicable to clinical therapeutic applications or for in vitro pharmacology/toxicology screening assays. Such a suitable developmental state is postulated to be either the putative transit amplifying progenitor stage or adult stem cell stage. It is hypothetically possible to reprogram mature and terminally differentiated somatic cells back to the adult stem cell or transit amplifying progenitor stage, in a manner similar to the derivation of iPSC. It is proposed that the terminology 'Induced Adult Stem Cells' (iASC) or 'Induced Transit Amplifying Progenitor Cells' (iTAPC) be used to described such reprogrammed somatic cells. Of particular interest, is the possibility of resetting the developmental clock of mature differentiated somatic cells of the mesenchymal lineage, explanted from adipose tissue, bone marrow and cartilage. The putative adult stem cell sub-population from which these cells are derived, commonly referred to as 'mesenchymal stem cells', are highly versatile and hold much therapeutic promise in regenerative medicine, as attested to by numerous human clinical trials and animal studies. Perhaps it may be appropriate to term such reprogrammed cells as 'Induced Mesenchymal Stem Cells' (iMSC) or as 'Induced Mesenchumal Progenitor Cells' (iMPC). Given that cells from the same organ/tissue will share some commonalities in gene expression, we hypothesize that the generation of iASC or iTAPC would be more efficient as compared to iPSC generation, since a common epigenetic program must exist between the reprogrammed cells, adult stem cell or progenitor cell types and terminally differentiated cell types from the same organ/tissue.

  3. Mast cells in lung of rat

    Directory of Open Access Journals (Sweden)

    I. Ivanova

    2017-09-01

    Full Text Available This paper is a short review of scientific literature on lung mast cells in norm and pathology that shows the current state of this problem. Particular attention is paid to the quantity, location and arrangement of the mast cells. The mast cells are a part of immune system whom origin are myeloid stem cells. They are a kind of white blood cells. Many authors from the 19th century to the present day have traced and described the role of mast cells in the human body, their structure and changes depending on the functional state of the organism. Paul Ehrlich is the first author that described in his doctoral thesis the mast cells as effectors of allergy particularly in the beginning of reaction and in acute phase of the process. Research has continued through out the 20th century and researchers' efforts are primarily focused on clarifying the structure and function of mast cells and identifying their role in pathological responses in the human body. Mast cells are found in all organs, but they predominate in peripheral blood, spleen and bone marrow. There are cells in the rat skin that live for about 12 weeks, and more recent studies have found that proliferation of mature mast cells is caused by various factors.

  4. Deconstructing transcriptional heterogeneity in pluripotent stem cells

    Science.gov (United States)

    Shalek, Alex K.; Satija, Rahul; DaleyKeyser, AJay; Li, Hu; Zhang, Jin; Pardee, Keith; Gennert, David; Trombetta, John J.; Ferrante, Thomas C.; Regev, Aviv; Daley, George Q.; Collins, James J.

    2014-01-01

    SUMMARY Pluripotent stem cells (PSCs) are capable of dynamic interconversion between distinct substates, but the regulatory circuits specifying these states and enabling transitions between them are not well understood. We set out to characterize transcriptional heterogeneity in PSCs by single-cell expression profiling under different chemical and genetic perturbations. Signaling factors and developmental regulators show highly variable expression, with expression states for some variable genes heritable through multiple cell divisions. Expression variability and population heterogeneity can be influenced by perturbation of signaling pathways and chromatin regulators. Strikingly, either removal of mature miRNAs or pharmacologic blockage of signaling pathways drives PSCs into a low-noise ground state characterized by a reconfigured pluripotency network, enhanced self-renewal, and a distinct chromatin state, an effect mediated by opposing miRNA families acting on the c-myc / Lin28 / let-7 axis. These data illuminate the nature of transcriptional heterogeneity in PSCs. PMID:25471879

  5. [Exosomes and Immune Cells].

    Science.gov (United States)

    Seo, Naohiro

    2017-05-01

    In addition to the cytokines and cytotoxic granules, exosomes have been known as the intercellular communicator and cytotoxic missile of immune cells for the past decade. It has been well known that mature dendritic cell(DC)-derived exosomes participate in the T cell and natural killer(NK)cell activation, while immature DCs secrete tolerogenic exosomes for regulatory T(Treg)cell generation. Treg cell-derived EVs act as a suppressor against pathogenic type-1 T helper(Th1)cell responses. CD8+ T cells produce tumoricidal exosomes for preventing tumor invasion and metastasis transiently after T cell receptor(TCR)-mediated stimulation. Thus, immune cells produce functional exosomes in the activation state- and/or differentiation stage-dependent manner. In this review, the role of immune cell-derived exosomes will be introduced, focusing mainly on immune reaction against tumor.

  6. Proteostasis and REDOX state in the heart

    Science.gov (United States)

    Christians, Elisabeth S.

    2012-01-01

    Force-generating contractile cells of the myocardium must achieve and maintain their primary function as an efficient mechanical pump over the life span of the organism. Because only half of the cardiomyocytes can be replaced during the entire human life span, the maintenance strategy elicited by cardiac cells relies on uninterrupted renewal of their components, including proteins whose specialized functions constitute this complex and sophisticated contractile apparatus. Thus cardiac proteins are continuously synthesized and degraded to ensure proteome homeostasis, also termed “proteostasis.” Once synthesized, proteins undergo additional folding, posttranslational modifications, and trafficking and/or become involved in protein-protein or protein-DNA interactions to exert their functions. This includes key transient interactions of cardiac proteins with molecular chaperones, which assist with quality control at multiple levels to prevent misfolding or to facilitate degradation. Importantly, cardiac proteome maintenance depends on the cellular environment and, in particular, the reduction-oxidation (REDOX) state, which is significantly different among cardiac organelles (e.g., mitochondria and endoplasmic reticulum). Taking into account the high metabolic activity for oxygen consumption and ATP production by mitochondria, it is a challenge for cardiac cells to maintain the REDOX state while preventing either excessive oxidative or reductive stress. A perturbed REDOX environment can affect protein handling and conformation (e.g., disulfide bonds), disrupt key structure-function relationships, and trigger a pathogenic cascade of protein aggregation, decreased cell survival, and increased organ dysfunction. This review covers current knowledge regarding the general domain of REDOX state and protein folding, specifically in cardiomyocytes under normal-healthy conditions and during disease states associated with morbidity and mortality in humans. PMID:22003057

  7. Indium phosphide solar cell research in the United States: Comparison with non-photovoltaic sources

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.

    1989-01-01

    Highlights of the InP solar cell research program are presented. Homojunction cells with efficiencies approaching 19 percent are demonstrated, while 17 percent is achieved for ITO/InP cells. The superior radiation resistance of the two latter cell configurations over both Si and GaAs cells has been shown. InP cells aboard the LIPS3 satellite show no degradation after more than a year in orbit. Computed array specific powers are used to compare the performance of an InP solar cell array to solar dynamic and nuclear systems.

  8. Freeze-Dried Human Red Blood Cells

    Science.gov (United States)

    1992-04-15

    period in the liquid state. 2. The levels of glycolytic intermediates (ATP, adenosine 5’triphosphate; 2,3-DPG 2, 3- diphosphoglycerate ) in rehydrated...8217 diphosphate, ADP; adenosine 5 monophosphate, AMP; 2,3- diphosphoglycerate . 2.3-DPG and lactate: (2) measurement of cell indices (mean cell volume (MCV), mean...monophosphate: 2,3-DPG. 2.3- diphosphoglycerate : MCV. Mean Cell Volume: MCH, Mean Cell Hemoglobin: MCHC, Mean Cell Hemoglobin Concentrations. ** Lactate levels

  9. Fabrication of All-Solid-State Lithium-Ion Cells Using Three-Dimensionally Structured Solid Electrolyte Li7La3Zr2O12 Pellets

    International Nuclear Information System (INIS)

    Shoji, Mao; Munakata, Hirokazu; Kanamura, Kiyoshi

    2016-01-01

    All-solid-state lithium-ion batteries using Li + -ion conducting ceramic electrolytes have been focused on as attractive future batteries for electric vehicles and renewable energy conversion systems because high safety can be realized due to non-flammability of ceramic electrolytes. In addition, a higher volumetric energy density than that of current lithium-ion batteries is expected since the all-solid-state lithium-ion batteries can be made in bipolar cell configurations. However, the special ideas and techniques based on ceramic processing are required to construct the electrochemical interface for all-solid-state lithium-ion batteries since the battery development has been done so far based on liquid electrolyte system over 100 years. As one of the promising approaches to develop practical all-solid-state batteries, we have been focusing on three-dimensionally (3D) structured cell configurations such as an interdigitated combination of 3D pillars of cathode and anode, which can be realized by using solid electrolyte membranes with hole-array structures. The application of such kinds of 3D structures effectively increases the interface between solid electrode and solid electrolyte per unit volume, lowering the internal resistance of all-solid-state lithium-ion batteries. In this study, Li 6.25 Al 0.25 La 3 Zr 2 O 12 (LLZAl), which is a Al-doped Li 7 La 3 Zr 2 O 12 (LLZ) with Li + -ion conductivity of ~10 –4 S ⋅cm −1 at room temperature and high stability against lithium-metal, was used as a solid electrolyte, and its pellets with 700 μm depth holes in 700 μm × 700 μm area were fabricated to construct 3D-structured all-solid-state batteries with LiCoO 2 /LLZAl/lithium-metal configuration. It is expected that the LiCoO 2 –LLZAl interface is formed by point-to-point contact even when the LLZAl pellet with 3D hole-array structure is applied. Therefore, Li 3 BO 3 , which is a mechanically soft solid electrolyte with a low melting point at around 700

  10. Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes.

    Science.gov (United States)

    Liu, Dianyi; Zhao, Mingyan; Li, Yan; Bian, Zuqiang; Zhang, Luhui; Shang, Yuanyuan; Xia, Xinyuan; Zhang, Sen; Yun, Daqin; Liu, Zhiwei; Cao, Anyuan; Huang, Chunhui

    2012-12-21

    Most previous fiber-shaped solar cells were based on photoelectrochemical systems involving liquid electrolytes, which had issues such as device encapsulation and stability. Here, we deposited classical semiconducting polymer-based bulk heterojunction layers onto stainless steel wires to form primary electrodes and adopted carbon nanotube thin films or densified yarns to replace conventional metal counter electrodes. The polymer-based fiber cells with nanotube film or yarn electrodes showed power conversion efficiencies in the range 1.4% to 2.3%, with stable performance upon rotation and large-angle bending and during long-time storage without further encapsulation. Our fiber solar cells consisting of a polymeric active layer sandwiched between steel and carbon electrodes have potential in the manufacturing of low-cost, liquid-free, and flexible fiber-based photovoltaics.

  11. Generation, isolation, and maintenance of rodent mast cells and mast cell lines

    DEFF Research Database (Denmark)

    Jensen, Bettina M; Swindle, Emily J; Iwaki, Shoko

    2006-01-01

    Antigen-mediated mast cell activation, with subsequent mediator release, is a major initiator of the inflammatory allergic response associated with such conditions as asthma. A comprehensive understanding of the principles involved in this process therefore is key to the development of novel...... therapies for the treatment of these disease states. In vitro models of mast cell function have allowed significant progress to be made in the recognition of the fundamental principles of mast cell activation via the high-affinity IgE receptor (FcvarepsilonRI) and, more recently, other receptors expressed...... on mast cells. In addition to human mast cells, the major cell culture systems employed to investigate these responses are rat and mouse peritoneal mast cells, mouse bone-marrow-derived mast cells, the rat basophilic leukemia cell line RBL-2H3, and the mouse MC/9 mast cell line. In this unit, we describe...

  12. Sox17-Mediated XEN Cell Conversion Identifies Dynamic Networks Controlling Cell-Fate Decisions in Embryo-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Angela C.H. McDonald

    2014-10-01

    Full Text Available Little is known about the gene regulatory networks (GRNs distinguishing extraembryonic endoderm (ExEn stem (XEN cells from those that maintain the extensively characterized embryonic stem cell (ESC. An intriguing network candidate is Sox17, an essential transcription factor for XEN derivation and self-renewal. Here, we show that forced Sox17 expression drives ESCs toward ExEn, generating XEN cells that contribute to ExEn when placed back into early mouse embryos. Transient Sox17 expression is sufficient to drive this fate change during which time cells transit through distinct intermediate states prior to the generation of functional XEN-like cells. To orchestrate this conversion process, Sox17 acts in autoregulatory and feedforward network motifs, regulating dynamic GRNs directing cell fate. Sox17-mediated XEN conversion helps to explain the regulation of cell-fate changes and reveals GRNs regulating lineage decisions in the mouse embryo.

  13. Phosphonate self-assembled monolayers as organic linkers in solid-state quantum dot sensetized solar cells

    KAUST Repository

    Ardalan, Pendar

    2010-06-01

    We have employed X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-vis) spectroscopy, infrared (IR) spectroscopy, water contact angle (WCA) measurements, ellipsometry, and electrical measurements to study the effects of self-assembled monolayers (SAMs) with phosphonic acid headgroups on the bonding and performance of cadmium sulfide (CdS) solid-state quantum dot sensitized solar cells (QDSSCs). ∼2 to ∼6 nm size CdS quantum dots (QDs) were grown on the SAM-passivated TiO2 surfaces by successive ionic layer adsorption and reaction (SILAR). Our results show differences in the bonding of the CdS QDs at the TiO2 surfaces with a SAM linker. Moreover, our data indicate that presence of a SAM increases the CdS uptake on TiO2 as well as the performance of the resulting devices. Importantly, we observe ∼2 times higher power conversion efficiencies in the devices with a SAM compared to those that lack a SAM. © 2010 IEEE.

  14. Perturbation-expression analysis identifies RUNX1 as a regulator of human mammary stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Ethan S Sokol

    2015-04-01

    Full Text Available The search for genes that regulate stem cell self-renewal and differentiation has been hindered by a paucity of markers that uniquely label stem cells and early progenitors. To circumvent this difficulty we have developed a method that identifies cell-state regulators without requiring any markers of differentiation, termed Perturbation-Expression Analysis of Cell States (PEACS. We have applied this marker-free approach to screen for transcription factors that regulate mammary stem cell differentiation in a 3D model of tissue morphogenesis and identified RUNX1 as a stem cell regulator. Inhibition of RUNX1 expanded bipotent stem cells and blocked their differentiation into ductal and lobular tissue rudiments. Reactivation of RUNX1 allowed exit from the bipotent state and subsequent differentiation and mammary morphogenesis. Collectively, our findings show that RUNX1 is required for mammary stem cells to exit a bipotent state, and provide a new method for discovering cell-state regulators when markers are not available.

  15. Solid State Photovoltaic Research Branch

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  16. Linking incomplete reprogramming to the improved pluripotency of murine embryonal carcinoma cell-derived pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Gang Chang

    Full Text Available Somatic cell nuclear transfer (SCNT has been proved capable of reprogramming various differentiated somatic cells into pluripotent stem cells. Recently, induced pluripotent stem cells (iPS have been successfully derived from mouse and human somatic cells by the over-expression of a combination of transcription factors. However, the molecular mechanisms underlying the reprogramming mediated by either the SCNT or iPS approach are poorly understood. Increasing evidence indicates that many tumor pathways play roles in the derivation of iPS cells. Embryonal carcinoma (EC cells have the characteristics of both stem cells and cancer cells and thus they might be the better candidates for elucidating the details of the reprogramming process. Although previous studies indicate that EC cells cannot be reprogrammed into real pluripotent stem cells, the reasons for this remain unclear. Here, nuclei from mouse EC cells (P19 were transplanted into enucleated oocytes and pluripotent stem cells (P19 NTES cells were subsequently established. Interestingly, P19 NTES cells prolonged the development of tetraploid aggregated embryos compared to EC cells alone. More importantly, we found that the expression recovery of the imprinted H19 gene was dependent on the methylation state in the differential methylation region (DMR. The induction of Nanog expression, however, was independent of the promoter region DNA methylation state in P19 NTES cells. A whole-genome transcriptome analysis further demonstrated that P19 NTES cells were indeed the intermediates between P19 cells and ES cells and many interesting genes were uncovered that may be responsible for the failed reprogramming of P19 cells. To our knowledge, for the first time, we linked incomplete reprogramming to the improved pluripotency of EC cell-derived pluripotent stem cells. The candidate genes we discovered may be useful not only for understanding the mechanisms of reprogramming, but also for deciphering the

  17. Aspirin induces morphological transformation to the secretory state in isolated rabbit parietal cells.

    Science.gov (United States)

    Murthy, U K; Levine, R A

    1991-08-01

    The morphological response of rabbit parietal cells to aspirin was evaluated by grading several ultra-structural features including the extent of the tubulovesicular system, intracellular secretory canaliculi, and microvilli. After exposure of isolated parietal cells and gastric glands to aspirin or histamine, there was an approximately twofold increase in the ratio of secretory to nonsecretory parietal cells, and depletion of extracellular Ca2+ abolished the aspirin-induced morphological changes. Morphometry in parietal cells showed that aspirin induced a sixfold increase in secretory canalicular membrane elaboration. Aspirin potentiated histamine-induced parietal cell respiration and aminopyrine uptake ratio but did not increase basal respiration or aminopyrine uptake, suggesting an apparent dissociation from aspirin-induced morphological changes.

  18. Characterization of the Pore Filling of Solid State Dye Sensitized Solar Cells with Photoinduced Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Carol Olson

    2011-01-01

    Full Text Available Near steady-state photoinduced absorption (PIA and UV-Vis absorption spectroscopy are used to characterize the pore filling of spiro-MeOTAD (2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine9,9′-spirobifluorene into the nanoparticulate TiO2 electrode of a solid-state dye-sensitized solar cell (ssDSC. The volumetric ratio of filled to unfilled pore volumes, as well as the optical signature of interacting chemical species, that is, the hole-transfer yield (HTY, are investigated. PIA spectroscopy is used to measure the HTY, relative to the amount of spiro-MeOTAD present, without needing to determine the extinction coefficients of the dye and spiro-MeOTAD cation species. The Beer-Lambert law is used to relate the relative PIA signal to the penetration length of the hole-conductor in the TiO2 film. For the sample thickness range of 1.4–5 μm investigated here, the optimum characteristic penetration length is determined to be 3.1+0.46 μm, which is compared to 1.4 μm for the 200 mg mL−1 concentration of spiro-MeOTAD conventionally used. Therefore, doubling the effective penetration of spiro-MeOTAD is necessary to functionalize all the dye molecules in a ssDSC.

  19. Amorphous silicon crystalline silicon heterojunction solar cells

    CERN Document Server

    Fahrner, Wolfgang Rainer

    2013-01-01

    Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to "fill in the blanks" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.

  20. IRF8-dependent DCs play a key role in the regulation of CD8 T cell responses to epithelial-derived antigen in the steady state but not in inflammation

    DEFF Research Database (Denmark)

    Joeris, Thorsten

    Along the process of epithelial self-renewal, antigens derived from apoptotic intestinal epithelial cells (IECs) are taken up by antigen presenting cells (APCs), transported to gut-draining lymph nodes and crosspresented to CD8 T cells. In steady state, rapid tolerization of CD8 T cells reactive...... towards epithelialderived antigens is crucial to maintain tissue homeostasis. Since IRF8-dependent dendritic dells (IRF8-DCs) have superior cross-presenting capabilities, we aimed to investigate their role in this process. IFABP-tOva mice, expressing the model-antigen Ovalbumin (Ova) in IECs, were used...... as recipients to set up chimeras using either CD11c-cre.Irf8fl/fl bone marrow, which cannot generate IRF8-DCs, or cre-negative Irf8fl/fl control bone marrow. Whereas transfer of Ova-specific CD8 T cells (OT-I cells) to control chimeras resulted in their rapid tolerization, OT-I cells transferred to CD11c...

  1. Reciprocal control of cell proliferation and migration

    Directory of Open Access Journals (Sweden)

    De Donatis Alina

    2010-09-01

    Full Text Available Abstract In adult tissue the quiescent state of a single cell is maintained by the steady state conditions of its own microenvironment for what concern both cell-cell as well as cell-ECM interaction and soluble factors concentration. Physiological or pathological conditions can alter this quiescent state through an imbalance of both soluble and insoluble factors that can trigger a cellular phenotypic response. The kind of cellular response depends by many factors but one of the most important is the concentration of soluble cytokines sensed by the target cell. In addition, due to the intrinsic plasticity of many cellular types, every single cell is able, in response to the same stimulus, to rapidly switch phenotype supporting minimal changes of microenviromental cytokines concentration. Wound healing is a typical condition in which epithelial, endothelial as well as mesenchymal cells are firstly subjected to activation of their motility in order to repopulate the damaged region and then they show a strong proliferative response in order to successfully complete the wound repair process. This schema constitute the leitmotif of many other physiological or pathological conditions such as development vasculogenesis/angiogenesis as well as cancer outgrowth and metastasis. Our review focuses on the molecular mechanisms that control the starting and, eventually, the switching of cellular phenotypic outcome in response to changes in the symmetry of the extracellular environment.

  2. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    International Nuclear Information System (INIS)

    Sun, Ting; Zhang, Zizhu; Li, Bin; Chen, Guilin; Xie, Xueshun; Wei, Yongxin; Wu, Jie; Zhou, Youxin; Du, Ziwei

    2013-01-01

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma

  3. Stem cell clinics online: the direct-to-consumer portrayal of stem cell medicine.

    Science.gov (United States)

    Lau, Darren; Ogbogu, Ubaka; Taylor, Benjamin; Stafinski, Tania; Menon, Devidas; Caulfield, Timothy

    2008-12-04

    Despite the immature state of stem cell medicine, patients are seeking and accessing putative stem cell therapies in an "early market" in which direct-to-consumer advertising via the internet likely plays an important role. We analyzed stem cell clinic websites and appraised the relevant published clinical evidence of stem cell therapies to address three questions about the direct-to-consumer portrayal of stem cell medicine in this early market: What sorts of therapies are being offered? How are they portrayed? Is there clinical evidence to support the use of these therapies? We found that the portrayal of stem cell medicine on provider websites is optimistic and unsubstantiated by peer-reviewed literature.

  4. General applicability of synthetic gene-overexpression for cell-type ratio control via reprogramming.

    Science.gov (United States)

    Ishimatsu, Kana; Hata, Takashi; Mochizuki, Atsushi; Sekine, Ryoji; Yamamura, Masayuki; Kiga, Daisuke

    2014-09-19

    Control of the cell-type ratio in multistable systems requires wide-range control of the initial states of cells. Here, using a synthetic circuit in E. coli, we describe the use of a simple gene-overexpression system combined with a bistable toggle switch, for the purposes of enabling the wide-range control of cellular states and thus generating arbitrary cell-type ratios. Theoretically, overexpression induction temporarily alters the bistable system to a monostable system, in which the location of the single steady state of cells can be manipulated over a wide range by regulating the overexpression levels. This induced cellular state becomes the initial state of the basal bistable system upon overexpression cessation, which restores the original bistable system. We experimentally demonstrated that the overexpression induced a monomodal cell distribution, and subsequent overexpression withdrawal generated a bimodal distribution. Furthermore, as designed theoretically, regulating the overexpression levels by adjusting the concentrations of small molecules generated arbitrary cell-type ratios.

  5. Comprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling

    Directory of Open Access Journals (Sweden)

    Sriram Chandrasekaran

    2017-12-01

    Full Text Available Summary: Metabolism is an emerging stem cell hallmark tied to cell fate, pluripotency, and self-renewal, yet systems-level understanding of stem cell metabolism has been limited by the lack of genome-scale network models. Here, we develop a systems approach to integrate time-course metabolomics data with a computational model of metabolism to analyze the metabolic state of naive and primed murine pluripotent stem cells. Using this approach, we find that one-carbon metabolism involving phosphoglycerate dehydrogenase, folate synthesis, and nucleotide synthesis is a key pathway that differs between the two states, resulting in differential sensitivity to anti-folates. The model also predicts that the pluripotency factor Lin28 regulates this one-carbon metabolic pathway, which we validate using metabolomics data from Lin28-deficient cells. Moreover, we identify and validate metabolic reactions related to S-adenosyl-methionine production that can differentially impact histone methylation in naive and primed cells. Our network-based approach provides a framework for characterizing metabolic changes influencing pluripotency and cell fate. : Chandrasekaran et al. use computational modeling, metabolomics, and metabolic inhibitors to discover metabolic differences between various pluripotent stem cell states and infer their impact on stem cell fate decisions. Keywords: systems biology, stem cell biology, metabolism, genome-scale modeling, pluripotency, histone methylation, naive (ground state, primed state, cell fate, metabolic network

  6. Reserve stem cells: Reprogramming of differentiated cells fuels repair, metaplasia, and neoplasia in the adult gastrointestinal tract

    Science.gov (United States)

    Mills, Jason C.; Sansom, Owen J.

    2016-01-01

    It has long been known that differentiated cells can switch fates, especially in vitro, but only recently has there been a critical mass of publications describing the mechanisms adult, post-mitotic cells use in vivo to reverse their differentiation state. We propose that this sort of cellular reprogramming is a fundamental cellular process akin to apoptosis or mitosis. Because reprogramming can invoke regenerative cells from mature cells, it is critical to the longterm maintenance of tissues like the pancreas, which encounter large insults during adulthood but lack constitutively active adult stem cells to repair the damage. However, even in tissues with adult stem cells, like stomach and intestine, reprogramming may allow mature cells to serve as reserve (“quiescent”) stem cells when normal stem cells are compromised. We propose that the potential downside to reprogramming is that it increases risk for cancers that occur late in adulthood. Mature, long-lived cells may have years of exposure to mutagens. Mutations that affect the physiological function of differentiated, post-mitotic cells may lead to apoptosis, but mutations in genes that govern proliferation might not be selected against. Hence, reprogramming with reentry into the cell cycle might unmask those mutations, causing an irreversible progenitor-like, proliferative state. We review recent evidence showing that reprogramming fuels irreversible metaplastic and precancerous proliferations in stomach and pancreas. Finally, we illustrate how we think reprogrammed differentiated cells are likely candidates as cells of origin for cancers of the intestine. PMID:26175494

  7. Chimeric Antigen Receptor T Cell (Car T Cell Therapy In Hematology

    Directory of Open Access Journals (Sweden)

    Pinar Ataca

    2015-12-01

    Full Text Available It is well demonstrated that immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation (HSCT. Adoptive T cell transfer has been improved to be more specific and potent and cause less off-target toxicities. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR and chimeric antigen receptor (CAR modified T cells. On July 1, 2014, the United States Food and Drug Administration granted ‘breakthrough therapy’ designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the beneficiaries of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical-clinical studies, effectiveness and drawbacks of this strategy.

  8. Role of Kupffer Cells in Thioacetamide-Induced Cell Cycle Dysfunction

    Directory of Open Access Journals (Sweden)

    Mirandeli Bautista

    2011-09-01

    Full Text Available It is well known that gadolinium chloride (GD attenuates drug-induced hepatotoxicity by selectively inactivating Kupffer cells. In the present study the effect of GD in reference to cell cycle and postnecrotic liver regeneration induced by thioacetamide (TA in rats was studied. Two months male rats, intraveously pretreated with a single dose of GD (0.1 mmol/Kg, were intraperitoneally injected with TA (6.6 mmol/Kg. Samples of blood and liver were obtained from rats at 0, 12, 24, 48, 72 and 96 h following TA intoxication. Parameters related to liver damage were determined in blood. In order to evaluate the mechanisms involved in the post-necrotic regenerative state, the levels of cyclin D and cyclin E as well as protein p27 and Proliferating Cell Nuclear Antigen (PCNA were determined in liver extracts because of their roles in the control of cell cycle check-points. The results showed that GD significantly reduced the extent of necrosis. Noticeable changes were detected in the levels of cyclin D1, cyclin E, p27 and PCNA when compared to those induced by thioacetamide. Thus GD pre-treatment reduced TA-induced liver injury and accelerated the postnecrotic liver regeneration. These results demonstrate that Kupffer cells are involved in TA-induced liver and also in the postnecrotic proliferative liver states.

  9. Cytokine Expression in Homozygous Sickle Cell Anaemia

    Directory of Open Access Journals (Sweden)

    Nnodim Johnkennedy

    2015-01-01

    Full Text Available Background: Sickle cell anaemia is an inherited disease in which the red blood cells become rigid and sticky, and change from being disc-shaped to being crescent-shaped. The change in shape is due to the presence of an abnormal form of haemoglobin. This results in severe pain and damage to some organs. Aim and Objective: The study was carried out to determine the levels of cytokine in sickle cell anemia. Material and Methods: Thirty confirmed sickle cell patients in steady state (HbSS-SS and thirty persons with normal haemoglobin (HbAA as well as sixteen sickle cell disease in crises (HbSS-cr between the ages of 15 to 30 years were selected in this study. Cytokines including interleukin 1 beta (IL- 1β, interleukin 2 (IL- 2, interleukin (IL-6, tumour necrosis factor alpha (TNF-α, and interferon gamma (IFN- λ were measured by commercially available ELISA kits. Results: The results obtained showed that the levels of TNF-α and IL-6 in sickle cell anaemia patients in crisis were significantly elevated when compared with sickle cell in steady state (P<0.05. Similarly, the levels of IL-1β, IL-6, and IFN- λ were significantly increased in sickle cell anaemia stable state when compared to HbAA subjects (P<0.05. Conclusion: This may probably implies that cytokine imbalance is implicated in the pathogenesis of sickle cell crisis. Also, cytokines could be used as an inflammatory marker as well as related marker in disease severity and hence therapeutic intervention.

  10. [Embryonic stem cells. Future perspectives].

    Science.gov (United States)

    Groebner, M; David, R; Franz, W M

    2006-05-01

    Embryonic stem cells (ES cells) are able to differentiate into any cell type, and therefore represent an excellent source for cellular replacement therapies in the case of widespread diseases, for example heart failure, diabetes, Parkinson's disease and spinal cord injury. A major prerequisite for their efficient and safe clinical application is the availability of pure populations for direct cell transplantation or tissue engineering as well as the immunological compatibility of the transplanted cells. The expression of human surface markers under the control of cell type specific promoters represents a promising approach for the selection of cardiomyocytes and other cell types for therapeutic applications. The first human clinical trial using ES cells will start in the United States this year.

  11. Matrix elements of intraband transitions in quantum dot intermediate band solar cells: the influence of quantum dot presence on the extended-state electron wave-functions

    International Nuclear Information System (INIS)

    Nozawa, Tomohiro; Arakawa, Yasuhiko

    2014-01-01

    The intraband transitions which are essential for quantum dot intermediate band solar cells (QD IBSCs) are theoretically investigated by estimating the matrix elements from a ground bound state, which is often regarded as an intermediate band (IB), to conduction band (CB) states for a structure with a quantum dot (QD) embedded in a matrix (a QD/matrix structure). We have found that the QD pushes away the electron envelope functions (probability densities) from the QD region in almost all quantum states above the matrix CB minimum. As a result, the matrix elements of the intraband transitions in the QD/matrix structure are largely reduced, compared to those calculated assuming the envelope functions of free electrons (i.e., plane-wave envelope functions) in a matrix structure as the final states of the intraband transitions. The result indicates the strong influence of the QD itself on the intraband transitions from the IB to the CB states in QD IBSC devices. This work will help in better understanding the problem of the intraband transitions and give new insight, that is, engineering of quantum states is indispensable for the realization of QD IBSCs with high solar energy conversion efficiencies. (paper)

  12. Q-switched all-solid-state lasers and application in processing of thin-film solar cell

    Science.gov (United States)

    Liu, Liangqing; Wang, Feng

    2009-08-01

    Societal pressure to renewable clean energy is increasing which is expected to be used as part of an overall strategy to address global warming and oil crisis. Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by government, of which the costs and prices lower continuously. The next generation thin-film devices are considered to be more efficiency and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. All-solid-state Q-switched lasers are the technology of choice for these processes, due to their advantages of compact configuration, high peak-value power, high repeat rate, excellent beam quality and stability, delivering the desired combination of high throughput and narrow, clean scribes. The end pumped all-solid-state lasers could achieve 1064nm IR resources with pulse width of nanoseconds adopting acoustic-optics Q-switch, shorter than 20ns. The repeat rate is up to 100kHz and the beam quality is close to diffraction limit. Based on this, 532nm green lasers, 355nm UV lasers and 266nm DUV lasers could be carried out through nonlinear frequency conversion. Different wave length lasers are chose to process selective materials. For example, 8-15 W IR lasers are used to scribe the TCO film (P1); 1-5 W green lasers are suitable for scribing the active semiconductor layers (P2) and the back contact layers (P3). Our company, Wuhan Lingyun Photo-electronic System Co. Ltd, has developed 20W IR and 5W green end-pumped Q-switched all-solid-state lasers for thin-film solar industry. Operating in high repeat rates, the speed of processing is up to 2.0 m/s.

  13. Characterization of DNA polymerase. beta. mRNA: cell-cycle growth response in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Zmudzka, B Z; Fornace, A; Collins, J; Wilson, S H

    1988-10-25

    DNA polymerase ..beta.. (..beta..-polymerase) is a housekeeping enzyme involved in DNA repair in vertebrate cells. The authors used a cDNA probe to study abundance of ..beta..-polymerase mRNA in cultured human cells. The mRNA level in synchronized HeLa cells, representing different stages of the cell-cycle, varied only slightly. Contact inhibited fibroblasts AG-1522 contained the same level of mRNA as growing cells. The steady-state level of mRNA in fibroblasts is equivalent to 6 molecules per cell. The results indicate that the ..beta..-polymerase transcript is low abundance and is neither cell-cycles nor growth phase responsive.

  14. Single Cell Oncogenesis

    Science.gov (United States)

    Lu, Xin

    It is believed that cancer originates from a single cell that has gone through generations of evolution of genetic and epigenetic changes that associate with the hallmarks of cancer. In some cancers such as various types of leukemia, cancer is clonal. Yet in other cancers like glioblastoma (GBM), there is tremendous tumor heterogeneity that is likely to be caused by simultaneous evolution of multiple subclones within the same tissue. It is obvious that understanding how a single cell develops into a clonal tumor upon genetic alterations, at molecular and cellular levels, holds the key to the real appreciation of tumor etiology and ultimate solution for therapeutics. Surprisingly very little is known about the process of spontaneous tumorigenesis from single cells in human or vertebrate animal models. The main reason is the lack of technology to track the natural process of single cell changes from a homeostatic state to a progressively cancerous state. Recently, we developed a patented compound, photoactivatable (''caged'') tamoxifen analogue 4-OHC and associated technique called optochemogenetic switch (OCG switch), which we believe opens the opportunity to address this urgent biological as well as clinical question about cancer. We propose to combine OCG switch with genetically engineered mouse models of head and neck squamous cell carcinoma and high grade astrocytoma (including GBM) to study how single cells, when transformed through acute loss of tumor suppressor genes PTEN and TP53 and gain of oncogenic KRAS, can develop into tumor colonies with cellular and molecular heterogeneity in these tissues. The abstract is for my invited talk in session ``Beyond Darwin: Evolution in Single Cells'' 3/18/2016 11:15 AM.

  15. Oropharyngeal squamous cell carcinoma incidence and mortality trends in the United States, 1973-2013.

    Science.gov (United States)

    Megwalu, Uchechukwu C; Sirjani, Davud; Devine, Erin E

    2017-10-31

    To analyze oropharyngeal squamous cell carcinoma incidence and mortality trends in the United States for the years 1973 through 2013. Cross-sectional study using a large population-based cancer database. Data on incidence and mortality rates were extracted from the Surveillance, Epidemiology, and End Results (SEER) 9 Database. Annual percentage change in rates was calculated using Joinpoint regression analysis (National Cancer Institute, Bethesda, MD). Incidence rates increased (annual percent change [APC]; 1.52, 95% confidence interval [CI] 0.17 to 2.88) from 1973 to 1983, remained stable (APC -0.52, 95% CI -1.30 to 0.26) from 1983 to 1997, and increased (APC 1.32, 95% CI 0.83 to 1.81) from 1997 to 2013. Overall, incidence rates increased for males (APC 0.73, 95% CI 0.22 to 1.25) but not females (APC -0.77, 95% CI -0.68 to 0.82). Incidence rates increased in the white population (APC 0.79, 95% CI 0.33 to 1.25) but decreased in the black population (APC -0.72, 95% CI -1.41 to -0.02). The incidence rates increased for tongue-base tumors (APC 1.17, 95% CI 0.42 to 1.92) and tonsil tumors (APC 0.47, 95% CI 1.10 to 4.96) but decreased for other sites. Incidence-based mortality decreased (APC -0.78, 95% CI -1.13 to -0.42) from 1993 to 2013. Oropharyngeal squamous cell carcinoma incidence rates increased in a nonlinear fashion from 1973 to 2013, whereas mortality rates declined. This, along with variation in trends by demographic and tumor factors, suggest that human papilloma virus is the main driver of the recent rise in incidence. 2b. Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Dormant glioblastoma cells acquire stem cell characteristics and are differentially affected by Temozolomide and AT101 treatment.

    Science.gov (United States)

    Adamski, Vivian; Hempelmann, Annika; Flüh, Charlotte; Lucius, Ralph; Synowitz, Michael; Hattermann, Kirsten; Held-Feindt, Janka

    2017-12-08

    Cellular dormancy is defined as a state in which cells enter quiescence driven by intrinsic or extrinsic factors, and striking parallels exist between the concept of cellular dormancy in malignancies and the cancer stem cell theory. We showed now that the proven dormancy markers insulin-like growth factor-binding protein 5, ephrin receptor A5 and histone cluster 1 H2B family member K were expressed in human glioblastomas in situ , were located in single tumor cells, and could be co-stained with each other and with the stem cell markers krüppel-like factor 4, octamer binding transcription factor 4 and sex determining region Y-box 2. Human non-stem glioblastoma cell lines and primary cultures were characterized by expression of individual, cell-type specific dormancy- and stemness-associated markers, which were (up)regulated and could be co-stained in a cell-type specific manner upon Temozolomide-induced dormancy in vitro . The induction patterns of dormancy- and stemness-associated markers were reflected by cell-type specific responses to Temozolomide-induced and combined Temozolomide/AT101-mediated cytotoxicity in different glioblastoma cell lines and primary cultures in vitro , and accompanied by higher self-renewal capacity and lower TMZ-sensitivity of Temozolomide-pretreated cells. We postulate that a better understanding of the dormant state of tumor cells is essential to further improve efficiency of treatment.

  17. Single-cell analysis of transcription kinetics across the cell cycle

    Science.gov (United States)

    Skinner, Samuel O; Xu, Heng; Nagarkar-Jaiswal, Sonal; Freire, Pablo R; Zwaka, Thomas P; Golding, Ido

    2016-01-01

    Transcription is a highly stochastic process. To infer transcription kinetics for a gene-of-interest, researchers commonly compare the distribution of mRNA copy-number to the prediction of a theoretical model. However, the reliability of this procedure is limited because the measured mRNA numbers represent integration over the mRNA lifetime, contribution from multiple gene copies, and mixing of cells from different cell-cycle phases. We address these limitations by simultaneously quantifying nascent and mature mRNA in individual cells, and incorporating cell-cycle effects in the analysis of mRNA statistics. We demonstrate our approach on Oct4 and Nanog in mouse embryonic stem cells. Both genes follow similar two-state kinetics. However, Nanog exhibits slower ON/OFF switching, resulting in increased cell-to-cell variability in mRNA levels. Early in the cell cycle, the two copies of each gene exhibit independent activity. After gene replication, the probability of each gene copy to be active diminishes, resulting in dosage compensation. DOI: http://dx.doi.org/10.7554/eLife.12175.001 PMID:26824388

  18. Akku4Future - measurement methods to gather data for computing state indication

    OpenAIRE

    Elbe, A.; Niedermayr, F.; Zander, D.

    2014-01-01

    Lithium ion batteries require a strict operation window in terms of the terminal voltage, load current and cell temperature. Battery management systems (BMS) have to ensure safe operation of lithium ion batteries. The functionality of such BMS features the estimation of the state of the cell and provides some information (mostly the state of charge) to the user. The state indication is of high importance as the knowledge about the health of the battery enables the BMS to act if the battery he...

  19. Conformational Plasticity of the Cell-Penetrating Peptide SAP As Revealed by Solid-State 19F-NMR and Circular Dichroism Spectroscopies.

    Science.gov (United States)

    Afonin, Sergii; Kubyshkin, Vladimir; Mykhailiuk, Pavel K; Komarov, Igor V; Ulrich, Anne S

    2017-07-13

    The cell-penetrating peptide SAP, which was designed as an amphipathic poly-l-proline helix II (PPII), was suggested to self-assemble into regular fibrils that are relevant for its internalization. Herein we have analyzed the structure of SAP in the membrane-bound state by solid-state 19 F-NMR, which revealed other structural states, in addition to the expected surface-aligned PPII. Trifluoromethyl-bicyclopentyl-glycine (CF 3 -Bpg) and two rigid isomers of trifluoromethyl-4,5-methanoprolines (CF 3 -MePro) were used as labels for 19 F-NMR analysis. The equilibria between different conformations of SAP were studied and were found to be shifted by the substituents at Pro-11. Synchrotron-CD results suggested that substituting Pro-11 by CF 3 -MePro governed the coil-to-PPII equilibrium in solution and in the presence of a lipid bilayer. Using CD and 19 F-NMR, we examined the slow kinetics of the association of SAP with membranes and the dependence of the SAP conformational dynamics on the lipid composition. The peptide did not bind to lipids in the solid ordered phase and aggregated only in the liquid ordered "raft"-like bilayers. Self-association could not be detected in solution or in the presence of liquid disordered membranes. Surface-bound amphipathic SAP in a nonaggregated state was structured as a mixture of nonideal extended conformations reflecting the equilibrium already present in solution, i.e., before binding to the membrane.

  20. Contact enhancement of locomotion in spreading cell colonies

    Science.gov (United States)

    D'Alessandro, Joseph; Solon, Alexandre P.; Hayakawa, Yoshinori; Anjard, Christophe; Detcheverry, François; Rieu, Jean-Paul; Rivière, Charlotte

    2017-10-01

    The dispersal of cells from an initially constrained location is a crucial aspect of many physiological phenomena, ranging from morphogenesis to tumour spreading. In such processes, cell-cell interactions may deeply alter the motion of single cells, and in turn the collective dynamics. While contact phenomena like contact inhibition of locomotion are known to come into play at high densities, here we focus on the little explored case of non-cohesive cells at moderate densities. We fully characterize the spreading of micropatterned colonies of Dictyostelium discoideum cells from the complete set of individual trajectories. From data analysis and simulation of an elementary model, we demonstrate that contact interactions act to speed up the early population spreading by promoting individual cells to a state of higher persistence, which constitutes an as-yet unreported contact enhancement of locomotion. Our findings also suggest that the current modelling paradigm of memoryless active particles may need to be extended to account for the history-dependent internal state of motile cells.