WorldWideScience

Sample records for preplant herbicide applications

  1. Herbicidal Activity of Coumarin When Applied as a Pre-plant Incorporated into Soil

    Directory of Open Access Journals (Sweden)

    Amir-Hossein NAZEMI

    2015-06-01

    Full Text Available Due to having a short half-life and novel site of action, the herbicidal potential of natural compounds are lionized. Coumarin is a secondary metabolite from Lavandula sp., family Lamiacae. The impact of eight concentrations of coumarin (0, 100, 200, 400, 800, 1600, 3200 and 6400 ppm were separately used as a pre-plant incorporated into soil on six plant species under greenhouse conditions. Generally, coumarin had phytotoxic effect against all plant species. The phytotoxic effect was concentration-dependent. The high concentrations could inhibit the emergence of seedlings (probably by stopping germination of seeds. Based on ED50 parameter, the ranking of plant species for tolerance to coumarin was S. halepense > Z. mays > C. album > A. retroflexus > E. cruss-gali > P. oleracea. Based on selectivity index, coumarin at a concentration of 365.69 ppm can control P. oleracea without damaging Z. mays, whereas any concentration it cannot control other weeds without damaging Z. mays.

  2. Winter Annual Weed Response to Nitrogen Sources and Application Timings prior to a Burndown Corn Herbicide

    Directory of Open Access Journals (Sweden)

    Kelly A. Nelson

    2015-01-01

    Full Text Available Autumn and early preplant N applications, sources, and placement may affect winter annual weed growth. Field research evaluated (1 the effect of different nitrogen sources in autumn and early preplant on total winter annual weed growth (2006–2010, and (2 strip-till and broadcast no-till N applied in autumn and early preplant on henbit (Lamium amplexicaule L. growth (2008–2010 prior to a burndown herbicide application. Total winter annual weed biomass was greater than the nontreated control when applying certain N sources in autumn or early preplant for no-till corn. Anhydrous ammonia had the lowest average weed density (95 weeds m−2, though results were inconsistent over the years. Winter annual weed biomass was lowest (43 g m−2 when applying 32% urea ammonium nitrate in autumn and was similar to applying anhydrous ammonia in autumn or early preplant and the nontreated control. Henbit biomass was 28% greater when applying N in the autumn compared to an early preplant application timing. Nitrogen placement along with associated tillage with strip-till placement was important in reducing henbit biomass. Nitrogen source selection, application timing, and placement affected the impact of N on winter annual weed growth and should be considered when recommending a burndown herbicide application timing.

  3. Integration of sunflower (Helianthus annuus) residues with a pre-plant herbicide enhances weed suppression in broad bean (Vicia faba)

    OpenAIRE

    Alsaadawi,I.S; KHALIQ,A.; A.A Al-Temimi; Matloob,A

    2011-01-01

    Field trial was conducted with the aim of utilizing allelopathic crop residues to reduce the use of synthetic herbicides in broad bean (Vicia faba) fields. Sunflower residue at 600 and 1,400 g m-2 and Treflan (trifluralin) at 50, 75 and 100% of recommended dose were incorporated into the soil alone or in combination with each other. Untreated plots were maintained as a control. Herbicide application in plots amended with sunflower residue had the least total weed count and biomass, which was ...

  4. Lower Nitrous Oxide Emissions from Anhydrous Ammonia Application Prior to Soil Freezing in Late Fall Than Spring Pre-Plant Application.

    Science.gov (United States)

    Tenuta, Mario; Gao, Xiaopeng; Flaten, Donald N; Amiro, Brian D

    2016-07-01

    Fall application of anhydrous ammonia in Manitoba is common but its impact on nitrous oxide (NO) emissions is not well known. A 2-yr study compared application before freeze-up in late fall to spring pre-plant application of anhydrous ammonia on nitrous oxide (NO) emissions from a clay soil in the Red River Valley, Manitoba. Spring wheat ( L.) and corn ( L.) were grown on two 4-ha fields in 2011 and 2012, respectively. Field-scale flux of NO was measured using a flux-gradient micrometeorological approach. Late fall treatment did not induce NO emissions soon after application or in winter likely because soil was frozen. Application time did alter the temporal pattern of emissions with late fall and spring pre-plant applications significantly increasing median daily NO flux at spring thaw and early crop growing season, respectively. The majority of emissions occurred in early growing season resulting in cumulative emissions for the crop year being numerically 33% less for late fall than spring pre-plant application. Poor yield in the first year with late fall treatment occurred because of weed and volunteer growth with delayed planting. Results show late fall application of anhydrous ammonia before freeze-up increased NO emissions at thaw and decreased emissions for the early growing season compared to spring pre-plant application. However, improved nitrogen availability of late fall application to crops the following year is required when planting is delayed because of excessive moisture in spring.

  5. Herbicide application records

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document contains records of pesticide applications on Neal Smith National Wildlife Refuge (Walnut Creek National Wildlife Refuge) between 1995 and 2006.

  6. Effect of Preplant Irrigation, Nitrogen Fertilizer Application Timing, and Phosphorus and Potassium Fertilization on Winter Wheat Grain Yield and Water Use Efficiency

    Directory of Open Access Journals (Sweden)

    Jacob T. Bushong

    2014-01-01

    Full Text Available Preplant irrigation can impact fertilizer management in winter wheat. The objective of this study was to evaluate the main and interactive effects of preplant irrigation, N fertilizer application timing, and different N, P, and K fertilizer treatments on grain yield and WUE. Several significant two-way interactions and main effects of all three factors evaluated were observed over four growing seasons for grain yield and WUE. These effects could be described by differences in rainfall and soil moisture content among years. Overall, grain yield and WUE were optimized, if irrigation or adequate soil moisture were available prior to planting. For rain-fed treatments, the timing of N fertilizer application was not as important and could be applied before planting or topdressed without much difference in yield. The application of P fertilizer proved to be beneficial on average years but was not needed in years where above average soil moisture was present. There was no added benefit to applying K fertilizer. In conclusion, N and P fertilizer management practices may need to be altered yearly based on changes in soil moisture from irrigation and/or rainfall.

  7. Efeito residual de herbicidas em pré-plantio do feijoeiro, em dois sistemas de aplicação em plantio direto e sua viabilidade econômica Economic viability of residual herbicides in dry bean pre-planting under two aplication methods

    Directory of Open Access Journals (Sweden)

    T. Cobucci

    2004-12-01

    pre-planting of common beans. The study was conducted in Santo Antônio de Goiás, Brazil, in 1999/2000 on three t ha-1 of dry biomass. The 60 treatments were applied on the top of the weed plants (Commelina benghalensis and Bidens pilosa disposed as a 2x10x3 factorial, with split-plots in a randomized complete block design with three replicates. The first factor consisted of the desiccation systems in the area (Integrated Control System (ICS and Apply and Sow. ICS consisted of sulfosate (720 g ha-1 applied 20 days before planting and paraquat 200 g ha-1 added to the residual herbicides and applied immediately after sowing. Apply and Sow consisted of (sulfosate 720 g ha-1 added to the residual herbicides, applied five days before sowing. The second factor consisted of the residual herbicides applied in g ha-1, sulfentrazone (200 and 300, dimethenamid (900 and 1.125; clomazone (360; pendimethalin (2.500, s-metolachlor (768 and 1152, diclosulan (12,45 and check; and the third factor consisted of the doses of the post-emergence herbicides: imazamox (15 + bentazon (240, imazamox (30 + bentazon (480 and the check. The results showed that the residual herbicides applied in the ICS and Apply and Plant systems reduced the initial growth of Bidens pilosa, but only the herbicides diclosulan and sulfentrazone showed the same effect on Euphorbia heterophylla. The use of residual herbicides in pre-planting was economically viable reducing the amount of herbicides applied in pre-emergence, except for dimethenamid and s-metolachlor.

  8. Precision Herbicide Application Technologies To Decrease Herbicide Losses in Furrow Irrigation Outflows in a Northeastern Australian Cropping System.

    Science.gov (United States)

    Davis, Aaron M; Pradolin, Jordan

    2016-05-25

    This study compared water quality benefits of using precision herbicide application technologies in relation to traditional spraying approaches across several pre- and postemergent herbicides in furrow-irrigated canefarming systems. The use of shielded sprayers (herbicide banding) provided herbicide load reductions extending substantially beyond simple proportionate decreases in amount of active herbicide ingredient applied to paddocks. These reductions were due largely to the extra management control available to irrigating growers in relation to where both herbicides and irrigation water can be applied to paddocks, coupled with knowledge of herbicide toxicological and physicochemical properties. Despite more complex herbicide mixtures being applied in banded practices, banding provided capacity for greatly reduced environmental toxicity in off-paddock losses. Similar toxicological and loss profiles of alternative herbicides relative to recently regulated pre-emergent herbicides highlight the need for a carefully considered approach to integrating alternative herbicides into improved pest management.

  9. Effects of nematicides, lime, and herbicide on peach tree short life in georgia.

    Science.gov (United States)

    Wehunt, E J; Horton, B D; Prince, V E

    1980-07-01

    Peach tree mortality was 75% five years after planting on a site associated with peach tree short life and receiving no nematicide treatment, no lime, and with cultivation for weed control. Mortality was reduced to 29% by preplanting plus postplanting applications of DBCP (1,2-dibromo-3-chloropropane) and with herbicidal weed control. Preplanting applications of nematicides alone did not effectively reduce tree mortality or increase yield. Lime applications increased yield but did not affect tree growth or survival. Survival was higher with weed control by a herbicide than with control by disk cultivation. Populations of Macroposthonia xenoplax were correlated positively with tree mortality and negatively with yield. The other nematode consistently present at the site, Tylenchorhynchus claytoni, was not associated with either tree mortality or yield.

  10. Cassava physiological responses to the application of herbicides

    Directory of Open Access Journals (Sweden)

    Evander Alves Ferreira

    2015-04-01

    Full Text Available Analysis of chlorophyll a fluorescence has been used to improve the understanding of the mechanisms of photosynthesis, as well as in the evaluation of plant photosynthetic capacity altered by biotic or abiotic stresses. The objective of this study was to evaluate the sensitivity of cassava plants to herbicides with different mechanisms of action, as well as the damage caused by the application of herbicides on the photosynthetic apparatus of these plants. An experiment was conducted in a randomized block design with four replications. The treatments were constituted of the application of the following post- emergence herbicides in cassava: bentazon, clomazone, fomesafen, fluazifop-p-buthyl, glyphosate, nicosulfuron, chlorimuron, fluazifop-p-buthyl + fomesafen, sulfentrazone, besides a control without application. The visual intoxication and chlorophyll a fluorescence assessments were performed at 2, 9, 16 and 23 days after herbicide application. The herbicides evaluated affected differently the cassava plants. Sulfentrazone and glyphosate promoted plant death. Herbicides clomazone, fomesafen, fluazifop-p-buthyl and chlorimuron-ehtyl caused low toxicity to cassava plants and did not affect the ratio Fv / Fm and ETR. However, for the mixture nicossulfuron and fluazifop-p-buthyl + fomesafen values of Fv / Fm were suboptimal in the first evaluation times but plants treated with these herbicides had recovered. Physiological evaluations can be used as a way to evaluate the selectivity of herbicides in cassava crop as presented similar answers to those observed for visual intoxication symptoms.

  11. Selectivity of herbicides in crambe crop

    Directory of Open Access Journals (Sweden)

    Guilherme Sasso Ferreira Souza

    2014-02-01

    Full Text Available The low productivity of crambe can be associated with many factors, among these, the competition with weeds, which reduces the yield, harvest affects and contributes to the increase in seed moisture. Therefore, this study aimed to evaluate the tolerance of crambe plants cv. FMS Brilhante to herbicides applied in preplant incorporated (PPI, preemergence (PRE, and postemergence (POST. The study was installed in a green-house and the treatments consisted of the herbicide application in: pre-plant incorporated ofdiclosulam, flumetsulam, metribuzin, and trifluralin;preemergence applicationof atrazine, diclosulam, diuron, flumetsulam, metribuzim, S-metolachlor, sulfentrazone, and trifluralin; and postemergence application ofbentazon, carfentrazone-ethyl, clefoxydim, cletodim + fenoxaprop-p-ethyl, ethoxysulfuron, fomesafen, fluazifop-p-butyl, flumioxazin, halosulfuron, imazamox, imazapic, lactofen, nicosulfuron, oxadiazon, quinclorac, and setoxydim. Visual evaluations of phytotoxicity on crambe plants were realized after applications, the seedlings were counted and the height and plant dry matter were determined in the end of the evaluation period. In conditions where the studies were conducted, we can conclude that only the trifluralin application in PRE and the application of clefoxidim+fenoxaprop-p-ethyl, fluazifop-p-butyl, quinclorac, setoxydim and clefoxydim in POST showed selectivity and potential use for FMS Brilhante crambe cultivar.

  12. Efficacy of Herbicides When Spray Solution Application Is Delayed

    Directory of Open Access Journals (Sweden)

    Peter M. Eure

    2013-01-01

    Full Text Available Information is limited concerning the impact of delaying applications of pesticides after solution preparation on efficacy. Experiments were conducted to determine weed control when diclosulam, dimethenamid-P, flumioxazin, fomesafen, imazethapyr, pendimethalin, and S-metolachlor were applied preemergence the day of solution preparation or 3, 6, and 9 days after solution preparation. Herbicide solutions were applied on the same day regardless of when prepared. Control of broadleaf signalgrass, common lambsquarters, entireleaf morningglory, and Palmer amaranth by these herbicides was not reduced regardless of when herbicide solutions were prepared. Surprisingly entireleaf morningglory control by all herbicides increased when herbicide application was delayed by 9 days. In separate experiments, control of broadleaf signalgrass by clethodim, common ragweed by glyphosate and lactofen, entireleaf morningglory by lactofen, Italian rye grass by glyphosate and paraquat, and Palmer amaranth by atrazine, dicamba, glufosinate, glyphosate, imazethapyr, lactofen, and 2,4-D was affected more by increase in weed size due to delayed application than the time between solution preparation and application.

  13. Combining cutting and herbicide application for Ambrosia artemisiifolia control

    Directory of Open Access Journals (Sweden)

    Sölter, Ulrike

    2016-02-01

    Full Text Available The effect on Ambrosia artemisiifolia (common ragweed of combining cutting and herbicide application was studied in pot experiments in Germany and Denmark in 2013. Single plants of common ragweed were established in 2 L pots in glasshouses. Two cutting treatments were conducted: cutting to 10 cm height at the beginning of male budding (BBCH 51-59 and no cutting. Clopyralid (in Germany: Lontrel 600, in Denmark: Matrigon, mesotrione (in Germany and Denmark: Callisto and glyphosate (in Germany: Clinic, in Denmark: Roundup Bio were applied at 4 doses at three different timings: on the day of cutting, one week and two weeks after cutting. The plants were harvested 5 weeks after the last herbicide application. At both sites clopyralid and mesotrione had a low efficacy on common ragweed when applied on developed plants with only minor differences in efficacy at the three timings. Application after cutting improved the efficacy of clopyralid at both sites and of mesotrione in Denmark. In Germany glyphosate had a higher efficacy on noncut plants in comparison to the cut plants, in Denmark it was vice versa. The highest dose of glyphosate provided higher control levels on developed plants than clopyralid and mesotrione at both sites. In Denmark the highest effects were obtained shortly after cutting with the maximum dose of each herbicide and declined with time between cutting and herbicide application. In summary the results demonstrated that herbicides can be applied shortly after cutting without loss of efficacy.

  14. Catchment-scale herbicides transport: Theory and application

    Science.gov (United States)

    Bertuzzo, E.; Thomet, M.; Botter, G.; Rinaldo, A.

    2013-02-01

    This paper proposes and tests a model which couples the description of hydrologic flow and transport of herbicides at catchment scales. The model accounts for streamflow components' age to characterize short and long term fluctuations of herbicide flux concentrations in stream waters, whose peaks exceeding a toxic threshold are key to exposure risk of aquatic ecosystems. The model is based on a travel time formulation of transport embedding a source zone that describes near surface herbicide dynamics. To this aim we generalize a recently proposed scheme for the analytical derivation of travel time distributions to the case of solutes that can be partially taken up by transpiration and undergo chemical degradation. The framework developed is evaluated by comparing modeled hydrographs and atrazine chemographs with those measured in the Aabach agricultural catchment (Switzerland). The model proves reliable in defining complex transport features shaped by the interplay of long term processes, related to the persistence of solute components in soils, and short term dynamics related to storm inter-arrivals. The effects of stochasticity in rainfall patterns and application dates on concentrations and loads in runoff are assessed via Monte Carlo simulations, highlighting the crucial role played by the first rainfall event occurring after herbicide application. A probabilistic framework for critical determinants of exposure risk to aquatic communities is defined. Modeling of herbicides circulation at catchment scale thus emerges as essential tools for ecological risk assessment.

  15. Using integrated inter- row cultivation and herbicide band application in sugar beet (Beta vulgaris weed management for reducing herbicide use

    Directory of Open Access Journals (Sweden)

    gholamreza maleki

    2009-06-01

    Full Text Available A field experiment was conducted to investigate different weed management methods for reduce herbicide use in sugar beet at Arak Agriculture & Natural Research Center in 2005.Trial was designed in split-plot and consisted of 18 treatments with four replication. Each plot contains four 50 cm. rows. distance in inter row and 25cm. between plants on row. Main factor was inter row (with & without cultivation. Sub factors were herbicide dosages in two application methods (band & spread application. Herbicides were Desmedipham(Betanal A. M. plus Chloridazon (pyramin that used as tank mix application. Inter row cultivation done with tender wheal tractor and spraying by stable pressure charging sprayer with drop raining nozzle. The result showed no significance difference between main plots in crop characteristics evaluated. Highest root yield, plant total weight and more reduce weed biomass and control was obtained with 100 and 75 percent of the recommended dosages of the herbicide in spread application and 75 percent recommended dosages in band application. Therefore, in order to decreasing herbicide use toward environmental safety aspects and increasing economical profit for farmers, it is recommended to use 75 percent herbicide dosage in spread and band application in integrated with cultivation instead of complete dose alone in sugar beet. Keywords: Weed management, sugar beet, reduced herbicide dose, inter-row soil manipulation.

  16. Cloud based, Open Source Software Application for Mitigating Herbicide Drift

    Science.gov (United States)

    Saraswat, D.; Scott, B.

    2014-12-01

    The spread of herbicide resistant weeds has resulted in the need for clearly marked fields. In response to this need, the University of Arkansas Cooperative Extension Service launched a program named Flag the Technology in 2011. This program uses color-coded flags as a visual alert of the herbicide trait technology within a farm field. The flag based program also serves to help avoid herbicide misapplication and prevent herbicide drift damage between fields with differing crop technologies. This program has been endorsed by Southern Weed Science Society of America and is attracting interest from across the USA, Canada, and Australia. However, flags have risk of misplacement or disappearance due to mischief or severe windstorms/thunderstorms, respectively. This presentation will discuss the design and development of a cloud-based, free application utilizing open-source technologies, called Flag the Technology Cloud (FTTCloud), for allowing agricultural stakeholders to color code their farm fields for indicating herbicide resistant technologies. The developed software utilizes modern web development practices, widely used design technologies, and basic geographic information system (GIS) based interactive interfaces for representing, color-coding, searching, and visualizing fields. This program has also been made compatible for a wider usability on different size devices- smartphones, tablets, desktops and laptops.

  17. Application of pre-emergence herbicides in poplar nursery production

    Institute of Scientific and Technical Information of China (English)

    Verica Vasic; Sasa Orlovic; Predrag Pap; Branislav Kovacevic; Milan Drekic; Leopold Poljakovic Pajnik; Zoran Galic

    2015-01-01

    In addition to pests and diseases, weeds are a major problem in poplar nursery production. The possibili-ties of herbicide application in juvenile poplar growth were researched, taking into account that weeds are one of the main limiting factors. The following pre-emergence herbi-cides were tested: acetochlor, S-metolachlor, metribuzin, oxifluorfen, and dimethenamid during two vegetation sea-sons at two locations, which differed by the soil physico-chemical characteristics. The study results show that the number of weeds on sample plots was significantly reduced by the tested herbicides when compared to control plots. The highest reduction in the number of weeds was achieved using the herbicides acetochlor and metribuzin. However, me-tribuzin showed a phytotoxic effect on sandy soil. Metribu-zin application is recommended only on the soils with higher contents of organic matter, where the phytotoxic effect was absent. Acetochlor, S-metolachlor, oxifluorfen, and dime-thenamid were not phytotoxic to poplars and can be used for weed suppression in the production of poplar plants.

  18. Variability of herbicide losses from 13 fields to surface water within a small catchment after a controlled herbicide application.

    Science.gov (United States)

    Leu, Christian; Singer, Heinz; Stamm, Christian; Müller, Stephan R; Schwarzenbach, René P

    2004-07-15

    Diffuse losses from agricultural fields are a major input source for herbicides in surface waters. In this and in a companion paper, we present the results of a comprehensive field study aimed at assessing the overall loss dynamics of three model herbicides (i.e., atrazine, dimethenamid, and metolachlor) from a small agricultural catchment (2.1 km2) and evaluating the relative contributions of various fields having different soil and topographical characteristics. An identical mixture of the three model herbicides as well as an additional pesticide for identification of a given field were applied within 12 h on 13 cornfields (total area approximately 12 ha), thus ensuring that the herbicides were exposed to identical meteorological conditions. After the simultaneous application, the concentrations of the compounds were monitored in the soils and at the outlets of three subcatchments containing between 4 and 5 cornfields each. Particular emphasis was placed on the two rain events that led to the major losses of the herbicides. The rank orders of herbicide dissipation in the soils and of the compound-specific mobilization into runoff were the same in all three subcatchments and were independent of the field characteristics. In contrast, the field properties caused the relative losses from two subcatchments to differ by up to a factor of 56 during the most important event, whereas compound-specific differences of the three neutral herbicides caused the losses to vary only by a factor of 2 during the same event. The enormous spatial variability was mainly caused by factors influencing the fraction of rain that was lost to surface water by fast transport mechanisms. Thus, the key factors determining the spatially variable herbicide losses were the permeability of the soils, the topography, and the location of subsurface drainage systems. These results illustrate the large potential to reduce herbicide losses by avoiding application on risk areas.

  19. Application of electrokinetic soil flushing to four herbicides: A comparison.

    Science.gov (United States)

    dos Santos, E Vieira; Souza, F; Saez, C; Cañizares, P; Lanza, M R V; Martinez-Huitle, C A; Rodrigo, M A

    2016-06-01

    In this work, four bench-scale plants containing soil spiked with four herbicides (2,4-Dichlorophenoxyacetic acid (2,4-D), oxyfluorfen, chlorsulfuron and atrazine) undergo treatment consisting of an electrokinetic soil flushing (EKSF). Results clearly demonstrate that efficiency of EKSF depends on the chemical characteristic of the pesticide used. The amount of pesticide collected in the anode well is more significant than that collected in the cathode wells, indicating that the electromigration is much more important than drainage by electro-osmotic flux for this application. After 15 d of treatment, the 2,4-D is the pesticide most efficiently removed (95% of removal), while chlorsulfuron is the pesticide more resilient to the treatment. Additionally, volatilization was found to be a process of the major significance in the application of electrokinetic techniques to soil polluted with herbicides and because of that it should always be taken into account in the future design of full-scale processes.

  20. Combining cutting and herbicide application for Ambrosia artemisiifolia control

    OpenAIRE

    Sölter, Ulrike; Matthiassen, Solvejg K.

    2016-01-01

    The effect on Ambrosia artemisiifolia (common ragweed) of combining cutting and herbicide application was studied in pot experiments in Germany and Denmark in 2013. Single plants of common ragweed were established in 2 L pots in glasshouses. Two cutting treatments were conducted: cutting to 10 cm height at the beginning of male budding (BBCH 51-59) and no cutting. Clopyralid (in Germany: Lontrel 600, in Denmark: Matrigon), mesotrione (in Germany and Denmark: Callisto) and glyphosate (in Germa...

  1. Effect of Irrigation and Preplant Nitrogen Fertilizer Source on Maize in the Southern Great Plains

    Directory of Open Access Journals (Sweden)

    Jacob T. Bushong

    2014-01-01

    Full Text Available With the demand for maize increasing, production has spread into more water limited, semiarid regions. Couple this with the increasing nitrogen (N fertilizer costs and environmental concerns and the need for proper management practices has increased. A trial was established to evaluate the effects of different preplant N fertilizer sources on maize cultivated under deficit irrigation or rain-fed conditions on grain yield, N use efficiency (NUE, and water use efficiency (WUE. Two fertilizer sources, ammonium sulfate (AS and urea ammonium nitrate (UAN, applied at two rates, 90 and 180 kg N ha−1, were evaluated across four site-years. Deficit irrigation improved grain yield, WUE, and NUE compared to rain-fed conditions. The preplant application of a pure ammoniacal source of N fertilizer, such as AS, had a tendency to increase grain yields and NUE for rain-fed treatments. Under irrigated conditions, the use of UAN as a preplant N fertilizer source performed just as well or better at improving grain yield compared to AS, as long as the potential N loss mechanisms were minimized. Producers applying N preplant as a single application should adjust rates based on a reasonable yield goal and production practice.

  2. Integration of sunflower (Helianthus annuus residues with a pre-plant herbicide enhances weed suppression in broad bean (Vicia faba Integração de resíduos de girassol (Helianthus annuus com herbicida pré-emergente na supressão de plantas daninhas na cultura da fava (Vicia faba

    Directory of Open Access Journals (Sweden)

    I.S Alsaadawi

    2011-12-01

    Full Text Available Field trial was conducted with the aim of utilizing allelopathic crop residues to reduce the use of synthetic herbicides in broad bean (Vicia faba fields. Sunflower residue at 600 and 1,400 g m-2 and Treflan (trifluralin at 50, 75 and 100% of recommended dose were incorporated into the soil alone or in combination with each other. Untreated plots were maintained as a control. Herbicide application in plots amended with sunflower residue had the least total weed count and biomass, which was even better than herbicide used alone. Integration of recommended dose of Treflan with sunflower residue at 1,400 g m-² produced maximum (987.5 g m-2 aboveground biomass of broad bean, which was 74 and 36% higher than control and recommended herbicide dose applied alone, respectively. Combination of herbicide and sunflower residue appeared to better enhance pod number and yield per unit area than herbicide alone. Application of 50% dose of Treflan in plots amended with sunflower residue resulted in similar yield advantage as was noticed with 100% herbicide dose. Chromatographic analysis of residue-infested field soil indicated the presence of several phytotoxic compounds of phenolic nature. Periodic data revealed that maximum suppression in weed density and dry weight synchronized with peak values of phytotoxins observed 4 weeks after incorporation of sunflower residues. Integration of sunflower residues with lower herbicide rates can produce effective weed suppression without compromising yield as a feasible and environmentally sound approach in broad bean fields.O experimento foi realizado com o objetivo de utilizar resíduos agrícolas com potencial alelopático para reduzir o uso de herbicidas sintéticos em fava (Vicia faba. Resíduos de girassol (600 e 1,400 g m-2 e Treflan (50, 75 e 100% da dose recomendada foram incorporados ao solo isoladamente ou em combinação uns com os outros. Parcelas não tratadas foram mantidas como controle. A aplicação de

  3. Banded applications are highly effective in minimising herbicide migration from furrow-irrigated sugar cane.

    Science.gov (United States)

    Oliver, Danielle P; Anderson, Jenny S; Davis, Aaron; Lewis, Stephen; Brodie, Jon; Kookana, Rai

    2014-01-01

    Runoff from farm fields is a common source of herbicide residues in surface waters in many agricultural industries around the world. In Queensland, Australia, the runoff of PSII inhibitor herbicides (in particular diuron and atrazine) is a major concern due to their potential impact on the Great Barrier Reef. This study compared the conventional practice of broadcast application of herbicides in sugarcane production across the whole field with the banded application of particular herbicides onto raised beds only using a shielded sprayer. This study found that the application of two moderately soluble herbicides, diuron and atrazine, to only the raised beds decreased the average total load of both herbicides moving off-site by >90% compared with the conventional treatment. This was despite the area being covered with the herbicides by the banded application being only 60% less than with the conventional treatment. The average total amount of atrazine in drainage water was 7.5% of the active ingredient applied in the conventional treatment compared with 1.8% of the active ingredient applied in the banded application treatment. Similarly, the average total amount of diuron in drainage water was 4.6% of that applied in the conventional treatment compared with 0.9% of that applied in the banded application treatment. This study demonstrates that the application of diuron and atrazine to raised beds only is a highly effective way of minimising migration of these herbicides in drainage water from furrow irrigated sugarcane.

  4. Effect of pre-planting irrigation, maize planting pattern and nitrogen on weed seed bank population.

    Science.gov (United States)

    Hemmati, E; Vazan, S; Oveisi, M

    2011-01-01

    Pre-planting irrigation and planting patterns are important factors in weed management that effect on seed bank. Additionally, the nitrogen is the most important factor in plant growth that affects weed-crop competition and ultimately, seed rain into the soil. A field experiment was conducted to study the effect of nitrogen application rates, pre-planting irrigation and maize planting patterns on weed seed bank population. Experimental factors were nitrogen rates at 4 levels (200, 300, 400 and 500 kg per hectare) as main plot; and pre-planting irrigation at 2 levels (irrigation before planting plus weeding emerged seedlings and, irrigation after sowing), and maize planting patterns (one-row and two-row planting of maize with same density per square of row length) that were assigned in a factorial arrangement to the sub plots. Soil samples were taken at the beginning of the season (before planting of maize) and at the end of the season (after harvest) at depth of 0-5 cm in the fixed quadrates (60 cm x 60 cm). The weed seeds were extracted from the soil samples and were identified using standard methods. The majority of weed seed bank populations included 6 weed species: Portulaca oleracea, Chenopodium album, Amaranthus retroflexus, Sorghum halepense, Daturea stramonium, Xanthium strumarium. Results showed that population of weed seed bank increased significantly with increasing nitrogen rate. The increasing rate was different between one-row and two-row planting patterns. The parameters indicated that seed bank population was much higher in a one row planting pattern of maize. With two-row planting, seed bank was decreased by 34, 26, 20 and 5% at 200, 300, 400 and 500 kg N/ha, respectively. Pre-planting irrigation was also found an effective implement to reduce the weed seed bank. When pre-planting irrigation was applied, seed bank was decreased by 57, 43, 34 and 9% at 200, 300, 400 and 500 kg N/ha. Increasing nitrogen because of weed's better growth and higher seed

  5. Leaf anatomy of emerald grass submitted to quantitative application of herbicides

    Directory of Open Access Journals (Sweden)

    Renata Pereira Marques

    2016-08-01

    Full Text Available The aim of this work was to evaluate the selectivity of herbicides applied in post-emergence on Zoysia japonica Steud (Poaceae and determine associations with the leaf anatomy of this grass. The experimental design was randomized blocks with four replications. The treatments were the application of the herbicides bentazon (720 g ha-1, nicosulfuron (50 g ha-1, halosulfuron (112.5 g ha-1, oxadiazon (875 g ha-1 and 2.4-D (698 g ha-1, plus a control treatment without herbicide application. Phytotoxicity was assessed every seven days after application (DAA of the herbicides until the symptoms disappeared. Foliar anatomical analyses of the leaves in the collected grass were conducted until the 35th DAA. The quantitative characters of the keel and wing region of the blade of Z. japonica were assessed, as well as the biometric characters, which were submitted to an analysis of variance F test, and the averages were compared by Tukey’s test at a probability of 5%. The values of the anatomical characters of the foliar blade were tested by cluster analysis. The application of herbicides did not negatively influence the height of the plants but did reduce their dry mass. Toxic symptoms disappeared after 21 DAA, with the only symptoms of injury observed in plants treated with the herbicides oxadiazon and nicosulfuron. In addition, the cluster analysis indicated the formation of a unique discriminatory group. Thus, the results show that the herbicides applied to Z. japonica were selective for the species.

  6. On the optimization of low dosage application systems : Improvement of dose advice and early detection of herbicidal effects

    NARCIS (Netherlands)

    Riethmuller-Haage, I.C.P.

    2006-01-01

    Application of herbicides at rates below the recommended label dose has received considerable attention in recent years as it is a means of reducing overall herbicide use. To minimize the risk of inadequate weed control in these situations, the Minimum Lethal Herbicide Dose (MLHD) technology, which

  7. Variações nos métodos de aplicação dos herbicidas Diuron e Tripluralin na cultura do algodoeiro Methods of application of the herbicides Diuron and Trifluralin in cotton

    Directory of Open Access Journals (Sweden)

    Aldo Alves

    1967-01-01

    Full Text Available Foram estudados os efeitos das variações nos métodos de aplicação dos herbicidas Diuron e Trifluralin na cultura algodoeira, para verificar sua eficiência no combate às ervas daninhas. O tratamento Trifluralin aplicado em pré-plantio incorporado, provocou excelente combate às ervas daninhas gramíneas, porém irrisória redução da população das dicotiledôneas. A aplicação de Trifluralin em pré-plantio incorporado e a de Diuron em pré-emergência, aumentaram consideravelmente a área de contrôle nos dois grupos de ervas más. O tratamento Diuron aplicado em pré-emergência foi bastante efetivo no combate às ervas de "fôlhas largas", enquanto que no combate às gramineas não foi tão eficiente. O incorporação do Diuron, aplicado em pré-plantio, não aumentou a eficiência do produto químico. A redução da dose de Diuron em pré-plantio incorporado ou em pré-emergência não proporcionou combate adequado às ervas más.1 - An experiment to study the various modalities of the application of the herbicides diuron and trifluralin in cotton plantings was carried out in purple latosol soil, Chapadão series. The two herbicides were applied in various doses and at different times. The most common weeds in the trial area were capim pé-de-galinha (goosegrass, capim carrapicho (sandbur, capim colchão (crabgrass, beldroega (purslane, carraplcho de carneiro, and poaia. 2 - The effectiveness of diuron (1.60 kg/ha, applied pre-planting, was not increased by incorporation into the soil. The control of weeds was efficient, but the yield was inferior to that of plots without incorporation. Of the weeds that survived the treatment, a predominance of grass species was noted. Some of the cotton leaves turned yellow in plots that received this herbicide, but this chlorosis was temporary and the plants regained their normal color within a few weeks. The tolerance of cotton for the treatments did not appear to be affected by the method of

  8. FIBRE FLAX PREPLANT TREATMENT BASED ON SEED PELLETING AND ELECTROTECHNICS

    Directory of Open Access Journals (Sweden)

    Spiridonov A. B.

    2013-10-01

    Full Text Available The method of fibre flax preplant seed treatment that includes pelleting in bionanosuspension and influence of electrophysical fields on the pellet is described in the article. Due to given treatment technology it is possible to increase the crop capacity and engineering performance of the flax production

  9. Application of bioassay technique to determine onduty herbicide resistance in soil

    Science.gov (United States)

    Bakar, F. A. A.; Ismail, B. S.; Bajrai, F. S. M.

    2016-11-01

    A study was conducted to determine the resistance of OnDuty herbicide in paddy soil with different concentrations by using a broadleaf plant, Brassica juncea. The herbicide was used in the Clearfield® Production System that was adopted in Malaysia to overcome problems mainly caused by weedy rice. Evaluation of herbicide half-life was based on bioassay technique with different concentrations, i.e 0% (control), 50% (half dose), 100% (recommended dose) and 200% (double dose). The study was done in three replicates and followed the Complete Randomized Block Design (CRBD). Results showed that there was a correlation between the amount of herbicide doses and degradation period. The highest half-life value was shown by root inhibition in the double dose concentration of 33 days half-life, followed by the recommended dose with 23 days half-life. Meanwhile, the half dose treatment indicated a half-life value of 17 days for root and 11 days for shoot. Therefore, application of herbicides should follow the recommended dose as the degradation period will not be too long, hence providing maximum effectiveness of the herbicide to overcome weed infestation problems.

  10. Agronomic evaluation of cowpea as a function of weed control with herbicides and different combinations

    Directory of Open Access Journals (Sweden)

    Wando Wilson de Oliveira Souza

    2016-12-01

    Full Text Available ABSTRACT Cultivation of the cowpea is important in various regions of Brazil, but competition from weeds is one of the factors which limit productivity. The aim of this study therefore was to evaluate the pre-plant selectivity and efficiency of different herbicides, and combinations of herbicides, in the cowpea [Vigna unguiculata (L. Walp.]. An experiment was carried out in a randomised block design, in lots split over time and with three replications, using a 4 x 7 factorial scheme, where the treatments consisted of: glyphosate, glyphosate + imazethapyr, glyphosate + flumioxazin, glyphosate + imazethapyr + flumioxazin, glyphosate + ready mix (imazethapyr & flumioxazin, and two control treatments (one with no weeding and one with manual weeding. The treatments were evaluated in combination with four different sowing times, i.e. immediately after application of the herbicides, and at five, ten and fifteen days after application (DAA. The combination of glyphosate + flumioxazin at 15 DAA, gave the highest mean productivity, 1,105.32 kg ha-1, followed by manual weeding with 1,027.37 kg ha-1. The herbicide mixtures of glyphosate + imazethapyr + flumioxazin caused phyto-toxicity in the cowpea crop, limiting the production components. The best strategies for weed control in this crop are manual weeding with seeding at 10 DAA, as well as the application of a glyphosate + flumioxazin mixture with seeding at 15 DAA.

  11. Effect of rice husk gasification residue application on herbicide behavior in micro paddy lysimeter.

    Science.gov (United States)

    Ok, Junghun; Pisith, Sok; Watanabe, Hirozumi; Thuyet, Dang Quoc; Boulange, Julien; Takagi, Kazuhiro

    2015-06-01

    Effects of rice husk gasification residues (RHGR) application on the fate of herbicides, butachlor and pyrazosulfuron-ethyl, in paddy water were investigated using micro paddy lysimeters (MPLs). The dissipation of both herbicides in paddy water was faster in the RHGR treated MPL than in the control MPL. The average concentrations of butachlor and pyrazosulfuron-ethyl in paddy water in the lysimeter treated with RHGR during 21 days were significantly reduced by 51% and 48%, respectively, as compared to those in the lysimeter without RHGR application. The half-lives (DT50) of butachlor in paddy water for control and treatment were 3.1 and 2.3 days respectively, and these values of pyrazosulfuron-ethyl were 3.0 and 2.2 days, respectively. Based on this study, RHGR application in rice paddy environment is an alternative method to reduce the concentration of herbicide in paddy field water and consequently to reduce potential pollution to aquatic environment.

  12. Short-term disruption of a leafy spurge (Euphorbia esula) biocontrol program following herbicide application

    Science.gov (United States)

    Larson, D.L.; Grace, J.B.; Rabie, P.A.; Andersen, P.

    2007-01-01

    Integrated pest management (IPM) for invasive plant species is being advocated by researchers and implemented by land managers, but few studies have evaluated the success of IPM programs in natural areas. We assessed the relative effects of components of an IPM program for leafy spurge (Euphorbia esula), an invasive plant, at Theodore Roosevelt National Park, North Dakota. Effects of herbicides on leafy spurge abundance and on dynamics of flea beetles (Aphthona spp.) used to control leafy spurge were evaluated over three field seasons following herbicide application. We monitored leafy spurge-infested plots with established flea beetle populations that had received picloram plus 2,4-D in September 1997 or 1998, imazapic in September 1998, versus those with no chemical treatment. Mature stem counts did not differ significantly between treated and untreated plots in 2001, suggesting that leafy spurge stands had recovered from herbicide treatment. Flea beetles were less abundant on plots with a history of herbicide treatment. Structural equation models indicated that in 2000 negative correlations between relative abundances of the two flea beetle species were greater on plots that had received herbicide treatments than on those that had not, but by 2001 no differences were apparent between treated and untreated plots. These results suggest that the most effective component of IPM for leafy spurge at this site is biological control. All herbicide effects we observed were short-lived, but the increased negative correlation between flea beetle relative abundances during 2000 implies that herbicide application may have temporarily disrupted an effective biological control program at this site. ?? 2006 Elsevier Inc. All rights reserved.

  13. iMAR: An Interactive Web-Based Application for Mapping Herbicide Resistant Weeds.

    Directory of Open Access Journals (Sweden)

    Silvia Panozzo

    Full Text Available Herbicides are the major weed control tool in most cropping systems worldwide. However, the high reliance on herbicides has led to environmental issues as well as to the evolution of herbicide-resistant biotypes. Resistance is a major concern in modern agriculture and early detection of resistant biotypes is therefore crucial for its management and prevention. In this context, a timely update of resistance biotypes distribution is fundamental to devise and implement efficient resistance management strategies. Here we present an innovative web-based application called iMAR (interactive MApping of Resistance for the mapping of herbicide resistant biotypes. It is based on open source software tools and translates into maps the data reported in the GIRE (Italian herbicide resistance working group database of herbicide resistance at national level. iMAR allows an automatic, easy and cost-effective updating of the maps a nd provides two different systems, "static" and "dynamic". In the first one, the user choices are guided by a hierarchical tree menu, whereas the latter is more flexible and includes a multiple choice criteria (type of resistance, weed species, region, cropping systems that permits customized maps to be created. The generated information can be useful to various stakeholders who are involved in weed resistance management: farmers, advisors, national and local decision makers as well as the agrochemical industry. iMAR is freely available, and the system has the potential to handle large datasets and to be used for other purposes with geographical implications, such as the mapping of invasive plants or pests.

  14. iMAR: An Interactive Web-Based Application for Mapping Herbicide Resistant Weeds.

    Science.gov (United States)

    Panozzo, Silvia; Colauzzi, Michele; Scarabel, Laura; Collavo, Alberto; Rosan, Valentina; Sattin, Maurizio

    2015-01-01

    Herbicides are the major weed control tool in most cropping systems worldwide. However, the high reliance on herbicides has led to environmental issues as well as to the evolution of herbicide-resistant biotypes. Resistance is a major concern in modern agriculture and early detection of resistant biotypes is therefore crucial for its management and prevention. In this context, a timely update of resistance biotypes distribution is fundamental to devise and implement efficient resistance management strategies. Here we present an innovative web-based application called iMAR (interactive MApping of Resistance) for the mapping of herbicide resistant biotypes. It is based on open source software tools and translates into maps the data reported in the GIRE (Italian herbicide resistance working group) database of herbicide resistance at national level. iMAR allows an automatic, easy and cost-effective updating of the maps a nd provides two different systems, "static" and "dynamic". In the first one, the user choices are guided by a hierarchical tree menu, whereas the latter is more flexible and includes a multiple choice criteria (type of resistance, weed species, region, cropping systems) that permits customized maps to be created. The generated information can be useful to various stakeholders who are involved in weed resistance management: farmers, advisors, national and local decision makers as well as the agrochemical industry. iMAR is freely available, and the system has the potential to handle large datasets and to be used for other purposes with geographical implications, such as the mapping of invasive plants or pests.

  15. Optimizing preplant irrigation for maize under limited water in the high plains

    Science.gov (United States)

    Due to inadequate irrigation capacity, some farmers in the United States High Plains apply preplant irrigation to buffer the crop between irrigation events during the cropping season. The purpose of the study was to determine preplant irrigation amount and irrigation capacity combinations that optim...

  16. Optimizing preplant irrigation for maize under limited water in the High Plains

    Science.gov (United States)

    Due to inadequate well capacities, many farmers cannot meet inseason crop evapotranspiration demands. Some farmers apply preplant (preseason) irrigation to buffer the crop between irrigation or rainfall events during the season. A simulation study was conducted to assess the effect of preplant irrig...

  17. Preplanting tall fescue grass for controlling Meloidogyne incognita in a young peach orchard

    Science.gov (United States)

    Preplant fumigant nematicides have traditionally been used to control Meloidogyne spp. in peach in the southeastern United States. The current preplant nematicides recommended for managing Meloidogyne spp. in peach include the soil fumigants, 1,3-dichloropropene and metam sodium. Because the econo...

  18. Effect of some adjuvants application on enhancing sulfosulfuron herbicide performance on Phalaris minor- Poaceae

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdizadeh

    2015-02-01

    Full Text Available Nowadays environmental pollution by pesticides application is a major concern for health. Efficiency of many herbicides can be increased by adding adjuvants to the spray solution. Therefore greenhouse study was conducted during 2014 to determine the efficacy of three adjuvants (Citogate, Castor oil and Canola oil at concentrations of 0.1 and 0.2 (%v/v with 5, 10, 20, 30 and 40 g a.i\\ha of sulfosulfuron herbicide on littleseed canary grass. Results showed that the adjuvants enhanced the efficacy of sulfosulfuron in decreasing the dry weights of littleseed canary grass. Performance of herbicide was increased with enhancing its concentrations. Measured ED50 and ED90 concentrations of sulfosulfuron in control were 16.74 and 32.22 g a.i\\ha, respectively. Whereas the values for Citogate 0.2 (%v\\v, was 5.86 and 13.34 g a.i\\ha, respectively. The addition of Citogate and Castor oil had the highest and lowest effect on sulfosulfuron efficacy against Littleseed canary grass. In conclusion, the study revealed that Citogate concentrations had powerful effects on herbicide efficacy followed by Canola oil.

  19. Application of herbicides as growth regulators of emerald Zoysia grass fertilized with nitrogen

    Directory of Open Access Journals (Sweden)

    Raíssa Pereira Dinalli

    2015-07-01

    Full Text Available Nitrogen (N is essential for nutrition and for the maintenance of the intense green color of lawns. However, this element affects shoot growth and, therefore, mowing frequency, which is a key factor of lawn-maintenance costs. Accordingly, this study aimed to evaluate the use of nitrogen fertilization in combination with the use of potential herbicides as growth regulators to promote the maintenance of the high visual (intense green and nutritional quality of lawns of emerald Zoysia (Zoysia japonica Steud. grown in Ultisol soil while reducing their leaf growth. The experiment was conducted at the Teaching, Research and Extension Education Farm (Fazenda de Ensino, Pesquisa e Extensão of São Paulo State University (Universidade Estadual Paulista Júlio de Mesquita Filho, UNESP, Ilha Solteira Campus/ São Paulo (SP, from June/2012 to June/2013. The experimental design consisted of randomized blocks with 20 treatments established in a 5 x 4 factorial arrangement with four replicates, including four herbicides (glyphosate, imazaquin, imazethapyr, and metsulfuron-methyl, applied at doses of 200, 420, 80, and 140 g ha-1 active ingredient (a.i., respectively and a control (without herbicide, and four N doses (0, 5, 10, and 20 g m-2, split into five applications delivered throughout the year. The following items were evaluated: length, LCI (leaf chlorophyll index, leaf dry matter production and leaf N concentration and the percentage of phytotoxicity on lawn grass shoots. Doses from 10 to 20 g m-2 N provided sufficient N concentrations to maintain the emerald Zoysia. The herbicides metsulfuron-methyl and glyphosate were superior in the control of lawn leaf growth. While the former was phytotoxic, the latter had no effect on the aesthetic quality of the lawn, standing out as an herbicide that may be used at a dose of 200 g ha-1 toregulate the growth of emerald Zoysia.

  20. Combining experimentalist knowledge with modelling approaches to evaluate a controlled herbicide application experiment in an agricultural headwater catchment

    Science.gov (United States)

    Ammann, Lorenz; Fenicia, Fabrizio; Doppler, Tobias; Reichert, Peter; Stamm, Christian

    2017-04-01

    Although only a small fraction of the herbicide mass sprayed on agricultural fields reaches the stream in usual conditions, concentrations in streams may reach levels proven to affect organisms. Therefore, diffuse pollution of water bodies by herbicides in catchments dominated by agricultural land-use is a major concern. The process of herbicide wash off has been studied through experiments at lab and field scales. Fewer studies are available at the scales of small catchments and larger watersheds, as the lack of spatial measurements at these scales hinders model parameterization and evaluation. Even fewer studies make explicit use of the combined knowledge of experimentalists and modellers. As a result, the dynamics and interactions of processes responsible for herbicide mobilization and transport at the catchment scale are insufficiently understood. In this work, we integrate preexisting experimentalist knowledge aquired in a large controlled herbicide application experiment into the model development process. The experimental site was a small (1.2 km2) agricultural catchment with subdued topography (423 to 473 m a.s.l.), typical for the Swiss Plateau. The experiment consisted of an application of multiple herbicides, distributed in-stream concentration measurements at high temporal resolution as well as soil and ponding water samples. The measurements revealed considerable spatio-temporal variation in herbicide loss rates. The objective of our study is to better understand the processes that caused this variation. In an iterative dialogue between modellers and experimentalists, we constructed a simple hydrological model structure with multiple reservoirs, considering degradation and sorption of herbicides. Spatial heterogeneity was accounted for through Hydrological Response Units (HRUs). Different model structures were used for dinstinct HRUs to account for spatial variability in the perceived dominant processes. Some parameters were linked between HRUs to

  1. Stress reactions in Vitis vinifera L. following soil application of the herbicide flumioxazin.

    Science.gov (United States)

    Saladin, Gaëlle; Magné, Christian; Clément, Christophe

    2003-10-01

    In order to evaluate the stress effects of flumioxazin (fmx) on grapevine, a non-target plant (Vitis vinifera L.), physiological parameters such as carbohydrate content, water status or nitrogenous metabolites were investigated on fruiting cuttings and plants grown in vineyard. In the leaves of cuttings, the soil-applied herbicide induced stress manifestations including a decrease of the dry weight percentage and the soluble carbohydrate content during the first week after treatment. Thereafter, a decrease of the osmotic potential was observed, as well as a decrease of total protein content and a parallel accumulation of free amino acids, including proline. Altogether, these results suggest that soil-applied fmx induced a stress in grapevines, leading to leaf proteolysis. However, this stress was partially recovered 3 weeks after herbicide application, suggesting that the cuttings were capable to adapt to the fmx exposure. In the vineyard, the flumioxazin effects were still significant 5 months after the treatment, particularly in the CH cv. They included a decrease of the leaf dry weight percentage and soluble carbohydrate content, as well as an increase of the osmotic potential. The decrease of leaf soluble carbohydrates may have dramatic consequences for the berry growth and the reserve constitution. Moreover, treated plants were characterized by a decrease of the free amino acid content and an accumulation of ammonium, while the protein level did not significantly increase, suggesting a degradation of amino acids. The alteration of carbon and nitrogen status after herbicide treatment may affect the grapevine vigour in a long term.

  2. Dicotyledon Weed Quantification Algorithm for Selective Herbicide Application in Maize Crops: Statistical Evaluation of the Potential Herbicide Savings

    DEFF Research Database (Denmark)

    Stigaard Laursen, Morten; Jørgensen, Rasmus Nyholm; Midtiby, Henrik Skov;

    on the initial weed coverage. However, additional field trials covering more seasons and locations are needed to verify the generalisation of these results. There is a potential for further herbicide savings as the time interval between the first and second spraying session was not long enough for the weeds......This work contributes a statistical model and simulation framework yielding the best estimate possible for the potential herbicide reduction when using the MoDiCoVi algorithm all the while requiring an efficacy comparable to conventional spraying. In June 2013 a maize field located in Denmark were...... seeded. The field was divided into parcels which were assigned to one of two main groups: 1) Control, consisting of subgroups of no spray and full dose spray; 2) MoDiCoVi algorithm subdivided into five different leaf cover thresholds for spray activation. Also approximately 25% of the parcels were seeded...

  3. Weed management through herbicide application in direct-seeded rice and yield modeling by artificial neural network

    Directory of Open Access Journals (Sweden)

    Dibakar Ghosh

    2016-06-01

    Full Text Available In direct seeded rice (DSR cultivation, weed is the major constraint mainly due to absence of puddling in field. The yield loss due to weed interference is huge, may be up to 100%. In this perspective, the present experiment was conducted to study the efficacy of selected herbicides, and to predict the rice yield using artificial neural network (ANN models. The dry weight and density of weeds were recorded at different growth stages and consequently herbicidal efficacy was evaluated. Experimental results revealed that pre-emergence (PRE herbicide effectively controlled the germination of grassy weeds. Application bispyribac-sodium as post-emergence (POST following PRE herbicides (clomazone or pendimethalin or as tank-mixture with clomazone effectively reduced the density and biomass accumulation of diverse weed flora in DSR. Herbicidal treatments improved the plant height, yield attributes and grain yield (2.7 to 5.5 times over weedy check. The sensitivity of the best ANN model clearly depicts that the weed control index (WCI of herbicides was most important than their weed control efficiency (WCE. Besides, the early control of weeds is a better prescription to improve rice yield. Differences in sensitivity values of WCI and WCE across the crop growth stages also suggest that at 15, 30 and 60 days after sowing, herbicides most effectively controlled sedges, broad leaves and grasses, respectively. Based on the grain yield and herbicidal WCE, it can be concluded that the combined application of pendimethalin or clomazone as PRE followed by bispyribac-sodium as POST or tank-mixture of clomazone + bispyribac sodium can effectively control different weed flushes throughout the crop growth period in DSR.

  4. Weed management through herbicide application in direct-seeded rice and yield modeling by artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, D.; Singh, U.P.; Ray, K.; Das, A.

    2016-11-01

    In direct seeded rice (DSR) cultivation, weed is the major constraint mainly due to absence of puddling in field. The yield loss due to weed interference is huge, may be up to 100%. In this perspective, the present experiment was conducted to study the efficacy of selected herbicides, and to predict the rice yield using artificial neural network (ANN) models. The dry weight and density of weeds were recorded at different growth stages and consequently herbicidal efficacy was evaluated. Experimental results revealed that pre-emergence (PRE) herbicide effectively controlled the germination of grassy weeds. Application bispyribac-sodium as post-emergence (POST) following PRE herbicides (clomazone or pendimethalin) or as tank-mixture with clomazone effectively reduced the density and biomass accumulation of diverse weed flora in DSR. Herbicidal treatments improved the plant height, yield attributes and grain yield (2.7 to 5.5 times) over weedy check. The sensitivity of the best ANN model clearly depicts that the weed control index (WCI) of herbicides was most important than their weed control efficiency (WCE). Besides, the early control of weeds is a better prescription to improve rice yield. Differences in sensitivity values of WCI and WCE across the crop growth stages also suggest that at 15, 30 and 60 days after sowing, herbicides most effectively controlled sedges, broad leaves and grasses, respectively. Based on the grain yield and herbicidal WCE, it can be concluded that the combined application of pendimethalin or clomazone as PRE followed by bispyribac-sodium as POST or tank-mixture of clomazone + bispyribac sodium can effectively control different weed flushes throughout the crop growth period in DSR. (Author)

  5. α-(Substituted-phenoxyacetoxy)-α-heterocyclylmethylphosphonates: synthesis, herbicidal activity, inhibition on pyruvate dehydrogenase complex (PDHc), and application as postemergent herbicide against broadleaf weeds.

    Science.gov (United States)

    He, Hong-Wu; Peng, Hao; Wang, Tao; Wang, Chubei; Yuan, Jun-Lin; Chen, Ting; He, Junbo; Tan, Xiaosong

    2013-03-13

    Pyruvate dehydrogenase complex (PDHc) is the site of action of a new class of herbicides. On the basis of the previous work for O,O'-dimethyl α-(substituted-phenoxyacetoxy)alkylphosphonates (I), further synthetic modifications were made by introducing a fural and a thienyl group to structure I. A series of α-(substituted-phenoxyacetoxy)-α-heterocyclylmethylphosphonate derivatives (II) were synthesized as potential inhibitors of PDHc. The postemergent activity of the title compounds II was evaluated in greenhouse experiments. The in vitro efficacy of II against PDHc was also examined. Compounds II with fural as R(3) and 2,4-dichloro as X and Y showed significant herbicidal activity and effective inhibition against PDHc from plants. O,O'-Dimethyl α-(2,4-dichlorophenoxyacetoxy)-α-(furan-2-yl)methylphosphonate II-17 had higher inhibitory potency against PDHc from Pisum sativum than against PDHc from Oryza sativa in vitro and was most effective against broadleaf weeds at 50 and 300 ai g/ha. II-17 was safe for maize and rice even at the dose of 900-1200 ai g/ha. Field trials at different regions in China showed that II-17 (HWS) could control a broad spectrum of broad-leaved and sedge weeds at the rate of 225-375 ai g/ha for postemergent applications in maize fields. II-17 (HWS) displayed potential utility as a selective herbicide.

  6. INFLUENCE OF FERTILIZATION AND HERBICIDES APPLICATION ON SOIL MICROFLORA AND ELEMENTS OF SUGAR BEET YIELD

    Directory of Open Access Journals (Sweden)

    Andrija Kristek

    2004-06-01

    Full Text Available Two-year sugar beet trials were set up on two localities: Đakovo (Stagnic Luvisol and Osijek (Dystric Cambisol. The soils showed acid environment respond (pHKCL 4.9 – 5.4 and low humus contents (1.3 – 1.6%. The trial aimed to investigate use possibility of carbocalc (CC – pressed saturated silt (30% CaO and 40 t/ha stable manure in amendment of already determined unfavourable soil properties, increasing number of soil benefit microorganisms, as well as influence of obtained changes in weed control, sugar beet yield and quality. The weeds were controlled once with full-dose herbicides, repeated low-doses and by hoeing. Weed types, their number and weight were determined on 1 m2 in the July second decade. The investigation results show that carbocalc application (CC brought about increased pHKCL to 7.12 – 7.18 whereas stable manure one resulted in humus increased to 1.73 – 1.95%. It was resulted in increasing of number of bacteria, actinomycetes as well as aerobic asimbiotic nitrogen fixing bacteria – Azotobacter chroococcum. Weed prevailed were as follows : Ambrosia artemisiifolia L., Polygonum persicarie L., Amaranthus retroflexus L. and Echinochloa crus galli L. Total number of weeds without protection application was on the average 83.2 weeds/m2 and weight 4012 g. Hoeing resulted in decreased number of weeds to 2.9 weeds/m2 – weight 111 g, repeated herbicides application to 6.3 weeds/m2 – weight 294 g whereas the worst results , at weeds control, were obtained by the once herbicides control variant (9.1 weed/m2 i.e. 534 g. Low- dose herbicide application variants resulted in higher root yield (48.5 t/ha compared to the once application (45.1 t/ha. However, hoeing brought about the highest root (50.8 t/ha and sugar yield (6.2 t/ha. Root yield was very significantly increased and sugar yield significantly by carbocalc (CC application compared to the control.

  7. Body mass index and bromoxynil exposure in a sample of rural residents during spring herbicide application.

    Science.gov (United States)

    Semchuk, Karen; McDuffie, Helen; Senthilselvan, Ambikaipakan; Cessna, Allan; Irvine, Donald

    2004-09-10

    Bromoxynil (3,5-dibromo-4-hydroxybenzonitrile), a phenolic herbicide, is widely used in production of cereals and other crops. Little is known, however, about bromoxynil exposure in humans. Results of previous research suggest a longer residence time in the body for bromoxynil compared to phenoxy herbicides [e.g., (2,4-dichlorophenoxy)acetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA)] and that bromoxynil would tend to partition into fatty tissue more so than 2,4-D. In previous research, body mass index (BMI) was found to be an independent predictor of plasma concentrations of 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE), the persistent lipophilic metabolite of the chlorinated pesticide bis(4-chlorophenyl)-1,1,1-trichloroethane (DDT). As part of the Prairie Ecosystem Study, gas chromatography/mass spectrometry analysis was used to measure concentrations of bromoxynil and seven other herbicides (2,4-D, dicamba, fenoxaprop, MCPA, ethalfluralin, triallate, and trifluralin) in plasma from residents (104 men, 88 women, 24 youths age 12-17 yr) of a cereal-producing region in Saskatchewan, Canada, during spring herbicide application, 1996. Multiple logistic regression analysis was used to explore whether BMI predicted detection of bromoxynil in plasma from the adults. The prevalence of detection (detection limits: 2-50 microg/L) was markedly higher for bromoxynil (men, 44.2%; women, 14.8%; youths, 20.8%) compared to each of the other herbicides including 2,4-D (men, 16.5%; women, 3.4%; youths, 12.5%) and MCPA (men, 6.8%; women, 1.1%; youths, 4.2%), although bromoxynil is commonly formulated or tank mixed with these herbicides. In the multiple logistic regression analysis, the variables BMI, exposure group [bromoxynil applicators, non-applicator family members of bromoxynil applicators, all others (reference group)], and days elapsed since the last use of bromoxynil were found to be independent predictors of detection of bromoxynil, while age, gender

  8. Herbicidal Control of Grasses

    OpenAIRE

    Om Prakash; Srinivasan Ramanujam

    1980-01-01

    Necessity of the herbicidal application for controlling undesirable grasses, by the Defence Services, Military farms and Inter Service Organisations is highlighted. Control of grasses by herbicidal chemicals, registered under the Insecticides Act 1968 in this country, is reviewed apart from a mention of non-chemical methods.

  9. A Review and Prospect on Herbicide Adjuvants

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The history, present status and future prospects of adjuvants application in herbicides were briefly reviewed. Adjuvants can be separated into two groups, activator adjuvants and utility adjuvants. The former directly enhances the efficacy of a herbicide through increasement of herbicide absorption, spreading, cuticular penetration, rainfastness and retention enhancement, and photodegradation of the herbicide can also be decreased. And the latter is utilized for improving application characteristics, behaviors and physical properties of herbicides and reducing or minimizing unwanted side effects on application.

  10. Soil resilience and yield performance in a vineyard established after intense pre-planting earthworks

    Science.gov (United States)

    Costantini, Edoardo; Valboa, Giuseppe; Gagnarli, Elena; Mocali, Stefano; Fabiani, Arturo; Priori, Simone; Simoni, Sauro; Storchi, Paolo; Perria, Rita; Vignozzi, Nadia; Agnelli, Alessandro

    2017-04-01

    Conventional earthworks undertaken before vine plantation may severely compromise soil functions and vine production, as a consequence of a decline of soil fertility caused by loss of organic matter and biological activity, along with changes in chemical and physical features of the topsoil due to the upset of the soil profile. This research was aimed at assessing the effects of conventional pre-planting earthworks on soil fertility and vine yield performance under organic farming. To this purpose, grape yield and quality along with soil chemical, physical and biological properties, were monitored over seven years in a young vineyard established in 2010 after soil leveling and deep ploughing, and in parallel in an older vineyard planted in 2000 after similar earthworks under the same soil and environment conditions. The vineyards (Vitis vinifera L., cv. Sangiovese) were located in the Chianti Classico district (Tuscany, Italy) on a stony calcareous soil classified as Cambic Skeletic Calcisol (loamic, aric) (WRB, 2014). Fertilization was based on annual applications of compost and shredded plant residues. According to the ordinary farming system, the older vineyard was kept free from grass covering during the first four years of growth by periodic tillage, in order to prevent nutritional competition, while in the following years it was managed by natural grass covering on alternate inter-rows. In the younger vineyard, grass covering needed to be postponed because of a delay in the vine development and grape yield induced by poor soil fertility. The results showed significant differences between the two vineyard, with the younger exhibiting lower total organic carbon (0.4 - 0.6 % vs 0.6 - 1.1 %), lower total nitrogen (0.07 - 0.11 % vs 0.10 - 0.15 %) and higher carbonate contents (32 - 38 % vs 21 -30 % total CaCO3), with no clear trend of recovery over time. Pre-planting earthworks also affected the structure and diversity of microbial and microarthropod communities

  11. Soil application of dinitroaniline and arylphenoxy propionic herbicides influences the activities of phosphate-solubilizing microorganisms in soil.

    Science.gov (United States)

    Das, Amal Chandra; Nayek, Hemanta; Chakravarty, Arunabha

    2012-12-01

    An experiment was conducted under laboratory conditions to investigate the effect of two systemic herbicides, viz. pendimethalin (a dinitroaniline) and quizalofop (an arylphenoxy propionic acid) at their recommended field application rates (1.0 kg and 50 g active ingredient per hectare, respectively), either separately or in a combination, on growth and activities of phosphate-solubilizing microorganisms in relation to their effects on biochemical transformations and availability of organic carbon, total and available phosphorus in a Typic Haplustept soil of West Bengal, India. Application of herbicides, in general, significantly stimulated the growth and activities of phosphate-solubilizing microorganisms which increased microbial biomass resulting in higher accumulation of oxidizable organic carbon, total and available phosphorus in soil as compared to untreated control. The combined application of both the herbicides highly stimulated the proliferations of phosphate-solubilizing microorganisms, while pendimethalin alone significantly accentuated phosphate-solubilizing capacities 36.4% as compared to untreated control and retained highest amount of total phosphorus due to greater microbial activities in soil. The separate application of quizalofop also manifested an induced effect on the proliferations of phosphate-solubilizing microorganisms and accounted significant amounts of organic carbon and available phosphorus in the soil system. The results of the present study thus indicated that the cited herbicides at their field application rates can be safely used to eradicate weeds in the crop fields.

  12. Strategies to achieve long-term benefits from multiple operational herbicide applications in lower coastal plain pine stands

    Science.gov (United States)

    Harold E. Quicke; Dwight K. Lauer

    2010-01-01

    Studies were installed on a range of soils to examine different post-plant herbaceous weed control timings following different site preparation timings with Chopper® herbicide. Chopper site preparation treatments were applied after bedding and included two application dates (August versus November). Pines were planted in winter following site preparation. Site...

  13. Changes in non-pine woody species density, composition, and diversity following herbicide and fertilization application to mid-rotation loblolly pine stands

    Science.gov (United States)

    Hal O. Liechty; Conner Fristoe

    2012-01-01

    We monitored woody vegetation (dbh>1.0 in) response for up to six years following a herbicide (16 ounces imazapyr /acre), a fertilizer (365 pounds urea and 175 pounds diammonium phosphate/acre ) and a combined fertilizer and herbicide application in four mid-rotation loblolly pine stands located within the Upper Gulf Coastal Plain in Arkansas. Approximately 60-80%...

  14. Detection of herbicides in the urine of pet dogs following home lawn chemical application

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Deborah W., E-mail: knappd@purdue.edu [Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN (United States); Purdue University Center for Cancer Research and Purdue Oncological Sciences Center, West Lafayette, IN (United States); Peer, Wendy A.; Conteh, Abass; Diggs, Alfred R. [Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN (United States); Cooper, Bruce R. [Bindley Bioscience Center, Purdue University, West Lafayette, IN (United States); Glickman, Nita W. [Department of Emergency Medicine, University of North Carolina, Chapel Hill, NC (United States); Bonney, Patty L.; Stewart, Jane C. [Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN (United States); Glickman, Lawrence T. [Department of Emergency Medicine, University of North Carolina, Chapel Hill, NC (United States); Murphy, Angus S. [Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN (United States)

    2013-07-01

    Exposure to herbicide-treated lawns has been associated with significantly higher bladder cancer risk in dogs. This work was performed to further characterize lawn chemical exposures in dogs, and to determine environmental factors associated with chemical residence time on grass. In addition to concern for canine health, a strong justification for the work was that dogs may serve as sentinels for potentially harmful environmental exposures in humans. Experimentally, herbicides [2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxypropionic acid (MCPP), dicamba] were applied to grass plots under different conditions (e.g., green, dry brown, wet, and recently mowed grass). Chemicals in dislodgeable residues were measured by LC-MS at 0.17, 1, 24, 48, 72 h post treatment. In a separate study, 2,4-D, MCPP, and dithiopyr concentrations were measured in the urine of dogs and in dislodgeable grass residues in households that applied or did not apply chemicals in the preceding 48 h. Chemicals were measured at 0, 24, and 48 h post application in treated households and at time 0 in untreated control households. Residence times of 2,4-D, MCPP, and dicamba were significantly prolonged (P < 0.05) on dry brown grass compared to green grass. Chemicals were detected in the urine of dogs in 14 of 25 households before lawn treatment, in 19 of 25 households after lawn treatment, and in 4 of 8 untreated households. Chemicals were commonly detected in grass residues from treated lawns, and from untreated lawns suggesting chemical drift from nearby treated areas. Thus dogs could be exposed to chemicals through contact with their own lawn (treated or contaminated through drift) or through contact with other grassy areas if they travel. The length of time to restrict a dog's access to treated lawns following treatment remains to be defined. Further study is indicated to assess the risks of herbicide exposure in humans and dogs. - Highlights: • Lawn chemicals were commonly

  15. Post-directed application of a potential organic herbicide for bell peppers

    Science.gov (United States)

    Organic pepper (Capsicum annuum L.) producers need appropriate herbicides that can effectively provide post-emergent weed control. Research was conducted in southeast Oklahoma (Atoka County, Lane, OK) to determine the impact of a potential organic herbicide on weed control efficacy, crop injury, an...

  16. Predicting pre-planting risk of Stagonospora nodorum blotch in winter wheat using machine learning models

    Science.gov (United States)

    Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB), caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum). The relative importance of these factors in the risk of SNB has not been determined and this know...

  17. Genetics, Development, and Application of Cytoplasmic Herbicide Resistance in Foxtail Millet

    Institute of Scientific and Technical Information of China (English)

    JI Gui-su; DU Rui-heng; HOU Sheng-lin; CHENG Ru-hong; WANG Xin-yu; ZHAO Xiu-ping

    2007-01-01

    The effect of cytoplasmic herbicide resistant gene in millet plants was studied. The heterozygous populations and isogenic lines with homocaryotic alloplasmic genes were obtained by crossing and reciprocal crossing of cytoplasmic herbicide resistant plants with susceptive plants of foxtail millet. The characters of F1, F2, backcross and composite cross groups, and the growth and development of isogenic lines were compared. The cytoplasmic herbicide resistant gene slowed the development of seedling, delayed heading, and shortened the milking stage in the foxtail millet plant. Yield capacity and main agronomic characters were all affected by the cytoplasmic herbicide resistant gene in most of the backcross, composite cross, and F2 populations. However, there was stronger hybrid vigor in F1. The backcrosses,composite crosses, and F2 populations were widely separated and some of them had good characters similar to those of susceptive groups. The plant characters and development of foxtail millet were negatively affected by the cytoplasmic herbicide resistant gene. The authors proposed a method of using hybrid vigor to obtain high yield and avoid the negative effects of herbicide resistance cytoplasm in plant growth. The expected results could be obtained by selecting individuals in separate populations of fast developed seedlings, well-developed roots, and with capacities of early heading and fast milking. Guided by the principal mentioned above, many high yield lines and hybrid crosses of foxtail millet with herbicide resistant cytoplasm were obtained.

  18. Geochemical and hydrologic controls on the mobilization of arsenic derived from herbicide application

    Energy Technology Data Exchange (ETDEWEB)

    Fitzmaurice, Arthur G.; Bilgin, A. Azra [Department of Environmental Science and Engineering, California Institute of Technology, 1200 E. California Blvd., MC 138-78, Pasadena, CA 91125 (United States); O' Day, Peggy A.; Illera, Virginia [School of Natural Sciences, University of California, Merced, 5200 N. Lake Road, Merced, CA 95343 (United States); Burris, David R.; Reisinger, H. James [Integrated Science and Technology, Inc., 1349 Old Highway 41, Suite 225, Marietta, GA 30060 (United States); Hering, Janet G., E-mail: Janet.Hering@eawag.ch [Department of Environmental Science and Engineering, California Institute of Technology, 1200 E. California Blvd., MC 138-78, Pasadena, CA 91125 (United States)

    2009-11-15

    The fate and transport of As was examined at an industrial site where soil- and groundwater contamination are derived from the application of As{sub 2}O{sub 3} as a herbicide. Application of arsenical herbicides was discontinued in the 1970s and soils in the source area were partially excavated in 2003. Arsenic contamination (up to 280 mg/kg) remains in the source area soils and a plume of As-contaminated groundwater persists in the surficial aquifer downgradient of the source area with maximum observed As concentrations of 1200 {mu}g/L near the source area. The spatial extent of As contamination as defined by the 10 {mu}g/L contour appears to have remained relatively stable over the period 1996-2006; the boundary of the 1000 {mu}g/L contour has retreated over the same time period indicating a decrease in total As mass in the surficial groundwater. In column experiments conducted with source area soil, the As concentrations in the column effluent were comparable to those observed in groundwater near the source area. A substantial fraction of the As could be leached from the source area soil with ammonium sulfate and ammonium phosphate. Exhaustive extraction with background groundwater removed most of the total As. These results indicate that As in the source area soils is geochemically labile. Source area soils are low in extractable Fe, Mn and Al, and characterization by X-ray absorption spectroscopy and electron microscopy indicated that As is present primarily as arsenate sorbed to (alumino)silicate minerals. Batch sorption experiments showed much less sorption on surficial aquifer sediments than on sediments from the Jackson Bluff Formation (JBF), a presumed confining layer. This limited capacity of the surficial aquifer sediments for As sorption is consistent with the similar As contents observed for these sediments within and upgradient of the As plume. The apparent stability of the As plume cannot be explained by sequestration of As within the surficial

  19. EFFECT OF SOME HERBICIDES APPLICATION ON NITRATES (V CONTENT IN POTATO TUBERS

    Directory of Open Access Journals (Sweden)

    Krystyna Zarzecka

    2016-07-01

    Full Text Available A field experiment was carried in the Agricultural Experimental Station Zawady (52°03’ N; 22°33’ E,owned by the Siedlce University of Natural Sciences and Humanities out in 2005-2007. The research was designed as a two factors randomized block with three replicates. Factors examined in the experiment included two potato varieties - Irga and Balbina and four weed control methods combined mechanical and chemical for herbicides application: Plateen 41,5 WG (metribuzin + flufenacet, Racer 250 EC (fluorochloridone, Sencor 70 WG (metribuzin, and control object – mechanical weeding before and after potato sprouting. The study was designed to test the influence of the weed control methods on nitrates content in consumption potato tubers. The nitrates (V content depended on the weed control methods, varieties and weather conditions throughout the growing season. The highest nitrates (V content was determined when weeds were controlled mechanically and chemically using Sencor 70 WG. The study results demonstrated that Balbina had a higher concentration of nitrates (V compared with Irga.

  20. Cyanobacterial Toxins as Allelochemicals with Potential Applications as Algaecides, Herbicides and Insecticides

    Directory of Open Access Journals (Sweden)

    Fernando G. Noriega

    2008-05-01

    Full Text Available Cyanobacteria (“blue-green algae” from marine and freshwater habitats are known to produce a diverse array of toxic or otherwise bioactive metabolites. However, the functional role of the vast majority of these compounds, particularly in terms of the physiology and ecology of the cyanobacteria that produce them, remains largely unknown. A limited number of studies have suggested that some of the compounds may have ecological roles as allelochemicals, specifically including compounds that may inhibit competing sympatric macrophytes, algae and microbes. These allelochemicals may also play a role in defense against potential predators and grazers, particularly aquatic invertebrates and their larvae. This review will discuss the existing evidence for the allelochemical roles of cyanobacterial toxins, as well as the potential for development and application of these compounds as algaecides, herbicides and insecticides, and specifically present relevant results from investigations into toxins of cyanobacteria from the Florida Everglades and associated waterways.

  1. 抗除草剂基因在作物育种中的应用%Application of Herbicide Resistance Gene in Crop Breeding

    Institute of Scientific and Technical Information of China (English)

    宋志红; 孟庆忠; 张涛; 李国荣

    2015-01-01

    As the development of herbicide resistant crops, especially herbicide resistant transgenic crops, it had become eas-ier to field weed control, and decrease weeding cost, improve economic effects. The application of herbicide gene in crop breeding was summarized in the article to explore the use of herbicide resistant genes in crops.%抗除草剂作物尤其是转基因抗除草剂作物的开发,使田间防除杂草变得简便易行,并且降低除草成本,提高经济效益。对抗除草剂基因在作物育种中的应用现状进行了综述,挖掘抗除草剂基因在作物中的利用。

  2. Predicting Pre-planting Risk of Stagonospora nodorum blotch in Winter Wheat Using Machine Learning Models.

    Science.gov (United States)

    Mehra, Lucky K; Cowger, Christina; Gross, Kevin; Ojiambo, Peter S

    2016-01-01

    Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB), caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum). The relative importance of these factors in the risk of SNB has not been determined and this knowledge can facilitate disease management decisions prior to planting of the wheat crop. In this study, we examined the performance of multiple regression (MR) and three machine learning algorithms namely artificial neural networks, categorical and regression trees, and random forests (RF), in predicting the pre-planting risk of SNB in wheat. Pre-planting factors tested as potential predictor variables were cultivar resistance, latitude, longitude, previous crop, seeding rate, seed treatment, tillage type, and wheat residue. Disease severity assessed at the end of the growing season was used as the response variable. The models were developed using 431 disease cases (unique combinations of predictors) collected from 2012 to 2014 and these cases were randomly divided into training, validation, and test datasets. Models were evaluated based on the regression of observed against predicted severity values of SNB, sensitivity-specificity ROC analysis, and the Kappa statistic. A strong relationship was observed between late-season severity of SNB and specific pre-planting factors in which latitude, longitude, wheat residue, and cultivar resistance were the most important predictors. The MR model explained 33% of variability in the data, while machine learning models explained 47 to 79% of the total variability. Similarly, the MR model correctly classified 74% of the disease cases, while machine learning models correctly classified 81 to 83% of these cases. Results show that the RF algorithm, which explained 79% of the variability within the data, was the most accurate in predicting the risk of SNB, with an accuracy rate of 93%. The RF algorithm could allow early assessment of

  3. Weed Control and Peanut Tolerance with Ethalfluralin-Based Herbicide Systems

    Directory of Open Access Journals (Sweden)

    W. J. Grichar

    2012-01-01

    Full Text Available Field studies were conducted from 2007 through 2009 to determine weed efficacy and peanut (Arachis hypogaea L. response to herbicide systems that included ethalfluralin applied preplant incorporated. Control of devil's claw (Proboscidea louisianica (Mill. Thellung, yellow nutsedge (Cyperus esculentus L., Palmer amaranth (Amaranthus palmeri S. Wats., and puncturevine (Tribulus terrestris L. was most consistent with ethalfluralin followed by either imazapic or imazethapyr applied postemergence. Peanut stunting was 19% when paraquat alone was applied early-postemergence. Stunting increased to greater than 30% when ethalfluralin applied preplant incorporated was followed by S-metolachlor applied preemergence and paraquat applied early-postemergence. Stunting (7% was also observed when ethalfluralin was followed by flumioxazin plus S-metolachlor applied preemergence with lactofen applied mid-postemergence. Ethalfluralin followed by paraquat applied early-postemergence reduced peanut yield when compared to the nontreated check. Ethalfluralin applied preplant incorporated followed by imazapic applied mid-postemergence provided the greatest yield (6220 kg/ha. None of the herbicide treatments reduced peanut grade (sound mature kernels plus sound splits when compared with the nontreated check.

  4. Application of herbicides is likely to reduce greenhouse gas (N2O and CH4) emissions from rice-wheat cropping systems

    Science.gov (United States)

    Jiang, Jingyan; Chen, Linmei; Sun, Qing; Sang, Mengmeng; Huang, Yao

    2015-04-01

    Herbicides have been widely used to control weeds in croplands; however, their effects on greenhouse gas emissions remain unclear. The effects of three wheat herbicides (acetochlor, AC; tribenuron-methyl, TBM; fenoxaprop-p-ethyl, FE) and two rice herbicides (butachlor, BC; bensulfuron-methyl, BSM) on N2O and CH4 emissions were investigated in this study. In the wheat growing season, applications of AC and FE + TBM significantly reduced N2O emissions by 31% compared with no herbicide use (p = 0.001). In the rice growing season, the application of BC significantly reduced CH4 emissions by 58% (p = 0.022), and BSM significantly reduced N2O emissions by 27% (p = 0.040); however, no significant difference among treatments with regard to the aggregate emissions of N2O and CH4 in the CO2 equivalent for the 100-year horizon was observed (p > 0.05). Relative to control plots, which were not treated with herbicides, the combined application of the herbicides FE and TBM in the wheat season led to a significant decrease in greenhouse gas intensity (GHGI) by ∼41% (p = 0.002), and the application of BC together with BSM reduced GHGI by 22% in the rice season, although this reduction was not statistically significant (p = 0.158). Further investigation suggested that the inhibitory effect of herbicides on N2O emissions in the wheat field could be ascribed to low soil ammonium nitrogen and less abundance of denitrifying bacteria. The inhibitory effects of separate applications of BC on CH4 emissions in rice fields, in contrast, were linked to high soil nitrate nitrogen and urease activity.

  5. Persistence of the herbicide butachlor in soil after repeated applications and its effects on soil microbial functional diversity.

    Science.gov (United States)

    Fang, Hua; Yu, Yun L; Wang, Xiu G; Chu, Xiao Q; Yang, Xiao E

    2009-02-01

    Effects of repeated applications of the herbicide butachlor (N-(butoxymethyl)-2-chloro -N-2',6'-dimethyl acetanilide) in soil on its persistence and soil microbial functional diversity were investigated under laboratory conditions. The degradation half-lives of butachlor at the recommended dosage in soil were calculated to be 12.5, 4.5, and 3.2 days for the first, second, and third applications, respectively. Throughout this study, no significant inhibition of the Shannon-Wiener index H' was observed. However, the Simpson index 1/D and McIntosh index U were significantly reduced (P butachlor, and thereafter gradually recovered to a similar level to that of the control soil. A similar variation but faster recovery in 1/D and U was observed after the second and third Butachlor applications. Therefore, repeated applications of butachlor led to more rapid degradation of the herbicide, and more rapid recovery of soil microorganisms. It is concluded that repeated butachlor applications in soil had a temporary or short-term inhibitory effect on soil microbial communities.

  6. Dicotyledon Weed Quantification Algorithm for Selective Herbicide Application in Maize Crops.

    Science.gov (United States)

    Laursen, Morten Stigaard; Jørgensen, Rasmus Nyholm; Midtiby, Henrik Skov; Jensen, Kjeld; Christiansen, Martin Peter; Giselsson, Thomas Mosgaard; Mortensen, Anders Krogh; Jensen, Peter Kryger

    2016-11-04

    The stricter legislation within the European Union for the regulation of herbicides that are prone to leaching causes a greater economic burden on the agricultural industry through taxation. Owing to the increased economic burden, research in reducing herbicide usage has been prompted. High-resolution images from digital cameras support the studying of plant characteristics. These images can also be utilized to analyze shape and texture characteristics for weed identification. Instead of detecting weed patches, weed density can be estimated at a sub-patch level, through which even the identification of a single plant is possible. The aim of this study is to adapt the monocot and dicot coverage ratio vision (MoDiCoVi) algorithm to estimate dicotyledon leaf cover, perform grid spraying in real time, and present initial results in terms of potential herbicide savings in maize. The authors designed and executed an automated, large-scale field trial supported by the Armadillo autonomous tool carrier robot. The field trial consisted of 299 maize plots. Half of the plots (parcels) were planned with additional seeded weeds; the other half were planned with naturally occurring weeds. The in-situ evaluation showed that, compared to conventional broadcast spraying, the proposed method can reduce herbicide usage by 65% without measurable loss in biological effect.

  7. Dicotyledon Weed Quantification Algorithm for Selective Herbicide Application in Maize Crops

    Science.gov (United States)

    Laursen, Morten Stigaard; Jørgensen, Rasmus Nyholm; Midtiby, Henrik Skov; Jensen, Kjeld; Christiansen, Martin Peter; Giselsson, Thomas Mosgaard; Mortensen, Anders Krogh; Jensen, Peter Kryger

    2016-01-01

    The stricter legislation within the European Union for the regulation of herbicides that are prone to leaching causes a greater economic burden on the agricultural industry through taxation. Owing to the increased economic burden, research in reducing herbicide usage has been prompted. High-resolution images from digital cameras support the studying of plant characteristics. These images can also be utilized to analyze shape and texture characteristics for weed identification. Instead of detecting weed patches, weed density can be estimated at a sub-patch level, through which even the identification of a single plant is possible. The aim of this study is to adapt the monocot and dicot coverage ratio vision (MoDiCoVi) algorithm to estimate dicotyledon leaf cover, perform grid spraying in real time, and present initial results in terms of potential herbicide savings in maize. The authors designed and executed an automated, large-scale field trial supported by the Armadillo autonomous tool carrier robot. The field trial consisted of 299 maize plots. Half of the plots (parcels) were planned with additional seeded weeds; the other half were planned with naturally occurring weeds. The in-situ evaluation showed that, compared to conventional broadcast spraying, the proposed method can reduce herbicide usage by 65% without measurable loss in biological effect. PMID:27827908

  8. Biochar soil additions impacts herbicide fate: Importance of application timing and feedstock species

    Science.gov (United States)

    BACKGROUND: Biochar (BC), solid biomass subjected to pyrolysis, can alter the fate of pesticides in soil. We investigated the effect of soil amendment with several biochars on the sorption, persistence, leaching and bioefficacy of the herbicides clomazone (CMZ) and bispyribac sodium (BYP). RESULTS:...

  9. Dicotyledon Weed Quantification Algorithm for Selective Herbicide Application in Maize Crops

    DEFF Research Database (Denmark)

    Laursen, Morten Stigaard; Jørgensen, Rasmus Nyholm; Midtiby, Henrik Skov

    2016-01-01

    of a single plant is possible. The aim of this study is to adapt the monocot and dicot coverage ratio vision (MoDiCoVi) algorithm to estimate dicotyledon leaf cover, perform grid spraying in real time, and present initial results in terms of potential herbicide savings in maize. The authors designed...

  10. Dicotyledon Weed Quantification Algorithm for Selective Herbicide Application in Maize Crops

    Directory of Open Access Journals (Sweden)

    Morten Stigaard Laursen

    2016-11-01

    Full Text Available The stricter legislation within the European Union for the regulation of herbicides that are prone to leaching causes a greater economic burden on the agricultural industry through taxation. Owing to the increased economic burden, research in reducing herbicide usage has been prompted. High-resolution images from digital cameras support the studying of plant characteristics. These images can also be utilized to analyze shape and texture characteristics for weed identification. Instead of detecting weed patches, weed density can be estimated at a sub-patch level, through which even the identification of a single plant is possible. The aim of this study is to adapt the monocot and dicot coverage ratio vision (MoDiCoVi algorithm to estimate dicotyledon leaf cover, perform grid spraying in real time, and present initial results in terms of potential herbicide savings in maize. The authors designed and executed an automated, large-scale field trial supported by the Armadillo autonomous tool carrier robot. The field trial consisted of 299 maize plots. Half of the plots (parcels were planned with additional seeded weeds; the other half were planned with naturally occurring weeds. The in-situ evaluation showed that, compared to conventional broadcast spraying, the proposed method can reduce herbicide usage by 65% without measurable loss in biological effect.

  11. Weed control based on real time patchy application of herbicides using image analysis as a non-destructive estimation method for weed infestation and herbicide effects

    DEFF Research Database (Denmark)

    Asif, Ali

    There is an increasing concern about excessive use of herbicides for weed control in arable lands. Usually the whole field is sprayed uniformly, while the distribution of weeds often is non-uniform. Often there are spots in a field where weed pressure is very low and has no significant effect on ...... to estimate infestation of weeds at early growth stage. The image analysis method was further developed to estimate colour response of applying increasing doses of herbicides in selectivity experiments and to evaluate the weed-suppressing effect of mulches....

  12. Seletividade de herbicidas a cinco tipos de gramas Herbicide selectivity to five species of turfgrasses

    Directory of Open Access Journals (Sweden)

    P.J. Christoffoleti

    2001-08-01

    Full Text Available Dentre as opções de controle de plantas daninhas em gramados, destaca-se o uso de herbicidas, porém poucas informações existem na literatura sobre a sua seletividade a gramados. Assim, foi desenvolvida a presente pesquisa em casa de vegetação da ESALQ - Piracicaba, com o objetivo de testar a seletividade de herbicidas aplicados em pré-plantio (sulfentrazone a 1,4 kg i.a. ha-1 e oxadiazon a 1,0 kg i.a. ha-1 e em pós-emergência (halosulfuron a 112,5 g i.a. ha-1, 2,4-D a 2,010 kg i.a. ha-1 e MSMA a 2,4 kg i.a. ha-1, em cinco espécies de gramas (família Poaceae: são-carlos (Axonopus affinis, esmeralda (Zoysia japonica, bermuda (Cynodon dactylon, zoysia (Zoysia matrella e santo-agostinho (Stenotaphrum secundatum. As conclusões gerais deste trabalho de pesquisa foram de que a seletividade de herbicidas aos diversos tipos de grama é função principalmente da espécie de grama e do tipo e da dose do herbicida aplicado. Dentre os herbicidas testados, destacam-se como mais seletivos o halosulfuron na dose de 112,5 g i.a. ha-1 e o 2,4-D na de 2,010 kg i.a. ha-1; as espécies de grama do gênero Zoysia (esmeralda [Z. japonica] e zoysia [Z. matrella], de maneira geral, são mais tolerantes aos herbicidas testados nesta pesquisa.Among the weed control options, herbicide is certainly one to be considered for weed control in turfgrass; however, little has been published about herbicide selectivity, specially under Brazilian landscape conditions. Therefore, this research was conducted at USP/ESALQ, Piracicaba-SP, Brazil, to evaluate herbicide selectivity to turfgrass of pre-planting application herbicides (sulfentrazone at 1.4 kg a.i.ha-1 and oxadiazon 1.0 kg a.i.ha-1 and post-emergence application herbicides (halosulfuron at 112.5 g a.i.ha-1, 2,4-D at 2.010 kg a.i.ha-1 and MSMA at 2.4 kg a.i.ha-1, in five species of turfgrass: Axonopus affinis Chase, Zoysia japonica, Cynodon dactylon, Zoysia matrella and Stenotaphrum secundatum. It was concluded

  13. The weed composition in an orchard as a result of long-term foliar herbicide application

    Directory of Open Access Journals (Sweden)

    Maria Licznar-Małańczuk

    2016-09-01

    Full Text Available The weed composition and the dominance of individual species occurring in an orchard were assessed at the Research Station of the Wrocław University of Environmental and Life Sciences, Poland, during the first 10 years after orchard establishment. ‘Ligol’ apple trees were planted in the spring of 2004 (3.5 × 1.2 m. Foliar herbicides were applied in 1 m wide tree rows twice or three times per each vegetation period. In the inter-row spaces, perennial grass was maintained. Ten years of maintenance of herbicide fallow contributed to a change in the weed composition in the orchard. It changed as a result of different responses of the most important weed species to the foliar herbicides. Total suppression of Elymus repens was observed in the first year after planting the trees. Convolvulus arvensis, Cirsium arvense, and other perennial weeds, completely disappeared in the succeeding periods. The maintenance of herbicide fallow did not affect the abundance of Taraxacum officinale. The percentage of the soil surface covered by Trifolium repens and Epilobium adenocaulon, perennial weeds with considerable tolerance to post-emergence herbicides, increased during the fruit-bearing period of the trees. The abundance of these weeds was significantly reduced only in the rows with the stronger growing trees on the semi-dwarf P 2 rootstock. Stellaria media was the dominant annual weed. Senecio vulgaris, Poa annua, Capsella bursa-pastoris, and Lamium spp. were also frequently observed. A significant increase in the abundance of annual and perennial weeds was found in the tree rows as a result of improved water availability after a period of high precipitation.

  14. Potential application of urea-derived herbicides as cytokinins in plant tissue culture.

    Science.gov (United States)

    Srinivasan, Malathi; Nachiappan, Vasanthi; Rajasekharan, Ram

    2006-12-01

    Various urea-derived herbicides and different cytokinin analogues were used to determine their effects on callusing response and shoot regenerating capacity of alfalfa (Medicago sativa L.) and Coleus (Coleus forskohlii Briq.). The herbicides monuron and diuron evoked profuse callusing response from Coleus leaf segments and alfalfa petiole explants on Murashige and Skoog medium. Shoot regeneration by monuron (2.0 mg/l) showed a maximum of 3 multiple shoots both in alfalfa and Coleus with a frequency of 92% and 75%, respectively. Whereas diuron (0.5 mg/l) showed a high frequency of shoot regeneration (89%)with a mean number of 5 shoots in alfalfa, in C.forskohlii, the frequency of regeneration was 90%with a mean number of 6 shoots. Diuron with two chloride groups in the phenyl ring showed significantly higher cytokinin-like activity than single chloride substitution monuron. This study demonstrates the potential use of monuron and diuron as cytokinins in plant tissue culture.

  15. Isoprenoid biosynthesis. Metabolite profiling of peppermint oil gland secretory cells and application to herbicide target analysis.

    Science.gov (United States)

    Lange, B M; Ketchum, R E; Croteau, R B

    2001-09-01

    Two independent pathways operate in plants for the synthesis of isopentenyl diphosphate and dimethylallyl diphosphate, the central intermediates in the biosynthesis of all isoprenoids. The mevalonate pathway is present in the cytosol, whereas the recently discovered mevalonate-independent pathway is localized to plastids. We have used isolated peppermint (Mentha piperita) oil gland secretory cells as an experimental model system to study the effects of the herbicides fosmidomycin, phosphonothrixin, methyl viologen, benzyl viologen, clomazone, 2-(dimethylamino)ethyl diphosphate, alendronate, and pamidronate on the pools of metabolites related to monoterpene biosynthesis via the mevalonate-independent pathway. A newly developed isolation protocol for polar metabolites together with an improved separation and detection method based on liquid chromatography-mass spectrometry have allowed assessment of the enzyme targets for a number of these herbicides.

  16. Potential application of urea-derived herbicides as cytokinins in plant tissue culture

    Indian Academy of Sciences (India)

    Malathi Srinivasan; Vasanthi Nachiappan; Ram Rajasekharan

    2006-12-01

    Various urea-derived herbicides and different cytokinin analogues were used to determine their effects on callusing response and shoot regenerating capacity of alfalfa (Medicago sativa L.) and Coleus (Coleus forskohlii Briq.). The herbicides monuron and diuron evoked profuse callusing response from Coleus leaf segments and alfalfa petiole explants on Murashige and Skoog medium. Shoot regeneration by monuron (2.0 mg/l) showed a maximum of 3 multiple shoots both in alfalfa and Coleus with a frequency of 92% and 75%, respectively. Whereas diuron (0.5 mg/l) showed a high frequency of shoot regeneration (89%) with a mean number of 5 shoots in alfalfa, in C. forskohlii, the frequency of regeneration was 90% with a mean number of 6 shoots. Diuron with two chloride groups in the phenyl ring showed significantly higher cytokinin-like activity than single chloride substitution monuron. This study demonstrates the potential use of monuron and diuron as cytokinins in plant tissue culture.

  17. Influence of Environmental Factors, Cultural Practices, and Herbicide Application on Seed Germination and Emergence Ecology of Ischaemum rugosum Salisb.

    Directory of Open Access Journals (Sweden)

    Charlemagne Alexander A Lim

    Full Text Available Ischaemum rugosum Salisb. (Saramolla grass is a noxious weed of rice that is difficult to control by chemical or mechanical means once established. A study was conducted to determine the effect of light, temperature, salt, drought, flooding, rice residue mulch, burial depth, and pre-emergence herbicides on seed germination and emergence of I. rugosum. Germination was stimulated by light and inhibited under complete darkness. Optimum temperature for germination was 30/20°C (97.5% germination. Germination reduced from 31 to 3.5% when the osmotic potential of the growing medium decreased from -0.1 to -0.6 MPa and no germination occurred at -0.8 MPa. Germination was 18 and 0.5% at 50 and 100 mM NaCl concentrations, respectively, but was completely inhibited at 150 mM or higher. Residue application at 1-6 t ha-1 reduced weed emergence by 35-88% and shoot biomass by 55-95%. The efficacy of pre-emergence herbicides increased with increasing application rates and decreased with increasing rice residue mulching. The efficacy of herbicides was in the order of oxadiazon> pendimethalin> pretilachlor. At 6 t ha-1, all herbicides, regardless of rates, did not differ from the control treatment. I. rugosum seeds buried at 2 cm or deeper did not emerge; however, they emerged by 4.5 and 0.5% at 0.5 and 1 cm depths, respectively, compared to the 39% germination for soil surface seeding. Flooding at 4 DAS or earlier reduced seedling emergence and shoot biomass while flooding at 8 DAS reduced only seedling emergence. The depth and timing of flooding independently reduced root biomass. Flooding at 4 and 6 cm depths reduced the root biomass. Relative to flooding on the day of sowing, flooding at 8 DAS increased root biomass by 89%. Similarly, flooding on the day of sowing and at 2 DAS reduced the root-shoot biomass ratio. Under the no-flood treatment, increasing rates of pretilachlor from 0.075 to 0.3 kg ai ha-1 reduced weed emergence by 61-79%. At the flooding depth

  18. Segurança das condições de trabalho de tratorista em aplicações de herbicidas em soja e amendoim e eficiência de equipamentos de proteção individual Safety work conditions for tractor operators in application of herbicides on soybean and peanut crops and effectiveness of personal protective equipment

    Directory of Open Access Journals (Sweden)

    Adriano B. Cristóforo

    2007-01-01

    Full Text Available Teve-se o objetivo de avaliar a eficiência de um conjunto de equipamentos de proteção individual no controle das exposições proporcionadas ao tratorista aplicando herbicidas nas culturas de soja e de amendoim com o pulverizador de barra e a segurança dessas condições de trabalho. Os pulverizadores utilizados foram os convencionais empregados nas duas culturas para as aplicações de herbicidas em pré-plantio incorporado (ppi, em pré-emergência (pré e em pós-emergência inicial (pós, com volumes de 200 L ha-1, e 150 L ha-1 apenas na aplicação em pós, na cultura de soja. As exposições sem EPIs foram de 102,77 mL de calda por dia nas aplicações em ppi, 39,62 em pré e 47,14 em pós-emergência. A eficiência dos EPIs no controle das exposições dérmicas foi de 76,5% em ppi, 50,9% em pré e 75,3% em pós-emergência. Na cultura de soja, foram seguras para o tratorista, sem ou com EPIs, as aplicações de pendimethalin, imazaquin e flumetsulam em ppi; de pendimethalin, acetochlor, clomazone, flumioxazin, imazaquin, metribuzin, sulfentrazone, dimethenamid e flumetsulamem em pré, e de bentazone, glyphosate, imazethapyr, quizalofop-ethyl, chlorimuron ethyl e oxasulfuron em pós. Na cultura de amendoim, sem e com EPIs, foi segura a aplicação de pendimethalin em ppi; em pré, a aplicação de alachlor foi classificada como insegura, sem ou com o uso dos EPIs.The aim of the study was to evaluate the effectiveness of a combination of personal protective equipments (PPE for the tractor operator applying herbicides on soybean and peanut crops with a tractor mounted boom sprayer and the safetyness of these work conditions. The application of the herbicides were in pre-planting soil-incorporated (ppi, pre-emergence (pre and post-emergence (post treatment, with volumes of 200 L ha-1, except in the post application for soybeans where it was 150 L ha-1. It was shown that exposure with PPE was 102.77 mL of spray per day in ppi, 39.62 in

  19. Effect of Various Doses Application of Metribuzin Herbicide and Plant Density on Yield and Physiological Indices of Wheat (Triticum aestivum

    Directory of Open Access Journals (Sweden)

    M Naghshbandi

    2012-10-01

    Full Text Available In order to survey the influence of metribuzin herbicide on physiological indices and yield of wheat, an experiment was conducted at experimental field of Plant Pest and Disease Research Institute, Karaj, Iran during 2007. Treatments were in factorial arrangement laid out in four randomized complete blocks. The factors investigated were three plant densities: 400, 500 and 600 plant.m-2 and metribuzin doses: 0, 0.2, 0.4, 0.6 and 0.8 kg.ha-1. The result showed that the highest physiological indices and grain yield were obsevered in densities of 500 plant.m-2 and in applications of 0.6 and 0.8 kg. ha-1. Higher rates could be provided an acceptable level of weed control. Plant density could provide good control on weed and could be decrease using herbicide too by decreasing of available light for weed. This strategy can reduce the peresure of selection in resistant weeds population.

  20. Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment.

    Science.gov (United States)

    Pereira, Anderson E S; Grillo, Renato; Mello, Nathalie F S; Rosa, Andre H; Fraceto, Leonardo F

    2014-03-15

    Nanoparticles of poly(epsilon-caprolactone) containing the herbicide atrazine were prepared, characterized, and evaluated in terms of their herbicidal activity and genotoxicity. The stability of the nanoparticles was evaluated over a period of three months, considering the variables: size, polydispersion index, pH, and encapsulation efficiency. Tests on plants were performed with target (Brassica sp.) and non-target (Zea mays) organisms, and the nanoparticle formulations were shown to be effective for the control of the target species. Experiments using soil columns revealed that the use of nanoparticles reduced the mobility of atrazine in the soil. Application of the Allium cepa chromosome aberration assay demonstrated that the nanoparticle systems were able to reduce the genotoxicity of the herbicide. The formulations developed offer a useful means of controlling agricultural weeds, while at the same time reducing the risk of harm to the environment and human health. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Current state of herbicides in herbicide-resistant crops.

    Science.gov (United States)

    Green, Jerry M

    2014-09-01

    Current herbicide and herbicide trait practices are changing in response to the rapid spread of glyphosate-resistant weeds. Growers urgently needed glyphosate when glyphosate-resistant crops became available because weeds were becoming widely resistant to most commonly used selective herbicides, making weed management too complex and time consuming for large farm operations. Glyphosate made weed management easy and efficient by controlling all emerged weeds at a wide range of application timings. However, the intensive use of glyphosate over wide areas and concomitant decline in the use of other herbicides led eventually to the widespread evolution of weeds resistant to glyphosate. Today, weeds that are resistant to glyphosate and other herbicide types are threatening current crop production practices. Unfortunately, all commercial herbicide modes of action are over 20 years old and have resistant weed problems. The severity of the problem has prompted the renewal of efforts to discover new weed management technologies. One technology will be a new generation of crops with resistance to glyphosate, glufosinate and other existing herbicide modes of action. Other technologies will include new chemical, biological, cultural and mechanical methods for weed management. From the onset of commercialization, growers must now preserve the utility of new technologies by integrating their use with other weed management technologies in diverse and sustainable systems.

  2. IMPACT OF PREPLANTING FERTILIZATION ON THE LEAF NUTRIENT CONTENT OF YOUNG SOUR CHERRY TREES

    Directory of Open Access Journals (Sweden)

    E. KRISHKOV

    2007-08-01

    Full Text Available The objective of the present study was to determine the impact of seven variants of organic and mineral preplanting fertilization on the content of the main macronutrients (N, P, K, Ca, Mg in the leaves of sour cherry trees, Erdi Bötermö cv., grafted on two types of rootstocks - seedling forms of Mahaleb (IK-M9 and Droganyellow bigarreau. The investigation was carried out during the period 2001-2003 in an experimental orchard at the Institute of Agriculture, Kyustendil. There was no significant effect of the different preplanting fertilization variants on leaf nitrogen content. The trees on rootstock Droganyellow bigarreau responded more pronouncedly to phosphorous and potassium fertilization, which corresponded to the higher leaf phosphorous and potassium content, compared to those on IK-M9. In all variants, there was a trend for a higher calcium concentration in the leaves of the trees on Droganyellow bigarreau. Leaf magnesium level decreased over experimental years, which was more strongly manifested by the trees on Droganyellow bigarreau, whereas in the variants on the Mahaleb rootstock it was of higher values.

  3. Herbicidal properties of antimalarial drugs.

    Science.gov (United States)

    Corral, Maxime G; Leroux, Julie; Stubbs, Keith A; Mylne, Joshua S

    2017-03-31

    The evolutionary relationship between plants and the malarial parasite Plasmodium falciparum is well established and underscored by the P. falciparum apicoplast, an essential chloroplast-like organelle. As a result of this relationship, studies have demonstrated that herbicides active against plants are also active against P. falciparum and thus could act as antimalarial drug leads. Here we show the converse is also true; many antimalarial compounds developed for human use are highly herbicidal. We found that human antimalarial drugs (e.g. sulfadiazine, sulfadoxine, pyrimethamine, cycloguanil) were lethal to the model plant Arabidopsis thaliana at similar concentrations to market herbicides glufosinate and glyphosate. Furthermore, the physicochemical properties of these herbicidal antimalarial compounds were similar to commercially used herbicides. The implications of this finding that many antimalarial compounds are herbicidal proffers two novel applications: (i) using the genetically tractable A. thaliana to reveal mode-of-action for understudied antimalarial drugs, and (ii) co-opting antimalarial compounds as a new source for much needed herbicide lead molecules.

  4. Managing Phytophthora crown and root rot on tomato by pre-plant treatments with biocontrol agents, resistance inducers, organic and mineral fertilizers under nursery conditions

    Directory of Open Access Journals (Sweden)

    Giovanna GILARDI

    2014-09-01

    Full Text Available Five trials were carried out under greenhouse conditions to test the efficacy of spray programmes based on biocontrol agents, phosphite-based fertilizers and a chemical inducer of resistance (acibenzolar-S-methyl, phosethyl-Al to control crown and root rot of tomato incited by Phytophthora nicotianae. The best disease control, under high disease pressure resulting from artificial inoculation, was obtained with three pre-plant leaf sprays at 7 d intervals with acibenzolar-S-methyl and with two mineral phosphite-based fertilizers. The disease reduction achieved was similar to that obtained with a single application of azoxystrobin and metalaxyl-M. Phosetyl-Al and the biocontrol agents Glomus spp. + Bacillus megaterium + Trichoderma, B. subtilis QST713, B. velezensis IT45 and the mixture T. asperellum ICC012 + T. gamsii ICC080 provided a partial disease control. Brassica carinata pellets did not control the disease.

  5. Use of image analysis to assess color response on plants caused by herbicide application

    DEFF Research Database (Denmark)

    Asif, Ali; Streibig, Jens Carl; Duus, Joachim;

    2013-01-01

    In herbicide-selectivity experiments, response can be measured by visual inspection, stand counts, plant mortality, and biomass. Some response types are relative to nontreated control. We developed a nondestructive method by analyzing digital color images to quantify color changes in leaves caused......, cycloxydim, diquat dibromide, and fluazifop-p-butyl were described with a log-logistic dose–response model, and the relationship between visual inspection and image analysis was calculated at the effective doses that cause 50% and 90% response (ED50 and ED90, respectively). The ranges of HSB components...... for the green and nongreen parts of the plants and soil were different. The relative potencies were not significantly different from one, indicating that visual and image analysis estimations were about the same. The comparison results suggest that image analysis can be used to assess color changes of plants...

  6. Both foliar and residual applications of herbicides that inhibit amino acid biosynthesis induce alternative respiration and aerobic fermentation in pea roots.

    Science.gov (United States)

    Armendáriz, O; Gil-Monreal, M; Zulet, A; Zabalza, A; Royuela, M

    2016-05-01

    The objective of this work was to ascertain whether there is a general pattern of carbon allocation and utilisation in plants following herbicide supply, independent of the site of application: sprayed on leaves or supplied to nutrient solution. The herbicides studied were the amino acid biosynthesis-inhibiting herbicides (ABIH): glyphosate, an inhibitor of aromatic amino acid biosynthesis, and imazamox, an inhibitor of branched-chain amino acid biosynthesis. All treated plants showed impaired carbon metabolism; carbohydrate accumulation was detected in both leaves and roots of the treated plants. The accumulation in roots was due to lack of use of available sugars as growth was arrested, which elicited soluble carbohydrate accumulation in the leaves due to a decrease in sink strength. Under aerobic conditions, ethanol fermentative metabolism was enhanced in roots of the treated plants. This fermentative response was not related to a change in total respiration rates or cytochrome respiratory capacity, but an increase in alternative oxidase capacity was detected. Pyruvate accumulation was detected after most of the herbicide treatments. These results demonstrate that both ABIH induce the less-efficient, ATP-producing pathways, namely fermentation and alternative respiration, by increasing the key metabolite, pyruvate. The plant response was similar not only for the two ABIH but also after foliar or residual application.

  7. Clay-to-carbon ratio controls the effect of herbicide application on soil bacterial richness and diversity in a loamy field

    DEFF Research Database (Denmark)

    Herath, Lasantha; Møldrup, Per; de Jonge, Lis Wollesen

    2017-01-01

    application and increasing after glyphosate application. This indicated that the specific chemical nature of individual herbicides affected bacterial communities. This study reinforced the importance of including soil physical and chemical characteristics to explain the influence of pesticides....... Glyphosate and bentazon were used to evaluate the herbicidal effect on bacterial community under different conditions created by clay and OC gradients in a loamy field. Metabarcoding by highthroughput sequencing of bacterial rDNA was used to estimate bacterial richness and diversity using OTUs, abundance......-based coverage (ACE), Shannon diversity index, and phylogenetic diversity. In general, bacterial richness and diversity increased after bentazon application and decreased after glyphosate application. There was no significant effect for field locations with Dexter n (the ratio between clay and OC) values below 4...

  8. Herbicide Persistence in Seawater Simulation Experiments.

    Directory of Open Access Journals (Sweden)

    Philip Mercurio

    Full Text Available Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR. The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities. Very little degradation was recorded over the standard 60 d period (Experiment 1 so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated

  9. The potential applications of using compost chars for removing the hydrophobic herbicide atrazine from solution

    Science.gov (United States)

    Tsui, L.; Roy, W.R.

    2008-01-01

    One commercial compost sample was pyrolyzed to produce chars as a sorbent for removing the herbicide atrazine from solution. The sorption behavior of compost-based char was compared with that of an activated carbon derived from corn stillage. When compost was pyrolyzed, the char yield was greater than 45% when heated under air, and 52% when heated under N2. In contrast, when the corn stillage was pyrolyzed under N2, the yield was only 22%. The N2-BET surface area of corn stillage activated carbon was 439 m2/g, which was much greater than the maximum compost char surface area of 72 m2/g. However, the sorption affinity of the compost char for dissolved atrazine was comparable to that of the corn stillage activated carbon. This similarity could have resulted from the initial organic waste being subjected to a relatively long period of thermal processes during composting, and thus, the compost was more thermally stable when compared with the raw materials. In addition, microorganisms transformed the organic wastes into amorphous humic substances, and thus, it was likely that the microporisity was enhanced. Although this micropore structure could not be detected by the N2-BET method, it was apparent in the atrazine sorption experiment. Overall, the experimental results suggested that the compost sample in current study was a relatively stable material thermally for producing char, and that it has the potential as a feed stock for making high-quality activated carbon. ?? 2007 Elsevier Ltd. All rights reserved.

  10. Application of electrochemical advanced oxidation processes to the mineralization of the herbicide diuron.

    Science.gov (United States)

    Pipi, Angelo R F; Sirés, Ignasi; De Andrade, Adalgisa R; Brillas, Enric

    2014-08-01

    Here, solutions with 0.185mM of the herbicide diuron of pH 3.0 have been treated by electrochemical advanced oxidation processes (EAOPs) like electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and UVA photoelectro-Fenton (PEF) or solar PEF (SPEF). Trials were performed in stirred tank reactors of 100mL and in a recirculation flow plant of 2.5L using a filter-press reactor with a Pt or boron-doped diamond (BDD) anode and an air-diffusion cathode for H2O2 electrogeneration. Oxidant hydroxyl radicals were formed from water oxidation at the anode and/or in the bulk from Fenton's reaction between added Fe(2+) and generated H2O2. In both systems, the relative oxidation ability of the EAOPs increased in the sequence EO-H2O2

  11. Control of Butterfly Bush with Postemergence Herbicides

    Science.gov (United States)

    Butterfly bush (Buddleja davidii) is classified as invasive in several parts of the United States. Two experiments were conducted to evaluate the effectiveness of four herbicides and two application methods on postemergence butterfly bush control. The four herbicides included: Roundup (glyphosate)...

  12. Differential Clomazone, Herbicide Tolerance among Sweetpotato Genotypes

    Science.gov (United States)

    Clomazone (Command 3ME) is a broad spectrum preemergence herbicide that is registered for use in sweetpotato [Ipomoea batatas L. (Lam.)]. It controls several important annual weeds that are not controlled by the other sweetpotato herbicides. Following clomazone application for weed control in the ...

  13. Pre-breeding of lentil (Lens culinaris Medik.) for herbicide resistance through seed mutagenesis

    Science.gov (United States)

    Rizwan, Muhammad; Aslam, Muhammad; Asghar, Muhammad Jawad; Abbas, Ghulam; Shah, Tariq Mahmud; Shimelis, Hussein

    2017-01-01

    Lentil is a poor competitor of weeds and its sensitivity to herbicides is a major hurdle for large scale production. The present study was conducted to select herbicide resistant lentil genotypes through seed mutagenesis. Seeds of three advanced lentil genotypes (LPP 11001, LPP 11100 and LPP 11116) were treated with two different concentrations of ethyl methanesulfonate (EMS; 0.1 and 0.2%), hydrazine hydrate (HH; 0.02 and 0.03%) and sodium azide (SA; 0.01 and 0.02%) to develop M1 seed. The M2 was screened against two herbicides including Ally Max 28.6% SG (X = 34.58 g/ha and 1.5X = 51.87 g/ha) and Atlantis 3.6% WG (X = 395.2 g/ha and 1.5X = 592.8 g/ha) using the following three screening methods: post plant emergence (PPE), pre-plant incorporation (PPI) and seed priming (SP). Data were recorded on survival index and survival percentage from each experimental unit of every population. Plants in all populations were categorized following their reaction to herbicides. The newly developed populations showed greater variation for herbicide resistance when compared to their progenitors. Phenotypic traits were significantly reduced in all the screening environments. Overall, 671 herbicide resistant mutants were selected from all testing environments. The seeds from selected plants were re-mutagenized at 150 Gy of gamma radiation and evaluated against higher dose of herbicides. This allowed selection of 134 herbicide resistant mutants. The selected mutants are useful germplasm for herbicide resistance breeding of lentil. PMID:28196091

  14. Impact of mustard seed meal applications on direct-seeded cucurbits and weed control

    Science.gov (United States)

    Weed control in organic production systems can be a labor intensive and expensive process. Mustard seed meal (MSM) is phytotoxic and a potential pre-emergent and preplant-incorporated organic herbicide for controlling germinating and emerging weed seedlings: unfortunately, MSM may also adversely imp...

  15. 国内外抗除草剂棉花研究应用现状%Research and Application Status of Herbicide - resistant Cotton at Home and Abroad

    Institute of Scientific and Technical Information of China (English)

    王宗文

    2011-01-01

    The obtaining ways of cotton varieties with herbicide resistance were reviewed, and the research history and present situation at home and abroad were summarized.The problems present in cultivating process and its application prospect were analyzed, too.All these were expected to provide basis for the research development of herbicide - resistant cotton in China.%针对抗除草剂棉花品种的选育,综述了其获得途径,总结了国内外的研究历史及现状,并对其选育过程中存在的问题进行了分析,对其应用前景进行了展望,以期对我国抗除草剂棉花的研究发展提供依据.

  16. Reduced herbicide rates: present and future

    Directory of Open Access Journals (Sweden)

    Kudsk, Per

    2014-02-01

    Full Text Available Applying herbicides at rates lower than the label recommendation has been the rule rather than the exception in Denmark since the late 1980’s. Justifications for reducing herbicide rates can be 1 that the dominant weed species in the field are very susceptible to the herbicide, i.e. even reduced rates will result in maximum effects, 2 that the conditions at and around the time of application, e.g. growth stage of weeds, crop vigour and climatic condition are optimum promoting the activity of the herbicide and thus allows for the use of reduced herbicides rates, or 3 that less than maximum effects are accepted because the weed flora is not considered to have a significant effect on crop yield. “Crop Protection Online-Weed” (CPO-Weed is a web-based decision support system that was developed to support farmers in their choice of herbicide and herbicide rate. CPOWeed will, based on information on crop development and status and the composition of the weed flora, provide farmers with a list of herbicide solutions often recommending the use of reduced rates. The potential of CPO-Weed to reduced herbicide input has been proven in numerous validation trials. In recent years the use of reduced herbicide rates has been linked to the increasing number of cases of non-target resistance in outcrossing grass weed species like Alopecurus myosuroides and Lolium ssp. The underlying hypothesis is that the least susceptible individuals in the population will survive the use of reduced rates and that recombination will lead to a gradual increase in the resistance level in the weed population. This scenario is only valid if the use of reduced herbicide rates is prompted by acceptance of a lower effect but not if a high susceptibility of the weed species present in the field or optimum conditions are the reasons for reducing herbicide rates. This is an aspect that is often overlooked in the on-going discussion on herbicide rates and resistance. Large weed

  17. Effect of herbicides on microbiological properties of soil

    Directory of Open Access Journals (Sweden)

    Milošević Nada A.

    2002-01-01

    Full Text Available Microorganisms decompose herbicides and they may serve as bioindicators of soil changes following herbicide application. Certain microbial species may be used as bioherbicides. This study has shown that Azotobacter is most sensitive to herbicide application; it is, therefore, a reliable indicator of the biological value of soil. The numbers of this group of nitrogen-fixing bacteria decrease considerably in the period of 7-14 days after herbicide application. Simultaneously, the numbers of Actinomycetes and less so of fungi increase, indicating that these microorganisms use herbicides as sources of biogenous elements. Rate of herbicidal decomposition depends on the properties of the preparation applied herbicide dose as well as on the physical and chemical soil properties, soil moisture and temperature, ground cover, agrotechnical measures applied and the resident microbial population.

  18. Integration of aerial imaging and variable-rate technology for site-specific aerial herbicide application

    Science.gov (United States)

    As remote sensing and variable rate technology are becoming more available for aerial applicators, practical methodologies on effective integration of these technologies are needed for site-specific aerial applications of crop production and protection materials. The objectives of this study were to...

  19. Herbicide Application and Resistance in Wheat Field of China%我国小麦田除草剂应用及杂草抗药性现状

    Institute of Scientific and Technical Information of China (English)

    吴明荣; 唐伟; 陈杰

    2013-01-01

    我国常年遭受严重草害的麦田面积有0.4亿亩,造成产量损失约30%,运用化学除草剂防除麦田杂草已经成为小麦生产中的重要手段,形成了包括多种作用类别的除草剂品种和全方位化学防除体系.但随着化学除草剂的不断推广和应用,杂草抗药性问题也日益凸显和加重,目前播娘蒿、日本看麦娘、菵草等杂草抗药性已经较为严重.通过查阅相关文献,综述了近几年我国小麦田的优势杂草种类,主要应用的除草剂以及麦田杂草的抗药性现状及防治对策.%About 40 million hectares of wheat fields are heavily infested by weeds and the annual reduction of crop yields is 30% (weighted average) in China.Chemical weed control has changed cultural practices to save weeding labor in wheat.At the same time,continuous use of the same herbicides has caused weed shift problems and weed resistance to herbicides.Resistant biotypes of Descuminia sophia,Alopecurus japonicus and Beckmannia syzigachne were reported in recent years.The main worst weed species,application status of herbicides and herbicide-resistant weeds in wheat fields of China were introduced in this paper,and integrated management strategies for resistant weeds were also described.

  20. Evaluation of efficacy and effect of application timing of a new herbicide, a.i. propoxy-carbazone + iodosulfuron + mefenpyr on Triticum durum.

    Science.gov (United States)

    Fanigliulo, A; Filì, V; Crescenzi, A

    2012-01-01

    A study was performed from February to May 2010 by Bioagritest according to EPPO guidelines and Principles of Good Experimental Practice (GEP), in the land of Altamura (BA), in the core of Murgia, Apulia Region (Italy). The purpose of the study was to evaluate the efficacy and effect of two different application times of the herbicide SIT90 (propoxycarbazone + iodosulfuron + mefenpyr) on Triticum durum for weeds' control. Sit90 was applied alone or in combination with the herbicide Dicuran (a.i. chlortolorun) in early post-emergence, and in late post emergence once more alone or in combination with the adjuvant Biopower or with the commercial formulate Atlantis WG (mesosulfuron+ iodosulfuron+ mefenpyr) + Biopower. T. durum cultivar was "Iride". The study has given sufficient results on the use of SIT90, in the conditions foreseen by the protocol and in consideration of the present weeds, which represented the species mostly diffused in the Murgia, mainly Avena ludoviciana and Papaver rhoaes. Treatments with the SIT90 alone (even in combination with Chortoluron), applied in early or in late post-emergence, were very ineffective on grass weeds and dicotyledonous, highlighting the importance of the adjuvant Biopower to enhance the expression of the herbicide. In fact, the presence of the adjuvant allowed the expression of a clear and good overall herbicide activity of SIT90 for the control of P. rhoaes and other dicotyledonous, but also a discrete activity against grasses. More reliable was the treatment with SIT90 mixed with Atlantis, against the entire community of grass weeds and on F. officinalis. The performance of all the treatments was insufficient on P. rhoaes, because of the clear resistance shown by the weed.

  1. THE HERBICIDES ANTIDOTES OF AGRICULTURAL CROPS (OVERVIEW

    Directory of Open Access Journals (Sweden)

    Yablonskaya Y. K.

    2013-12-01

    Full Text Available The extensive overview of the currently used herbicides antidotes of agricultural crops is reviewed in this article. The most important results are discussed and the technology of combined application is described

  2. Managing the evolution of herbicide resistance.

    Science.gov (United States)

    Evans, Jeffrey A; Tranel, Patrick J; Hager, Aaron G; Schutte, Brian; Wu, Chenxi; Chatham, Laura A; Davis, Adam S

    2016-01-01

    Understanding and managing the evolutionary responses of pests and pathogens to control efforts is essential to human health and survival. Herbicide-resistant (HR) weeds undermine agricultural sustainability, productivity and profitability, yet the epidemiology of resistance evolution - particularly at landscape scales - is poorly understood. We studied glyphosate resistance in a major agricultural weed, Amaranthus tuberculatus (common waterhemp), using landscape, weed and management data from 105 central Illinois grain farms, including over 500 site-years of herbicide application records. Glyphosate-resistant (GR) A. tuberculatus occurrence was greatest in fields with frequent glyphosate applications, high annual rates of herbicide mechanism of action (MOA) turnover and few MOAs field(-1) year(-1) . Combining herbicide MOAs at the time of application by herbicide mixing reduced the likelihood of GR A. tuberculatus. These findings illustrate the importance of examining large-scale evolutionary processes at relevant spatial scales. Although measures such as herbicide mixing may delay GR or other HR weed traits, they are unlikely to prevent them. Long-term weed management will require truly diversified management practices that minimize selection for herbicide resistance traits. © 2015 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  3. Aplicador de herbicidas com pavios de corda: primeiros resultados de controle Rope wick applicator for herbicides: 1. fistweed control results

    Directory of Open Access Journals (Sweden)

    R.M. Prudente

    1985-12-01

    Full Text Available Os aplicadores de herbicidas baseados em pavios de corda foram introducidos e largamente aceitos nos EUA a partir de 1978, devido a sua grande simplicidade, baixo custo operacional e economia do herbicida. Um protótipo fabricado com material inteiramente nacional, montado sobre duas rodas de bicicleta, tracionado pelo homem, tendo uma barra de 2 metros de comprimento, foi desenvolvido pelo departamento de defesa fitossanitária da Faculdade de Ciência Agrárias e Veterinárias de Jaboticabal - UNESP e submetido a um ensaio preliminar. A área estava uniformemente coberta com vegetação natural, com altura média de 55 cm e a maioria das plantas daninhas em estádio de maturação das sementes. O aplicador foi deslocado à velocidade de 2,7 km/h, com consumo médio de 9,3 litros de calda por hectare, tendo aplicado diluições de glyphosate em água, nas proporções de 1:2, 1:4 e 1:6 (produto comercial: água e comparado à pulverização convencional tratorizada, efetuada com velocidade de 4,2 km/h e consumo de 4 litros de produto comercial com 310 litros de água por hectare. As avaliações do controle foram efetuadas através da determinação da biomassa epígea por ocasião de aplicação aos 15 e 33 dias após , além da atribuição de notas aos 33 dias da aplicação. Os resultados mostraram-se promissores para o protótipo, que pode desde já ser considerado um precioso instrumento para o manejo de plantas daninhas.Rope wick applicators were introduced and widely accepted in the U.S.A. since 1978 due to its simplicity, low operational cost and reduced amount of herbicide used. A first working built with material available in local market was assembled by the Department of Crop Protection of Faculdade de Ciências Agrárias e Veterinárias - UNESP, Jaboticabal, Brazil, and preliminary results are reported in this paper. This model is mounted on two ordinary biclycle wheels , hand pulled, having 2 m wide boom with rope wicks. The

  4. Isoprenoid Biosynthesis. Metabolite Profiling of Peppermint Oil Gland Secretory Cells and Application to Herbicide Target Analysis1

    Science.gov (United States)

    Lange, B. Markus; Ketchum, Raymond E.B.; Croteau, Rodney B.

    2001-01-01

    Two independent pathways operate in plants for the synthesis of isopentenyl diphosphate and dimethylallyl diphosphate, the central intermediates in the biosynthesis of all isoprenoids. The mevalonate pathway is present in the cytosol, whereas the recently discovered mevalonate-independent pathway is localized to plastids. We have used isolated peppermint (Mentha piperita) oil gland secretory cells as an experimental model system to study the effects of the herbicides fosmidomycin, phosphonothrixin, methyl viologen, benzyl viologen, clomazone, 2-(dimethylamino)ethyl diphosphate, alendronate, and pamidronate on the pools of metabolites related to monoterpene biosynthesis via the mevalonate-independent pathway. A newly developed isolation protocol for polar metabolites together with an improved separation and detection method based on liquid chromatography-mass spectrometry have allowed assessment of the enzyme targets for a number of these herbicides. PMID:11553758

  5. Use of allelopathic plant extract with herbicide

    Directory of Open Access Journals (Sweden)

    Ahmet Tansel SERİM

    2015-12-01

    Full Text Available Herbicides are one of the plant protection products that have been discussed due to their adversely effects caused by the usage of them although they have an important role on the sustainability of crop production. Researches on the plant protection practices, such as the development of new herbicide application techniques, the reduction of the application rate, the use of adjuvant, changing herbicide application time and the use of allelopathic plant extract, and the applications based on the results of these research have increased in recent years. The cost of weed control may exceed the economic benefits because a large amount of plant extract is needed to control weeds alone with allelopathic chemicals. Using the mixture of plant extracts with the reduced rate of herbicides is important both to reduce environmental and economic losses and to prevent some problem caused by use of herbicide. The extracts of plants which have got allelopathic character, such as sunflower, sorghum, brassica and rice, are commonly used for this aim. The aim of presented review is to emphasize the efficacy of allelopathic plant extract with herbicide to control weeds and its economical contribution.

  6. Bioremediation of herbicide velpar K® in vitro in aqueous solution with application of EM-4 (effective microorganisms

    Directory of Open Access Journals (Sweden)

    Márcio Antônio Gomes Ramos

    2012-02-01

    Full Text Available This work assessed the bioremediation of herbicide Velpar K®, in vitro in aqueous solution, used against weeds in sugar cane in São Paulo state. The herbicide contained Hexazinone and Diuron. It was used the microbial inoculant denominated Effective Microorganisms (EM-4, pool of microorganisms from soil that contained lactic and photosynthetic bacteria, fungi, yeasts and actinomycetes for bioremediation. Results for the depth of cultivation on agar-agar inoculated with EM-4 showed the microorganisms growth in the concentrations between 0.2% and 1.0% of the Velpar K®in the gel. The analysis of high performance liquid chromatography (HPLC showed that the EM-4 was effective for the bioremediation of the herbicide, which reached the values of 80% for diuron and 70% for hexazinone after 21 days in solution of 2:1 of Velpar K®/EM-4 ratio. These results could be useful for planning the bioremediation of contaminated areas with Velpar K®.

  7. Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact

    Science.gov (United States)

    Bonny, Sylvie

    2016-01-01

    Genetically modified (GM) crops have been and continue to be a subject of controversy despite their rapid adoption by farmers where approved. For the last two decades, an important matter of debate has been their impact on pesticide use, particularly for herbicide-tolerant (HT) crops. Some claim that these crops bring about a decrease in herbicide use, while others claim the opposite. In fact, since 1996, most cultivated GMOs have been GMHT crops, which involve the use of an associated herbicide, generally glyphosate. In their very first years of adoption, HT crops often led to some decrease in herbicide use. However, the repetition of glyphosate-tolerant crops and of glyphosate only applications in the same fields without sufficient alternation and herbicide diversity has contributed to the appearance of glyphosate-resistant weeds. These weeds have resulted in a rise in the use of glyphosate and other herbicides. This article explores this situation and the impacts of herbicide-resistant weeds, using an interdisciplinary approach and drawing on recent data. The paper analyzes the spread of GMHT crops worldwide and their consequences on herbicide use in the USA in particular. It then addresses the global development of glyphosate-resistant weeds and their impact, particularly focusing on the USA. Finally, the last section explores how industry, farmers, and weed scientists are coping with the spread of resistant weeds. The concluding comments deal more widely with trends in GM crops.

  8. Microbial degradation of herbicides.

    Science.gov (United States)

    Singh, Baljinder; Singh, Kashmir

    2016-01-01

    Herbicides remain the most effective, efficient and economical way to control weeds; and its market continues to grow even with the plethora of generic products. With the development of herbicide-tolerant crops, use of herbicides is increasing around the world that has resulted in severe contamination of the environment. The strategies are now being developed to clean these substances in an economical and eco-friendly manner. In this review, an attempt has been made to pool all the available literature on the biodegradation of key herbicides, clodinafop propargyl, 2,4-dichlorophenoxyacetic acid, atrazine, metolachlor, diuron, glyphosate, imazapyr, pendimethalin and paraquat under the following objectives: (1) to highlight the general characteristic and mode of action, (2) to enlist toxicity in animals, (3) to pool microorganisms capable of degrading herbicides, (4) to discuss the assessment of herbicides degradation by efficient microbes, (5) to highlight biodegradation pathways, (6) to discuss the molecular basis of degradation, (7) to enlist the products of herbicides under degradation process, (8) to highlight the factors effecting biodegradation of herbicides and (9) to discuss the future aspects of herbicides degradation. This review may be useful in developing safer and economic microbiological methods for cleanup of soil and water contaminated with such compounds.

  9. Application of a method based on the measurement of radiation reflectance when estimating the sensitivity of selected grain maize hybrids to the herbicide CALLISTO 480 SC + ATPLUS 463

    Directory of Open Access Journals (Sweden)

    Michal Vondra

    2009-01-01

    Full Text Available The application of methods based on measurements of photosynthesis efficiency is now more and more popular and used not only for the evaluation of the efficiency of herbicides but also for the estimation of their phytotoxicity to the cultivated crop. These methods enable to determine also dif­fe­ren­ces in the sensitivity of cultivars and/or hybrids to individual herbicides. The advantage of these methods consists above all in the speed and accuracy of measuring.In a field experiment, the sensitivity of several selected grain maize hybrids (EDENSTAR, NK AROBASE, NK LUGAN, LG 33.30 and NK THERMO to the herbicide CALLISTO 480 SC + ATPLUS 463 was tested for a period of three years. The sensitivity to a registered dose of 0.25 l . ha−1 + 0.5 % was measured by means of the apparatus PS1 meter, which could measure the reflected radiation. Measurements of sensitivity of hybrids were performed on the 2nd, 3rd, 4th, 5th and 8th day after the application of the tested herbicide, i.e. in the growing stage of the 3rd–5th leaf. Plant material was harvested using a small-plot combine harvester SAMPO 2010. Samples were weighed and converted to the yield with 15 % of moisture in grain DM.The obtained three-year results did not demonstrate differences in sensitivity of tested hybrids to the registered dose of the herbicide CALLISTO 480 SC + ATPLUS 463 (i.e. 0.25 l . ha−1 + 0,5 %. Recorded results indicated that for the majority of tested hybrids the most critical were the 4th and the 5th day after the application; on these days the average PS1 values were the highest at all. In years 2005 and 2007, none of the tested hybrids exceeded the limit value 15 (which indicated a certain decrease in the efficiency of photosynthesis. Although in 2006 three of tested hybrids showed a certain decrease in photosynthetic activity (i.e. EDENSTAR and NK AROBASE on the 3rd day and NK LUGAN on the 2nd–4th day after the application, no visual symptoms

  10. 我国甜菜生产中除草剂应用现状及发展前景%Present Herbicide Application and Future Development of Planting Sugarbeet in China

    Institute of Scientific and Technical Information of China (English)

    李蔚农; 姜莉; 董戈

    2014-01-01

    The weed species, herbicide application problem and future development were discussed to guide properly selecting and applying herbicide in beet field in the future.%介绍了甜菜田间杂草的种类、国内甜菜除草剂使用现状、存在的问题及未来的发展方向,对于今后甜菜生产中合理选择和使用除草剂具有重要指导意义。

  11. Grass pea (Lthyrus sativum L.) as pre-plant organic fertilizer for conventionally tilled winter wheat: effects on yield and quality

    Science.gov (United States)

    Sources of organic nitrogen (N) for the southern Great Plains (SGP) - and methods of their use – need testing to find ways to counter the rising cost of N fertilizer. This study investigated the cool-season pulse grass pea (Lathyrus sativum L.) (GP) as a pre-plant N source for continuous, convention...

  12. Environmental Metabolic Footprinting: A novel application to study the impact of a natural and a synthetic β-triketone herbicide in soil.

    Science.gov (United States)

    Patil, Chandrashekhar; Calvayrac, Christophe; Zhou, Yuxiang; Romdhane, Sana; Salvia, Marie-Virginie; Cooper, Jean-Francois; Dayan, Franck E; Bertrand, Cédric

    2016-10-01

    This study presents a novel approach for assessing the risk of agrochemicals in soil microcosms through the use of non-targeted metabolomics. The metabolome of treated soils was extracted and tested through LCMS profiling in order to generate an "Environmental Metabolic Footprint" (EMF). A dynamic characterization of pollution biomarkers was obtained through a multivariate statistical analysis of EMF data, where our results show the possible evolution towards a state of resilience. The EMF methodology was applied to two β-triketone herbicides in soil microcosms: one natural, leptospermone, and one synthetic, sulcotrione. In spite of a four-fold higher application dose, leptospermone exhibited a lower resilience time than did sulcotrione (ca. 30 days vs ca. 45 days respectively).

  13. A direct method for the polarographic determination of herbicide triasulfuron and application to natural samples and agrochemical formulation.

    Science.gov (United States)

    Sarigül, Tuba; Inam, Recai

    2009-04-01

    Polarographic behavior of triasulfuron herbicide in a Britton-Robinson (B-R) buffer was investigated by differential pulse polarography (DPP) and cyclic voltammetry (CV). Optimum conditions for the analytical determination were found to be pH 3.0 at a reduction potential of -1031 mV. Experimental results indicate an excellent linear correlation between the peak current and the concentration in the range of 0.19-11.6 microg mL(-1) (0.47-28.9 microM) with a correlation coefficient of 0.993. The limit of detection (LOD) and limit of quantification (LOQ) were obtained as 0.06 and 0.19 microg mL(-1) (0.15 and 0.47 microM), respectively. The precision of the method is satisfactory at a very low level, and the relative standard deviation (RSD) is 2.37% (n=5). Satisfactory recoveries achieved with spiked soil and dam water samples were between 98.4-103.0% and 100.0-104.0% at concentration ranges of.5.0-25.0 microg g(-1) and 0.40-2.0 microg mL(-1) (12.4-62.2 and 1.0-5.0 microM), respectively, inferring that the established method can be applied to real sample analysis. The method was extended to the direct determination of triasulfuron in agrochemical herbicide formulation Lintur 70 WG and average content of 4.37+/-0.16 (n=5) % was in close agreement with the 4.10% quoted by the manufacturer. The influences of some other commonly used pesticides and inorganic salts on the determination of triasulfuron were also examined.

  14. Predicting herbicidal plant mortality with mobile photosynthesis meters

    NARCIS (Netherlands)

    Kempenaar, C.; Lotz, L.A.P.; Snel, J.F.H.; Smutny, V.; Zhang, H.J.

    2011-01-01

    Herbicide dose optimisation, i.e. maximising weed control and crop yield with herbicide dose, is an important part of integrated weed management strategies. However, the adoption of optimised dose technology and variable rate application has been limited because of the relatively long period between

  15. Annual Herbicide Loadings

    Data.gov (United States)

    U.S. Environmental Protection Agency — Pesticides, Herbicides, Fungicides...etc, are used for a variety of purposes, including control of household, lawn, and garden pests; for control of mosquitoes and...

  16. Herbicide Safeners: an overview

    Directory of Open Access Journals (Sweden)

    Rosinger, Christopher

    2014-02-01

    Full Text Available A significant number of herbicides used in cereals, corn and rice owe their strong efficacy aligned with crop selectivity to safeners. The first commercial safener was 1,8-naphthalic anhydride used as a seed treatment in corn. Since then approximately 20 Safeners have been commercialized in monocot crops, although several were superseded. According to independent market research, in 2011 approximately 30% of herbicide use value from all companies in corn and cereals came from products containing safeners. In rice the percentage was 6%. Almost all safeners work by inducing the expression of genes which code for enzymes involved in herbicide detoxification. Thereby, herbicides are degraded rapidly enough to ensure a damaging concentration is not reached. This gene induction may occur in just one crop or several. For commercial success no significant induction of herbicide degradation should occur in the weeds. The actual molecular target(s of safeners is/are not known and therefore the reasons for species specificity are unclear. Bayer CropScience has a strong track record of safener discovery and has developed product portfolios based on its safeners mefenpyr-diethyl, isoxadifen-ethyl and cyprosulfamide. Atlantis® WG and Laudis® OD are important Bayer CropScience-products in Germany. These contain mefenpyr-diethyl to safen wheat and isoxadifen-ethyl to safen corn, respectively. The safeners provide an enabling technology which together with strong herbicide molecules has helped farmers to optimize their crop productivity through improved weed management.

  17. Herbicide resistance screening assay.

    Science.gov (United States)

    Peterson, Joan M

    2009-01-01

    Herbicide resistance screening is a method that can be used not only to determine presence of the enzyme, phosphinothricin acetyltransferase, encoded by either the Bar or the Pat gene in transgenic maize, but also to assess the inheritance ratio of those genes in a segregating population. Herbicide screening can also be used to study linkage of a transgene of interest that was cotransformed with the herbicide resistance marker gene. By combining the herbicide screen assay with a PCR-based screen of leaf tissue DNA for the presence of both the Bar or the Pat gene marker and a cotransformed transgene of interest from the same seedling tissue and maintaining that seedling identity, the researcher can identify linkage or the possible breakdown in linkage of the marker gene and the transgene of interest. Further, the occurrence of "DNA silencing" can be evaluated if an individual seedling that was susceptible to the applied herbicide nonetheless gave PCR data that indicated presence of the gene responsible for herbicide resistance. Similarly, "DNA silencing" of the gene of interest may be investigated if the seeds can be screened and scored for that phenotypic trait in a nondestructive manner prior to planting.

  18. DNA analysis of herbarium Specimens of the grass weed Alopecurus myosuroides reveals herbicide resistance pre-dated herbicides.

    Science.gov (United States)

    Délye, Christophe; Deulvot, Chrystel; Chauvel, Bruno

    2013-01-01

    Acetyl-CoA carboxylase (ACCase) alleles carrying one point mutation that confers resistance to herbicides have been identified in arable grass weed populations where resistance has evolved under the selective pressure of herbicides. In an effort to determine whether herbicide resistance evolves from newly arisen mutations or from standing genetic variation in weed populations, we used herbarium specimens of the grass weed Alopecurus myosuroides to seek mutant ACCase alleles carrying an isoleucine-to-leucine substitution at codon 1781 that endows herbicide resistance. These specimens had been collected between 1788 and 1975, i.e., prior to the commercial release of herbicides inhibiting ACCase. Among the 734 specimens investigated, 685 yielded DNA suitable for PCR. Genotyping the ACCase locus using the derived Cleaved Amplified Polymorphic Sequence (dCAPS) technique identified one heterozygous mutant specimen that had been collected in 1888. Occurrence of a mutant codon encoding a leucine residue at codon 1781 at the heterozygous state was confirmed in this specimen by sequencing, clearly demonstrating that resistance to herbicides can pre-date herbicides in weeds. We conclude that point mutations endowing resistance to herbicides without having associated deleterious pleiotropic effects can be present in weed populations as part of their standing genetic variation, in frequencies higher than the mutation frequency, thereby facilitating their subsequent selection by herbicide applications.

  19. DNA analysis of herbarium Specimens of the grass weed Alopecurus myosuroides reveals herbicide resistance pre-dated herbicides.

    Directory of Open Access Journals (Sweden)

    Christophe Délye

    Full Text Available Acetyl-CoA carboxylase (ACCase alleles carrying one point mutation that confers resistance to herbicides have been identified in arable grass weed populations where resistance has evolved under the selective pressure of herbicides. In an effort to determine whether herbicide resistance evolves from newly arisen mutations or from standing genetic variation in weed populations, we used herbarium specimens of the grass weed Alopecurus myosuroides to seek mutant ACCase alleles carrying an isoleucine-to-leucine substitution at codon 1781 that endows herbicide resistance. These specimens had been collected between 1788 and 1975, i.e., prior to the commercial release of herbicides inhibiting ACCase. Among the 734 specimens investigated, 685 yielded DNA suitable for PCR. Genotyping the ACCase locus using the derived Cleaved Amplified Polymorphic Sequence (dCAPS technique identified one heterozygous mutant specimen that had been collected in 1888. Occurrence of a mutant codon encoding a leucine residue at codon 1781 at the heterozygous state was confirmed in this specimen by sequencing, clearly demonstrating that resistance to herbicides can pre-date herbicides in weeds. We conclude that point mutations endowing resistance to herbicides without having associated deleterious pleiotropic effects can be present in weed populations as part of their standing genetic variation, in frequencies higher than the mutation frequency, thereby facilitating their subsequent selection by herbicide applications.

  20. Agricultural herbicide transport in a first-order intermittent stream, Nebraska, USA

    Science.gov (United States)

    Vogel, J.R.; Linard, J.I.

    2011-01-01

    The behavior of herbicides in surface waters is a function of many variables, including scale of the watershed, physical and chemical properties of the herbicide, physical and chemical properties of the soil, rainfall intensity, and time of year. In this study, the transport of 6 herbicides and 12 herbicide degradates was examined during the 2004 growing season in an intermediate-scale agricultural watershed (146 ha) that is drained by a first-order intermittent stream, and the mass load for each herbicide in the stream was estimated. The herbicide load during the first week of storm events after application ranged from 17% of annual load for trifluralin to 84% of annual load for acetochlor. The maximum weekly herbicide load in the stream was generally within the first 3 weeks after application for those compounds that were applied within the watershed during 2004, and later for herbicides not applied within the watershed during 2004 but still detected in the stream. The apparent dominant mode of herbicide transport in the stream-determined by analysis amongst herbicide and conservative ion concentrations at different points in the hydrograph and in base flow samples-was either overland runoff or shallow subsurface flow, depending on the elapsed time after application and type of herbicide. The load as a percentage of use (LAPU) for the parent compounds in this study was similar to literature values for those compounds applied by the farmer within the watershed, but smaller for those herbicides that had rainfall as their only source within the watershed.

  1. IN-VITRO EFFECTS OF HERBICIDES ON SOIL MICROBIAL COMMUNITIES

    Directory of Open Access Journals (Sweden)

    AABID HUSSAIN LONE

    2014-03-01

    Full Text Available Effect of six different herbicides representing four chemical families on soil microbial communities was studied using laboratory microcosm approach. The herbicides tested were isoproturon, metribuzin, clodinafop propargyl, atlantis (Mesosulfuron methyl 3% + Idosulfuron Methyl Sodium 0.6% WG and sulfosulfuron applied at normal agricultural rates, and UPH-110 (Clodinafop propargyl 12% + Metribuzin 42% WG tested at four different application rates. Microbial response to the applied herbicides was studied following cultivation dependent approach. The microbial community showed a mixed response towards applied herbicides. With a few exceptions, metribuzin displayed a negative, clodinafop a positive and sulphonylurea herbicides a neutral effect while as the effect of isoproturon was variable. Significant toxic impact of UPH-110 was mostly observed at higher concentrations (@ 600 and 1000 g ha-1. The magnitude of hazard and duration of toxicity increased as the dose of UPH-110 increased. The influence whether positive or negative, was only transitory in nature and recovered to the level of untreated microcosms by or before 30th day of application. Among the microbial groups studied, fungal population was least affected at field rate, bacteria, actinomycetes and Azotobacter showed mixed response while as the phosphorus solubilizers population showed a tendency to increase in response to the applied herbicides.The herbicidal impact on soil microbial population was found to depend on the nature and dose of herbicide used and also the type of microbial group

  2. Herbicide-resistant crops and weed resistance to herbicides.

    Science.gov (United States)

    Owen, Micheal D K; Zelaya, Ian A

    2005-03-01

    The adoption of genetically modified (GM) crops has increased dramatically during the last 3 years, and currently over 52 million hectares of GM crops are planted world-wide. Approximately 41 million hectares of GM crops planted are herbicide-resistant crops, which includes an estimated 33.3 million hectares of herbicide-resistant soybean. Herbicide-resistant maize, canola, cotton and soybean accounted for 77% of the GM crop hectares in 2001. However, sugarbeet, wheat, and as many as 14 other crops have transgenic herbicide-resistant cultivars that may be commercially available in the near future. There are many risks associated with the production of GM and herbicide-resistant crops, including problems with grain contamination, segregation and introgression of herbicide-resistant traits, marketplace acceptance and an increased reliance on herbicides for weed control. The latter issue is represented in the occurrence of weed population shifts, the evolution of herbicide-resistant weed populations and herbicide-resistant crops becoming volunteer weeds. Another issue is the ecological impact that simple weed management programs based on herbicide-resistant crops have on weed communities. Asiatic dayflower (Commelina cumminus L) common lambsquarters (Chenopodium album L) and wild buckwheat (Polygonum convolvulus L) are reported to be increasing in prominence in some agroecosystems due to the simple and significant selection pressure brought to bear by herbicide-resistant crops and the concomitant use of the herbicide. Finally, evolution of herbicide-resistant weed populations attributable to the herbicide-resistant crop/herbicide program has been observed. Examples of herbicide-resistant weeds include populations of horseweed (Conyza canadensis (L) Cronq) resistant to N-(phosphonomethyl)glycine (glyphosate). An important question is whether or not these problems represent significant economic issues for future agriculture. Copyright 2005 Society of Chemical Industry

  3. Development of herbicide resistant crops through induced mutations

    Directory of Open Access Journals (Sweden)

    Muhammad Rizwan

    2015-11-01

    Full Text Available Herbicide resistance is an innate characteristic of crop plants. It enables them to survive and propagate even in the presence of lethal doses of herbicides in the surroundings. Genetic tolerance in crops towards herbicides may have several benefits. It may increases safety margins between weed and crop sensitivity and also expands applicability of a particular herbicide. Besides, it can also lower the operating cost for weed control as compared to manual weeding and crop rotation which is normally prohibited by herbicide persistence. Herbicide resistant crops are developed through transformation of a plant with either native or mutant resistant genes, seed mutagenesis, plant cell or tissue culture and through other traditional plant breeding techniques. Seed mutagenesis is a non-transgenic approach, which is found to be most economical and perfect approach. Moreover, all commercial herbicide tolerant crops were derived from single nucleotide substitution of genes and trait can be incorporated into elite varieties because of incomplete dominance and non-pleiotropic effect of the alleles of all commercial herbicide tolerant mutations.

  4. Estimation of herbicide bioconcentration in sugarcane (Saccharum officinarum L.

    Directory of Open Access Journals (Sweden)

    Antonio Luiz Cerdeira

    2015-04-01

    Full Text Available Sugarcane is an important crop for sugar and biofuel production in Brazil. Growers depend greatly on herbicides to produce it. This experiment used herbicide physical-chemical and sugarcane plant physiological properties to simulate herbicide uptake and estimate the bioconcentration factor (BCF. The (BCF was calculated for the steady state chemical equilibrium between the plant herbicide concentration and soil solution. Plant-water partition coefficient (sugarcane bagasse-water partition coefficient, herbicide dilution rate, metabolism and dissipation in the soil-plant system, as well as total plant biomass factors were used. In addition, we added Tebuthiuron at rate of 5.0kg a.i. ha-1 to physically test the model. In conclusion, the model showed the following ranking of herbicide uptake: sulfentrazone > picloram >tebuthiuron > hexazinone > metribuzin > simazine > ametryn > diuron > clomazone > acetochlor. Furthermore, the highest BCF herbicides showed higher Groundwater Ubiquity Score (GUS index indicating high leaching potential. We did not find tebuthiuron in plants after three months of herbicide application

  5. The herbicide glyphosate.

    Science.gov (United States)

    Malik, J; Barry, G; Kishore, G

    1989-03-01

    Glyphosate has broad spectrum herbicidal activity against a wide range of annual and perennial weeds. The environmental properties of this herbicide such as its soil immobility, rapid soil inactivation and soil biodegradation are outstanding. This herbicide is practically non-toxic to non-plant life forms such as aquatic and avian species, animals and man. Metabolism studies with pure bacterial cultures indicate that glyphosate is metabolized to either aminomethylphosphonate and glyoxylate or sarcosine and phosphate in most bacteria. The enzyme C-P lyase, which catalyzes the cleavage of the carbon-phosphorus bond of phosphonates including glyphosate, appears to be complex, containing multiple subunits. Mode of action studies have demonstrated that glyphosate kills plants by inhibiting the enzyme 5-enolpyruvylshikimate-3-phosphate synthase, involved in the biosynthesis of aromatic compounds. The status of our understanding of these aspects of glyphosate is reviewed.

  6. Physiological aspects and growth of sunflower after application of pre-emergent herbicides = Aspectos fisiológicos e crescimento do girassol após aplicação de herbicidas em pré-emergência.

    Directory of Open Access Journals (Sweden)

    Ronaldo Matias Reis

    2014-12-01

    Full Text Available - Studies aim to evaluate effects of different herbicides applied pre-emergence on the characteristics related to sunflower plants growth and physiology. The experiment was conducted in a greenhouse using a completely randomized design with five replications and the treatments consisted of application, sunflower pre-emergence, following herbicides: flumioxazin, sulfentrazone, oxyfluorfen, oxadiazon, s-metolachlor, linuron and pendimethalin, and an untreated control. The gas exchange was evaluated at 27 days after herbicide application (DAAs, while the analysis of growth and visual intoxication culture were measured at 50 DAAs. Evaluated the physiological characteristics were not altered by herbicides application. However, these products interfered variously related to growth of sunflower plants characteristics. While sunflower recovered from poisoning caused by the oxadiazon was noted slower growth in culture by application of flumioxazin. We conclude that at the doses evaluated in this study, the herbicide oxyfluorfen, s-metolachlor, linuron, oxadiazon and pendimethalin have potential for application in sunflower pre-emergence. = Objetivou-se com este trabalho avaliar os efeitos de diferentes herbicidas aplicados em pré-emergência sobre as características relacionadas ao crescimento e à fisiologia das plantas de girassol. O experimento foi conduzido em casa de vegetação, utilizando o delineamento inteiramente casualizado com cinco repetições, sendo os tratamentos constituídos da aplicação, em pré-emergência do girassol, dos seguintes herbicidas: flumioxazin, sulfentrazone, oxyfluorfen, oxadiazon, s-metolachlor, linuron e pendimethalin, além de uma testemunha sem aplicação. As avaliações das trocas gasosas foram realizadas aos 27 dias após a aplicação (DAAs dos herbicidas, enquanto as análises de crescimento e intoxicação visual da cultura foram mensuradas aos 50 DAAs. As características fisiológicas avaliadas n

  7. Effects of herbicides on fish

    DEFF Research Database (Denmark)

    Solomon, Keith R.; Dalhoff, Kristoffer; Volz, David

    2013-01-01

    Herbicides are used to control weeds and are usually targeted to processes and target sites that are specific to plants. As a result, most herbicides are not acutely toxic to fish. Exceptions to this general rule are uncouplers of oxidative phosphorylation and some herbicides that interfere...... have been observed in fish exposed to herbicides, these have either been observed at large concentrations that would be rarely found in surface waters inhabited by fish or, as in the case of behavior and olfaction, have not been linked to ecologically relevant responses on survival, growth, development......, and reproduction. As with all pesticides, herbicides may have indirect effects in fish. These effects are mediated by herbicide-induced changes in food webs or in the physical environment. Indirect effects can only occur if direct effects occur first and would be mediated by the killing of plants by herbicides...

  8. Soil microbial and faunal responses to herbicide tolerant maize and herbicide in two soils

    DEFF Research Database (Denmark)

    Griffiths, Bryan; Caul, Sandra; Thompson, J.

    2008-01-01

    ), Orient (non HT near isogenic control for T25) and Monumental (a conventional, non HT variety) were grown in contrasting sandy loam and clay loam soils, half were sprayed with the appropriate herbicide as used in the field and soil samples were taken at the five-leaf and flowering plant growth stage....... The main effects on all measured parameters were those of soil type and plant growth stage, with four categories of subsequent interaction: (1) there were no effects of herbicide on plant growth or soil microarthropods: (2) the maize cultivar (but not the GM HT trait) had effects on the decomposition...... of cotton strips and the nematode community; (3) herbicide application in general altered the community level physiological profile of the microbial community and reduced both soil basal respiration and the abundance of protozoa; and (4) the specific application of glufosinate-ammonium to T25 maize altered...

  9. Maize, switchgrass, and ponderosa pine biochar added to soil increased herbicide sorption and decreased herbicide efficacy.

    Science.gov (United States)

    Clay, Sharon A; Krack, Kaitlynn K; Bruggeman, Stephanie A; Papiernik, Sharon; Schumacher, Thomas E

    2016-08-02

    Biochar, a by-product of pyrolysis made from a wide array of plant biomass when producing biofuels, is a proposed soil amendment to improve soil health. This study measured herbicide sorption and efficacy when soils were treated with low (1% w/w) or high (10% w/w) amounts of biochar manufactured from different feedstocks [maize (Zea mays) stover, switchgrass (Panicum vigatum), and ponderosa pine (Pinus ponderosa)], and treated with different post-processing techniques. Twenty-four hour batch equilibration measured sorption of (14)C-labelled atrazine or 2,4-D to two soil types with and without biochar amendments. Herbicide efficacy was measured with and without biochar using speed of seed germination tests of sensitive species. Biochar amended soils sorbed more herbicide than untreated soils, with major differences due to biochar application rate but minor differences due to biochar type or post-process handling technique. Biochar presence increased the speed of seed germination compared with herbicide alone addition. These data indicate that biochar addition to soil can increase herbicide sorption and reduce efficacy. Evaluation for site-specific biochar applications may be warranted to obtain maximal benefits without compromising other agronomic practices.

  10. Postemergence herbicides for calendula

    Science.gov (United States)

    Calendula is an alternative oilseed crop whose seed oil is valued as a substitute for tung oil and a replacement for petroleum-based volatile organic compounds in paints and other coatings. Calendula is not yet grown extensively as an agronomic crop, and its tolerances to most herbicides are unknown...

  11. Downy Brome (Bromus tectorum L. and Broadleaf Weed Control in Winter Wheat with Acetolactate Synthase-Inhibiting Herbicides

    Directory of Open Access Journals (Sweden)

    Patrick W. Geier

    2013-04-01

    Full Text Available A study was conducted for three seasons in northwest Kansas, USA to evaluate acetolactate synthase (ALS-inhibiting herbicides for downy brome (Bromus tectorum L. and winter annual broadleaf weed control in winter wheat. Herbicides included pyroxsulam at 18.4 g ai ha−1, propoxycarbazone-Na at 44 g ai ha−1, premixed propoxycarbazone-Na & mesosulfuron-methyl at 27 g ai ha−1, and sulfosulfuron at 35 g ai ha−1. The herbicides were applied postemergence in fall and spring seasons. Averaged over time of application, no herbicide controlled downy brome more than 78% in any year. When downy brome densities were high, control was less than 60%. Pyroxsulam controlled downy brome greater than or similar to other herbicides tested. Flixweed (Descurainia sophia L., blue mustard [Chorispora tenella (Pallas DC.], and henbit (Lamium amplexicaule L. control did not differ among herbicide treatments. All herbicides tested controlled flixweed and blue mustard at least 87% and 94%, respectively. However, none of the herbicides controlled henbit more than 73%. Fall herbicide applications improved weed control compared to early spring applications; improvement ranged from 3% to 31% depending on the weed species. Henbit control was greatly decreased by delaying herbicide applications until spring compared to fall applications (49% vs. 80% control. Herbicide injury was observed in only two instances. The injury was ≤13% with no difference between herbicides and the injury did not impact final plant height or grain yield.

  12. Evolution of herbicide resistance mechanisms in grass weeds.

    Science.gov (United States)

    Matzrafi, Maor; Gadri, Yaron; Frenkel, Eyal; Rubin, Baruch; Peleg, Zvi

    2014-12-01

    Herbicide resistant weeds are becoming increasingly common, threatening global food security. Here, we present BrIFAR: a new model system for the functional study of mechanisms of herbicide resistance in grass weeds. We have developed a large collection of Brachypodium accessions, the BrI collection, representing a wide range of habitats. Wide screening of the responses of the accessions to four major herbicide groups (PSII, ACCase, ALS/AHAS and EPSPS inhibitors) identified 28 herbicide-resistance candidate accessions. Target-site resistance to PSII inhibitors was found in accessions collected from habitats with a known history of herbicide applications. An amino acid substitution in the psbA gene (serine264 to glycine) conferred resistance and also significantly affected the flowering and shoot dry weight of the resistant accession, as compared to the sensitive accession. Non-target site resistance to ACCase inhibitors was found in accessions collected from habitats with a history of herbicide application and from a nature reserve. In-vitro enzyme activity tests and responses following pre-treatment with malathion (a cytochrome-P450 inhibitor) indicated sensitivity at the enzyme level, and give strong support to diclofop-methyl and pinoxaden enhanced detoxification as NTS resistance mechanism. BrIFAR can promote better understanding of the evolution of mechanisms of herbicide resistance and aid the implementation of integrative management approaches for sustainable agriculture. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Synthesis and Herbicidal Activity of Novel 5-Substituted Benzenesulfonylureas

    Institute of Scientific and Technical Information of China (English)

    WANG Mei-yi; MU Xiao-li; GUO Wan-cheng; LI Yong-hong; LI Zheng-ming

    2007-01-01

    Sulfonylurea herbicides have been widely used because of their low application rates, good crop selectivities and low mammalian toxicities. However, some sulfonylureas might persist unfavourably in the environment with residual problems. In order to look for ecologically safer and environmentally benign sulfonylureas, and on keeping the pyrimidine ring being monosubstituted, 15 novel C5-monosubstituted benzenesulfonylurea compounds were synthesized. The structures of all the compounds synthesized were confirmed by elemental analysis and 1H NMR. Preliminary herbicidal activities of these new sulfonylurea compounds were determined by ALS screening (in vitro) and pot bioassay experiments(in vivo). The herbicidal results show that some novel sulfonylureas are comparable to commercial Foramsulfuron and Monosulfuron.

  14. Enantioselectivity in the phytotoxicity of herbicide imazethapyr.

    Science.gov (United States)

    Zhou, Qingyan; Xu, Chao; Zhang, Yongsong; Liu, Weiping

    2009-02-25

    Chiral compounds usually behave enantioselectively in phyto-biochemical processes. With the increasing application of chiral herbicides, their enantioselective phytotoxicity to plants merits further study, and little information is available in this area. The purpose of this study was to examine the enantioselective phytotoxicity of the herbicide imazethapyr (IM) on the roots of maize (Zea mays L.) seedlings. Enantiomers of IM were separated by HPLC, and their absolute configurations were confirmed as S-(+)-IM and R-(-)-IM by the octant rule. Plant growth measurements and morphological, microscopic, and ultrastructural observations were conducted after treatment with individual IM enantiomers and the racemate. Observations of root morphology showed that the root diameter significantly increased, whereas the root volume, surface area, and number of root tips decreased significantly. IM enantiomers selectively damaged root hair growth and significantly reduced the sloughing of border cells from the tips. IM also had adverse effects on cell organelles, such as statocytes, mitochondria, dictyosomes, and endoplasmic reticulum in maize roots. Moreover, cell membranes and cell walls were thicker than usual after IM treatment. All of the results showed the same trend that the R-(-)-IM affected the root growth of maize seedlings more severely than the S-(+)-IM. The inhibition abilities of (+/-)-IM was between S-(+)- and R-(-)-IM. The behavior of the active enantiomer, instead of just the racemate, may have more relevance to the herbicidal effects and ecological safety of IM. Therefore, enantiomeric differences should be considered when evaluating the bioavailability of the herbicide IM.

  15. Protocols for Robust Herbicide Resistance Testing in Different Weed Species.

    Science.gov (United States)

    Panozzo, Silvia; Scarabel, Laura; Collavo, Alberto; Sattin, Maurizio

    2015-07-02

    Robust protocols to test putative herbicide resistant weed populations at whole plant level are essential to confirm the resistance status. The presented protocols, based on whole-plant bioassays performed in a greenhouse, can be readily adapted to a wide range of weed species and herbicides through appropriate variants. Seed samples from plants that survived a field herbicide treatment are collected and stored dry at low temperature until used. Germination methods differ according to weed species and seed dormancy type. Seedlings at similar growth stage are transplanted and maintained in the greenhouse under appropriate conditions until plants have reached the right growth stage for herbicide treatment. Accuracy is required to prepare the herbicide solution to avoid unverifiable mistakes. Other critical steps such as the application volume and spray speed are also evaluated. The advantages of this protocol, compared to others based on whole plant bioassays using one herbicide dose, are related to the higher reliability and the possibility of inferring the resistance level. Quicker and less expensive in vivo or in vitro diagnostic screening tests have been proposed (Petri dish bioassays, spectrophotometric tests), but they provide only qualitative information and their widespread use is hindered by the laborious set-up that some species may require. For routine resistance testing, the proposed whole plant bioassay can be applied at only one herbicide dose, so reducing the costs.

  16. High survival frequencies at low herbicide use rates in populations of Lolium rigidum result in rapid evolution of herbicide resistance.

    Science.gov (United States)

    Neve, P; Powles, S

    2005-12-01

    The frequency of phenotypic resistance to herbicides in previously untreated weed populations and the herbicide dose applied to these populations are key determinants of the dynamics of selection for resistance. In total, 31 Lolium rigidum populations were collected from sites with no previous history of exposure to herbicides and where there was little probability of gene flow from adjacent resistant populations. The mean survival frequency across all 31 populations following two applications of commercial rates (375 g ha(-1)) of the acetyl-coenzyme A carboxylase (ACCase) inhibiting herbicide, diclofop-methyl was 0.43%. Survivors from five of these populations were grown to maturity and seed was collected. Dose-response experiments compared population level resistance to diclofop-methyl in these selected lines with their original parent populations. A single cycle of herbicide selection significantly increased resistance in all populations (LD(50) R:S ratios ranged from 2.8 to 23.2), confirming the inheritance and genetic basis of phenotypic resistance. In vitro assays of ACCase inhibition by diclofop acid indicated that resistance was due to a non-target-site mechanism. Following selection with diclofop-methyl, the five L. rigidum populations exhibited diverse patterns of cross-resistance to ACCase and ALS-inhibiting herbicides, suggesting that different genes or gene combinations were responsible for resistance. The relevance of these results to the management of herbicide resistance are discussed.

  17. Mechanisms of Herbicide-resistance

    Institute of Scientific and Technical Information of China (English)

    MA Hong; CHEN Yibing; TAO Bo

    2006-01-01

    This paper discussed mechanisms of herbicide-resistance. There are at least four mechanisms identified by which weeds become resistant to a herbicide. The two most common mechanisms are those involving metabolic reactions and changes in the deoxyribonucleic acid sequence (mutations) that alter the structure and features of the target proteins. The other two mechanisms involve either an alteration in the penetration or translocation of the herbicides to the target site or the depolarization of membrane within the weed.

  18. Application of a GIS-AF/RF model to assess the risk of herbicide leaching in a citrus-growing area of the Valencia Community, Spain.

    Science.gov (United States)

    de Paz, José M; Rubio, José L

    2006-12-01

    We integrated an index-based attenuation factor/retardation factor (AF/RF) model into a GIS to evaluate the risk of leaching of the most frequently applied herbicides (glyphosate, diuron, diquat, bromacil, simazine, linuron, terbuthylazine, and terbumeton) used in citrus orchards of the Valencia Community, Spain. The GIS-model system was applied to a region of 33,800 ha located near Valencia City. The soil and climate data required by the model were stored in an Arc/Info GIS in which the model algorithms were integrated using the AML programming language. A graphical user interface was developed to facilitate the use of the GIS-model system. The resulting simulation maps indicate that terbumeton, bromacil, and simazine herbicides have the highest risk of leaching because of their high mobility and low K(oc) (32-158 mg l(-1)). The remaining herbicides are strongly adsorbed by clay particles and organic matter, thus minimising the risk of leaching through the soil profile and into groundwater. The obtained ranking of the leaching potential of analysed herbicides is as follows, from highest to lowest risk: terbumeton>bromacil>simazine>terbuthylazine>diuron>linuron>glyphosate>diquat.

  19. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    Science.gov (United States)

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-07-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services.

  20. [Effects of tillage at pre-planting of winter wheat and summer maize on leaf senescence of summer maize].

    Science.gov (United States)

    Li, Xia; Zhang, Ji-wang; Ren, Bai-zhao; Fan, Xia; Dong, Shu-ting; Liu, Peng; Zhao, Bin

    2015-05-01

    This study explored the effects of different tillage treatments at pre-planting winter wheat and summer maize on leaf senescence physiological characteristics of summer maize in double cropping system. Zhengdan 958 was used as experimental material. Three tillage treatments, including rotary tillage before winter wheat seeding and no-tillage before summer maize seeding (RN), mold- board plow before winter wheat seeding and no-tillage before summer maize seeding (MN), and moldboard plow before winter wheat seeding and rotary tillage before summer maize seeding (MR), were designed to determine the effects of different tillage treatments on leaf area (LA) , leaf area reduction, photosynthetic pigments content, superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities and malondialdehyde (MDA) content in ear leaves of summer maize after tasselling (VT). LA of MN and MR were higher than that of RN from VT to 40 days after tasseling (VT + 40) and LA reduction of MR was the highest after VT + 40. As for MR, MN and NT, the photosynthetic pigments content got the maximum value at 20 days after tasselling (VT + 20) and then decreased, following the change of unimodal curve. At VT + 20, the contents of chlorophyll a in MR and MN were increased by 11.4% and 9.7%, the contents of chlorophyll b in MR and MN were increased by 14.9% and 15.9%, compared with RN. The soluble protein content in ear leaves decreased following the growth process in all treatments, and that of MR and MN remained 11.5% and 24.4% higher than that of RN from VT to VT + 40. SOD, CAT and POD activities of three treatments got the maximum values at VT + 20 and then decreased, following the change of unimodal curve. MDA content increased following the growth process in all treatments and that of RN always remained at high levels. Grain yields of MN and MR were 24.0% and 30.6% greater than that of RN, respectively. Grain yield of MR was 5.2% higher than that of MN. In conclusion, the ability of

  1. Effects Of Spring Herbicide Treatments On Winter Wheat Growth And Grain Yield*

    Directory of Open Access Journals (Sweden)

    Hamouz P.

    2015-03-01

    Full Text Available Herbicides provide a low-cost solution for protecting crops from significant yield losses. If weed infestations are below damage thresholds, however, then herbicide application is unnecessary and can even lead to yield loss. A small-plot field trial was conducted to examine the effect of herbicides on winter wheat yields. Weeds were removed manually from the trial area before herbicide application. Twenty-four treatments were tested in four replications. Treatment 1 consisted of an untreated weed-free control, whereas the other treatments comprised applications of the following herbicides and their combinations: metsulfuron-methyl + tribenuron-methyl (4.95 + 9.99 g ha−1, pinoxaden (30 g ha−1, fluroxypyr (175 g ha−1, and clopyralid (120 g ha−1. Water (250 l ha−1 or a urea-ammonium nitrate fertilizer solution (UAN, 120.5 l ha−1 was used as the herbicide carrier. Crop injury 30 days after treatment and yield loss were recorded. Results showed minor crop injury by herbicides and their combinations when applied without UAN and moderate injury caused by UAN in combination with herbicides. Yield losses reached 5.3% and 4.3% in those treatments where all of the tested herbicides were applied with and without UAN, respectively. The effect of all treatments on crop yield was, however, statistically insignificant (P = 0.934.

  2. Atividade microbiana em solo cultivado com cana-de-açúcar após aplicação de herbicidas Microbial activity in soil cultivated with sugarcane after herbicide application

    Directory of Open Access Journals (Sweden)

    M.R. Reis

    2008-06-01

    application in the split-plots. The herbicide doses, in kg ha-1, were: 1.30 (2,4-D, 1.00 (ametryn, 0.0225 (trifloxysulfuron-sodium, and 1.463 + 0.0375 for the mixture ametryn + trifloxysulfuron-sodium,, respectively. At 60 days after shoot emergence, the herbicides were sprayed on the sugarcane plants. At 15, 30, 45, and 60 days after herbicide application, rhizospheric and non-rhizospheric soil samples were collected and analyzed for respiratory rate (RR microbial biomass (MB, metabolic quotient (qCO2, and total C-CO2 evolved from the soil (TCE. Ametryn applied singly or combined with trifloxysulfuron-sodium led to higher RR, while 2,4-D alone had little influence on this variable. Higher TCEs were verified in the soils of the treatments with trifloxysulfuron-sodium, ametryn, and with the compounds combined. Soil MB was reduced in the presence of ametryn applied singly or combined. These treatments resulted in higher values of qCO2 at 45 and 60 days of application, respectively.

  3. Supplemental Environmental Assessment: Herbicide Application for Installation Fenceline, Railroad Tracks, and Broadleaf Weed Control at Niagara Falls Air Reserve Station, New York

    Science.gov (United States)

    2006-02-01

    cause muscle weakness, nausea, diarrhea, and abdom inal pain. Fall in blood pressure or myotonia (prolonged muscular spasm ) may occur under extreme...muscle weakness, nausea, diarrhea, and abdominal pain . Fall in blood pressure or myotonia (prolonged muscular spasm ) may occur under extreme...Repeated or prolonged overexposure to phenoxy herbicides may cause liver, kidney, gastrointestinal or muscular system effects. The EPA’s Science

  4. Segurança do trabalhador em aplicações de herbicidas com pulverizadores de barra em cana-de-açúcar Workers´safety in herbicide applications using bar sprayers in sugar cane

    Directory of Open Access Journals (Sweden)

    J.G. Machado Neto

    2007-09-01

    Full Text Available Objetivou-se com este trabalho avaliar a eficiência da cabina do trator, de dois tipos de ponta de pulverização e de duas posições da barra do pulverizador montado em trator em aplicações de herbicidas na cultura de cana-de-açúcar, como medidas de proteção coletiva para a atividade de tratorista, separadamente ou combinadas; e classificar a segurança dessas condições de trabalho com as 46 recomendações de herbicidas registradas. As exposições dérmica e respiratória do tratorista foram quantificadas em aplicações com o pulverizador equipado com barra traseira ou central, associadas com pontas com indução de ar, modelo Turbo TeeJet Air Induction® (TTI-11004VP, e sem indução de ar, modelo Turbo Floodjet® (TF-VP3, e o trator sem e com cabina. Foram calculadas as margens de segurança (MS para 46 recomendações de aplicação de herbicidas nessas condições de trabalho. Pelos valores de MS calculados, as condições de trabalho foram classificadas como seguras (MS > 1 ou inseguras (MS This work was carried out to evaluate the efficiency of the tractor cabin, two nozzle models and two bar positions of a tractor-mounted sprayer in herbicide applications on sugar cane crop as a collective protection measure for tractor driver activity, separately or combined; and to classify the safety of these working conditions according to the 46 recommendations of registered herbicides. The truck driver´ s skin and respiratory organ exposures were quantified in applications with the sprayer equipped with back or central bar, nozzles with air induction, Turbo TeeJet Air Induction® (TTI-11004VP model and without air induction, Turbo Floodjet® (TF VP3 model, and tractor with and without cabin. The safety margins (SM for 46 herbicide application recommendations under these work conditions were calculated. Based on the calculated MS values, the work conditions were classified as safe (SM e" 1 or unsafe (SM > 1. The safest work conditions

  5. APPLICATION OF QuEChERS METHOD FOR THE DETERMINATION OF PHENYLUREA HERBICIDES IN BEETROOT BY HPLC WITH UV-VIS DETECTION

    Directory of Open Access Journals (Sweden)

    Magdalena Surma

    2015-02-01

    Full Text Available Phenylurea herbicides are an important group of herbicides utilized in weed control. They have been on sale since the 1950s and are still in common use throughout the world from pre- and post-emergence control of many annual and perennial broad-leaved weeds. The aim of this work was to evaluate the utility of the QuEChERS method for the determination of phenylurea pesticides (chlortoluron, isoproturon, linuron, metobromuron, metoxuron, monolinuron in beetroot by HPLC with UV/Vis detection. Different types of sorbents (PSA, C18, SAX and NH2 and solvents (hexane, ethyl acetate were applied. The obtained results showed that the best recovery ratios were received for the method with PSA and GCB sorbents and using acetonitrile as an extraction solvent with RSD lower than 15% for most compounds. The linearity of calibration curves was higher than 0.98 for all target analytes. The results show that the QuEChERS method can be successfully applied for the determination of phenylurea herbicides in beetroot.

  6. Recurrent selection with reduced herbicide rates results in the rapid evolution of herbicide resistance in Lolium rigidum.

    Science.gov (United States)

    Neve, Paul; Powles, Stephen

    2005-04-01

    There has been much debate regarding the potential for reduced rates of herbicide application to accelerate evolution of herbicide resistance. We report a series of experiments that demonstrate the potential for reduced rates of the acetyl-co enzyme A carboxylase (ACCase)-inhibiting herbicide diclofop-methyl to rapidly select for resistance in a susceptible biotype of Lolium rigidum. Thirty-six percent of individuals from the original VLR1 population survived application of 37.5 g diclofop-methyl ha(-1) (10% of the recommended field application rate). These individuals were grown to maturity and bulk-crossed to produce the VLR1 low dose-selected line VLR1 (0.1). Subsequent comparisons of the dose-response characteristics of the original and low dose-selected VLR1 lines demonstrated increased tolerance of diclofop-methyl in the selected line. Two further rounds of selection produced VLR1 lines that were resistant to field-applied rates of diclofop-methyl. The LD50 (diclofop-methyl dose required to cause 50% mortality) of the most resistant line was 56-fold greater than that of the original unselected VLR1 population, indicating very large increases in mean population survival after three cycles of selection. In vitro ACCase inhibition by diclofop acid confirmed that resistance was not due to an insensitive herbicide target-site. Cross-resistance studies showed increases in resistance to four herbicides: fluazifop-P-butyl, haloxyfop-R-methyl, clethodim and imazethapyr. The potential genetic basis of the observed response and implications of reduced herbicide application rates for management of herbicide resistance are discussed.

  7. Ectomycorrhizal formation in herbicide-treated soils of differing clay and organic matter content

    Science.gov (United States)

    Matt D. Busse; Gary O. p Fiddler; Alice W. Ratcliff

    2004-01-01

    Herbicides are commonly used on private timberlands in the western United States for site preparation and control of competing vegetation. How non-target soil biota respond to herbicide applications, however, is not thoroughly understood. We tested the effects of triclorpyr, imazapyr, and sulfometuron methyl on ectomycorrhizal formation in a greenhouse study. Ponderosa...

  8. Lawn Weed Control with Herbicides. Home and Garden Bulletin No. 123.

    Science.gov (United States)

    Agricultural Research Service (USDA), Washington, DC.

    Information and diagrams are given for identification and treatment of weed grasses and broadleaf weeds. Herbicides are suggested for use against each weed and instructions are given for proper application. Information is given for buying herbicides, and applying sprays and cleaning sprayers. (BB)

  9. Chromatographic methods for analysis of triazine herbicides.

    Science.gov (United States)

    Abbas, Hana Hassan; Elbashir, Abdalla A; Aboul-Enein, Hassan Y

    2015-01-01

    Gas chromatography (GC) and high-performance liquid chromatography (HPLC) coupled to different detectors, and in combination with different sample extraction methods, are most widely used for analysis of triazine herbicides in different environmental samples. Nowadays, many variations and modifications of extraction and sample preparation methods such as solid-phase microextraction (SPME), hollow fiber-liquid phase microextraction (HF-LPME), stir bar sportive extraction (SBSE), headspace-solid phase microextraction (HS-SPME), dispersive liquid-liquid microextraction (DLLME), dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO), ultrasound-assisted emulsification microextraction (USAEME), and others have been introduced and developed to obtain sensitive and accurate methods for the analysis of these hazardous compounds. In this review, several analytical properties such as linearity, sensitivity, repeatability, and accuracy for each developed method are discussed, and excellent results were obtained for the most of developed methods combined with GC and HPLC techniques for the analysis of triazine herbicides. This review gives an overview of recent publications of the application of GC and HPLC for analysis of triazine herbicides residues in various samples.

  10. Acute and additive toxicity of ten photosystem-II herbicides to seagrass

    Science.gov (United States)

    Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Negri, Andrew P.

    2015-11-01

    Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/Fm‧) by 50% at concentrations ranging from 3.5 μg l-1 (ametryn) to 132 μg l-1 (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/Fm‧.

  11. Acute and additive toxicity of ten photosystem-II herbicides to seagrass.

    Science.gov (United States)

    Wilkinson, Adam D; Collier, Catherine J; Flores, Florita; Negri, Andrew P

    2015-11-30

    Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/F(m)') by 50% at concentrations ranging from 3.5 μg l(-1) (ametryn) to 132 μg l(-1) (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/F(m)'.

  12. Viabilidade econômica dos sistemas manual e mecanizado de aplicação de herbicidas em ferrovias Economical viability of manual and mechanized application of herbicides in railways

    Directory of Open Access Journals (Sweden)

    Ulisses R. Antuniassi

    1996-01-01

    Full Text Available A aplicação mecanizada de herbicidas em ferrovias tem como principal vantagem a grande capacidade operacional, cobrindo trechos extensos em curtos espaços de tempo. Entretanto em função das características dos equipamentos utilizados, quase sempre ocorre grande desperdício de herbicida. A aplicação manual, através de pulverizadores costais, tem como principal vantagem a possibilidade da pulverização dirigida às áreas infestadas, diminuindo a quantidade de herbicida aplicado. Por outro lado, sua reduzida capacidade operacional faz com que a aplicação de longos trechos seja demorada, tornando-a, assim, mais dependente dos problemas climáticos e operacionais da ferrovia. O objetivo do trabalho foi realizar uma análise comparativa das características operacionais e econômicas destes sistemas de aplicação, apontando os fatores mais importantes a serem avaliados para a sua implantação. Para tanto, foram realizadas simulações em computador, baseando-se em diversas equações matemáticas e dados levantados no campo. Os resultados mostraram que a aplicação manual apresentou-se mais econômica apenas para trechos com baixas infestações (até 10%, e média. Na composição de custos, os gastos com herbicidas corresponderam a cerca de 80% do total para a aplicação mecanizada e apenas 8% na manual. Levando-se em conta os fatores operacionais e de mão-de-obra, em apenas um dos trechos avaliados houve vantagem econômica do uso da aplicação manual.Mechanized and manual systems of herbicide application in railway present either advantages or disadvantages. The main advantage of mechanized application is related to its wide operational capacity which covers large distances in short time. However, in function of the equipment characteristics, an excessive waste of herbicide usually occurs. The main advantage of manual application is the direct spraying in the infested area, decreasing the quantity of herbicide applied. On the

  13. Efeitos de parâmetros de aplicação na ação dessecante do herbicida sulfosate sobre plantas de arroz Effects of application parameters on desiccation action of herbicide sulfosate on rice

    Directory of Open Access Journals (Sweden)

    Nilson G. Fleck

    1999-04-01

    tillage systems, requiring efficient herbicide application. In this sense, application parameters like spray volume, dropplet size, and herbicide concentration may exert great influence on activity of these products. The objective of this research was to investigate the interaction effects of herbicide rate,herbicide concentration, and diluent volume, on sulfosate efficiency, using rice as test plant. The experiment was conducted during the 1994/95 growing season at the IRGA Rice Experimental Station, in Cachoeirinha, RS, Brazil. Eighteen treatments were tested, performed by five sulfosate rates (1.7; 2.3; 3.0; 4.0; and 4.7 l/ha of formulated product, five diluent volumes (85; 115; 150; 200; and 235 l/ha, and five product concentrations in spray solution (1.2; 1.5; 2.0; 2.6; and 3.3 % v/v. In each condition, one of these parameters was fixed, whereas the other two varied. When maintained spray volume constant, there was no difference, at the last evaluation, among sulfosate rates of 3.0; 4.0; and 4.7 l/ha, when all these reached rice control around 90%. When herbicide concentration was maintained constant, the responses to herbicide rates were not significant.In the third condition, when herbicide rate was fixed, it was observed that sulfosate action increased at higher concentrations. Control levels around 90% were reached with herbicide concentration of 2% or higher. This demonstrates that application parameters of sulfosate may be modified in order to obtain greater efficiency in its action.

  14. The structure-activity relationship in herbicidal monosubstituted sulfonylureas

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng-Ming; Ma, Yi; Guddat, Luke; Cheng, Pei-Quan; Wang, Jian-Guo; Pang, Siew S; Dong, Yu-Hui; Lai, Cheng-Ming; Wang, Ling-Xiu; Jia, Guo-Feng; Li, Yong-Hong; Wang, Su-Hua; Liu, Jie; Zhao, Wei-Guang; Wang, Bao-Lei [Nankai; (Queens); (Chinese Aca. Sci.)

    2012-05-24

    The herbicide sulfonylurea (SU) belongs to one of the most important class of herbicides worldwide. It is well known for its ecofriendly, extreme low toxicity towards mammals and ultralow dosage application. The original inventor, G Levitt, set out structure-activity relationship (SAR) guidelines for SU structural design to attain superhigh bioactivity. A new approach to SU molecular design has been developed. After the analysis of scores of SU products by X-ray diffraction methodology and after greenhouse herbicidal screening of 900 novel SU structures synthesized in the authors laboratory, it was found that several SU structures containing a monosubstituted pyrimidine moiety retain excellent herbicidal characteristics, which has led to partial revision of the Levitt guidelines. Among the novel SU molecules, monosulfuron and monosulfuron-ester have been developed into two new herbicides that have been officially approved for field application and applied in millet and wheat fields in China. A systematic structural study of the new substrate-target complex and the relative mode of action in comparison with conventional SU has been carried out. A new mode of action has been postulated.

  15. Effects of the herbicide imazapyr on juvenile Oregon spotted frogs.

    Science.gov (United States)

    Yahnke, Amy E; Grue, Christian E; Hayes, Marc P; Troiano, Alexandra T

    2013-01-01

    Conflict between native amphibians and aquatic weed management in the Pacific Northwest is rarely recognized because most native stillwater-breeding amphibian species move upland during summer, when herbicide application to control weeds in aquatic habitats typically occurs. However, aquatic weed management may pose a risk for aquatic species present in wetlands through the summer, such as the Oregon spotted frog (OSF, Rana pretiosa), a state endangered species in Washington. Acute toxicity of herbicides used to control aquatic weeds tends to be low, but the direct effects of herbicide tank mixes on OSFs have remained unexamined. We exposed juvenile OSFs to tank mixes of the herbicide imazapyr, a surfactant, and a marker dye in a 96-h static-renewal test. The tank mix was chosen because of its low toxicity to fish and its effectiveness in aquatic weed control. Concentrations were those associated with low-volume (3.5 L/ha) and high-volume (7.0 L/ha) applications of imazapyr and a clean-water control. Following exposure, frogs were reared for two months in clean water to identify potential latent effects on growth. Endpoints evaluated included feeding behavior, growth, and body and liver condition indices. We recorded no mortalities and found no significant differences for any end point between the herbicide-exposed and clean-water control frogs. The results suggest that imazapyr use in wetland restoration poses a low risk of direct toxic effects on juvenile OSFs. Copyright © 2012 SETAC.

  16. Effects of the herbicide imazapyr on juvenile Oregon spotted frogs

    Science.gov (United States)

    Yahnke, Amy E.; Grue, Christian E.; Hayes, Marc P.; Troiano, Alexandra T.

    2013-01-01

    Conflict between native amphibians and aquatic weed management in the Pacific Northwest is rarely recognized because most native stillwater-breeding amphibian species move upland during summer, when herbicide application to control weeds in aquatic habitats typically occurs. However, aquatic weed management may pose a risk for aquatic species present in wetlands through the summer, such as the Oregon spotted frog (OSF, Rana pretiosa), a state endangered species in Washington. Acute toxicity of herbicides used to control aquatic weeds tends to be low, but the direct effects of herbicide tank mixes on OSFs have remained unexamined. We exposed juvenile OSFs to tank mixes of the herbicide imazapyr, a surfactant, and a marker dye in a 96-h static-renewal test. The tank mix was chosen because of its low toxicity to fish and its effectiveness in aquatic weed control. Concentrations were those associated with low-volume (3.5 L/ha) and high-volume (7.0 L/ha) applications of imazapyr and a clean-water control. Following exposure, frogs were reared for two months in clean water to identify potential latent effects on growth. Endpoints evaluated included feeding behavior, growth, and body and liver condition indices. We recorded no mortalities and found no significant differences for any end point between the herbicide-exposed and clean-water control frogs. The results suggest that imazapyr use in wetland restoration poses a low risk of direct toxic effects on juvenile OSFs.

  17. The structure-activity relationship in herbicidal monosubstituted sulfonylureas.

    Science.gov (United States)

    Li, Zheng-Ming; Ma, Yi; Guddat, Luke; Cheng, Pei-Quan; Wang, Jian-Guo; Pang, Siew S; Dong, Yu-Hui; Lai, Cheng-Ming; Wang, Ling-Xiu; Jia, Guo-Feng; Li, Yong-Hong; Wang, Su-Hua; Liu, Jie; Zhao, Wei-Guang; Wang, Bao-Lei

    2012-04-01

    The herbicide sulfonylurea (SU) belongs to one of the most important class of herbicides worldwide. It is well known for its ecofriendly, extreme low toxicity towards mammals and ultralow dosage application. The original inventor, G Levitt, set out structure-activity relationship (SAR) guidelines for SU structural design to attain superhigh bioactivity. A new approach to SU molecular design has been developed. After the analysis of scores of SU products by X-ray diffraction methodology and after greenhouse herbicidal screening of 900 novel SU structures synthesised in the authors' laboratory, it was found that several SU structures containing a monosubstituted pyrimidine moiety retain excellent herbicidal characteristics, which has led to partial revision of the Levitt guidelines. Among the novel SU molecules, monosulfuron and monosulfuron-ester have been developed into two new herbicides that have been officially approved for field application and applied in millet and wheat fields in China. A systematic structural study of the new substrate-target complex and the relative mode of action in comparison with conventional SU has been carried out. A new mode of action has been postulated. Copyright © 2011 Society of Chemical Industry.

  18. Aging effects on the availability of herbicides to runoff transfer.

    Science.gov (United States)

    Louchart, Xavier; Voltz, Marc

    2007-02-15

    Realistic estimation of sorption parameters is essential to predict long-term herbicide availability in soils and their contamination of surface water and groundwater. This study examined the temporal change of an effective partition coefficient Kd(eff) for the herbicides simazine, diuron, and oryzalin from a 0.12 ha field experiment during 7 vineyard growing seasons. Kd(eff) is the ratio of solvent extractable herbicide concentrations in the top soil (0-2 cm) to the average concentrations in runoff water and is considered to assess the effective availability of herbicides to runoff transfer. Kd(eff) increased largely with aging time since application, from values similar to those of the literature (determined in 24 h batch conditions, Kd(ref)), up to 88, 164, and 30 times these initial values for simazine, diuron, and oryzalin respectively. The seasonal variation of Kd(eff) values between years and compounds could be adequately described by a unique model, taking into account the cumulative rainfall since application and Kd(ref) of each compound. This simple model was able to represent the influence of the soil moisture content and its changes in the different biological and physicochemical processes that may contribute to the (bio)available, sorbed, or entrapped state of any of the studied herbicides with aging time under Mediterranean climate.

  19. The direct and indirect effects of a glyphosate-based herbicide and nutrients on Chironomidae (Diptera) emerging from small wetlands.

    Science.gov (United States)

    Baker, Leanne F; Mudge, Joseph F; Houlahan, Jeff E; Thompson, Dean G; Kidd, Karen A

    2014-09-01

    Laboratory and mesocosm experiments have demonstrated that some glyphosate-based herbicides can have negative effects on benthic invertebrate species. Although these herbicides are among the most widely used in agriculture, there have been few multiple-stressor, natural system-based investigations of the impacts of glyphosate-based herbicides in combination with fertilizers on the emergence patterns of chironomids from wetlands. Using a replicated, split-wetland experiment, the authors examined the effects of 2 nominal concentrations (2.88 mg acid equivalents/L and 0.21 mg acid equivalents/L) of the glyphosate herbicide Roundup WeatherMax, alone or in combination with nutrient additions, on the emergence of Chironomidae (Diptera) before and after herbicide-induced damage to macrophytes. There were no direct effects of treatment on the structure of the Chironomidae community or on the overall emergence rates. However, after macrophyte cover declined as a result of herbicide application, there were statistically significant increases in emergence in all but the highest herbicide treatment, which had also received no nutrients. There was a negative relationship between chironomid abundance and macrophyte cover on the treated sides of wetlands. Fertilizer application did not appear to compound the effects of the herbicide treatments. Although direct toxicity of Roundup WeatherMax was not apparent, the authors observed longer-term impacts, suggesting that the indirect effects of this herbicide deserve more consideration when assessing the ecological risk of using herbicides in proximity to wetlands.

  20. Herbicide treatments for the control of resistant black grass (Alopecurus myosuroides Huds. in winter wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Gehring, Klaus

    2014-02-01

    Full Text Available Different herbicide treatments were tested in the year 2010 – 2013 at eight locations in the north-west of Bavaria in Franken to control herbicide resistant black grass (Alopecurus myosuroides, Huds.. Application of Atlantis (Mesosulfuron + Iodosulfuron + Mefenpyr was essential for the control of black grass in winter wheat. Combination with other herbicides was also in focus of the trial program as different treatment methods, application timing, application sequences, herbicide rate and the use of adjuvants. As a result of the trials sequence applications were more effective than single applications. The use of soil active herbicides in autumn and spring application of Atlantis was one of the best solutions to control resistant black grass in winter wheat. Reduced rate of Atlantis have to be compensated by addition of appropriate adjuvants. Higher level of resistance depends on implementation of integrated weed management to serve economic wheat production.

  1. Carotenoides em grãos de milho verde após a aplicação de herbicidas pós-emergentes Carotenoids in green corn grains after post-emergence herbicide application

    Directory of Open Access Journals (Sweden)

    Sara de Almeida Rios

    2010-01-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da aplicação de herbicidas pós-emergentes no teor de carotenoides em grãos de milho verde. Utilizou-se o delineamento inteiramente casualizado com cinco tratamentos - sem aplicação; foramsulfuron + iodosulfuron-methyl-sodium (40 g ha-1; nicosulfuron (20 g ha-1; mesotrione (120 g ha-1 e tembotrione (100 g ha-1 - e duas repetições. Os grãos foram avaliados para teores de luteína, zeaxantina, betacriptoxantina, alfacaroteno e betacaroteno, carotenoides pró-vitamina A, carotenoides totais e percentuais de luteína, zeaxantina e carotenoides pró-vitamina A. Os herbicidas tembotrione e o nicosulfuron não causaram efeitos deletérios nos teores de carotenoides totais ou nas frações com atividade pró-vitamina A.The objective of this work was to evaluate the efect of post-emergence herbicide application on carotenoid content in green corn grains. A completely randomized design was used, with five treatments - no application; foramsulfuron + iodosulfuron-methyl-sodium (40 g ha-1; nicosulfuron (20 g ha-1; mesotrione (120 g ha-1 and tembotrione (100 g ha-1 -, and two replicates. The grains were evaluated in terms of lutein, zeaxanthin, beta-cryptoxanthin, alpha-carotene and beta-carotene, pro-vitamin A carotenoids, total carotenoid contents, and percentage of lutein, zeaxanthin and pro-vitamin A carotenoids. Tembotrione and nicosulfuron herbicides did not cause deleterious effects on total carotenoids or fractions with pro-vitamin A activity.

  2. Determinação da carga física de trabalho na atividade de aplicação manual de herbicida / Determination of demanded physical effort in herbicide application activity

    Directory of Open Access Journals (Sweden)

    Eduardo da Silva Lopes

    2011-08-01

    Full Text Available Esta pesquisa teve por objetivo determinar a carga física de trabalho e avaliar o esforço físico na atividade de aplicação manual de herbicida em plantios florestais, visando propor a melhoria das condições de conforto, segurança e saúde dos trabalhadores. A carga física de trabalho foi obtida por meio do levantamento da frequência cardíaca dos trabalhadores na execução das diversas fases do ciclo de trabalho e a atividade classificada conforme metodologia proposta por Apud (1989. Os resultados indicaram que a atividade de aplicação manual de herbicida foi classificada como moderadamente pesada, apresentando carga cardiovascular abaixo do limite máximo recomendado de 40% e não sendo necessário o estabelecimento de pausas adicionais de repouso.AbstractThe objective of this research was to determine and evaluate the demanded physical effort in the activity of herbicide manual application in forest plantations, proposing an ergonomic reorganization to improve the workers’ comfort, security, safety and health. The demanded physical effort was gotten in a survey of the workers’ cardiac frequency while executing the work stages, and classified according to methodology proposed by Apud (1989. The results indicated that the activity of herbicide manual application was classified as moderately heavy, featuring cardiovascular load below the recommended limit of 40% and there is no need to establish additional break in the work.

  3. Toxicity assessment of herbicides quizalafop-p-ethyl and clodinafop towards Rhizobium pea symbiosis.

    Science.gov (United States)

    Ahemad, Munees; Khan, Mohammad Saghir

    2009-06-01

    In modern conventional agriculture, herbicides are frequently used to prevent yield losses due to weeds. Herbicides also affect negatively the productivity of legumes. With these considerations, we evaluated the effects of soil applications of different concentrations of quizalafop-p-ethyl and clodinafop on the performance of Rhizobium inoculated pea, grown in clay pots. In this study, the concentration of herbicides higher than the recommended rates of quizalafop-p-ethyl and clodinafop adversely affected the dry matter accumulation, symbiotic properties, grain yield and nutrient status of pea plants. Toxicity of quizalafop-p-ethyl and clodinafop to pea plants increased progressively with increase in rates of herbicides. Of the two herbicides, quizalafop-p-ethyl was more toxic than clodinafop. In contrast, when herbicide tolerant Rhizobium strain MRP1 was also used with herbicide, it increased the measured parameters at all concentrations. A maximum increase of 11%, 17%, 46%, 33%, 21% and 7% in the root N, shoot N, root P, shoot P, seed yield and seed protein, respectively, was observed when MRP1 was used with 120 microg quizalafop-p-ethyl kg(-1) soil while with 1,200 microg clodinafop kg(-1) soil it increased the root N, shoot N, root P, shoot P, seed yield and seed protein by 20%, 9%, 56%, 56%, 29% and 7%, respectively, compared with the un-inoculated but herbicide treated control. This study suggested that the toxic effects of herbicides on pea plants could be attenuated by applying growth promoting herbicide tolerant strain of Rhizobium under herbicide stressed soil environment.

  4. Residual herbicide study on selected Hanford Site roadsides

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.L.; Kemp, C.J.; Sackschewsky, M.R.

    1993-08-01

    Westinghouse Hanford Company routinely treats roadsides with herbicides to control undesirable plant growth. An experiment was conducted to test perennial grass germination in soils adjacent to roadways of the Hanford Site. The primary variable was the distance from the roadside. A simple germination test was executed in a controlled-environment chamber to determine the residual effects of these applications. As expected, the greatest herbicide activity was found directly adjacent to the roadway, approximately 0 to 20 ft (0 to 6.3 m) from the roadway.

  5. Spot Spraying Reduces Herbicide Concentrations in Runoff.

    Science.gov (United States)

    Melland, Alice R; Silburn, D Mark; McHugh, Allen D; Fillols, Emilie; Rojas-Ponce, Samuel; Baillie, Craig; Lewis, Stephen

    2016-05-25

    Rainfall simulator trials were conducted on sugar cane paddocks across dry-tropical and subtropical Queensland, Australia, to examine the potential for spot spraying to reduce herbicide losses in runoff. Recommended rates of the herbicides glyphosate, 2,4-D, fluoroxypyr, atrazine, and diuron were sprayed onto 0, 20, 40, 50, 70, or 100% of the area of runoff plots. Simulated rainfall was applied 2 days after spraying to induce runoff at one plant cane and three ratoon crop sites. Over 50% of all herbicides were transported in the dissolved phase of runoff, regardless of the herbicide's sediment-water partition coefficient. For most sites and herbicides, runoff herbicide concentrations decreased with decreasing spray coverage and with decreasing herbicide load in the soil and cane residues. Importantly, sites with higher infiltration prior to runoff and lower total runoff had lower runoff herbicide concentrations.

  6. Dinâmica de nutrientes em tecidos foliares de cana-de-açúcar após aplicação de herbicidas Nutrient dynamics in sugar cane foliar tissues after herbicide application

    Directory of Open Access Journals (Sweden)

    M.R. Reis

    2008-03-01

    -se neste trabalho os efeitos dos herbicidas na concentração dos nutrientes e o crescimento das plantas de cana-de-açúcar.The objective of this work was to evaluate the impact of the herbicides ametryn and trifloxysulfuron-sodium, alone or combined, and 2,4-D, on mineral nutrition and growth in sugar cane plants. Sugar cane plants with three to four fully expanded leaves were sprayed with ametryn, trifloxysulfuron-sodium, and ametryn + trifloxysulfuron-sodium at the doses of 1.30; 1.00; 0.0225, and 1.463 + 0.0375 Kg ha-1, respectively. A completely randomized design was adopted in a split-plot scheme with four replications. Herbicide effect was evaluated in the whole plots and the effect of time after application in the split-plots. At 15, 30, 45, and 60 days after spraying (DAA, leaf tissue samples were collected and analyzed for height and dry mass of the shoots, number of leaves and tillers, and foliar concentrations of macro and micronutrients of sugar cane plants. The leaf concentrations of N, P and Mg were not affected by herbicide use. After herbicide spraying, increase in the accumulation rate (coefficient beta0 of the cationic nutrients Ca, Mg and K, was observed in the plants treated with ametryn + trifloxysulfuron-sodium. When 2,4-D was applied, a reduction in the accumulation rate of the S and alteration in the dynamics of the nutrients Mg, Ca and K were verified in relation to the other treatments. The herbicides reduced the iron concentration in sugar cane plants to 15 DAA, in the following order: ametryn+trifloxysulfuron-sodium > ametryn > trifloxysulfuron-sodium > 2,4-D. At 60 DAS, trifloxysulfuron-sodium led to increase of 22.10% in biomass accumulation of the sugar cane shoots in comparison to the control treatment without herbicide application. The number of tillers plants treated with trifloxysulfuron-sodium was double in relation that of those treated with ametryn, evidencing negative effect ametryn. This work evidences herbicide effects on the

  7. A generalised individual-based algorithm for modelling the evolution of quantitative herbicide resistance in arable weed populations.

    Science.gov (United States)

    Liu, Chun; Bridges, Melissa E; Kaundun, Shiv S; Glasgow, Les; Owen, Micheal Dk; Neve, Paul

    2017-02-01

    Simulation models are useful tools for predicting and comparing the risk of herbicide resistance in weed populations under different management strategies. Most existing models assume a monogenic mechanism governing herbicide resistance evolution. However, growing evidence suggests that herbicide resistance is often inherited in a polygenic or quantitative fashion. Therefore, we constructed a generalised modelling framework to simulate the evolution of quantitative herbicide resistance in summer annual weeds. Real-field management parameters based on Amaranthus tuberculatus (Moq.) Sauer (syn. rudis) control with glyphosate and mesotrione in Midwestern US maize-soybean agroecosystems demonstrated that the model can represent evolved herbicide resistance in realistic timescales. Sensitivity analyses showed that genetic and management parameters were impactful on the rate of quantitative herbicide resistance evolution, whilst biological parameters such as emergence and seed bank mortality were less important. The simulation model provides a robust and widely applicable framework for predicting the evolution of quantitative herbicide resistance in summer annual weed populations. The sensitivity analyses identified weed characteristics that would favour herbicide resistance evolution, including high annual fecundity, large resistance phenotypic variance and pre-existing herbicide resistance. Implications for herbicide resistance management and potential use of the model are discussed. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Integration of apple rootstock genotype with reduced Brassica seed meal application rates for replant disease control

    Science.gov (United States)

    Pre-plant soil application of Brassica seed meal (SM) formulations can provide fumigant level control of apple replant disease. However, due to high cost of the SM treatment relative to non-tarped soil fumigation, reduced application rates would likely accelerate commercial adoption of this technolo...

  9. Integration of agronomic practices with herbicides for sustainable weed management in aerobic rice.

    Science.gov (United States)

    Anwar, M P; Juraimi, A S; Mohamed, M T M; Uddin, M K; Samedani, B; Puteh, A; Man, Azmi

    2013-01-01

    Till now, herbicide seems to be a cost effective tool from an agronomic view point to control weeds. But long term efficacy and sustainability issues are the driving forces behind the reconsideration of herbicide dependent weed management strategy in rice. This demands reappearance of physical and cultural management options combined with judicious herbicide application in a more comprehensive and integrated way. Keeping those in mind, some agronomic tools along with different manual weeding and herbicides combinations were evaluated for their weed control efficacy in rice under aerobic soil conditions. Combination of competitive variety, higher seeding rate, and seed priming resulted in more competitive cropping system in favor of rice, which was reflected in lower weed pressure, higher weed control efficiency, and better yield. Most of the herbicides exhibited excellent weed control efficiency. Treatments comprising only herbicides required less cost involvement but produced higher net benefit. On the contrary, treatments comprising both herbicide and manual weeding required high cost involvement and thus produced lower net benefit. Therefore, adoption of competitive rice variety, higher seed rate, and seed priming along with spraying different early-postemergence herbicides in rotation at 10 days after seeding (DAS) followed by a manual weeding at 30 DAS may be recommended from sustainability view point.

  10. Detection of herbicide subclasses by an optical multibiosensor based on an array of photosystem II mutants.

    Science.gov (United States)

    Giardi, Maria Teresa; Guzzella, Licia; Euzet, Pierre; Rouillon, Regis; Esposito, Dania

    2005-07-15

    Massive use of herbicides in agriculture over the last few decades has become a serious environmental problem. The residual concentration of these compounds frequently exceeds the maximum admissible concentration in drinking water for human consumption and is a real environmental risk for the aquatic ecosystem. Herbicides inhibiting photosynthesis via targeting photosystem II function still represent the basic means of weed control. A multibiosensor was constructed for detecting herbicides using as biosensing elements photosynthetic preparations coupled to an optical fluorescence transduction system (Giardi et al. EU patent EP1134585, 01830148.1-2204); this paper is about its application in the detection of herbicide subclasses in river water. Photosynthetic material was immobilized on a silicio septum inside a series of flow cells, close to diodes so as to activate photosystem II (PSII) fluorescence. The principle of the detection was based on the factthat herbicides selectively modify PSII fluorescence activity. The multibiosensor has the original feature of being able to distinguish the subclasses of the photosynthetic herbicides by using specific immobilized biomediators isolated from mutated organisms. This setup resulted in a reusable, portable multibiosensor for the detection of herbicide subclasses with a half-life of 54 h for spinach thylakoids and limit of detection of 3 x 10(-9) M for herbicides present in river water.

  11. Sensor-based assessment of herbicide effects

    DEFF Research Database (Denmark)

    Streibig, Jens Carl; Rasmussen, Jesper; Andújar, D.;

    2014-01-01

    Non-destructive assessment of herbicide effects may be able to support integrated weed management. To test whether effects of herbicides on canopy variables could be detected by sensors, two crops were used as models and treated with herbicides at BBCH 20 using a logarithmic sprayer. Twelve days...

  12. Best management practices for herbicide resistance

    Science.gov (United States)

    In spite of the recent focus on herbicide resistant weeds, herbicide resistant weeds are not new to agriculture; the first herbicide resistant weed was documented in 1957, with the first widespread resistance occurring in common groundsel with atrazine in the early 1970’s. Glyphosate resistant weed...

  13. Reduced herbicide rates: present and future

    DEFF Research Database (Denmark)

    Kudsk, Per

    2014-01-01

    Applying herbicides at rates lower than the label recommendation has been the rule rather than the exception in Denmark since the late 1980’s. Justifications for reducing herbicide rates can be 1) that the dominant weed species in the field are very susceptible to the herbicide, i.e. even reduced...

  14. Dual action of phosphonate herbicides in plants affected by herbivore--model study on black bean aphid Aphis fabae rearing on broad bean Vicia faba plants.

    Science.gov (United States)

    Lipok, Jacek

    2009-09-01

    The interactions between plants, herbicides and herbivore insects were studied as an aspect of possible side effect of the using of phosphonate herbicides. The experimental system was composed of phosphonate herbicides, broad bean Vicia faba (L.) plants and black bean aphid Aphis fabae (Scopoli). Two means of herbicide application, namely standard spraying and direct introduction of the herbicide into stem via glass capillary, were examined. The results obtained for N-2-piridylaminomethylene bisphosphonic acid and its derivatives show 10 times higher inhibition of the plant growth if glass capillary mode was used. When plants were infested by aphids 24h after the use of herbicide, a significant decrease in plant growth rate was observed in relation to plants treated with herbicides alone. Moreover, the sensitivity of aphids towards glyphosate, N-2-piridylaminomethylene bisphosphonic acid and its 3-methyl derivative introduced to artificial diet indicated that these herbicidal phosphonates possessed also insecticidal activity if applied in a systemic manner. Additionally, olfactometer measurements revealed that aphids preferred intact V. faba leaves over those that had been treated with sublethal doses of herbicides. The results achieved in these experiments indicate that the use of phosphonate herbicides decreases plant resistance and influences the number of aphids accompanied with treated plants. Regarding these facts it can be concluded that the combined effect of herbicide-induced stress and insect herbivory reduced plant fitness and thus should be considered as also a factor enabling the reduction of herbicide doses.

  15. Natural compounds with herbicidal activity

    Directory of Open Access Journals (Sweden)

    Pasquale Montemurro

    2011-02-01

    Full Text Available Research about phytotoxic activity of natural compounds could lead both to find new herbicidal active ingredients and to plan environmental friendly weed control strategies. Particularly, living organisms could be a source of compounds that are impossible, for their complexity, to synthesize artificially. More over, they could have alternative sites of action respect to the known chemical herbicides and, due to their origin, they should be more environmental safe. Many living organism, such as bacteria, fungi, insects, lichens and plants, are able to produce bioactive compounds. They generally are secondary metabolites or simply waste molecules. In this paper we make a review about these compounds, highlighting potential and constraints.

  16. 除草剂抗性基因的研究进展%Advances of Herbicide Resistance Genes

    Institute of Scientific and Technical Information of China (English)

    王国增; 李轶女; 张志芳; 沈桂芳

    2011-01-01

    This review overviewed mainly about the kinds of herbicide resistance genes, their main resource and the application of herbicide resistance genes. Moreover, we also discussed the discovery of the novel herbicide resistance genes, the modification of herbicide resistance gene using genetic and protein engineering, the mechanisms of herbicide resistance and new herbicide resistance transgenic crops breeding.%概述了除草剂抗性基因的种类,主要来源以及抗除草剂基因的应用。并对新的抗除草剂基因的发掘、既有的抗除草剂基因的改良、除草剂抗性机理研究以及新的抗除草剂作物的培育等方面的进一步研究进行了探讨。

  17. Controlled Release Formulations of Auxinic Herbicides

    Science.gov (United States)

    Kowalski, Witold J.; Siłowiecki, Andrzej.; Romanowska, Iwona; Glazek, Mariola; Bajor, Justyna; Cieciwa, Katarzyna; Rychter, Piotr

    2013-04-01

    ingredient in the HBA oligomers was chemically bound to the oligomer matrix and a controlled release followed in concert with the hydrolysis of ester bonds in the oligomer systems. Due to the high volatility and high water solubility of the DMA salts, significant amounts of active ingredients were predisposed to be dispersed in the environment. On the other hand, the HBA oligomers exhibit low volatility and low solubility in water, so they tend to exhibit lover migrating rates from the target site. The obtained plots suggested that in the case of the HBA oligomers the effectiveness were delayed in time when compared with the DMA salts. The integral effectiveness of the studied HBA oligomers was practically equivalent to the conventional DMA salts, but the release of the HBA herbicides was delayed in time vs. DMA salts. The mixtures of oligo (R,S)-3-hydroxybutyric acid containing chemically bonded 2,4-D, Dicamba and MCPA (HBA) were proposed as carriers of active ingredients that could be released to control the sensitive weeds. The synthesized HBA oligomers could be particularly useful in a number of practical applications, because they release the herbicide to plants at a controlled rate and in amounts required over a specified period of time, their degradation products are identical to metabolites formed in plant cells, the physicochemical and operational parameters of the carrier oligomers might be optimized by fine-tuning of synthesis conditions. The decreased vapor pressure and increased lipophilicity of the studied materials could reduce the risk exposure of the operational personnel, as well as, a decrease the environmental pollution. Acknowledgments The authors would like to thank the Polish Ministry of Science and Higher Education for supporting this work through the grant No. NN 310 303039. References [1] S. Dubey, V. Jhelum, P.K. Patanjali, Controlled release agrochemical formulations: A review, J. Scientific &Industrial Research (India) 70 (2011) 105-112. [2] W. J

  18. Transgenic Crops for Herbicide Resistance

    Science.gov (United States)

    Since their introduction in 1995, crops made resistant to the broad-spectrum herbicides glyphosate and glufosinate with transgenes are widely available and used in much of the world. As of 2008, over 80% of the transgenic crops grown world-wide have this transgenic trait. This technology has had m...

  19. Introduction to Weeds and Herbicides.

    Science.gov (United States)

    Hartwig, Nathan L.

    This agriculture extension service publication from Pennsylvania State University is an introduction to weed control and herbicide use. An initial discussion of the characteristics of weeds includes scientific naming, weed competition with crops, weed dispersal and dormancy, and conditions affecting weed seed germination. The main body of the…

  20. Biotechnology: herbicide-resistant crops

    Science.gov (United States)

    Transgenic, herbicide-resistant (HR) crops are planted on about 80% of the land covered by transgenic crops. More than 90% of HR crios are glyphosate-resistant (GR) crops, the others being resistant to glufosinate. The wide-scale adoption of HR crops, largely for economic reasons, has been the mos...

  1. Introduction to Weeds and Herbicides.

    Science.gov (United States)

    Hartwig, Nathan L.

    This agriculture extension service publication from Pennsylvania State University is an introduction to weed control and herbicide use. An initial discussion of the characteristics of weeds includes scientific naming, weed competition with crops, weed dispersal and dormancy, and conditions affecting weed seed germination. The main body of the…

  2. Herbicidas no transplante de mudas de sisal (Agave sisalana perr. Weed control and herbicide selectivity to sisal (Agave sisalana perr.

    Directory of Open Access Journals (Sweden)

    Antonio Luiz de Barros Salgado

    1980-01-01

    Full Text Available Com o objetivo de verificar a eficiência de hebraicas no controle de plantas daninhas e sua seletividade à cultura do sisal, foi instalado, em setembro de 1976, um experimento de campo em solo argiloso, com os seguintes tratamentos (i.a./hectare trifluralin a 0,84 e 0,96kg em pré-plantio com incorporação; alachlor a 2,40 e 3,26kg; metribuzin a 0,70 e 0,84kg; bromacil a 1,60 e 2,40kg; terbacil a 1,60 e 2,40kg; diuron a 2,40 e 3,20kg; simazine a 3,20 e 4,00kg; fluometuron a 1,20 e 1,60kg, todos em pré-emergência; uma testemunha carpida e outra sem capina. Foram feitas avaliações de controle do mato aos 67 e 114 dias e da condição da cultura aos 600 dias após a aplicação. Aos 114 dias, o controle de gramíneas foi acima de 90% pelo trifluralin, bromacil e terbacil, em torno de 80% pelo simazine, e inferior a 75% pelos demais; para dícotiledôneas, o controle foi de 90 a 100% pelo bromacil e terbacil, e de 80 a 85%o pelo simazine. Nenhum dos tratamentos afetou a cultura durante o período considerado, que foi de 600 dias. Aos 550 dias, fez-se avaliação da área coberta por reinfestação do mato, tendo o terbacil controlado ainda 75 e 95% do total, respectivamente, para as doses menor e maior; o trifluralin, 60 e 70% e, os demais, abaixo de 45%. Na avaliação final da cultura, aos 600 dias, foram considerados: população de plantas, número de plantas com perfilhos e condição da cultura. Os tratamentos que realizaram melhor controle do mato apresentaram também os melhores índices de desenvolvimento da cultura, atestando sua seletividade.The weed control with herbicides and its selectivity to sisal were studied on a clay soil field trial. The treatments (in a.i./ha were: 0.84 and 0.96kg of pre-plant incorporated trifluralin; 2.40 and 3.26kg of alachlor; 0.70 and 0.84kg of metribuzin; 1.60 and 2.40kg of bromacil; 1.60 and 2.40kg of terbacil; 2.40 and 3.20k- of diuron; 3.20 and 4.00kg of simazine; 1.20 and 1.60kg of fluometuron

  3. Evaluation of herbicide combinations for livid amaranth (Amaranthus blitum) control in tuberous begonia (Begonia x tuberhybrida).

    Science.gov (United States)

    Vissers, M; van Labeke, M C

    2004-01-01

    In the past years livid amaranth (Amaranthus blitum) is observed increasingly in begonia production fields. Control of weeds in begonia is generally done by a combined application of the soil herbicides isoxaben + simazin followed 10 days later by application of the contact herbicide bentazone. This treatment usually controls the weed population sufficiently with exception of amaranth. In 2003 a field trial was conducted to evaluate control of livid amaranth in tuberous begonia with isoxaben, simazin. S-metolachloor, phenmedipham + desmedipham and bentazone. These herbicides were used as combinations of soil treatment and contact herbicides. The results suggest that a soil treatment of isoxaben + S-metolachloor significantly reduces livid amaranth compared to isoxaben + simazin, without a pronounced negative effect on tuber yield. Application of phenmedipham + desmedipham however did not improve control of livid amaranth compared to bentazone.

  4. Analysis of the herbicide diuron, three diuron degradates, and six neonicotinoid insecticides in water-Method details and application to two Georgia streams

    Science.gov (United States)

    Hladik, Michelle; Calhoun, Daniel L.

    2012-01-01

    A method for the determination of the widely used herbicide diuron, three degradates of diuron, and six neonicotinoid insecticides in environmental water samples is described. Filtered water samples were extracted by using solid-phase extraction (SPE) with no additional cleanup steps. Quantification of the pesticides from the extracted water samples was done by using liquid chromatography with tandem mass spectrometry (LC/MS/MS). Recoveries in test water samples fortified at 20 nanograms per liter (ng/L) for each compound ranged from 75 to 97 percent; relative standard deviations ranged from 5 to 10 percent. Method detection limits (MDLs) in water ranged from 3.0 to 6.2 ng/L using LC/MS/MS. The method was applied to water samples from two streams in Georgia, Sope Creek and the Chattahoochee River. Diuron and 3,4-dichloroaniline (3,4-DCA) were detected in 100 and 80 percent, respectively, of the samples from the Chattahoochee River, whereas Sope creek had detection frequencies of 15 percent for diuron and 31 percent for 3,4-DCA. Detection frequencies for the neonicotinoid insecticide, imidacloprid, were 60 percent for the Chattahoochee River and 85 percent for Sope Creek. Field matrix-spike recoveries for each compound, when averaged over four water samples, ranged from 79 to 100 percent. The average percentage difference between replicate pairs for all compounds detected in the field samples was 10.1 (± 4.5) percent.

  5. Development of methods for multiresidue analysis of rice post-emergence herbicides in loam soil and their possible applications to soils of different composition.

    Science.gov (United States)

    Niell, Silvina; Pareja, Lucia; Asteggiante, Lucía Geis; Roehrs, Rafael; Pizzutti, Ionara R; García, Claudio; Heinzen, Horacio; Cesio, María Verónica

    2010-01-01

    Two simple and straightforward sample preparation methods were developed for the multiresidue analysis of post-emergence herbicides in loam soil that are commonly used in rice crop cultivation. A number of strategic soil extraction and cleanup methods were evaluated. The instrumental analysis was performed by HPLC with a diode array detector. The best compromise between the recoveries (69-98%) and good repeatability (RSD clomazone were analyzed simultaneously. Quinclorac and bispyribac sodium were also assayed, but their recoveries were below 50%. Both methods had an LOD of 0.7 microg/kg and could accurately determine the residues at the 2 microg/kg level. These two methods could not be applied directly to other soil types as the recoveries strongly depended on the soil composition. The developed methodologies were successfully applied in monitoring 87 real-world soil samples, in which only propanil (6 to 12 microg/kg) and clomazone (15 to 20 microg/kg) residues could be detected.

  6. A further evaluation of herbicides for post-emergence use in short rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, D.J.

    2002-07-01

    This report summarises the findings of a project evaluating the safety and efficiency of eleven herbicides for controlling weeds in newly plated willow short rotation coppices, and provides growers with information on post-emergence herbicide options, control of problem weeds, and emergency treatments. Weed germination, crop safety, and the encouraging results obtained using Reflex T and Impuls are discussed. It is suggested that a Technical Register of herbicide applications with contributions by growers and advisers should be considered by the British Biogen trade industry body.

  7. Comparison of field-scale herbicide runoff and volatilization losses: an eight-year field investigation.

    Science.gov (United States)

    Gish, Timothy J; Prueger, John H; Daughtry, Craig S T; Kustas, William P; McKee, Lynn G; Russ, Andrew L; Hatfield, Jerry L

    2011-01-01

    An 8-yr study was conducted to better understand factors influencing year-to-year variability in field-scale herbicide volatilization and surface runoff losses. The 21-ha research site is located at the USDA-ARS Beltsville Agricultural Research Center in Beltsville, MD. Site location, herbicide formulations, and agricultural management practices remained unchanged throughout the duration of the study. Metolachlor [2-chloro--(2-ethyl-6-methylphenyl)--(2-methoxy-1-methylethyl) acetamide] and atrazine [6-chloro--ethyl--(1-methylethyl)-1,3,5-triazine-2,4-diamine] were coapplied as a surface broadcast spray. Herbicide runoff was monitored from a month before application through harvest. A flux gradient technique was used to compute volatilization fluxes for the first 5 d after application using herbicide concentration profiles and turbulent fluxes of heat and water vapor as determined from eddy covariance measurements. Results demonstrated that volatilization losses for these two herbicides were significantly greater than runoff losses ( < 0.007), even though both have relatively low vapor pressures. The largest annual runoff loss for metolachlor never exceeded 2.5%, whereas atrazine runoff never exceeded 3% of that applied. On the other hand, herbicide cumulative volatilization losses after 5 d ranged from about 5 to 63% of that applied for metolachlor and about 2 to 12% of that applied for atrazine. Additionally, daytime herbicide volatilization losses were significantly greater than nighttime vapor losses ( < 0.05). This research confirmed that vapor losses for some commonly used herbicides frequently exceeds runoff losses and herbicide vapor losses on the same site and with the same management practices can vary significantly year to year depending on local environmental conditions.

  8. pH-controlled quaternary ammonium herbicides capture/release by carboxymethyl-β-cyclodextrin functionalized magnetic adsorbents: Mechanisms and application

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Wang, Peng [Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193 (China); Shen, Zhigang [Zhong Nong Fa Seed Industry Group Co. Ltd, Beijing 600313 (China); Liu, Xueke; Zhou, Zhiqiang [Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193 (China); Liu, Donghui, E-mail: liudh@cau.edu.cn [Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193 (China)

    2015-12-11

    In our work, the pH-controlled magnetic solid phase extraction for the determination of paraquat and diquat was introduced firstly. Furthermore, to clarify the mechanism of carboxymethyl-β-cyclodextrin functionalized magnetic adsorbents, we studied the pH-responsive supramolecular interaction between carboxymethyl-β-cyclodextrin (CM-β-CD) and paraquat/diquat by ultraviolet–visible (UV–vis) spectroscopy and nuclear magnetic resonance (NMR) experiment, and the energy-minimized structures were also obtained. Then, the functional group CM-β-CD was modified on the surface of magnetic materials to synthesize the adsorbent. The Fourier transform infrared spectrum (FT-IR) results proved the successful modification of CM-β-CD. Thus, this absorbent was applied for the determination of paraquat and diquat in water. Under the optimal condition, limits of detection (LODs) of paraquat and diquat were 0.8 μg L{sup −1} and 0.9 μg L{sup −1}, relative standard deviations (RSD) and recoveries varied 0.7–4.6% and 86.5–106.6%, respectively. Good recoveries (70.2–100.0%) and low RSD (1.7–9.6%) were achieved in analyzing spiked water samples. Furthermore, with the capillary electrophoresis (CE) as the analyser, the whole analytical process did not need the attendance of organic solvents. - Highlights: • The carboxymethyl-β-cyclodextrin functionalized magnetic adsorbents were synthesized. • The adsorbents could capture or release quaternary ammonium herbicides by changing pH. • The adsorbents were applied in the analysis of real water samples. • There is no attendance of organic solvents in the whole analysis process.

  9. Eficiência fotossintética e consumo de água de Ipomoea triloba após aplicação de herbicidas Photosynthetic efficiency and water consumption of Ipomoea triloba after herbicide application

    Directory of Open Access Journals (Sweden)

    R. Araldi

    2012-09-01

    Full Text Available Este trabalho foi desenvolvido com o objetivo de avaliar a fluorescência através da taxa de transporte de elétrons, consumo de água e intoxicação de plantas de Ipomoea triloba após aplicação de quatro herbicidas de diferentes mecanismos de ação. Os herbicidas aplicados foram: glyphosate, haloxyfop-methyl, diuron e amicarbazone. A aplicação foi feita com auxílio de um pulverizador estacionário instalado em laboratório; após a aplicação dos tratamentos, as plantas foram mantidas em casa de vegetação. Foi avaliada a taxa de transporte de elétrons (ETR, o consumo de água e a intoxicação das plantas em vários períodos após o início do experimento. Os dados de ETR e fitointoxicação foram expressos em porcentagem da testemunha e submetidos à análise de variância e à comparação das médias. Quanto ao consumo de água, os dados foram acumulados e ajustados por modelos de regressão. Assim, pode-se dizer que o fluorômetro é uma ferramenta adequada para verificar a intoxicação antecipada em plantas de I. triloba tratadas com os herbicidas amicarbazone e diuron, visto que a inibição da ETR foi verificada antes de qualquer intoxicação visual sofrida por essas plantas; o consumo de água está relacionado diretamente com o transporte de elétrons, com exceção das plantas submetidas ao haloxyfop-methyl, que não sofreram interferência no transporte de elétrons, mas reduziram o consumo de água.This work was carried out to evaluate fluorescence through electron transport rate (ETR, water consumption and intoxication of Ipomoea triloba after application of four herbicides with different mechanisms of action. The herbicides glyphosate, haloxyfop-methyl, diuron, and amicarbazone were applied using a stationary sprayer installed in the laboratory. After application, the plants were kept under greenhouse conditions. Electron transport rate, water consumption and plant intoxication were evaluated at various periods

  10. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zunwei; Zou, Yuqin; Wang, Jia [MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Li, Meichao [Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310032 (China); Wen, Yuezhong, E-mail: wenyuezhong@zju.edu.cn [MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2016-04-01

    With the wide application of chiral herbicides and the frequent detection of photosystem II (PSII) herbicides, it is of great importance to assess the direct effects of PSII herbicides on photosynthesis in an enantiomeric level. In the present study, the enantioselective phytotoxicity of bromacil (BRO), typical photosynthesis inhibition herbicide, on Arabidopsis thaliana was investigated. The results showed that S-BRO exhibited a greater inhibition of electron transmission in photosystem I (PSI) of A. thaliana than R-BRO by inhibiting the transcription of fnr 1. S-BRO also changed the chlorophyll fluorescence parameters Y (II), Y (NO), and Y (NPQ) to a greater extent than R-Bro. Transcription of genes psbO2, Lhcb3 and Lhcb6 was down-regulated in an enantioselective rhythm and S-BRO caused more serious influence, indicating that S-BRO did worse damage to the photosystem II (PSII) of A. thaliana than R-BRO. This study suggested that S-BRO disturbed the photosynthesis of plants to a larger extent than R-BRO and provided a new sight to evaluate the phytotoxicity of chiral herbicides. - Highlights: • It is necessary to assess the direct effects of PSII herbicides on photosynthesis. • Phytotoxicity of bromacil is investigated in an enantiomeric level. • Bromacil disturbed enantioselectively the photosystem II of Arabidopsis thaliana. • S-bromacil caused severer damage to photosynthesis of Arabidopsis than R-bromacil. • Photosynthesis should be considered for phytotoxicity assessment of herbicides.

  11. Nanoencapsulation Enhances the Post-Emergence Herbicidal Activity of Atrazine against Mustard Plants.

    Directory of Open Access Journals (Sweden)

    Halley Caixeta Oliveira

    Full Text Available Poly(epsilon-caprolactone (PCL nanocapsules have been recently developed as a modified release system for atrazine, an herbicide that can have harmful effects in the environment. Here, the post-emergence herbicidal activity of PCL nanocapsules containing atrazine was evaluated using mustard (Brassica juncea as target plant species model. Characterization of atrazine-loaded PCL nanocapsules by nanoparticle tracking analysis indicated a concentration of 7.5 x 10(12 particles mL(-1 and an average size distribution of 240.7 nm. The treatment of mustard plants with nanocapsules carrying atrazine at 1 mg mL(-1 resulted in a decrease of net photosynthesis and PSII maximum quantum yield, and an increase of leaf lipid peroxidation, leading to shoot growth inhibition and the development of severe symptoms. Time course analysis until 72 h after treatments showed that nanoencapsulation of atrazine enhanced the herbicidal activity in comparison with a commercial atrazine formulation. In contrast to the commercial formulation, ten-fold dilution of the atrazine-containing nanocapsules did not compromise the herbicidal activity. No effects were observed when plants were treated with nanocapsules without herbicide compared to control leaves sprayed with water. Overall, these results demonstrated that atrazine-containing PCL nanocapsules provide very effective post-emergence herbicidal activity. More importantly, the use of nanoencapsulated atrazine enables the application of lower dosages of the herbicide, without any loss of efficiency, which could provide environmental benefits.

  12. Nanoencapsulation Enhances the Post-Emergence Herbicidal Activity of Atrazine against Mustard Plants

    Science.gov (United States)

    Oliveira, Halley Caixeta; Stolf-Moreira, Renata; Martinez, Cláudia Bueno Reis; Grillo, Renato; de Jesus, Marcelo Bispo; Fraceto, Leonardo Fernandes

    2015-01-01

    Poly(epsilon-caprolactone) (PCL) nanocapsules have been recently developed as a modified release system for atrazine, an herbicide that can have harmful effects in the environment. Here, the post-emergence herbicidal activity of PCL nanocapsules containing atrazine was evaluated using mustard (Brassica juncea) as target plant species model. Characterization of atrazine-loaded PCL nanocapsules by nanoparticle tracking analysis indicated a concentration of 7.5 x 1012 particles mL-1 and an average size distribution of 240.7 nm. The treatment of mustard plants with nanocapsules carrying atrazine at 1 mg mL-1 resulted in a decrease of net photosynthesis and PSII maximum quantum yield, and an increase of leaf lipid peroxidation, leading to shoot growth inhibition and the development of severe symptoms. Time course analysis until 72 h after treatments showed that nanoencapsulation of atrazine enhanced the herbicidal activity in comparison with a commercial atrazine formulation. In contrast to the commercial formulation, ten-fold dilution of the atrazine-containing nanocapsules did not compromise the herbicidal activity. No effects were observed when plants were treated with nanocapsules without herbicide compared to control leaves sprayed with water. Overall, these results demonstrated that atrazine-containing PCL nanocapsules provide very effective post-emergence herbicidal activity. More importantly, the use of nanoencapsulated atrazine enables the application of lower dosages of the herbicide, without any loss of efficiency, which could provide environmental benefits. PMID:26186597

  13. Use of growth regulator of cytokinin type for enhancement and modification of herbicide activity.

    Science.gov (United States)

    Karakotov, S D; Zheltova, E V; Putsykin, Y G; Balakin, K V; Shapovalov, A A

    2006-01-01

    The herbicidal action of Betanal Express (BPAM) on Chine jute (Abutilon theophrasti) weed was studied in the presence of a new plant growth regulator of urea type, N-phenyl-N-(1,2,4-triazol-4-yl)urea (PhenylTriazolylUrea, PTU). In the past years, Chine jute has become a major limiting factor in sugar beet production in the southern Russia due to its resistance to BPAM which is an essential herbicide widely used for sugar beet protection. When PTU was added to BPAM, the combination appeared to be more effective than the herbicide alone. The influence of phytohormone PTU was observed at very low application rate of 20-100 g/ha, thus herbicide dose in the ecosystem was reduced. The main visual signs of herbicidal action of the combination BPAM + PTU on Chine jute were inhibition of growth of overground plant and stem, leaves changes and sharp inhibition of root growth. No sugar beet injury was observed when this tank mixture was used. It was found that enhanced performance of the novel herbicide formulation is determined by increased herbicidal action of Ethofumesate, one of the active ingredients of BPAM.

  14. Estimates of herbicide use for the 20 most-used herbicides in the conterminous United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This coverage contains estimates of herbicide use for the 20 most-used herbicides in the conterminous United States as reported in Gianessi and Puffer (1991)....

  15. Genetically modified organisms : herbicide-resistance

    OpenAIRE

    Sánchez Retuerta, Violeta

    2014-01-01

    Pòster Due to the overgrowth of weeds, and the fact that herbicides cannot differentiate between crops and weeds, herbicide-resistant crops have been developed. This kind of genetically modified organisms (GMO) allows farmers to eliminate all weeds in a unique implementation of the herbicide meaning: less spraying, less “traffic” in the field and lower operating costs. However, this, like any other innovation, has generated much controversy

  16. Photochemical behaviour of phenylurea herbicides.

    Science.gov (United States)

    Amine-Khodja, Amina; Boulkamh, Abdelaziz; Boule, Pierre

    2004-02-01

    The photochemical behaviour of phenylurea herbicides in aqueous solution is highly dependent on the nature and position of substituents on the ring. Most of these herbicides are methylated on the urea moiety, the other substituents are usually halogens or methoxy groups. The main reaction involving the aromatic ring of unhalogenated phenylureas excited at wavelengths shorter than 300 nm is an intramolecular rearrangement, similar to photo-Fries rearrangement, whereas with halogenated derivatives, photohydrolysis is the main transformation pathway. In the particular case of para-halogenated phenylureas, the intermediate formation of a carbene is observed. When the urea moiety is substituted with a methoxyl group, demethoxylation is a competitive reaction. N-Demethylation or oxidation of methyl groups is also observed, but with a lower yield. Photooxidation of phenylureas can also be induced by photocatalysis, iron salts or humic substances. In the absence of water, the main route for phototransformation of diuron is the oxidation or elimination of methyl groups. It is entirely possible that a photochemical intermediate could turn out to be more toxic than the initial herbicide.

  17. Weed control in young coffee plantations through post emergence herbicide application onto total area Controle de plantas daninhas em cafezais recém-implantados, com herbicidas aplicados em pós-emergência em área total

    Directory of Open Access Journals (Sweden)

    C.P. Ronchi

    2004-12-01

    Full Text Available This study was carried out to investigate the efficiency of several herbicides under field conditions, by post-emergence application onto the entire area, their effect on the control of weeds in young coffee plantations and commercial coffee and bean intercropping system, as well as on both crops. Seedlings of Coffea arabica cv. Red Catuaí with four to six leaf pairs were transplanted to the field and treated according to conventional agronomic practices. A bean and coffee intercropping system was established by sowing three lines of beans in the coffee inter-rows. At the time the herbicides were sprayed, the coffee plants had six to ten leaf pairs; the bean plants, three leaflets; and the weeds were at an early development stage. Fluazifop-p-butyl and clethodim were selective for coffee plants and controlled only Brachiaria plantaginea and Digitaria horizontalis efficiently. Broad-leaved weeds (Amaranthus retroflexus, Bidens pilosa, Coronopus didymus, Emilia sonchifolia, Galinsoga parviflora, Ipomoea grandifolia, Lepidium virginicum, and Raphanus raphanistrum were controlled with high efficiency by sole applications of fomesafen, flazasulfuron, and oxyfluorfen, except B. pilosa, C. didymus, and R. raphanistrum for oxyfluorfen. Sequential applications in seven-day intervals of fomesafen + fluazifop-p-butyl, or clethodim, and two commercial mixtures of fomesafen + fluazifop-p-butyl simultaneously controlled both types of weed. Cyperus rotundus was only controlled by flazasulfuron. Except for fluazifop-p-butyl and clethodim, all herbicide treatments caused only slight injuries on younger coffee leaves. However, further plant growth was not impaired and coffee plant height and stem diameter were therefore similar in the treatments, as evaluated four months later. Fomesafen, fluazifop-p-butyl, and clethodim, at sole or sequential application, and the commercial mixtures of fomesafen + fluazifop-p-butyl were also highly selective for bean crop; thus

  18. Herbicide impact on the growth and reproduction of characteristic and rare arable weeds of winter cereal fields.

    Science.gov (United States)

    Rotchés-Ribalta, Roser; Boutin, Céline; Blanco-Moreno, José M; Carpenter, David; Sans, F Xavier

    2015-07-01

    The decline of arable species characteristic of winter cereal fields has often been attributed to different factors related to agricultural intensification but most importantly to herbicide use. Herbicide phytotoxicity is most frequently assessed using short-term endpoints, primarily aboveground biomass. However, short-term sensitivity is usually not sufficient to detect actual effects because plants may or may not recover over time following sublethal herbicide exposures. Therefore, it is important to assess the long-term effects of herbicide applications. Annual species rely on renewable seed production to ensure their persistence; hence, assessment of herbicide sensitivity is more accurately estimated through effects on reproduction. Here we aim to assess the phytotoxicity of two commonly used herbicides: tribenuron and 2,4-D on eight plant species belonging to four families, each with one rare and one more common species. Specifically we examined the pattern of sensitivity using short-term and long-term endpoints (total aboveground biomass, total seed biomass and number of seeds) of these species; we determined the levels of and time to recovery in terms of stem length and fruit number, and assessed whether their rarity relates to their sensitivity to herbicide application. Our results suggest that although differences in herbicide sensitivity are not a direct cause of rarity for all species, it may be an important driver of declining arable plants.

  19. Crops with target-site herbicide resistance for Orobanche and Striga control.

    Science.gov (United States)

    Gressel, Jonathan

    2009-05-01

    It is necessary to control root parasitic weeds before or as they attach to the crop. This can only be easily achieved chemically with herbicides that are systemic, or with herbicides that are active in soil. Long-term control can only be attained if the crops do not metabolise the herbicide, i.e. have target-site resistance. Such target-site resistances have allowed foliar applications of herbicides inhibiting enol-pyruvylshikimate phosphate synthase (EPSPS) (glyphosate), acetolactate synthase (ALS) (e.g. chlorsulfuron, imazapyr) and dihydropteroate synthase (asulam) for Orobanche control in experimental conditions with various crops. Large-scale use of imazapyr as a seed dressing of imidazolinone-resistant maize has been commercialised for Striga control. Crops with two target-site resistances will be more resilient to the evolution of resistance in the parasite, if well managed.

  20. The impact of altered herbicide residues in transgenic herbicide-resistant crops on standard setting for herbicide residues

    NARCIS (Netherlands)

    Kleter, G.A.; Unsworth, J.B.; Harris, C.A.

    2011-01-01

    The global area covered with transgenic (genetically modified) crops has rapidly increased since their introduction in the mid-1990s. Most of these crops have been rendered herbicide resistant, for which it can be envisaged that the modification has an impact on the profile and level of herbicide re

  1. NEUTRALIZATION OF HERBICIDE NEGATIVE IMPACT ON SUGAR BEET WITH BIOSTIMULATORS

    Directory of Open Access Journals (Sweden)

    Nazarenko D. Y.

    2013-10-01

    Full Text Available Most modern chemicals designed to protect crop also actually cause negative effects on the protected plants mostly due to side effects and/or not following the application procedures correctly. It is possible to neutralize the negative effects of herbicides they have on cultivated plants with precise use of immunostimulants which will increase the plants' natural immunity against the negative effects of biotic and abiotic environmental factors

  2. Effects of the herbicide dicamba on nontarget plants and pollinator visitation.

    Science.gov (United States)

    Bohnenblust, Eric W; Vaudo, Anthony D; Egan, J Franklin; Mortensen, David A; Tooker, John F

    2016-01-01

    Nearly 80% of all pesticides applied to row crops are herbicides, and these applications pose potentially significant ecotoxicological risks to nontarget plants and associated pollinators. In response to the widespread occurrence of weed species resistant to glyphosate, biotechnology companies have developed crops resistant to the synthetic-auxin herbicides dicamba and 2,4-dichlorophenoxyacetic acid (2,4-D); and once commercialized, adoption of these crops is likely to change herbicide-use patterns. Despite current limited use, dicamba and 2,4-D are often responsible for injury to nontarget plants; but effects of these herbicides on insect communities are poorly understood. To understand the influence of dicamba on pollinators, the authors applied several sublethal, drift-level rates of dicamba to alfalfa (Medicago sativa L.) and Eupatorium perfoliatum L. and evaluated plant flowering and floral visitation by pollinators. The authors found that dicamba doses simulating particle drift (≈1% of the field application rate) delayed onset of flowering and reduced the number of flowers of each plant species; however, plants that did flower produced similar-quality pollen in terms of protein concentrations. Further, plants affected by particle drift rates were visited less often by pollinators. Because plants exposed to sublethal levels of dicamba may produce fewer floral resources and be less frequently visited by pollinators, use of dicamba or other synthetic-auxin herbicides with widespread planting of herbicide-resistant crops will need to be carefully stewarded to prevent potential disturbances of plant and beneficial insect communities in agricultural landscapes.

  3. Nanoparticles Based on Chitosan as Carriers for the Combined Herbicides Imazapic and Imazapyr

    Science.gov (United States)

    Maruyama, Cintia Rodrigues; Guilger, Mariana; Pascoli, Mônica; Bileshy-José, Natalia; Abhilash, P. C.; Fraceto, Leonardo Fernandes; de Lima, Renata

    2016-01-01

    The use of lower concentrations and fewer applications of herbicides is one of the prime objectives of the sustainable agriculture as it decreases the toxicity to non-targeted organisms and the risk of wider environmental contamination. In the present work, nanoparticles were developed for encapsulation of the herbicides imazapic and imazapyr. Alginate/chitosan and chitosan/tripolyphosphate nanoparticles were manufactured, and their physicochemical stability was evaluated. Determinations were made of the encapsulation efficiency and release kinetics, and the toxicity of the nanoparticles was evaluated using cytotoxicity and genotoxicity assays. The effects of herbicides and herbicide-loaded nanoparticles on soil microorganisms were studied in detail using real-time polymerase chain reactions. The nanoparticles showed an average size of 400 nm and remained stable during 30 days of storage at ambient temperature. Satisfactory encapsulation efficiencies of between 50 and 70% were achieved for both types of particles. Cytotoxicity assays showed that the encapsulated herbicides were less toxic, compared to the free compounds, and genotoxicity was decreased. Analyses of soil microbiota revealed changes in the bacteria of the soils exposed to the different treatments. Our study proves that encapsulation of the herbicides improved their mode of action and reduced their toxicity, indicating their suitability for use in future practical applications.

  4. Efficacy of Apirus, Total, Atlantis and Chevalier Herbicides on Weed Control in Wheat

    Directory of Open Access Journals (Sweden)

    B. Malekian

    2016-07-01

    Full Text Available In order to investigate the effect of Apirus, Total, Atlantis and Chevalier herbicides at different doses on winter wheat, a two-year field experiment was conducted in Research Farm of College of Agriculture, Shiraz University, during 2011-2012 and 2012-2013 growing seasons. The experimental design was a randomized complete blocks with four replications. Treatments were Apirus at 24, 27 and 30 g ha-1, Total at 35, 40 and 45 g ha-1, Atlantis at 1.2, 1.5 and 1.8 L ha-1, Chevalier at 300, 400 and 500 g ha-1, and two weedy and weed free checks. The results showed that application of herbicides in both growing seasons reduced weed dry matter and weeds density compared to the weedy check. Among herbicide treatments, Total at 45 g ha-1, reduced weeds dry matter by 95.9 and 100% that was not significantly different from other doses. Application of Chevalier herbicide, especially at 300 g ha-1, decreased wheat yield compared to the weed free check and did not provide acceptable weed control. The present study showed that Total herbicide was more efficient than other treatments in terms of weed control even at limited doses, and it could be recommended to farmers under Shiraz climatic condition. Further researches for understanding efficacy of these herbicides in winter wheat in different weed densities are recommended.

  5. Resistance to AHAS inhibitor herbicides: current understanding.

    Science.gov (United States)

    Yu, Qin; Powles, Stephen B

    2014-09-01

    Acetohydroxyacid synthase (AHAS) inhibitor herbicides currently comprise the largest site-of-action group (with 54 active ingredients across five chemical groups) and have been widely used in world agriculture since they were first introduced in 1982. Resistance evolution in weeds to AHAS inhibitors has been rapid and identified in populations of many weed species. Often, evolved resistance is associated with point mutations in the target AHAS gene; however non-target-site enhanced herbicide metabolism occurs as well. Many AHAS gene resistance mutations can occur and be rapidly enriched owing to a high initial resistance gene frequency, simple and dominant genetic inheritance and lack of major fitness cost of the resistance alleles. Major advances in the elucidation of the crystal structure of the AHAS (Arabidopsis thaliana) catalytic subunit in complex with various AHAS inhibitor herbicides have greatly improved current understanding of the detailed molecular interactions between AHAS, cofactors and herbicides. Compared with target-site resistance, non-target-site resistance to AHAS inhibitor herbicides is less studied and hence less understood. In a few well-studied cases, non-target-site resistance is due to enhanced rates of herbicide metabolism (metabolic resistance), mimicking that occurring in tolerant crop species and often involving cytochrome P450 monooxygenases. However, the specific herbicide-metabolising, resistance-endowing genes are yet to be identified in resistant weed species. The current state of mechanistic understanding of AHAS inhibitor herbicide resistance is reviewed, and outstanding research issues are outlined.

  6. Post-emergence herbicides useful in calendula

    Science.gov (United States)

    Easy and effective weed control is required by growers who are considering new industrial crops. Post-emergence herbicides typically are the products of choice by today’s growers. Unfortunately, post-emergence herbicides with proven safety margins are not known for calendula (Calendula officinalis),...

  7. Management Options and Factors Affecting Control of a Common Waterhemp (Amaranthus rudis Biotype Resistant to Protoporphyrinogen Oxidase-Inhibiting Herbicides

    Directory of Open Access Journals (Sweden)

    Dana B. Harder

    2012-01-01

    Full Text Available Repeated use of protox-inhibiting herbicides has resulted in a common waterhemp (Amaranthus rudis Sauer biotype that survived lactofen applied up to 10 times the labeled rate. Field and greenhouse research evaluated control options for this biotype of common waterhemp. In the field, PRE applications of flumioxazin at 72 g ai ha−1, sulfentrazone at 240 g ai ha−1, and isoxaflutole at 70 g ai ha−1 controlled common waterhemp >90% up to 6 weeks after treatment. POST applications of fomesafen at 330 g ai ha−1, lactofen at 220 g ai ha−1, and acifluorfen at 420 g ai ha−1 resulted in <60% visual control of common waterhemp, but differences were detected among herbicides. In the greenhouse, glyphosate was the only herbicide that controlled protox resistant waterhemp. The majority of herbicide activity from POST flumioxazin, fomesafen, acifluorfen, and lactofen was from foliar placement, but control was less than 40% regardless of placement. Control of common waterhemp seeded at weekly intervals after herbicide treatment with flumioxazin, fomesafen, sulfentrazone, atrazine, and isoxaflutole exceeded 85% at 0 weeks after herbicide application (WAHA, while control with isoxaflutole was greater than 60% 6 WAHA. PRE and POST options for protox-resistant common waterhemp are available to manage herbicide resistance.

  8. Photostabilization of the herbicide norflurazon microencapsulated with ethylcellulose in the soil-water system

    Energy Technology Data Exchange (ETDEWEB)

    Sopena, Fatima, E-mail: fsopenav@irnase.csic.es [Institute of Natural Resources and Agrobiology (CSIC), Reina Mercedes 10, Apdo 1052, 41080 Seville, ES (Spain); Villaverde, Jaime; Maqueda, Celia; Morillo, Esmeralda [Institute of Natural Resources and Agrobiology (CSIC), Reina Mercedes 10, Apdo 1052, 41080 Seville, ES (Spain)

    2011-11-15

    Highlights: {yields} Herbicide photodegradation studies using ethylcellulose-microencapsulated formulations (ECF) in soil and water. {yields} Greater herbicide photo-protection observed from EFC than from its commercial form. {yields} Photo-protective effect due to the gradual herbicide release and the presence of ethylcellulose. {yields} Herbicide photo-stability conditioned by soil colloidal components, especially by goethite and humic acids. {yields} EFC could reduce the field herbicide losses by photolysis. - Abstract: Ethylcellulose-microencapsulated formulations (ECFs) of norflurazon have been shown to reduce leaching, maintaining a threshold concentration in the topsoil than the commercial formulation (CF). Since photodegradation contributes to field dissipation of norflurazon, the objective of the present work was to study if such formulations can also protect from its photodescomposition. For this purpose, aqueous solutions of CF and ECFs, containing the most important soil components (goethite, humic and fulvic acids and montmorillonite) were tested. To get a more realistic approach, studies in soil were also performed. The results were well explained by a simple first order model. DT{sub 50} value was 3 h for CF under irradiation, which was considerably lower than those corresponding to the systems where ECF was used (35 h for ECF; 260 h for ECF-goethite; 53 h for ECF-humic acids; 33 h for ECF-montmorillonite; and 28 h for ECF-fulvic acids). ECF protected against photodegradation in both aqueous solution and soil due to the gradual release of the herbicide, which reduced the herbicide available to be photodegraded. These lab-scale findings proved that ECF could reduce the herbicide dosage, minimizing its photolysis, which would be especially advantageous during the first hours after foliar and soil application.

  9. Climate change increases the risk of herbicide-resistant weeds due to enhanced detoxification.

    Science.gov (United States)

    Matzrafi, Maor; Seiwert, Bettina; Reemtsma, Thorsten; Rubin, Baruch; Peleg, Zvi

    2016-12-01

    Global warming will increase the incidence of metabolism-based reduced herbicide efficacy on weeds and, therefore, the risk for evolution of non-target site herbicide resistance. Climate changes affect food security both directly and indirectly. Weeds are the major biotic factor limiting crop production worldwide, and herbicides are the most cost-effective way for weed management. Processes associated with climatic changes, such as elevated temperatures, can strongly affect weed control efficiency. Responses of several grass weed populations to herbicides that inhibit acetyl-CoA carboxylase (ACCase) were examined under different temperature regimes. We characterized the mechanism of temperature-dependent sensitivity and the kinetics of pinoxaden detoxification. The products of pinoxaden detoxification were quantified. Decreased sensitivity to ACCase inhibitors was observed under elevated temperatures. Pre-treatment with the cytochrome-P450 inhibitor malathion supports a non-target site metabolism-based mechanism of herbicide resistance. The first 48 h after herbicide application were crucial for pinoxaden detoxification. The levels of the inactive glucose-conjugated pinoxaden product (M5) were found significantly higher under high- than low-temperature regime. Under high temperature, a rapid elevation in the level of the intermediate metabolite (M4) was found only in pinoxaden-resistant plants. Our results highlight the quantitative nature of non-target-site resistance. To the best of our knowledge, this is the first experimental evidence for temperature-dependent herbicide sensitivity based on metabolic detoxification. These findings suggest an increased risk for the evolution of herbicide-resistant weeds under predicted climatic conditions.

  10. Are herbicides a once in a century method of weed control?

    Science.gov (United States)

    Davis, Adam S; Frisvold, George B

    2017-11-01

    The efficacy of any pesticide is an exhaustible resource that can be depleted over time. For decades, the dominant paradigm - that weed mobility is low relative to insect pests and pathogens, that there is an ample stream of new weed control technologies in the commercial pipeline, and that technology suppliers have sufficient economic incentives and market power to delay resistance - supported a laissez faire approach to herbicide resistance management. Earlier market data bolstered the belief that private incentives and voluntary actions were sufficient to manage resistance. Yet, there has been a steady growth in resistant weeds, while no new commercial herbicide modes of action (MOAs) have been discovered in 30 years. Industry has introduced new herbicide tolerant crops to increase the applicability of older MOAs. Yet, many weed species are already resistant to these compounds. Recent trends suggest a paradigm shift whereby herbicide resistance may impose greater costs to farmers, the environment, and taxpayers than earlier believed. In developed countries, herbicides have been the dominant method of weed control for half a century. Over the next half-century, will widespread resistance to multiple MOAs render herbicides obsolete for many major cropping systems? We suggest it would be prudent to consider the implications of such a low-probability, but high-cost development. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Chitosan and alginate biopolymer membranes for remediation of contaminated water with herbicides.

    Science.gov (United States)

    Agostini de Moraes, Mariana; Cocenza, Daniela Sgarbi; da Cruz Vasconcellos, Fernando; Fraceto, Leonardo Fernandes; Beppu, Marisa Masumi

    2013-12-15

    This study investigated the adsorption behavior of the herbicides diquat, difenzoquat and clomazone on biopolymer membranes prepared with alginate and chitosan (pristine and multi-layer model) for contaminated water remediation applications. Herbicides, at concentrations ranging from 5 μM to 200 μM, were adsorbed in either pure alginate, pure chitosan or a bilayer membrane composed of chitosan/alginate. No adsorption of clomazone was observed on any of the membranes, probably due to lack of electrostatic interactions between the herbicide and the membranes. Diquat and difenzoquat were only adsorbed on the alginate and chitosan/alginate membranes, indicating that this adsorption takes place in the alginate layer. At a concentration of 50 μM, diquat adsorption reaches ca. 95% after 120 min on both the alginate and chitosan/alginate membranes. The adsorption of difenzoquat, at the same concentration, reaches ca. 62% after 120 min on pure alginate membranes and ca. 12% on chitosan/alginate bilayer membranes. The adsorption isotherms for diquat and difenzoquat were further evaluated using the isotherm models proposed by Langmuir and by Freundlich, where the latter represented the best-fit model. Results indicate that adsorption occurs via coulombic interactions between the herbicides and alginate and is strongly related to the electrostatic charge, partition coefficients and dissociation constants of the herbicides. Biopolymer based membranes present novel systems for the removal of herbicides from contaminated water sources and hold great promise in the field of environmental science and engineering.

  12. PRE-PLANTING TREATMENTS WITH PHOSPHITE-BASED PRODUCTS AGAINST DIFFERENT FOLIAR AND SOIL-BORNE PATHOGENS OF VEGETABLE CROPS.

    Science.gov (United States)

    Gilardi, G; Demarchi, S; Ramon, I; Gullino, M L; Garibaldi, A

    2015-01-01

    Fifteen experimental trials were carried out under greenhouse conditions to evaluate the efficacy of preventative treatments based on phosphite salts on the following pathosystems: tomato/Phytophthora nicotianae, zucchini/P. capsici, lettuce/Fusarium oxysporum f.sp. Iactucae, rocket/Fusarium oxysporum f. sp. raphani, wild rocket/Plectosphaerella cucumerina and basii/Peronospora belbahrii. The possible use of phosphite salts in nursery cultivation systems is considered in comparison with chemical fungicides. Phosphites-based products reduced 66-88% and 56-72% the severity of Phytophthora crown root rot of tomato and zucchini, respectively. Four application with the phosphites-based products provided a disease reduction of Fusarium wilt of lettuce from of 33 to 83% and of 45 to 68% on cultivated rocket. These products provide the most constant results when applied in three treatments against Plectosphaerella cucumerina with a disease reduction ranging between 34%-82%. Phosphite-based products showed results statistically similar to mefenoxam when tested against downy mildew of basil. Their contribution to disease management can be very interesting, because they can complement other control measures.

  13. Herbicide-resistant weeds: Management strategies and upcoming technologies

    Science.gov (United States)

    Herbicides have contributed to substantial increase in crop yields over the past seven decades. Over reliance on herbicides for weed control has led to rapid evolution of herbicide-resistant (HR) weeds. Increased awareness of herbicide resistance and adoption of diversified weed control tactics by f...

  14. Leaching and residual activity of imidazolinone herbicides in lowland soils

    Directory of Open Access Journals (Sweden)

    João Paulo Refatti

    Full Text Available ABSTRACT: Herbicides used in the Clearfield® rice (Oryza sativa L. production system have a potential for leaching. This can result in contamination of underground water resources and cause injury to not tolerant crops that are sown in a succession and/or crop rotation. The objective of this study was to determine the leaching potential and the residual activity of the herbicides used in the Clearfield® rice system. The experiment was conducted over a period of two years and consisted of conducting a field test to be followed by two bioassays with a year of difference between their implementation. Initially an experiment was conducted in lowland area where it was planted the cultivar of rice ‘PUITA INTA CL’. Approximately one and two years thereafter, soil samples from each plot were collected at intervals of 5cm to a depth of 30cm (B factor for the bioassay to evaluate persistence of herbicides. Factor A was composed of mixtures formulated of imazethapyr + imazapic (75 + 25g a.i. L-1, imazapyr + imazapic (525 + 175g a.i. kg-1 in two doses, imazethapyr (100g a.i. L-1 and treatment control without application. Basing on results, it was concluded that the mixtures imazethapyr + imazapic, imazapyr + imazapic and imazethapyr leached into the soil, reaching depths of up to 25cm in lowland soil. Imidazolinone herbicides used today in the irrigated rice Clearfield® system are persistent in soil, and their phytotoxic activity can be observed up to two years after application.

  15. Spatial variability of herbicide mobilisation and transport at catchment scale: insights from a field experiment

    Directory of Open Access Journals (Sweden)

    T. Doppler

    2012-07-01

    Full Text Available During rain events, herbicides can be transported from their point of application to surface waters, where they may harm aquatic organisms. Since the spatial pattern of mobilisation and transport is heterogeneous, the contributions of different fields to the herbicide load in the stream may vary considerably within one catchment. Therefore, the prediction of contributing areas could help to target mitigation measures efficiently to those locations where they reduce herbicide pollution the most.

    Such spatial predictions require sufficient insight into the underlying transport processes. To improve the understanding of the process chain of herbicide mobilisation on the field and the subsequent transport through the catchment to the stream, we performed a controlled herbicide application on corn fields in a small agricultural catchment (ca. 1 km2 with intensive crop production in the Swiss Plateau. Water samples were collected at different locations in the catchment (overland flow, tile drains and open channel for two months after application in 2009, with a high temporal resolution during rain events. We also analysed soil samples from the experimental fields and measured discharge, groundwater level, soil moisture and the occurrence of overland flow at several locations. Several rain events with varying intensities and magnitudes occurred during the study period. Overland flow and erosion were frequently observed in the entire catchment. Infiltration excess and saturation excess overland flow were both observed. However, the main herbicide loss event was dominated by infiltration excess.

    Despite the frequent and wide-spread occurrence of overland flow, most of this water did not reach the channel directly, but was retained in small depressions in the catchment. From there, it reached the stream via macropores and tile drains. Manholes of the drainage system and storm drains for road and farmyard runoff acted as

  16. Spatial variability of herbicide mobilisation and transport at catchment scale: insights from a field experiment

    Directory of Open Access Journals (Sweden)

    T. Doppler

    2012-02-01

    Full Text Available During rain events, herbicides can be transported from their point of application to surface waters where they may harm aquatic organisms. Since the spatial pattern of mobilisation and transport is heterogeneous, the contributions of different fields to the herbicide load in the stream may differ considerably within one catchment. Therefore, the prediction of contributing areas could help to target mitigation measures efficiently to those locations where they reduce herbicide pollution the most.

    Such spatial predictions require sufficient insight into the underlying transport processes. To improve the understanding of the process chain of herbicide mobilisation on the field and the subsequent transport through the catchment to the stream, we performed a controlled herbicide application on corn fields in a small agricultural catchment (ca. 1 km2 with intensive crop production in the Swiss Plateau. For two months after application in 2009, water samples were taken at different locations in the catchment (overland flow, tile drains and open channel with a high temporal resolution during rain events. We also analysed soil samples from the experimental fields and measured discharge, groundwater level, soil moisture and the occurrence of overland flow at several locations. Several rain events with varying intensities and magnitudes occurred during the study period. Overland flow and erosion were frequently observed in the entire catchment. Infiltration excess and saturation excess overland flow were both observed. However, the main herbicide loss event was dominated by infiltration excess. This is in contrast to earlier studies in the Swiss Plateau, demonstrating that saturation excess overland flow was the dominant process.

    Despite the frequent and wide-spread occurrence of overland flow, most of this water did not directly reach the channel. It mostly got retained in small sinks in the catchment. From there, it reached

  17. Global perspective of herbicide-resistant weeds.

    Science.gov (United States)

    Heap, Ian

    2014-09-01

    Two hundred and twenty weed species have evolved resistance to one or more herbicides, and there are now 404 unique cases (species × site of action) of herbicide-resistant weeds globally. ALS inhibitor-resistant weeds account for about a third of all cases (133/404) and are particularly troublesome in rice and cereals. Although 71 weed species have been identified with triazine resistance, their importance has dwindled with the shift towards Roundup Ready® crops in the USA and the reduction of triazine usage in Europe. Forty-three grasses have evolved resistance to ACCase inhibitors, with the most serious cases being Avena spp., Lolium spp., Phalaris spp., Setaria spp. and Alopecurus myosuroides, infesting more than 25 million hectares of cereal production globally. Of the 24 weed species with glyphosate resistance, 16 have been found in Roundup Ready® cropping systems. Although Conyza canadensis is the most widespread glyphosate-resistant weed, Amaranthus palmeri and Amaranthus tuberculartus are the two most economically important glyphosate-resistant weeds because of the area they infest and the fact that these species have evolved resistance to numerous other herbicide sites of action, leaving growers with few herbicidal options for their control. The agricultural chemical industry has not brought any new herbicides with novel sites of action to market in over 30 years, making growers reliant on using existing herbicides in new ways. In addition, tougher registration and environmental regulations on herbicides have resulted in a loss of some herbicides, particularly in Europe. The lack of novel herbicide chemistries being brought to market combined with the rapid increase in multiple resistance in weeds threatens crop production worldwide. © 2013 Society of Chemical Industry.

  18. Response of Soybean to Halosulfuron Herbicide

    Directory of Open Access Journals (Sweden)

    V. K. Nandula

    2009-01-01

    Full Text Available Recently, halosulfuron injury in soybean through off-target movement of halosulfuron when applied to rice fields has been reported. Sulfonylurea-tolerant (ST soybean varieties have enhanced tolerance for sulfonylurea herbicides and might provide an option for mitigating injury to soybean from halosulfuron drift. Experiments were conducted to evaluate the effect of halosulfuron on growth and yield of selected soybean varieties with ST trait alone and stacked with glyphosate resistance trait. Soybean plants were treated with halosulfuron at 0, 0.0043, 0.0087, 0.017, 0.034, and 0.069 kg ai/ha rate at the V3 growth stage in the greenhouse and at 0.034 kg/ha rate (labeled use rate in rice in the field studies. All soybean varieties containing the ST trait exhibited some halosulfuron injury, but survived the halosulfuron application in the greenhouse. In field studies, a single POST application of halosulfuron at 0.034 kg/ha to soybean at three-trifoliolate leaf stage or at full bloom stage resulted in halosulfuron injury to a certain extent regardless of ST trait. Halosulfuron did not have a significant effect on yield of ST varieties compared to their respective nontreated controls. Severe halosulfuron injury in two non-ST varieties resulted in yield loss.

  19. Electronic structure of herbicides: Atrazine and bromoxynil

    Science.gov (United States)

    Novak, Igor; Kovač, Branka

    2011-06-01

    The electronic structures of herbicides atrazine and bromoxynil have been investigated by UV photoelectron spectroscopy (UPS), quantum chemical calculations and comparison with X-ray diffraction, molecular docking and molecular dynamics studies. Their electronic and molecular structures are discussed in the context of their biological activity. This is the first report which correlates the molecular mechanism of biological activity of these herbicides with their experimentally determined electronic and molecular structures.

  20. A further evaluation of herbicides for post-emergence use in short rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, D.J.

    2002-07-01

    This report describes a study of the safety and efficacy of a range of herbicides and mixtures of herbicides (with both contact and residual activity) for the post-emergence control of weeds in newly planted willow short rotation coppice (SRC). Severe competition from weeds that have not been controlled adequately by pre-emergence herbicide application is one of the commonest causes of SRC crop failure. In the study, the effects of 11 herbicide treatments currently recommendation for weed control with cereals, legumes or potatoes were compared with an untreated control. There was minimal crop death from any treatment, though most of the treatments caused varying degrees of phytotoxicity. Two commercial products, Reflex T and Impuls, gave the best overall crop safety and weed control results. The report provides growers of SRC and their advisors with some information on how to achieve improved weed control in SRC fields, and recommends that British Biogen (the trade industry body) should consider the compilation of a technical register of herbicide applications based on information supplied by growers and advisers, including field treatment details.

  1. Desempenho do cultivar de arroz BRS pelota e controle de capim-arroz (Echinochloa spp. submetidos a quatro épocas de entrada d'água após aplicação de doses reduzidas de herbicidas Performance of rice cultivar BRS pelota and control of (Echinochloa spp. submitted to four flooding times after reduced herbicide dose application

    Directory of Open Access Journals (Sweden)

    A. Andres

    2007-12-01

    Full Text Available Este trabalho teve como objetivo avaliar a possibilidade de reduzir as doses de herbicidas na lavoura de arroz irrigado, com a supressão das plantas daninhas pela antecipação da entrada da lâmina de água, bem como avaliar o controle de capim-arroz (Echinochloa spp. em arroz irrigado, o desempenho da cultura e os efeitos dos herbicidas aplicados em pós-emergência sobre os atributos fisiológicos da cultura de arroz. O experimento foi conduzido em delineamento experimental de blocos ao acaso com parcelas subsubdivididas, com quatro repetições. As parcelas principais foram as entradas de água (A aos 5, 10, 15 e 20 dias após aplicação dos herbicidas; as subparcelas, os herbicidas (H bispyribac-sodium e bispyribac-sodium + clomazone; e as subsubparcelas, as doses de bispyribac-sodium (D de 32, 40 e 48 g ha-1 isoladas e em mistura com 300 g ha-1 de clomazone. O bispyribac-sodium foi eficiente no controle de capim-arroz, com três folhas, quando a entrada de água ocorreu até cinco dias após a aspersão e/ou até o perfilhamento do arroz irrigado, quando em mistura com clomazone. É possível trabalhar com doses inferiores à recomendada de bispyribac-sodium isoladamente, desde que a submersão seja imediata após a aplicação deste, ou até o perfilhamento quando em mistura com clomazone.The objectives of this work were to evaluate the possibility of reducing herbicide rates in flooded rice, using flooding as a tool to avoid weed emergence; to evaluate Echinochloa spp. control, culture establishment and growth and the effect of herbicides applied in pre-emergence on the physiological attributes of the rice culture. The experiment was conducted in a randomized block design with split-split plots, four floodings, two herbicides and three rates, with four replications. The plots were the floodings (A 5, 10, 15 and 20 days after herbicide application and the split plots were the herbicides (H bispyribac-sodium and bispyribac

  2. EFFECTIVENESS OF GLYPHOSATE AND 2.4 D AMIN HERBICIDES TO CONTROL WEEDS UNDER Shorea selanica Bl. PLANTATION IN CARITA TRIAL GARDEN, BANTEN

    Directory of Open Access Journals (Sweden)

    Ari Wibowo

    2007-03-01

    Full Text Available A trial was carried out in Carita, West Java, to identify the effectiveness of Glyphosate and 2.4 D Amin Herbicide to control weeds under Shorea selanica Bl. plantation. The trial was conducted through the application of Glyphosate and 2.4 D Amin Herbicide with dosages of 5, 6, 7, 8 and 9 liter per ha and compared with Glyphosate herbicide 5 liter per ha, manual treatment, and control (no treatment. The result showed that Glyphosate and 2.4 D Amin Herbicide could be used to control weeds in order to maintaining S. selanica Bl. plantation. Minimum dosage of 6 liter/ha was effective to control weeds such as Chromolaena odorata DC, Mikania micrantha Will, Lantana camara L, Imperata cylindrica Beauv., Melastoma malabathricum L, and Boreria latifolia Bl. Furthermore, there was no symptom of poison on S. selanica Bl. plantation after herbicide application with all dosages applied.

  3. Tricolorin A as a Natural Herbicide

    Directory of Open Access Journals (Sweden)

    Blas Lotina-Hennsen

    2013-01-01

    Full Text Available Tricolorin A acts as pre- and post-emergence plant growth inhibitor. In pre-emergence it displays broad-spectrum weed control, inhibiting germination of both monocotyledonous (Lolium mutliflorum and Triticum vulgare and dicotyledonous (Physalis ixocarpa and Trifolium alexandrinum seeds, being the dicotyledonous seeds the most inhibited. Tricolorin A also inhibited seedling growth, and seed respiration, and since the concentrations required for inhibiting both germination and respiration were similar, we suggest that respiration is one of its targets. Tricolorin A at 60 µM acts as a post- emergence plant growth inhibitor by reducing dry plant biomass by 62%, 37%, 33%, and 22% for L. multiflorum, T. alexandrinum, T. vulgare, and P. ixocarpa, respectively, 18 days after its application. In order to determine the potency of tricolorin A as a plant growth inhibitor, paraquat was used as control; the results indicate that tricolorin A acts as a non-selective post-emergence plant growth inhibitor similar to paraquat, since both reduced the biomass production in P. ixocarpa and T. alexandrinum. Therefore, we suggest that tricolorin A will be a good biodegradable herbicide for weeds.

  4. Herbicide phosphinothricin causes direct stimulation hormesis.

    Science.gov (United States)

    Dragićević, Milan; Platiša, Jelena; Nikolić, Radomirka; Todorović, Slađana; Bogdanović, Milica; Mitić, Nevena; Simonović, Ana

    2012-01-01

    Herbicide phosphinothricin (PPT) inhibits glutamine synthetase (GS), a key enzyme in nitrogen assimilation, thus causing ammonia accumulation, glutamine depletion and eventually plant death. However, the growth response of Lotus corniculatus L. plants immersed in solutions with a broad range of PPT concentrations is biphasic, with pronounced stimulating effect on biomass production at concentrations ≤ 50 μM and growth inhibition at higher concentrations. The growth stimulation at low PPT concentrations is a result of activation of chloroplastic isoform GS2, while the growth suppression is caused by inhibition of both cytosolic GS1 and GS2 at higher PPT concentrations. Since the results are obtained in cell-free system (e.g. protein extracts), to which the principles of homeostasis are not applicable, this PPT effect is an unambiguous example of direct stimulation hormesis. A detailed molecular mechanism of concentration-dependent interaction of both PPT and a related GS inhibitor, methionine sulfoximine, with GS holoenzymes is proposed. The mechanism is in concurrence with all experimental and literature data.

  5. In-field frequencies and characteristics of oilseed rape with double herbicide resistance.

    Science.gov (United States)

    Dietz-Pfeilstetter, Antje; Zwerger, Peter

    2009-01-01

    When growing different transgenic herbicide-resistant oilseed rape cultivars side by side, seeds with multiple herbicide resistance can arise, possibly causing problems for the management of volunteer plants. Large-scale field experiments were performed in the years 1999/2000 and 2000/2001 in order to investigate the frequencies and the consequences of the transfer of herbicide resistance genes from transgenic oilseed rape to cultivars grown on neighboring agricultural fields. Transgenic oilseed rape with resistance to glufosinate-ammonium (LibertyLink, LL) and with glyphosate resistance (RoundupReady, RR), respectively, was sown in adjacent 0.5 ha plots, surrounded by about 8 ha non-transgenic oilseed rape. The plots and the field were either in direct contact (0.5 m gap width) or they were separated by 10 m of fallow land. Seed samples taken during harvest in the transgenic plots at different distances were investigated for progeny with resistance to the respective other herbicide. It was found that outcrossing frequencies were reduced to different extents by a 10 m isolation distance. In addition to pollen-mediated transgene flow as a result of outcrossing, we found considerable seed-mediated gene flow by adventitious dispersal of transgenic seeds through the harvesting machine. Volunteer plants with double herbicide resistance emerging in the transgenic plots after harvest were selected by suitable applications of the complementary herbicides Basta and Roundup Ultra. In both years, double-resistant volunteers were largely restricted to the inner edges of the plots. Expression analysis under controlled laboratory conditions of double-resistant plants generated by manual crosses revealed stability of transgene expression even at elevated temperatures. Greenhouse tests with double-resistant oilseed rape plants gave no indication that the sensitivity to a range of different herbicides is changed as compared to non-transgenic oilseed rape.

  6. Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes

    Science.gov (United States)

    Wright, Terry R.; Shan, Guomin; Walsh, Terence A.; Lira, Justin M.; Cui, Cory; Song, Ping; Zhuang, Meibao; Arnold, Nicole L.; Lin, Gaofeng; Yau, Kerrm; Russell, Sean M.; Cicchillo, Robert M.; Peterson, Mark A.; Simpson, David M.; Zhou, Ning; Ponsamuel, Jayakumar; Zhang, Zhanyuan

    2010-01-01

    Engineered glyphosate resistance is the most widely adopted genetically modified trait in agriculture, gaining widespread acceptance by providing a simple robust weed control system. However, extensive and sustained use of glyphosate as a sole weed control mechanism has led to field selection for glyphosate-resistant weeds and has induced significant population shifts to weeds with inherent tolerance to glyphosate. Additional weed control mechanisms that can complement glyphosate-resistant crops are, therefore, urgently needed. 2,4-dichlorophenoxyacetic acid (2,4-D) is an effective low-cost, broad-spectrum herbicide that controls many of the weeds developing resistance to glyphosate. We investigated the substrate preferences of bacterial aryloxyalkanoate dioxygenase enzymes (AADs) that can effectively degrade 2,4-D and have found that some members of this class can act on other widely used herbicides in addition to their activity on 2,4-D. AAD-1 cleaves the aryloxyphenoxypropionate family of grass-active herbicides, and AAD-12 acts on pyridyloxyacetate auxin herbicides such as triclopyr and fluroxypyr. Maize plants transformed with an AAD-1 gene showed robust crop resistance to aryloxyphenoxypropionate herbicides over four generations and were also not injured by 2,4-D applications at any growth stage. Arabidopsis plants expressing AAD-12 were resistant to 2,4-D as well as triclopyr and fluroxypyr, and transgenic soybean plants expressing AAD-12 maintained field resistance to 2,4-D over five generations. These results show that single AAD transgenes can provide simultaneous resistance to a broad repertoire of agronomically important classes of herbicides, including 2,4-D, with utility in both monocot and dicot crops. These transgenes can help preserve the productivity and environmental benefits of herbicide-resistant crops. PMID:21059954

  7. Degradation of Herbicides Atrazine and Bentazone Applied Alone and in Combination in Soils

    Institute of Scientific and Technical Information of China (English)

    LI Ke-Bin; CHENG Jing-Tao; WANG Xiao-Fang; ZHOU Ying; LIU Wei-Ping

    2008-01-01

    The application of a mixture of bentazone (3-isopropyl-lH-2,1,3-benzothiadiazin-4(3H)-one-2,2-dioxide) and atrazine (6-chloro-N2-ethyl-N4-isopropy1-1,3,5-triazine-2,4-diamine) is a practical approach to enhance the herbicidal effect.Labo-ratory incubation experiments were performed to study the degradation of bentazone and atrazine applied in combination and individually in maize rhizosphere and non-rhizosphere soils.After a lag phase,the degradation of each individual herbicide in the non-autoclaved soil could be adequately described using a first-order kinetic equation.During a 30-d in-cubation,in the autoclaved rhizosphere soil,bentazone and atrazine did not noticeably degrade,but in the non-autoclaved soil,they rapidly degraded in both non-rhizosphere and rhizosphere soils with half-lives of 19.9 and 20.2 d for bentazone and 29.1 and 25.7 d for atrazine,respectively.The rhizosphere effect significantly enhanced the degradation of atrazine,but had no significant effect on bentazone.These results indicated that biological degradation accounted for the degrada-tion of both herbicides in the soil.When compared with the degradation of the herbicide applied alone,the degradation rates of the herbicides applied in combination in the soils were lower and the lag phase increased.With the addition of a surfactant,Tween-20,a reduced lag phase of degradation was observed for both herbicides applied in combination.The degradation rate of bentazone accelerated,whereas that of atrazine remained nearly unchanged.Thus,when these two herbicides were used simultaneously,their persistence in the soil was generally prolonged,and the environmental contamination potential increased.

  8. Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants.

    Science.gov (United States)

    Schütte, Gesine; Eckerstorfer, Michael; Rastelli, Valentina; Reichenbecher, Wolfram; Restrepo-Vassalli, Sara; Ruohonen-Lehto, Marja; Saucy, Anne-Gabrielle Wuest; Mertens, Martha

    2017-01-01

    Farmland biodiversity is an important characteristic when assessing sustainability of agricultural practices and is of major international concern. Scientific data indicate that agricultural intensification and pesticide use are among the main drivers of biodiversity loss. The analysed data and experiences do not support statements that herbicide-resistant crops provide consistently better yields than conventional crops or reduce herbicide amounts. They rather show that the adoption of herbicide-resistant crops impacts agronomy, agricultural practice, and weed management and contributes to biodiversity loss in several ways: (i) many studies show that glyphosate-based herbicides, which were commonly regarded as less harmful, are toxic to a range of aquatic organisms and adversely affect the soil and intestinal microflora and plant disease resistance; the increased use of 2,4-D or dicamba, linked to new herbicide-resistant crops, causes special concerns. (ii) The adoption of herbicide-resistant crops has reduced crop rotation and favoured weed management that is solely based on the use of herbicides. (iii) Continuous herbicide resistance cropping and the intensive use of glyphosate over the last 20 years have led to the appearance of at least 34 glyphosate-resistant weed species worldwide. Although recommended for many years, farmers did not counter resistance development in weeds by integrated weed management, but continued to rely on herbicides as sole measure. Despite occurrence of widespread resistance in weeds to other herbicides, industry rather develops transgenic crops with additional herbicide resistance genes. (iv) Agricultural management based on broad-spectrum herbicides as in herbicide-resistant crops further decreases diversity and abundance of wild plants and impacts arthropod fauna and other farmland animals. Taken together, adverse impacts of herbicide-resistant crops on biodiversity, when widely adopted, should be expected and are indeed very hard

  9. Preliminary Study on Effect of Herbicides on Alfalfa Yield and Weed Community Characteristics in Yellow River Delta, China

    Directory of Open Access Journals (Sweden)

    WANG Guo-liang

    2016-05-01

    Full Text Available Alfalfa(Medicago sativa is one of important legume forages worldwide. However, weed is the main factor limiting alfalfa production. Biomass quality and yield and stability of dry matter production during cultivation are directly associated with the interference of weeds which compete with alfalfa for water, light and nutrients. The use of herbicides is a good alternative for weed control. In order to control weed in alfalfa field with suitable herbicide in Yellow River delta, the effect of four herbicides(imazethapyr, quizalofop-p-ethyl, haloxyfop-r-methyl and oxyfluorfen with different concentration on afalfal yield and weed community characteristics were studied. The results showed that both imazethapyr and haloxyfop-r-methyl treatments could increase alfalfa yield, and the best herbicide application concentration was imazethapyr with 2 000 mL·hm-2 and haloxyfop-r-methyl with 700 mL·hm-2, but oxyfluorfen treatment would limit alfalfa growth significantly. Weed species numbers in the treatments of imazethapyr, quizalofop-p-ethyl and oxyfluorfen decreased significantly. Digitariasanguinalis, Portulacaoleracea and Echinochloacrusgalli were more difficult to control from specie important value in all treatments. Species diversity index decreased with higher herbicide concentration in all treatments. From this study, herbicide imazethapyr with 2 000 mL·hm-2 application concentration was the best weed control method, and the second one was haloxyfop-r-methyl with 700 mL·hm-2 application concentration.

  10. Cana-de-açúcar: avaliação da taxa de aplicação e deposição do herbicida glifosato Sugarcane: evaluation of application rates and deposition of the glyphosate herbicide

    Directory of Open Access Journals (Sweden)

    Euripedes B. Rodrigues

    2011-01-01

    Full Text Available No Brasil, o uso de agrotóxicos consumirá, anualmente, mais de seis milhões de m3 de água como veículo, na cultura da cana-de-açúcar. O menor volume de calda aumenta a autonomia e a capacidade operacional dos pulverizadores, diminuindo o risco de perdas por escorrimento. Este trabalho teve como objetivo comparar diferentes taxas de aplicação do glifosato quanto à eficiência no controle e à deposição da calda em plantas daninhas na operação de “repasse” ou “catação”. Foram executados oito tratamentos com quatro repetições distribuídos em blocos ao acaso. As taxas de aplicação avaliadas foram: 8,8, 73, 96,7, 190, 260, 380 e 467 L ha-1, aplicadas com equipamentos costal de acionamento manual, costal pressurizado e micronizador rotativo tipo CDA. Realizou-se a eficiência no controle das plantas daninhas considerando-se o efeito das aplicações em cada um dos tratamentos. A avaliação qualitativa, comparando-se os depósitos obtidos em cada um dos tratamentos, foi feita pela pulverização sobre as plantas daninhas de uma solução de água e cloreto de sódio com os mesmos equipamentos e nas mesmas condições. Os resultados indicam a possibilidade de utilização de menores volumes de aplicação sem prejuízo da qualidade.The growing use of pesticides in agriculture will consume more than six million cubic meters of water annually in Brazil, on sugarcane crop alone. The minor volumes of water can give an increase in autonomy and capacity of sprayer, and reduces the chance of loss by runoff. This work has the purpose to compare different rates of the glyphosate herbicide application, concerning efficiency of control and volume deposition on weeds, at operations of “repass” on sugarcane crop. Eight treatments with four replications were studied in randomized blocks. Application rates evaluated were: 8.8, 73, 96.7, 190, 260, 380 and 467 L ha-1, using a pressurized knapsack sprayer and another with hand operation

  11. RESIDUAL ACTIVITY OF HERBICIDES APPLIED TO COTTON ON CROPS CULTIVATED IN SUCCESSION

    Directory of Open Access Journals (Sweden)

    ELIEZER ANTONIO GHENO

    2016-01-01

    Full Text Available Herbicides with high persistence in soil can cause problems for crops sown in succession to their application. Thus, the aim of this study was to estimate, in greenhouse conditions, the safe period of time after application of preemergent herbicides used on cotton crops (isolated or in mixtures for the crops grown in succession (bean, corn, and soybean. The experimental design was completely randomized in a factorial scheme (5 x 11 + 1, with five repetitions. For each experiment, treatments combined different time periods between herbicide application and sowing of crops (280, 210, 140, 70, and 0 days before sowing of crops with eleven herbicide treatments: fomesafen (625 g ha - 1 prometryne (1250 g ha - 1 , diuron (1250 g ha - 1 , S - metolachlor (768 g ha - 1 , clomazone (1000 g ha - 1 , fomesafen + prometryne (625 + 1250 g ha - 1 , fomesafen + diuron (625 + 1250 g ha - 1 , fomesafen + S - metolachlor (625 + 768 g ha - 1 , fomesafen + clomazone (625 + 1000 g ha - 1 , fomesafen + clomazone + diuron (625 + 1000 + 1250 g ha - 1 , and fomesafen + clomazone + prometryne (625 + 1000 + 1250 g ha - 1 , plus an untreated control. Applications of diuron showed the greatest persistence, causing the largest carryover effects for the three crops evaluated. The other treatments showed residual effects or affected crop development when sowings were performed up to 70 days after application. At later periods no significant damage was observed.

  12. Structure-toxicity relationship of chloroacetanilide herbicides: relative impact on soil microorganisms.

    Science.gov (United States)

    Saha, Supradip; Dutta, Debashis; Karmakar, Rajib; Ray, Deb Prasad

    2012-09-01

    The research was carried out to ascertain the effect of three chloroacetanilide herbicides, alachlor, butachlor and pretilachlor on soil microbial biomass growth and activity. Laboratory experiments were performed in a silty clay loam soil to relate changes of soil enzymatic activity to the herbicide persistence under laboratory condition up to 42 days at three application rates. The results showed that all the three herbicides caused enhancement of dehydrogenase activity. Higher concentrations of herbicide resulted in enhancement of the enzymatic activity. In addition, a similar trend was observed in β-glucosidase and acid phosphatase activity, although urease activity decreased upon incubation for 42 days as compared with initial soil incubation values. Based on the extent of impact for dehydrogenase activity in soil, the order was pretilachlor>alachlor>butachlor; whereas in case of urease activity, the order changed to pretilachlor>butachlor>alachlor. The soil half-lives of alachlor, butachlor and pretilachlor respectively, were 9.3, 12.7 and 7.3 days, which could be accounted for in terms of their respective chemical structures, as well as variable adsorption, degradation, differential effects of the agents on soil microbes. Soil management practices and the differing physicochemical properties of the herbicides may contribute to their rates of decay in soil.

  13. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Chen, Zunwei; Zou, Yuqin; Wang, Jia; Li, Meichao; Wen, Yuezhong

    2016-04-01

    With the wide application of chiral herbicides and the frequent detection of photosystem II (PSII) herbicides, it is of great importance to assess the direct effects of PSII herbicides on photosynthesis in an enantiomeric level. In the present study, the enantioselective phytotoxicity of bromacil (BRO), typical photosynthesis inhibition herbicide, on Arabidopsis thaliana was investigated. The results showed that S-BRO exhibited a greater inhibition of electron transmission in photosystem I (PSI) of A. thaliana than R-BRO by inhibiting the transcription of fnr 1. S-BRO also changed the chlorophyll fluorescence parameters Y (II), Y (NO), and Y (NPQ) to a greater extent than R-Bro. Transcription of genes psbO2, Lhcb3 and Lhcb6 was down-regulated in an enantioselective rhythm and S-BRO caused more serious influence, indicating that S-BRO did worse damage to the photosystem II (PSII) of A. thaliana than R-BRO. This study suggested that S-BRO disturbed the photosynthesis of plants to a larger extent than R-BRO and provided a new sight to evaluate the phytotoxicity of chiral herbicides.

  14. Determination of commonly used polar herbicides in agricultural drainage waters in Australia by HPLC.

    Science.gov (United States)

    Tran, Anh T K; Hyne, Ross V; Doble, Philip

    2007-03-01

    The present study describes the application of different extraction techniques for the preconcentration of ten commonly found acidic and non-acidic polar herbicides (2,4-D, atrazine, bensulfuron-methyl, clomazone, dicamba, diuron, MCPA, metolachlor, simazine and triclopyr) in the aqueous environment. Liquid-liquid extraction (LLE) with dichloromethane, solid-phase extraction (SPE) using Oasis HLB cartridges or SBD-XC Empore disks were compared for extraction efficiency of these herbicides in different matrices, especially water samples from contaminated agricultural drainage water containing high concentrations of particulate matter. Herbicides were separated and quantified by high performance liquid chromatography (HPLC) with an ultraviolet detector. SPE using SDB-XC Empore disks was applied to determine target herbicides in the Murrumbidgee Irrigation Area (NSW, Australia) during a two-week survey from October 2005 to November 2005. The daily aqueous concentrations of herbicides from 24-h composite samples detected at two sites increased after run-off from a storm event and were in the range of: 0.1-17.8 microg l(-1), < 0.1-0.9 microg l(-1) and 0.2-17.8 microg l(-1) at site 1; < 0.1-3.5 microg l(-1), < 0.1-0.2 microg l(-1) and < 0.2-3.2 microg l(-1) at site 2 for simazine, atrazine and diuron, respectively.

  15. Fermentation and alternative oxidase contribute to the action of amino acid biosynthesis-inhibiting herbicides.

    Science.gov (United States)

    Zulet, Amaia; Gil-Monreal, Miriam; Zabalza, Ana; van Dongen, Joost T; Royuela, Mercedes

    2015-03-01

    Acetolactate synthase inhibitors (ALS-inhibitors) and glyphosate (GLP) are two classes of herbicide that act by the specific inhibition of an enzyme in the biosynthetic pathway of branched-chain or aromatic amino acids, respectively. The physiological effects that are detected after application of these two classes of herbicides are not fully understood in relation to the primary biochemical target inhibition, although they have been well documented. Interestingly, the two herbicides' toxicity includes some common physiological effects suggesting that they kill the treated plants by a similar pattern despite targeting different enzymes. The induction of aerobic ethanol fermentation and alternative oxidase (AOX) are two examples of these common effects. The objective of this work was to gain further insight into the role of fermentation and AOX induction in the toxic consequences of ALS-inhibitors and GLP. For this, Arabidopsis T-DNA knockout mutants of alcohol dehydrogenase (ADH) 1 and AOX1a were used. The results found in wild-type indicate that both GLP and ALS-inhibitors reduce ATP production by inducing fermentation and alternative respiration. The main physiological effects in the process of herbicide activity upon treated plants were accumulation of carbohydrates and total free amino acids. The effects of the herbicides on these parameters were less pronounced in mutants compared to wild-type plants. The role of fermentation and AOX regarding pyruvate availability is also discussed.

  16. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    Science.gov (United States)

    Somerville, Chris R.; Scheible, Wolf

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  17. Amino acids conferring herbicide resistance in tobacco acetohydroxyacid synthase.

    Science.gov (United States)

    Le, Dung Tien; Choi, Jung-Do; Tran, Lam-Son Phan

    2010-01-01

    Acetohydroxyacid synthase (AHAS) (EC 4.1.3.18) is a target of commercially available herbicides such as sulfonylurea, imidazolinone, and triazolopyrimidine. In plants and microorganisms, AHAS catalyzes the first common reaction in the biosynthesis pathways leading to leucine, isoleucine and valine. Intensive studies using different approaches - including site-directed mutagenesis, molecular modeling and structural analysis - on plant AHAS-s have contributed to the understanding of the herbicide-AHAS interaction. Knowledge of the critical roles of amino acid residues of plant AHAS in conferring herbicide resistance will enable the creation of new herbicide-tolerant AHAS which could be used to develop herbicide-resistant transgenic plants. Moreover, such information will also elucidate design strategies for more efficient herbicides that could also kill weeds resistant to previously used AHAS-inhibiting herbicides. In this review, we summarize the results of intensive searches for amino acid residues and their substitutions that confer herbicide resistance in tobacco AHAS.

  18. Cultural control of weeds in herbicide-free annual forages

    Science.gov (United States)

    The adoption of zero tillage systems improves soil water conservation, allowing for increased crop intensification and diversification in the semiarid northern Great Plains. Zero tillage systems rely primarily on herbicides for weed management, increasing selection pressure for herbicide resistance...

  19. Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Barreiro, O. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain); Rioboo, C. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain); Herrero, C. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain); Cid, A. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain)]. E-mail: cid@udc.es

    2006-11-15

    The uptake of the triazine herbicides, atrazine and terbutryn, was determined for two freshwater photosynthetic microorganisms, the green microalga Chlorella vulgaris and the cyanobacterium Synechococcus elongatus. An extremely rapid uptake of both pesticides was recorded, although uptake rate was lower for the cyanobacterium, mainly for atrazine. Other parameters related to the herbicide bioconcentration capacity of these microorganisms were also studied. Growth rate, biomass, and cell viability in cultures containing herbicide were clearly affected by herbicide uptake. Herbicide toxicity and microalgae sensitivity were used to determine the effectiveness of the bioconcentration process and the stability of herbicide removal. C. vulgaris showed higher bioconcentration capability for these two triazine herbicides than S. elongatus, especially with regard to terbutryn. This study supports the usefulness of such microorganisms, as a bioremediation technique in freshwater systems polluted with triazine herbicides.

  20. Herbicide resistance modelling: past, present and future.

    Science.gov (United States)

    Renton, Michael; Busi, Roberto; Neve, Paul; Thornby, David; Vila-Aiub, Martin

    2014-09-01

    Computer simulation modelling is an essential aid in building an integrated understanding of how different factors interact to affect the evolutionary and population dynamics of herbicide resistance, and thus in helping to predict and manage how agricultural systems will be affected. In this review, we first discuss why computer simulation modelling is such an important tool and framework for dealing with herbicide resistance. We then explain what questions related to herbicide resistance have been addressed to date using simulation modelling, and discuss the modelling approaches that have been used, focusing first on the earlier, more general approaches, and then on some newer, more innovative approaches. We then consider how these approaches could be further developed in the future, by drawing on modelling techniques that are already employed in other areas, such as individual-based and spatially explicit modelling approaches, as well as the possibility of better representing genetics, competition and economics, and finally the questions and issues of importance to herbicide resistance research and management that could be addressed using these new approaches are discussed. We conclude that it is necessary to proceed with caution when increasing the complexity of models by adding new details, but, with appropriate care, more detailed models will make it possible to integrate more current knowledge in order better to understand, predict and ultimately manage the evolution of herbicide resistance.

  1. The benefits of herbicide-resistant crops.

    Science.gov (United States)

    Green, Jerry M

    2012-10-01

    Since 1996, genetically modified herbicide-resistant crops, primarily glyphosate-resistant soybean, corn, cotton and canola, have helped to revolutionize weed management and have become an important tool in crop production practices. Glyphosate-resistant crops have enabled the implementation of weed management practices that have improved yield and profitability while better protecting the environment. Growers have recognized their benefits and have made glyphosate-resistant crops the most rapidly adopted technology in the history of agriculture. Weed management systems with glyphosate-resistant crops have often relied on glyphosate alone, have been easy to use and have been effective, economical and more environmentally friendly than the systems they have replaced. Glyphosate has worked extremely well in controlling weeds in glyphosate-resistant crops for more than a decade, but some key weeds have evolved resistance, and using glyphosate alone has proved unsustainable. Now, growers need to renew their weed management practices and use glyphosate with other cultural, mechanical and herbicide options in integrated systems. New multiple-herbicide-resistant crops with resistance to glyphosate and other herbicides will expand the utility of existing herbicide technologies and will be an important component of future weed management systems that help to sustain the current benefits of high-efficiency and high-production agriculture.

  2. Assessing the Economic Impact of Inversion Tillage, Cover Crops, and Herbicide Regimes in Palmer Amaranth (Amaranthus palmeri Infested Cotton

    Directory of Open Access Journals (Sweden)

    Leah M. Duzy

    2016-01-01

    Full Text Available Cotton (Gossypium hirsutum L. producers in Alabama are faced with a rapidly expanding problem that decreases yields and increases production costs: herbicide-resistant weeds. Producers increasingly rely on integrated weed management strategies that raise production costs. This analysis evaluated how tillage, cover crops, and herbicide regime affected net returns above variable treatment costs (net returns for cotton production in Alabama from 2009 to 2011 under pressure from Palmer amaranth (Amaranthus palmeri S. Wats.. Annual net returns were compared for two tillage treatments (inversion and noninversion tillage, three cover crops (crimson clover [Trifolium incarnatum L.], cereal rye [Secale cereal L.], and winter fallow, and three herbicide regimes (PRE, POST, and PRE+POST. Results indicate that under heavy Palmer amaranth population densities one year of inversion tillage followed by two years of noninversion tillage, along with a POST or PRE+POST herbicide application had the highest net returns in the first year; however, the economic benefit of inversion tillage, across all herbicide treatments, was nonexistent in 2010 and 2011. Cotton producers with Palmer amaranth infestations would likely benefit from cultural controls, in conjunction with herbicide applications, as part of their weed management system to increase net returns.

  3. Coverage area and fading time of surfactant-amended herbicidal droplets on cucurbitaceous leaves

    Science.gov (United States)

    Proper use of appropriate surfactants to control droplet behaviors on leaf surfaces is critical to improve herbicide application efficacy for controlling paddy melons. An esterified seed oil surfactant and a petroleum oil surfactant were investigated to modify spread areas and fading times of water ...

  4. Two-year results of herbicide released, naturally-regenerated bottomland cherrybark and shumard oak seedlings

    Science.gov (United States)

    John F., Jr. Thompson; Larry E. Nix

    1995-01-01

    After clearcuting in bottomlands, oak seedlings that naturally regenerate are often overtopped by woody pioneer species, sprouts and herbaceous material. To improve the competitive status of three- to four-year-old oak seedlings in two bottomland stands in South Carolina, several herbicides and methods of application were used to kill and/or stunt the overtopping...

  5. Nitrogen fertilizer split-application for corn in no-till succession to black oats

    Directory of Open Access Journals (Sweden)

    Ceretta Carlos Alberto

    2002-01-01

    Full Text Available The studies of fertilization splitting are necessary specially for the grass succession black oat-corn where N immobilization is very common. Four experiments were carried out in commercial farms under no-tillage, in four counties - Itaara, Santo Ângelo, Júlio de Castilhos and Tupanciretã, all of Rio Grande do Sul, Brazil, with the objective of evaluating the splitting of N application in a corn/black oat crop rotation, during the 97/98 and 98/99 cropping seasons. The N was applied at three times -- pre-planted, starter and sidedressed. The pre-planted applied N for corn, corresponding to total or partial rates that would be sidedressed presented similar results in relation to the sidedress application, however, years of above average rainfall presented N deficiency for corn, reducing yield, which indicates that N application as starter or sidedress is recommended.

  6. Spatial heterogeneity of mobilization processes and input pathways of herbicides into a brook in a small agricultural catchment

    Science.gov (United States)

    Doppler, Tobias; Lück, Alfred; Popow, Gabriel; Strahm, Ivo; Winiger, Luca; Gaj, Marcel; Singer, Heinz; Stamm, Christian

    2010-05-01

    Soil applied herbicides can be transported from their point of application (agricultural field) to surface waters during rain events. There they can have harmful effects on aquatic species. Since the spatial distribution of mobilization and transport processes is very heterogeneous, the contributions of different fields to the total load in a surface water body may differ considerably. The localization of especially critical areas (contributing areas) can help to efficiently minimize herbicide inputs to surface waters. An agricultural field becomes a contributing area when three conditions are met: 1) herbicides are applied, 2) herbicides are mobilized on the field and 3) the mobilized herbicides are transported rapidly to the surface water. In spring 2009, a controlled herbicide application was performed on corn fields in a small (ca 1 km2) catchment with intensive crop production in the Swiss plateau. Subsequently water samples were taken at different locations in the catchment with a high temporal resolution during rain events. We observed both saturation excess and hortonian overland flow during the field campaign. Both can be important mobilization processes depending on the intensity and quantity of the rain. This can lead to different contributing areas during different types of rain events. We will show data on the spatial distribution of herbicide loads during different types of rain events. Also the connectivity of the fields with the brook is spatially heterogeneous. Most of the fields are disconnected from the brook by internal sinks in the catchment, which prevents surface runoff from entering the brook directly. Surface runoff from these disconnected areas can only enter the brook rapidly via macropore-flow into tile drains beneath the internal sinks or via direct shortcuts to the drainage system (maintenance manholes, farmyard or road drains). We will show spatially distributed data on herbicide concentration in purely subsurface systems which shows

  7. Effect of two commercial herbicides on life history traits of a human disease vector, Aedes aegypti, in the laboratory setting.

    Science.gov (United States)

    Morris, Alexandra; Murrell, Ebony G; Klein, Talan; Noden, Bruce H

    2016-07-01

    Some mosquito species utilize the small niches of water that are abundant in farmland habitats. These niches are susceptible to effects from agricultural pesticides, many of which are applied aerially over large tracts of land. One principal form of weed control in agricultural systems involves the development of herbicide-tolerant crops. The impact of sub-agricultural levels of these herbicides on mosquito survival and life-history traits of resulting adults have not been determined. The aim of this study was to test the effect of two commercial herbicides (Beyond and Roundup) on the survivorship, eclosion time, and body mass of Aedes aegypti. First instar A. aegypti larvae were exposed to varying concentrations (270, 550 and 820 μg/m(2) of glyphosate and 0.74, 1.49, 2.24 μL imazamox/m(2)), all treatments being below recommended application rates, of commercial herbicides in a controlled environment and resulting adult mosquitoes were collected and weighed. Exposure to Roundup had a significant negative effect on A. aegypti survivorship at medium and high sub-agricultural application concentrations, and negatively affected adult eclosion time at the highest concentration. However, exposure to low concentrations of Beyond significantly increased A. aegypti survivorship, although adult female mass was decreased at medium sub-agricultural concentrations. These results demonstrate that low concentrations of two different herbicides, which can occur in rural larval habitats as a result of spray drift, can affect the same species of mosquito in both positive and negative ways depending on the herbicide applied. The effects of commercial herbicides on mosquito populations could have an important effect on disease transmission within agricultural settings, where these and other herbicides are extensively applied to reduce weed growth.

  8. Importance of herbicide resistance in weeds of natural areas

    OpenAIRE

    DiTomaso, Joseph

    2014-01-01

    Worldwide, the majority of the plant species that are developing herbicide resistance are those that occur as weeds in agricultural environments, on roadsides and in other rights-of-way. In contrast, herbicide resistance is not nearly so common in weeds of natural areas or rangelands. A search of the International Survey of Herbicide Resistant Weeds ( weedscience.com ) revealed no herbicide-resistant weeds (i.e., invasive nonnative species) listed for terrestrial natural areas anywhere in the...

  9. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management.

    Science.gov (United States)

    Green, Jerry M; Owen, Micheal D K

    2011-06-08

    Since 1996, genetically modified herbicide-resistant (HR) crops, particularly glyphosate-resistant (GR) crops, have transformed the tactics that corn, soybean, and cotton growers use to manage weeds. The use of GR crops continues to grow, but weeds are adapting to the common practice of using only glyphosate to control weeds. Growers using only a single mode of action to manage weeds need to change to a more diverse array of herbicidal, mechanical, and cultural practices to maintain the effectiveness of glyphosate. Unfortunately, the introduction of GR crops and the high initial efficacy of glyphosate often lead to a decline in the use of other herbicide options and less investment by industry to discover new herbicide active ingredients. With some exceptions, most growers can still manage their weed problems with currently available selective and HR crop-enabled herbicides. However, current crop management systems are in jeopardy given the pace at which weed populations are evolving glyphosate resistance. New HR crop technologies will expand the utility of currently available herbicides and enable new interim solutions for growers to manage HR weeds, but will not replace the long-term need to diversify weed management tactics and discover herbicides with new modes of action. This paper reviews the strengths and weaknesses of anticipated weed management options and the best management practices that growers need to implement in HR crops to maximize the long-term benefits of current technologies and reduce weed shifts to difficult-to-control and HR weeds.

  10. Effects of Environmental Conditions on the Fitness Penalty in Herbicide Resistant Brachypodium hybridum

    Science.gov (United States)

    Frenkel, Eyal; Matzrafi, Maor; Rubin, Baruch; Peleg, Zvi

    2017-01-01

    Herbicide-resistance mutations may impose a fitness penalty in herbicide-free environments. Moreover, the fitness penalty associated with herbicide resistance is not a stable parameter and can be influenced by ecological factors. Here, we used two Brachypodium hybridum accessions collected from the same planted forest, sensitive (S) and target-site resistance (TSR) to photosystem II (PSII) inhibitors, to study the effect of agro-ecological parameters on fitness penalty. Both accessions were collected in the same habitat, thus, we can assume that the genetic variance between them is relatively low. This allow us to focus on the effect of PSII TSR on plant fitness. S plants grains were significantly larger than those of the TSR plants and this was associated with a higher rate of germination. Under low radiation, the TSR plants showed a significant fitness penalty relative to S plants. S plants exhibiting dominance when both types of plants were grown together in a low-light environment. In contrast to previous documented studies, under high-light environment our TSR accession didn’t show any significant difference in fitness compared to the S accession. Nitrogen deficiency had significant effect on the R compared to the S accession and was demonstrated in significant yield reduction. TSR plants also expressed a high fitness penalty, relative to the S plants, when grown in competition with wheat plants. Two evolutionary scenarios can be suggested to explain the coexistence of both TSR and S plants in the same habitat. The application of PSII inhibitors may have created selective pressure toward TSR dominancy; termination of herbicide application gave an ecological advantage to S plants, creating changes in the composition of the seed bank. Alternatively, the high radiation intensities found in the Mediterranean-like climate may reduce the fitness penalty associated with TSR. Our results may suggest that by integrating non-herbicidal approaches into weed

  11. The influence of different herbicide doses on weed infestation of winter triticale cultivated in monoculture

    Directory of Open Access Journals (Sweden)

    Piotr Kraska

    2012-12-01

    Full Text Available The study was carried out in 2003-2005 in the Bezek Experimental Farm (University of Life Sciences in Lublin. The experimental field was situated on light loamy sand soil. The phosphorus content in soil was high, in potassium medium, in magnesium low. The humus content was 1.2%. The experiment was carried out in randomized blocks in three replications. The aim of the investigation was to compare three doses of herbicides in winter triticale canopy (Janko cv., Woltario cv., Krakowiak cv. cultivated in monoculture. The herbicides Atlantis 04 WG and Factor 365 EC were applied at full recommended doses (200 g×ha-1, at doses reduced to 75% and 50%. The control was not treated with the herbicides. The weed infestation level was determined by means of the quantitative-weighting method at two dates: the first one at the 6th week after herbicide application and the second one before harvest. The density of weed individuals was counted; the species composition and air- dry biomass of above-ground parts were estimated from the randomly selected areas of 1 m x 0.25 m at four sites of each plot. The density of weeds and weed air dry weight were statistically analysed by means of variance analysis, and the mean values were estimated with Tukey's confidence intervals (p=0.05. It was found that the number of weeds and air dry mass of weeds in the control were significantly higher in comparison with the herbicide treated objects. The application of different doses of herbicides did not differentiate significantly the weed infestation level in the winter triticale canopy. Viola arvensis, Matricaria maritima, Chenopodium album and Apera spicaventi were dominant species of weeds in the winter triticale canopy. The selection of cultivars did not influence the canopy weed infestation level.

  12. Inheritance of evolved resistance to a novel herbicide (pyroxasulfone).

    Science.gov (United States)

    Busi, Roberto; Gaines, Todd A; Vila-Aiub, Martin M; Powles, Stephen B

    2014-03-01

    Agricultural weeds have rapidly adapted to intensive herbicide selection and resistance to herbicides has evolved within ecological timescales. Yet, the genetic basis of broad-spectrum generalist herbicide resistance is largely unknown. This study aims to determine the genetic control of non-target-site herbicide resistance trait(s) that rapidly evolved under recurrent selection of the novel lipid biosynthesis inhibitor pyroxasulfone in Lolium rigidum. The phenotypic segregation of pyroxasulfone resistance in parental, F1 and back-cross (BC) families was assessed in plants exposed to a gradient of pyroxasulfone doses. The inheritance of resistance to chemically dissimilar herbicides (cross-resistance) was also evaluated. Evolved resistance to the novel selective agent (pyroxasulfone) is explained by Mendelian segregation of one semi-dominant allele incrementally herbicide-selected at higher frequency in the progeny. In BC families, cross-resistance is conferred by an incompletely dominant single major locus. This study confirms that herbicide resistance can rapidly evolve to any novel selective herbicide agents by continuous and repeated herbicide use. The results imply that the combination of herbicide options (rotation, mixtures or combinations) to exploit incomplete dominance can provide acceptable control of broad-spectrum generalist resistance-endowing monogenic traits. Herbicide diversity within a set of integrated management tactics can be one important component to reduce the herbicide selection intensity.

  13. Forecasting residual herbicide concentrations in soil

    Science.gov (United States)

    McGrath, Gavan; Scanlan, Craig; van Zwieten, Lukas; Rose, Mick; Rose, Terry

    2016-04-01

    High concentrations of herbicides remaining in soil at the time of planting can adversely impact agricultural production and lead to off-site impacts in streams and groundwater. Being able to forecast the likelihood of residual concentrations at specific times in the future offers the potential to improve environmental and economic outcomes. Here we develop a solution for the full transient probability density function for herbicide concentrations in soil as a function of rainfall variability. Quasi-analytical solutions that account for rainfall seasonality are also demonstrated. In addition, new rapid and relatively cost-effective bioassays to quantify herbicide concentrations in near real-time, offers opportunities for data assimilation approaches to improve forecast risks.

  14. Ethical reflections on herbicide-resistant crops

    DEFF Research Database (Denmark)

    Sandøe, Peter; Madsen, Kathrine Hauge

    2005-01-01

    associatedwith herbicide-resistant crops are presented from the point of view of experts and lay people. In thepublic perception, herbicide-resistant (HR) crops are troublesome because of their association with twotechnologies: genetic engineering of crops and the use of herbicides. These technologies......The introduction of genetically modified (GM) crops has caused a fierce public debate in Europe.Much of the controversy centres on possible risks to the environment. A specific problem here is thatrisk perception of the scientific experts differs from that of the public. In this paper, risks...... are perceived asrisky because they seem to share certain features: in particular, their long-term effects are unknown andthey are dreaded. Other value questions also come into play. The public seems to be concerned that risksare not outweighed by usefulness, that using HR crops is the wrong path to sustainable...

  15. Performance of herbicides in sugarcane straw

    Directory of Open Access Journals (Sweden)

    Rosilaine Araldi

    2015-12-01

    Full Text Available The process of mechanical harvesting of sugarcane generates a large deposition of straw on the soil surface, providing a coverage that several studies have found important for reducing the weed population. Although such coverage reduces weed infestations, additional management, including chemical control, is still needed. Thus, this study aimed to evaluate the leaching of atrazine, pendimethalin, metribuzin, clomazone, diuron and hexazinone in sugarcane straw. The experiment was conducted at the School of Agronomic Engineering at UNESP (Sao Paulo State University - Botucatu/SP. The sugarcane straw was collected in the field, cut and placed in quantities of 10t ha-1 in the capsules used as experimental units. The experimental design was completely randomized, using six herbicide treatments and four replications. Within 24 hours after the herbicides were applied in capsules with straw, five different rainfalls (5, 10, 20, 50 and 100mm were simulated. The leached water was collected for chromatographic analysis. The herbicide percentages that crossed the straw layer were statistically correlated with the rainfall amount by the Mitscherlich model that compares the facility of herbicide removal from sugarcane straw. In summary, pendimethalin did not present quantified transposition of the product by sugarcane straw even with a rain simulation of 100 mm. Furthermore, two different profiles of facility to transpose the herbicides in straw were found: one for metribuzin and hexazinone that crossed quickly through the straw layer and another for atrazine, diuron and clomazone that required more rainfall to be leached from coverage to the soil according to the maximum removable amount of each herbicide.

  16. Evolved polygenic herbicide resistance in Lolium rigidum by low-dose herbicide selection within standing genetic variation

    OpenAIRE

    2012-01-01

    The interaction between environment and genetic traits under selection is the basis of evolution. In this study, we have investigated the genetic basis of herbicide resistance in a highly characterized initially herbicide-susceptible Lolium rigidum population recurrently selected with low (below recommended label) doses of the herbicide diclofop-methyl. We report the variability in herbicide resistance levels observed in F1 families and the segregation of resistance observed in F2 and back-cr...

  17. Evolved polygenic herbicide resistance in Lolium rigidum by low-dose herbicide selection within standing genetic variation

    OpenAIRE

    2013-01-01

    The interaction between environment and genetic traits under selection is the basis of evolution. In this study, we have investigated the genetic basis of herbicide resistance in a highly characterized initially herbicide-susceptible Lolium rigidum population recurrently selected with low (below recommended label) doses of the herbicide diclofop-methyl. We report the variability in herbicide resistance levels observed in F1 families and the segregation of resistance observed in F2 and back-cr...

  18. Atividade microbiana do solo após aplicação de herbicidas em sistemas de plantio direto e convencional Microbial activity in soil after herbicide application under no-tillage and conventional planting systems

    Directory of Open Access Journals (Sweden)

    J.B. Santos

    2005-12-01

    Full Text Available Avaliaram-se neste trabalho os efeitos de cinco concentrações (0,0; 1,05; 2,10; 4,20; e 8,40 µg g-1 dos herbicidas fluazifop-p-butil e fomesafen e da mistura comercial destes (Robust® sobre a atividade microbiana de um solo submetido aos sistemas de plantio direto (SPD e convencional (SPC. Amostras do solo coletadas em SPD e SPC foram colocadas em erlenmeyer de 250 mL, tratadas com as diferentes concentrações dos herbicidas e umedecidas próximo à capacidade de campo. A cada intervalo de quatro dias fez-se a quantificação da respiração microbiana, por meio da captura do CO2 liberado do solo. Aos 20 dias após o início da incubação determinou-se o carbono da biomassa microbiana (CBM e o quociente metabólico (qCO2. No solo proveniente do SPD, a atividade microbiana aumentou com as concentrações do fluazifop-p-butil e reduziu para concentrações superiores a 4,20 µg g-1 de fomesafen. Os efeitos dos herbicidas sobre a respiração microbiana e o CBM do solo em SPC foram inferiores aos observados no solo do SPD. Entre os herbicidas, com o aumento das concentrações, verificou-se maior CBM para fluazifop-p-butil e menores valores de CBM para o fomesafen. A mistura comercial dos herbicidas (Robust® não influenciou o CBM no SPD, mas sua redução foi maior no solo sob SPC quando aplicado nas maiores concentrações. No SPD, o qCO2 aumentou com as concentrações dos herbicidas sem, contudo, variar entre eles. No SPC, a mistura dos herbicidas proporcionou o maior qCO2. Em geral, os herbicidas promoveram efeito negativo sobre a biomassa microbiana. Esse efeito foi proporcional às concentrações aplicadas, sendo menor em solo cultivado no SPD, em comparação aquele cultivado no SPC.This study evaluated the effect of the herbicides fluazifop-p-butyl and fomesafen in five concentrations (0.0; 1.05; 2.10; 4.20 and 8.40 µg g-1 and their mixture (Robust® on microbial activity in soil submitted to no-tillage system (NTS and

  19. 不同除草剂单独相继使用和混合使用防除小麦田草的效果比较%The Effect of Sequential and Mixed Application of Herbicides on Control of Littleseed Canary Grass in Wheat Field

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Littleseed canary grass (Phalaris minor Retz) is a major weed in wheat field particularly in the rice-wheat cropping system. Isoproturon has been used for control of littleseed canary grass for about two decades with remarkable success. However, recent reports have indicated that this weed has developed resistance to isoproturon. An attempt was, therefore, made to study the efficacy of different herbicides applied alone, in sequence or as tank mixture to control this troublesome weed in wheat field. At 60 DAS (day after sowing), application of trifluralin as pre-em followed by application of isoproturon AFI (after first irrigation) caused the maximum reduction in weed population, but at harvest, application of sulfasulfuron applied AFI had the same effect in weed control. Although isoproturon produced the maximum grain yield closely followed by clodinafop, sequential application of some herbicides also provided effective weed control and produced significantly higher seed yield than weedy check. So where there is a problem of isoproturon resistance to littleseed canary grass, these alternate herbicides may be used.%草是小麦田的主要杂草,尤其是水稻-小麦复种田块发生较为严重.用异丙隆防除草已有20多年的历史,防治效果十分显著.但近来有研究表明草已具有对异丙隆的抗性.本试验研究了不同除草剂单独相继使用与混合使用对该杂草的防治效果.结果表明,播后60 d,出苗前喷施氟乐灵和第一次灌水后喷施异丙隆的处理,除草效果最佳,而在成熟期,第一次灌水后喷施噻黄隆的处理具有与以上处理同样的防治效果.虽然使用异丙隆的处理产量最高,但一些除草剂单独相继使用也具有很好的杂草防治效果,小麦产量显著高于未用除草剂的对照.作者认为,在草防治上存在有异丙隆抗性的地区,可以使用本研究中的一些除草剂.

  20. Potential environmental impacts associated with large-scale herbicide-tolerant GM oilseed rape crops

    Directory of Open Access Journals (Sweden)

    Fellous Marc

    2004-07-01

    characteristics of the herbicide and its current and future use; accounts for herbicide-tolerant varieties belonging to other species, liable to be farmed in French agriculture in the short term; targets, if applicable, the selection of crop/herbicide combinations according to the constraints associated with French agriculture; coordinates the evaluations conducted on herbicide-tolerant crops and those conducted on herbicides; implements a biovigilance system and its associated resources whenever herbicide-tolerant crop farming is envisaged. Our report highlights the need for the management of any herbicide-tolerant GM oilseed rape crops. Such a management plan must account for the diverse cropping situations, including crop rotations and farming practices. Management should be based on the prior evaluation of situations encountered, the development of measures commensurate with the risks, and a validation of their efficacy through biovigilance. The Biomolecular Engineering Commission considers that the indirect environmental and agronomic impacts associated with current management practices employed for herbicide-tolerant oilseed rape crops can only be determined, in addition to the knowledge acquired, by continuing ongoing experimental studies initiated. Mathematical and computer models – by formalizing complex scenarios that incorporate the functioning of different oilseed rape populations (farmed, spontaneous, volunteer plants under specific farming practices – enables the simulation of potential impacts and the identification of suitable management measures. Nevertheless, at the present time, the introduction of more extensive farming than that currently practised, or managed progressive introduction, would make it possible to progress in the study of impacts and develop and validate management procedures enabling the limitation of adverse impacts. In the specific case of imports, the Biomolecular Engineering Commission considers that herbicidetolerant GM oilseed rape

  1. Semeadura direta de forrageiras de estação fria em campo natural submetido à aplicação de herbicidas: II. Composição botânica No-till seeding of cold season forage on native pasture under herbicides application: II. Botanical composition

    Directory of Open Access Journals (Sweden)

    Enrique Pérez Gomar

    2004-06-01

    Full Text Available A semeadura direta de espécies forrageiras de estação fria permite reduzir a marcada estacionalidade da sua produção em campos naturais. Durante quatro anos, conduziu-se um experimento de aplicação de herbicidas sobre campo nativo, em um solo Argissolo Vermelho-Amarelo, de textura arenosa do norte do Uruguai visando introduzir forrageiras de estação fria e estudar o impacto dos herbicidas na composição botânica de espécies estivais. Foram testadas doses de herbicidas (glifosate 1L ha-1, glifosate 4L ha-1, paraquat 3L ha-1 e testemunha, como tratamento principal, aplicadas no ano 1994, em um delineamento blocos ao acaso. A repetição ou não das mesmas doses no ano 1995 constituiu a subparcela e a aplicação ou não das mesmas doses no ano de 1996 constituiu a sub-subparcela. No levantamento de espécies da vegetação existentes no outono de 1998, observou-se que o maior distúrbio sobre a composição botânica do campo nativo foi provocado com a aplicação continuada da dose de 4L ha-1 de glifosate, onde foram identificadas seis espécies. No levantamento de espécies existentes no tratamento testemunha, no outono, foram identificadas onze espécies, sendo que as espécies Andropogon lateralis, Paspalum notatum, Conyza bonariensis, Eryngium horridum, Desmodium incanum, Cyperus sp. e Digitaria sp. constituiram 90% da composição botânica. Com a aplicação de herbicida, ocorreu uma substituição de espécies perenes por anuais.No-till seeding of winter species may reduce seasonal fluctuations of forage production of natural grasslands. An experiment of herbicide application on native grasses was conducted for four years, on a fine-loamy, mixed Mollic Hapludalf in northern of Uruguay to introduce winter forage and study the impact of herbicide on botanical composition of grass field. The experimental design was split-splitplot with three randomized blocks, with types and dosis of herbicides (gliphosate 1L ha-1, gliphosate 4L

  2. Herbicide residues in leaves of Erythroxylum coca var. coca plants treated with soil-applied tebuthiuron and hexazinone.

    Science.gov (United States)

    Lydon, J; Darlington, L

    1998-09-01

    The herbicide residue levels in leaves of Erythroxylum coca var. coca Lam. plants treated with soil applications of tebuthiuron and hexazinone at 3.36 and 6.72 kg a.i. ha-1 were determined in order to estimate the potential for human exposure to these residues from consuming the leaves or cocaine produced from them. Field-grown plants were treated with a commercial formulation of tebuthiuron or hexazinone and leaves were harvested at the first indication of herbicide injury (i.e. chlorosis and/or necrosis) and at the onset of leaf abscission. Herbicide residues were detected by HPLC in leaf samples from both harvests of all plants treated with tebuthiuron or hexazinone. At 3.36 kg ha-1, herbicide residues in the leaves were less than 2 micrograms g-1 dry wt. for both harvests of both experiments. The highest residue levels detected were 5.90 micrograms g-1 dry wt. for tebuthiuron and 7.17 micrograms g-1 dry wt. for hexazinone in leaves from plants treated with the herbicide at the rate of 6.72 kg ha-1 and harvested at the onset of leaf drop. Based on published toxicity data and estimates of leaf consumption, the herbicide residues in leaves of E. coca var. coca plants treated with tebuthiuron or hexazinone at twice the recommended control rates or less would have a negligible contribution to the health risks of individuals who chew coca leaves. Furthermore, based on the most conservative estimates of cocaine yield and herbicide carry over, death by cocaine overdose would occur long before the NOEL for either herbicide was reached.

  3. Effects of a glyphosate-based herbicide on the development of Common toads (Bufo bufo L.; Amphibia) at different temperatures

    Science.gov (United States)

    Baier, Fabian; Gruber, Edith; Spangl, Bernhard; Zaller, Johann G.

    2016-04-01

    Herbicides based on the active ingredient glyphosate are frequently applied in agriculture, horticulture and private gardens all over the world. Recently, leaching of glyphosate or its metabolite (AMPA) into water bodies inhabited by amphibians has been reported. However, very little is known about non-target effects of these herbicides on amphibians and even less is known to what extent different temperatures might alter these effects. Using climate chambers, we investigated the effects of the glyphosate-based herbicide Roundup PowerFlex® (480 g L-1 glyphosate, formulated as 588 g L-1 potassium salt) on the larval development of Common toads (Bufo bufo L.; Amphibia: Anura) under different temperature regimes (15°C vs. 20°C). We established five herbicide concentrations: 0, 1.5, 3, 4 mg acid equivalent L-1 and a 4 mg a.e. L-1 pulse treatment (totally three applications of 1.5, 1.5 and another 1 mg a.e. L-1) at each temperature in a full-factorial design. Each treatment combination was replicated five times, the experiment ran for 24 days. Results showed a highly significant effect of temperature on body length and body width but no effect of herbicide concentration on these growth parameters. Moreover, highly significant interactions between herbicide and temperature on body length and body width were observed suggesting that herbicides had different effects on different temperatures. In conclusion, although Roundup PowerFlex® at the tested concentrations appeared to have no acute toxicity to larvae of Common toads, the observed effects on tadpole morphology will potentially affect competitive interactions in spawning ponds of amphibia. Our findings of herbicide x temperature interactions might become more prevalent when human-induced climate change will lead to more extreme temperatures.

  4. Treatment by glyphosate-based herbicide alters life history parameters of the rose-grain aphid Metopolophium dirhodum

    Science.gov (United States)

    Saska, Pavel; Skuhrovec, Jiří; Lukáš, Jan; Chi, Hsin; Tuan, Shu-Jen; Honěk, Alois

    2016-06-01

    Glyphosate is the number one herbicide in the world. We investigated the sub-lethal effects of this herbicide on the aphid Metopolophium dirhodum (Walker), using an age-stage, two-sex life table approach. Three concentrations of the herbicide (low - 33.5, medium - 66.9 and high - 133.8 mmol dm‑3 of active ingredient) and distilled water as the control were used. The LC50 of the IPA salt of glyphosate on M. dirhodum was equivalent to 174.9 mmol dm‑3 of the active ingredient (CI95: 153.0, 199.0). The population parameters were significantly negatively affected by herbicide application, and this negative effect was progressive with the increasing concentration of the herbicide. A difference of two orders of magnitude existed in the predicted population development of M. dirhodum between the high concentration of the herbicide and the control. This is the first study that comprehensively documents such a negative effect on the population of an herbivorous insect.

  5. Evaluation of Broadleaf Weeds Control with Selectivity of Post-Emergence Herbicides in Sugar Beet (Beta vulgaris L.)

    OpenAIRE

    Ali Asghar CHITBAND; Ghorbani, Reza; Mohammad Hassan RASHED MOHASSEL; Majid ABBASPOOR; Abbasi, Rahmat

    2014-01-01

    The reduction of herbicide applications is a main research priority in recent years. In order to study the effect of individual post-emergence application of sugar beet broad-leaf herbicides at four to six true-leaf stage of weeds, experiments were conducted during 2013. Treatments included untreated control and several rates of desmedipham + phenmedipham + ethofumesate, chloridazon and clopyralid on Portulaca oleracea, Solanum nigrum, Amaranthus retroflexus and Chenopodium album. A completel...

  6. Methods for Rapid Screening in Woody Plant Herbicide Development

    Directory of Open Access Journals (Sweden)

    William Stanley

    2014-07-01

    Full Text Available Methods for woody plant herbicide screening were assayed with the goal of reducing resources and time required to conduct preliminary screenings for new products. Rapid screening methods tested included greenhouse seedling screening, germinal screening, and seed screening. Triclopyr and eight experimental herbicides from Dow AgroSciences (DAS 313, 402, 534, 548, 602, 729, 779, and 896 were tested on black locust, loblolly pine, red maple, sweetgum, and water oak. Screening results detected differences in herbicide and species in all experiments in much less time (days to weeks than traditional field screenings and consumed significantly less resources (<500 mg acid equivalent per herbicide per screening. Using regression analysis, various rapid screening methods were linked into a system capable of rapidly and inexpensively assessing herbicide efficacy and spectrum of activity. Implementation of such a system could streamline early-stage herbicide development leading to field trials, potentially freeing resources for use in development of beneficial new herbicide products.

  7. Herbicides as stimulators regulators and ripeners

    Science.gov (United States)

    The use of low doses of herbicide as plant growth regulators to increase sugar concentrations (ripen) in sugarcane prior to harvest plays an important role in the profitable and sustainable production of sugarcane in the U.S. as well as in other sugarcane industries around the world. Several studies...

  8. The 1975 Insecticide, Herbicide, Fungicide Quick Guide.

    Science.gov (United States)

    Page, Bill G.; Thomson, W. T.

    This is a quick guide for choosing a chemical to use to control a certain pest on a specific crop. Information in the book was obtained from manufacturers' labels and from the USDA and FDA pesticide summary. The book is divided into four parts: (1) insecticides, (2) herbicides, (3) fungicides, and (4) conversion tables. Each of the first three…

  9. Nodulation Effectivity, N-Accumulation and Yield of Soybean (Glycine max in a Clayloam Soil Treated with Pre- and Post-Emergence Herbicides

    Directory of Open Access Journals (Sweden)

    Anikwe, MAN.

    2003-01-01

    Full Text Available Introduction of exogenous micro-organisms in the rhizosphere of crop plants for plant growth enhancement requires a careful study of factors affecting their performance. We studied the effect of pre-and post-emergence herbicides on nodulation, N-accumulation and yield of soybean inoculated with exotic Rhizobium strains in a Dystric Leptosol. The treatments comprising a control with no herbicide treatment, a pre-emergence herbicide treatment and a combination of preand post-emergence herbicide treatment were set out in the field using a randomized complete block design. The results show that both post-emergence and a combination of pre- and post-emergence herbicide treatments applied at 3 weeks after planting reduced nodulation, shoot dry weight, N-accumulation in the biomass and seed yield. Pre-emergence herbicide application reduced weed density and sparingly affected nodule dry weight, N-accumulation and seed yield. The results of the work suggest that selection and timing of herbicide application in soybean plots affect weed competition, nodulation, N-accumulation and overall performance of the crop in the field.

  10. The effect of the glyphosate, 2,4-D, atrazine e nicosulfuron herbicides upon the Edaphic collembola (Arthropoda: Ellipura) in a no tillage system.

    Science.gov (United States)

    Lins, Vilma S; Santos, Honório R; Gonçalves, Manoel C

    2007-01-01

    The use of herbicides is a common and intensive practice in no tillage systems. The herbicides can influence, directly or indirectly, the population of edaphic arthropods. Collembola is a group that functions as a bio-indicator of soil conditions. The degree of abundance and diversity of Collembola provides the level of soil disturbance provoked by agricultural practices. This experiment was designed to compare the influence of herbicides on the population fluctuation of Collembola in a no-till soil preparation system. The work was conducted in a non irrigated no-till area at the Núcleo Experimental de Ciências Agrárias of the Universidade Federal de Mato Grosso do Sul (UFMS), Campus de Dourados, in soil planted with corn as a surface covering, during the period of December, 2002 to December, 2003. The data were analyzed according to a completely randomized model, in a split plot design. The plots received four types of herbicides: glyphosate, atrazine, 2,4-D and nicosulfuron. A fifth plot did not receive any herbicide (control), for a total of five treatment types. The sub plots were represented by their collection times (10, 20, 30 and 40 days after the herbicide applications). Both the type of herbicide and the time of data sampling influenced the Collembola population fluctuaction. The treatments with atrazine and 2,4-D caused the most reduction of the population of Collembola, depending on the time of application.

  11. Biochar-mediated reductive transformation of nitro herbicides and explosives.

    Science.gov (United States)

    Oh, Seok-Young; Son, Jong-Gil; Chiu, Pei C

    2013-03-01

    Biochar, a subset of black carbon produced via pyrolysis of biomass, has received much attention in recent years due to its potential to address many important issues, from energy and climate to agriculture and environmental quality. Biochar is known to influence the fate and transport of organic contaminants, although its role has been generally assumed to be as an adsorbent. In this study, the authors investigated the ability of biochar to catalyze the reductive reactions of nitro herbicides and explosives. Two biochars, derived from poultry litter and wastewater biosolids, were found to promote the reductive removal of the dinitro herbicides pendimethalin and trifluralin and the explosives 2,4-dinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by dithiothreitol. Parallel experiments using another black carbon material, graphite powder or granular activated carbon, in place of a biochar resulted in comparable rate enhancement to show reduction products, such as 2,4-diaminotoluene and formaldehyde. A cyclization product of trifluralin and reduction products of dinitrotoluene and RDX were detected only when biochar and dithiothreitol were both present, supporting the ability of biochar to promote redox reactions. Three possible catalysts, including graphene moieties, surface functional groups, and redox-active metals, in biochar may be responsible for the biochar-mediated reactions. The environmental significance, implications, and applications of this previously unrecognized role of biochar are discussed. Copyright © 2013 SETAC.

  12. Site-specific herbicide splitting in field carrots based on camera detected weed infestation

    Directory of Open Access Journals (Sweden)

    Dammer, Karl-Heinz

    2014-02-01

    Full Text Available The production of carrots for the German market comes mainly from domestic production. To ensure the efficiency of chemical weed control and to minimize the damage of the crop a splitting of the recommended dosage up to three times is often practiced. Because of large field areas of the carrot cropping and processing enterprises, the potential to save herbicides by practicing an herbicide application adapted to the weed occurrence is high. The efficiency of a site-specific herbicide splitting on the late weed occurrence as well as on yield parameters was tested in field strip trials. Weed species and abundance were determined manually by raster sampling using a counting frame in spring before spraying. Afterwards in the three leaf growth stages of the carrots the weed coverage level was detected online using a camera sensor developed by the Leibniz Institute for Agricultural Engineering (ATB. Based on weed coverage level maps three application zones (200 L ha-1, 300 L ha-1, 400 L ha-1 were defined. On both sides of the site specific splitting strip a uniform splitting strip (400 L ha-1 was applied. The position of the application zones were the same during site-specific splitting at the second and third herbicide spraying respectively. Compared to a conventional uniform splitting herbicide savings were 16% (2005 und 20% (2006 at each spraying time. To evaluate the efficacy of the site-specific splitting on the yield manually harvesting were performed at opposite points in both treatments. The yield parameters fresh weight and numbers of carrots “total” and “marketable” were determined. Assuming a significance level of α = 5% the difference method for controlled treatment comparison in large scale field trials (t-test resulted in 19 of the 24 tests in total no differences between the treatments. The late weed occurrence in both treatments was low.

  13. Resistence of Euphorbia Heterophylla L. to ALS-inhibiting herbicides in soybean

    Directory of Open Access Journals (Sweden)

    Gelmini Gerson Augusto

    2005-01-01

    Full Text Available Herbicides are widely used in soybean for weed control, and the selection pressure attributed to the repeated use of herbicides with similar modes of action on the same site has caused selection for resistant biotypes within and among previously susceptible species, such as Euphorbia heterophylla L., in relation to ALS enzyme inhibitors, in the states of Paraná, Rio Grande do Sul, and São Paulo, Brazil. Seeds of E. heterophylla were collected to examine possible new cases of resistant populations and to test alternative herbicide treatments to manage these populations, in the Caarapó region, State of Mato Grosso do Sul, Brazil, in areas where plants of this species have survived continuous herbicide applications. The experiment was carried out under greenhouse conditions, where biotypes with a history of suspected resistance were compared with a known susceptible biotype. Several post-emergence herbicides were sprayed at zero, one, two, four, and eight times the recommended field application rates. Twenty days after application, plants were harvested, and control percentage and fresh weight were determined to establish dose-response curves, in the aim to obtain the resistance factor using CD50 and RD50 data. The chlorimuron-ethyl resistance factor values for the control percentage and fresh weight parameters were higher than 16.5 and 16.9, respectively, while imazethapyr showed resistance factors higher than 25.0 and 23.5, respectively. The resistant biotype showed different resistance levels to chlorimuron-ethyl and imazethapyr, showing cross-resistance to the sulfonylurea and imidazolinone groups. Nevertheless, this biotype was effectively controlled by fomesafen (250 g ha-1, lactofen (120 g ha-1, flumiclorac-pentyl (40 g ha-1, glufosinate-ammonium (150 g ha-1, and glyphosate (360 g ha-1.

  14. Single and Combined Effects of Pesticide Seed Dressings and Herbicides on Earthworms, Soil Microorganisms, and Litter Decomposition.

    Science.gov (United States)

    Van Hoesel, Willem; Tiefenbacher, Alexandra; König, Nina; Dorn, Verena M; Hagenguth, Julia F; Prah, Urša; Widhalm, Theresia; Wiklicky, Viktoria; Koller, Robert; Bonkowski, Michael; Lagerlöf, Jan; Ratzenböck, Andreas; Zaller, Johann G

    2017-01-01

    Seed dressing, i.e., the treatment of crop seeds with insecticides and/or fungicides, aiming to protect seeds from pests and diseases, is widely used in conventional agriculture. During the growing season, those crop fields often receive additional broadband herbicide applications. However, despite this broad utilization, very little is known on potential side effects or interactions between these different pesticide classes on soil organisms. In a greenhouse pot experiment, we studied single and interactive effects of seed dressing of winter wheat (Triticum aestivum L. var. Capo) with neonicotinoid insecticides and/or strobilurin and triazolinthione fungicides and an additional one-time application of a glyphosate-based herbicide on the activity of earthworms, soil microorganisms, litter decomposition, and crop growth. To further address food-web interactions, earthworms were introduced to half of the experimental units as an additional experimental factor. Seed dressings significantly reduced the surface activity of earthworms with no difference whether insecticides or fungicides were used. Moreover, seed dressing effects on earthworm activity were intensified by herbicides (significant herbicide × seed dressing interaction). Neither seed dressings nor herbicide application affected litter decomposition, soil basal respiration, microbial biomass, or specific respiration. Seed dressing did also not affect wheat growth. We conclude that interactive effects on soil biota and processes of different pesticide classes should receive more attention in ecotoxicological research.

  15. Single and Combined Effects of Pesticide Seed Dressings and Herbicides on Earthworms, Soil Microorganisms, and Litter Decomposition

    Science.gov (United States)

    Van Hoesel, Willem; Tiefenbacher, Alexandra; König, Nina; Dorn, Verena M.; Hagenguth, Julia F.; Prah, Urša; Widhalm, Theresia; Wiklicky, Viktoria; Koller, Robert; Bonkowski, Michael; Lagerlöf, Jan; Ratzenböck, Andreas; Zaller, Johann G.

    2017-01-01

    Seed dressing, i.e., the treatment of crop seeds with insecticides and/or fungicides, aiming to protect seeds from pests and diseases, is widely used in conventional agriculture. During the growing season, those crop fields often receive additional broadband herbicide applications. However, despite this broad utilization, very little is known on potential side effects or interactions between these different pesticide classes on soil organisms. In a greenhouse pot experiment, we studied single and interactive effects of seed dressing of winter wheat (Triticum aestivum L. var. Capo) with neonicotinoid insecticides and/or strobilurin and triazolinthione fungicides and an additional one-time application of a glyphosate-based herbicide on the activity of earthworms, soil microorganisms, litter decomposition, and crop growth. To further address food-web interactions, earthworms were introduced to half of the experimental units as an additional experimental factor. Seed dressings significantly reduced the surface activity of earthworms with no difference whether insecticides or fungicides were used. Moreover, seed dressing effects on earthworm activity were intensified by herbicides (significant herbicide × seed dressing interaction). Neither seed dressings nor herbicide application affected litter decomposition, soil basal respiration, microbial biomass, or specific respiration. Seed dressing did also not affect wheat growth. We conclude that interactive effects on soil biota and processes of different pesticide classes should receive more attention in ecotoxicological research. PMID:28270821

  16. Comparative environmental impacts of glyphosate and conventional herbicides when used with glyphosate-tolerant and non-tolerant crops

    Energy Technology Data Exchange (ETDEWEB)

    Mamy, Laure, E-mail: laure.mamy@versailles.inra.f [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France); Gabrielle, Benoit, E-mail: benoit.gabrielle@agroparistech.f [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France); Barriuso, Enrique, E-mail: barriuso@grignon.inra.f [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France)

    2010-10-15

    The introduction of glyphosate-tolerant (GT) crops is expected to mitigate the environmental contamination by herbicides because glyphosate is less persistent and toxic than the herbicides used on non-GT crops. Here, we compared the environmental balances of herbicide applications for both crop types in three French field trials. The dynamic of herbicides and their metabolites in soil, groundwater and air was simulated with PRZM model and compared to field measurements. The associated impacts were aggregated with toxicity potentials calculated with the fate and exposure model USES for several environmental endpoints. The impacts of GT systems were lower than those of non-GT systems, but the accumulation in soils of one glyphosate metabolite (aminomethylphosphonic acid) questions the sustainability of GT systems. The magnitude of the impacts depends on the rates and frequency of glyphosate application being highest for GT maize monoculture and lowest for combination of GT oilseed rape and non-GT sugarbeet crops. - The impacts of herbicide applications on glyphosate-tolerant crops could be higher than expected due to the accumulation of a metabolite of glyphosate in soils.

  17. Nitrogen dose and type of herbicide used for growth regulation on the green coloration intensity of Emerald grass

    Directory of Open Access Journals (Sweden)

    Raíssa Pereira Dinalli Gazola

    2016-06-01

    Full Text Available ABSTRACT: Nitrogen (N is the main nutrient responsible for the green coloration of lawns but also stimulates the growth of the aerial portion of grass, thus increasing mowing expenses. Therefore, herbicides may be used as a growth regulator. The ideal herbicide will reduce lawn height without affecting esthetics. Toward this end, the aim of the present study was to evaluate the green coloration of Emerald grass ( Zoysia japonica Steud. under the effect of different N doses or herbicides used as growth regulators. The study site consisted of randomized blocks containing 20 treatments arranged in a 5×4 factorial design with four treatment groups: four herbicides (glyphosate, imazaquin, imazethapyr, and metsulfuron-methyl, accounting for 200, 420, 80, and 140g ha-1 of the active ingredient, respectively and the control sample (no herbicide; and three doses of N in the form of urea (5, 10, and 20g m-2, divided into five applications per year, in addition to a treatment without N. Leaf chlorophyll content (LCC was assessed and the aerial portion of the lawn was measured with digital image analysis. Doses of N ranging from 10 to 20g m-2, divided into five applications a year, provided the lawn with intense green coloration, and the herbicides glyphosate (200g ha-1, imazaquin (420g ha-1, and imazethapyr (80g ha-1 were reported to be suitable for use as growth regulators of the study species, considering maintenance of esthetic quality (green coloration. The digital image analysis of the aerial portion provided more accurate results than use of a chlorophyll meter with regard to the recommendation of both N dose and herbicides to be used as growth regulators of Emerald grass.

  18. Valerian (Valeriana officinalis L. tolerance to some post-emergence herbicides

    Directory of Open Access Journals (Sweden)

    Monjezi Nadia

    2015-12-01

    Full Text Available Valerian (Valeriana officinalis L. is a medicinal plant, but its cultivation is restricted by weed competition. Therefore, three rates (0.75X, 1X, and 1.25X, where X is equal to the recommended dose of haloxyfop-R (methyl ester, sethoxydim, oxadiargyl, bentazon, oxadiazon, and oxyfluorfen were applied at the 3-4 leaf stages to valerian plants. This application was done to select the herbicide type and rate for post-controlling broadleaf and grasses weeds in this species. Herbicide injury, Soil-Plant Analyses Development (SPAD reading, number of leaves per plant, stem diameter, and fresh and dry weights were determined 10, 20, and 30 days after herbicide application. Oxyfluorfen application caused the most herbicide injury followed by bentazon. Injury increased as the rate and the days after application increased. Oxadiazon only caused significant damage 30 days after application under all three rates. Other treatments showed no marked injuries under any rate or date after application, as compared with the control. Effects on other measured traits depended on the trait, herbicide, and herbicide rate. The highest SPAD, leaf number, shoot diameter, fresh weight and dry weight, was recorded under application of 30 mg a.i. ∙ kg-1 soil oxadiargyl and 90 mg a.i. ∙ kg-1 soil oxadiazon, 81 mg a.i. ∙ kg-1 soil haloxyfop-R, 37.5 mg a.i. ∙ kg-1 soil oxadiargyl, 22.5 mg a.i. ∙ kg-1 soil oxadiargyl, 81 mg a.i. ∙ kg-1 soil haloxyfop-R, and 81 mg a.i. ∙ kg-1 soil haloxyfop-R, respectively. To sum up, the results showed that sethoxydim, oxadiargyl, and haloxyfop-R produced no significant symptoms of phytotoxicity or reduction of measured traits. This means that oxadiargyl, haloxyfop-R, and sethoxydim may be used safely for weed control of valerian at the rates used in this experiment under similar conditions.

  19. Multiple Herbicide Resistance in Lolium multiflorum and Identification of Conserved Regulatory Elements of Herbicide Resistance Genes

    Science.gov (United States)

    Mahmood, Khalid; Mathiassen, Solvejg K.; Kristensen, Michael; Kudsk, Per

    2016-01-01

    Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of Lolium multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR) genes were also observed after herbicides exposure in the gene expression databases, indicating them as reliable markers. In order to get an overview of herbicidal resistance status of L. multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS) inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase) inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively, and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O. sativa and A. thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif is known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward toward a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management. PMID:27547209

  20. Multiple Herbicide Resistance in Lolium multiflorum and Identification of Conserved Regulatory Elements of Herbicide Resistance Genes.

    Science.gov (United States)

    Mahmood, Khalid; Mathiassen, Solvejg K; Kristensen, Michael; Kudsk, Per

    2016-01-01

    Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of Lolium multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR) genes were also observed after herbicides exposure in the gene expression databases, indicating them as reliable markers. In order to get an overview of herbicidal resistance status of L. multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS) inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase) inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively, and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O. sativa and A. thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif is known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward toward a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management.

  1. Multiple herbicide resistance in Lolium multiflorum and identification of conserved regulatory elements of herbicide resistance genes

    Directory of Open Access Journals (Sweden)

    Khalid Mahmood

    2016-08-01

    Full Text Available Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of L. multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR genes were also observed after herbicides exposure in the gene expression databases, indicating them a reliable marker. In order to get an overview of herbicidal resistance status of Lolium multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O.sativa and A.thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward towards a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management.

  2. Exposure of juvenile green frogs (Lithobates clamitans) in littoral enclosures to a glyphosate-based herbicide.

    Science.gov (United States)

    Edge, Christopher B; Gahl, Megan K; Pauli, Bruce D; Thompson, Dean G; Houlahan, Jeff E

    2011-07-01

    The majority of studies on the toxicity of glyphosate-based herbicides to amphibians have focused on larval life stages exposed in aqueous media. However, adult and juvenile amphibians may also be exposed directly or indirectly to herbicides. The potential for such exposures is of particular interest in the littoral zone surrounding wetlands as this is preferred habitat for many amphibian species. Moreover, it may be argued that potential herbicide effects on juvenile or adult amphibians could have comparatively greater influence on overall recruitment, reproductive potential and thus stability of local populations than effects on larvae. In this experiment, juvenile green frogs (Lithobates clamitans) were exposed to two concentrations (2.16 and 4.27 kg a.e./ha) of a glyphosate-based herbicide formulation (VisionMax®), which were based on typical application scenarios in Canadian forestry. The experimental design employed frogs inhabiting in situ enclosures established at the edge of small naturalized wetlands that were split in half using an impermeable plastic barrier. When analyzed using nominal target application rates, exposure to the glyphosate-based herbicide had no significant effect on survival, body condition, liver somatic index or the observed rate of Batrachochytrium dendrobatidis infection. However, there were marginal trends in both ANOVA analysis and post-hoc regressions regarding B. dendrobatidis infection rates and liver somatic index in relation to measured exposure estimates. Results from this study highlight the importance of field research and the need to include multiple endpoints when examining potential effects of a contaminant on non-target organisms. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Weed control in distress – can all weeds still be controlled with herbicides in future?

    Directory of Open Access Journals (Sweden)

    Drobny, Hans G.

    2016-02-01

    Full Text Available The introduction and availability of highly active and selective herbicides in all important field crops, in the last decades, enabled the simplification and money saving in crop rotations and agronomic measures. This resulted in respective specialized and adapted weed populations, and consequently an increasing selection of resistant populations. Since the introduction of the ALS-inhibitors (starting 1985 and the 4-HPPD-inhibitors (2001, no new MoA-Classes were registered, and there are none in the registration process. Several established herbicides were not registered or re-registered in the EU, or were severely restricted in their application. The cost and the risk to develop and register a new selective herbicide in the EU are hardly justified, in relation to their market potential. The only solution on problem fields, with resistant populations, is to change the agronomic practices, like crop rotation, soil tillage, seeding time, etc., as a precautionary principle also on still „normal“ fields. The different advising institutions have to integrate these aspects into their recommendations, besides the proper herbicide management.

  4. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade.

    Science.gov (United States)

    Délye, Christophe

    2013-02-01

    Non-target-site-based resistance (NTSR) can confer unpredictable cross-resistance to herbicides. However, the genetic determinants of NTSR remain poorly known. The current, urgent challenge for weed scientists is thus to elucidate the bases of NTSR so that detection tools are developed, the evolution of NTSR is understood, the efficacy of the shrinking herbicide portfolio is maintained and integrated weed management strategies, including fully effective herbicide applications, are designed and implemented. In this paper, the importance of NTSR in resistance to herbicides is underlined. The most likely way in which NTSR evolves-by accumulation of different mechanisms within individual plants-is described. The NTSR mechanisms, which can interfere with herbicide penetration, translocation and accumulation at the target site, and/or protect the plant against the consequences of herbicide action, are then reviewed. NTSR is a part of the plant stress response. As such, NTSR is a dynamic process unrolling over time that involves 'protectors' directly interfering with herbicide action, and also regulators controlling 'protector' expression. NTSR is thus a quantitative trait. On this basis, a three-step procedure is proposed, based on the use of the 'omics' (genomics, transcriptomics, proteomics or metabolomics), to unravel the genetic bases of NTSR.

  5. Resistance to herbicides caused by single amino acid mutations in acetyl-CoA carboxylase in resistant populations of grassy weeds.

    Science.gov (United States)

    Jang, SoRi; Marjanovic, Jasmina; Gornicki, Piotr

    2013-03-01

    Eleven spontaneous mutations of acetyl-CoA carboxylase have been identified in many herbicide-resistant populations of 42 species of grassy weeds, hampering application of aryloxyphenoxypropionate, cyclohexadione and phenylpyrazoline herbicides in agriculture. IC(50) shifts (resistance indices) caused by herbicide-resistant mutations were determined using a recombinant yeast system that allows comparison of the effects of single amino acid mutations in the same biochemical background, avoiding the complexity inherent in the in planta experiments. The effect of six mutations on the sensitivity of acetyl-CoA carboxylase to nine herbicides representing the three chemical classes was studied. A combination of partially overlapping binding sites of the three classes of herbicides and the structure of their variable parts explains cross-resistance among and between the three classes of inhibitors, as well as differences in their specificity. Some degree of resistance was detected for 51 of 54 herbicide/mutation combinations. Introduction of new herbicides targeting acetyl-CoA carboxylase will depend on their ability to overcome the high degree of cross-resistance already existing in weed populations. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  6. Impact of the ahas transgene and of herbicides associated with the soybean crop on soil microbial communities.

    Science.gov (United States)

    Souza, Rosinei Aparecida; Babujia, Letícia Carlos; Silva, Adriana Pereira; de Fátima Guimarães, Maria; Arias, Carlos Arrabal; Hungria, Mariangela

    2013-10-01

    -group herbicides applications also failed to reveal differences that could be attributed to the specific use of imazapyr, even after three consecutive croppings at the same site. Finally, no differences were detected between conventional (Conquista and conventional herbicides) and transgenic soybean managements (Cultivance and imazapyr). However, marked differences were observed in MB-C and MB-N between the different sites and times of year and, for the 16S rDNA-DGGE profiles, between different sites. In conclusion, microbial community evaluations were found to be sensitive and viable for monitoring different technologies and agricultural management methods, but no differences could be attributed to the ahas transgene for three consecutive cropping seasons.

  7. Evolved polygenic herbicide resistance in Lolium rigidum by low-dose herbicide selection within standing genetic variation.

    Science.gov (United States)

    Busi, Roberto; Neve, Paul; Powles, Stephen

    2013-02-01

    The interaction between environment and genetic traits under selection is the basis of evolution. In this study, we have investigated the genetic basis of herbicide resistance in a highly characterized initially herbicide-susceptible Lolium rigidum population recurrently selected with low (below recommended label) doses of the herbicide diclofop-methyl. We report the variability in herbicide resistance levels observed in F1 families and the segregation of resistance observed in F2 and back-cross (BC) families. The selected herbicide resistance phenotypic trait(s) appear to be under complex polygenic control. The estimation of the effective minimum number of genes (N E), depending on the herbicide dose used, reveals at least three resistance genes had been enriched. A joint scaling test indicates that an additive-dominance model best explains gene interactions in parental, F1, F2 and BC families. The Mendelian study of six F2 and two BC segregating families confirmed involvement of more than one resistance gene. Cross-pollinated L. rigidum under selection at low herbicide dose can rapidly evolve polygenic broad-spectrum herbicide resistance by quantitative accumulation of additive genes of small effect. This can be minimized by using herbicides at the recommended dose which causes high mortality acting outside the normal range of phenotypic variation for herbicide susceptibility.

  8. Herbicide resistances in Amaranthus tuberculatus: a call for new options.

    Science.gov (United States)

    Tranel, Patrick J; Riggins, Chance W; Bell, Michael S; Hager, Aaron G

    2011-06-08

    Amaranthus tuberculatus is a major weed of crop fields in the midwestern United States. Making this weed particularly problematic to manage is its demonstrated ability to evolve resistance to herbicides. Herbicides to which A. tuberculatus has evolved resistance are photosystem II inhibitors, acetolactate synthase inhibitors, protoporphyrinogen oxidase inhibitors, and glyphosate. Many populations of A. tuberculatus contain more than one of these resistances, severely limiting the options for effective herbicide control. A survey of multiple-herbicide resistance in A. tuberculatus revealed that all populations resistant to glyphosate contained resistance to acetolactate synthase inhibitors, and 40% contained resistance to protoporphyrinogen oxidase inhibitors. The occurrences of multiple-herbicide resistances in A. tuberculatus illustrate the need for continued herbicide discovery efforts and/or the development of new strategies for weed management.

  9. Non-target-site herbicide resistance: a family business.

    Science.gov (United States)

    Yuan, Joshua S; Tranel, Patrick J; Stewart, C Neal

    2007-01-01

    We have witnessed a dramatic increase in the frequency and diversity of herbicide-resistant weed biotypes over the past two decades, which poses a threat to the sustainability of agriculture at both local and global levels. In addition, non-target-site mechanisms of herbicide resistance seem to be increasingly implicated. Non-target-site herbicide resistance normally involves the biochemical modification of the herbicide and/or the compartmentation of the herbicide (and its metabolites). In contrast to herbicide target site mutations, fewer non-target mechanisms have been elucidated at the molecular level because of the inherently complicated biochemical processes and the limited genomic information available for weedy species. To further understand the mechanisms of non-target-site resistance, we propose an integrated genomics approach to dissect systematically the functional genomics of four gene families in economically important weed species.

  10. Herbicide Orange Site Characterization Study, Eglin AFB

    Science.gov (United States)

    1987-01-01

    SCFILE cue ESL-TR-86-22 HERBICIDE ORANGE SITE CHARACTERIZATION STUDY EGLIN AFB 10 A.B. CROCKETT, A. PROPP , T. KIMES EG&G IDAHO, INC O I P.O. BOX...Orange Site Characterization Study.4lin AFB 12- PERSONAL AIITHOS(S) Crockett, A.B. , Propp , A., Kinies T. / \\ 4 Final FROM APX 84/TO Sen 86 1 ... I

  11. Acute toxicity of Roundup® herbicide to three life stages of the freshwater shrimp Caridina nilotica (Decapoda: Atyidae)

    Science.gov (United States)

    Mensah, P. K.; Muller, W. J.; Palmer, C. G.

    Glyphosate based herbicides, including Roundup®, are frequently used in the chemical control of weeds and invading alien plant species in South Africa. These herbicides ultimately get into water courses directly or indirectly through processes such as drifting, leaching, surface runoff and foliar spray of aquatic nuisance plants. Despite their widespread use, no water quality guideline exists to protect indigenous South African freshwater organisms from the toxic effects of these herbicides. The toxicity of the herbicide Roundup® was assessed using three different life stages of the freshwater shrimp Caridina nilotica, a prevalent species in South African freshwater ecosystems. Neonate (7 dph and 40 dph) shrimps were exposed to varying concentrations (1.5-50 mg/L acid equivalence (a.e.)) of the herbicide in 48 and 96 h acute toxicity tests in order to determine the most sensitive life-stage. The results showed neonates to be more sensitive to Roundup® than both juveniles and adults with mean 96 h LC 50 values of 2.5, 7.0 and 25.3 mg/L a.e. respectively. The estimated 96 h LC 50 of neonates is much lower than the application rate (20-30 mg/L a.e.), although the application’s impact will depend on the dilution rate of the applied concentration in the environment. All three life-stages of unexposed animals exhibited active and coordinated movement but exposed shrimps were erratic and slow in their movements, with neonates showing most of these behavioral irregularities. This study shows that low levels of the herbicide Roundup® may adversely affect C. nilotica health and survival. Thus, the herbicide should be carefully managed to minimize any negative impact on non-target freshwater organisms.

  12. Pigment analysis and ammonia excretion in herbicide tolerant cyanobacteria.

    Science.gov (United States)

    Selvakumar, G; Gopalaswamy, G; Kannaiyan, S

    2002-08-01

    Isolation of cyanobacteria was attempted from herbicide applied rice soils. The predominant genera were Westiellopsis followed by Anabaena, Nostoc and Oscillatoria. The herbicide tolerance was further tested by growing the cyanobacterial cultures in BG-11 medium supplemented with varying concentrations of the commonly used rice herbicide, viz butachlor under in vitro condition. The chlorophyll-a, phycobiliproteins and ammonia excretion were assessed at periodic intervals. Westiellopsis showed the maximum tolerance followed by Anabaena, Nostoc and Oscillatoria.

  13. Assessing herbicide leaching from field measurements and laboratory experiments

    OpenAIRE

    Cuevas Sánchez, Mª Victoria; Calderón, M.J.; Fernández Luque, José Enrique; Hermosín, M.C.; Moreno Lucas, Félix; Cornejo, J.

    2001-01-01

    Field and laboratory experiments with undisturbed soil columns were performed for assessing the mobility and persistence of chloridazon and lenacil in a clayey soil in the marshes of Lebrija, southwest Spain. In the laboratory we tried to evaluate the herbicides fate when applied with doses greater than normal, as it happens by overlap when spraying the herbicides. Thus, the herbicides doses in the field experiments were similar to those applied by the growers in the area, while the doses app...

  14. Phytotoxicity of four photosystem II herbicides to tropical seagrasses.

    Directory of Open Access Journals (Sweden)

    Florita Flores

    Full Text Available Coastal waters of the Great Barrier Reef (GBR are contaminated with agricultural pesticides, including the photosystem II (PSII herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50 over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zosteramuelleri and Haloduleuninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m ', indicating reduced photosynthesis and maximum effective yields (Fv/Fm corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect

  15. Electrochemical degradation and mineralization of glyphosate herbicide.

    Science.gov (United States)

    Tran, Nam; Drogui, Patrick; Doan, Tuan Linh; Le, Thanh Son; Nguyen, Hoai Chau

    2017-01-23

    The presence of herbicide is a concern for both human and ecological health. Glyphosate is occasionally detected as water contaminants in agriculture areas where the herbicide is used extensively. The removal of glyphosate in synthetic solution using advanced oxidation process is a possible approach for remediation of contaminated waters. The ability of electrochemical oxidation for the degradation and mineralization of glyphosate herbicide was investigated using Ti/PbO2 anode. The current intensity, treatment time, initial concentration and pH of solution are the influent parameters on the degradation efficiency. An experimental design methodology was applied to determine the optimal condition (in terms of cost/effectiveness) based on response surface methodology. Glyphosate concentration (C0 = 16.9 mg L(-1)) decreased up to 0.6 mg L(-1) when the optimal conditions were imposed (current intensity of 4.77A and treatment time of 173 min). The removal efficiencies of glyphosate and total organic carbon were 95 ±16% and 90.31%, respectively. This work demonstrates that electrochemical oxidation is a promising process for degradation and mineralization of glyphosate.

  16. Ethical reflections on herbicide-resistant crops.

    Science.gov (United States)

    Madsen, Kathrine Hauge; Sandøe, Peter

    2005-03-01

    The introduction of genetically modified (GM) crops has caused a fierce public debate in Europe. Much of the controversy centres on possible risks to the environment. A specific problem here is that risk perception of the scientific experts differs from that of the public. In this paper, risks associated with herbicide-resistant crops are presented from the point of view of experts and lay people. In the public perception, herbicide-resistant (HR) crops are troublesome because of their association with two technologies: genetic engineering of crops and the use of herbicides. These technologies are perceived as risky because they seem to share certain features: in particular, their long-term effects are unknown and they are dreaded. Other value questions also come into play. The public seems to be concerned that risks are not outweighed by usefulness, that using HR crops is the wrong path to sustainable agriculture, that the individual's right to choose GM-free products may be violated, and that these crops are unnatural. In contrast, on the issue of the uncertainty inherent in risk assessment, experts and the public seem to share a good deal of ground.

  17. ANALYSIS OF THE IMPACT OF PREPLANT TREATING OF SEEDS WITH INDUSTRIAL ALTERNATING ELECTROMAGNETIC FREQUENCY (EMF PF 50 HZ ON THE GERMINATION ENERGY OF MIDRIPENING SPRING BARLEY SEEDS OF THE VARIETIES OF VAKULA, VIKONT, RATNIK

    Directory of Open Access Journals (Sweden)

    Zholobova M. V.

    2016-04-01

    Full Text Available The use of physical factors for preplant stimulation of seeds increases vigor, germination and improves the yield of agricultural products. One of the effective ways to improve seed grain quality is to impact on the seeds using physical factors, in particular, an alternating electromagnetic field of industrial frequency of 50 Hz (EMF of IF of 50 Hz. We studied the impact of EMF of IF of 50 Hz on the energy germination of mid-ripening spring barley seeds of promising varieties Vakula, Vikont, Ratnik. Carrying out the experimental studies we used a laboratory setup with annular pole points of rectangular cross section. Our disperse analysis resulted in data on germinative energy of seeds of spring barley varieties Vakula, Vikont, Ratnik, which showed that while treating seeds of spring barley by an alternating electromagnetic field of industrial frequency of 50Hz, we obtained the best values of germinative energy of seeds of Variety Vikont with a mode of processing being equal to W = 16%, T = 2 c, L = 0,03 m

  18. Evaluation of Broadleaf Weeds Control with Selectivity of Post-Emergence Herbicides in Sugar Beet (Beta vulgaris L.

    Directory of Open Access Journals (Sweden)

    Ali Asghar CHITBAND

    2014-12-01

    Full Text Available The reduction of herbicide applications is a main research priority in recent years. In order to study the effect of individual post-emergence application of sugar beet broad-leaf herbicides at four to six true-leaf stage of weeds, experiments were conducted during 2013. Treatments included untreated control and several rates of desmedipham + phenmedipham + ethofumesate, chloridazon and clopyralid on Portulaca oleracea, Solanum nigrum, Amaranthus retroflexus and Chenopodium album. A completely randomized layout with three replications was used for each herbicide. Three weeks after spraying (WAS, plants were harvested and measured their dry weight. These herbicides were more effective to control Portulaca oleracea than other weeds, thereupon minimum dose required for a satisfactory efficacy of 90% reduction of Portulaca oleracea aboveground dry matter (ED90 were 299.22, 1138.31 and 129.44 g a.i ha-1 of desmedipham + phenmedipham + ethofumesate, chloridazon and clopyralid, respectively. Solanum nigrum was more affected by clopyralid application (132.40 g a.i ha-1, and did not make significant difference in Portulaca oleracea. Chloridazon had lower effect for control of Chenopodium album due to existence of powdery covering on abaxial side of the leaves. Biomass ED50 or ED90, based on log-logistic dose–response curves, for Chenopodium album was considerably higher than other species. These results showed that tank mixtures with other herbicides may be required for satisfactory weed control and reduction in applied herbicides doses.

  19. Uses of thaxtomin and thaxtomin compositions as herbicides

    Energy Technology Data Exchange (ETDEWEB)

    Koivunen, Marja; Marrone, Pamela

    2016-12-27

    There is a need for a selective, low-risk herbicide that can be used to control weeds in cereal cultures and turf. The present invention discloses that a bacterial secondary metabolite, thaxtomin and optionally another herbicide is an effective herbicide on broadleaved, sedge and grass weeds. Thaxtomin A and structurally similar compounds can be used as natural herbicides to control the germination and growth of weeds in cereal, turf grass, Timothy grass and pasture grass cultures with no phytotoxicity to these crops. As a natural, non-toxic compound, thaxtomin can be used as a safe alternative for weed control in both conventional and organic farming and gardening systems.

  20. Fitness Costs Associated with Evolved Herbicide Resistance Alleles in Plants

    National Research Council Canada - National Science Library

    Martin M. Vila-Aiub; Paul Neve; Stephen B. Powles

    2009-01-01

    .... There have been many studies quantifying the fitness costs associated with novel herbicide resistance alleles, reflecting the importance of fitness costs in determining the evolutionary dynamics of resistance...

  1. Injúria potencial de herbicidas de solo ao girassol: IV - rendimento de aquênios e componentes do rendimento Potential sunflower injury by soil applied herbicides: IV - Achene yield and yield components

    Directory of Open Access Journals (Sweden)

    Ribas A. Vidal

    1994-01-01

    Full Text Available Conduziu-se um ensaio em campo na Estação Experimental Agronômica da Universidade Federal do Rio Grande do Sul, em Eldorado do Sul, RS, em 1989/90. O objetivo foi determinar o efeito dos herbicidas clomazone, chlorimuronethyl, imazaquin e imazethaphyr, aplicados em três doses à superfície do solo (PRE ou incorporados no mesmo (PPI, sobre o rendimento de aquênios de girassol e seus componentes. Os herbicidas de solo para controle de plantas daninhas na cultura da soja com maior potencial de dano ao girassol cultivado em sucessão, conforme indicado pelo rendimento de aquênios, foram os seguintes, em ordem decrescente: imazaquin > clomazone > imazethapyr> chlorimuron-ethyl. O efeito mais pronunciado dos herbicidas foi a redução da população de plantas. Este foi o fator que mais influenciou no rendimento do girassol.A field experiment was carried-out during 1989/90 at the Eldorado do Sul Experimental Station of Federal University of "Rio Grande do Sul", Brazil, with the objective of evaluating the effect of clomazone, chlorimuron-ethyl, imazaquin and imazethapyr applied at three different dosages in pre-emergence (PRE or preplant incorporated (PPI, on sunflower achene yield and its components. Herbicide injury potential, as indicated by sunflower yield, was the following, from more to less phytotoxic: imazaquin > clomazone > imazethapyr > chlorimuron-ethyl. The main effect of the herbicides was in sunflower stand reduction, and this was the main yield component which was affected.

  2. Aplicação de herbicidas dessecantes em pastagens nativas construídas por differentes espécies do gênero Paspalum Application of desiccant herbicides on native pasture composed with diferent Paspalum gender

    Directory of Open Access Journals (Sweden)

    Miguel Vicente Weiss Ferri

    2001-08-01

    Full Text Available Com objetivo de avaliar o efeito de herbicidas dessecantes sobre pastagens nativas constituídas por diferentes espécies do gênero Paspalum, adequando-as a semeadura direta ou a sobressemeadura de espécies de interesse forrageiro, foram conduzidos três experimentos na região fisiográfica da Depressão Central do Rio Grande do Sul. No primeiro experimento, em 1995/96, avaliou-se glyphosate a 360, 720 e 1080g ha-1 de equivalente ácido, aspergido nos volumes de calda de 50 e 200 ha-1 e as espécies de Paspalum identificadas foram P. pumilum e P. notatum var. notatum biótipo "C" e "D". No segundo, em 1996, avaliou-se glyphosate a 720, 1080, 1440 e 1880g ha-1 de equivalente ácido e as espécies de Paspalum identificadas foram P. plicatulum, P. nicorae, P. notatum var. notatum biótipo "A", P. pumilum e P. maculosum. No terceiro, em 1997, avaliou-se glyphosate a 180, 270, 360, 450, 540, 720 e 1080g ha-1 de equivalente ácido e paraquat a 600 e 800g ha-1 de ingrediente ativo, e onde foram identificadas as espécies P. notatum var. saurae, P. notatum var. notatum biótipo "A" e P. pumilum. O herbicida glyphosate a 1080, 1440 e 1880g ha-1 é adequado quando se deseja controlar a pastagem nativa para introdução de semeadura direta, enquanto que glyphosate a 180, 270, 360 e 450g ha-1 e o paraquat a 600 e 800g ha-1, são adequados quando se deseja realizar a sobressemeadura de espécies forrageiras. A seleção dos herbicidas e das doses, dependerá da espécie de Paspalum dominante na pastagem nativa.The objective of this report was to evaluate the effect of desiccant herbicides on native pasture constituted of different species of the Paspalum gender, to adequate it to no-till system or to introduce forage species. Three experiments were carried out in the "Depressão Central Region" in the State of Rio Grande do Sul, Brazil. In the first, during 1995/96, glyphosate was applied in the rates of 360, 720 and 1080g ha-1 of acid equivalent, sprayed

  3. Application Effect of Glufosinate in Direct Seeding Cultivation of Transgenic Herbicide Resistant Hybrid Rice%草铵膦在转基因抗除草剂杂交稻直播栽培中的应用效果

    Institute of Scientific and Technical Information of China (English)

    周浩; 杨益善; 唐俐; 肖国樱

    2013-01-01

    以转基因抗除草剂杂交早稻“株1S/Bar68-1”为材料,常规除草剂2次除草方式为对照,探讨了草铵膦1次除草方式在水稻直播栽培中的应用效果。结果表明:与常规除草(效果表现为千金子草害)相比,灭生性除草剂草铵膦除草对供试材料株叶形态无显著影响,但使田间杂草数量减少85.3%,减少产量损失33.1%,节约成本37.5%。“株1S/Bar68-1”直播栽培中应用草铵膦除草剂1次除草的技术要点为:草铵膦有效成分0.6 g/L,每公顷用量720~960 L(有效成分剂量432~576 g/hm2),于分蘖末期紧挨冠层均匀喷雾,冒头杂草重点喷施。%The weed control effect of glufosinate in direct seeding field of transgenic herbicide resistant early hybrid rice Zhu 1S/Bar68-1 was studied with conventional herbicide as control.The results indicated that the plant type of hybrid rice was not obviously affected , but the stems of weed were decreased by 85.3%, the grain yield loss was decreased by 33.1%and the weeding cost was decreased by 37.5%in treatment of spraying glufosinate once compared to control.The key techniques of weed control by glufosinate on direct seeding rice included that the dosage of glufosinate was 432~576 g ( a.i.)/hm2 and the glufosinate should be sprayed close to rice canopy at the end of tillering stage.

  4. Pricing of environmental friendly herbicides appropriate for sustainable agriculture, A case study: wheat farmers in Khorasan Razavi province

    Directory of Open Access Journals (Sweden)

    Mohammad Ghorbani

    2016-04-01

    Full Text Available Awareness of wheat farmers’ personal preferences towards environmental issues and weed types is important in pricing bioherbicides for sustainable weed management and could consequently be a fundamental guide to agricultural authorities and policy-makers. In the present study, a survey was carried out by using data collected from 180 wheat farmers of Korasan Razavi province during 2008, together with hedonic pricing method. The role of environmental qualitative factors and weed type on pricing environmental-friendly herbicides on the basis of “willingness to pay” was studied. Results from the estimation of hedonic pricing method indicated that reduction of water pollution, human health risk, farmers information about negative effects of chemical herbicides and the virtual variable of weed type had significant effects on pricing environmental friendly herbicides. Variables of soil pollution and weed perenniality had no significant effects on pricing herbicide applicable to sustainable agricultural systems. Based on the results of this study, possibilities of using bioherbicide or less pollutant herbicides and also the rate of farmers willingness to pay for alternatives in the region are important factors recommended for additional studies

  5. Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence.

    Science.gov (United States)

    Vítek, Petr; Novotná, Kateřina; Hodaňová, Petra; Rapantová, Barbora; Klem, Karel

    2017-01-01

    The effects of herbicides from three mode-of-action groups - inhibitors of protoporphyrinogen oxidase (carfentrazone-ethyl), inhibitors of carotenoid biosynthesis (mesotrione, clomazone, and diflufenican), and inhibitors of acetolactate synthase (amidosulfuron) - were studied in sunflower plants (Helianthus annuus). Raman spectroscopy, chlorophyll fluorescence (ChlF) imaging, and UV screening of ChlF were combined to evaluate changes in pigment composition, photosystem II (PSII) photochemistry, and non-photochemical quenching in plant leaves 6d after herbicide application. The Raman signals of phenolic compounds, carotenoids, and chlorophyll were evaluated and differences in their intensity ratios were observed. Strongly augmented relative content of phenolic compounds was observed in the case of amidosulfuron-treated plants, with a simultaneous decrease in the chlorophyll/carotenoid intensity ratio. The results were confirmed by in vivo measurement of flavonols using UV screening of ChlF. Herbicides from the group of carotenoid biosynthesis inhibitors significantly decreased both the maximum quantum efficiency of PSII and non-photochemical quenching as determined by ChlF. Resonance Raman imaging (mapping) data with high resolution (150,000-200,000 spectra) are presented, showing the distribution of carotenoids in H. annuus leaves treated by two of the herbicides acting as inhibitors of carotenoid biosynthesis (clomazone or diflufenican). Clear signs were observed that the treatment induced carotenoid depletion within sunflower leaves. The depletion spatial pattern registered differed depending on the type of herbicide applied.

  6. Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence

    Science.gov (United States)

    Vítek, Petr; Novotná, Kateřina; Hodaňová, Petra; Rapantová, Barbora; Klem, Karel

    2017-01-01

    The effects of herbicides from three mode-of-action groups - inhibitors of protoporphyrinogen oxidase (carfentrazone-ethyl), inhibitors of carotenoid biosynthesis (mesotrione, clomazone, and diflufenican), and inhibitors of acetolactate synthase (amidosulfuron) - were studied in sunflower plants (Helianthus annuus). Raman spectroscopy, chlorophyll fluorescence (ChlF) imaging, and UV screening of ChlF were combined to evaluate changes in pigment composition, photosystem II (PSII) photochemistry, and non-photochemical quenching in plant leaves 6 d after herbicide application. The Raman signals of phenolic compounds, carotenoids, and chlorophyll were evaluated and differences in their intensity ratios were observed. Strongly augmented relative content of phenolic compounds was observed in the case of amidosulfuron-treated plants, with a simultaneous decrease in the chlorophyll/carotenoid intensity ratio. The results were confirmed by in vivo measurement of flavonols using UV screening of ChlF. Herbicides from the group of carotenoid biosynthesis inhibitors significantly decreased both the maximum quantum efficiency of PSII and non-photochemical quenching as determined by ChlF. Resonance Raman imaging (mapping) data with high resolution (150,000-200,000 spectra) are presented, showing the distribution of carotenoids in H. annuus leaves treated by two of the herbicides acting as inhibitors of carotenoid biosynthesis (clomazone or diflufenican). Clear signs were observed that the treatment induced carotenoid depletion within sunflower leaves. The depletion spatial pattern registered differed depending on the type of herbicide applied.

  7. Effects of the herbicide glyphosate on non-target plant native species from Chaco forest (Argentina).

    Science.gov (United States)

    Florencia, Ferreira María; Carolina, Torres; Enzo, Bracamonte; Leonardo, Galetto

    2017-10-01

    Agriculture based on transgenic crops has expanded in Argentina into areas formerly occupied by Chaco forest. Even though glyphosate is the herbicide most widely used in the world, increasing evidence indicates severe ecotoxicological effects on non-target organisms as native plants. The aim of this work is to determine glyphosate effects on 23 native species present in the remaining Chaco forests immersed in agricultural matrices. This is a laboratory/greenhouse approach studying acute effects on seedlings after 21 days. A gradient of glyphosate rates (525, 1050, 2100, 4200, and 8400g ai/Ha; recommended field application rate (RFAR) = 2100g ai/Ha) was applied on four-week seedlings cultivated in a greenhouse and response variables (phytotoxicity, growth reduction, and sensitivity to the herbicide) were measured. This gradient of herbicide rates covers realistic rates of glyphosate applications in the crop field and also those that can reach vegetation of forest relicts by off-target drift and overspray. Testing was performed following guidelines for vegetative vigour (post-germination spray). All species showed lethal or sublethal effects after the application of the 25% of RFAR (50% of species showed severe phytotoxicity or death and 70% of species showed growth reduction). The results showed a gradient of sensitivity to glyphosate by which some of the studied species are very sensitive to glyphosate and seedlings died with 25% of RFAR while other species can be classified as herbicide-tolerant. Thus, the vegetation present in the forest relicts could be strongly affected by glyphosate application on crops. Lethal and sublethal effects of glyphosate on non-target plants could promote both the loss of biodiversity in native forest relicts immersed in the agroecosystems and the selection of new crop weeds considering that some biotypes are continuously exposed to low doses of glyphosate. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Trends in glyphosate herbicide use in the United States and globally

    OpenAIRE

    Charles M. Benbrook

    2016-01-01

    Background Accurate pesticide use data are essential when studying the environmental and public health impacts of pesticide use. Since the mid-1990s, significant changes have occurred in when and how glyphosate herbicides are applied, and there has been a dramatic increase in the total volume applied. Methods Data on glyphosate applications were collected from multiple sources and integrated into a dataset spanning agricultural, non-agricultural, and total glyphosate use from 1974–2014 in the...

  9. Physiological and Genetic Bases of the Circadian Clock in Plants and Their Relationship with Herbicides Efficacy

    OpenAIRE

    DALAZEN,G.; Merotto Jr.,A.

    2016-01-01

    In order to adapt to daily environmental changes, especially in relation to light availability, many organisms, such as plants, developed a vital mechanism that controls time-dependent biological events: the circadian clock. The circadian clock is responsible for predicting the changes that occur in the period of approximately 24 hours, preparing the plants for the following phases of the cycle. Some of these adaptations can influence the response of weeds to the herbicide application. Thus, ...

  10. Adsorption of chloroacetanilide herbicides on soil and its components Ⅲ. Influence of clay acidity, humic acid coating and herbicide structure on acetanilide herbicide adsorption on homoionic clays

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite, soil humic acid, and their mixtures was studied by coupling batch equilibration and FT-IR analysis. Adsorption isotherms of acetochlor, alachlor, metolachlor and propachlor on Ca2 + -, Mg2 + -. Al3 + -and Fe3 + -saturated clays were well described by the Freundlich equation. Regardless of the type of exchange cations, Kf decreased in the order of metolachlor > acetolachlor > alachlor > propachlor on the same clay. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in binding, probably via H-bond with water molecules in the clay interlayer. The type and position of substitutions around the carbonyl group may have affected the electronegativity of oxygen, thus influencing the relative adsorption of these herbicides. For the same herbicide, adsorption on clay increased in the order of Mg2+ < Ca2+ < Al3+ ≤ Fe3+ which coincided with the iucreasing aciditv of homoionic clays. Acidity of cations may have affected the protonation of water, and thus the strength of H-bond between the clay water and herbicide. Complexation of clay and humic acid resulted in less adsorption than that expected from independent adsorption by the individual constituents. The effect varied with herbicides, but the greatest decrease in adsorption occurred at a 60:40 clay-to-humic acid ratio for all the herbicides. Causes for the decreased adsorption need to be characterized to better understand adsorption mechanisms and predict adsorption from soil compositions.

  11. Isolation and 16S DNA characterization of soil microorganisms from tropical soils capable of utilizing the herbicides hexazinone and tebuthiuron.

    Science.gov (United States)

    Mostafa, Fadwa I Y; Helling, Charles S

    2003-11-01

    Six non-fermentative bacteria were isolated from Colombian (South America) and Hawaiian (USA) soils after enrichment with minimal medium supplemented with two herbicides, hexazinone (Hex) and tebuthiuron (Teb). Microscopic examination and physiological tests were followed by partial 16S DNA sequence analysis, using the first 527 bp of the 16S rRNA gene for bacterial identification. The isolated microorganisms (and in brackets, the herbicide that each degraded) were identified as: from Colombia. Methylobacterium organophilum [Teb], Paenibacillus pabuli [Teb], and Micrmbacterium foliorum [Hex]; and from Hawaii, Methylobacterium radiotolerans [Teb], Paenibacillus illinoisensis [Hex], and Rhodococcus equi [Hex]. The findings further explain how these herbicides, which have potential for illicit coca (Erythroxylum sp.) control, dissipate following their application to tropical soils.

  12. Synthesis of nitrogen-doped ZnO by sol-gel method: characterization and its application on visible photocatalytic degradation of 2,4-D and picloram herbicides.

    Science.gov (United States)

    Macías-Sánchez, J J; Hinojosa-Reyes, L; Caballero-Quintero, A; de la Cruz, W; Ruiz-Ruiz, E; Hernández-Ramírez, A; Guzmán-Mar, J L

    2015-03-01

    In this work, nitrogen-doped ZnO material was synthesized by the sol-gel method using zinc acetate as the precursor and urea as the nitrogen source (15, 20, 25 and 30% wt.). For comparative purposes, bare ZnO was also prepared. The influence of N doping on structural, morphological, optical and photocatalytic properties was investigated. The synthesized catalysts were characterized by XRD, SEM-EDS, diffuse reflectance UV-Vis spectroscopy, BET and XPS analysis. The photocatalytic activity of N-doped ZnO catalysts was evaluated during the degradation of a mixture of herbicides (2,4-D and picloram) under visible radiation ≥400 nm. The photo-absorption wavelength range of the N-doped ZnO samples was shifted to longer wavelength compared to those of the unmodified ZnO. Among different amounts of dopant agent, the 30% N-doped ZnO material showed higher visible-light activity compared with pure ZnO. Several degradation by-products were identified by using HPLC and ESI-MS/MS. The enhancement of visible photocatalytic activity of the N-doped ZnO semiconductor could be mainly due to their capability in reducing the electron-hole pair recombination.

  13. Measurement and conceptual modelling of herbicide transport to field drains in a heavy clay soil with implications for catchment-scale water quality management.

    Science.gov (United States)

    Tediosi, A; Whelan, M J; Rushton, K R; Thompson, T R E; Gandolfi, C; Pullan, S P

    2012-11-01

    Propyzamide and carbetamide are essential for blackgrass control in oilseed rape production. However, both of these compounds can contaminate surface waters and pose compliance problems for water utilities. The transport of propyzamide and carbetamide to an instrumented field drain in a small clay headwater tributary of the Upper Cherwell catchment was monitored over a winter season. Despite having very different sorption and dissipation properties, both herbicides were transported rapidly to the drain outlet in the first storm event after application, although carbetamide was leached more readily than propyzamide. A simple conceptual model was constructed to represent solute displacement from mobile pore water and preferential flow to drains. The model was able to reproduce the timing and magnitude of herbicide losses well, lending support to its conceptual basis. Measured losses in drainflow in the month following application were 1.1 and 8.1%, respectively, for propyzamide and carbetamide. Differences were due to a combination of differences in herbicide mobility and due to the fact that the monitoring period for carbetamide was hydrologically more active. For both compounds, losses were greater than those typically reported elsewhere for other herbicides. The data suggest that drainflow is the dominant pathway for the transfer of these herbicides to the catchment outlet, where water is abstracted for municipal supply. This imposes considerable constraints on the management options available to reduce surface water concentrations of herbicides in this catchment.

  14. Semeadura direta de forrageiras de estação fria em campo natural com aplicação de herbicidas: I. Produção de forragem e contribuição relativa das espécies No-till seeding of cool season forages on native pasture with herbicides application: I. Forage yield and relative contribution of plant species

    Directory of Open Access Journals (Sweden)

    Enrique Pérez Gomar

    2004-06-01

    conducted during four years on a fine-loamy, mixed, active Mollic Hapludalf, sandy A horizon, in northern Uruguay. The experimental design was split-splitplot on randomized blocks, with types and dosis of herbicides (gliphosate 1L ha-1, gliphosate 4L ha-1, paraquat 3L ha-1, and a check without herbicides as main treatments, applied in 1994. The application or not of the same treatments in 1995 constituted the splitplots, and their reapplication or not in 1996 constituted the split-splitplots.The results showed that the greatest disturbance on the botanical composition of the native grassland was caused with the application of the higher systemic herbicide dose every year. When herbicides were not applied, there were eleven species present, but with 4L ha-1 of glifosate every year there were only six species, as well as a substitution of perennial species by annual ones. The use of paraquat and the lower gliphosate dose showed intermediate effects between the native grassland without applied herbicides, and the treatment with the higher gliphosate dose. On the other hand, dry matter yield of the introduced winter forage species was 63% greater in the higher gliphosate dose than in the treatment without herbicide application, due to greater control of the competition by the native grasses.

  15. Scientific Opinion on application (EFSA-GMO-NL-2009-64 for the placing on the market of herbicide-tolerant genetically modified soybean BPS-CV127-9 for food and feed uses, import and processing under Regulation (EC No 1829/2003 from BASF Plant Science

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Genetically Modified Organisms (GMO

    2014-01-01

    Full Text Available Soybean BPS-CV127-9 contains a single insertion locus of the csr1-2 gene. Stability of the genetic modification was demonstrated. The expression of the acetohydroxyacid synthase large sub-unit from Arabidopsis thaliana, conferring tolerance to imidazolinone herbicides, was sufficiently analysed. Bioinformatic analyses did not raise safety issues. No differences were identified in the seed composition that would require further assessment with regard to safety. Regarding agronomic and phenotypic characteristics, a difference in seed weight was identified; however, this difference does not affect the overall safety of this soybean. Although the EFSA GMO Panel cannot conclude on its forage composition, soybean forage is not expected to be imported in significant amount for feed uses. Safety assessment identified no concerns regarding the potential toxicity and allergenicity of the newly expressed proteins or soybean BPS-CV127-9. Compositional data indicating that soybean BPS-CV127-9 is as nutritious as non-GM soybean varieties were supported by the outcome of a chicken feeding study. There are no indications of an increased likelihood of spread and establishment of feral soybean BPS-CV127-9 plants, unless they are exposed to imidazolinone-containing herbicides. Risks associated with an unlikely, but theoretically possible, horizontal transfer of recombinant genes from soybean BPS-CV127-9 to bacteria have not been identified. Considering the scope of this application, interactions with the biotic and abiotic environment are not considered to be a relevant issue. The post-market environmental monitoring plan and reporting intervals are in line with the scope of this application. In conclusion, the EFSA GMO Panel considers that the information available for soybean BPS‑CV127-9 addresses scientific comments raised by Member States and that the soybean BPS-CV127-9, as described in this application, is as safe and nutritious as its conventional

  16. Sarmentine, a natural herbicide from Piper species with multiple herbicide mechanisms of action

    Science.gov (United States)

    Sarmentine, 1-(1-pyrrolidinyl)-(2E,4E)-2,4-decadien-1-one, is a natural amide isolated from the fruits of Piper species. The compound has a number of interesting biological properties, including its broad-spectrum activity on weeds as a contact herbicide. Initial studies highlighted a similarity in ...

  17. Growth Regulator Herbicides Prevent Invasive Annual Grass Seed Production

    Science.gov (United States)

    Auxinic herbicides, such as 2,4-D and dicamba, that act as plant growth regulators are commonly used for broadleaf weed control in cereal crops (e.g. wheat, barley), grasslands, and non-croplands. If applied at later growth stages, while cereals are developing reproductive parts, the herbicides can...

  18. Decision Support System for Optimized Herbicide Dose in Spring Barley

    DEFF Research Database (Denmark)

    Sønderskov, Mette; Kudsk, Per; Mathiassen, Solvejg K;

    2014-01-01

    Crop Protection Online (CPO) is a decision support system, which integrates decision algorithms quantifying the requirement for weed control and a herbicide dose model. CPO was designed to be used by advisors and farmers to optimize the choice of herbicide and dose. The recommendations from CPO...

  19. MLHD online : manual for the herbicide dose calculation module

    NARCIS (Netherlands)

    PRI,; Kempenaar, C.

    2004-01-01

    MLHD is short for Minimum Lethal Herbicide Dose. MLHD is a new concept within chemical weed control. It supports effective weed control while herbicide doses are kept at minimum effective levels (minimum lethal doses). This manual describes how to use of the MLHD calculation module for users from ou

  20. Cross and Multiple Herbicide Resistance in Palmer amaranth (Amaranthus palmeri)

    Science.gov (United States)

    Resistance of Palmer amaranth (PA) to ALS inhibitor herbicides was discovered in Georgia in 2000 and resistance to glyphosate was in 2005. A study was conducted to evaluate two different families of ALS herbicides, imazapic (imidazolinone) and diclosulam (sulfonanilides) for absorption and mobility ...

  1. Lessons Learned From the History of Herbicide Resistance

    Science.gov (United States)

    The selection of herbicide resistant weed populations began with the introduction of synthetic herbicides in the late 1940s. For the first 20 years after introduction, there were limited reported cases of resistance. This changed in 1968 with the discovery of triazine resistant common groundsel. ...

  2. Expanding the eco-evolutionary context of herbicide resistance research.

    Science.gov (United States)

    Neve, Paul; Busi, Roberto; Renton, Michael; Vila-Aiub, Martin M

    2014-09-01

    The potential for human-driven evolution in economically and environmentally important organisms in medicine, agriculture and conservation management is now widely recognised. The evolution of herbicide resistance in weeds is a classic example of rapid adaptation in the face of human-mediated selection. Management strategies that aim to slow or prevent the evolution of herbicide resistance must be informed by an understanding of the ecological and evolutionary factors that drive selection in weed populations. Here, we argue for a greater focus on the ultimate causes of selection for resistance in herbicide resistance studies. The emerging fields of eco-evolutionary dynamics and applied evolutionary biology offer a means to achieve this goal and to consider herbicide resistance in a broader and sometimes novel context. Four relevant research questions are presented, which examine (i) the impact of herbicide dose on selection for resistance, (ii) plant fitness in herbicide resistance studies, (iii) the efficacy of herbicide rotations and mixtures and (iv) the impacts of gene flow on resistance evolution and spread. In all cases, fundamental ecology and evolution have the potential to offer new insights into herbicide resistance evolution and management.

  3. Herbicide volatilization trumps runoff losses, a multi-year investigation

    Science.gov (United States)

    Surface runoff and volatilization are two processes critical to herbicide off-site transport. To determine the relevance of these off-site transport mechanisms, runoff and turbulent vapor fluxes were simultaneously monitored on the same site for eight years. Site location, herbicide formulations, ...

  4. Herbicide-resistant crop biotechnology: potential and pitfalls

    Science.gov (United States)

    Herbicide-resistant crops are an important agricultural biotechnology that can enable farmers to effectively control weeds without harming their crops. Glyphosate-resistant (i.e. Roundup Ready) crops have been the most commercially successful varieties of herbicide-resistant crops and have been plan...

  5. Influence des herbicides sur les principaux paramètres ...

    African Journals Online (AJOL)

    SARAH

    28 févr. 2015 ... adventices Lyba (faible tallage) et Homari (tige courte) ont ... each comprising a control (no herbicide) and three herbicides: the Quartz super dose (1.0 ..... Levée complète. Tallage complet. Montaison Épiaison Floraison.

  6. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate.

    Science.gov (United States)

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  7. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate.

    Directory of Open Access Journals (Sweden)

    Cong Wang

    Full Text Available Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta. Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina regardless of DIP condition. Group V (Amphidinium carterae exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine

  8. Routine determination of sulfonylurea, imidazolinone, and sulfonamide herbicides at nanogram-per-liter concentrations by solid-phase extraction and liquid chromatography/mass spectrometry

    Science.gov (United States)

    Furlong, E.T.; Burkhardt, M.R.; Gates, Paul M.; Werner, S.L.; Battaglin, W.A.

    2000-01-01

    Sulfonylurea (SU), imidazolinone (IMI), and sulfonamide (SA) herbicides are new classes of low-application-rate herbicides increasingly used by farmers. Some of these herbicides affect both weed and crop species at low dosages and must be carefully used. Less is known about the effect of these compounds on non-crop plant species, but a concentration of 100 ng/l in water has been proposed as the threshold for possible plant toxicity for most of these herbicides. Hence, analytical methods must be capable of detecting SUs, IMIs, and SAs at concentrations less than 100 ng/l in ambient water samples. The authors developed a two-cartridge, solid-phase extraction method for isolating 12 SU, 3 IMI, and 1 SA herbicides by using high-performance liquid chromatography/electrospray ionization-mass spectrometry (HPLC/ESI-MS) to identify and quantify these herbicides to 10 ng/l. This method was used to analyze 196 surface- and ground-water samples collected from May to August 1998 throughout the Midwestern United States, and more than 100 quality-assurance and quality-control samples. During the 16 weeks of the study, the HPLC/ESI-MS maintained excellent calibration linearity across the calibration range from 5 to 500 ng/l, with correlation coefficients of 0.9975 or greater. Continuing calibration verification standards at 100-ng/l concentration were analyzed throughout the study, and the average measured concentrations for individual herbicides ranged from 93 to 100 ng/l. Recovery of herbicides from 27 reagent-water samples spiked at 50 and 100 ng/l ranged from 39 to 92%, and averaged 73%. The standard deviation of recoveries ranged from 14 to 26%, and averaged 20%. This variability reflects multiple instruments, operators, and the use of automated and manual sample preparation. Spiked environmental water samples had similar recoveries, although for some herbicides, the sample matrix enhanced recoveries by as much as 200% greater than the spiked concentration. This matrix

  9. Herbicides: a new threat to the Great Barrier Reef.

    Science.gov (United States)

    Lewis, Stephen E; Brodie, Jon E; Bainbridge, Zoë T; Rohde, Ken W; Davis, Aaron M; Masters, Bronwyn L; Maughan, Mirjam; Devlin, Michelle J; Mueller, Jochen F; Schaffelke, Britta

    2009-01-01

    The runoff of pesticides (insecticides, herbicides and fungicides) from agricultural lands is a key concern for the health of the iconic Great Barrier Reef, Australia. Relatively low levels of herbicide residues can reduce the productivity of marine plants and corals. However, the risk of these residues to Great Barrier Reef ecosystems has been poorly quantified due to a lack of large-scale datasets. Here we present results of a study tracing pesticide residues from rivers and creeks in three catchment regions to the adjacent marine environment. Several pesticides (mainly herbicides) were detected in both freshwater and coastal marine waters and were attributed to specific land uses in the catchment. Elevated herbicide concentrations were particularly associated with sugar cane cultivation in the adjacent catchment. We demonstrate that herbicides reach the Great Barrier Reef lagoon and may disturb sensitive marine ecosystems already affected by other pressures such as climate change.

  10. Deciphering the evolution of herbicide resistance in weeds.

    Science.gov (United States)

    Délye, Christophe; Jasieniuk, Marie; Le Corre, Valérie

    2013-11-01

    Resistance to herbicides in arable weeds is increasing rapidly worldwide and threatening global food security. Resistance has now been reported to all major herbicide modes of action despite the development of resistance management strategies in the 1990s. We review here recent advances in understanding the genetic bases and evolutionary drivers of herbicide resistance that highlight the complex nature of selection for this adaptive trait. Whereas early studied cases of resistance were highly herbicide-specific and largely under monogenic control, cases of greatest concern today generally involve resistance to multiple modes of action, are under polygenic control, and are derived from pre-existing stress response pathways. Although 'omics' approaches should enable unraveling the genetic bases of complex resistances, the appearance, selection, and spread of herbicide resistance in weed populations can only be fully elucidated by focusing on evolutionary dynamics and implementing integrative modeling efforts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Efeito do pré-plantio com plantas medicinais e aromáticas no controle de Plasmodiophora brassicae The effect of pre-plantation with medicinal plants in the Plasmodiophora brassicae control

    Directory of Open Access Journals (Sweden)

    Ionete Hasse

    2007-03-01

    have collaborated to inoculum dissemination. Aiming to control this disease with the lowest environmental impact, the present study verified the effect of pre-plantation medicinal and aromatic plants in the reduction of Plasmodiophora brassicae inoculum. Two experiments were carried out under greenhouse conditions at 'Ciências Agrárias' sector at ´Universidade Federal do Paraná', from June to November 2003 as well as from July to December 2004. The experiment was installed in a completely randomized design with nine treatments and six replications. Medicinal and aromatic plants used in the treatments were mint (Mentha piperita L.; basil (Ocimum basilicum L.; bardana (Arctium minus Hill; calêndula (Calendula officianalis L.; chive (Allium fistulosum L.; parsley (Petroselinum hortense Hoffm and salvia (Salvia officinalis L.. As control samples, inoculation and infested soil, both inactive, were used. Pots with 3 kg of steam-sterilized soil were used, and as an inoculum of P. brassicae 2,5 g of galls were used per pot. Rudbeckia (Eruca sativa Mill was the susceptible host. Forty days after rudbeckia plantation, fresh foliar mass, the incidence and disease severity index were determined. The greater fresh foliar mass and lower severity index were obtained in the 2003 experiment with the treatment pre-plantation of "bardana", parsley, mint, basil and chive.

  12. 除草剂在种源收集区项目营建技术中的应用%Application of Herbicides in the Construction of Provenance Collection District Project

    Institute of Scientific and Technical Information of China (English)

    雷军; 土建雄; 祁茂樱

    2012-01-01

    Through tests for weed control effect of provenance collection for Picea crassifolia,Sabina przewalskii,Pinus sylvestris var.mongolica,Tamarix chinensis,result shows that : control effect for controlling weed in provenances collection areas of Picea crassifolia,Sabina przewalskii,Pinus sylvestris var.mongolica are more than 85% by using 30% Dilinfeida soluble powder dosage being 300-400 g/667 m2 dissolved in water 60 kg. Control effect of 10% glyphosate to control of weed for provenance collection for Picea crassifolia,Sabina przewalskii,Pinus sylvestris var.mongolica are very significant,but also have no phytotoxicity on Picea crassifolia,Sabina przewalskii,Pinus sylvestris var.mongolica;three kinds of herbicides have no phytotoxicity on Tamarix chinensis,just phytotoxicity size vary widely.%通过对青海云杉、祁连圆柏、樟子松、柽柳种源收集区进行杂草防除效果试验,结果表明,30%迪林飞达可溶性粉剂每667 m2用药量300~400 g,兑水60 kg,对防除青海云杉、祁连圆柏、樟子松种源收集区杂草效果都在85%以上;10%草甘膦水剂在防除青海云杉、祁连圆柏、樟子松种源收集区杂草效果也极显著,而且对青海云杉、祁连圆柏、樟子松无药害;3种除草剂对柽柳都产生药害,只是药害大小有很大差异。

  13. Enantioselective stable isotope analysis (ESIA) of polar Herbicides

    Science.gov (United States)

    Maier, Michael; Qiu, Shiran; Elsner, Martin

    2013-04-01

    The complexity of aquatic systems makes it challenging to assess the environmental fate of chiral micropolutants. As an example, chiral herbicides are frequently detected in the environment (Buser and Muller, 1998); however, hydrological data is needed to determine their degradability from concentration measurements. Otherwise declining concentrations cannot unequivocally be attributed to degradation, but could also be caused by dilution effects. In contrast, isotope ratios or enantiomeric ratios are elegant alternatives that are independent of dilution and can even deliver insights into reaction mechanisms. To combine the advantages of both approaches we developed an enatioselective stable isotope analysis (ESIA) method to investigate the fate of the chiral herbicides 4-CPP ((RS)-2-(4-chlorophenoxy)-propionic acid), mecoprop (2-(4-Chloro-2-methylphenoxy)-propionic acid) and dichlorprop (2-(2,4-Dichlorophenoxy)-propionic acid). After testing the applicable concentration range of the method, enantioselective isotope fractionation was investigated by microbial degradation using dichlorprop as a model compound. The method uses enantioselective gas-chromatography (GC) to separate enantiomers. Subsequently samples are combusted online to CO2 and carbon isotope ratios are determined for each enantiomer by isotope-ratio-mass-spectrometry (IRMS). Because the analytes contain a polar carboxyl-group, samples were derivatised prior to GC-IRMS analysis with methanolic BF3 solution. Precise carbon isotope analysis (2σ ≤0.5‰) was achieved with a high sensitivity of ≥ 7 ng C that is needed on column for one analysis. Microbial degradation of the model compound dichlorprop was conducted with Delftia acidovorans MC1 and pronounced enantiomer fractionation, but no isotope fractionation was detected. The absence of isotope fractionation can be explained by two scenarios: either the degrading enzyme has no isotopic preference, or another step in the reaction without an isotopic

  14. GROWTH AND NUTRITIONAL ANALYSIS OF TREE SPECIES IN CONTAMINATED SUBSTRATE BY LEACHABLE HERBICIDES

    Directory of Open Access Journals (Sweden)

    Rebecca de Araújo Fiore

    Full Text Available ABSTRACT Ecosystems contamination by residues of pesticides requires special attention to the herbicides subject to leaching. The objective was to select tree species to rhizodegradation contaminated by residues of 2,4-D and atrazine and to recompose riparian areas to agricultural fields, then reducing the risk of contamination of water courses. A total of 36 treatments consisted of the combinations of forest species were evaluated [Inga marginata (Inga, Schizolobium parahyba (guapuruvu, Handroanthus serratifolius (ipê amarelo, Jacaranda puberula (carobinha, Cedrela fissilis (cedro, Calophyllum brasiliensis (landin, Psidium mirsinoides (goiabinha, Tibouchina glandulosa (quaresmeira, Caesalpinia férrea (pau-ferro, Caesalpinia pluviosa (sibipiruna, Terminalia argêntea (capitão and Schinopsis brasiliensis (braúna] and three solutions simulating leachate compound (atrazine, 2,4-D and water - control, with four replicates each. The characteristics measured were plant height, stem diameter, number of leaves, leaf area and dry biomass, and foliar nutrition. Forest species survived the herbicide application, and most showed an increase in macronutrients even under an herbicide application, and the Inga had the highest tolerance regarding growth analysis. It is recommended to use species that are more tolerant to Atrazine and 2,4-D in field experiments to confirm previous results of this simulation.

  15. EFFECT OF HERBICIDES ON WEED CONTROL AND YIELD OF WET SEEDED RICE (ORYZA SATIVA L.

    Directory of Open Access Journals (Sweden)

    MALLIKARJUN

    2014-06-01

    Full Text Available To study effect of herbicides on weed control and yield of wet seeded rice which involves three pre-emergent herbicides viz., butachlor, anilophos and oxyflurofen applied as alone and each these followed by two post emergent herbicides 2, 4- sodium salt, bispyribac sodium and one hand weeding at 25 days. The results revealed that sequential application of butachlor and anilophos fb bispyribac sodium, 2, 4-D sodium salt and one hand weeding at 25 days was recorded significantly lower weed population and dry weight of weeds viz., monocots, dicots and sedges in equal manner which ultimately indicates that higher weed control efficiency over rest of the treatments except weed free check and hand weeding thrice. further, grain and straw yield of rice was followed the same trend as well influenced by yield parameters like number of panicles per sq.m and number of seeds/ panicle ultimately sequential application butachlor and anilophos fb 2, 4-D sodium salt and bispyribac sodium and one hand weeding at 25 DAS resulted higher grain yield and profitable rice production.

  16. Biosensor for organoarsenical herbicides and growth promoters.

    Science.gov (United States)

    Chen, Jian; Sun, Samio; Li, Chen-Zhong; Zhu, Yong-Guan; Rosen, Barry P

    2014-01-21

    The toxic metalloid arsenic is widely distributed in food, water, and soil. While inorganic arsenic enters the environment primarily from geochemical sources, methylarsenicals either result from microbial biotransformation of inorganic arsenic or are introduced anthropogenically. Methylarsenicals such as monosodium methylarsonic acid (MSMA) have been extensively utilized as herbicides, and aromatic arsenicals such as roxarsone (Rox) are used as growth promoters for poultry and swine. Organoarsenicals are degraded to inorganic arsenic. The toxicological effects of arsenicals depend on their oxidation state, chemical composition, and bioavailability. Here we report that the active forms are the trivalent arsenic-containing species. We constructed a whole-cell biosensor utilizing a modified ArsR repressor that is highly selective toward trivalent methyl and aromatic arsenicals, with essentially no response to inorganic arsenic. The biosensor was adapted for in vitro detection of organoarsenicals using fluorescence anisotropy of ArsR-DNA interactions. It detects bacterial biomethylation of inorganic arsenite both in vivo and in vitro with detection limits of 10(-7) M and linearity to 10(-6) M for phenylarsenite and 5 × 10(-6) M for methylarsenite. The biosensor detects reduced forms of MSMA and roxarsone and offers a practical, low cost method for detecting activate forms and breakdown products of organoarsenical herbicides and growth promoters.

  17. Surrogates for herbicide removal in stormwater biofilters.

    Science.gov (United States)

    Zhang, Kefeng; Deletic, Ana; Page, Declan; McCarthy, David T

    2015-09-15

    Real time monitoring of suitable surrogate parameters are critical to the validation of any water treatment processes, and is of particularly high importance for validation of natural stormwater treatment systems. In this study, potential surrogates for herbicide removal in stormwater biofilters (also known as stormwater bio-retention or rain-gardens) were assessed using field challenge tests and matched laboratory column experiments. Differential UV absorbance at 254mn (ΔUVA254), total phosphorus (ΔTP), dissolved phosphorus (ΔDP), total nitrogen (ΔTN), ammonia (ΔNH3), nitrate and nitrite (ΔNO3+NO2), dissolved organic carbon (ΔDOC) and total suspended solids (ΔTSS) were compared with glyphosate, atrazine, simazine and prometryn removal rates. The influence of different challenge conditions on the performance of each surrogate was studied. Differential TP was significantly and linearly related to glyphosate reduction (R(2) = 0.75-0.98, P herbicides were reliable under normal and challenge dry conditions, but weaker correlations were observed under challenge wet conditions. Of those tested, ΔTP is the most promising surrogate for glyphosate removal and ΔUVA254 is a suitable surrogate for triazines removal in stormwater biofilters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Reference genes to study herbicide stress response in Lolium sp.: up-regulation of P450 genes in plants resistant to acetolactate-synthase inhibitors.

    Directory of Open Access Journals (Sweden)

    Arnaud Duhoux

    Full Text Available Variation in the expression of numerous genes is at the basis of plant response to environmental stresses. Non-target-site-based resistance to herbicides (NTSR, the major threat to grass weed chemical control, is governed by a subset of the genes involved in herbicide stress response. Quantitative PCR assays allowing reliable comparison of gene expression are thus key to identify genes governing NTSR. This work aimed at identifying a set of reference genes with a stable expression to be used as an internal standard for the normalisation of quantitative PCR data in studies investigating NTSR to herbicides inhibiting acetolactate synthase (ALS in the major grass weed Lolium sp. Gene expression stability was assessed in plants resistant or sensitive to two ALS inhibitors, subjected or not to herbicide stress. Using three complementary approaches implemented in the programs BestKeeper, NormFinder and geNorm, cap-binding protein, glyceraldehyde-3-phosphate-dehydrogenase and ubiquitin were identified as the most suitable reference genes. This reference gene set can probably be used to study herbicide response in other weed species. It was used to compare the expression of the genes encoding two herbicide target enzymes (ALS and acetyl-coenzyme A carboxylase and five cytochromes P450 (CYP with potential herbicide-degrading activity between plants resistant or sensitive to ALS inhibitors. Overall, herbicide application enhanced CYP gene expression. Constitutive up-regulation of all CYP genes observed in resistant plants compared to sensitive plants suggested enhanced secondary metabolism in the resistant plants. Comprehensive transcriptome studies associated to gene expression analyses using the reference gene set validated here are required to unravel NTSR genetic determinants.

  19. Effects of the glyphosate-based herbicide Roundup WeatherMax® on metamorphosis of wood frogs (Lithobates sylvaticus) in natural wetlands.

    Science.gov (United States)

    Lanctôt, C; Robertson, C; Navarro-Martín, L; Edge, C; Melvin, S D; Houlahan, J; Trudeau, V L

    2013-09-15

    Amphibian tadpoles develop in aquatic environments where they are susceptible to the effects of pesticides and other environmental contaminants. Glyphosate-based herbicides are currently the most commonly used herbicide in the world and have been shown to affect survival and development of tadpoles under laboratory and mesocosm conditions. In the present study, whole wetland manipulations were used to determine if exposure to an agriculturally relevant application of Roundup WeatherMax(®), a herbicide formulation containing the potassium salt of glyphosate and an undisclosed surfactant, influences the development of wood frog tadpoles (Lithobates sylvaticus) under natural conditions. Wetlands were divided in half with an impermeable curtain so that each wetland contained a treatment and control side. Tadpoles were exposed to two pulses of this herbicide at an environmentally realistic concentration (ERC, 0.21 mg acid equivalent (a.e.)/L) and the predicted maximum environmental concentration (PMEC, 2.89 mg a.e./L), after which abundance, growth, development, and mRNA levels of genes involved in tadpole metamorphosis were measured. Results present little evidence that exposure to this herbicide affects abundance, growth and development of wood frog tadpoles. As part of the Long-term Experimental Wetlands Area (LEWA) project, this research demonstrates that typical agricultural use of Roundup WeatherMax(®) poses minimal risk to larval amphibian development. However, our gene expression data (mRNA levels) suggests that glyphosate-based herbicides have the potential to alter hormonal pathways during tadpole development.

  20. Research methods in weed science: herbicide absorption and translocation in plants using radioisotopes

    Science.gov (United States)

    Herbicide absorption and translocation in plants is a key component in the study of herbicide physiology, mode of action, selectivity, resistance mechanisms, and in the registration process. Radioactive herbicides have been in use for over half-a-century in the research and study of herbicide absorp...

  1. Real World of Industrial Chemistry: The Challenge of Herbicides for Aquatic Weeds.

    Science.gov (United States)

    Martin, Dean F.; Martin, Barbara B.

    1985-01-01

    Discusses problems in selecting the correct herbicide for use in controlling aquatic weeds, considering specificity, size of the market, fear of trace contaminants, and herbicide resistance in weeds. Also summarizes some successful herbicides, providing a table listing mode of action of some herbicides used for control of aquatic plants. (JN)

  2. Screening and selection of most potent diazotrophic cyanobacterial isolate exhibiting natural tolerance to rice field herbicides for exploitation as biofertilizer.

    Science.gov (United States)

    Singh, Surendra; Datta, Pallavi

    2006-01-01

    Periodic applications of heavy dosages of herbicides in modern rice-agriculture are a necessary evil for obtaining high crop productivity. Such herbicides are not only detrimental to weeds but biofertilizer strains of diazotrophic cyanobacteria also. It is therefore, essential to screen and select such biofertilizer strains of diazotrophic cyanobacteria exhibiting natural tolerance to common rice-field herbicides that can be further improved by mutational techniques to make biofertilizer technology a viable one. Therefore, efforts have been made to screen five dominant diazotrophic cyanobacterial forms e.g. filamentous heterocystous Nostoc punctiforme , Nostoc calcicola , Anabaena variabilis and unicellular Gloeocapsa sp. and Aphanocapsa sp. along with standard laboratory strain Nostoc muscorum ISU against increasing concentrations (0-100 mg l(-1) of four commercial grade common rice-field herbicides i.e. Arozin, Butachlor, Alachlor and 2,4-D under diazotrophic growth conditions. The lethal and IGC(50) concentrations for all four herbicides tested were found highest for A. variabilis as compared to other test cyanobacteria. The lowest reduction in chlorophyll a content, photosynthetic oxygen evolution, and N(2)-fixation was found in A. variabilis as compared to other rice field isolates and standard laboratory strain N. muscorum ISU. On the basis of prolong survival potential and lowest reductions in vital metabolic activities tested at IGC(50) concentration of four herbicides, it is concluded that A. variabilis is the most potent and promising cyanobacterial isolate as compared with other forms. This could be further improved by mutational techniques for exploitation as most potential and viable biofertilizer strain.

  3. Washoff of Residual Photosystem II Herbicides from Sugar Cane Trash under a Rainfall Simulator.

    Science.gov (United States)

    Dang, Aaditi; Silburn, Mark; Craig, Ian; Shaw, Melanie; Foley, Jenny

    2016-05-25

    Herbicides are often applied to crop residues, but their fate has not been well studied. We measured herbicide washoff from sugar cane trash during simulated rainfall, at 1, 8, and 40 days after spraying (DAS), to provide insight into herbicide fate and for use in modeling. Herbicides included are commonly used in the sugar industry, either in Australia or in Brazil. Concentrations of all herbicides and applied Br tracer in washoff declined exponentially over time. The rate of washoff during rainfall declined with increasing DAS. Cumulative washoff as a function of rainfall was similar for most herbicides, although the most soluble herbicides did have more rapid washoff. Some but not all herbicides became more resistant to washoff with increasing DAS. Of the total mass washed off, 80% washed off in the first 30 mm (∼40 min) of rainfall for most herbicides. Little herbicide remained on the trash after rainfall, implying nearly complete washoff.

  4. Rationale for a natural products approach to herbicide discovery.

    Science.gov (United States)

    Dayan, Franck E; Owens, Daniel K; Duke, Stephen O

    2012-04-01

    Weeds continue to evolve resistance to all the known modes of herbicidal action, but no herbicide with a new target site has been commercialized in nearly 20 years. The so-called 'new chemistries' are simply molecules belonging to new chemical classes that have the same mechanisms of action as older herbicides (e.g. the protoporphyrinogen-oxidase-inhibiting pyrimidinedione saflufenacil or the very-long-chain fatty acid elongase targeting sulfonylisoxazoline herbicide pyroxasulfone). Therefore, the number of tools to manage weeds, and in particular those that can control herbicide-resistant weeds, is diminishing rapidly. There is an imminent need for truly innovative classes of herbicides that explore chemical spaces and interact with target sites not previously exploited by older active ingredients. This review proposes a rationale for a natural-products-centered approach to herbicide discovery that capitalizes on the structural diversity and ingenuity afforded by these biologically active compounds. The natural process of extended-throughput screening (high number of compounds tested on many potential target sites over long periods of times) that has shaped the evolution of natural products tends to generate molecules tailored to interact with specific target sites. As this review shows, there is generally little overlap between the mode of action of natural and synthetic phytotoxins, and more emphasis should be placed on applying methods that have proved beneficial to the pharmaceutical industry to solve problems in the agrochemical industry.

  5. Potential roles for microbial endophytes in herbicide tolerance in plants.

    Science.gov (United States)

    Tétard-Jones, Catherine; Edwards, Robert

    2016-02-01

    Herbicide tolerance in crops and weeds is considered to be monotrophic, i.e. determined by the relative susceptibility of the physiological process targeted and the plant's ability to metabolise and detoxify the agrochemical. A growing body of evidence now suggests that endophytes, microbes that inhabit plant tissues and provide a range of growth, health and defence enhancements, can contribute to other types of abiotic and biotic stress tolerance. The current evidence for herbicide tolerance being bitrophic, with both free-living and plant-associated endophytes contributing to tolerance in the host plant, has been reviewed. We propose that endophytes can directly contribute to herbicide detoxification through their ability to metabolise xenobiotics. In addition, we explore the paradigm that microbes can 'prime' resistance mechanisms in plants such that they enhance herbicide tolerance by inducing the host's stress responses to withstand the downstream toxicity caused by herbicides. This latter mechanism has the potential to contribute to the growth of non-target-site-based herbicide resistance in weeds. Microbial endophytes already contribute to herbicide detoxification in planta, and there is now significant scope to extend these interactions using synthetic biology approaches to engineer new chemical tolerance traits into crops via microbial engineering.

  6. Fitness costs associated with evolved herbicide resistance alleles in plants.

    Science.gov (United States)

    Vila-Aiub, Martin M; Neve, Paul; Powles, Stephen B

    2009-12-01

    Predictions based on evolutionary theory suggest that the adaptive value of evolved herbicide resistance alleles may be compromised by the existence of fitness costs. There have been many studies quantifying the fitness costs associated with novel herbicide resistance alleles, reflecting the importance of fitness costs in determining the evolutionary dynamics of resistance. However, many of these studies have incorrectly defined resistance or used inappropriate plant material and methods to measure fitness. This review has two major objectives. First, to propose a methodological framework that establishes experimental criteria to unequivocally evaluate fitness costs. Second, to present a comprehensive analysis of the literature on fitness costs associated with herbicide resistance alleles. This analysis reveals unquestionable evidence that some herbicide resistance alleles are associated with pleiotropic effects that result in plant fitness costs. Observed costs are evident from herbicide resistance-endowing amino acid substitutions in proteins involved in amino acid, fatty acid, auxin and cellulose biosynthesis, as well as enzymes involved in herbicide metabolism. However, these resistance fitness costs are not universal and their expression depends on particular plant alleles and mutations. The findings of this review are discussed within the context of the plant defence trade-off theory and herbicide resistance evolution.

  7. Herbicide contamination and dispersion pattern in lowland springs.

    Science.gov (United States)

    Laini, Alex; Bartoli, Marco; Lamastra, Lucrezia; Capri, Ettore; Balderacchi, Matteo; Trevisan, Marco

    2012-11-01

    Herbicides reduce the diversity of flora and fauna in freshwater ecosystems and also contaminate groundwater due to leaching. Herbicide contamination can be a serious threat for all groundwater-dependent ecosystems (GDE), altering their chemical and biological quality. Successful management to protect GDE is dependent on detailed knowledge of the hydrogeological and hydrochemical features of the surrounding environment. We consider the possible diffuse contamination by herbicides of groundwater and of GDE as lowland springs, semi-artificial ecosystems with elevated biodiversity. The main objectives of the present work were thus: (1) to map herbicide contamination in lowland springs, (2) to evaluate the potential risk for biota and (3) to quantify the extent of the area from which the herbicide use can affect the water quality of lowland springs. In June and August 2009, nearly 23 springs within the Po River Plain (Northern Italy) were sampled and analyzed for five herbicides used to control weeds in maize. Hydrogeological properties, half-lives of the herbicides and their concentrations in both groundwater and springs were used to quantify the area from which the contamination could originate. Such evaluation was performed by means of GIS techniques. Terbuthylazine were the only herbicide found, together with its metabolite desethylterbuthylazine. In 16 out of 84 measurements, their concentrations were above the threshold for drinking water; however, they were always below the ecotoxicological end-points of aquatic flora and fauna. Spatial analyses reveal that the theoretical area from which herbicides can contaminate spring water is within a distance varying between a few and 1800 m. Our findings indicate that conservation plans should focus on the fields adjacent to or surrounding the springs and should address the optimization of irrigation practices, restoration of buffer strips, crop rotation and in general more sustainable agricultural practices in the

  8. Relative toxicity of herbicide use in the United States 1990 to 2015

    OpenAIRE

    Andrew R Kniss

    2016-01-01

    Herbicide use is among the most criticized aspects of modern farming operations, especially in response to widespread adoption of genetically-engineered (GE) herbicide-resistant crops. Many previous analyses of herbicide use have relied on flawed metrics in an attempt to evaluate trends in herbicide intensity and toxicity. Here, it is shown that herbicide use intensity has increased over the last 25 years in corn, cotton, rice, and wheat. Although GE glyphosate-resistant crops have been previ...

  9. Genetic control of a cytochrome P450 metabolism-based herbicide resistance mechanism in Lolium rigidum

    OpenAIRE

    2010-01-01

    The dynamics of herbicide resistance evolution in plants are influenced by many factors, especially the biochemical and genetic basis of resistance. Herbicide resistance can be endowed by enhanced rates of herbicide metabolism because of the activity of cytochrome P450 enzymes, although in weedy plants the genetic control of cytochrome P450-endowed herbicide resistance is poorly understood. In this study we have examined the genetic control of P450 metabolism-based herbicide resistance in a w...

  10. Sarmentine, a natural herbicide from Piper species with multiple herbicide mechanisms of action

    Directory of Open Access Journals (Sweden)

    Franck Emmanuel Dayan

    2015-04-01

    Full Text Available Sarmentine, 1-(1-pyrrolidinyl-(2E,4E-2,4-decadien-1-one, is a natural amide isolated from the fruits of Piper species. The compound has a number of interesting biological properties, including its broad-spectrum activity on weeds as a contact herbicide. Initial studies highlighted a similarity in response between plants treated with sarmentine and herbicidal soaps such as pelargonic acid (nonanoic acid. However, little was known about the mechanism of action leading to the rapid desiccation of foliage treated by sarmentine. In cucumber cotyledon disc-assays, sarmentine induced rapid light-independent loss of membrane integrity at 100 µM or higher concentration, whereas 3 mM pelargonic acid was required for a similar effect. Sarmentine was between 10 and 30 times more active than pelargonic acid on wild mustard, velvetleaf, redroot pigweed and crabgrass. Additionally, the potency of 30 µM sarmentine was greatly stimulated by light, suggesting that this natural product may also interfere with photosynthetic processes. This was confirmed by observing a complete inhibition of photosynthetic electron transport at that concentration. Sarmentine also acted as an inhibitor of photosystem II on isolated thylakoid membranes by competing for the binding site of plastoquinone. This can be attributed in part to structural similarities between herbicides like sarmentine and diuron. While this mechanism of action accounts for the light stimulation of the activity of sarmentine, it does not account for its ability to destabilize membranes in darkness. In this respect, sarmentine has some structural similarity to crotonoyl-CoA, the substrate of enoyl-ACP reductase, a key enzyme in the early steps of fatty acid synthesis. Inhibitors of this enzyme, such as triclosan, cause rapid loss of membrane integrity in the dark. Sarmentine inhibited the activity of enoyl-ACP reductase, with an I50app of 18.3 µM. Therefore, the herbicidal activity of sarmentine appears to

  11. Herbicide resistance-what have we learned from other disciplines?

    Science.gov (United States)

    Strek, Harry J

    2014-10-01

    Herbicide resistance is a growing threat to agriculture and has parallels to resistances to fungicides and insecticides. However, there are many reasons to treat the resistance to herbicides differently. To highlight these similarities and differences, three pests, a weed, an insect, and a disease that have shown the ability to rapidly develop resistance to a variety of products and product classes were used as illustrations. The situation in herbicide resistance is approaching a point already experienced by the other pest control disciplines, and thus, it is worthwhile to revisit their experiences.

  12. Adsorption of chloroacetanilide herbicides on soil I. Structural influence of chloroacetanilide herbicide for their adsorption on soils and its components

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Adsorption of chloroacetanilide herbicide acetochlor,alachlor, metolachlor and propachlor on soils and soil components was determined, and the structural differences of these herbicides were used to explain the order of sorptivity. Adsorption isotherms for all herbicide-soil combinations conformed to the Freundlich equation, and Kf increased with increasing soil organic carbon content. Kd on soil humic acid was greater than that on clay, but association of humic acid with clay reduced the overall adsorption. On all soils and soil humic acids, herbicide adsorption decreased in the order: metolachlor > acetochlor > propachlor > alachlor. On Ca2+-montmorrilonite, the order changed to metolachlor > acetochlor > alachlor > propachlor. FT-IR spectra of herbicide-clay or herbicide-humic acid-clay mixtures showed that H-bonding and charge transfer were the primary interaction pathways between these compounds and the surface of clay or humic acids. The different moieties attached to 2-chloro-acetanilide and their unique arrangement may have influenced the binding mechanisms and thus the sorptivity of these herbicides. This study indicates that the structural difference of pesticides in the same classes may be used as a molecular probe to obtain a better understanding of sorption mechanisms of pesticides on soil.

  13. Urea Fertilizer and pH Influence on Sorption Process of Flumetsulam and MCPA Acidic Herbicides in a Volcanic Soil.

    Science.gov (United States)

    Palma, Graciela; Jorquera, Milko; Demanet, Rolando; Elgueta, Sebastian; Briceño, Gabriela; de la Luz Mora, María

    2016-01-01

    The aim of this study was to evaluate the influence of urea fertilizer and pH on the sorption process of two acidic herbicides, flumetsulam (2',6'-difluoro-5-methyl[1,2,4]triazolo[1,5-a]pyrimidine-2-sulfonanilide) and MCPA (4-chloro--tolyloxyacetic acid), on an Andisol. Urea reduced the adsorption of MCPA but not that of flumetsulam. The Freundlich parameter of MCPA decreased from 8.5 to 5.1 mg L kg. This finding could be attributed to an increase in dissolved organic C due to an initial increase in soil pH for urea application. The higher acidic character of MCPA compared with that of flumetsulam produced a greater hydrolysis of urea, leading to a further pH increase. A marked effect of pH on the adsorption of both herbicides was observed. The organic C distribution coefficient () values for flumetsulam were in the range of 74 to 10 L kg, while those of MCPA were in the range of 208 to 45 L kg. In the kinetic studies, the pseudo-second-order model appeared to fit the data best ( > 0.994). The initial adsorption rates () ranged from 20.00 to 4.59 mg kg h for flumetsulam and from 125.00 to 25.60 mg kg hfor MCPA. Both herbicides were adsorbed rapidly during the first stage of the sorption process, and the rates of sorption were dependent on pH. The application of the Elovich and Weber-Morris models led us to conclude that mass transfer through the boundary layer and, to a lesser degree, intraparticle diffusion were influenced by the chemical character of the herbicide. These results suggest that urea application could increase leaching of acid herbicides in soils.

  14. Research on Controllable Degradation of Novel Sulfonylurea Herbicides in Acidic and Alkaline Soils.

    Science.gov (United States)

    Zhou, Shaa; Hua, Xue-Wen; Wei, Wei; Gu, Yu-Cheng; Liu, Xiao-Qing; Chen, Jing-Huo; Chen, Ming-Gui; Xie, Yong-Tao; Zhou, Sha; Meng, Xiang-De; Zhang, Yan; Li, Yong-Hong; Wang, Bao-Lei; Song, Hai-Bin; Li, Zheng-Ming

    2017-09-06

    The degradation issue of sulfonylurea (SU) has become one of the biggest challenges that hamper the development and application of this class of herbicides, especially in the alkaline soils of northern China. On the basis of the previous discovery that some substituents on the fifth position of the benzene ring in Chlorsulfuron could hasten its degradation rate, apparently in acidic soil, this work on Metsulfuron-methyl showed more convincing results. Two novel compounds (I-1 and I-2) were designed and synthesized, and they still retained potent herbicidal activity in tests against both dicotyledons and monocotyledons. The half-lives of degradation (DT50) assay revealed that I-1 showed an accelerated degradation rate in acidic soil (pH 5.59). Moreover, we delighted to find that the degradation rate of I-1 was 9-10-fold faster than that of Metsulfuron-methyl and Chlorsulfuron when in alkaline soil (pH 8.46), which has more practical value. This research suggests that a modified structure that has potent herbicidal activity as well as accelerated degradation rate could be realized and this approach may provide a way to improve the residue problem of SUs in farmlands with alkaline soil.

  15. Morphoanatomical and physiological changes in Bauhinia variegata L. as indicators of herbicide diuron action.

    Science.gov (United States)

    Lima, Dêmily Andrômeda de; Müller, Caroline; Costa, Alan Carlos; Batista, Priscila Ferreira; Dalvi, Valdnéa Casagrande; Domingos, Marisa

    2017-03-27

    The wide use of the herbicide diuron has compromised surrounding uncultivated areas, resulting in acute and/or chronic damage to non-target plants. Thus, the aim of this research was to evaluate physiological and morphoanatomical responses in Bauhinia variegata L. plants to different doses of diuron. Seedlings of 90-day-old B. variegata were transplanted into 10liter pots. After an acclimation period (about 30 days), treatments consisting of different diuron doses were applied: 0 (control), 400, 800, 1600, and 2400g ai ha(-1). The experiment was conducted in a randomized block design in a 5×5 factorial scheme with five doses of diuron five evaluation times, and five replicates per treatment. Anatomical and physiological injuries were observed in leaves of Bauhina variegata 10h after diuron application. Disruption of waxes was observed on both sides of the leaves of plants exposed since the lowest dose. Plasmolysis in cells were observed in treated leaves; more severe damage was observed in plants exposed to higher doses, resulting in rupture of epidermis. The diuron herbicide also caused gradual reduction in the gas exchange and chlorophyll fluorescence variables. Among the morphoanatomical and physiological variables analyzed, the non-invasive ones (e.g., ETR, YII, and Fv/Fm) may be used as biomarkers of diuron action in association with visible symptoms. In addition, changes in leaf blade waxes and chlorophyll parenchyma damage may also be considered additional leaf biomarkers of diuron herbicide action.

  16. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, Chris R.; Scieble, Wolf

    2000-10-11

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  17. Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere

    Science.gov (United States)

    Chang, Feng-Chih; Simcik, M.F.; Capel, P.D.

    2011-01-01

    This is the first report on the ambient levels of glyphosate, the most widely used herbicide in the United States, and its major degradation product, aminomethylphosphonic acid (AMPA), in air and rain. Concurrent, weekly integrated air particle and rain samples were collected during two growing seasons in agricultural areas in Mississippi and Iowa. Rain was also collected in Indiana in a preliminary phase of the study. The frequency of glyphosate detection ranged from 60 to 100% in both air and rain. The concentrations of glyphosate ranged from 3 and from glyphosate in air were similar or greater to those of the other high-use herbicides observed in the Mississippi River basin, whereas its concentration in rain was greater than the other herbicides. It is not known what percentage of the applied glyphosate is introduced into the air, but it was estimated that up to 0.7% of application is removed from the air in rainfall. Glyphosate is efficiently removed from the air; it is estimated that an average of 97% of the glyphosate in the air is removed by a weekly rainfall ≥30 mm.

  18. Inheritance and mechanism of resistance to herbicides inhibiting acetolactate synthase in Sonchus oleraceus L.

    Science.gov (United States)

    Boutsalis, P; Powles, S B

    1995-07-01

    A biotype of Sonchus oleraceus L. (Compositae) has developed resistance to herbicides inhibiting acetolactate synthase (ALS) following field selection with chlorsulfuron for 8 consecutive years. The aim of this study was to determine the inheritance and mechanism of resistance in this biotype. Determination of ALS activity and inhibition kinetics revealed that Km and Vmax did not vary greatly between the resistant and susceptible biotypes. ALS extracted from the resistant biotype was resistant to five ALS-inhibiting herbicides in an in vitro assay. ALS activity from the resistant biotype was 14 19, 2, 3 and 3 times more resistant to inhibition by chlorsulfuron, sulfometuron, imazethapyr, imazapyr and flumetsulam, respectively, than the susceptible biotype. Hybrids between the resistant and a susceptible biotype were produced, and inheritance was followed through the F1, F2 and F3 generations. F1 hybrids displayed a uniform intermediate level of resistance between resistant and susceptible parents. Three distinct phenotypes, resistant, intermediate and susceptible, were identified in the F2 generation following chlorsulfuron application. A segregation ratio of 1∶2∶1 was observed, indicative of the action of a single, nuclear, incompletely dominant gene. F3 families, derived from intermediate F2 individuals, segregated in a similar manner. Resistance to herbicides inhibiting ALS in this biotype of S. oleraceus is due to the effect of a single gene coding for a resistant form of the target enzyme, ALS.

  19. Herbicide and pesticide occurrence in the soils of children's playgrounds in Sarajevo, Bosnia and Herzegovina.

    Science.gov (United States)

    Sapcanin, Aida; Cakal, Mirsada; Imamovic, Belma; Salihovic, Mirsada; Pehlic, Ekrem; Jacimovic, Zeljko; Jancan, Gordan

    2016-08-01

    Pesticide pollution in Sarajevo public playgrounds is an important health and environmental issue, and the lack of information about it is causing concerns amongst the general population as well as researchers. Since children are in direct contact with surface soils on children's playgrounds, such soils should be much more carefully examined. Furthermore, herbicides and pesticides get transmitted from soil surfaces brought from outside the urban areas, or they get dispersed following their direct applications in urban areas. Infants' and children's health can be directly affected by polluted soils because of the inherent toxicity and widespread use of the different pesticides in urban environments such as playgrounds. In addition to that, the presence of chromated copper arsenate (CCA) wood preservative pesticide found as soil pollutant in playing equipment was also documented. Soil samples from playgrounds were collected and analyzed for triazines, carbamates, dithiocarbamates, phenolic herbicides and organochlorine pesticides. Samples for the determination of heavy metals Cu, Cr and As were prepared by microwave-assisted acid digestion, and the findings were determined by using an inductively coupled plasma optical emission spectrometer. Triazines, carbamates, dithiocarbamates, chlorphenoxy compounds, phenolic herbicides, organochlorine pesticides and organotin compounds were detected in playground soils and their determined concentrations (mg/kg) were respectively found as follows: playground soils.

  20. Remediation of waters contaminated with ionic herbicides by sorption on polymerin.

    Science.gov (United States)

    Sannino, F; Iorio, M; De Martino, A; Pucci, M; Brown, C D; Capasso, R

    2008-02-01

    This study investigated the sorption of paraquat and 2,4-D on polymerin, the humic acid-like fraction of olive mill wastewater. Effects of pH, contact time, initial concentration and sorbent dosage on the sorption of both herbicides were studied. The sorption mechanism of paraquat on polymerin was consistent with the ion exchange of this herbicide with Ca, Mg and K natively occurring in the sorbent; in contrast, 2,4-D was bound to polymerin by hydrogen bonding. Simulated wastewaters contaminated with paraquat were purified after three sorption cycles on polymerin renewed at each cycle, at a solid/liquid ratio of 0.5, whereas those containing 2,4-D showed a maximal residue removal of 44% after two sorption cycles at the same ratio. The possible application of this model to other water-soluble herbicides, as well as the possible exploitation of polymerin as a bio-filter for the decontamination of pollution point sources is briefly discussed.

  1. Effects of biochar addition on the sorption of polar herbicides in paddy soils

    Science.gov (United States)

    Garcia-Jaramillo, Manuel; Cox, Lucía; Hermosín, Mari Carmen; Helmus, Rick; Parsons, John R.; Kalbitz, Karsten

    2016-04-01

    Organic amendments, and their water soluble fraction, induce an important impact on pesticide dissipation in soils, affecting their adsorption and transport processes through various chemical interactions. Although in most cases addition of organic amendments increases sorption, leaching of the pesticides can be either reduced or promoted. Because of that, their effect on pesticide behavior must be assessed in order to optimize their use. The major objectives of this study were to investigate the impact of biochar and biochar water extractable substances (BWES) on the sorption behavior of two polar herbicides, azimsulfuron and penoxsulam, in two amended and unamended paddy soils under flooded conditions. The adsorption - desorption of these herbicides was studied in soils amended with fresh biochar and in soils amended with a washed version of the biochar, simulating the conditions of a soil recently amended and a soil where biochar was applied longer time before and most part of the BWES has been already removed because of the flooded conditions. Therefore, sorption on biochar was assessed before and after removing 80% of its water extractable substances, separately and in combination with each soil (at 2 and 5% w/w). BWES were analyzed by high resolution mass spectrometry. The most abundant fractions present in the high mass range were nitrogen-containing molecules. The aromatic character of the DOC-extracts of the unamended and amended soils, based on the specific UV absorbance at 280 nm (SUVA280), was increased with the amendment in all the conditions tested. Adsorption data of both herbicides fitted very well to the Freundlich equation, with R2 values higher than 0.9 in all the conditions tested. Sorption isotherms were in all cases nonlinear, with Nf values stress the importance of proper screening of biochar and soil characteristics before its application in combination with polar herbicides.

  2. Estimates of herbicide use for the eighty-first through the ninety-sixth most-used herbicides in the conterminous United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This coverage contains estimates of herbicide use for the eighty-first through the ninety-sixth most-used herbicides in the conterminous United States as reported in...

  3. Estimates of herbicide use for the forty-first through the sixtieth most-used herbicides in the conterminous United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This coverage contains estimates of herbicide use for the forty-first through the sixtieth most-used herbicides in the conterminous United States as reported in...

  4. Estimates of herbicide use for the twenty-first through the fortieth most-used herbicides in the conterminous United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This coverage contains estimates of herbicide use for the twenty-first through the fortieth most-used herbicides in the conterminous United States as reported in...

  5. Estimates of herbicide use for the sixty-first through the eightieth most-use herbicides in the conterminous United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This coverage contains estimates of herbicide use for the sixty-first through the eightieth most-used herbicides in the conterminous United States as reported in...

  6. Herbicide Glyphosate Impact to Earthworm (E. fetida

    Directory of Open Access Journals (Sweden)

    Greta Dajoraitė

    2016-10-01

    Full Text Available Glyphosate is a broad spectrum weed resistant herbicide. Glyphosate may pose negative impact on land ecosystems because of wide broad usage and hydrofilic characteristic. The aim of this study was to investigate negative effects of glyphosate on soil invertebrate organisms (earthworm Eisenia fetida. The duration of experiment was 8 weeks. The range of the test concentrations of glyphosate were: 0,1, 1, 5, 10, 20 mg/kg. To investigate the glyphosate impact on earthworm Eisenia fetida the following endpoints were measured: survival, reproduction and weight. The exposure to 20 mg/kg glyphosate has led to the 100% mortality of earthworms. Glyphosate has led to decreased E. fetida reproduction, the cocoons were observed only in the lowest concentration (0,1 mg/kg. In general: long-term glyphosate toxicity to earthworms (E. fetida may be significant.

  7. New effects of Roundup on amphibians: predators reduce herbicide mortality; herbicides induce antipredator morphology.

    Science.gov (United States)

    Relyea, Rick A

    2012-03-01

    The use of pesticides is important for growing crops and protecting human health by reducing the prevalence of targeted pest species. However, less attention is given to the potential unintended effects on nontarget species, including taxonomic groups that are of current conservation concern. One issue raised in recent years is the potential for pesticides to become more lethal in the presence of predatory cues, a phenomenon observed thus far only in the laboratory. A second issue is whether pesticides can induce unintended trait changes in nontarget species, particularly trait changes that might mimic adaptive responses to natural environmental stressors. Using outdoor mesocosms, I created simple wetland communities containing leaf litter, algae, zooplankton, and three species of tadpoles (wood frogs [Rana sylvatica or Lithobates sylvaticus], leopard frogs [R. pipiens or L. pipiens], and American toads [Bufo americanus or Anaxyrus americanus]). I exposed the communities to a factorial combination of environmentally relevant herbicide concentrations (0, 1, 2, or 3 mg acid equivalents [a.e.]/L of Roundup Original MAX) crossed with three predator-cue treatments (no predators, adult newts [Notophthalmus viridescens], or larval dragonflies [Anax junius]). Without predator cues, mortality rates from Roundup were consistent with past studies. Combined with cues from the most risky predator (i.e., dragonflies), Roundup became less lethal (in direct contrast to past laboratory studies). This reduction in mortality was likely caused by the herbicide stratifying in the water column and predator cues scaring the tadpoles down to the benthos where herbicide concentrations were lower. Even more striking was the discovery that Roundup induced morphological changes in the tadpoles. In wood frog and leopard frog tadpoles, Roundup induced relatively deeper tails in the same direction and of the same magnitude as the adaptive changes induced by dragonfly cues. To my knowledge, this

  8. Permit – A new herbicide for control of Cyperus esculentus in maize

    Directory of Open Access Journals (Sweden)

    Günnigmann, Albert

    2016-02-01

    Full Text Available Permit, containing the active ingredient halosulfuron (750 g/kg WG is a new herbicide in maize. It is listed in Annex I since October 2013. Permit plays a special role when dealing with the hard to control weed yellow nutsedge (Cyperus esculentus. Yellow nutsedge is an invasive plant belonging to the family Cyperaceae (sedges. Specific graminicides used to control Poaceae (sweet grasses are not effective against Cyperacea. Propagation is rapid and occurs exclusively via tubers formed in the soil. Affected areas in Germany grow rapidly, especially in Lower-Saxony. Application rates from 30-50 g/ha Permit were tested in solo or split application in 7 trials to control Cyperus esculentus in maize. Application timing proved critical for successful control. High levels of control were achieved with 30-50 g/ha Permit with single applications at BBCH 16 (efficacy 94-98% as well as with split applications at BBCH 14 and 16 of the crop (efficacy 94-99%. Because yellow nutsedge often emerges in multiple waves, the split application provides more reliable control. Permit offers new opportunities to effectively control Cyperus esculentus in maize and thus closes an important gap in the weed spectrum of currently available maize herbicides.

  9. Biodegradation of acetanilide herbicides acetochlor and butachlor in soil

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The biodegradation of two acetanilide herbicides,acetochlor and butachlor in soil after other environmental organicmatters addition were measured during 35 days laboratoryincubations. The herbicides were applied to soil alone, soil-SDBS(sodium dodecylbenzene sulfonate) mixtures and soil-HA (humic acid)mixtures. Herbicide biodegradation kinetics were compared in thedifferent treatment. Biodegradation products of herbicides in soilalone samples were identified by GC/MS at the end of incubation.Addition of SDBS and HA to soil decreased acetochlorbiodegradation, but increased butachlor biodegradation. Thebiodegradation half-life of acetochlor and butachlor in soil alone,soil-SDBS mixtures and soil-HA mixtures were 4.6d, 6.1d, 5.4d, and5.3d, 4.9d, and 5.3d respectively. The biodegradation products werehydroxyacetochlor and 2-methyl-6-ethylaniline for acetochlor, andhydroxybutachlor and 2,6-diethylaniline for butachlor.

  10. Biodegradation of acetanilide herbicides acetochlor and butachlor in soil.

    Science.gov (United States)

    Ye, Chang-ming; Wang, Xing-jun; Zheng, He-hui

    2002-10-01

    The biodegradation of two acetanilide herbicides, acetochlor and butachlor in soil after other environmental organic matter addition were measured during 35 days laboratory incubations. The herbicides were applied to soil alone, soil-SDBS (sodium dodecylbenzene sulfonate) mixtures and soil-HA (humic acid) mixtures. Herbicide biodegradation kinetics were compared in the different treatment. Biodegradation products of herbicides in soil alone samples were identified by GC/MS at the end of incubation. Addition of SDBS and HA to soil decreased acetochlor biodegradation, but increased butachlor biodegradation. The biodegradation half-life of acetochlor and butachlor in soil alone, soil-SDBS mixtures and soil-HA mixtures were 4.6 d, 6.1 d and 5.4 d and 5.3 d, 4.9 d and 5.3 d respectively. The biodegradation products were hydroxyacetochlor and 2-methyl-6-ethylaniline for acetochlor, and hydroxybutachlor and 2,6-diethylaniline for butachlor.

  11. Ragweed Parthenium (Parthenium hysterophorus) Control with Preemergence and Postemergence Herbicides

    Science.gov (United States)

    Field and greenhouse experiments were conducted during 2005 and 2006 at Stoneville, MS to determine control of ragweed parthenium with several preemergence (PRE) and postemergence (POST) herbicides registered for use in corn, cotton, peanut, rice, and soybean. Norflurazon, pendimethalin, clomazone, ...

  12. Scientific Opinion on application (EFSA-GMO-NL-2010-78 for the placing on the market of herbicide-tolerant, increased oleic acid genetically modified soybean MON 87705 for food and feed uses, import and processing under Regulation (EC No 1829/2003 from Monsanto

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Genetically Modified Organisms (GMO

    2012-10-01

    Full Text Available

    This scientific opinion is a risk assessment of the genetically modified, herbicide-tolerant, increased oleic acid soybean MON 87705 for food and feed uses, import and processing. MON 87705 contains the soybean FAD2-1A/FATB1-A gene fragments down-regulating endogenous FAD2 and FATB enzymes and the CP4 epsps gene cassette conferring tolerance to glyphosate-containing herbicides. Bioinformatic analyses and genetic stability studies did not raise safety issues. The levels of the CP4 EPSPS protein in soybean MON 87705 have been sufficiently analysed. MON 87705 differs from the conventional counterpart in the fatty acid profile (proportion of (C18:1 oleic acid increased and proportions of (C18:2 linoleic acid and (C16:0 palmitic acid decreased in seeds and the presence of the CP4 EPSPS protein. Scientific risk assessment of soybean MON 87705 was carried out in the context of the intended use as specified by the applicant, namely its use for food and feed as any conventional soybean except for the oil derived from soybean MON 87705, which is to be used in margarine, salad dressing, mayonnaise and home-use liquid vegetable oil, excluding the use of soybean MON 87705 oil for commercial frying.

    The safety assessment identified no concerns regarding potential toxicity and allergenicity of the CP4 EPSPS protein. The altered fatty acid profile did not raise concerns regarding toxicity. The overall allergenicity of the whole plant was not changed by the genetic modification. The estimated changes in intake levels of these fatty acids do not raise nutritional concerns in the context of the intended use as specified by the applicant. A feeding study on broiler chickens confirmed that defatted meal of soybean MON 87705 is as nutritious as meals produced from its conventional counterpart and non-GM reference varieties. There are no indications of an increased likelihood of establishment and spread of feral soybean plants

  13. Molecular basis for the herbicide resistance of Roundup Ready crops

    OpenAIRE

    Funke, Todd; Han, Huijong; Healy-Fried, Martha L.; Fischer, Markus; Schönbrunn, Ernst

    2006-01-01

    The engineering of transgenic crops resistant to the broad-spectrum herbicide glyphosate has greatly improved agricultural efficiency worldwide. Glyphosate-based herbicides, such as Roundup, target the shikimate pathway enzyme 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, the functionality of which is absolutely required for the survival of plants. Roundup Ready plants carry the gene coding for a glyphosate-insensitive form of this enzyme, obtained from Agrobacterium sp. strain CP4. Onc...

  14. Protoporphyrin IX Content Correlates with Activity of Photobleaching Herbicides

    Science.gov (United States)

    Becerril, Jose M.; Duke, Stephen O.

    1989-01-01

    Several laboratories have demonstrated recently that photobleaching herbicides such as acifluorfen and oxadiazon cause accumulation of protoporphyrin IX (PPIX), a photodynamic pigment capable of herbicidal activity. We investigated, in acifluorfen-treated tissues, the in vivo stability of PPIX, the kinetics of accumulation, and the correlation between concentration of PPIX and herbicidal damage. During a 20 hour dark period, PPIX levels rose from barely detectable concentrations to 1 to 2 nanomoles per 50 cucumber (Cucumis sativus L.) cotyledon discs treated with 10 micromolar acifluorfen. When placed in 500 micromoles per square meter per second PAR, PPIX levels decayed logarithmically, with an initial half-life of about 2.5 hours. PPIX levels at each time after exposure to light correlated positively with the cellular damage that occurred during the following 1 hour in both green and yellow (tentoxin-treated) cucumber cotyledon tissues. PPIX levels in discs incubated for 20 hours in darkness correlated positively with the acifluorfen concentration in which they were incubated. In cucumber, the level of herbicidal damage caused by several p-nitrodiphenyl other herbicides, a p-chlorodiphenylether herbicide, and oxadiazon correlated positively with the amount of PPIX induced to accumulate by each of the herbicide treatments. Similar results were obtained with acifluorfen-treated pigweed and velvetleaf primary leaf tissues. In cucumber, PPIX levels increased within 15 and 30 minutes after exposure of discs to 10 micromolar acifluorfen in the dark and light, respectively. These data strengthen the view that PPIX is responsible for all or a major part of the photobleaching activity of acifluorfen and related herbicides. PMID:16666869

  15. Synthesis and herbicidal activities of benzothiazole N,O-acetals.

    Science.gov (United States)

    Ji, Zhiqin; Zhou, Fengxing; Wei, Shaopeng

    2015-10-01

    A new series of N,O-acetals were prepared via a simple one-pot reaction by the condensation of 2-amino-methybenzothiazole with aldehydes and alcohols. The title compounds were obtained in moderate to good yields in the presence of acid catalyst. Bioassay results indicated that some synthesized compounds had good herbicidal activity against both dicotyledon and monocotyledon weeds. This investigation provided a new type of herbicidal lead compounds, as well as its facile preparation method.

  16. Exploiting the Evolutionary Relationship between Malarial Parasites and Plants To Develop New Herbicides.

    Science.gov (United States)

    Corral, Maxime G; Leroux, Julie; Tresch, Stefan; Newton, Trevor; Stubbs, Keith A; Mylne, Joshua S

    2017-08-07

    Herbicide resistance is driving a need to develop new herbicides. The evolutionary relationship between apicomplexan parasites, such as those causing malaria, and plants is close enough that many antimalarial drugs are herbicidal and so represent novel scaffolds for herbicide development. Using a compound library from the Medicines for Malaria Venture, the model plant Arabidopsis thaliana, and a physicochemical database of known herbicides, a compound was discovered that showed post-emergence herbicidal activity equal to commercial herbicides. Using structure-activity analysis, important points for its potency were found. The compound was also tested and found to be active against common crop weeds. Physiological profiling suggested the compound was a photosystem II inhibitor, representing a new scaffold for herbicide development. Overall this approach demonstrates the viability of using antimalarial compounds as lead compounds for the development of much needed new herbicides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis

    Science.gov (United States)

    Zulet, Amaia; Gil-Monreal, Miriam; Villamor, Joji Grace; Zabalza, Ana; van der Hoorn, Renier A. L.; Royuela, Mercedes

    2013-01-01

    Background The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined. PMID:24040092

  18. Molecular genotyping of herbicide resistance in P. minor: ACCase resistance.

    Science.gov (United States)

    Singh, Rajender; Sharma, Davinder; Raghav, Nishu; Chhokar, Rajender Singh; Sharma, Indu

    2015-02-01

    Little seed canary grass (Phalaris minor Retz.) populations resistant to herbicides that inhibit acetyl-CoA carboxylase (ACCase) represent an increasingly important weed control problem in northern India. The objective of this study was to develop DNA-based markers to differentiate herbicide-resistant and herbicide-susceptible population of P. minor. Primers were designed to amplify the conserved region carrying two reported mutations Trp2027 to Cys and Ile2041 to Asn conferring ACCase inhibitor resistance in several grass weeds and subjected to single-strand conformational polymorphism (SSCP) to detect the mutations. Five distinctive electrophoretic patterns on non-denaturing PAGE were observed, and four patterns were found to be associated with ACCase herbicide resistance in P. minor. The PCR-SSCP test developed in this study confirmed 17 resistant populations to contain mutations in CT domain of ACCase gene. This is the first report of rapid and easy molecular diagnosis of ACCase herbicide-resistant and herbicide-sensitive population of P. minor through PCR-SSCP analysis.

  19. Cytogenetic characteristics of herbicide production workers in Ufa.

    Science.gov (United States)

    Kaioumova, D F; Khabutdinova, L Kh

    1998-01-01

    In the present study, we investigated the effect of dioxin-containing products on the cytogenetic characteristics of peripheral blood lymphocytes of herbicide plant workers in Ufa. We found that the mean incidence of cells with chromosomal abberations (CHA) was two fold higher in the herbicide plant workers than the mean incidence level of controls groups consisting of people with no professional contact to herbicides or hospital stuff working in the close vicinity of the herbicide plant in Ufa (for both cases: p < 0.05). Moreover, the mean CHA cell incidence in the controls groups was also two times higher than the average level of spontaneous abberations in humans. The chemical herbicides 2,4,5-trichlorphenol (2,4,5-T) and 2,4-dichlorophenoxiacetic acid (2,4-D) appeared to affect various cellular cycle phases. Chromosomal type abberations occurred in the G0 stage of cellular cycle and chromatic type aberrations in the G2 stage. In the S stage, the aberrations of both types were observed. Our results indicate that the herbicides 2,4,5-T and 2,4-D have mutagenic effects in humans.

  20. Weed interference with peppermint (Mentha x piperita L.) and spearmint (Mentha spicata L.) crops under different herbicide treatments: effects on biomass and essential oil yield.

    Science.gov (United States)

    Karkanis, Anestis; Lykas, Christos; Liava, Vasiliki; Bezou, Anna; Petropoulos, Spyridon; Tsiropoulos, Nikolaos

    2017-05-15

    'Minor crops' such as spearmint and peppermint are high added value crops, despite the fact that their production area is comparably small worldwide. The main limiting factor in mint commercial cultivation is weed competition. Thus, field experiments were carried out to evaluate the effects of weed interference on growth, biomass and essential oil yield in peppermint and spearmint under different herbicide treatments. The application of pendimethalin and oxyfluorfen provided better control of annual weeds resulting in higher crop yield. Additionally, when treated with herbicides both crops were more competitive against annual weeds in the second year than in the first year. All pre-emergence herbicides increased biomass yield, since pendimethalin, linuron and oxyfluorfen reduced the density of annual weeds by 71-92%, 63-74% and 86-95%, respectively. Weed interference and herbicide application had no effect on essential oil content; however, a relatively strong impact on essential oil production per cultivated area unit was observed, mainly due to the adverse effect of weed interference on plant growth. Considering that pendimethalin and oxyfluorfen were effective against annual weeds in both spearmint and peppermint crops, these herbicides should be included in integrated weed management systems for better weed management in mint crops. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Measuring Rates of Herbicide Metabolism in Dicot Weeds with an Excised Leaf Assay.

    Science.gov (United States)

    Ma, Rong; Skelton, Joshua J; Riechers, Dean E

    2015-09-07

    In order to isolate and accurately determine rates of herbicide metabolism in an obligate-outcrossing dicot weed, waterhemp (Amaranthus tuberculatus), we developed an excised leaf assay combined with a vegetative cloning strategy to normalize herbicide uptake and remove translocation as contributing factors in herbicide-resistant (R) and -sensitive (S) waterhemp populations. Biokinetic analyses of organic pesticides in plants typically include the determination of uptake, translocation (delivery to the target site), metabolic fate, and interactions with the target site. Herbicide metabolism is an important parameter to measure in herbicide-resistant weeds and herbicide-tolerant crops, and is typically accomplished with whole-plant tests using radiolabeled herbicides. However, one difficulty with interpreting biokinetic parameters derived from whole-plant methods is that translocation is often affected by rates of herbicide metabolism, since polar metabolites are usually not mobile within the plant following herbicide detoxification reactions. Advantages of the protocol described in this manuscript include reproducible, accurate, and rapid determination of herbicide degradation rates in R and S populations, a substantial decrease in the amount of radiolabeled herbicide consumed, a large reduction in radiolabeled plant materials requiring further handling and disposal, and the ability to perform radiolabeled herbicide experiments in the lab or growth chamber instead of a greenhouse. As herbicide resistance continues to develop and spread in dicot weed populations worldwide, the excised leaf assay method developed and described herein will provide an invaluable technique for investigating non-target site-based resistance due to enhanced rates of herbicide metabolism and detoxification.

  2. Selectivity and weed control efficacy of some herbicides applied to sprinkler irrigated rice (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Cavero, J.; Zaragoza, C.; Cirujeda, A.; Anzalone, A.; Faci, J. M.; Blanco, O.

    2011-07-01

    Sprinkler irrigation can reduce the irrigation water needed to grow rice. However, most available information on weed control with herbicides is related to flood irrigated rice because this is the main growing method. Field experiments were conducted at Zaragoza (Spain) during two years to study weed control and tolerance of sprinkler irrigated rice to several herbicides. The main weeds were Atriplex prostrata Boucher ex DC., Cyperus rotundus L., Echinochloa crus-galli (L.) Beauv. and Sonchus oleraceus L. Rice cv Guadiamar was tolerant to preemergence (PRE) application of clomazone at 0.36 kg ha{sup -}1 and oxadiazon at 0.5 kg ha{sup -}1. PRE application of pendimethalin at 1.32 kg ha{sup -}1 combined with clomazone at 0.36 kg ha{sup -}1 decreased rice yield. Postemergence (POST) application of bentazon at 1.6 kg ha{sup -}1 + MCPA at 0.25 kg ha{sup -}1 did not injure rice but POST application of azimsulfuron at 0.025 kg ha{sup -}1 produced visual crop injury. Only treatments that controlled grassy weeds since rice was planted and by more than 80% at harvest time lead to acceptable rice yield (> 5,000 kg ha{sup -}1). Clomazone applied PRE at 0.36 kg ha{sup -}1 provided good control of grassy weeds (> 80%) and the highest rice yield, so it is recommended as a selective and efficacious PRE treatment for weed control of annual weeds in sprinkler irrigated rice. The perennial purple nutsedge was difficult to control at high plant densities (> 150 plants m{sup -}2) and the recommended herbicide is azimsulfuron applied at POST at 0.02 kg ha{sup -}1. (Author) 37 refs.

  3. Aquatic risk assessment of the new rice herbicide profoxydim

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Paloma [Laboratory for Ecotoxicology, Department of the Environment, INIA, Crta De La Coruna Km 7, 28040 Madrid (Spain)]. E-mail: arguello@inia.es; Kubitza, Johanna [BASF-AG, Agricultural Center Limburgerhof, P.O. Box 120, D-67114 Limburgerhof (Germany); Peter Dohmen, G. [BASF-AG, Agricultural Center Limburgerhof, P.O. Box 120, D-67114 Limburgerhof (Germany); Tarazona, Jose V. [Laboratory for Ecotoxicology, Department of the Environment, INIA, Crta De La Coruna Km 7, 28040 Madrid (Spain)

    2006-07-15

    A tiered protocol for assessing ecological risks has been applied to the rice pesticide profoxydim. The initial assessment (Tier I) was based on toxicity exposure ratio (TER) calculations based on laboratory data using a worst-case rice scenario. The first refinement (Tier II) was based on direct toxicity assessment (DTA) of water samples collected during a field-mesocosm study. Finally, a higher-tier assessment on the in situ assessment of paddy community responses (field-mesocosm-Tier III) was performed. A successive application of three pesticides, the herbicides azimsulfuron, propanil and the insecticide malathion, was used as reference controls. The refined assessments indicated a lower risk than that predicted from TER estimations. DTA-based Tier II showed toxicity effects only for concentrations above the recommended dose of profoxydim. Effects for reference controls were observed in DTA which were not expected from Tier I. The field-mesocosm study confirmed these effects but also showed that they were transient and of low relevance. - Risk refinement assessment of rice pesticides starting with DTA and moving to community studies is a cost-effective approach, only if required.

  4. Advanced Formulation Technology and its benefits for Clomazone containing herbicides

    Directory of Open Access Journals (Sweden)

    Hennens, David

    2014-02-01

    Full Text Available Clomazone is an important compound for effective weed control in winter oilseed rape and spring crops as potatoes and vegetables. Both when applied solo and as a complementary partner to other active ingredients, clomazone offers good and reliable control on a range of key weed species and crop safety. Its unique mode of action brings valuable contribution to anti-resistance weed management strategies. Clomazone effects on susceptible weed species are the typical bleaching symptoms. FMC developed and patented a unique CS microencapsulation technology for clomazone formulations. This technology as used in Centium 36 CS maintains efficacy and crop safety and reduces the risk of potential damage to non-target plants. In addition FMC introduces two novel formulation platforms, Synchronized Technology (SYNCTEC and Dual Active Matrix Technology (DAMTEC. Synchronized Technology (SYNCTEC means co-microencapsulation of multiple active ingredients and synchronized delivery to the target after application, hence making the different herbicides available at their optimal timing. Dual Active Matrix Technology (DAMTEC combines a microencapsulated active ingredient with a second active ingredient in granular form. Both proprietary technologies are specifically designed for co-formulated products and preserve the unique properties of the different active ingredients and all benefits from the CS microencapsulation system including control of volatility and high efficacy performance.

  5. Impact of imazamox containing herbicides on the development of resistance in black-grass (Alopecurus myosuroides Huds. within an oilseed rape / wheat crop rotation

    Directory of Open Access Journals (Sweden)

    Rosenhauer, Marie

    2016-02-01

    Full Text Available The application of imazamox as an herbicide in oilseed-rape got possible due to the introduction of Clearfield oilseed-rape varieties which are tolerant to ALS inhibitors. The question of this investigation was, if the broader use of ALS-inhibitors increases the selection pressure on herbicide resistant weeds and increases their occurrence in the crop rotation. An outdoor container trial with 30 containers (350 l, 0,7 m² was performed, starting in autumn 2011. A winter wheat – oilseed-rape rotation was simulated for four years. Three different black-grass biotypes with different resistance pattern and 5 different herbicide programmes were analysed in this study in order to investigate the population dynamics of target-site resistance (TSR and the development of metabolic resistance. The trials showed interactions between the black-grass biotype and the herbicide strategy on the increase of the black-grass density. There was no interaction due to the use of propyzamide. The frequency of target-site resistance to ACCase inhibitors increased for the corresponding biotypes independently of the herbicide strategy during the trial period. The low frequency of ALS-TSR at trial start did not change during the trial period, independently of the use of imazamox in the oil-seed rape cultivation. The comparison of the resistance factors between the original biotypes and the seeds harvested after the four year container trial showed increasing resistances against pinoxaden for all biotypes. Within the different black-grass biotypes there was a slightly decrease as well as an increase in imazamox efficacy observed. There was no significant increase of meso- + iodosulfuron resistance compared to the original biotypes from 2011 caused by different herbicide treatments. The results indicated that the integration of imazamox tolerant oilseed rape in winter wheat crop rotations did not necessarily increase the development of herbicide resistant black-grass.

  6. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement.

    Science.gov (United States)

    Myers, John Peterson; Antoniou, Michael N; Blumberg, Bruce; Carroll, Lynn; Colborn, Theo; Everett, Lorne G; Hansen, Michael; Landrigan, Philip J; Lanphear, Bruce P; Mesnage, Robin; Vandenberg, Laura N; Vom Saal, Frederick S; Welshons, Wade V; Benbrook, Charles M

    2016-02-17

    The broad-spectrum herbicide glyphosate (common trade name "Roundup") was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds. Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization's International Agency for Research on Cancer recently concluded that glyphosate is "probably carcinogenic to humans." In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards. We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air

  7. Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production.

    Science.gov (United States)

    Yu, Qin; Powles, Stephen

    2014-11-01

    Weedy plant species that have evolved resistance to herbicides due to enhanced metabolic capacity to detoxify herbicides (metabolic resistance) are a major issue. Metabolic herbicide resistance in weedy plant species first became evident in the 1980s in Australia (in Lolium rigidum) and the United Kingdom (in Alopecurus myosuroides) and is now increasingly recognized in several crop-weed species as a looming threat to herbicide sustainability and thus world crop production. Metabolic resistance often confers resistance to herbicides of different chemical groups and sites of action and can extend to new herbicide(s). Cytochrome P450 monooxygenase, glycosyl transferase, and glutathione S-transferase are often implicated in herbicide metabolic resistance. However, precise biochemical and molecular genetic elucidation of metabolic resistance had been stalled until recently. Complex cytochrome P450 superfamilies, high genetic diversity in metabolic resistant weedy plant species (especially cross-pollinated species), and the complexity of genetic control of metabolic resistance have all been barriers to advances in understanding metabolic herbicide resistance. However, next-generation sequencing technologies and transcriptome-wide gene expression profiling are now revealing the genes endowing metabolic herbicide resistance in plants. This Update presents an historical review to current understanding of metabolic herbicide resistance evolution in weedy plant species. © 2014 American Society of Plant Biologists. All Rights Reserved.

  8. Metabolism-Based Herbicide Resistance and Cross-Resistance in Crop Weeds: A Threat to Herbicide Sustainability and Global Crop Production1

    Science.gov (United States)

    Yu, Qin; Powles, Stephen

    2014-01-01

    Weedy plant species that have evolved resistance to herbicides due to enhanced metabolic capacity to detoxify herbicides (metabolic resistance) are a major issue. Metabolic herbicide resistance in weedy plant species first became evident in the 1980s in Australia (in Lolium rigidum) and the United Kingdom (in Alopecurus myosuroides) and is now increasingly recognized in several crop-weed species as a looming threat to herbicide sustainability and thus world crop production. Metabolic resistance often confers resistance to herbicides of different chemical groups and sites of action and can extend to new herbicide(s). Cytochrome P450 monooxygenase, glycosyl transferase, and glutathione S-transferase are often implicated in herbicide metabolic resistance. However, precise biochemical and molecular genetic elucidation of metabolic resistance had been stalled until recently. Complex cytochrome P450 superfamilies, high genetic diversity in metabolic resistant weedy plant species (especially cross-pollinated species), and the complexity of genetic control of metabolic resistance have all been barriers to advances in understanding metabolic herbicide resistance. However, next-generation sequencing technologies and transcriptome-wide gene expression profiling are now revealing the genes endowing metabolic herbicide resistance in plants. This Update presents an historical review to current understanding of metabolic herbicide resistance evolution in weedy plant species. PMID:25106819

  9. Scientific Opinion on application (EFSA-GMO-UK-2008-53 for the placing on the market of herbicide tolerant genetically modified maize 98140 for food and feed uses, import and processing under Regulation (EC No 1829/2003 from Pioneer Overseas Corporation

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Genetically Modified Organisms (GMO

    2013-04-01

    Full Text Available Maize 98140 contains a single insert consisting of the gat4621 and the Zm-hra expression cassettes, providing herbicide tolerance. Bioinformatic analyses and genetic stability studies did not raise safety issues. The levels of the GAT and Zm-HRA protein in maize 98140 have been sufficiently analysed. The minimum standards for the design of field trials, set out in the EFSA GMO Panel guidance document, were not met. Therefore the EFSA GMO Panel was not in a position to conclude on the comparative assessment of the compositional, agronomic and phenotypic characteristics, on the basis of the data provided. In the absence of conclusions on the comparative assessment of composition, the risk assessment was restricted to the newly expressed proteins and to specific metabolites resulting from the acetylase activity of the GAT4621 protein. The EFSA GMO Panel has identified a gap in the data on the agronomic and phenotypic characterisation of GM maize 98140 and considers that uncertainty over these characteristics remains. However, considering the scope of this application, the available data and the poor survival capacity of maize outside cultivated land, the EFSA GMO Panel concluded that there is very little likelihood of environmental effects due to the accidental release into the environment of viable grains from maize 98140. Considering its intended use as food and feed, interactions with the biotic and abiotic environment were not considered to be an issue. Risks associated with an unlikely but theoretically possible horizontal gene transfer from maize 98140 to bacteria have not been identified. The monitoring plan and reporting intervals were in line with the intended uses of maize 98140.

  10. Atlantis FLEX (BAY 22010 H – a new herbicide in cereals with efficacy against grasses

    Directory of Open Access Journals (Sweden)

    Kerlen, Dirk

    2014-02-01

    Full Text Available Atlantis FLEX (Mesosulfuron-methyl; Propoxycarbazone-sodium; Mefenpyr-diethyl is a new cereal herbicide to control blackgrass (Alopecurus myosuroides, ryegrass (Lolium spec., brome grass (Bromus spec., wild oat (Avena fatua, loose silky-bentgrass (Apera spica-venti L, annual meadow-grass (Poa annua L. and dicot weeds. Atlantis FLEX can be used in winter wheat, winter triticale, winter rye, winter durum wheat and spelt. The publication is based on efficacy trials from two years of spring application with Atlantis FLEX. It will be shown, that Atlantis FLEX generates a good to excellent efficacy against grass-weeds.

  11. Mapping of amino acid substitutions conferring herbicide resistance in wheat glutathione transferase.

    Science.gov (United States)

    Govindarajan, Sridhar; Mannervik, Bengt; Silverman, Joshua A; Wright, Kathy; Regitsky, Drew; Hegazy, Usama; Purcell, Thomas J; Welch, Mark; Minshull, Jeremy; Gustafsson, Claes

    2015-03-20

    We have used design of experiments (DOE) and systematic variance to efficiently explore glutathione transferase substrate specificities caused by amino acid substitutions. Amino acid substitutions selected using phylogenetic analysis were synthetically combined using a DOE design to create an information-rich set of gene variants, termed infologs. We used machine learning to identify and quantify protein sequence-function relationships against 14 different substrates. The resulting models were quantitative and predictive, serving as a guide for engineering of glutathione transferase activity toward a diverse set of herbicides. Predictive quantitative models like those presented here have broad applicability for bioengineering.

  12. Cossack Star – a new herbicide in cereals with efficacy against grasses and dicots

    Directory of Open Access Journals (Sweden)

    Kerlen, Dirk

    2016-02-01

    Full Text Available Cossack Star (mesosulfuron-methyl; iodosulfuron-methyl-sodium; thiencarbazone-methyl; mefenpyr-diethyl is a new cereal herbicide to control blackgrass (Alopecurus myosuroides, ryegrass (Lolium spec., wild oat (Avena fatua, loose silky-bentgrass (Apera spica-venti L., annual meadow-grass (Poa annua L. and dicot weeds. Cossack Star can be used in winter wheat, winter triticale, winter rye, winter durum wheat and spelt. The publication is based on efficacy trials from two years of spring application with Cossack Star.

  13. Atlantis Star – a new herbicide in cereals with efficacy against grasses and dicots

    Directory of Open Access Journals (Sweden)

    Kerlen, Dirk

    2016-02-01

    Full Text Available Atlantis Star (mesosulfuron-methyl; iodosulfuron-methyl-sodium; thiencarbazone-methyl; mefenpyr-diethyl is a new cereal herbicide to control blackgrass (Alopecurus myosuroides; sensitive and high infestation, brome grass (Bromus spec., ryegrass (Lolium spec., wild oat (Avena fatua, loose silky-bentgrass (Apera spica-venti L., annual meadow-grass (Poa annua L. and dicot weeds. Atlantis Star can be used in winter wheat, winter triticale, winter rye, winter durum wheat and spelt. The publication is based on efficacy trials from two years of spring application with Atlantis Star.

  14. Acute oral poisoning due to chloracetanilide herbicides.

    Science.gov (United States)

    Seok, Su-Jin; Choi, Sang-Cheon; Gil, Hyo-Wook; Yang, Jong-Oh; Lee, Eun-Young; Song, Ho-Yeon; Hong, Sae-Yong

    2012-02-01

    Chloracetanilide herbicides (alachlor, butachlor, metachlor) are used widely. Although there are much data about chronic low dose exposure to chloracetanilide in humans and animals, there are few data about acute chloracetanilide poisoning in humans. This study investigated the clinical feature of patients following acute oral exposure to chloracetanilide. We retrospectively reviewed the data on the patients who were admitted to two university hospitals from January 2006 to December 2010. Thirty-five patients were enrolled. Among them, 28, 5, and 2 cases of acute alachlor, metachlor, butachlor poisoning were included. The mean age was 49.8 ± 15.4 yr. The poison severity score (PSS) was 17 (48.6%), 10 (28.6%), 5 (14.3%), 2 (5.7%), and 1 (2.9%) patients with a PSS of 0, 1, 2, 3, and 4, respectively. The age was higher for the symptomatic patients (1-4 PSS) than that for the asymptomatic patients (0 PSS) (43.6 ± 15.2 vs 55.7 ± 13.5). The arterial blood HCO₃⁻ was lower in the symptomatic patients (1-4 PSS) than that in the asymptomatic patients (0 PSS). Three patients were a comatous. One patient died 24 hr after the exposure. In conclusion, although chloracetanilide poisoning is usually of low toxicity, elder patients with central nervous system symptoms should be closely monitored and cared after oral exposure.

  15. Herbicides and their metabolites in rainfall: Origin, transport, and deposition patterns across the midwestern and northeastern United States, 1990-1991

    Science.gov (United States)

    Goolsby, D.A.; Thurman, E.M.; Pomes, M.L.; Meyer, M.T.; Battaglin, W.A.

    1997-01-01

    Herbicides were detected in rainfall throughout the midwestern and northeastern United States during late spring and summer of 1990 and 1991. Herbicide concentrations exhibited distinct geographic and seasonal patterns. The highest concentrations occurred in midwestern cornbelt states following herbicide application to cropland. Volume-weighted concentrations of 0.2- 0.4??g/L for atrazine and alachlor were typical in this area during mid- April through mid-July, and weighted concentrations as large as 0.6-0.9 ??g/L occurred at several sites. Concentrations of 1-3 ??g/L were measured in a few individual samples. Atrazine was detected most often followed by alachlor, deethylatrazine, metolachlor, cyanazine, and deisopropyl-atrazine. The high ratio (~0.5) of deethylatrazine to atrazine in rainfall suggests atmospheric degradation of atrazine. Mass deposition of herbicides was greatest in areas where herbicide use was high and decreased with distance from the cornbelt. Estimated deposition rates for both atrazine and alachlor ranged from more than 240 ??g m-2 yr-1 for some areas in the midwestern states to less than 10 ??g m-2 yr-1 for the New England states. The estimated annual deposition of atrazine on the Great Lakes ranged from about 12 to 63 ??g m-2 yr-1. The total amounts of atrazine and alachlor deposited annually in rainfall in the study area represent about 0.6% of the atrazine and 0.4% of the alachlor applied annually to crops in the study area.

  16. A 3D-Printed, Portable, Optical-Sensing Platform for Smartphones Capable of detecting the Herbicide 2,4-Dichlorophenoxyacetic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yijia; Zeinhom, Mohamed M.; Yang, Mingming; Sun, Rongrong; Wang, Shenfu; Smith, Jordan N.; Timchalk, Charles; Li, Lei; Lin, Yuehe; Du, Dan

    2017-09-05

    Onsite rapid detection of herbicide and herbicide residuals in environmental and biological specimens is important for agriculture, environment, food safety, and health care. Traditional method for herbicide detection requires expensive laboratory equipment and a long turn-round time. In this work, we developed a single-stripe microliter plate smartphone colorimetric device for rapid and low-cost in-field test. This portable smartphone platform is capable of screening 8 samples in a microplate single-stripe. The device combined the advantages of small size (50×100×160 mm3) and low cost ($10). The platform was calibrated by using two different dye solutions, i.e. methyl blue (MB) and Rhodamine B, for green and red channels. The results showed good correlation with results attained from a traditional laboratory reader. We demonstrated the application of this platform for an herbicide, 2,4-Dichlorophenoxyacetic acid detection in the range of 1 ppb to 80 ppb. Spiked samples of tap water, rat serum, plasma and human serum were tested by our device. Recoveries obtained varied from 95.6% to 105.2% for all spiked samples using the microplate reader and from 93.7% to 106.9% using the smartphone device. This work validated that the smartphone optical sensing platform is comparable to the commercial microplate reader, it is eligible for onsite rapid and low-cost detection of herbicide for environmental evaluation and biological monitoring.

  17. Sorption of polar herbicides and herbicide metabolites by biochar-amended soil.

    Science.gov (United States)

    Dechene, Annika; Rosendahl, Ingrid; Laabs, Volker; Amelung, Wulf

    2014-08-01

    Biochar-amended soil has been proven to possess superior sorption capacities for several environmental pollutants compared with pure soil. However, the role of biochar in the immobilization of polar pesticides and their metabolites has hardly been tested. The aim of this study was therefore to investigate the effect of a soil amendment with biochar on the sorption of selected polar herbicides and herbicide metabolites (log Kow 0.3-chloridazon, metazachlor oxalic acid, metazachlor sulfonic acid) were tested, i.e. three anionic and one neutral polar compound. The results showed that the presence of biochar increased the sorption capacity of the soil only in the case of the uncharged compound methyl-desphenyl-chloridazon, for which the average distribution coefficients in biochar-amended soils were higher than in pure soil by a factor of 2.1-2.5. However, this effect rather seemed to reflect the increased soil organic carbon content after the addition of biochar than a preferred sorption of methyl-desphenyl-chloridazon to biochar. In the case of the three anionic compounds imazamox, metazachlor oxalic acid and metazachlor sulfonic acid, biochar amendment did not increase the sorption capacity of the soil for these compounds, presumably as a result of its negative net charge. Similarly, desorption experiments did not show any significant effect of the biochar amendment on desorption. This suggests that the potential of using biochar to mitigate the leaching of the tested polar pesticides or metabolites is limited.

  18. Morpho-anatomical structure of the leaf apparatus of spring barley under the influence of herbicide and plant growth regulators

    Directory of Open Access Journals (Sweden)

    Vitaliy P. Karpenko

    2012-03-01

    Full Text Available It has been found that the number of epidermal cells of spring barley leaf apparatus on the surface unit of the leaf decreases while their size increases under the application of herbicide «Calibre 75» at the rates of 30, 40, 50, 60 and 70 g/ha in mixtures with «Agat - 25K» which is consistent with the formation of anatomic structure of the leaf apparatus belonging to mesomorphic type.

  19. Applicator Training Manual for: Forest Pest Control.

    Science.gov (United States)

    Newman, Jim

    Described in this manual is the use of insecticides, fungicides, and herbicides in forestry. Both diseases and insects found in hardwoods and conifers are covered. Detailed information is given on methods of herbicide application. Finally, five important environmental considerations are given. (BB)

  20. Reducing the risks of herbicide resistance: best management practices and recommendations

    Science.gov (United States)

    Herbicides are the foundation of weed control in commercial crop production. However, herbicide-resistant weed populations are developing rapidly in response to selection pressure. Critical practices include reducing selection through diversification of weed control techniques, minimizing spread of ...

  1. Effect of some herbicides on the growth of two Drechslera species

    OpenAIRE

    Wojciech Fabisiewicz; Joanna Mikołajska

    2014-01-01

    Effect of auxinlike herbicides on growth of Drechslera sorokiniana and D. teres in vitro was investigated. All herbicides in high concentrations inhibited mycelial growth, sporulation and germination of conidia.

  2. Effect of some herbicides on the growth of two Drechslera species

    Directory of Open Access Journals (Sweden)

    Wojciech Fabisiewicz

    2014-08-01

    Full Text Available Effect of auxinlike herbicides on growth of Drechslera sorokiniana and D. teres in vitro was investigated. All herbicides in high concentrations inhibited mycelial growth, sporulation and germination of conidia.

  3. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities

    Science.gov (United States)

    Herbicide drift may have unintended impacts on native vegetation, adversely affecting structure and function of plant communities. However, these potential effects have been rarely studied or quantified. To determine potential ecological effects of herbicide drift, we construct...

  4. Dynamics of chloroacetanilide herbicides in various types of mesocosm wetlands.

    Science.gov (United States)

    Chen, Zhongbing; Chen, Yi; Vymazal, Jan; Kule, Lumír; Koželuh, Milan

    2017-01-15

    Constructed wetlands (CWs) for pesticide mitigation from agricultural runoff became widespread in the last decade. However, comparison of different types of CWs at one location is missing. Therefore, site by site comparison of three different types (subsurface flow, surface flow and floating hydroponic root mat) of CWs treating four chloroacetanilide herbicides (acetochlor, s-metolachlor, metazachlor, dimethachlor) were carried out. All three planted systems are effective in removing the four herbicides with removal efficiency >92% after 9days. The metabolites ethane sulfonic acids (ESA) and oxanilic acids (OA) of the four herbicides peaked at 9days in the surface flow CWs with soil, but all the metabolites didn't peaked in the subsurface flow with gravel systems and the floating hydroponic root mat system after 21days. All the detected metabolites account about 20% of the mother compounds. There is no noticeable metabolites accumulation in the control system (no plants and no substrate), which indicate no microbial degradation taken place. Plant accumulation and soil adsorption are negligible for the removal of the four herbicides, which are floating hydroponic root mat is the most cost-efficient alternatives for chloroacetanilide herbicides removal due to the absence of substrate. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The Symptoms of Herbicidal Action: The Case of Aclonifen

    Directory of Open Access Journals (Sweden)

    Özgür Kıvılcım Kılınç

    2015-03-01

    Full Text Available The symptoms which were directly bound to the biochemical mode of action of an herbicide, other symptoms result from an indirect consequence of this action. The symptoms of herbicidal action deeply differed and that the climatic factors during the two first weeks after treatment could change definitely the result of the selective herbicide action. The repetitive observation of symptoms allows to inform the farmer about the tolerance or resistance of certain plant species, including the culture, for instance through the appearance of symptoms on the first leaves of the seedlings and their absence in the following leaves. As a whole, the accurate observation of herbicidal symptoms on plants is the essential, rapid and non-expensive analysis of treatment effectiveness at the field scale. The purpose of the current report is to describe the symptoms of a very complex herbicidal action, that of aclonifen involving two modes of action for the same molecule, approximately at the same concentration, and to compare these symptoms under field conditions and under controlled conditions, for a better understanding.

  6. 75 FR 17857 - Removal of Obsolete References to Herbicides Containing Dioxin

    Science.gov (United States)

    2010-04-08

    ... AFFAIRS 38 CFR Part 1 RIN 2900-AN56 Removal of Obsolete References to Herbicides Containing Dioxin AGENCY... containing dioxin and radiation to remove the obsolete references to herbicides containing dioxin. This final... health effects of exposure to herbicides containing dioxin. This document makes non-substantive changes...

  7. How benthic diatoms within natural communities respond to eight common herbicides with different modes of action.

    Science.gov (United States)

    Wood, Rebecca J; Mitrovic, Simon M; Lim, Richard P; Kefford, Ben J

    2016-07-01

    Herbicides are common pollutants of rivers in agricultural regions. These contaminants include various types of chemicals with different modes of toxic action. Herbicides can have toxic effects on freshwater benthic diatoms, the base of the aquatic food web. We examined the effects of (non-mixture) herbicide exposure to the health of diatoms for eight common herbicides with three different modes of action; the photosystem II (PSII) inhibitors: atrazine, simazine, hexazinone, tebuthiuron and diuron; two auxinic herbicides: MCPA and 2,4-D; and the EPSP synthase inhibitor: glyphosate. Benthic diatoms within riverine communities were exposed to each herbicide in rapid toxicity tests at concentrations of 50, 200 and 500μgL(-1). The most sensitive taxa were Gomphonema spp. and Encyonema gracilis. Navicula cryptotenella was the most tolerant to herbicide exposure. There was no significant effect of the different herbicide modes of action at the community level. Herbicide mode of action did not alter which taxa were most sensitive within the community and sensitivity rankings of the dominant diatom taxa were similar for each of the eight herbicides. The consistency of the results between herbicides suggests that freshwater benthic diatoms may be suitable in situ indicators for detecting the toxicity of herbicides with differing modes of action. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Why have no new herbicide modes of action appeared in recent years?

    Science.gov (United States)

    Duke, Stephen O

    2012-04-01

    Herbicides with new modes of action are badly needed to manage the evolution of resistance of weeds to existing herbicides. Yet no major new mode of action has been introduced to the market place for about 20 years. There are probably several reasons for this. New potential products may have remained dormant owing to concerns that glyphosate-resistant (GR) crops have reduced the market for a new herbicide. The capture of a large fraction of the herbicide market by glyphosate with GR crops led to significantly diminished herbicide discovery efforts. Some of the reduced herbicide discovery research was also due to company consolidations and the availability of more generic herbicides. Another problem might be that the best herbicide molecular target sites may have already been discovered. However, target sites that are not utilized, for which there are inhibitors that are highly effective at killing plants, suggests that this is not true. Results of modern methods of target site discovery (e.g. gene knockout methods) are mostly not public, but there is no evidence of good herbicides with new target sites coming from these approaches. In summary, there are several reasons for a long dry period for new herbicide target sites; however, the relative magnitude of each is unclear. The economic stimulus to the herbicide industry caused by the evolution of herbicide-resistant weeds, especially GR weeds, may result in one or more new modes of action becoming available in the not too distant future. Copyright © 2011 Society of Chemical Industry.

  9. 81 FR 35767 - Pesticides; Draft Guidance for Pesticide Registrants on Herbicide Resistance Management Labeling...

    Science.gov (United States)

    2016-06-03

    ... draft PR Notice (2016-XX) communicates the Agency's approach to addressing herbicide-resistant weeds by...-resistant weeds by providing guidance on labeling, education, training, and stewardship for herbicides... approach to slow the development and spread of herbicide- resistant weeds, and prolong the useful...

  10. Soil microbial community response to surfactants and herbicides in two soils

    Science.gov (United States)

    The impact of herbicides on more than just the target weed and the effect of some herbicides on the soil biota is of environmental interest. The surfactants that are often used with herbicides are also coming under fire as a potential harm to the soil life. We used a silt loam and a silty clay loam ...

  11. Intraregional and inter-regional variability of herbicide sensitivity in common arable weed populations

    DEFF Research Database (Denmark)

    de Mol, Friederike; Gerowitt, Bärbel; Kaczmarek, Sylwia

    2015-01-01

    The question on intraregional versus inter-regional variability in herbicide sensitivity for weed populations is of major importance, both in extrapolation of model parameters and in herbicide zonal approval procedures. We hypothesised that inter-regional variability in herbicide sensitivity for ...

  12. Herbicide tolerance and seed survival of grain amaranth (Amaranthus sp.)

    DEFF Research Database (Denmark)

    Kudsk, Per; Taberner, Andreu; de Troiani, Rosa M.;

    2012-01-01

    Amaranth is receiving increasing attention as an alternative crop to small grain cereals. From a weed control point of view cultivation of amaranth poses two problems. Firstly, amaranth grows slowly after emergence and hence is very susceptible to competition by weeds and secondly, seed losses...... at harvest are significant due to an uneven maturing and volunteer amaranth plants could potentially become a weed problem in following crops. Nonetheless, no studies are available on the tolerance of amaranth to herbicides or the survival of seeds in the soil. In this study we examined 1) the tolerance...... of amaranth to a range of herbicides in a series of outdoor pot experiments and in one field experiment and 2) the survival of amaranth seeds buried at 4 depths (2.5, 5, 10 and 25 cm) in 3 countries. The results showed that amaranth is very susceptible to broadleaved weed herbicides. Of the broadleaved...

  13. Synthesis and Herbicidal Activity of Substituted Pyrazole Isothiocyanates

    Directory of Open Access Journals (Sweden)

    Xing Zhang

    2012-10-01

    Full Text Available Isothiocyanates and substituted pyrazoles were combined to form a series of novel isothiocyanates with highly effective herbicidal activity. The target compounds were analyzed by elemental analysis, 1H-NMR, EI-MS and IR spectroscopy. The synthesized compounds, particularly compounds 3-1 and 3-7, exhibited good herbicidal activities against four weeds. The EC50 values of compound 3-1 against Echinochloa crusgalli L., Cyperus iria L., Dactylis glomerata L., and Trifolium repens L. were 64.32, 65.83, 62.42, and 67.72 µg/mL, respectively. The EC50 values of compound 3-7 against E. crusgalli L., C. iria L., D. glomerata L., T. repens L. were 65.33, 64.90, 59.41 and 67.41 µg/mL, respectively. Compounds 3-1 and 3-7 may be further optimized as lead compounds for new herbicides.

  14. Synthesis and Herbicidal Activity of Novel Sulfonylurea Derivatives

    Institute of Scientific and Technical Information of China (English)

    CAO Gang; WANG Mei-yi; WANG Ming-zhong; WANG Su-hua; LI Yong-hong; LI Zheng-ming

    2011-01-01

    Sulfonylurea herbicides have been applied worldwide in agriculture. Some sulfonylurea residues might exist in soil longer than that people expected. However, flupyrsulfuron-methyl-sodium which was firstly reported as a new 5-substituted sulfonylurea herbicide has less than one month residual life. Therefore, 5-substituted benzenesulfonylureas are potential molecules to regulate its residual situation. In order to develop new sulfonylurea derivatives,the substituent on the critical 5-posotion of the benzene ring was optimized. On the basis of our former work on sulfonylureas which contains a characteristic mono-substituted pyrimidine moiety, twenty-six new sulfonylurea derivatives were synthesized and their structures were confirmed by 1H NMR, 31p NMR and elemental analysis. The greenhouse bioassay tests show that some title compounds exhibit potent herbicidal activity.

  15. The influence of oil additives on the effectiveness of herbicides

    Directory of Open Access Journals (Sweden)

    Andrzej Chwedoruk

    2013-12-01

    Full Text Available The possibility to decrease herbicide doses without reducing their weed controlling effectiveness was investigated in two microplots and one field experiment. The following herbicides were used: atrazine, mixture of atrazine with terbutrine, MCPA + MCPP, MCPA + dikamba, desmedipham and phenmedipham (Betanal 31, 32 or 37. They were combined with one or several of the following adjuvants: parafinic oil, refuse product of rape oil rafination, oil mixture from the Institute of Organic Chemistry Industry (IPO-Warsaw, surfactant Rokafenol N-1O, mineral oil Nr 8 (Aviol. It was shown that the doses of herbicides could be lowered by 30-50% without loosing their phytotoxic effect on weeds due to addition of adjuvants. The mineral oil 8 was very active in a mixture with Betanal 37 and was completly non toxic toward sugar beets. The oil mixture from IPO and Rokafenol N-10 were very active in mixtures with atrazine or atraizine with terbutrine.

  16. Evaluating Split Nitrogen Applications and In-Season Tests for Organic Winter Bread Wheat

    Directory of Open Access Journals (Sweden)

    Erin H. Roche

    2017-02-01

    Full Text Available Achieving high grain yields and crude protein (CP standards in organic winter wheat (Triticum aestivum L. is challenging because ensuring that adequate nitrogen (N is available at key periods of wheat growth is difficult in organic systems. Split application regimes and in-season N management tests may improve organic production. In field trials conducted over four site-years in Maine and Vermont, USA, N application regimes were analyzed for their effects on organic winter wheat, N uptake, grain yield, and CP. Tiller density and tissue N tests were evaluated as in-season decision tools. Eight treatments arranged in a non-factorial design differed in terms of N application timing (pre-plant (PP, topdress at tillering (T1, and topdress at pre-stem extension (T2 and N rate. Treatments were: (1 an untreated check, (2 pre-plant N at a low rate of 78 kg N ha−1 (PPL, (3 pre-plant N at a high rate of 117 or 157 kg N ha−1 (PPH, (4 T178, (5 PPL + T139, (6 PPL + T239, (7 PPH + T239, and (8 PPL + T139 +T239. Responses to N treatments were variable among site-years, however some common results were identified. The PP-only treatments increased grain yields more than they increased CP. The T178 and PPH + T239 treatments were the most effective at increasing yield and CP, compared with the PP-only treatments. Tiller density and tissue N tests were good predictors of grain yield (r = 0.52, p < 0.001 and CP (r = 0.75, p < 0.001 respectively. Future work should test in-season decision tools using a wider range of tiller densities, and topdress N rates against tissue N measurements.

  17. Resistance to acetyl-CoA carboxylase-inhibiting herbicides.

    Science.gov (United States)

    Kaundun, Shiv S

    2014-09-01

    Resistance to acetyl-CoA carboxylase herbicides is documented in at least 43 grass weeds and is particularly problematic in Lolium, Alopecurus and Avena species. Genetic studies have shown that resistance generally evolves independently and can be conferred by target-site mutations at ACCase codon positions 1781, 1999, 2027, 2041, 2078, 2088 and 2096. The level of resistance depends on the herbicides, recommended field rates, weed species, plant growth stages, specific amino acid changes and the number of gene copies and mutant ACCase alleles. Non-target-site resistance, or in essence metabolic resistance, is prevalent, multigenic and favoured under low-dose selection. Metabolic resistance can be specific but also broad, affecting other modes of action. Some target-site and metabolic-resistant biotypes are characterised by a fitness penalty. However, the significance for resistance regression in the absence of ACCase herbicides is yet to be determined over a practical timeframe. More recently, a fitness benefit has been reported in some populations containing the I1781L mutation in terms of vegetative and reproductive outputs and delayed germination. Several DNA-based methods have been developed to detect known ACCase resistance mutations, unlike metabolic resistance, as the genes remain elusive to date. Therefore, confirmation of resistance is still carried out via whole-plant herbicide bioassays. A growing number of monocotyledonous crops have been engineered to resist ACCase herbicides, thus increasing the options for grass weed control. While the science of ACCase herbicide resistance has progressed significantly over the past 10 years, several avenues provided in the present review remain to be explored for a better understanding of resistance to this important mode of action.

  18. Scientific Opinion on application EFSA-GMO-NL-2011-97 for the placing on the market of insect-resistant and herbicide-tolerant genetically modified cotton T304-40 for food and feed uses, import and processing under Regulation (EC No 1829/2003 from Bayer CropScience AG

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Genetically Modified Organisms (GMO

    2013-06-01

    Full Text Available Cotton T304-40 contains a single insert consisting of the cry1Ab and the bar expression cassettes, providing insect resistance and herbicide tolerance, respectively. Bioinformatic analyses and genetic stability studies did not raise safety issues. Levels of the Cry1Ab and PAT proteins in cotton T304-40 have been sufficiently analysed. No biologically relevant differences were identified in the compositional analysis when the seed of T304-40 was compared with its conventional counterpart and non-GM cotton varieties. The safety assessment identified no concerns regarding the potential toxicity and allergenicity of the newly introduced Cry1Ab and PAT proteins. Based on the information available, there is no evidence that the genetic modification might significantly change the overall allergenicity of cotton T304-40. Nutritional equivalence of cotton T304-40 to its conventional counterparts was indicated by compositional data. The EFSA GMO Panel concludes that cotton T304-40 is as safe and nutritious as its conventional counterpart and that it is unlikely that the overall allergenicity of the whole plant is changed. There are no indications of an increased likelihood of establishment and spread of feral cotton plants. Considering its intended uses as food and feed, interactions with the biotic and abiotic environment were not considered to be an issue. Risks associated with an unlikely but theoretically possible horizontal gene transfer from cotton T304-40 to bacteria have not been identified. The monitoring plan and reporting intervals are in line with the intended uses of cotton T304-40. The EFSA GMO Panel considers that the information available for cotton T304-40 addresses the scientific comments raised by the Member States and states that cotton T304-40, as described in the application, is as safe as its conventional counterpart with respect to potential effects on human and animal health and the environment in the context of its intended uses

  19. Formulation, Application and Market of Dry Field Herbicide Pendimethalin%旱田除草剂二甲戊灵的剂型、应用和市场

    Institute of Scientific and Technical Information of China (English)

    华乃震

    2015-01-01

    论述了二甲戊灵的市场、作用机理、产品剂型,重点介绍了二甲戊灵的应用效果以及环保剂型的开发。指出二甲戊灵目前虽以乳油产品为主,但悬浮剂、水乳剂和微囊悬浮剂替代乳油是发展趋势。%The market, action mechanism and formulation of pendimethalin were discussed in this paper. The application and development of formulation were introduced in detail. Pendimethalin EC was still used widely, but SC, EW, and CS would instead of EC.

  20. Controle de plantas daninhas na cultura do milho (Zea mays L. por meio de herbicidas Weed control in maize (Zea mays L. with herbicides

    Directory of Open Access Journals (Sweden)

    C. A. L. dos Santos

    1979-12-01

    Full Text Available Com o objetivo de se verificar a ação do butylate, aplicado isoladamente e em mistura com atrazine, no controle de plantas daninhas da cultura do milho, foi instalado um experimento de campo em solo fino areno-argiloso. Foram utilizados os seguintes tratamentos: butylate a 2,80; 3,60 e 4,32 kg/ha (p.p.i.; butylate + atrazine a 3,24 + 0,80; 3,24 + 1,20 e 3,60 + 0,96 kg/ha (p.p.i.; atrazine a 3,00 kg/ha e atrazine + metolachlor a 1,40 + 2,10 kg/ha, ambos aplicados em pré-emergência e empregados como herbicidas padrão para a cultura. As plantas daninhas encontradas foram: tiririca - Cyperus rotundus L., carurú comum - .:maranthus viridis L., capim de colchão - Digitaria sanguinalis (L. Scop. e capim pé-de-galinha Eleusine indica (L. Gaertn. Butylate nas três doses apresentou-se bem contra C. rotundus e E. indica; nas doses de 3,60 e 4,32 kg foram obtidos bons resultados sobre D. sanguinalis. Butylate + atrazine controlou, nas três doses, todas as espécies incidentes, o mesmo ocorrendo com a mistura atrazine + metolachlor. Atrazine foi mais eficiente para A. viridis e E. indica. Nas condições em que foi conduzido o experimento nenhum dos herbicidas foi prejudicial para a cultura.Butylate at 2.80; 3.60 and 4.32 kg/ha and butylate + atrazine at. 3.24 + 0.80; 3.24 + 1.20 and 3.60 + 0.96 kg, were applied in preplant incorporated; atrazine at 3.00 kg and atrazine + metolachlor at 1.40 + 2.10 kg were applied in preemergence on corn. The weeds were represented by Cyperus rotundus L., Amaranthus viridis L., Digitaria sanguinalis (L. Scop. and Eleusine indica (L. Gaertn. Butylate + atrazine, in all rates, atrazine + metolachlor and atrazine gave good control of the weeds in general. Butylate, in the three rates, controlled C. rotundus and E. indica; at 3.60 and 4.32 kg/ha controlled well D. sanguinalis. The herbicides did not cause injuries to the crop.

  1. Accidental Chemical Burns of Oral Mucosa by Herbicide

    Directory of Open Access Journals (Sweden)

    S P Deo

    2012-03-01

    Full Text Available Glyphosate (GlySH is a broad spectrum, nonselective herbicide, widely used in agriculture. This case report describes a 25-year-old man presenting with extensive chemical burns and ulceration of the oral cavity as a result of accidental exposure to GlySH. This paper aims to illustrate the typical appearance of GlySH related chemical mucosal burn and to demonstrate the severity of the corrosive effect of GlySH which need team approach to prevent unfavorable sequelae such as microstomia. Keywords: Chemical burns, corrosive injury, glyphosate poisoning, herbicide, microstomia, oral mucosal burn.

  2. Non-target-site glyphosate resistance in Conyza bonariensis is based on modified subcellular distribution of the herbicide.

    Science.gov (United States)

    Kleinman, Ziv; Rubin, Baruch

    2017-01-01

    Conyza spp. were the first broadleaf weeds reported to have evolved glyphosate resistance. Several mechanisms have been proposed for glyphosate resistance. In an effort to elucidate the mechanism of this resistance in Conyza bonariensis, possible target-site and non-target-site mechanisms were investigated in glyphosate-resistant (GR) C. bonariensis biotypes. Using differential glyphosate applications and analyses of shikimate accumulation, we followed the herbicide effect in different plant organs and monitored the herbicide's apparent mobility. We found high shikimate levels in the roots and young leaves of glyphosate-sensitive (GS) plants, regardless of the site of application, whereas in GR plants, shikimate accumulated mainly in treated young leaves. (14) C-glyphosate studies, however, revealed the expected source-to-sink translocation pattern in both GS and GR plants. Sequencing of the appropriate EPSPS DNA fragments of GR and GS plants revealed no alteration at the Pro106 position. These data support the hypothesis that the glyphosate resistance of our C. bonariensis GR biotypes is associated with altered subcellular distribution of glyphosate, which keeps the herbicide sequestered away from the EPSPS target site in the chloroplast. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Positive and normative modeling for Palmer amaranth control and herbicide resistance management.

    Science.gov (United States)

    Frisvold, George B; Bagavathiannan, Muthukumar V; Norsworthy, Jason K

    2017-06-01

    Dynamic optimization models are normative; they solve for what growers 'ought to do' to maximize some objective, such as long-run profits. While valuable for research, such models are difficult to solve computationally, limiting their applicability to grower resistance management education. While discussing properties of normative models in general, this study presents results of a specific positive model of herbicide resistance management, applied to Palmer amaranth control on a representative cotton farm. This positive model compares a proactive resistance management strategy to a reactive strategy with lower short-run costs, but greater risk of herbicide resistance developing. The proactive strategy can pay for itself within 1-4 years, with a yield advantage of 4% or less if the yield advantage begins within 1-2 years of adoption. Whether the proactive strategy is preferable is sensitive to resistance onset and yield losses, but less sensitive to cotton prices or baseline yields. Industry rebates to encourage residual herbicide use (to delay resistance to post-emergence treatments) may be too small to alter grower behavior or they may be paid to growers who would have used residuals anyway. Rebates change grower behavior over a relatively narrow range of model parameters. The size of rebates needed to induce a grower to adopt the proactive strategy declines significantly if growers extend their planning horizon from 1 year to 3-4 years. Whether proactive resistance management is more profitable than a reactive strategy is more sensitive to biological parameters than economic ones. Simulation results suggest growers with longer time horizons (perhaps younger ones) would be more responsive to rebate programs. More empirical work is needed to determine how much rebates increase residual use above what would occur without them. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Herbicide-resistance to mesosulfuron + iodosulfuron in Alopecurus myosuroides (black-grass).

    Science.gov (United States)

    Hull, R; Marshall, R; Tatnell, L; Moss, S R

    2008-01-01

    A formulated mixture of two sulfonylurea herbicides, mesosulfuron and iodosulfuron, combined with the safener mefenpyr-diethyl ('Atlantis') is being used extensively in Europe and there is concern that resistance will evolve in Alopecurus myosuroides (black-grass). Glasshouse screening bioassays showed that the best single discriminating dose for detecting resistance is the UK field rate of 12 g mesosulfuron + 2.4 g iodosulfuron ha(-1) applied at the 3 leaf stage, with herbicidal effects recorded 4 weeks later. Using this methodology with 466 UK seed samples, resistance was confirmed on a total of 24 farms in 11 counties by 2005, 81 farms in 19 counties by 2006 and 133 farms in 21 counties by 2007. Cultural histories for 10 resistant (R) and 7 susceptible (S) fields were obtained. Winter cereals were grown in 73% R/ 71% S years and a mean of 3.0 grass-weed active ingredients applied per year in both R and S fields. Four herbicide classes dominated, comprising almost 80% of all applications: ALS inhibitors 17% R/ 21% S; ACCase inhibitors 19% R/ 17% S; substituted ureas 18% R/ 10% S; dinitroanilines 25% R/ 30% S. Consequently, ALS inhibitor use was not excessive and field histories were not a reliable indicator of resistance risk. DNA sequencing of the ALS gene from resistant and susceptible individuals of nine populations was used to identify resistance mechanisms. All highly resistant individuals from seven populations showed a single nucleotide polymorphism in the first position of the Pro197 codon of an A. myosuroides ALS gene. One population showed resistant individuals with a single nucleotide polymorphism in the second position of the Trp574 codon. Consequently ALS target site resistance was confirmed in eight of the nine populations studied in detail.

  5. Potato (Solanum tuberosum) greenhouse tuber production as an assay for asexual reproduction effects from herbicides.

    Science.gov (United States)

    Olszyk, David; Pfleeger, Thomas; Lee, E Henry; Plocher, Milton

    2010-01-01

    The present study determined whether young potato plants can be used as an assay to indicate potential effects of pesticides on asexual reproduction. Solanum tuberosum (Russet Burbank) plants were grown from seed pieces in a mineral soil in pots under greenhouse conditions. Plants were treated with herbicides (cloransulam, dicamba, glyphosate, imazapyr, primsulfuron, sulfometuron, or tribenuron) at simulated drift levels [application rates (f.a.r.)], approximately 14 d after emergence (DAE). Plant height was measured approximately 14 d after treatment (DAT). Production of small tubers and shoot dry weight were determined at approximately 28 DAT. Imazapyr, sulfometuron, and tribenuron caused significant reductions in tuber fresh weight, with the effective concentrations producing a 25% potato tuber fresh weight (EC25) of 0.00038, 0.0016, and 0.0021 x f.a.r. of 1,124, 52, and 9 g active ingredient hectare(-1) (g a.i. HA(-1)), respectively. Primisulfuron, dicamba, and cloransulam also significantly reduced tuber fresh weight, but with higher EC25 values of 0.011, 0.07, and 0.010 to 0.2 x f.a.r. of 40, 558, and 18 g a.i. HA(-1), respectively. Glyphosate had little effect on tuber fresh weight, with a significant reduction in only one experiment. Sulfometuron reduced tuber fresh weight at an EC25 value lower than the EC25 values for shoot dry weight or plant height. For other herbicides, the reduction in tuber fresh weight occurred within the range of EC25 values for other responses. Although additional experiments are required to develop further a phytotoxicity test, these results indicated that tuber production in young potato plants (harvested approximately 42 DAE) may be an effective assay for below-ground asexual reproductive responses to herbicides, especially acetolactate synthase inhibitors.

  6. Segurança das condições de aplicação de herbicidas com aerobarco em plantas daninhas aquáticas no lago da Hidrelétrica de Jupiá Safety of aquatic herbicide application using an airboat

    Directory of Open Access Journals (Sweden)

    J.G. Machado Neto

    2006-06-01

    were to quantify the dermal exposure (DE and respiratory exposures (RE of the driver and driver's assistant of an airboat during herbicide application for aquatic weed management, to classify these working conditions as safe or unsafe, and to calculate the need for exposure control and the time of safe working. The airboat had an aluminum hull (4.85 x 2.42 m with a propeller coupled to a 350 HP gasoline engine. The spraying equipment consisted of a diaphragm pump with a maximum flow rate of 49.69 L min-1 and a maximum pressure of 25 kg cm-2 driven by a 4 HP gasoline engine, a 189 L spraying tank, and an aluminum spray boom divided into two 3 m lateral sections positioned between the back of the driver's seat and the extremity of the protective structure of the propeller. Each boom section contained six AI 100 03 air induction flat spray nozzles spaced 0.5 m apart and an OC 20 nozzle fixed to each end of the boom. The set of nozzles was adjusted to cover a width of 6 m, and application volume of 200 L spray ha-1. An electronic flow control system coupled to a DGPS (with submetric precision was used to automatically correct the flow rate as a function of alterations of the true speed of the boat. Herbicide exposure had been calculated with the substitute data of the exposures to sprays, evaluated with the tracers copper (DE and manganese (RE added to the sprays. Exposure was extrapolated to a work day of 6 hours. Working condition safety was determined by calculating the margin of safety (MOS using the formula MOS = (NOEL x 70 / AEQ x 10, where AEQ= absorved exposure quantity. The working conditions exposed the driver to 10.65 mL spray day-1 and the driver's assistant, who sits on a chair 2.0 m in front of the driver and the spray boom, to 16.80 mL day-1. Application of glyphosate (Rodeo, 6 L ha-1, 2,4-D (DMA 806 BR, 8 L ha-1 and fluridone (Sonar AQ, 0.4 L ha-1 was classified as safe (MS > 1 for the driver and driver's assistant. The application of diquat (Reward, 4.0 L

  7. Temperature and Light Modulation of Herbicide Toxicity on Algal and Cyanobacterial Physiology

    Directory of Open Access Journals (Sweden)

    Marcelo Pedrosa Gomes

    2017-08-01

    Full Text Available HIGHLIGHTSWe reviewed the interaction between light, temperature and herbicides on algal and cyanobacterial physiology.Temperature is the main factor affecting herbicide toxicity to algae and cyanobacteria.Changes in light environment may modulate the effects of photosynthesis-targeting herbicides.Important interactions between climatic parameters and herbicide toxicity have been discussed in the literature. As climate changes are expected to influence the growth conditions of aquatic photosynthetic organisms over the next century by modifying the physicochemical parameters of the environment (such as temperature and incident light characteristics, the following questions arise: How will variations in climatic conditions influence herbicide toxicity in algae and cyanobacteria? Are these coupled effects on aquatic photosynthetic organism physiology antagonistic, additive, or synergistic? We discuss here the physiological responses of algae and cyanobacteria to the combined effects of environmental changes (temperature and light and herbicide exposure. Both temperature and light are proposed to influence herbicide toxicity through acclimation processes that are mainly related to cell size and photosynthesis. Algal and cyanobacterial responses to interactions between light, temperature, and herbicides are species-specific, making it difficult today to establish a single model of how climate changes will affect toxicity of herbicides. Acclimation processes could assure the maintenance of primary production but total biodiversity should decrease in communities exposed to herbicides under changing temperature and light conditions. The inclusion of considerations on the impacts of environmental changes on toxicity of herbicides in water quality guidelines directed toward protecting aquatic life is now urgently needed.

  8. Management of herbicide resistance in wheat cropping systems: learning from the Australian experience.

    Science.gov (United States)

    Walsh, Michael J; Powles, Stephen B

    2014-09-01

    Herbicide resistance continues to escalate in weed populations infesting global wheat (Triticum aestivum L.) crops, threatening grain production and thereby food supply. Conservation wheat production systems are reliant on the use of efficient herbicides providing low-cost, selective weed control in intensive cropping systems. The resistance-driven loss of herbicide resources combined with limited potential for new herbicide molecules means greater emphasis must be placed on preserving existing herbicides. For more than two decades, since the initial recognition of the dramatic consequences of herbicide resistance, the challenge of introducing additional weed control strategies into herbicide-based weed management programmes has been formidable. Throughout this period, herbicide resistance has expanded unabated across the world's wheat production regions. However, in Australia, where herbicide resources have become desperately depleted, the adoption of harvest weed seed control is evidence, at last, of a successful approach to sustainable weed management in wheat production systems. Growers routinely including strategies to target weed seeds during crop harvest, as part of herbicide-based weed management programmes, are now realising significant weed control and crop production benefits. When combined with an attitude of zero weed tolerance, there is evidence of a sustainable weed control future for wheat production systems. The hard-learned lessons of Australian growers can now be viewed by global wheat producers as an example of how to stop the continual loss of herbicide resources in productive cropping systems.

  9. Effects of herbicide-treated host plants on the development of Mamestra brassicae L. caterpillars.

    Science.gov (United States)

    Hahn, Melanie; Geisthardt, Martin; Brühl, Carsten A

    2014-11-01

    Herbicides are widely used pesticides that affect plants by changing their chemistry. In doing so, herbicides might also influence the quality of plants as food for herbivores. To study the effects of herbicides on host plant quality, 3 plant species (Plantago lanceolata L., P. major L., and Ranunculus acris L.) were treated with sublethal rates of either a sulfonylurea (Atlantis WG, Bayer CropScience) or a glyphosate (Roundup LB Plus, Monsanto) herbicide, and the development of caterpillars of the cabbage moth Mamestra brassicae L. that fed on these plants was observed. Of the 6 tested plant-herbicide combinations, 1 combination (R. acris + sulfonylurea herbicide) resulted in significantly lower caterpillar weight, increased time to pupation, and increased overall development time compared with larvae that were fed unsprayed plants. These results might be caused by a lower nutritional value of these host plants or increased concentrations of secondary metabolites that are involved in plant defense. The results of the present and other studies suggest potential risks to herbivores that feed on host plants treated with sublethal rates of herbicides. However, as the effects of herbicides on host plant quality appear to be species-specific and as there are numerous plant-herbicide-herbivore relationships in agricultural landscapes, a general reduction in herbicide contamination of nontarget habitats (e.g., field margins) might mitigate the negative effects of herbicides on host plant quality.

  10. Scientific Opinion on application EFSA-GMO-NL-2007-45 for the placing on the market of herbicide-tolerant, high-oleic acid, genetically modified soybean 305423 for food and feed uses, import and processing under Regulation (EC No 1829/2003 from Pioneer

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Genetically Modified Organisms (GMO

    2013-12-01

    Full Text Available Soybean 305423 was developed through particle bombardment and contains gm-fad2-1 and gm-hra expression cassettes, conferring a high oleic acid profile and tolerance to acetolactate synthase (ALS-inhibiting herbicides. Bioinformatic analyses and genetic stability studies did not raise safety issues. Levels of the GM-HRA protein in soybean 305423 have been sufficiently analysed. Soybean 305423 differs from the conventional counterpart in the seed fatty acid profile and for the presence of the GM-HRA protein. It is agronomically equivalent to non-GM reference soybeans. The safety assessment of GM-HRA identified no concerns regarding potential toxicity and allergenicity. There are no indications that the overall allergenicity of soybean 305423 has changed. Nutritional assessment on soybean 305423 oil and derived food products did not identify concerns on human health and nutrition. There are no concerns regarding the use of feeding stuffs derived from soybean 305423. There are no indications of an increased likelihood of establishment and spread of feral GM soybean plants. Environmental risks associated with an unlikely, but theoretically possible, horizontal gene transfer from soybean 305423 to bacteria have not been identified. Potential biotic and abiotic interactions of soybean 305423 were not considered to be an issue owing to the low level of environmental exposure. The post-market environmental monitoring plan is in line with the scope of soybean 305423. The EFSA GMO Panel considers that the information available for soybean 305423 addresses the scientific comments raised by the Member States and states that the soybean 305423, as described in the application, is as safe as its conventional counterpart with respect to potential effects on human and animal health and the environment in the context of the scope. The GMO Panel recommends a post-market monitoring plan, focusing on the collection of consumption data for the European

  11. Herbicide-resistance conferred by expression of a catalytic antibody in Arabidopsis thaliana.

    Science.gov (United States)

    Weiss, Yael; Shulman, Avidor; Ben Shir, Irina; Keinan, Ehud; Wolf, Shmuel

    2006-06-01

    Engineering herbicide resistance in crops facilitates control of weed species, particularly those that are closely related to the crop, and may be useful in selecting lines that have undergone multiple transformation events. Here we show that herbicide-resistant plants can be engineered by designing an herbicide and expressing a catalytic antibody that destroys the herbicide in planta. First, we developed a carbamate herbicide that can be catalytically destroyed by the aldolase antibody 38C2. This compound has herbicidal activity on all three plant species tested. Second, the light chain and half of the heavy chain (Fab) of the catalytic antibody were targeted to the endoplasmic reticulum in two classes of Arabidopsis thaliana transformants. Third, the two transgenic plants were crossed to produce an herbicide-resistant F1 hybrid. The in vitro catalytic activity of the protein from F1 hybrids corroborates that catalytic antibodies can be constitutively expressed in transgenic plants, and that they can confer a unique trait.

  12. Fourier transform of delayed fluorescence as an indicator of herbicide concentration.

    Science.gov (United States)

    Guo, Ya; Tan, Jinglu

    2014-12-21

    It is well known that delayed fluorescence (DF) from Photosystem II (PSII) of plant leaves can be potentially used to sense herbicide pollution and evaluate the effect of herbicides on plant leaves. The research of using DF as a measure of herbicides in the literature was mainly conducted in time domain and qualitative correlation was often obtained. Fourier transform is often used to analyze signals. Viewing DF signal in frequency domain through Fourier transform may allow separation of signal components and provide a quantitative method for sensing herbicides. However, there is a lack of an attempt to use Fourier transform of DF as an indicator of herbicide. In this work, the relationship between the Fourier transform of DF and herbicide concentration was theoretically modelled and analyzed, which immediately yielded a quantitative method to measure herbicide concentration in frequency domain. Experiments were performed to validate the developed method.

  13. NEGATIVE-ION MASS SPECTROMETRY OF SULFONYLUREA HERBICIDES

    Science.gov (United States)

    Sulfonylurea herbicides have been studied using neg-ion desorption chem.-ionization (DCI) mass spectrometry (MS) and DCI-MS/MS techniques. Both {M-H]- and M.- ions were obsd. in the DCI mass spectra. The collisonally activated dissocn. (CAD) spectra were characteristic of the str...

  14. Analysis of Herbicide Transport from Goodwater Creek Experimental Watershed

    Science.gov (United States)

    Environmental impacts caused by herbicide loss from agricultural production are well documented in the surface runoff-prone claypan region. The most widely known impact was for atrazine, which caused the Mark Twain Lake to be listed in the original 303(d) list for impaired waters. While this lake ha...

  15. Herbicide-resistant weed management: focus on glyphosate.

    Science.gov (United States)

    Beckie, Hugh J

    2011-09-01

    This review focuses on proactive and reactive management of glyphosate-resistant (GR) weeds. Glyphosate resistance in weeds has evolved under recurrent glyphosate usage, with little or no diversity in weed management practices. The main herbicide strategy for proactively or reactively managing GR weeds is to supplement glyphosate with herbicides of alternative modes of action and with soil-residual activity. These herbicides can be applied in sequences or mixtures. Proactive or reactive GR weed management can be aided by crop cultivars with alternative single or stacked herbicide-resistance traits, which will become increasingly available to growers in the future. Many growers with GR weeds continue to use glyphosate because of its economical broad-spectrum weed control. Government farm policies, pesticide regulatory policies and industry actions should encourage growers to adopt a more proactive approach to GR weed management by providing the best information and training on management practices, information on the benefits of proactive management and voluntary incentives, as appropriate. Results from recent surveys in the United States indicate that such a change in grower attitudes may be occurring because of enhanced awareness of the benefits of proactive management and the relative cost of the reactive management of GR weeds.

  16. Factors Influencing Observed Tillage Impacts on Herbicide Transport

    Science.gov (United States)

    Pappas, E. A.; Huang, C.; Smith, D. R.

    2009-04-01

    The widespread use and potential human health effects of the herbicides atrazine and glyphosate have generated interest in establishing how no-tillage impacts loading of these herbicides to runoff water in comparison to other tillage practices. In this study, potentially confounding factos such as time in tillage practice and type and distribution of residue cover, are weighed against inherent tillage impacts to soil structure in terms of relative effects on herbicide transport with runoff water. In this study, two small watersheds (one in no-till (NT) and one rotational till (RT)) were monitored during the first three years since conversion of the RT watershed from NT. In addition, rainfall simulation was applied to plots within each watershed during the first, third, and fifth years since the conversion. Runoff atrazine and glyphosate losses from RT areas were compared to losses from NT areas as a ratio of RT:NT. Results indicate a trend of increasing RT:NT value with time in tillage. Watershed monitoring indicated greater herbicide loading to runoff water from the NT watershed than the RT watershed during the first year since RT conversion, but this relationship reversed by the third year since conversion to RT. In addition, rainfall simulations were performed on small boxes of NT or RT soil having varying types and levels of residue cover in an attempt to isolate residue cover effects from true tillage effects.

  17. Modifying sorbents in controlled release formulations to prevent herbicides pollution

    Energy Technology Data Exchange (ETDEWEB)

    Cespedes, F.F.; Sanchez, M.V.; Garcia, S.P.; Perez, M.F. [University of Almeria, Almeria (Spain). Dept. of Inorganic Chemistry

    2007-10-15

    The herbicides chloridazon and metribuzin, identified as groundwater pollutants, were incorporated in alginate-based granules to obtain controlled release properties. In this research the effect of incorporation of sorbents such as bentonite, anthracite and activated carbon in alginate basic formulation were not only studied on encapsulation efficiency but also on the release rate of herbicides which was studied using water release kinetic tests. In addition, sorption studies of herbicides with bentonite, anthracite and activated carbon were made. The kinetic experiments of chloridazon and metribuzin release in water have shown that the release rate is higher in metribuzin systems than in those prepared with chloridazon, which has lower water solubility. Besides, it can be deduced that the use of sorbents reduces the release rate of the chloridazon and metribuzin in comparison to the technical product and to the alginate formulation without sorbents. The highest decrease in release rate corresponds to the formulations prepared with activated carbon as a sorbent. The water uptake, permeability, and time taken for 50% of the active ingredient to be released into water, were calculated to compare the formulations. On the basis of a parameter of an empirical equation used to fit the herbicide release data, the release of chloridazon and metribuzin from the various formulations into water is controlled by a diffusion mechanism.

  18. Evolving understanding of the evolution of herbicide resistance.

    Science.gov (United States)

    Gressel, Jonathan

    2009-11-01

    A greater number of, and more varied, modes of resistance have evolved in weeds than in other pests because the usage of herbicides is far more extensive than the usage of other pesticides, and because weed seed output is so great. The discovery and development of selective herbicides are more problematic than those of insecticides and fungicides, as these must only differentiate between plant and insect or pathogen. Herbicides are typically selective between plants, meaning that before deployment there are already some crops possessing natural herbicide resistance that weeds could evolve. The concepts of the evolution of resistance and the mechanisms of delaying resistance have evolved as nature has continually evolved new types of resistance. Major gene target-site mutations were the first types to evolve, with initial consideration devoted mainly to them, but slowly 'creeping' resistance, gradually accruing increasing levels of resistance, has become a major force owing to an incremental accumulation of genetic changes in weed populations. Weeds have evolved mechanisms unknown even in antibiotic as well as other drug and pesticide resistances. It is even possible that cases of epigenetic 'remembered' resistances may have appeared.

  19. Inheritance study on the stable herbicide resistance of transgenic rice

    Institute of Scientific and Technical Information of China (English)

    WUMingguo; HUAZhihua; LINJianrong; XUERui; WANGXiaoling; HUANGDanian

    1999-01-01

    The transgene technology showed a potentiality in crop improvement such as disease and insect resistance, anti-adversity, and grain quality. The inheritance of bar gene for herbicide BASTA resistance in stable transformed rice lines was studied for an understanding of the foreign gene inheritance pattern.

  20. Molecular Evaluation of Resistant to Aryloxyphenoxypropionate Herbicides in

    Directory of Open Access Journals (Sweden)

    M Rastgoo

    2012-10-01

    Full Text Available Molecular experiment was conducted to confirm resistant to aryloxyphenoxypropionate herbicides in winter wild oat (Avena ludoviciana Duriu. populations of wheat fields in Khuzestan province, at Faculty of Agriculture of Ferdowsi University, during year of 2006. First, 44 wild oat populations from Ahvaz, Andimeshk, Shush, Shushtar, Ramhormoz, Susangerd, and Dezful cities with a susceptible population were examined in screening experiments. According to these experiments, 37 populations of winter wild oat biotypes selected as suspected resistance populations, and used for molecular experiment to determine resistance mechanism. dCAPS method was carried out in three steps consisting of PCR, enzyme digestion, and gel electrophoresis. Results showed that mutation at position 1781 of ACCase enzyme resulted in resistance in 10 winter wild oat populations from Andimeshk (5, Shush (1, Shushtar (2, and Susangerd (2 to clodinafop propargyl, diclofop methyl, and fenoxaprop p ethyl herbicides. While, in other suspected resistance populations other mechanism such as metabolism is probable. Also, it was concluded that this method is a good technique to detect herbicide resistance and mechanism of herbicide resistance in winter wild oat.

  1. Sorption of the herbicide aminocyclopyrachlor by cation modified clay minerals

    Science.gov (United States)

    Aminocyclopyrachlor is a newly registered herbicide for the control of broadleaf weeds, grasses, vines and woody species in non-crops, turf, sod farms, and residential areas. At typical soil pH levels, aminocyclopyrachlor is in the anionic form. Anionic pesticides are generally weakly retained by mo...

  2. Synthesis and Herbicidal Activity of Novel Sulfonylureas Containing Thiadiazol Moiety

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Thirteen novel sulfonylureas containing thiadiazole moiety were synthesized in a two-step reaction. Their structures were determined using IR, 1H NMR, HRFTMS, and elemental analysis. Herbicidal activities of these compounds were determined in the green house bio-assay. The results show that four compounds among them exhibit some activity toward four tested herbs.

  3. Herbicide resistance in weeds: Survey, characterization, and mechanisms

    Science.gov (United States)

    The goal of this paper is to present a systematic diagnostic approach towards the characterization of herbicide resistance in a given weed population with regards to profile (single, multiple, cross resistance), magnitude (fold level), mechanism, and related bio-physiological aspects. Diagnosing her...

  4. Identification of citrullus lanatus germplasm lines tolerant to clomazone herbicide

    Science.gov (United States)

    Clomazone herbicide is registered for use in watermelon; however, crop tolerance is marginal and the recommended use rates (0.07 to 0.1 kg ai ha-1) are lower for watermelon than for some other crops. In a greenhouse germplasm evaluation experiment including 56 germplasm accessions and watermelon cu...

  5. Tolerance to the Herbicide Clomazone in Watermelon Plant Introductions

    Science.gov (United States)

    The pre-emergence herbicide clomazone (trade name: Command 3ME), is widely used in watermelon production in the US for suppression of annual grasses and broadleaf weeds growing in between plastic beds. Exposure of young watermelon plants to clomazone can cause moderate or severe injury that is expr...

  6. Citrullus Germplasm Lines Vary in Clomazone Herbicide Tolerance

    Science.gov (United States)

    Differences between Citrullus germplasm lines in clomazone injury were first observed when the herbicide was used for weed control in fields containing germplasm lines of watermelon breeding project at the U.S. Vegetable Laboratory, Charleston, SC. The objectives of this investigation were to asses...

  7. Herbicide activity of extracts from Ailanthus altissima (Simaroubaceae).

    Science.gov (United States)

    Pedersini, Cristiano; Bergamin, Massimo; Aroulmoji, Vincent; Baldini, Sanzio; Picchio, Rodolfo; Pesce, Patricia Gutierrez; Ballarin, Luca; Murano, Erminio

    2011-05-01

    The purpose of the present study was to isolate and characterize ailanthone-rich materials from the bark of the deciduous tree Ailanthus altissima (Mill.) Swingle and to assess their herbicide activity on selected herbaceous species. Ailanthone-rich fractions were obtained from A. altissima bark by extraction with dichloromethane and ethyl acetate and subsequent purification of these crude extracts, and of the remaining water mixture after solvent extraction, by means of gel permeation chromatography. A number of fractions were isolated and characterized for ailanthone content. A dichloromethane fraction was shown to contain 92% w/w of ailanthone, as demonstrated by HPLC and NMR analysis. A significant pre-emergence herbicide activity was found for most of the extracts which was directly correlated to ailanthone concentration. A remarkable combined pre- and post-emergence herbicide activity was found for a specific fraction. These results indicate that the bark of A. altissima may represent an interesting source for the production of natural herbicides for use in agriculture.

  8. Palmer Amaranth Identification and Documentation of Herbicide Resistance in Argentina

    Science.gov (United States)

    Palmer amaranth (Amaranthuspalmeri S. Wats.) has greatly disrupted agricultural practices in the US with its rapid growth and rapid evolution of herbicide resistance. This weed species is now suspected in Argentina. To document whether the suspected plant populations are indeed Palmer amaranth, mo...

  9. Adaptive responses of sorghum reproductive domain to herbicide action

    Directory of Open Access Journals (Sweden)

    I. О. Oginova

    2005-12-01

    Full Text Available Long-term study of sorghum reproductive features under the field conditions has been allowed to determine the significance of herbicide influence on panicles and pollen state of the cultivated plants. Informational characteristics of appropriate systems and possible ways of their further development were fixed.

  10. Effect of atrazine (Herbicide) on blood parameters of common carp ...

    African Journals Online (AJOL)

    EJIRO

    the environment the atrazine or triazine based herbicides are not degraded by ... biological effects of environmental pollution in waters. Monitoring of blood .... leading to an excess utilization of stored carbohydrates. Hussein et al. (1996) ... Acute toxicity of ammonia and its sublethal effects on selected haematological and.

  11. Vinegar as a broadcast herbicide for spring-transplanted onions

    Science.gov (United States)

    The weed control challenges for onion production are formidable; however, these challenges are even greater for those considering organic crop production. Organic onion producers need additional organic herbicides that can effectively provide post-emergent weed control. Field research was conducted...

  12. s-triazinte herbicides from southern ethiopian lakes

    African Journals Online (AJOL)

    hydrophobic membrane in a similar flow system used for SLM. .... separately and merged in a PTFE tee connection at an angle of 60". Further mixing was ..... herbicides and insecticides. to various fartns sprayed by farm workers and air plane.

  13. Field experiences with recent ALS-inhibitors on herbicide resistant blackgrass (Alopecurus myosuroides Huds.).

    Science.gov (United States)

    Desmet, E M; Bulcke, R; Maeghe, L

    2004-01-01

    In the growing season 2002-2003 two field experiments were carried out in winter wheat on the heavy clay soil of the coastal polder area at Zevekote to study the response of blackgrass (Alopecurus myosuroides Huds.) resistant or somewhat less sensitive to a wide variety of herbicides (clodinafop-propargyl, fenoxaprop-P-ethy1; flupyrsulfuron-methyl+metsulfuron-methyl, propoxycarbazone-sodium; isoproturon) representing various modes of action. In Experiment 1, preemergence applications of isoproturon+diflufenican (1500+187.5 g/ha) and isoproturon+diflufenican+flurtamone (1250+100+250 g/ha) respectively were followed in mid-March (Zadoks: 23) by one of the following treatments: none, propoxycarbazone-sodium + vegetable oil (42 g/ha + 1 l/ha), mesosulfuron-methyl + iodosulfuron-methyl-sodium (+mefenpyr-diethyl) + vegetable oil (15+3 (+45) g/ha + 1 l/ha), clodinafop-propargyl (+cloquintocet-mexyl) {60 (+15) g/ha} and flupyrsulfuron-methyl+metsulfuron-methyl (10+5 g/ha). Systems based on clodinafop-propargyl, propoxycarbazone-sodium or flupyrsulfuron-methyl+metsulfuron-methyl resulted in poor supplementary control of blackgrass compared to preemergence herbicide application only. On the contrary, systems based on postemergence application of mesosulfuron-methyl + iodosulfuron-methyl-sodium resulted in excellent control. In most cases the few surviving plants failed to produce inflorescences. In Experiment 2, fall applications in the 3 leaves stage (Zadoks: 13) of prosulfocarb + isoxaben (4000+75 g/ha), flufenacet + diflufenican + isoxaben (240+120+75 g/ha) and flufenacet + pendimethalin + chlorotoluron (180+900+1000 g/ha) respectively were followed in mid-March (Zadoks: 23) by one of the following treatments: none, propoxycarbazone-sodium + vegetable oil (42 g/ha+l l/ha), mesosulfuron-methyl + iodosulfuron-methyl-sodium (+mefenpyr-diethyl) + vegetable oil {15+3 (+45) g/ha + 1 l/ha}, clodinafop-propargyl (+cloquintocet-mexyl) {60 (+15) g/ha}, flupyrsulfuron

  14. Avaliação de equipamentos de aplicação de herbicidas em operação de repasse em cana-de-açúcar e segurança para o trabalhador Evaluation of herbicide application using backpack sprayers for post-emergence weed control in sugar cane crop and safe work conditions

    Directory of Open Access Journals (Sweden)

    J.G. Machado Neto

    2007-12-01

    Full Text Available Objetivou-se com este trabalho classificar em seguras ou inseguras as condições de trabalho de aplicação da formulação comercial de paraquat a 0,5% e de abastecimento dos tanques em operação de repasse em cultura de cana-de-açúcar com os pulverizadores costal manual, costal pressurizado e Pulmipur manual; determinar o efeito das variações na operação de repasse em quatro usinas de açúcar e álcool com o pulverizador costal pressurizado sobre as exposições dos trabalhadores ao paraquat; determinar a eficácia de equipamentos de proteção individual nessas condições de trabalho; e avaliar a intensidade da deriva e a eficácia de acessórios protetores de deriva. As exposições dérmicas e respiratórias dos trabalhadores foram avaliadas e utilizadas para calcular a margem de segurança (MS. Os valores de MS foram utilizados para classificar essas condições de trabalho em seguras (MS > 1 ou em inseguras (MS The aims of this study were to classify as safe or unsafe the work conditions under which a commercial formulation of paraquat at 0.5% was applied and the loading tanks used for post-emergence weed control of a sugar cane crop, using a hand -held, pressurized sprayer or Pulmipur hand-held backpack sprayer; to determine the effect of variations in herbicide application at four Sugar and Alcohol Plants using a pressurized backpack sprayer on worker exposure to paraquat ; to assess the efficacy of personal protective equipments (PPEs under these work conditions; and to evaluate the extent of drift and PPE efficacy against drift. Dermal and respiratory exposure of the workers was determined and used to calculate the margin of safety (MOS. The MOS values were utilized to classify these work conditions as safe (MOS e" 1 or unsafe (MOS < 1. To evaluate the drift resulting from application on the crops and the efficacy of protective gear against it, the following treatments were studied: a commercial formulation of paraquat at 0

  15. Efeito da intensidade do vento, da pressão e de pontas de pulverização na deriva de aplicações de herbicidas em pré-emergência Effect of wind intensity, pressure and nozzles on spray drift from preemergence herbicide applications

    Directory of Open Access Journals (Sweden)

    A.G.F. Costa

    2007-03-01

    Full Text Available Objetivou-se com este trabalho avaliar o efeito de pontas de pulverização, pressão e intensidade do vento na deriva gerada em aplicações simuladas de herbicidas aplicados em pré-emergência. Os modelos de pontas de pulverização e as respectivas pressões testadas foram: SF 11002 (207 e 310 kPa, JA-2 (345 e 655 kPa e AVI 11002 (207 e 414 kPa. As aplicações foram realizadas em dois períodos, em dias com condições de velocidade de vento distintas, em uma área de 1.200 m², localizada na Fazenda Experimental da FCA/UNESP. Um pulverizador com barra de 12 m, 24 bicos e tanque de 600 L foi utilizado nas aplicações. A calda de aplicação foi composta por água e o corante alimentício FDC-1 foi usado como traçador. A deriva foi amostrada por coletores ativos fixados sobre a barra de pulverização. As velocidades mínimas, médias e máximas de vento registradas no primeiro e segundo períodos das aplicações foram de 7, 14 e 23 km h-1 e 1, 5 e 18 km h-1, respectivamente. Nas duas ocasiões de aplicação, as pontas de pulverização com indução de ar AVI 11002 e de jato cônico vazio JA-2 a 655 kPa resultaram nas menores e maiores quantidades de depósito de líquido detectadas, respectivamente. A maior intensidade do vento incrementou a deriva. A redução na pressão pode ser utilizada para controle de deriva, mas a seleção adequada de uma ponta mostrou ser mais eficiente para esse propósito.The aim of this work was to evaluate the effect of nozzles, spray pressure and wind intensity on spray drift generated in simulated preemergence herbicide applications. The nozzle designs and respective pressures tested were: SF 11002 (207 and 310 kPa, JA-2 (345 and 655 kPa and AVI 11002 (207and 414 kPa. The applications were performed during two periods, on days with different wind conditions, in an area with 1,200 m², in the Experimental Farm of the FCA/UNESP. A sprayer with a 12 m boom, 24 nozzles and tank with 600 L was used for the

  16. Scientific opinion on application (EFSA-GMO-NL-2011-96) for the placing on the market of genetically modified insect-resistant and herbicide-tolerant cotton GHB119, for food and feed uses, import and processing under Regulation (EC) No 1829/2003 from Bayer CropScience AG

    OpenAIRE

    Birch, Andrew Nicholas; Casacuberta, Josep; De Schrijver, Adinda; Gralak, Mikolaj Antoni; Guerche, Philippe; Jones, Huw; Manachini, Barbara; Messéan, Antoine; Naegeli, Hanspeter; Ebbesen Nielsen, Elsa; Nogué, Fabien; Robaglia, Christophe; Rostoks, Nils; Sweet, Jeremy; Tebbe, Christoph

    2016-01-01

    Cotton GHB119 was developed by Agrobacterium tumefaciens-mediated transformation. It expresses the Cry2Ae and phosphinothricin acetyltransferase (PAT) proteins which, respectively, confer resistance to certain lepidopteran species and tolerance to glufosinate ammonium-based herbicides. The molecular characterisation of cotton GHB119 did not give rise to safety issues. The agronomic, phenotypic and compositional characteristics of cotton GHB119 tested under field conditions revealed no relevan...

  17. Modifying sorbents in controlled release formulations to prevent herbicides pollution.

    Science.gov (United States)

    Flores Céspedes, F; Villafranca Sánchez, M; Pérez García, S; Fernández Pérez, M

    2007-10-01

    The herbicides chloridazon and metribuzin, identified as groundwater pollutants, were incorporated in alginate-based granules to obtain controlled release properties. In this research the effect of incorporation of sorbents such as bentonite, anthracite and activated carbon in alginate basic formulation were not only studied on encapsulation efficiency but also on the release rate of herbicides which was studied using water release kinetic tests. In addition, sorption studies of herbicides with bentonite, anthracite and activated carbon were made. The kinetic experiments of chloridazon and metribuzin release in water have shown that the release rate is higher in metribuzin systems than in those prepared with chloridazon, which has lower water solubility. Besides, it can be deduced that the use of sorbents reduces the release rate of the chloridazon and metribuzin in comparison to the technical product and to the alginate formulation without sorbents. The highest decrease in release rate corresponds to the formulations prepared with activated carbon as a sorbent. The water uptake, permeability, and time taken for 50% of the active ingredient to be released into water, T(50), were calculated to compare the formulations. On the basis of a parameter of an empirical equation used to fit the herbicide release data, the release of chloridazon and metribuzin from the various formulations into water is controlled by a diffusion mechanism. Sorption capacity of the sorbents for chloridazon and metribuzin, ranging from 0.53mgkg(-1) for the metribuzin sorption on bentonite to 2.03x10(5)mgkg(-1) for the sorption of chloridazon on the activated carbon, was the most important factor modulating the herbicide release.

  18. Aquatic Plant Control Research Program: Aquatic Plant Identification and Herbicide Use Guide. Volume 2. Aquatic Plants and Susceptibility to Herbicides

    Science.gov (United States)

    1988-11-01

    bristle - a stiff hair or hairlike growth internode - stem region between calyx - the usually green, outer whorl nodes of the perianth, composed of...herbicide with species-specific trans- location properties. " Primary action is by blockage of photosynthesis (electron transport pathways ), but rapid action

  19. Effect of new auxin herbicide formulations on control of herbicide resistant weeds and on microbial activities in the rhizosphere

    Science.gov (United States)

    Widespread distribution of glyphosate-resistant weeds in soybean-growing areas across Mississippi has economically affected soybean planting and follow-up crop management operations. New multiple herbicide-resistant crop (including soybean) technologies with associated formulations will soon be comm...

  20. Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa root cells by mitotic activity, chromosome aberration, and comet assay.

    Science.gov (United States)

    Liman, Recep; Ciğerci, İbrahim Hakkı; Öztürk, Nur Serap

    2015-02-01

    Imazethapyr (IM) is an imidazolinone herbicide that is currently used for broad-spectrum weed control in soybean and other legume crops. In this study, cytotoxic and genotoxic effects of IM were investigated by using mitotic index (MI), mitotic phases, chromosomal abnormalities (CAs) and DNA damage on the root meristem cells of Allium cepa. In Allium root growth inhibition test, EC50 value was determined as 20 ppm, and 0.5xEC50, EC50 and 2xEC50 concentrations of IM herbicide were introduced to onion tuber roots. Distilled water and methyl methane sulfonate (MMS, 10 mg/L) were used as a negative and positive control, respectively. As A. cepa cell cycle is 24 hours, so, application process was carried out for 24, 48, 72 and 96 hours. All the applied doses decreased MIs compared to control group and these declines were found to be statistically meaningful. Analysis of the chromosomes showed that 10 ppm IM except for 48 h induced CAs but 40 ppm IM except for 72 h decreased CAs. DNA damage was found significantly higher in 20 and 40 ppm of IM compared to the control in comet assay. These results indicated that IM herbicide exhibits cytotoxic activity but not genotoxic activity (except 10 ppm) and induced DNA damage in a dose dependent manner in A. cepa root meristematic cells.

  1. Impact of imazamox containing herbicides on the development of resistance in black-grass (Alopecurus myosuroides Huds.

    Directory of Open Access Journals (Sweden)

    Rosenhauer, Maria

    2014-02-01

    Full Text Available Winter oilseed-rape was the most common crop in Western Europe where no ALS-inhibitor was used. Due to the introduction of Clearfield winter oilseed-rape varieties the use of ALS-inhibitors also in oilseed-rape is possible. If the broader use of ALS-inhibitors increases the selection pressure on herbicide resistant weeds and increases their occurrence in the crop rotation is the question of this investigation. Therefore, an outdoor container trial (á 350 l, 0.7 m² was performed starting in autumn 2011. A typical crop rotation of winter wheat/oilseed-rape/winter wheat was simulated in the following three years. Three different black-grass biotypes with characterised resistance pattern and 5 different herbicide programs were analysed. The blackgrass biotypes showed different target-site resistance against ACCase- and/or ALS-inhibitor, as well as metabolic resistance. Before and after each treatment the numbers of black-grass plants per container were counted. Also the numbers of heads were counted before harvest. Additionally genetic analysis due to PCRs and pyrosequencing of ten survivors per container and year were performed. Till now results of the winter wheat and oilseed-rape cultivation were obtained. Herbicide efficacy was between 77 and 98% for the treatments during the winter wheat cultivation. The genetic analysis showed nearly similar portion of TSR in the black-grass populations when compared with the initial frequencies. Only one container showed no TSR. The comparison of the herbicide programs sprayed during the oilseed-rape cultivation showed the best results for all black-grass biotypes for the application of: Metazachlor + dimethenamid (BBCH 09/10, imazamox + quinmerac + Dash (BBCH 14 and propyzamide (BBCH 21/22.

  2. Mutant analysis in Arabidopsis provides insight into the molecular mode of action of the auxinic herbicide dicamba.

    Directory of Open Access Journals (Sweden)

    Cynthia Gleason

    Full Text Available Herbicides that mimic the natural auxin indole-3-acetic acid are widely used in weed control. One common auxin-like herbicide is dicamba, but despite its wide use, plant gene responses to dicamba have never been extensively studied. To further understand dicamba's mode of action, we utilized Arabidopsis auxin-insensitive mutants and compared their sensitivity to dicamba and the widely-studied auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D. The mutant axr4-2, which has disrupted auxin transport into cells, was resistant to 2,4-D but susceptible to dicamba. By comparing dicamba resistance in auxin signalling F-box receptor mutants (tir1-1, afb1, afb2, afb3, and afb5, only tir1-1 and afb5 were resistant to dicamba, and this resistance was additive in the double tir1-1/afb5 mutant. Interestingly, tir1-1 but not afb5 was resistant to 2,4-D. Whole genome analysis of dicamba-induced gene expression showed that 10 hours after application, dicamba stimulated many stress-responsive and signalling genes, including those involved in biosynthesis or signalling of auxin, ethylene, and abscisic acid (ABA, with TIR1 and AFB5 required for the dicamba-responsiveness of some genes. Research into dicamba-regulated gene expression and the selectivity of auxin receptors has provided molecular insight into dicamba-regulated signalling and could help in the development of novel herbicide resistance in crop plants.

  3. Optimization of typical diffuse herbicide pollution control by soil amendment configurations under four levels of rainfall intensities.

    Science.gov (United States)

    Ouyang, Wei; Huang, Weijia; Wei, Peng; Hao, Fanghua; Yu, Yongyong

    2016-06-15

    Herbicides are a main source of agricultural diffuse pollution due to their wide application in tillage practices. The aim of this study is to optimize the control efficiency of the herbicide atrazine with the aid of modified soil amendments. The soil amendments were composed of a combination of biochar and gravel. The biochar was created from corn straw with a catalytic pyrolysis of ammonium dihydrogen phosphate. The leaching experiments under four rainfall conditions were measured for the following designs: raw soil, soil amended with gravel, biochar individually and together with gravel. The control efficiency of each design was also identified. With the designed equipment, the atrazine content in the contaminant load layer, gravel substrate layer, biochar amendment layer and soil layer was measured under four types of rainfall intensities (1.25 mm/h, 2.50 mm/h, 5.00 mm/h and 10.00 mm/h). Furthermore, the vertical distribution of atrazine in the soil sections was also monitored. The results showed that the herbicide leaching load increased under the highest rainfall intensity in all designs. The soil with the combination of gravel and biochar provided the highest control efficiency of 87.85% on atrazine when the additional proportion of biochar was 3.0%. The performance assessment under the four kinds of rainfall intensity conditions provided the guideline for the soil amendment configuration. The combination of gravel and biochar is recommended as an efficient method for controlling diffuse herbicide pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Integrated Assessment of Vegetation and Soil Conditions Following Herbicide Application

    Science.gov (United States)

    2017-07-25

    Jason Pietroski, Ms. Carra Carrillo, Mr. John Newton, Mr. Casey Ehorn and staff members from U.S. Army Garrison - Fort Hood provided logistical...stated). Ap-0 to 5 inches; dark grayish brown (10YR 4/2) loam, very dark grayish brown (10YR 3/2) moist; weak very fine subangular blocky and fine...inches; dark grayish brown (10YR 4/2) loam, very dark brown (10YR 3/2) moist; weak fine subangular blocky and fine granular structure; slightly hard

  5. A comparison of the herbicide tolerances of rare and common plants in an agricultural landscape.

    Science.gov (United States)

    Egan, J Franklin; Graham, Ian M; Mortensen, David A

    2014-03-01

    Declining plant biodiversity in agroecosystems has often been attributed to escalating use of chemical herbicides, but other changes in farming systems, including the clearing of seminatural habitat fragments, confound the influence of herbicides. The present study introduces a new approach to evaluate the impacts of herbicide pollution on plant communities at landscape or regional scales. If herbicides are in fact a key factor shaping agricultural plant diversity, one would expect to see the signal of past herbicide impacts in the current plant community composition of an intensively farmed region, with common, successful species more tolerant to widely used herbicides than rare or declining species. Data from an extensive field survey of plant diversity in Lancaster County, Pennsylvania, USA, were compared with herbicide bioassay experiments in a greenhouse to test the hypothesis that common species possess higher herbicide tolerances than rare species. Five congeneric pairs of rare and common species were treated with 3 commonly used herbicide modes of action in bioassay experiments, and few significant differences were found in the tolerances of rare species relative to common species. These preliminary results suggest that other factors beyond herbicide exposure may be more important in shaping the distribution and abundance of plant species diversity across an agricultural landscape.

  6. Genetic control of a cytochrome P450 metabolism-based herbicide resistance mechanism in Lolium rigidum.

    Science.gov (United States)

    Busi, R; Vila-Aiub, M M; Powles, S B

    2011-05-01

    The dynamics of herbicide resistance evolution in plants are influenced by many factors, especially the biochemical and genetic basis of resistance. Herbicide resistance can be endowed by enhanced rates of herbicide metabolism because of the activity of cytochrome P450 enzymes, although in weedy plants the genetic control of cytochrome P450-endowed herbicide resistance is poorly understood. In this study we have examined the genetic control of P450 metabolism-based herbicide resistance in a well-characterized Lolium rigidum biotype. The phenotypic resistance segregation in herbicide resistant and susceptible parents, F1, F2 and backcross (BC) families was analyzed as plant survival following treatment with the chemically unrelated herbicides diclofop-methyl or chlorsulfuron. Dominance and nuclear gene inheritance was observed in F1 families when treated at the recommended field doses of both herbicides. The segregation values of P450 herbicide resistance phenotypic traits observed in F2 and BC families was consistent with resistance endowed by two additive genes in most cases. In obligate out-crossing species such as L. rigidum, herbicide selection can easily result in accumulation of resistance genes within individuals.

  7. Controle de plantas daninhas com herbicidas na cultura do feijão (Phaseolus vulgaris L. Weed control in beans (Phaseolus vulgaris L. with herbicides

    Directory of Open Access Journals (Sweden)

    L.S.P. Cruz

    1981-12-01

    Full Text Available Foi realizada uma pesquisa em 1970, para se conhecer os efeitos de três herbicidas aplicados em pré-plantio incorporado (EPTC a 3,60 kg/ha, nitralin e trifluralin a 0,76 kg/ha e de um em pré-emergência (fluorodifen a 3,00 kg/ha na cultura de feijão comparados com uma testemunha sem herbicida. As duas gramíneas presentes no ensaio, Eleusine indica (L. Gaertn. e Digitaria sanguinalis (L. Scop. foram eficientemente controladas por todos os herbicidas, com indices de controle superiores a 87,00%, em contagem de plantas daninhas realizada 29 dias após a aplicação dos herbicidas. Dentre as dicotiledóneas presentes, Amaranthus viridis L. também foi eficientemente controlado por todos os herbicidas, com indices de controle superiores a 92,00%. Ageratum conyzoides L. foi eficientemente controlado por fluorodifen (91,60% e regularmente por EPTC (78,99% e por nitralin (79,83%. Trifluralin não foi eficiente contra A. conyzoides L. Nenhum dos herbicidas testados controlou Ipomoea sp e Chenopodium ambrosioides L., também presentes no experimento. EPTC e nitralin apresentaram as menores porcentagens de infestação geral de plantas daninhas, tendo, aos 51 dias da aplicação dos produtos, quando suas parcelas foram capinadas mecanicamente, 8,00 e 17,00% de infestação, respectivamente. Trifluralin e fluorodifen precisaram de limpeza aos 42 dias da aplicação, e a testemunha já aos 29 dias, pois apresentavam parcelas com 25,00%, ou mais, de infestação, naquelas épocas. Os herbicidas experimentados não foram prejudiciais à germinação e ao desenvolvimento vegetativo dos feijoeiros, assim como à sua produção de grãos.The weed control with herbicides in beans crop was studied during 1970 year, in Campinas-SP, on a sandy-loam soil. The treatments employed were EPTC at 3.60 kg/ha, nitralin and trifluralin at 0.76 kg/ha, all applied in preplant i •porated; fluorodifen in preemergence at 3.00 kg/ha and a hoed check. Among the weeds

  8. Pesticide use in the U.S. and policy implications: a focus on herbicides.

    Science.gov (United States)

    Short, P; Colborn, T

    1999-01-01

    This article examines herbicide use in the United States, providing estimates of poundage, land surface covered, distribution, and recent trends based on federal and state figures. Herbicides are by far the most widely used class of pesticide in the US, where 556 million lbs of herbicide active ingredients (AIs) were applied in 1995. Agriculture accounts for the majority of herbicide use, totaling 461 million lbs of AIs in 1995. Over 60% of the poundage of all agricultural herbicides consist of those that are capable of disrupting the endocrine and/or reproductive systems of animals. In addition, at least 17 types of 'inert ingredients,' which can equal 90% or more of a pesticide product, have been identified as having potential endocrine-disrupting effects. Atrazine is the predominant herbicide used according to poundage, with 68-73 million lbs of AIs applied in 1995. However, 2,4-D is the most widespread herbicide, covering 78 million acres for agricultural uses alone. Both of these herbicides are reported endocrine disruptors. Acetolactate synthase (ALS) inhibitors, namely the sulfonylureas and imidazolinones, are one of the fastest growing classes of herbicides. Many of these herbicides are 100 times more toxic to select plant species than their predecessors, so they can be applied at rates approximately 100 times lower. Consequently, they can affect plant species at concentration levels so low that no standard chemical protocol can detect them. Due in part to these more potent herbicides, the poundage of herbicides used in the US has decreased since the mid-1980s; however, the available data suggest that the number of treated acres has not significantly declined. A thorough assessment of potential exposure to herbicides by wildlife and humans is limited due to the inaccessibility of production and usage data.

  9. Mitigating effects of salicylic acid against herbicidal stress

    Directory of Open Access Journals (Sweden)

    Singh N. B.

    2012-11-01

    Full Text Available Background, the context and purpose of the study: Pendimethalin [N-(1-ethyl propyl-2, 6-dinitro-3, 4 xylidine] is one of the most commonly used herbicides. It induces harmful effect on non-target plants besides controlling the weed emergence. Salicylic acid (SA plays an important role in abiotic stress tolerance. Present study was to assess the comparative efficacy of SA in combination with different concentrations of pendimethalin on black gram (Vigna mungo. The seeds of test plant were treated with field relevant concentrations (2, 5 and 10 ppm of pendimethalin (P and in combination with SA (0.5 mM to observe effect of SA against herbicide toxicity. Experiment was performed in petri dish as well as in pot culture. The toxic effect of pendimethalin and SA on seed germination (SG, radicle length (RL and mitotic index (MI was evaluated in petri dish culture. Seedling height, pigments, protein, sugar contents and lipid peroxidation (LP of 15 days old seedling were measured in pot culture. Total antioxidants (TA were monitored as plant defence against oxidative stress. Results, the main findings: Results showed that SG and seedling growth of Vigna mungo decreased under P1, P2 and P3 treatments. RL and MI were also reduced significantly (p<0.05 in treatments with herbicide and reduction was more pronounced in P3 treatment. A slight increase of SG and seedling growth was observed in P2 treatment compared to P1. Herbicide treatment remarkably declined pigment, protein and sugar contents of the seedlings when compared with control. TA and malondialdehyde (MDA content increase significantly under pendimethalin treated seedlings. Combined treatment (P+SA elevated growth of the seedlings. As a consequence of herbicidal stress, SA enhanced SG, RL, MI, pigment, protein and sugar content significantly. Under combined treatments,LP and TA were decreased when compared with pendimethalin treatment. Conclusions, brief summary and potential implications: SA

  10. RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance.

    Science.gov (United States)

    Duhoux, Arnaud; Carrère, Sébastien; Gouzy, Jérôme; Bonin, Ludovic; Délye, Christophe

    2015-03-01

    Non-target-site resistance (NTSR) to herbicides that disrupts agricultural weed control is a worldwide concern for food security. NTSR is considered a polygenic adaptive trait driven by differential gene regulation in resistant plants. Little is known about its genetic determinism, which precludes NTSR diagnosis and evolutionary studies. We used Illumina RNA-sequencing to investigate transcriptomic differences between plants from the global major weed rye-grass sensitive or resistant to the acetolactate-synthase (ALS) inhibiting herbicide pyroxsulam. Plants were collected before and along a time-course after herbicide application. De novo transcriptome assembly yielded a resource (LOLbase) including 92,381 contigs representing potentially active transcripts that were assigned putative annotations. Early effects of ALS inhibition consistent with the literature were observed in resistant and sensitive plants, proving LOLbase data were relevant to study herbicide response. Comparison of resistant and sensitive plants identified 30 candidate NTSR contigs. Further validation using 212 plants resistant or sensitive to pyroxsulam and/or to the ALS inhibitors iodosulfuron + mesosulfuron confirmed four contigs (two cytochromes P450, one glycosyl-transferase and one glutathione-S-transferase) were NTSR markers which combined expression levels could reliably identify resistant plants. This work confirmed that NTSR is driven by differential gene expression and involves different mechanisms. It provided tools and foundation for subsequent NTSR investigations.

  11. Degradation of chlorophenoxy herbicides by coupled Fenton and biological oxidation.

    Science.gov (United States)

    Sanchis, Sonia; Polo, Alicia M; Tobajas, Montserrat; Rodriguez, Juan J; Mohedano, Angel F

    2013-09-01

    A combined treatment for the degradation of the chlorophenoxy herbicides 2,4-D and MCPA in water by means of Fenton and biological oxidation has been studied. The chemical oxidation step was necessary to achieve an efficient removal of these pollutants due to their toxicity and low biodegradability. Aqueous herbicide solutions (180mgL(-1)) were subjected to Fenton oxidation upon different H2O2 doses (from the theoretical stoichiometric amount referred to initial COD to 20% of this value). The toxicity and biodegradability tests of the Fenton effluents suggested that the ones resulting upon treatment with 80% and 60% of stoichiometric H2O2 were the optimal for subsequent biological treatment dealing with 2,4-D and MCPA, respectively. These effluents were treated in a sequencing batch reactor achieving nearly 90% conversion of organic matter measured as COD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Rapid polyelectrolyte-based membrane immunoassay for the herbicide butachlor.

    Science.gov (United States)

    Dzantiev, B B; Byzova, N A; Zherdev, A V; Hennion, M C

    2005-01-01

    Oppositely charged water-soluble polyelectrolytes were used in the developed membrane immunoenzyme assay for the herbicide butachlor. High-affinity and rapid binding between polyanion polymethacrylate and polycation poly(N-ethyl-4-vinylpyridinium) was applied to separate reacted and free immunoreactants. Competitive immunoassay format with peroxidase-labeled antigen was realized. The insoluble colored product of the peroxidase reaction was formed by bound labeled immune complexes and was reflectometrically detected. The assay combines short duration (15 min), high sensitivity (0.03 g/mL) and availability for out-of-laboratory testing. Different image processing algorithms were used to determine the herbicide content. Low variation coefficients of the measurements in the proposed quantitative assay, namely 4.8-9.0% for the range of antigen concentrations from 0.1 to 3.0 ng/mL, are evidence of the assay effectiveness. Possibility to control the butachlor content in mineral, artesian, and drinking water was demonstrated.

  13. IMPACT OF HERBICIDES ON CONSUMPTION CHARACTERS OF POTATO TUBERS

    Directory of Open Access Journals (Sweden)

    Marek Gugała

    2016-04-01

    Full Text Available The aim of the undertaken studies was to determine the effect of the herbicides used in the experiment on important features of the consumption values of three varieties of edible potato. Test results come from a field experiment conducted in 2007–2010. The experiment was established as two-factor in the split-plot system in three repetitions. Two factors were tested in the experiment: factor I - potato varieties: Satina, Tajfun, Cekin; factor II – five methods of weed control. Darkening of the pulp of cooked tubers after 10 min, 2 and 24 hours shape the ways of weed control of the plantation and the genotype of the grown varieties. The use of herbicides in 2–5 variants has significantly increased the darkening of the pulp. The Tajfun variation darkened to the lowest degree, and Cekin to the largest degree.

  14. Environmental behavior and toxicity of herbicides atrazine and simazine

    Directory of Open Access Journals (Sweden)

    Ana Paula Barbosa do Carmo

    2013-04-01

    Full Text Available This article shows some environmental and toxicology aspects of triazine herbicides atrazine and simazine. These compounds are used to control weeds in sugar and corn crops. Despite being partially soluble, they can be detected in ground and surface water. Their mobility and biodegradation in the soil-water system can vary depending on the intrinsic characteristics of each matrice, such as organic matter content. Although considered slightly toxic, these herbicides have a strong ability to interfere in the nervous and endocrine systems of human and wild biota. The detoxification mechanisms are similar to other xenobiotics; however, little is known about the effects on human health caused by simazine. Therefore, the use of these compounds should be revised due to their environmental behavior and toxicological effects.

  15. Resistance to herbicides inhibiting the biosynthesis of very-long-chain fatty acids.

    Science.gov (United States)

    Busi, Roberto

    2014-09-01

    Herbicides that act by inhibiting the biosynthesis of very-long-chain fatty acids (VLCFAs) have been used to control grass weeds in major crops throughout the world for the past 60 years. VLCFA-inhibiting herbicides are generally highly selective in crops, induce similar symptoms in susceptible grasses and can be found within the herbicide groups classified by the HRAC as K3 and N. Even after many years of continuous use, only 12 grass weed species have evolved resistance to VLCFA-inhibiting herbicides. Here, the cases of resistance that have evolved in major grass weed species belonging to the Avena, Echinochloa and Lolium genera in three different agricultural systems are reviewed. In particular we explore the possible reasons why VLCFA herbicides have been slow to select resistant weeds, outline the herbicide mode of action and discuss the resistance mechanisms that are most likely to have been selected.

  16. Effects of herbicides on Behr's metalmark butterfly, a surrogate species for the endangered butterfly, Lange's metalmark.

    Science.gov (United States)

    Stark, John D; Chen, Xue Dong; Johnson, Catherine S

    2012-05-01

    Lange's metalmark butterfly, Apodemia mormo langei Comstock, is in danger of extinction due to loss of habitat caused by invasive exotic plants which are eliminating its food, naked stem buckwheat. Herbicides are being used to remove invasive weeds from the dunes; however, little is known about the potential effects of herbicides on butterflies. To address this concern we evaluated potential toxic effects of three herbicides on Behr's metalmark, a close relative of Lange's metalmark. First instars were exposed to recommended field rates of triclopyr, sethoxydim, and imazapyr. Life history parameters were recorded after exposure. These herbicides reduced the number of adults that emerged from pupation (24-36%). Each herbicide has a different mode of action. Therefore, we speculate that effects are due to inert ingredients or indirect effects on food plant quality. If these herbicides act the same in A. mormo langei, they may contribute to the decline of this species. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Weed emergence on long years’ not herbicide treated fields - duration of the after-effects

    Directory of Open Access Journals (Sweden)

    Schwarz, Jürgen

    2016-02-01

    Full Text Available In a long-term field trial plots were not treated with herbicides for 12 years (from 1996 to 2007. Two different crop rotations with 50% or 66% of cereals in the rotation were tested. At the same time in each crop rotation two different plant protection strategies were established. Since autumn 2007 the former controls not sprayed with any herbicide have been treated with herbicides. The crop rotation was unified. In that long-term field trial plots always treated with herbicides exist also. Weeds were counted by number and species before herbicide treatments. The comparison of these two different plots (treated and untreated shows what after-effect exists on the formerly untreated plots even after eight years. The emergence of weeds is still higher. Also the different crop rotations are still perceptible. For the plant protection strategy with the lower herbicide amounts the differences blur now.

  18. A biosensor for organoarsenical herbicides and growth promoters

    OpenAIRE

    2014-01-01

    The toxic metalloid arsenic is widely distributed in food, water, and soil. While inorganic arsenic enters the environment primarily from geochemical sources, methylarsenicals either result from microbial biotransformation of inorganic arsenic or are introduced anthropogenically. Methylarsenicals such as monosodium methylarsonic acid (MSMA) have been extensively utilized as herbicides, and aromatic arsenicals such as roxarsone (Rox) are used as growth promoters for poultry and swine. Organoar...

  19. Genotoxicity of the herbicide butachlor in cultured human lymphocytes.

    Science.gov (United States)

    Sinha, S; Panneerselvam, N; Shanmugam, G

    1995-08-01

    Butachlor, a pre-emergence herbicide was investigated for its ability to induce sister chromatid exchanges (SCE) and chromosome aberrations (CA) in cultured human peripheral blood lymphocytes. Mitogen-stimulated lymphocytes were treated with three different concentrations (5, 10 and 20 micrograms/ml) of butachlor for 24, 48 and 72 h. Our results indicate a dose-dependent increase in the frequency of chromosomal aberrations at 24, 48 and 72 h of treatment with butachlor. No SCE was promoted by butachlor.

  20. Alterações nas características fisiológicas de cultivares de cana-de-açúcar submetida à aplicação de herbicidas Changes in the physiological characteristics of sugarcane cultivars submitted to herbicide application

    Directory of Open Access Journals (Sweden)

    L.G. Torres

    2012-09-01

    Full Text Available Avaliou-se neste trabalho a influência de herbicidas nas características fisiológicas de três cultivares de cana-de-açúcar. O experimento foi conduzido no delineamento em blocos ao acaso, com três repetições, no esquema fatorial 3 x 8. O fator A foi composto por três cultivares de cana-de-açúcar (RB867515, RB855156 e SP80-1816, e o B, pelos herbicidas (tembotrione, MSMA, diuron + hexazinone, sulfentrazone, trifloxysulfuron-sodium, tebuthiuron, clomazone e uma testemunha sem uso de herbicidas. A taxa transpiratória das plantas do cultivar RB867515 foi afetada negativamente quando foram aplicados os herbicidas sulfentrazone, tebuthiuron e clomazone em comparação à testemunha. Com relação à eficiência do uso da água, não se observaram diferenças entre os cultivares e a aplicação de herbicidas. A condutância estomática dos cultivares RB867515 e SP80-1816 não foi alterada pelos herbicidas aplicados. Apenas o cultivar RB867515 apresentou taxa fotossintética menor quando se aplicou o sulfentrazone. Os herbicidas testados afetam de forma diferenciada as características fisiológicas nos três cultivares avaliados. O cultivar RB867515 foi o que apresentou menor variação na taxa fotossintética na presença dos produtos testados, em relação à testemunha.This work aimed to evaluate the influence of herbicides on the physiological characteristics of three sugarcane cultivars. The experiment was conducted in a randomized block design with three replications in a factorial design 3 x 8. Factor A was constituted of three sugarcane cultivars (RB867515, RB855156, and SP80-1816, and factor B of the herbicides tembotrione, MSMA, diuron + hexazinone, sulfentrazone, trifloxysulfuron-sodium, tebuthiuron, clomazone, and a treatment without herbicide (control. The transpiration rate of cultivar RB867515 plants was negatively affected when sulfentrazone, clomazone, and tebuthiuron were applied,compared to the control. Regarding water

  1. Simultaneous Adoption of Herbicide-Resistance and Conservation-Tillage Cotton Technologies

    OpenAIRE

    Roberts, Roland K.; Burton C. English; Gao, Qi; Larson, James A.

    2006-01-01

    If adoption of herbicide-resistant seed and adoption of conservation-tillage practices are determined simultaneously, adoption of herbicide-resistance seed could indirectly reduce soil erosion and adoption of conservation-tillage practices could indirectly reduce residual herbicide use and increase farm profits. Our objective was to evaluate the relationship between these two technologies for Tennessee cotton production. Evidence from Bayes' theorem and a two-equation logit model suggested a ...

  2. SulE, a sulfonylurea herbicide de-esterification esterase from Hansschlegelia zhihuaiae S113.

    Science.gov (United States)

    Hang, Bao-Jian; Hong, Qing; Xie, Xiang-Ting; Huang, Xing; Wang, Cheng-Hong; He, Jian; Li, Shun-Peng

    2012-03-01

    De-esterification is an important degradation or detoxification mechanism of sulfonylurea herbicide in microbes and plants. However, the biochemical and molecular mechanisms of sulfonylurea herbicide de-esterification are still unknown. In this study, a novel esterase gene, sulE, responsible for sulfonylurea herbicide de-esterification, was cloned from Hansschlegelia zhihuaiae S113. The gene contained an open reading frame of 1,194 bp, and a putative signal peptide at the N terminal was identified with a predicted cleavage site between Ala37 and Glu38, resulting in a 361-residue mature protein. SulE minus the signal peptide was synthesized in Escherichia coli BL21 and purified to homogeneity. SulE catalyzed the de-esterification of a variety of sulfonylurea herbicides that gave rise to the corresponding herbicidally inactive parent acid and exhibited the highest catalytic efficiency toward thifensulfuron-methyl. SulE was a dimer without the requirement of a cofactor. The activity of the enzyme was completely inhibited by Ag(+), Cd(2+), Zn(2+), methamidophos, and sodium dodecyl sulfate. A sulE-disrupted mutant strain, ΔsulE, was constructed by insertion mutation. ΔsulE lost the de-esterification ability and was more sensitive to the herbicides than the wild type of strain S113, suggesting that sulE played a vital role in the sulfonylurea herbicide resistance of the strain. The transfer of sulE into Saccharomyces cerevisiae BY4741 conferred on it the ability to de-esterify sulfonylurea herbicides and increased its resistance to the herbicides. This study has provided an excellent candidate for the mechanistic study of sulfonylurea herbicide metabolism and detoxification through de-esterification, construction of sulfonylurea herbicide-resistant transgenic crops, and bioremediation of sulfonylurea herbicide-contaminated environments.

  3. Taking stock of herbicide-resistant crops ten years after introduction.

    Science.gov (United States)

    Duke, Stephen O

    2005-03-01

    Since transgenic, bromoxynil-resistant cotton and glufosinate-resistant canola were introduced in 1995, planting of transgenic herbicide-resistant crops has grown substantially, revolutionizing weed management where they have been available. Before 1995, several commercial herbicide-resistant crops were produced by biotechnology through selection for resistance in tissue culture. However, non-transgenic herbicide-resistant crops have had less commercial impact. Since the introduction of glyphosate-resistant soybean in 1996, and the subsequent introduction of other glyphosate-resistant crops, where available, they have taken a commanding share of the herbicide-resistant crop market, especially in soybean, cotton and canola. The high level of adoption of glyphosate-resistant crops by North American farmers has helped to significantly reduce the value of the remaining herbicide market. This has resulted in reduced investment in herbicide discovery, which may be problematic for addressing future weed-management problems. Introduction of herbicide-resistant crops that can be used with selective herbicides has apparently been hindered by the great success of glyphosate-resistant crops. Evolution of glyphosate-resistant weeds and movement of naturally resistant weed species into glyphosate-resistant crop fields will require increases in the use of other herbicides, but the speed with which these processes compromise the use of glyphosate alone is uncertain. The future of herbicide-resistant crops will be influenced by many factors, including alternative technologies, public opinion and weed resistance. Considering the relatively few recent approvals for field testing new herbicide-resistant crops and recent decisions not to grow glyphosate-resistant sugarbeet and wheat, the introduction and adoption of herbicide-resistant crops during the next 10 years is not likely to be as dramatic as in the past 10 years.

  4. Social Costs of Herbicide Resistance: The Case of Resistance to Glyphosate

    OpenAIRE

    Marsh, Sally P.; Llewellyn, Rick S.; Powles, Stephen B.

    2006-01-01

    Unlike in the pesticide and antibiotic resistance literature, potential social costs and externalities associated with herbicide resistance have not generally been considered by economists. The economics of managing herbicide resistance in weeds has focused on cost-effective responses by growers to the development of resistance at the individual farm and field level. Economic analyses of optimal herbicide use have focused on optimising farmer returns in the long run. Weeds have been considere...

  5. Rice Transcriptome Analysis to Identify Possible Herbicide Quinclorac Detoxification Genes

    Directory of Open Access Journals (Sweden)

    Wenying eXu

    2015-09-01

    Full Text Available Quinclorac is a highly selective auxin-type herbicide, and is widely used in the effective control of barnyard grass in paddy rice fields, improving the world’s rice yield. The herbicide mode of action of quinclorac has been proposed and hormone interactions affect quinclorac signaling. Because of widespread use, quinclorac may be transported outside rice fields with the drainage waters, leading to soil and water pollution and environmental health problems.In this study, we used 57K Affymetrix rice whole-genome array to identify quinclorac signaling response genes to study the molecular mechanisms of action and detoxification of quinclorac in rice plants. Overall, 637 probe sets were identified with differential expression levels under either 6 or 24 h of quinclorac treatment. Auxin-related genes such as GH3 and OsIAAs responded to quinclorac treatment. Gene Ontology analysis showed that genes of detoxification-related family genes were significantly enriched, including cytochrome P450, GST, UGT, and ABC and drug transporter genes. Moreover, real-time RT-PCR analysis showed that top candidate P450 families such as CYP81, CYP709C and CYP72A genes were universally induced by different herbicides. Some Arabidopsis genes for the same P450 family were up-regulated under quinclorac treatment.We conduct rice whole-genome GeneChip analysis and the first global identification of quinclorac response genes. This work may provide potential markers for detoxification of quinclorac and biomonitors of environmental chemical pollution.

  6. A novel polymeric herbicide based on phenoxyacetic acid derivatives

    Directory of Open Access Journals (Sweden)

    Wimol Klaichim

    2009-01-01

    Full Text Available A novel polymeric herbicide based on phenoxyacetic acid derivatives was prepared by the reaction of epoxidised liquid natural rubber (ELNR with 2,4-dichlorophenoxyacetic acid (2,4-D or 2-methyl-4-chlorophenoxyacetic acid(MCPA. The liquid natural rubber (LNR was firstly obtained from the degradation of natural rubber latex with tert-butyl hydroperoxide and cobalt acetylacetonate at 65oC for 72 hrs. The epoxidised liquid natural rubber was prepared from thereaction of LNR with formic acid and hydrogen peroxide at 50oC for 6 hrs. The reaction of epoxidised liquid natural rubber with 2,4-D or MCPA using triethylamine as a catalyst in toluene was performed at 70, 80, and 90oC for 6, 9, 12, 18, and 24hrs. The polymeric herbicides obtained were characterized and the grafting percentage of 2,4-D or MCPA onto liquid natural rubber were also determined by FT-IR and 1H-NMR spectroscopy. It was found that the grafting percentage increased with increasing amount of reactants, temperature, and reaction time. The release of 2,4-D and MCPA from polymeric herbicides was investigated in pH 6, 7, and 8 buffers at room temperature. The results show that the slowest release of 2,4-D and MCPA was found to be constant at pH 7 for 14 and 10 days, respectively.

  7. A glutathione s-transferase confers herbicide tolerance in rice

    Directory of Open Access Journals (Sweden)

    Tingzhang Hu

    2014-07-01

    Full Text Available Plant glutathione S-transferases (GSTs have been a focus of attention due to their role in herbicide detoxification. OsGSTL2 is a glutathione S-transferase, lambda class gene from rice (Oryza sativa L.. Transgenic rice plants over-expressing OsGSTL2 were generated from rice calli by the use of an Agrobacterium transformation system, and were screened by a combination of hygromycin resistance, PCR and Southern blot analysis. In the vegetative tissues of transgenic rice plants, the over-expression of OsGSTL2 not only increased levels of OsGSTL2 transcripts, but also GST and GPX expression, while reduced superoxide. Transgenic rice plants also showed higher tolerance to glyphosate and chlorsulfuron, which often contaminate agricultural fields. The findings demonstrate the detoxification role of OsGSTL2 in the growth and development of rice plants. It should be possible to apply the present results to crops for developing herbicide tolerance and for limiting herbicide contamination in the food chain.

  8. Fate of herbicides in deep subsurface limestone and sandy aquifers

    DEFF Research Database (Denmark)

    Janniche, Gry Sander

    afgørende for at vurdere herbiciders skæbne i underjord og grundvandsmagasiner. PhD-projektet har undersøgt sorption og nedbrydning af fire model-herbicider (atrazin, acetochlor, mecoprop og isoproturon) i kalksten og sandede grundvands¬magasiner. Desuden er den rumlige småskala-variation af herbicidernes...... tydelig selv inden for få cm afstand over dybden, og betydningen af denne variation afhænger af den samlede udbredelse af lag med forhøjet sorption eller nedbrydning; 2) at kalk/kalksten yder ringe beskyttelse mod grundvands¬forurening med mecoprop, atrazin, isoproturon og acetochlor, da sorptionen er lav...... og mineraliseringen meget langsom for isoproturon, acetochlor og mecoprop, og atrazin ikke er nedbrydeligt; 3) at i sandede grundvands¬magasiner er sorptionen af de fire herbicider generelt lav, men kan under reducerede forhold være kraftig for især isoproturon og acetochlor. Mecoprop, isoproturon og...

  9. The Herbicidal Activity of Mutant Isolates from Botrytis cinerea

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-lin; ZHANG Li-hui; LIU Ying-chao; MA Juan; LI Chuan; DONG Jin-gao

    2006-01-01

    Fifteen mutant isolates were obtained by ultraviolet mutation from parent isolate Botrytis cinerea BC-4. Among them three mutant isolates, BC4-1, BC4-2, and BC4-15, showed strong herbicidal activity. BC4-1 showed maximum herbicidal activity for inhibition of germination and growth of Digitaria sanguinalis L. and Amaranthus retroflexus L. The results also showed that herbicidal activity was influenced by differing pH of PD media, with pH value of 4.0 being the optimum.The crude toxin was extracted using chloroform, petroleum ether, and ethyl acetate, respectively, and the ethyl acetate extracts showed the strongest inhibitory activity on the germination and growth of D. sanguinalis L. and A. retroflexus L.Using HPLC, one fraction with an absorption peak at 271 nm was separated from the crude toxin. This fraction could strongly inhibit the growth of D. sanguinalis L. at a concentration of 100 mg L-1 and could completely inhibit the seed germination of D. sanguinalis L. and A. retroflexus L. at a concentration of 50 mg L-1.

  10. EFSA Panel on Genetically Modified Organisms (GMO); Scientific Opinion on application (EFSAGMO- NL-2007-39) for the placing on the market of insect resistant and herbicide tolerant genetically modified maize MON89034 x MON88017 for food and feed uses, import and processing under Regulation (EC

    DEFF Research Database (Denmark)

    Sørensen, Ilona Kryspin

    This opinion reports on an evaluation of a risk assessment for placing on the market the genetically modified herbicide tolerant and insect resistant maize MON89034 x MON88017 for food and feed uses, import and processing. Conventional breeding methods were used in the production of maize MON89034...... x MON88017 from inbred lines of the respective parental events. The structural integrity of the inserts in the single events as well as the phenotypes were retained in the hybrid. The expression levels of the Cry1A.105, Cry2Ab2, Cry3Bb1 and CP4 EPSPS proteins in maize MON89034 x MON88017 were...

  11. 杂草对ACCase抑制剂的抗性%Resistance of Weed to ACCase-Inhibiting Herbicides

    Institute of Scientific and Technical Information of China (English)

    郭峰; 张朝贤; 黄红娟; 魏守辉; 张猛; 房峰

    2011-01-01

    以乙酰辅酶A羧化酶(ACCase)为作用靶标的除草剂是高效、选择性的禾本科杂草除草剂,其在全球范围内的广泛、重复使用,导致了抗药性杂草的发生和发展.到目前为止,已经在30个国家有37种抗此类除草剂的杂草生物型.抗药性杂草严重威胁杂草治理和农业生产,由此引发的生态问题及粮食安全问题引起了广泛的关注.文章概述了ACCase抑制剂抗药性杂草的发生现状,从杂草ACCase突变、代谢解毒等几个方面综述了杂草抗ACCase抑制剂的抗性机制,以期为ACCase抑制剂抗性研究提供参考.最后讨论了阻止或延缓抗药性发生的杂草管理措施.%Hebicides targeting acetyl - CoA carboxylase(ACCase) are effective and selective graminicides. Their widespread and repeated application in worldwide resulted in occurrence and evolution of resistant weed species. There have been 37 weed biotypes resistant to ACCase herbicides in 30 countries by now. The herbicide resistant weeds threatted to weed management and crop production, and the consequences leading to biological damage and food safety caused extensive concern in the world. This review summarized the current status of ACCase - inhibiting herbicide resistant weeds and the major mechanisms of resistance involed in the ACCase mutations, metabolic detoxification and so on. In order to provide useful information and references for researches of ACCase - inhibiting herbicide resistance. Potential management strategy for preventing and delaying the herbicide resistance evolution of weeds was discussed in the end.

  12. Proteomic and biochemical assays of glutathione-related proteins in susceptible and multiple herbicide resistant Avena fatua L.

    Science.gov (United States)

    Burns, Erin E; Keith, Barbara K; Refai, Mohammed Y; Bothner, Brian; Dyer, William E

    2017-08-01

    Extensive herbicide usage has led to the evolution of resistant weed populations that cause substantial crop yield losses and increase production costs. The multiple herbicide resistant (MHR) Avena fatua L. populations utilized in this study are resistant to members of all selective herbicide families, across five modes of action, available for A. fatua control in U.S. small grain production, and thus pose significant agronomic and economic threats. Resistance to ALS and ACCase inhibitors is not conferred by target site mutations, indicating that non-target site resistance mechanisms are involved. To investigate the potential involvement of glutathione-related enzymes in the MHR phenotype, we used a combination of proteomic, biochemical, and immunological approaches to compare their constitutive activities in herbicide susceptible (HS1 and HS2) and MHR (MHR3 and MHR4) A. fatua plants. Proteomic analysis identified three tau and one phi glutathione S-transferases (GSTs) present at higher levels in MHR compared to HS plants, while immunoassays revealed elevated levels of lambda, phi, and tau GSTs. GST specific activity towards 1-chloro-2,4-dinitrobenzene was 1.2-fold higher in MHR4 than in HS1 plants and 1.3- and 1.2-fold higher in MHR3 than in HS1 and HS2 plants, respectively. However, GST specific activities towards fenoxaprop-P-ethyl and imazamethabenz-methyl were not different between untreated MHR and HS plants. Dehydroascorbate reductase specific activity was 1.4-fold higher in MHR than HS plants. Pretreatment with the GST inhibitor NBD-Cl did not affect MHR sensitivity to fenoxaprop-P-ethyl application, while the herbicide safener and GST inducer mefenpyr reduced the efficacy of low doses of fenoxaprop-P-ethyl on MHR4 but not MHR3 plants. Mefenpyr treatment also partially reduced the efficacy of thiencarbazone-methyl or mesosulfuron-methyl on MHR3 or MHR4 plants, respectively. Overall, the GSTs described here are not directly involved in enhanced rates of

  13. Kinetics of the transformation of phenyl-urea herbicides during ozonation of natural waters: rate constants and model predictions.

    Science.gov (United States)

    Benitez, F Javier; Real, Francisco J; Acero, Juan L; Garcia, Carolina

    2007-10-01

    Oxidation of four phenyl-urea herbicides (isoproturon, chlortoluron, diuron, and linuron) was studied by ozone at pH=2, and by a combination of O3/H2O2 at pH=9. These experiments allowed the determination of the rate constants for their reactions with ozone and OH radicals. For reactions with ozone, the following rate constants were obtained: 1.9 +/- 0.2, 16.5 +/- 0.6, 393.5 +/- 8.4, and 2191 +/- 259 M(-1) s(-1) for linuron, diuron, chlortoluron, and isoproturon, respectively. The rate constants for the reaction with OH radicals were (7.9 +/- 0.1) x 10(9) M(-1) s(-1) for isoproturon, (6.9 +/- 0.2) x 10(9) M(-1) s(-1) for chlortoluron, (6.6 +/- 0.1) x 10(5) M(-1) s(-1) for diuron, and (5.9 +/- 0.1) x 10(9) M(-1) s(-1) for linuron. Furthermore, the simultaneous ozonation of these selected herbicides in some natural water systems (a commercial mineral water, a groundwater, and surface water from a reservoir) was studied. The influence of operating conditions (initial ozone dose, nature of herbicides, and type of water systems) on herbicide removal efficiency was established, and the parameter Rct (proposed by Elovitz, M.S., von Gunten, U., 1999. Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept. Ozone Sci. Eng. 21, 239-260) was evaluated from simultaneous measurement of ozone and OH radicals. A kinetic model was proposed for the prediction of the elimination rate of herbicides in these natural waters, and application of this model revealed that experimental results and predicted values agreed fairly well. Finally, the partial contributions of direct ozone and radical pathways were evaluated, and the results showed that reaction with OH radicals was the major pathway for the oxidative transformation of diuron and linuron, even when conventional ozonation was applied, while for chlortoluron and isoproturon, direct ozonation was the major pathway.

  14. A Novel Herbicide Aminocyclopyrachlor%新型除草剂Aminocyclopyrachlor

    Institute of Scientific and Technical Information of China (English)

    赵平

    2011-01-01

    Aminocyclopyrachlor, an exciting new class of auxin herbicide from Dupont, is under development for non-crop uses such as bareground, right-of-way and turf as well as for range, pasture and invasive weed control. Introduced the chemical name, physical and chemical properties, toxicities, mode of action, d