WorldWideScience

Sample records for preplanetary nebula iras

  1. A Starfish Preplanetary Nebula: IRAS 19024+0044

    Science.gov (United States)

    Sahai, Raghvendra; Sanchez Contreras, Carmen; Morris, Mark

    2005-01-01

    Using the Hubble Space Telescope, we have imaged the OH/IR star IRAS 19024+0044 (I19024) at 0.6, 0.8, 1.1, and 1.6 micrometers, as part of our surveys of candidate preplanetary nebulae. The images show a multipolar nebula of size approximately equal to 3.'7 2.'3, with at least six elongated lobes emanating from the center of the nebula. Two of the lobes show limb-brightened tips having point-symmetric structure with respect to the expected location of the central star. The central region shows two dark bands southwest and northeast of a central shallow maximum that may be either two inclined dusty toroidal structures or the dense parts of a single wide, inhomogeneous, toroid. Avery faint, surface brightness-limited, diffuse halo surrounds the lobes. Long-slit/echelle optical spectroscopy obtained at the Mount Palomar and Keck observatories shows a spatially compact source of H(alpha) emission; the H(alpha) line shows a strong, narrow, central core with very broad (+/-1000 km/sec), weak wings, and a narrower blueshifted absorption feature signifying the presence of an approximately 100 km/sec(exp -1) outflow. The spectrum is characterized by a strong, relatively featureless, continuum and lacks the strong forbidden emission lines characteristic of planetary nebulae, confirming that IRAS 19024 is a preplanetary nebula; the spectral type for the central star, although uncertain, is most likely early G. Interferometric observations of the CO J = 1 -0 line emission with the Owens Valley Radio Interferometer show a marginally resolved molecular envelope (size 5.'5 x 4.'4) with an expansion velocity of 13 km/sec (exp -1), resulting from the asymptotic giant branch (AGB) progenitor's dense, slow wind. We derive a kinematic distance of 3.5 kpc to I19024, based on its radial velocity. The bolometric flux is 7:3 x 10(exp -9) erg s(exp -1) cm(exp -2), and the luminosity 2850 L. The relatively low luminosity of I19024, in comparison with stellar evolutionary models, indicates

  2. The Motion of Water Masers in the Pre-Planetary Nebula IRAS 16342-3814

    CERN Document Server

    Claussen, M J; Morris, M R

    2008-01-01

    We present high angular resolution observations, using the Very Long Baseline Array (VLBA) of the NRAO, of the high-velocity water masers toward the "water-fountain" pre-planetary nebula, IRAS 16342-3814. The detailed structure of the water masers appears to be that of bow shocks on either side of a highly collimated jet. The proper motions of the water masers are approximately equal to the radial velocities; the three-dimensional velocities are approximately +/-180 km/s, which leads to a very short dynamical time-scale of ~100 years. Although we do not find direct evidence for precession of the fast collimated jet, there may be indirect evidence for such precession.

  3. The dust envelope of the pre-planetary nebula IRAS19475+3119

    CERN Document Server

    Sarkar, G; Sahai, Raghvendra; Sarkar, Geetanjali

    2006-01-01

    We present the spectral energy distribution (SED) of the pre-planetary nebula, IRAS 19475+3119 (I19475), from the optical to the far-infrared. We identify emission features due to crystalline silicates in the ISO SWS spectra of the star. We have fitted the SED of I19475 using a 1-D radiative transfer code, and find that a shell with inner and outer radii of 8.8X10^{16} and 4.4X10^{17}cm, and dust temperatures ranging from about 94K to 46K provide the best fit. The mass of this shell is greater than/equal to 1[34cm^{2}g^{-1}/kappa(100micron)][delta/200]M_Sun, where kappa(100micron) is the 100micron dust mass absorption coefficient (per unit dust mass), and delta is the gas-to-dust ratio. In agreement with results from optical imaging and millimeter-wave observations of CO emission of I19475, our model fits support an r^{-3} density law for its dust shell, with important implications for the interaction process between the fast collimated post-AGB winds and the dense AGB envelopes which results in the observed ...

  4. The spatio-kinematical structure and distance of the pre-planetary nebula IRAS 19134+2131

    CERN Document Server

    Imai, Hiroshi; Morris, Mark

    2007-01-01

    Using the VLBA, we have observed H2O maser emission in the pre-planetary nebula IRAS 19134+2131(I19134), in which the H2O maser spectrum has two groups of emission features separated in radial velocity by ~100 km/s. We also obtained optical images of I19134 with the HST to locate the bipolar reflection nebula in this source for the first time. The spatio-kinematical structure of the H2O masers indicates the existence of a fast, collimated (precessing) flow having a projected extent of ~140 mas and an expansion rate of ~1.9 mas/yr on the sky plane, which gives a dynamical age of only ~40 yr. The two detected optical lobes are also separated by ~150 mas in almost the same direction as that of the collimated flow. The good agreement between the extent and orientation of the H2O maser outflow and optical lobes suggests that the lobes have been recently formed along the collimated fast flow. The positions of all of the detected maser features have been measured with respect to the reference source J1925+2106 over ...

  5. An Extreme High-Velocity Bipolar Outflow in the Pre-Planetary Nebula IRAS 08005-2356

    CERN Document Server

    Sahai, R

    2015-01-01

    We report interferometric mapping of the bipolar pre-planetary nebula IRAS 08005-2356 with an angular-resolution of ~1"-5", using the Submillimeter Array (SMA), in the 12CO J=2-1, 3-2, 13CO J=2-1 and SiO J=5-4 (v=0) lines. Single-dish observations, using the SMT 10-m, were made in these lines as well as in the CO J=4-3 and SiO J-6-5 (v=0) lines. The lines profiles are very broad, showing the presence of a massive (>0.1 Msun), extreme high-velocity outflow (V~200 km/s) directed along the nebular symmetry axis derived from the HST imaging of this object. The outflow's scalar momentum far exceeds that available from radiation pressure of the central post-AGB star, and it may be launched from an accretion disk around a main-sequence companion. We provide indirect evidence for such a disk from its previously published, broad H-alpha emission profile, which we propose results from Ly-beta emission generated in the disk followed by Raman-scattering in the innermost regions of a fast, neutral wind.

  6. An Extreme High-velocity Bipolar Outflow in the Pre-planetary Nebula IRAS 08005-2356

    Science.gov (United States)

    Sahai, R.; Patel, N. A.

    2015-09-01

    We report interferometric mapping of the bipolar pre-planetary nebula IRAS 08005-2356 (I 08005) with an angular resolution of ˜1″-5″, using the Submillimeter Array, in the 12CO J = 2-1, 3-2, 13CO J = 2-1, and SiO J = 5-4 (v = 0) lines. Single-dish observations, using the SMT 10 m, were made in these lines as well as in the CO J = 4-3 and SiO J = 6-5 (v = 0) lines. The line profiles are very broad, showing the presence of a massive (>0.1 M⊙), extreme high velocity outflow (V ˜ 200 km s-1) directed along the nebular symmetry axis derived from the Hubble Space Telescope imaging of this object. The outflow's scalar momentum far exceeds that available from radiation pressure of the central post-AGB star, and it may be launched from an accretion disk around a main-sequence companion. We provide indirect evidence for such a disk from its previously published, broad Hα emission profile, which we propose results from Lyβ emission generated in the disk followed by Raman-scattering in the innermost regions of a fast, neutral wind.

  7. AN EXTREME HIGH-VELOCITY BIPOLAR OUTFLOW IN THE PRE-PLANETARY NEBULA IRAS 08005-2356

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, R. [Jet Propulsion Laboratory, California Institute of Technology, MS 183-900, Pasadena, CA 91109 (United States); Patel, N. A., E-mail: raghvendra.sahai@jpl.nasa.gov [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    2015-09-01

    We report interferometric mapping of the bipolar pre-planetary nebula IRAS 08005-2356 (I 08005) with an angular resolution of ∼1″–5″, using the Submillimeter Array, in the {sup 12}CO J = 2–1, 3–2, {sup 13}CO J = 2–1, and SiO J = 5–4 (v = 0) lines. Single-dish observations, using the SMT 10 m, were made in these lines as well as in the CO J = 4–3 and SiO J = 6–5 (v = 0) lines. The line profiles are very broad, showing the presence of a massive (>0.1 M{sub ⊙}), extreme high velocity outflow (V ∼ 200 km s{sup −1}) directed along the nebular symmetry axis derived from the Hubble Space Telescope imaging of this object. The outflow's scalar momentum far exceeds that available from radiation pressure of the central post-AGB star, and it may be launched from an accretion disk around a main-sequence companion. We provide indirect evidence for such a disk from its previously published, broad Hα emission profile, which we propose results from Lyβ emission generated in the disk followed by Raman-scattering in the innermost regions of a fast, neutral wind.

  8. A Massive Bipolar Outflow and a Dusty Torus with Large Grains in the Preplanetary Nebula IRAS 22036+5306

    Science.gov (United States)

    Sahai, Raghvendra; Young, K.; Patel, N. A.; Sanchez Contreras, C.; Morris, M.

    2006-01-01

    We report high angular resolution (approx.1") CO J=3-2 interferometric mapping using the Submillimeter Array (SMA) of IRAS 22036+5306 (I22036), a bipolar preplanetary nebula (PPN) with knotty jets discovered in our HST snapshot survey of young PPNs. In addition, we have obtained supporting lower resolution (approx.10") CO and 13CO J=1-0 observations with the Owens Valley Radio Observatory (OVRO) interferometer, as well as optical long-slit echelle spectra at the Palomar Observatory. The CO J=3-2 observations show the presence of a very fast (approx.220 km/s), highly collimated, massive (0.03 Solar Mass) bipolar outflow with a very large scalar momentum (about 10(exp 39) g cm/s), and the characteristic spatiokinematic structure of bow shocks at the tips of this outflow. The H(alpha) line shows an absorption feature blueshifted from the systemic velocity by approx.100 km/s, which most likely arises in neutral interface material between the fast outflow and the dense walls of the bipolar lobes at low latitudes. The fast outflow in I22036, as in most PPNs, cannot be driven by radiation pressure. We find an unresolved source of submillimeter (and millimeter-wave) continuum emission in I22036, implying a very substantial mass (0.02-0.04 Solar Mass) of large (radius > or approx.1 mm), cold ( or approx.4 Solar Mass) progenitor in which hot-bottom-burning has occurred.

  9. The fast, massive outflow of the pre-planetary nebula IRAS 19374+2356

    Science.gov (United States)

    Sánchez Contreras, C.; Martin, S.; Sahai, R.

    2013-05-01

    At some point in the late-AGB stage, a process (or processes) becomes operative that accelerates and imposes bipolarity upon the slow, spherical AGB winds. What produces bipolarity in these objects and at what stage does bipolarity manifest itself are key questions that remain yet poorly understood. We present CO (115 & 230 GHz) emission maps of IRAS19374+2359, an extreme pre-PN with an unparalleledly massive, fast molecular outflow discovered in our OVRO Post-AGB CO 1-0 emission Survey (referred to as OPACOS; Sánchez Contreras & Sahai 2012, ApJS, 203, 16). We present sub-arcsecond resolution ^{(12,13)}CO 2-1 and 1.3 mm-continuum interferometric maps recently obtained with the Submillimeter Array (SMA) together with our discovery ˜8s-resolution ^{(12,13)}CO 1-0 OVRO data. The prominent ˜300 km s^{-1}-broad wings and the lack of an intense, low-velocity CO line core in IRAS 19374 indicate that most or all of the molecular gas participates in the high-velocity flow. From our CO data, we estimate a total mass in the molecular outflow of ˜ 1 msun and an unprecedentedly large value for the linear momemtum carried of ≥ 45 msun km s^{-1}. Our SMA maps show CO emission arising from a ˜3s×2s hourglass-shaped molecular flow aligned with the optical lobes; a linear velocity gradient along the lobes as well as equatorial expansion at the nebula waist are found. The spatio-kinematic structure of this object is in support of a jet-envelope entrainment scenario in which a substantial amount of directed momentum is transferred to large parts of the dense AGB wind by interaction with fast, collimated post-AGB jets.

  10. Micron-sized forsterite grains in the pre-planetary nebula of IRAS 17150-3224 - Searching for clues on the mysterious evolution of massive AGB stars

    CERN Document Server

    de Vries, B L; Min, M; Lombaert, R; Waters, L B F M; Blommaert, J A D L

    2015-01-01

    We study the grain properties and location of the forsterite crystals in the circumstellar environment of the pre-planetary nebula (PPN) IRAS 17150-3224 in order to learn more about the as yet poorly understood evolutionary phase prior to the PPN. We use the best-fit model for IRAS 17150-3224 of Meixner et al. (2002) and add forsterite to this model. We investigate different spatial distributions and grain sizes of the forsterite crystals in the circumstellar environment. We compare the spectral bands of forsterite in the mid-infrared and at 69 micrometre in radiative transport models to those in ISO-SWS and Herschel/PACS observations. We can reproduce the non-detection of the mid-infrared bands and the detection of the 69 micrometre feature with models where the forsterite is distributed in the whole outflow, in the superwind region, or in the AGB-wind region emitted previous to the superwind, but we cannot discriminate between these three models. To reproduce the observed spectral bands with these three mod...

  11. Adaptive Optics Imaging of IRAS 18276-1431: a bipolar pre-planetary nebula with circumstellar "searchlight beams" and "arcs"

    CERN Document Server

    Contreras, C S; Sahai, R; De Paz, A G; Morris, M

    2006-01-01

    We present high-angular resolution images of the post-AGB nebula IRAS18276-1431 (also known as OH17.7-2.0) obtained with the Keck II Adaptive Optics (AO) system in its Natural Guide Star (NGS) mode in the Kp, Lp, and Ms near-infrared bands. We also present supporting optical F606W and F814W HST images as well as interferometric observations of the 12CO(J=1-0), 13CO(J=1-0), and 2.6mm continuum emission with OVRO. The envelope of IRAS18276-1431 displays a clear bipolar morphology in our optical and NIR images with two lobes separated by a dark waist and surrounded by a faint 4.5"x3.4" halo. Our Kp-band image reveals two pairs of radial ``searchlight beams'' emerging from the nebula center and several intersecting, arc-like features. From our CO data we derive a mass of M>0.38[D/3kpc]^2 Msun and an expansion velocity v_exp=17km/s for the molecular envelope. The density in the halo follows a radial power-law proportional to r^-3, which is consistent with a mass-loss rate increasing with time. Analysis of the NIR ...

  12. ALMA Observations of the Water Fountain Pre-Planetary Nebula IRAS 16342-3814: High-Velocity Bipolar Jets and an Expanding Torus

    Science.gov (United States)

    Sahai, R.; Vlemmings, W.H.T.; Gledhill, T.; Sánchez Contreras, C.; Lagadec, E.; Nyman, L-Å; Quintana-Lacaci, G.

    2017-01-01

    We have mapped 12CO J=3–2 and other molecular lines from the “water-fountain” bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with ∼0⋅″35 resolution using ALMA. We find (i) two very high-speed knotty, jet-like molecular outflows, (ii) a central high-density (> few × 106 cm−3), expanding torus of diameter 1300 AU, and (iii) the circumstellar envelope of the progenitor AGB, generated by a sudden, very large increase in the mass-loss rate to > 3.5 × 10−4 M⊙ yr−1 in the past ~455 yr. Strong continuum emission at 0.89 mm from a central source (690 mJy), if due to thermally-emitting dust, implies a substantial mass (0.017 M⊙) of very large (~mm-sized) grains. The measured expansion ages of the above structural components imply that the torus (age~160 yr) and the younger high-velocity outflow (age~110 yr) were formed soon after the sharp increase in the AGB mass-loss rate. Assuming a binary model for the jets in IRAS 16342, the high momentum rate for the dominant jet-outflow in IRAS 16342 implies a high minimum accretion rate, ruling out standard Bondi-Hoyle-Lyttleton wind accretion and wind Roche lobe overflow (RLOF) models with white-dwarf or main-sequence companions. Most likely, enhanced RLOF from the primary or accretion modes operating within common envelope evolution are needed. PMID:28191303

  13. ALMA Observations of the Water Fountain Pre-planetary Nebula IRAS 16342-3814: High-velocity Bipolar Jets and an Expanding Torus

    Science.gov (United States)

    Sahai, R.; Vlemmings, W. H. T.; Gledhill, T.; Sánchez Contreras, C.; Lagadec, E.; Nyman, L.-Å; Quintana-Lacaci, G.

    2017-01-01

    We have mapped 12CO J = 3–2 and other molecular lines from the “water fountain” bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with ∼0.″35 resolution using Atacama Large Millimeter/submillimeter Array. We find (i) two very high-speed knotty, jet-like molecular outflows; (ii) a central high-density (> {few}× {10}6 cm‑3), expanding torus of diameter 1300 au; and (iii) the circumstellar envelope of the progenitor AGB, generated by a sudden, very large increase in the mass-loss rate to > 3.5× {10}-4 M⊙ yr‑1 in the past ∼455 years. Strong continuum emission at 0.89 mm from a central source (690 mJy), if due to thermally emitting dust, implies a substantial mass (0.017 M⊙) of very large (∼millimeter-sized) grains. The measured expansion ages of the above structural components imply that the torus (age ∼160 years) and the younger high-velocity outflow (age ∼110 years) were formed soon after the sharp increase in the AGB mass-loss rate. Assuming a binary model for the jets in IRAS 16342, the high momentum rate for the dominant jet-outflow in IRAS 16342 implies a high minimum accretion rate, ruling out standard Bondi–Hoyle–Lyttleton wind accretion and wind Roche-lobe overflow (RLOF) models with white-dwarf or main-sequence companions. Most likely, enhanced RLOF from the primary or accretion modes operating within common-envelope evolution are needed.

  14. A Massive Bipolar Outflow and a Dusty Torus with Large Grains in the Pre-Planetary Nebula IRAS 22036+5306

    CERN Document Server

    Sahai, R; Patel, N A; Contreras, C S; Morris, M

    2006-01-01

    We report high angular-resolution (~1") CO J=3--2 interferometric mapping, using the Submillimeter Array (SMA), of IRAS22036+5306 (I22036), a bipolar pre-planetary nebula (PPN) with knotty jets discovered in our HST SNAPshot survey of young PPNs. In addition, we have obtained supporting lower-resolution (~10") CO and 13CO J=1-0 observations with the Owens Valley Radio Observatory (OVRO) interferometer, as well as optical long-slit echelle spectra at the Palomar Observatory. The CO J=3-2 observations show the presence of a very fast (~220 km/s), highly collimated, massive (0.03 Msun) bipolar outflow with a very large scalar momentum (about 10^{39} g cm s^{-1}), and the characteristic spatio-kinematic structure of bow-shocks at the tips of this outflow. The Halpha line shows an absorption feature blue-shifted from the systemic velocity by ~100 km/s, which most likely arises in neutral interface material between the fast outflow and the dense walls of the bipolar lobes at low latitudes. The fast outflow in I2203...

  15. The Making of a Pre-Planetary Nebula

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    The gas expelled by dying stars gets twisted into intricate shapes and patterns as nebulae form. Now a team of researchers might have some answers about how this happens.Whats a Pre-Planetary Nebula?This H-R diagram for the globular cluster M5 shows where AGB stars lie: they are represented by blue markers here. The AGB is one of the final stages in a low- to intermediate-mass stars lifetime. [Lithopsian]When a low- to intermediate-mass star approaches the end of its lifetime, it moves onto the Asymptotic Giant Branch (AGB) in the Herzsprung-Russell diagram. As the star exhausts its fuel here, it shrugs off its outer layers. These layers of gas then encase the stars core, which is not yet hot enough to ionize the gas and cause it to glow.Instead, during this time the gas is relatively cool and dark, faintly reflecting light from the star and emitting only very dim infrared emission of its own. At this stage, the gas represents a pre-planetary nebula. Only later when the stellar core contracts enough to heat up and emit ionizing radiation does the nebula begin to properly glow, at which point it qualifies as a full planetary nebula.Images of OH231 in optical light (top) and 12CO (bottom) taken from the literature. [See Balick et al. 2017 for full credit]Unexpected ShapesPre-planetary nebulae are a very short-lived evolutionary stage, so weve observed only a few hundred of them which has left many unanswered questions about these objects.One particular mystery is that of their shapes: if these nebulae are formed by stars expelling their outer layers, we would naively expect them to be simple spherical shells and yet we observe pre-planetary nebulae to have intricate shapes and patterns. How does the star create these asymmetric shapes? A team of scientists led by Bruce Balick (University of Washington, Seattle) has now used simulations to address this question.Injecting MassBalick and collaborators use 3D hydrodynamic simulations to model one particular pre-planetary

  16. A Spitzer Study of the Mass Loss Histories of Three Bipolar Pre-Planetary Nebulae

    CERN Document Server

    Do, Tuan; Sahai, Raghvendra; Stapelfeldt, Karl

    2007-01-01

    We present the results of far-infrared imaging of extended regions around three bipolar pre-planetary nebulae, AFGL 2688, OH 231.8+4.2, and IRAS 16342$-$3814, at 70 and 160 $\\mu$m with the MIPS instrument on the Spitzer Space Telescope. After a careful subtraction of the point spread function of the central star from these images, we place constraints on the existence of extended shells and thus on the mass outflow rates as a function of radial distance from these stars. We find no apparent extended emission in AFGL 2688 and OH 231.8+4.2 beyond 100 arcseconds from the central source. In the case of AFGL 2688, this result is inconsistent with a previous report of two extended dust shells made on the basis of ISO observations. We derive an upper limit of $2.1\\times10^{-7}$ M$_\\odot$ yr$^{-1}$ and $1.0\\times10^{-7}$ M$_\\odot$ yr$^{-1}$ for the dust mass loss rate of AFGL 2688 and OH 231.8, respectively, at 200 arcseconds from each source. In contrast to these two sources, IRAS 16342$-$3814 does show extended emi...

  17. Preplanetary Nebulae: An HST Imaging Survey and a New Morphological Classification System

    CERN Document Server

    Sahai, Raghvendra; Contreras, Carmen Sánchez; Claussen, Mark

    2007-01-01

    Using the Hubble Space Telescope (HST), we have carried out a survey of candidate preplanetary nebulae (PPNs). We report here our discoveries of objects having well-resolved geometrical structures, and use the large sample of PPNs now imaged with HST (including previously studied objects in this class) to devise a comprehensive morphological classification system for this category of objects. The wide variety of aspherical morphologies which we have found for PPNs are qualitatively similar to those found for young planetary nebulae in previous surveys. We also find prominent halos surrounding the central aspherical shapes in many of our objects -- these are direct signatures of the undisturbed circumstellar envelopes of the progenitor AGB stars. Although the majority of these have surface-brightness distributions consistent with a constant mass-loss rate with a constant expansion velocity, there are also examples of objects with varying mass-loss rates. As in our surveys of young planetary nebulae (PNs), we f...

  18. X-Ray Emission from the Pre-Planetary Nebula Henize 3-1475

    CERN Document Server

    Sahai, R; Frank, A; Morris, M; Blackman, E G; Sahai, Raghvendra; Kastner, Joel H.; Frank, Adam; Morris, Mark; Blackman, Eric G.

    2003-01-01

    We report the first detection of X-ray emission in a pre-planetary nebula, Hen 3-1475. Pre-planetary nebulae are rare objects in the short transition stage between the Asymptotic Giant Branch and planetary nebula evolutionary phases, and Hen 3-1475, characterised by a remarkable S-shaped chain of optical knots, is one of the most noteworthy members of this class. Observations with the Advanced CCD Imaging Spectrometer (ACIS) onboard the Chandra X-Ray observatory show the presence of compact emission coincident with the brightest optical knot in this bipolar object, which is displaced from the central star by 2.7 arcsec along the polar axis. Model fits to the X-ray spectrum indicate an X-ray temperature and luminosity, respectively, of (4.3-5.7) 10^6 K and (4+/-1.4) 10^{31} (D/5 kpc)^2 erg s^{-1}, respectively. Our 3-sigma upper limit on the luminosity of compact X-ray emission from the central star in Hen 3-1475 is ~5 10^{31} (D/5 kpc)^2 erg s^{-1}. The detection of X-rays in Hen 3-1475 is consistent with mod...

  19. Collimated Fast Wind in the Pre-Planetary Nebula CRL 618

    CERN Document Server

    Lee, Chin-Fei; Sahai, Raghvendra

    2009-01-01

    Collimated fast winds (CFWs) have been proposed to operate during the post-AGB evolutionary phase (and even earlier during the late AGB phase), responsible for the shaping of pre-planetary nebulae (PPNs) and young planetary nebulae (PNs). This paper is a follow-up to our previous study of CFW models for the well-studied PPN CRL 618. Previously, we compared our CFW models with optical observations of CRL 618 in atomic and ionic lines and found that a CFW with a small opening angle can readily reproduce the highly collimated shape of the northwestern (W1) lobe of CRL 618 and the bow-like structure seen at its tip. In this paper, we compare our CFW models with recent observations of CRL 618 in CO J=2-1, J=6-5, and H2 1-0 S(1). In our models, limb-brightened shell structures are seen in CO and H2 at low velocity arising from the shocked AGB wind in the shell, and can be identified as the low-velocity (LV) components in the observations. However, the shell structure in CO J=2-1 is significantly less extended than ...

  20. THE SHAPING OF THE MULTIPOLAR PRE-PLANETARY NEBULA CRL 618 BY MULTIDIRECTIONAL BULLETS

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Po-Sheng; Lee, Chin-Fei; Moraghan, Anthony [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Smith, Michael, E-mail: posheng@asiaa.sinica.edu.tw [Centre for Astrophysics and Space Science, University of Kent, Canterbury CT2 7NH (United Kingdom)

    2016-04-01

    In order to understand the formation of the multipolar structures of the pre-planetary nebula CRL 618, we perform 3D simulations using a multidirectional bullet model. The optical lobes of CRL 618 and fast molecular outflows at the tips of the lobes have been found to have similar expansion ages of ∼100 yr. Additional fast molecular outflows were found near the source along the outflow axes with ages of ∼45 yr, suggesting a second episode of bullet ejections. Thus, in our simulations, two episodes of bullet ejections are assumed. The shaping process is simulated using the ZEUS-3D hydrodynamics code that includes molecular and atomic cooling. In addition, molecular chemistry is also included to calculate the CO intensity maps. Our results show the following: (1) Multiepoch bullets interacting with the toroidal dense core can produce the collimated multiple lobes as seen in CRL 618. The total mass of the bullets is ∼0.034 M{sub ⊙}, consistent with the observed high-velocity (HV) CO emission in fast molecular outflows. (2) The simulated CO J = 3–2 intensity maps show that the low-velocity cavity wall and the HV outflows along the lobes are reasonably consistent with the observations. The position–velocity diagram of the outflows along the outflow axes shows a linear increase of velocity with distance, similar to the observations. The ejections of these bullets could be due to magnetorotational explosions or nova-like explosions around a binary companion.

  1. MULTIPLE FAST MOLECULAR OUTFLOWS IN THE PRE-PLANETARY NEBULA CRL 618

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chin-Fei; Huang, Po-Sheng [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Sahai, Raghvendra [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Sánchez Contreras, Carmen [Astrobiology Center (CSIC-INTA), ESAC Campus, E-28691 Villanueva de la Canada, Madrid (Spain); Tay, Jeremy Jian Hao [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore)

    2013-11-01

    CRL 618 is a well-studied pre-planetary nebula. It has multiple highly collimated optical lobes, fast molecular outflows along the optical lobes, and an extended molecular envelope that consists of a dense torus in the equator and a tenuous round halo. Here we present our observations of this source in CO J = 3-2 and HCN J = 4-3 obtained with the Submillimeter Array at up to ∼0.''3 resolutions. We spatially resolve the fast molecular outflow region previously detected in CO near the central star and find it to be composed of multiple outflows that have similar dynamical ages and are oriented along the different optical lobes. We also detect fast molecular outflows further away from the central star near the tips of the extended optical lobes and a pair of equatorial outflows inside the dense torus. We find that two episodes of bullet ejections in different directions are needed, one producing the fast molecular outflows near the central star and one producing the fast molecular outflows near the tips of the extended optical lobes. One possibility to launch these bullets is a magneto-rotational explosion of the stellar envelope.

  2. Using kinematic properties of pre-planetary nebulae to constrain engine paradigms

    Science.gov (United States)

    Blackman, Eric G.; Lucchini, Scott

    2014-05-01

    Some combination of binary interactions and accretion plausibly conspire to produce the ubiquitous collimated outflows from planetary nebulae (PN) and their presumed pre-PN (PPN) precursors. But which accretion engines are viable? The difficulty in observationally resolving the engines warrants the pursuit of indirect constraints. We show how kinematic outflow data for 19 PPN can be used to determine the minimum required accretion rates. We consider main-sequence (MS) and white dwarf (WD) accretors and five example accretion rates inferred from published models to compare with the minima derived from outflow momentum conservation. While our primary goal is to show the method in anticipation of more data and better theoretical constraints, taking the present results at face value already rules out modes of accretion: Bondi-Hoyle-Lyttleton (BHL) wind accretion and wind Roche lobe overflow (M-WRLOF, based on Mira parameters) are too feeble for all 19/19 objects for an MS accretor. For a WD accretor, BHL is ruled out for 18/19 objects and M-WRLOF for 15/19 objects. RLOF from the primary at the Red Rectangle level can accommodate 7/19 objects, though RLOF modes with higher accretion rates are not yet ruled out. Accretion modes operating from within common envelope evolution can accommodate all 19 objects, if jet collimation can be maintained. Overall, sub-Eddington rates for an MS accretor are acceptable but 8/19 would require super-Eddington rates for a WD. L61

  3. Imaging the transition between pre-planetary and planetary nebulae: Integral Field Spectroscopy of hot post-AGB stars with NIFS

    CERN Document Server

    Gledhill, T M

    2014-01-01

    We present 2 to 2.4 micron integral field spectroscopy of a sample of hot post-AGB stars with early-B spectral types, using the NIFS instrument on Gemini North. These stars are just beginning to ionize their immediate environments and turn into planetary nebulae (PNe).We use molecular hydrogen emission lines together with hydrogen and helium recombination lines to explore the distribution of molecular and atomic gas and the extent of the developing ionized region. We see a range of evolutionary stages: IRAS 18062+2410 and IRAS 18379-1707 have recently developed compact and unresolved regions of photoionized H within axisymmetric molecular envelopes, with the former object increasing its Br-Gamma flux by a factor of 5.3 in 14 years; IRAS 22023+5249 and IRAS 20462+3416 have extended Br-Gamma nebulae and in the latter object only weak H2 emission remains; IRAS 19336-0400 is at a more advanced stage of PN formation where H2 is mostly dissociated and we see structure in both the H and He recombination line nebulae...

  4. Imaging the transition between pre-planetary and planetary nebulae: integral field spectroscopy of hot post-AGB stars with NIFS

    Science.gov (United States)

    Gledhill, T. M.; Forde, K. P.

    2015-02-01

    We present 2-2.4 μm integral field spectroscopy of a sample of hot post-asymptotic giant branch stars with early-B spectral types, using the Near-infrared Integral Field Spectrometer instrument on Gemini North. These stars are just beginning to ionize their immediate environments and turn into planetary nebulae (PNe). We use molecular hydrogen emission lines together with hydrogen and helium recombination lines to explore the distribution of molecular and atomic gas and the extent of the developing ionized region. We see a range of evolutionary stages: IRAS 18062+2410 and IRAS 18379-1707 have recently developed compact and unresolved regions of photoionized H within axisymmetric molecular envelopes, with the former object increasing its Brγ flux by a factor of 5.3 in 14 years; IRAS 22023+5249 and IRAS 20462+3416 have extended Brγ nebulae and in the latter object only weak H2 emission remains; IRAS 19336-0400 is at a more advanced stage of PN formation where H2 is mostly dissociated and we see structure in both the H and He recombination line nebulae. IRAS 19200+3457 is the only object not to show the He I line at 2.058 μm and is probably the least evolved object in our sample; the H2 emission forms a ring around the star and we suggest that this object may be a rare example of a `round' pre-PN in transition to a `round' PN.

  5. A pilot search for mm-wavelength recombination lines from emerging ionized winds in pre-planetary nebulae candidates

    Science.gov (United States)

    Sánchez Contreras, C.; Báez-Rubio, A.; Alcolea, J.; Bujarrabal, V.; Martín-Pintado, J.

    2017-07-01

    We report the results from a pilot search for radio recombination line (RRL) emission at millimeter wavelengths in a small sample of pre-planetary nebulae (pPNe) and young PNe (yPNe) with emerging central ionized regions. Observations of the H30α, H31α, H39α, H41α, H48β, H49β, H51β, and H55γ lines at 1 and 3 mm have been performed with the IRAM 30 m radio telescope. These lines are excellent probes of the dense inner (≲150 au) and heavily obscured regions of these objects, where the yet unknown agents for PN-shaping originate. We detected mm-RRLs in three objects: CRL 618, MWC 922, and M 2-9. For CRL 618, the only pPN with previous published detections of H41α, H35α, and H30α emission, we find significant changes in the line profiles indicating that current observations are probing regions of the ionized wind with larger expansion velocities and mass-loss rate than 29 yr ago. In the case of MWC 922, we observe a drastic transition from single-peaked profiles at 3 mm (H39α and H41α) to double-peaked profiles at 1 mm (H31α and H30α), which is consistent with maser amplification of the highest frequency lines; the observed line profiles are compatible with rotation and expansion of the ionized gas, probably arranged in a disk+wind system around a 5-10 M⊙ central mass. In M 2-9, the mm-RRL emission appears to be tracing a recent mass outburst by one of the stars of the central binary system. We present the results from non-LTE line and continuum radiative transfer models, which enables us to constrain the structure, kinematics, and physical conditions (electron temperature and density) of the ionized cores of our sample. We find temperatures Te 6000-17 000 K, mean densities ne 105-108 cm-3, radial density gradients ne ∝ r- αn with αn 2-3.5, and motions with velocities of 10-30 km s-1 in the ionized wind regions traced by these mm-wavelength observations. We deduce mass-loss rates of ṀpAGB ≈ 10-6-10-7 M⊙ yr-1, which are significantly higher

  6. A survey for water maser emission towards planetary nebulae. New detection in IRAS 17347-3139

    CERN Document Server

    De Gregorio-Monsalvo, I; Anglada, G; Cesaroni, R; Miranda, L F; Gómez, J F; Torrelles, J M; Gregorio-Monsalvo, Itziar de; Gomez, Yolanda; Anglada, Guillem; Cesaroni, Riccardo; Miranda, Luis F.; Gomez, Jose F.; Torrelles, Jose M.

    2004-01-01

    We report on a water maser survey towards a sample of 27 planetary nebulae (PNe) using the Robledo de Chavela and Medicina single-dish antennas, as well as the Very Large Array (VLA). Two detections have been obtained: the already known water maser emission in K 3-35, and a new cluster of masers in IRAS 17347-3139. This low rate of detections is compatible with the short life-time of water molecules in PNe (~100 yr). The water maser cluster at IRAS 17347-3139 are distributed on a ellipse of size ~ 0.2" x 0.1", spatially associated with compact 1.3 cm continuum emission (simultaneously observed with the VLA). From archive VLA continuum data at 4.9, 8.4, and 14.9 GHz, a spectral index alpha = 0.76 +- 0.03 is derived for this radio source, which is consistent with either a partially optically thick ionized region or with an ionized wind. However, the latter scenario can be ruled out on mass-loss considerations, thus indicating that this source is probably a young PN. The spatial distribution and the radial veloc...

  7. The physical environment around IRAS 17599-2148: infrared dark cloud and bipolar nebula

    CERN Document Server

    Dewangan, L K; Zinchenko, I; Janardhan, P; Ghosh, S K; Luna, A

    2016-01-01

    We present a multi-scale and multi-wavelength study to investigate the star formation process around IRAS 17599$-$2148 that is part of an elongated filamentary structure (EFS) (extension $\\sim$21 pc) seen in the {\\it Herschel} maps. Using the {\\it Herschel} data analysis, at least six massive clumps (M$_{clump}$ $\\sim$777 -- 7024 M$_{\\odot}$) are found in the EFS with a range of temperature and column density of $\\sim$16--39~K and $\\sim$0.6--11~$\\times$~10$^{22}$ cm$^{-2}$ (A$_{V}$ $\\sim$7--117 mag), respectively. The EFS hosts cold gas regions (i.e. infrared dark cloud) without any radio detection and a bipolar nebula (BN) linked with the H\\,{\\sc ii} region IRAS 17599$-$2148, tracing two distinct environments inferred through the temperature distribution and ionized emission. Based on virial analysis and higher values of self-gravitating pressure, the clumps are found unstable against gravitational collapse. We find 474 young stellar objects (YSOs) in the selected region and $\\sim$72\\% of these YSOs are foun...

  8. Investigating the nature of the Fried Egg nebula: CO mm-line and optical spectroscopy of IRAS 17163-3907

    CERN Document Server

    Wallström, Sofia H J; Lagadec, E; Black, J H; Oudmaijer, R D; Justtanont, K; van Winckel, H; Zijlstra, A A

    2015-01-01

    Through CO mm-line and optical spectroscopy, we investigate the properties of the Fried Egg nebula IRAS 17163-3907, which has recently been proposed to be one of the rare members of the yellow hypergiant class. The CO J=2-1 and J=3-2 emission arises from a region within 20" of the star and is clearly associated with the circumstellar material. The CO lines show a multi-component asymmetrical profile, and an unexpected velocity gradient is resolved in the east-west direction, suggesting a bipolar outflow. This is in contrast with the apparent symmetry of the dust envelope as observed in the infrared. The optical spectrum of IRAS 17163-3907 between 5100 and 9000 {\\AA} was compared with that of the archetypal yellow hypergiant IRC+10420 and was found to be very similar. These results build on previous evidence that IRAS 17163-3907 is a yellow hypergiant.

  9. The Physical Environment around IRAS 17599-2148: Infrared Dark Cloud and Bipolar Nebula

    Science.gov (United States)

    Dewangan, L. K.; Ojha, D. K.; Zinchenko, I.; Janardhan, P.; Ghosh, S. K.; Luna, A.

    2016-12-01

    We present a multiscale and multiwavelength study to investigate the star formation process around IRAS 17599-2148, which is part of an elongated filamentary structure (EFS) (extension ˜21 pc) seen in the Herschel maps. Using the Herschel data analysis, at least six massive clumps (M clump ˜ 777-7024 M ⊙) are found in the EFS with a range of temperature and column density of ˜16-39 K and ˜(0.6-11) × 1022 cm-2 (A V ˜ 7-117 mag), respectively. The EFS hosts cold gas regions (i.e., infrared dark cloud) without any radio detection and a bipolar nebula (BN) linked with the H ii region IRAS 17599-2148, tracing two distinct environments inferred through the temperature distribution and ionized emission. Based on virial analysis and higher values of self-gravitating pressure, the clumps are found unstable against gravitational collapse. We find 474 young stellar objects (YSOs) in the selected region, and ˜72% of these YSOs are found in the clusters distributed mainly toward the clumps in the EFS. These YSOs might have spontaneously formed due to processes not related to the expanding H ii region. At the edges of BN, four additional clumps are also associated with YSO clusters, which appear to be influenced by the expanding H ii region. The most massive clump in the EFS contains two compact radio sources traced in the Giant Metre-wave Radio Telescope 1.28 GHz map and a massive protostar candidate, IRS 1, prior to an ultracompact H ii phase. Using the Very Large Telescope/NACO near-infrared images, IRS 1 is resolved with a jet-like feature within a 4200 au scale.

  10. High-Velocity Interstellar Bullets in IRAS05506+2414: A Very Young Protostar

    CERN Document Server

    Sahai, Raghvendra; Contreras, Carmen Sánchez; Morris, Mark; Sarkar, Geetanjali

    2008-01-01

    We have made a serendipitous discovery of an enigmatic outflow source, IRAS 05506+2414 (hereafter IRAS 05506), as part of a multi-wavelength survey of pre-planetary nebulae (PPNs). The HST optical and near-infrared images show a bright compact central source with a jet-like extension, and a fan-like spray of high-velocity (with radial velocities upto 350 kms/s) elongated knots which appear to emanate from it. These structures are possibly analogous to the near-IR "bullets" seen in the Orion nebula. Interferometric observations at 2.6 mm show the presence of a high-velocity CO outflow and a continuum source also with a faint extension, both of which are aligned with the optical jet structure. IRAS 05506 is most likely not a PPN. We find extended NH3 (1,1) emission towards IRAS 05506; these data together with the combined presence of far-IR emission, H2O and OH masers, and CO and CS J=2-1 emission, strongly argue for a dense, dusty star-forming core associated with IRAS 05506. IRAS 05506 is probably an intermed...

  11. IRAS 05436-0007 and the Emergence of McNeil's Nebula

    OpenAIRE

    Reipurth, Bo; Aspin, Colin

    2004-01-01

    We present a study of McNeil's Nebula, a newly appeared reflection nebula in the L1630 cloud, together with photometry and spectroscopy of its source. New IR photometry compared to earlier 2MASS data shows that the star has brightened by about 3 magnitudes in the near-infrared, changing its location in a J-H/H-K diagram precisely along a reddening vector. A Gemini NIRI K-band spectrum shows strong CO-bandhead emission and Br-gamma is in emission, indicative of strong accretion. A Gemini GMOS ...

  12. Radiative transfer modelling of dust in IRAS 18333-2357: the only planetary nebula in the metal-poor globular cluster M22

    Science.gov (United States)

    Muthumariappan, C.; Parthasarathy, M.; Ita, Y.

    2013-10-01

    We report results from our 1D radiative transfer modelling of dust in the hydrogen-deficient planetary nebula IRAS 18333-2357 located in the globular cluster M22. A spectral energy distribution was constructed from archival UV, optical and IR data including Akari photometry at its 18, 65, 90, 140 and 160 μm bands. An archival Spitzer spectrum shows several aromatic infrared bands indicating a carbon-rich dust shell. The spectral energy distribution is well fitted by a model which considers a modified Mathis-Rumpl-Nordsieck grain size distribution and a radial density function which includes compression of the nebula by its interaction with the Galactic halo gas. The model indicates that a significant amount of cold dust, down to a temperature of 50 K, is present at the outer edge of the nebula. At the inner edge, the dust temperature is 97 K. The dust shell has a size of 26 ± 6.3 arcsec. We find a large amount of excess emission, over the emission from thermal equilibrium dust, in the mid-IR region. This excess emission may have originated from the thermally fluctuating dust grains with size ˜12 Å in the UV field of the hot central star. These grains, however, come from the same population and conditions as the thermal equilibrium grains. The dust mass of this grain population is (1.2 ± 0.73) × 10-3 M⊙ and for the thermal equilibrium grains it is (1.4 ± 0.60) × 10-4 M⊙, leading to a total dust mass of (1.3 ± 0.91) × 10-3 M⊙. The derived dust-to-gas mass ratio is 0.3 ± 0.21. For a derived bolometric luminosity of (1700 ± 1230) L⊙ and an assumed central star mass of (0.55 ± 0.02) M⊙, the surface gravity is derived to be log g = 4.6 ± 0.24. We propose that the progenitor of IRAS 18333-2357 had possibly evolved from an early stellar merger case and the hydrogen-deficient nebula results from a late thermal pulse. The hydrogen-rich nebula, which was ejected by the progenitor during its normal asymptotic giant branch evolution, might have been

  13. Three-dimensional Monte Carlo dust radiative transfer study of the H-poor planetary nebula IRAS 18333-2357 located in M22

    Science.gov (United States)

    Muthumariappan, C.

    2017-09-01

    We analyse the characteristics of dust and its distribution in the planetary nebula IRAS 18333-2357 located in M22 using a three-dimensional radiative transfer code Hochunk3D. The spectral energy distribution was constructed using ultraviolet, optical and infrared archival data. We also have used Spitzer 8-μm and Wide-field Infrared Survey Explorer (WISE) 22-μm images for our study. Taking into account that the dust shell is carbon-rich, models are presented for amorphous carbon and graphite grains. The spectral energy distribution and the thermal images are fit better by the amorphous carbon model than the graphite model. The stellar photospheric temperature is (50 000 ± 3000) K. IRAS 18333-2357 has a (40 ± 2)° inclined equatorial disc and a thin spherical shell around it, similar to the inner geometry of the born-again planetary nebula A30. Disc inner and outer radii are (2.8 ± 0.1) and (6.0 ± 0.6) arcsec, respectively. The inner and outer radii of the shell are (13.3 ± 1.5) and (25 ± 4) arcsec, respectively. Incorporating a very small grain population, we explain the excess emission in the region of 3-12 μm. The stellar bolometric luminosity is (2460 ± 800) L⊙ and the luminosity reprocessed by dust is (630 ± 200) L⊙. The masses of very small grain population and the classical dust grains are (9.4 ± 0.75) × 10-4 M⊙ and (3.1 ± 0.24) × 10-3 M⊙, respectively, resulting in a total dust mass of (4.1 ± 0.31)× 10-3 M⊙. The derived gas-to-dust mass ratio is 7 ± 1. We discuss a possible origin of IRAS 18333-2357 from a born-again event. The faint envelope seen in the WISE 22-μm image may contain H-rich matter ejected before the H-deficient nebula.

  14. STUDIES OF VARIABILITY IN PROTO-PLANETARY NEBULAE. II. LIGHT AND VELOCITY CURVE ANALYSES OF IRAS 22272+5435 AND 22223+4327

    Energy Technology Data Exchange (ETDEWEB)

    Hrivnak, Bruce J.; Lu, Wenxian [Department of Physics and Astronomy, Valparaiso University, Valparaiso, IN 46383 (United States); Sperauskas, Julius; Zacs, Laimons [Vilnius University Observatory, Ciurlionio 29 Vilnius 2009 (Lithuania); Van Winckel, Hans [Instituut voor Sterrenkunde, K. U. Leuven University, B-3001 Leuven (Heverlee) (Belgium); Bohlender, David, E-mail: bruce.hrivnak@valpo.edu, E-mail: wen.lu@valpo.edu, E-mail: julius.sperauskas@ff.vu.lt, E-mail: Hans.VanWinckel@ster.kuleuven.be, E-mail: David.Bohlender@nrc-cnrc.gc.ca, E-mail: zacs@latnet.lv [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2013-04-01

    We have carried out a detailed observational study of the light, color, and velocity variations of two bright, carbon-rich proto-planetary nebulae, IRAS 22223+4327 and 22272+5435. The light curves are based upon our observations from 1994 to 2011, together with published data by Arkhipova and collaborators. They each display four significant periods, with primary periods for IRAS 22223+4327 and 22272+5435 being 90 and 132 days, respectively. For each of them, the ratio of secondary to primary period is 0.95, a value much different from that found in Cepheids, but which may be characteristic of post-asymptotic giant branch (AGB) stars. Fewer significant periods are found in the smaller radial velocity data sets, but they agree with those of the light curves. The color curves generally mimic the light curves, with the objects reddest when faintest. A comparison in seasons when there exist contemporaneous light, color, and velocity curves reveals that the light and color curves are in phase, while the radial velocity curves are {approx}0.25 P out of phase with the light curves. Thus they differ from what is seen in Cepheids, in which the radial velocity curve is 0.50 P out of phase with the light curve. Comparison of the observed periods and amplitudes with those of post-AGB pulsation models shows poor agreement, especially for the periods, which are much longer than predicted. These observational data, particularly the contemporaneous light, color, and velocity curves, provide an excellent benchmark for new pulsation models of cool stars in the post-AGB, proto-planetary nebula phase.

  15. A Study of H2 Emission in Three Bipolar Proto-Planetary Nebulae: IRAS 16594-4656, Hen 3-401, and Rob 22

    CERN Document Server

    Hrivnak, Bruce J; Su, Kate Y L; Sahai, Raghvendra

    2008-01-01

    We have carried out a spatial-kinematical study of three proto-planetary nebulae, IRAS 16594-4656, Hen 3-401, and Rob 22. High-resolution H2 images were obtained with NICMOS on the HST and high-resolution spectra were obtained with the Phoenix spectrograph on Gemini-South. IRAS 16594-4656 shows a "peanut-shaped" bipolar structure with H2 emission from the walls and from two pairs of more distant, point-symmetric faint blobs. The velocity structure shows the polar axis to be in the plane of the sky, contrary to the impression given by the more complex visual image and the visibility of the central star, with an ellipsoidal velocity structure. Hen 3-401 shows the H2 emission coming from the walls of the very elongated, open-ended lobes seen in visible light, along with a possible small disk around the star. The bipolar lobes appear to be tilted 10-15 deg with respect to the plane of the sky and their kinematics display a Hubble-like flow. In Rob 22, the H2 appears in the form of an "S" shape, approximately trac...

  16. Spatially Resolved 3 um Spectroscopy of IRAS 22272+5435 Formation and Evolution of Aliphatic Hydrocarbon Dust in Proto-Planetary Nebula

    CERN Document Server

    Goto, M; Hayano, Y; Iye, M; Kamata, Y; Kanzawa, T; Kobayashi, N; Minowa, Y; Saint-Jacques, D J; Takami, H; Takato, N; Terada, H

    2003-01-01

    We present medium-resolution 3 um spectroscopy of the carbon-rich proto-planetary nebula IRAS 22272+5435. Spectroscopy with the Subaru Telescope adaptive optics system revealed a spatial variation of hydrocarbon molecules and dust surrounding the star. The ro-vibrational bands of acetylene (C2H2) and hydrogen cyanide (HCN) at 3.0 um are evident in the central star spectra. The molecules are concentrated in the compact region near the center. The 3.3 and 3.4 um emission of aromatic and aliphatic hydrocarbons is detected at 600--1300 AU from the central star. The separation of spatial distribution between gas and dust suggests that the small hydrocarbon molecules are indeed the source of solid material, and that the gas leftover from the grain formation is being observed near the central star. The intensity of aliphatic hydrocarbon emission relative to the aromatic hydrocarbon emission decreases with distance from the central star. The spectral variation is well matched to that of a laboratory analog thermally ...

  17. Proper Motions of H2O Masers in the Water Fountain Source IRAS 19190+1102

    CERN Document Server

    Day, F M; Claussen, M J; Sahai, R

    2010-01-01

    We report on the results of two epochs of Very Long Baseline Array (VLBA) observations of the 22 GHz water masers toward IRAS 19190+1102. The water maser emission from this object shows two main arc-shaped formations perpendicular to their NE-SW separation axis. The arcs are separated by ~280 mas in position, and are expanding outwards at an angular rate of 2.35 mas/yr. We detect maser emission at velocities between -53.3 km/s to +78.0 km/s and there is a distinct velocity pattern where the NE masers are blueshifted and the SW masers are redshifted. The outflow has a three-dimensional outflow velocity of 99.8 km/s and a dynamical age of about 59 yr. A group of blueshifted masers not located along the arcs shows a change in velocity of more than 35 km/s between epochs, and may be indicative of the formation of a new lobe. These observations show that IRAS 19190+1102 is a member of the class of "water fountain"' pre-planetary nebulae displaying bipolar structure

  18. Hydroxyl Emission in the Westbrook Nebula

    Science.gov (United States)

    Strack, Angelica; Araya, Esteban; Ghosh, Tapasi; Arce, Hector G.; Lebron, Mayra E.; Salter, Christopher J.; Minchin, Robert F.; Pihlstrom, Ylva; Kurtz, Stan; Hofner, Peter; Olmi, Luca

    2016-06-01

    CRL 618, also known as the Westbrook Nebula, is a carbon-rich pre-planetary nebula. Hydroxyl (OH) transitions are typically not detected in carbon-rich late-type stellar objects, however observations conducted with the 305m Arecibo Telescope in 2008 resulted in the detection of 4765 MHz OH emission in CRL 618. We present results of observations carried out a few months after the original detection that confirm the line. This is the first detection of 4765 MHz OH emission (most likely a maser) in a pre-planetary nebula. Follow up observations conducted in 2015 resulted in non-detection of the 4765 MHz OH transition. This behavior is consistent with the high level of variability of excited OH lines that have been detected toward a handful of other pre-planetary nebulae. Our work supports that excited OH masers are short-lived during the pre-planetary nebula phase. We also conducted a search for other OH transitions from 1612 MHz to 8611 MHz with the Arecibo Telescope; we report no other detections at rms levels of ~5 mJy.This work has made use of the computational facilities donated by Frank Rodeffer to the WIU Astrophysics Research Laboratory. We also acknowledge support from M. & C. Wong RISE scholarships and a grant from the WIU College of Arts and Sciences.

  19. Discovery of Luminous Star Formation in PMN1452-5910/IRAS14482-5857: the Pterodactyl Nebula

    CERN Document Server

    Jones, D I

    2014-01-01

    We present sensitive 1-3 GHz ATCA radio continuum observations of the hitherto unresolved star forming region known as either IRAS14482-5857 or PMN1452-5910. At radio continuum frequencies, this source is characterised by a "filled-bubble" structure reminiscent of a classical HII region, dominated by three point sources, and surrounded by low-surface-brightness emission out to the $3'\\times4'$ source extent observed at other frequencies in the literature. The infrared emission corresponds well to the radio emission, with polycyclic aromatic hydrocarbon emission surrounding regions of hot dust towards the radio bubbles. A bright 4.5 $\\mu$m point source is seen towards the centre of the radio source, suggesting a young stellar object. There is also a linear, outflow-like structure radiating brightly at 8 and 24 $\\mu$m towards the brightest peak of the radio continuum. In order to estimate the distance to this source, we have used Mopra Southern Galactic Plane CO Survey $^{12}$CO(1-0) and $^{13}$CO(1-0) molecula...

  20. ALMA Compact Array observations of the Fried Egg nebula. Evidence for large-scale asymmetric mass-loss from the yellow hypergiant IRAS 17163-3907

    Science.gov (United States)

    Wallström, S. H. J.; Lagadec, E.; Muller, S.; Black, J. H.; Cox, N. L. J.; Galván-Madrid, R.; Justtanont, K.; Longmore, S.; Olofsson, H.; Oudmaijer, R. D.; Quintana-Lacaci, G.; Szczerba, R.; Vlemmings, W.; van Winckel, H.; Zijlstra, A.

    2017-01-01

    Yellow hypergiants are rare and represent a fast evolutionary stage of massive evolved stars. That evolutionary phase is characterised by a very intense mass loss, the understanding of which is still very limited. Here we report ALMA Compact Array observations of a 50''-mosaic toward the Fried Egg nebula, around one of the few Galactic yellow hypergiants IRAS 17163-3907. The emission from the 12CO J = 2-1 line, H30α recombination line, and continuum is imaged at a resolution of 8'', revealing the morphology of the molecular environment around the star. The continuum emission is unresolved and peaks at the position of the star. The radio recombination line H30α shows unresolved emission at the star, with an approximately Gaussian spectrum centered on a velocity of 21 ± 3km s-1 with a width of 57 ± 6km s-1. In contrast, the CO 2-1 emission is complex and decomposes into several components beyond the contamination from interstellar gas in the line of sight. The CO spectrum toward the star is a broad plateau, centered at the systemic velocity of +18 km s-1 and with an expansion velocity of 100 ± 10km s-1. Assuming isotropic and constant mass-loss, we estimate a mass-loss rate of 8 ± 1.5 × 10-5M⊙ yr-1. At a radius of 25'' from the star, we detect CO emission associated with the dust ring previously imaged by Herschel. The kinematics of this ring, however, is not consistent with an expanding shell, but show a velocity gradient of vsys ± 20km s-1. In addition, we find a puzzling bright feature radially connecting the star to the CO ring, at a velocity of +40 km s-1 relative to the star. This spur feature may trace a unidirectional ejection event from the star. Our ACA observations reveal the complex morphology around IRAS 17163 and illustrate the breakthroughs that ALMA will bring to the field of massive stellar evolution.

  1. ALMA Compact Array observations of the Fried Egg nebula: Evidence for large-scale asymmetric mass-loss from the yellow hypergiant IRAS 17163-3907.

    Science.gov (United States)

    Wallström, S H J; Lagadec, E; Muller, S; Black, J H; Cox, N L J; Galván-Madrid, R; Justtanont, K; Longmore, S; Olofsson, H; Oudmaijer, R D; Quintana-Lacaci, G; Szczerba, R; Vlemmings, W; van Winckel, H; Zijlstra, A

    2017-01-10

    Yellow hypergiants are rare and represent a fast evolutionary stage of massive evolved stars. That evolutionary phase is characterised by a very intense mass loss, the understanding of which is still very limited. Here we report ALMA Compact Array observations of a 50″-mosaic toward the Fried Egg nebula, around one of the few Galactic yellow hypergiants IRAS 17163-3907. The emission from the (12)CO J=2-1 line, H30α recombination line, and continuum is imaged at a resolution of ~8″, revealing the morphology of the molecular environment around the star. The continuum emission is unresolved and peaks at the position of the star. The radio recombination line H30α shows unresolved emission at the star, with an approximately gaussian spectrum centered on a velocity of 21±3 km s(-1) with a width of 57±6 km s(-1). In contrast, the CO 2-1 emission is complex and decomposes into several components beyond the contamination from interstellar gas in the line of sight. The CO spectrum toward the star is a broad plateau, centered at the systemic velocity of +18 km s(-1) and with an expansion velocity of 100±10 km s(-1). Assuming isotropic and constant mass-loss, we estimate a mass-loss rate of 8±1.5 ×10(-5) M⊙ yr(-1). At a radius of 25″ from the star, we detect CO emission associated with the dust ring previously imaged by Herschel. The kinematics of this ring, however, is not consistent with an expanding shell, but show a velocity gradient of vsys ±20 km s(-1). In addition, we find a puzzling bright feature radially connecting the star to the CO ring, at a velocity of +40 km s(-1) relative to the star. This spur feature may trace a unidirectional ejection event from the star. Our ACA observations reveal the complex morphology around IRAS 17163 and illustrate the breakthroughs that ALMA will bring to the field of massive stellar evolution.

  2. ALMA Compact Array observations of the Fried Egg nebula: Evidence for large-scale asymmetric mass-loss from the yellow hypergiant IRAS 17163-3907

    Science.gov (United States)

    Wallström, S.H.J.; Lagadec, E.; Muller, S.; Black, J.H.; Cox, N.L.J.; Galván-Madrid, R.; Justtanont, K.; Longmore, S.; Olofsson, H.; Oudmaijer, R.D.; Quintana-Lacaci, G.; Szczerba, R.; Vlemmings, W.; van Winckel, H.; Zijlstra, A.

    2017-01-01

    Yellow hypergiants are rare and represent a fast evolutionary stage of massive evolved stars. That evolutionary phase is characterised by a very intense mass loss, the understanding of which is still very limited. Here we report ALMA Compact Array observations of a 50″-mosaic toward the Fried Egg nebula, around one of the few Galactic yellow hypergiants IRAS 17163-3907. The emission from the 12CO J=2-1 line, H30α recombination line, and continuum is imaged at a resolution of ~8″, revealing the morphology of the molecular environment around the star. The continuum emission is unresolved and peaks at the position of the star. The radio recombination line H30α shows unresolved emission at the star, with an approximately gaussian spectrum centered on a velocity of 21±3 km s−1 with a width of 57±6 km s−1. In contrast, the CO 2-1 emission is complex and decomposes into several components beyond the contamination from interstellar gas in the line of sight. The CO spectrum toward the star is a broad plateau, centered at the systemic velocity of +18 km s−1 and with an expansion velocity of 100±10 km s−1. Assuming isotropic and constant mass-loss, we estimate a mass-loss rate of 8±1.5 ×10−5 M⊙ yr−1. At a radius of 25″ from the star, we detect CO emission associated with the dust ring previously imaged by Herschel. The kinematics of this ring, however, is not consistent with an expanding shell, but show a velocity gradient of vsys±20 km s−1. In addition, we find a puzzling bright feature radially connecting the star to the CO ring, at a velocity of +40 km s−1 relative to the star. This spur feature may trace a unidirectional ejection event from the star. Our ACA observations reveal the complex morphology around IRAS 17163 and illustrate the breakthroughs that ALMA will bring to the field of massive stellar evolution. PMID:28190887

  3. Magnetic field in the primitive solar nebula

    Science.gov (United States)

    Levy, E. H.

    1978-01-01

    Carbonaceous chondrites have apparently been magnetized in their early history in magnetic fields with intensities of 0.1 to 10 G, but the origin of the magnetizing field has remained obscured. It is suggested that the magnetic field recorded in the remanence of carbonaceous chondrites may have been produced by a self-excited hydromagnetic dynamo in the gaseous preplanetary nebula from which the solar system is thought to have formed. Recently computed models for the evolution of the preplanetary nebula, consisting of turbulent and differentially rotating gaseous disks with characteristic radial scales of several AU, are used to demonstrate the feasibility of this hypothesis. The maximum field intensity that might be realized by the dynamo production process is estimated to be as high as 1 to 10 G, taking into account two dynamical mechanisms that limit the strength of the field (the Coriolis force and ambipolar diffusion).

  4. Accretion among preplanetary bodies : The many faces of runaway growth

    NARCIS (Netherlands)

    Ormel, C. W.; Dullemond, C. P.; Spaans, M.

    2010-01-01

    When preplanetary bodies reach proportions of similar to 1 km or larger in size, their accretion rate is enhanced due to gravitational focusing (GF). We have developed a new numerical model to calculate the collisional evolution of the gravitationally-enhanced growth stage. The numerical model is no

  5. Accretion among preplanetary bodies: The many faces of runaway growth

    NARCIS (Netherlands)

    Ormel, C. W.; Dullemond, C. P.; Spaans, M.

    2010-01-01

    When preplanetary bodies reach proportions of ˜1 km or larger in size, their accretion rate is enhanced due to gravitational focusing (GF). We have developed a new numerical model to calculate the collisional evolution of the gravitationally-enhanced growth stage. The numerical model is novel as it

  6. AN INFRARED STUDY OF 3 WOLF-RAYET RING NEBULAE

    NARCIS (Netherlands)

    MATHIS, JS; CASSINELLI, JP; VANDERHUCHT, KA; PRUSTI, T; WESSELIUS, PR; WILLIAMS, PM

    1992-01-01

    We have studied the IRAS colors of the ring nebula RCW 58 surrounding the Wolf-Rayet star HD 96548 (= WR 40; type WN 8) by analyzing the IRAS survey data with the Groningen Exportable High-Resolution Analysis system (GEISHA) and by using the Chopped Photometric Channel high-resolution imaging at

  7. Modeling IRA Accumulation and Withdrawals

    OpenAIRE

    Sabelhaus, John

    2000-01-01

    Empirical analysis of IRA accumulation and withdrawal patterns is limited because information about IRA balances and flows is not available for a sample of taxpayers. This paper combines survey data on IRA balances with individual tax return data on IRA flows to study IRA accumulation and withdrawal patterns across cohorts. The analysis shows that IRA rules such as penalties for early withdrawals and minimum distribution requirements have predictable effects on IRA flows. The estimated propen...

  8. High Resolution WFPC2 Imaging of IRAS 09104+4109

    CERN Document Server

    Armus, L; Neugebauer, G

    1999-01-01

    With a infrared luminosity of nearly 10^13 Lsuns, IRAS 09104+4109 is the most luminous galaxy with z<0.5 in the IRAS All Sky Survey. A radio-loud Seyfert 2 type optical spectrum, a cD host galaxy in a rich cluster, and a massive cooling flow make IRAS 09104+4109 unique among ultraluminous infrared galaxies. Cannibalized cluster members and the cooling intercluster medium may contribute both the fuel and the dust needed to re-radiate the power of IRAS 09104+4109 into the far-infrared. We have imaged IRAS 09104+4109 in the WFPC2 F622W, F814W, and FR680N filters on the HST to obtain rest frame 4300A, 5700A, and [OIII] emission line images on sub-kpc scales. IRAS 09104+4109 displays a complex morphology on the smallest scales, with radiating filaments, an asymmetric [OIII] nebula, and a number of very faint, irregular blue objects surrounding the cD galaxy. We discuss the nature and possible interplay between the enshrouded QSO nucleus, the cD host galaxy and the irregular cluster.

  9. IRAS 01005+7910: a High Galactic Latitude Post-AGB Star

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    IRAS 01005+7910 is a cold IRAS source. We present its optical identi-fication, photometric and spectroscopic observation results. Its optical counterpartis classified as a B2Ie star with V magnitude 10.85. Its Hα line shows the P Cygniprofile. According to its location in the Galaxy (b = 16.6), we consider it to be apost-AGB star or a proto-planetary nebula.

  10. Serially Concatenated IRA Codes

    CERN Document Server

    Cheng, Taikun; Belzer, Benjamin J

    2007-01-01

    We address the error floor problem of low-density parity check (LDPC) codes on the binary-input additive white Gaussian noise (AWGN) channel, by constructing a serially concatenated code consisting of two systematic irregular repeat accumulate (IRA) component codes connected by an interleaver. The interleaver is designed to prevent stopping-set error events in one of the IRA codes from propagating into stopping set events of the other code. Simulations with two 128-bit rate 0.707 IRA component codes show that the proposed architecture achieves a much lower error floor at higher SNRs, compared to a 16384-bit rate 1/2 IRA code, but incurs an SNR penalty of about 2 dB at low to medium SNRs. Experiments indicate that the SNR penalty can be reduced at larger blocklengths.

  11. A wind-shell interaction model for multipolar planetary nebulae

    CERN Document Server

    Steffen, W; Esquivel, A; Garcia-Segura, G; Garcia-Diaz, Ma T; Lopez, J A; Magnor, M

    2013-01-01

    We explore the formation of multipolar structures in planetary and pre-planetary nebulae from the interaction of a fast post-AGB wind with a highly inhomogeneous and filamentary shell structure assumed to form during the final phase of the high density wind. The simulations were performed with a new hydrodynamics code integrated in the interactive framework of the astrophysical modeling package SHAPE. In contrast to conventional astrophysical hydrodynamics software, the new code does not require any programming intervention by the user for setting up or controlling the code. Visualization and analysis of the simulation data has been done in SHAPE without external software. The key conclusion from the simulations is that secondary lobes in planetary nebulae, such as Hubble 5 and K3-17, can be formed through the interaction of a fast low-density wind with a complex high density environment, such as a filamentary circumstellar shell. The more complicated alternative explanation of intermittent collimated outflow...

  12. The discovery of a highly polarized bipolar nebula

    Science.gov (United States)

    Wolstencroft, Ramon D.; Scarrott, S. M.; Menzies, J.

    1989-01-01

    During a search for the optical counterparts of IRAS sources whose flux peaks at 25 microns, a small faint bipolar nebula was discovered in Monoceros at the position of IRAS 07131-0147. The CCD images display the object's considerable structure. The central star seems relatively free of closeby nebulosity: the two lobes have a bow-tie structure with those parts nearest to the star consisting of series of small knots. The outer parts of the lobes seem to be made up of filaments streaming away from knots. On the basis of its optical spectrum, the central star was classified as a M5-6 giant. In the IRAS color classification scheme of Van der Veen and Habing (1988), the central star is VIb which indicates that there are distinct hot and cold components of circumstellar dust and that the mass loss process may have temporarily abated. Therefore, it is proposed that the object is in the post main sequence stage of evolution and is a protoplanetary nebulae. Young protoplanetary nebulae have totally obscured central stars illuminating reflective lobes whereas older ones such as M2-9 have lobes seen in emission from gas ionized by the central hot star which is clearly visible. Since the central object of IRAS07131-0147 is a relatively unobscured late type star and the lobes are seen only by reflection, it is suggested that this nebula is a protoplanetary nebula in an evolutionary stage intermediate between that of CRL2688 and M2-9.

  13. Young Planetary Nebulae: Hubble Space Telescope Imaging and a New Morphological Classification System

    CERN Document Server

    Sahai, Raghvendra; Villar, Gregory G

    2011-01-01

    Using Hubble Space Telescope images of 119 young planetary nebulae, most of which have not previously been published, we have devised a comprehensive morphological classification system for these objects. This system generalizes a recently devised system for pre-planetary nebulae, which are the immediate progenitors of planetary nebulae (PNs). Unlike previous classification studies, we have focussed primarily on young PNs rather than all PNs, because the former best show the influences or symmetries imposed on them by the dominant physical processes operating at the first and primary stage of the shaping process. Older PNs develop instabilities, interact with the ambient interstellar medium, and are subject to the passage of photoionization fronts, all of which obscure the underlying symmetries and geometries imposed early on. Our classification system is designed to suffer minimal prejudice regarding the underlying physical causes of the different shapes and structures seen in our PN sample, however, in many...

  14. Observing nebulae

    CERN Document Server

    Griffiths, Martin

    2016-01-01

    This book enables anyone with suitable instruments to undertake an examination of nebulae and see or photograph them in detail. Nebulae, ethereal clouds of gas and dust, are among the most beautiful objects to view in the night sky. These star-forming regions are a common target for observers and photographers. Griffiths describes many of the brightest and best nebulae and includes some challenges for the more experienced observer. Readers learn the many interesting astrophysical properties of these clouds, which are an important subject of study in astronomy and astrobiology. Non-mathematical in approach, the text is easily accessible to anyone with an interest in the subject. A special feature is the inclusion of an observational guide to 70 objects personally observed or imaged by the author. The guide also includes photographs of each object for ease of identification along with their celestial coordinates, magnitudes and other pertinent information. Observing Nebulae provides a ready resource to allow an...

  15. IRAS: Taking inventory

    Science.gov (United States)

    Reichhardt, Tony

    Even though its active life has ended, the Infrared Astronomical Satellite (IRAS) continues to make new discoveries as scientists at the Jet Propulsion Laboratory in Pasadena, Calif., pore over data from the orbiting satellite's year-long survey of the infrared universe. IRAS ran out of the cryogenic fluid that kept its telescope and detectors cold enough for sensitive, infrared observations last November, thus ending the survey phase of the international project. Now begins the detailed study of IRAS data and the preparation of maps and catalogues of all infrared sources found by the satellite for distribution to the scientific community.Among the discoveries already credited to IRAS are a ring of solid particles, possibly an evolving solar system, around the bright star Vega; six previously unknown comets; three narrow rings of dust lying within the plane of the solar system that may be the remains of asteroid or comet collisions; a small body designated 1983 TB that appears to be the burned-out cometary source of the annual Geminid meteor shower, and which passes closer to the sun at its perihelion than any planet or known asteroid; and many new and fascinating stellar and galactic sources.

  16. Better Ira Remsen Demonstration

    Science.gov (United States)

    Dalby, David K.; Maynard, James H.; Moore, John W.

    2011-01-01

    Many versions of the classic Ira Remsen experience involving copper and concentrated nitric acid have been used as lecture demonstrations. Remsen's original reminiscence from 150 years ago is included in the Supporting Information, and his biography can be found on the Internet. This article presents a new version that makes the demonstration more…

  17. Spectroscopy of IRAS 02091+6333

    Science.gov (United States)

    Bacher, Arntraud; Emprechtinger, Martin; Grömer, Gernot E.; Kapferer, Wolfgang; Kausch, Wolfgang; Kimeswenger, Stefan; Kitzbichler, Manfred G.; Lechner, Michaela F. M.; Lederle, Cornelia

    2003-07-01

    We present a detailed spectroscopic investigation, spanning four winters, of the asymptotic giant branch star IRAS 02091+6333. Zijlstra & Weinberger (2002) found a giant wall of dust around this star and modelled this unique phenomenon. However their work suffered from the quality of the optical investigations of the central object. They could use only a single quick look spectrum and the original TYCHO Bt and Vt magnitudes to estimate the spectral type and the interstellar extinction towards the target. Thus we obtained spectra and photometry at the Innsbruck 60cm telescope (Kimeswenger 2001) of this unique object for several years to derive an accurate spectral type and the foreground extinction. This allowed us to determine more precisely the distance to the target which is important for the modelling of the dust shell found on IRAS images. Zijlstra & Weinberger (2002) outline such shells for various types of objects at late stages of their evolution. Their focus was especially on a swept up shell with a void in the interstellar matter around the target. This is crucial for both, the "Swiss cheese" like structure of the interstellar material and for the hydrodynamic evolution of the planetary nebula built after the current evolutionary stage. The measurements presented here suggest a weak irregular photometric variability of the target, while there is no evidence of a spectroscopic variability over the last four years.

  18. Butterfly Nebula

    Science.gov (United States)

    1997-01-01

    The Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) is back at work, capturing this image of the 'butterfly wing'- shaped nebula, NGC 2346. The nebula is about 2,000 light-years away from Earth in the direction of the constellation Monoceros. It represents the spectacular 'last gasp' of a binary star system at the nebula's center. The image was taken on March 6, 1997 as part of the recommissioning of the Hubble Space Telescope's previously installed scientific instruments following the successful servicing of the HST by NASA shuttle astronauts in February. WFPC2 was installed in HST during the servicing mission in 1993. At the center of the nebula lies a pair of stars that are so close together that they orbit around each other every 16 days. This is so close that, even with Hubble, the pair of stars cannot be resolved into its two components. One component of this binary is the hot core of a star that has ejected most of its outer layers, producing the surrounding nebula. Astronomers believe that this star, when it evolved and expanded to become a red giant, actually swallowed its companion star in an act of stellar cannibalism. The resulting interaction led to a spiraling together of the two stars, culminating in ejection of the outer layers of the red giant. Most of the outer layers were ejected into a dense disk, which can still be seen in the Hubble image, surrounding the central star. Later the hot star developed a fast stellar wind. This wind, blowing out into the surrounding disk, has inflated the large, wispy hourglass-shaped wings perpendicular to the disk. These wings produce the butterfly appearance when seen in projection. The total diameter of the nebula is about one-third of a light-year, or 2 trillion miles.

  19. IRAS 20050+2720: ANATOMY OF A YOUNG STELLAR CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, H. M.; Wolk, S. J.; Spitzbart, B.; Forbrich, J.; Wright, N. J.; Bourke, T. L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Allen, L. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Megeath, S. T. [Department of Physics and Astronomy, MS-113, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606 (United States); Pipher, J. L., E-mail: hguenther@cfa.harvard.edu [Department of Physics and Astronomy, University of Rochester, 500 Wilson Boulevard, Rochester, NY 14627 (United States)

    2012-10-01

    IRAS 20050+2720 is young star-forming region at a distance of 700 pc without apparent high-mass stars. We present results of our multi-wavelength study of IRAS 20050+2720 which includes observations by Chandra and Spitzer, and Two Micron All Sky Survey and UBVRI photometry. In total, about 300 young stellar objects (YSOs) in different evolutionary stages are found. We characterize the distribution of YSOs in this region using a minimum spanning tree analysis. We newly identify a second cluster core, which consists mostly of class II objects, about 10' from the center of the cloud. YSOs of earlier evolutionary stages are more clustered than more evolved objects. The X-ray luminosity function (XLF) of IRAS 20050+2720 is roughly lognormal, but steeper than the XLF of the more massive Orion Nebula complex. IRAS 20050+2720 shows a lower N{sub H}/A{sub K} ratio compared with the diffuse interstellar medium.

  20. The Bispectrum of IRAS Galaxies

    CERN Document Server

    Scoccimarro, R; Fry, J N; Frieman, Joshua A

    2000-01-01

    We compute the bispectrum for the galaxy distribution in the IRAS QDOT, 2Jy, and 1.2Jy redshift catalogs for wavenumbers 0.05 1 at large scales, \\chi^2 non-Gaussian initial conditions are ruled out at the 95% confidence level. The IRAS data do not distinguish between Lagrangian or Eulerian local bias.

  1. [IRA protection. Needs and possibilities].

    Science.gov (United States)

    Schroeder, P; Krutmann, J

    2009-04-01

    When it comes to skin damage, solar radiation is often regarded to be identical to ultraviolet (UV) but it includes much more. Over 90% of solar radiation is in the non-UV-range. Infrared A radiation (IRA, 760-1440 nm) accounts for around 30% of the solar energy reaching the earth's surface and exert detrimental effects on the skin. IRA alters the collagen equilibrium of the dermal extracellular matrix by leading to an increased expression of the collagen degrading enzyme matrixmetalloproteinase-1 while decreasing the expression of the dominant collagen gene Col1alpha1. IRA therefore leads to endpoints similar to UV, but the underlying biological mechanisms are substantially different. IRA acts via the mitochondria. IRA-specific protective approaches should be added to conventional sun protections strategies.

  2. Stingray Nebula

    Science.gov (United States)

    1996-01-01

    This Wide Field and Planetary Camera 2 image captures the infancy of the Stingray nebula (Hen-1357), the youngest known planetary nebula. In this image, the bright central star is in the middle of the green ring of gas. Its companion star is diagonally above it at 10 o'clock. A spur of gas (green) is forming a faint bridge to the companion star due to gravitational attraction. The image also shows a ring of gas (green) surrounding the central star, with bubbles of gas to the lower left and upper right of the ring. The wind of material propelled by radiation from the hot central star has created enough pressure to blow open holes in the ends of the bubbles, allowing gas to escape. The red curved lines represent bright gas that is heated by a 'shock' caused when the central star's wind hits the walls of the bubbles. The nebula is as large as 130 solar systems, but, at its distance of 18,000 light-years, it appears only as big as a dime viewed a mile away. The Stingray is located in the direction of the southern constellation Ara (the Altar). The colors shown are actual colors emitted by nitrogen (red), oxygen (green), and hydrogen (blue).

  3. A large bubble around the Crab Nebula

    Science.gov (United States)

    Romani, Roger W.; Reach, William T.; Koo, Bon Chul; Heiles, Carl

    1990-01-01

    IRAS and 21 cm observations of the interstellar medium around the Crab nebula show evidence of a large bubble surrounded by a partial shell. If located at the canonical 2 kpc distance of the Crab pulsar, the shell is estimated to have a radius of about 90 pc and to contain about 50,000 solar masses of swept-up gas. The way in which interior conditions of this bubble can have important implications for observations of the Crab are described, and the fashion in which presupernova evolution of the pulsar progenitor has affected its local environment is described.

  4. The dust content of planetary nebulae a reappraisal

    CERN Document Server

    Stasinska, G

    1999-01-01

    We have performed a statistical analysis using broad band IRAS data on about 500 planetary nebulae with the aim of characterizing their dust content. Our approach is different from previous studies in that it uses an extensive grid of photoionization models to test the methods for deriving the dust temperature, the dust-to-gas mass ratio and the average grain size. In addition, we use only distance independent diagrams. With our models, we show the effect of contamination by atomic lines in the broad band IRAS fluxes during planetary nebula evolution. We find that planetary nebulae with very different dust-to-gas mass ratios exist, so that the dust content is a primordial parameter for the interpretation of far infrared data of planetary nebulae. In contrast with previous studies, we find no evidence for a decrease in the dust-to-gas mass ratio as the planetary nebulae evolve. We also show that the decrease in grain size advocated by Natta and Panagia (1981, ApJ 248,189) and Lenzuni et al. (1989, ApJ 345, 306...

  5. ALMA Observations of the Coldest Place in the Universe: The Boomerang Nebula

    CERN Document Server

    Sahai, R; Huggins, P J; Nyman, L-A; Gonidakis, I

    2013-01-01

    The Boomerang Nebula is the coldest known object in the Universe, and an extreme member of the class of Pre-Planetary Nebulae, objects which represent a short-lived transitional phase between the AGB and Planetary Nebula evolutionary stages. Previous single-dish CO (J=1-0) observations (with a 45 arcsec beam) showed that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. Here we report the first observations of the Boomerang with ALMA in the CO J=2-1 and J=1-0 lines to resolve the structure of this ultra-cold nebula. We find a central hourglass-shaped nebula surrounded by a patchy, but roughly round, cold high-velocity outflow. We compare the ALMA data with visible-light images obtained with HST and confirm that the limb-brightened bipolar lobes seen in these data represent hollow cavities with dense walls of molecular gas and dust producing both the molecular-emission-line and scattered-light structures seen at millimeter ...

  6. ALMA OBSERVATIONS OF THE COLDEST PLACE IN THE UNIVERSE: THE BOOMERANG NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, R. [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Vlemmings, W. H. T. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden); Huggins, P. J. [Physics Department, New York University, 4 Washington Place, New York, NY 10003 (United States); Nyman, L.-Å. [Joint ALMA Observatory (JAO), Alonso de Cordova 3107, Vitacura, Santiago de Chile (Chile); Gonidakis, I., E-mail: raghvendra.sahai@jpl.nasa.gov [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Marsfield NSW 2122 (Australia)

    2013-11-10

    The Boomerang Nebula is the coldest known object in the universe, and an extreme member of the class of pre-planetary nebulae, objects which represent a short-lived transitional phase between the asymptotic giant branch and planetary nebula evolutionary stages. Previous single-dish CO (J = 1-0) observations (with a 45'' beam) showed that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. Here we report the first observations of the Boomerang Nebula with ALMA in the CO J = 2-1 and J = 1-0 lines to resolve the structure of this ultra-cold nebula. We find a central hourglass-shaped nebula surrounded by a patchy, but roughly round, cold high-velocity outflow. We compare the ALMA data with visible-light images obtained with the Hubble Space Telescope and confirm that the limb-brightened bipolar lobes seen in these data represent hollow cavities with dense walls of molecular gas and dust producing both the molecular-emission-line and scattered-light structures seen at millimeter and visible wavelengths. The large diffuse biconical shape of the nebula seen in the visible wavelength range is likely due to preferential illumination of the cold, high-velocity outflow. We find a compact source of millimeter-wave continuum in the nebular waist—these data, together with sensitive upper limits on the radio continuum using observations with ATCA, indicate the presence of a substantial mass of very large (millimeter-sized) grains in the waist of the nebula. Another unanticipated result is the detection of CO emission regions beyond the ultra-cold region which indicate the re-warming of the cold gas, most likely due to photoelectric grain heating.

  7. ALMA Observations of the Coldest Place in the Universe: The Boomerang Nebula

    Science.gov (United States)

    Sahai, R.; Vlemmings, W. H. T.; Huggins, P. J.; Nyman, L.-Å.; Gonidakis, I.

    2013-11-01

    The Boomerang Nebula is the coldest known object in the universe, and an extreme member of the class of pre-planetary nebulae, objects which represent a short-lived transitional phase between the asymptotic giant branch and planetary nebula evolutionary stages. Previous single-dish CO (J = 1-0) observations (with a 45'' beam) showed that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. Here we report the first observations of the Boomerang Nebula with ALMA in the CO J = 2-1 and J = 1-0 lines to resolve the structure of this ultra-cold nebula. We find a central hourglass-shaped nebula surrounded by a patchy, but roughly round, cold high-velocity outflow. We compare the ALMA data with visible-light images obtained with the Hubble Space Telescope and confirm that the limb-brightened bipolar lobes seen in these data represent hollow cavities with dense walls of molecular gas and dust producing both the molecular-emission-line and scattered-light structures seen at millimeter and visible wavelengths. The large diffuse biconical shape of the nebula seen in the visible wavelength range is likely due to preferential illumination of the cold, high-velocity outflow. We find a compact source of millimeter-wave continuum in the nebular waist—these data, together with sensitive upper limits on the radio continuum using observations with ATCA, indicate the presence of a substantial mass of very large (millimeter-sized) grains in the waist of the nebula. Another unanticipated result is the detection of CO emission regions beyond the ultra-cold region which indicate the re-warming of the cold gas, most likely due to photoelectric grain heating.

  8. Spectroscopic variability of IRAS22272+5435

    CERN Document Server

    Začs, L; Kaminsky, B; Pavlenko, Y; Grankina, A; Sperauskas, J; Hrivnak, B J

    2015-01-01

    A time series of high-resolution spectra was observed in the optical wavelength region for the bright proto-planetary nebula IRAS22272+5435 (HD235858), along with a simultaneous monitoring of its radial velocity and $BVR_C$ magnitudes. The object is known to vary in light, color, and velocity due to pulsation with a period of 132 days. The light and color variations are accompanied by significant changes in spectral features, most of which are identified as lines of carbon-bearing molecules. According to the observations, the $C_2$ Swan system and CN Red system lines are stronger near the light minimum. A photospheric spectrum of the central star was calculated using new self-consistent atmospheric models. The observed intensity variations in the $C_2$ Swan system and CN Red system lines were found to be much larger than expected if due solely to the temperature variation in the atmosphere of the pulsating star. In addition, the molecular lines are blueshifted relative to the photospheric velocity. The site o...

  9. SPECTROSCOPIC VARIABILITY OF IRAS 22272+5435

    Energy Technology Data Exchange (ETDEWEB)

    Začs, Laimons; Grankina, Aija [Laser Center, University of Latvia, Raiņa bulvāris 19, LV-1586 Rıga (Latvia); Musaev, Faig [Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz, 369167 (Russian Federation); Kaminsky, Bogdan; Pavlenko, Yakiv [Main Astronomical Observatory of Academy of Sciences of Ukraine, Zabolotnoho 27, Kyiv, 03680 (Ukraine); Sperauskas, Julius [Vilnius University Observatory, Čiurlionio 29, Vilnius 2009 (Lithuania); Hrivnak, Bruce J. [Department of Physics and Astronomy, Valparaiso University, Valparaiso, IN 46383 (United States)

    2016-01-01

    A time series of high-resolution spectra was observed in the optical wavelength region for the bright proto-planetary nebula IRAS 22272+5435 (HD 235858), along with a simultaneous monitoring of its radial velocity and BV R{sub C} magnitudes. The object is known to vary in light, color, and velocity owing to pulsation with a period of 132 days. The light and color variations are accompanied by significant changes in spectral features, most of which are identified as lines of carbon-bearing molecules. According to the observations, the C{sub 2} Swan system and CN Red system lines are stronger near the light minimum. A photospheric spectrum of the central star was calculated using new self-consistent atmospheric models. The observed intensity variations in the C{sub 2} Swan system and CN Red system lines were found to be much larger than expected if due solely to the temperature variation in the atmosphere of the pulsating star. In addition, the molecular lines are blueshifted relative to the photospheric velocity. The site of formation of the strong molecular features appears to be a cool outflow triggered by the pulsation. The variability in atomic lines seems to be mostly due variations of the effective temperature during the pulsation cycle. The profiles of strong atomic lines are split, and some of them are variable in a timescale of a week or so, probably because of shock waves in the outer atmosphere.

  10. From AGB Stars to Aspherical Planetary Nebulae - An Observational Perspective

    Science.gov (United States)

    Sahai, R.

    2014-04-01

    Most stars that leave the main sequence in a Hubble time will end their lives, evolving through the Asymptotic Giant Branch (AGB), Preplanetary Nebula (PPN) and Planetary Nebula (PN) evolutionary phases. The heavy mass loss which occurs during the AGB phase is important across astrophysics, dramatically changing the course of stellar evolution, dominantly contributing to the dust content of the interstellar medium, and influencing its chemical composition. Yet stellar evolution from the beginning of the AGB phase to the PN phase remains poorly understood, especially the dramatic transformation that occurs in the morphology of the mass-ejecta as AGB stars and their round circumstellar envelopes evolve into mostly PNe, the majority of which deviate strongly from spherical symmetry. In this review, I describe the observations, spanning the wavelength range from X-rays to millimeter wavelengths, that have contributed to our current understanding of the physical processes responsible for the formation of aspherical PNe. I conclude by a brief summary of future observations using current and upcoming facilities such as HST, Chandra, ALMA and JWST that can help in addressing the major unsolved problems in the study of aspherical PNe.

  11. Magnetic Fields in Paradigms of Planetary Nebulae and Related MHD Frontiers

    CERN Document Server

    Blackman, Eric G

    2008-01-01

    Many, if not all, post AGB stellar systems swiftly transition from a spherical to a powerful aspherical pre-planetary nebula (pPNE) outflow phase before waning into a PNe. The pPNe outflows require engine rotational energy and a mechanism to extract this energy into collimated outflows. Just radiation and rotation are insufficient but a symbiosis between rotation, differential rotation and large scale magnetic fields remains promising. Present observational evidence for magnetic fields in evolved stars is suggestive of dynamically important magnetic fields, but both theory and observation are rife with research opportunity. I discuss how magnetohydrodynamic outflows might arise in pPNe and PNe and distinguish different between approaches that address shaping vs. those that address both launch and shaping. Scenarios involving dynamos in single stars, binary driven dynamos, or accretion engines cannot be ruled out. One appealing paradigm involves accretion onto the primary post-AGB white dwarf core from a low m...

  12. IRAS observations of RCW 86

    Science.gov (United States)

    Greidanus, H.; Strom, R. G.

    1990-12-01

    Infrared maps and fluxes of the supernova remnant RCW 86 (MSH 14-63) were obtained from the IRAS data base, using a destripping and a spectral decomposition technique to isolate the weak IR emission of RCW 86 from all other contributions in the IRAS maps. It is shown that the IR brightness maps correlate very well with the X-ray-brightness, the optical, and the radio images. A comparison with the three other young shell-type SNRs Tycho, Kepler, and Cas A showed that the IR temperatures and luminosities of these objects decrease with age. For all objects, however, the IR- and X-ray-based densities are similar, while the X-ray-derived masses are an order of magnitude above the IR masses.

  13. Dies irae ~Acta est Fabula~

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    从2007年11月的Diesirae Also sprach Zarathstra到2009年的7月的Dies irae Also sprach Zarathustra—die Wieder kunfl-,Light社的Diesirae的完全版可说是时隔两年的大坑,发行了两个非完全版的游戏吊足玩家们的胃口后。

  14. Transcending boundaries with Ira Hirsh

    Science.gov (United States)

    Singh, Punita G.

    2002-05-01

    Ira Hirsh has made many contributions to various fields of acoustics from speech, hearing, psychological and physiological acoustics, to musical and architectural acoustics. It was a privilege for me to have been his student in all these areas, and to have had him as a guide through masters and doctoral degree programs that focused on topics that lie at the boundaries connecting these disciplines. Ira was not a prescriptive advisor, imposing particular research topics or procedures on his graduate students. Rather, he encouraged originality, innovation, and personal goal setting. He would subtly suggest starting points and provide landmarks as references, rather than explicit directions leading to them. One had to navigate the path by ones own wits. This approach encouraged lateral, out-of-the box thinking, while also leading to respectful appreciation of historic trajectories in scientific research. During our time together, we worked on several aspects of music, including, rhythm, melody, pitch, and timber perception. Some of this work will be recapitulated, highlighting Ira's role in its exposition and development. His multidimensional personality, astute insights, colorful remarks, wry humor, care, and concern are qualities to be cherished-beyond the boundaries of campus, city, country, and contemporaneity.

  15. IRA balances and contributions: an overview of the EBRI IRA database.

    Science.gov (United States)

    Copeland, Craig

    2010-09-01

    NEW IRA DATABASE: The Employee Benefit Research Institute created the EBRI IRA Database in order to more closely examine retirement savings behavior. The EBRI IRA Database is able to link individuals within and across the data providers and will also be able to link the data with participants in 401(k) plans, allowing retirement funds to be tracked as they are generated, rolled over, and ultimately used. This Issue Brief is the first of a series of publications analyzing the EBRI IRA Database, and highlights the distribution of IRA owners by IRA type, average and median account balances, and contributions to IRAs. The data security techniques used by the data providers assure that EBRI has no ability to identify individuals so that all privacy is assured. IRA TYPES: In the EBRI IRA Database, IRAs are classified into four types: traditional (originating from contributions), rollovers from other retirement plans, Roth, and SEP/SIMPLE. The distribution of the IRA accounts is 33.6 percent traditional IRAs; 33.4 percent rollover IRAs (combined with the traditional IRAs, 67 percent); 23.4 percent Roth IRAs; the remaining 9.6 percent are SEPs and SIMPLEs. OWNERSHIP BY AGE AND GENDER: IRA owners were more likely to be male, especially those having a rollover or a SEP/SIMPLE IRA. Among all IRA participants in the database, nearly one-half (48.3 percent) were ages 45-64. Only 16.7 percent of those owning a traditional IRA were under age 45, compared with 46.5 percent for those with a Roth, 30.4 percent for rollovers, and 34.8 percent for those with a SEP or SIMPLE. AVERAGE AND MEDIAN BALANCES: The average and median IRA account balance in 2008 was $54,863 and $15,756, respectively, while the average and median IRA individual balance (all accounts from the same person combined) was $69,498 and $20,046, Individuals with a rollover balance had the highest average and median balance at $91,783 and $31,264. Roth owners had the lowest average and median balance at $14,056 and $7

  16. High-Resolution Near-Infrared Imaging and Polarimetry of Four Proto-Planetary Nebulae

    CERN Document Server

    Su, K Y L; Kwok, S; Sahai, R; Su, Kate Y. L.; Hrivnak, Bruce J.; Kwok, Sun; Sahai, Raghvendra

    2003-01-01

    High-resolution near-infrared HST NICMOS (F160W, F222M) images and polarization (2 um) observations were made of four bipolar proto-planetary nebulae (PPNs): IRAS 17150-3224, IRAS 17441-2411, IRAS 17245-3951, and IRAS 16594-4656. The first three of these are viewed nearly edge-on, and for the first time the central stars in them are seen. Color maps reveal a reddened torus between the bipolar lobes in the edge-on cases, with bluer lobes. The polarization values are high, with maximum values ranging from 40 to 80%. The polarization patterns are basically centrosymmetric, with some deviations in the low polarization equatorial regions. For IRAS 17150-3224, circumstellar arcs are seen at 1.6 um, along with a newly-discovered loop in the equatorial region. Bright caps are seen at the end of the lobes, indicating that they are not open-ended. A distinct point-symmetric pattern is seen in the strengths of the polarization vectors, especially in IRAS 17150-3224. HST NICMOS observations provide a valuable complement ...

  17. IUE/IRA system description

    Science.gov (United States)

    Jennings, J.

    1977-01-01

    The IUE/IRA rate sensor system designed to meet the requirements of the International Ultraviolet Explorer spacecraft mission is described. The system consists of the sensor unit containing six rate sensor modules and the electronic control unit containing the rate sensor support electronics and the command/control circuitry. The inertial reference assembly formed by the combined units will provide spacecraft rate information for use in the stabilization and control system. The system is described in terms of functional description, operation redundancy performance, mechanical interface, and electrical interface. Test data obtained from the flight unit are summarized.

  18. The IRAS Galaxy Atlas (IGA)

    Science.gov (United States)

    Prince, Thomas A.; Oliversen, R. (Technical Monitor)

    1999-01-01

    In 1993 we proposed a project to NASA having the goal of producing a new infrared map of our Galaxy. In particular, we proposed to reprocess the IRAS data taken in the early 1980's using modern image processing algorithms and the large Intel parallel computers of the Center for Advanced Computing Research, (at that time called the Caltech Concurrent Supercomputing Facilities - CCSF). The rationale was simple: what took approximately 100 days on a typical workstation would take less than a day on the multi-processor parallel computers, thus making a high-resolution infrared atlas of the Galaxy feasible.

  19. Sensitive CO and 13CO survey of water fountain stars. Detections towards IRAS 18460-0151 and IRAS 18596+0315

    CERN Document Server

    Rizzo, J R; Miranda, L F; Osorio, M; Suarez, O; Duran-Rojas, M C

    2013-01-01

    Water fountain stars represent a stage between the asymptotic giant branch (AGB) and planetary nebulae phases, when the mass loss changes from spherical to bipolar. These types of evolved objects are characterized by high-velocity jets in the 22 GHz water maser emission. We surveyed the CO and 13CO line emission towards a sample of ten water fountain stars through observing the J=1-0 and 2-1 lines of CO and 13CO, using the 30m IRAM radio telescope at Pico Veleta. All the water fountains visible from the observatory were surveyed. Most of the line emission arises from foreground or background Galactic clouds, and we had to thoroughly analyse the spectra to unveil the velocity components related to the stars. In two sources, IRAS 18460-0151 and IRAS 18596+0315, we identified wide velocity components with a width of 35-40 km/s that are centred at the stellar velocities. These wide components can be associated with the former AGB envelope of the progenitor star. A third case, IRAS 18286-0959, is reported as tenta...

  20. A molecular line survey of a sample of AGB stars and planetary nebulae

    CERN Document Server

    Smith, Christina L; Fuller, Gary A

    2015-01-01

    A millimeter molecular line survey of three carbon-rich AGB stars and two oxygen-rich planetary nebulae has been carried out over the frequency range 80.5-115.5 GHz. Sixty eight different transitions were detected in the data from 27 different molecular species. The hyperfine structure of C2H and C13CH has been fitted to constrain the optical depth of their transitions. All other transitions have been constrained on the basis of their line profile shapes. Rotation temperatures and column densities have been calculated for all possible species, with adaptations to the methods applied in order to account for the hyperfine structure of various transitions. From the column densities, carbon, silicon and sulphur isotopic ratios have been determined. The results corroborate IRAS 15194-5115 as a J-type star, whilst excluding IRAS 15082-4808 and IRAS 07454-7112 as such.

  1. ICE AND DUST IN THE PRESTELLAR DARK CLOUD LYNDS 183: PREPLANETARY MATTER AT THE LOWEST TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Whittet, D. C. B.; Poteet, C. A.; Bajaj, V. M.; Horne, D. [Department of Physics, Applied Physics and Astronomy and New York Center for Astrobiology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Chiar, J. E. [SETI Institute, Carl Sagan Center, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Pagani, L. [LERMA, UMR 8112 du CNRS, Observatoire de Paris, 61 Av. de l' Observatoire, F-75014 Paris (France); Shenoy, S. S. [SOFIA Science Center, NASA Ames Research Center, MS 232-12, Moffett Field, CA 94035 (United States); Adamson, A. J. [Gemini Observatory, Southern Operations Center, Casilla 603, La Serena (Chile)

    2013-09-10

    Dust grains are nucleation centers and catalysts for the growth of icy mantles in quiescent interstellar clouds, the products of which may accumulate into preplanetary matter when new stars and solar systems form within the clouds. In this paper, we present the first spectroscopic detections of silicate dust and the molecular ices H{sub 2}O, CO, and CO{sub 2} in the vicinity of the prestellar core L183 (L134N). An infrared photometric survey of the cloud was used to identify reddened background stars, and we present spectra covering solid-state absorption features in the wavelength range 2-20 {mu}m for nine of them. The mean composition of the ices in the best-studied line of sight (toward J15542044-0254073) is H{sub 2}O:CO:CO{sub 2} Almost-Equal-To 100:40:24. The ices are amorphous in structure, indicating that they have been maintained at low temperature ({approx}< 15 K) since formation. The ice column density N(H{sub 2}O) correlates with reddening by dust, exhibiting a threshold effect that corresponds to the transition from unmantled grains in the outer layers of the cloud to ice-mantled grains within, analogous to that observed in other dark clouds. A comparison of results for L183 and the Taurus and IC 5146 dark clouds suggests common behavior, with mantles first appearing in each case at a dust column corresponding to a peak optical depth {tau}{sub 9.7} = 0.15 {+-} 0.03 in the silicate feature. Our results support a previous conclusion that the color excess E{sub J-K} does not obey a simple linear correlation with the total dust column in lines of sight that intercept dense clouds. The most likely explanation is a systematic change in the optical properties of the dust as the density increases.

  2. X-ray emission from Planetary Nebulae. I. Spherically symmetric numerical simulations

    CERN Document Server

    Stute, M; Stute, Matthias; Sahai, Raghvendra

    2006-01-01

    (abridged) The interaction of a fast wind with a spherical Asymptotic Giant Branch (AGB) wind is thought to be the basic mechanism for shaping Pre-Planetary Nebulae (PPN) and later Planetary Nebulae (PN). Due to the large speed of the fast wind, one expects extended X-ray emission from these objects, but X-ray emission has only been detected in a small fraction of PNs and only in one PPN. Using numerical simulations we investigate the constraints that can be set on the physical properties of the fast wind (speed, mass-flux, opening angle) in order to produce the observed X-ray emission properties of PPNs and PNs. We combine numerical hydrodynamical simulations including radiative cooling using the code FLASH with calculations of the X-ray properties of the resulting expanding hot bubble using the atomic database ATOMDB. In this first study, we compute X-ray fluxes and spectra using one-dimensional models. Comparing our results with analytical solutions, we find some agreements and many disagreements. In parti...

  3. Low resolution spectroscopy of hot post-AGB candidates II. LS, LSS, LSE stars and additional IRAS sources

    CERN Document Server

    Parthasarathy, M; Vijapurkar, J; Takeda, Y

    2011-01-01

    Hot (OB) post-AGB stars are immediate progenitors of planetary nebulae (PNe). Very few hot post-AGB stars are known. Detecting new hot post-AGB candidates and follow-up multiwavelength studies will enable us to further understand the processes during the post-AGB evolution that lead to the formation of PNe. Case-Hamburg OB star surveys and their extension (LS, LSS, and LSE catalogues) and IRAS (point source) catalogues are good sources for detecting new hot post-AGB candidates from low resolution spectroscopy. Spectral types are determined from low resolution optical spectra of 44 stars selected from the LS, LSS, and LSE catalogues. Unlike the stars in the first paper, the stars in this paper were selected using criteria other than positional coincidence with an IRAS source with far IR (IRAS) colours similar to post-AGB supergiants and planetary nebulae. These included high galactic latitude, spectral types of O, B, A supergiants, emission lines in the spectrum and known spectral peculiarity. From the present...

  4. Radio variability and non-thermal components in stars evolving towards planetary nebulae

    Science.gov (United States)

    Cerrigone, L.; Umana, G.; Trigilio, C.; Leto, P.; Buemi, C. S.; Ingallinera, A.

    2017-07-01

    We present new Karl G. Jansky Very Large Array multifrequency measurements of a set of stars in transition from the post-AGB to the planetary nebula phase monitored in the radio range over several years. Clear variability is found for five sources. Their light curves show increasing and decreasing patterns. New radio observations at high angular resolution are also presented for two sources. Among these is IRAS 18062 + 2410, whose radio structure is compared to near-infrared images available in the literature. With these new maps, we can estimate inner and outer radii of 0.03 and 0.08 arcsec for the ionized shell, an ionized mass of 3.2 × 10-4 M⊙ and a density at the inner radius of 7.7 × 105 cm-3, obtained by modelling the radio shell with the new morphological constraints. The combination of multifrequency data and, where available, spectral-index maps leads to the detection of spectral indices not due to thermal emission, contrary to what one would expect in planetary nebulae. Our results allow us to hypothesize the existence of a link between radio variability and non-thermal emission mechanisms in the nebulae. This link seems to hold for IRAS 22568 + 6141 and may generally hold for those nebulae where the radio flux decreases over time.

  5. Cool gaseous nebulae

    CERN Document Server

    Shaver, P A; Pottasch, S R

    1979-01-01

    The electron temperatures of diffuse gaseous nebulae have long been thought to be close to 10/sup 4/K. Much lower temperatures were derived from some of the early radio continuum and recombination line work, but these were generally considered to be wrong for a variety of reasons. While there is little doubt that the bright nebulae do indeed have temperatures of approximately 8000-9000K, there are strong indications that some nebulae of lower densities have much lower temperatures, nebulae were made in order to determine electron temperatures in the absence of such effects as collisional de-excitation, stimulated emission, and pressure broadening. Several of these nebulae have been found to have temperatures below 5000K and for two of them which are discussed (RCW94 and G339.1-0.2) absolute upper limits of approximately 4700 K are imposed by the line widths alone. (11 refs).

  6. The variable Crab Nebula

    CERN Document Server

    Tavani, Marco

    2011-01-01

    The remarkable Crab Nebula is powered by an energetic pulsar whose relativistic wind interacts with the inner parts of the Supernova Remnant SN1054. Despite low-intensity optical and X-ray variations in the inner Nebula, the Crab has been considered until now substantially stable at X-ray and gamma-ray energies. This paradigm has been shattered by the AGILE discovery in September 2010 of a very intense transient gamma-ray flare of nebular origin. For the first time, the Crab Nebula was "caught in the act" of accelerating particles up to 10^15 eV within the shortest timescale ever observed in a cosmic nebula (1 day or less). Emission between 50 MeV and a few GeV was detected with a quite hard spectrum within a short timescale. Additional analysis and recent Crab Nebula data lead to identify a total of four major flaring gamma-ray episodes detected by AGILE and Fermi during the period mid-2007/mid-2011. These observations challenge emission models of the pulsar wind interaction and particle acceleration process...

  7. Herschel imaging of the dust in the Helix Nebula (NGC 7293)

    CERN Document Server

    Van de Steene, G C; Exter, K M; Barlow, M J; Cernicharo, J; Etxaluze, M; Gear, W K; Goicoechea, J R; Gomez, H L; Groenewegen, M A T; Hargrave, P C; Ivison, R J; Leeks, S J; Lim, T L; Matsuura, M; Olofsson, G; Polehampton, E T; Swinyard, B M; Ueta, T; Van Winckel, H; Waelkens, C; Wesson, R

    2014-01-01

    In our series of papers presenting the Herschel imaging of evolved planetary nebulae, we present images of the dust distribution in the Helix nebula (NGC 7293). Images at 70, 160, 250, 350, and 500 micron were obtained with the PACS and SPIRE instruments on board the Herschel satellite. The broadband maps show the dust distribution over the main Helix nebula to be clumpy and predominantly present in the barrel wall. We determined the spectral energy distribution of the main nebula in a consistent way using Herschel, IRAS, and Planck flux values. The emissivity index of 0.99 +/- 0.09, in combination with the carbon rich molecular chemistry of the nebula, indicates that the dust consists mainly of amorphous carbon. The dust excess emission from the central star disk is detected at 70 micron and the flux measurement agree with previous measurement. We present the temperature and dust column density maps. The total dust mass across the Helix nebula (without its halo) is determined to be 0.0035 solar mass at a dis...

  8. Clown Face Nebula (NGC 2392)

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    A planetary nebula, also known as the Eskimo Nebula, in the constellation Gemini, position RA 07 h 29.2 m, dec. +20° 55'. It is bluish, 13'' in diameter, and of ninth magnitude, with a tenth-magnitude central star. The blue-green nebula's hazy outer regions are thought to resemble an Eskimo's hood or clown's ruff....

  9. Magnetically controlled solar nebula

    Science.gov (United States)

    Stepinski, T. F.; Reyes-Ruiz, M.

    1993-01-01

    It is widely believed that a primordial solar nebula, the precursor of the Sun and its planetary system, could be best described in terms of an accretion disk. Such an accretion disk is though to be turbulent, and it is usually imagined that turbulent viscosity alone provides the torque responsible for the structure and the evolution of the nebula. However, it was found that an MHD dynamo operating in a turbulent nebula can contemporaneously produce magnetic fields capable of significantly altering or even dominating the total torque. Thus, it seems that no model of a viscous solar nebula is complete without taking magnetic fields into consideration. It was demonstrated that there are usually two distinct regions of nebular disk where a dynamo can operate: the inner region, where the magnetic field coupled to gas due to relatively high thermal ionization; and the outer region, where this coupling is achieved due to nonthermal ionization. Most models also show the existence of an intermediate region, 'the magnetic gap,' where neither thermal nor nonthermal sources can produce enough ionization to provide the necessary coupling between the magnetic field and the gas. The location and width of the gap change substantially from one model to another. At present, we can only estimate the strength of a generated magnetic field. It seems that a large-scale magnetic field is likely to be in the equipartition with the turbulent kinetic energy; however, the intense magnetic fluctuations may greatly exceed this equipartition strength on short time and length scales. To show how a dynamo-generated magnetic field changes the structure of a viscous nebula, we consider four nebula models extensively.

  10. ISO Spectroscopy of Proto-Planetary Nebulae

    Science.gov (United States)

    Hrivnak, Bruce J.

    2000-01-01

    The goal of this program was to determine the chemical properties of the dust shells around protoplanetary nebulae (PPNs) through a study of their short-wavelength (6-45 micron) infrared spectra. PPNs are evolved stars in transition from the asymptotic giant branch to the planetary nebula stages. Spectral features in the 10 to 20 gm region indicate the chemical nature (oxygen- or carbon-rich), and the strengths of the features relate to the physical properties of the shells. A few bright carbon-rich PPNs have been observed to show PAH features and an unidentified 21 micron emission feature. We used the Infrared Space Observatory (ISO) to observe a sample of IRAS sources that have the expected properties of PPNs and for which we have accurate positions. Some of these have optical counterparts (proposal SWSPPN01) and some do not (SWSPPN02). We had previously observed these from the ground with near-infrared photometry and, for those with visible counterparts, visible photometry and spectroscopy, which we have combined with these new ISO data in the interpretation of the spectra. We have completed a study of the unidentified emission feature at 21 micron in eight sources. We find the shape of the feature to be the same in all of the sources, with no evidence of any substructure. The ratio of the emission peak to continuum ranges from 0.13 to 1.30. We have completed a study of seven PPNs and two other carbon-rich objects for which we had obtained ISO 2-45 micron observations. The unidentified emission features at 21 and 30 micron were detected in six sources, including four new detections of the 30 micron feature. This previously unresolved 30 micron feature was resolved and found to consist of a broad feature peaking at 27.2 micron (the "30 micron" feature) and a narrower feature peaking at 25.5 micron (the "26 micron" feature). This new 26 micron feature is detected in eight sources and is particularly strong in IRAS Z02229+6208 and 16594-4656. The unidentified

  11. ISO Spectroscopy of Proto-Planetary Nebulae

    Science.gov (United States)

    Hrivnak, Bruce J.

    2000-01-01

    The goal of this program was to determine the chemical properties of the dust shells around protoplanetary nebulae (PPNs) through a study of their short-wavelength (6-45 micron) infrared spectra. PPNs are evolved stars in transition from the asymptotic giant branch to the planetary nebula stages. Spectral features in the 10 to 20 gm region indicate the chemical nature (oxygen- or carbon-rich), and the strengths of the features relate to the physical properties of the shells. A few bright carbon-rich PPNs have been observed to show PAH features and an unidentified 21 micron emission feature. We used the Infrared Space Observatory (ISO) to observe a sample of IRAS sources that have the expected properties of PPNs and for which we have accurate positions. Some of these have optical counterparts (proposal SWSPPN01) and some do not (SWSPPN02). We had previously observed these from the ground with near-infrared photometry and, for those with visible counterparts, visible photometry and spectroscopy, which we have combined with these new ISO data in the interpretation of the spectra. We have completed a study of the unidentified emission feature at 21 micron in eight sources. We find the shape of the feature to be the same in all of the sources, with no evidence of any substructure. The ratio of the emission peak to continuum ranges from 0.13 to 1.30. We have completed a study of seven PPNs and two other carbon-rich objects for which we had obtained ISO 2-45 micron observations. The unidentified emission features at 21 and 30 micron were detected in six sources, including four new detections of the 30 micron feature. This previously unresolved 30 micron feature was resolved and found to consist of a broad feature peaking at 27.2 micron (the "30 micron" feature) and a narrower feature peaking at 25.5 micron (the "26 micron" feature). This new 26 micron feature is detected in eight sources and is particularly strong in IRAS Z02229+6208 and 16594-4656. The unidentified

  12. Planetary nebulae with emission-line central stars

    CERN Document Server

    Gesicki, K; Acker, A; Gorny, S K; Gozdziewski, K; Walsh, J R

    2005-01-01

    The kinematic structure of a sample of planetary nebulae, consisting of 23 [WR] central stars, 21 weak emission line stars (wels) and 57 non-emission line central stars, is studied. The [WR] stars are shown to be surrounded by turbulent nebulae, a characteristic shared by some wels but almost completely absent from the non-emission line stars. The fraction of objects showing turbulence for non-emission-line stars, wels and [WR] stars is 7%, 24% and 91%, respectively. The [WR] stars show a distinct IRAS 12-micron excess, indicative of small dust grains, which is not found for wels. The [WR]-star nebulae are on average more centrally condensed than those of other stars. On the age-temperature diagram, the wels are located on tracks of both high and low stellar mass, while [WR] stars trace a narrow range of intermediate masses. Emission-line stars are not found on the cooling track. One group of wels may form a sequence wels--[WO] stars with increasing temperature. For the other groups both the wels and the [WR]...

  13. Spatio-kinematics of the optical nebula M1-92 with HST/STIS

    Science.gov (United States)

    Ramos-Medina, J.; Sánchez-Contreras, C.; Sahai, R.; Bujarrabal, V.; Castro-Carrizo, A.; Morris, M.

    2014-04-01

    We report optical long-slit spectroscopy with HST/STIS of the well known pre-Planetary Nebula (pPN) M1-92 (a.k.a. Minkowski's footprint). Complementary long-slit echelle spectra obtained with Keck II+ESI have been also used. We have used our high-angular (~0.1arcsec) resolution spectra to characterize the spatio-kinematic structure of the optical nebula of this object. From the analysis of the Halpha two-dimensional profile we identify several distinct nebular components at different spatial scales. The blue-shifted absorption component of the broad 'P cygni'-like profile of the Halpha emission is spatially and spectrally resolved and is found to be composed of not one but two different features centered at Vlsr~-600 and -200 km/s. To assist in the interpretation of the data, we have used a simple spatio-kinematic model which has allowed us to describe the main properties of the fast, bipolar winds (expanding with velocities of up to ~700 km/s) running inside the reflection lobes of M1-92 and that produce the absorptions. At the nebula center, we also discover an equatorially extended H-alpha emitting region that is expanding at moderate velocity (~300 km/s) in the direction perpendicular to the lobes. We have estimated the column density of the inner post-AGB winds and other physical parameters that have helped improving our understanding of the evolutionary history of M1-92.

  14. Catalogues of planetary nebulae.

    Science.gov (United States)

    Acker, A.

    Firstly, the general requirements concerning catalogues are studied for planetary nebulae, in particular concerning the objects to be included in a catalogue of PN, their denominations, followed by reflexions about the afterlife and comuterized versions of a catalogue. Then, the basic elements constituting a catalogue of PN are analyzed, and the available data are looked at each time.

  15. 26 CFR 1.408A-2 - Establishing Roth IRAs.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Establishing Roth IRAs. 1.408A-2 Section 1.408A... (CONTINUED) INCOME TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.408A-2 Establishing Roth IRAs... establishing Roth IRAs: Q-1. Who can establish a Roth IRA? A-1. Except as provided in A-3 of this section,...

  16. The High Resolution IRAS Galaxy Atlas

    CERN Document Server

    Cao, Y; Prince, T A; Beichman, C A; Cao, Yu; Terebey, Susan; Prince, Thomas A.; Beichman, Charles A.

    1997-01-01

    An atlas of the Galactic plane (-4.7 deg < b < 4.7 deg) plus the molecular clouds in Orion, Rho Oph, and Taurus-Auriga has been produced at 60 and 100 micron from IRAS data. The Atlas consists of resolution-enhanced coadded images having 1 arcmin -- 2 arcmin resolution as well as coadded images at the native IRAS resolution. The IRAS Galaxy Atlas, together with the DRAO HI line / 21 cm continuum and FCRAO CO (1-0) line Galactic plane surveys, both with similar (approx. 1 arcmin) resolution, provide a powerful venue for studying the interstellar medium, star formation and large scale structure in our Galaxy. This paper documents the production and characteristics of the Atlas.

  17. IRIS: A new generation of IRAS maps

    CERN Document Server

    Miville-Deschênes, M A; Miville-Deschenes, Marc-Antoine; Lagache, Guilaine

    2004-01-01

    The Infrared Astronomical Satellite (IRAS) had a tremendous impact on many areas of modern astrophysics. In particular it revealed the ubiquity of infrared cirrus that are a spectacular manifestation of the interstellar medium complexity but also an important foreground for observational cosmology. With the forthcoming Planck satellite there is a need for all-sky complementary data sets with arcminute resolution that can bring informations on specific foreground emissions that contaminate the Cosmic Microwave Background radiation. With its 4 arcmin resolution matching perfectly the high-frequency bands of Planck, IRAS is a natural data set to study the variations of dust properties at all scales. But the latest version of the images delivered by the IRAS team (the ISSA plates) suffer from calibration, zero level and striping problems that can preclude its use, especially at 12 and 25 micron. In this paper we present how we proceeded to solve each of these problems and enhance significantly the general quality...

  18. Properties of IRAS PSC/FSC Galaxies

    Science.gov (United States)

    Abrahamyan, H. V.; Mickaelian, A. M.

    2016-06-01

    Based on IRAS PSC/FSC Joint Catalogue of 345,163 IR sources and their characteristics, we have created a smaple of IRAS-selected candidate galaxies, 145,902 objects (42.3 %). This sample provides a unique opportunity to statistically investigate IR galaxies for many of their physical parameters. For 16,533 galaxies we have SDSS photometric data (ugriz magnitudes and corresponding colors) and almost for all objects we have WISE data. Building color-color diagrams allows understanding the nature of these galaxies and group them into individual subsamples for further detailed studies.

  19. OH masers associated with IRAS point sources

    NARCIS (Netherlands)

    Masheder, MRW; Cohen, RJ; Martin-Hernandez, NL; Migenes,; Reid, MJ

    2002-01-01

    We report a search for masers from the Lambda-doublet of the ground-state of OH at 18cm, carried out with the Jodrell Bank Lovell Telescope and with the 25m Dwingeloo telescope. All objects north of delta = -20degrees which appear in the IRAS Point Source Catalog with fluxes > 1000 Jy at 60mum and

  20. Ira P. Gunn: educator, advocate, legend.

    Science.gov (United States)

    McAuliffe, Maura S; Koch, Faan Kathy J

    2011-12-01

    This column examines the contributions of nurse anesthetist Ira P. Gunn, CRNA, MLN, FAAN (1927-2011), widely recognized as a visionary and tireless advocate for the profession of nurse anesthesia. Her contributions to nurse anesthesia practice, research, education, publication, consultation, credentialing, and government relations have significantly contributed to the preservation and advancement of nursing and nurse anesthesia.

  1. IMAGE CONSTRUCTION FROM THE IRAS SURVEY

    NARCIS (Netherlands)

    BONTEKOE, TR; KESTER, DJM; PRICE, SD; DEJONGE, ARW; WESSELIUS, PR

    IRAS survery data can be used successfully to produce images of extended objects. The major difficulties, viz. non-uniform sampling, different response functions for each detector, and varying signal-to-noise levels for each detector for each scan, have been resolved. The results of three different

  2. Compact Galactic Planetary Nebulae: A HST/WFC3 Morphological Catalog, and a Study of their Role in the Galaxy

    CERN Document Server

    Stanghellini, Letizia; Villaver, Eva

    2016-01-01

    We present the images of a \\textit{Hubble Space Telescope} (\\textit{HST}/WFC3) snapshot program of angularly compact Galactic planetary nebulae (PNe), acquired with the aim of studying their size, evolutionary status, and morphology. PNe that are smaller than $\\sim4\\arcsec$ are underrepresented in most morphological studies, and today they are less well studied than their immediate evolutionary predecessors, the pre-planetary nebulae. The images have been acquired in the light of [\\ion{O}{3}]$\\lambda5007$, which is commonly used to classify the PN morphology, in the UV continuum with the aim of detecting the central star unambiguously, and in the $I-$band to detect a cool stellar companion, if present. The sample of 51 confirmed PNe exhibits nearly the full range of primary morphological classes, with the distribution more heavily weighted toward bipolar PNe, but with total of aspherical PNe almost identical to that of the general Galactic sample. A large range of microstructures is evident in our sample as w...

  3. An IRAS/ISSA Survey of Bow Shocks Around Runaway Stars

    Science.gov (United States)

    van Buren, Dave; Noriega-Crespo, Alberto; Dgani, Ruth

    1995-12-01

    We searched the IRAS data for bow shock-like objects like those known around ζ Oph and α Cam near the positions of 188 runaway stars. Based primarily on the presence and morphology of excess 60 μm emission we identify 58 candidate bow shocks, for which we determine photometric and morphological parameters. Previously only a dozen or so were known. Well-resolved structures are present around 25 stars. A comparison of the distribution of symmetry axes of the infrared nebulae with the proper motions of the stars indicate the two directions are very significantly aligned. The observed alignment strongly suggests that the structures we see arise from the interaction of stellar winds with the interstellar medium, justifying the identification of these far-infrared objects as stellar wind bow shocks.

  4. Physical Structure of Planetary Nebulae. I. The Owl Nebula

    CERN Document Server

    Guerrero, M A; Manchado, A; Kwitter, K B

    2003-01-01

    The Owl Nebula is a triple-shell planetary nebula with the outermost shell being a faint bow-shaped halo. We have obtained deep narrow-band images and high-dispersion echelle spectra in the H-alpha, [O III], and [N II] emission lines to determine the physical structure of each shell in the nebula. These spatio-kinematic data allow us to rule out hydrodynamic models that can reproduce only the nebular morphology. Our analysis shows that the inner shell of the main nebula is slightly elongated with a bipolar cavity along its major axis, the outer nebula is a filled envelope co-expanding with the inner shell at 40 km/s, and the halo has been braked by the interstellar medium as the Owl Nebula moves through it. To explain the morphology and kinematics of the Owl Nebula, we suggest the following scenario for its formation and evolution. The early mass loss at the TP-AGB phase forms the halo, and the superwind at the end of the AGB phase forms the main nebula. The subsequent fast stellar wind compressed the superwi...

  5. An Essential Function of the N-Terminus of Ira/Neurofibromin

    Science.gov (United States)

    2006-01-01

    complement the ira1∆ phenotype through library screening . BODY: Task1. Determine the regions in Ira1, Ira2 and neurofibromin that are able to...Isolate novel genes that can complement the ira1∆ phenotype through library screening . a. Transform a yeast library into the haploid IRA1* strain

  6. 26 CFR 1.408(q)-1 - Deemed IRAs in qualified employer plans.

    Science.gov (United States)

    2010-04-01

    ... the requirements applicable to Roth IRAs under section 408A, the account or annuity is deemed to be a Roth IRA. Simplified employee pensions (SEPs) under section 408(k) and SIMPLE IRAs under section 408(p... traditional and Roth IRAs may be imposed on distributions from deemed IRAs (for example, early...

  7. Rotten Egg Nebula

    Science.gov (United States)

    1999-01-01

    Violent gas collisions that produced supersonic shock fronts in a dying star are seen in a new, detailed image from NASA's Hubble Space Telescope. The picture, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Stars like our Sun will eventually die and expel most of their material outward into shells of gas and dust. These shells eventually form some of the most beautiful objects in the universe, called planetary nebulae. 'This new image gives us a rare view of the early death throes of stars like our Sun. For the first time, we can see phenomena leading to the formation of planetary nebulae. Until now, this had only been predicted by theory, but had never been seen directly,' said Dr. Raghvendra Sahai, research scientist and member of the science team at JPL for the Wide Field and Planetary Camera 2. The object is sometimes called the Rotten Egg Nebula, because it contains a lot of sulphur, which would produce an awful odor if one could smell in space. The object is also known as the Calabash Nebula or by the technical name OH231.8+4.2. The densest parts of the nebula are composed of material ejected recently by the central star and accelerated in opposite directions. This material, shown as yellow in the image, is zooming away at speeds up to one and a half million kilometers per hour (one million miles per hour). Most of the star's original mass is now contained in these bipolar gas structures. A team of Spanish and American astronomers used NASA's Hubble Space Telescope to study how the gas stream rams into the surrounding material, shown in blue. They believe that such interactions dominate the formation process in planetary nebulae. Due to the high speed of the gas, shock-fronts are formed on impact and heat the surrounding gas. Although computer calculations have predicted the existence and structure of such shocks for

  8. Rotten Egg Nebula

    Science.gov (United States)

    1999-01-01

    Violent gas collisions that produced supersonic shock fronts in a dying star are seen in a new, detailed image from NASA's Hubble Space Telescope. The picture, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Stars like our Sun will eventually die and expel most of their material outward into shells of gas and dust. These shells eventually form some of the most beautiful objects in the universe, called planetary nebulae. 'This new image gives us a rare view of the early death throes of stars like our Sun. For the first time, we can see phenomena leading to the formation of planetary nebulae. Until now, this had only been predicted by theory, but had never been seen directly,' said Dr. Raghvendra Sahai, research scientist and member of the science team at JPL for the Wide Field and Planetary Camera 2. The object is sometimes called the Rotten Egg Nebula, because it contains a lot of sulphur, which would produce an awful odor if one could smell in space. The object is also known as the Calabash Nebula or by the technical name OH231.8+4.2. The densest parts of the nebula are composed of material ejected recently by the central star and accelerated in opposite directions. This material, shown as yellow in the image, is zooming away at speeds up to one and a half million kilometers per hour (one million miles per hour). Most of the star's original mass is now contained in these bipolar gas structures. A team of Spanish and American astronomers used NASA's Hubble Space Telescope to study how the gas stream rams into the surrounding material, shown in blue. They believe that such interactions dominate the formation process in planetary nebulae. Due to the high speed of the gas, shock-fronts are formed on impact and heat the surrounding gas. Although computer calculations have predicted the existence and structure of such shocks for

  9. Ghost Head Nebula

    Science.gov (United States)

    1999-01-01

    Looking like a colorful holiday card, a new image from NASA's Hubble Space Telescope reveals a vibrant green and red nebula far from Earth. The image of NGC 2080, taken by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is available online at http://www.jpl.nasa.gov/images/wfpc . Images like this help astronomers investigate star formation in nebulas. NGC 2080, nicknamed 'The Ghost Head Nebula,' is one of a chain of star-forming regions lying south of the 30 Doradus nebula in the Large Magellanic Cloud. 30 Doradus is the largest star-forming complex in the local group of galaxies. This 'enhanced color' picture is composed of three narrow-band-filter images obtained by Hubble on March 28, 2000. The red and blue light come from regions of hydrogen gas heated by nearby stars. The green light on the left comes from glowing oxygen. The energy to illuminate the green light is supplied by a powerful stellar wind, a stream of high-speed particles coming from a massive star just outside the image. The central white region is a combination of all three emissions and indicates a core of hot, massive stars in this star-formation region. Intense emission from these stars has carved a bowl-shaped cavity in surrounding gas. In the white region, the two bright areas (the 'eyes of the ghost') - named A1 (left) and A2 (right) -- are very hot, glowing 'blobs' of hydrogen and oxygen. The bubble in A1 is produced by the hot, intense radiation and powerful stellar wind from one massive star. A2 contains more dust and several hidden, massive stars. The massive stars in A1 and A2 must have formed within the last 10,000 years, since their natal gas shrouds are not yet disrupted by the powerful radiation of the newborn stars. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The

  10. Proof of Ira Gessel's lattice path conjecture

    Science.gov (United States)

    Kauers, Manuel; Koutschan, Christoph; Zeilberger, Doron

    2009-01-01

    We present a computer-aided, yet fully rigorous, proof of Ira Gessel's tantalizingly simply stated conjecture that the number of ways of walking 2n steps in the region x + y ≥ 0,y ≥ 0 of the square lattice with unit steps in the east, west, north, and south directions, that start and end at the origin, equals 16n(5/6)n(1/2)n(5/3)n(2)n.

  11. DT Serpentis: neither a symbiotic star nor a planetary nebula associate

    CERN Document Server

    Frew, David J; Bojicic, Ivan S; Parker, Quentin A

    2014-01-01

    We present an alternative interpretation for the putative symbiotic star DT Serpentis, and its proposed planetary nebula (PN), recently announced by Munari et al. Our analysis is based on their data combined with additional archival data trawled from Virtual Observatory databases. We show that the star known as DT Ser is not a symbiotic star, and is merely superposed on the newly discovered but unrelated background PN. There is no evidence for any periodic variability for DT Ser as expected for a symbiotic star. We further establish that there is no physical association between DT Ser and the PN, which has a considerably higher extinction, befitting the larger distance we estimate. The significantly different radial velocities of the star and nebula also likely preclude any association. Finally, we show that the mid-infrared source detected by the IRAS and WISE surveys is actually coincident with the PN so there is no evidence for DT Ser being a dusty post-AGB star.

  12. Far-infrared data for symbiotic stars. II - The IRAS survey observations

    Science.gov (United States)

    Kenyon, S. J.; Fernandez-Castro, T.; Stencel, R. E.

    1988-06-01

    IRAS survey data for all known symbiotic binaries are reported. S type systems have 25 micron excesses much larger than those of single red giant stars, suggesting that these objects lose mass more rapidly than do normal giants. D type objects have far-IR colors similar to those of Mira variables, implying mass-loss rate of about 10 to the -6th solar masses/yr. The near-IR extinctions of the D types indicate that their Mira components are enshrouded in optically thick dust shells, while their hot companions lie outside the shells. If this interpretation of the data is correct, then the very red near-IR colors of D type symbiotic stars are caused by extreme amounts of dust absorption rather than dust emission. The small group of D prime objects possesses far-IR colors resembling those of compact planetary nebulae or extreme OH/IR stars. It is speculated that these binaries are not symbiotic stars at all, but contain a hot compact star and an exasymptotic branch giant which is in the process of ejecting a planetary nebula shell.

  13. Distances from Planetary Nebulae

    CERN Document Server

    Ciardullo, R

    2003-01-01

    The [O III] 5007 planetary nebula luminosity function (PNLF) occupies an important place on the extragalactic distance ladder. Since it is the only method that is applicable to all the large galaxies of the Local Supercluster, it is uniquely useful for cross-checking results and linking the Population I and Population II distance scales. We review the physics underlying the method, demonstrate its precision, and illustrate its value by comparing its distances to distances obtained from Cepheids and the Surface Brightness Fluctuation (SBF) method. We use the Cepheid and PNLF distances to 13 galaxies to show that the metallicity dependence of the PNLF cutoff is in excellent agreement with that predicted from theory, and that no additional systematic corrections are needed for either method. However, when we compare the Cepheid-calibrated PNLF distance scale with the Cepheid-calibrated SBF distance scale, we find a significant offset: although the relative distances of both methods are in excellent agreement, th...

  14. Molecular studies of Planetary Nebulae

    OpenAIRE

    Zhang, Yong

    2016-01-01

    Circumstellar envelopes (CEs) around evolved stars are an active site for the production of molecules. After evolving through the Asymptotic Giant Branch (AGB), proto-planetary nebula (PPN), to planetary nebula (PN) phases, CEs ultimately merge with the interstellar medium (ISM). The study of molecules in PNe, therefore, is essential to understanding the transition from stellar to interstellar materials. So far, over 20 molecular species have been discovered in PNe. The molecular composition ...

  15. Asteroid magnitudes, UBV colors, and IRAS albedos and diameters

    Science.gov (United States)

    Tedesco, Edward F.

    1989-01-01

    This paper lists absolute magnitudes and slope parameters for known asteroids numbered through 3318. The values presented are those used in reducing asteroid IR flux data obtained with the IRAS. U-B colors are given for 938 asteroids, and B-V colors are given for 945 asteroids. The IRAS albedos and diameters are tabulated for 1790 asteroids.

  16. Generation and Characterization of Novel Human IRAS Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2009-01-01

    Full Text Available Imidazoline receptors were first proposed by Bousquet et al., when they studied antihypertensive effect of clonidine. A strong candidate for I1R, known as imidazoline receptor antisera-selected protein (IRAS, has been cloned from human hippocampus. We reported that IRAS mediated agmatine-induced inhibition of opioid dependence in morphine-dependent cells. To elucidate the functional and structure properties of I1R, we developed the newly monoclonal antibody against the N-terminal hIRAS region including the PX domain (10–120aa through immunization of BALB/c mice with the NusA-IRAS fusion protein containing an IRAS N-terminal (10–120aa. Stable hybridoma cell lines were established and monoclonal antibodies specifically recognized full-length IRAS proteins in their native state by immunoblotting and immunoprecipitation. Monoclonal antibodies stained in a predominantly punctate cytoplasmic pattern when applied to IRAS-transfected HEK293 cells by indirect immunofluorescence assays and demonstrated excellent reactivity in flow immunocytometry. These monoclonal antibodies will provide powerful reagents for the further investigation of hIRAS protein functions.

  17. Commentary: An Exchange of Views on IRA and Reading Methods.

    Science.gov (United States)

    Groff, Patrick; And Others

    1980-01-01

    Groff argues against an IRA (International Reading Association) position statement assertion that no single method is the best for teaching reading, claiming that the phonics method results in the greatest reading achievement. The IRA Board of Directors replies that the position statement appropriately reflects the diverse views about reading held…

  18. Teaching with IRA in the Mwanza Region of Tanzania

    Science.gov (United States)

    McDermott, Peter

    2010-01-01

    This is a descriptive self-study of my experience participating in IRA's Diagnostic Teaching Project in Tanzania. The paper describes the teacher educators with whom I worked, their responses to IRA's curriculum, and what I learned about Tanzanian people, culture and education. Data are derived from a Likert survey, an open-item questionnaire, and…

  19. IRAS observations of the diffuse infrared background

    Science.gov (United States)

    Hauser, M. G.; Gillett, F. C.; Low, F. J.; Gautier, T. N.; Beichman, C. A.; Aumann, H. H.; Neugebauer, G.; Baud, B.; Boggess, N.; Emerson, J. P.

    1984-01-01

    IRAS data reveal bright emission from interplanetary dust which dominates the celestial background at 12, 25, and 60 microns except near the galactic plane. At 100 microns, interplanetary dust emission is prominent only near the ecliptic plane; diffuse galactic emission is found over the rest of the sky. At the galactic poles, the observed brightness implies that A(v) is likely to be of order 0.1 mag. The angular variation of the zodiacal emission in the ecliptic plane and in the plane at elongation 90 deg, and an annual modulation of the ecliptic pole brightness, are generally consistent with previously determined interplanetary dust distributions.

  20. The power spectrum of IRAS galaxies

    CERN Document Server

    Tadros, H; Tadros, Helen; Efstathiou, George

    1995-01-01

    We estimate the three-dimensional power spectrum of IRAS galaxies from the QDOT and 1.2Jy redshift surveys. We use identical estimators for both surveys and show how the results depend on the weights assigned to the galaxies. The power spectrum for the QDOT survey is steeper and has a higher amplitude at wavenumbers k \\sim 0.05\\; h {\\rm Mpc}^{-1} (where h is Hubble's constant in units of 100 \\kmsmpc) than the power spectrum derived from the 1.2Jy sample. However, the QDOT power spectrum is sensitive to a small number of galaxies in the Hercules supercluster, in agreement with a recent analysis of galaxy counts in cells in these surveys. We argue that the QDOT results are an upward fluctuation. We combine the two surveys to derive our best estimate of the power spectrum of IRAS galaxies. This is shallower and has a lower amplitude on scales \\simlt 0.1 h {\\rm Mpc}^{-1} than the power spectrum derived by Feldman \\et (1994) from the QDOT survey alone. The power spectrum of the combined surveys is well described b...

  1. Pulsar Wind Nebulae Modeling

    CERN Document Server

    Bucciantini, N

    2013-01-01

    Pulsar Wind Nebulae (PWNe) are ideal astrophysical laboratories where high energy relativistic phenomena can be investigated. They are close, well resolved in our observations, and the knowledge derived in their study has a strong impact in many other fields, from AGNs to GRBs. Yet there are still unresolved issues, that prevent us from a full clear understanding of these objects. The lucky combination of high resolution X-ray imaging and numerical codes to handle the outflow and dynamical properties of relativistic MHD, has opened a new avenue of investigation that has lead to interesting progresses in the last years. Despite all of this, we do not understand yet how particles are accelerated, and the functioning of the pulsar wind and pulsar magnetosphere, that power PWNe. I will review what is now commonly known as the MHD paradigm, and in particular I will focus on various approaches that have been and are currently used to model these systems. For each I will highlight its advantages, limitations, and de...

  2. 26 CFR 1.408A-4 - Converting amounts to Roth IRAs.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Converting amounts to Roth IRAs. 1.408A-4... amounts to Roth IRAs. This section sets forth the following questions and answers that provide rules applicable to Roth IRA conversions: Q-1. Can an individual convert an amount in his or her traditional IRA...

  3. Revised Diagnostic Diagrams for Planetary Nebulae

    CERN Document Server

    Riesgo, H

    2006-01-01

    Diagnostic diagrams of electron density - excitation for a sample of 613 planetary nebulae are presented. The present extensive sample allows the definition of new statistical limits for the distribution of planetary nebulae in the log [Ha/[SII

  4. [The role of IRA B cells in selected inflammatory processes].

    Science.gov (United States)

    Zasada, Magdalena; Rutkowska-Zapała, Magdalena; Lenart, Marzena; Kwinta, Przemko

    2016-03-16

    The first report about the discovery of new, previously unknown immune cells named IRA B cells (innate response activator B cells) appeared in 2012. So far, their presence has been verified in both mice and humans. However, IRA B cells belong to the family of B lymphocytes and have a number of characteristics unique to this group of cells. IRA B cells are formed from activated B1a lymphocytes after their contact with a pathogen. B1a lymphocytes mainly reside within body cavities. Activated by the pathogen, they move on into secondary lymphoid organs (spleen, lymph nodes) where they differentiate into IRA B cells. IRA B cells are a rich source of granulocyte-macrophage colony stimulating factor (GM-CSF). GM-CSF can stimulate IRA B cells in an autocrine manner for the secretion of intracellular stocks of immunoglobulin M (IgM), which can facilitate pathogens' phagocytosis by neutrophils. GM-CSF also stimulates neutrophils into active phagocytosis. Rapid eradication of the pathogen can prevent the development of an excessive inflammatory response, which can be dangerous for the organism. Until now the involvement of IRA B lymphocytes in the pathogenesis of sepsis and pneumonia has been proven, as well as their role in the progression of atherosclerotic lesions in mice. There is research in progress on the possibility of increasing the number of IRA B cells, for example by intravenous supply of modified immunoglobulins. It is necessary to characterize human IRA B cells and to determine their role in the functioning of the immune system.

  5. Near-Infrared Observations of the Massive Star Forming Region IRAS 23151+5912

    Institute of Scientific and Technical Information of China (English)

    Xue-Peng Chen; Yong-Qiang Yao

    2004-01-01

    Near-infrared images and K-band spectroscopy of the massive starforming region IRAS 23151+5912 are presented.The JHK' images reveal an embedded infrared cluster associated with infrared nebula,and the H2(2.12μm)narrowband image provides for the first time evidence of outflow activity associated with the cluster.That the cluster is young can be shown by the high percentage of infrared excess sources and the outflow activity.We suggest an age of the cluster of ~ 106 yr.Eight young stars are found in the bright nebular core around IRAS 23151+5912.By the color-magnitude diagrams of the cluster,we found five high-mass YSOs and four intermediate-mass YSOs in the cluster.Eight H2 emission features are discovered in the region with a scattered and non-axisymmetric distribution,indicating the existence of multiple outflows driven by the cluster.Diffuse H2 emission detected to the north and to the west of the cluster may result from UV leakage of the cluster.Brγ,H2,and CIV emission lines are found in the K-band spectrum of the brightest source,NIRS 19,indicating the presence of envelope,stellar wind,and shock in the circumstellar environment.We have estimated an O7-O9spectral type for the central massive YSO(20 ~ 30M⊙),with an age of less than 1×106 yr.

  6. Contraction of the solar nebula

    Science.gov (United States)

    Rawal, J. J.

    1984-10-01

    The concept of Roche limit is applied to the Laplacian theory of the origin of the solar system to study the contraction of a spherical gas cloud (solar nebula). In the process of contraction of the solar nebula, it is assumed that the phenomenon of supersonic turbulent convection described by Prentice (1978) is operative. It is found that the radius of the contracting solar nebula follows Titius-Bode law Rp = R_sun; ap, where R_sun; is the radius of the present Sun and a = 1.442. The consequences of the relation are also discussed. The aim, here, is an attempt to explain, on the basis of the concept of Roche limit, the distribution of planets in the solar system and try to understand the physics underlying it.

  7. 26 CFR 1.408A-1 - Roth IRAs in general.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Roth IRAs in general. 1.408A-1 Section 1.408A-1...) INCOME TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.408A-1 Roth IRAs in general. This... Roth IRAs: Q-1. What is a Roth IRA? A-1. (a) A Roth IRA is a new type of individual retirement...

  8. The Infrared Astronomical Satellite (IRAS) mission

    Science.gov (United States)

    Neugebauer, G.; Habing, H. J.; Van Duinen, R.; Aumann, H. H.; Beichman, C. A.; Baud, B.; Beintema, D. A.; Boggess, N.; Clegg, P. E.; De Jong, T.

    1984-01-01

    The Infrared Astronomical Satellite (IRAS) consists of a spacecraft and a liquid helium cryostat that contains a cooled IR telescope. The telescope's focal plane assembly is cooled to less than 3 K, and contains 62 IR detectors in the survey array which are arranged so that every source crossing the field of view can be seen by at least two detectors in each of four wavelength bands. The satellite was launched into a 900 km-altitude near-polar orbit, and its cryogenic helium supply was exhausted on November 22, 1983. By mission's end, 72 percent of the sky had been observed with three or more hours-confirming scans, and 95 percent with two or more hours-confirming scans. About 2000 stars detected at 12 and 25 microns early in the mission, and identified in the SAO (1966) catalog, have a positional uncertainty ellipse whose axes are 45 x 9 arcsec for an hours-confirmed source.

  9. Star-formation knots in IRAS galaxies

    CERN Document Server

    Hutchings, J B

    1995-01-01

    Images of IRAS galaxies with a range of IR properties are examined for bright knots, both within and outside the galaxy. These are found almost exclusively in galaxies with steep IR spectra, but over a wide range of IR luminosity, and usually without strong nuclear activity. In most cases, the knots are likely to be star-formation induced by tidal interactions, and are seen in the early stages of such interactions. Detailed photometry is presented of knots in six representative galaxies. The knots appear to have a wide range of colour and luminosity, but it is argued that many are heavily reddened. Knots formed outside the parent galaxy may be a new generation of what later become globular clusters, but they appear to have a wide range of luminosities.

  10. Ira Remsen, saccharin, and the linear model.

    Science.gov (United States)

    Warner, Deborah J

    2008-03-01

    While working in the chemistry laboratory at Johns Hopkins University, Constantin Fahlberg oxidized the 'ortho-sulfamide of benzoic acid' and, by chance, found the result to be incredibly sweet. Several years later, now working on his own, he termed this stuff saccharin, developed methods of making it in quantity, obtained patents on these methods, and went into production. As the industrial and scientific value of saccharin became apparent, Ira Remsen pointed out that the initial work had been done in his laboratory and at his suggestion. The ensuing argument, carried out in the courts of law and public opinion, illustrates the importance of the linear model to scientists who staked their identities on the model of disinterested research but who also craved credit for important practical results.

  11. Optical Spectroscopy of IRAS 02091+6333

    CERN Document Server

    Kimeswenger, S; Emprechtinger, M; Groemer, G E; Kapferer, W; Kausch, W; Kitzbichler, M G; Lechner, M F M; Lederle, C; Uytterhoeven, K; Zijlstra, A A

    2003-01-01

    We present a detailed spectroscopic investigation, spanning four winters, of the asymptotic giant branch (AGB) star IRAS 02091+6333. Zijlstra & Weinberger (2002) found a giant wall of dust around this star and modelled this unique phenomenon. However their work suffered from the quality of the optical investigations of the central object. Our spectroscopic investigation allowed us to define the spectral type and the interstellar foreground extinction more precisely. Accurate multi band photometry was carried out. This provides us with the possibility to derive the physical parameters of the system. The measurements presented here suggest a weak irregular photometric variability of the target, while there is no evidence of a spectroscopic variability over the last four years.

  12. IRAS observations of cepheid variable stars

    Science.gov (United States)

    Wayman, P. A.; Deasy, H. P.

    1986-09-01

    Mass loss from cepheids is investigated in terms of the evolution and pulsation of cepheids. IR Point Source Catalogue data on galactic cepheids and nonvariable supergiants from IRAS (1985) are analyzed in terms of dereddened colors. The positions on two-color diagrams are compared to black-body curve positions. It is observed that nonvariable supergiants similar to cepheids and short-period cepheids are closely related to black-body objects. Analysis of the mass loss, which is estimated as about 10 to the -6th solar masses/yr, indicates that mass loss is associated with cepheid pulsation; however, the effect of mass loss in the course of stellar evolution from the cepheid phase is insignificant.

  13. Comparative study of a [WC 6] nucleus with other emission-lines nuclei of planetary nebulae

    CERN Document Server

    Acker, A; Cuisinier, F

    1995-01-01

    The central star (CSPN) of the planetary nebula M 1-25 (PN G 4.9+4.9) is classified as a [WC 6] star, the only CSPN of this subclass known at this time. A comparison with the other emission-lines CSPN (the [WC]-class and the 'weak emission-lines stars' or {\\em wels}-class) shows that (1) the characteristics of this [WC 6] star fit well inside the main properties of the other [WC] CSPN ; (2) the [WC] CSPN seem to evolve from the [WC 8-11] (latter) to [WC 2-4] (earlier) subclasses, say from dense nebulae with cool stars to more extended nebulae with hot nuclei, as for other CSPN ; (3) on the two-colour IRAS diagram,the [WC] and the {\\em wels} CSPN form two different groups : the progenitors of the [WC]-type CSPN seem to be Carbon stars evolving along post-AGB tracks, whereas the {\\em wels} CSPN seem to be related to OH/IR stars, some of them having possibly experienced a late helium-flash.

  14. IRAS 17423-1755 (Hen 3-1475) revisited: an O-rich high-mass post-Asymptotic Giant Branch star

    CERN Document Server

    Manteiga, M; Ulla, A; Manchado, A; Garcia-Lario, P

    2011-01-01

    The high-resolution (R=600) Spitzer/IRS spectrum of the bipolar proto-planetary nebula (PPN) IRAS 17423-1755 is presented in order to clarify the dominant chemistry (C-rich versus O-rich) of its circumstellar envelope as well as to constrain its evolutionary stage. The high quality Spitzer/IRS spectrum shows weak 9.7 um absorption from amorphous silicates. This confirms for the first time the O-rich nature of IRAS 17423-1755 in contradiction to a previous C-rich classification, which was based on the wrong identification of the strong 3.1 um absorption feature seen in the Infrared Space Observatory (ISO) spectrum as due to acetylene (C2H2). The high-resolution Spitzer/IRS spectrum displays a complete lack of C-rich mid-IR features such as molecular absorption features (e.g., 13.7 um C2H2, 14.0 um HCN, etc.) or the classical polycyclic aromatic hydrocarbon infrared emission bands. Thus, the strong 3.1 um absorption band toward IRAS 17423-1755 has to be identified as water ice. In addition, a [Ne II] nebular em...

  15. Spectral variability of the IR-source IRAS 01005+7910 optical component

    CERN Document Server

    Klochkova, V G; Panchuk, V E; Sendzikas, E G; Yushkin, M V

    2014-01-01

    Highly-resolution optical spectra of the optical component of the IR-source IRAS01005+7910 are used to determine the spectral type of its central star, B1.5$ \\pm $0.3, identify the spectral features, and analyze their profile and radial velocity variations. The systemic velocity Vsys =$-50.5$ km/s is determined from the positions of the symmetric and stable profiles of the forbidden [NI], [NII], [OI], [SII], and [FeII] emission lines. The presence of the [NII] and [SII] forbidden emissions indicates the onset of the ionization of the circumstellar envelope and the fact that the star is very close to undergoing the planetary nebula stage. The broad range of heliocentric radial velocity Vr estimates based on the core lines, which amounts to about 34 km/s, is partly due to the deformations of the profiles caused by variable emissions. The variations of the Vr in the line wings are smaller, about 23 km/s, and may be due to pulsations and/or hidden binarity of the star. The deformations of the profiles of complex ...

  16. The Trumpler 14 photodissociation region in the Carina Nebula

    Science.gov (United States)

    Brooks, K. J.; Cox, P.; Schneider, N.; Storey, J. W. V.; Poglitsch, A.; Geis, N.; Bronfman, L.

    2003-12-01

    We report the results of observations of the fine-structure emission lines [C II] 158 μm and [O I] 63 μm using FIFI on the Kuiper Airborne Observatory (KAO) and the Long Wavelength Spectrometer (LWS) on board ISO, towards the molecular cloud associated with the stellar cluster Trumpler 14 (Tr 14) in the Carina Nebula. These data are compared with selected CO and CS transitions obtained with the SEST as well as IRAS and MSX images to produce a detailed view of the morphology and the physical conditions prevailing in the photodissociation region (PDR) at the interface between the ionized gas and the molecular dust lane. The relative intensity distribution observed for the various tracers is consistent with the stratification expected for a molecular cloud seen edge-on and exposed to a radiation field of ~ 104 G_0, which is dominated by the most massive stars of Tr 14. The grain photoelectric heating efficiency, \\epsilon, is estimated to be ~5 x 10-3 and is comparable to other galactic PDRs. The molecular gas has a complicated velocity structure with a high velocity dispersion resulting from the impact of the stellar winds arising from Tr 14. There is evidence of small-scale clumping with a very low volume filling factor. Despite the rich concentration of massive O stars in Tr 14 we find that the parameters of the PDR are much less-extreme than those of the Orion and M 17 massive star-forming regions.

  17. Polarisation properties of OH emission in planetary nebulae

    CERN Document Server

    Gomez, Jose F; Green, James A; Miranda, Luis F; Suarez, Olga; Bendjoya, Philippe

    2016-01-01

    We present the interferometric, full-polarisation observations of the four ground-state transitions of OH, toward five confirmed and one candidate OH-emitting planetary nebulae (OHPNe). OHPNe are believed to be very young PNe, and information on their magnetic fields (provided by their polarisation) could be key to understand the early evolution of PNe. We detect significant circular and linear polarisation in four and two objects, respectively. Possible Zeeman pairs are seen in JaSt 23 and IRAS 17393-2727, resulting in estimates of magnetic field strengths between 0.8 and 24 mG. We also report the new detection of OH emission at 1720 MHz toward Vy 2-2, making it the third known PN with this type of emission. We suggest that younger PNe have spectra dominated by narrow maser features and higher degrees of polarisation. Shock-excited emission at 1720 MHz seems to be more common in PNe than in early evolutionary phases, and could be related to equatorial ejections during the early PN phase.

  18. The Luminosity Function of IRAS PSCz Galaxies

    CERN Document Server

    Takeuchi, T T; Ishii, T T; Takeuchi, Tsutomu T.; Yoshikawa, Kohji; Ishii, Takako T.

    2003-01-01

    We estimated the luminosity function (LF) of IRAS galaxies in the PSCz catalogue. The faint end of the PSCz LF is slightly steeper than that of the LF derived by Saunders et al. (1990; S90). Using an analytical form for the LF used by S90, we obtain the following parameters: \\alpha = 1.23 \\pm 0.04, L_*=(8.85 \\pm 1.75) \\times 10^8 h^{-2} L_\\odot, \\sigma =0.724 \\pm 0.010, and \\phi_* = (2.34 \\pm 0.30) \\times 10^{-2} h^3 Mpc^{-3}. We also examined the evolution in the sample by a simple assumption \\phi_*(z) \\propto (1+z)^P, and found P=3.40 \\pm 0.70. It does not affect the three parameters, \\alpha, L_*, and \\sigma, but \\phi_*(z=0) is overestimated up to \\sim 15% if we ignore evolution. We estimated the temperature dependence of the LF. The LFs of warm and cool galaxies are quite different: the LF of warm galaxies has a very steep faint end with \\alpha =1.37. We also discuss a lump found at the brightest end of the LF.

  19. IGRINS spectroscopy of Class I sources: IRAS 03445+3242 and IRAS 04239+2436

    CERN Document Server

    Lee, Seokho; Park, Sunkyung; Lee, Jae-Joon; Kidder, Benjamin; Mace, Gregory N; Jaffe, Daniel T

    2016-01-01

    We have detected molecular and atomic line emission from the hot and warm disks of two Class I sources, IRAS 03445+3242 and IRAS 04239+2436 using the high resolution Immersion GRating INfrared Spectrograph (IGRINS). CO overtone band transitions and near-IR lines of Na I and Ca I, all in emission, trace the hot inner disk while CO rovibrational absorption spectra of the first overtone transition trace the warm gas within the inner few AU of the disk. The emission-line profiles for both sources show evidence for Keplerian disks. A thin Keplerian disk with power-law temperature and column density profiles with a projected rotational velocity of $\\sim$60--75 km s$^{-1}$ and a gas temperature of $\\sim$3500 K at the innermost annulus can reproduce the CO overtone band emission. Na I and Ca I emission lines also arise from this disk, but they show complicated line features possibly affected by photospheric absorption lines. Multi-epoch observations show asymmetric variations of the line profiles on one-year (CO over...

  20. Molecular studies of Planetary Nebulae

    CERN Document Server

    Zhang, Yong

    2016-01-01

    Circumstellar envelopes (CEs) around evolved stars are an active site for the production of molecules. After evolving through the Asymptotic Giant Branch (AGB), proto-planetary nebula (PPN), to planetary nebula (PN) phases, CEs ultimately merge with the interstellar medium (ISM). The study of molecules in PNe, therefore, is essential to understanding the transition from stellar to interstellar materials. So far, over 20 molecular species have been discovered in PNe. The molecular composition of PNe is rather different from those of AGB and PPNe, suggesting that the molecules synthesized in PN progenitors have been heavily processed by strong ultraviolet radiation from the central star. Intriguingly, fullerenes and complex organic compounds having aromatic and aliphatic structures can be rapidly formed and largely survive during the PPN/PN evolution. The similar molecular compositions in PNe and diffuse clouds as well as the detection of C$_{60}^+$ in the ISM reinforce the view that the mass-loss from PNe can ...

  1. Observations of the filamentary nebula Simeiz 22

    Science.gov (United States)

    Lozinskaya, T. A.; Sitnik, T. G.; Toropova, M. S.; Klement'eva, A. Yu.

    1984-02-01

    Interference-filter photographs of the nebula Simeiz 22 (Sharpless 188) in the (S II), (N II), (O III) lines, taken with a contact image tube at the Cassegrain focus of the 125-cm Crimean reflector, have been processed by photographic equidensitometry, yielding detailed isophotes in each line. The nebula morphology differs in the three lines, showing the stratified emission typical of planetary nebulae. The origin of Simeiz 22 is discussed; indirect arguments point to mass loss by the central star.

  2. The western Veil nebula (Image)

    Science.gov (United States)

    Glenny, M.

    2009-12-01

    The western Veil nebula in Cygnus. 15-part mosaic by Mike Glenny, Gloucestershire, taken over several months mostly in the autumn of 2008. 200mm LX90/f10 autoguided, Meade UHC filter, 0.3xFR/FF, Canon 20Da DSLR. Exposures each typically 10x360 secs at ISO1600, processed in Registax4, PixInsight (for flat field correction) & Photoshop CS.

  3. The Circum-Galactic Environment of Bright IRAS Galaxies

    CERN Document Server

    Krongold, Y

    2002-01-01

    This paper studies systematically, for the first time, the circumgalactic environment of bright IRAS galaxies as defined by Soifer et al. (1989). While the role of gravitational interaction for luminous and ultraluminous IRAS galaxies has been well established by various studies, the situation is by far more obscure in the IR luminosity range of the bright IRAS sample, 10^{10}Lsol 30^{o}. A control sample, selected from the Center for Astrophysics redshift survey catalogue, includes 90 objects matching the Bright IRAS sample for distribution of isophotal diameter, redshift, and morphological type. From a search of nearby companion galaxies within 250 Kpc on the second-generation Digitized Sky Survey (DSS-II), we found that the circumgalactic environment of the Bright IRAS galaxies contains more large companions than the galaxies in the optically selected control sample, and is similar to that of Seyfert 2 galaxies. We found a weak correlation over a wide range of far IR luminosity (10^9 Lsol < Lfir < 1...

  4. Gallery of Planetary Nebula Spectra

    CERN Document Server

    Kwitter, K B; Kwitter, Karen B.; Henry, Richard B.C.

    2006-01-01

    We present the Gallery of Planetary Nebula Spectra now available at http://oitwilliams.edu/nebulae. The website offers high-quality, moderate resolution (~7-10 A FWHM) spectra of 128 Galactic planetary nebulae from 3600-9600 A, obtained by Kwitter, Henry, and colleagues with the Goldcam spectrograph at the KPNO 2.1-m or with the RC spectrograph at the CTIO 1.5-m. The master PN table contains atlas data and an image link. A selected object's spectrum is displayed in a zoomable window; line identification templates are provided. In addition to the spectra themselves, the website also contains a brief discussion of PNe as astronomical objects and as contributors to our understanding of stellar evolution. We envision that this website, which concentrates a large amount of data in one place, will be of interest to a variety of users: researchers might need to check the spectrum of a particular object of interest; the non-specialist astronomer might simply be interested in perusing such a collection of spectra; and...

  5. The Massive Bipolar Outflow in IRAS 20110+3321

    Institute of Scientific and Technical Information of China (English)

    LI Jing-Jing; XU Ye; MIYAZAKI Atsushi; SHEN Zhi-Qiang; CHEN Xi

    2006-01-01

    @@ Mapping observations were made towards IRAS 20110+3321 using the Nobeyama 45 m and the Delingha 13.7m radio telescopes. The high angular resolution (~ 21″) image with the 45m telescope shows that there is a highvelocity bipolar molecular outflow in this region, which is in the NW-SE direction with a collimation factor of ~ 2.2. The outflow has significantly higher mass loss rate and mechanical luminosity than those from low mass YSOs, indicating that the outflow is driven by the IRAS source. A dense massive core was detected by mapping C18O (J= 1 - 0) line in the area with the 13.7m telescope. The IRAS source lies within the core but slightly offsets from its emission peak.

  6. 26 CFR 1.408A-0 - Roth IRAs; table of contents.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Roth IRAs; table of contents. 1.408A-0 Section 1... (CONTINUED) INCOME TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.408A-0 Roth IRAs; table of contents. This table of contents lists the regulations relating to Roth IRAs under section 408A of...

  7. 29 CFR 2509.99-1 - Interpretive Bulletin Relating to Payroll Deduction IRAs.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Interpretive Bulletin Relating to Payroll Deduction IRAs... SECURITY ACT OF 1974 § 2509.99-1 Interpretive Bulletin Relating to Payroll Deduction IRAs. (a) Scope. This... annuities (IRAs) described in section 408(a) or (b) or section 408A of the Internal Revenue Code (the...

  8. 26 CFR 1.408-11 - Net income calculation for returned or recharacterized IRA contributions.

    Science.gov (United States)

    2010-04-01

    ... recharacterized IRA contributions. 1.408-11 Section 1.408-11 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT... Plans, Etc. § 1.408-11 Net income calculation for returned or recharacterized IRA contributions. (a) Net income calculation for returned IRA contributions—(1) General rule. For purposes of...

  9. VLA observations of the "water fountain" IRAS 16552-3050

    OpenAIRE

    Suárez, Olga; Gómez, J. F.; Miranda, L. F.

    2008-01-01

    We present Very Large Array (VLA) observations of the water maser emission towards IRAS 16552-3050. The maser emission shows a velocity spread of ~170 km/s, and a bipolar distribution with a separation between the red and blueshifted groups of ~0.08". These observations and the likely post-AGB nature of the source indicate that IRAS 16552-3050 can be considered as a member of the "water fountain" class of sources (evolved stars showing H2O maser emission with a velocity spread $\\ga$ 100 km/s,...

  10. Level II scour analysis for Bridge 13 (IRAVT013300133) on State Route 133, crossing an Ira Brook Tributary, Ira, Vermont

    Science.gov (United States)

    Boehmler, Erick M.

    1996-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure IRA-VT01330013 on State Route 133 crossing an Ira Brook Tributary, Ira, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.

  11. Planetary nebulae abundances and stellar evolution

    NARCIS (Netherlands)

    Pottasch, S. R.; Bernard-Salas, J.

    2006-01-01

    A summary is given of planetary nebulae abundances from ISO measurements. It is shown that these nebulae show abundance gradients (with galactocentric distance), which in the case of neon, argon, sulfur and oxygen (with four exceptions) are the same as HII regions and early type star abundance gradi

  12. Using Planetary Nebulae to Teach Physics

    Science.gov (United States)

    Kwitter, Karen B.

    2011-05-01

    We have developed an interactive website, "Gallery of Planetary Nebula Spectra," (www.williams.edu/Astronomy/research/PN/nebulae/) that contains high-quality optical-to-near-infrared spectra, atlas information, and bibliographic references for more than 160 planetary nebulae that we have observed in the Milky Way Galaxy. To make the material more accessible to students, I have created three undergraduate-level exercises that explore physics-related aspects of planetary nebulae. "Emission Lines and Central Star Temperature” uses the presence or absence of emission lines from species with different ionization potentials to rank the temperatures of the exciting stars in a selection of nebulae. "Interstellar Reddening” uses the observed Balmer decrement in a sample of planetary nebulae at different Galactic latitudes to infer the distribution of interstellar dust in the Milky Way. Finally, "Determining the Gas Density in Planetary Nebulae,” which I will focus on here, uses the observed intensity ratio of the 6717 Å and 6731 Å emission lines from singly ionized sulfur to determine the electron density in the nebular gas. These exercises demonstrate that planetary nebula spectra are useful real-world examples illustrating a variety of physical principles, including the behavior of blackbodies, wavelength-dependent particle scattering, recombination-line ratios, atomic physics, and statistical mechanics.

  13. Planetary nebulae abundances and stellar evolution II

    NARCIS (Netherlands)

    Pottasch, S. R.; Bernard-Salas, J.

    2010-01-01

    Context. In recent years mid-and far infrared spectra of planetary nebulae have been analysed and lead to more accurate abundances. It may be expected that these better abundances lead to a better understanding of the evolution of these objects. Aims. The observed abundances in planetary nebulae are

  14. A Smoking Gun in the Carina Nebula

    Science.gov (United States)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert; Vaidya, Kaushar; White, Stephen M.; Petre, Rob; Chu, You-Hua

    2009-01-01

    The Carina Nebula is one of thc youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for approx.30 years. The soft X-ray spectrum. consistent with kT approx.130 eV blackbody radiation with mild extinction, and no counterpart in the near- and mid-infrared wavelengths indicate that it is a, approx. 10(exp 6)-year-old neutron star housed in the Carina Nebula. Current star formation theory does not suggest that the progenitor of the neutron star and massive stars in the Carina Nebula, in particular (eta)Car, are coeval. This result demonstrates that the Carina Nebula experienced at least two major episodes of massive star formation. The neutron star would be responsible for remnants of high energy activity seen in multiple wavelengths.

  15. Central Stars of Planetary Nebulae

    CERN Document Server

    Jones, David

    2016-01-01

    In this brief invited review, I will attempt to summarise some of the key areas of interest in the study of central stars of planetary nebulae which (probably) won't be covered by other speakers' proceedings. The main focus will, inevitably, be on the subject of multiplicity, with special emphasis on recent results regarding triple central star systems as well as wide binaries which avoid a common-envelope phase. Furthermore, in light of the upcoming release of Kepler's Campaign 11 data, I will discuss a few of the prospects from that data including the unique possibility to detect merger products.

  16. The Transitional Disk around IRAS 04125+2902

    CERN Document Server

    Espaillat, C; Powell, D; Feldman, D; Qi, C; Wilner, D; D'Alessio, P

    2015-01-01

    Resolved submillimeter imaging of transitional disks is increasingly revealing the complexity of disk structure. Here we present the first high-resolution submillimeter image of a recently identified transitional disk around IRAS 04125+2902 in the Taurus star-forming region. We measure an inner disk hole of ~20 AU around IRAS 04125+2902 by simultaneously modeling new 880 micron Submillimeter Array (SMA) data along with an existing spectral energy distribution supplemented by new Discovery Channel Telescope (DCT) photometry. We also constrain the outer radius of the dust disk in IRAS~04125+2902 to ~50-60 AU. Such a small dust disk could be attributed to initial formation conditions, outward truncation by an unseen companion, or dust evolution in the disk. Notably, the dust distribution of IRAS 04125+2902 resembles a narrow ring (delta R ~ 35 AU) composed of large dust grains at the location of the disk wall. Such narrow dust rings are also seen in other transitional disks and may be evidence of dust trapping i...

  17. Where Do Messy Planetary Nebulae Come From?

    Science.gov (United States)

    Kohler, Susanna

    2017-03-01

    If you examined images of planetary nebulae, you would find that many of them have an appearance that is too messy to be accounted for in the standard model of how planetary nebulae form. So what causes these structures?Examples of planetary nebulae that have a low probability of having beenshaped by a triple stellar system. They are mostly symmetric, with only slight departures (labeled) that can be explained by instabilities, interactions with the interstellar medium, etc. [Bear and Soker 2017]A Range of LooksAt the end of a stars lifetime, in the red-giant phase, strong stellar winds can expel the outer layers of the star. The hot, luminous core then radiates in ultraviolet, ionizing the gas of the ejected stellar layers and causing them to shine as a brightly colored planetary nebula for a few tens of thousands of years.Planetary nebulae come in a wide variety of morphologies. Some are approximately spherical, but others can be elliptical, bipolar, quadrupolar, or even more complex.Its been suggested that non-spherical planetary nebulae might be shaped by the presence of a second star in a binary system with the source of the nebula but even this scenario should still produce a structure with axial or mirror symmetry.A pair of scientists from Technion Israel Institute of Technology, Ealeal Bear and Noam Soker, argue that planetary nebulae with especially messy morphologies those without clear axial or point symmetries may have been shaped by an interacting triple stellar system instead.Examples of planetary nebulae that might have been shaped by a triple stellar system. They have some deviations from symmetry but also show signs of interacting with the interstellar medium. [Bear and Soker 2017]Departures from SymmetryTo examine this possibility more closely, Bear and Soker look at a sample of thousands planetary nebulae and qualitatively classify each of them into one of four categories, based on the degree to which they show signs of having been shaped by a

  18. Science on NIF Eagle Nebula

    Science.gov (United States)

    Kane, Jave; Martinez, David; Pound, Marc; Heeter, Robert; Casner, Alexis; Villette, Bruno; Mancini, Roberto

    2014-10-01

    For over fifteen years astronomers at the University of Maryland and scientists at LLNL have investigated the origin and dynamics of the famous Pillars of the Eagle Nebula and similar parsec-scale structures at the boundaries of HII regions in molecular hydrogen clouds. Eagle Nebula is one of the National Ignition Facility (NIF) Science programs, and has been awarded two days of NIF shots to study the cometary model of pillar formation. The NIF shots will feature a new long-duration x-ray source prototyped at the Omega EP laser, in which multiple hohlraums mimicking a cluster of stars are driven with UV light in series for 10 ns each to create a 30 ns output x-ray pulse. The drive generates deeply nonlinear hydrodynamics in the Eagle science package, which consists of a dense layered plastic and foam core embedded in lower-density background foam. The scaled Omega EP shots validated the multi-hohlraum concept, showing that earlier time hohlraums do not degrade later time hohlraums by preheat or by ejecting ablated plumes that deflect the later beams. The Omega EP shots illuminated three 2.8 mm long by 1.4 mm diameter Cu hohlraums with 4.3 kJ per hohlraum. At NIF each hohlraum will be 4 mm long by 3 mm in diameter and will be driven with 80-100 kJ. Prepared by LLNL under Contract DE-AC52-07NA27344.

  19. NIF Discovery Science Eagle Nebula

    Science.gov (United States)

    Kane, Jave; Martinez, David; Pound, Marc; Heeter, Robert; Huntington, Channing; Casner, Alexis; Villette, Bruno; Mancini, Roberto

    2016-10-01

    For almost 20 years a team of astronomers, theorists and experimentalists have investigated the creation of the famous Pillars of the Eagle Nebula and similar parsec-scale structures at the boundaries of HII regions in molecular hydrogen clouds, using a combination of astronomical observations, astrophysical simulations, and recently, scaled laboratory experiments. Eagle Nebula, one of the National Ignition Facility (NIF) Discovery Science programs, has completed four NIF shots to study the dense `shadowing' model of pillar formation, and been awarded more shots to study the `cometary' model. These experiments require a long-duration drive, 30 ns or longer, to generate deeply nonlinear ablative hydrodynamics. A novel x-ray source featuring multiple UV-driven hohlraums driven is used. The source directionally illuminates a science package, mimicking a cluster of stars. The first four NIF shots generated radiographs of shadowing-model pillars, and suggested that cometary structures can be generated. The velocity and column density profiles of the NIF shadowing and cometary pillars have been compared with observations of the Eagle Pillars made at millimeter observatories, and indicate cometary growth is key to matching observations. Supported in part by a Grant from the DOE OFES HEDLP program. Prepared by LLNL under Contract DE-AC52-07NA27344.

  20. Polarization in Pulsar Wind Nebulae

    CERN Document Server

    Volpi, D; Amato, E; Bucciantini, N

    2009-01-01

    The main goal of our present work is to provide, for the first time, a simple computational tool that can be used to compute the brightness, the spectral index, the polarization, the time variability and the spectrum of the non-thermal light (both synchrotron and inverse Compton, IC) associated with the plasma dynamics resulting from given relativistic magnetohydrodynamics (RMHD) simulations. The proposed method is quite general, and can be applied to any scheme for RMHD and to all non-thermal emitting sources, e.g. pulsar wind nebulae (PWNe), and in particular to the Crab Nebula (CN) as in the present proceeding. Here only the linear optical and X-ray polarization that characterizes the PWNe synchrotron emission is analyzed in order to infer information on the inner bulk flow structure, to provide a direct investigation of the magnetic field configuration, in particular the presence and the strength of a poloidal component, and to understand the origin of some emitting features, such as the knot, whose origi...

  1. Radio Properties of Pinwheel Nebulae

    CERN Document Server

    Monnier, J D; Tuthill, P G; Danchi, W C

    2002-01-01

    A small number of dusty Wolf-Rayet stars have been resolved into pinwheel nebulae, defined by their ``rotating'' spiral dust shells observed in the infrared. This morphology is naturally explained by dust formation associated with colliding winds in a binary system. In order to confirm and further explore this hypothesis, we have observed the known pinwheel nebulae (WR 104 and WR 98a) as well as the suspected binary WR 112 at multiple radio wavelengths with the Very Large Array to search for non-thermal radio emission from colliding winds. The spectrum of each target is nearly flat between 5 and 22 GHz, consistent with the presence of non-thermal emission that is reduced at low frequencies by free-free absorption. This emission must lie outside the radio ``photosphere,'' leading us to estimate a lower limit to the physical size of the non-thermal emitting region that is larger than expected from current theory. Based on a radio and infrared comparison to WR 104 and 98a, we conclude that WR 112 is a likely can...

  2. PTF10nvg: An Outbursting Class I Protostar in the Pelican/North American Nebula

    CERN Document Server

    Covey, Kevin R; Miller, Adam A; Poznanski, Dovi; Cenko, S Bradley; Silverman, Jeffrey M; Bloom, Joshua S; Kasliwal, Mansi M; Fischer, William; Rayner, John; Rebull, Luisa M; Butler, Nathaniel R; Filippenko, Alexei V; Law, Nicholas M; Ofek, Eran O; Agueros, Marcel; Dekany, Richard G; Rahmer, Gustavo; Hale, David; Smith, Roger; Quimby, Robert M; Nugent, Peter; Jacobsen, Janet; Zolkower, Jeff; Velur, Viswa; Walters, Richard; Henning, John; Bui, Khanh; McKenna, Dan; Kulkarni, Shrinivas R; Klein, Christopher

    2010-01-01

    During a synoptic survey of the North American Nebula region, the Palomar Transient Factory (PTF) detected an optical outburst (dubbed PTF10nvg) associated with the previously unstudied flat or rising spectrum infrared source IRAS 20496+4354. The PTF R-band light curve reveals that PTF10nvg brightened by more than 5 mag during the current outburst, rising to a peak magnitude of R~13.5 in 2010 Sep. Follow-up observations indicate PTF10nvg has undergone a similar ~5 mag brightening in the K band, and possesses a rich emission-line spectrum, including numerous lines commonly assumed to trace mass accretion and outflows. Many of these lines are blueshifted by ~175 km/s from the North American Nebula's rest velocity, suggesting that PTF10nvg is driving an outflow. Optical spectra of PTF10nvg show several TiO/VO bandheads fully in emission, indicating the presence of an unusual amount of dense (> 10^10 cm^-3), warm (1500-4000 K) circumstellar material. Near-infrared spectra of PTF10nvg appear quite similar to a spe...

  3. DT Serpentis: neither a symbiotic star nor a planetary nebula associate

    Science.gov (United States)

    Frew, David J.; Bento, Joao; Bojičić, Ivan S.; Parker, Quentin A.

    2014-12-01

    We present an alternative interpretation for the putative symbiotic star DT Serpentis, and its proposed planetary nebula (PN), recently announced by Munari et al. Our analysis is based on their data combined with additional archival data trawled from Virtual Observatory data bases. We show that the star known as DT Ser is not a symbiotic star, and is merely superposed on the newly discovered but unrelated background PN. There is no evidence for any periodic variability for DT Ser as expected for a symbiotic star. We further establish that there is no physical association between DT Ser and the PN, which has a considerably higher extinction, befitting the larger distance we estimate. The significantly different radial velocities of the star and nebula also likely preclude any association. Finally, we show that the mid-infrared source detected by the IRAS and WISE surveys is actually coincident with the PN so there is no evidence for DT Ser being a dusty post-asymptotic giant branch star.

  4. Infrared and radio study of star forming regions associated with IRAS 19111+1048 and IRAS 19110+1045

    CERN Document Server

    Vig, S; Kulkarni, V K; Ojha, D K; Verma, R P

    2006-01-01

    A multiwavelength study of the star forming regions associated with IRAS 19111+1048 and IRAS 19110+1045 has been carried out. These have been simultaneously mapped in two far infrared bands at lambda_eff ~ 130 and 200 micron with ~1' angular resolution using the TIFR 1-m balloon borne telescope. The radio emission from the ionised gas of these regions has been imaged at 1280, 610 and 325 MHz using the Giant Metrewave Radio Telescope, India. A total of 20 compact radio sources have been detected from the high resolution radio map of IRAS 19111+1048 at 1280 MHz. Assuming these sources to represent exciting zero age main sequence (ZAMS) stars, the initial mass function is found to be quite steep, with the power law index of 5.3+-0.5 for the mass range 14 < m/M_sun < 33. The spectral types of the ZAMS stars inferred independently from the radio and NIR measurements match very well for a good fraction of the radio sources having NIR counterparts. For IRAS 19110+1045 region, seven radio sources have been dete...

  5. HUBBLE CAPTURES DYNAMICS OF CRAB NEBULA (color)

    Science.gov (United States)

    2002-01-01

    A new sequence of Hubble Space Telescope images of the remnant of a tremendous stellar explosion is giving astronomers a remarkable look at the dynamic relationship between the tiny Crab Pulsar and the vast nebula that it powers. This colorful photo shows a ground-based image of the entire Crab Nebula, the remnant of a supernova explosion witnessed over 900 years ago. The nebula, which is 10 light-years across, is located 7,000 light-years away in the constellation Taurus. The green, yellow and red filaments concentrated toward the edges of the nebula are remnants of the star that were ejected into space by the explosion. At the center of the Crab Nebula lies the Crab Pulsar -- the collapsed core of the exploded star. The Crab Pulsar is a rapidly rotating neutron star -- an object only about six miles across, but containing more mass than our Sun. As it rotates at a rate of 30 times per second the Crab Pulsar's powerful magnetic field sweeps around, accelerating particles, and whipping them out into the nebula at speeds close to that of light. The blue glow in the inner part of the nebula -- light emitted by energetic electrons as they spiral through the Crab's magnetic field -- is powered by the Crab Pulsar. Credit: Jeff Hester and Paul Scowen (Arizona State University), and NASA

  6. Processing NASA Earth Science Data on Nebula Cloud

    Science.gov (United States)

    Chen, Aijun; Pham, Long; Kempler, Steven

    2012-01-01

    Three applications were successfully migrated to Nebula, including S4PM, AIRS L1/L2 algorithms, and Giovanni MAPSS. Nebula has some advantages compared with local machines (e.g. performance, cost, scalability, bundling, etc.). Nebula still faces some challenges (e.g. stability, object storage, networking, etc.). Migrating applications to Nebula is feasible but time consuming. Lessons learned from our Nebula experience will benefit future Cloud Computing efforts at GES DISC.

  7. The Magnetic Field Effect on Planetary Nebulae

    Institute of Scientific and Technical Information of China (English)

    A. R. Khesali; K. Kokabi

    2006-01-01

    In our previous work on the 3-dimensional dynamical structure of planetary nebulae the effect of magnetic field was not considered. Recently Jordan et al. have directly detected magnetic fields in the central stars of some planetary nebulae. This discovery supports the hypothesis that the non-spherical shape of most planetary nebulae is caused by magnetic fields in AGB stars. In this study we focus on the role of initially weak toroidal magnetic fields embedded in a stellar wind in altering the shape of the PN. We found that magnetic pressure is probably influential on the observed shape of most PNe.

  8. Interstellar gas in the Gum Nebula

    Science.gov (United States)

    Wallerstein, G.; Jenkins, E. B.; Silk, J.

    1980-01-01

    A survey of the interstellar gas near the Gum Nebula by optical observation of 67 stars at Ca II, 42 stars at Na I, and 14 stars in the UV with the Copernicus satellite provided radial velocities and column densities for all resolved absorption components. Velocity dispersions for gas in the Gum Nebula are not significantly larger than in the general interstellar medium; the ionization structure is predominantly that of an H II region with moderately high ionization. Denser, more highly ionized clouds are concentrated toward the Gum Nebula; these clouds do not show the anomalously high ionization observed in the Vela remnant clouds.

  9. INTEGRAL FIELD SPECTROSCOPY OF AGN ABSORPTION OUTFLOWS: MRK 509 AND IRAS F04250–5718

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guilin; Arav, Nahum [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Rupke, David S. N., E-mail: glliu@vt.edu [Department of Physics, Rhodes College, Memphis, TN 38112 (United States)

    2015-11-15

    Ultraviolet (UV) absorption lines provide abundant spectroscopic information enabling the probe of the physical conditions in active galactic nucleus (AGN) outflows, but the outflow radii (and the energetics consequently) can only be determined indirectly. We present the first direct test of these determinations using integral field unit (IFU) spectroscopy. We have conducted Gemini IFU mapping of the ionized gas nebulae surrounding two AGNs, whose outflow radii have been constrained by UV absorption line analyses. In Mrk 509, we find a quasi-spherical outflow with a radius of 1.2 kpc and a velocity of ∼290 km s{sup −1}, while IRAS F04250–5718 is driving a biconical outflow extending out to 2.9 kpc, with a velocity of ∼580 km s{sup −1} and an opening angle of ∼70°. The derived mass flow rate ∼5 and >1 M{sub ⊙} yr{sup −1}, respectively, and the kinetic luminosity ≳1 × 10{sup 41} erg s{sup −1} for both. Adopting the outflow radii and geometric parameters measured from IFU, absorption line analyses would yield mass flow rates and kinetic luminosities in agreement with the above results within a factor of ∼2. We conclude that the spatial locations, kinematics, and energetics revealed by this IFU emission-line study are consistent with pre-existing UV absorption line analyses, providing a long-awaited direct confirmation of the latter as an effective approach for characterizing outflow properties.

  10. The Eagle Nebula on NIF

    Science.gov (United States)

    Kane, Jave; Cooper, Amy; Remington, Bruce; Ryutov, Dmitri; Smalyuk, Vladimir; Pound, Marc

    2011-10-01

    In one of the eight Science on NIF campaigns, dynamics of molecular clouds such as the Eagle Nebula will be studied in scaled laboratory astrophysics experiments, focusing on new hydrodynamic stabilities of ablation fronts induced by strong directionality of a sustained radiation drive, and on the formation of cometary structures as a model for the famous Eagle Pillars. The NIF Radiation Transport Platform will be adapted to drive a foam target stood off several mm from the halfraum to simulate a molecular cloud illuminated by a distant O-type star, with the drive collimated by an aperture. Pulses of length 20-100 ns generating effective radiation temperatures of 100 eV are being sought. Design of the experiment, theory of the directional radiation instabilities, and supporting astrophysical modeling will be presented. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. From stellar nebula to planetesimals

    CERN Document Server

    Marboeuf, Ulysse; Alibert, Yann; Cabral, Nahuel; Benz, Willy

    2014-01-01

    Solar and extrasolar comets and extrasolar planets are the subject of numerous studies in order to determine their chemical composition and internal structure. In the case of planetesimals, their compositions are important as they govern in part the composition of future planets. The present works aims at determining the chemical composition of icy planetesimals, believed to be similar to present day comets, formed in stellar systems of solar chemical composition. The main objective of this work is to provide valuable theoretical data on chemical composition for models of planetesimals and comets, and models of planet formation and evolution. We have developed a model that calculates the composition of ices formed during the cooling of the stellar nebula. Coupled with a model of refractory element formation, it allows us to determine the chemical composition and mass ratio of ices to rocks in icy planetesimals throughout in the protoplanetary disc. We provide relationships for ice line positions (for differen...

  12. Nebulae and how to observe them

    CERN Document Server

    Coe, Steven

    2007-01-01

    This "Astronomers' Observing Guides" are designed for practical amateur astronomers who not only want to observe, but want to know the details of exactly what they are looking at. Nebulae are the places where the stars are born. For amateur astronomers, the many different kinds of nebulae vary from "easy" targets that can be seen with modest equipment under mediocre skies, to "challenging" objects that require experienced observers, large telescopes and excellent seeing. The concept of the book - and of the series - is to present an up-to-date detailed description and categorisation (part one); and then (part two) to consider how best to successfully observe and record the large range of astronomical objects that fall under the general heading of "nebulae". "Nebulae, and How to Observe Them" is a mine of information for all levels of amateur observers, from the beginner to the experienced.

  13. Observations of planetary nebulae in the Galactic Bulge

    CERN Document Server

    Cuisinier, F; Köppen, J; Acker, A; Stenholm, B

    2000-01-01

    High quality spectrophotometric observations of 30 Planetary Nebulae in the Galactic Bulge have been made. Accurate reddenings, plasma parameters, and abundances of He,O,N,S,Ar,Cl are derived. We find the abundances of O,S,Ar in the Planetary Nebulae in the Galactic Bulge to be comparable with the abundances of the Planetary Nebulae in the Disk, high abundances being maybe slightly more frequent in the Bulge. The distribution of the N/O ratio does not present in the Galactic Bulge Planetary Nebulae the extension to high values that it presents in the Disk Planetary Nebulae. We interpret this as a signature of the greater age of Bulge Planetary Nebulae. We thus find the Bulge Planetary Nebulae to be an old population, slightly more metal-rich than the Disk Planetary Nebulae. The population of the Bulge Planetary Nebulae shows hence the same characteristics than the Bulge stellar population.

  14. Evidence for mass loss from IRAS observations of classical Cepheids

    Energy Technology Data Exchange (ETDEWEB)

    Deasy, H.; Butler, C.J.

    1986-04-24

    In order to test hypotheses concerning mass loss from classical Cepheid variables, evidence of anomalous mass loss was sought by making a comparison between the infrared emission of Cepheids, and that of nonvariable supergiants, in the same luminosity and effective temperature range. A search of the IRAS (Infrared Astronomy Satellite) catalogue found a number of Cepheids and stable supergiants which showed emission in at least one of the IRAS wavelength bands. Some long-period Cepheids showed infrared excesses with respect to their non-pulsating counterparts, while emission from Cepheids with periods of less than 10 days was comparable to the levels seen in the stable supergiants. Mass loss rates of up to 7 x 10/sup -7/ M solar masses yr/sup -1/ were derived from the infrared excesses, which is sufficiently high to have a major effect on the evolution of these stars.

  15. A Bayesian classification of the IRAS LRS Atlas

    Science.gov (United States)

    Goebel, J.; Stutz, J.; Volk, K.; Walker, H.; Gerbault, F.; Self, M.; Taylor, W.; Cheeseman, P.

    1989-01-01

    The availability of a reclassification of the IRAS LRS Atlas of spectra using a new Bayesian classification procedure (AutoClass) is announced. The classes of objects which result from the application of the AutoClass algorithm include many of the previously known LRS classes. New classes which have interesting astronomical and astrophysical interpretations were also found. Techniques, such as the AutoClass algorithm, have a bright future in the arena of astronomical classification problems.

  16. VizieR Online Data Catalog: IRAS08589-4714 molecular gas (Saldano+, 2016)

    Science.gov (United States)

    Saldano, H. P.; Vasquez, J.; Cappa, C. E.; Gomez, M.; Duronea, N.; Rubio, M.

    2016-09-01

    Files IRAS08589-4714CO.fits, IRAS08589-471413CO IRAS08589-4714C18O.fits, IRAS08589-4714HCO.fits and IRAS08589-4714_HCN.fits contain the 12CO, 13CO, C18O, HCO+ and HCN molecular lines (J=3-2) in the total velocity range (-20.0, +30.0)km/s with the velocity resolution of 0.11km/s, towards the IRAS08589-4714 source (RA,DE=09:00:40.5,-47:25:55) with a FOV 150x150-arcsec, observed with the Atacama Pathfinder EXperiment (APEX) telescope, Chile. (2 data files).

  17. Molecular gas associated with IRAS 10361-5830

    CERN Document Server

    Vazzano, M M; Vasquez, J; Rubio, M; Romero, G A; .,

    2014-01-01

    We analyze the distribution of the molecular gas and the dust in the molecular clump linked to IRAS 10361-5830, located in the environs of the bubble-shaped HII region Gum 31 in the Carina region, with the aim of determining the main parameters of the associated material and investigating the evolutionary state of the young stellar objects identified there. Using the APEX telescope, we mapped the molecular emission in the J=3-2 transition of three CO isotopologues, 12CO, 13CO and C18O, over a 1.5' x 1.5' region around the IRAS position. We also observed the high density tracers CS and HCO+ toward the source. The cold dust distribution was analyzed using submillimeter continuum data at 870 \\mu\\ obtained with the APEX telescope. Complementary IR and radio data at different wavelengths were used to complete the study of the ISM. The molecular gas distribution reveals a cavity and a shell-like structure of ~ 0.32 pc in radius centered at the position of the IRAS source, with some young stellar objects (YSOs) proj...

  18. Absolute activity measurement of radon gas at IRA-METAS

    Science.gov (United States)

    Spring, Philippe; Nedjadi, Youcef; Bailat, Claude; Triscone, Gilles; Bochud, François

    2006-12-01

    This paper describes the system of the Swiss national metrological institute (IRA-METAS) for the absolute standardisation of radon gas. This method relies on condensing radon under vacuum conditions within a specified cold area using a cryogenerator, and detecting its alpha particles with an ion-implanted silicon detector, through a very accurately defined solid angle. The accuracy of this defined solid angle standardisation technique was corroborated by another primary measurement method involving 4 πγ NaI(Tl) integral counting and Monte Carlo efficiency calculations. The 222Rn standard submitted by IRA-METAS to the Système International de Référence (SIR) at the Bureau International des Poids et Mesures (BIPM) has also been found to be consistent with an analogous standard submitted by the German national metrological institute (PTB). IRA-METAS is able to deliver radon standards, with activities ranging from a few kBq to 350 kBq, in NIST-Type ampoules, and glass or steel containers usable for calibrating radon-measuring instruments.

  19. Double Engine for a Nebula

    Science.gov (United States)

    2009-08-01

    ESO has just released a stunning new image of a field of stars towards the constellation of Carina (the Keel). This striking view is ablaze with a flurry of stars of all colours and brightnesses, some of which are seen against a backdrop of clouds of dust and gas. One unusual star in the middle, HD 87643, has been extensively studied with several ESO telescopes, including the Very Large Telescope Interferometer (VLTI). Surrounded by a complex, extended nebula that is the result of previous violent ejections, the star has been shown to have a companion. Interactions in this double system, surrounded by a dusty disc, may be the engine fuelling the star's remarkable nebula. The new image, showing a very rich field of stars towards the Carina arm of the Milky Way, is centred on the star HD 87643, a member of the exotic class of B[e] stars [1]. It is part of a set of observations that provide astronomers with the best ever picture of a B[e] star. The image was obtained with the Wide Field Imager (WFI) attached to the MPG/ESO 2.2-metre telescope at the 2400-metre-high La Silla Observatory in Chile. The image shows beautifully the extended nebula of gas and dust that reflects the light from the star. The central star's wind appears to have shaped the nebula, leaving bright, ragged tendrils of gas and dust. A careful investigation of these features seems to indicate that there are regular ejections of matter from the star every 15 to 50 years. A team of astronomers, led by Florentin Millour, has studied the star HD 87643 in great detail, using several of ESO's telescopes. Apart from the WFI, the team also used ESO's Very Large Telescope (VLT) at Paranal. At the VLT, the astronomers used the NACO adaptive optics instrument, allowing them to obtain an image of the star free from the blurring effect of the atmosphere. To probe the object further, the team then obtained an image with the Very Large Telescope Interferometer (VLTI). The sheer range of this set of observations

  20. VLA Detection of the Exciting Sources of the Molecular Outflows Associated with L1448 IRS2, IRAS 05327+3404, L43, IRAS 22142+5206, L1211, and IRAS 23545+6508

    Directory of Open Access Journals (Sweden)

    G. Anglada

    2002-01-01

    Full Text Available Presentamos observaciones sensitivas hechas con el “Very Large Array" a 3.6 cm hacia nueve campos conteniendo flujos moleculares. Detectamos candidatos para las fuentes excitadoras de flujos moleculares en seis de los campos: L1448 IRS2, IRAS 05327+3404, L43, IRAS 22142+5206, L1211, e IRAS 23545+6508. Discutimos los parámetros de estas fuentes, así como su relación con fuentes detectadas a otras longitudes de onda.

  1. 26 CFR 1.408A-3 - Contributions to Roth IRAs.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Contributions to Roth IRAs. 1.408A-3 Section 1... (CONTINUED) INCOME TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.408A-3 Contributions to Roth... contributions to Roth IRAs: Q-1. What types of contributions are permitted to be made to a Roth IRA? A-1....

  2. The Chemical Classification of the AGB Star IRAS 17515-2407

    Institute of Scientific and Technical Information of China (English)

    Pei-Sheng Chen; Pin Zhang

    2003-01-01

    The chemical classification of IRAS 17515-2407 has been debated for a long time. Up to now there are two contenders, oxygen-rich or carbon-rich. We believe that IRAS 17515-2407 is an oxygen-rich source: because (i) it shows the silicate self-absorbed emission; (ii) in the near infrared-IRAS diagram it is located in the oxygen-rich object region and (iii) particularly, it has detected SiO maser emission.

  3. EVN observations of the Ultra Luminous Infrared Galaxies IRAS 23365+3604 and IRAS 07251-0248

    CERN Document Server

    Romero-Cañizales, Cristina; Alberdi, Antxon

    2008-01-01

    We present high-sensitivity, high-resolution images of the Ultraluminous Infrared Galaxies (ULIRG; L$_{\\mathrm{FIR}} > 10^{12}$ L$_\\odot$) IRAS 23365+3604 and IRAS 07251-0248, taken with the EVN at 6 and 18 cm. The images show a large number of compact components, whose luminosities are typical of Type IIL and Type IIn Radio Supernovae (RSNe). Further observations of these ULIRGs will allow us to confirm, or to rule out, their nature. The present observations are part of a project that should result in a significant number of SN detections, providing a direct measurement of the Core Collapse Superova (CCSN) rate and allowing us to estimate the Star Formation Rate (SFR) in our sample of ULIRGs .

  4. Infrared Study of the Southern Galactic Star-Forming Regions Associated with IRAS 10049-5657 and IRAS 10031-5632

    Science.gov (United States)

    Vig, S.; Ghosh, S. K.; Ojha, D. K.; Verma, R. P.

    2008-10-01

    We investigate the physical conditions of the interstellar medium and stellar components in the regions of the southern Galactic star-forming complexes associated with IRAS 10049-5657 and IRAS 10031-5632. These regions have been mapped simultaneously in two far-infrared bands (λeff ~ 150 and 210 μm), with ~1' angular resolution using the Tata Institute of Fundamental Research 1 m balloon-borne telescope. Spatial distribution of the temperature of cool dust and optical depth at 200 μm have been obtained taking advantage of the similar beams in the two bands. The HIRES processed Infrared Astronomical Satellite (IRAS) maps at 12, 25, 60, and 100 μm have been used for comparison. Using the Two Micron All Sky Survey near-infrared sources, we find the stellar populations of the embedded young clusters. A rich cluster of OB stars is seen in the IRAS 10049-5657 region. The fits to the stellar density radial profile of the cluster associated with IRAS 10049-5657 have been explored with the inverse radius profile as well as the King's profile; the cluster radius is ~2 pc. The source in the cluster closest to the IRAS peak is IRA-7, which lies above the zero-age main-sequence curve of spectral type O5 in the color-magnitude diagram. Unlike IRAS 10049-5657, a small cluster comprising a few deeply embedded sources is seen at the location of IRAS 10031-5632. Self-consistent radiative transfer modeling aimed at extracting important physical and geometrical details of the two IRAS sources shows that the best-fit models are in good agreement with the observed spectral energy distributions. The geometric details of the associated cloud and optical depths (τ100) have been estimated. A uniform density distribution of dust and gas is implied for both the sources. In addition, the infrared ionic fine-structure line emission from gas has been modeled for both the regions and compared with data from the IRAS low-resolution spectrometer. For IRAS 10049-5657, the observed and modeled

  5. Dynamo magnetic field-induced angular momentum transport in protostellar nebulae - The 'minimum mass' protosolar nebula

    Science.gov (United States)

    Stepinski, T. F.; Levy, E. H.

    1990-01-01

    Magnetic torques can produce angular momentum redistribution in protostellar nebulas. Dynamo magnetic fields can be generated in differentially rotating and turbulent nebulas and can be the source of magnetic torques that transfer angular momentum from a protostar to a disk, as well as redistribute angular momentum within a disk. A magnetic field strength of 100-1000 G is needed to transport the major part of a protostar's angular momentum into a surrounding disk in a time characteristic of star formation, thus allowing formation of a solar-system size protoplanetary nebula in the usual 'minimum-mass' model of the protosolar nebula. This paper examines the possibility that a dynamo magnetic field could have induced the needed angular momentum transport from the proto-Sun to the protoplanetary nebula.

  6. Dynamo magnetic field-induced angular momentum transport in protostellar nebulae - The minimum mass protosolar nebula

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, T.F.; Levy, E.H. (Arizona Univ., Tucson (USA))

    1990-02-01

    Magnetic torques can produce angular momentum redistribution in protostellar nebulas. Dynamo magnetic fields can be generated in differentially rotating and turbulent nebulas and can be the source of magnetic torques that transfer angular momentum from a protostar to a disk, as well as redistribute angular momentum within a disk. A magnetic field strength of 100-1000 G is needed to transport the major part of a protostar's angular momentum into a surrounding disk in a time characteristic of star formation, thus allowing formation of a solar-system size protoplanetary nebula in the usual minimum-mass model of the protosolar nebula. This paper examines the possibility that a dynamo magnetic field could have induced the needed angular momentum transport from the proto-Sun to the protoplanetary nebula. 32 refs.

  7. Spatial analysis of IRAS observations of nearby spirals

    Science.gov (United States)

    Ball, Roger; Lo, R. Y.

    1990-01-01

    The unbiased survey of the infrared sky carried out by the Infrared Astronomy Satellite (IRAS) satellite has greatly accelerated advances in understanding the dust component of our own and external galaxies. However, most extragalactic studies to date have been based on the IRAS Point Source Catalog (PSC), which has two serious limitations. First, in sources where a significant fraction of the flux is extended, significant errors may result from using PSC fluxes in comparative studies, and these errors could be systematic if the tendency to be non-pointlike depends on physical properties of the galaxy. Additionally, use of PSC fluxes rules out any direct investigation of the spatial distribution of the IRAS emission from disks in external galaxies. Since work on the Galactic IRAS results has shown that very different physical processes can make varying contributions to the observed flux, it is important to look at a wide sample of galaxies with some spatial resolution to study the relative dominance of these processes under a variety of conditions. Here, researchers report on work they are doing to carry out this program for many nearby spirals, using an analysis package that was developed for this purpose. Researchers carried out analysis for a sample of 121 nearby spirals. The fraction of the flux contained in a point source varies from 0 to 1 across the sample, all of which are well resolved at their nominal optical diameters. There is no evidence that the galaxies of smaller angular size are less likely to be resolved by IRAS at this level. The program gives results which are quite repeatable from scan to scan; the fraction f (point source flux over total flux) at 60 microns has typical errors of 0.03 when different scans are combined. Approximately two-thirds of the sample have more flux in the extended than in the nuclear component. There is a tendency for earlier-type spirals to be less centrally concentrated, but this effect is slight and the degree of

  8. Search for Compact Stellar Groups in the Vicinity of IRAS Sources

    CERN Document Server

    Azatyan, N M; Khachatryan, K G

    2016-01-01

    The results of a search for compact clusters in the vicinity of 19 IRAS sources based on data from the GPS UKIDSS and Spitzer GLIMPSE surveys are presented. Overall, clusters have been identified in 15 regions. Clusters are identified for the first time in 4 regions (IRAS 18151-1208, IRAS 18316-0602, 18517+0437, 19110+1045). In 5 regions (IRAS 05168+3634, 05358+3543, IRAS 18507+0121, IRAS 20188+3928, IRAS 20198+3716) the compact groups we have identified are substructures within more extended clusters. The radii of the identified groups and the surface star density are widely scattered with ranges of 0.3-2.7 pc and 4-1360 stars/pc^2, respectively. In 11 of the clusters, the IRAS sources are associated with a pair or even a group of YSOs. The groups identified in the near IR include representatives of a later evolutionary class II among the stellar objects associated with the IRAS sources.

  9. Multi-wavelength study of two possible cloud-cloud collision regions: IRAS 02459+6029 and IRAS 22528+5936

    Institute of Scientific and Technical Information of China (English)

    Nan Li; Jun-Jie Wang

    2012-01-01

    Based on observations of 12CO (J=2-1),we select targets from archived Infrared Astronomical Satellite (IRAS) data of IRAS 02459+6029 and IRAS 22528+5936 as samples of cloud-cloud collision,according to the criteria given by Vallee.Then we use the Midcourse Space Experiment (MSX) A band (8.28 μm) images and the NRAO VLA Sky Survey (NVSS) (1.4 GHz) continuum images to investigate the association between molecular clouds traced by the CO contour maps.The distribution of dust and ionized hydrogen shows an obvious association with the CO contour maps toward IRAS 02459+6029.However,in the possible collision region of IRAS 22528+5936,NVSS continuum radiation is not detected and the MSX sources are merely associated with the central star.The velocity fields of the two regions indicate the direction of the pressure and interaction.In addition,we have identified candidates of young stellar objects (YSOs) by using data from the Two Micron All Sky Survey (2MASS) in JHK bands expressed in a color-color diagram.The distribution of YSOs shows that the possible collision region is denser than other regions.All the evidence suggests that IRAS 02459+6029 could be an example of cloud-cloud collision,and that IRAS 22528+5936 could be two separate non-colliding clouds.

  10. Geminga's puzzling pulsar wind nebula

    CERN Document Server

    Posselt, B; Slane, P O; Romani, R; Bucciantini, N; Bykov, A M; Kargaltsev, O; Weisskopf, M C; Ng, C -Y

    2016-01-01

    We report on six new Chandra observations of the Geminga pulsar wind nebula (PWN). The PWN consists of three distinct elongated structures - two $\\approx 0.2 d_{250}$ pc long lateral tails and a segmented axial tail of $\\approx 0.05 d_{250}$ pc length, where $d_{250}=d/(250 {\\rm pc})$. The photon indices of the power law spectra of the lateral tails, $\\Gamma \\approx 1$, are significantly harder than those of the pulsar ($\\Gamma \\approx 1.5$) and the axial tail ($\\Gamma \\approx 1.6$). There is no significant diffuse X-ray emission between the lateral tails -- the ratio of the X-ray surface brightness between the south tail and this sky area is at least 12. The lateral tails apparently connect directly to the pulsar and show indication of moving footpoints. The axial tail comprises time-variable emission blobs. However, there is no evidence for constant or decelerated outward motion of these blobs. Different physical models are consistent with the observed morphology and spectra of the Geminga PWN. In one scena...

  11. Unveiling shocks in planetary nebulae

    CERN Document Server

    Guerrero, M A; Medina, J J; Luridiana, V; Miranda, L F; Riera, A; Velázquez, P F

    2013-01-01

    The propagation of a shock wave into a medium is expected to heat the material beyond the shock, producing noticeable effects in intensity line ratios such as [O III]/Halpha. To investigate the occurrence of shocks in planetary nebulae (PNe), we have used all narrowband [O III] and Halpha images of PNe available in the HST archive to build their [O III]/Halpha ratio maps and to search for regions where this ratio is enhanced. Regions with enhanced [O III]/Halpha emission ratio can be ascribed to two different types of morphological structures: bow-shock structures produced by fast collimated outflows and thin skins enveloping expanding nebular shells. Both collimated outflows and expanding shells are therefore confirmed to generate shocks in PNe. We also find regions with depressed values of the [O III]/Halpha ratio which are found mostly around density bounded PNe, where the local contribution of [N II] emission into the F656N Halpha filter cannot be neglected.

  12. The Crab Nebula flaring activity

    Directory of Open Access Journals (Sweden)

    G. Montani

    2014-12-01

    Full Text Available The discovery made by AGILE and Fermi of a short time scale flaring activity in the gamma-ray energy emission of the Crab Nebula is a puzzling and unexpected feature, challenging particle acceleration theory. In the present work we propose the shock-induced magnetic reconnection as a viable mechanism to explain the Crab flares. We postulate that the emitting region is located at ∼1015 cm from the central pulsar, well inside the termination shock, which is exactly the emitting region size as estimated by the overall duration of the phenomenon ∼1 day. We find that this location corresponds to the radial distance at which the shock-induced magnetic reconnection process is able to accelerate the electrons up to a Lorentz factor ∼109, as required by the spectral fit of the observed Crab flare spectrum. The main merit of the present analysis is to highlight the relation between the observational constraints to the flare emission and the radius at which the reconnection can trigger the required Lorentz factor. We also discuss different scenarios that can induce the reconnection. We conclude that the existence of a plasma instability affecting the wind itself as the Weibel instability is the privileged scenario in our framework.

  13. The Crab Nebula flaring activity

    Energy Technology Data Exchange (ETDEWEB)

    Montani, G., E-mail: giovanni.montani@frascati.enea.it [ENEA – C.R, UTFUS-MAG, via Enrico Fermi 45, I-00044 Frascati (RM) (Italy); Dipartimento di Fisica, Università di Roma “Sapienza”, p.le Aldo Moro 5, I-00185 Roma (Italy); Bernardini, M.G. [INAF – Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy)

    2014-12-12

    The discovery made by AGILE and Fermi of a short time scale flaring activity in the gamma-ray energy emission of the Crab Nebula is a puzzling and unexpected feature, challenging particle acceleration theory. In the present work we propose the shock-induced magnetic reconnection as a viable mechanism to explain the Crab flares. We postulate that the emitting region is located at ∼10{sup 15} cm from the central pulsar, well inside the termination shock, which is exactly the emitting region size as estimated by the overall duration of the phenomenon ∼1 day. We find that this location corresponds to the radial distance at which the shock-induced magnetic reconnection process is able to accelerate the electrons up to a Lorentz factor ∼10{sup 9}, as required by the spectral fit of the observed Crab flare spectrum. The main merit of the present analysis is to highlight the relation between the observational constraints to the flare emission and the radius at which the reconnection can trigger the required Lorentz factor. We also discuss different scenarios that can induce the reconnection. We conclude that the existence of a plasma instability affecting the wind itself as the Weibel instability is the privileged scenario in our framework.

  14. Evidence for single-temperature dust in the Crab nebula from a reanalysis of its infrared spectrum

    Science.gov (United States)

    Strom, Richard G.; Greidanus, Harm

    1992-08-01

    IRAS data on the Crab Nebula revealed significant excess emission above the synchrotron spectrum, peaking between 60 and 100 microns (Marsden, 1984). This was attributed to thermal radiation by dust with at least two characteristic temperatures in the range 40-100 K. The IRAS data have been reanalyzed, taking care to remove contamination by background emission, and it is found that the revised IR flux densities are in fact well explained by a single dust component at a temperature of 46 K. The required dust mass is 0.02 solar masses corresponding to a gas to dust ratio of 100:1. The break frequency is more accurately determined to be 1.4 x 10 exp 13 Hz in the power-law spectrum. This value implies, for a steady-state synchrotron model, a time-averaged magnetic field of 420 micro G, which is less than the value corresponding to an equipartition of energy between radiating particles and magnetic field, but probably greater than the present field strength.

  15. The Stingray nebula: watching the rapid evolution of a newly born planetary nebula.

    Science.gov (United States)

    Bobrowsky, M.; Sahu, K. C.; Parthasarathy, M.; García-Lario, Pedro

    The formation and early evolution of planetary nebulae represent one of the most poorly understood phases of stellar evolution ( Kwok, 1987; Maddox, 1995). One of the youngest, the Stingray Nebula (He3-1357) ( Henize, 1967; Henize, 1976), shows all the tell-tale signs of a newly born planetary nebula: it has become ionized only within the past few decades ( Parthasarathy et al., 1993); the mass-loss from the central star has ceased within the past few years; and the central star is becoming hotter and fainter as expected from a star on its way to becoming a DA white dwarf ( Parthasarathy et al., 1995). The Stingray Nebula thus provides the ideal laboratory for examining the early structure and evolution of this class of objects. Images of the Stingray Nebula, obtained with the Hubble Space Telescope, show for the first time that its multiple expulsions of matter are focused by an equatorial ring and bubbles of gas located on opposite sides of the ring ( Bobrowsky et al., 1995). The position angle of the outflows has changed, possibly as a result of precessional motion induced by the presence of a companion star. This is consistent with the precessing jet model by Livio & Pringle (1996). Indeed, we have reported the discovery of a companion star in the Stingray Nebula ( Bobrowsky et al., 1998). Finally, we present evidence of the companion star dynamically distorting the gas in this newly-born planetary nebula.

  16. The Radio Spectral Index of the Crab Nebula

    Science.gov (United States)

    1997-11-20

    We present the results of a new, comprehensive investigation of the radio spectral index of the Crab Nebula supernova remnant. New data at 74 MHz are...thermal material in the Crab Nebula’s filaments. Apart from some possible renewed acceleration occurring in the wisps, the dominant accelerator of relativistic electrons in the Crab Nebula is the pulsar itself.

  17. THE FIRST ''WATER FOUNTAIN'' COLLIMATED OUTFLOW IN A PLANETARY NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, José F.; Miranda, Luis F.; Guerrero, Martín A. [Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Suárez, Olga; Bendjoya, Philippe; Lagadec, Eric [Laboratoire Lagrange, UMR 7293, Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d' Azur, F-06304 Nice (France); Rizzo, J. Ricardo; García-García, Enrique [Centro de Astrobiología (INTA-CSIC), Ctra. M-108, km. 4, E-28850 Torrejón de Ardoz (Spain); Green, James A. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Uscanga, Lucero [Institute of Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 15236 Athens (Greece); Ramos-Larios, Gerardo [Instituto de Astronomía y Meteorología, Av. Vallarta No. 2602, Col. Arcos Vallarta, C.P. 44130 Guadalajara, Jalisco (Mexico)

    2015-02-01

    ''Water fountains'' (WFs) are evolved objects showing high-velocity, collimated jets traced by water maser emission. Most of them are in the post-asymptotic giant branch (post-AGB) and they may represent one of the first manifestations of collimated mass loss in evolved stars. We present water maser, carbon monoxide, and mid-infrared spectroscopic data (obtained with the Australia Telescope Compact Array, Herschel Space Observatory, and the Very Large Telescope, respectively) toward IRAS 15103–5754, a possible planetary nebula (PN) with WF characteristics. Carbon monoxide observations show that IRAS 15103–5754 is an evolved object, while the mid-IR spectrum displays unambiguous [Ne II] emission, indicating that photoionization has started and thus, its nature as a PN is confirmed. Water maser spectra show several components spreading over a large velocity range (≅ 75 km s{sup –1}) and tracing a collimated jet. This indicates that the object is a WF, the first WF known that has already entered the PN phase. However, the spatial and kinematical distribution of the maser emission in this object are significantly different from those in other WFs. Moreover, the velocity distribution of the maser emission shows a ''Hubble-like'' flow (higher velocities at larger distances from the central star), consistent with a short-lived, explosive mass-loss event. This velocity pattern is not seen in other WFs (which are presumably in earlier evolutionary stages). We therefore suggest that we are witnessing a fundamental change of mass-loss processes in WFs, with water masers being pumped by steady jets in post-AGB stars, but tracing explosive/ballistic events as the object enters the PN phase.

  18. Most Detailed Image of the Crab Nebula

    Science.gov (United States)

    2005-01-01

    This new Hubble image -- one among the largest ever produced with the Earth-orbiting observatory -- shows the most detailed view so far of the entire Crab Nebula ever made. The Crab is arguably the single most interesting object, as well as one of the most studied, in all of astronomy. The image is the largest image ever taken with Hubble's WFPC2 workhorse camera. The Crab Nebula is one of the most intricately structured and highly dynamical objects ever observed. The new Hubble image of the Crab was assembled from 24 individual exposures taken with the NASA/ESA Hubble Space Telescope and is the highest resolution image of the entire Crab Nebula ever made.

  19. Monitoring the Crab Nebula with LOFT

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2012-01-01

    From 2008-2010, the Crab Nebula was found to decline by 7% in the 15-50 keV band, consistently in Fermi GBM, INTEGRAL IBIS, SPI, and JEMX, RXTE PCA, and Swift BAT. From 2001-2010, the 15-50 keV flux from the Crab Nebula typically varied by about 3.5% per year. Analysis of RXTE PCA data suggests possible spectral variations correlated with the flux variations. I will present estimates of the LOFT sensitivity to these variations. Prior to 2001 and since 2010, the observed flux variations have been much smaller. Monitoring the Crab with the LOFT WFM and LAD will provide precise measurements of flux variations in the Crab Nebula if it undergoes a similarly active episode.

  20. High energy neutrinos from pulsar wind nebulae

    Science.gov (United States)

    Di Palma, Irene

    2017-09-01

    Several Pulsar Wind Nebulae have been detected in the TeV band in the last decade.The TeV emission is typically interpreted in a purely leptonic scenario, but this usually requires that the magnetic field in the Nebula be much lower than the equipartition value and the assumption of an enhanced target radiation at IR frequencies. In this work we consider the possibility that, in addition to the relativistic electrons, also relativistic hadrons are present in these nebulae. Assuming that part of the emitted TeV photons are of hadronic origin, we compute the associated flux of ∼ 1 ‑ 100 TeV neutrinos. We use the IceCube non detection to put constraints on the fraction of TeV photons that might be contributed by hadrons and estimate the number of neutrino events that can be expected from these sources in IceCube, ANTARES and in KM3Net.

  1. Monitoring the Orion Nebula Cluster

    Science.gov (United States)

    Reipurth, Bo

    The VYSOS (Variable Young Stars Optical Survey) project has at its disposal five small telescopes: a 5-inch and a 20-inch robotic optical imaging telescope in Hawaii funded by the NSF, and a 6-inch robotic optical imaging telescope, a 32-inch robotic infrared imaging telescope, and a 60-inch optical spectroscopic telescope in Chile, funded and operated from Germany. Through an agreement between the leaders of the two sites (B. Reipurth and R. Chini), it has been decided to devote a significant fraction of time on these facilities to a large Key Project, conducting a massive monitoring survey of the Orion Nebula Cluster. The vast data streams are being reduced through automated customized pipelines. The applicant seeks funding to employ a postdoc and an undergraduate assistant to work at the University of Hawaii and collaborate on the analysis of the data. Virtually all young stars are variable, with a wide range of amplitudes and characteristic timescales. This is mainly due to accretion shocks as material from circumstellar disks fall onto the stars along magnetic funnel flows, but also giant star spots, magnetic flares, occultations by orbiting dust condensations, and eclipses by companions can modulate the light from the nascent star. It is increasingly recognized that the rather static view of pre-main sequence evolution that has prevailed for many years is misleading, and that time-dependent phenomena may hold the key to an understanding of the way young stars grow and their circumstellar environments evolve. The VYSOS project is designed to bring sophisticated modern techniques to bear on the long neglected problem of variability in young solar type stars. To interpret the observations they will be compared to sophisticated MHD models of circumstellar disks around young stars. The Orion Nebula Cluster is the nearest rich region of star formation, and numerous, albeit heterogeneous, studies exist of the cluster members. The present study will provide the first

  2. A young bipolar outflow from IRAS15398-3359

    Science.gov (United States)

    Bjerkeli, Per; Jørgensen, Jes K.

    2015-08-01

    The Class 0 protostar IRAS 15398-3359 is located in the Lupus I cloud at a distance of 155 pc. The source is known to harbour a molecular outflow, but the region has not attracted much interest until recently. IRAS 15398 is known to show interesting chemical signatures and being one of the very nearby, young outflow sources makes it an excellent target for detailed studies of the gas kinematics of different species.We present observations of several molecular species, carried out with the Submillimeter Array and ALMA, towards the IRAS 15398 outflow. The analysis of CO emission show obvious signs of episodic mass ejections, with a dynamical time scale between the knots in the jet, of the order 100 years. This is consistent with recent ALMA results where luminosity outbursts are estimated to occur on similar time-scales. The physical properties of the outflow, such as mass, momentum, momentum rate, mechanical luminosity, kinetic energy and mass-loss rate are estimated at relatively low values. We argue that this source is of a very young age, possibly younger than ~1000 years. This is consistent with recent studies of the kinematics of the inner envelope/disk. The observed line profiles were compared to full 3D radiative transfer models of the source, constructed with the Line Modelling Engine (LIME). The observed line shapes can only be understood when considering several distinctly different physical components, viz. the outflow cavity, the infalling envelope and the surrounding cloud material. This allows us to put quantitative constraints on the kinematics of the material close to the central source.

  3. 26 CFR 1.408A-10 - Coordination between designated Roth accounts and Roth IRAs.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Coordination between designated Roth accounts and Roth IRAs. 1.408A-10 Section 1.408A-10 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF... Plans, Etc. § 1.408A-10 Coordination between designated Roth accounts and Roth IRAs. Q-1. Can...

  4. HDO abundance in the envelope of the solar-type protostar IRAS 16293-2422

    NARCIS (Netherlands)

    Parise, B; Caux, E; Castets, A; Ceccarelli, C; Loinard, L; Tielens, AGGM; Bacmann, A; Cazaux, S; Comito, C; Helmich, F; Kahane, C; Schilke, P; van Dishoeck, E; Wakelam, [No Value; Walters, A

    2005-01-01

    We present IRAM 30m and JCMT observations of HDO lines towards the solar-type protostar IRAS 16293-2422. Five HDO transitions have been detected on-source, and two were unfruitfully searched for towards a bright spot of the outflow of IRAS 16293- 2422. We interpret the data by means of the Ceccarell

  5. La ira en la primera tradición cidiana

    Directory of Open Access Journals (Sweden)

    Oscar Martín

    2007-11-01

    Full Text Available The expressions of the wrath in the Cantar de Mio Cid include a group of traditions of different nature, which constitute a point of departure for the proper interpretation of the text. On the one hand, the ira regia ('regal wrath' is related to the emotional medieval theory on wrath, and, on the other hand, the analysis of the political dimension of wrath in the Cantar and in the preceding Cidian tradition, contributes with new aspects on cultural practices and legal systems in the Middle Ages.

  6. Mission design for the infrared astronomical satellite /IRAS/

    Science.gov (United States)

    Lundy, S. A.; Mclaughlin, W. I.; Pouw, A.

    1979-01-01

    IRAS, a joint United States, Netherlands, United Kingdom astronomical satellite, is scheduled to be launched early in 1981 with the purpose of completing an all-sky survey in the infrared wavelengths from 8 to 120 microns and to observe objects of special interest. The mission design is driven by thermal constraints primarily determined by the Sun and Earth; the orbit and survey strategy must be chosen so as to satisfy the mission requirements before the cryogenic system is depleted of its liquid helium. Computer graphics help the designer choose valid survey strategies and evaluate resulting sky coverage.

  7. Chemistry of Carbon Rich Star IRAS 15194–5115

    Indian Academy of Sciences (India)

    A. Ali

    2006-12-01

    We have constructed two gas-phase models to study the chemistry of circumstellar envelope surrounding the carbon-rich variable star IRAS 15194–5115. The network used consists of 3893 reactions involving 397 gas-phase species. The derived fractional abundances for many molecules are in excellent agreement with values obtained from observations. The predicted column densities from the two models go well with the observed values of carbon star IRC + 10216. The dominant formation routes for three groups of species are discussed through the inner and outer envelopes.

  8. Supervised and unsupervised classification - The case of IRAS point sources

    Science.gov (United States)

    Adorf, Hans-Martin; Meurs, E. J. A.

    Progress is reported on a project which aims at mapping the extragalactic sky in order to derive the large scale distribution of luminous matter. The approach consists in selecting from the IRAS Point Source Catalog a set of galaxies which is as clean and as complete as possible. The decision and discrimination problems involved lend themselves to a treatment using methods from multivariate statistics, in particular statistical pattern recognition. Two different approaches, one based on supervised Bayesian classification, the other on unsupervised data-driven classification, are presented and some preliminary results are reported.

  9. Il grande complotto televisivo: Giuseppe Genna, Dies Irae (2006)

    OpenAIRE

    Milanesi, Claudio

    2012-01-01

    Giuseppe Genna (1969-), scrittore, poeta, critico letterario, pubblicista, la cui produzione può essere seguita sui siti (Clarence, I Miserabili, Carmilla On Line, GiuGenna) con cui collabora o che cura personalmente, ha finora pubblicato 8 romanzi, più una serie di scritti di varia natura (raccolte di saggi, recensioni, instant book). Dei 7 romanzi, 4 formano la serie noir dell’ispettore Lopez. Nei quattro romanzi successivi al ciclo – L’anno luce (2005), Dies Irae (2006), Medium. Una storia...

  10. Ultraviolet studies of the Crab Nebula

    Science.gov (United States)

    Talavera, A.

    2017-03-01

    The Crab Nebula (Messier 1) is one of the most observed sources with the XMM-Newton space telescope of ESA. The Crab and its related pulsar are a calibration source for the on-board X-rays cameras. There are around 80 observations between 2000 and 2015. In this observations, the XMM-Newton Optical and UV Monitor (OM) has also been used. We present a preliminary study of the Crab using images obtained the OM UV filters at 291, 231 and 212 nm. Photometric data for the pulsar (PSR0531+21), created in the supernova event of AD 1054 origin of the nebula, are also presented

  11. Dust Extinction in Compact Planetary Nebulae

    OpenAIRE

    Lee, TH; Kwok, S.

    2005-01-01

    The effects of dust extinction on the departure from axisymmetry in the morphology of planetary nebulae (PNs) are investigated through a comparison of the radio free-free emission and hydrogen recombination line images. The dust extinction maps from five compact PNs are derived using high-resolution (̃0"1) Hα and radio maps of the HST and VLA. These extinction maps are then analyzed by an ellipsoidal shell ionization model including the effects of dust extinction to infer the nebulae's intrin...

  12. IRAS galaxies and the large-scale structure in the CfA slice

    Science.gov (United States)

    Babul, Arif; Postman, Marc

    1990-01-01

    The spatial distributions of the IRAS and the optical galaxies in the first CfA slice are compared. The IRAS galaxies are generally less clustered than optical ones, but their distribution is essentially identical to that of late-type optical galaxies. The discrepancy between the clustering properties of the IRAS and optical samples in the CfA slice region is found to be entirely due to the paucity of IRAS galaxies in the core of the Coma cluster. The spatial distributions of the IRAS and the optical galaxies, both late and early types, outside the dense core of the Coma cluster are entirely consistent with each other. This conflicts with the prediction of the linear biasing scenario.

  13. Star Formation in Molecular Cloud Associated with IRAS 07028-110

    Institute of Scientific and Technical Information of China (English)

    QIN Sheng-Li; WU Yue-Fang; WANG Jun-Jie; ZHAO Gang; SHI Jian-Rong; MARTIN Miller

    2004-01-01

    @@ The first mapping observations in 12CO J = 2 - 1 and 12 CO J = 1 - 0 lines were made towards molecular cloud associated with IRAS 07028-1100. The results show a mono-polar outflow (primarily blueshifted component)near IRAS 07028-1100, which suggests that star formation is occurring in this region. On the basis of the MSX(Midcourse Space Experiment) band-A image, molecular cloud core contours, NVSS data and IRAS data, we identify IRAS 07028-1100 as an embedded young intermediate-mass star. According to the 2MASS data, we suggest a sequential star formation in the infrared cluster associated with IRAS 07028-1100.

  14. Masses of the Planetary Nebula Central Stars in the Galactic Globular Cluster System from HST Imaging and Spectroscopy

    Science.gov (United States)

    Jacoby, George H.; De Marco, Orsola; Davies, James; Lotarevich, I.; Bond, Howard E.; Harrington, J. Patrick; Lanz, Thierry

    2017-02-01

    The globular cluster (GC) system of our Galaxy contains four planetary nebulae (PNe): K 648 (or Ps 1) in M15, IRAS 18333-2357 in M22, JaFu 1 in Pal 6, and JaFu 2 in NGC 6441. Because single-star evolution at the low stellar mass of present-epoch GCs was considered incapable of producing visible PNe, their origin presented a puzzle. We imaged the PN JaFu 1 with the Hubble Space Telescope (HST) to obtain photometry of its central star (CS) and high-resolution morphological information. We imaged IRAS 18333-2357 with better depth and resolution, and we analyzed its archival HST spectra to constrain its CS temperature and luminosity. All PNe in Galactic GCs now have quality HST data, allowing us to improve CS mass estimates. We find reasonably consistent masses between 0.53 and 0.58 M ⊙ for all four objects, though estimates vary when adopting different stellar evolutionary calculations. The CS mass of IRAS 18333-2357, though, depends strongly on its temperature, which remains elusive due to reddening uncertainties. For all four objects, we consider their CS and nebula masses, their morphologies, and other incongruities to assess the likelihood that these objects formed from binary stars. Although generally limited by uncertainties (∼0.02 M ⊙) in post-AGB tracks and core mass versus luminosity relations, the high-mass CS in K 648 indicates a binary origin. The CS of JaFu 1 exhibits compact, bright [O iii] and Hα emission, like EGB 6, suggesting a binary companion or disk. Evidence is weaker for a binary origin of JaFu 2. Based, in part, on observations made with the NASA/ESA Hubble Space Telescope, obtained [from the Data Archive] at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-11558.

  15. Photospheric composition of the carbon-rich 21 micron post-AGB stars IRAS 22223+4327 and IRAS 04296+3429

    CERN Document Server

    Decin, L; Waelkens, C; Bakker, E J; Decin, Leen; Winckel, Hans Van; Waelkens, Christoffel; Bakker, Eric J.

    1998-01-01

    We present a detailed chemical analysis on the basis of high-resolution, high signal-to-noise optical spectra of two post-AGB objects IRAS 22223+4327 and IRAS 04296+3429. Both display the unidentified $21 \\mu m$ feature in their IR-spectra. The spectroscopic indicators provide accurate atmospheric parameters of $T_{eff}$=6500 K, $log g=1.0$ and $\\xi_t = 5.5 km/s$ for IRAS 2223+4327 and $T_{eff}$=7000 K, $log g=1.0$ and $\\xi_t = 4.0 km/s$ for IRAS 04296+3429. Both photospheres are found to be metal-deficient with [Fe/H]= -0.4 and -0.7 respectively. C and N are found to be overabundant. The mean abundance of all the measured s-process-elements is [s/Fe]=+1.0 for IRAS 2223+4327 and +1.4 for IRAS 04296+3429. The distribution of the s-process elements can best be described as due to a distribution of neutron exposures with a low mean neutron exposure of $\\tau_{0} = 0.2 mbarn^{-1}$. The 21 $\\mu$m stars form an interesting sub-group in the total post-AGB sample of stars, not only for their IR characteristics, but al...

  16. Characterization of IRA/IRB hybrid insulin receptors using bioluminescence resonance energy transfer.

    Science.gov (United States)

    Blanquart, Christophe; Achi, Josepha; Issad, Tarik

    2008-10-01

    The insulin receptor (IR) is composed of two alpha-chains that bind ligands and two beta-chains that possess an intracellular tyrosine kinase activity. The IR is expressed in cells as two isoforms containing or not exon 11 (IRB and IRA, respectively). Several mRNA studies have demonstrated that the two isoforms are co-expressed in different tissues and in several cancer cells. IRA/IRB hybrid receptors, constituting of an alphabeta-chain from IRA and an alphabeta-chain from IRB, are likely to occur in cells co-expressing both isoforms, but their study has been hampered by the lack of specific tools. In previous work, we used BRET to study IR and IGF1R homodimers and heterodimers. Here, we have used BRET to characterize IRA/IRB hybrids. BRET saturation experiments showed that IRA/IRB hybrids are randomly formed in cells. Moreover, by co-transfecting HEK-293 cells with a luciferase-tagged kinase-dead version of one isoform and a wild-type untagged version of the other isoform, we showed that IRA/IRB hybrids can recruit, upon ligand stimulation, a YFP-tagged intracellular partner. Finally, using BRET, we have studied ligand-induced conformational changes within IRA/IRB hybrids. Dose-response experiments showed that hybrid receptors bind IGF-2 with the same affinity than IRA homodimers, whereas they bind IGF-1 with a lower affinity. Altogether, our data indicate that IRA/IRB hybrid receptors can form in cells co-expressing both IR isoforms, that they are capable of recruiting intracellular partners upon ligand stimulation, and that they have pharmacological properties more similar to those of IRA than those of IRB homodimers with regards to IGF-2.

  17. A quantitative analysis of IRAS maps of molecular clouds

    Science.gov (United States)

    Wiseman, Jennifer J.; Adams, Fred C.

    1994-01-01

    We present an analysis of IRAS maps of five molecular clouds: Orion, Ophiuchus, Perseus, Taurus, and Lupus. For the classification and description of these astrophysical maps, we use a newly developed technique which considers all maps of a given type to be elements of a pseudometric space. For each physical characteristic of interest, this formal system assigns a distance function (a pseudometric) to the space of all maps: this procedure allows us to measure quantitatively the difference between any two maps and to order the space of all maps. We thus obtain a quantitative classification scheme for molecular clouds. In this present study we use the IRAS continuum maps at 100 and 60 micrometer(s) to produce column density (or optical depth) maps for the five molecular cloud regions given above. For this sample of clouds, we compute the 'output' functions which measure the distribution of density, the distribution of topological components, the self-gravity, and the filamentary nature of the clouds. The results of this work provide a quantitative description of the structure in these molecular cloud regions. We then order the clouds according to the overall environmental 'complexity' of these star-forming regions. Finally, we compare our results with the observed populations of young stellar objects in these clouds and discuss the possible environmental effects on the star-formation process. Our results are consistent with the recently stated conjecture that more massive stars tend to form in more 'complex' environments.

  18. y La Güira (río Cuyaguateje

    Directory of Open Access Journals (Sweden)

    Mario Luis Acosta Medina

    2007-01-01

    Full Text Available La erosión es una de las formas más significativas de degradación de los suelos y es fuertemente influenciada por el uso de la tierra. En este trabajo se calculó la erosión real y su relación con los gastos sólidos en la cuenca V Aniversario y La Güira mediante el empleo del SIG Idrisis 32, la imagen de satélite Landsat 7 y aplicando el modelo RUSLE. Se obtuvo un mapa de uso de suelo aplicando el método de máxima verosimilitud y el método de mínima distancia a la media, de estos se seleccionó el primero para determinar la erosión real sobre la base del modelo RUSLE. En el mapa de erosión real se observó que las zonas de mayor erosión son las dedicadas a labranza, que se ubican, por lo general, en los valles intramontanos. Se obtuvo una fuerte correlación entre los valores determinados por RUSLE y la serie de gastos sólidos medidos en cada una de las estaciones hidrométricas V Aniversario y La Güira. Se notó, además, que existe una sobrepredicción en la pérdida de suelo predicha por el modelo RUSLE.

  19. The Interstellar Bullet Engine IRAS 05506+2414

    Science.gov (United States)

    Stantzos, Nicholas W.; Sahai, Raghvendra

    2011-01-01

    Throughout their life-cycles, high-mass stars inject large amounts of energy and momentum into theirenvironments through stellar winds. Results from a study of the Orion BN/KL region indicate that disruption of a massive young stellar system can lead to an explosive event producing a wide-angle outflow, different from the classical bipolar flows driven by young stellar object (YSO) accretion disks. The discovery of a massive YSO, IRAS 05506+2414, may prove to be the second instance of this uncommon outflow. Prior to this study, data was collected using the Arizona Radio Observatory's 10-meter and 12-meter telescopes. Spectra of 16 different molecular line transitions were organized, reduced, and prepared for further analysis. A variety of molecular transitions were observed, such as 12CO 2-1, HCO+ 3-2, CS 3-2, in order to probe physical conditions of the YSO. From line transitions like HCO+ 3-2, we will determine physical properties like density, temperature, and velocity of our source object. For each molecular transition, the spectra were averaged in subsets, which were then averaged to produce a final spectra with an optimal signal to noise ratio. Future radiative modeling will yield mass and energetics of IRAS05506+2414.

  20. Chemical modeling of water deuteration in IRAS16293-2422

    CERN Document Server

    Wakelam, V; Aikawa, Y; Coutens, A; Bottinelli, S; Caux, E

    2014-01-01

    IRAS 16293-2422 is a well studied low-mass protostar characterized by a strong level of deuterium fractionation. In the line of sight of the protostellar envelope, an additional absorption layer, rich in singly and doubly deuterated water has been discovered by a detailed multiline analysis of HDO. To model the chemistry in this source, the gas-grain chemical code Nautilus has been used with an extended deuterium network. For the protostellar envelope, we solve the chemical reaction network in infalling fluid parcels in a protostellar core model. For the foreground cloud, we explored several physical conditions (density, cosmic ionization rate, C/O ratio). The main results of the paper are that gas-phase abundances of H2O, HDO and D2O observed in the inner regions of IRAS16293-2422 are lower than those predicted by a 1D dynamical/chemical (hot corino) model in which the ices are fully evaporated. The abundance in the outer part of the envelope present chaotic profiles due to adsorption/evaporation competition...

  1. Water around IRAS15398-3359 observed with ALMA

    CERN Document Server

    Bjerkeli, P; Bergin, E A; Frimann, S; Harsono, D; Jacobsen, S K; Lindberg, J E; Persson, M; Sakai, N; van Dishoeck, E F; Visser, R; Yamamoto, S

    2016-01-01

    How protostars accrete mass is one of the fundamental problems of star formation. High column densities and complex kinematical structures make direct observations challenging and they only provide a snapshot. Chemical tracers provide an interesting alternative to characterise the infall histories of protostars. Previous observations of H13CO+ towards the low-mass protostar IRAS15398-3359 showed a depression in the abundance. This is a sign of destruction of HCO+ by an enhanced presence of gaseous water in an extended region, possibly related to a recent burst in the accretion. Direct observations of water vapour can determine the exact extent of the emission and confirm the hypothesis that HCO+ is indeed a good tracer of the water snow-line. IRAS15398 was observed using ALMA at 0.5" resolution. Maps of HDO(101-000) and H218O(414-321) were taken simultaneously with observations of the CS(8-7) and N2H+(5-4) lines and continuum at 0.65 and 0.75 mm. The maps were interpreted using dust radiative transfer calcula...

  2. Evidence for mass loss from IRAS observations of classical Cepheids

    Science.gov (United States)

    Deasy, H.; Butler, C. J.

    1986-04-01

    Hypotheses and evidence regarding mass loss from classical Cepheid variable are considered. Mass loss from such stars is suspected on two grounds. First, it may provide an explanation of the persistent discrepancy between estimates of Cepheid masses based on the theories of stellar pulsation and of stellar evolution (Cox, 1980). Second, theoretical models of pulsating atmospheres (Willson and Bowen, 1985) suggest that a pulsation mechanism may be responsible for causing, or enhancing, mass loss from Cepheids. In order to test these hypotheses, evidence of anomalous mass loss was sought by making a comparison between the infrared emission of Cepheids and that of nonvariable supergiants in the same luminosity and effective temperature range. A search of the IRAS (Infrared Astronomy Satellite) Point Source Catalog (1985) found a number of Cepheids and stable supergiants which showed emission in at least one of the IRAS wavelength bands. Some long-period Cepheids showed infrared excesses with respect to their nonpulsating counterparts, while emission from Cepheids with periods of less than 10 days was comparable to the levels seen in the stable supergiants. Mass loss rates of up to 7 x 10 to the -7th solar mass per year were derived from the infrared excesses, which is sufficiently high to have a major effect on the evolution of these stars.

  3. INTERNAL PROPER MOTIONS IN THE ESKIMO NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    García-Díaz, Ma. T.; Gutiérrez, L.; Steffen, W.; López, J. A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Km 103 Carretera Tijuana-Ensenada, 22860 Ensenada, B.C. (Mexico); Beckman, J., E-mail: tere@astro.unam.mx, E-mail: leonel@astro.unam.mx, E-mail: wsteffen@astro.unam.mx, E-mail: jal@astro.unam.mx, E-mail: jeb@iac.es [Instituto de Astrofísica de Canarias, La Laguna, Tenerife (Spain)

    2015-01-10

    We present measurements of internal proper motions at more than 500 positions of NGC 2392, the Eskimo Nebula, based on images acquired with WFPC2 on board the Hubble Space Telescope at two epochs separated by 7.695 yr. Comparisons of the two observations clearly show the expansion of the nebula. We measured the amplitude and direction of the motion of local structures in the nebula by determining their relative shift during that interval. In order to assess the potential uncertainties in the determination of proper motions in this object, in general, the measurements were performed using two different methods, used previously in the literature. We compare the results from the two methods, and to perform the scientific analysis of the results we choose one, the cross-correlation method, because it is more reliable. We go on to perform a ''criss-cross'' mapping analysis on the proper motion vectors, which helps in the interpretation of the velocity pattern. By combining our results of the proper motions with radial velocity measurements obtained from high resolution spectroscopic observations, and employing an existing 3D model, we estimate the distance to the nebula to be 1.3 kpc.

  4. Planetary nebulae abundances and stellar evolution

    CERN Document Server

    Pottasch, S R

    2006-01-01

    A summary is given of planetary nebulae abundances from ISO measurements. It is shown that these nebulae show abundance gradients (with galactocentric distance), which in the case of neon, argon, sulfur and oxygen (with four exceptions) are the same as HII regions and early type star abundance gradients. The abundance of these elements predicted from these gradients at the distance of the Sun from the center are exactly the solar abundance. Sulfur is the exception to this; the reason for this is discussed. The higher solar neon abundance is confirmed; this is discussed in terms of the results of helioseismology. Evidence is presented for oxygen destruction via ON cycling having occurred in the progenitors of four planetary nebulae with bilobal structure. These progenitor stars had a high mass, probably greater than 5 solar masses. This is deduced from the high values of He/H and N/H found in these nebulae. Formation of nitrogen, helium and carbon are discussed. The high mass progenitors which showed oxygen de...

  5. Abundances of planetary nebula NGC2392

    NARCIS (Netherlands)

    Pottasch, S. R.; Bernard-Salas, J.; Roellig, T. L.

    The spectra of the planetary nebula NGC2392 is reanalysed using spectral measurements made in the mid-infrared with the Spitzer Space Telescope. The aim is to determine the chemical composition of this object. We also make use of IUE and ground based spectra. Abundances determined from the

  6. Argon and neon in Galactic nebulae

    Science.gov (United States)

    Simpson, Janet P.; Bregman, Jesse D.; Dinerstein, H. L.; Lester, Dan F.; Rank, David M.; Witteborn, F. C.; Wooden, D. H.

    1995-01-01

    KAO observations of the 6.98 micron line of (Ar II), and KAO and ground-based observations of the 8.99 micron line of (Ar III) and the 12.8 micron line of (Ne II) are presented for a number of Galactic H II regions and planetary nebulae.

  7. On the possible wind nebula of magnetar Swift J1834.9-0846: a magnetism-powered synchrotron nebula

    CERN Document Server

    Tong, H

    2016-01-01

    Recently, the magnetar Swift J1834.9$-$0846 is reported to have a possible wind nebula. It is shown that both the magnetar and its wind nebula are understandable in the wind braking scenario. The magnetar's rotational energy loss rate is not enough. The required particle luminosity should be about $10^{36} \\,\\rm erg \\,s^{-1}$ to $10^{38} \\,\\rm erg \\,s^{-1}$. It is obtained in three different approaches: considering wind braking of Swift J1834.9$-$0846; the spectral and spatial observations of the wind nebula; and an empirical upper bound on wind nebula X-ray luminosity. The nebula magnetic field is be about $10^{-4} \\,\\rm G$. The possible wind nebula of Swift J1834.9$-$0846 should be a magnetar wind nebula. It is powered by the magnetic energy release of the magnetar.

  8. On the possible wind nebula of magnetar Swift J1834.9–0846: a magnetism-powered synchrotron nebula

    Science.gov (United States)

    Tong, Hao

    2016-09-01

    Recently, the magnetar Swift J1834.9–0846 has been reported to have a possible wind nebula. It is shown that both the magnetar and its wind nebula are understandable in the wind braking scenario. The magnetar's rotational energy loss rate is not enough to power the particle luminosity. The required particle luminosity should be about 1036 erg s‑1 to 1038 erg s‑1. It is obtained in three different approaches: considering wind braking of Swift J1834.9–0846 the spectral and spatial observations of the wind nebula; and an empirical upper bound on wind nebula X-ray luminosity. The nebula magnetic field is about 10‑4 G. The possible wind nebula of Swift J1834.9–0846 should be a magnetar wind nebula. It is powered by the magnetic energy released from the magnetar.

  9. Dusty globules in the Crab Nebula

    Science.gov (United States)

    Grenman, T.; Gahm, G. F.; Elfgren, E.

    2017-03-01

    Context. Dust grains are widespread in the Crab Nebula. A number of small, dusty globules, are visible as dark spots against the background of continuous synchrotron emission in optical images. Aims: Our aim is to catalogue such dusty globules and investigate their properties. Methods: From existing broad-band images obtained with the Hubble Space Telescope, we located 92 globules, for which we derived positions, dimensions, orientations, extinctions, masses, proper motions, and their distributions. Results: The globules have mean radii ranging from 400 to 2000 AU and are not resolved in current infrared images of the nebula. The extinction law for dust grains in these globules matches a normal interstellar extinction law. Derived masses of dust range from 1 to 60 × 10-6M⊙, and the total mass contained in globules constitute a fraction of approximately 2% or less of the total dust content of the nebula. The globules are spread over the outer part of the nebula, and a fraction of them coincide in position with emission filaments, where we find elongated globules that are aligned with these filaments. Only 10% of the globules are coincident in position with the numerous H2-emitting knots found in previous studies. All globules move outwards from the centre with transversal velocities of 60 to 1600 km s-1, along with the general expansion of the remnant. We discuss various hypotheses for the formation of globules in the Crab Nebula. Based on observations collected with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute.

  10. Water around IRAS 15398-3359 observed with ALMA

    Science.gov (United States)

    Bjerkeli, P.; Jørgensen, J. K.; Bergin, E. A.; Frimann, S.; Harsono, D.; Jacobsen, S. K.; Lindberg, J. E.; Persson, M.; Sakai, N.; van Dishoeck, E. F.; Visser, R.; Yamamoto, S.

    2016-10-01

    Context. Understanding how protostars accrete their mass is one of the fundamental problems of star formation. High dust column densities and complex kinematical structures make direct observations challenging. Moreover, direct observations only provide a snapshot. Chemical tracers provide an interesting alternative to characterise the infall histories of protostars. Aims: We aim to map the distribution and kinematics of gaseous water towards the low-mass embedded protostar IRAS 15398-3359. Previous observations of H13CO+ showed a depression in the abundance towards IRAS 15398-3359. This is a sign of destruction of HCO+ by an enhanced presence of gaseous water in an extended region, possibly related to a recent burst in the accretion. Direct observations of water vapour can determine the exact extent of the emission and confirm the hypothesis that HCO+ is indeed a good tracer of the water snow-line. Methods: IRAS 15398-3359 was observed using the Atacama Large Millimeter/submillimeter Array (ALMA) at 0.5″ resolution in two setups at 390 and 460 GHz. Maps of HDO (101-000) and were taken simultaneously with observations of the CS (8-7) and N2H+ (5-4) lines and continuum at 0.65 and 0.75 mm. The maps were interpreted using dust radiative transfer calculations of the protostellar infalling envelope with an outflow cavity. Results: HDO is clearly detected and extended over the scales of the H13CO+ depression, although it is displaced by 500 AU in the direction of the outflow. HO is tentatively detected towards the red-shifted outflow lobe, but otherwise it is absent from the mapped region, which suggests that temperatures are low. Although we cannot entirely exclude a shock origin, this indicates that another process is responsible for the water emission. Conclusions: Based on the temperature structure obtained from dust radiative transfer models, we conclude that the water was most likely released from the grains in an extended hour-glass configuration during a

  11. A search for hydrogenated fullerenes in fullerene-containing planetary nebulae

    CERN Document Server

    Díaz-Luis, J J; Manchado, A; Cataldo, F

    2016-01-01

    Detections of C60 and C70 fullerenes in planetary nebulae (PNe) of the Magellanic Clouds and of our own Galaxy have raised the idea that other forms of carbon such as hydrogenated fullerenes (fulleranes like C60H36 and C60H18), buckyonions, and carbon nanotubes, may be widespread in the Universe. Here we present VLT/ISAAC spectra (R ~600) in the 2.9-4.1 microns spectral region for the Galactic PNe Tc 1 and M 1-20, which have been used to search for fullerene-based molecules in their fullerene-rich circumstellar environments. We report the non-detection of the most intense infrared bands of several fulleranes around ~3.4-3.6 microns in both PNe. We conclude that if fulleranes are present in the fullerene-containing circumstellar environments of these PNe, then they seem to be by far less abundant than C60 and C70. Our non-detections together with the (tentative) fulleranes detection in the proto-PN IRAS 01005+7910 suggest that fulleranes may be formed in the short transition phase between AGB stars and PNe but...

  12. UNUSUAL SHOCK-EXCITED OH MASER EMISSION IN A YOUNG PLANETARY NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Hai-Hua; Shen, Zhi-Qiang [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Rd, Shanghai, 200030 (China); Walsh, Andrew J. [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth WA 6845 (Australia); Gómez, José F. [Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Imai, Hiroshi [Department of Physics and Astronomy, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Green, James A. [SKA Organisation, Jodrell Bank Observatory, Lower Withington, Macclesfield, Cheshire SK11 9DL (United Kingdom); Dawson, Joanne R. [Department of Physics and Astronomy and MQ Research Centre in Astronomy, Astrophysics and Astrophotonics, Macquarie University, NSW 2109 (Australia); Ellingsen, Simon P. [School of Physical Sciences, Private Bag 37, University of Tasmania, Hobart 7001, TAS (Australia); Breen, Shari L. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Jones, Paul A.; Cunningham, Maria R. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Gibson, Steven J., E-mail: haihua.qiao@curtin.edu.au [Department of Physics and Astronomy, Western Kentucky University, 1906 College Heights Blvd, Bowling Green, KY 42101 (United States)

    2016-01-20

    We report on OH maser emission toward G336.644−0.695 (IRAS 16333−4807), which is a H{sub 2}O maser-emitting Planetary Nebula (PN). We have detected 1612, 1667, and 1720 MHz OH masers at two epochs using the Australia Telescope Compact Array, hereby confirming it as the seventh known case of an OH-maser-emitting PN. This is only the second known PN showing 1720 MHz OH masers after K 3−35 and the only evolved stellar object with 1720 MHz OH masers as the strongest transition. This PN is one of a group of very young PNe. The 1612 MHz and 1667 MHz masers are at a similar velocity to the 22 GHz H{sub 2}O masers, whereas the 1720 MHz masers show a variable spectrum, with several components spread over a higher velocity range (up to 36 km s{sup −1}). We also detect Zeeman splitting in the 1720 MHz transition at two epochs (with field strengths of ∼2 to ∼10 mG), which suggests the OH emission at 1720 MHz is formed in a magnetized environment. These 1720 MHz OH masers may trace short-lived equatorial ejections during the formation of the PN.

  13. Unusual shock-excited OH maser emission in a young Planetary Nebula

    CERN Document Server

    Qiao, Hai-Hua; Gomez, Jose F; Imai, Hiroshi; Green, James A; Dawson, Joanne R; Shen, Zhi-Qiang; Ellingsen, Simon P; Breen, Shari L; Jones, Paul A; Gibson, Steven J; Cunningham, Maria R

    2015-01-01

    We report on OH maser emission toward G336.644-0.695 (IRAS 16333-4807), which is a H2O maser-emitting Planetary Nebula (PN). We have detected 1612, 1667 and 1720 MHz OH masers at two epochs using the Australia Telescope Compact Array (ATCA), hereby confirming it as the seventh known case of an OH-maser-emitting PN. This is only the second known PN showing 1720 MHz OH masers after K 3-35 and the only evolved stellar object with 1720 MHz OH masers as the strongest transition. This PN is one of a group of very young PNe. The 1612 MHz and 1667 MHz masers are at a similar velocity to the 22 GHz H2O masers, whereas the 1720 MHz masers show a variable spectrum, with several components spread over a higher velocity range (up to 36 km/s). We also detect Zeeman splitting in the 1720 MHz transition at two epochs (with field strengths of ~2 to ~10 mG), which suggests the OH emission at 1720 MHz is formed in a magnetized environment. These 1720 MHz OH masers may trace short-lived equatorial ejections during the formation ...

  14. 'Peony Nebula' Star Settles for Silver Medal

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Poster Version Movie If our galaxy, the Milky Way, were to host its own version of the Olympics, the title for the brightest known star would go to a massive star called Eta Carina. However, a new runner-up now the second-brightest star in our galaxy has been discovered in the galaxy's dusty and frenzied interior. This image from NASA's Spitzer Space Telescope shows the new silver medalist, circled in the inset above, in the central region of our Milky Way. Dubbed the 'Peony nebula' star, this blazing ball of gas shines with the equivalent light of 3.2 million suns. The reigning champ, Eta Carina, produces the equivalent of 4.7 million suns worth of light though astronomers say these estimates are uncertain, and it's possible that the Peony nebula star could be even brighter than Eta Carina. If the Peony star is so bright, why doesn't it stand out more in this view? The answer is dust. This star is located in a very dusty region jam packed with stars. In fact, there could be other super bright stars still hidden deep in the stellar crowd. Spitzer's infrared eyes allowed it to pierce the dust and assess the Peony nebula star's true brightness. Likewise, infrared data from the European Southern Observatory's New Technology Telescope in Chile were integral in calculating the Peony nebula star's luminosity. The Peony nebula, which surrounds the Peony nebular star, is the reddish cloud of dust in and around the white circle. The movie begins by showing a stretch of the dusty and frenzied central region of our Milky Way galaxy. It then zooms in to reveal the 'Peony nebula' star the new second-brightest star in the Milky Way, discovered in part by NASA's Spitzer Space Telescope. This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array

  15. Three epochs of EVN observations towards IRAS 23365+3604

    CERN Document Server

    Romero-Canizales, Cristina; Alberdi, Antxon

    2010-01-01

    The European VLBI Network (EVN) provides us with the necessary sensitivity and angular resolution to study the nuclear and circumnuclear regions in Luminous and Ultraluminous Infrared Galaxies. The high Star Formation Rates (SFR) inferred for these galaxies implies both the presence of a high number of massive stars and a dense surrounding medium. Therefore, bright radio SNe are expected to occur. With the aim of estimating the SFR in ULIRGs by means of Core Collapse supernova (CCSN) detections, we started an observing campaign with the EVN on a small sample of the brightest and farthest ULIRGs in the local Universe. We present here our results from three epochs of quasi-simultaneous observations with the EVN at 6 and 18 cm towards one of the objects in our sample: IRAS 23365+3604.

  16. Three epochs of EVN observations towards IRAS 23365+3604

    Science.gov (United States)

    Romero-Canizales, C.; Perez-Torres, M.; Alberdi, A.

    The European VLBI Network (EVN) provides us with the necessary sensitivity and angular resolution to study the nuclear and circumnuclear regions in Luminous and Ultraluminous Infrared Galaxies. The high Star Formation Rates (SFR) inferred for these galaxies implies both the presence of a high number of massive stars and a dense surrounding medium. Therefore, bright radio SNe are expected to occur. With the aim of estimating the SFR in ULIRGs by means of Core Collapse supernova (CCSN) detections, we started an observing campaign with the EVN on a small sample of the brightest and farthest ULIRGs in the local Universe. We present here our results from three epochs of quasi-simultaneous observations with the EVN at 6 and 18 cm towards one of the objects in our sample: IRAS 23365+3604.

  17. Equilibrium sorption isotherms for nitrate on resin Amberlite IRA 400.

    Science.gov (United States)

    Chabani, M; Amrane, A; Bensmaili, A

    2009-06-15

    The adsorption isotherms of nitrate on resin Amberlite IRA 400 at various pH, in the range 2-12, were experimentally determined by batch tests. The experimental data have been analysed using the Langmuir, Freundlich, Redlich-Peterson and Sips isotherms models. In order to determine the best fit isotherm, two error analysis methods were used to evaluate the data: the regression correlation coefficient, and the statistic Chi-square test. In the range of pH tested, the Sips model was found to give the best fit of the adsorption isotherm data. The maximum adsorption capacity can be deduced from the obtained correlation coefficients and was found to decrease for increasing pH.

  18. The Cosmic Crystallinity Conundrum: Clues from IRAS 17495-2534

    CERN Document Server

    Speck, Angela K; Tartar, Josh B

    2008-01-01

    Since their discovery, cosmic crystalline silicates have presented several challenges to understanding dust formation and evolution. The mid-infrared spectrum of IRAS 17495$-$2534, a highly obscured oxygen-rich asymptotic giant branch (AGB) star, is the only source observed to date which exhibits a clear crystalline silicate absorption feature. This provides an unprecedented opportunity to test competing hypotheses for dust formation. Observed spectral features suggest that both amorphous and crystalline dust is dominated by forsterite (Mg\\_2 SiO\\_4) rather than enstatite (MgSiO\\_3) or other silicate compositions. We confirm that high mass-loss rates should produce more crystalline material, and show why this should be dominated by forsterite. The presence of Mg\\_2 SiO\\_4 glass suggests that another factor (possibly C/O) is critical in determining astromineralogy. Correlation between crystallinity, mass-loss rate and initial stellar mass suggests that only the most massive AGB stars contribute significant qua...

  19. Planetary transit candidates in COROT-IRa01 field

    CERN Document Server

    Carpano, S; Alonso, R; Barge, P; Aigrain, S; Almenara, J -M; Bordé, P; Bouchy, F; Carone, L; Deeg, H J; De la Reza, R; Deleuil, M; Dvorak, R; Erikson, A; Fressin, F; Fridlund, M; Gondoin, P; Guillot, T; Hatzes, A; Jorda, L; Lammer, H; Léger, A; Llebaria, A; Magain, P; Moutou, C; Ofir, A; Ollivier, M; Pacheco, E J; Pátzold, M; Pont, F; Queloz, D; Rauer, H; Régulo, C; Renner, S; Rouan, D; Samuel, B; Schneider, J; Wuchterl, G

    2009-01-01

    Context: CoRoT is a pioneering space mission devoted to the analysis of stellar variability and the photometric detection of extrasolar planets. Aims: We present the list of planetary transit candidates detected in the first field observed by CoRoT, IRa01, the initial run toward the Galactic anticenter, which lasted for 60 days. Methods: We analysed 3898 sources in the coloured bands and 5974 in the monochromatic band. Instrumental noise and stellar variability were taken into account using detrending tools before applying various transit search algorithms. Results: Fifty sources were classified as planetary transit candidates and the most reliable 40 detections were declared targets for follow-up ground-based observations. Two of these targets have so far been confirmed as planets, COROT-1b and COROT-4b, for which a complete characterization and specific studies were performed.

  20. Radio occultation experiments with INAF-IRA radiotelescopes.

    Science.gov (United States)

    Pluchino, S.; Schillirò, F.; Salerno, E.; Pupillo, G.

    The Radio Occultation research program performed at the Medicina and Noto Radioastronomical Stations of the Istituto Nazionale di Astrofisica (INAF) - Istituto di Radioastronomia (IRA) includes observations of spacecraft by satellite and satellite by satellite events. The Lunar Radio Occultation (LRO) part of the program consists in collecting data of the lunar Total Electron Content (TEC), at different limb longitudes and at different time, in order to study long term variation of the Moon's ionosphere. The LRO program started at Medicina in September 2006 with the observation of the European probe SMART-1 during its impact on the lunar soil. It proceeded in 2007 with the observation of the lunar occultations of Saturn and Venus, and with the observation of Mars in 2008. On this occasion the probes Cassini, Venus Express, Mars Express, Mars Reconaissance Orbiter and Mars Odissey were respectively occulted by the moon. On Dec 1st 2008 a Venus lunar occultation occurred. On that occasion we performed the first Italian-VLBI (I-VLBI) tracking experiment by detecting the carrier signals coming from the Venus Express (VEX) spacecraft with both the IRA radiotelescopes together with the Matera antenna of the Italian Space Agency. The second part of the radio occultation program includes the observation of satellite by satellite occultation events, as well as mutual occultations of Jupiter satellites. These events are referred to as mutual phenomena (PHEMU). These observations are aimed to measure the radio flux variation during the occultation and to derive surface spatial characteristics such as Io's hot spots. In this work preliminary results of the Radio Occultation program will be presented.

  1. Dante, i diavoli e l'ira di Virgilio

    Directory of Open Access Journals (Sweden)

    Federico Saviotti

    2014-07-01

    Full Text Available Riassunto: Numerosi interventi critici hanno analizzato ad ogni livello la diablerie che Dante mette in scena in If. XXI-XXIII; tuttavia, la sua eccentricità formale e contenutistica rispetto al resto del poema sembra ancora imbarazzare gli esegeti. In questo articolo si cerca di giustificarne la coerenza nel quadro della poetica della comedìa dantesca, concentrandosi su alcuni aspetti di particolare interesse: tra questi, l’opportunità di una lettura carnevalesca – in senso bachtiniano – della diablerie e il senso del “riso” di cui questa è portatrice; la presenza di un rovesciamento intra-testuale definibile come “auto-parodico” rispetto alla scena di If. VIII-IX e apprezzabile a partire dalla rappresentazione dei diversi personaggi; la “sconfitta” due volte patita da Virgilio nei confronti dei diavoli e la definizione, in entrambi ed altri casi, della sua ira. Abstract: Many scholars have analyzed at any level the diablerie Dante puts on stage in If. XXI-XXIII; nevertheless, its formal and substantial eccentricity compared with the rest of the poem still seems to puzzle the commentators. In this paper I will try to demonstrate its coherence with the poetics of Dante’s comedìa, by focusing on some very interesting elements: the opportunity of a bachtinian interpretation of the diablerie as a carnival expression and the meaning of the “laughter” it conveys; the presence of an intra-textual reversal which may be defined as “auto-parodic” in respect to the scene in If. VIII-IX and appreciated through the poetic representation of the different characters; the “defeat” which Virgilio undergoes twice against the devils and the definition, in both and other cases, of its ira.  

  2. Birth and early evolution of a planetary nebula

    CERN Document Server

    Bobrowsky, M; Parthasarathy, M; García-Lario, P

    1998-01-01

    The final expulsion of gas by a star as it forms a planetary nebula --- the ionized shell of gas often observed surrounding a young white dwarf --- is one of the most poorly understood stages of stellar evolution. Such nebulae form extremely rapidly (about 100 years for the ionization) and so the formation process is inherently difficult to observe. Particularly puzzling is how a spherical star can produce a highly asymmetric nebula with collimated outflows. Here we report optical observations of the Stingray Nebula which has become an ionized planetary nebula within the past few decades. We find that the collimated outflows are already evident, and we have identified the nebular structure that focuses the outflows. We have also found a companion star, reinforcing previous suspicions that binary companions play an important role in shaping planetary nebulae and changing the direction of successive outflows.

  3. FACT. Energy spectrum of the Crab Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Temme, Fabian; Einecke, Sabrina; Buss, Jens [TU Dortmund, Experimental Physics 5, Otto-Hahn-Str.4, 44221 Dortmund (Germany); Collaboration: FACT-Collaboration

    2016-07-01

    The First G-APD Cherenkov Telescope is the first Imaging Air Cherenkov Telescope which uses silicon photon detectors (G-APDs aka SiPM) as photo sensors. With more than four years of operation, FACT proved an application of SiPMs is suitable for the field of ground-based gamma-ray astronomy. Due to the stable flux at TeV energies, the Crab Nebula is handled as a ''standard candle'' in Cherenkov astronomy. The analysis of its energy spectrum and comparison with other experiments, allows to evaluate the performance of FACT. A modern analysis chain, based on data stream handling and multivariate analysis methods was developed in close cooperation with the department of computer science at the TU Dortmund. In this talk, this analysis chain and its application are presented. Further to this, results, including the energy spectrum of the Crab Nebula, measured with FACT, are shown.

  4. Interstellar molecules - Formation in solar nebulae

    Science.gov (United States)

    Anders, E.

    1973-01-01

    Herbig's (1970) hypothesis that solar nebulae might be the principal source of interstellar grains and molecules is investigated. The investigation includes the determination of physical and chemical conditions in the early solar system. The production of organic compounds in the solar nebula is studied, and the compounds in meteorites are compared with those obtained in Miller-Urey and Fischer-Tropsch-type (FTT) reactions, taking into consideration aliphatic hydrocarbons, aromatic hydrocarbons, purines, pyrimidines, amino acids, porphyrins, and aspects of carbon-isotope fractionation. It is found that FTT reactions account reasonably well for all well-established features of organic matter in meteorites investigated. The distribution of compounds produced by FTT reactions is compared with the distribution of interstellar molecules. Biological implications of the results are considered.

  5. Star Formation in the Eagle Nebula

    CERN Document Server

    Oliveira, Joana M

    2008-01-01

    M16 (the Eagle Nebula) is a striking star forming region, with a complex morphology of gas and dust sculpted by the massive stars in NGC 6611. Detailed studies of the famous ``elephant trunks'' dramatically increased our understanding of the massive star feedback into the parent molecular cloud. A rich young stellar population (2 - 3 Myr) has been identified, from massive O-stars down to substellar masses. Deep into the remnant molecular material, embedded protostars, Herbig-Haro objects and maser sources bear evidence of ongoing star formation in the nebula, possibly triggered by the massive cluster members. M 16 is a excellent template for the study of star formation under the hostile environment created by massive O-stars. This review aims at providing an observational overview not only of the young stellar population but also of the gas remnant of the star formation process.

  6. The nebulae around LBVs: a multiwavelength approach

    CERN Document Server

    Umana, Grazia; Trigilio, Corrado; Leto, Paolo; Hora, Joseph L; Fazio, Giovanni

    2010-01-01

    We present first results of our study of a sample of Galactic LBV, aimed to contribute to a better understanding of the LBV phenomenon, by recovering the mass-loss history of the central object from the analysis of its associated nebula. Mass-loss properties have been derived by a synergistic use of different techniques, at different wavelengths, to obtain high-resolution, multi-wavelength maps, tracing the different emitting components coexisting in the stellar ejecta: the ionized/neutral gas and the dust. Evidence for asymmetric mass-loss and observational evidence of possible mutual interaction between gas and dust components have been observed by the comparison of mid-IR (Spitzer/IRAC, VLT/VISIR) and radio (VLA) images of the nebulae, while important information on the gas and dust composition have been derived from Spitzer/IRS spectra.

  7. Ring Nebulae: Tracers of the CNO Nucleosynthesis

    CERN Document Server

    Mesa-Delgado, A; García-Rojas, J

    2015-01-01

    Preliminary results are presented from spectroscopic data in the optical range of the Galactic ring nebulae NGC 6888, G2:4+1:4, RCW 58 and Sh2-308. Deep observations with long exposure times were carried out at the 6.5m Clay Telescope and at the 10.4m Gran Telescopio Canarias. In NGC 6888, recombination lines of C II, O II and N II are detected with signal-to-noise ratios higher than 8. The chemical content of NGC 6888 is discussed within the chemical enrichment predicted by evolution models of massive stars. For all nebulae, a forthcoming work will content in-depth details about observations, analysis and final results (Esteban et al. 2015, in prep.).

  8. The theory of pulsar winds and nebulae

    CERN Document Server

    Kirk, J G; Petri, J

    2007-01-01

    We review current theoretical ideas on pulsar winds and their surrounding nebulae. Relativistic MHD models of the wind of the aligned rotator, and of the striped wind, together with models of magnetic dissipation are discussed. It is shown that the observational signature of this dissipation is likely to be point-like, rather than extended, and that pulsed emission may be produced. The possible pulse shapes and polarisation properties are described. Particle acceleration at the termination shock of the wind is discussed, and it is argued that two distinct mechanisms must be operating, with the first-order Fermi mechanism producing the high-energy electrons (above 1 TeV) and either magnetic annihilation or resonant absorption of ion cyclotron waves responsible for the 100 MeV to 1 TeV electrons. Finally, MHD models of the morphology of the nebula are discussed and compared with observation.

  9. Discovery of New Faint Northern Galactic Planetary Nebulae

    CERN Document Server

    Acker, Agnes; Outters, Nicolas; Miszalski, Brent; Sabin, Laurence; Le Du, Pascal; Alves, Filipe

    2012-01-01

    We present the discovery of 6 nebular objects made by amateur astronomers. Four of these discoveries are clearly planetary nebulae (PNe), one is a possible PN, and another is a likely H II region. The bipolar nebula Ou4 presents the largest angular extent ever found : over one degree on the sky! We consider various scenarios that could explain such a nebula. Ou4 could be one of the nearest PNe known, though its possible PN nature will need confirmation.

  10. Observations of the thin filamentary nebula Simeiz 22

    Energy Technology Data Exchange (ETDEWEB)

    Lozinskaya, T.A.; Sitnik, T.G.; Toropova, M.S.; Klement' eva, A.Yu. (Moskovskij Gosudarstvennyj Univ. (USSR) Gosudarstvennyj Astronomicheskij Inst. ' ' GAISh' ' )

    1984-02-01

    The (N 2), (S 2) and (0 3) image-converter photographs of the rebula Simeiz 22 made through interfererce filters in the Cassegrain focus of the 125-cm reflector are presented. Detailed isophote systems in every line are obtained by photographic eguidepsitometry methods. Our narrow-bandrass photographs show variations in the nebula morphology, including the emission stratification typical of planetary nebulae. The origin of the nebula is discussed; some indirect arguments showing mass loss by the central star are presented.

  11. Multiband observations of the Crab Nebula

    Science.gov (United States)

    Krassilchtchikov, A. M.; Bykov, A. M.; Castelletti, G. M.; Dubner, G. M.; Kargaltsev, O. Yu; Pavlov, G. G.

    2017-01-01

    Results of simultaneous imaging of the Crab Nebula in the radio (JVLA), optical (HST), and X-ray (Chandra) bands are presented. The images show a variety of small-scale structures, including wisps mainly located to the north-west of the pulsar and knots forming a ring-like structure associated with the termination shock of the pulsar wind. The locations of the structures in different bands do not coincide with each other.

  12. Pulsating Radio Sources near the Crab Nebula.

    Science.gov (United States)

    Staelin, D H; Reifenstein, E C

    1968-12-27

    Two new pulsating radio sources, designated NP 0527 and NP 0532, were found near the Crab Nebula and could be coincident with it. Both sources are sporadic, and no periodicities are evident. The pulse dispersions indicate that 1.58 +/- 0.03 and 1.74 +/- 0.02 x 10(20) electrons per square centimeter lie in the direction of NP 0527 and NP 0532, respectively.

  13. Planetary nebulae in the Small Magellanic Cloud

    Science.gov (United States)

    Ventura, P.; Stanghellini, L.; Di Criscienzo, M.; García-Hernández, D. A.; Dell'Agli, F.

    2016-08-01

    We analyse the planetary nebulae (PNe) population of the Small Magellanic Cloud (SMC), based on evolutionary models of stars with metallicities in the range 10-3 ≤ Z ≤ 4 × 10-3 and mass 0.9 M⊙ Magellanic Cloud is explained on the basis of the diverse star formation history and age-metallicity relation of the two galaxies. The implications of this study for some still highly debated points regarding the AGB evolution are also commented.

  14. High scale anisotropies in planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Pascoli, G.

    1986-06-01

    We present a new classification of Planetary Nebulae (PN) grounded on their characteristic symmetries: bipolarity, ring shape, spiral structure, etc... The different anisotropic models (rotation of nucleus, binary progenitor intranebular magnetic field, nebular rotation, etc...) which have been lately proposed, are analysed and their explanatory power is tested with certain morphological criterious. The comparison with the other classifications (Acker, 1980; Kaler, 1978; Peimbert, 1978) reveals that the morphology has been insufficiently discussed in these latters.

  15. Ion Exchange Extraction of Boron from Aqueous Fluids by Amberlite IRA 743 Resin

    Institute of Scientific and Technical Information of China (English)

    肖应凯; 廖步勇; 刘卫国; 肖云; SWIHART,GeorgeH.

    2003-01-01

    The ion exchange characteristics d Amherlite IRA 743 resin for extracting boron from aqueous fluids have been investigated in detail. The results show that AmherHte IRA 743 resin, a boron specific ion exchange resin, can quantitatively extract boron as the B (OH)4- spedes from weakly basle solution. Some exchangeable anions such as CI- and SO42- are present, resulting in an increase in pH value of the loeded solution within the nan, and the boron in natural aqueous fluids with low nH is also extracted by Amberlite IRA 743 resin. However, the voiume of loaded solution must be restricted. The maximum voiume of loaded solution giving quantitative extraction of boron decreases for sample soh.,tiom of lower pH value. Warm HCI solution is more effective than room temperature HCI solution for eluting boron from Amberllte IRA 743 resin.

  16. Transcript of speech by Dr. Ira Gabrielson to the Constitutional Convention, December 14, 1955

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Transcript of speech by Dr. Ira Gabrielson, president of Wildlife Management Institute, to Alaska Constitutional Convention, December 14, 1955.

  17. Dusty globules in the Crab Nebula

    CERN Document Server

    Grenman, Tiia; Elfgren, Erik

    2016-01-01

    From existing broad-band images obtained with the Hubble Space Telescope, we located 92 globules, for which we derived positions, dimensions, orientations, extinctions, masses, proper motions, and their distributions. The globules have mean radii ranging from 400 to 2000 AU and are not resolved in current infrared images of the nebula. The extinction law for dust grains in these globules matches a normal interstellar extinction law. Derived masses of dust range from 1 to 60 x 10^(-6) solar masses, and the total mass contained in globules constitute a fraction of approximately 2% or less of the total dust content of the nebula. The globules are spread over the outer part of the nebula, and a fraction of them coincide in position with emission filaments, where we find elongated globules that are aligned with these filaments. Only 10% of the globules are coincident in position with the numerous H2-emitting knots found in previous studies. All globules move outwards from the centre with transversal velocities of ...

  18. Kinematics, turbulence and evolution of planetary nebulae

    CERN Document Server

    Gesicki, K; Zijlstra, A A; Gesicki, Krzysztof; Acker, Agnes; Zijlstra, Albert A.

    2003-01-01

    This paper discusses the location of a sample of planetary nebulae on the HR diagram. We determine the internal velocity fields of 14 planetary nebulae from high-resolution echelle spectroscopy, with the help of photoionization models. The mass averaged velocity is shown to be a robust, simple parameter describing the outflow. The expansion velocity and radius are used to define the dynamical age; together with the stellar temperature, this gives a measurement of the luminosity and core mass of the central star. The same technique is applied to other planetary nebulae with previously measured expansion velocities, giving a total sample of 73 objects. The objects cluster closely around the Schoenberner track of 0.61 M_sun, with a very narrow distribution of core masses. The masses are higher than found for local white dwarfs. The luminosities determined in this way tend to be higher by a factor of a few than those derived from the nebular luminosities. The discrepancy is highest for the hottest (most evolved) ...

  19. of Planetary Nebulae III. NGC 6781

    Directory of Open Access Journals (Sweden)

    Hugo E. Schwarz

    2006-01-01

    Full Text Available Continuing our series of papers on the three-dimensional (3D structures and accurate distances to Planetary Nebulae (PNe, we present our study of the planetary nebula NGC6781. For this object we construct a 3D photoionization model and, using the constraints provided by observational data from the literature we determine the detailed 3D structure of the nebula, the physical parameters of the ionizing source and the first precise distance. The procedure consists in simultaneously fitting all the observed emission line morphologies, integrated intensities and the two-dimensional (2D density map from the [SII] (sulfur II line ratios to the parameters generated by the model, and in an iterative way obtain the best fit for the central star parameters and the distance to NGC6781, obtaining values of 950±143 pc (parsec – astronomic distance unit and 385 LΘ (solar luminosity for the distance and luminosity of the central star respectively. Using theoretical evolutionary tracks of intermediate and low mass stars, we derive the mass of the central star of NGC6781 and its progenitor to be 0.60±0.03MΘ (solar mass and 1.5±0.5MΘ respectively.

  20. New portrait of Omega Nebula's glistening watercolours

    Science.gov (United States)

    2009-07-01

    The Omega Nebula, sometimes called the Swan Nebula, is a dazzling stellar nursery located about 5500 light-years away towards the constellation of Sagittarius (the Archer). An active star-forming region of gas and dust about 15 light-years across, the nebula has recently spawned a cluster of massive, hot stars. The intense light and strong winds from these hulking infants have carved remarkable filigree structures in the gas and dust. When seen through a small telescope the nebula has a shape that reminds some observers of the final letter of the Greek alphabet, omega, while others see a swan with its distinctive long, curved neck. Yet other nicknames for this evocative cosmic landmark include the Horseshoe and the Lobster Nebula. Swiss astronomer Jean-Philippe Loys de Chéseaux discovered the nebula around 1745. The French comet hunter Charles Messier independently rediscovered it about twenty years later and included it as number 17 in his famous catalogue. In a small telescope, the Omega Nebula appears as an enigmatic ghostly bar of light set against the star fields of the Milky Way. Early observers were unsure whether this curiosity was really a cloud of gas or a remote cluster of stars too faint to be resolved. In 1866, William Huggins settled the debate when he confirmed the Omega Nebula to be a cloud of glowing gas, through the use of a new instrument, the astronomical spectrograph. In recent years, astronomers have discovered that the Omega Nebula is one of the youngest and most massive star-forming regions in the Milky Way. Active star-birth started a few million years ago and continues through today. The brightly shining gas shown in this picture is just a blister erupting from the side of a much larger dark cloud of molecular gas. The dust that is so prominent in this picture comes from the remains of massive hot stars that have ended their brief lives and ejected material back into space, as well as the cosmic detritus from which future suns form. The

  1. Discovery of a Circumstellar Disk in the Lagoon Nebula

    Science.gov (United States)

    1997-04-01

    Circumstellar disks of gas and dust play a crucial role in the formation of stars and planets. Until now, high-resolution images of such disks around young stars within the Orion Nebula obtained with the Hubble Space Telescope (HST) constituted the most direct proof of their existence. Now, another circumstellar disk has been detected around a star in the Lagoon Nebula - also known as Messier 8 (M8) , a giant complex of interstellar gas and dust with many young stars in the southern constellation of Sagittarius and four times more distant than the Orion Nebula. The observations were carried out by an international team of scientists led by Bringfried Stecklum (Thüringer Landessternwarte, Tautenburg, Germany) [1] who used telescopes located at the ESO La Silla observatory and also observations from the HST archive. These new results are paving the road towards exciting research programmes on star formation which will become possible with the ESO Very Large Telescope. The harsh environment of circumstellar disks The existence of circumstellar disks has been inferred from indirect measurements of young stellar objects, such as the spectral energy distribution, the analysis of the profiles of individual spectral lines and measurements of the polarisation of the emitted light [2]. Impressive images of such disks in the Orion Nebula, known as proplyds (PROto-PLanetarY DiskS), have been obtained by the HST during the recent years. They have confirmed the interpretation of previous ground-based emission-line observations and mapping by radio telescopes. Moreover, they demonstrated that those disks which are located close to hot and massive stars are subject to heating caused by the intense radiation from these stars. Subsequently, the disks evaporate releasing neutral gas which streams off. During this process, shock fronts (regions with increased density) with tails of ionised gas result at a certain distance between the disk and the hot star. These objects appear on

  2. The evolution of planetary nebulae VII. Modelling planetary nebulae of distant stellar systems

    CERN Document Server

    Schönberner, D; Sandin, C; Steffen, M

    2010-01-01

    By means of hydrodynamical models we do the first investigations of how the properties of planetary nebulae are affected by their metal content and what can be learned from spatially unresolved spectrograms of planetary nebulae in distant stellar systems. We computed a new series of 1D radiation-hydrodynamics planetary nebulae model sequences with central stars of 0.595 M_sun surrounded by initial envelope structures that differ only by their metal content. At selected phases along the evolutionary path, the hydrodynamic terms were switched off, allowing the models to relax for fixed radial structure and radiation field into their equilibrium state with respect to energy and ionisation. The analyses of the line spectra emitted from both the dynamical and static models enabled us to systematically study the influence of hydrodynamics as a function of metallicity and evolution. We also recomputed selected sequences already used in previous publications, but now with different metal abundances. These sequences w...

  3. A deep kinematic survey of planetary nebulae in the Andromeda Galaxy using the Planetary Nebula Spectrograph

    CERN Document Server

    Merrett, H R; Bridges, T J; Capaccioli, M; Carter, D; Coccato, L; Douglas, N G; Evans, N W; Freeman, K C; Gerhard, O; Halliday, C; Kuijken, K; Merrifield, M R; Napolitano, N R; Romanowsky, A J; Wilkinson, M I

    2006-01-01

    We present a catalogue of positions, magnitudes and velocities for 3300 emission-line objects found by the Planetary Nebula Spectrograph in a survey of the Andromeda Galaxy, M31. Of these objects, 2615 are found likely to be planetary nebulae (PNe) associated with M31. The survey area covers the whole of M31's disk out to a radius of 1.5 degrees. Beyond this radius, observations have been made along the major and minor axes, and the Northern Spur and Southern Stream regions. The calibrated data have been checked for internal consistency and compared with other catalogues. With the exception of the very central, high surface brightness region of M31, this survey is complete to a magnitude limit of m_5007~23.75, 3.5 magnitudes into the planetary nebula luminosity function.

  4. Individual retirement account balances, contributions, and rollovers, 2010: the EBRI IRA database.

    Science.gov (United States)

    Copeland, Craig

    2012-05-01

    In 2010, IRA owners were more likely to be male, especially those whose accounts originated from a rollover or were a SEP/SIMPLE. Among all IRA owners in the database, nearly one-half (45.8 percent) were ages 45-64. The average and median IRA account balance in 2010 was $67,438 and $17,863, respectively, while the average and median IRA individual balance (all accounts from the same person combined) was $91,864 and $25,296. Individuals with a traditional-originating from rollovers had the highest average and median balance of $123,426 and $38,138, respectively. Roth owners had the lowest average and median balance at $22,437 and $11,471. The average and median individual IRA balance increased with age through age 70. The average amount contributed to an IRA in the database was $3,335 in 2010. The average contribution was highest for accounts owned by those ages 65-69, and more contributions were made to Roth accounts than to traditional accounts (both those originating from contributions and rollovers). However, the average contribution to a traditional account was higher, at $3,517, compared with $3,240 to a Roth account. Yet, a higher overall amount was contributed to Roths ($2.3 billion for Roths compared with $1.3 billion for traditional accounts). Focusing on those owning traditional or Roth IRAs, 9.3 percent of the accounts received contributions, and 12.1 percent of the individuals owning these IRA types contributed to them in 2010. Among traditional IRA owners, 5.2 percent contributed, while 24.0 percent of those owning a Roth contributed to it during 2010. Of those individuals contributing to an IRA, 43.5 percent contributed the maximum amount. Of those contributing to a traditional IRA, 48.7 percent maxed out their contribution, while 39.3 percent did so with a Roth. The average and median account balances increased from $54,863 and $15,756 respectively in 2008 to $67,438 and $17,863 in 2010. This represents an increase of 22.9 percent in the average

  5. Pinpointing the position of the post-asymptotic giant branch star at the core of RAFGL 2688 using polarimetric imaging with NICMOS

    Science.gov (United States)

    Weintraub, D.; Kastner, J.; Hines, D.; Sahai, R.

    2000-01-01

    The authors have used infrared polarimetric imaging with NICMOS to determine precisely the position of the star that illuminates (and presumably generated) the bipolar, preplanetary reflection nebula RAFGL 2688 (the Egg Nebula).

  6. IRAS 19111+2555 (=S Lyr): A Possible Silicate Carbon Star

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The properties and classification of IRAS 19111+2555 have so far not been well determined. We collect all the available information and data of this star,and take the data obtained by IRAS LRS and ISO SWS to discuss its properties and classification. The star is found to have a 3.1μm feature in absorption and a 10μm feature in emission, so it is possibly a new silicate carbon star.

  7. Hierarchies of Models: Toward Understanding Planetary Nebulae

    Science.gov (United States)

    Knuth, Kevin H.; Hajian, Arsen R.; Clancy, Daniel (Technical Monitor)

    2003-01-01

    Stars like our sun (initial masses between 0.8 to 8 solar masses) end their lives as swollen red giants surrounded by cool extended atmospheres. The nuclear reactions in their cores create carbon, nitrogen and oxygen, which are transported by convection to the outer envelope of the stellar atmosphere. As the star finally collapses to become a white dwarf, this envelope is expelled from the star to form a planetary nebula (PN) rich in organic molecules. The physics, dynamics, and chemistry of these nebulae are poorly understood and have implications not only for our understanding of the stellar life cycle but also for organic astrochemistry and the creation of prebiotic molecules in interstellar space. We are working toward generating three-dimensional models of planetary nebulae (PNe), which include the size, orientation, shape, expansion rate and mass distribution of the nebula. Such a reconstruction of a PN is a challenging problem for several reasons. First, the data consist of images obtained over time from the Hubble Space Telescope (HST) and spectra obtained from Kitt Peak National Observatory (KPNO) and Cerro Tololo Inter-American Observatory (CTIO). These images are of course taken from a single viewpoint in space, which amounts to a very challenging tomographic reconstruction. Second, the fact that we have two disparate and orthogonal data types requires that we utilize a method that allows these data to be used together to obtain a solution. To address these first two challenges we employ Bayesian model estimation using a parameterized physical model that incorporates much prior information about the known physics of the PN. In our previous works we have found that the forward problem of the comprehensive model is extremely time consuming. To address this challenge, we explore the use of a set of hierarchical models, which allow us to estimate increasingly more detailed sets of model parameters. These hierarchical models of increasing complexity are akin

  8. The properties of the high-mass star formation region IRAS22475+5939

    CERN Document Server

    Liu, X -L

    2012-01-01

    IRAS22475+5939 has been well researched by previous astronomers. But we still get some new characteristics about it, using the first observations in lines of CO J=2-1,13CO J=2-1,13CO J=3-2 by the KOSMA 3 m telescope. The mapping of the intensity ratio of 13CO J=3-2 and 13CO J=2-1 shows the distribution of the temperature with two peaks, which don't coincide with IRAS22475+5939 source and the center of the HII region, but at the edge of the HII region. The overlays of the Spitzer IRAC 8um and CO contours indicate that they are associated with each other and the strongest polycyclic aromatic hydrocarbons (PAHs) emission is at the position of IRAS22475+5939 source. While the IRAS LRS spectrum at 7-23 um and the PHT-s spectrum at 2-12 um of IRAS22475+5939 source also exhibit strong PAHs emission characters at the main PAH bands. The diversity of PAH family should be responsible for the plateaus of PAHs emission in the PHT-s spectrum and the IRAS-LRS spectrum. An analysis and modeling in infrared bands suggest tha...

  9. Focal waveforms for various source waveforms driving a prolate-spheroidal impulse radiating antenna (IRA)

    Science.gov (United States)

    Altunc, Serhat; Baum, Carl E.; Christodoulou, Christos G.; Schamiloglu, Edl; Buchenauer, C. Jerald

    2008-08-01

    Impulse radiating antennas (IRAs) are designed to radiate very fast pulses in a narrow beam with low dispersion and high field amplitude. For this reason they have been used in a variety of applications. IRAs have been developed for use in the transient far-field region using parabolic reflectors. However, in this paper we focus in the near field region and develop the field waveform at the second focus of a prolate-spheroidal IRA. Certain skin cancers can be killed by the application of a high-amplitude electric field pulse. This can be accomplished by either inserting electrodes near the skin cancer or by applying fast, high-electric field pulses without direct contact. We investigate a new manifestation of an IRA, in which we use a prolate spheroid as a reflector instead of a parabolic reflector and focus in the near-field region instead of the far-field region. This technique minimizes skin damage associated with inserting electrodes near the tumor. Analytical and experimental behaviors for the focal waveforms of two and four-feed arm prolate-spheroidal IRAs are explored. With appropriate choice of the driving waveform we maximize the impulse field at the second focus. The focal waveform of a prolate-spheroidal IRA has been explained theoretically and verified experimentally.

  10. The evolutionary status of dense cores in the NGC 1333 IRAS 4 region

    CERN Document Server

    Koumpia, E; Kwon, W; Tobin, J J; Fuller, G A; Plume, R

    2016-01-01

    Protostellar evolution, following the formation of the protostar is becoming reasonably well characterized, but the evolution from a prestellar core to a protostar is not well known, although the first hydrostatic core (FHSC) must be a pivotal step. NGC 1333 IRAS 4C is a potentially very young object, that we directly compare with the nearby Class 0 IRAS 4A and IRAS 4B. Observational constraints are provided by spectral imaging from the JCMT Spectral Legacy Survey (330-373 GHz) and continuum and line observations from CARMA. We present integrated intensity and velocity maps of several species, including CO, H2CO and CH3OH. The velocity of an observed outflow, the degree of CO depletion, the deuteration of DCO+/HCO+ and gas kinetic temperatures are observational signatures that we present. We report differences between the three sources in four aspects: a) the kinetic temperature is much lower towards IRAS 4C, b) the line profiles of the detected species show strong outflow activity towards IRAS 4A and IRAS 4B...

  11. Monsters and babies from the first/IRAS survey

    Energy Technology Data Exchange (ETDEWEB)

    Van Bruegel, W J M

    1999-02-16

    Radio continuum emission at cm wavelengths is relatively little affected by extinction. When combined with far-infrared (FIR) surveys this provides for a convenient and unbiased method to select (radio-loud) AGN and starbursts deeply embedded in gas and dust-rich galaxies. Such radio-selected FIR samples are useful for detailed investigations of the complex relationships between (radio) galaxy and starburst activity, and to determine whether ULIRGs are powered by hidden quasars (monsters) or young stars (babies). We present the results of a large program to obtain identifications and spectra of radio-sleected, optically faint IRAS/FSC objects using the FIRST/VLA 20 cm survey (Becker, White and Helfand 1995). These objects are all radio-'quiet' in the sense that their radio power/FIR luminosities follow the well-known radio/FIR relationship for star forming galaxies. We compare these results to a previous study by our group of a sample of radio-'loud' IRAS/FSC ULIRGs selected from the Texas 365 MHz survey (Douglas et al. 1996). Many of these objects also show evidence for dominant, A-type stellar populations, as well as high ionization lines usually associated with AGN. These radio-loud ULIRGs have properties intermediate between those of starbursts and quasars, suggesting a possibile evolutionary connection. Deep Keck spectroscopic observations of three ULIRGs from these samples are presented, including high signal-to-noise spectropolarimetry. The polarimetry observations failed to show evidence of a hidden quasar in polarized (scattered) light in the two systems in which the stellar light was dominated by A-type stars. Although observations of a larger sample would be needed to allow a general conclusion, our current data suggest that a large fraction of ULIRGs may be powered by luminous starbursts, not by hidden, luminous AGN (quasars). While we used radio-selected FIR sources to search for evidence of a causal AGN/starburst connection, we

  12. Novel Gbeta Mimic Kelch Proteins (Gpb1 and Gpb2 Connect G-Protein Signaling to Ras via Yeast Neurofibromin Homologs Ira1 and Ira2. A Model for Human NF1

    Science.gov (United States)

    2007-03-01

    Molecular Cell (Harashima et al, 2006). These findings set the stage for studies to examine NF1 and possible mammalian kelch protein homologs of Gpb1...RasGAP neurofibromin homologs Ira1 and Ira2” was published in Molecular Cell on June 23, 2006 (see appendices). 4. Our review on this topic entitled...Heitman, J. The kelch proteins Gpb1 and Gpb2 inhibit Ras activity via assocation with the yeast RasGAP neurofibromin homologs Ira1 and Ira2, Molecular

  13. Herschel Planetary Nebula Survey (HerPlaNS). First detection of OH+ in planetary nebulae

    NARCIS (Netherlands)

    Aleman, I.; Ueta, T.; Ladjal, D.; Exter, K.M.; Kastner, J.H.; Montez, R.; Tielens, A.G.G.M.; Chu, Y.-H.; Izumiura, H.; McDonald, I.; Sahai, R.; Siódmiak, N.; Szczerba, R.; Hoof, van P. A. M.; Villaver, E.; Vlemmings, W.; Wittkowski, M.; Zijlstra, A.A.

    2014-01-01

    We report the first detections of OH+emission in planetary nebulae (PNe). As part of an imaging and spectroscopy survey of 11 PNe in the far-IR using the PACS and SPIRE instruments aboard the HerschelSpace Observatory, we performed a line survey in these PNe over the entire spectral range between 51

  14. Enhanced gamma-ray activity from the Crab nebula

    Science.gov (United States)

    Buehler, R.; Ciprini, S.

    2016-01-01

    Preliminary LAT analysis indicates enhanced gamma-ray activity from the Crab nebula. The daily-averaged gamma-ray emission (E > 100 MeV) from the direction of the Crab Nebula has surpassed 4.0 x 10^-6 ph cm^-2 s^-1 five times in the last 12 days.

  15. X-ray Pulsar in the Crab Nebula.

    Science.gov (United States)

    Fritz, G; Henry, R C; Meekins, J F; Chubb, T A; Friedman, H

    1969-05-09

    X-ray pulsations have been observed in the Crab Nebula at a frequency closely matching the radio and optical pulsations. About 5 percent of the total x-ray power of the nebula appears in the pulsed component. The x-ray pulsations have the form of a main pulse and an interpulse separated by about 12 milliseconds.

  16. Abundances in planetary nebulae : Me 2-1

    NARCIS (Netherlands)

    Surendiranath, R; Pottasch, [No Value; Garcia-Lario, P

    ISO and IUE spectra of the round planetary nebula Me 2-1 are combined with Visual spectra taken from the literature to obtain for the first time a complete extinction-corrected spectrum. With this, the physico-chemical characteristics of the nebula and its central star are determined by various

  17. The IRAS 08589-4714 star-forming region

    CERN Document Server

    Saldaño, H P; Gómez, M; Cappa, C E; Duronea, N U; Rubio, M

    2016-01-01

    We present an analysis of the IRAS 08589-4714 star-forming region. This region harbors candidate young stellar objects identified in the WISE and Herschel images using color index criteria and spectral energy distributions (SEDs). The SEDs of some of the infrared sources and the 70 microns radial intensity profile of the brightest source (IRS 1) are modeled from Herschel fluxes using the one-dimensional radiative transfer DUSTY code. For these objects, we estimate the envelope masses, sizes, densities, and luminosities which suggest that they are very young, massive and luminous objects at early stages of the formation process. Color-color diagrams in the bands of WISE and 2MASS are used to identify potential young objects in the region. Those identified in the bands of WISE would be contaminated by the emission of PAHs. We use the emission distribution in the infrared at 70 and 160 microns, to estimate the dust temperature gradient. This suggests that the nearby massive star-forming region RCW 38, located ~ ...

  18. IRAS observations of the Pluto-Charon system

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, H.H.; Walker, R.G.

    1987-10-01

    High-signal-to-noise-ratio observations of the Pluto-Charon system at 25, 60, and 100 microns using IRAS are combined with visual-magnitude and mutual-eclipse constraints to evaluate thermal models of Pluto and Charon. These models are consistent with eclipse observation by Dunbar and Tedesco (1986) but not with Reinsch and Pakull (1987). The most likely model for Charon is the standard asteroid model, typical for the icy Galilean and Saturnian satellites. Charon models with a significant atmosphere can be ruled out. Based on currently available radius and albedo constraints, no significant numerical distinction is possible between Pluto models ranging from isothermal spheres with surface emissivity between 0.4 and 0.9. Concerns regarding the viability of an emissivity as low as 0.4 favor the higher-emissivity models. The globally uniform surface temperature of Pluto may thus at present be as low as 45 K, with a methane column abundance of 6.7 cm atm. The most likely models are centered on radii of 1180 and 747 km and albedos of 0.47 and 0.26 for Pluto and Charon, respectively. 21 references.

  19. A young bipolar outflow from IRAS 15398-3359

    CERN Document Server

    Bjerkeli, P; Brinch, C

    2016-01-01

    Changing physical conditions in the vicinity of protostars allow for a rich and interesting chemistry to occur. Heating and cooling of the gas allows molecules to be released from and frozen out on dust grains. These changes in physics, traced by chemistry, as well as the kinematical information allows us to distinguish between different scenarios describing the infall of matter and the launching of molecular outflows and jets. We aim at determining the spatial distribution of different species, of different chemical origin. This is to examine the physical processes in play in the observed region. From the kinematical information of the emission lines we aim at determining the nature of the infalling and outflowing gas in the system. We also aim at determining the physical properties of the outflow. Maps from the Sub-Millimeter Array reveal the spatial distribution of the gaseous emission toward IRAS15398-3359. The line radiative transfer code LIME is used to construct a full 3D model of the system taking all...

  20. VLA observations of ultraluminous IRAS galaxies active nuclei or starbursts?

    CERN Document Server

    Crawford, T; Partridge, B; Strauss, M; Crawford, Thomas; Marr, Jon; Partridge, Bruce; Strauss, Michael

    1995-01-01

    We employed the Very Large Array (VLA) of the National Radio Astronomy Observatory in C configuration to map 39 ultraluminous IRAS galaxies at 6~cm and 20~cm, at resolutions of ~ 4" and 15", respectively, and 24 sources at 6~cm with in the A configuration with a resolution of ~0.5". Most of the sources have radio spectral indices indicative of synchrotron emission (alpha ~ -0.65). There is one source, however, that shows an inverted spectrum with alpha = +2.1; observations at higher frequencies show that the spectrum peaks between 5 and 8 GHz, as high as any of the ``gigahertz peaked spectrum'' sources studied by O'Dea etal. We discuss the implications of this source for observations of fluctuations in the CMB. Two of the sources show multiple unresolved components, another four are doubles with at least one resolved component, 14 show extended emission which could arise from a disk, and two show arc-second long jets. Our data fit the tight correlation found by Helou etal (1985) between far-infrared and micro...

  1. A spectroscopic study of IRAS F10214+4724

    CERN Document Server

    Serjeant, S; Lacy, M; McMahon, R G; Lawrence, A; Rowan-Robinson, M; Mountain, M; Serjeant, Stephen; Rawlings, Steve; Lacy, Mark; Mahon, Richard G. Mc; Lawrence, Andy; Rowan-Robinson, Michael; Mountain, Matt

    1998-01-01

    The z=2.286 IRAS galaxy F10214+4724 remains one of the most luminous galaxies in the Universe, despite its gravitational lens magnification. We present optical and near-infrared spectra of F10214+4724, with clear evidence for three distinct components: lines of width ~1000 km/s from a Seyfert-II nucleus; <~200 km/s lines which are likely to be associated with star formation; and a broad ~4000 km/s CIII] 1909ang emission line which is blue-shifted by ~1000 km/s with respect to the Seyfert-II lines. Our study of the Seyfert-II component leads to several new results, including: (i) From the double-peaked structure in the Ly alpha line, and the lack of Ly beta, we argue that the Ly alpha photons have emerged through a neutral column of N_H ~ 2.5 x 10^{25}/m^2, possibly located within the AGN narrow-line region as argued in several high redshift radiogalaxies. (ii) The resonant O VI 1032,1036ang doublet (previously identified as Ly beta) is in an optically thick (1:1) ratio. At face value this implies an an ext...

  2. Multiple jets from the young star IRAS 21334 + 5039

    Science.gov (United States)

    Smith, Howard A.; Fischer, Jacqueline

    1992-01-01

    The source IRAS 21334 + 5039, a young stellar object (YSO) with broad CO outflow velocity profiles, was imaged in the 1-2 micron region with broad-band J, H, and K filters, and with a Fabry-Perot set to the molecular hydorgen v = 1-0 S(1) line, the hydrogen Br-gamma recombination line, and the neighboring continua. At 2 microns the source has an elongated continuum emission structure centered on the star. The structure has very blue tips, with a weak VLA 6 cm continuum source coincident with one of them. Strong molecular hydrogen emission appears as bow-shaped arcs oriented along an axis perpendicular to the continuum emission, and as a weaker structure aligned with it. Both the continuum and the molecular hydrogen emission are most likely produced by jets, possibly emanating in multiple directions from the central source at large angles to each other. While jets are a common feature of young stars, this source provides solid evidence for multiple jet structures.

  3. The Environment of Sy1, Sy2 & Bright IRAS Galaxies

    CERN Document Server

    Koulouridis, E; Plionis, M; Dultzin, D; Krongold, Y; Goudis, C; Chatzichristou, E

    2008-01-01

    We present a 3-dimensional study of the local (< 100 kpc) environment of Sy1, Sy2 and Bright IRAS Galaxies. For this purpose we use three galaxy samples (Sy1, Sy2, BIRG) located at high galactic latitudes as well as three control sample of non-active galaxies having the same morphological, redshift and diameter size distributions as the corresponding Seyfert or BIRG sample. Using the CfA2 and SSRS galaxy catalogues as well as our own spectroscopic observations, we find that the fraction of BIRGs with a close neighbor is significantly higher than that of their control sample. We also find that Sy2 galaxies demonstrate the same behaviour with BIRG galaxies but not with Sy1s which do not show any excess of companions with respect to their control sample galaxies. An additional analysis of the relation between FIR colors and activity type of the BIRG's shows a significant difference between the colors of strongly-interacting and non-interacting starbursts and a resemblance between the colors of non-interacting...

  4. Extreme Particle Acceleration via Magnetic Reconnection in the Crab Nebula

    Science.gov (United States)

    Cerutti, Benoit; Uzdensky, D. A.; Begelman, M. C.

    2012-01-01

    The discovery by Agile and Fermi of intense day-long synchrotron gamma-ray flares above 100 MeV in the Crab Nebula challenges classical models of pulsar wind nebulae and particle acceleration. We argue that the flares are powered by magnetic reconnection in the nebula. Using relativistic test-particle simulations, we show that particles are naturally focused into a thin fan beam, deep inside the reconnection layer where the magnetic field is small. The particles then suffer less from synchrotron losses and pile up at the maximum energy given by the electric potential drop in the layer. Applying this model to the Crab Nebula, we find that the emerging synchrotron emission spectrum above 100 MeV is consistent with the September 2010 flare observations. No detectable emission is expected at other wavelengths. This scenario provides a viable explanation for the Crab Nebula gamma-ray flares.

  5. Solution to the Sigma-Problem of Pulsar Wind Nebulae

    CERN Document Server

    Porth, Oliver; Keppens, Rony

    2012-01-01

    We present first results of three dimensional relativistic magnetohydrodynamical simulations of Pulsar Wind Nebulae. They show that the kink instability and magnetic dissipation inside these nebulae may be the key processes allowing to reconcile their observations with the theory of pulsar winds. In particular, the size of the termination shock, obtained in the simulations, agrees very well with the observations even for Poynting-dominated pulsar winds. Due to magnetic dissipation the total pressure in the simulated nebulae is particle-dominated and more or less uniform. While in the main body of the simulated nebulae the magnetic field becomes rather randomized, close to the termination shock, it is dominated by the regular toroidal field freshly injected by the pulsar wind. This field is responsible for driving polar outflows and may explain the high polarization observed in pulsar wind nebulae.

  6. Ices Under Conditions of Planetary Nebulae

    Science.gov (United States)

    Yeghikyan, A. G.

    2017-07-01

    A large number of molecules are observed in planetary nebulae, both simple, the most common (H2, CO and OH), and more complex (H2O, SiO, HCN, HNC, HCO+), and even the polycyclic aromatic hydrocarbons and fullerenes containing a few dozen and more atoms. The water molecules are observed, as a rule, in the young objects, in the gas phase (water "fountains" and related water masers) and solid phase (emission of crystalline ice particles), and, regardless of the C/O ratio, water and carbon-containing molecules may be linked to the same object. On the other hand, the results of calculations by the well known Cloudy computer program given in this paper for stationery models, show that the abundance of water ice in planetary nebulae, other conditions being equal, is dependent on the ionization rate of hydrogen, which depends in turn on the flux of energetic particles (protons and alpha particles) in the range of MeV energies and higher. The possibility of the increased flux of such particles in planetary nebulae under conditions of the standard interacting stellar winds scenario is discussed, when the flux may locally exceed by 1-3 orders of magnitude that of caused by galactic cosmic rays. Calculated water ice column densities reach values up to 1018-1019 cm-2 at the usual average ISM H2 ionisation rate of 10-16s -1 and sharply decrease for the thousands times larger rates. Known observed results of NGC 6302 show for the column density of crystalline ice about 1019cm-2 close to the calculated one.

  7. Element Masses in the Crab Nebula

    Science.gov (United States)

    Sibley, Adam R.; Katz, Andrea M.; Satterfield, Timothy J.; Vanderveer, Steven J.; MacAlpine, Gordon M.

    2016-10-01

    Using our previously published element abundance or mass-fraction distributions in the Crab Nebula, we derived actual mass distributions and estimates for overall nebular masses of hydrogen, helium, carbon, nitrogen, oxygen and sulfur. As with the previous work, computations were carried out for photoionization models involving constant hydrogen density and also constant nuclear density. In addition, employing new flux measurements for [Ni ii] λ7378, along with combined photoionization models and analytic computations, a nickel abundance distribution was mapped and a nebular stable nickel mass estimate was derived.

  8. DA495 - an aging pulsar wind nebula

    CERN Document Server

    Kothes, R; Reich, W; Safi-Harb, S; Arzoumanian, Z

    2008-01-01

    We present a radio continuum study of the pulsar wind nebula (PWN) DA 495 (G65.7+1.2), including images of total intensity and linear polarization from 408 to 10550 MHz based on the Canadian Galactic Plane Survey and observations with the Effelsberg 100-m Radio Telescope. Removal of flux density contributions from a superimposed \\ion{H}{2} region and from compact extragalactic sources reveals a break in the spectrum of DA 495 at 1.3 GHz, with a spectral index ${\\alpha}={-0.45 \\pm 0.20}$ below the break and ${\\alpha}={-0.87 \\pm 0.10}$ above it (${S}_\

  9. Kinematic Distance of Galactic Planetary Nebulae

    CERN Document Server

    Yang, A Y; Zhu, H; Leahy, D A; Wu, D

    2016-01-01

    We construct \\HI~absorption spectra for 18 planetary nebulae (PNe) and their background sources using the data from the International Galactic Plane Survey. We estimate the kinematic distances of these PNe, among which 15 objects' kinematic distances are obtained for the first time. The distance uncertainties of 13 PNe range from 10% to 50%, which is a significant improvement with uncertainties of a factor two or three smaller than most of previous distance measurements. We confirm that PN G030.2-00.1 is not a PN because of its large distance found here.

  10. The Present and Future of Planetary Nebula Research. A White Paper by the IAU Planetary Nebula Working Group

    CERN Document Server

    Kwitter, K B; Peña, M; Stanghellini, L; Corradi, R L M; DeMarco, O; Fang, X; Henry, R B C; Karakas, A I; Liu, X -W; López, J A; Manchado, A; Parker, Q A

    2014-01-01

    We present a summary of current research on planetary nebulae and their central stars, and related subjects such as atomic processes in ionized nebulae, AGB and post-AGB evolution. Future advances are discussed that will be essential to substantial improvements in our knowledge in the field.

  11. Innate Response Activator (IRA) B Cells Reside in Human Tonsils and Internalize Bacteria In Vitro.

    Science.gov (United States)

    Chiappini, Nico; Cantisani, Rocco; Pancotto, Laura; Ruggiero, Paolo; Rosa, Domenico; Manetti, Andrea; Romano, Antonio; Montagnani, Francesca; Bertholet, Sylvie; Castellino, Flora; Del Giudice, Giuseppe

    2015-01-01

    Innate response activator (IRA) B cells have been described in mice as a subset of B-1a B cells that produce granulocyte/macrophage colony-stimulating factor (GM-CSF) and have been found in the spleen upon activation. In humans, identification, tissue localization and functionality of these lymphocytes are poorly understood. We hypothesized that IRA B cells could reside in human palatine tonsils, which are a first line of defense from infection of the upper respiratory tract. In the present work, we used flow cytometry and confocal microscopy to identify and characterize human IRA (hIRA) B cells in tonsils. We show that CD19⁺CD20⁺GM-CSF⁺ B cells are present in the tonsils of all the subjects studied at a frequency ranging between ~0.2% and ~0.4% of the conventional CD19⁺CD20⁺GM-CSF⁻ B cells. These cells reside within the B cell follicles, are mostly IgM⁺IgD⁺, express CD5 and show phagocytic activity. Our results support a role for hIRA B cells in the effector immune response to infections in tonsils.

  12. Innate Response Activator (IRA B Cells Reside in Human Tonsils and Internalize Bacteria In Vitro.

    Directory of Open Access Journals (Sweden)

    Nico Chiappini

    Full Text Available Innate response activator (IRA B cells have been described in mice as a subset of B-1a B cells that produce granulocyte/macrophage colony-stimulating factor (GM-CSF and have been found in the spleen upon activation. In humans, identification, tissue localization and functionality of these lymphocytes are poorly understood. We hypothesized that IRA B cells could reside in human palatine tonsils, which are a first line of defense from infection of the upper respiratory tract. In the present work, we used flow cytometry and confocal microscopy to identify and characterize human IRA (hIRA B cells in tonsils. We show that CD19⁺CD20⁺GM-CSF⁺ B cells are present in the tonsils of all the subjects studied at a frequency ranging between ~0.2% and ~0.4% of the conventional CD19⁺CD20⁺GM-CSF⁻ B cells. These cells reside within the B cell follicles, are mostly IgM⁺IgD⁺, express CD5 and show phagocytic activity. Our results support a role for hIRA B cells in the effector immune response to infections in tonsils.

  13. The Eagle Nebula Science on NIF experiment

    Science.gov (United States)

    Kane, Jave; Heeter, Robert; Martinez, David; Pound, Marc; Remington, Bruce; Ryutov, Dmitri; Smalyuk, Vladimir

    2012-10-01

    The Eagle Nebula NIF experiment was one of nine selected for laser time through the Science on NIF program. The goal of this scale laboratory experiment is to study the dynamic evolution of distinctive structures in star forming regions of astrophysical molecular clouds such as the Pillars of the Eagle Nebula. That evolution is driven by photoionizing radiation from nearby stars. A critical aspect of the radiation is its very directional nature at the photoionization front. The long duration of the drive and its directionality can generate new classes of instabilities and dynamic flows at the front that may be responsible for the shapes of Pillars and other structures. The experiment will leverage and modify the existing NIF Radiation Transport platform, replacing the target at the back end of the halfraum with a collimating aperture, and extending the existing 20 ns drive to longer times, using a combination of gas fill and other new design features. The apertured, quasi-collimated drive will be used to drive a target placed 2 mm away from the aperture. The astrophysical background and the status of the experimental design will be presented.

  14. Detecting Abundance Variations in Planetary Nebulae

    Science.gov (United States)

    Monteiro, H.; Santos, P. M.; Falceta-Gonçalves, D.

    2014-04-01

    Empirical methods of investigating chemical abundances are still widely used as a primary tool to study planetary nebulae (PNe) as well as HII regions. In this work we investigate the capacity of the empirical abundance determination methods to recover pre-defined parameters and abundance variations in a realistically modeled planetary nebula. To perform the test we use a threedimensional density structure obtained from a hydrodynamical simulation which is fed through a threedimensional photoionization code. The density structure is an asymetrical and inhomogeneous elongated closed shell. The input parameters used, such as, ionizing source, density, and chemical abundances are typical values of type I PNe. The model emissivities are then projected in the line of sight and emission line maps are generated, which are used to obtain the temperature and density diagnostics. The diagnostics and line emission maps are then used to obtain spatially resolved maps of the abundances. In this work we use the method described above to investigate abundances for two distinct orientations of the density structure. Our results show that for typical signal to noise ratios obtained from long-slit spectroscopy, only large abundance variations can be determined with good precision.

  15. HUBBLE CAPTURES DYNAMICS OF CRAB NEBULA

    Science.gov (United States)

    2002-01-01

    A new sequence of Hubble Space Telescope images of the remnant of a tremendous stellar explosion is giving astronomers a remarkable look at the dynamic relationship between the tiny Crab Pulsar and the vast nebula that it powers. This picture shows a Hubble Space Telescope image of the inner parts of the Crab. The pulsar itself is visible as the left of the pair of stars near the center of the frame. Surrounding the pulsar is a complex of sharp knots and wisp-like features. This image is one of a sequence of Hubble images taken over the course of several months. This sequence shows that the inner part of the Crab Nebula is far more dynamic than previously understood. The Crab literally 'changes it stripes' every few days as these wisps stream away from the pulsar at half the speed of light. The Hubble Space Telescope photo was taken Nov. 5, 1995 by the Wide Field and Planetary Camera 2 at a wavelength of around 550 nanometers, in the middle of the visible part of the electromagnetic spectrum. Credit: Jeff Hester and Paul Scowen (Arizona State University), and NASA

  16. Si isotope homogeneity of the solar nebula

    Energy Technology Data Exchange (ETDEWEB)

    Pringle, Emily A.; Savage, Paul S.; Moynier, Frédéric [Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130 (United States); Jackson, Matthew G. [Department of Earth Science, University of California, Santa Barbara, CA 93109 (United States); Barrat, Jean-Alix, E-mail: eapringle@wustl.edu, E-mail: savage@levee.wustl.edu, E-mail: pringle@ipgp.fr, E-mail: moynier@ipgp.fr, E-mail: jackson@geol.ucsb.edu, E-mail: Jean-Alix.Barrat@univ-brest.fr [Université Européenne de Bretagne, Université de Brest, CNRS UMR 6538 (Domaines Océaniques), I.U.E.M., Place Nicolas Copernic, F-29280 Plouzané Cedex (France)

    2013-12-20

    The presence or absence of variations in the mass-independent abundances of Si isotopes in bulk meteorites provides important clues concerning the evolution of the early solar system. No Si isotopic anomalies have been found within the level of analytical precision of 15 ppm in {sup 29}Si/{sup 28}Si across a wide range of inner solar system materials, including terrestrial basalts, chondrites, and achondrites. A possible exception is the angrites, which may exhibit small excesses of {sup 29}Si. However, the general absence of anomalies suggests that primitive meteorites and differentiated planetesimals formed in a reservoir that was isotopically homogenous with respect to Si. Furthermore, the lack of resolvable anomalies in the calcium-aluminum-rich inclusion measured here suggests that any nucleosynthetic anomalies in Si isotopes were erased through mixing in the solar nebula prior to the formation of refractory solids. The homogeneity exhibited by Si isotopes may have implications for the distribution of Mg isotopes in the solar nebula. Based on supernova nucleosynthetic yield calculations, the expected magnitude of heavy-isotope overabundance is larger for Si than for Mg, suggesting that any potential Mg heterogeneity, if present, exists below the 15 ppm level.

  17. FITTING PHOTOIONIZATION MODELS TO PLANETARY NEBULAE

    Directory of Open Access Journals (Sweden)

    J. Bohigas

    2009-01-01

    Full Text Available Good to excellent photoionization models based on the Cloudy code were obtained for 13 out of 19 spectra of planetary nebulae. The two most important assumptions are that the photoionizing continuum is a Rauch model star, with gravity set by the condition that the stellar mass must be 1 M , and density is constant and determined from the observed [S II]6717/6731 ratio. The temperature and luminosity of the central star, the inner radius of the nebula and the abundance of carbon are treated as free parameters in each model run, destined to obtain the best possible t to the relative intensities of He II 4686, [O III]5007 and [N II]6584. Observed and modeled nebular temperatures derived from [N II] (6548+6584 /5755 agree within 10%, but models usually underestimate temperatures found from [O III] (4959+5007 /4363, more so when the slit does not cover the in-depth extent of the ionized region. Helium, nitrogen, oxygen, neon, sulfur and argon model abundances are uncertain at the 15%, 15%, 10%, 7%, 30% and 7% level. It is shown that neon abundance in PNe has been consistently overestimated, and an alternative ionization correction factor is recommended.

  18. Dark nebulae, dark lanes, and dust belts

    CERN Document Server

    Cooke, Antony

    2012-01-01

    As probably the only book of its type, this work is aimed at the observer who wants to spend time with something less conventional than the usual fare. Because we usually see objects in space by means of illumination of one kind or another, it has become routine to see them only in these terms. However, part of almost everything that we see is the defining dimension of dark shading, or even the complete obscuration of entire regions in space. Thus this book is focused on everything dark in space: those dark voids in the stellar fabric that mystified astronomers of old; the dark lanes reported in many star clusters; the magical dust belts or dusty regions that have given so many galaxies their identities; the great swirling 'folds' that we associate with bright nebulae; the small dark feature detectable even in some planetary nebulae; and more. Many observers pay scant attention to dark objects and details. Perhaps they are insufficiently aware of them or of the viewing potential they hold, but also it may be...

  19. High Velocity Features in the Orion Nebula

    CERN Document Server

    O'Dell, C R

    2008-01-01

    We have used widely spaced in time Hubble Space Telescope images to determine tangential velocities of features associated with outflows from young stars. These observations were supplemented by groundbased telescope spectroscopy and from the resultant radial velocities, space velocities were determined for many outflows. Numerous new moving features were found and grouped into known and newly assigned Herbig Haro objects. It was found that stellar outflow is highly discontinuous, as frequently is the case, with long-term gaps of a few hundred years and that these outflow periods are marked by staccato bursts over periods of about ten years. Although this has been observed in other regions, the Orion Nebula Cluster presents the richest display of this property. Most of the large scale Herbig Haro objects in the brightest part of the Orion Nebula appear to originate from a small region northeast of the strong Orion-S radio and infrared sources. With the possible exception of HH 203, we are not able to identify...

  20. Hubble Space Telescope observations of Orion Nebula, Helix Nebula, and NGC 6822

    Science.gov (United States)

    Spitzer, Lyman; Fitzpatrick, Ed

    1999-01-01

    This grant covered the major part of the work of the Principal Investigator and his collaborators as a Guaranteed Time Observer on the Hubble Space Telescope. The work done naturally divided itself into two portions the first being study of nebular objects and the second investigation of the interstellar medium between stars. The latter investigation was pursued through a contract with Princeton University, with Professor Lyman Spitzer as the supervising astronomer, assisted by Dr. Ed Fitzpatrick. Following the abrupt death of Professor Spitzer, his responsibilities were shifted to Dr. Fitzpatrick. When Dr. Fitzpatrick relocated to Villanova University the concluding work on that portion of this grant was concluded under a direct service arrangement. This program has been highly successful and the resulting publications in scientific journals are listed below. To the scientist, this is the bottom line, so that I shall simply try to describe the general nature of what was accomplished. There were three nebular programs conducted, one on the Orion Nebula, the second on the Helix Nebula, and the third on NGC 6822. The largest program was that on the Orion Nebula. This involved both HST observations and supporting groundbased observations obtained with a variety of instruments, including the Coude Feed Telescope at the Kitt Peak National observatory in Arizona, the Cerro Tololo observatory in Chile, and the Keck Observatory on Mauna Kea, Hawaii. Moreover, considerable theoretical modeling was done and all of the data analysis was performed at the Rice University in Houston, except for the PI's period of sabbatical leave (6-96 through 7-97) when he was based at the Max Planck Institute for Astronomy in Heidelberg, Germany. The Orion Nebula program was the most productive part, resulting in numerous papers, but more important in the discovery of a new class of objects, for which we coined the name "proplyds". The proplyds are protoplanetary disks surrounding very young

  1. Forming Planets in the Hostile Carina Nebula

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    Can protoplanetary disks form and be maintained around low-mass stars in the harsh environment of a highly active, star-forming nebula? A recent study examines the Carina nebula to answer this question.Crowded ClustersStars are often born in clusters that contain both massive and low-mass stars. The most massive stars in these clusters emit far-ultraviolet and extreme-ultraviolet light that irradiates the region around them, turning the surrounding area into a hostile environment for potential planet formation.Planet formation from protoplanetary disks typically requires timescales of at least 12 million years. Could the harsh radiation from massive stars destroy the protoplanetary disks around low-mass stars by photoevaporation before planets even have a chance to form?Artists impression of a protoplanetary disk. Such disks can be photoevaporated by harsh ultraviolet light from nearby massive stars, causing the disk to be destroyed before planets have a chance to form within them. [ESO/L. Calada]Turning ALMA Toward CarinaA perfect case study for exploring hostile environments is the Carina nebula, located about 7500 lightyears away and home to nearly 100 O-type stars as well as tens of thousands of lower-mass young stars. The Carina population is ~14 Myr old: old enough to form planets within protoplanetary disks, but also old enough that photoevaporation could already have wreaked havoc on those disks.Due to the dense stellar populations in Carinas clusters, this is a difficult region to explore, but the Atacama Large Millimeter-submillimeter Array (ALMA) is up to the task. In a recent study, a team of scientists led by Adal Mesa-Delgado (Pontifical Catholic University of Chile) made use of ALMAs high spatial resolution to image four regions spaced throughout Carina, searching for protoplanetary disks.Detections and Non-DetectionsTwo evaporating gas globules in the Carina nebula, 104-593 and 105-600, that each contain a protoplanetary disk. The top panels are

  2. Where are the Binaries? Results of a Long-term Search for Radial Velocity Binaries in Proto-planetary Nebulae

    Science.gov (United States)

    Hrivnak, Bruce J.; Van de Steene, Griet; Van Winckel, Hans; Sperauskas, Julius; Bohlender, David; Lu, Wenxian

    2017-09-01

    We present the results of an expanded, long-term radial velocity search (25 years) for evidence of binarity in a sample of seven bright proto-planetary nebulae (PPNe). The goal is to investigate the widely held view that the bipolar or point-symmetric shapes of planetary nebulae (PNe) and PPNe are due to binary interactions. Observations from three observatories were combined from 2007 to 2015 to search for variations on the order of a few years and then combined with earlier observations from 1991 to 1995 to search for variations on the order of decades. All seven show velocity variations due to periodic pulsation in the range of 35–135 days. However, in only one PPN, IRAS 22272+5435, did we find even marginal evidence for multi-year variations that might be due to a binary companion. This object shows marginally significant evidence of a two-year period of low semi-amplitude, which could be due to a low-mass companion, and it also displays some evidence of a much longer period of >30 years. The absence of evidence in the other six objects for long-period radial velocity variations due to a binary companion sets significant constraints on the properties of any undetected binary companions: they must be of low mass, ≤0.2 M ⊙, or long period, >30 years. Thus the present observations do not provide direct support for the binary hypothesis to explain the shapes of PNe and PPNe and severely constrains the properties of any such undetected companions.

  3. Soft X-ray Properties of Ultraluminous IRAS Galaxies

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We report on the results of cross-correlation of a sample of 903 Ultra luminous IRAS galaxies (ULIRGs) with the ROSAT-All Sky Survey Bright Source Catalogue and the ROSAT archived pointing observations. The sample of ULIRGs has been compiled from the recently released PSCz redshift survey. In total, 35 ULIRGs are securely detected by the ROSAT All-Sky Survey and pointing observa tions, five of which are blazars. The statistical properties of these sources in the soft X-ray band are determined and compared with their properties in other wavebands. We find that the ratio of the soft X-ray to the far-infrared flux spans about five orders of magnitude and reaches values of about unity. This ratio is a good indi cator of the main energy source of ULIRGs. Those with soft X-ray to far-infrared flux exceeding 0.01 are probably powered by accretion onto central supermassive black holes while those with ratios smaller than 0.001 are probably powered by starbursts or other heating processes, or are Compton thick sources. Some ULIRGs have energy contributions from both. This ratio is low for most ULIRGs and hy perluminous infrared galaxies, which explains their low detection rate by ROSAT and ASCA. We also find that some ULIRGs have a similar soft X-ray luminosity vs. temperature relation to that for groups of galaxies and elliptical galaxies, suggest ing a common origin of these systems. Our study also reveals a tight correlation between the hardness ratio and the soft X-ray luminosity for Seyfert ls/QSOs.

  4. The planetary nebula Abell 48 and its [WN4] nucleus

    CERN Document Server

    Frew, David J; Parker, Q A; Stupar, M; Wachter, S; DePew, K; Danehkar, A; Fitzgerald, M F

    2013-01-01

    We have conducted a detailed multi-wavelength study of the peculiar planetary nebula Abell 48 and its central star. We present evidence for a new classification of the nucleus as a helium-rich, hydrogen-deficient star of type [WN4], one of only two currently known examples of its type. The evidence for either a massive WN or a low-mass [WN] interpretation is critically examined, and we firmly conclude that Abell 48 is a planetary nebula around an evolved low-mass star, rather than a Population I ejecta nebula. Importantly, the surrounding nebula has a morphology typical of planetary nebulae, and is not enriched in nitrogen, and thus not the 'peeled atmosphere' of a massive star. We estimate a distance of 1.6 kpc and a reddening, E(B-V) = 1.90 mag, the latter value clearly showing the nebula lies on the near side of the Galactic bar, and therefore cannot be a massive WN star. The planetary nebula has an ionized mass (0.3 M_sun) and electron density (740 cm^-3) typical of somewhat evolved objects. The observed ...

  5. Complex molecules in the hot core of the low-mass protostar NGC 1333 IRAS 4A

    NARCIS (Netherlands)

    Bottinelli, S; Ceccarelli, C; Lefloch, B; Williams, JP; Castets, A; Caux, E; Cazaux, S; Maret, S; Parise, B; Tielens, AGGM

    2004-01-01

    We report the detection of complex molecules (HCOOCH3, HCOOH, and CH3CN), signposts of a hot core like region, toward the low-mass Class 0 source NGC 1333 IRAS 4A. This is the second low-mass protostar in which such complex molecules have been searched for and reported, the other source being IRAS

  6. Molecular variation and evolution of the tyrosine kinase domains of insulin receptor IRa and IRb genes in Cyprinidae.

    Science.gov (United States)

    Kong, XiangHui; Wang, XuZhen; He, ShunPing

    2011-07-01

    The insulin receptor (IR) gene plays an important role in regulating cell growth, differentiation and development. In the present study, DNA sequences of insulin receptor genes, IRa and IRb, were amplified and sequenced from 37 representative species of the Cyprinidae and from five outgroup species from non-cyprinid Cypriniformes. Based on coding sequences (CDS) of tyrosine kinase regions of IRa and IRb, molecular evolution and phylogenetic relationships were analyzed to better understand the characteristics of IR gene divergence in the family Cyprinidae. IRa and IRb were clustered into one lineage in the gene tree of the IR gene family, reconstructed using the unweighted pair group method with arithmetic mean (UPGMA). IRa and IRb have evolved into distinct genes after IR gene duplication in Cyprinidae. For each gene, molecular evolution analyses showed that there was no significant difference among different groups in the reconstructed maximum parsimony (MP) tree of Cyprinidae; IRa and IRb have been subjected to similar evolutionary pressure among different lineages. Although the amino acid sequences of IRa and IRb tyrosine kinase regions were highly conserved, our analyses showed that there were clear sequence variations between the tyrosine kinase regions of IRa and IRb proteins. This indicates that IRa and IRb proteins might play different roles in the insulin signaling pathway.

  7. IRAS 18357-0604 - an analogue of the galactic yellow hypergiant IRC +10420?

    CERN Document Server

    Clark, J S; Gonzalez-Fernandez, C

    2013-01-01

    Yellow hypergiants represent a short-lived evolutionary episode experienced by massive stars as they transit to and from a red supergiant phase. As such, their properties provide a critical test of stellar evolutionary theory. The galactic yellow hypergiant IRC +10420 is a cornerstone system for understanding this phase, since it is the strongest post-RSG candidate known, has demonstrated real-time evolution across the Hertzsprung-Russell diagram and been subject to extensive mass loss. Here we report on the discovery of a twin of IRC +10420 - IRAS 18357-0604. Optical and near-IR spectroscopy are used to investigate the physical properties of IRAS 18357-0604, while IR photometry probes the nature of its circumstellar environment. Pronounced spectral similarities between IRAS 18357-0604 and IRC +10420 suggest comparable temperatures and wind geometries, while photometric data reveals a similarly dusty circumstellar environment, although historical mass loss appears to have been heavier in IRC +10420. The syste...

  8. El miedo y la ira como estrategia en las campañas electorales

    Directory of Open Access Journals (Sweden)

    Andrés Valdez Zepeda

    2012-01-01

    Full Text Available En el escrito se hace un análisis del uso del miedo y la ira como estrategia política usada en las campañas electorales. Además, en el trabajo se desarrollan dos modelos de articulación estratégica sustentados en el uso de estas dos emociones primarias del ser humano. También, se presentan diversos ejemplos del uso del miedo y la ira como estrategia para ganar votos en algunas elecciones presidenciales de América latina. Se concluye que, en una sociedad democrática, ganará el poder el partido o candidato que sea más competente en la gestión y movilización del miedo y la ira entre los electores.

  9. Comparison of chitin and Amberlite IRA-938 for alpha-galactosidase immobilization.

    Science.gov (United States)

    Onal, Seçil; Telefoncu, Azmi

    2003-02-01

    Watermelon alpha-galactosidase (EC 3.2.1.22) was immobilized on a natural (chitin) and a synthetic anion-exchange (Amberlite IRA-938) support by covalent coupling methods. The procedure entails the activation of supports with 1,1'-carbonyldiimidazole (CDI), followed by immobilization of the enzyme on to these supports without and with a spacer arm; gamma-aminobutyric acid (GABA). Optimization of activation was performed by changing the CDI concentrations and coupling efficiencies. The comparison of two immobilization techniques for both chitin and Amberlite IRA-938 was made by comparing different enzyme concentrations against enzyme activity yield. Furthermore, the storage stability of the immobilized enzymes was also investigated and chitin immobilized alpha-galactosidase was found to be better. Although the activity yield of immobilized enzymes were the same for both supports, the short storage stability of immobilized enzyme on Amberlite IRA-938 is currently a drawback to its applications.

  10. Effect of Growth on Fatty Acid Composition of Total Intramuscular Lipid and Phospholipids in Ira Rabbits.

    Science.gov (United States)

    Xue, Shan; He, Zhifei; Lu, Jingzhi; Tao, Xiaoqi; Zheng, Li; Xie, Yuejie; Xiao, Xia; Peng, Rong; Li, Hongjun

    2015-01-01

    The changes in fatty acid composition of total intramuscular lipid and phospholipids were investigated in the longissimus dorsi, left-hind leg muscle, and abdominal muscle of male Ira rabbits. Changes were monitored at 35, 45, 60, 75, and 90 d. Analysis using gas chromatography identified 21 types of fatty acids. Results showed that the intramuscular lipid increased and the intramuscular phospholipids (total intramuscular lipid %) decreased in all muscles with increasing age (pIra rabbits at different ages and muscles. Palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), and arachidonic acid (C20:4) were the major fatty acids, which account to the dynamic changes of the n-6/n-3 value in Ira rabbit meat.

  11. Not the next IRA: how health savings accounts shape public opinion.

    Science.gov (United States)

    Barabas, Jason

    2009-04-01

    Scholars suspect that public policies affect public opinion, but the empirical evidence is mixed, and contemporary theories advance offsetting predictions. This study examines two allegedly similar private investment account programs that differ in politically relevant ways. Statistical analyses show that owners of Individual Retirement Accounts (IRAs) and Health Savings Accounts (HSAs) experience policy feedback effects, but in opposite directions. More specifically, matched comparisons of respondents in a national survey indicate that IRA participants are more likely to favor Social Security privatization than individuals without IRAs. In contrast, HSA participants are less likely to prefer consumer-driven health coverage in which individuals are empowered to make choices. Overall, the findings suggest that policies alter public opinion preferences but that the effects depend on programmatic design and performance.

  12. X-ray Emission from the Guitar Nebula

    CERN Document Server

    Romani, R W; Yadigaroglu, I A; Romani, Roger W.; Cordes, James M.

    1997-01-01

    We have detected weak soft X-ray emission from the Pulsar Wind Nebula trailing the high velocity star PSR 2224+65 (the `Guitar Nebula'). This X-ray flux gives evidence of \\gamma~10^7 eV particles in the pulsar wind and constrains the properties of the post-shock flow. The X-ray emission is most easily understood if the shocked pulsar wind is partly confined in the nebula and if magnetic fields in this zone can grow to near equipartition values.

  13. The abundances of neon, sulfur, and argon in planetary nebulae

    Science.gov (United States)

    Beck, S. C.; Lacy, J. H.; Townes, C. H.; Aller, L. H.; Geballe, T. R.; Baas, F.

    1981-01-01

    New infrared observations of Ne II, Ar III, and S IV are used in optical observations of other ionization states of the considered elements to evaluate the abundances of neon, argon, and sulfur in 18 planetary nebulae. Attention is also given to one or more of the infrared lines in 18 other nebulae. It is pointed out that S IV was detected in approximately 90% of the observed objects, while Ar III was found in about 80%, and Ne II in roughly one-third. It is noted that optical observations typically include only a limited region of the nebula, while the infrared measurements frequently involve integration over the entire nebular image.

  14. The San Pedro M\\'artir Planetary Nebula Kinematic Catalogue: Extragalactic Planetary Nebulae

    CERN Document Server

    Richer, M G; Díaz-Méndez, E; Riesgo, H; Báez, S -H; García-Díaz, Ma -T; Meaburn, J; Clark, D M; Olvera, R M Calderón; Soto, G López; Rebolo, O Toledano

    2010-01-01

    We present kinematic data for 211 bright planetary nebulae in eleven Local Group galaxies: M31 (137 PNe), M32 (13), M33 (33), Fornax (1), Sagittarius (3), NGC 147 (2), NGC 185 (5), NGC 205 (9), NGC 6822 (5), Leo A (1), and Sextans A (1). The data were acquired at the Observatorio Astron\\'omico Nacional in the Sierra de San Pedro M\\'artir using the 2.1m telescope and the Manchester Echelle Spectrometer in the light of [\\ion{O}{3}]$\\lambda$5007 at a resolution of 11 km/s. A few objects were observed in H$\\alpha$. The internal kinematics of bright planetary nebulae do not depend strongly upon the metallicity or age of their progenitor stellar populations, though small systematic differences exist. The nebular kinematics and H$\\beta$ luminosity require that the nebular shells be accelerated during the early evolution of their central stars. Thus, kinematics provides an additional argument favoring similar stellar progenitors for bright planetary nebulae in all galaxies.

  15. Applying the Support Vector Machine Method to Matching IRAS and SDSS Catalogues

    Directory of Open Access Journals (Sweden)

    Chen Cao

    2007-10-01

    Full Text Available This paper presents results of applying a machine learning technique, the Support Vector Machine (SVM, to the astronomical problem of matching the Infra-Red Astronomical Satellite (IRAS and Sloan Digital Sky Survey (SDSS object catalogues. In this study, the IRAS catalogue has much larger positional uncertainties than those of the SDSS. A model was constructed by applying the supervised learning algorithm (SVM to a set of training data. Validation of the model shows a good identification performance (∼ 90% correct, better than that derived from classical cross-matching algorithms, such as the likelihood-ratio method used in previous studies.

  16. First MERLIN Observations of Line Emission from the OH Megamaser toward IRAS 10173+0828

    Institute of Scientific and Technical Information of China (English)

    Zhi-Yao Yu

    2005-01-01

    Many galaxies are thought to contain massive black holes, with masses in excess of ten million solar masses, at their centres and warped circumnuclear toruses. The best evidence comes from observing gas or masers rotating rapidly within a circumnuclear torus surrounding a central body. Here we report on the first MERLIN observations of line emission from the OH megamaser toward IRAS 10173+0828. The position of peak flux contours of the OH megamaser is consistent with that of the continuum in IRAS 10173+0828. This means that the OH megamaser is a diffuse unsaturated maser which could amplify the diffuse 18 cm continuum emission with an amplification factor of order unity.

  17. Atlas of monochromatic images of planetary nebulae

    CERN Document Server

    Weidmann, W A; Valdarenas, R R Vena; Ahumada, J A; Volpe, M G; Mudrik, A

    2016-01-01

    We present an atlas of more than one hundred original images of planetary nebulae (PNe). These images were taken in a narrow-band filter centred on the nebular emission of the [N II] during several observing campaigns using two moderate-aperture telescopes, at the Complejo Astron\\'omico El Leoncito (CASLEO), and the Estaci\\'on Astrof\\'isica de Bosque Alegre (EABA), both in Argentina. The data provided by this atlas represent one of the most extensive image surveys of PNe in [N II]. We compare the new images with those available in the literature, and briefly describe all cases in which our [N II] images reveal new and interesting structures.

  18. High Energy Processes in Pulsar Wind Nebulae

    CERN Document Server

    Bednarek, W

    2006-01-01

    Young pulsars produce relativistic winds which interact with matter ejected during the supernova explosion and the surrounding interstellar gas. Particles are accelerated to very high energies somewhere in the pulsar winds or at the shocks produced in collisions of the winds with the surrounding medium. As a result of interactions of relativistic leptons with the magnetic field and low energy radiation (of synchrotron origin, thermal, or microwave background), the non-thermal radiation is produced with the lowest possible energies up to $\\sim$100 TeV. The high energy (TeV) gamma-ray emission has been originally observed from the Crab Nebula and recently from several other objects. Recent observations by the HESS Cherenkov telescopes allow to study for the first time morphology of the sources of high energy emission, showing unexpected spectral features. They might be also interpreted as due to acceleration of hadrons. However, theory of particle acceleration in the PWNe and models for production of radiation ...

  19. HESS Observations of Pulsar Wind Nebulae

    CERN Document Server

    De Jager, O C

    2006-01-01

    The high resolution capabilities of the High Energy Stereoscopic System (HESS) introduced a new era in Gamma-Ray Astronomy, and opens a new window on pulsar wind nebula (PWN) research. A rotationally induced jet (associated with PSR B1509-58) is resolved for the first time in gamma-rays, allowing us to trace the particle transport directly, without having the complicating effect of spatially varying field distributions on the synchrotron emissivity. For PWN older or more extended than Crab (i.e. those with lower field strengths), HESS also reveals the properties of electrons contributing to the EUV/soft X-ray synchrotron bands, whereas EUV/soft X-rays suffer from severe interstellar absorption effects. Finally, HESS morphological studies of evovled PWN also allow us to directly measure the effects of assymetric reverse shock interactions due to SNR forward shock expansion into the inhomogeneous interstellar medium.

  20. Proposed nomenclature for Extragalactic Planetary Nebulae

    CERN Document Server

    Parker, Q A; Parker, Quentin A

    2004-01-01

    The ability to identify and distinguish between the wide variety of celestial objects benefits from application of a systematic and logical nomenclature. This often includes value-added information within the naming convention which can aid in placing the object positionally either via an RA/DEC or l,b concatenation. All new nomenclatures should be created following IAU guidelines. However as the number density of specific object types on the sky increases, as in the case of PN in external galaxies, a useful positional identifier becomes problematic. This brief but timely paper attempts to progress the debate on this vexing issue for the case of extragalactic planetary nebulae (EPN). There is a clear need to rationalise the current ad-hoc system now that many thousands of Extragalactic PN are being discovered.

  1. Planetary Nebula Surveys: Past, Present and Future

    CERN Document Server

    Parker, Quentin A

    2010-01-01

    In this review we cover the detection, identification and astrophysical importance of planetary nebulae (PN). The legacy of the historic Perek & Kohoutek and Acker et al. catalogues is briefly covered before highlighting the more recent but significant progress in PN discoveries in our Galaxy and the Magellanic Clouds. We place particular emphasis on the major MASH and the IPHAS catalogues, which, over the last decade alone, have essentially doubled Galactic and LMC PN numbers. We then discuss the increasing role and importance that multi-wavelength data is playing in both the detection of candidate PN and the elimination of PN mimics that have seriously biased previous PN compilations. The prospects for future surveys and current efforts and prospects for PN detections in external galaxies are briefly discussed due to their value both as cosmic distance indicators and as kinematical probes of galaxies and dark matter properties.

  2. Investigating potential planetary nebula/cluster pairs

    CERN Document Server

    Bidin, Christian Moni; Bonatto, Charles; Mauro, Francesco; Turner, David; Geisler, Doug; Chene, Andres-Nicolas; Gormaz-Matamala, Alex C; Borissova, Jura; Kurtev, Radostin G; Minniti, Dante; Carraro, Giovanni; Gieren, Wolfgang

    2013-01-01

    Fundamental parameters characterizing the end-state of intermediate-mass stars may be constrained by discovering planetary nebulae (PNe) in open clusters (OCs). Cluster membership may be exploited to establish the distance, luminosity, age, and physical size for PNe, and the intrinsic luminosity and mass of its central star. Four potential PN-OC associations were investigated, to assess the cluster membership for the PNe. Radial velocities were measured from intermediate-resolution optical spectra, complemented with previous estimates in the literature. When the radial velocity study supported the PN/OC association, we analyzed if other parameters (e.g., age, distance, reddening, central star brightness) were consistent with this conclusion. Our measurements imply that the PNe VBe3 and HeFa1 are not members of the OCs NGC5999 and NGC6067, respectively, and likely belong to the background bulge population. Conversely, consistent radial velocities indicate that NGC2452/NGC2453 could be associated, but our resul...

  3. Exploiting the HASH Planetary Nebula Research Platform

    CERN Document Server

    Parker, Quentin A; Frew, David J

    2016-01-01

    The HASH (Hong Kong/ AAO/ Strasbourg/ H{\\alpha}) planetary nebula research platform is a unique data repository with a graphical interface and SQL capability that offers the community powerful, new ways to undertake Galactic PN studies. HASH currently contains multi-wavelength images, spectra, positions, sizes, morphologies and other data whenever available for 2401 true, 447 likely, and 692 possible Galactic PNe, for a total of 3540 objects. An additional 620 Galactic post-AGB stars, pre-PNe, and PPN candidates are included. All objects were classified and evaluated following the precepts and procedures established and developed by our group over the last 15 years. The complete database contains over 6,700 Galactic objects including the many mimics and related phenomena previously mistaken or confused with PNe. Curation and updating currently occurs on a weekly basis to keep the repository as up to date as possible until the official release of HASH v1 planned in the near future.

  4. Watching Young Planetary Nebulae Grow: The Movie

    Science.gov (United States)

    Balick, Bruce

    2009-07-01

    The development of magneto-hydro gas dynamical models is the key to the understanding of both the physics {processes} and astronomy {initial conditions} of astrophysical nebulae of all sorts. The models are reaching their highest degree of accuracy when applied to and compared against pre Planetary Nebulae {pPNe} thanks to the simplicity, relative lack of extinction, and the detail of the imaging and kinematic data that have bcome available for these objects. The primary barrier to progress is inadequate kinematic data of pPNe against which the predictions models can be tested. Unlike PNe, pPNe do not emit emission lines for detailed Doppler measurements. Therefore it is essential to find another way to monitor the morphological evolution. Only HST can uncover the dynamics of the growth patterns by subtracting multi-epoch images spanning a decade or more. We have selected four pPNe with highly collimated outflows in different evolutionary stages for which high-quality first-epoch images were obtained from 1996 to 2002. All of them display regularly shaped thin rims, sharp edges, and symmetric pairs of knots or bowshocks that are ideal for our purposes. We will closely mimic many of the earlier exposures using ACS and to monitor changes in structures. The morphology and its evolution will be compared to 3-D MHD models with adaptive grids in order to build a far clearer picture of the nuclear geometry which shaped the outflows and constrained their propagation to the present. We shall also obtain R, J, and H images for use with a 3-D dust radiative transfer code LELUYA to model the dust distribution deep into the nuclear zones.

  5. The Spectroscopic Properties of Bright Extragalactic Planetary Nebulae

    CERN Document Server

    Richer, M G

    2006-01-01

    The properties of bright extragalactic planetary nebulae are reviewed based upon the results of low and high resolution spectroscopy. It is argued that bright extragalactic planetary nebulae from galaxies (or subsystems) with and without star formation have different distributions of central star temperature and ionization structure. As regards the chemical compositions, oxygen and neon are generally found to be unchanged as a result of the evolution of the stellar progenitors. Nitrogen enrichment may occur as a result of the evolution of the progenitors of bright planetary nebulae in all stellar populations, though this enrichment may be (more) random in old stellar populations. Helium abundances appear to be influenced by the chemical evolution of the host galaxy, with planetary nebulae in dwarf spheroidals having systematically elevated abundances. Neither the age nor the metallicity of the progenitor stellar population has a strong effect upon the kinematics observed for nebular shells. Both the range of ...

  6. Star Formation in the Orion Nebula I: Stellar Content

    CERN Document Server

    Muench, August; Hillenbrand, Lynne; Preibisch, Thomas

    2008-01-01

    The Orion Nebula is one of the most frequently observed nearby (<1 kiloparsec) star forming regions and, consequently, the subject of a large bibliography of observations and interpretation. The summary in this chapter is bounded spatially by the blister HII region, with sources beyond the central nebula that are part of the same dynamical clustering covered in other chapters in this book. Herein are discussed panchromatic observations of the massive OB stars, the general T Tauri population, the sub-stellar sources and variable stars within the Orion Nebula. First, a brief history of 400 years of observation of the Nebula is presented. As this history is marked clearly by revelations provided in each age of new technology, recent ultra-deep X-ray surveys and high resolution multi-epoch monitoring of massive binary systems and radio stars receive special attention in this review. Topics discussed include the kinematics, multiplicity, mass distribution, rotation, and circumstellar characteristics of the pre-...

  7. Generation of dynamo magnetic fields in the primordial solar nebula

    Science.gov (United States)

    Stepinski, Tomasz F.

    1992-01-01

    The present treatment of dynamo-generated magnetic fields in the primordial solar nebula proceeds in view of the ability of the combined action of Keplerian rotation and helical convention to generate, via alpha-omega dynamo, large-scale magnetic fields in those parts of the nebula with sufficiently high, gas-and magnetic field coupling electrical conductivity. Nebular gas electrical conductivity and the radial distribution of the local dynamo number are calculated for both a viscous-accretion disk model and the quiescent-minimum mass nebula. It is found that magnetic fields can be easily generated and maintained by alpha-omega dynamos occupying the inner and outer parts of the nebula.

  8. Chemical composition of planetary nebulae : Including ISO results

    NARCIS (Netherlands)

    Pottasch, [No Value; Beintema, DA; Salas, JB; Feibelman, WA; Henney, WJ; Franco, J; Martos, M; Pena, M

    2002-01-01

    The method of determining abundances using Infrared Space Observatory spectra is discussed. The results for seven planetary nebula are given. Using these data, a preliminary discussion of their evolution is given.

  9. Spectrum from Faint Galaxy IRAS F00183-7111

    Science.gov (United States)

    2003-01-01

    NASA's Spitzer Space Telescope has detected the building blocks of life in the distant universe, albeit in a violent milieu. Training its powerful infrared eye on a faint object located at a distance of 3.2 billion light-years, Spitzer has observed the presence of water and organic molecules in the galaxy IRAS F00183-7111. With an active galactic nucleus, this is one of the most luminous galaxies in the universe, rivaling the energy output of a quasar. Because it is heavily obscured by dust (see visible-light image in the inset), most of its luminosity is radiated at infrared wavelengths.The infrared spectrograph instrument onboard Spitzer breaks light into its constituent colors, much as a prism does for visible light. The image shows a low-resolution spectrum of the galaxy obtained by the spectrograph at wavelengths between 4 and 20 microns. Spectra are graphical representations of a celestial object's unique blend of light. Characteristic patterns, or fingerprints, within the spectra allow astronomers to identify the object's chemical composition and to determine such physical properties as temperature and density.The broad depression in the center of the spectrum denotes the presence of silicates (chemically similar to beach sand) in the galaxy. An emission peak within the bottom of the trough is the chemical signature for molecular hydrogen. The hydrocarbons (orange) are organic molecules comprised of carbon and hydrogen, two of the most common elements on Earth. Since it has taken more than three billion years for the light from the galaxy to reach Earth, it is intriguing to note the presence of organics in a distant galaxy at a time when life is thought to have started forming on our home planet.Additional features in the spectrum reveal the presence of water ice (blue), carbon dioxide ice (green) and carbon monoxide (purple) in both gas and solid forms. The magenta peak corresponds to singly ionized neon gas, a spectral line often used by astronomers as a

  10. Variability in Proto-Planetary Nebulae: IV. Light Curve Analyses of Four Oxygen-Rich, F Spectral-Type Objects

    CERN Document Server

    Hrivnak, Bruce J; Nault, Kristie A

    2015-01-01

    We present new light curves covering 14 to 19 years of observations of four bright proto-planetary nebulae (PPNs), all O-rich and of F spectral type. They each display cyclical light curves with significant variations in amplitude. All four were previously known to vary in light. Our data were combined with published data and searched for periodicity. The results are as follows: IRAS 19475+3119 (HD 331319; 41.0 days), 17436+5003 (HD 161796; 45.2 days), 19386+0155 (101.8 days), and 18095+2704 (113.3 days). The two longer periods are in agreement with previous studies while the two shorter periods each reveal for the first time reveal a dominant period over these long observing intervals. Multiple periods were also found for each object. The secondary periods were all close to the dominant periods, with P2/P1 ranging from 0.86 to 1.06. The variations in color reveal maximum variations in T(eff) of 400 to 770 K. These variations are due to pulsations in these post-AGB objects. Maximum seasonal light variations a...

  11. GIANT Hα NEBULA SURROUNDING THE STARBURST MERGER NGC 6240

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Michitoshi [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Yagi, Masafumi; Komiyama, Yutaka; Kashikawa, Nobunari [Optical and Infrared Astronomy Division, National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Ohyama, Youichi [Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astronomy-Mathematics Building, AS/NTU No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, R.O.C. (China); Tanaka, Hisashi [Department of Physical Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Okamura, Sadanori, E-mail: yoshidam@hiroshima-u.ac.jp [Department of Advanced Sciences, Faculty of Science and Engineering, Hosei University, Koganei, Tokyo 184-8584 (Japan)

    2016-03-20

    We revealed the detailed structure of a vastly extended Hα-emitting nebula (“Hα nebula”) surrounding the starburst/merging galaxy NGC 6240 by deep narrow-band imaging observations with the Subaru Suprime-Cam. The extent of the nebula is ∼90 kpc in diameter and the total Hα luminosity amounts to L{sub Hα} ≈ 1.6 × 10{sup 42} erg s{sup −1}. The volume filling factor and the mass of the warm ionized gas are ∼10{sup −4}–10{sup −5} and ∼5 × 10{sup 8} M{sub ⊙}, respectively. The nebula has a complicated structure, which includes numerous filaments, loops, bubbles, and knots. We found that there is a tight spatial correlation between the Hα nebula and the extended soft-X-ray-emitting gas, both in large and small scales. The overall morphology of the nebula is dominated by filamentary structures radially extending from the center of the galaxy. A large-scale bipolar bubble extends along the minor axis of the main stellar disk. The morphology strongly suggests that the nebula was formed by intense outflows—superwinds—driven by starbursts. We also found three bright knots embedded in a looped filament of ionized gas that show head-tail morphologies in both emission-line and continuum, suggesting close interactions between the outflows and star-forming regions. Based on the morphology and surface brightness distribution of the Hα nebula, we propose the scenario that three major episodes of starburst/superwind activities, which were initiated ∼10{sup 2} Myr ago, formed the extended ionized gas nebula of NGC 6240.

  12. The Boomerang Nebula - The Coldest Region of the Universe

    Science.gov (United States)

    Sahai, Raghvendra; Nyman, Lars-Ake

    1997-01-01

    In this letter, we report such observations of the Boomerang Nebula which show it to be a unique object, consisiting of an ultra-cold and extremely massive molecular envolope, expanding at very high speed. The extreeme physical characteristics of the Boomerang Nebula reported here have never been seen before in any AGB or post-AGB object, and should spur new theoretical and obesrvational efforts to understand the nature of the mass-loss processes occurring during later stellar evolution.

  13. Collimated Outflows in the Stingray Nebula (He 3-1357)

    Science.gov (United States)

    Bobrowsky, M.; Sahu, K. C.; Parthasarathy, M.; Garcia-Lario, P.

    1997-12-01

    Observations over the past four decades have revealed significant changes in the spectrum of the Stingray Nebula (He 3-1357). Here we present HST images and spectra showing the most recent developments. In 1950, Henize saw only Hα in emission; but more recent observations by Parthasarathy et al. in 1992 showed strong forbidden lines consistent with a young planetary nebula. The spherically aberrated 1992 HST images, in which Bobrowsky first optically resolved the nebula, showed a compact nebula surrounding the central star. Nebular gas appeared most strongly concentrated in an ellipse with its major axis subtending 1.('') 6 from NE to SW. If this ellipse is actually a circular ring viewed obliquely, then our line of sight is inclined from the symmetry axis by 56deg . Above and below the ring of gas are two bubbles containing lower-density gas. At the tip of each bubble, there is a hole where the gas inside the bubbles has broken through and is now escaping. While images of focused jets have been obtained previously (Borkowski et al.), this is the first case where the nebular structure responsible for the focusing of an outflow can be clearly seen. The windblown appearance of the nebula is consistent with the blueshifted Si IV (1394-1403 Angstroms) and Al III (1855-1863 Angstroms) doublets observed by Parthasarathy et al. that indicated the presence of a strong stellar wind. The N V (1239-1243 Angstroms) to C IV (1548-1551 Angstroms) ratio has increased in recent years, consistent with a young nebula becoming increasingly ionized. Our new spectra reveal additional developments that show the real-time development of this young nebula. Finally, the new HST Planetary Camera images of the nebula show detailed structure indicating a much more complex object than previously known, including the presence of a companion star 0.('') from the central star.

  14. Complex molecules in the Orion Kleinmann-Low nebula

    Directory of Open Access Journals (Sweden)

    Despois D.

    2014-02-01

    Full Text Available In the framework of the delivery to the early Earth of extraterrestrial molecules, we have studied complex molecular species toward the Orion Kleinmann-Low nebula. This nebula is rich in molecules as well as in nascent stars and planetary systems. We focus here on HCOOCH3, CH3OCH3 and deuterated methanol. Upper limits on species of prebiotic interest like glycine were also obtained.

  15. Orientation of Galactic Bulge Planetary Nebulae toward the Galactic Center

    CERN Document Server

    Danehkar, A

    2014-01-01

    We have used the Wide Field Spectrograph on the Australian National University 2.3-m telescope to perform the integral field spectroscopy for a sample of the Galactic planetary nebulae. The spatially resolved velocity distributions of the H$\\alpha$ emission line were used to determine the kinematic features and nebular orientations. Our findings show that some bulge planetary nebulae toward the Galactic center have a particular orientation.

  16. Stars and Planetary Nebulae in the Galactic Bulge

    CERN Document Server

    Cuisinier, F; Acker, A; Maciel, W J

    2000-01-01

    We compare the populations of Red Giant stars and Planetary Nebulae in the Galactic Bulge, in the light of recent determinations of their abundances patterns. We find both populations to be compatible. From the planetary nebulae, we find evidences that the Bulge did not form stars recently. The whole abundances pattern remains however puzzling, some elements favoring a quick evolution of the Galactic Bulge (Mg and Ti), and others a much slower one (He, O, Si, S, Ar and Ca).

  17. Lifetime of the solar nebula constrained by meteorite paleomagnetism

    Science.gov (United States)

    Wang, Huapei; Weiss, Benjamin P.; Bai, Xue-Ning; Downey, Brynna G.; Wang, Jun; Wang, Jiajun; Suavet, Clément; Fu, Roger R.; Zucolotto, Maria E.

    2017-02-01

    A key stage in planet formation is the evolution of a gaseous and magnetized solar nebula. However, the lifetime of the nebular magnetic field and nebula are poorly constrained. We present paleomagnetic analyses of volcanic angrites demonstrating that they formed in a near-zero magnetic field (core dynamo on the angrite parent body did not initiate until about 4 to 11 million years after solar system formation.

  18. IRAS 19227+1700:富碳星还是富氧星?%IRAS 19227+1700: Carbon-rich or Oxygen-rich Star?

    Institute of Scientific and Technical Information of China (English)

    陈培生; 何金华; 汪洵浩

    2003-01-01

    IRAS 19227+1700作为富碳星列于新版碳星星表中.然而该星在IRAS红外双色图上处于典型的有较厚富氧拱星包层区域中,而不处于硅酸盐碳星通常所处的区域.而且有证据表明该星不但有主线和伴线羟基脉泽发射,还有靠近中心星的水脉泽发射.其IRAS LRS谱在9-12 μm范围有尘埃发射特征,近红外的观测又证实它确实存在热的拱星包层.因此IRAS 19227+1700的拱星包层应该全是富氧性质的,它的中心星是富氧的可能性也极大.

  19. Featured Image: A Detailed Look at the Crab Nebula

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    Planning on watching fireworks tomorrow? Heres an astronomical firework to help you start the celebrations! A new study has stunningly detailed the Crab Nebula (click for a closer look), a nebula 6,500 light-years away thought to have been formedby a supernova explosion and the subsequent ultrarelativistic wind emitted by the pulsar at its heart. Led by Gloria Dubner (University of Buenos Aires), the authors of this study obtained new observations of the Crab Nebula from five different telescopes. They compiled these observations to compare the details of the nebulas structure across different wavelengths, which allowedthem to learnabout the sources of various features within the nebula. In the images above, thetop left shows the 3 GHz data from the Very Large Array (radio). Moving clockise, the radio data (shown in red) is composited with: infrared data from Spitzer Space Telescope, optical continuum from Hubble Space Telescope, 500-nm optical datafrom Hubble, and ultraviolet data from XMM-Newton. The final two images are of the nebula center, and they are composites of the radio imagewith X-ray data from Chandra and near-infrared data from Hubble. To read more about what Dubner and collaborators learned (and to see more spectacular images!), check out the paper below.CitationG. Dubner et al 2017 ApJ 840 82. doi:10.3847/1538-4357/aa6983

  20. The bipolar structure of the LBV nebula around HR Carinae

    CERN Document Server

    Weis, K; Bomans, D J; Chu, Y H; Joner, M D

    1997-01-01

    HR Carinae is one of the few Luminous Blue Variables (LBVs) in the Galaxy. It has a nebula that appears bipolar. We have obtained imaging and high-dispersion, long-slit echelle data of the HR Car nebula, and confirmed that it is a bipolar nebula. Its polar axis lies along the position angle of 125 +- 5 degree; each lobe has, at a distance of 5 kpc a diameter of about 0.65 pc and a line-of-sight expansion velocity of 75-150 km/sec. Beside the expanding bipolar lobes, a number of [NII]-bright knots are detected. These knots have lower expansion velocities than the lobes and are detected only within the projected boundary of the lobes. These knots are most likely nitrogen-enriched material ejected by HR Car. On a larger scale, a funnel-shaped nebula is detected at 2.5" northwest of HR Car. The axis of the funnel is roughly aligned with the polar axis of the HR Car nebula, suggesting that HR Car may be responsible for the ionization and shaping of this nebula. Future observations of kinematics and abundances are ...

  1. Molecular gas in the star-forming region IRAS 08589-4714

    Science.gov (United States)

    Saldaño, Hugo P.; Vásquez, J.; Cappa, C. E.; Gómez, M.; Duronea, N.; Rubio, M.

    2016-10-01

    Aims: We present an analysis of the region IRAS 08589-4714 with the aim of characterizing the molecular environment. Methods: We observed the 12CO(3 -2), 13CO(3 -2), C18O(3 -2), HCO+(3 -2), and HCN(3 -2) molecular lines in a region of 150''× 150'', centered on the IRAS source, to analyze the distribution and characteristics of the molecular gas linked to the IRAS source. Results: The molecular gas distribution reveals a molecular clump that is coincident with IRAS 08589-4714 and with a dust clump detected at 1.2 mm. The molecular clump is 0.45 pc in radius and its mass and H2 volume density are 310 M⊙ and 1.2 × 104 cm-3, respectively. Two overdensities were identified within the clump in HCN(3-2) and HCO+(3-2) lines. A comparison of the LTE and virial masses suggests that the clump is collapsing in regions that harbor young stellar objects. An analysis of the molecular lines suggests that they are driving molecular outflows. Final reduced APEX data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A115

  2. Water emission from the high-mass star-forming region IRAS 17233-3606

    NARCIS (Netherlands)

    Leurini, S.; Gusdorf, A.; Wyrowski, F.; Codella, C.; Csengeri, T.; van der Tak, F.; Beuther, H.; Flower, D. R.; Comito, C.; Schilke, P.

    2014-01-01

    We investigate the physical and chemical processes at work during the formation of a massive protostar based on the observation of water in an outflow from a very young object previously detected in H2 and SiO in the IRAS 17233-3606 region. We estimated the abundance of water to understand its chemi

  3. Molecular gas in the star-forming region IRAS 08589-4714

    CERN Document Server

    Saldaño, Hugo P; Cappa, C E; Gómez, M; Duronea, N U; Rubio, M

    2016-01-01

    We present an analysis of the region IRAS 08589-4714 with the aim of characterizing the molecular environment. We observed the CO(3-2), ^{13}CO(3-2), C^{18}O(3-2), HCO+(3-2), and HCN(3-2) molecular lines in a region of 150" x 150", centered on the IRAS source, to analyze the distribution and characteristics of the molecular gas linked to the IRAS source. The molecular gas distribution reveals a molecular clump that is coincident with IRAS 08589-4714 and with a dust clump detected at 1.2 mm. The molecular clump is 0.45 pc in radius and its mass and H_2 volume density are 310 Mo and 1.2 x 10^4 cm^{-3}, respectively. Two overdensities were identified within the clump in HCN and HCO lines. A comparison of the LTE and virial masses suggests that the clump is collapsing in regions that harbor young stellar objects. An analysis of the molecular lines suggests that they are driving molecular outflows.

  4. Just Footprints in the Sand? Questioning Sustainability of an IRA International Project

    Science.gov (United States)

    Lewis-Spector, Jill; Richardson, Judy S.; Janusheva, Violeta

    2011-01-01

    Volunteers from the International Reading Association (IRA) participated in the teacher education component of Macedonia's Secondary Education Activity, an initiative to reform vocational/technical education (VET), funded from 2004 to 2008 by USAID. Volunteers offered professional development to VET teachers using a trainer-of-trainers model,…

  5. Wide Field CO Mapping in the Region of IRAS 19312+1950

    CERN Document Server

    Nakashima, Jun-ichi; Sobolev, Andrej M; Zhang, Yong; Hsia, Chih-Hao; Yung, Bosco H K

    2016-01-01

    We report the results of a wide field CO mapping in the region of IRAS 19312+1950. This IRAS object exhibits SiO/H$_2$O/OH maser emission, and is embedded in a chemically-rich molecular component, of which the origin is still unknown. In order to reveal the entire structure and gas mass of the surrounding molecular component for the first time, we have mapped a wide region around IRAS 19312+1950 in the $^{12}$CO $J=1-0$, $^{13}$CO $J=1-0$ and C$^{18}$O $J=1-0$ lines using the Nobeyama 45m telescope. In conjunction with the archival CO maps, we investigated a region with a size up to $20' \\times 20'$ around this IRAS object. We calculated CO gas mass assuming the LTE condition, a stellar velocity against to the interstellar medium assuming an analytic model of a bow shock, and absolute luminosity using the latest archival data and trigonometric parallax distance. The derived gas-mass (225 M$_{\\odot}$ $-$ 478 M$_{\\odot}$) of the molecular component and the relatively large luminosity ($2.63\\times10^{4}$ L$_{\\od...

  6. Adsorption of 4-nitrophenol onto Amberlite IRA-900 modified with metallophthalocyanines.

    Science.gov (United States)

    Marais, Eloïse; Nyokong, Tebello

    2008-03-21

    The adsorption of 4-nitrophenol using commercially available Amberlite IRA-900 modified with metal phthalocyanines (MPc) was investigated. The metallophthalocyanines immobilised onto the surface of Amberlite IRA-900 include Fe (FePcS4), Co (CoPcS4) and Ni (NiPcS4) tetrasulphophthalocyanines, and differently sulphonated phthalocyanine mixtures of Fe (FePcSmix), Co (CoPcSmix) and Ni (NiPcSmix). Adsorption rates were fastest for the modified adsorbents at a loading of 1x10(-3)g MPc/g Amberlite, at pH 9. The highest amount of 4-NP removal was obtained on FePcSmix modified Amberlite IRA-900 with Qt=42.9mmolg(-1) and adsorption efficiency of 86%. The recovery efficiency of 4-NP within 150min was 76%. Using the Langmuir-Hinshelwood kinetic model, the complexes showed an order of 4-nitrophenol adsorption to be as follows: CoPcSmix>NiPcS4>NiPcSmix>FePcS4>FePcSmix>CoPcS4. The MPc modified Amberlite IRA-900 was used repeatedly, following removal of 4-NP by nitric acid, without any significant loss of activity.

  7. Detection of glycolaldehyde toward the solar-type protostar NGC 1333 IRAS2A

    DEFF Research Database (Denmark)

    Coutens, Audrey; Persson, M. V.; Jørgensen, J. K.

    2015-01-01

    Glycolaldehyde is a key molecule in the formation of biologically relevant molecules such as ribose. We report its detection with the Plateau de Bure interferometer toward the Class 0 young stellar object NGC 1333 IRAS2A, which is only the second solar-type protostar for which this prebiotic mole...

  8. The Orion Nebula: Still Full of Surprises

    Science.gov (United States)

    2011-01-01

    This ethereal-looking image of the Orion Nebula was captured using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory, Chile. This nebula is much more than just a pretty face, offering astronomers a close-up view of a massive star-forming region to help advance our understanding of stellar birth and evolution. The data used for this image were selected by Igor Chekalin (Russia), who participated in ESO's Hidden Treasures 2010 astrophotography competition. Igor's composition of the Orion Nebula was the seventh highest ranked entry in the competition, although another of Igor's images was the eventual overall winner. The Orion Nebula, also known as Messier 42, is one of the most easily recognisable and best-studied celestial objects. It is a huge complex of gas and dust where massive stars are forming and is the closest such region to the Earth. The glowing gas is so bright that it can be seen with the unaided eye and is a fascinating sight through a telescope. Despite its familiarity and closeness there is still much to learn about this stellar nursery. It was only in 2007, for instance, that the nebula was shown to be closer to us than previously thought: 1350 light-years, rather than about 1500 light-years. Astronomers have used the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile to observe the stars within Messier 42. They found that the faint red dwarfs in the star cluster associated with the glowing gas radiate much more light than had previously been thought, giving us further insights into this famous object and the stars that it hosts. The data collected for this science project, with no original intention to make a colour image, have now been reused to create the richly detailed picture of Messier 42 shown here. The image is a composite of several exposures taken through a total of five different filters. Light that passed through a red filter as well as light from a filter that

  9. Properties of the high-mass star forming region IRAS 22475+5939

    Institute of Scientific and Technical Information of China (English)

    Xiao-Lan Liu; Jun-Jie Wang

    2012-01-01

    IRAS 22475+5939 has been well studied by previous astronomers,but we can still discover new characteristics about it,using the first observations of the lines from CO J=2-1,13CO J=2-1 and 13CO J=3-2 by the KOSMA 3m telescope.The mapping of the intensity ratio of 13CO J=3-2 and 13CO J=2-1 shows that the distribution of the temperature has two peaks,neither of which coincide with the IRAS 22475+5939 source or the center of the HII region,but rather are located at the edge of the HII region.Overlays of the Spitzer IRAC 8 μm with CO contours indicate that they are associated with each other and that the strongest polycyclic aromatic hydrocarbon(PAH)emission is at the IRAS 22475+5939 source position.The IRAS LRS spectrum at 7 μm 23 μm and the PHT-s spectrum at 2 μm ~ 12 μm of the IRAS 22475+5939 source also exhibit strong PAH emission characteristics in the main PAH bands.The diversity of the PAH family should be responsible for the plateaus in the PAH emission in the PHT-s and IRAS-LRS spectra.Analysis and modeling in the infrared bands suggest that IRAS 22475+5939 is more likely to be a class I young stellar object.Where this is the case,the star is likely to have a temperature of Teff~ 9995.8K,mass ~ 15.34M⊙,luminosity ~ 1.54 × 104 L⊙ and age ~ 1.54 × 104 yr.The model shows that circumstellar disc emission is important for wavelengths between 1 and 10 μm,otherwise,the envelope fluctuates for A > 10μm.Bipolar outflow is confirmed in the molecular cloud,and the excited star of the HII region could be the driving source of the outflow.High resolution is required for better results.

  10. The peculiar post-AGB supergiant IRAS 04296+3429 optical spectroscopy and its spectral energy distribution

    CERN Document Server

    Klochkova, V G; Panchuk, V E; Volk, K

    1999-01-01

    The optical spectrum of the infrared source IRAS 04296+3429 (optical counterpart-G0 Ia star, V=14.2) was obtained with the echelle spectrometer PFES at the prime focus of the 6 m telescope. We discover emission bands (0,0) and (0,1) of the Swan system of the C2 molecule in the optical spectrum of IRAS 04296+3429. Comparison with the spectrum of the Hale-Bopp comet leads us to propose that in both cases the same mechanism (resonance fluorescence) is responsible for the emission in the C2 molecular bands. Several strong absorption features whose positions coincide with known diffuse interstellar bands are revealed in the spectrum of IRAS 04296+3429. The infrared spectrum of IRAS 04296+3429 shows the famous 21 um feature, but this object has not been observed by KAO. However, like IRAS 05113+1347, IRAS 05341+0852 and IRAS 22223+4327, our detailed modelling of its spectral energy distribution suggested that this source also should show the 30 um band. In fact, ISO discovered a broad, relatively strong feature aro...

  11. Changes of MMP-1 and collagen type Ialpha1 by UVA, UVB and IRA are differentially regulated by Trx-1.

    Science.gov (United States)

    Buechner, Nicole; Schroeder, Peter; Jakob, Sascha; Kunze, Kerstin; Maresch, Tanja; Calles, Christian; Krutmann, Jean; Haendeler, Judith

    2008-07-01

    Exposure of human skin to solar radiation, which includes ultraviolet (UV) radiation (UVA and UVB) visible light and infrared radiation, induces skin aging. The effects of light have been attributed to irradiation-induced reactive oxygen species (ROS) formation, but the specific signaling pathways are not well understood. Detrimental effects of solar radiation are dermal diseases and photoaging. Exposure of cultured human dermal fibroblasts to UVA, UVB or IRA increased ROS formation in vitro. One important redox regulator is the oxidoreductase thioredoxin-1 (Trx). Trx is ubiquitously expressed and has anti-oxidative and anti-apoptotic properties. Besides its function to reduce H(2)O(2), Trx binds to and regulates transcription factors. The aim of this study was to investigate whether Trx influences the regulation of MMP-1 and collagen Ialpha1 by UVA, UVB and IRA. We irradiated human dermal fibroblasts with UVA, UVB and IRA. UVA, UVB and IRA upregulated MMP-1 expression. Trx inhibited UVA-induced MMP-1 upregulation in a NFkappaB dependent manner. UVA, UVB and IRA reduced collagen Ialpha1 expression. Incubation with Trx inhibited the effects of UVB and IRA on collagen Ialpha1 expression. In conclusion, MMP-1 and collagen Ialpha1, which play important roles in aging processes, seems to be regulated by different transcriptional mechanisms and Trx can only influence distinct signaling pathways induced by UVA, UVB and probably IRA. Thus, Trx may serve as an important contributor to an "anti-aging therapeutic cocktail".

  12. Análisis factorial confirmatorio del inventario multicultural de la expresión de la ira y hostilidad

    Directory of Open Access Journals (Sweden)

    Manolete S. Moscoso

    2016-12-01

    Full Text Available El propósito principal del presente estudio fue verificar la estructura factorial de las dos escalas que componen el Inventario Multicultural de la Expresión de la Ira y Hostilidad desde una perspectiva confirmatoria. Se utilizó el Análisis Factorial Confirmatorio en una muestra de 264 participantes provenientes de una universidad privada de Lima, Perú. El muestreo fue no probabilístico e incluyó estudiantes (25%, personal docente (17.8% y personal administrativo (57.2%. La confiabilidad del instrumento fue evaluada mediante los modelos congenérico, tau-equivalente y paralelo para cada una de las seis subescalas del instrumento, así como también calculada en base al coeficiente alfa de Cronbach con intervalos de confianza. Resultados: El análisis factorial realizado en la presente muestra peruana identificó cuatro dimensiones para la Escala de la Ira (ira manifiesta, ira contenida, control de la ira manifiesta y control de la ira contenida y dos factores para la Escala de la Hostilidad (reacción impulsiva a la ira; y temperamento, lo cual replica sustancialmente los resultados de estudios previos realizados en América Latina con muestras hispanoparlantes. El modelo congenérico nos indica un ajuste adecuado para cada una de las subescalas de la ira y hostilidad. En base a los resultados del Análisis Factorial Confirmatorio realizado en el presente estudio, la estructura factorial de ambas escalas del Inventario Multicultural de la Ira y Hostilidad es robusta y demuestra sustancial evidencia empírica de validez de construcción y consistencia interna del instrumento.

  13. Mixing and Transport in the Solar Nebula

    Science.gov (United States)

    Boss, Alan P.

    2003-01-01

    Boss & Vanhala (2000, 2001) prepared reviews of triggered collapse and injection models, using Prudence Foster's finite differences code at very high spatial resolution (440 x 1440 cells) to demonstrate the convergence of the R-T fingers in triggered injection models. A two dimensional hydrodynamical calculation with unprecedentedly high spatial resolution (960 x 2880 zones, or almost 3 million grid points) demonstrated that it suitable shock front can both trigger the collapse of an otherwise stable presolar cloud, and inject shock front particles into the collapsing cloud through the formation of what become Rayleigh-Taylor fingers of compressed fluid layers falling into the gravitational potential well of the growing protostar. These calculations suggest that heterogeneity derived from these R-T fingers will persist down to the scale of their injection onto the surface of the solar nebula. Haghighipour developed a numerical code capable of calculating the orbital evolution of dust grains of varied sizes in a gaseous nebula, subject to Epstein and Stokes drag as well as the self-gravity of the disk. In collaboration with the PI and George W. Wetherill, Haghighipour has been involved in development of a new idea on the possibility of rapid formation of ice giant planets via the disk instability mechanism. Haghighipour studied the stability of a five-body system consisting of the Sun and four protoplanets by numerically integrating their equations of motions. Using Levison and Duncan s SWIFT integrator, Haghighipour showed that, depending on the orbital parameters of the bodies, such a system can be stable for 0.1-10 Myr. Time periods of 1 Myr or more are long enough to be consistent with the time scale proposed for the formation of giant planets by the disk instability mechanism and the photoevaporation of the gaseous envelopes of the outermost protoplanets by a nearby OB star, resulting in the formation of ice giant planets. The PI has used his three dimensional

  14. [Water-filtered infrared-A (wIRA) promotes wound healing].

    Science.gov (United States)

    Winkel, R; Hoffmann, G; Hoffmann, R

    2014-11-01

    Water-filtered infrared-A (wIRA) is a special form of heat radiation with high tissue penetration and low thermal load to the skin surface which promotes the healing of acute and chronic wounds both by thermal and thermic as well as by non-thermal and non-thermic effects. Water-filtered infrared-A increases tissue temperature (+ 2.7 °C at a tissue depth of 2 cm), tissue oxygen partial pressure (+ 32 % at a tissue depth of 2 cm) and tissue perfusion. These three factors are decisive for a sufficient supply of tissue with energy and oxygen and consequently also for wound healing and infection defense. Water-filtered infrared-A promotes normal as well as disturbed wound healing by diminishing inflammation and exudation, by promotion of infection defense and regeneration, and by alleviation of pain. These effects have been proven in a total of seven prospective studies (of these six randomized controlled studies) with most of the effects having an evidence level of Ia or Ib. The additional cases of complicated courses of wound healing presented in this article illustrate the proven effects of wIRA. Not only in the 6 presented cases wIRA turned the complicated courses of wound healing for the better and facilitated the healing of the wounds after varying total times of irradiation (in the 6 cases 51-550 h) and after variable times of wound care and mostly after transplantation of split skin grafts. In complicated courses of wound healing wIRA does not replace consultation and, when indicated, treatment by an experienced plastic surgeon and by a surgeon specialized in septic surgery. With these limitations wIRA can be recommended as a valuable complement for the treatment of acute as well as of chronic wounds.

  15. Detection of glycolaldehyde toward the solar-type protostar NGC 1333 IRAS2A

    Science.gov (United States)

    Coutens, A.; Persson, M. V.; Jørgensen, J. K.; Wampfler, S. F.; Lykke, J. M.

    2015-04-01

    Glycolaldehyde is a key molecule in the formation of biologically relevant molecules such as ribose. We report its detection with the Plateau de Bure interferometer toward the Class 0 young stellar object NGC 1333 IRAS2A, which is only the second solar-type protostar for which this prebiotic molecule is detected. Local thermodynamic equilibrium analyses of glycolaldehyde, ethylene glycol (the reduced alcohol of glycolaldehyde), and methyl formate (the most abundant isomer of glycolaldehyde) were carried out. The relative abundance of ethylene glycol to glycolaldehyde is found to be ~5 - higher than in the Class 0 source IRAS 16293-2422 (~1), but similar to the lower limits derived in comets (≥3-6). The different ethylene glycol-to-glycolaldehyde ratios in the two protostars might be related to different CH3OH:CO compositions of the icy grain mantles. In particular, a more efficient hydrogenation on the grains in NGC 1333 IRAS2A would favor the formation of both methanol and ethylene glycol. In conclusion, it is possible that like NGC 1333 IRAS2A, other low-mass protostars show high ethylene glycol-to-glycolaldehyde abundance ratios. The cometary ratios might consequently be inherited from earlier stages of star formation if the young Sun experienced conditions similar to NGC 1333 IRAS2A. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Figures 3-4 and Table 1 are available in electronic form at http://www.aanda.org

  16. Estudio descriptivo correlacional entre ira y personalidad, a la luz de la teoría de Hans Eysenck

    OpenAIRE

    Clemencia Montaña de Barragán; María Alexandra Acosta; Ruby Maritza Gerena

    2002-01-01

    Este trabajo presenta una cuidadosa revisión teórica sobre el tema de la ira, su evaluación e intervención, relacionada muy directamente con la agresividad y teorías importantes de la personalidad, enfocándose principalmente a la teoría de H. Eysenck. Se aplicaron dos instrumentos, uno para medir ira (escala MAG de Ira) y otro para medir dimensiones de personalidad Extroversión Neuroticismo Psicoticismo (EPQ-J), a 200 niños de ambos sexos, con edades comprendidas ...

  17. Photodynamic therapy (PDT and waterfiltered infrared A (wIRA in patients with recalcitrant common hand and foot warts

    Directory of Open Access Journals (Sweden)

    Hoffmann, Gerd

    2004-10-01

    Full Text Available Background: Common warts (verrucae vulgares are human papilloma virus (HPV infections with a high incidence and prevalence, most often affecting hands and feet, being able to impair quality of life. About 30 different therapeutic regimens described in literature reveal a lack of a single striking strategy. Recent publications showed positive results of photodynamic therapy (PDT with 5-aminolevulinic acid (5-ALA in the treatment of HPV-induced skin diseases, especially warts, using visible light (VIS to stimulate an absorption band of endogenously formed protoporphyrin IX. Additional experiences adding waterfiltered infrared A (wIRA during 5-ALA-PDT revealed positive effects. Aim of the study: First prospective randomised controlled blind study including PDT and wIRA in the treatment of recalcitrant common hand and foot warts. Comparison of "5-ALA cream (ALA vs. placebo cream (PLC" and "irradiation with visible light and wIRA (VIS+wIRA vs. irradiation with visible light alone (VIS". Methods: Pre-treatment with keratolysis (salicylic acid and curettage. PDT treatment: topical application of 5-ALA (Medac in "unguentum emulsificans aquosum" vs. placebo; irradiation: combination of VIS and a large amount of wIRA (Hydrosun® radiator type 501, 4 mm water cuvette, waterfiltered spectrum 590-1400 nm, contact-free, typically painless vs. VIS alone. Post-treatment with retinoic acid ointment. One to three therapy cycles every 3 weeks. Main variable of interest: "Percent change of total wart area of each patient over the time" (18 weeks. Global judgement by patient and by physician and subjective rating of feeling/pain (visual analogue scales. 80 patients with therapy-resistant common hand and foot warts were assigned randomly into one of the four therapy groups with comparable numbers of warts at comparable sites in all groups. Results: The individual total wart area decreased during 18 weeks in group 1 (ALA+VIS+wIRA and in group 2 (PLC+VIS+wIRA

  18. Visual Binaries in the Orion Nebula Cluster

    CERN Document Server

    Reipurth, Bo; Connelley, Michael S; Bally, John

    2007-01-01

    We have carried out a major survey for visual binaries towards the Orion Nebula Cluster using HST images obtained with an H-alpha filter. Among 781 likely ONC members more than 60" from theta-1 Ori C, we find 78 multiple systems (75 binaries and 3 triples), of which 55 are new discoveries, in the range from 0.1" to 1.5". About 9 binaries are likely line-of-sight associations. We find a binary fraction of 8.8%+-1.1% within the limited separation range from 67.5 to 675 AU. The field binary fraction in the same range is a factor 1.5 higher. Within the range 150 AU to 675 AU we find that T Tauri associations have a factor 2.2 more binaries than the ONC. The binary separation distribution function of the ONC shows unusual structure, with a sudden steep decrease in the number of binaries as the separation increases beyond 0.5", corresponding to 225 AU. We have measured the ratio of binaries wider than 0.5" to binaries closer than 0.5" as a function of distance from the Trapezium, and find that this ratio is signifi...

  19. The inner knot of the Crab nebula

    CERN Document Server

    Lyutikov, Maxim; Porth, Oliver

    2015-01-01

    We model the inner knot of the Crab Nebula as a synchrotron emission coming from the non-spherical MHD termination shock of relativistic pulsar wind. The post-shock flow is mildly relativistic; as a result the Doppler-beaming has a strong impact on the shock appearance. The model can reproduce the knot location, size, elongation, brightness distribution, luminosity and polarization provided the effective magnetization of the section of the pulsar wind producing the knot is low, $\\sigma \\leq 1$. In the striped wind model, this implies that the striped zone is rather wide, with the magnetic inclination angle of the Crab pulsar $\\ge 45^\\circ$; this agrees with the previous model-dependent estimate based on the gamma-ray emission of the pulsar. We conclude that the tiny knot is indeed a bright spot on the surface of a quasi-stationary magnetic relativistic shock and that this shock is a site of efficient particle acceleration. On the other hand, the deduced low magnetization of the knot plasma implies that this i...

  20. The inner knot of the Crab nebula

    Science.gov (United States)

    Lyutikov, Maxim; Komissarov, Serguei S.; Porth, Oliver

    2016-02-01

    We model the inner knot of the Crab nebula as a synchrotron emission coming from the non-spherical MHD termination shock of relativistic pulsar wind. The post-shock flow is mildly relativistic; as a result the Doppler beaming has a strong impact on the shock appearance. The model can reproduce the knot location, size, elongation, brightness distribution, luminosity and polarization provided the effective magnetization of the section of the pulsar wind producing the knot is low, σ ≤ 1. In the striped wind model, this implies that the striped zone is rather wide, with the magnetic inclination angle of the Crab pulsar ≥45°; this agrees with the previous model-dependent estimate based on the gamma-ray emission of the pulsar. We conclude that the tiny knot is indeed a bright spot on the surface of a quasi-stationary magnetic relativistic shock and that this shock is a site of efficient particle acceleration. On the other hand, the deduced low magnetization of the knot plasma implies that this is an unlikely site for the Crab's gamma-ray flares, if they are related to the fast relativistic magnetic reconnection events.

  1. Kn 26, a New Quadrupolar Planetary Nebula

    CERN Document Server

    Guerrero, Martin A; Ramos-Larios, Gerardo; Vazquez, Roberto

    2013-01-01

    Once classified as an emission line source, the planetary nebula (PN) nature of the source Kn 26 has been only recently recognized in digital sky surveys. To investigate the spectral properties and spatio-kinematical structure of Kn 26, we have obtained high spatial-resolution optical and near-IR narrow-band images, high-dispersion long-slit echelle spectra, and intermediate-resolution spectroscopic observations. The new data reveal an hourglass morphology typical of bipolar PNe. A detailed analysis of its morphology and kinematics discloses the presence of a second pair of bipolar lobes, making Kn 26 a new member of the subclass of quadrupolar PNe. The time-lap between the ejection of the two pairs of bipolar lobes is much smaller than their dynamical ages, implying a rapid change of the preferential direction of the central engine. The chemical composition of Kn 26 is particularly unusual among PNe, with a low N/O ratio (as of type II PNe) and a high helium abundance (as of type I PNe), although not atypica...

  2. Scaled Eagle Nebula Experiments on NIF

    Energy Technology Data Exchange (ETDEWEB)

    Pound, Marc

    2017-03-28

    We performed scaled laboratory experiments at the National Ignition Facility laser to assess models for the creation of pillar structures in star-forming clouds of molecular hydrogen, in particular the famous Pillars of the Eagle Nebula. Because pillars typically point towards nearby bright ultraviolet stars, sustained directional illumination appears to be critical to pillar formation. The experiments mock up illumination from a cluster of ultraviolet-emitting stars, using a novel long duration (30--60 ns), directional, laser-driven x-ray source consisting of multiple radiation cavities illuminated in series. Our pillar models are assessed using the morphology of the Eagle Pillars observed with the Hubble Space Telescope, and measurements of column density and velocity in Eagle Pillar II obtained at the BIMA and CARMA millimeter wave facilities. In the first experiments we assess a shielding model for pillar formation. The experimental data suggest that a shielding pillar can match the observed morphology of Eagle Pillar II, and the observed Pillar II column density and velocity, if augmented by late time cometary growth.

  3. The Iron abundance in Galactic Planetary Nebulae

    CERN Document Server

    Delgado-Inglada, G; Mampaso, A; Viironen, K

    2008-01-01

    We constrain the iron abundance in a sample of 33 low-ionization Galactic planetary nebulae (PNe) using [Fe III] lines and correcting for the contribution of higher ionization states with ionization correction factors (ICFs) that take into account uncertainties in the atomic data. We find very low iron abundances in all the objects, suggesting that more than 90% of their iron atoms are condensed onto dust grains. This number is based on the solar iron abundance and implies a lower limit on the dust-to-gas mass ratio, due solely to iron, of M_dust/M_gas>1.3x10^{-3} for our sample. The depletion factors of different PNe cover about two orders of magnitude, probably reflecting differences in the formation, growth, or destruction of their dust grains. However, we do not find any systematic difference between the gaseous iron abundances calculated for C-rich and O-rich PNe, suggesting similar iron depletion efficiencies in both environments. The iron abundances of our sample PNe are similar to those derived follow...

  4. H2 Temperatures in the Crab Nebula

    CERN Document Server

    Loh, E D; Ferland, G J; Curtis, Z K; Richardson, C T; Fabian, A C; Salomé, P

    2011-01-01

    We used K-band spectra to measure the H2 excitation temperatures in six molecular knots associated with the filaments in the Crab Nebula. The temperatures are quite high - in the range T ~ 2000-3000K, just below the H2 dissociation temperature. This is the temperature range over which the H2 1-0 S(1) line at 2.121\\mum has its maximum emissivity per unit mass, so there may be many additional H2 cores with lower temperatures that are too faint to detect. We also measured the electron density in adjacent ionized gas, which on the assumption of gas pressure balance indicates densities in the molecular region n_mol ~ 20,000 H baryons cm-3, although this really is just a lower limit since the H2 gas may be confined by other means. The excited region may be just a thin skin on a much more extensive blob of molecular gas that does not have the correct temperature and density to be as easily detectable. At the opposite extreme, the observed knots could consist of a fine mist of molecular gas in which we are detecting ...

  5. Embedded Star Formation in the Eagle Nebula

    CERN Document Server

    Thompson, R I; Hester, J J; Thompson, Rodger I.; Smith, Bradford A.

    2002-01-01

    M16=NGC 6611, the Eagle Nebula, is a well studied region of star formation and the source of a widely recognized Hubble Space Telescope (HST) image. High spatial resolution infrared observations with the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on HST reveal the detailed morphology of two embedded star formation regions that are heavily obscured at optical wavelengths. It is striking that only limited portions of the visually obscured areas are opaque at 2.2 microns. Although the optical images imply substantial columns of material, the infrared images show only isolated clumps of dense gas and dust. Rather than being an active factory of star production, only a few regions are capable of sustaining current star formation. Most of the volume in the columns may be molecular gas and dust, protected by capstones of dense dust. Two active regions of star formation are located at the tips of the optical northern and central large ``elephant trunk'' features shown in the WFPC2 images. They are em...

  6. The chemistry of compact planetary nebulae

    CERN Document Server

    Josselin, E

    2003-01-01

    We report high-sensitivity millimetre observations of several molecular species (13CO, HCN, HNC, CN, HCO+ and N2H+) in a sample of compact planetary nebulae. Some species such as HCO+ and CN are particularly abundant compared to envelopes around AGB stars or even interstellar clouds. We have estimated the following average values for the column densities ratios: CN/HCN~2.6, HCO+/HCN~0.5, and HNC/HCN~0.4. Thus, the chemical composition of the molecular envelopes in these compact PNe appears somewhat intermediate between the composition of proto-PNe (such as CRL 2688 or CRL 618) and well evolved PNe (such as the Ring, M4--9, or the Helix). From observations of the CO isotopomers, we have estimated that the 12C/13C ratio is in the range 10 ~< 12C/13C ~< 40. These values are below those expected from standard asymptotic giant branch models and suggest non-standard mixing processes. The observed molecular abundances are compared to very recent modelling work, and we conclude that the observations are well ex...

  7. Modelling of asymmetric nebulae. II. Line profiles

    CERN Document Server

    Morisset, C

    2006-01-01

    We present a tool, VELNEB_3D, which can be applied to the results of 3D photoionization codes to generate emission line profiles, position-velocity maps and 3D maps in any emission line by assuming an arbitrary velocity field. We give a few examples, based on our pseudo-3D photoionization code NEBU_3D (Morisset, Stasinska and Pena, 2005) which show the potentiality and usefulness of our tool. One example shows how complex line profiles can be obtained even with a simple expansion law if the nebula is bipolar and the slit slightly off-center. Another example shows different ways to produce line profiles that could be attributed to a turbulent velocity field while there is no turbulence in the model. A third example shows how, in certain circumstances, it is possible to discriminate between two very different geometrical structures -- here a face-on blister and its ``spherical impostor'' -- when using appropriate high resolution spectra. Finally, we show how our tool is able to generate 3D maps, similar to the ...

  8. Planetary Nebulae and How to Observe Them

    CERN Document Server

    Griffiths, Martin

    2012-01-01

    Astronomers' Observing Guides provide up-to-date information for amateur astronomers who want to know all about what is it they are observing. This is the basis of the first part of the book. The second part details observing techniques for practical astronomers, working with a range of different instruments. Planetary Nebulae and How to Observe Them is intended for amateur astronomers who want to concentrate on one of the most beautiful classes of astronomical objects in the sky. This book will help the observer to see these celestial phenomena using telescopes of various apertures. As a Sun-like star reaches the end of its life, its hydrogen fuel starts to run out. It collapses until helium nuclei begin nuclear fusion, whereupon the star begins to pulsate, each pulsation throwing off a layer of the star's atmosphere. Eventually the atmosphere has all been ejected as an expanding cloud of gas, the star's core is exposed and ultraviolet photons cause the shell of gas to glow brilliantly - that's planetary ...

  9. Planetary Nebulae in the Small Magellanic Cloud

    CERN Document Server

    Ventura, P; Di Criscienzo, M; García-Hernández, D A; Dell'Agli, F

    2016-01-01

    We analyse the planetary nebulae (PNe) population of the Small Magellanic Cloud (SMC), based on evolutionary models of stars with metallicities in the range $10^{-3} \\leq Z \\leq 4\\times 10^{-3}$ and mass $0.9 M\\odot < M < 8M\\odot$, evolved through the asymptotic giant branch (AGB) phase. The models used account for dust formation in the circumstellar envelope. To characterise the PNe sample of the SMC, we compare the observed abundances of the various species with the final chemical composition of the AGB models: this study allows us to identify the progenitors of the PNe observed, in terms of mass and chemical composition. According to our interpretation, most of the PNe descend from low-mass ($M < 2 M\\odot$) stars, which become carbon rich, after experiencing repeated third dredge-up episodes, during the AGB phase. A fraction of the PNe showing the signature of advanced CNO processing are interpreted as the progeny of massive AGB stars, with mass above $\\sim 6 M\\odot$, undergoing strong hot bottom ...

  10. Radio Planetary Nebulae in the Magellanic Clouds

    CERN Document Server

    Filipović, M D; Reid, W A; Payne, J L; Parker, Q A; Crawford, E J; Bojičić, I S; De Horta, A Y; Hughes, A; Dickel, J; Stootman, F

    2009-01-01

    We report the extragalactic radio-continuum detection of 15 planetary nebulae (PNe) in the Magellanic Clouds (MCs) from recent Australia Telescope Compact Array+Parkes mosaic surveys. These detections were supplemented by new and high resolution radio, optical and IR observations which helped to resolve the true nature of the objects. Four of the PNe are located in the Small Magellanic Cloud (SMC) and 11 are located in the Large Magellanic Cloud (LMC). Based on Galactic PNe the expected radio flux densities at the distance of the LMC/SMC are up to ~2.5 mJy and ~2.0 mJy at 1.4 GHz, respectively. We find that one of our new radio PNe in the SMC has a flux density of 5.1 mJy at 1.4 GHz, several times higher than expected. We suggest that the most luminous radio PN in the SMC (N S68) may represent the upper limit to radio peak luminosity because it is ~3 times more luminous than NGC 7027, the most luminous known Galactic PN. We note that the optical diameters of these 15 MCs PNe vary from very small (~0.08 pc or ...

  11. Planetary Nebulae in Face-On Spiral Galaxies. I. Planetary Nebula Photometry and Distances

    CERN Document Server

    Herrmann, Kimberly A; Feldmeier, John J; Vinciguerra, Matt

    2008-01-01

    As the first step to determine disk mass-to-light ratios for normal spiral galaxies, we present the results of an imaging survey for planetary nebulae (PNe) in six nearby, face-on systems: IC 342, M74 (NGC 628), M83 (NGC 5236), M94 (NGC 4736), NGC 5068, and NGC 6946. Using Blanco/Mosaic II and WIYN/OPTIC, we identify 165, 153, 241, 150, 19, and 71 PN candidates, respectively, and use the Planetary Nebula Luminosity Function (PNLF) to obtain distances. For M74 and NGC 5068, our distances of 8.6 +/- 0.3 Mpc and 5.4 +0.2/-0.4 Mpc are the first reliable estimates to these objects; for IC 342 (3.5 +/- 0.3 Mpc), M83 (4.8 +/- 0.1 Mpc), M94 (4.4 +0.1/-0.2 Mpc), and NGC 6946 (6.1 +/- 0.6 Mpc) our values agree well with those in the literature. In the larger systems, we find no evidence for any systematic change in the PNLF with galactic position, though we do see minor field-to-field variations in the luminosity function. In most cases, these changes do not affect the measurement of distance, but in one case the fluct...

  12. Herschel Planetary Nebula Survey (HerPlaNS) - First Detection of OH+ in Planetary Nebulae

    CERN Document Server

    Aleman, I; Ladjal, D; Exter, K M; Kastner, J H; Montez, R; Tielens, A G G M; Chu, Y H; Izumiura, H; McDonald, I; Sahai, R; Siodmiak, N; Szczerba, R; van Hoof, P A M; Villaver, E; Vlemmings, W; Wittkowski, M; Zijlstra, A A

    2014-01-01

    We report the first detections of OH+ emission in planetary nebulae (PNe). As part of an imaging and spectroscopy survey of 11 PNe in the far-IR using the PACS and SPIRE instruments aboard the Herschel Space Observatory, we performed a line survey in these PNe over the entire spectral range between 51 and 672$\\mu$m to look for new detections. OH+ rotational emission lines at 152.99, 290.20, 308.48, and 329.77$\\mu$m were detected in the spectra of three planetary nebulae: NGC 6445, NGC 6720, and NGC 6781. Excitation temperatures and column densities derived from these lines are in the range of 27 to 47 K and 2 x $10$^{10}$ to 4 x $10$^{11}$ cm$^{-2}$, respectively. In PNe, the OH+ rotational line emission appears to be produced in the photodissociation region (PDR) in these objects. The emission of OH+ is observed only in PNe with hot central stars (Teff > 100000 K), suggesting that high-energy photons may play a role in the OH+ formation and its line excitation in these objects, as it seems to be the case for...

  13. Bow-shock Pulsar Wind Nebulae Passing Through Density Discontinuities

    CERN Document Server

    Yoon, Doosoo

    2016-01-01

    Bow-shock pulsar wind nebulae are a subset of pulsar wind nebulae that form when the pulsar has high velocity due to the natal kick during the supernova explosion. The interaction between the relativistic wind from the fast-moving pulsar and the interstellar medium produces a bow-shock and a trail, which are detectable in H$_{\\alpha}$ emission. Among such bow-shock pulsar wind nebulae, the Guitar Nebula stands out for its peculiar morphology, which consists of a prominent bow-shock head and a series of bubbles further behind. We present a scenario in which multiple bubbles can be produced when the pulsar encounters a series of density discontinuities in the ISM. We tested the scenario using 2-D and 3-D hydrodynamic simulations. The shape of the guitar nebula can be reproduced if the pulsar traversed a region of declining low density. We also show that if a pulsar encounters an inclined density discontinuity, it produces an asymmetric bow-shock head, consistent with observations of the bow-shock of the millise...

  14. Chandra Confirmation of a Pulsar Wind Nebula in DA 495

    Science.gov (United States)

    Arzoumanian, Z.; Safi-Harb, S.; Landecker, T.L.; Kothes, R.; Camilo, F.

    2008-01-01

    As part of a multiwavelength study of the unusual radio supernova remnant DA 495, we present observations made with the Chandra X-ray Observatory. Imaging and spectroscopic analysis confirms the previously detected X-ray source at the heart of the annular radio nebula, establishing the radiative properties of two key emission components: a soft unresolved source with a blackbody temperature of 1 MK consistent with a neutron star, surrounded by a nontherma1 nebula 40" in diameter exhibiting a power-law spectrum with photon index Gamma = 1.63, typical of a pulsar wind nebula. Morphologically, the nebula appears to be slightly extended along a direction, in projection on the sky, previously demonstrated to be of significance in radio and ASCA observations; we argue that this represents the orientation of the pulsar spin axis. At smaller scales, a narrow X-ray feature is seen extending out 5" from the point source, but energetic arguments suggest that it is not the resolved termination shock of the pulsar wind against the ambient medium. Finally, we argue based on synchrotron lifetimes in the nebular magnetic field that DA 495 represents the first example of a pulsar wind nebula in which electromagnetic flux makes up a significant part, together with particle flux, of the neutron star's wind.

  15. Análisis de la ira en pacientes con cardiopatía isquémica de la ciudad de Medellín (Colombia

    Directory of Open Access Journals (Sweden)

    Andrea Ochoa Ochoa

    2010-01-01

    Full Text Available Este estudio tuvo como objetivo comparar los niveles de ira, y sus componentes, entre un grupo de personas con Cardiopatía Isquémica y un grupo control sin esta enfermedad. Participaron 90 pacientes con cardiopatía isquémica de la Clínica Cardiovascular en Medellín y 78 controles sin la enfermedad. A cada uno de los participantes de les administró la prueba del STAXI- 2. Los resultados muestran que, comparado con los controles, los pacientes con cardiopatía isquémica tuvieron niveles significativamente más altos de ira como rasgo (p < 0.01, específicamente en la subescala reacción de ira (p < 0.05, y expresión interna de ira (p < 0.05. Los pacientes con cardiopatía isquémica experimentan más frecuentemente sentimientos de ira (ira rasgo, aparentemente debido a que son más sensibles a las críticas de los demás (reacción de ira, pero tienden a suprimir la expresión de esta emoción (expresión de ira interna. Estos datos confirman la necesidad de implementar programas dirigidos al manejo adecuado de la ira en estos pacientes y entender mejor las implicaciones que pueda tener la ira en la progresión de su enfermedad.

  16. The Nature of the IRAS Ring G159.6-18.5 in Perseus and its Exciting Star HD 278942

    Science.gov (United States)

    Wannier, P.; Andersson, B.; Moriarty-Schieven, G.; Bakker, E.

    1999-01-01

    We discuss an extended feature in the Perseus molecular cloud complex, most prominent in the IRAS database as an almost complete ring of radius 0.75 degrees, but also clearly seen in optical surveys and in radio continuum emission.

  17. IRAS 10173+0828的翘曲拱核环中的 OH超脉泽%OH Megamasers in Warped Circumnuclear Torus of IRAS 10173+0828

    Institute of Scientific and Technical Information of China (English)

    俞志尧

    2004-01-01

    IRAS 10173+0828的拱核环中的OH超脉泽进行MERLIN§高分辨观测,得到了拱核环为翘曲的证据,同时得到了10个速度通道中OH超脉泽的等强度轮廓线向东西方向延伸的角尺寸与其相应速度通道中峰束流量密度成正相关关系.

  18. A new Planetary Nebula in the outer reaches of the Galaxy

    DEFF Research Database (Denmark)

    Viironen, K.; Mampaso, A.; L. M. Corradi, R.;

    2011-01-01

    of a new planetary nebula towards the Anticentre direction, IPHASX J052531.19+281945.1 (PNG 178.1-04.0), is presented. The planetary nebula was discovered from the IPHAS survey. Long-slit follow-up spectroscopy was carried out to confirm its planetary nebula nature and to calculate its physical...

  19. Water-filtered infrared-A (wIRA) can act as a penetration enhancer for topically applied substances

    OpenAIRE

    Sterry, Wolfram; Ackermann, Hanns; Hoffmann, Gerd; Schanzer, Sabine; Meyer, Lars; Grone, Diego; Otberg, Nina; Lademann, Jürgen

    2008-01-01

    Background: Water-filtered infrared-A (wIRA) irradiation has been shown to enhance penetration of clinically used topically applied substances in humans through investigation of functional effects of penetrated substances like vasoconstriction by cortisone. Aim of the study: Investigation of the influence of wIRA irradiation on the dermatopharmacokinetics of topically applied substances by use of optical methods, especially to localize penetrating substances, in a prospective randomised contr...

  20. Wassergefiltertes Infrarot A (wIRA) kann als Penetrationsverstärker für topisch aufgetragene Substanzen wirken

    OpenAIRE

    Otberg, N; Grone, D; Meyer, L.; Schanzer, S; Hoffmann, G.; Ackermann, H; Sterry, W.; Lademann, J.

    2008-01-01

    Background: Water-filtered infrared-A (wIRA) irradiation has been shown to enhance penetration of clinically used topically applied substances in humans through investigation of functional effects of penetrated substances like vasoconstriction by cortisone. Aim of the study: Investigation of the influence of wIRA irradiation on the dermatopharmacokinetics of topically applied substances by use of optical methods, especially to localize penetrating substances, in a prospective randomised c...

  1. Pulsar Wind Nebulae as Cosmic Pevatrons: A Current Sheet's Tale

    CERN Document Server

    Arons, Jonathan

    2012-01-01

    I outline, from a theoretical and somewhat personal perspective, significant features of Pulsar Wind Nebulae as Cosmic Accelerators. I discuss recent studies of Pulsar Wind Nebulae (PWNe). I pay special attention to the recently discovered gamma ray flares in the Crab Nebula's emission, focusing on the possibility, raised by the observations, that the accelerating electric field exceeds the magnetic field, suggesting that reconnection in the persistent current layer (a current sheet) plays a significant role in the behavior of this well studied Pevatron. I address the present status of the termination shock model for the particle accelerator that converts the wind flow energy to the observed non thermal particle spectra, concluding that it has a number of major difficulties related to the transverse magnetic geometry of the shock wave. I discuss recent work on the inferred pair outflow rates, which are in excess of those predicted by existing theories of pair creation, and use those results to point out that ...

  2. A disc in the heart of the Ant nebula

    CERN Document Server

    Lykou, Foteini; Lagadec, Eric; Zijlstra, Albert

    2007-01-01

    We present the discovery of a silicate disc at the centre of the planetary nebula Mz3 (the Ant). The nebula was observed with MIDI on the Very Large Telescope Interferometer (VLTI). The visibilities obtained at different orientations clearly indicate the presence of a dusty, nearly edge-on disc in the heart of the nebula. An amorphous silicate absorption feature is clearly seen in our mid-IR spectrum and visibility curves. We used radiative transfer Monte Carlo simulations to constrain the geometrical and physical parameters of the disc. We derive an inner radius of 9 AU (~6mas assuming D=1.4kpc). This disc is perpendicular to, but a factor of 10^{3} smaller than the optical bipolar outflow.

  3. EVOLUTION OF THE CRAB NEBULA IN A LOW ENERGY SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haifeng; Chevalier, Roger A., E-mail: hy4px@virginia.edu, E-mail: rac5x@virginia.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States)

    2015-06-20

    The nature of the supernova leading to the Crab Nebula has long been controversial because of the low energy that is present in the observed nebula. One possibility is that there is significant energy in extended fast material around the Crab but searches for such material have not led to detections. An electron capture supernova model can plausibly account for the low energy and the observed abundances in the Crab. Here, we examine the evolution of the Crab pulsar wind nebula inside a freely expanding supernova and find that the observed properties are most consistent with a low energy event. Both the velocity and radius of the shell material, and the amount of gas swept up by the pulsar wind point to a low explosion energy (∼10{sup 50} erg). We do not favor a model in which circumstellar interaction powers the supernova luminosity near maximum light because the required mass would limit the freely expanding ejecta.

  4. Newest insights from MHD numerical modeling of Pulsar Wind Nebulae

    Science.gov (United States)

    Olmi, B.; Del Zanna, L.; Amato, E.; Bucciantini, N.; Bandiera, R.

    2016-06-01

    Numerical MHD models are considered very successful in accounting for many of the observed properties of Pulsar Wind Nebulae (PWNe), especially those concerning the high energy emission morphology and the inner nebula dynamics. Although PWNe are known to be among the most powerful accelerators in nature, producing particles up to PeV energies, the mechanisms responsible of such an efficient acceleration are still a deep mystery. Indeed, these processes take place in one of the most hostile environment for particle acceleration: the relativistic and highly magnetized termination shock of the pulsar wind. The newest results from numerical simulations of the Crab Nebula, the PWN prototype, will be presented, with special attention to the problem of particle acceleration. In particular it will be shown how a multi-wavelengths analysis of the wisps properties can be used to constrain the particle acceleration mechanisms working at the Crab's termination shock, by identifying the particle acceleration site at the shock front.

  5. Evolution of the Crab nebula in a low energy supernova

    CERN Document Server

    Yang, Haifeng

    2015-01-01

    The nature of the supernova leading to the Crab Nebula has long been controversial because of the low energy that is present in the observed nebula. One possibility is that there is significant energy in extended fast material around the Crab but searches for such material have not led to detections. An electron capture supernova model can plausibly account for the low energy and the observed abundances in the Crab. Here, we examine the evolution of the Crab pulsar wind nebula inside a freely expanding supernova and find that the observed properties are most consistent with a low energy event. Both the velocity and radius of the shell material, and the amount of gas swept up by the pulsar wind point to a low explosion energy ($\\sim 10^{50}$ ergs). We do not favor a model in which circumstellar interaction powers the supernova luminosity near maximum light because the required mass would limit the freely expanding ejecta.

  6. The surprising Crab pulsar and its nebula: a review.

    Science.gov (United States)

    Bühler, R; Blandford, R

    2014-06-01

    The Crab nebula and its pulsar (referred to together as 'the Crab') have historically played a central role in astrophysics. True to this legacy, several unique discoveries have been made recently. The Crab was found to emit gamma-ray pulsations up to energies of 400 GeV, beyond what was previously expected from pulsars. Strong gamma-ray flares, of durations of a few days, were discovered from within the nebula, while the source was previously expected to be stable in flux on these time scales. Here we review these intriguing and suggestive developments. In this context we give an overview of the observational properties of the Crab and our current understanding of pulsars and their nebulae.

  7. Mass-loading of bow shock pulsar wind nebulae

    CERN Document Server

    Morlino, G; Vorster, M

    2016-01-01

    We investigate the dynamics of bow shock nebulae created by pulsars moving supersonically through a partially ionized interstellar medium. A fraction of interstellar neutral hydrogen atoms penetrating into the tail region of a pulsar wind will undergo photo-ionization due to the UV light emitted by the nebula, with the resulting mass loading dramatically changing the flow dynamics of the light leptonic pulsar wind. Using a quasi 1-D hydrodynamic model of relativistic flow we find that if a relatively small density of neutral hydrogen, as low as $10^{-4}$ cm$^{-3}$, penetrate inside the pulsar wind, this is sufficient to strongly affect the tail flow. Mass loading leads to the fast expansion of the pulsar wind tail, making the tail flow intrinsically non-stationary. The shapes predicted for the bow shock nebulae compare well with observations, both in H$\\alpha$ and X-rays.

  8. An atlas of synthetic line profiles of planetary nebulae

    CERN Document Server

    Morisset, C

    2008-01-01

    We have constructed a grid of photoionization models of spherical, elliptical and bipolar planetary nebulae. Assuming different velocity fields, we have computed line profiles corresponding to different orientations, slit sizes and positions. The atlas is meant both for didactic purposes and for the interpretation of data on real nebulae. As an application, we have shown that line profiles are often degenerate, and that recovering the geometry and velocity field from observations requires lines from ions with different masses and different ionization potentials. We have also shown that the empirical way to measure mass-weighted expansion velocities from observed line widths is reasonably accurate if considering the HWHM. For distant nebulae, entirely covered by the slit, the unknown geometry and orientation do not alter the measured velocities statistically. The atlas is freely accessible from internet. The Cloudy_3D suite and the associated VISNEB tool are available on request.

  9. Revised Predictions of Neutrino Fluxes from Pulsar Wind Nebulae

    Science.gov (United States)

    Di Palma, Irene; Guetta, Dafne; Amato, Elena

    2017-02-01

    Several pulsar wind nebulae (PWN) have been detected in the TeV band in the last decade. TeV emission is typically interpreted in a purely leptonic scenario, but this often requires that the magnetic field in the nebula be much lower than the equipartition value, as well as the assumption of an enhanced density of target radiation at IR frequencies. In this work, we consider the possibility that, in addition to the relativistic electrons and positrons, relativistic hadrons are also present in these nebulae. Assuming that some of the emitted TeV photons are of hadronic origin, we compute the associated flux of ∼ 1{--}100 TeV neutrinos. We use IceCube non-detection to put constraints on the fraction of TeV photons that might be contributed by hadrons and estimate the number of neutrino events that can be expected from these sources in ANTARES and KM3Net.

  10. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing

    Science.gov (United States)

    Chen, A.; Pham, L.; Kempler, S.; Theobald, M.; Esfandiari, A.; Campino, J.; Vollmer, B.; Lynnes, C.

    2011-12-01

    Cloud Computing technology has been used to offer high-performance and low-cost computing and storage resources for both scientific problems and business services. Several cloud computing services have been implemented in the commercial arena, e.g. Amazon's EC2 & S3, Microsoft's Azure, and Google App Engine. There are also some research and application programs being launched in academia and governments to utilize Cloud Computing. NASA launched the Nebula Cloud Computing platform in 2008, which is an Infrastructure as a Service (IaaS) to deliver on-demand distributed virtual computers. Nebula users can receive required computing resources as a fully outsourced service. NASA Goddard Earth Science Data and Information Service Center (GES DISC) migrated several GES DISC's applications to the Nebula as a proof of concept, including: a) The Simple, Scalable, Script-based Science Processor for Measurements (S4PM) for processing scientific data; b) the Atmospheric Infrared Sounder (AIRS) data process workflow for processing AIRS raw data; and c) the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI) for online access to, analysis, and visualization of Earth science data. This work aims to evaluate the practicability and adaptability of the Nebula. The initial work focused on the AIRS data process workflow to evaluate the Nebula. The AIRS data process workflow consists of a series of algorithms being used to process raw AIRS level 0 data and output AIRS level 2 geophysical retrievals. Migrating the entire workflow to the Nebula platform is challenging, but practicable. After installing several supporting libraries and the processing code itself, the workflow is able to process AIRS data in a similar fashion to its current (non-cloud) configuration. We compared the performance of processing 2 days of AIRS level 0 data through level 2 using a Nebula virtual computer and a local Linux computer. The result shows that Nebula has significantly

  11. Infrared reflection nebulae in Orion Molecular Cloud 2

    Science.gov (United States)

    Pendleton, Yvonne; Werner, M. W.; Capps, R.; Lester, D.

    1986-01-01

    New observations of Orion Molecular Cloud 2 have been made from 1 to 100 microns using the NASA Infrared Telescope Facility and the Kuiper Airborne Observatory. An extensive program of polarimetry, photometry, and spectrophotometry has shown that the extended emission regions associated with two of the previously known near-infrared sources, IRS 1 and IRS 4, are infrared reflection nebulae, and that the compact sources IRS 1 and IRS 4 are the main luminosity sources in the cloud. The constraints from the far-infrared observations and an analysis of the scattered light from the IRS 1 nebula show that OMC-2/IRS 1 can be characterized by L of 500 solar luminosities or less and T of roughly 1000 K. The near-infrared albedo of the grains in the IRS 1 nebula is greater than 0.08.

  12. Gamma-rays from pulsar wind nebulae in starburst galaxies

    Science.gov (United States)

    Mannheim, Karl; Elsässer, Dominik; Tibolla, Omar

    2012-07-01

    Recently, gamma-ray emission at TeV energies has been detected from the starburst galaxies NGC253 (Acero et al., 2009) [1] and M82 (Acciari et al., 2009) [2]. It has been claimed that pion production due to cosmic rays accelerated in supernova remnants interacting with the interstellar gas is responsible for the observed gamma rays. Here, we show that the gamma-ray pulsar wind nebulae left behind by the supernovae contribute to the TeV luminosity in a major way. A single pulsar wind nebula produces about ten times the total luminosity of the Sun at energies above 1 TeV during a lifetime of 105 years. A large number of 3 × 104 pulsar wind nebulae expected in a typical starburst galaxy at a distance of 4 Mpc can readily produce the observed TeV gamma rays.

  13. Mass-loading of bow shock pulsar wind nebulae

    CERN Document Server

    Morlino, G; Vorster, M J

    2015-01-01

    We investigate the dynamics of bow shock nebulae created by pulsars moving supersonically through a partially ionized interstellar. A fraction of interstellar neutrals penetrating into the tail region of a pulsar wind will undergo photo-ionization due to the UV light emitted by the nebula, with the resulting mass loading dramatically changing the flow dynamics of the light leptonic pulsar wind. Using a quasi 1-D hydrodynamic model of both non-relativistic and relativistic flow, and focusing on scales much larger than the stand-off distance, we find that a relatively small density of neutrals, as low as $n_{\\rm ISM}=10^{-4}\\,\\text{cm}^{-3}$, is sufficient to strongly affect the tail flow. Mass loading leads to the fast expansion of the pulsar wind tail, making the tail flow intrinsically non-stationary. The shapes predicted for the bow shock nebulae compare well with observations, both in H$\\alpha$ and X-rays.

  14. Featured Image: A Search for Stellar Bow Shock Nebulae

    Science.gov (United States)

    Kohler, Susanna

    2017-02-01

    These dynamic infrared images (click for the full view!) reveal what are known as bow shock nebulae nebulae that form at the interface between the interstellar medium and the stellar wind from a high-speed star zipping through the galaxy (the arrows show the direction of motion of the star). When the relative speed between the two is supersonic, an arc-shaped bow shock forms ahead of the star, like the six prototypical ones pictured here. A team of scientists led by Henry Kobulnicky (University of Wyoming) has recently searched through survey data from the Spitzer Space Telescope and the Wide Field Infrared Explorer (WISE) to build a catalog of more than 700 such bow-shock nebula candidates, the vast majority of which are new discoveries. To find out more about their sample, check out the paper below!CitationHenry A. Kobulnicky et al 2016 ApJS 227 18. doi:10.3847/0067-0049/227/2/18

  15. Stars and Nebulae in the Southern Crown

    Science.gov (United States)

    2000-10-01

    The R Coronae Australis complex of young stars and interstellar gas clouds is one of the nearest star-forming regions, at a distance of approx. 500 light-years from the Sun. It is seen in the southern constellation of that name (The "Southern Crown"). Images of this sky area were recently obtained with the Wide Field Imager (WFI) , a 67-million pixel digital camera that is installed at the 2.2-m MPG/ESO Telescope at ESO's La Silla Observatory. Some of these exposures have been combined into a magnificent colour image, here reproduced as PR Photo 25a/00 . The field shown measures about 4.7 x 4.7 light-years 2. It displays the central part of the complex, its brightest stars, and the nebulosity that they illuminate. The interstellar clouds that are associated with the complex are visible all across this field and also beyond its borders (on other exposures), due to the obscuring effect of the dust particles that "dim" the light of stars behind these clouds. This effect is particularly noticeable in the lower left corner where very few stars are seen. R Coronae Australis , the bright star from which the entire complex is named, is located at the center of the field and illuminates the reddish nebula around it. The bright star in the lower part, illuminating a somewhat bluer nebula, is known as TY Coronae Australis . The brightness of these two stars and several others in the same field is variable. They belong to the so-called "T Tauri" class , a type that is quite common in star-forming regions. T Tauri stars are in the early stages of stellar evolution and display various observable characteristics of this phase, e.g. emission at visible and infrared wavelengths due to the accretion of matter left over from their formation, as well as X-ray emission. The nebulosity seen in this picture is mostly due to reflection of the stellar light by small dust particles. The stars in the R Coronae Australis complex do not emit sufficient ultraviolet light to ionize a substantial

  16. Trigonometric Distance and Proper Motion of IRAS 20056+3350: Massive Star Forming Region on the Solar Circle

    CERN Document Server

    Burns, Ross A; Handa, Toshihiro; Omodaka, Toshihiro; Nakagawa, Akiharu; Nakanishi, Hiroyuki; Hayashi, Masahiko; Shizugami, Makoto

    2014-01-01

    We report our measurement of the trigonometric distance and proper motion IRAS 20056+3350, obtained from the annual parallax of H2O masers. Our distance of D = 4.69 +0.65-0.51 kpc, which is more than two times larger than the near kinematic distance adopted in the literature, places IRAS 20056+3350 at the leading tip of the Local arm, and proximal to the Solar circle. Using our distance we re-evaluate past observations to reveal IRAS 20056+3350 as a site of massive star formation at a young stage of evolution. This result is consistent with the spectral energy distribution of the source evaluated with published photometric data from UKIDSS, WISE, AKARI, IRAS and sub-millimetre continuum. Both analytical approaches reveal the luminosity of the region to be 2.4 x 10^4 Lo, and suggest that IRAS 20056+3350 is forming an embedded star of 16 Mo. We estimated the proper motion of IRAS 20056+3350 to be ($\\mu_{\\alpha}\\cos\\delta$, $\\mu_{\\delta}$) = ($-2.62\\pm0.33$, $-5.65\\pm0.52$) mas yr$^{-1}$ from the group motion of...

  17. Estudio descriptivo correlacional entre ira y personalidad, a la luz de la teoría de Hans Eysenck

    Directory of Open Access Journals (Sweden)

    Clemencia Montaña de Barragán

    2002-01-01

    Full Text Available Este trabajo presenta una cuidadosa revisión teórica sobre el tema de la ira, su evaluación e intervención, relacionada muy directamente con la agresividad y teorías importantes de la personalidad, enfocándose principalmente a la teoría de H. Eysenck. Se aplicaron dos instrumentos, uno para medir ira (escala MAG de Ira y otro para medir dimensiones de personalidad Extroversión – Neuroticismo – Psicoticismo (EPQ-J, a 200 niños de ambos sexos, con edades comprendidas entre 9 y 11 años, en tres colegios de Santafé de Bogotá. Se realizó una aplicación piloto y validación por jueces para la Escala MAG de ira con el objetivo de verificar su efectividad, mostrando unos buenos resultados mediante una consistencia interna de 0.8236. Al relacionar esta dos pruebas se encontró que hay niveles muy significativos de correlación entre personalidad e ira, a la vez que hay buenas intercorrelaciones entre las dimensiones del EPQ-J. Se encontraron correlaciones significativas entre ira y conducta antisocial. El aporte del trabajo es la presentación de la escala MAG para aplicarla en población infantil

  18. ESTUDIO DESCRIPTIVO CORRELACIONAL ENTRE IRA Y PERSONALIDAD A LA LUZ DE LA TEORÍA DE HANS EYSENCK

    Directory of Open Access Journals (Sweden)

    Clemencia Montaña de Barragán

    2002-07-01

    Full Text Available Este trabajo presenta una cuidadosa revisión teórica sobre el tema de la ira, su evaluación e intervención, relacionada muy directamente con la agresividad y teorías importantes de la personalidad, enfocándose principalmente a la teoría de H. Eysenck. Se aplicaron dos instrumentos, uno para medir ira (escala MAG de Ira y otro para medir dimensiones de personalidad Extroversión – Neuroticismo – Psicoticismo (EPQ-J, a 200 niños de ambos sexos, con edades comprendidas entre 9 y 11 años, en tres colegios de Santafé de Bogotá. Se realizó una aplicación piloto y validación por jueces para la Escala MAG de ira con el objetivo de verificar su efectividad, mostrando unos buenos resultados mediante una consistencia interna de 0.8236. Al relacionar esta dos pruebas se encontró que hay niveles muy significativos de correlación entre personalidad e ira, a la vez que hay buenas intercorrelaciones entre las dimensiones del EPQ-J. Se encontraron correlaciones significativas entre ira y conducta antisocial. El aporte del trabajo es la presentación de la escala MAG para aplicarla en población infantil.

  19. Geminga’s Puzzling Pulsar Wind Nebula

    Science.gov (United States)

    Posselt, B.; Pavlov, G. G.; Slane, P. O.; Romani, R.; Bucciantini, N.; Bykov, A. M.; Kargaltsev, O.; Weisskopf, M. C.; Ng, C.-Y.

    2017-01-01

    We report on six new Chandra observations of the Geminga pulsar wind nebula (PWN). The PWN consists of three distinct elongated structures—two ≈ 0.2{d}250 pc long lateral tails and a segmented axial tail of ≈ 0.05{d}250 pc length, where {d}250=d/(250 {pc}). The photon indices of the power-law spectra of the lateral tails, {{Γ }}≈ 1, are significantly harder than those of the pulsar ({{Γ }}≈ 1.5) and the axial tail ({{Γ }}≈ 1.6). There is no significant diffuse X-ray emission between the lateral tails—the ratio of the X-ray surface brightness between the south tail and this sky area is at least 12. The lateral tails apparently connect directly to the pulsar and show indications of moving footpoints. The axial tail comprises time-variable emission blobs. However, there is no evidence for constant or decelerated outward motion of these blobs. Different physical models are consistent with the observed morphology and spectra of the Geminga PWN. In one scenario, the lateral tails could represent an azimuthally asymmetric shell whose hard emission is caused by the Fermi acceleration mechanism of colliding winds. In another scenario, the lateral tails could be luminous, bent polar outflows, while the blobs in the axial tail could represent a crushed torus. In a resemblance to planetary magnetotails, the blobs of the axial tail might also represent short-lived plasmoids, which are formed by magnetic field reconnection in the relativistic plasma of the pulsar wind tail.

  20. An Interactive Gallery of Planetary Nebula Spectra

    Science.gov (United States)

    Kwitter, K. B.; Henry, R. B. C.

    2002-12-01

    We have created a website containing high-quality moderate-resolution spectra of 88 planetary nebulae (PNe) from 3600 to 9600 Å, obtained at KPNO and CTIO. Spectra are displayed in a zoomable window, and there are templates available that show wavelength and ion identifications. In addition to the spectra themselves, the website also contains a brief discussion of PNe as astronomical objects and as contributors to our understanding of stellar evolution, and a table with atlas information for each object along with a link to an image. This table can be re-ordered by object name, galactic or equatorial coordinates, distance from the sun, the galactic center, or the galactic plane. We envision that this website, which concentrates a large amount of data in one place, will be of interest to a variety of users. PN researchers might need to check the spectrum of a particular object of interest; the non-specialist astronomer might simply be interested in perusing such a collection of spectra; and finally, teachers of introductory astronomy can use this database to illustrate basic principles of atomic physics and radiation. To encourage such use, we have written two simple exercises at a basic level to introduce beginning astronomy students to the wealth of information that PN spectra contain. We are grateful to Adam Wang of the Williams College OIT and to his summer student teams who worked on various apects of the implementation of this website. This work has been supported by NSF grant AST-9819123 and by Williams College and the University of Oklahoma.

  1. Dicke's Superradiance in Astrophysics. II -- The OH 1612 MHz Line

    CERN Document Server

    Rajabi, Fereshteh

    2016-01-01

    We apply the concept of superradiance introduced by Dicke in 1954 to the OH molecule 1612 MHz spectral line often used for the detection of masers in circumstellar envelopes of evolved stars. As the detection of 1612 MHz OH masers in the outer shells of envelopes of these stars implies the existence of a population inversion and a high level of velocity coherence, and that these are two necessary requirements for superradiance, we investigate whether superradiance can also happen in these regions. Superradiance is characterized by high intensity, spatially compact, burst-like features taking place over time-scales on the order of seconds to years, depending on the size and physical conditions present in the regions harboring such sources of radiation. Our analysis suggests that superradiance provides a valid explanation for previous observations of intensity flares detected in that spectral line for the U Orionis Mira star and the IRAS18276-1431 pre-planetary nebula.

  2. La Región de formación estelar masiva IRAS 085894714

    Science.gov (United States)

    Saldaño, H.; Vázques, J.; Cappa, C. E.; Gómez, M.; Rubio, M.

    2016-08-01

    In this contribution we present an analysis of the IRAS 085894714 region with the aim of characterizing the molecular environment and deriving physical properties of young massive cores likely associated with this source. We use the APEX telescope to detect the CO, CO, and CO lines in 32 transition. We observe two molecular cores close to the IRAS source position. We estimate the LTE mass in 410 M for the principal core, which has a H mean density cm and a column density cm, characteristic of a massive core in a star formation process. We identify counterparts on the WISE and Herschel images for both cores and find two molecular outflows associated with each young embedded source.

  3. Newly Identified Silicate Carbon Stars from IRAS Low-Resolution Spectra

    Institute of Scientific and Technical Information of China (English)

    Pei-Sheng Chen; Pin Zhang

    2006-01-01

    The discovery of silicate carbon star poses a challenge to the theory of stellar evolution in the late stage, hence it is important to look for more silicate carbon stars. To this end we have carried out cross-identifications between the new IRAS Low-Resolution Spectrum (LRS) database and the new carbon star catalog, CGCS3. We have found nine new silicate carbon stars with silicate features around 10μm and/or 18 μm. These newly identified stars are located in the Regions Ⅲa and Ⅶ in the IRAS two-color diagram, which means they indeed have typical far infrared colors of silicate carbon stars. The infrared properties of each of these sources are discussed.

  4. Active star formation at intermediate Galactic latitude: the case of IRAS 06345-3023

    CERN Document Server

    Yun, J L

    2015-01-01

    We report the discovery of a small aggregate of young stars seen in high-resolution, deep near-infrared ($JHK_S$) images towards IRAS 06345-3023 in the outer Galaxy and well below the mid-plane of the Galactic disc. The group of young stars is likely to be composed of low-mass stars, mostly Class I young stellar objects. The stars are seen towards a molecular cloud whose CO map peaks at the location of the IRAS source. The near-infrared images reveal, additionally, the presence of nebular emission with rich morphological features, including arcs in the vicinity of embedded stars, wisps and bright rims of a butterfly-shaped dark cloud. The location of this molecular cloud as a new star formation site well below the Galactic plane in the outer Galaxy indicates that active star formation is taking place at vertical distances larger than those typical of the (thin) disc.

  5. The Interstellar Medium of IRAS 08572+3915 NW: H3+ and Warm High Velocity CO

    CERN Document Server

    Geballe, T R; McCall, B J; Oka, T; Usuda, T

    2006-01-01

    We confirm the first detection of the molecular ion H3+ in an extragalactic object, the highly obscured ultraluminous galaxy IRAS 08572+3915 NW. We also have detected absorption lines of the fundamental band of CO in this galaxy. The CO absorption consists of a cold component close to the systemic velocity and warm, highly blueshifted and redshifted components. The warm blueshifted component is remarkably strong and broad and extends at least to -350 km/s. Some analogies can be drawn between the H3+ and cold CO in IRAS08572+3915 NW and the same species seen toward the Galactic center. The profiles of the warm CO components are not those expected from a dusty torus of the type thought to obscure active galactic nuclei. They are probably formed close to the dust continuum surface near the buried and active nucleus and are probably associated with an unusual and energetic event there.

  6. s-process Enrichment in the Planetary Nebula NGC 3918

    CERN Document Server

    García-Rojas, J; Luridiana, V; Sterling, N C; Morisset, C

    2014-01-01

    We present deep, high-resolution (R~40000) UVES at VLT spectrophotometric data of the planetary nebula NGC 3918. This is one of the deepest spectra ever taken of a planetary nebula. We have identified and measured more than 700 emission lines and, in particular, we have detected very faint lines of several neutron-capture elements (s-process elements: Kr, Xe and Rb) that enable us to compute their chemical abundances with unprecedented accuracy, thus constraining the efficiency of the s-process and convective dredge-up.

  7. Planetary nebulae in 2014: A review of research

    CERN Document Server

    Zijlstra, Albert

    2015-01-01

    Planetary nebulae had a double anniversary in 2014, 250 year since their discovery and 150 year since the correct spectroscopic identification. This paper gives an overview of planetary nebula research published in 2014. Topics include surveys, central stars, abundances, morphologies, magnetic fields, stellar population and galactic dynamics. An important continuing controversy is the discrepancy between recombination-line and forbidden-line abundances. A new controversy is the relation between symbiotic stars and [WC] stars. PN of the year is undoubtedly CRL 618, with papers on its binary symbiotic/[WC] nucleus, rapid stellar evolution, expanding jets and magnetic fields.

  8. Observations of the Crab Nebula with Early HAWC Data

    CERN Document Server

    Greus, Francisco Salesa

    2015-01-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a TeV gamma-ray detector, completed in early 2015. HAWC started science operations in August 2013 with a third of the detector taking data. Several known gamma-ray sources have already been detected with the first HAWC data. Among these sources, the Crab Nebula, the brightest steady gamma-ray source at very high energies in our Galaxy, has been detected with high significance. In this contribution I will present the results of the observations of the Crab Nebula with HAWC, including time variability, and the detector performance based on early data.

  9. Observing by hand sketching the nebulae in the nineteenth century

    CERN Document Server

    Nasim, Omar W

    2014-01-01

    Today we are all familiar with the iconic pictures of the nebulae produced by the Hubble Space Telescope's digital cameras. But there was a time, before the successful application of photography to the heavens, in which scientists had to rely on handmade drawings of these mysterious phenomena.           Observing by Hand sheds entirely new light on the ways in which the production and reception of handdrawn images of the nebulae in the nineteenth century contributed to astronomical observation. Omar W. Nasim investigates hundreds of unpublished observing books and paper records from six ninete

  10. Fe/Ni ratio in the Ant Nebula Mz 3

    CERN Document Server

    Zhang, Y

    2006-01-01

    We have analyzed the [Fe II] and [Ni II] emission lines in the bipolar planetary nebula Mz~3. We find that the [Fe II] and [Ni II] lines arise exclusively from the central regions. Fluorescence excitation in the formation process of these lines is negligible for this low-excitation nebula. From the [Fe II]/[Ni II] ratio, we obtain a higher Fe/Ni abundance ratio with respect to the solar value. The current result provides further supporting evidence for Mz 3 as a symbiotic Mira.

  11. An Analysis of Spectra in the Red Rectangle Nebula

    Indian Academy of Sciences (India)

    Frédéric Zagury

    2005-12-01

    This paper presents an analysis of a series of spectra in the Red Rectangle nebula. Only the reddest part of the spectra can safely be attributed to light from the nebula, and indicates Rayleigh scattering by the gas, in conformity with the large angles of scattering involved and the proximity of the star. In the blue, light from HD 44179, refracted or scattered in the atmosphere, dominates the spectra. This paper questions the reliability of ground-based broad-band spectra of extended objects in the blue.

  12. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing

    Science.gov (United States)

    Pham, Long; Chen, Aijun; Kempler, Steven; Lynnes, Christopher; Theobald, Michael; Asghar, Esfandiari; Campino, Jane; Vollmer, Bruce

    2011-01-01

    Cloud Computing has been implemented in several commercial arenas. The NASA Nebula Cloud Computing platform is an Infrastructure as a Service (IaaS) built in 2008 at NASA Ames Research Center and 2010 at GSFC. Nebula is an open source Cloud platform intended to: a) Make NASA realize significant cost savings through efficient resource utilization, reduced energy consumption, and reduced labor costs. b) Provide an easier way for NASA scientists and researchers to efficiently explore and share large and complex data sets. c) Allow customers to provision, manage, and decommission computing capabilities on an as-needed bases

  13. Young stars of low mass in the Gum nebula

    Science.gov (United States)

    Graham, J. A.; Heyer, Mark H.

    1989-01-01

    Observations are presented for four recently formed stars in the vicinity of the Gum nebula which are heavily obscured by surrounding dust and are associated with small reflection nebulae. HH46 is the only currently active star of the sample, and it is found to have a spectral type in the range of late G-early K, with superimposed emission lines of H-alpha, Ca II, Fe I, Fe II, and weak He I at near zero velocities. It is suggested that the observed scenario of low-mass stars in an older massive star environment may be analogous to the circumstances surrounding the birth of the sun.

  14. Water-filtered infrared-A (wIRA overcomes swallowing disorders and hypersalivation – a case report

    Directory of Open Access Journals (Sweden)

    Hoffmann, Gerd

    2017-08-01

    Full Text Available Case description: A patient with a Barrett oesophageal carcinoma and a resection of the oesophagus with gastric pull-up developed swallowing disorders 6 years and 2 months after the operation. Within 1 year and 7 months two recurrences of the tumor at the anastomosis were found and treated with combined chemoradiotherapy or chemotherapy respectively. 7 years and 9 months after the operation local tumor masses and destruction were present with no ability to orally drink or eat (full feeding by jejunal PEG tube: quality of life was poor, as saliva and mucus were very viscous (pulling filaments and could not be swallowed and had to be spat out throughout the day and night resulting in short periods of sleep (awaking from the necessity to spit out. In total the situation was interpreted more as a problem related to a feeling of choking (with food or fluid in the sense of a functional dysphagia rather than as a swallowing disorder from a structural stenosis. At that time acetylcysteine (2 times 200 mg per day, given via the PEG tube and irradiation with water-filtered infrared-A (wIRA, a special form of heat radiation, of the ventral part of the neck and the thorax were added to the therapy. Within 1 day with acetylcysteine saliva and mucus became less viscous. Within 2 days with wIRA (one day with 4 to 5 hours with irradiation with wIRA at home salivation decreased markedly and quality of life clearly improved: For the first time the patient slept without interruption and without the need for sleep-inducing medication. After 5 days with wIRA the patient could eat his first soft dumpling although drinking of fluids was still not possible. After 2½ weeks with wIRA the patient could eat his first minced schnitzel (escalope. Following the commencement of wIRA (with typically approximately 90–150 minutes irradiation with wIRA per day the patient had 8 months with good quality of life with only small amounts of liquid saliva and mucus and without the

  15. VLBA observations of the nuclear transient AT 2017gbl in IRAS 23436+5257

    Science.gov (United States)

    Perez-Torres, Miguel; Kool, Erik; Ryder, Stuart; Mattila, Seppo; Fraser, Morgan; Kankare, Erkki

    2017-09-01

    We report on simultaneous radio interferometric observations of the luminous nuclear transient AT 2017gbl, carried out at 4.4 and 7.6 GHz with the Very Long Baseline Array (VLBA) on 2017 August 15.38 UT. AT 2017gbl was discovered in the near-infrared on MJD 57942.56 (ATel #10651) superimposed on the nucleus of the galaxy IRAS 23436+5257 (D= 146 Mpc).

  16. Detailed atmospheric abundance analysis of the optical counterpart of the IR source IRAS 16559-2957

    CERN Document Server

    Molina, R E

    2013-01-01

    We have undertaken a detailed abundance analysis of the optical counterpart of the IR source IRAS16559-2957 with the aim of confirming its possible post-AGB nature. The star shows solar metallicity and our investigation of a large number of elements including CNO and 12C/13C suggests that this object has experienced the first dredge-up and it is likely still at RGB stage.

  17. Anatomy of the internal bow shocks in the IRAS 04166+2706 protostellar jet

    Science.gov (United States)

    Tafalla, M.; Su, Y.-N.; Shang, H.; Johnstone, D.; Zhang, Q.; Santiago-García, J.; Lee, C.-F.; Hirano, N.; Wang, L.-Y.

    2017-01-01

    Context. Highly collimated jets and wide-angle outflows are two related components of the mass-ejection activity associated with stellar birth. Despite decades of research, the relation between these two components remains poorly understood. Aims: We study the relation between the jet and the outflow in the IRAS 04166+2706 protostar. This Taurus protostar drives a molecular jet that contains multiple emission peaks symmetrically located from the central source. The protostar also drives a wide-angle outflow consisting of two conical shells. Methods: We have used the Atacama Large Millimeter/submillimeter Array (ALMA) interferometer to observe two fields along the IRAS 04166+2706 jet. The fields were centered on a pair of emission peaks that correspond to the same ejection event. The observations were carried out in CO(2-1), SiO(5-4), and SO(JN = 65-54). Results: Both ALMA fields present spatial distributions that are approximately elliptical and have their minor axes aligned with the jet direction. As the velocity increases, the emission in each field moves gradually across the elliptical region. This systematic pattern indicates that the emitting gas in each field lies in a disk-like structure that is perpendicular to the jet axis and whose gas is expanding away from the jet. A small degree of curvature in the first-moment maps indicates that the disks are slightly curved in the manner expected for bow shocks moving away from the IRAS source. A simple geometrical model confirms that this scenario fits the main emission features. Conclusions: The emission peaks in the IRAS 04166+2706 jet likely represent internal bow shocks where material is being ejected laterally away from the jet axis. While the linear momentum of the ejected gas is dominated by the component in the jet direction, the sideways component is not negligible, and can potentially affect the distribution of gas in the surrounding outflow and core.

  18. IRAS F02044+0957 radio source in interacting system of galaxies

    CERN Document Server

    Verkhodanov, O V; Mujica, R; Valdés, J R; Trushkin, S A

    2001-01-01

    The steep spectrum of IRAS F02044+0957 was obtained with the RATAN-600 radio telescope at four frequencies. Optical spectroscopy of the system components, was carried out with the 2.1m telescope of the Guillermo Haro Observatory. Observational data allow us to conclude that this object is a pair of interacting galaxies, a LINER and a HII galaxy, at $z=0.093$.

  19. Far infrared and submillimetre surveys: from IRAS to Akari, Herschel and Planck

    CERN Document Server

    Rowan-Robinson, Michael

    2015-01-01

    We discuss a new IRAS Faint Source Catalog galaxy redshift catalogue (RIFSCz) which incorporates data from Galex, SDSS, 2MASS, WISE, Akari and Planck. Akari fluxes are consistent with photometry from other far infrared and submillimetre missions provided an aperture correction is applied. Results from the Hermes-SWIRE survey in Lockman are also discussed briefly, and the strong contrast between the galaxy populations selected at 60 and 500 mu is summarized.

  20. A PRE-MERGER IN THE LUMINOUS INFRARED SYSTEM IRAS 02290+2533

    Directory of Open Access Journals (Sweden)

    Fidel Cruz

    2009-01-01

    originado por la interacci n gravitacional en curso con la galaxia A. La galaxia B puede ser clasi cada como una Galaxia Infrarroja Luminosa (LIRG. Estimamos que una fusi n binaria de galaxias puede ocurrir en el sistema dentro de < 1 Gyr. Es probable que esta fuente IRAS albergue en un futuro una galaxia Ultra LIRG, en concordancia con el modelo evolutivo de Sanders & Mirabel (1996.

  1. Measurement of the Pulse Radiation of an IRA in Time Domain

    Science.gov (United States)

    Stadtler, Thiemo; Ter Haseborg, Jan Luiken; Sabath, Frank

    For radiation of UWB pulses special Impulse Radiating Antennas (IRA) have been designed and are continuously improved. The measurement of its near field can help optimizing this antenna type. This paper presents a time domain scanner which is able to determine the transient near field. The so called double probe near field scanner can be employed to measure the two dimensional field distribution in time domain.

  2. Water-filtered infrared-A radiation (wIRA is not implicated in cellular degeneration of human skin

    Directory of Open Access Journals (Sweden)

    Applegate, Lee Ann

    2007-11-01

    Full Text Available Background: Excessive exposure to solar ultraviolet radiation is involved in the complex biologic process of cutaneous aging. Wavelengths in the ultraviolet-A and -B range (UV-A and UV-B have been shown to be responsible for the induction of proteases, e. g. the collagenase matrix metalloproteinase 1 (MMP-1, which are related to cell aging. As devices emitting longer wavelengths are widely used in therapeutic and cosmetic interventions and as the induction of MMP-1 by water-filtered infrared-A (wIRA had been discussed, it was of interest to assess effects of wIRA on the cellular and molecular level known to be possibly involved in cutaneous degeneration. Objectives: Investigation of the biological implications of widely used water-filtered infrared-A (wIRA radiators for clinical use on human skin fibroblasts assessed by MMP-1 gene expression (MMP-1 messenger ribonucleic acid (mRNA expression. Methods: Human skin fibroblasts were irradiated with approximately 88% wIRA (780-1400 nm and 12% red light (RL, 665-780 nm with 380 mW/cm² wIRA(+RL (333 mW/cm² wIRA on the one hand and for comparison with UV-A (330-400 nm, mainly UV-A1 and a small amount of blue light (BL, 400-450 nm with 28 mW/cm² UV-A(+BL on the other hand. Survival curves were established by colony forming ability after single exposures between 15 minutes and 8 hours to wIRA(+RL (340-10880 J/cm² wIRA(+RL, 300-9600 J/cm² wIRA or 15-45 minutes to UV-A(+BL (25-75 J/cm² UV-A(+BL. Both conventional Reverse Transcriptase Polymerase Chain Reaction (RT-PCR and quantitative real-time RT-PCR techniques were used to determine the induction of MMP-1 mRNA at two physiologic temperatures for skin fibroblasts (30°C and 37°C in single exposure regimens (15-60 minutes wIRA(+RL, 340-1360 J/cm² wIRA(+RL, 300-1200 J/cm² wIRA; 30 minutes UV-A(+BL, 50 J/cm² UV-A(+BL and in addition at 30°C in a repeated exposure protocol (up to 10 times 15 minutes wIRA(+RL with 340 J/cm² wIRA(+RL, 300 J/cm² wIRA

  3. A multiwavelength study of the Stingray Nebula; properties of the nebula, central star, and dust

    Science.gov (United States)

    Otsuka, Masaaki; Parthasarathy, Mudumba; Tajitsu, Akito; Hubrig, Swetlana

    2016-07-01

    We performed a detail chemical abundance analysis and photo-ionization modeling of the Stingray Nebula (Hen3-1357, Parthasarathy et al. 1993[1]) to more characterize this PN. We calculated nine elemental abundances using collisionally excited lines (CELs) and recombination lines (RLs). The RL C/O ratio indicates that this PN is O-rich, which is supported by the detection of the broad amorphous silicate features at 9 and 18 μm By photo-ionization modeling, we investigated properties of the central star and derived the gas and dust masses. The nebular elemental abundances, the core-mass of the central star, and the gas mass are in agreement with the AGB model for the initially 1.5 M ⊙ stars with the Z = 0.008.

  4. History of the solar-type protostar IRAS16293-2422 as told by the cyanopolyynes

    CERN Document Server

    Jaber, A A; Kahane, C; Viti, S; Balucani, N; Caux, E; Faure, A; Lefloch, B; Lique, F; Mendoza, E; Quenard, D; Wiesenfeld, L

    2016-01-01

    Cyanopolyynes are chains of carbon atoms with an atom of hydrogen and a CN group on either side. They are detected almost everywhere in the ISM, as well as in comets. In the past, they have been used to constrain the age of some molecular clouds, since their abundance is predicted to be a strong function of time. We present an extensive study of the cyanopolyynes distribution in the solar-type protostar IRAS16293-2422 based on TIMASSS IRAM-30m observations. The goals are (i) to obtain a census of the cyanopolyynes in this source and of their isotopologues; (ii) to derive how their abundance varies across the protostar envelope; and (iii) to obtain constraints on the history of IRAS16293-2422. We detect several lines from HC3N and HC5N, and report the first detection of DC3N, in a solar-type protostar. We found that the HC3N abundance is roughly constant (~1.3x10^(-11)) in the outer cold envelope of IRAS16293-2422, and it increases by about a factor 100 in the inner region where Tdust>80K. The HC5N has an abun...

  5. Expresión de la ira y autoconcepto en adolescentes tempranos

    Directory of Open Access Journals (Sweden)

    Yuri Arsenio Sanz-Martínez

    2012-01-01

    Full Text Available Abordó la exploración de las implicaciones de las modalidades de expresión de la ira entre adolescentes tempranos de la zona oriental de Cuba. La muestra estuvo compuesta por 498 adolescentes tempranos de Holguín y Santiago de Cuba respectivamente. Se obtuvo que la expresión abierta, y destructiva de la ira correlacionó negativamente con el autoconcepto en dominios de la escuela y las relaciones con el sexo opuesto. La expresión inhibida o interiorizada de esta emoción predijo fuertemente aspectos del autoconcepto relacionados con el dominio de la escuela. La ira expresada de forma controlada, calmada y asertiva se relacionó fuertemente con el autoconcepto en dimensiones generales, del ámbito escolar, de las relaciones interpersonales y de cualidades de honestidad y seguridad. Se recomienda realizar estudios paralelos para obtener información en otras etapas del desarrollo humano.

  6. Millimetric and sub-millimetric observations of IRAS 05327+3404 "Holoea" in M36

    CERN Document Server

    Morata, O; Ho, P T P; Huang, H C; Magnier, E A; Zhao-Geisler, R

    2013-01-01

    The transition between the proto-star, Class I, and the pre-main sequence star, Class II, phases is still one of the most uncertain, and important, stages in the knowledge of the process of formation of an individual star, because it is the stage that determines the final mass of the star. We observed the YSO "Holoea", associated with IRAS 05327+3404, which was classified as an object in transition between the Class I and Class II phases with several unusual properties, and appears to be surrounded by large amounts of circumstellar material. We used the SMA and BIMA telescopes at millimeter and sub-millimeter wavelengths to observe the dust continuum emission and the CO (1-0) and (2-1), HCO+ (1-0) and (3-2), and HCN (1-0) transitions in the region around IRAS 05327+3404. We detected two continuum emission peaks at 1.1-mm: SMM 1, the sub-mm counterpart of IRAS 05327+3404, and SMM 2, ~6 arcsec to the West. The emissions of the three molecules show marked differences. The CO emission near the systemic velocity i...

  7. Detection of glycolaldehyde towards the solar-type protostar NGC1333 IRAS2A

    CERN Document Server

    Coutens, Audrey; Jørgensen, Jes K; Wampfler, Susanne F; Lykke, Julie M

    2015-01-01

    Glycolaldehyde is a key molecule in the formation of biologically relevant molecules such as ribose. We report its detection with the Plateau de Bure interferometer towards the Class 0 young stellar object NGC1333 IRAS2A, which is only the second solar-type protostar for which this prebiotic molecule is detected. Local thermodynamic equilibrium analyses of glycolaldehyde, ethylene glycol (the reduced alcohol of glycolaldehyde) and methyl formate (the most abundant isomer of glycolaldehyde) were carried out. The relative abundance of ethylene glycol to glycolaldehyde is found to be ~5 -higher than in the Class 0 source IRAS 16293-2422 (~1), but comparable to the lower limits derived in comets ($\\geq$3-6). The different ethylene glycol-to-glycolaldehyde ratios in the two protostars could be related to different CH3OH:CO compositions of the icy grain mantles. In particular, a more efficient hydrogenation on the grains in NGC 1333 IRAS2A would favor the formation of both methanol and ethylene glycol. In conclusio...

  8. Methanol Observation of IRAS 19312+1950: A Possible New Type of Class I Methanol Masers

    CERN Document Server

    Nakashima, Jun-ichi; Salii, Svetlana V; Zhang, Yong; Yung, Bosco H K; Deguchi, Shuji

    2015-01-01

    We report the result of a systematic methanol observation toward IRAS 19312+1950. The properties of the SiO, H2O and OH masers of this object are consistent with those of mass-losing evolved stars, but some other properties are difficult to explain in the standard scheme of stellar evolution in its late stage. Interestingly, a tentative detection of radio methanol lines was suggested toward this object by a previous observation. To date, there are no confirmed detections of methanol emission towards evolved stars, so investigation of this possible detection is important to better understand the circumstellar physical/chemical environment of IRAS 19312+1950. In this study, we systematically observed multiple methanol lines of IRAS 19312+1950 in the lambda=3mm, 7mm, and 13mm bands, and detected 6 lines including 4 thermal lines and 2 class I maser lines. We derived basic physical parameters including kinetic temperature and relative abundances by fitting a radiative transfer model. According to the derived exci...

  9. A Halo Model of Local IRAS Galaxies Selected at 60 Micron Using Conditional Luminosity Functions

    CERN Document Server

    Wang, Lingyu; Oliver, Seb

    2010-01-01

    Using conditional luminosity functions (CLFs) which encode the luminosity distribution of galaxies as a function of halo mass, we construct a halo model of IRAS galaxies selected at 60 micron. An abundance matching technique is used to link galaxy luminosity to the host halo mass. The shape of the mass - light relation at 60 micron is different from those derived at r-, K- and B-band. This is because the 60 micron LF can not be fitted by a Schechter function with a sharp exponential cutoff. We then seek the parameters in the CLFs that best fit the LF and power spectrum. We find that the predicted galaxy bias as a function of L60 from the best-fit model agrees well with the clustering measurements. At the faint end of the LF where quiescent star-forming galaxies dominate, most IRAS galaxies are central galaxies in halos of M >~ 10^{10} h^{-1} M_sun but a non-negligible fraction are satellites typically hosted in more massive halos. The majority of IRAS galaxies with L60 >~ 10^{10} h^{-2} L_sun are M82 type sta...

  10. Origin of the Characteristic X-ray Spectral Variations of IRAS 13224$-$3809

    CERN Document Server

    Yamasaki, Hiroki; Ebisawa, Ken; Sameshima, Hiroaki

    2016-01-01

    The Narrow-line Seyfert 1 galaxy (NLS1) IRAS 13224$-$3809 is known to exhibit significant X-ray spectral variation, a sharp spectral drop at $\\sim$ 7 keV, strong soft excess emission, and a hint of iron L-edge feature, which is very similar to the NLS1 1H 0707$-$495. We have proposed the "Variable Double Partial Covering (VDPC) model" to explain the energy spectra and spectral variability of 1H 0707$-$495 (Mizumoto, Ebisawa and Sameshima 2014, PASJ, 66, 122). In this model, the observed flux/spectral variations below 10 keV within a $\\sim$day are primarily caused by change of the partial covering fraction of patchy clouds composed by double absorption layers in the line of sight. In this paper, we apply the VDPC model to IRAS 13224$-$3809. Consequently, we have found that the VDPC model can explain the observed spectral variations of IRAS 13224$-$3809 in the 0.5$-$10 keV band. In particular, we can explain the observed Root Mean Square (RMS) spectra (energy dependence of the fractional flux variation) in the ...

  11. Physical and chemical structure of the IC 63 nebula. 1: Millimeter and far-infrared observations

    Science.gov (United States)

    Jansen, David J.; Van Dishoeck, Ewine F.; Black, John H.

    1994-01-01

    We present results of a (sub)millimeter and far-infrared study of the reflection/emission nebula IC 63, located close to the BO.5p star gamma Cas. The source has been mapped in the (12)CO 2 - 1 and 3 - 2, (13)CO 2 - 1, and CS 2 - 1 lines and shows a small molecular cloud less than 1'x 2' in extent, which coincides with the brightest optical nebulosity and IRAS 100 micrometer emission. IC 63 is therefore an excellent example of a nearby (d approximately = 230 pc), edge-on photon-dominated region (PDR). Various other molecules have been observed at the peak position through their rotational transitions, in order to probe the physical parameters and to derive abundances. The measured CO, HCO(+) HCN, CS and H2CO line ratios suggest that the cloud is warm, T approximately = 50 K, and dense, n (H2) approximately = 5 x 10(exp 4)/cu cm. Excitation of molecules by electrons may play a significant role in this PDR. On the basis of these physical conditions, column densities have been determined from the observed line strengths. Several different methods are discussed to constrain the H2 column density, including the use of measured submillimeter continuum fluxes. The resulting abundances of species such as CN and CS are similar to those found in cold, dark clouds like TMC-1 and L134N. However, the abundances of other simple molecules such as HNC, HCO(+) and possibly C2H are lower by factors of at least three, probably because of the enhanced photodissociation rates at a distance of 1.3 pc from a B star. Surprisingly, only the abundance of the H2S molecule appears enhanced. More complex, volatile molecules such as CH3OH CH3CN and HNCO, and the sulfur-oxides SO and SO2 have not been found in this cloud. Limited observations of molecules in the reflection nebulea NGC 2023 are presented as well, and the resulting molecular abundances are compared with those found for IC 63.

  12. Abundant Solar Nebula Solids in Comets

    Science.gov (United States)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Clemett, S.

    2016-01-01

    Comets have been proposed to consist of unprocessed interstellar materials together with a variable amount of thermally annealed interstellar grains. Recent studies of cometary solids in the laboratory have shown that comets instead consist of a wide range of materials from across the protoplanetary disk, in addition to a minor complement of interstellar materials. These advances were made possible by the return of direct samples of comet 81P/Wild 2 coma dust by the NASA Stardust mission and recent advances in microscale analytical techniques. Isotopic studies of 'cometary' chondritic porous interplanetary dust particles (CP-IDPs) and comet 81P/Wild 2 Stardust samples show that preserved interstellar materials are more abundant in comets than in any class of meteorite. Identified interstellar materials include sub-micron-sized presolar silicates, oxides, and SiC dust grains and some fraction of the organic material that binds the samples together. Presolar grain abundances reach 1 weight percentage in the most stardust-rich CP-IDPs, 50 times greater than in meteorites. Yet, order of magnitude variations in presolar grain abundances among CP-IDPs suggest cometary solids experienced significant variations in the degree of processing in the solar nebula. Comets contain a surprisingly high abundance of nebular solids formed or altered at high temperatures. Comet 81P/Wild 2 samples include 10-40 micron-sized, refractory Ca- Al-rich inclusion (CAI)-, chondrule-, and ameboid olivine aggregate (AOA)-like materials. The O isotopic compositions of these refractory materials are remarkably similar to their meteoritic counterparts, ranging from 5 percent enrichments in (sup 16) O to near-terrestrial values. Comet 81P/Wild 2 and CP-IDPs also contain abundant Mg-Fe crystalline and amorphous silicates whose O isotopic compositions are also consistent with Solar System origins. Unlike meteorites, that are dominated by locally-produced materials, comets appear to be composed of

  13. Water-filtered infrared-A (wIRA can act as a penetration enhancer for topically applied substances

    Directory of Open Access Journals (Sweden)

    Sterry, Wolfram

    2008-07-01

    Full Text Available Background: Water-filtered infrared-A (wIRA irradiation has been shown to enhance penetration of clinically used topically applied substances in humans through investigation of functional effects of penetrated substances like vasoconstriction by cortisone. Aim of the study: Investigation of the influence of wIRA irradiation on the dermatopharmacokinetics of topically applied substances by use of optical methods, especially to localize penetrating substances, in a prospective randomised controlled study in humans. Methods: The penetration profiles of the hydrophilic dye fluorescein and the lipophilic dye curcumin in separate standard water-in-oil emulsions were determined on the inner forearm of test persons by tape stripping in combination with spectroscopic measurements. Additionally, the penetration was investigated in vivo by laser scanning microscopy. Transepidermal water loss, hydration of the epidermis, and surface temperature were determined. Three different procedures (modes A, B, C were used in a randomised order on three separate days of investigation in each of 12 test persons. In mode A, the two dyes were applied on different skin areas without water-filtered infrared-A (wIRA irradiation. In mode B, the skin surface was irradiated with wIRA over 30 min before application of the two dyes (Hydrosun® radiator type 501, 10 mm water cuvette, orange filter OG590, water-filtered spectrum: 590–1400 nm with dominant amount of wIRA. In mode C, the two dyes were applied and immediately afterwards the skin was irradiated with wIRA over 30 min. In all modes, tape stripping started 30 min after application of the formulations. Main variable of interest was the ratio of the amount of the dye in the deeper (second 10% of the stratum corneum to the amount of the dye in the upper 10% of the stratum corneum. Results: The penetration profiles of the hydrophilic fluorescein showed in case of pretreatment or treatment with wIRA (modes B and C an

  14. Weak magnetic fields in central stars of planetary nebulae?

    CERN Document Server

    Steffen, M; Todt, H; Schöller, M; Hamann, W -R; Sandin, C; Schönberner, D

    2014-01-01

    It is not yet clear whether magnetic fields play an essential role in shaping planetary nebulae (PNe), or whether stellar rotation alone and/or a close binary companion can account for the variety of the observed nebular morphologies. In a quest for empirical evidence verifying or disproving the role of magnetic fields in shaping PNe, we follow up on previous attempts to measure the magnetic field in a representative sample of PN central stars. We obtained low-resolution polarimetric spectra with FORS 2 at VLT for a sample of twelve bright central stars of PNe with different morphology, including two round nebulae, seven elliptical nebulae, and three bipolar nebulae. Two targets are Wolf-Rayet type central stars. For the majority of the observed central stars, we do not find any significant evidence for the existence of surface magnetic fields. However, our measurements may indicate the presence of weak mean longitudinal magnetic fields of the order of 100 Gauss in the central star of the young elliptical pla...

  15. OBSERVATIONS OF THE CRAB NEBULA'S ASYMMETRICAL DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Loll, A. M.; Desch, S. J.; Scowen, P. A. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287 (United States); Foy, J. P., E-mail: allison.loll@asu.edu [Barrett, The Honors College, Arizona State University, P.O. Box 871612, Tempe, AZ 85287 (United States)

    2013-03-10

    We present the first Hubble Space Telescope Wide Field Planetary Camera-2 imaging survey of the entire Crab Nebula, in the filters F502N ([O III] emission), F673N ([S II]), F631N ([O I]), and F547M (continuum). We use our mosaics to characterize the pulsar wind nebula (PWN) and its three-dimensional structure, the ionizational structure in the filaments forming at its periphery, the speed of the shock driven by the PWN into surrounding ejecta (by inferring the cooling rates behind the shock), and the morphology and ionizational structure of the Rayleigh-Taylor (R-T) fingers. We quantify a number of asymmetries between the northwest (NW) and southeast (SE) quadrants of the Crab Nebula. The lack of observed filaments in the NW, and our observations of the spatial extent of [O III] emission lead us to conclude that cooling rates are slower, and therefore the shock speeds are greater, in the NW quadrant of the nebula, compared with the SE. We conclude that R-T fingers are longer, more ionizationally stratified, and apparently more massive in the NW than in the SE, and the R-T instability appears more fully developed in the NW.

  16. Hard X-ray Variations in the Crab Nebula

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Cherry, M. L.; Case, G. L.; Baumgartner, W. H.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Camero-Arranz, A.; Connaughton, V.; Finger, M. H.; Gehrels, N.; Greiner, J.; Jahoda, K.; Jenke, P.; Kippen, R. M.; Kouveliotou, C.; Krimm, H. A.; Kuulkers, E.; Meegan, C. A.; Natalucci, L.; Paciesas, W. S.; Preece, R.; Rodi, J. C.; Skinner, G. K.

    2013-01-01

    In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM), August 2008 to August 2010, approximately 7% (70 mcrab) decline was discovered in the overall Crab Nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline was independently confirmed with four other instruments: the RXTE/PCA, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA from 1999-2010 was consistent with the pulsar spin-down, indicating that the observed changes were nebular. From 2001 to 2010, the Crab nebula flux measured with RXTE/ PCA was particularly variable, changing by up to approximately 3.5% per year in the 15-50 keV band. These variations were confirmed with INTEGRAL/SPI starting in 2003, Swift/BAT starting in 2005, and Fermi GBM starting in 2008. Before 2001 and since 2010, the Crab nebula flux has appeared more stable, varying by less than 2% per year. I will present updated light curves in multiple energy bands for the Crab Nebula, including recent data from Fermi GBM, Swift/BAT, INTEGRAL and MAXI, and a 16-year long light curve from RXTE/PCA.

  17. Particle acceleration and radiation in Pulsar Wind Nebulae

    CERN Document Server

    Amato, Elena

    2015-01-01

    Pulsar Wind Nebulae are the astrophysical sources that host the most relativistic shocks in Nature and the only Galactic sources in which we have direct evidence of PeV particles. These facts make them very interesting from the point of view of particle acceleration physics, and their proximity and brightness make them a place where fundamental processes common to different classes of relativistic sources have a better chance to be understood. I will discuss how well we understand the physics of Pulsar Wind Nebulae, describing recent progress and highlighting the main open questions. I will be mostly concerned with the subject of particle acceleration, but, as we will see, in order to clarify the physics of this process, it is important to determine the conditions of the plasma in the nebula. These in turn can only be constrained through detailed modelling of the PWN dynamics and radiation. The shock in the Crab Nebula is probably the most efficient accelerator known, both in terms of conversion of the flow e...

  18. Crab Nebula Variations in Hard X-rays

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2012-01-01

    The Crab Nebula was surprisingly variable from 2001-2010, with less variability before 2001 and since mid-2010. We presented evidence for spectral softening from RXTE, Swift/BAT, and Fermi GBM during the mid-2008-2010 flux decline. We see no clear connections between the hard X-ray variations and the GeV flares

  19. Crystalline silicates in planetary nebulae with [WC] central stars

    NARCIS (Netherlands)

    Waters, LBFM; Beintema, DA; Zijlstra, AA; de Koter, A; Molster, FJ; Bouwman, J; de Jong, T; Pottasch, [No Value; de Graauw, T

    We present ISO-SWS spectroscopy of the cool dusty envelopes surrounding two Planetary Nebulae with [WC] central stars, BD+30 3639 and He 2-113. The lambda <15 mu m region is dominated by a rising continuum with prominent emission from C-rich dust (PAHs), while the long wavelength part shows narrow

  20. CKVul: evolving nebula and three curious background stars

    CERN Document Server

    Hajduk, M; Zijlstra, A A

    2013-01-01

    We analyse the remnants of CK Vul (Nova Vul 1670) using optical imaging and spectroscopy. The imaging, obtained between 1991 and 2010, spans 5.6% of the life-time of the nebula. The flux of the nebula decreased during the last 2 decades. The central source still maintains the ionization of the innermost part of the nebula, but recombination proceeds in more distant parts of the nebula. Surprisingly, we discovered two stars located within 10 arcsec of the expansion centre of the radio emission that are characterized by pronounced long term variations and one star with high proper motion. The high proper motion star is a foreground object, and the two variable stars are background objects. The photometric variations of two variables are induced by a dusty cloud ejected by CK Vul and passing through the line of sight to those stars. The cloud leaves strong lithium absorption in the spectra of the stars. We discuss the nature of the object in terms of recent observations.

  1. Digital Libraries, Conceptual Knowledge Systems, and the Nebula Interface

    CERN Document Server

    Kent, Robert E

    2011-01-01

    Concept Analysis provides a principled approach to effective management of wide area information systems, such as the Nebula File System and Interface. This not only offers evidence to support the assertion that a digital library is a bounded collection of incommensurate information sources in a logical space, but also sheds light on techniques for collaboration through coordinated access to the shared organization of knowledge.

  2. Stellar X-ray Sources in the Rosette Nebula

    Institute of Scientific and Technical Information of China (English)

    W. P. Chen; P. S. Chiang; J. Z. Li

    2004-01-01

    We present optical photometric and spectroscopic studies of ROSAT X-ray stellar sources in the Rosette Nebula star-forming region. The brightest Xray sources are either massive stars or active T Tauri stars associated with the open cluster NGC 2244, or are foreground stars. Some of the spectra of the young stars newly identified in the region are presented.

  3. Interaction of planetary nebulae with the interstellar medium

    Science.gov (United States)

    Borkowski, Kazimierz J.; Sarazin, Craig L.; Soker, Noam

    1990-01-01

    The interaction of a moving planetary nebula (PN) with the interstellar medium is considered. The PN shell is compressed first in the direction of the stellar motion. This produces a dipole asymmetry in the surface brightness of the nebula, typically at a nebular density of about 40/cu cm if the nebula is located in the Galactic plane. In the later stages of the interaction, this part of the shell is significantly decelerated with respect to the central star, and the PN becomes strongly asymmetric in shape. This distortion and the subsequent stripping of the nebular gas away from the central star typically occurs at a low nebular density of about 6/cu cm. The morphology of PNs with central stars whose proper motions exceed 0.015 arcsec/yr was examined, and it was found that many of the extended nebulae are interacting with the interstellar medium (ISM). The sample doubles the number of known PNs interacting with the ISM. The morphology of nearby PNs was examined, and a number of strongly asymmetric nebuale were found.

  4. Modelling Jets, Tori and Flares in Pulsar Wind Nebulae

    Science.gov (United States)

    Porth, Oliver; Buehler, Rolf; Olmi, Barbara; Komissarov, Serguei; Lamberts, Astrid; Amato, Elena; Yuan, Yajie; Rudy, Alexander

    2017-03-01

    In this contribution we review the recent progress in the modelling of Pulsar Wind Nebulae (PWN). We start with a brief overview of the relevant physical processes in the magnetosphere, the wind-zone and the inflated nebula bubble. Radiative signatures and particle transport processes obtained from 3D simulations of PWN are discussed in the context of optical and X-ray observations. We then proceed to consider particle acceleration in PWN and elaborate on what can be learned about the particle acceleration from the dynamical structures called GwispsG observed in the Crab nebula. We also discuss recent observational and theoretical results of gamma-ray flares and the inner knot of the Crab nebula, which had been proposed as the emission site of the flares. We extend the discussion to GeV flares from binary systems in which the pulsar wind interacts with the stellar wind from a companion star. The chapter concludes with a discussion of solved and unsolved problems posed by PWN.

  5. Why convective heat transport in the solar nebula was inefficient

    Science.gov (United States)

    Cassen, P.

    1993-01-01

    The radial distributions of the effective temperatures of circumstellar disks associated with pre-main sequence (T Tauri) stars are relatively well-constrained by ground-based and spacecraft infrared photometry and radio continuum observations. If the mechanisms by which energy is transported vertically in the disks are understood, these data can be used to constrain models of the thermal structure and evolution of solar nebula. Several studies of the evolution of the solar nebula have included the calculation of the vertical transport of heat by convection. Such calculations rely on a mixing length theory of transport and some assumption regarding the vertical distribution of internal dissipation. In all cases, the results of these calculations indicate that transport by radiation dominates that by convection, even when the nebula is convectively unstable. A simple argument that demonstrates the generality (and limits) of this result, regardless of the details of mixing length theory or the precise distribution of internal heating is presented. It is based on the idea that the radiative gradient in an optically thick nebula generally does not greatly exceed the adiabatic gradient.

  6. Physics and chemistry of gas in planetary nebulae

    NARCIS (Netherlands)

    Bernard Salas, Jeronimo

    2003-01-01

    Stars are born, live and die similarly to any human being in the Universe. This thesis deals with the final stages of evolution (life) experíenced by stars like our Sun prior to their death, the so-called Planetary Nebula phase. In 5 billion years our Sun also will experience this phase and will bec

  7. Rule or exception? Planetary nebulae around hot subdwarf stars

    CERN Document Server

    Aller, A; Ulla, A; Oreiro, R; Manteiga, M; Pérez, E; Rodríguez-López, C; 10.1017/S174392131201647X

    2012-01-01

    In this work, we present the first results of an ongoing survey to search for planetary nebulae (PNe) around hot subdwarf stars (sdOs). Deep images and intermediate-resolution long-slit spectra of RWT 152, the only confirmed PN+sdO system in the northern hemisphere, as well as preliminary results for other sdO+PN candidate are presented.

  8. FORMING CHONDRITES IN A SOLAR NEBULA WITH MAGNETICALLY INDUCED TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yasuhiro; Turner, Neal J.; Masiero, Joseph [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wakita, Shigeru; Matsumoto, Yuji; Oshino, Shoichi, E-mail: yasuhiro@caltech.edu [Center for Computational Astrophysics, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-03-20

    Chondritic meteorites provide valuable opportunities to investigate the origins of the solar system. We explore impact jetting as a mechanism of chondrule formation and subsequent pebble accretion as a mechanism of accreting chondrules onto parent bodies of chondrites, and investigate how these two processes can account for the currently available meteoritic data. We find that when the solar nebula is ≤5 times more massive than the minimum-mass solar nebula at a ≃ 2–3 au and parent bodies of chondrites are ≤10{sup 24} g (≤500 km in radius) in the solar nebula, impact jetting and subsequent pebble accretion can reproduce a number of properties of the meteoritic data. The properties include the present asteroid belt mass, the formation timescale of chondrules, and the magnetic field strength of the nebula derived from chondrules in Semarkona. Since this scenario requires a first generation of planetesimals that trigger impact jetting and serve as parent bodies to accrete chondrules, the upper limit of parent bodies’ masses leads to the following implications: primordial asteroids that were originally ≥10{sup 24} g in mass were unlikely to contain chondrules, while less massive primordial asteroids likely had a chondrule-rich surface layer. The scenario developed from impact jetting and pebble accretion can therefore provide new insights into the origins of the solar system.

  9. The Galactic Bulge The Stellar and Planetary Nebulae Populations

    CERN Document Server

    Cuisinier, F; Acker, A; Maciel, W J

    2001-01-01

    We compare abundances patterns in the Bulge for elements observed in stars and in planetary nebulae. Some alpha elements, like Mg and Ti, are overabundant respect to Fe, and others are not, like He, O, Si, S, Ar, Ca. The first ones favor a quick evolution of the Galactic Bulge, and the seconds a much slower one.

  10. An ISO and IUE study of planetary nebula NGC 2440

    NARCIS (Netherlands)

    Salas, JB; Pottasch, [No Value; Feibelman, WA; Wesselius, PR

    2002-01-01

    The infrared and ultraviolet spectra of planetary nebula NGC2440 are presented. The observations were made by the Infrared Space Observatory (ISO) and the International Ultraviolet Explorer (IUE). These data, in conjunction with published optical observations have been used to derive electron temper

  11. Local space density and formation rate of planetary nebulae

    NARCIS (Netherlands)

    Pottasch, [No Value

    1996-01-01

    Individual distances of 50 nearby planetary nebulae are determined using a variety of methods, but excluding statistical methods or distance scales. These distances, together with a discussion of the sample completeness, are used to determine local PN formation rate. Together with the brightness of

  12. The central star of the Planetary Nebula NGC 6537

    NARCIS (Netherlands)

    Pottasch, [No Value

    2000-01-01

    The fact that Space Telescope WFPC2 images of the planetary nebula NGC 6537 fail to show the central star is used to derive a limit to its magnitude: it is fainter than a magnitude of 22.4 in the visible. This is used to derive a lower limit to the temperature of the star. The Zanstra temperature is

  13. The blue supergiant MN18 and its bipolar circumstellar nebula

    CERN Document Server

    Gvaramadze, V V; Bestenlehner, J M; Bodensteiner, J; Langer, N; Greiner, J; Grebel, E K; Berdnikov, L N; Beletsky, Y

    2015-01-01

    We report the results of spectrophotometric observations of the massive star MN18 revealed via discovery of a bipolar nebula around it with the Spitzer Space Telescope. Using the optical spectrum obtained with the Southern African Large Telescope, we classify this star as B1 Ia. The evolved status of MN18 is supported by the detection of nitrogen overabundance in the nebula, which implies that it is composed of processed material ejected by the star. We analysed the spectrum of MN18 by using the code CMFGEN, obtaining a stellar effective temperature of \\approx 21 kK. The star is highly reddened, E(B-V)\\approx 2 mag. Adopting an absolute visual magnitude of M_V=-6.8\\pm0.5 (typical of B1 supergiants), MN18 has a luminosity of log L/Lsun \\approx 5.42\\pm0.30, a mass-loss rate of \\approx (2.8-4.5)\\times10^{-7} Msun/yr, and resides at a distance of \\approx 5.6^{+1.5} _{-1.2} kpc. We discuss the origin of the nebula around MN18 and compare it with similar nebulae produced by other blue supergiants in the Galaxy (She...

  14. Preferrential Concentration of Particles in Protoplanetary Nebula Turbulence

    Science.gov (United States)

    Hartlep, Thomas; Cuzzi, Jeffrey N.

    2015-01-01

    Preferential concentration in turbulence is a process that causes inertial particles to cluster in regions of high strain (in-between high vorticity regions), with specifics depending on their stopping time or Stokes number. This process is thought to be of importance in various problems including cloud droplet formation and aerosol transport in the atmosphere, sprays, and also in the formation of asteroids and comets in protoplanetary nebulae. In protoplanetary nebulae, the initial accretion of primitive bodies from freely-floating particles remains a problematic subject. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" [1] in turbulent nebulae. One scenario that can lead directly from independent nebula particulates to large objects, avoiding the problematic m-km size range, involves formation of dense clumps of aerodynamically selected, typically mm-size particles in protoplanetary turbulence. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles generally known as "chondrules" [2]. Thus, while it is arcane, turbulent preferential concentration acting directly on chondrule size particles are worthy of deeper study. Here, we present the statistical determination of particle multiplier distributions from numerical simulations of particle-laden isotopic turbulence, and a cascade model for modeling turbulent concentration at lengthscales and Reynolds numbers not accessible by numerical simulations. We find that the multiplier distributions are scale dependent at the very largest scales but have scale-invariant properties under a particular variable normalization at smaller scales.

  15. History of the solar-type protostar IRAS 16293-2422 as told by the cyanopolyynes

    Science.gov (United States)

    Jaber Al-Edhari, A.; Ceccarelli, C.; Kahane, C.; Viti, S.; Balucani, N.; Caux, E.; Faure, A.; Lefloch, B.; Lique, F.; Mendoza, E.; Quenard, D.; Wiesenfeld, L.

    2017-01-01

    Context. Cyanopolyynes are chains of carbon atoms with an atom of hydrogen and a CN group on either side. They are detected almost everywhere in the interstellar medium (ISM), as well as in comets. In the past, they have been used to constrain the age of some molecular clouds, since their abundance is predicted to be a strong function of time. Finally, cyanopolyynes can potentially contain a large portion of molecular carbon. Aims: We present an extensive study of the cyanopolyynes distribution in the solar-type protostar IRAS 16293-2422. The goals are (i) to obtain a census of the cyanopolyynes in this source and of their isotopologues; (ii) to derive how their abundance varies across the protostar envelope; and (iii) to obtain constraints on the history of IRAS 16293-2422 by comparing the observations with the predictions of a chemical model. Methods: We analysed the data from the IRAM-30 m unbiased millimeter and submillimeter spectral survey towards IRAS 16293-2422 named TIMASSS. The derived spectral line energy distribution (SLED) of each detected cyanopolyyne was compared with the predictions from the radiative transfer code GRenoble Analysis of Protostellar Envelope Spectra (GRAPES) to derive the cyanopolyyne abundances across the envelope of IRAS 16293-2422. Finally, the derived abundances were compared with the predictions of the chemical model UCL_CHEM. Results: We detect several lines from cyanoacetylene (HC3N) and cyanodiacetylene (HC5N), and report the first detection of deuterated cyanoacetylene, DC3N, in a solar-type protostar. We found that the HC3N abundance is roughly constant ( 1.3 × 10-11) in the outer cold envelope of IRAS 16293-2422, and it increases by about a factor 100 in the inner region where the dust temperature exceeds 80 K, namely when the volcano ice desorption is predicted to occur. The HC5N has an abundance similar to HC3N in the outer envelope and about a factor of ten lower in the inner region. The comparison with the chemical

  16. Super-Acceleration in the Flaring Crab Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Tavani, Marco, E-mail: marco.tavani@inaf.it

    2013-10-15

    The Crab Nebula continues to surprise us. The Crab system (energized by a very powerful pulsar at the center of the Supernova Remnant SN1054) is known to be a very efficient particle “accelerator” which can reach PeV energies. Today, new surprising data concerning the gamma-ray flares produced by the Crab Nebula challenge models of particle acceleration. The total energy flux from the Crab has been considered for many decades substantially stable at X-ray and gamma-ray energies. However, this paradigm was shattered by the AGILE discovery and Fermi confirmation in September 2010 of transient gamma-ray emission from the Crab. Indeed, we can state that four major flaring gamma-ray episodes have been detected by AGILE and Fermi during the period mid-2007/2012. During these events, transient particle acceleration occurs in a regime which apparently violates the MHD conditions and synchrotron cooling constraints. This fact justifies calling “super-acceleration” the mechanism which produces the “flaring Crab phenomenon”. Radiation between 50 MeV and a few GeV is emitted with a quite hard spectrum within a short timescale (hours-days), with no obvious relation with simultaneous optical and X-ray emissions in the inner Nebula. “Super-acceleration” implies overcoming synchrotron cooling by strong (and “parallel”) electric fields most likely produced by magnetic field reconnection within the pulsar wind outflow. This acceleration appears to be very efficient and, remarkably, limited by radiation reaction. It is not clear at the moment where in the Nebula this phenomenon occurs. An intense observational program is now focused on the Crab Nebula to resolve its most challenging mystery.

  17. The Chandra planetary nebula survey (CHANPLANS). II. X-ray emission from compact planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.; Kastner, J. H. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Montez, R. Jr. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Jones, D. [Departamento de Física, Universidad de Atacama, Copayapu 485, Copiapó (Chile); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, Granada, E-18008 (Spain); Lopez, J. A. [Instituto de Astronomía, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Bujarrabal, V. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Corradi, R. L. M. [Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Nordhaus, J. [NSF Astronomy and Astrophysics Fellow, Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); and others

    2014-10-20

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ∼1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R {sub neb} ≲ 0.4 pc), young PNe that lie within ∼1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ∼27% and the point source detection rate to ∼36%. It has become clearer that diffuse X-ray emission is associated with young (≲ 5 × 10{sup 3} yr), and likewise compact (R {sub neb} ≲ 0.15 pc), PNe with closed structures and high central electron densities (n{sub e} ≳ 1000 cm{sup –3}), and is rarely associated with PNe that show H{sub 2} emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.

  18. IRAS 11472-0800: an extremely depleted pulsating binary post-AGB star

    Science.gov (United States)

    Van Winckel, H.; Hrivnak, B. J.; Gorlova, N.; Gielen, C.; Lu, W.

    2012-06-01

    Aims: We focus here on one particular and poorly studied object, IRAS 11472-0800. It is a highly evolved post-asymptotic giant branch (post-AGB) star of spectral type F, with a large infrared excess produced by thermal emission of circumstellar dust. Methods: We deployed a multi-wavelength study that includes the analyses of optical and IR spectra as well as a variability study based on photometric and spectroscopic time-series. Results: The spectral energy distribution (SED) properties as well as the highly processed silicate N-band emission show that the dust in IRAS 11472-0800 is likely trapped in a stable disc. The energetics of the SED and the colour variability show that our viewing angle is close to edge-on and that the optical flux is dominated by scattered light. With photospheric abundances of [Fe/H] = -2.7 and [Sc/H] = -4.2, we discovered that IRAS 11472-0800 is one of the most chemically-depleted objects known to date. Moreover, IRAS 11472-0800 is a pulsating star with a period of 31.16 days and a peak-to-peak amplitude of 0.6 mag in V. The radial velocity variability is strongly influenced by the pulsations, but the significant cycle-to-cycle variability is systematic on a longer time scale, which we interpret as evidence for binary motion. Conclusions: We conclude that IRAS 11472-0800 is a pulsating binary star surrounded by a circumbinary disc. The line-of-sight towards the object lies close to the orbital plane, therefore the optical light is dominated by scattered light. IRAS 11472-0800 is one of the most chemically-depleted objects known so far and links the dusty RV Tauri stars to the non-pulsating class of strongly depleted objects. Based on observations collected at the European Southern Observatory, Chile. Programme ID: 65.L-0615(A), on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos and on observations obtained with the HERMES

  19. Active galactic nucleus torus models and the puzzling infrared spectrum of IRAS F10214+4724

    Science.gov (United States)

    Efstathiou, A.; Christopher, N.; Verma, A.; Siebenmorgen, R.

    2013-12-01

    We present a revised model for the infrared emission of the hyperluminous infrared galaxy IRAS F10214+4724 which takes into account recent photometric data from Spitzer and Herschel that sample the peak of its spectral energy distribution. We first present and discuss a grid of smooth active galactic nucleus (AGN) torus models computed with the method of Efstathiou & Rowan-Robinson and demonstrate that the combination of these models and the starburst models of Efstathiou and coworkers, while able to give an excellent fit to the average spectrum of Seyfert 2s and spectra of individual type 2 quasars measured by Spitzer, fails to match the spectral energy distribution of IRAS F10214+4724. This is mainly due to the fact that the νSν distribution of the galaxy falls very steeply with increasing frequency (a characteristic that is usually indicative of heavy absorption by dust) but shows a silicate feature in emission. Such emission features are not expected in sources with optical/near-infrared type 2 AGN spectral signatures. The Herschel data show that there is more power emitted in the rest-frame 20-50 μm wavelength range compared with the model presented by Efstathiou which assumes three components of emission: an edge-on torus, clouds (at a temperature of 610 and 200 K) that are associated with the narrow-line region (NLR) and a highly obscured starburst that dominates in the submillimetre. We present a revised version of that model that assumes an additional component of emission which we associate with NLR clouds at a temperature of 100 K. The 100 K dust component could also be explained by a highly obscured hot starburst. The model suggests that the NLR of IRAS F10214+4724 has an unusually high covering factor (≥17 per cent) or more likely the magnification of the emission from the NLR clouds is significantly higher than that of the emission from the torus.

  20. IRAS 19520+2759: a 105 L⊙ massive young stellar object driving a collimated outflow

    Science.gov (United States)

    Palau, Aina; Sánchez Contreras, C.; Sahai, R.; Sánchez-Monge, Á.; Rizzo, J. R.

    2013-01-01

    The theory of massive star formation currently suffers from a scarce observational base of massive young stellar objects to compare with. In this paper, we present interferometric 12CO (1-0), 13CO (1-0), C18O (1-0) and 2.6 mm continuum images of the infrared source IRAS 19520+2759 together with complementary single-dish observations of CS (1-0), obtained with the 34 m antenna DSS-54 at the Madrid Deep Space Communications Complex, as well as archive images at different wavelengths. As a result from our work, IRAS 19520+2759, with a controversial nature in the past, is firmly established as a massive young stellar object associated with a strong and compact millimetre source and driving a collimated outflow. In addition, a second fainter millimetre source is discovered about 4 arcsec to the south, which is also driving an outflow. Furthermore, the two millimetre sources are associated with C18O clumps elongated perpendicularly to the outflows, which may be related to rotating toroids. The masses of gas and dust of the millimetre sources are estimated to be around 100 and 50 M⊙. MM1, the dominant source at all wavelengths, with a total luminosity of (1-2) × 105 L⊙ at 9 kpc, is however not associated with 6 cm emission down to an rms noise level of 0.1 mJy. We propose that IRAS 19520+2759 could be an example of the recent theoretical prediction of `bloated' or `swollen' star, i.e. a massive young stellar object whose radius has increased due to effects of accretion at a high-mass accretion rate.

  1. ANOMALOUSLY STEEP REDDENING LAW IN QUASARS: AN EXCEPTIONAL EXAMPLE OBSERVED IN IRAS 14026+4341

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Peng; Zhou Hongyan; Ji Tuo; Shu Xinwen; Liu Wenjuan; Dong Xiaobo; Wang Huiyuan; Wang Tinggui [Key Laboratory for Research in Galaxies and Cosmology, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui, 230026 (China); Wang Jianguo [National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, P.O. Box 110, Kunming, Yunnan 650011 (China); Bai Jinming, E-mail: jpaty@mail.ustc.edu.cn [Polar Research Institute of China, Jinqiao Road 451, Shanghai 200136 (China)

    2013-06-15

    A fraction of the heavily reddened quasars require a reddening curve that is even steeper than that of the Small Magellanic Cloud. In this paper, we thoroughly characterize the anomalously steep reddening law in quasars via an exceptional example observed in IRAS 14026+4341. By comparing the observed spectrum to the quasar composite spectrum, we derive a reddening curve in the rest-frame wavelength range of 1200-10000 A. It has a steep rise at wavelengths shorter than 3000 A, but no significant reddening at longer wavelengths. The absence of dust reddening in the optical continuum is confirmed by the normal broad-line Balmer decrement (the H{alpha}/H{beta} ratio) in IRAS 14026+4341. The anomalous reddening curve can be satisfactorily reproduced with a dust model containing silicate grains in a power-law size distribution, dn(a)/da{proportional_to}a {sup -1.4}, truncated at a maximum size of a{sub max} = 70 nm. The unusual size distribution may be caused by the destruction of large 'stardust' grains by quasar activities or a different dust formation mechanism (i.e., the in situ formation of dust grains in quasar outflows). It is also possible that the analogies of the dust grains observed near the Galactic center are responsible for the steep reddening curve. In addition, we find that IRAS 14026+4341 is a weak emission-line quasar (i.e., PHL 1811 analogies) with heavy dust reddening and blueshifted broad absorption lines.

  2. The Dense Molecular Gas and Nuclear Activity in the ULIRG IRAS 13120–5453

    Science.gov (United States)

    Privon, G. C.; Aalto, S.; Falstad, N.; Muller, S.; González-Alfonso, E.; Sliwa, K.; Treister, E.; Costagliola, F.; Armus, L.; Evans, A. S.; Garcia-Burillo, S.; Izumi, T.; Sakamoto, K.; van der Werf, P.; Chu, J. K.

    2017-02-01

    We present new Atacama Large Millimeter/submillimeter Array Band 7 (∼340 GHz) observations of the dense gas tracers HCN, HCO+, and CS in the local, single-nucleus, ultraluminous infrared galaxy IRAS 13120–5453. We find centrally enhanced HCN (4–3) emission, relative to HCO+ (4–3), but do not find evidence for radiative pumping of HCN. Considering the size of the starburst (0.5 kpc) and the estimated supernovae rate of ∼1.2 yr‑1, the high HCN/HCO+ ratio can be explained by an enhanced HCN abundance as a result of mechanical heating by the supernovae, though the active galactic nucleus and winds may also contribute additional mechanical heating. The starburst size implies a high ΣIR of 4.7 × 1012 L⊙ kpc‑2, slightly below predictions of radiation-pressure limited starbursts. The HCN line profile has low-level wings, which we tentatively interpret as evidence for outflowing dense molecular gas. However, the dense molecular outflow seen in the HCN line wings is unlikely to escape the Galaxy and is destined to return to the nucleus and fuel future star formation. We also present modeling of Herschel observations of the H2O lines and find a nuclear dust temperature of ∼40 K. IRAS 13120–5453 has a lower dust temperature and ΣIR than is inferred for the systems termed “compact obscured nuclei (CONs)” (such as Arp 220 and Mrk 231). If IRAS 13120–5453 has undergone a CON phase, we are likely witnessing it at a time when the feedback has already inflated the nuclear ISM and diluted star formation in the starburst/active galactic nucleus core.

  3. Mechanism of sorption sulpho-derivative organic chelating agents on strong base anion exchanger Amberlite IRA-402 by FT-IR/PAS and DRS methods

    Science.gov (United States)

    Wronski, G.; Pasieczna-Patkowska, S.; Hubicki, Z.

    2008-02-01

    In the paper, strong base anion exchanger Amberlite IRA-402 was modified by using sulpho-derivative organic chelating agents as: Brilliant Yellow, Xylenol Orange, Bromophenyl Blue. The investigations exhibited, that anion exchanger Amberlite IRA-402 is modified very simply by organic chelating agents (working capacity 0.25 0.5 g/cm3).

  4. High Velocity Precessing Jets from the Water Fountain IRAS 18286-0959 Revealed by VLBA Observations

    OpenAIRE

    Yung, Bosco; Nakashima, Jun-ichi; Imai, Hiroshi; Deguchi, Shuji; Diamond, Philip; Kwok, Sun

    2011-01-01

    We report the results of multi-epoch VLBA observations of the 22.2GHz water maser emission associated with the "water fountain" IRAS 18286-0959. We suggest that this object is the second example of a highly collimated bipolar precessing outflow traced by water maser emission, the other is W43A. The detected water emission peaks are distributed over a velocity range from -50km/s to 150km/s. The spatial distribution of over 70% of the identified maser features is found to be highly collimated a...

  5. Estudio de adsorción de boro con amberlite IRA 743

    OpenAIRE

    Marín Martínez, Alberto J.

    2011-01-01

    Este proyecto estudia los equilibrios y las cinéticas de adsorción de boro en forma de acido bórico en medio acuoso, mediante Amberlite IRA743, una resina de políestireno copolimerizado con divinilbenceno. Se realizan equilibrios a diferentes concentraciones para obtener una isoterma de adsorción y su ecuación corresponiente. Se hacen ensayos a distintas concentraciones de cinéticas de adsorción en batch y mediante balances de materia, la ecuación de equilibrio de la isoterma hayada y l...

  6. Medida de Estilos de Regulación Afectiva (MARS) ampliada en ira y tristeza

    OpenAIRE

    Páez Rovira, Darío; Martínez Sánchez, Francisco; Sevillano Triguero, Verónica; Mendiburo Seguel, Andrés; Campos, Miriam

    2012-01-01

    Se presenta una versión de la Measure of Affect Regulation Styles (MARS) ampliada, aplicada a episodios emocionales de ira y tristeza en una muestra de 355 estudiantes de licenciatura de Chile, España y México. El estudio examinó la asociación entre formas de regulación afectiva con la adaptación en estos episodios y con medidas disposicionales de afrontamiento, de regulación emocional y bienestar psicológico. Se confirmó que las estrategias de regulación emocional efectivas en cuanto a la me...

  7. 8- to 13-micron spectrophotometry of Comet IRAS-Araki-Alcock

    Science.gov (United States)

    Feierberg, M. A.; Witteborn, F. C.; Johnson, J. R.; Campins, H.

    1984-01-01

    Spectrophotometry between 8.0 and 13.0 microns at 2 percent spectral resolution is presented for areas in and near the nuclear condensation of Comet IRAS-Araki-Alcock (1983d) on May 11 and 12, 1983. All the spectra can be fit very well by blackbody curves, and no 10-micron silicate emissions are seen. The temperature structure of the coma suggests the presence of small (radii less than 5 microns) dust particles within 150 km of the nucleus and larger ones further out. The change in the spatial distribution of the infrared flux between the two nights suggests that an outburst may have occurred sometime on May 11.

  8. The 60-. mu. m and far-infrared luminosity functions of IRAS galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, W.; Rowan-Robinson, M.; Lawrence, A. (Queen Mary Coll., London (UK). Astronomy Unit); Efstathiou, G. (Cambridge Univ. (UK). Inst. of Astronomy Oxford Univ. (UK). Dept. of Astrophysics); Kaiser, N. (Cambridge Univ. (UK). Inst. of Astronomy Canadian Inst. for Theoretical Astrophysics, Toronto, Ont. (Canada)); Ellis, R.S.; Frenk, C.S. (Durham Univ. (UK). Dept. of Physics)

    1990-01-15

    The 60-{mu}m luminosity function for galaxies detected by IRAS is determined from a compilation of samples with highly complete redshift information totalling 2818 galaxies, including the new QMC-Cambridge-Durham survey and samples including many nearby, low-luminosity galaxies. We use clustering-independent maximum likelihood methods throughout. A non-parametric estimator is used to determine the shape of the luminosity function, and the best parameter set found for a suitable analytic form. We find the luminosity function to be well described by a Gaussian dependence on log(luminosity), changing over to a very flat power law at low luminosities. (author).

  9. Set-up of a new TDCR counter at IRA-METAS.

    Science.gov (United States)

    Nedjadi, Youcef; Bailat, Claude; Caffari, Yvan; Cassette, Philippe; Bochud, François

    2015-03-01

    A triple-to-double coincidence ratio (TDCR) counter was recently constructed at IRA-METAS for liquid scintillation based primary activity standardisations. A description of its optical chamber, efficiency change tools, photomultiplier tubes (PMTs) and electronics is given. This TDCR system was validated by measuring several standard solutions of beta emitters including (45)Ca, (14)C, (63)Ni and (3)H. The activity concentrations, obtained from these measurements and efficiencies computed with a FORTRAN code we developed for symmetric and asymmetric PMTs, agree with the certified values within uncertainties.

  10. Detection of water masers in a sample of 84 IRAS sources

    Institute of Scientific and Technical Information of China (English)

    WU YueFang; ESIMBEK Jarken; WANG JunZhi; LIU Xiang; QIN ShengLi; ZHANG Jin

    2007-01-01

    Using a newly installed system on the 25 m telescope of Urumqi Observatory, we searched for H2O maser emission towards 84 IRAS sources including young stellar objects (YSOs) and candidates for OH/IR stars. Water masers were detected in four star formation regions and one envelope of late type of stars for the first time. New water maser components were measured in two sources. In a maser source with no water maser emission detected six years ago, strong maser emission was found at different velocities, showing that there was a new explosion of water maser in this source.

  11. Trigonometric distance and proper motion of IRAS 20056+3350: a massive star-forming region on the solar circle

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Ross A.; Handa, Toshihiro; Omodaka, Toshihiro; Nakagawa, Akiharu; Nakanishi, Hiroyuki [Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Kôrimoto, Kagoshima, Kagoshima 890-0065 (Japan); Nagayama, Takumi [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hayashi, Masahiko [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Shizugami, Makoto, E-mail: RossBurns88@MilkyWay.sci.Kagoshima-u.ac.jp [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, 2-12 Hoshi-ga-oka, Mizusawa-ku, Oshu, Iwate 023-0861 (Japan)

    2014-12-10

    We report our measurement of the trigonometric distance and proper motion of IRAS 20056+3350, obtained from the annual parallax of H{sub 2}O masers. Our distance of D=4.69{sub −0.51}{sup +0.65} kpc, which is 2.8 times larger than the near kinematic distance adopted in the literature, places IRAS 20056+3350 at the leading tip of the Local arm and proximal to the solar circle. Using our distance, we reevaluate past observations to reveal IRAS 20056+3350 as a site of massive star formation at a young stage of evolution. This result is consistent with the spectral energy distribution of the source evaluated with published photometric data from UKIDSS, WISE, AKARI, IRAS, and the submillimeter continuum. Both analytical approaches reveal the luminosity of the region to be 2.4 × 10{sup 4} L {sub ☉}, and suggest that IRAS 20056+3350 is forming an embedded star of ≥16 M {sub ☉}. We estimated the proper motion of IRAS 20056+3350 to be (μ{sub α}cos δ, μ{sub δ}) = (–2.62 ± 0.33, –5.65 ± 0.52) mas yr{sup –1} from the group motion of H{sub 2}O masers, and use our results to estimate the angular velocity of Galactic rotation at the Galactocentric distance of the Sun, Ω{sub 0} = 29.75 ± 2.29 km s{sup –1} kpc{sup –1}, which is consistent with the values obtained for other tangent point and solar circle objects.

  12. Million-degree plasma pervading the extended Orion Nebula.

    Science.gov (United States)

    Güdel, Manuel; Briggs, Kevin R; Montmerle, Thierry; Audard, Marc; Rebull, Luisa; Skinner, Stephen L

    2008-01-18

    Most stars form as members of large associations within dense, very cold (10 to 100 kelvin) molecular clouds. The nearby giant molecular cloud in Orion hosts several thousand stars of ages less than a few million years, many of which are located in or around the famous Orion Nebula, a prominent gas structure illuminated and ionized by a small group of massive stars (the Trapezium). We present x-ray observations obtained with the X-ray Multi-Mirror satellite XMM-Newton, revealing that a hot plasma with a temperature of 1.7 to 2.1 million kelvin pervades the southwest extension of the nebula. The plasma flows into the adjacent interstellar medium. This x-ray outflow phenomenon must be widespread throughout our Galaxy.

  13. The filamentary Multi-Polar Planetary Nebula NGC 5189

    CERN Document Server

    Sabin, L; López, J A; García-Díaz, Ma T; Ramos-Larios, G

    2012-01-01

    We present a set of optical and infrared images combined with long-slit, medium and high dispersion spectra of the southern planetary nebula (PN) NGC 5189. The complex morphology of this PN is puzzling and has not been studied in detail so far. Our investigation reveals the presence of a new dense and cold infrared torus (alongside the optical one) which probably generated one of the two optically seen bipolar outflows and which might be responsible for the twisted appearance of the optical torus via an interaction process. The high-resolution MES-AAT spectra clearly show the presence of filamentary and knotty structures as well as three expanding bubbles. Our findings therefore suggest that NGC 5189 is a quadrupolar nebula with multiple sets of symmetrical condensations in which the interaction of outflows has determined the complex morphology.

  14. Kinematic ages of central stars of planetary nebulae

    CERN Document Server

    Maciel, W J; Costa, R D D

    2011-01-01

    The age distribution of the central stars of planetary nebulae (CSPN) is estimated using two methods based on their kinematic properties. First, the expected rotation velocities of the nebulae at their Galactocentric distances are compared with the predicted values for the rotation curve, and the differences are attributed to the different ages of the evolved stars. Adopting the relation between the ages and the velocity dispersions determined by the Geneva-Copenhagen survey, the age distribution can be derived. Second, the U, V, W, velocity components of the stars are determined, and the corresponding age-velocity dispersion relations are used to infer the age distribution. These methods have been applied to two samples of PN in the Galaxy. The results are similar for both samples, and show that the age distribution of the PN central stars concentrates in ages lower than 5 Gyr, peaking at about 1 to 3 Gyr.

  15. Gamma-ray flares from the Crab Nebula.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M

    2011-02-11

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  16. Catalysis by Dust Grains in the Solar Nebula

    Science.gov (United States)

    Kress, Monika E.; Tielens, Alexander G. G. M.

    1996-01-01

    In order to determine whether grain-catalyzed reactions played an important role in the chemistry of the solar nebula, we have applied our time-dependent model of methane formation via Fischer-Tropsch catalysis to pressures from 10(exp -5) to 1 bar and temperatures from 450 to 650 K. Under these physical conditions, the reaction 3H2 + CO yields CH4 + H2O is readily catalyzed by an iron or nickel surface, whereas the same reaction is kinetically inhibited in the gas phase. Our model results indicate that under certain nebular conditions, conversion of CO to methane could be extremely efficient in the presence of iron-nickel dust grains over timescales very short compared to the lifetime of the solar nebula.

  17. Planetary Nebula Candidates Uncovered with the HASH Research Platform

    CERN Document Server

    Fragkou, Vasiliki; Frew, David; Parker, Quentin

    2016-01-01

    A detailed examination of new high quality radio catalogues (e.g. Cornish) in combination with available mid-infrared (MIR) satellite imagery (e.g. Glimpse) has allowed us to find 70 new planetary nebula (PN) candidates based on existing knowledge of their typical colors and fluxes. To further examine the nature of these sources, multiple diagnostic tools have been applied to these candidates based on published data and on available imagery in the HASH (Hong Kong/ AAO/ Strasbourg H{\\alpha} planetary nebula) research platform. Some candidates have previously-missed optical counterparts allowing for spectroscopic follow-up. Indeed, the single object spectroscopically observed so far has turned out to be a bona fide PN.

  18. Prediction of close binarity based on planetary nebula morphology

    CERN Document Server

    Miszalski, B; Jones, D; Santander-García, M; Rodríguez-Gil, P; Rubio-Díez, M M

    2010-01-01

    A thorough search of the OGLE-III microlensing project has more than doubled the total sample of PNe known to have close binary central stars. These discoveries have enabled close binary induced morphological trends to be revealed for the first time. Canonical bipolar nebulae, low-ionisation structures and polar outflows are all identified within the sample and are provisionally associated with binarity. We have embarked upon a large photometric monitoring program using the Flemish Mercator telescope to simultaneously test the predictive power of these morphological features and to find more close binaries. Early results are very positive with at least five binaries found so far. This suggests our method is an effective means to expedite the construction of a statistically significant sample of close binary shaped nebulae. Such an authoritative sample will be essential to quantify the degree to which close binary nuclei may shape PNe.

  19. Modeling Gamma-ray Flares in the Crab Nebula

    Science.gov (United States)

    Yuan, Yajie; Blandford, R. D.; Simeon, P.

    2013-04-01

    The gamma-ray emission from the Crab Nebula shows variations on a wide range of time scales, with the most dramatic events being the flares observed by Fermi and AGILE: the flux can increase by a factor of ~10 within ~10 hours; the spectrum is characterized by a peak energy ~300 MeV, while no variation in other wavebands was detected. These variations present a great challenge to particle acceleration mechanisms. We consider two possible explanations of these flares. Firstly, we consider emission from a moving relativistic shock terminating the pulsar wind. Secondly, we treat the pulsar and its wind as a current generator and suppose that the current filaments into individual pinches that can undergo radial collapse and become strongly dissipative when the electric field becomes as strong as the magnetic field and Larmor radius of the highest energy particles becomes comparable with the radius. The application of these models to pulsar wind nebulae and relativistic jets will be outlined.

  20. Observations of "wisps" in magnetohydrodynamic simulations of the Crab Nebula

    CERN Document Server

    Camus, N F; Buccantini, N; Hughes, P A

    2009-01-01

    In this letter, we describe results of new high-resolution axisymmetric relativistic MHD simulations of Pulsar Wind Nebulae. The simulations reveal strong breakdown of the equatorial symmetry and highly variable structure of the pulsar wind termination shock. The synthetic synchrotron maps, constructed using a new more accurate approach, show striking similarity with the well known images of the Crab Nebula obtained by Chandra, and the Hubble Space Telescope. In addition to the \\textit{jet-torus} structure, these maps reproduce the Crab's famous moving wisps whose speed and rateof production agree with the observations. The variability is then analyzed using various statistical methods, including the method of structure function and wavelet transform. The results point towards the quasi-periodic behaviour with the periods of 1.5-3yr and MHD turbulence on scales below 1yr. The full account of this study will be presented in a follow up paper.

  1. Super Star Cluster Nebula in the Starburst Galaxy NGC 660

    Science.gov (United States)

    Naiman, J. P.; Turner, J. L.; Tsai, C.-W.; Beck, S. C.; Ho, P. T. P.

    2004-12-01

    We have mapped the starburst galaxy NGC 660 at 100mas resolution at K band (1.3 cm) with the NRAO Very Large Array. A peculiar galaxy at a distance of 13 Mpc, NGC 660 contains concentrated central star formation of power ˜ 2 x 1010 Lsun. Our 1.3 cm continuum image reveals a bright, compact source of less than 10 pc extent with a rising spectral index. We infer that this is optically thick free-free emission from a super star cluster nebula. The nebula is less than 10 pc in size, comparable in luminosity to the ``supernebula" in the dwarf galaxy, NGC 5253. We estimate that there are a few thousand O stars contained in this single young cluster. There are a number of other weaker continuum sources, either slightly smaller or more evolved clusters of similar size within the central 300 parsecs of the galaxy. This work is supported in part by the National Science Foundation.

  2. Improved spectral descriptions of planetary nebulae central stars

    CERN Document Server

    Weidmann, Walter; Gamen, Roberto

    2015-01-01

    Context. At least 492 central stars of Galactic planetary nebulae (CSPNs) have been assigned spectral types. Since many CSPNs are faint, these classification efforts are frequently made at low spectral resolution. However, the stellar Balmer absorption lines are contaminated with nebular emission; therefore in many cases a low-resolution spectrum does not enable the determination of the H abundance in the CSPN photosphere. Whether or not the photosphere is H deficient is arguably the most important fact we should expect to extract from the CSPN spectrum, and should be the basis for an adequate spectral classification system. Aims. Our purpose is to provide accurate spectral classifications and contribute to the knowledge of central stars of planetary nebulae and stellar evolution. Methods. We have obtained and studied higher quality spectra of CSPNs described in the literature as weak emission-line star (WELS). We provide descriptions of 19 CSPN spectra. These stars had been previously classified at low spect...

  3. Spectrophotometry of Bowen resonance fluorescence lines in three planetary nebulae

    Science.gov (United States)

    O'Dell, C. R.; Miller, Christopher O.

    1992-01-01

    The results are presented of a uniquely complete, carefully reduced set of observations of the O III Bowen fluorescence lines in the planetary nebulae NGC 6210, NGC 7027, and NGC 7662. A detailed comparison with the predictions of radiative excitation verify that some secondary lines are enhanced by selective population by the charge exchange mechanism involving O IV. Charge exchange is most important in NGC 6210, which is of significantly lower ionization than the other nebulae. In addition to the principal Bowen lines arising from Ly-alpha pumping of the O III O1 line, lines arising from pumping of the O3 line are also observed. Comparison of lines produced by O1 and O3 with the theoretical predictions of Neufeld indicate poor agreement; comparison with the theoretical predictions of Harrington show agreement with NGC 7027 and NGC 7662.

  4. External Photoevaporation of the Solar Nebula: Jupiter's Noble Gas Enrichments

    CERN Document Server

    Monga, Nikhil

    2014-01-01

    We present a model explaining elemental enrichments in Jupiter's atmosphere, particularly the noble gases Ar, Kr, and Xe. While He, Ne and O are depleted, seven other elements show similar enrichments ($\\sim$3 times solar, relative to H). Being volatile, Ar is difficult to fractionate from ${\\rm H}_{2}$. We argue that external photoevaporation by far ultraviolet (FUV) radiation from nearby massive stars removed ${\\rm H}_{2}$, He, and Ne from the solar nebula, but Ar and other species were retained because photoevaporation occurred at large heliocentric distances where temperatures were cold enough ($\\lt 30$ K) to trap them in amorphous water ice. As the solar nebula lost H it became relatively and uniformly enriched in other species. Our model improves on the similar model of Guillot \\& Hueso (2006). We recognize that cold temperatures alone do not trap volatiles; continuous water vapor production also is necessary. We demonstrate that FUV fluxes that photoevaporated the disk generated sufficient water va...

  5. Volatile inventories in clathrate hydrates formed in the primordial nebula

    CERN Document Server

    Mousis, O; Picaud, S; Cordier, D

    2010-01-01

    Examination of ambient thermodynamic conditions suggest that clathrate hydrates could exist in the martian permafrost, on the surface and in the interior of Titan, as well as in other icy satellites. Clathrate hydrates probably formed in a significant fraction of planetesimals in the solar system. Thus, these crystalline solids may have been accreted in comets, in the forming giant planets and in their surrounding satellite systems. In this work, we use a statistical thermodynamic model to investigate the composition of clathrate hydrates that may have formed in the primordial nebula. In our approach, we consider the formation sequence of the different ices occurring during the cooling of the nebula, a reasonable idealization of the process by which volatiles are trapped in planetesimals. We then determine the fractional occupancies of guests in each clathrate hydrate formed at given temperature. The major ingredient of our model is the description of the guest-clathrate hydrate interaction by a spherically a...

  6. THE FILAMENTARY MULTI-POLAR PLANETARY NEBULA NGC5189

    Directory of Open Access Journals (Sweden)

    L. Sabin

    2012-01-01

    Full Text Available We present a set of optical and infrared images combined with long-slit, medium and high dispersion spectra of the southern planetary nebula (PN NGC5189. The complex morphology of this PN is puzzling and has not been studied in detailed so far. Our investigation reveals the presence of a new dense and cold infrared torus (alongside the optical one which probably generated one of the two optically seen bipolar outflows and which might be responsible for the twisted appearance of the optical torus via an interaction process. The high-resolution MES-AAT spectra clearly show the presence of filamentary and knotty structures as well as three expanding bubbles. Our findings therefore suggest that NGC5189 is a quadrupolar nebula with multiple sets of symmetrical condensations in which the interaction of outflows has determined its complex morphology.

  7. MEDICIÓN DE LA IRA EN EL DEPORTE DE COMBATE: VALIDACIÓN DEL STAXI-2 EN DEPORTISTAS MEXICANOS

    OpenAIRE

    Felix Jesús Oliva Mendoza; Nazira Calleja Bello

    2010-01-01

    La ira es una emoción que juega un papel fundamental en la ejecución de los deportes de combate. El propósito del presente estudio fue desarrollar una versión para deportistas de combate del Inventario de Expresión de la Ira Estado- Rasgo, STAXI-2, versión española. La muestra estuvo conformada por 303 deportistas que formaban parte de las selecciones nacionales mexicanas de cinco deportes de combate. Los resultados mostraron una estructura factorial similar a la versión española, que reporta...

  8. Using the DIRBE/IRAS All-Sky Reddening Map To Select Low-Reddening Windows Near the Galactic Plane

    CERN Document Server

    Stanek, K Z

    1998-01-01

    Recently Schlegel, Finkbeiner & Davis published an all-sky reddening map based on the COBE/DIRBE and IRAS/ISSA infrared sky surveys. Using the reddening map of Baade's Window and sample of 19 low-latitude ($|b|<5\\deg$) Galactic globular clusters I find that the DIRBE/IRAS reddening map overestimates $E(B-V)$ at low galactic latitudes by a factor of $\\sim 1.35$. I also demonstrate the usefulness of this high resolution map for selecting low-reddening windows near the Galactic plane.

  9. The first published chart of the Andromeda Nebula, 1667

    Science.gov (United States)

    Gingerich, Owen

    2014-06-01

    The Parisian astronomer Ismaél Bullialdus (1605-1694) is known for his planetary tables (Astronomia philolaica, 1645) based on a geometrical approximation to the Keplerian ellipse, and for his long correspondence with the Danzig astronomer Johannes Hevelius and with Christiaan Huygens. Bullialdus became interested in the nascent study of variable stars, and in 1667 published a small pamphlet with two contributions, one on Mira Ceti and the other on the nebula in Andromeda. He found a manuscript portraying the nebula with the date 1428, and because Tycho Brahe never mentioned a nebula in Andromeda, Bullialdus conjectured that this object was a variable that had disappeared in the intervening era. “We conclude this since this conglomeration was observed neither by Hipparchus nor anyone else in antiquity, nor in the previous age by Tycho, nor in the age of our forefathers like Bayer.” His publication included a handsome engraving of the image of Andromeda and the position of the nebula, its first printed chart. I recently acquired a copy of this rare pamphlet, Ad astronomos monita duo, and realized that the image matched a manuscript now in the Gotha Research Library, a 15th-century Latin version based on the work of the tenth-century Islamic astronomer, al-Sufi. The manuscript does not carry the name of al-Sufi, and hence Bullialdus had no real clue about its origin or its date of composition. Paul Kunitzsch (The Arabs and the Stars, 1989, Article XI, “The Astronomer Abu ’l-Husayn al-Sufi”) has identified a group of eight “Latin al-Sufi” manuscripts from this period, scattered in European libraries, but only the one now in Gotha is an exact match to Bullialdus’ engraving. The al-Sufi manuscript was given to the Gotha Library in 1798 by Duke Ernst II of Saxonia-Gotha-Altenburg, who must have acquired it from France sometime in the 18th century.

  10. H2 in low-ionization structures of planetary nebulae

    Science.gov (United States)

    Akras, Stavros; Gonçalves, Denise R.; Ramos-Larios, Gerardo

    2017-02-01

    We report the detection of near-IR H2 emission from the low-ionization structures (knots) in two planetary nebulae. The deepest ever high-angular-resolution H2 (1-0) S(1) at 2.122 μm, H2 (2-1) S(1) at 2.248 μm and Brγ images of K 4-47 and NGC 7662, obtained using the Near InfraRed Imager and Spectrometer (NIRI) at Gemini-North, are analysed here. K 4-47 reveals a remarkable highly collimated bipolar structure not only in the optical but also in the molecular hydrogen emission. The H2 emission emanates from the walls of the bipolar outflows and also from the pair of knots at the tip of the outflows. The H2 (1-0) S(1)/(2-1) S(1) line ratio ranges from ˜7 to ˜10, suggesting the presence of shock interactions. Our findings can be explained by the interaction of a jet/bullet ejected from the central star with the surrounding asymptotic giant branch material. The strongest H2 line, (1-0) S(1), is also detected in several low-ionization knots located at the periphery of the elliptical planetary nebula NGC 7662, but only four of these knots are detected in the H2 (2-1) S(1) line. These four knots exhibit an H2 line ratio between 2 and 3.5, which suggests that the emission is caused by the UV ionizing flux of the central star. Our data confirm the presence of H2 gas in both fast- and slow-moving low-ionization knots, which has only been confirmed before in the nearby Helix nebula and Hu 1-2. Overall, the low-ionization structures of planetary nebulae are found to have similar traits to photodissociation regions.

  11. Simulating the Outer Nebula of SN 1987A

    Science.gov (United States)

    Fitzpatrick, Ben; Morris, Thomas; Podsiadlowski, Philipp

    2014-01-01

    As has been shown previously, the triple-ring nebula around SN 1987A can be understood as a direct consequence of the merger of two stars, some 20,000 yr before the explosion. Here we present new SPH simulations that also include the pre-merger mass loss and show that this may be able to explain other structures observed around SN 1987A, such as Napoleon's hat and various light echoes.

  12. Planetary nebulae as tracers of galaxy stellar populations

    OpenAIRE

    A. Buzzoni; Arnaboldi, M.; Corradi, R.L.M.

    2006-01-01

    We address the general problem of the luminosity-specific planetary nebula (PN) number, defined as alpha = N(PN)/L(gal), and its relationship with age and metallicity of the parent stellar population. Our analysis relies on population synthesis models for simple stellar populations and more elaborated galaxy models along the full star-formation range of the Hubble morphological sequence. This theoretical framework is compared with the updated census of the PN population in Local Group galaxie...

  13. A Broadband Emission Model of Magnetar Wind Nebulae

    Science.gov (United States)

    Tanaka, Shuta J.

    2016-08-01

    Angular momentum loss by the plasma wind is considered as a universal feature of isolated neutron stars including magnetars. The wind nebulae that are powered by magnetars allow us to compare the wind properties and the spin evolution of magnetars with those of rotation-powered pulsars (RPPs). In this paper, we construct a broadband emission model of magnetar wind nebulae (MWNe). This model is similar to past studies of young pulsar wind nebulae (PWNe) around RPPs, but is modified for the application to MWNe that have far less observational information than the young PWNe. We apply the model to the MWN around the youngest (˜1 kyr) magnetar, 1E 1547.0-5408, which has the largest spin-down power L spin among all the magnetars. However, the MWN is faint because of the low L spin of 1E 1547.0-5408 when compared to the young RPPs. Since most parameters are not well constrained by only an X-ray flux upper limit of the MWN, we adopt the model’s parameters from the young PWN Kes 75 around PSR J1846-0258, which is a peculiar RPP showing magnetar-like behaviors. The model predicts that γ-ray flux will be detected in a future TeV γ-ray observation by CTA (Cherenkov Telescope Array). The MWN spectrum does not allow us to test the hypothesis that 1E 1547.0-5408 had a period of milliseconds at its birth because the particles injected during the early phase of evolution suffered from severe adiabatic and synchrotron losses. Furthermore, both observational and theoretical studies of the wind nebulae around magnetars are required to constrain the wind and the spin-down properties of magnetars.

  14. Millimeter-wave molecular line observations of the Tornado nebula

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, D. [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Oka, T.; Tanaka, K.; Matsumura, S.; Miura, K.; Takekawa, S., E-mail: sakai.daisuke@nao.ac.jp [Department of Physics, Institute of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522 (Japan)

    2014-08-10

    We report the results of millimeter-wave molecular line observations of the Tornado Nebula (G357.7-0.1), which is a bright radio source behind the Galactic center region. A 15' × 15' area was mapped in the J = 1-0 lines of CO, {sup 13}CO, and HCO{sup +} with the Nobeyama Radio Observatory 45 m telescope. The Very Large Array archival data of OH at 1720 MHz were also reanalyzed. We found two molecular clouds with separate velocities, V{sub LSR} = –14 km s{sup –1} and +5 km s{sup –1}. These clouds show rough spatial anti-correlation. Both clouds are associated with OH 1720 MHz emissions in the area overlapping with the Tornado Nebula. The spatial and velocity coincidence indicates violent interaction between the clouds and the Tornado Nebula. Modestly excited gas prefers the position of the Tornado 'head' in the –14 km s{sup –1} cloud, also suggesting the interaction. Virial analysis shows that the +5 km s{sup –1} cloud is more tightly bound by self-gravity than the –14 km s{sup –1} cloud. We propose a formation scenario for the Tornado Nebula; the +5 km s{sup –1} cloud collided into the –14 km s{sup –1} cloud, generating a high-density layer behind the shock front, which activates a putative compact object by Bondi-Hoyle-Lyttleton accretion to eject a pair of bipolar jets.

  15. Kinematic study of planetary nebulae in NGC 6822

    CERN Document Server

    Flores-Durán, S N; Hernández-Martínez, L; García-Rojas, J; Ruiz, M T

    2014-01-01

    By measuring precise radial velocities of planetary nebulae (which belong to the intermediate age population), H II regions, and A-type supergiant stars (which are members of the young population) in NGC 6822, we aim to determine if both types of population share the kinematics of the disk of H I found in this galaxy. Spectroscopic data for four planetary nebulae were obtained with the high spectral resolution spectrograph Magellan Inamori Kyocera Echelle (MIKE) on the Magellan telescope at Las Campanas Observatory. Data for other three PNe and one H II region were obtained from the SPM Catalog of Extragalactic Planetary Nebulae which employed the Manchester Echelle Spectrometer attached to the 2.1m telescope at the Observatorio Astron\\'omico Nacional, M\\'exico. In the wavelength calibrated spectra, the heliocentric radial velocities were measured with a precision better than 5-6 km s$^{-1}$. Data for three additional H II regions and a couple of A-type supergiant stars were collected from the literature. The...

  16. Unusual Dust Emission from Planetary Nebulae in the Magellanic Clouds

    CERN Document Server

    Bernard-Salas, J; Sloan, G C; Gutenkunst, S; Matsuura, M; Tielens, A G G M; Zijlstra, A A; Houck, J R

    2009-01-01

    We present a Spitzer Space Telescope spectroscopic study of a sample of 25 planetary nebulae in the Magellanic Clouds. The low-resolution modules are used to analyze the dust features present in the infrared spectra. This study complements a previous work by the same authors where the same sample was analyzed in terms of neon and sulfur abundances. Over half of the objects (14) show emission of polycyclic aromatic hydrocarbons, typical of carbon-rich dust environments. We compare the hydrocarbon emission in our objects to those of Galactic HII regions and planetary nebulae, and LMC/SMC HII regions. Amorphous silicates are seen in just two objects, enforcing the now well-known-fact that oxygen-rich dust is less common at low metallicities. Besides these common features, some planetary nebulae show very unusual dust. Nine objects show a strong silicon carbide feature at 11um and twelve of them show magnesium sulfide emission starting at 25um. The high percentage of spectra with silicon carbide in the Magellanic...

  17. Global X-ray properties of the Orion Nebula region

    CERN Document Server

    Feigelson, E D; Townsley, L; Garmire, G; Preibisch, T; Grosso, N; Montmerle, T; Münch, A; McCaughrean, M; Feigelson, Eric D.; Getman, Konstantin; Townsley, Leisa; Garmire, Gordon; Preibisch, Thomas; Grosso, Nicolas; Montmerle, Thierry; Muench, Augustus; Caughrean, Mark Mc

    2005-01-01

    Based on the Chandra Orion Ultradeep Project (COUP) observation, we establish the global X-ray properties of the stellar population associated with the Orion Nebula. Three components contribute roughly equally to the integrated COUP luminosity in the hard (2-8 keV) X-ray band: several OB stars, 822 lightly obscured cool stars in the Orion Nebula Cluster (ONC), and 559 heavily obscured stars. ONC stars 0.5-2 pc from the center show a spatial asymmetry consistent with violent relaxation in the stellar dynamics. The obscured COUP sources concentrate around both OMC-1 molecular cores; these small-scale structures indicate ages t < 0.1 Myr. The X-ray luminosity function (XLF) of the lightly obscured sample is roughly lognormal in shape. The obscured population is deficient in lower-luminosity stars, perhaps due to localized circumstellar material. Mass-stratified XLFs show that one-third of the Orion Nebula region hard-band emission is produced by the bright O6 star theta-1 Ori C and half is produced by lower m...

  18. Mc Neil's Nebula in Orion: The Outburst History

    CERN Document Server

    Briceño, C; Hernández, J; Calvet, N; Hartmann, L; Megeath, T; Calkins, P BerlindM; Hoyer, S

    2004-01-01

    We present a sequence of I-band images obtained at the Venezuela 1m Schmidt telescope during the outburst of the nebula recently discovered by J.W. McNeil in the Orion L1630 molecular cloud. We derive photometry spanning the pre-outburst state and the brightening itself, a unique record including 14 epochs and spanning a time scale of ~5 years. We constrain the beginning of the outburst at some time between Oct. 28 and Nov. 15, 2003. The light curve of the object at the vertex of the nebula, the likely exciting source of the outburst, reveals that it has brightened ~5 magnitudes in about 4 months. The time scale for the nebula to develop is consistent with the light travel time, indicating that we are observing light from the central source scattered by the ambient cloud into the line of sight. We also show recent FLWO optical spectroscopy of the exciting source and of the nearby HH 22. The spectrum of the source is highly reddened; in contrast, the spectrum of HH 22 shows a shock spectrum superimposed on a c...

  19. The dust and gas content of the Crab Nebula

    CERN Document Server

    Owen, P J

    2015-01-01

    We have constructed MOCASSIN photoionization plus dust radiative transfer models for the Crab Nebula core-collapse supernova (CCSN) remnant, using either smooth or clumped mass distributions, in order to determine the chemical composition and masses of the nebular gas and dust. We computed models for several different geometries suggested for the nebular matter distribution but found that the observed gas and dust spectra are relatively insensitive to these geometries, being determined mainly by the spectrum of the pulsar wind nebula which ionizes and heats the nebula. Smooth distribution models are ruled out since they require 16-49 Msun of gas to fit the integrated optical nebular line fluxes, whereas our clumped models require 7.0 Msun of gas. neither of which can be matched by current CCSN yield predictions. A global gas-phase C/O ratio of 1.65 by number is derived, along with a He/H number ratio of 1.85, A carbonaceous dust composition is favoured by the observed gas-phase C/O ratio: amorphous carbon clu...

  20. Six years of VERITAS observations of the Crab Nebula

    CERN Document Server

    ,

    2015-01-01

    The Crab Nebula is the brightest source in the very-high-energy (VHE) gamma-ray sky and one of the best studied non-thermal objects. The dominant VHE emission mechanism is believed to be inverse Compton scattering of low energy photons on relativistic electrons. While it is unclear how the electrons in the nebula are accelerated to energies of $10^{16}$ eV, it is general consensus that the ultimate source of energy is the Crab pulsar at the center of the nebula. Studying VHE gamma-ray emission provides valuable insight into the emission mechanisms and ultimately helps to understand the remaining mysteries of the Crab, for example, how the Poynting dominated energy flow is converted into a particle dominated flow of energy. We report on the results of six years of Crab observations with VERITAS comprising 115 hours of data taken between 2007 and 2013. VERITAS is an array of four 12-meter imaging air Cherenkov telescopes located in southern Arizona. We report on the energy spectrum, light curve, and a study of ...