WorldWideScience

Sample records for preparing hydrous titanium

  1. Method for preparing hydrous titanium oxide spherules and other gel forms thereof

    Science.gov (United States)

    Collins, J.L.

    1998-10-13

    The present invention are methods for preparing hydrous titanium oxide spherules, hydrous titanium oxide gels such as gel slabs, films, capillary and electrophoresis gels, titanium monohydrogen phosphate spherules, hydrous titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite sorbent, titanium monohydrogen phosphate spherules having suspendible particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, titanium oxide spherules in the form of anatase, brookite or rutile, titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite, hydrous titanium oxide fiber materials, titanium oxide fiber materials, hydrous titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite, titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite and spherules of barium titanate. These variations of hydrous titanium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters and ceramics. 6 figs.

  2. Use of hydrous titanium dioxide as potential sorbent for the removal of manganese from water

    National Research Council Canada - National Science Library

    Kamaraj, Ramakrishnan; Ganesan, Pandian; Vasudevan, Subramanyan

    2014-01-01

    This research article deals with an electrosynthesis of hydrous titanium dioxide by anodic dissolution of titanium sacrificial anodes and their application for the adsorption of manganese from aqueous solution...

  3. Formulation and method for preparing gels comprising hydrous hafnium oxide

    Science.gov (United States)

    Collins, Jack L; Hunt, Rodney D; Montgomery, Frederick C

    2013-08-06

    Formulations useful for preparing hydrous hafnium oxide gels contain a metal salt including hafnium, an acid, an organic base, and a complexing agent. Methods for preparing gels containing hydrous hafnium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including hafnium, an acid, an organic base, and a complexing agent.

  4. Formulation and method for preparing gels comprising hydrous aluminum oxide

    Science.gov (United States)

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  5. Formulation and method for preparing gels comprising hydrous cerium oxide

    Science.gov (United States)

    Collins, Jack L; Chi, Anthony

    2013-05-07

    Formulations useful for preparing hydrous cerium oxide gels contain a metal salt including cerium, an organic base, and a complexing agent. Methods for preparing gels containing hydrous cerium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including cerium, an organic base, and a complexing agent.

  6. Method for preparing hydrous zirconium oxide gels and spherules

    Science.gov (United States)

    Collins, Jack L.

    2003-08-05

    Methods for preparing hydrous zirconium oxide spherules, hydrous zirconium oxide gels such as gel slabs, films, capillary and electrophoresis gels, zirconium monohydrogen phosphate spherules, hydrous zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite sorbent, zirconium monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite, hydrous zirconium oxide fiber materials, zirconium oxide fiber materials, hydrous zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite and spherules of barium zirconate. The hydrous zirconium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process are useful as inorganic ion exchangers, catalysts, getters and ceramics.

  7. Method for preparing hydrous iron oxide gels and spherules

    Science.gov (United States)

    Collins, Jack L.; Lauf, Robert J.; Anderson, Kimberly K.

    2003-07-29

    The present invention is directed to methods for preparing hydrous iron oxide spherules, hydrous iron oxide gels such as gel slabs, films, capillary and electrophoresis gels, iron monohydrogen phosphate spherules, hydrous iron oxide spherules having suspendable particles homogeneously embedded within to form composite sorbents and catalysts, iron monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent, iron oxide spherules having suspendable particles homogeneously embedded within to form a composite of hydrous iron oxide fiber materials, iron oxide fiber materials, hydrous iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, dielectric spherules of barium, strontium, and lead ferrites and mixtures thereof, and composite catalytic spherules of barium or strontium ferrite embedded with oxides of Mg, Zn, Pb, Ce and mixtures thereof. These variations of hydrous iron oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters, dielectrics, and ceramics.

  8. Use of hydrous titanium dioxide as potential sorbent for the removal of manganese from water

    Directory of Open Access Journals (Sweden)

    Ramakrishnan Kamaraj

    2014-12-01

    Full Text Available This research article deals with an electrosynthesis of hydrous titanium dioxide by anodic dissolution of titanium sacrificial anodes and their application for the adsorption of manganese from aqueous solution. Titanium sheet was used as the sacrificial anode and galvanized iron sheet was used as the cathode. The optimization of different experimental parameters like initial ion concentration, current density, pH, temperature, etc., on the removal efficiency of manganese was carried out. The maximum removal efficiency of 97.55 % was achieved at a current density of 0.08 A dm-2 and pH of 7.0. The Langmuir, Freundlich and Redlich Peterson isotherm models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The adsorption of manganese preferably followed the Langmuir adsorption isotherm. The adsorption kinetics was modelled by first- and second- order rate models and the adsorption kinetic studies showed that the adsorption of manganese was best described using the second-order kinetic model. Thermodynamic parameters indicate that the adsorption of manganese on hydrous titanium dioxide was feasible, spontaneous and exothermic.

  9. A radium assay technique using hydrous titanium oxide adsorbent for the Sudbury Neutrino Observatory

    Science.gov (United States)

    Andersen, T. C.; Black, R. A.; Blevis, I.; Boger, J.; Bonvin, E.; Chen, M.; Cleveland, B. T.; Dai, X.; Dalnoki-Veress, F.; Doucas, G.; Farine, J.; Fergani, H.; Fowler, M. M.; Hahn, R. L.; Hallman, E. D.; Hargrove, C. K.; Heron, H.; Hooper, E.; Howard, K. H.; Jagam, P.; Jelley, N. A.; Knox, A. B.; Lee, H. W.; Levine, I.; Locke, W.; Majerus, S.; McFarlane, K.; McGregor, G.; Miller, G. G.; Moorhead, M.; Noble, A. J.; Omori, M.; Rowley, J. K.; Shatkay, M.; Shewchuk, C.; Simpson, J. J.; Sinclair, D.; Tanner, N. W.; Taplin, R. K.; Trent, P. T.; Wang, J.-X.; Wilhelmy, J. B.; Yeh, M.

    2003-04-01

    As photodisintegration of deuterons mimics the disintegration of deuterons by neutrinos, the accurate measurement of the radioactivity from thorium and uranium decay chains in the heavy water in the Sudbury Neutrino Observatory (SNO) is essential for the determination of the total solar neutrino flux. A radium assay technique of the required sensitivity is described that uses hydrous titanium oxide adsorbent on a filtration membrane together with a β-α delayed coincidence counting system. For a 200 tonne assay the detection limit for 232Th is a concentration of ˜3×10 -16 g Th/g water and for 238U of ˜3×10 -16 g U/g water. Results of assays of both the heavy and light water carried out during the first 2 years of data collection of SNO are presented.

  10. A radium assay technique using hydrous titanium oxide adsorbent for the Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, T.C.; Black, R.A.; Blevis, I.; Boger, J.; Bonvin, E.; Chen, M.; Cleveland, B.T.; Dai, X.; Dalnoki-Veress, F.; Doucas, G.; Farine, J.; Fergani, H.; Fowler, M.M.; Hahn, R.L.; Hallman, E.D.; Hargrove, C.K.; Heron, H.; Hooper, E.; Howard, K.H.; Jagam, P.; Jelley, N.A. E-mail: n.jelley@physics.oxford.ac.uk; Knox, A.B.; Lee, H.W.; Levine, I.; Locke, W.; Majerus, S.; McFarlane, K.; McGregor, G.; Miller, G.G.; Moorhead, M.; Noble, A.J.; Omori, M.; Rowley, J.K.; Shatkay, M.; Shewchuk, C.; Simpson, J.J.; Sinclair, D.; Tanner, N.W.; Taplin, R.K.; Trent, P.T.; Wang, J.-X.; Wilhelmy, J.B.; Yeh, M

    2003-04-01

    As photodisintegration of deuterons mimics the disintegration of deuterons by neutrinos, the accurate measurement of the radioactivity from thorium and uranium decay chains in the heavy water in the Sudbury Neutrino Observatory (SNO) is essential for the determination of the total solar neutrino flux. A radium assay technique of the required sensitivity is described that uses hydrous titanium oxide adsorbent on a filtration membrane together with a {beta}-{alpha} delayed coincidence counting system. For a 200 tonne assay the detection limit for {sup 232}Th is a concentration of {approx}3x10{sup -16} g Th/g water and for {sup 238}U of {approx}3x10{sup -16} g U/g water. Results of assays of both the heavy and light water carried out during the first 2 years of data collection of SNO are presented.

  11. A radium assay technique using hydrous titanium oxide adsorbent for the Sudbury Neutrino Observatory

    CERN Document Server

    Andersen, T C

    2003-01-01

    As photodisintegration of deuterons mimics the disintegration of deuterons by neutrinos, the accurate measurement of the radioactivity from thorium and uranium decay chains in the heavy water in the Sudbury Neutrino Observatory (SNO) is essential for the determination of the total solar neutrino flux. A radium assay technique of the required sensitivity is described that uses hydrous titanium oxide adsorbent on a filtration membrane together with a beta-alpha delayed coincidence counting system. For a 200 tonne assay the detection limit for 232Th is a concentration of 3 x 10^(-16) g Th/g water and for 238U of 3 x 10^(-16) g U/g water. Results of assays of both the heavy and light water carried out during the first two years of data collection of SNO are presented.

  12. Preparation and Characterization of Hydrous Zirconium Oxide Formed by Homogeneous Precipitation

    Directory of Open Access Journals (Sweden)

    Silva G.L.J.P. da

    2002-01-01

    Full Text Available This paper reports on the preparation, characterization and study of the ion exchange behavior of hydrous zirconium oxides formed by homogeneous precipitation from zirconium oxychloride. The precipitants used were obtained by thermal decomposition of urea, sodium nitrite or ammonium carbonate. Seven compounds were prepared and characterized by thermal analysis, X-ray diffractometry and by surface area measurements. Amorphous forms were obtained in each case, a result that agrees with those obtained by conventional gel precipitation methodology. All these materials present surface area values of >148 m².g-1, determined after heat treatment at 50 °C. The ion exchange behavior of each hydrous zirconium oxide prepared was studied using K+ as the exchanged species and the results compared with those obtained for hydrous zirconium oxide originally precipitated by the sol gel method.

  13. Preparation and Electrochemistry of Hydrous Ruthenium Oxide/Active Carbon Electrode materials for Supercapacitor

    Institute of Scientific and Technical Information of China (English)

    Zhang; Jianrong

    2001-01-01

    In this paper, we reported a new method to directly prepare the amorphous hydrous ruthenium oxide/active carbon powders. The relationship between the specific capacitance and ruthenium content in powders was studied in detail. Physical properties of the powders such as crystallinity、 particle size, and electrochemical characteristics of electrodes were reported along with the capacitor performance.  ……

  14. Preparation and Electrochemistry of Hydrous Ruthenium Oxide/Active Carbon Electrode materials for Supercapacitor

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ In this paper, we reported a new method to directly prepare the amorphous hydrous ruthenium oxide/active carbon powders. The relationship between the specific capacitance and ruthenium content in powders was studied in detail. Physical properties of the powders such as crystallinity、 particle size, and electrochemical characteristics of electrodes were reported along with the capacitor performance.

  15. Determination of Ideal Broth Formulations Needed to Prepare Hydrous Cerium Oxide Microspheres via the Internal Gelation Process

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Jack Lee [ORNL; Chi, Anthony [ORNL

    2009-02-01

    A simple test tube methodology was used to determine optimum process parameters for preparing hydrous cerium oxide microspheres via the internal gelation process.1 Broth formulations of cerium ammonium nitrate [(NH4)2Ce(NO3)6], hexamethylenetetramine, and urea were found that can be used to prepare hydrous cerium oxide gel spheres in the temperature range of 60 to 90 C. A few gel-forming runs were made in which microspheres were prepared with some of these formulations to be able to equate the test-tube gelation times to actual gelation times. These preparations confirmed that the test-tube methodology is reliable for determining the ideal broth formulations.

  16. Preparation of titanium/aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jecker, G.

    1984-03-20

    Alloys comprising titanium and aluminum, or titanium, aluminum and at least one of the metals M, wherein M is vanadium, zirconium, chromium, niobium, tantalum and/or iron, are facilely prepared by reducing an alkali metal fluotitanate, or coreducing admixture of an alkali metal fluotitanate and at least one halide of a metal M, with aluminum, in the presence of an alkali metal oxide reactive flux, either Na/sub 2/O and/or K/sub 2/O; next solubilizing with water the fluorine compounds of reduction/coreduction which are in admixture of reduction/coreduction with dispersion of the aforesaid metals in metallic state; separating said dispersion of metals in metallic state from said admixture of reduction/coreduction; and then alloying by melting and cooling said separated dispersion of metals in metallic state.

  17. Preparation and integration of nanostructured titanium dioxide

    KAUST Repository

    Zeng, Hua Chun

    2011-10-01

    Titanium dioxide (TiO2) is a chemically stable nontoxic transition-metal oxide associated with a wide range of existing chemical engineering processes. In this short review, recent research endeavors in preparation and integration of nanostructured TiO2 materials system will be featured and discussed for their potential new applications. Because material development always plays pivotal roles in the progress of a particular engineering discipline, the reviewed subjects will provide useful information to stimulate nanoscale research of chemical engineering, linking established fundamentals with practical applications. Some critical issues and challenges regarding further development of this important functional material for nanotechnology will also be addressed. © 2011 Elsevier Ltd. All rights reserved.

  18. Preparation and characterization of nitrogen-doped titanium dioxides

    Institute of Scientific and Technical Information of China (English)

    ZHU GuoPing; ZHOU KangGen

    2007-01-01

    A type of high visible-light active titanium oxinitride (TiO2_xNx) powder was prepared by a simple process: the calcination of the hydrated titanium dioxide at the atmosphere of ammonia-argon using a tubular electric furnace at high temperatures. The hydrated titanium dioxide was synthesized as the precursor of TiO2_xNx using titanic acid as raw material, which came from sulfate technique of producing titanium white. The effects of temperature and reaction time on the nitrogen content, grain size and crystal structure were studied. The visible-light activity and photocatalysis capability of the powder were also investigated.

  19. High sensitivity measurement of 224Ra and 226Ra in water with an improved hydrous titanium oxide technique at the Sudbury Neutrino Observatory

    CERN Document Server

    Aharmim, B; Dai, X; Doucas, G; Farine, J; Fergani, H; Ford, R; Hahn, R L; Hallman, E D; Jelley, N A; Lange, R; Majerus, S; Mifflin, C; Noble, A J; O'Keeffe, H M; Rodriguez-Jimenez, R; Sinclair, D; Yeh, M

    2008-01-01

    The existing hydrous titanium oxide (HTiO) technique for the measurement of 224Ra and 226Ra in the water at the Sudbury Neutrino Observatory (SNO) has been changed to make it faster and less sensitive to trace impurities in the HTiO eluate. Using HTiO-loaded filters followed by cation exchange adsorption and HTiO co-precipitation, Ra isotopes from 200-450 tonnes of heavy water can be extracted and concentrated into a single sample of a few millilitres with a total chemical efficiency of 50%. Combined with beta-alpha coincidence counting, this method is capable of measuring 2.0x10^3 uBq/kg of 224Ra and 3.7x10^3 uBq/kg of 226Ra from the 232Th and 238U decay chains, respectively, for a 275 tonne D2O assay, which are equivalent to 5x10^16 g Th/g and 3x10^16 g U/g in heavy water.

  20. Preparation of titanium diboride powders from titanium alkoxide and boron carbide powder

    Indian Academy of Sciences (India)

    Hamed Sinaei Pour Fard; Hamidreza Baharvandi

    2011-07-01

    Titanium diboride powders were prepared through a sol–gel and boron carbide reduction route by using TTIP and B4C as titanium and boron sources. The influence of TTIP concentration, reaction temperature and molar ratio of precursors on the synthesis of titanium diboride was investigated. Three different concentrations of TTIP solution, 0.033/0.05/0.1, were prepared and the molar ratio of B4C to TTIP varied from 1.3 to 2.5. The results indicated that as the TTIP concentration had an important role in gel formation, the reaction temperature and B4C to TTIP molar ratio showed obvious effects on the formation of TiB2. Pure TiB2 was prepared using molar composition of Ti : B4C = 1 : 2.3 and the optimum synthesis temperature was 1200°C.

  1. Preparation and characterization of nitrogen-doped titanium dioxides

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A type of high visible-light active titanium oxinitride(TiO2-xNx) powder was prepared by a simple proc-ess:the calcination of the hydrated titanium dioxide at the atmosphere of ammonia-argon using a tu-bular electric furnace at high temperatures. The hydrated titanium dioxide was synthesized as the precursor of TiO2-xNx using titanic acid as raw material,which came from sulfate technique of produc-ing titanium white. The effects of temperature and reaction time on the nitrogen content,grain size and crystal structure were studied. The visible-light activity and photocatalysis capability of the powder were also investigated.

  2. Dynamic Adsorption of Uranium From Salt Lake Brine Using Hydrous Titanium Oxide%用水合氧化钛从模拟盐湖卤水中动态吸附铀的试验研究

    Institute of Scientific and Technical Information of China (English)

    许影; 成弘; 邓锦勋; 王立民

    2016-01-01

    Extracting uranium from simulative saline lake brine using hydrous titanium oxide composed by PVA ,silica gel and titanic sulfate was researched . The dynamic adsorption and desorption experiments were done .The results show that the the hydrous titanium oxide has good adsorption property and stability in the simulative saline lake brine .The recovery rate of uranium is more than 80 percent in the 3 times circulation .The desorption effect of uranium from the loading HTO using 2 BV saturated salt water and 7 BV water is the best ,dynamic desorption rate is more than 99 percent .The hydrous titanium oxide can resist chloride interference and can be used to extract uranium from saline lake brine .%研究了用聚乙烯醇(PVA )、硅胶和硫酸钛为主要原料合成的水合氧化钛从模拟盐湖卤水中提取铀,分别进行了动态吸附与淋洗试验。结果表明:在模拟盐湖卤水中,水合氧化钛有较好的稳定性和吸附铀的性能,3次吸附循环中,铀回收率都在80%以上;负载树脂用饱和氯化钠溶液+清水淋洗,效果较好,动态淋洗率在99%以上。水合氧化钛有较好的耐氯根干扰能力,将其用于从盐湖卤水中提取铀的前景较好。

  3. Preparation of Titanium Nitride Nanoparticles from a Novel Refiuxing Derived Precursor

    Institute of Scientific and Technical Information of China (English)

    LIU Fei; LIANG Xiaofeng; LI Yongdi; YAO Yadong; ZHANG Hao; SHAO Wei; KANG Yunqing; YIN Guangfu; HUANG Zhongbing; LIAO Xiaoming

    2011-01-01

    Titanium nitride (TiN) nanoparticles were prepared from a novel refiuxing-derived precursor.The organic/inorganic hybrid precursor was prepared by a two-stage refluxing method using hydrous TiO2 as titania source and n-dodecane as carbon source. The precursor was heat-treated to 1 200 ℃ in flowing ammonia (NH3) to get TiN nanoparticles. The phase and chemical compositions were investigated by means of XRD,Raman spectroscopy and XPS. Samples microstructure was studied by means of SEM, TEM and SEAD. XRD pattern indicated that the product was face-centered cubic TiN with a lattice constant a = 4.236(A) and average crystallite sizes of 35.2 nm. Raman spectra indicated that long time refluxing results in Alkane dehydrogenation and the formation of coke on TiO2 nanoparticles. Oxygen presence in TiN lattice was confirmed by XPS investigation. The particle size that was showed by Electron microscopy photographs ranged from 20 to 60 nm.

  4. Preparation of calcium carbonate particles coated with titanium dioxide

    Institute of Scientific and Technical Information of China (English)

    Hai Lin; Ying-bo Dong; Le-yong Jiang

    2009-01-01

    The preparation of a new mineral composite material, calcium carbonate particles coated with titanium dioxide, was stud-ied. The mechanism of the preparation process was proposed. The new mineral composite material was made by the mechanochemi-eal method under the optimum condition that the mass ratio of calcium carbonate particles to titanium dioxide was 6.5:3.5. The mass ratios of two different types of titanium dioxide (anatase to rutile) and grinding media to grinded materials were 8:2 and 4:1 respec-tively, and the modified density was 60%. Under this condition, the new material was capable of forming after 120-min modification.The hiding power and oil absorption of this new material were 29.12 g/m~2 and 23.30%, respectively. The results show that the modi-fication is based on surface hydroxylation. After coating with titanium dioxide, the hiding power of calcium carbonate can be im-proved greatly. The new mineral composite materials can be used as the substitute for titanium dioxide.

  5. Preparation and properties of biomedical porous titanium alloys by gelcasting.

    Science.gov (United States)

    Yang, Donghua; Shao, Huiping; Guo, Zhimeng; Lin, Tao; Fan, Lianpeng

    2011-08-01

    Porous titanium alloys have been prepared by gelcasting in this study. The elastic solid green body was first polymerized and then vacuum sintered to porous titanium alloys with low contamination by controlling sintering conditions. The microstructure and the total porosity of the vacuum sintered porous Ti-Co and Ti-Mo alloys were analyzed by using scanning electron microscopy and x-ray diffraction. Moreover, compression and bending tests were conducted to investigate their mechanical properties. The results show that open and closed three-dimensional pore morphologies and total porosity ranging from 38.34% to 58.32% can be achieved. In contrast to porous Ti by gelcasting, the compression and bending strengths of porous titanium alloys were significantly increased by adding Mo and Co with Young's modulus ranging between 7-25 GPa, which is close to that of human cortical bone, therefore being suited for potential application in load-bearing implants.

  6. Agglomerated nanoparticles of hydrous Ce(IV) + Zr(IV) mixed oxide: Preparation, characterization and physicochemical aspects on fluoride adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Abir; Chakrabarti, Sharadindra; Biswas, Krishna; Ghosh, Uday Chand, E-mail: ucghosh@yahoo.co.in

    2014-07-01

    Hydrous Ce(IV)–Zr(IV) oxide (Ce/Zr ~ 1:1, mol/mol) (HCZMO) prepared by simple chemical precipitation was nanoparticles (60–70 nm) agglomerate with irregular surface morphology. The BET surface area, pore volume and pHzpc were estimated to be 185.04 m² g⁻¹, 0.1219 cm³ g⁻¹ and 5.8 (±0.2), respectively. Investigation of fluoride adsorption over HCZMO from its aqueous phase at an optimized pH ~ 6.0 showed that the adsorption kinetics and equilibrium data described, respectively, the pseudo-second order equation (R² = 0.98–0.99) and the Langmuir isotherm (R² > 0.99) very well. Values of the computed Arrhenius activation energy, Ea (1.16 kJ mol⁻¹), Langmuir monolayer capacity, θ (19.5 mg g⁻¹), D–R adsorption energy, ED–R (15.05 kJ mol⁻¹) and isosteric heat of reaction, ΔHr (0.518 kJ mol⁻¹) suggested that the fluoride has high affinity for homogeneous HCZMO surface for adsorption. Evidences appeared from the equal distribution co-efficient values and too well Langmuir isotherm fit. The fluoride adsorption reactions at 298–313 K with HCZMO were spontaneous (ΔG⁰ = negative) despite endothermic nature (ΔH⁰, kJ mol⁻¹ = +3.53, +4.04), owing to the increase of entropy (ΔS⁰, J mol⁻¹ K⁻¹ = +12.4, 13.8). More than 95% fluoride was released from F⁻-HCZMO (24.8 mg F⁻ g⁻¹) by 1.0 M NaOH, confirming the ion-exchange adsorption mechanism inclining to chemisorption. 1 g HCZMO per liter of a groundwater (F⁻: 4.40 mg L⁻¹) can reduce fluoride level below 1.5 mg L⁻¹ in batch treatment.

  7. Preparation of Bioactive Titanium Surfaces via Fluoride and Fibronectin Retention

    Directory of Open Access Journals (Sweden)

    Carlos Nelson Elias

    2012-01-01

    Full Text Available Statement of Problem. The chemical or topographic modification of the dental implant surface can affect bone healing, promote accelerated osteogenesis, and increase bone-implant contact and bonding strength. Objective. In this work, the effects of dental implant surface treatment and fibronectin adsorption on the adhesion of osteoblasts were analyzed. Materials and Methods. Two titanium dental implants (Porous-acid etching and PorousNano-acid etching followed by fluoride ion modification were characterized by high-resolution scanning electron microscopy, atomic force microscopy, and X-ray diffraction before and after the incorporation of human plasma fibronectin (FN. The objective was to investigate the biofunctionalization of these surfaces and examine their effects on the interaction with osteoblastic cells. Results. The evaluation techniques used showed that the Porous and PorousNano implants have similar microstructural characteristics. Spectrophotometry demonstrated similar levels of fibronectin adsorption on both surfaces (80%. The association indexes of osteoblastic cells in FN-treated samples were significantly higher than those in samples without FN. The radioactivity values associated with the same samples, expressed as counts per minute (cpm, suggested that FN incorporation is an important determinant of the in vitro cytocompatibility of the surfaces. Conclusion. The preparation of bioactive titanium surfaces via fluoride and FN retention proved to be a useful treatment to optimize and to accelerate the osseointegration process for dental implants.

  8. Bioactive titanium metal surfaces with antimicrobial properties prepared by anodic oxidation treatment

    Institute of Scientific and Technical Information of China (English)

    YUE ChongXia; YANG BangCheng; ZHANG XingDong

    2009-01-01

    In order to endow titanium metals with bioactivity and antimicrobial properties,titanium plates were subjected to anodic oxidation treatment in NaCI solutions in this study.The treated titanium metals could induce apatite formation in the fast calcification solution,and osteoblasts on the treated titanium surfaces proliferated well as those on the untreated titanium metal surfaces.The treated metals could inhibit S.aureus growth in the microbial culture experiments.It was assumed that Ti-OH groups and Ti-CI groups formed on the treated titanium surface were responsible for the bioactivity and antimicrobial properties of the metals.The anodic oxidation treatment was an effective way to prepare bioactive titanium surfaces with antimicrobial properties.

  9. Titanium

    DEFF Research Database (Denmark)

    Fage, Simon W; Muris, Joris; Jakobsen, Stig S

    2016-01-01

    Exposure to titanium (Ti) from implants and from personal care products as nanoparticles (NPs) is common. This article reviews exposure sources, ion release, skin penetration, allergenic effects, and diagnostic possibilities. We conclude that human exposure to Ti mainly derives from dental...... and medical implants, personal care products, and foods. Despite being considered to be highly biocompatible relative to other metals, Ti is released in the presence of biological fluids and tissue, especially under certain circumstances, which seem to be more likely with regard to dental implants. Although...... most of the studies reviewed have important limitations, Ti seems not to penetrate a competent skin barrier, either as pure Ti, alloy, or as Ti oxide NPs. However, there are some indications of Ti penetration through the oral mucosa. We conclude that patch testing with the available Ti preparations...

  10. Preparation of bioactive titania films on titanium metal via anodic oxidation.

    Science.gov (United States)

    Cui, X; Kim, H-M; Kawashita, M; Wang, L; Xiong, T; Kokubo, T; Nakamura, T

    2009-01-01

    To research the crystal structure and surface morphology of anodic films on titanium metal in different electrolytes under various electrochemical conditions and investigate the effect of the crystal structure of the oxide films on apatite-forming ability in simulated body fluid (SBF). Titanium oxide films were prepared using an anodic oxidation method on the surface of titanium metal in four different electrolytes: sulfuric acid, acetic acid, phosphoric acid and sodium sulfate solutions with different voltages for 1 min at room temperature. Anodic films that consisted of rutile and/or anatase phases with porous structures were formed on titanium metal after anodizing in H(2)SO(4) and Na(2)SO(4) electrolytes, while amorphous titania films were produced after anodizing in CH(3)COOH and H(3)PO(4) electrolytes. Titanium metal with the anatase and/or rutile crystal structure films showed excellent apatite-forming ability and produced a compact apatite layer covering all the surface of titanium after soaking in SBF for 7d, but titanium metal with amorphous titania layers was not able to induce apatite formation. The resultant apatite layer formed on titanium metal in SBF could enhance the bonding strength between living tissue and the implant. Anodic oxidation is believed to be an effective method for preparing bioactive titanium metal as an artificial bone substitute even under load-bearing conditions.

  11. The ability of different nickel-titanium rotary instruments to induce dentinal damage during canal preparation

    NARCIS (Netherlands)

    Bier, C.A.S.; Shemesh, H.; Tanomaru-Filho, M.; Wesselink, P.R.; Wu, M.K.

    2009-01-01

    The purpose of this study was to compare the incidence of dentinal defects (fractures and craze lines) after canal preparation with different nickel-titanium rotary files. Two hundred sixty mandibular premolars were selected. Forty teeth were left unprepared (n = 40). The other teeth were prepared e

  12. [Mechanism study of fluoride adsorption by hydrous metal oxides].

    Science.gov (United States)

    Guo, Hui-Chao; Li, Wen-Jun; Chang, Zhi-Dong; Wang, Huan-Ying; Zhou, Yue

    2011-08-01

    Hydrous oxides of cerium, aluminum, nickel and copper were prepared by alkaline precipitation method. Langmuir adsorption isotherm was studied and specific surface area was measured by BET method through N2 adsorption-desorption process. IR characterization of hydrous metal oxides before and after fluoride adsorption was also studied. Results show that different hydrous metal oxides have different specific surface areas and their pore size distributions also are not all the same. Adsorption capacity is not directly dependent on the specific surface area. Isotherm study indicates that the adsorption follows Langmuir model and shows the feature of monolayer adsorption. IR study before and after fluoride adsorption shows that different hydrous metal oxides have similar adsorption sites in the same IR region as well as adsorption sites in the different IR region. The comprehensive interaction of these adsorption sites with fluoride ions results in the different adsorption capacity of different hydrous metal oxides.

  13. Preparation of biocompatible structural gradient coatings on pure titanium

    Institute of Scientific and Technical Information of China (English)

    TANG Guang-xin; ZHANG Ren-ji; YAN Yong-nian

    2004-01-01

    In order to overcome the poor osteo-inductive properties of titanium implant, some methods have been used. The efforts to improve implant biocompatibility and durability by applying a hybrid technique of composite oxidation (pre-anodic and micro-arc oxidation) and hydrothermal treatment were described. Pure titanium was used as the substrate material. An oxalic acid was used as the electrolyte for the pre-anodic oxidation. A calcium and phosphate salt solution was acted as the electrolyte of micro-arc oxidation and the common pure water was used for hydrothermal treatment. X-ray diffraction (XRD), and scanning electron microscopy (SEM) have been used to investigate the microstructure and morphology of the coatings. The results show that a compact TiO2 film can be made by pre-anodic oxidation, which is effective as chemical barriers against the in-vivo release of metal ions from the implants. A porous TiO2 coating can be produced by micro-arc oxidation on titanium plate, which is beneficial to bone tissue growth and enhancing anchorage of implant to bone. De-calcium HA can be formed on the coating using hydrothermal treatment, which is similar with the primary component of bone and has a very good osteo-inductivity.The porous gradient titania coating made by the hybrid oxidation and hydrothermal treatment should show good biocompatibility in the environment of the human body.

  14. Reactively sputtered titanium carbide thin films: Preparation and properties

    Science.gov (United States)

    Eizenberg, M.; Murarka, S. P.

    1983-06-01

    The low resistivity and refractory nature of titanium carbide makes it potentially useful as a diffusion barrier in thin film metallization schemes. In the present investigation, deposition and properties of thin titanium carbide films have been investigated. The films were deposited by reactive radio frequency sputtering in methane-argon mixtures on a variety of substrates. The effects of methane to argon ratio, total sputtering pressure, and power on the film deposition rate, composition and properties were determined. There were interactive effects of these parameters on the composition and properties of these films. Resistivity increased with carbon content; for Ti/C≥1 it was ˜200 μΩ cm. Stress that was compressive was maximum in the nearly stoichiometric TiC film. Grain size was small in all films, especially so in carbon rich films. All stoichiometric titanium carbide films were resistant to HF solutions. Films with TiC/≥1 dissolved easily in ethylene dinitrilo tetra acetric acid (EDTA) solution.

  15. PREPARATION AND PROPERTIES OF THERMOSETTING ACRYLIC COATINGS USING TITANIUM-OXO-CLUSTER AS A CURING AGENT

    Institute of Scientific and Technical Information of China (English)

    Kun Xu; Shu-xue Zhou; Li-min Wu

    2009-01-01

    Thermosetting acrylic coatings were prepared by using carboxyl acid group-containing acrylic oligomer and curing with titanium-oxo-clusters which were first pre-hydrolyzed from titanium n-butoxide. The curing ability of the titanium-oxo-cluster was examined using a microdielectric analytical (DEA) curing monitor, Fourier transformed infrared spectroscopy (FTIR), and Soxhlet extraction experiments, and the properties of the resulted coatings were investigated with pendulum hardness tester, dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA) and ultraviolet-visible spectrometer. The effect of titania-oxo-cluster in leading acrylic oligomers to form thermosetting acrylic coatings was confirmed. An increasing pendulum hardness and modulus of acrylic coatings with increasing titania content was observed, which resulted from the increment of crosslinking degree rather than of the titania content. The thermosetting acrylic/titania coatings also showed better thermal stability and higher UV-blocking properties than those coatings using organic curing agent.

  16. Bonding durability between acrylic resin adhesives and titanium with surface preparations.

    Science.gov (United States)

    Yanagida, Hiroaki; Minesaki, Yoshito; Matsumura, Kousuke; Tanoue, Naomi; Muraguchi, Koichi; Minami, Hiroyuki

    2017-01-31

    The purpose of the present study was to evaluate the efficacy of pretreatment on the bonding durability between titanium casting and two acrylic adhesives. Cast titanium disk specimens treated with four polymer-metal bonding systems as follow: 1) air-abraded with 50-70 μm alumina, 2) 1)+Alloy Primer, 3) 1)+M.L. Primer and 4) tribochemical silica/silane coating system (Rocatec System). The specimens were bonded with M bond or Super-bond C&B adhesive. The shear bond strengths were determined before and after thermocycling (20,000 cycles). The surface characteristics after polishing, and for the 1) and 4) preparations were determined. The bond strengths for all combinations significantly decreased after thermocycling. The combination of Super-bond C&B adhesive and 2) led to significantly higher bond strength than the other preparations after thermocycling. The maximum height of the profile parameters for the polishing group was lower than other preparations.

  17. CEMS study on diluted magneto titanium oxide films prepared by pulsed laser deposition

    Science.gov (United States)

    Nomura, K.; Inaba, K.; Iio, S.; Hitosugi, T.; Hasegawa, T.; Hirose, Y.; Homonnay, Z.

    6% 57Fe doped titanium oxide films, prepared by pulsed laser deposition (PLD) on sapphire substrate at 650° under various vacuum conditions, were characterized mainly by conversion electron Mössbauer spectrometry (CEMS). Two magnetic sextets with hyperfine fields 33 and 29 T, and one doublet were observed in the CEMS spectra of Ti02 films prepared under P02=10-6 and 10-8 torr, which showed ferromagnetism at room temperature, whereas only the doublet of paramagnetic Fe3+ species was observed for the film prepared under P02=10-1 torr.

  18. Titanium dioxide nanoparticles prepared by laser pyrolysis: Synthesis and photocatalytic properties

    Science.gov (United States)

    Figgemeier, E.; Kylberg, W.; Constable, E.; Scarisoreanu, M.; Alexandrescu, R.; Morjan, I.; Soare, I.; Birjega, R.; Popovici, E.; Fleaca, C.; Gavrila-Florescu, L.; Prodan, G.

    2007-12-01

    TiO 2 nanoparticles were synthesized via the laser pyrolysis of titanium tetrachloride-based gas-phase mixtures. In the obtained nanopowders, a mixture of anatase and rutile phases with mean particle size of about 14 nm was identified. Using the thermal heated laser nanopowders, mechanically stable films were produced by immobilizing titania nanopowders on glass substrates (the doctor blading method followed by compression). The photocatalytic activity of the prepared films was tested by the degradation of 4-chlorophenol in an aqueous solution under UV-illumination. By referring to known commercial samples (Degussa P25) similarly prepared, higher photocatalytic efficiency was found for the laser-prepared samples.

  19. Doped titanium oxide photcatalysts: Preparation, structure and interaction with viruses

    Science.gov (United States)

    Li, Qi

    Since the discovery of photoelectrochemical splitting of water on n-titanium oxide (n-TiO2) electrodes by Fujishima and Honda in 1972, there has been much interest in semiconductor-based materials as photocatalysts for both solar energy conversion and environmental applications in the past several decades. Among various semiconductor-based photocatalysts, TiO2 is the only candidate suitable for industrial use because of its high chemical stability, good photoactivity, relatively low cost, and nontoxicity. However, the photocatalytic capability of TiO 2 is limited to only ultraviolet (UV) light (wavelength, lambda, disinfection of bacteria and viruses under visible light illumination. The sol-gel process was optimized to produce high quality TiON-based photocatalysts by carefully modulating the precursor ratio and calcination temperature. A TiON inverse opal structure was created, which demonstrated enhanced visible light absorption and subsequently improved photocatalytic efficiency by the combination of chemical and physical modifications on n-TiO2. The effect of palladium dopant on the optical and photocatalytic properties of TiON/PdO photocatalyst was examined, which suggests that a careful optimization of the transition metal ion dopant concentration is needed to achieve high photocatalytic efficiency in these anion and transition metal ion co-doped TiO2 photocatalysts. High photocatalytic virus disinfection efficiency under visible-light illumination was observed for the first time with TiON/PdO photocatalyst, and the interaction between MS2 virus and TiO2-based semiconductor surfaces was successfully modulated. A strategy to use atomic force microscope (AFM) to conduct in-situ observation of viruses on semiconductor surfaces in aqueous environment was developed, which combines information from both height profile and phase profile and solves the difficulty of observing small nanosized biomolecules on substrates with similar feature sizes.

  20. Study of preparation of BG/HA gradient coating on titanium alloy by electrophoretic deposition method

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-ming; HAN Qing-rong; LI Shi-pu; XU Chuan-bo

    2001-01-01

    In this paper, a gradient bioactive coating made from modified bioglass (BG) and hydroxyapatite (HA) was prepared by electrophoretic deposition method(EPD)on the surface of titanium alloy. Strong bonding between the matrix and BG/HA gradient coating was got by sintering. Crystal composition of the coating was analyzed by XRD. The characteristics of surface and cross section of the coating were observed by SEM. Adhesive strength of the coating was tested by pull method. The optimizing technological parameters were determined.

  1. Doped Titanium Dioxide Films Prepared by Pulsed Laser Deposition Method

    Directory of Open Access Journals (Sweden)

    Juguang Hu

    2012-01-01

    Full Text Available TiO2 was intensively researched especially for photocatalystic applications. The nitrogen-doped TiO2 films prepared by pulsed laser deposition (PLD method were reviewed, and some recent new experimental results were also presented in this paper. A new optical transmission method for evaluating the photocatalystic activity was presented. The main results are (1 PLD method is versatile for preparing oxide material or complex component films with excellent controllability and high reproducibility. (2 Anatase nitrogen-doped TiO2 films were prepared at room temperature, 200°C, and 400°C by PLD method using novel ceramic target of mixture of TiN and TiO2. UV/Vis spectra, AFM, Raman spectra, and photocatalystic activity for decomposition of methyl orange (MO tests showed that visible light response was improved at higher temperature. (3 The automatic, continuous optical transmission autorecorder method is suitable for detecting the photodecomposition dynamic process of organic compound.

  2. A Novel Platelet Concentrate: Titanium-Prepared Platelet-Rich Fibrin

    Directory of Open Access Journals (Sweden)

    Mustafa Tunalı

    2014-01-01

    Full Text Available We developed a new product called titanium-prepared platelet-rich fibrin (T-PRF. The T-PRF method is based on the hypothesis that titanium may be more effective in activating platelets than the silica activators used with glass tubes in Chouckroun’s leukocyte- and platelet-rich fibrin (L-PRF method. In this study, we aimed to define the structural characteristics of T-PRF and compare it with L-PRF. Blood samples were collected from 10 healthy male volunteers. The blood samples were drawn using a syringe. Nine milliliters was transferred to a dry glass tube, and 9 mL was transferred to a titanium tube. Half of each clot (i.e., the blood that was clotted using T-PRF or L-PRF was processed with a scanning electron microscope (SEM. The other half of each clot was processed for fluorescence microscopy analysis and light microscopy analysis. The T-PRF samples seemed to have a highly organized network with continuous integrity compared to the other L-PRF samples. Histomorphometric analysis showed that T-PRF fibrin network covers larger area than L-PRF fibrin network; also fibrin seemed thicker in the T-PRF samples. This is the first human study to define T-PRF as an autogenous leukocyte- and platelet-rich fibrin product. The platelet activation by titanium seems to offer some high characteristics to T-PRF.

  3. A novel platelet concentrate: titanium-prepared platelet-rich fibrin.

    Science.gov (United States)

    Tunalı, Mustafa; Özdemir, Hakan; Küçükodacı, Zafer; Akman, Serhan; Yaprak, Emre; Toker, Hülya; Fıratlı, Erhan

    2014-01-01

    We developed a new product called titanium-prepared platelet-rich fibrin (T-PRF). The T-PRF method is based on the hypothesis that titanium may be more effective in activating platelets than the silica activators used with glass tubes in Chouckroun's leukocyte- and platelet-rich fibrin (L-PRF) method. In this study, we aimed to define the structural characteristics of T-PRF and compare it with L-PRF. Blood samples were collected from 10 healthy male volunteers. The blood samples were drawn using a syringe. Nine milliliters was transferred to a dry glass tube, and 9 mL was transferred to a titanium tube. Half of each clot (i.e., the blood that was clotted using T-PRF or L-PRF) was processed with a scanning electron microscope (SEM). The other half of each clot was processed for fluorescence microscopy analysis and light microscopy analysis. The T-PRF samples seemed to have a highly organized network with continuous integrity compared to the other L-PRF samples. Histomorphometric analysis showed that T-PRF fibrin network covers larger area than L-PRF fibrin network; also fibrin seemed thicker in the T-PRF samples. This is the first human study to define T-PRF as an autogenous leukocyte- and platelet-rich fibrin product. The platelet activation by titanium seems to offer some high characteristics to T-PRF.

  4. Preparation and Characteristics of Rare Earth Loaded Titanium Dioxide

    Institute of Scientific and Technical Information of China (English)

    张俊平; 王艳; 戚慧心

    2003-01-01

    Composite oxide catalysts Eu/TiO2, Ce/TiO2, Y/TiO2 (RE/TiO2) were prepared by impregnation method and characterized by means of UV-Vis spectroscopy, TEM and BET. The results indicate that the size of TiO2 has different effect on the modification efficiency. The catalytic activity of micron scale TiO2 increases by 136% and 59% owing to the addition of Y and Ce, respectively, while the catalytic activity of nanoscale TiO2 decreases due to the doping of Y and Ce.

  5. Preparation and antibacterial properties of titanium-doped ZnO from different zinc salts.

    Science.gov (United States)

    Sun, Tong; Hao, Han; Hao, Wen-Ting; Yi, Shu-Min; Li, Xue-Peng; Li, Jian-Rong

    2014-02-27

    To research the relationship of micro-structures and antibacterial properties of the titanium-doped ZnO powders and probe their antibacterial mechanism, titanium-doped ZnO powders with different shapes and sizes were prepared from different zinc salts by alcohothermal method. The ZnO powders were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED), and the antibacterial activities of titanium-doped ZnO powders on Escherichia coli and Staphylococcus aureus were evaluated. Furthermore, the tested strains were characterized by SEM, and the electrical conductance variation trend of the bacterial suspension was characterized. The results indicate that the morphologies of the powders are different due to preparation from different zinc salts. The XRD results manifest that the samples synthesized from zinc acetate, zinc nitrate, and zinc chloride are zincite ZnO, and the sample synthesized from zinc sulfate is the mixture of ZnO, ZnTiO3, and ZnSO4 · 3Zn (OH)2 crystal. UV-vis spectra show that the absorption edges of the titanium-doped ZnO powders are red shifted to more than 400 nm which are prepared from zinc acetate, zinc nitrate, and zinc chloride. The antibacterial activity of titanium-doped ZnO powders synthesized from zinc chloride is optimal, and its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) are lower than 0.25 g L-1. Likewise, when the bacteria are treated by ZnO powders synthesized from zinc chloride, the bacterial cells are damaged most seriously, and the electrical conductance increment of bacterial suspension is slightly high. It can be inferred that the antibacterial properties of the titanium-doped ZnO powders are relevant to the microstructure, particle size, and the crystal. The powders can damage the cell

  6. Studies on Thorium Adsorption Characteristics upon Activated Titanium Hydroxide Prepared from Rosetta Ilmenite Concentrate

    Energy Technology Data Exchange (ETDEWEB)

    Gado, M, E-mail: parq28@yahoo.com; Zaki, S [Nuclear Materials Authority, P. O. Box 530 El Maadi, Cairo (Egypt)

    2016-01-01

    The titanium hydroxide prepared from Rosetta ilmenite concentrate has been applied for Th (IV) adsorption from its acid aqueous solutions. The prepared hydroxide is first characterized by both Fourier transform infrared (FT-IR) spectrum and thermogravimetric analysis. The relevant factors affecting the adsorption process have been studied. The obtained equilibrium data fits well with the Langmuir isotherm rather than Freundlich isotherm, while the adsorption kinetic data follow the pseudo-second order model. The different thermodynamic parameters have also been calculated and indicate that the adsorption process is spontaneous.

  7. Influência do agente precipitante na preparação do óxido de nióbio (V hidratado pelo método da precipitação em solução homogênea Influence of precipitating agent in the preparation of hydrous niobium oxide by the method of homogeneous precipitation

    Directory of Open Access Journals (Sweden)

    Geronimo Virginio Tagliaferro

    2005-03-01

    Full Text Available This work reports the preparation, characterization and study of the ion exchange behavior of hydrous niobium oxide prepared by a homogeneous precipitation method. The precipitating agent was obtained in aqueous solution by thermal decomposition of urea or ammonium carbonate. The compounds were chemically and physically characterized by X-ray diffractometry, thermal analysis (TG/DTG, surface area measurements and ion exchange behavior with sodium. The materials prepared with ammonium carbonate presented a higher degree of crystallinity and better ion exchange capacity with sodium than materials prepared with urea. In the homogeneous precipitation method, materials were obtained with specific surface area of 123 - 224 m² g-1. A variation of the preparation process produced hydrous niobium oxide with a different degree of hydration and specific surface area. This provided materials with different physico-chemical properties.

  8. Sol-gel prepared active ternary oxide coating on titanium in cathodic protection

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIC

    2007-12-01

    Full Text Available The characteristics of a ternary oxide coating, on titanium, which consisted of TiO2, RuO2 and IrO2 in the molar ratio 0.6:0.3:0.1, calculated on the metal atom, were investigated for potential application for cathodic protection in a seawater environment. The oxide coatings on titanium were prepared by the sol gel procedure from a mixture of inorganic oxide sols, which were obtained by forced hydrolysis of metal chlorides. The morphology of the coating was examined by scanning electron microscopy. The electrochemical properties of activated titanium anodes were investigated by cyclic voltammetry and polarization measurements in a H2SO4- and NaCl-containing electrolyte, as well as in seawater sampled on the Adriatic coast in Tivat, Montenegro. The anode stability during operation in seawater was investigated by the galvanostatic accelerated corrosion stability test. The morphology and electrochemical characteristics of the ternary coating are compared to that of a sol-gel-prepared binary Ti0.6Ru0.4O2 coating. The activity of the ternary coating was similar to that of the binary Ti0.6Ru0.4O2 coating in the investigated solutions. However, the corrosion stability in seawater is found to be considerably greater for the ternary coating.

  9. Preparation of platinum modified titanium dioxide nanoparticles with the use of laser ablation in water.

    Science.gov (United States)

    Siuzdak, K; Sawczak, M; Klein, M; Nowaczyk, G; Jurga, S; Cenian, A

    2014-08-07

    We report on the preparation method of nanocrystalline titanium dioxide modified with platinum by using nanosecond laser ablation in liquid (LAL). Titania in the form of anatase crystals has been prepared in a two-stage process. Initially, irradiation by laser beam of a titanium metal plate fixed in a glass container filled with deionized water was conducted. After that, the ablation process was continued, with the use of a platinum target placed in a freshly obtained titania colloid. In this work, characterization of the obtained nanoparticles, based on spectroscopic techniques--Raman, X-ray photoelectron and UV-vis reflectance spectroscopy--is given. High resolution transmission electron microscopy was used to describe particle morphology. On the basis of photocatalytic studies we observed the rate of degradation process of methylene blue (MB) (a model organic pollution) in the presence of Pt modified titania in comparison to pure TiO2--as a reference case. Physical and chemical mechanisms of the formation of platinum modified titania are also discussed here. Stable colloidal suspensions containing Pt modified titanium dioxide crystalline anatase particles show an almost perfect spherical shape with diameters ranging from 5 to 30 nm. The TiO2 nanoparticles decorated with platinum exhibit much higher (up to 30%) photocatalytic activity towards the degradation of MB under UV illumination than pure titania.

  10. Hydroxyapatite coatings on nanotubular titanium dioxide thin films prepared by radio frequency magnetron sputtering.

    Science.gov (United States)

    Shin, Jinho; Lee, Kwangmin; Koh, Jeongtae; Son, Hyeju; Kim, Hyunseung; Lim, Hyun-Pil; Yun, Kwidug; Oh, Gyejeong; Lee, Seokwoo; Oh, Heekyun; Lee, Kyungku; Hwang, Gabwoon; Park, Sang-Won

    2013-08-01

    In this study, hydroxyapatite (HA) was coated on anodized titanium (Ti) surfaces through radio frequency magnetron sputtering in order to improve biological response of the titanium surface. All the samples were blasted with resorbable blasting media (RBM). RBM-blasted Ti surface, anodized Ti surface, as-sputtered HA coating on the anodized Ti surface, and heat-treated HA coating on the anodized Ti surface were prepared. The samples were characterized using scanning electron microscopy and X-ray photoemission spectroscopy, and biologic responses were evaluated. The top of the TiO2 nanotubes was not closed by HA particles when the coating time is less than 15 minutes. It was demonstrated that the heat-treated HA was well-crystallized and this enhanced the cell attachment of the anodized Ti surface.

  11. Two-Dimensional Hydrous Silica : Nanosheets and Nanotubes Predicted from First-Principles Simulations

    NARCIS (Netherlands)

    Fang, Changming; Van Blaaderen, Alfons; Van Huis, Marijn A.

    2015-01-01

    Two-dimensional (2D) hydrous silica sheets (HSSs) and hydrous silica nanotubes (HSNTs) have many unique properties and potential applications. Although preparation of 2D HSSs was patented already about half a century ago, very little is known about their structure and physical properties. He we pred

  12. The Preparation Technology of Titanium Metal Powder%金属钛粉的制备工艺

    Institute of Scientific and Technical Information of China (English)

    尚青亮; 刘捷; 方树铭; 周林

    2013-01-01

    Titanium is the main raw materials of titanium powder metallurgy,its quality and production cost limits the large-scale development of titanium powder metallurgy.The basic principle of mechanical alloying,hydrogenation and dehydrogen process (HDH),atomization,metallothermic reduction,molten salt electrolysis preparing titanium powder are reviewed.With the developing of preparation of titanium powder,the cost of titanium powder will be reduced and the titanium powder metallurgy will be utilized in more different fields.%钛粉作为钛粉末冶金的主要原料,其品质及生产成本限制了钛及钛合金粉末冶金的发展.综述了机械合金化法、氢化脱氢法(HDH)、雾化法、金属热还原法、熔盐电解法制备钛粉的基本原理和工艺现状.新兴的生产技术有望降低钛粉生产成本,从而推动钛及钛合金粉末冶金的发展,扩大其应用范围.

  13. Titanium dioxide nanotube films: Preparation, characterization and electrochemical biosensitivity towards alkaline phosphatase.

    Science.gov (United States)

    Roman, Ioan; Trusca, Roxana Doina; Soare, Maria-Laura; Fratila, Corneliu; Krasicka-Cydzik, Elzbieta; Stan, Miruna-Silvia; Dinischiotu, Anca

    2014-04-01

    Titania nanotubes (TNTs) were prepared by anodization on different substrates (titanium, Ti6Al4V and Ti6Al7Nb alloys) in ethylene glycol and glycerol. The influence of the applied potential and processing time on the nanotube diameter and length is analyzed. The as-formed nanotube layers are amorphous but they become crystalline when subjected to subsequent thermal treatment in air at 550°C; TNT layers grown on titanium and Ti6Al4V alloy substrates consist of anatase and rutile, while those grown on Ti6Al7Nb alloy consist only of anatase. The nanotube layers grown on Ti6Al7Nb alloy are less homogeneous, with supplementary islands of smaller diameter nanotubes, spread across the surface. Better adhesion and proliferation of osteoblasts was found for the nanotubes grown on all three substrates by comparison to an unprocessed titanium plate. The sensitivity towards bovine alkaline phosphatase was investigated mainly by electrochemical impedance spectroscopy in relation to the crystallinity, the diameter and the nature of the anodization electrolyte of the TNT/Ti samples. The measuring capacity of the annealed nanotubes of 50nm diameter grown in glycerol was demonstrated and the corresponding calibration curve was built for the concentration range of 0.005-0.1mg/mL. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Titanium carbide/carbon composite nanofibers prepared by a plasma process

    Energy Technology Data Exchange (ETDEWEB)

    El Mel, A A; Gautron, E; Angleraud, B; Granier, A; Tessier, P Y [Universite de Nantes, CNRS, Institut des Materiaux Jean Rouxel, UMR 6502, 2 rue de la Houssiniere BP 32229-44322 Nantes cedex 3 (France); Choi, C H [Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)

    2010-10-29

    The incorporation of metal or metal carbide nanoparticles into carbon nanofibers modifies their properties and enlarges their field of application. The purpose of this work is to report a new non-catalytic and easy method to prepare organized metal carbide-carbon composite nanofibers on nanopatterned silicon substrates prepared by laser interference lithography coupled with deep reactive ion etching. Titanium carbide-carbon composite nanofibers were grown on the top of the silicon lines parallel to the substrate by a hybrid plasma process combining physical vapor deposition and plasma enhanced chemical vapor deposition. The prepared nanofibers were analyzed by scanning electron microscopy, x-ray photoelectron spectroscopy, Raman spectroscopy and transmission electron microscopy. We demonstrate that the shape, microstructure and the chemical composition of the as-grown nanofibers can be tuned by changing the plasma conditions.

  15. Titanium carbide/carbon composite nanofibers prepared by a plasma process.

    Science.gov (United States)

    El Mel, A A; Gautron, E; Choi, C H; Angleraud, B; Granier, A; Tessier, P Y

    2010-10-29

    The incorporation of metal or metal carbide nanoparticles into carbon nanofibers modifies their properties and enlarges their field of application. The purpose of this work is to report a new non-catalytic and easy method to prepare organized metal carbide-carbon composite nanofibers on nanopatterned silicon substrates prepared by laser interference lithography coupled with deep reactive ion etching. Titanium carbide-carbon composite nanofibers were grown on the top of the silicon lines parallel to the substrate by a hybrid plasma process combining physical vapor deposition and plasma enhanced chemical vapor deposition. The prepared nanofibers were analyzed by scanning electron microscopy, x-ray photoelectron spectroscopy, Raman spectroscopy and transmission electron microscopy. We demonstrate that the shape, microstructure and the chemical composition of the as-grown nanofibers can be tuned by changing the plasma conditions.

  16. Preparation of titanium feedstock from Minnesota ilmenite by smelting and sulfation-leaching

    Energy Technology Data Exchange (ETDEWEB)

    Nafziger, R.H.; Elger, G.W.

    1987-01-01

    The Bureau of Mines smelted and sulfation-leached an ilmenite from northern Minnesota. The objective was to assess the feasibility of preparing chlorination-grade titanium feedstock. The concentrate was smelted with woodchips, coke, and soda ash in 91-kg-and -metric ton (mt)-capacity electric arc furnaces to form Ti-rich slag and commercial-grade pig iron. The final product meets charge specifications for chlorination. However, more large-scale testing is necessary. This report is based upon work performed under a Memorandum of Agreement between NICOR Mineral Ventures and the Bureau of Mines.

  17. Comparative compressibility of hydrous wadsleyite

    Science.gov (United States)

    Chang, Y.; Jacobsen, S. D.; Thomas, S.; Bina, C. R.; Smyth, J. R.; Frost, D. J.; Hauri, E. H.; Meng, Y.; Dera, P. K.

    2010-12-01

    Determining the effects of hydration on the density and elastic properties of wadsleyite, β-Mg2SiO4, is critical to constraining Earth’s global geochemical water cycle. Whereas previous studies of the bulk modulus (KT) have studied either hydrous Mg-wadsleyite, or anhydrous Fe-bearing wadsleyite, the combined effects of hydration and iron are under investigation. Also, whereas KT from compressibility studies is relatively well constrained by equation of state fitting to P-V data, the pressure derivative of the bulk modulus (K’) is usually not well constrained either because of poor data resolution, uncertainty in pressure calibrations, or narrow pressure ranges of previous single-crystal studies. Here we report the comparative compressibility of dry versus hydrous wadsleyite with Fo90 composition containing 1.9(2) wt% H2O, nearly the maximum water storage capacity of this phase. The composition was characterized by EMPA and nanoSIMS. The experiments were carried out using high-pressure, single-crystal diffraction up to 30 GPa at HPCAT, Advanced Photon Source. By loading three crystals each of hydrous and anhydrous wadsleyite together in the same diamond-anvil cell, we achieve good hkl coverage and eliminate the pressure scale as a variable in comparing the relative value of K’ between the dry and hydrous samples. We used MgO as an internal diffraction standard, in addition to recording ruby fluorescence pressures. By using neon as a pressure medium and about 1 GPa pressure steps up to 30 GPa, we obtain high-quality diffraction data for constraining the effect of hydration on the density and K’ of hydrous wadsleyite. Due to hydration, the initial volume of hydrous Fo90 wadsleyite is larger than anhydrous Fo90 wadsleyite, however the higher compressibility of hydrous wadsleyite leads to a volume crossover at 6 GPa. Hydration to 2 wt% H2O reduces the bulk modulus of Fo90 wadsleyite from 170(2) to 157(2) GPa, or about 7.6% reduction. In contrast to previous

  18. Preparation of Bentonite Supported Nano Titanium Dioxide Photocatalysts by Electrostatic Self-assembly Method

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng; SHI Huisheng; LI Yan

    2012-01-01

    Electrostatic self-assembly method (ESAM) was used to prepare bentonite supported-nano titanium dioxide photocatalysts.The materials were characterized by X-ray diffraction (XRD),fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM).Methyl orange was used to estimate the photocatalytic activity of the materials.The effects of the calcination temperature and silane dosage on the photocatalytic activity of the samples were investigated.The experimental results show that the bentonite facilitates the formation of anatase and restrains the transformation of anatase to rutile.Part of nano-size TiO2 particles insert into the galleries of bentonite.The photocatalysts exhibit a synergistic effect of adsorption and photocatalysis on methyl orange.Photocatalysts prepared by ESAM method exhibit higher photocatalytic activity and better recycle ability than those of the traditional method.

  19. A new antibacterial titanium-copper sintered alloy: preparation and antibacterial property.

    Science.gov (United States)

    Zhang, Erlin; Li, Fangbing; Wang, Hongying; Liu, Jie; Wang, Chunmin; Li, Muqin; Yang, Ke

    2013-10-01

    Copper element was added in pure titanium by a powder metallurgy to produce a new antibacterial titanium-copper alloy (Ti-Cu alloy). This paper reported the very early stage results, emphasizing on the preparation, mechanical property and antibacterial activity. The phase constitution was analyzed by XRD and the microstructure was observed under SEM equipped with EDS. The hardness, the compressive strength and the corrosion resistance of Ti-Cu alloy were tested in comparison with cp-Ti. The antibacterial property of the Ti-Cu alloy was assessed by two methods: agar diffusion assay and plate-count method, in which Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were used. XRD and SEM results showed that Ti2Cu phase and Cu-rich phase were synthesized in the Ti-Cu sintered alloy, which significantly increases the hardness and the compressive strength compared with cp-Ti and slightly improves the corrosion resistance. No antibacterial activity was detected by the agar diffusion assay on the Ti-Cu alloy, but the plate-count results indicated that the Ti-Cu alloy exhibited strong antibacterial property against both bacteria even after three polishing treatments, which demonstrates strongly that the whole alloy is of antibacterial activity. The antibacterial mechanism was thought to be in associated with the Cu ion released from the Ti-Cu alloy. © 2013.

  20. In Situ Preparation of Titanium Carbide Ceramic Layer on Grey Cast Iron

    Directory of Open Access Journals (Sweden)

    Lisheng ZHONG

    2015-11-01

    Full Text Available In this article, we report the in situ synthesis of TiC ceramic layer between titanium plate and graphite phases in grey cast iron using heat treatment method. The microstructure of the compound region was characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM, and the kinetics of the TiC ceramic layer was analyzed. The results revealed that the as-prepared TiC samples were irregularly shaped particles with a size of 1 ~ 8 μm and gradient distribution on the surface of grey cast iron. The thickness of the reaction layers increased gradually as the incubation continued, which were 62, 81, 95 and 108 μm after incubation at 1164 °C for 1, 2, 3 and 4 hours, respectively. Also, it can be recognized that the layer thickness changes in a parabolic style with incubation duration. The formation process of TiC ceramic layer consists of diffusion and in situ reaction of carbon and titanium atoms.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9700

  1. Preparation of titanium dioxide/tungsten disulfide composite photocatalysts with enhanced photocatalytic activity under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Lili; Zhang, Weiping; Xiao, Xinyan [South China University of Technology, Guangzhou (China)

    2016-01-15

    Titanium dioxide/tungsten disulfide (TiO{sub 2}/WS{sub 2}) composite photocatalysts were fabricated via a one-step hydrothermal synthesis process, using TiCl{sub 4} as titanium source and bulk WS{sub 2} as sensitizer. The morphology, structure, specific surface area and optical absorption properties of the composite photocatalysts were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), specific surface area analyzer and ultraviolet-visible diffuse reflection spectrum (UV-vis DRS), respectively. The photocatalytic activity of as-prepared photocatalysts was evaluated by the degradation of methyl orange (MO) under illumination of 500W Xenon lamp. The results indicated that TiO2/WS2 composite photocatalysts possessed excellent photocatalytic activity, and -95% of the degradation rate for MO was reached when molar ratio of WS{sub 2} to TiO{sub 2} was 0.004 and the irradiation time was 60 min. Moreover, the carrier trapping experiment and fluorescence spectra showed that •O{sup -}{sub 2} was the key component in the photocatalytic degradation process and O{sub 2} was reduced to be •O{sup -}{sub 2} by the electrons from the conduction band of TiO{sub 2} and WS{sub 2} for the degradation of MO.

  2. Experimental Methodology for Determining Optimum Process Parameters for Production of Hydrous Metal Oxides by Internal Gelation

    Energy Technology Data Exchange (ETDEWEB)

    Collins, J.L.

    2005-10-28

    The objective of this report is to describe a simple but very useful experimental methodology that was used to determine optimum process parameters for preparing several hydrous metal-oxide gel spheres by the internal gelation process. The method is inexpensive and very effective in collection of key gel-forming data that are needed to prepare the hydrous metal-oxide microspheres of the best quality for a number of elements.

  3. PREPARATION OF POLYSULFONAMIDE AND MODIFIED TITANIUM OXIDE NANOCOMPOSITES BY IN-SITU POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    WANG Weitao; LIU Li; DENG Jie; WANG Xiaopeng; TANG Zhiyong

    2006-01-01

    A kind of new nano composite with ultraviolet (UV) ray resistance and high temperature stability was prepared by in-situ polymerization in low temperature. Polysulfonamide (PSA) was synthesized with 4, 4'-diaminodiphenyl sulfone (DDS) and terephthaloyl chloride (TPC) in the common solvent N, N-Dimethyl- -acetamide (DMAc). Nano filler is a certain nano titanium oxide modified by silicon oxide (TMS), which plays the role of UV resistance additives. Properties of the novel composite materials were characterized by Atomic Force microscopy (AFM), thermal gravimetric Analysis (TGA) and Ultraviolet Spectroscopy. AFM had showed the sizes and distributions of TMS particles in the nanocomposite. Ultraviolet Spectroscopy for the nanocomposites showed a large absorption in UV band. TGA showed the decomposition temperature was increased over ten degrees with 0.5% wt TMS for this nanocomposite compared with pure PSA.

  4. Titanium carbonitride thick coating prepared by plasma spray synthesis and its tribological properties

    Institute of Scientific and Technical Information of China (English)

    ZHU Lin; HE JiNing; YAN DianRan; XIAO LiSong; DONG YanChun; XUE DingChuan; MENG DeLiang

    2007-01-01

    TiCN coating,owing to its superior wear-resistance,has been frequently applied in many fields. TiCN thick coating was first prepared by reactive plasma spraying. The phase composition,microstructure and tribological properties of the TiCN coating were investigated in this research. Experimental results show that the microstructure of the TiCN coating was quite dense,and there was also a little amount of titanium oxides within the coating. By XPS analysis,Ti-C and Ti-N bonds were detected in the coating. The TiCN coating exhibited superior wear-resistance. The failure mechanism was attributed to the adhesive wear,the grinding of TiCN hard-grain,as well as the coating failure by oxidation. There were more Fe,Cr,O,etc. in the failure zone,suggesting that the corrosion propagated gradually from surface to interior.

  5. Preparation, characterization and luminescence properties of a new hydrous red phosphor CaB3 O5 (OH):Eu(3)(+) with different morphologies.

    Science.gov (United States)

    Huang, H S; Tang, A J; Yang, C; Jin, H F

    2017-03-01

    A new borate phosphor CaB3 O5 (OH):Eu(3)(+) with different morphologies was synthesized using a hydrothermal method and its luminescence properties were studied. The effects of surfactants on the crystal structures, morphologies and luminescence properties of the samples were studied. The results showed that the surfactants play an important role in controlling the morphology and improving the luminescence properties of phosphors. The luminescence intensity and R/O(I615/I592) value were enhanced for the prepared sample by adding PEG4000. The prepared sample exhibited a higher R/O than some anhydrous calcium borate phosphors, indicating that this product could serve as a new potential red phosphor.

  6. Preparation and characterization of enamel coating on pure titanium as a hydrogen penetration barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jie, E-mail: taojie@nuaa.edu.cn [College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Guo, Xunzhong [College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Huang, Zhendong [Graduate School of Human and Environmental Studies, Kyoto University, oshida-Nihonmatsu-Cho, Sakyo-Ku, Kyoto shi 606-8501 (Japan); Liu, Hongbing [Shanghai Aircraft Manufacturing Co,. Ltd, Shanghai 200436 (China); Wang, Tao [College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China)

    2013-06-15

    Highlights: ► The enamel coating was prepared by spin-coating and enameling method. ► The dense enamel coatings were chemically bonded with TA1 substrate. ► The coatings possessed better thermal shock resistance property. ► The coatings had excellent ball-dropping impact properties. ► The enamel coating exhibited a good barrier effect to hydrogen isotope penetration. -- Abstract: The enamel coating with a thickness of 90–110 × 10{sup −6} m was prepared on TA1 substrate by spin-coating and enameling to solve the problems of hydrogen isotope penetration for commercial pure titanium TA1. The microstructure and the interfacial morphology of the samples were characterized respectively by X-ray diffraction, optical and scanning electron microscopy. The profiles of main elements at the interface were analyzed by EDS line-scanning. The experimental results indicated that the dense enamel coatings were chemically bonded with TA1 substrate, and possessed better thermal shock resistance and ball-dropping impact properties. It was concluded from the results of hydrogen charging test with Vickers microhardness measurement and deuterium penetration experiments that the as-prepared dense enamel coating exhibited a good barrier effect to hydrogen isotope penetration.

  7. Preparation and photocatalytic activity of nonmetal Co-doped titanium dioxide photocatalyst

    Science.gov (United States)

    Sun, Xiaogang; Xing, Jun; Qiu, Jingping

    2016-06-01

    A series of boron and sulfur co-doped titanium dioxide (TiO2) photocatalysts were prepared by a sol-gel method using boric acid, thiourea and tetrabutyl titanate [Ti(OC4H9)4] as precursors. The photoabsorbance of as-prepared photocatalysts was measured by UV-Vis diffuse reflectance spectroscopy (DRS), and its microstructure was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and N2 adsorption-desorption measurements. The prepared photocatalysts consisted of the anatase phase mainly in the form of spherical particles. The photocatalytic performance was studied by photodegradation of methyl blue (MB) in water under UV and visible light irradiation. The calcination temperature and the codoping content influenced the photoactivity. The synergistic effect of boron and sulfur co-doping played an important role in improving the photocatalytic activity. In addition, the possibility of cyclic usage of codoped TiO2 was also confirmed, the photocatalytic activity of TiO2 remained above 91% of that of the fresh sample after being used four times. It was shown that the co-doped TiO2 could be activated by visible light and could thus be potentially applied for the treatment of water contaminated by organic pollutants.

  8. A Modified Porous Titanium Sheet Prepared by Plasma-Activated Sintering for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yukimichi Tamaki

    2010-01-01

    Full Text Available This study aimed to develop a contamination-free porous titanium scaffold by a plasma-activated sintering within an originally developed TiN-coated graphite mold. The surface of porous titanium sheet with or without a coated graphite mold was characterized. The cell adhesion property of porous titanium sheet was also evaluated in this study. The peak of TiC was detected on the titanium sheet processed with the graphite mold without a TiN coating. Since the titanium fiber elements were directly in contact with the carbon graphite mold during processing, surface contamination was unavoidable event in this condition. The TiC peak was not detectable on the titanium sheet processed within the TiN-coated carbon graphite mold. This modified plasma-activated sintering with the TiN-coated graphite mold would be useful to fabricate a contamination-free titanium sheet. The number of adherent cells on the modified titanium sheet was greater than that of the bare titanium plate. Stress fiber formation and the extension of the cells were observed on the titanium sheets. This modified titanium sheet is expected to be a new tissue engineering material in orthopedic bone repair.

  9. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Herath, H.M.T.U. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Premachandra, T.N. [Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Ranasinghe, C.S.K. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.P.V.J. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.M.G., E-mail: rmgr@pdn.ac.lk [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Edirisinghe, Mohan; Mahalingam, S. [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Bandara, I.M.C.C.D. [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia); Singh, Sanjleena [Central Analytical Research Facility, Institute of Future Environments, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia)

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO{sub 2} thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO{sub 2} thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  10. Dyes Degradation with Fe-Doped Titanium Nanotube Photocatalysts Prepared from Spend Steel Slag

    Directory of Open Access Journals (Sweden)

    Chih Ming Ma

    2013-01-01

    Full Text Available TiO2 has been studied most commonly because it has high stability, nontoxicity, high catalytic activity, and high conductivity. Many studies have shown that TiO2 would generate electron-hole pairs illuminated with UV and surround more energy than that before being illuminated. In this study, the titanium nanotube (TNT photocatalysts were prepared to increase the surface area and adsorption capacity. The Fe TNT was also prepared from a slag iron since many slag irons cause waste treatment problems. In this study, a different Fe loading was also assessed since TNT doped with metals can be used to improve the degradation efficiency. Furthermore, five kinds of dye concentration, including 10, 20, 100, 200, and 400 ppm, and five kinds of Fe-doped content, including 0, 0.77, 1.13, 2.24, and 4.50%, were tested. Different kinds of reaction time and dye species were also assessed. In this result, Direct Black 22 was the most difficult to be degraded, although the concentration was decreased or the dose amount was increased. The degradation efficiency of 10 ppm Direct Black 22 was below 40% with 0.04 gL−1 TNT under 365 nm UV irradiation.

  11. Vehicle Exhaust Gas Clearance by Low Temperature Plasma-Driven Nano-Titanium Dioxide Film Prepared by Radiofrequency Magnetron Sputtering

    OpenAIRE

    Shuang Yu; Yongdong Liang; Shujun Sun; Kai Zhang; Jue Zhang; Jing Fang

    2013-01-01

    A novel plasma-driven catalysis (PDC) reactor with special structure was proposed to remove vehicle exhaust gas. The PDC reactor which consisted of three quartz tubes and two copper electrodes was a coaxial dielectric barrier discharge (DBD) reactor. The inner and outer electrodes firmly surrounded the outer surface of the corresponding dielectric barrier layer in a spiral way, respectively. Nano-titanium dioxide (TiO2) film prepared by radiofrequency (RF) magnetron sputtering was coated on t...

  12. Elaborately prepared hierarchical structure titanium dioxide for remarkable performance in lithium storage

    Science.gov (United States)

    Tian, Qinghua; Luo, Dong; Li, Xiaowei; Zhang, Zhengxi; Yang, Li; Hirano, Shin-ichi

    2016-05-01

    Titanium dioxide (TiO2) has been considered to be a promisingly alternative anode material for lithium-ion batteries and thus attracted wide research interest. But, its practical application in lithium-ion batteries is seriously impeded by low capacity and poor rate capability. In the present work, the electrochemical performance of TiO2 is significantly improved by elaborately fabricating hierarchical structures. These as-prepared four hierarchical structure TiO2 assembled by different building blocks (TO2-2 h, TO2-6 h, TO2-18 h and TO2-24 h) all exhibit impressed performance. More importantly, the TO2-6 h constructed by curved nanosheets exhibits the best performance, delivering a capacity of 231.6 mAh g-1 at 0.2C after 200 cycles, and capacities of 187.1 and 129.3 mAh g-1 at 1 and 10C after even 1200 cycles, respectively. The results indicated that design and fabrication of hierarchical structure is an effective strategy for significantly improving the electrochemical performance of TiO2 electrodes, and the electrochemical performance of hierarchical structure TiO2 is heavily dependent on its building blocks. It is suggested that thus excellent electrochemical performance may make TiO2-6 h a promising anode material for advanced lithium-ion batteries with high capacity, good rate capability and long life.

  13. Preparation and optical properties of iron-modified titanium dioxide obtained by sol-gel method

    Science.gov (United States)

    Hreniak, Agnieszka; Gryzło, Katarzyna; Boharewicz, Bartosz; Sikora, Andrzej; Chmielowiec, Jacek; Iwan, Agnieszka

    2015-08-01

    In this paper twelve TiO2:Fe powders prepared by sol-gel method were analyzed being into consideration the kind of iron compound applied. As a precursor titanium (IV) isopropoxide (TIPO) was used, while as source of iron Fe(NO3)3 or FeCl3 were tested. Fe doped TiO2 was obtained using two methods of synthesis, where different amount of iron was added (1, 5 or 10% w/w). The size of obtained TiO2:Fe particles depends on the iron compound applied and was found in the range 80-300 nm as it was confirmed by SEM technique. TiO2:Fe particles were additionally investigated by dynamic light scattering (DLS) method. Additionally, for the TiO2:Fe particles UV-vis absorption and the zeta potential were analyzed. Selected powders were additionally investigated by magnetic force microscopy (MFM) and X-ray diffraction techniques. Photocatalytic ability of Fe doped TiO2 powders was evaluated by means of cholesteryl hemisuccinate (CHOL) degradation experiment conducted under the 30 min irradiation of simulated solar light.

  14. Structural properties of zinc oxide and titanium dioxide nanoparticles prepared by chemical vapor synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Akgul, Guvenc, E-mail: guvencakgul@gmail.com [Bor Vocational School, Nigde University, 51700 Nigde (Turkey); Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Akgul, Funda Aksoy [Physics Department, Nigde University, 51240 Nigde (Turkey); Attenkofer, Klaus [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Winterer, Markus [Nanoparticle Process Technology, Department of Engineering Sciences, and Center for NanoIntegration Duisburg-Essen, CeNIDE, University of Duisburg-Essen (Germany)

    2013-03-25

    Highlights: ► Local structure determination of ZnO and TiO{sub 2} nanostructures by XANES and EXAFS. ► Zn K and Ti K absorption edge XANES investigations of nanopowder samples. ► Investigation of pre-edge peak features of TiO{sub 2} nanosamples. ► Obtaining of local structure parameters of nano ZnO and TiO{sub 2} using EXAFS. ► Good agreement of EXAFS results and crystal structure datas. -- Abstract: Transition metal (TM) oxides provide a wide range of functional materials especially when nanostructured. Titanium dioxide (TiO{sub 2}) and wurtzite type zinc oxide (ZnO) nanostructured materials were fabricated by chemical vapor synthesis (CVS). Crystal and local structures of the prepared nanosamples were ascertained using X-ray diffraction (XRD), X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) techniques. Based on the XRD data, a second phase(s) was not found in both samples. A single wurtzite and anatase type structures were observed in ZnO and TiO{sub 2} nanosamples, respectively. Ti K pre-edge features of XANES spectrum indicated the presence of sixfold coordinated Ti in TiO{sub 2} nanosamples. The results showed that CVS is quite useful method to produce high crystalline nanoparticles.

  15. Acetones Removal with Fe Doped Titanium Nano Tube Catalysts Prepared from Slag Iron in Steel Plant.

    Science.gov (United States)

    Lin, Yu-Jung; Wen-ZhiCao; Chang, Chang-Tang

    2016-01-01

    TiO₂ has been studied most commonly because it has high stability, non-toxicity, high catalytic activity, and highly conductivity. Many studies have shown that TiO₂ would generate electron-hole pairs illuminated with UV and surround more energy than that before being illuminated. However, the surface area of TiO₂ is not large enough and the adsorption capacity is small. In this study, the titanium nano tube (TNT) catalysts were prepared to increase the surface area and adsorption capacity. The Fe-TNT was also prepared from slag iron since many slag iron cause waste treatment problems. In this study, the effect of Fe loading, including 0.77%, 1.13%, 2.24% and 4.50%, on acetone removal was also assessed since TNT doped with transitional or precious metals can be used to improve catalytic reaction efficiency. Furthermore, four kinds of VOCs concentration, including 250, 500, 1000 and 1500 ppm were tested. Four kinds of retention time, including 0.4, 0.8, 4.0 and 6.0 sec, and four kinds of dosage, including 0.15, 0.25, 0.30 and 0.45 g cm⁻³, were also assessed. In this study, the adsorption capacity of Fe-TNT was 18.8, 23.3, 28.9 and 32.6 mg g⁻¹ for acetone of 250, 500, 1000 and 1500 ppm, respectively. Four kinds of temperature, including 150, 200, 250 and 300 °C were tested in catalytic reaction system. The results showed removal efficiency increased with increasing temperature. The efficiency can be reached 95% under the conditions with the dosage higher than 0.3 g cm⁻³, temperature higher than 270 °C and retention time higher than 270 °C. Reaction efficiency was 20, 31, 41 and 96% at the temperature of 150, 200, 250 and 300 °C, respectively.

  16. Bismuth–titanium oxide nanopowders prepared by sol–gel method for photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Solís-Casados, D.A. [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Unidad San Cayetano, Toluca 50200, Estado de México, México (Mexico); Escobar-Alarcón, L., E-mail: luis.escobar@inin.gob.mx [Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, México DF 11801, México (Mexico); Arrieta-Castañeda, A.; Haro-Poniatowski, E. [Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Apdo. Postal 55-534, México DF, México (Mexico)

    2016-04-01

    TiO{sub 2} has been widely studied for photocatalytic applications; however, its band gap is so large (Eg = 3.2 eV for anatase) that it can only be excited by ultraviolet light which accounts for only 5% of the incoming solar energy. Thus, it is important to develop a visible light driven photocatalyst with a lower band gap value. For this purpose, different TiO{sub 2}–Bi{sub 2}O{sub 3} binary compounds were prepared by the sol–gel technique. The obtained materials were characterized by Energy Dispersed Spectroscopy, X Ray Diffraction, Transmission Electron Microscopy, Raman Spectroscopy and Diffuse Reflectance Spectroscopy, in order to obtain information on their chemical composition, crystalline structure, vibrational features and optical properties. Compositional characterization reveal that the Bi content can be varied from 0.3 to 43.6 at.% in an easy way in the binary compounds. Structural characterization shows that the starting material corresponds to the crystalline anatase phase of TiO{sub 2} and upon Bi addition a phase transition to bismuth titanates and finally to bismuth oxide occurs. Raman results suggest the formation of titanates for compounds with a low content of Bi whilst for higher metal contents a mixture of oxides is obtained. HRTEM results demonstrated that the prepared nanopowders are quite crystalline. Optical measurements reveal that the band gap narrows from 3.2 eV to values as low as 1.4 eV. The photocatalytic activity was tested in the degradation of Malachite Green dye under illumination using a solar simulator with good results. - Highlights: • Bismuth–Titanium oxide nanopowders were synthesized by the sol–gel technique. • The evolution of the different crystalline phases was determined. • Materials with band gap as low as 1.4 eV were obtained. • Good photocatalytic activity using visible light was observed.

  17. Preparation, characterization, and biological properties of organic-inorganic nanocomposite coatings on titanium substrates prepared by sol-gel.

    Science.gov (United States)

    Catauro, Michelina; Bollino, Flavia; Papale, Ferdinando

    2014-02-01

    When surface-reactive (bioactive) coatings are applied to medical implants by means of the sol-gel dip-coating technique, the biological proprieties of the surface of the implant can be locally modified to match the properties of the surrounding tissues to provide a firm fixation of the implant. The aim of this study has been to synthesize, via sol-gel, organoinorganic nanoporous materials and to dip-coat a substrate to use in dental applications. Different systems have been prepared consisting of an inorganic zirconium-based matrix, in which a biodegradable polymer, the poly-ε-caprolactone was incorporated in different percentages. The materials synthesized by the sol-gel process, before gelation, when they were still in sol phase, have been used to coat a titanium grade 4 (Ti-4) substrate to change its surface biological properties. Thin films have been obtained by means of the dip-coating technique. A microstructural analysis of the obtained coatings was performed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. The biological proprieties have been investigated by means of tests in vitro. The bone-bonding capability of the nanocomposite films has been evaluated by examining the appearance of apatite on their surface when plunged in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma. The examination of apatite formation on the nanocomposites, after immersion in SBF, has been carried out by SEM equipped with energy-dispersive X-ray spectroscopy. To evaluate cells-materials interaction, human osteosarcoma cell line (Saos-2) has been seeded on specimens and cell vitality evaluated by WST-8 assay.

  18. 钛基润滑脂的制备工艺研究%Study on Preparation of Titanium Grease

    Institute of Scientific and Technical Information of China (English)

    郭婉晴; 郭小川; 宋辉; 王晶

    2015-01-01

    以钛酸四异丙酯、硬脂酸和极性溶剂为原料制备钛基润滑脂,考察基础油和有机酸种类、配比和工艺对钛基脂性能的影响。结果表明:不同种类的有机酸对成脂影响很大,钛皂对不同基础油的稠化能力也不同;以硬脂酸为有机酸、石蜡基油为基础油,最高炼制温度为180~200℃,冷却方式为慢冷时,制得的钛基脂的综合性能较好,其滴点约280℃,远高于一般单皂基润滑脂。红外光谱分析结果表明,该制备工艺形成了钛皂,同时避免了残酸问题。%Titanium greases were prepared by using titanium isopropoxide, organic acid and polar solvent as raw mate⁃rials� The effects of the type of organic acids and base oils, the composition and the process condition on the properties of titanium greases were discussed� The results show that organic acids have large influence on the preparation of titanium greases, and the thickening ability is different for titanium soap on different base oils� By using stearic acid as organic acid and paraffine base oil as base oil, and selecting the highest refining temperature of 180 to 200 ℃ and the slow cooling method, the prepared grease has good comprehensive properties, its drop point is about 280℃, which is higher than the general greases thickened by other single soaps� The infrared spectrum analysis result shows that the titanium soap is formed by using this process, and the problem of residual acid is avoid.

  19. Preparation of Nano-titanium Dioxide in Propane/Air Diffusion Flame

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; SUN Xue; XIE Hongyong

    2004-01-01

    Titanium dioxide (TiO2) nanoparticles were synthesized by the oxidation of titanium tetrachloride (TiCl4), in propane/air diffusion flame. The propane/air diffusion flame is generated using a multi-port diffusion type burner composed of 4 concentric tubes. Flow rates of TiCl4 and combustion gases such as air, industrial propane and carrier gas were chosen as key experimental variables for the control of the particle size and morphology. Effects of propane/air mole ratio and precursor flow rate on particle size, morphology, structure and carbon dots of titanium dioxide particles were studied.

  20. Preparation of titanium dioxide nanostructures facilitated by poly-L-lysine peptide

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Perez, Carlos A. [Instituto de Ingenieria y Tecnologia, Universidad Autonoma de Ciudad Juarez, Avenida del Charro 450 Norte Cd. Juarez, Chih. Mex. C.P. 32310 (Mexico)]. E-mail: camartin@uacj.mx; Garcia-Casillas, Perla E. [Instituto de Ingenieria y Tecnologia, Universidad Autonoma de Ciudad Juarez, Avenida del Charro 450 Norte Cd. Juarez, Chih. Mex. C.P. 32310 (Mexico); Camacho-Montes, Hector [Instituto de Ingenieria y Tecnologia, Universidad Autonoma de Ciudad Juarez, Avenida del Charro 450 Norte Cd. Juarez, Chih. Mex. C.P. 32310 (Mexico); Monreal-Romero, Humberto A. [Centro de Investigacion en Materiales Avanzados, S.C. Miguel de Cervantes 120 Chihuahua, Chih. Mex. C.P. 31109 (Mexico); Martinez-Villafane, Alberto [Centro de Investigacion en Materiales Avanzados, S.C. Miguel de Cervantes 120 Chihuahua, Chih. Mex. C.P. 31109 (Mexico); Chacon-Nava, Jose [Centro de Investigacion en Materiales Avanzados, S.C. Miguel de Cervantes 120 Chihuahua, Chih. Mex. C.P. 31109 (Mexico)

    2007-05-31

    In this work, we have synthesized titanium dioxide by sol-gel process using titanium isopropoxide as precursor; the shapes obtained were nanorods ranging in size from 20 to 40 nm in presence of poly-L-lysine (PLL) peptide. The resulting materials were calcinated in order to obtain a crystalline phase; afterwards the powders were characterized by means of scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results show that the synthesis of titanium dioxide nanostructures can be achieved in presence of poly-L-lysine.

  1. Cadmium, lead and silver adsorption in hydrous niobium oxide(V) prepared by precipitation in homogeneous solution method; Adsorcao de chumbo, cadmio e prata em oxido de niobio(V) hidratado preparado pelo metodo da precipitacao em solucao homogenea

    Energy Technology Data Exchange (ETDEWEB)

    Tagliaferro, Geronimo V.; Pereira, Paulo Henrique F.; Rodrigues, Liana Alvares; Silva, Maria Lucia Caetano Pinto da, E-mail: fernandes_eng@yahoo.com.b [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Escola de Engenharia. Dept. de Engenharia Quimica

    2011-07-01

    This paper describes the adsorption of heavy metals ions from aqueous solution by hydrous niobium oxide. Three heavy metals were selected for this study: cadmium, lead and silver. Adsorption isotherms were well fitted by Langmuir model. Maximum adsorption capacity (Q{sub 0}) for Pb{sup 2+}, Ag{sup +} and Cd{sup 2+} was found to be 452.5, 188.68 and 8.85 mg g{sup -1}, respectively. (author)

  2. Preparation and Photocatalytic Activity of Potassium- Incorporated Titanium Oxide Nanostructures Produced by the Wet Corrosion Process Using Various Titanium Alloys

    Directory of Open Access Journals (Sweden)

    So Yoon Lee

    2015-08-01

    Full Text Available Nanostructured potassium-incorporated Ti-based oxides have attracted much attention because the incorporated potassium can influence their structural and physico-chemical properties. With the aim of tuning the structural and physical properties, we have demonstrated the wet corrosion process (WCP as a simple method for nanostructure fabrication using various Ti-based materials, namely Ti–6Al–4V alloy (TAV, Ti–Ni (TN alloy and pure Ti, which have 90%, 50% and 100% initial Ti content, respectively. We have systematically investigated the relationship between the Ti content in the initial metal and the precise condition of WCP to control the structural and physical properties of the resulting nanostructures. The WCP treatment involved various concentrations of KOH solutions. The precise conditions for producing K-incorporated nanostructured titanium oxide films (nTOFs were strongly dependent on the Ti content of the initial metal. Ti and TAV yielded one-dimensional nanowires of K-incorporated nTOFs after treatment with 10 mol/L-KOH solution, whereas TN required a higher concentration (20 mol/L-KOH solution to produce comparable nanostructures. The obtained nanostructures revealed a blue-shift in UV absorption spectra due to the quantum confinement effects. A significant enhancement of the photocatalytic activity was observed via the chromomeric change and the intermediate formation of methylene blue molecules under UV irradiation. This study demonstrates the WCP as a simple, versatile and scalable method for the production of nanostructured K-incorporated nTOFs to be used as high-performance photocatalysts for environmental and energy applications.

  3. Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite

    Science.gov (United States)

    Chang, Betty Yea Sze; Huang, Nay Ming; An’amt, Mohd Nor; Marlinda, Abdul Rahman; Norazriena, Yusoff; Muhamad, Muhamad Rasat; Harrison, Ian; Lim, Hong Ngee; Chia, Chin Hua

    2012-01-01

    A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm). Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II) ions in potassium chloride electrolyte. PMID:22848166

  4. Apparent Electrical Conductivity of Porous Titanium Prepared by the Powder Metallurgy Method

    Institute of Scientific and Technical Information of China (English)

    LI Cheng-Feng; ZHU Zhen-Gang

    2005-01-01

    @@ Porous titanium is produced by the powder metallurgy method. Dependence of the electrical conductivity on the porosity and pore size is investigated and the experimental results are compared with a number of models. It is found that the minimum solid area model could be successfully applied to describe the relationship between the electrical conductivity and the porosity of porous titanium. This kind of conductivity increases with increasing pore sizes.

  5. Preparation and properties of a cerium-containing hydroxyapatite coating on commercially pure titanium by micro-arc oxidation

    Institute of Scientific and Technical Information of China (English)

    HUANG Yong; WANG Yingjun; NING Chengyun; NAN Kaihui; HAN Yong

    2008-01-01

    A porous cerium-containing hydroxyapatite coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in an electrolytic solution containing calcium acetate, β-glycerol phosphate disodium salt pentahydrate (β-GP), and cerium nitrate. The thickness, phase, composition morphology, and biocompatibility of the oxide coating were characterized by X-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS), and cell culture. The thickness of the MAO film is about 15-25μm, and the coating is porous and uneven, without any apparent interface to the titanium substrates. The results of XRD and EDS show that the porous coating is made up of hydroxyapatite (HA) film containing Ce. The favorable osteoblast cell affinity makes the Ce-HA film have a good biocompatibility. The Ce-HA film is expected to have significant medical applications as dental implants and artificial bone joints.

  6. Evaluation of dentinal defects during root canal preparation using thermomechanically processed nickel-titanium files.

    Science.gov (United States)

    Kesim, Bertan; Sagsen, Burak; Aslan, Tugrul

    2017-01-01

    The aim of this study was to compare the incidence of root cracks after root canal instrumentation with thermomechanically processed nickel-titanium (Ni-Ti) files with different instrumentation kinematics. A total of 150 extracted mandibular premolars with mature apices and straight root canals were divided into five groups and used in this study. In Group 1, 30 teeth were prepared using hand K-files and assigned to control group, Group 2 was instrumented using K3XF Rotary files (SybronEndo, Glendora, CA, USA) with continuous rotary motion. The teeth in Group 3 were instrumented by ProTaper Next (Dentsply Maillefer, Ballaigues, Switzerland) rotary files which make asymmetric rotary motion, In Group 4, teeth were instrumented by RECIPROC (VDW, Munich, Germany) with reciprocation motion and in Group 5, teeth were instrumented by Twisted File (TF) Adaptive (SybronEndo, Orange, CA, USA) files that use combination of continuous rotation and reciprocation motion (n = 30/per group). All the roots were horizontally sectioned 3, 6, and 9 mm from the apex with a low speed saw under water cooling. Then, the slices were examined through a stereomicroscope to determine the presence of dentinal microcracks. For the apical (3-mm) and coronal (9-mm) sections, the ProTaper Next and TF Adaptive produced significantly more cracks than the hand files, RECIPROC, and K3XF (P 0.05). Within the limitations of this in vitro study, all thermal-treated Ni-Ti instruments and hand files caused microcracks in root canal dentin.

  7. Preparation of Thiophene-Fused and Tetrahydroquinoline-Linked Cyclopentadienyl Titanium Complexes for Ethylene/α-Olefin Copolymerization

    Directory of Open Access Journals (Sweden)

    Sung Hun Kim

    2013-02-01

    Full Text Available A synthetic scheme was developed for the large-scale preparation of a dimethylthiophene-fused and tetrahydroquinaldine-linked dimethylcyclopentadienyl titanium complex (2, which is a high-performance homogeneous Ziegler catalyst. 2,3,4,5-Tetramethyl-4,5-dihydrocyclopenta[b]thiophen-6-one was prepared without chromatography purification on the 40-g scale in a laboratory setting, from which the ligand precursor for 2 was obtained in 65% yield on a 50-g scale in a one-pot without the need for chromatography purification. Metallation was achieved in a high yield (78% through reaction of the dilithiated compound with TiCl4. Many derivatives were prepared by employing the same synthetic scheme as applied for 2. Among them, the titanium complex prepared from 2-methyl-4,5-dimethyl-6-(2-n-butyl-2,3,4,5-tetrahydroquinolin-8-yl-4H-cyclopenta[b]thiophene exhibited an exceptionally high activity. Under commercially relevant high-temperature polymerization conditions (160 °C, this compound showed a higher activity than 2 (126 × 106 g/molTi∙h versus 72 × 106 g/molTi∙h, albeit with the formation of a polymer of slightly lower molecular weight (Mw, 159,000 versus 218,000 and with a slightly lower 1-octene content (9.3 mol% versus 12 mol%.

  8. Hydrous Tantalum Phosphates for Ion Exchange Purposes: A Systematic Study

    Directory of Open Access Journals (Sweden)

    M.L.C.P.da Silva

    2002-03-01

    Full Text Available This work describes two methods of preparation of hydrous tantalum phosphates and their characterization as ion exchangers. The hydrous metallic phosphate compounds were chemically and physically characterized by thermal gravimetric analysis, X-ray diffractometry and surface area measurements. By the first method, tantalum phosphate was prepared by alkaline fusion of Ta2O5 with an excess of K2CO3, followed by lixiviation of the tantalate fusion product with hot water, and precipitation with diluted H3PO4. Preparation II was performed using metallic Ta dissolved in concentrated HF/HNO3 acidic mixture followed by hydrolysis of fluortantalic acid intermediary and precipitation with diluted H3PO4. Both freshly prepared materials (I and II were exaustively refluxed with concentrated H3PO4, in its boiling point temperature, resulting respectively in Ta2O5. 2.1 H2O, (IR and Ta2O5. 1.3 H2O, (IIR. Characterization of the prepared products have presented the following values: surface area of 108.27 ± 2.80; 220.14 ± 2.67; 117.07 ± 5.25 and 141.61 ± 0.27 m².g-1 respectively for I, IR, II and IIR. All these materials were amorphous. The ion exchange behavior for all four hydrous tantalum phosphates was studied using Na+, K+ and Ba+2 as the exchanged species. The values for typical ion exchange capacity were 1.64; 1.23; 1.47 and 1.01 miliequivalent.g-1, respectively for I, IR, II and IIR products.

  9. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces.

    Science.gov (United States)

    Wijesinghe, W P S L; Mantilaka, M M M G P G; Chathuranga Senarathna, K G; Herath, H M T U; Premachandra, T N; Ranasinghe, C S K; Rajapakse, R P V J; Rajapakse, R M G; Edirisinghe, Mohan; Mahalingam, S; Bandara, I M C C D; Singh, Sanjleena

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value.

  10. Characterization of bioactive ceramic coatings prepared on titanium implants by micro-arc oxidation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Micro-arc oxidation (MAO) is an enhanced chemical technology in an electrolyte medium to obtain coating structures on valve-metal surfaces. Titanium oxide films obtained by MAO in the sodium phosphate electrolyte were investigated. The films were composed mainly of TiO2 phases in the form of anatase and rutile and enriched with Na and P elements at the surface. Their apatite-inducing ability was evaluated in a simulated body fluid (SBF). When immersing in SBF for over 30 d, a preferential carbonated-hydroxyapatite was formed on the surfaces of the films, which suggests that the MAO-treated titanium has a promising positive biological response.

  11. Preparation and characterization of lanthanum-incorporated hydroxyapatite coatings on titanium substrates

    NARCIS (Netherlands)

    Lou, W.; Dong, Y.; Zhang, H.; Jin, Y.; Hu, X.; Ma, J.; Liu, J.; Wu, G.

    2015-01-01

    Titanium (Ti) has been widely used in clinical applications for its excellent biocompatibility and mechanical properties. However, the bioinertness of the surface of Ti has motivated researchers to improve the physicochemical and biological properties of the implants through various surface modifica

  12. Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite

    Directory of Open Access Journals (Sweden)

    Chang BYS

    2012-07-01

    Full Text Available Betty Yea Sze Chang,1 Nay Ming Huang,1 Mohd Nor An' amt,2 Abdul Rahman Marlinda,1 Yusoff Norazriena,1 Muhamad Rasat Muhamad,3 Ian Harrison,4 Hong Ngee Lim,5 Chin Hua Chia61Low Dimensional Materials Research Center, Physics Department, University of Malaya, Kuala Lumpur; 2Faculty of Agro Industry and Natural Resources (FASA, Universiti Malaysia Kelantan, Kota Bharu, Kelantan; 3The Chancellery Building, Multimedia University, Persiaran Multimedia, Cyberjaya, Selangor; 4School of Chemical and Environmental Engineering, The University of Nottingham Malaysia Campus, Semenyih, Selangor; 5Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 6School of Applied Physics, Universiti Kebangsaan Malaysia, Bangi, Selangor, MalaysiaAbstract: A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm. Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II ions in potassium chloride electrolyte.Keywords: graphene oxide, titanium oxide, hydrothermal, nanocomposite

  13. Activated Carbon Prepared From Orange Peels Coated With Titanium Oxide Nanoparticles: Characterization and Applications in the Decomposition of Nox

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2014-06-01

    Full Text Available In this work, we report the degradation of NOx using two catalysts prepared by coating activated carbon from orange peels with TiO2. This study compared the performance of TiO2-coated catalysts prepared by CVD (AC1/TiO2 and the sol-gel method (AC2/TiO2. The catalysts were characterized by X-ray diffraction, BET surface area and TEM. The photocatalytic activity was measured by studying the degradation of NOx in the vapor phase. The results show that the catalyst synthesized by the CVD method was more efficient in the decomposition of NOx. TEM and XRD revealed the presence of a mixture of the anatase and rutile phases, which favors the NOx decomposition process. Nitrogen isotherms showed that coating the nanoparticles with titanium oxide did not significantly change the surface area of the original activated carbon.

  14. Preparation and characterization of porous titanium using space-holder technique

    Institute of Scientific and Technical Information of China (English)

    NIU Wenjuan; BAI Chenguang; QIU Guibao; WANG Qiang; WEN Liangying; CHEN Dengfu; DONG Lingyan

    2009-01-01

    Titanium-based porous materials can be used in structural applications and medical implants because of their excellent mechanical properties at elevated temperatures, good corrosion resistance and wonderful biocompatibility. However, most of the methods used to produce the po-rous metal can only give limited porosity and uncontrollable pore morphologies. In the present study, a newly developed method of powder metallurgy using the space-holder technique was used to fabricate porous titanium with controllable porosity. The morphological features and mechanical properties of the products were fully investigated. The results show that the porosity is in the range of 55%-75%, and the mean pore size, with an average sphericity of~0.72, is 600 μm The plateau stresses vary between 10 MPa and 35 MPa. As predicted by the Gibson-Ashby model, the plateau stress decreases with increasing porosity.

  15. Titanium mineralization in ferritin: a room temperature nonphotochemical preparation and biophysical characterization.

    Science.gov (United States)

    Amos, Fairland F; Cole, Kathryn E; Meserole, Rachel L; Gaffney, Jean P; Valentine, Ann M

    2013-01-01

    The incremental addition of titanium(III) citrate to H-chain homopolymers of human ferritin results in the formation of 1.5-6.5-nm particles of amorphous TiO(2) within the nanocage of the protein. The mineralization conditions are mild, featuring ambient temperature and no need for photochemical activation. Low ratios of titanium to protein favor intraprotein mineralization, and the products are characterized by stained and unstained transmission electron microscopy, UV-vis spectroscopy, dynamic light scattering, analytical ultracentrifugation, and metal analysis. With up to 1,000 equiv of metal, there is no change to the protein hydrodynamic radius or diffusion constant. There is, however, a systematic shift in the sedimentation coefficient, which confirms mineralization within the protein core.

  16. Preparation of Titanium Dioxide Nanoparticles Immobilized on Polyacrylonitrile Nanofibres for the Photodegradation of Methyl Orange

    Directory of Open Access Journals (Sweden)

    Pardon Nyamukamba

    2016-01-01

    Full Text Available Herein, we describe the synthesis of titanium dioxide (TiO2 nanoparticles by the hydrolysis and condensation of titanium tetrachloride. The resulting nanoparticles were immobilized on polyacrylonitrile (PAN based nanofibres by an electrospinning technique in order to allow simple isolation and reuse of titania semiconductor photocatalyst. The composite nanofibres were heat treated to convert the polymer nanofibres to carbon nanofibres and to convert amorphous TiO2 to crystalline TiO2. X-ray diffraction (XRD analysis showed that the rutile phase was the major phase and the equatorial peaks of PAN disappeared after heat treatment at 600°C. Transmission electron microscopy (TEM and scanning electron microscopy (SEM analysis confirmed that some TiO2 nanoparticles were encapsulated whereas some were surface residing on the electrospun nanofibres. The TiO2 nanoparticles were found to lower the cyclization temperature of PAN as indicated by differential scanning colorimetry (DSC and differential thermal analysis (DTA. Photocatalytic studies on the degradation of methyl orange dye under UV light irradiation showed that composite nanofibres were capable of degrading organic contaminants in water. The carbon nanofibres with surface residing titanium dioxide nanoparticles (TiO2/CNF-SR showed the highest photocatalytic activity (59.35% after 210 minutes due to direct contact between the TiO2 photocatalyst and methyl orange.

  17. Comparison of dentinal damage induced by different nickel-titanium rotary instruments during canal preparation: An in vitro study

    Directory of Open Access Journals (Sweden)

    Shiwani Garg

    2015-01-01

    Full Text Available Aim: To compare dentinal damage caused by hand and rotary nickel-titanium instruments using ProTaper, K3 Endo, and Easy RaCe systems after root canal preparation. Materials and Methods: One hundred and fifty freshly extracted mandibular premolars were randomly divided into five experimental groups of 30 teeth each and biomechanical preparation was done: Group 1 with unprepared teeth; Group 2 were prepared with hand files; Group 3 with ProTaper rotary instruments; Group 4 with K3 rotary; Group 5 with Easy RaCe rotary instruments. Then, roots were cut horizontally at 3, 6, and 9 mm from apex and were viewed under stereomicroscope. The presence of dentinal defects was noted. Statistical analysis: Groups were analyzed with the Chi-square test. Results: Significant difference was seen between groups. No defects were found in unprepared roots and those prepared with hand files. ProTaper, K3 rotary, and Easy RaCe preparations resulted in dentinal defects in 23.3%, 10%, and 16.7% of teeth, respectively. More defects were shown in coronal and middle sections, and no defect was seen in apical third. Conclusion: The present study revealed that use of rotary instruments could result in an increased chance for dentinal defects as compared to hand instrumentation.

  18. Preparation and antibacterial activity of titanium nanotubes loaded with Ag nanoparticles in the dark and under the UV light

    Science.gov (United States)

    Zhao, Chanjuan; Feng, Bo; Li, Yiting; Tan, Jing; Lu, Xiong; Weng, Jie

    2013-09-01

    Highly ordered anatase-type titanium nanotubes (TNTs) arrays were prepared on the surface of titanium by anodization and subsequently heat treatment at 450 °C for 5 h. Three different diameters of TNTs (50 nm, 75 nm, 100 nm) were fabricated via the voltage changed. Then Ag was loaded on these TNTs through a photo-reduction method of AgNO3 solution. Ag particles with the size of approximately 10 nm were uniformly distributed on the surface of TNTs. Samples were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, atomic absorption spectrometry and contact angle test. Meanwhile, the antibacterial activities of Ag-loaded TiO2 nanotubes (TNTs-Ag) were evaluated through antibacterial experiment against both Escherichia coli and Staphylococcus aureus in the dark and under the UV light (λ = 365 nm) irradiation respectively. The results indicated that under the UV light TNTs-Ag had higher antibacterial activities to the two bacteria than TNTs, though the later also showed antibacterial ability. While in the dark environment, the loading of Ag nanoparticles largely enhanced the antibacterial activities of the titanium nanotubes. In addition, the antibacterial efficiencies of all samples increased with increase of nanotube diameters both in the dark and under the UV light. Therefore, TNTs loaded with Ag nanoparticles are expected to be well suited for endo-prosthetic applications due to their excellent antibacterial activities in the dark. And their antibacterial efficiencies can be controlled by adjusting diameters of TNTs, distribution and size of Ag nanoparticles.

  19. Preparation and antibacterial activity of titanium nanotubes loaded with Ag nanoparticles in the dark and under the UV light

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chanjuan; Feng, Bo, E-mail: fengbo@swjtu.edu.cn; Li, Yiting; Tan, Jing; Lu, Xiong; Weng, Jie

    2013-09-01

    Highly ordered anatase-type titanium nanotubes (TNTs) arrays were prepared on the surface of titanium by anodization and subsequently heat treatment at 450 °C for 5 h. Three different diameters of TNTs (50 nm, 75 nm, 100 nm) were fabricated via the voltage changed. Then Ag was loaded on these TNTs through a photo-reduction method of AgNO{sub 3} solution. Ag particles with the size of approximately 10 nm were uniformly distributed on the surface of TNTs. Samples were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, atomic absorption spectrometry and contact angle test. Meanwhile, the antibacterial activities of Ag-loaded TiO{sub 2} nanotubes (TNTs-Ag) were evaluated through antibacterial experiment against both Escherichia coli and Staphylococcus aureus in the dark and under the UV light (λ = 365 nm) irradiation respectively. The results indicated that under the UV light TNTs-Ag had higher antibacterial activities to the two bacteria than TNTs, though the later also showed antibacterial ability. While in the dark environment, the loading of Ag nanoparticles largely enhanced the antibacterial activities of the titanium nanotubes. In addition, the antibacterial efficiencies of all samples increased with increase of nanotube diameters both in the dark and under the UV light. Therefore, TNTs loaded with Ag nanoparticles are expected to be well suited for endo-prosthetic applications due to their excellent antibacterial activities in the dark. And their antibacterial efficiencies can be controlled by adjusting diameters of TNTs, distribution and size of Ag nanoparticles.

  20. Controllable preparation of TiO{sub 2} nanowire arrays on titanium mesh for flexible dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenwu; Lu, Hui; Zhang, Mei; Guo, Min, E-mail: guomin@ustb.edu.cn

    2015-08-30

    Graphical abstract: TiO{sub 2} nanowire arrays with controlled morphology and density have been synthesized on Ti mesh substrates by hydrothermal approach for flexible dye-sensitized solar cells which showed well photovoltaic efficiency of 3.42%. - Highlights: • Flexible titanium mesh was first used for hydrothermal preparation of TiO{sub 2} NWAs. • The formation mechanism of the TiO{sub 2} nanostructures was discussed. • The density, average diameter, and morphology of TiO{sub 2} NWAs can be controlled. • The effects of the sensitization temperature and time on the properties were studied. - Abstract: TiO{sub 2} nanowire arrays (NWAs) with an average diameter of 80 nm have been successfully synthesized on titanium (Ti) mesh substrates via hydrothermal method. The effects of preparing conditions such as concentration of NaOH solution, reaction time, and hydrothermal temperature on the growth of TiO{sub 2} nanoarrays and its related photovoltaic properties were systematically investigated by scanning electron microscopy, X-ray diffraction, and photovoltaic properties test. The growth mechanism of the Ti mesh-supported TiO{sub 2} nanostructures was discussed in detail. Moreover, a parametric study was performed to determine the optimized temperature and time of the dye sensitized process for the flexible dye-sensitized solar cell (DSSC). It is demonstrated that hydrothermal parameters had obvious influence on the morphology and growth density of the as-prepared TiO{sub 2} nanoarrays. In addition, the performance of the flexible DSSC depended strongly on the sensitization temperature and time. By utilizing Ti mesh-supported TiO{sub 2} NWAs (with a length of about 14 μm) as a photoanode, the flexible DSSC with a short circuit current density of 10.49 mA cm{sup −2}, an open-circuit voltage of 0.69 V, and an overall power conversion efficiency of 3.42% was achieved.

  1. In vivo evaluation of titanium-prepared platelet-rich fibrin (T-PRF): a new platelet concentrate.

    Science.gov (United States)

    Tunalı, Mustafa; Özdemir, Hakan; Küçükodacı, Zafer; Akman, Serhan; Fıratlı, Erhan

    2013-07-01

    We have developed a new, titanium-prepared, platelet-rich fibrin (T-PRF) together with the protocol for forming it, which is based on the hypothesis that titanium tubes may be more effective at activating platelets than the glass tubes used by Chouckroun in his platelet-rich fibrin (PRF) method. The aim of this study was to find a suitable animal model in which to evaluate the method and to investigate the efficacy of T-PRF for wound healing. Blood samples from 6 rabbits were used to confirm the protocol for formation of T-PRF. We evaluated T-PRF or T-PRF-like clots morphologically using scanning electron microscopy (EM). Blood samples from 5 rabbits were used to develop an experiment in which to evaluate the effects of T-PRF on wound healing. The mucoperiosteal flaps were filled with autologous T-PRF membranes from the vestibule in the anterior mandibular regions. Samples collected from the surgical sites were stained with haematoxylin and eosin. We found a mature fibrin network in T-PRF clots that had been centrifuged for 15 min at 3500 rpm and, 15 days after placement of the membrane, we found newly-forming connective tissue and islets of bony tissue in the T-PRF membrane. These results show that T-PRF could induce the formation of new bone with new connective tissue in a rabbit model of wound healing within 30 days of treatment. Published by Elsevier Ltd.

  2. Physicochemical properties and in vitro cytocompatibility of modified titanium surfaces prepared via micro-arc oxidation with different calcium concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sui-Dan; Zhang, Hui [Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Dong, Xu-Dong [Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3 (Canada); Ning, Cheng-Yun [College of Material Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Fok, Alex S.L. [Minnesota Dental Research Center of Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN 55414 (United States); Wang, Yan, E-mail: wyan65@163.com [Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China)

    2015-02-28

    Highlights: • MAO coating improves the surface characteristics and cytocompatibility of titanium. • Composition of MAO coating varies with the electrolyte concentration. • MAO coating properties can be optimized by adjusting the electrolyte concentration. • Higher CA concentration contributes to more favorable MAO coating cytocompatibility. - Abstract: Objective: To explore the effect of calcium concentration in the electrolyte solution on the physicochemical properties and biocompatibility of coatings formed by micro-arc oxidation (MAO) on titanium surfaces. Methods: The surfaces of pure titanium plates were modified by MAO in an electrolytic solution containing calcium acetate (CA; C{sub 4}H{sub 6}CaO{sub 4}) at concentrations of 0.05, 0.1, 0.2, or 0.3 M and β-glycerophosphate disodium salt pentahydrate (β-GP; C{sub 3}H{sub 7}Na{sub 2}O{sub 6}P·5H{sub 2}O) at a fixed concentration of 0.02 M. Surface topography, elemental characteristics, phase composition, and roughness were investigated by scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, and a surface roughness tester, respectively. To assess the cytocompatibility and osteoinductivity of the surfaces, MC3T3-E1 preosteoblasts were cultured on the surfaces in vitro, and cell morphology, adhesion, proliferation, and differentiation were observed. Results: The porous MAO coating was composed primarily of TiO{sub 2} rutile and anatase. The amount of TiO{sub 2} rutile, the Ca/P ratio, and the surface roughness of the MAO coating increased with increasing CA concentration in the electrolyte solution. Ca{sub 3}(PO{sub 4}){sub 2}, CaCO{sub 3}, and CaTiO{sub 3} were formed on MAO-treated surfaces prepared with CA concentrations of 0.2 and 0.3 M. Cell proliferation and differentiation increased with increasing CA concentration, with MC3T3-E1 cells exhibiting favorable morphologies for bone–implant integration. Conclusions: MAO coating improves the surface characteristics and

  3. Preparation of titanium dioxide/silver sulfate powder and its antibacterial activity

    Institute of Scientific and Technical Information of China (English)

    PENG Bing; YUAN Chun; CHAI Li-yuan; WEI Shun-wen; YU Yan-fen; SU Wei-feng

    2005-01-01

    Antibacterial powders of titanium dioxide/silver sulfate were produced by heat-treatment of the metatitanic acid, as precursor, into which the silver nitrate was added. The influences of heating temperature on the structure and composition of the product were investigated through XRD and SEM. The results show that the powder is spherical in the phase of TiO2-Ag2 SO4. The granularity of the particles increases from 10.7 nm to 28.7 nm with the temperature of heat-treatment increasing from 300 ℃ to 800 ℃. The antibacterial activity of the powder was judged in the way of the minimum inhibitory contents (MiCs). When the content of silver sulfate is less than 2%, the photocatalysis of titanium dioxide and silver ions cooperate to kill bacteria. And the MiCs decrease and keep around 1.0× 10-4- 1.5 × 10-4 constantly with the increase of silver content. Furthermore, the MiCs decrease with the increase of temperature of heat-treatment when the temperature is lower than 500 ℃. But when the temperature is beyond 600 ℃ the MiCs increase quickly, which shows the inferior antibacterial performance.

  4. Nanostructured Mesoporous Titanium Dioxide Thin Film Prepared by Sol-Gel Method for Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Yu-Chang Liu

    2011-01-01

    Full Text Available Titanium dioxide (TiO2 paste was prepared by sol-gel and hydrothermal method with various precursors. Nanostructured mesoporous TiO2 thin-film back electrode was fabricated from the nanoparticle colloidal paste, and its performance was compared with that made of commercial P25 TiO2. The best performance was demonstrated by the DSSC having a 16 μm-thick TTIP-TiO2 back electrode, which gave a solar energy conversion efficiency of 6.03%. The ability of stong adhesion on ITO conducting glass substrate and the high surface area are considered important characteristics of TiO2 thin film. The results show that a thin film with good adhesion can be made from the prepared colloidal paste as a result of alleviating the possibility of electron transfer loss. One can control the colloidal particle size from sol-gel method. Therefore, by optimizing the preparation conditions, TiO2 paste with nanoparticle and narrow diameter distribution was obtained.

  5. A versatile synthetic route for the preparation of titanium metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Lanfang; Feng, Dawei; Liu, Tian-Fu; Chen, Ying-Pin; Yuan, Shuai; Wang, Kecheng; Wang, Xuan; Fordham, Stephen; Zhou, Hong-Cai [TAM

    2016-02-01

    Exploitation of new titanium metal–organic frameworks (Ti-MOFs) with high crystallinity has been attracting great attention due to their vast application potential in photocatalysis. Herein a versatile synthetic strategy, namely, High Valence Metathesis and Oxidation (HVMO), is developed to synthesize a series of Ti-MOFs with predesigned topologies and structures. The crystallinity of these Ti-MOFs was well maintained throughout, as confirmed by powder X-ray diffraction and gas adsorption measurements. Significantly, there were only a few examples of Ti-MOFs, not to mention a general synthetic strategy for various kinds of Ti-MOFs in the literature. This contribution also illustrates the intriguing potential of Ti-MOF platforms in photocatalysis.

  6. Titanium dioxide coated cementitious materials for air purifying purposes: Preparation, characterization and toluene removal potential

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Anibal Maury; De Belie, Nele [Magnel Laboratory for Concrete Research, Department of Structural Engineering, Engineering Faculty, Ghent University, Technologiepark Zwijnaarde 904, B-9052 Ghent (Belgium); Demeestere, Kristof [Research Group EnVOC, Department of Organic Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653. B-9000 Ghent (Belgium); Maentylae, Tapio; Levaenen, Erkki [Department of Materials Science, Tampere University of Technology, Korkeakoulunkatu 6, FIN-33720 Tampere (Finland)

    2010-04-15

    This work presents promising results for air purification by heterogeneous photocatalysis on new titanium dioxide loaded cementitious materials. A set of eight concretes and plasters is enriched with TiO{sub 2} photocatalyst by dip-coating and/or sol-gel methods. First, the macro-structural features of the cementitious materials have been studied in terms of porosity and roughness. The first parameter has been determined using mercury intrusion porosimetry or by vacuum saturation, and ranged between 9 and 75%, with the highest values obtained for autoclaved aerated white concrete. Surface roughness, determined by laser profilometry, has been characterized by the R{sub a} factor. This expresses the mean deviation of the profile from the centre line and ranged between 0.7 and 252 {mu}m, with the highest value obtained for conventional grey concrete finished with surface brush. Secondly, the weathering resistance of the TiO{sub 2} coatings has been determined by exposing them to different abrasive conditions and by performing SEM-Edax analyses to measure quantitatively the coating's titanium content. Hereby, it is shown that high porosity and roughness are favourable for TiO{sub 2} particles retention. Finally, the preliminary air purification potential of both dip-coated and sol-gel coated TiO{sub 2} enriched concrete samples has been investigated on lab-scale using toluene as a model pollutant. High removal efficiencies (up to 86%) were obtained with the dip-coated samples, indicating their attractive photocatalytic properties for future application as air purifying building materials. (author)

  7. Breket titanium (Titanium bracket

    Directory of Open Access Journals (Sweden)

    Sianiwati Goenharto

    2005-09-01

    Full Text Available There has been a considerable discussion in the literature about corrosion and sensitivity to the nickel present in stainless steel brackets. Titanium has been heralded as a material totally compatible in the oral environment and superior in structural integrity compared to stainless steel. Many current applications in dentistry and medicine have made titanium an obvious choice for a possible substitute material. Titanium based brackets have shown excellent corrosion resistance and possessed good biocompatibility. Evaluation of titanium brackets for orthodontic therapy showed that titanium brackets were comparable to stainless steel brackets in passive and active configuration. Study about metallographic structure, hardness, bond strength to enamel substrate, etc. showed that titanium brackets exhibited a potential for clinical application. It was concluded that titanium brackets were suitable substitute for stainless steel brackets.

  8. Facile preparation of titanium dioxide nano-capsule arrays used as photo-anode for dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Su, Penglei; Li, Hongyi, E-mail: lhy06@bjut.edu.cn; Wang, Jinshu, E-mail: wangjsh@bjut.edu.cn; Wu, Junshu; Zhao, Bingxin; Wang, Fei

    2015-08-30

    Graphical abstract: - Highlights: • TiO{sub 2} nanoparticles have been introduced into TiO{sub 2} nanotube using a facile liquid phase deposition method at low temperature in atmosphere. • Dye solar cells have been assembled on flexible titanium substrate. • The incident photo-electron conversion efficiency has been improved 76% compared with pure TiO{sub 2} nanotube arrays. - Abstract: To improve titanium dioxide (TiO{sub 2}) nanotube arrays’ performance on dye sensitized solar cells (DSSCs), TiO{sub 2} nano-capsule arrays (TNCP) have been designed and prepared by planting TiO{sub 2} nanoparticles into TiO{sub 2} nanotube (TNT) using a facile liquid phase deposition (LPD) route which does not require any special equipment and both improve the specific surface area and surface energy of TNT at low temperature. It has been found that TiO{sub 2} nanoparticles are homogeneously distributed along the wall of TNT and their crystal size is calculated to be 5–10 nm. The obtained TNCP's specific surface area and surface energy have been increased from 27.1 (for pure TNT) to 33.4 m{sup 2}/g and from 67.7 (for pure TNT) to 76.4 mJ/m{sup 2}, respectively. When used as photo-anodes of DSSCs, TNCP shows higher energy conversion efficiency, which is 1.7 times that of pure TNT. Therefore, the present work provides one effective strategy to better TNT's performance on DSSCs, which can be assembled on metal substrate in large scale.

  9. Visible light induced electron transfer process over nitrogen doped TiO(2) nanocrystals prepared by oxidation of titanium nitride.

    Science.gov (United States)

    Wu, Zhongbiao; Dong, Fan; Zhao, Weirong; Guo, Sen

    2008-08-30

    Nitrogen doped TiO(2) nanocrystals with anatase and rutile mixed phases were prepared by incomplete oxidation of titanium nitride at different temperatures. The as-prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), core level X-ray photoelectron spectroscopy (CL XPS), valence band X-ray photoelectron spectroscopy (VB XPS), UV-vis diffuse reflectance spectra (UV-vis DRS), and visible light excited photoluminescence (PL). The photocatalytic activity was evaluated for photocatalytic degradation of toluene in gas phase under visible light irradiation. The visible light absorption and photoactivities of these nitrogen doped TiO(2) nanocrystals can be clearly attributed to the change of the additional electronic (N(-)) states above the valence band of TiO(2) modified by N dopant as revealed by the VB XPS and visible light induced PL. A band gap structure model was established to explain the electron transfer process over nitrogen doped TiO(2) nanocrystals under visible light irradiation, which was consistent with the previous theoretical and experimental results. This model can also be applied to understand visible light induced photocatalysis over other nonmetal doped TiO(2).

  10. Preparation, Characterization and Photocatalytic Activity of Lanthanum Doped Mesoporous Titanium Dioxide

    Institute of Scientific and Technical Information of China (English)

    Zhong-liang Shi; Hong Lai; Shu-hua Yao; Shao-feng Wang

    2012-01-01

    Lanthanum doped mesoporous titanium dioxide photocatalysts with different La content were synthesized by template method using tetrabutyltitanate (Ti(OC4H9)4) as precursor and Pluronic P123 as template.The catalysts were characterized by thermogravimetric differential thermal analysis,N2 adsorption-desorption measurements,X-ray diffraction,and UV-Vis adsorption spectroscopy.The effect of La3+ doping concentration from 0.1% to 1%on the photocatalytic activity of mesoporous TiO2 was investigated.The characterizations indicated that the photocatalysts possessed a homogeneous pore diameter of about 10 nm with high surface area of 165 m2/g.X-ray photoelectron spectroscopy measurements indicated the presence of C in the doped samples in addition to La.Compared with pure mesoporous TiO2,the La-doped samples extended the photoabsorption edge into the visible light region.The results of phenol photodecomposition showed that La-doped mesoporous TiO2 exhibited higher photocatalytic activities than pure mesoporous TiO2 under UV and visible light irradiation.

  11. Preparation and characterization of laser cladding wollastonite derived bioceramic coating on titanium alloy.

    Science.gov (United States)

    Li, Huan-cai; Wang, Dian-gang; Chen, Chuan-zhong; Weng, Fei; Shi, Hua

    2015-09-25

    The bioceramic coating is fabricated on titanium alloy (Ti6Al4V) by laser cladding the preplaced wollastonite (CaSiO3) powders. The coating on Ti6Al4V is characterized by x-ray diffraction, scanning electron microscopy coupled with energy dispersive spectroscopy, and attenuated total reflection Fourier-transform infrared. The interface bonding strength is measured using the stretching method using an RGD-5-type electronic tensile machine. The microhardness distribution of the cross-section is determined using an indentation test. The in vitro bioactivity of the coating on Ti6Al4V is evaluated using the in vitro simulated body fluid (SBF) immersion test. The microstructure of the laser cladding sample is affected by the process parameters. The coating surface is coarse, accidented, and microporous. The cross-section microstructure of the ceramic layer from the bottom to the top gradually changes from cellular crystal, fine cellular-dendrite structure to underdeveloped dendrite crystal. The coating on Ti6Al4V is composed of CaTiO3, CaO, α-Ca2SiO4, SiO2, and TiO2. After soaking in the SBF solution, the calcium phosphate layer is formed on the coating surface.

  12. Catalysis using hydrous metal oxide ion exchanges

    Science.gov (United States)

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  13. Catalysis using hydrous metal oxide ion exchangers

    Science.gov (United States)

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  14. Quantification of water in hydrous ringwoodite

    Directory of Open Access Journals (Sweden)

    Sylvia-Monique eThomas

    2015-01-01

    Full Text Available Ringwoodite, γ-(Mg,Fe2SiO4, in the lower 150 km of Earth’s mantle transition zone (410-660 km depth can incorporate up to 1.5-2 wt% H2O as hydroxyl defects. We present a mineral-specific IR calibration for the absolute water content in hydrous ringwoodite by combining results from Raman spectroscopy, secondary ion mass spectrometery (SIMS and proton-proton (pp-scattering on a suite of synthetic Mg- and Fe-bearing hydrous ringwoodites. H2O concentrations in the crystals studied here range from 0.46 to 1.7 wt% H2O (absolute methods, with the maximum H2O in the same sample giving 2.5 wt% by SIMS calibration. Anchoring our spectroscopic results to absolute H-atom concentrations from pp-scattering measurements, we report frequency-dependent integrated IR-absorption coefficients for water in ringwoodite ranging from 78180 to 158880 L mol-1cm-2, depending upon frequency of the OH absorption. We further report a linear wavenumber IR calibration for H2O quantification in hydrous ringwoodite across the Mg2SiO4-Fe2SiO4 solid solution, which will lead to more accurate estimations of the water content in both laboratory-grown and naturally occurring ringwoodites. Re-evaluation of the IR spectrum for a natural hydrous ringwoodite inclusion in diamond from the study of Pearson et al. (2014 indicates the crystal contains 1.43 ± 0.27 wt% H2O, thus confirming near-maximum amounts of H2O for this sample from the transition zone.

  15. Aging dependent phase transformation of mesostructured titanium dioxide nanomaterials prepared by evaporation-induced self-assembly process: Implications for solar hydrogen production

    Directory of Open Access Journals (Sweden)

    Luther Mahoney

    2015-08-01

    Full Text Available Mesostructured titanium dioxide materials were prepared by Evaporation-Induced Self-Assembly (EISA method using titanium isopropoxide and a cationic surfactant. The titania phase could be tuned by simply varying the aging time. As the aging time increased, hierarchically structured mesoporous materials with mixed phases of titania were obtained. The rutile content was found to generally increase with length in aging time. The mesostructured materials were evaluated for hydrogen production, and a mixed phase consisting of 95% anatase and 5% rutile showed the highest activity. This study indicates that the aging time is an important parameter for the preparation of mesostructured materials with hierarchical porosities and mixed phase(s of titania.

  16. Effects of Thermal Annealing on the Optical Properties of Titanium Oxide Thin Films Prepared by Chemical Bath Deposition Technique

    Directory of Open Access Journals (Sweden)

    H.U. Igwe

    2010-08-01

    Full Text Available A titanium oxide thin film was prepared by chemical bath deposition technique, deposited on glass substrates using TiO2 and NaOH solution with triethanolamine (TEA as the complexing agent. The films w ere subjected to post deposition annealing under various temperatures, 100, 150, 200, 300 and 399ºC. The thermal treatment streamlined the properties of the oxide films. The films are transparent in the entire regions of the electromagnetic spectrum, firmly adhered to the substrate and resistant to chemicals. The transmittance is between 20 and 95% while the reflectance is between 0.95 and 1%. The band gaps obtained under various thermal treatments are between 2.50 and 3.0 ev. The refractive index is between 1.52 and 2.55. The thickness achieved is in the range of 0.12-0.14 :m.These properties of the oxide film make it suitable for application in solar cells: Liquid and solid dye-sensitized photoelectrochemical solar cells, photo induced water splitting, dye synthesized solar cells, environmental purifications, gas sensors, display devices, batteries, as well as, solar cells with an organic or inorganic extremely thin absorber. These thin films are also of interest for the photooxidation of water, photocatalysis, electro chromic devices and other uses.

  17. Preparation of porous titanium oxide films onto indium tin oxide for application in organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Andreia G. [Laboratorio de Dispositivos Nanoestruturados, Departamento de Fisica, Universidade Federal do Parana, Curitiba, Parana (Brazil); Mattos, Luana L.; Spada, Edna R.; Serpa, Rafael B.; Campos, Cristiani S. [Laboratorio de Sistemas Nanoestruturados, Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina (Brazil); Grova, Isabel R.; Ackcelrud, Leni [Laboratorio de Polimeros Paulo Scarpa, Departamento de Quimica, Universidade Federal do Parana, Curitiba, Parana (Brazil); Reis, Francoise T.; Sartorelli, Maria L. [Laboratorio de Sistemas Nanoestruturados, Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina (Brazil); Roman, Lucimara S., E-mail: lsroman@fisica.ufpr.br [Laboratorio de Dispositivos Nanoestruturados, Departamento de Fisica, Universidade Federal do Parana, Curitiba, Parana (Brazil)

    2012-05-01

    In this work, porous ordered TiO{sub 2} films were prepared through sol gel route by using a monolayer of polystyrene spheres as template on indium-tin oxide/glass substrate. These films were characterized by SEM, AFM, Raman spectroscopy, UV-vis absorbance and XRD. The UV-vis absorbance spectrum show a pseudo band gap (PBG) with maxima at 460 nm arising from the light scattering and partial or total suppression of the photon density of states, this PBG can be controlled by the size of the pore. We also propose the use of this porous film as electron acceptor electrode in organic photovoltaic cells; we show that devices prepared with porous titania displayed higher efficiencies than devices using compact titania films as electrode. Such behaviour was observed in both bilayer and bulk heterojunction devices.

  18. Characteristics of zinc oxide nanorod array/titanium oxide film heterojunction prepared by aqueous solution deposition

    Science.gov (United States)

    Lee, Ming-Kwei; Hong, Min-Hsuan; Li, Bo-Wei

    2016-07-01

    The characteristics of a ZnO nanorod array/TiO2 film heterojunction were investigated. A TiO2 film was prepared on glass by aqueous solution deposition with precursors of ammonium hexafluorotitanate and boric acid at 40 °C. Then, a ZnO seed layer was prepared on a TiO2 film/glass substrate by RF sputtering. A vertically oriented ZnO nanorod array was grown on a ZnO seed layer/TiO2 film/glass substrate by aqueous solution deposition with precursors of zinc nitrate and hexamethylenetetramine (HMT) at 70 °C. After thermal annealing in N2O ambient at 300 °C, this heterojunction used as an oxygen gas sensor shows much better rise time, decay time, and on/off current ratio than as-grown and annealed ZnO nanorods.

  19. In vitro Cyto and Blood Compatibility of Titanium Containing Diamond-Like Carbon Prepared by Hybrid Sputtering Method

    Institute of Scientific and Technical Information of China (English)

    Krishnasamy NAVANEETHA PANDIYARAJ; Jan HEEG; Andreas LAMPKA; Fabian JUNGE; Torsten BARFELS; Marion WIENECKE; Young Ha RHEE; Hyoung Woo KIM

    2012-01-01

    In recent years, diamond-like carbon films (DLC) have been given more attention in research in the biomedical industry due to their potential application as surface coating on biomedical materials such as metals and polymer substrates. There are many ways to prepare metal containing DLC films deposited on polymeric film substrates, such as coatings from car- bonaceous precursors and some means that incorporate other elements. In this study, we in- vestigated both the surface and biocompatible properties of titanium containing DLC (Ti-DLC) films. The Ti-DLC films were prepared on the surface of poly (ethylene terephthalate) (PET) film as a function of the deposition power level using reactive sputtering technique. The films' hydrophilicity was studied by contact angle and surface energy tests. Their surface morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Their elemental chemical composition was analyzed using energy dispersive X-spectra (EDX) and X-ray photoelectron spectroscopy (XPS). Their blood and cell compatibility was studied by in vitro tests, including tests on platelet adhesion, thrombus formation, whole blood clotting time and osteoblast cell compatibility. Significant changes in the morphological and chemical composition of the Ti-DLC films were observed and found to be a function of the deposition level. These morphological and chemical changes reduced the interfacial tension between Ti-DLC and blood proteins as well as resisted the adhesion and activation of platelets on the surface of the Ti-DLC films. The cell compatibility results exhibited significant growth of osteoblast cells on the surface of Ti incorporated DLC film compared with that of DLC film surface.

  20. A New Technique for Preparation of High-Grade Titanium Slag from Titanomagnetite Concentrate by Reduction-Melting-Magnetic Separation Processing

    Science.gov (United States)

    Lv, Chao; Yang, Kun; Wen, Shu-ming; Bai, Shao-jun; Feng, Qi-cheng

    2017-08-01

    This paper proposes a new technique for preparation of high-grade titanium slag from Panzhihua vanadium titanomagnetite concentrate by reduction-melting-magnetic separation processing. Chemical analysis, x-ray diffraction, and scanning electron microscopy in conjunction with energy-dispersive spectroscopy were used to characterize the samples. The effective separation of iron and titanium slag could be realized by melting metallized pellets at 1550°C for 60 min with the addition of 1% CaO (basicity of 1.1) and 2% graphite powder. The small iron particles embedded in the slag could be removed by fine grinding and magnetic separation process. The grade of TiO2 in the obtained high-grade titanium slag reached 60.68% and the total recovery of TiO2 was 91.25%, which could be directly applied for producing titanium white by the sulfuric acid process. This technique provides an alternative method to use vanadium titanomagnetite concentrate of the Panzhihua area in China.

  1. Novel titanium particles reinforced Zr-based bulk metallic glass composites prepared by infiltration casting

    Institute of Scientific and Technical Information of China (English)

    Cuimei Zhang; Xidong Hui; Meiling Wang; Guoliang Chen

    2008-01-01

    A novel Ti/Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 composite was successfully prepared by infiltrating the melt into sintered Ti preform. It shows that the introduction of Ti particles into the composite results in an increase in elastic strain to 3% and an enhancement of the strength up to 2.1 GPa. High specific strength has been obtained because of the decrease in density of the composite. It is suggested that an improvement in the mechanical properties of the composite may be attributed to the generation of multiple shear bands and some deformation in the Ti particles.

  2. Preparation of titanium dioxide films on etched aluminum foil by vacuum infiltration and anodizing

    Science.gov (United States)

    Xiang, Lian; Park, Sang-Shik

    2016-12-01

    Al2O3-TiO2 (Al-Ti) composite oxide films are a promising dielectric material for future use in capacitors. In this study, TiO2 films were prepared on etched Al foils by vacuum infiltration. TiO2 films prepared using a sol-gel process were annealed at various temperatures (450, 500, and 550 °C) for different time durations (10, 30, and 60 min) for 4 cycles, and then anodized at 100 V. The specimens were characterized using X-ray diffraction, field emission scanning electron microscopy, and field emission transmission electron microscopy. The results show that the tunnels of the specimens feature a multi-layer structure consisting of an Al2O3 outer layer, an Al-Ti composite oxide middle layer, and an aluminum hydrate inner layer. The electrical properties of the specimens, such as the withstanding voltage and specific capacitance, were also measured. Compared to specimens without TiO2 coating, the specific capacitances of the TiO2-coated specimens are increased. The specific capacitance of the anode Al foil with TiO2 coating increased by 42% compared to that of a specimen without TiO2 coating when annealed at 550 °C for 10 min. These composite oxide films could enhance the specific capacitance of anode Al foils used in dielectric materials.

  3. Preparation and activation of micro-arc oxidation films on a TLM titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S; Yu, Z T [Northwest Institute for Non-Ferrous Metal Research, Xi' an, 710016 (China)], E-mail: yusen_1982@163.com

    2008-12-15

    In order to improve the biocompatibility and surface activity of a TLM alloy, a layer of a porous TiO{sub 2} film was prepared by the micro-arc oxidation method on the surface, and then the NH{sup -}{sub 2} active group was introduced on the film by an activation treatment in an aminated solution. The phase identification and surface characteristics of the micro-arc oxidation films were characterized by XRD, XPS, SEM and EDS. The in vitro blood compatibility of the TLM alloy samples with and without surface modification was evaluated by contact angle tests, hemolysis tests and electrochemical tests. The results indicate that the biocompatibility and surface activity of the TLM alloy could be remarkably improved by surface modification of micro-arc oxidation and activation treatment.

  4. Preparation and activation of micro-arc oxidation films on a TLM titanium alloy

    Science.gov (United States)

    Yu, S.; Yu, Z. T.

    2008-12-01

    In order to improve the biocompatibility and surface activity of a TLM alloy, a layer of a porous TiO2 film was prepared by the micro-arc oxidation method on the surface, and then the NH-2 active group was introduced on the film by an activation treatment in an aminated solution. The phase identification and surface characteristics of the micro-arc oxidation films were characterized by XRD, XPS, SEM and EDS. The in vitro blood compatibility of the TLM alloy samples with and without surface modification was evaluated by contact angle tests, hemolysis tests and electrochemical tests. The results indicate that the biocompatibility and surface activity of the TLM alloy could be remarkably improved by surface modification of micro-arc oxidation and activation treatment.

  5. Preparation and Characterization of Titanium Dioxide Photoelectrodes for Generation of Hydrogen by Photoelectrochemical Water Splitting

    Directory of Open Access Journals (Sweden)

    Alvaro Realpe

    2015-04-01

    Full Text Available The photoelectrochemical water splitting for the production of hydrogen was evaluated through the preparation of photoelectrodes of different substrates (glass, aluminium, graphite with TiO2 film. The film on each substrate was characterized by scanning electron microscope (SEM and x-ray diffraction (XRD. The results show that the TiO2 was deposited in dispersed form and in small clusters on the surface of the substrate and it had no effect on the crystal structure of the semiconductor; furthermore, good adhesion of the films on substrates was obtained except with graphite substrate. The hydrogen production process was carried out using UV light, halogen light and sunlight as photon sources, and it was evaluated by the current flow through the external circuit of the cell. The highest photocurrent values were obtained with the aluminium photoelectrode, averaging 1092.03 uA.

  6. Heat Capacity of Hydrous Silicate Melts

    Science.gov (United States)

    Robert, G.; Whittington, A. G.; Stechern, A.; Behrens, H.

    2015-12-01

    We determined the heat capacities of four series of glasses and liquids of basaltic and basaltic andesite compositions including two natural remelts from Fuego volcano, Guatemala, and two Fe-free analogs. The samples are low-alkali, Ca- and Mg-rich aluminosilicates with non-bridging oxygen to tetrahedrally-coordinated cation ratios (NBO/T) ranging between 0.33 and 0.67. Differential scanning calorimetry measurements were performed at atmospheric pressure between room temperature and ≈100 K above the glass transition for hydrous samples and up to ≈1800 K for dry samples. The water contents investigated range up to 5.34 wt.% (16.4 mol%). Water does not measurably affect the heat capacity of glasses (T hydrous samples also occurs below the Dulong-Petit limit of 3R/g atom. We see little change in liquid heat capacity with increasing water content; hydrous liquid heat capacities are within 3-6% of the dry liquid, at low temperatures just above the glass transition. However, dry liquids show a decrease in heat capacity with increasing temperature above the glass transition, from supercooled to superliquidus temperatures. Liquid heat capacity values just above the glass transition range between 95-100 J/mol K, whereas liquid heat capacity values at superliquidus temperatures are between 85-91 J/mol K. Comparison with other studies of the heat capacity of hydrous glasses and liquids shows that the liquid heat capacity of strongly depolymerized samples (NBO/T ≥ 0.8) increases with increasing water content, whereas depolymerized samples (0.4 ≤ NBO/T ≤ 0.8) or polymerized samples (NBO/T ≤ 0.4) generally show little change or a moderate decrease in liquid heat capacity with increasing water content.

  7. Preparation,modification and application of titanium dioxide nanotubes%二氧化钛纳米管的制备、改性及应用

    Institute of Scientific and Technical Information of China (English)

    王俏; 王威; 崔福义; 邵鹏辉; 何皎洁

    2015-01-01

    Titanium dioxide nanotubes have been intensively concerned and studied in recent years due to their special morphology and highly ordered property. This paper reviewed recent advances in titanium dioxide nanotubes. Three kinds of preparation methods were discussed,including template synthesis,electrochemical anodization and hydrothermal synthesis. On this basis,it described the modification methods of titanium dioxide nanotubes in detail,including doping and compositing. The applications of titanium dioxide nanotubes and composites in the field of environment and energy were introduced briefly. Finally,the future studies on the formation mechanism,morphology control and modification of titanium dioxide nanotubes were proposed.%二氧化钛纳米管因其特殊的形貌和高度有序的特性成为了目前研究的热点之一。本文系统回顾了近年来有关二氧化钛纳米管的相关研究,着重阐述了二氧化钛纳米管的制备方法,主要包括模板法、阳极氧化法、水热法;在此基础上,详细论述了掺杂、复合等对二氧化钛纳米管进行改性的方法;并简要介绍了二氧化钛纳米管及其复合材料在环境、能源等领域的应用。最后,展望了二氧化钛纳米管的主要研究方向是对形成机理、管形貌调控、表面改性等方面做进一步研究,以期为后续的研究提供参考。

  8. Preparation and characterization of tungsten-loaded titanium dioxide photocatalyst for enhanced dye degradation.

    Science.gov (United States)

    Saepurahman; Abdullah, M A; Chong, F K

    2010-04-15

    Tungsten-loaded TiO(2) photocatalyst has been successfully prepared and characterized. TEM analysis showed that the photocatalysts were nanosize with the tungsten species forming layers of coverage on the surface of TiO(2), but not in clustered form. This was confirmed by XRD and FT-Raman analyses where tungsten species were well dispersed at lower loading (12 mol%). In addition, loading with tungsten could stabilize the anatase phase from transforming into inactive rutile phase and did not shift the optical absorption to the visible region as shown by DRUV-vis analysis. PZC value of TiO(2) was found at 6.4, but the presence of tungsten at 6.5 mol% WO(3), decreased the PZC value to 3. Tungsten-loaded TiO(2) was superior to unmodified TiO(2) with 2-fold increase in degradation rate of methylene blue, and equally effective for the degradation of different class of dyes such as methyl violet and methyl orange at 1 mol% WO(3) loading.

  9. Preparation of Stellerite Loading Titanium Dioxide Photocatalyst and Its Catalytic Performance on Methyl Orange

    Directory of Open Access Journals (Sweden)

    Hua Chen

    2015-01-01

    Full Text Available TiO2/stellerite composite photocatalysts were prepared by dispersing TiO2 onto the surface of HCl, NaOH, or NaCl treated stellerite using a sol-gel method. The materials were characterized by scanning electron microscopy (SEM, energy dispersive X-ray (EDX, Fourier transform infrared spectroscopy (FT-IR, BET surface area analysis, and X-ray diffraction (XRD. HCl and NaCl modification result in the promotion of the pore formation at the stellerite surfaces and induced the microscopic changes, while the surface morphology and structure of the stellerite were almost ruined by NaOH modification. Supported TiO2 calcinated at 200°C presented anatase structure. The photocatalytic degradation activities of TiO2 loaded HCl and NaCl modified stellerite were better than that of natural stellerite, accompanied with increasing specific surface area. On the contrary, NaOH modification induced the loss of photocatalytic ability of composite due to the generation of silicates.

  10. Microstructure and property evolutions of titanium/nano-hydroxyapatite composites in-situ prepared by selective laser melting.

    Science.gov (United States)

    Han, Changjun; Wang, Qian; Song, Bo; Li, Wei; Wei, Qingsong; Wen, Shifeng; Liu, Jie; Shi, Yusheng

    2017-02-20

    Titanium (Ti)-hydroxyapatite (HA) composites have the potential for orthopedic applications due to their favorable mechanical properties, excellent biocompatibility and bioactivity. In this work, the pure Ti and nano-scale HA (Ti-nHA) composites were in-situ prepared by selective laser melting (SLM) for the first time. The phase, microstructure, surface characteristic and mechanical properties of the SLM-processed Ti-nHA composites were studied by X-ray diffraction, transmission electron microscope, atomic force microscope and tensile tests, respectively. Results show that SLM is a suitable method for fabricating the Ti-nHA composites with refined microstructure, low modulus and high strength. A novel microstructure evolution can be illustrated as: Relatively long lath-shaped grains of pure Ti evolved into short acicular-shaped and quasi-continuous circle-shaped grains with the varying contents of nHA. The elastic modulus of the Ti-nHA composites is 3.7% higher than that of pure Ti due to the effect of grain refinement. With the addition of 2% nHA, the ultimate tensile strength significantly reduces to 289MPa but still meets the application requirement of bone implants. The Ti-nHA composites exhibit a remarkable improvement of microhardness from 336.2 to 600.8 HV and nanohardness from 5.6 to 8.3GPa, compared to those of pure Ti. Moreover, the microstructure and property evolution mechanisms of the composites with the addition of HA were discussed and analyzed. It provides some new knowledge to the design and fabrication of biomedical material composites for bone implant applications.

  11. Vehicle exhaust gas clearance by low temperature plasma-driven nano-titanium dioxide film prepared by radiofrequency magnetron sputtering.

    Directory of Open Access Journals (Sweden)

    Shuang Yu

    Full Text Available A novel plasma-driven catalysis (PDC reactor with special structure was proposed to remove vehicle exhaust gas. The PDC reactor which consisted of three quartz tubes and two copper electrodes was a coaxial dielectric barrier discharge (DBD reactor. The inner and outer electrodes firmly surrounded the outer surface of the corresponding dielectric barrier layer in a spiral way, respectively. Nano-titanium dioxide (TiO2 film prepared by radiofrequency (RF magnetron sputtering was coated on the outer wall of the middle quartz tube, separating the catalyst from the high voltage electrode. The spiral electrodes were designed to avoid overheating of microdischarges inside the PDC reactor. Continuous operation tests indicated that stable performance without deterioration of catalytic activity could last for more than 25 h. To verify the effectiveness of the PDC reactor, a non-thermal plasma(NTP reactor was employed, which has the same structure as the PDC reactor but without the catalyst. The real vehicle exhaust gas was introduced into the PDC reactor and NTP reactor, respectively. After the treatment, compared with the result from NTP, the concentration of HC in the vehicle exhaust gas treated by PDC reactor reduced far more obviously while that of NO decreased only a little. Moreover, this result was explained through optical emission spectrum. The O emission lines can be observed between 870 nm and 960 nm for wavelength in PDC reactor. Together with previous studies, it could be hypothesized that O derived from catalytically O3 destruction by catalyst might make a significant contribution to the much higher HC removal efficiency by PDC reactor. A series of complex chemical reactions caused by the multi-components mixture in real vehicle exhaust reduced NO removal efficiency. A controllable system with a real-time feedback module for the PDC reactor was proposed to further improve the ability of removing real vehicle exhaust gas.

  12. Vehicle exhaust gas clearance by low temperature plasma-driven nano-titanium dioxide film prepared by radiofrequency magnetron sputtering.

    Science.gov (United States)

    Yu, Shuang; Liang, Yongdong; Sun, Shujun; Zhang, Kai; Zhang, Jue; Fang, Jing

    2013-01-01

    A novel plasma-driven catalysis (PDC) reactor with special structure was proposed to remove vehicle exhaust gas. The PDC reactor which consisted of three quartz tubes and two copper electrodes was a coaxial dielectric barrier discharge (DBD) reactor. The inner and outer electrodes firmly surrounded the outer surface of the corresponding dielectric barrier layer in a spiral way, respectively. Nano-titanium dioxide (TiO2) film prepared by radiofrequency (RF) magnetron sputtering was coated on the outer wall of the middle quartz tube, separating the catalyst from the high voltage electrode. The spiral electrodes were designed to avoid overheating of microdischarges inside the PDC reactor. Continuous operation tests indicated that stable performance without deterioration of catalytic activity could last for more than 25 h. To verify the effectiveness of the PDC reactor, a non-thermal plasma(NTP) reactor was employed, which has the same structure as the PDC reactor but without the catalyst. The real vehicle exhaust gas was introduced into the PDC reactor and NTP reactor, respectively. After the treatment, compared with the result from NTP, the concentration of HC in the vehicle exhaust gas treated by PDC reactor reduced far more obviously while that of NO decreased only a little. Moreover, this result was explained through optical emission spectrum. The O emission lines can be observed between 870 nm and 960 nm for wavelength in PDC reactor. Together with previous studies, it could be hypothesized that O derived from catalytically O3 destruction by catalyst might make a significant contribution to the much higher HC removal efficiency by PDC reactor. A series of complex chemical reactions caused by the multi-components mixture in real vehicle exhaust reduced NO removal efficiency. A controllable system with a real-time feedback module for the PDC reactor was proposed to further improve the ability of removing real vehicle exhaust gas.

  13. Characterization and Catalytic Activity of Titanium-containing Aluminum Phosphate Prepared by Sol-gel and Nonuniform Precipitation for O-Alkylation of Catechol with Ethanol

    Institute of Scientific and Technical Information of China (English)

    PAN Chun-liu; ZHANG Wen-xiang; LI Xue-mei; JIANG Da-zhen; WU Tong-hao

    2003-01-01

    Three titanium-containing aluminum phosphate catalysts with a general formula Al0.77Ti0.23PO4 were prepared by the sol-gel method at room temperature(APTS), and a nonuniform precipitation procedure at room temperature(APTR) and under reflux(APTF), respectively. The structural features and the surface properties of the three catalysts were determined by means of the physical adsorption of nitrogen at liquid N2 temperature, XRD, UV-Vis, NH3-TPD and IR of adsorbed pyridine. The vapor phase O-alkylation of catechol with ethanol over the prepared catalysts was studied. It was found that the activity and the selectivity of these catalysts are greatly dependent on the preparation method, and catalyst APTF shows the highest activity and selectivity. The characterization evidence indicates that the weak Brnsted acid sites were more effective for the reaction.

  14. Anodic deposition of hydrous ruthenium oxide for supercapacitors

    Science.gov (United States)

    Hu, Chi-Chang; Liu, Ming-Jue; Chang, Kuo-Hsin

    This communication demonstrates the success in the anodic deposition of hydrous ruthenium oxide (denoted as RuO 2· xH 2O) from RuCl 3· xH 2O in aqueous media with/without adding acetate ions (CH 3COO -, AcO -) as the complex agent. The benefits of as-deposited RuO 2· xH 2O include the low electron-hopping resistance and the low contact resistance at the Ti-RuO 2· xH 2O interface which are clarified in electrochemical impedance spectroscopic (EIS) studies. The cycling stability, specific capacitance, and power performance of as-deposited RuO 2· xH 2O are further improved by annealing in air at 150 °C for 2 h. The morphologies of as-deposited and annealed RuO 2· xH 2O films, examined by scanning electron microscopy (SEM), are very similar to that of thermally decomposed RuO 2. The high onset frequencies of 660 and 1650 Hz obtained from EIS spectra for the as-deposited and annealed RuO 2· xH 2O films, respectively, definitely illustrate the high-power merits of both oxide films prepared by means of the anodic deposition without considering the advantages of its simplicity, one-step, reliability, low cost, and versatility for electrode preparation.

  15. Nanocomposite TiC/a-C:H film prepared on titanium aluminium alloy substrates by PSII assistant MW-ECRCVD

    Institute of Scientific and Technical Information of China (English)

    Ma Guo-Jia; Liu Xi-Liang; Zhang Hua-Fang; Wu Hong-Chen; Peng Li-Ping

    2007-01-01

    Thin films of titanium carbide and amorphous hydrogenated carbon have been synthesized on titanium aluminium alloy substrates by PSII assisted MW-ECRCVD with a mirror field. The microstructure, chemical composition and nanometre grains (namely, the so-called nanocomposite structure). The size of TiC grains of nanocomposite TiC/DLC film is about 5 nm. The nanocomposite structure has obvious improvement in the mechanical properties of DLC film.the coherent strength is also obviously enhanced at the critical load of about 35N.

  16. Measurement of Electrical Conductivity of Porous Titanium and Ti6Al4V Prepared by the Powder Metallurgy Method

    Institute of Scientific and Technical Information of China (English)

    ZHU Ke; LI Cheng-Feng; ZHU Zhen-Gang

    2007-01-01

    @@ Porous titanium and Ti6Al4V are produced by the powder metallurgy method. Dependence of the electrical conductivity on the porosity and pore size is investigated and the experimental results are correlative and compared with several earlier models. A newly modified Mori-Tanaka relationship based on the effective field method is proposed, which is successfully applied to describe the dependence of the electrical conductivity of porous titanium and Ti6Al4V on the porosity. The pore size has a minor effect on the electrical conductivity of both samples.

  17. Preparation and characterization of porous bioceramic layers on pure titanium surfaces obtained by micro-arc oxidation process

    Science.gov (United States)

    Chien, Chi-Sheng; Hung, Yu-Chien; Hong, Ting-Fu; Wu, Chung-Chun; Kuo, Tsung-Yuan; Lee, Tzer-Min; Liao, Tze-Yuan; Lin, Huan-Chang; Chuang, Cheng-Hsin

    2017-03-01

    Fluorapatite (FA) has better chemical and thermal stability than hydroxyapatite (HA), and has thus attracted significant interest for biomaterial applications in recent years. In this study, porous bioceramic layers were prepared on pure titanium surfaces using a micro-arc oxidation (MAO) technique with an applied voltage of 450 V and an oxidation time of 5 min. The MAO process was performed using three different electrolyte solutions containing calcium fluoride (CaF2), calcium acetate monohydrate (Ca(CH3COO)2·H2O), and sodium phosphate monobasic dihydrate (NaH2PO4·2H2O) mixed in ratios of 0:2:1, 1:1:1, and 2:0:1, respectively. The surface morphology, composition, micro-hardness, porosity, and biological properties of the various MAO coatings were examined and compared. The results showed that as the CaF2/Ca(CH3COO)2·H2O ratio increased, the elemental composition of the MAO coating transformed from HA, A-TiO2 (Anatase) and R-TiO2 (Rutile); to A-TiO2, R-TiO2, and a small amount of HA; and finally A-TiO2, R-TiO2, CaF2, TiP2O5, and FA. The change in elemental composition was accompanied by a higher micro-hardness and a lower porosity. The coatings exhibited a similar in vitro bioactivity performance during immersion in simulated body fluid for 7-28 days. Furthermore, for in initial in vitro biocompatibility tests performed for 24 h using Dulbecco's Modified Eagle Medium (DMEM) supplement containing 10%Fetal bovine serum, the attachment and spreading of osteoblast-like osteosarcoma MG63 cells were found to increase slightly with an increasing CaF2/Ca(CH3COO)2·H2O ratio. In general, the results presented in this study show that all three MAO coatings possess a certain degree of in vitro bioactivity and biocompatibility.

  18. Photocatalytic effect and Mössbauer study of iron titanium silicate glass prepared by sol-gel method

    Science.gov (United States)

    Takahashi, Yusuke; Kubuki, Shiro; Akiyama, Kazuhiko; Sinkó, Katalin; Homonnay, Zoltán; Kuzmann, Ernő; Nishida, Tetsuaki

    2015-06-01

    A relationship between the photocatalytic effect and the local structure of 50Fe2O3ṡ (50- x)SiO2ṡ xTiO2 glass abbreviated as 50FS xTi prepared by sol-gel method was investigated by 57Fe-Mössbauer spectroscopy (FeMS), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FT-IR) and ultraviolet-visible diffuse reflectance spectroscopy (UV-VIS). Mössbauer spectra of 50FS xTi glass before annealing showed a doublet with the isomer shift ( δ) and quadrupole splitting (Δ) of 0.41±0.01 mm s-1 and 0.75±0.02 mm s-1, indicating that Fe3+ formed FeO6 octahedra ( O h). A comparable δ of 0.36±0.02 mm s-1 and the larger Δ of 0.92±0.02 mm s-1 values were confirmed for 50FS xTi after annealed at 400 ∘ C for 3 h. These results indicates that the coordination number of iron polyhedra decreases from 6 to 4 due to annealing. UV-VIS diffuse reflectance spectra of 50FS10Ti yielded two optical band gap energies ( E g's) of 2.05 eV and 3.55 eV. This result implied that 50FS10Ti has two optical band gaps in the visible area and UV area. A bleaching test performed by 10 mL of MB aqueous solution and 40 mg of powder 50FS10Ti glass sample showed that MB absorbance decreased from 3.16 to 0.43 after UV-visible light irradiation for 2 h with the first order rate constant ( k) of . These results prove that titanium containing iron silicate glass with the composition of 50Fe2O3ṡ40SiO2ṡ10TiO2 has the UV and visible light responsive photocatalytic effect.

  19. Semi-transparent ordered TiO{sub 2} nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Szkoda, Mariusz, E-mail: mariusz-szkoda@wp.pl [Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233 (Poland); Lisowska-Oleksiak, Anna [Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233 (Poland); Grochowska, Katarzyna [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Science, Fiszera 14, 80-231 Gdańsk (Poland); Skowroński, Łukasz [Institute of Mathematics and Physics, UTP University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz (Poland); Karczewski, Jakub [Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Siuzdak, Katarzyna [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Science, Fiszera 14, 80-231 Gdańsk (Poland)

    2016-09-15

    Highlights: • High quality titanium coatings were doposited using industrial magnetron sputtering equipment. • Semi-transparent TiO{sub 2} were prepared via anodization realized in various conditions. • Depending on electrolyte type, ordered tubular or porous TiO{sub 2} layers were obtained. • Prepared material can act as semiconducting layer in photovoltaic cells. - Abstract: In a significant amount of cases, the highly ordered TiO{sub 2} nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO{sub 2} formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV–vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO{sub 2} films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm{sup −2}) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.

  20. Chlorine isotope separation using an hydrous zirconium dioxide exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Heumann, K.G.; Baier, K.; Wibmer, G.

    1980-05-01

    Hydrous zirconium dioxide is used in column experiments for separating the halide ions as well as for isotope fractionation of chlorine. The preparation of the zirconium dioxide particles is carried out by homogeneous hydrolysis of a zirconyl chloride solution using hexamethylenetetramine. The separation order of the halides is I/sup -/, Br/sup -/ and Cl/sup -/ in contrast to the inverse separation order using a strongly basic anion exchange resin. In chlorine isotope separation experiments an enrichment of /sup 35/Cl/sup -/ is found in the first fractions, whereas the last fractions show a significant enrichment of /sup 37/Cl/sup -/. This also indicates an inversion of the isotope separation compared with a strongly basic anion exchange resin. A dependence of the isotope fractionation on the concentration of the NaNO/sub 3/ solution used as eluant is found. With increasing concentration the isotope fractionation decreases. Using a 0.5 M NaNO/sub 3/ solution the elementary separation effect was calculated epsilon done on different tantalum parts to determine the amount of dissolved hydrogen.

  1. Chlorine isotope separation using an hydrous zirconium dioxide exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Heumann, K.G.; Baier, K.; Wibmer, G.

    1980-05-01

    Hydrous zirconium dioxide is used in column experiments for separating the halide ions as well as for isotope fractionation of chlorine. The preparation of the zirconium dioxide particles is carried out by homogeneous hydrolysis of a zirconyl chloride solution using hexamethylenetetramine. The separation order of the halides is I/sup -/, Br/sup -/ and Cl/sup -/ in contrast to the inverse separation order using a strongly basic anion exchange resin. In chlorine isotope separation experiments an enrichment of /sup 35/Cl/sup -/ is found in the first fractions, whereas the last fractions show a significant enrichment of /sup 37/Cl/sup -/. This also indicates an inversion of the isotope separation compared with a strongly basic anion exchange resin. A dependence of the isotope fractionation on the concentration of the NaNO/sub 3/ solution used as eluant is found. With increasing concentration the isotope fractionation decreases. Using a 0.5 M NaNO/sub 3/ solution the elementary separation effect was calculated epsilon = 6,1 x 10/sup -4/. This is one of the highest isotope fractionations known in a chloride isotope exchange system. The results show that the electrolyte behaviour of isotopes is comparable to that of a series of homologous elements.

  2. Growth and Structure of Zirconium Hydrous Polymers in Aqueous Solutions

    Science.gov (United States)

    Singhal; Toth; Beaucage; Lin; Peterson

    1997-10-15

    Zirconium oxychloride solutions prepared at different pH were heated at elevated temperatures for various aging periods to gain an understanding of the growth mechanism and structure of zirconium hydrous polymers. Small angle X-ray scattering (SAXS) measurements were made on these solutions. It was observed that shape of clusters at the earlier stages of growth is close to a rod rather than a sheet as suggested earlier. The scattering data indicate that a rod-shaped primary particle is formed at pH 1.2, and on an increase in the pH, the primary particles become more branched. On aging more than 1250 min at 92°C, these primary particles form large aggregates while retaining the primary particle structure. These aggregates, which are mass fractal in nature, restructure while growing in size and eventually transform into dense particles. Scattering data in this study were not enough to determine a specific kinetic growth model of the aggregates because the scattering intensity at low q constantly changes with time during the restructuring process. Copyright 1997 Academic Press. Copyright 1997Academic Press

  3. Growth and structure of zirconium hydrous polymers in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, A. [Oak Ridge National Lab., TN (United States)]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Toth, L.M.; Lin, J.S. [Oak Ridge National Lab., TN (United States); Beaucage, G. [Univ. of Cincinnati, OH (United States). Dept. of Materials Science and Engineering; Peterson, J. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry

    1997-10-15

    Zirconium oxychloride solutions prepared at different pH were heated at elevated temperatures for various aging periods to gain an understanding of the growth mechanism and structure of zirconium hydrous polymers. Small angle X-ray scattering (SAXS) measurements were made on these solutions. It was observed that shape of clusters at the earlier stages of growth is close to a rod rather than a sheet as suggested earlier. The scattering data indicate that a rod-shaped primary particle is formed at pH 1.2, and on an increase in the pH, the primary particles become more branched. On aging more than 1,250 min at 92 C, these primary particles form large aggregates while retaining the primary particle structure. These aggregates, which are mass fractal in nature, restructure while growing in size and eventually transform into dense particles. Scattering data in this study were not enough to determine a specific kinetic growth model of the aggregates because the scattering intensity at low q constantly changes with time during the restructuring process.

  4. 21 CFR 73.575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.575 Section 73.575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.575 Titanium dioxide. (a) Identity. (1) The color additive titanium dioxide is synthetically prepared TiO2, free from admixture with other substances. (2)...

  5. Geological Sequestration of CO2 by Hydrous Carbonate Formation with Reclaimed Slag

    Energy Technology Data Exchange (ETDEWEB)

    Von L. Richards; Kent Peaslee; Jeffrey Smith

    2008-02-06

    The concept of this project is to develop a process that improves the kinetics of the hydrous carbonate formation reaction enabling steelmakers to directly remove CO2 from their furnace exhaust gas. It is proposed to bring the furnace exhaust stream containing CO2 in contact with reclaimed steelmaking slag in a reactor that has an environment near the unit activity of water resulting in the production of carbonates. The CO2 emissions from the plant would be reduced by the amount sequestered in the formation of carbonates. The main raw materials for the process are furnace exhaust gases and specially prepared slag.

  6. Synthesis and characterization on titanium dioxide prepared by precipitation and hydrothermal treatment; Sintese e caracterizacao de dioxido de titanio preparado por precipitacao e tratamento hidrotermico

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Andre V.P. dos; Yoshito, Walter K.; Lazar, Dolores R.R.; Ussui, Valter, E-mail: vussui@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-07-01

    Surface properties of titanium dioxide (titania) are outstanding among ceramic materials and enables uses as catalysts, photoelectrochemical devices, solar cells and others. In many of these applications, it is necessary to keep the anatase phase, that is stable only in low temperatures (<400 deg C). In the present work, the influence of hydrothermal treatment on physical characteristics and crystal structure of titania powders synthesized by precipitation was investigated. Characterizations of obtained powders were carried out by X-ray diffraction, surface area analysis by N2 gas sorption (BET) and microstructure of powders and ceramics were analyzed by scanning electron microscopy. As prepared powders were formed as cylindrical pellets by uniaxial pressing and sintered at 1500 deg C for 01 hour. Results showed that anatase phase without formation of rutile phase can be formed in hydrothermally treated samples . Rutile phase is predominant in calcined and/or sintered samples (author)

  7. Preparation and Properties of Ti-TiN-Zr-ZrN Multilayer Films on Titanium Alloy Surface

    Directory of Open Access Journals (Sweden)

    LIN Song-sheng

    2017-06-01

    Full Text Available 24 cycles Ti-TiN-Zr-ZrN soft-hard alternating multilayer film was deposited on TC11 titanium alloy by vacuum cathodic arc deposition method. The structure and performance of the multilayer film, especially wear and sand erosion resistance were investigated by various analytical methods including pin on disc wear tester, sand erosion tester, 3D surface topography instrument, scanning electron microscopy (SEM, X-ray diffraction(XRD, micro-hardness tester and scratch adhesion tester. The results indicate that the Vickers-hardness of the multilayer film with thickness of 5.8μm can reach up to 28.10GPa. The adhesive strength of these coatings can be as high as 56N. Wear rate of the multilayer coated alloy is one order of magnitude smaller than bare one, which decreased from 7.06×10-13 m3·N-1·m-1 to 3.03×10-14m3·N-1·m-1. Multilayer films can play the role in hindering the extension of cracks, and thus sand erosion properties of the TC11 titanium alloy substrates are improved.

  8. Electrowinning molten titanium from titanium dioxide

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2005-10-01

    Full Text Available ; the high affinity of titanium for carbon, oxygen, and nitrogen; and physical and chemical properties of the different titanium oxide species when reducing titanium from Ti4+ to metallic titanium....

  9. Effect of titanium oxide compact layer in dye-sensitized solar cell prepared by liquid-phase deposition

    Science.gov (United States)

    Huang, Jung-Jie; Chiu, Shih-Ping; Wu, Menq-Jion; Hsu, Chun-Fa

    2016-11-01

    In this study, titanium dioxide films were deposited on indium tin oxide glass substrates by liquid-phase deposition (LPD) for application as the compact layer in dye-sensitized solar cells (DSSCs). A deposition solution of ammonium hexafluorotitanate and boric acid was used for TiO2 deposition. Compact layer passivation can improve DSSC performance by decreasing carrier losses from recombination at the ITO/electrolyte interface and improving the electrical contact between the ITO and the TiO2 photo-electrode. The optimum thickness of the compact layer was found to be 48 nm, which resulted in a 50 % increase in the conversion efficiency compared with cells without compact layers. The conversion efficiency can be increased from 3.55 to 5.26 %. Therefore, the LPD-TiO2 compact layer inhibits the dark current and increases the short-circuit current density effectively.

  10. Preparation of Titanium Oxide Nanotube and Its Properties Study%二氧化钛纳米管的制备及其特性研究

    Institute of Scientific and Technical Information of China (English)

    陈首部; 孙奉娄

    2015-01-01

    The titanium oxide ( TiO2 ) nanotubes were prepared by anodization method using the titanium foils as anodes. The characteristics of the prepared samples were investigated by X-ray diffractometer and scanning electron microscopy.The results indicated that the morphology and crystallinity of the samples are closely related to the preparation conditions and ultrasonic wave used.The heat treatment brings about the transform from amorphous structure into anatase and rutile for the TiO2 samples.The growth velocity, diameter and wall thickness of TiO2 nanotubes are subjected to the average current density during anodization.The TiO2 nanotube samples prepared using 40 V anodization voltage have diameter of 90 nm, wall thickness of 21 nm and lengths of 8 μm.%以金属钛板作为阳极材料,采用阳极氧化方法制备了二氧化钛( TiO2)纳米管,通过X射线衍射仪和扫描电子显微镜等测试,研究了制备工艺条件和超声波源对样品性能的影响.结果表明:纳米管的形貎和结晶性能与工艺参数和超声波源密切相关,退火处理能使样品由不定形相转成由锐钛矿相和金红石相组成的混合相,其生长速度、管径和管壁厚度明显受到阳极氧化时平均电流密度的影响.氧化电压为60 V时所制备TiO2纳米管样品的管径为90 nm、管壁厚度为21 nm、长度为8μm.

  11. Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Mohamad Mohsen, E-mail: mm.momeni@cc.iut.ac.ir; Ghayeb, Yousef

    2015-07-15

    Graphical abstract: Current–potential curves with chopped light measured in 1 M NaOH with a scan rate of 5 mV s{sup −1} for the different samples. - Highlights: • Cr-doped TiO{sub 2} nanotube layers (Cr–TiO{sub 2}NTs) were synthesized by anodizing of titanium in a single-step process. • Photoelectrochemical water splitting of Cr–TiO{sub 2}NTs is higher than that of pure TiO{sub 2} nanotubes (TiO{sub 2}NTs). • Quantity effect of chromium in these composite for photoelectrochemical water splitting is investigated. • Maximum hydrogen production of 37 μL/cm{sup 2} after 240 min is obtained. - Abstract: Cr-doped TiO{sub 2} nanotubes (Cr–TiO{sub 2}NTs) with different amounts of chromium were obtained directly by the electrochemical anodic oxidation of titanium foils in a single-step process using potassium chromate as the chromium source. The effects of chromium amount in anodizing solution on the morphologies, structure, photoabsorption and photoelectrochemical water splitting of the TiO{sub 2} nanotube array film were investigated. Diffuse reflectance spectra showed an increase in the visible absorption relative to undoped TiO{sub 2}NTs. The photoelectrochemical performance was examined under visible irradiation in 1 M NaOH electrolyte. Photo-electrochemical characterization shows that chromium doping efficiently enhances the photo-catalytic water splitting performance of Cr-doped TiO{sub 2} nanotube samples. The sample (Cr–TiO{sub 2}NTs-1) exhibited better photo-catalytic activity than the undoped TiO{sub 2}NTs and Cr–TiO{sub 2}NTs fabricated using other chromium concentrations. This can be attributed to the effective separation of photogenerated electron–hole upon the substitutional introduction of appropriate Cr amount in to the TiO{sub 2} nanotube structure.

  12. Pd oxides/hydrous oxides as highly efficient catalyst for formic acid electrooxidation

    Science.gov (United States)

    Yan, Liang; Yao, Shikui; Chang, Jinfa; Liu, Changpeng; Xing, Wei

    2014-03-01

    A novel Pd-based catalyst for formic acid electrooxidation (FAEO) was prepared by annealing commercial Pd/C catalyst under the O2 atmosphere at 100 °C, which exhibits excellent catalytic activity and stability for FAEO due to introduction of Pd oxides/hydrous oxides (POHOs). The catalytic activity of the as-prepared catalyst towards FAEO is 1.86 times of the commercial Pd/C catalyst in 0.5 M H2SO4 + 0.5 M HCOOH solution. Chronoamperometric curves show obvious improvement of the as-prepared catalyst electrocatalytic stability for FAEO. It is confirmed that POHOs can provide the required oxygen species for intermediate CO oxidation during the oxidation process of formic acid.

  13. Influence of aluminium nitride as a foaming agent on the preparation of foam glass-ceramics from high-titanium blast furnace slag

    Science.gov (United States)

    Shi, Huan; Feng, Ke-qin; Wang, Hai-bo; Chen, Chang-hong; Zhou, Hong-ling

    2016-05-01

    To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000°C. TS and waste glass were used as the main raw materials, aluminium nitride (AlN) as the foaming agent, and borax as the fluxing agent. The influence of the amount of AlN added (1wt%-5wt%) on the crystalline phases, microstructure, and properties of the produced foam glass-ceramics was studied. The results showed that the main crystal phases were perovskite, diopside, and augite. With increasing AlN content, a transformation from diopside to augite occurred and the crystallinity of the pyroxene phases slightly decreased. Initially, the average pore size and porosity of the foam glass-ceramics increased and subsequently decreased; similarly, their bulk density and compressive strength decreased and subsequently increased. The optimal properties were obtained when the foam glass-ceramics were prepared by adding 4wt% AlN.

  14. Influence of aluminium nitride as a foaming agent on the preparation of foam glass-ceramics from high-titanium blast furnace slag

    Institute of Scientific and Technical Information of China (English)

    Huan Shi; Ke-qin Feng; Hai-bo Wang; Chang-hong Chen; Hong-ling Zhou

    2016-01-01

    To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000°C. TS and waste glass were used as the main raw materials, aluminium nitride (AlN) as the foaming agent, and borax as the fluxing agent. The influence of the amount of AlN added (1wt%-5wt%) on the crystalline phases, microstructure, and properties of the produced foam glass-ceramics was studied. The results showed that the main crystal phases were perovskite, diopside, and augite. With increasing AlN content, a transformation from diopside to augite occurred and the crystallinity of the pyroxene phases slightly decreased. Initially, the aver-age pore size and porosity of the foam glass-ceramics increased and subsequently decreased; similarly, their bulk density and compressive strength decreased and subsequently increased. The optimal properties were obtained when the foam glass-ceramics were prepared by adding 4wt% AlN.

  15. Preparation, characterization and mechanical properties of microarc oxidation coating formed on titanium in Al(OH)3 colloidal solution

    Science.gov (United States)

    Li, Y.; Yao, B.; Long, B. Y.; Tian, H. W.; Wang, B.

    2012-04-01

    A ceramic coating with thickness of 20-70 μm was grown on titanium plate in Al(OH)3 colloidal solution by microarc oxidation (MAO) in constant current mode. It is found that the as-grown coating consists of rutile TiO2 phase together with a thin layer of Ai2TiO5 phase near the surface of the coating. After removing the Ai2TiO5 layer by polishing, a single phase of rutile TiO2 coating is achieved, which is different from results reported previously, where the coating is usually composed of two phases of rutile and anatase TiO2. It is suggested that the formation of the coating with single phase of rutile TiO2 is related to the existence of Al(OH)3 in the solution. The growth rate of the coating increases with increasing current density in the range of 17-23 A/dm2, but it increases little in the range of 23-30 A/dm2. The rutile TiO2 coating looks compactness and solidity in the coating grown in the density range of 17-23 A/dm2 but looseness and insubstantiality in the range of 23-30 A/dm2. The hardness and elastic modulus of the rutile TiO2 decreases with the density increasing. The mechanism of formation of the coating is discussed in the present work.

  16. The Development of Non-Enzymatic Glucose Biosensors Based on Electrochemically Prepared Polypyrrole–Chitosan–Titanium Dioxide Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Ali M. A. Abdul Amir AL-Mokaram

    2017-05-01

    Full Text Available The performance of a modified electrode of nanocomposite films consisting of polypyrrole–chitosan–titanium dioxide (Ppy-CS-TiO2 has been explored for the developing a non-enzymatic glucose biosensors. The synergy effect of TiO2 nanoparticles (NPs and conducting polymer on the current responses of the electrode resulted in greater sensitivity. The incorporation of TiO2 NPs in the nanocomposite films was confirmed by X-ray photoelectron spectroscopy (XPS spectra. FE-SEM and HR-TEM provided more evidence for the presence of TiO2 in the Ppy-CS structure. Glucose biosensing properties were determined by amperommetry and cyclic voltammetry (CV. The interfacial properties of nanocomposite electrodes were studied by electrochemical impedance spectroscopy (EIS. The developed biosensors showed good sensitivity over a linear range of 1–14 mM with a detection limit of 614 μM for glucose. The modified electrode with Ppy-CS nanocomposite also exhibited good selectivity and long-term stability with no interference effect. The Ppy-CS-TiO2 nanocomposites films presented high electron transfer kinetics. This work shows the role of nanomaterials in electrochemical biosensors and describes the process of their homogeneous distribution in composite films by a one-step electrochemical process, where all components are taken in a single solution in the electrochemical cell.

  17. Preparation of Microporous Polypropylene/Titanium Dioxide Composite Membranes with Enhanced Electrolyte Uptake Capability via Melt Extruding and Stretching

    Directory of Open Access Journals (Sweden)

    Shan Wang

    2017-03-01

    Full Text Available In this work, a blending strategy based on compounding the hydrophilic titanium dioxide (TiO2 particles with the host polypropylene (PP pellets, followed by the common membrane manufacture process of melt extruding/annealing/stretching, was used to improve the polarity and thus electrolyte uptake capability of the PP-based microporous membranes. The influence of the TiO2 particles on the crystallinity and crystalline orientation of the PP matrix was studied using differential scanning calorimetry (DSC, X-ray diffraction (XRD, and infrared dichroic methods. The results showed that the TiO2 incorporation has little influence on the oriented lamellar structure of the PP-based composite films. Investigations of the deformation behavior indicated that both the lamellar separation and interfacial debonding occurred when the PP/TiO2 composite films were subjected to uniaxial tensile stress. The scanning electron microscopy (SEM observations verified that two forms of micropores were generated in the stretched PP/TiO2 composite membranes. Compared to the virgin PP membrane, the PP/TiO2 composite membranes especially at high TiO2 loadings showed significant improvements in terms of water vapor permeability, polarity, and electrolyte uptake capability. The electrolyte uptake of the PP/TiO2 composite membrane with 40 wt % TiO2 was 104%, which had almost doubled compared with that of the virgin PP membrane.

  18. Hydrous pyrolysis/oxidation: in-ground thermal destruction of organic contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Knauss, K. G.; Aines, R.D.; Dibley, M.J.; Leif, R.N.; Mew, D.A.

    1997-03-11

    subsurface. When injection is halted, the steam condenses and contaminated groundwater returns to the heated zone. It mixes with the condensate and oxygen, destroying any dissolved contaminants. This avoids many of the mixing problems encountered in other in situ oxidation schemes. In other oxidation schemes, an oxidizing reagent is injected into the subsurface resulting in the displacement of the contaminant. Without a return process such as the steam condensation, the contaminant and oxidant never mix. Using hydrous pyrolysis/oxidation, DNAPLs and dissolved contaminants may be destroyed in place, without surface treatment. This will improve the rate and efficiency of remediation by rendering the hazardous materials into benign ones via a completely in situ process. Because the subsurface is heated during this process, hydrous pyrolysis/oxidation also takes advantage of the large increase in mass transfer rates which make contaminant more available for destruction, such as increased diffusion out of silty sediments. Many remediation processes are limited by the access of the reactants to the contaminant, making mass-transfer limitations the bane of remediation efforts in low-permeability media. In preparation for testing this method at Lawrence Livermore National Laboratory (TCE in groundwater) and at a Southern California pole treating site (fire product with PAH and pentachlorophenol), we are developing a concept for the implementation of hydrous pyrolysis/oxidation through co-injection of steam and possibly small amounts of oxygen, as well as evaluating the rate at which hydrous pyrolysis/oxidation occurs due to the natural presence of mineral oxidants such as manganese oxides when the water temperature is raised. We are also determining the thermodynamic properties (e.g., solubility, Henry`s Law constants, etc.) of these hazardous compounds, as a function of T and P, in order to be able to predict effectiveness and required time for design purposes and to optimize clean

  19. The heat capacity of hydrous cordierite above 295 K

    Science.gov (United States)

    Carey, J. William

    1993-04-01

    The heat capacity of synthetic hydrous cordierite (Mg2Al4Si5O18·nH2O) has been determined by differential scanning calorimetry (DSC) from 295 to 425 K as a function of H2O content. Six samples with H2O contents ranging from 0 to 0.82 per formula unit were examined. The partial molar heat capacity of H2O in cordierite over the measured temperature interval is independent of composition and temperature within experimental uncertainty and is equal to 43.3 ±0.8 J/mol/ K. This value exceeds the molar heat capacity of gaseous H2O by 9.7 J/mol/K, but is significantly smaller than the heat capacity of H2O in several zeolites and liquid H2O. A statistical-mechanical model of the heat capacity of adsorbed gas species (Barrer 1978) is used to extrapolate the heat capacity of hydrous cordierite to temperatures greater than 425 K. In this model, the heat capacity of hydrous cordierite (Crd·nH2O) is represented as follows: Cp(Crd · nH2O) = Cp(Crd)+ n{Cp(H2O, gas)+ R(gas constant)} (1) An examination of calorimetric data for hydrous beryl, analcime, mordenite, and clinoptilolite (Hemingway et al. 1986; Johnson et al. 1982, 1991, 1992) demonstrates the general applicability of the statistical-mechanical model for the extrapolation of heat capacity data of zeolitic minerals. The heat capacity data for cordierite are combined with the data of Carey and Navrotsky (1992) to obtain the molar enthalpy of formation and enthalpy of hydration of hydrous cordierite as a function of temperature.

  20. Advances of Titanium Alloys and Its Biological Surface Modification

    Institute of Scientific and Technical Information of China (English)

    XU Ke-wei; HUANG Ping

    2004-01-01

    This paper reviews the past, present and future of surface modification of titanium alloy from the point of view of preparation of hard tissue replacement implants. The development of titanium alloy is also described.

  1. Mechanical properties and in vitro biological response to porous titanium alloys prepared for use in intervertebral implants.

    Science.gov (United States)

    Caparrós, C; Guillem-Martí, J; Molmeneu, M; Punset, M; Calero, J A; Gil, F J

    2014-11-01

    The generation of titanium foams is a promising strategy for modifying the mechanical properties of intervertebral reinforcements. Thus, the aim of this study was to compare the in vitro biological response of Ti6Al4V alloys with different pore sizes for use in intervertebral implants in terms of the adhesion, proliferation, and differentiation of pre-osteoblastic cells. We studied the production of Ti6Al4V foams by powder metallurgy and the biological responses to Ti6Al4V foams were assessed in terms of different pore interconnectivities and elastic moduli. The Ti6Al4V foams obtained had similar porosities of approximately 34%, but different pore sizes (66 µm for fine Ti6Al4V and 147 µm for coarse Ti6Al4V) due to the sizes of the microsphere used. The Ti6Al4V foams had a slightly higher Young׳s modulus compared with cancellous bone. The dynamic mechanical properties of the Ti6Al4V foams were slightly low, but these materials can satisfy the requirements for intervertebral prosthesis applications. The cultured cells colonized both sizes of microspheres near the pore spaces, where they occupied almost the entire area of the microspheres when the final cell culture time was reached. No statistical differences in cell proliferation were observed; however, the cells filled the pores on fine Ti6Al4V foams but they only colonized the superficial microspheres, whereas the cells did not fill the pores on coarse Ti6Al4V foams but they were distributed throughout most of the material. In addition, the microspheres with wide pores (coarse Ti6Al4V) stimulated higher osteoblast differentiation, as demonstrated by the Alcaline Phosphatase (ALP) activity. Our in vitro results suggest that foams with wide pore facilitate internal cell colonization and stimulate osteoblast differentiation.

  2. Biocompatibility and in vitro antineoplastic drug-loaded trial of titania nanotubes prepared by anodic oxidation of a pure titanium

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    TiO2 nanotube (NT) arrays have been prepared by anodic oxidation of a Ti sheet,and carbon-deposited TiO2 NT arrays have been prepared by annealing TiO2 NT arrays in carbon atmosphere. The biocompatibility of the as-prepared NT arrays was investigated by observing the growth of osteosarcoma (MG-63) cells on the NT arrays. The application of the TiO2 NT arrays as a drug delivery vehicle was investigated. Both the TiO2 NTs and the carbon-modified TiO2 NTs have good biocompatibility supporting the normal growth and adhesion of MG-63 cells with no need of extracellular matrix protein coating. The one end-opened TiO2 NTs can be easily filled with drugs,working as an efficient drug delivery vehicle.

  3. Abundance retrieval of hydrous minerals around the Mars Science Laboratory landing site in Gale crater, Mars

    Science.gov (United States)

    Lin, Honglei; Zhang, Xia; Shuai, Tong; Zhang, Lifu; Sun, Yanli

    2016-02-01

    The detection of hydrous minerals on Mars is of great importance for revealing the early water environment as well as possible biotic activity. However, few studies focus on abundance retrieval of hydrous minerals for some difficulties. In this paper, we studied the area around the Mars Science Laboratory (MSL) landing site, to identify hydrous minerals and retrieve their abundance. Firstly, the distribution of hydrous minerals was extracted using their hydration features. Then, a sparse unmixing algorithm was applied along with the CRISM spectral library to retrieve the abundance of hydrous minerals in this area. As a result, seven hydrous minerals were retrieved, i.e. actinolite, montmorillonite, saponite, jarosite, halloysite, szomolnokite and magnesite and, the total concentration of all hydrous minerals was as high as 40 vol% near the lower reaches of Mount Sharp. Our results were consistent with results from related research and the in-situ analysis of the MSL rover Curiosity.

  4. Physical Properties of ZnO Thin Films Codoped with Titanium and Hydrogen Prepared by RF Magnetron Sputtering with Different Substrate Temperatures

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2015-01-01

    Full Text Available Transparent conducting titanium-doped zinc oxide (TZO thin films were prepared on glass substrates by RF magnetron sputtering using 1.5 wt% TiO2-doped ZnO as the target. Electrical, structural, and optical properties of films were investigated as a function of H2/(Ar + H2 flow ratios (RH and substrate temperatures (TS. The optimal RH value for achieving high conducting TZO:H thin film decreased from 10% to 1% when TS increased from RT to 300°C. The lowest resistivity of 9.2×10-4 Ω-cm was obtained as TS=100°C and RH=7.5%. X-ray diffraction patterns showed that all of TZO:H films had a hexagonal wurtzite structure with a preferred orientation in the (002 direction. Atomic force microscopy analysis revealed that the film surface roughness increased with increasing RH. The average visible transmittance decreased with increasing RH for the RT-deposited film, while it had not considerably changed with different RH for the 300°C-deposited films. The optical bandgap increased as RH increased, which is consistent with the Burstein-Moss effect. The figure of merits indicated that TS=100°C and RH=7.5% were optimal conditions for TZO thin films as transparent conducting electrode applications.

  5. The Influence of Comonomer on Ethylene/α-Olefin Copolymers Prepared Using [Bis(N-(3-tert butylsalicylideneanilinato] Titanium (IV Dichloride Complex

    Directory of Open Access Journals (Sweden)

    Patcharaporn Kaivalchatchawal

    2011-02-01

    Full Text Available We describe the synthesis of [bis(N-(3-tert-butylsalicylideneanilinato] titanium (IV dichloride (Ti-FI complex and examine the effects of comonomer (feed concentration and type on its catalytic performance and properties of the resulting polymers. Ethylene/1-hexene and ethylene/1-octene copolymers were prepared through copolymerization using Ti-FI catalyst, activated by MAO cocatalyst at 323 K and 50 psi ethylene pressure at various initial comonomer concentrations. The obtained copolymers were characterized by DSC, GPC and 13C-NMR. The results indicate that Ti-FI complex performs as a high potential catalyst, as evidenced by high activity and high molecular weight and uniform molecular weight distribution of its products. Nevertheless, the bulky structure of FI catalyst seems to hinder the insertion of α-olefin comonomer, contributing to the pretty low comonomer incorporation into the polymer chain. The catalytic activity was enhanced with the comonomer feed concentration, but the molecular weight and melting temperature decreased. By comparison both sets of catalytic systems, namely ethylene/1-hexene and ethylene/1-octene copolymerization, the first one afforded better activity by reason of easier insertion of short chain comonomer. Although 1-hexene copolymers also exhibited higher molecular weight than 1-octene, no significant difference in both melting temperature and crystallinity can be noticed between these comonomers.

  6. 碳热还原法制备碳化钒钛固溶粉体%Preparation of Vanadium Titanium Carbide Solid Solution Powders by Carbon Thermal Reduction

    Institute of Scientific and Technical Information of China (English)

    任杰; 陈敏; 方民宪; 王淅茹

    2016-01-01

    以偏钒酸铵、石墨和二氧化钛为原料通过碳热还原法制备了单相碳化钒钛固溶粉体。结合DSC、XRD、SEM分析方法研究了碳化钒钛粉体制备过程中低温一次还原与高温二次还原的物相组成,优化了配碳系数。结果表明,和偏钒酸铵直接碳热还原及二氧化钛直接碳热还原相比,偏钒酸铵和二氧化钛混合粉料碳热还原反应物之间的接触面积增加,有利于还原反应的进行。当配碳系数为0.8时经高温二次还原形成结晶较好的单相碳化钒钛固溶体。%Single phase TiVC2 was prepared by carbothermal reduction of metavanadate, graphite and titanium dioxide mixed raw materials. Phase composition and optimized carbon coefifcient were investigated by combination of XRD and SEM analysis. Results showed that single phase TiVC2 with good crystallinity was obtained after second reduction when the carbon coefifcient was 0.80.

  7. Preparation and characterization of functional fabrics from bamboo charcoal/silver and titanium dioxide/silver composite powders and evaluation of their antibacterial efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fu-Chu, E-mail: yfc580629@yahoo.com.tw [Army Command Headquarters, MND, Taoyuan, Taiwan (China); Wu, Kuo-Hui [Department of Applied Chemistry and Materials Science, Chung Cheng Institute of Technology, NDU, No. 190, Sanyuan 1st Street, Tahsi, Taoyuan 335, Taiwan (China); Huang, Jen-Wei [Department of Physics, Chinese Military Academy, Fengshan, Kaohsiung, Taiwan (China); Horng, Deng-Nan; Liang, Chia-Feng [Department of Chemistry, Chinese Military Academy, Fengshan, Kaohsiung, Taiwan (China); Hu, Ming-Kuan [School of Pharmacy, National Defense Medical Center, Taipei, Taiwan (China)

    2012-07-01

    Bamboo charcoal supporting silver (BC/Ag) and titanium dioxide supporting silver (TiO{sub 2}/Ag) were prepared by activation and chemical reduction. The BC/Ag and TiO{sub 2}/Ag composites were characterized by silver particle size and distribution and antibacterial properties. The pore and surface properties were studied in terms of BET volumetric measurement with nitrogen adsorption, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The antibacterial effects of the BC/Ag and TiO{sub 2}/Ag composite powders were assessed from the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs), and an excellent antibacterial performance was discovered. Moreover, these composite powders were deposited via immersion coating onto fabrics (nonwoven and carbon fibers) to improve the antibacterial efficacy and to act as a biologically-protective material. The antibacterial activities of the fabrics supported by BC/Ag and TiO{sub 2}/Ag were studied in zone of inhibition and plate counting tests against Gram-positive Staphylococcus aureus ME/GM/TC Resistant, Bacillus subtilis, Candida albicans, Gram-negative Pseudomonas aeruginosae (CTZ and EM and GM) Res. Clin. Isol., Escherichia coli Juhl, and Klebsiella pneumoniae. The results showed that fabric-BC/Ag and fabric-TiO{sub 2}/Ag possess a strong antibacterial activity and an inhibitory effect on the growth of these bacteria and are therefore believed to have great potential for use as antibacterial fabrics.

  8. Preparation of Titanium Dioxide and The Study on Its Properties%二氧化钛光催化剂的制备及其性能研究

    Institute of Scientific and Technical Information of China (English)

    郑炜

    2012-01-01

    本文采用溶胶-凝胶法(sol-gel)制备了纯相和掺杂不同量Fe3+、Zn2+、Cu2+和S2-的TiO2粉体,并讨论了不同热处理温度、掺杂元素及掺杂量对TiO2粉体光催化性能的影响。以甲基橙溶液为目标降解物,用紫外可见分光光度计对TiO2粉体的光催化性能进行测定。实验结果表明,煅烧温度为450℃、掺入0.25%的Zn2+的TiO2粉体的催化效果最好。%In this paper, the pure and Fe^3+-doped, Zn^2+-doped, Cu^2+-doped and S^2+-doped TiO2 powders were prepared by thesol-gel method. The influences of the different temperature, doping elements and doping amounts on photocatalytic activities of the prepared catalysts were discussed. The photocatalytic properties of titanium dioxide powders to methyl orange is determined by UV-visible spectrophotometer. The results of the experiment showed that the Zn^2+-doped powders had the highest photocatalytic activity when the doping amount was 0.25% and the sintering temperature is 450℃.

  9. Purification and utilization of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wonbaek; Yu, Hyosin; Chung, Inwha; Rhee, Kang In; Choi, Good Sun; Lee, Chulkyung; Youn, In Ju; Chung, Jinki; Suh, Chang Youl; Yang, Dong Hyo [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Current domestic market appears not to be sufficient enough for the large scale investment for the expensive vacuum-melting equipment. Besides, related ingot-processing technologies like rolling, extrusion, and forging of titanium should be prepared in advance. In the mean time, the attempt to recycle expensive titanium scraps produced in our nation would be worthwhile in view of the reduction of import from foreign countries and of saving valuable secondary resources. The objectives for this research is to develop technology for the production of high purity titanium metals from sponges and scraps and to extend the developed technology to industrial applications. PREP(Plasma-Rotating-Electrode Process) and HDP(Hydride-Dehydride Process) were adopted to evaluate the possibility of using domestic titanium scraps in the production of pure titanium powders. Those scraps were titanium pipes of Grade 2 and various sputtering targets having a purity of 99.995%. The titanium powders produced by both methods were examined and compared with conventionally prepared ones. Their shape, size distribution, structure and above of all major impurities were determine to evaluate these process. The powders produced by PREP were of round shape having narrow size distribution at about 200 micron. Meanwhile, HDP powders were irregular shaped having a much wider size distribution. Both metallic and non-metallic impurities were lower in PREP powders due to the unavoidable contamination during crushing processes in HDP. Thus, PREP has advantages towards purity and uniformity while HDP toward finer sizes. Apparently, for the production of high purity titanium powders by HDP, special considerations should be made to prevent contamination during various steps in the process. In PREP powders, smaller particles contained more oxygen since they have larger surface/volume ratio. The tendency was also observed in the hardness measurement revealing the strengthening effect of oxygen in pure

  10. Investigation of physicochemical and microbiological characteristics of prepared films containing nanoparticles of titanium oxide based on soy flour polysaccharide

    Directory of Open Access Journals (Sweden)

    D Salarbashi

    2016-11-01

    Full Text Available Introduction: The natural derived biopolymers are highly interested in recent years. These polymers are considering as the alternative for un-biodegradable plastic films. This is due to the low cost and their availability from biodegradable and renewable sources. In this study, the effect of different concentrations of Tio2 nanoparticles on physicochemical and microbiological characteristics of prepared edible films based on soy flour soluble polysaccharide was investigated. MethodS: The nanocomposite films were prepared by adding the Tio2 nanoparticles (5, 10 and 15%/ db to the soy flour. In order to investigate the physicochemical and microbiological properties, the resulted nanocomposite films were synthetized based on the casting method. Results: When the content of nanoparticles increased, the moisture content and solubility of the film specimens were significantly decreased, whereas the mechanical resistance was significantly increased. Tio2 nanoparticle was highly effective against basillus cereus, staphylococus ureus and staphylococuss epidermidis. Meanwhile, MIC and MBC of molds were not affected by these films. MIC for penicilium expansum was significantly affected when the Tio2 nanoparticles increased. Conclusion: the results indicated that Tio2 nanoparticles are applicable into the polysaccharide soy films. The nanocomposite film developed in the current study could be used in food applications and as a biodegradable film.

  11. A New Construction Material-Titanium

    Science.gov (United States)

    1974-01-01

    the Academy of Sciences of the Georgian SSR resulted in important proposals for the pro- duction of gallic acid and other preparations. AT-3 tita’ 4um...titanium with various elements, looks at phase transformation in certain alloy systems~and separateI alloys used in Industry. The articles give the...titanium alloys. Questions of the use of titanium and its alloys in various areas of the national econcmy are given. The work was written for scientists

  12. Visible Light-Photocatalytic Activity of Sulfate-Doped Titanium Dioxide Prepared by the Sol−Gel Method

    Directory of Open Access Journals (Sweden)

    Tsuneo Fujii

    2013-04-01

    Full Text Available Sulfate-doped TiO2 was prepared from sol−gel systems containing titaniumalkoxide and sulfuric acid. The time needed for gelation of the systems was significantlyreduced by ultrasonic irradiation. The doped sulfate was observed by FTIR and XPSmeasurements. Some sulfate ions remained in the TiO2 even after heating at 300−600 °C.The UV and visible photocatalytic activities of the samples were confirmed by thedegradation of trichloroethylene (TCE. The activity of the photocatalyst samples duringthe UV irradiation strongly depended on their crystallinities rather than their specificsurface areas, i.e., adsorption ability. The degradation rate during the visible irradiationdepended on both the adsorption ability and visible absorption of the photocatalystsamples. The visible absorption induced by the sulfate-doping was effective for theTCE degradation.

  13. [Sorption-desorption of phosphate in wastewater by hydrous iron oxide].

    Science.gov (United States)

    Xiang, Xue-Min; Liu, Ying; Zhou, Ji-Ti; Wang, Ren

    2008-11-01

    FeCl3 was used t o prepare hydrous iron oxide (HIO) as a n absorbent for phosphate (P) sorption and desorption study. The results showed that as pH decreased, the sorption capacity of HIO increased, and the sorption kinetics followed the second-order model, and the sorption isotherm could be fitted by the Langmuir equation. A 50 g/L NaOH solution was used for desorption of P from HIO, and the desorption rate could be reached over 98% . No relation was found between desorption rate and adsorption capacity. Based on above results, HIO was applied to adsorption of P from supernatant of sludge thickener, and after desorption, more than 90% of P was recovered. According to the results obtained, an effective system for P removal and recovery from municipal wastewater was suggested, which includes the following processes: adsorption, desorption, regeneration of HIO, and of recovery of P from P-rich desorption solution.

  14. Microwave-assisted synthesis of carbon-supported carbides catalysts for hydrous hydrazine decomposition

    Science.gov (United States)

    Mnatsakanyan, Raman; Zhurnachyan, Alina R.; Matyshak, Valery A.; Manukyan, Khachatur V.; Mukasyan, Alexander S.

    2016-09-01

    Microwave-assisted synthesis of carbon-supported Mo2C and WC nanomaterials was studied. Two different routes were utilized to prepare MoO3 (WO3) - C precursors that were then subjected to microwave irradiation in an inert atmosphere. The effect of synthesis conditions, such as irradiation time and gas environment, was investigated. The structure and formation mechanism of the carbide phases were explored. As-synthesized nanomaterials exhibited catalytic activity for hydrous hydrazine (N2H4·H2O) decomposition at 30-70 °C. It was shown that the catalyst activity significantly increases if microwave irradiation is applied during the decomposition process. Such conditions permit complete conversion of hydrazine to ammonia and nitrogen within minutes. This effect can be attributed to the unique nanostructure of the catalysts that includes microwave absorbing carbon and active carbide constituents.

  15. Study on Preparation and Properties of Titanium Dioxide Nanowire%二氧化钛纳米线的制备以及性能研究∗

    Institute of Scientific and Technical Information of China (English)

    吴朝政; 姜淙元; 陈安; 王红侠; 李新星

    2016-01-01

    通过碱热法制备二氧化钛纳米线,用X衍射仪( XRD)、扫描电镜( SEM)和紫外-可见光分度计对样品进行表征,以甲基橙为模拟污染物,在8W紫外光照射下考察不同碱溶液的浓度、水热温度和保温时间对二氧化钛纳米线的光催化性能的影响。研究表明采用碱热法制备的TiO2纳米线,具有较高的光催化活性,其中NaOH溶液浓度为10 mol/L,水热温度为180℃,保温时间为24 h 制备的二氧化钛纳米线的光催化性能最好,在光照80 min,降解甲基橙达到了91%。%Titanium dioxide nanowire was synthesized by alkali method. TiO2 samples were characterized by X-ray diffraction, SEM and ultraviolet visible spectrophotometer. The degradation of methyl orange in aqueous solution under 8 W ultraviolet light irradiation was used to evaluate the effect of photocatalytic activity with different alkali solution concentration, hydrothermal temperature and soaking time. The results showed that the all the prepared samples were functioned as a highly active photocatalysts under the irradiation of ultraviolet degradation, with the solution of 10 M NaOH solution concentration, heated at 180 ℃ for 24 h, the best property of photocatalysis was represented. The percent degradation of MO was ca. 91% under simulated irradiation for 80 min.

  16. Preparation of mesoporous titanium dioxide by electrostatic self-assembly%静电组装法制备介孔 TiO2∗

    Institute of Scientific and Technical Information of China (English)

    彭少华; 徐孝文

    2015-01-01

    以 TiCl4和(NH 4)6 Mo7 O 24.4H 2 O 为原料,先通过水解、静电自组装和焙烧得到 TiO 2/MoO 3,再用 NaOH 溶液溶解得到介孔 TiO 2.用 X 射线粉末衍射(XRD)、透射电镜(TEM)、X 射线能量色散仪(EDX)、紫外-可见漫反射光谱(UV-DRS)和比表面及孔隙度分析仪(ASAP)对该材料进行表征,合成的介孔 TiO 2 BET 比表面积为241 m2/g,平均孔直径为3.5 nm.通过光催化降解甲基橙实验,发现介孔 TiO 2具有较高光催化活性.%Mesoporous TiO 2 was prepared with the assistance of Mo7 O 6 -24 as templating agent at room tempera-ture.X-ray diffraction (XRD),transmission electron microscopy (TEM),energy-dispersive X-ray spectroscopy (EDX),surface area and porosity analyzer (ASAP)and ultraviolet-visible diffuse reflection spectrum (UV-DRS)were used for characteration of mesoporous titanium dioxide.It has a moderately high surface area of 241 m2/g and a mesoporous structure with an average pore diameter of 3.5 nm.Its photocatalytic activities were evaluated by the degradation of methyl orange (MO)in aqueous solution under UV light irradiation.

  17. Titanium Alloys

    Directory of Open Access Journals (Sweden)

    Mark T. Whittaker

    2015-08-01

    Full Text Available Although originally discovered in the 18th century [1], the titanium industry did not experience any significant advancement until the middle of the 20th century through the development of the gas turbine engine [2]. Since then, the aerospace sector has dominated worldwide titanium use with applications in both engines and airframe structures [3]. The highly desirable combination of properties, which include excellent corrosion resistance, favourable strength to weight ratios, and an impressive resistance to fatigue, has led to an extensive range of applications [4], with only high extraction and processing costs still restricting further implementation. [...

  18. High energy X-ray diffraction study of a dental ceramics–titanium functional gradient material prepared by field assisted sintering technique

    Energy Technology Data Exchange (ETDEWEB)

    Witte, K., E-mail: kerstin.witte@uni-rostock.de [Institute of Physics, University of Rostock, August-Bebel-Str. 55, 18055 Rostock (Germany); Bodnar, W. [Institute of Physics, University of Rostock, August-Bebel-Str. 55, 18055 Rostock (Germany); Schell, N. [Institute of Materials Research, Helmholtz-Center Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Lang, H. [Department of Operative Dentistry and Periodontology, University of Rostock, Strempelstr. 13, 18057 Rostock (Germany); Burkel, E. [Institute of Physics, University of Rostock, August-Bebel-Str. 55, 18055 Rostock (Germany)

    2014-09-15

    A functional gradient material with eleven layers composed of a dental ceramics and titanium was successfully consolidated using field assisted sintering technique in a two-step sintering process. High energy X-ray diffraction studies on the gradient were performed at High Energy Material Science beamline at Desy in Hamburg. Phase composition, crystal unit edges and lattice mismatch along the gradient were determined applying Rietveld refinement procedure. Phase analysis revealed that the main crystalline phase present in the gradient is α-Ti. Crystallinity increases stepwisely along the gradient with a decreasing increment between every next layer, following rather the weight fraction of titanium. The crystal unit edge a of titanium remains approximately constant with a value of 2.9686(1) Å, while c is reduced with increasing amount of titanium. In the layer with pure titanium the crystal unit edge c is constant with a value of 4.7174(2) Å. The lattice mismatch leading to an internal stress was calculated over the whole gradient. It was found that the maximal internal stress in titanium embedded in the studied gradient is significantly smaller than its yield strength, which implies that the structure of titanium along the whole gradient is mechanically stable. - Highlights: • High energy XRD studies of dental ceramics–Ti gradient material consolidated by FAST. • Phase composition, crystallinity and lattice parameters are determined. • Crystallinity increases stepwisely along the gradient following weight fraction of Ti. • Lattice mismatch leading to internal stress is calculated over the whole gradient. • Internal stress in α-Ti embedded in the gradient is smaller than its yield strength.

  19. Immobilization of poly(MPC) brushes onto titanium surface by combining dopamine self-polymerization and ATRP: Preparation, characterization and evaluation of hemocompatibility in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wenyong; Yang, Ping; Li, Jingan; Li, Shiqi; Li, Peichuang; Zhao, Yuancong, E-mail: Zhaoyc7320@163.com; Huang, Nan

    2015-09-15

    Graphical abstract: The functional surface containing rich amino and hydroxyl groups was obtained by simple and easily dopamine self-polymerization. Poly (MPC) brushes were successfully immobilized on titanium surface by combining acylation reaction and ATRP. This chemical and biomimetic modified titanium surface effectively inhibits platelet adhesion and activation. - Highlights: • Polydopamine coating provides amino and hydroxyl groups for second reactivity. • Poly(MPC) brushes covalently immobilized on coating by surface initiated ATRP. • In vitro hemocompatibility of biomimetic modified Ti was better than unmodified. - Abstract: Poly(2-methacryloyloxyethyl phosphorylcholine(MPC)) has been studied in many biomedical fields because of good biocompatibility, such as hemocompatibility, inhibiting protein adhesion, antifouling, and so on. To achieve good hemocompatibility of titanium (Ti) surface, bio-inspired poly(MPC) brushes were grafted from Ti substrate covalently. In this work, the surface of Ti was first coated with polydopamine, and got a surface bearing −NH{sub 2} and −OH groups which could be bridged with poly(MPC) via atom transfer radical polymerization. Water contact angle decreased to 51.3° when titanium grafted with poly(MPC) brushes. The data of Infrared Spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated that poly(MPC) was successfully grafted onto the surface of titanium. Platelet-rich plasma (PRP) adhesion test and lactate dehydrogenase (LDH) assay showed that the number of platelets adhered on the surface of modified-titanium was much less than that of unmodified titanium and platelets did not aggregate and distort. Thus, the simple and chemical method of immobilization of poly(MPC) brushes has potential application for improving hemocompatibility for cardiovascular stent and some other biomaterials.

  20. 基于氧化钛纳米带及钯纳米颗粒的吗啡传感器的制备%Preparation of Morphine Sensor Based on Titanium Dioxide Nanobelts and Palladium Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    徐凤; 李月婷; 司剑飞; 杨丽君; 陶满兰; 杨云慧

    2011-01-01

    Titanium dioxide nanobelts are a new type of high performance functional materials, while synthesis method is the research hot spot. Ethanol thermal solvent was used to synthesize titanium dioxide nanobelts. Scanning electron microscopy was used to characterize the morphology of the nanobelts. Pd nanoparticles were electrodeposited on the glassy carbon electrode modified with obtained titanium dioxide nanobelts/chitosan film to construct morphine electrochemical sensor. The experimental results show that the sensor has good stability, high sensitivity and selectivity, simple preparation procedure and low cost. The sensor is applied to determine morphology with satisfactory.%氧化钛纳米带是一种性能优异的新型功能材料,其合成方法及应用是研究的热点.采用乙醇热溶剂法合成了氧化钛纳米带,并通过扫描电镜观察了纳米带的形貌.将氧化钛纳米带固定到电极表面,采用恒电位沉积钯纳米粒子后制得吗啡电化学传感器.结果表明,该传感器稳定性好、灵敏度高、选择性好、制作简单、成本低,应用于血清中吗啡的测定,结果令人满意.

  1. Thermal cleanups using dynamic underground stripping and hydrous pyrolysis oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Aines, R D; Knauss, K; Leif, R; Newmark, R L

    1999-05-01

    In the early 1990s, in collaboration with the School of Engineering at the University of California, Berkeley, Lawrence Livermore National Laboratory developed dynamic underground stripping (DUS), a method for treating subsurface contaminants with heat that is much faster and more effective than traditional treatment methods. more recently, Livermore scientists developed hydrous pyrolysis/oxidation (HPO), which introduces both heat and oxygen to the subsurface to convert contaminants in the ground to such benign products as carbon dioxide, chloride ion, and water. This process has effectively destroyed all contaminants it encountered in laboratory tests. With dynamic underground stripping, the contaminants are vaporized and vacuumed out of the ground, leaving them still to be destroyed elsewhere. Hydrous pyrolysis/oxidation technology takes the cleanup process one step further by eliminating the treatment, handling, and disposal requirements and destroying the contamination in the ground. When used in combination, HPO is especially useful in the final polishing of a site containing significant free-product contaminant, once the majority of the contaminant has been removed.

  2. Study for preparation of nanoporous titania on titanium by anodic oxidation; Estudo da preparacao de titania nanoporosa sobre titanio por oxidacao anodica

    Energy Technology Data Exchange (ETDEWEB)

    Passos, Alessandra Pires

    2014-07-01

    Currently titanium is the most common material used in dental, orthopedic implants and cardiovascular applications. In the mid 1960s, prof. Braenemark and coworkers developed the concept of osseointegration, meaning the direct structural and functional connection between living bone and the surface of artificial implant. Thus, studies on the modification of the implant surface are widely distributed among them are the acid attack, blasting with particles of titanium oxide or aluminum oxide, coating with bioactive materials such as hydroxyapatite, and the anodic oxidation. The focus of this work was to investigate the treatment of titanium surface by anodic oxidation. The aim was to develop a nanoporous titanium oxide overlay with controlled properties over titanium substrates. Recent results have shown that such surface treatment improves the biological interaction at the interface bone-implant besides protecting the titanium further oxidation and allow a faster osseointegration. The anodizing process was done in the potentiostatic mode, using an electrolyte composed of 1.0 mol/L H{sub 3}PO{sub 4} and HF 0.5% m/I. The investigated process parameters were the electrical potential (Va) and the process time (T). The electric potential was varied from 10 V to 30 V and the process time was defined as 1.0 h, 1.5 h or 2.0 h. The treated Ti samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy X-ray (EDS), and X-ray diffraction (XRD). The results showed the formation of nanoporous titanium oxide by anodizing with electric potential (Va) in the range of 20 V to 30 V and process time in the range of 1 to 2 hours. The average pore diameter was in the range 94-128 nm. Samples anodized in electric potential lower than 20 V did not show the formation of the nanoporous surface. In the case of Va above 30 V, it was observed the formation of agglomerates of TiO{sub 2}. The results obtained in this study

  3. Nitrogen Isotopic Anomalies in a Hydrous Interplanetary Dust Particle

    Science.gov (United States)

    Smith, J. B.; Dai, Z. R.; Weber, P. K.; Graham, G. A.; Hutcheon, I. D.; Bajt, S.; Ishii, H.; Bradley, J. P.

    2005-01-01

    Interplanetary dust particles (IDPs) collected in the stratosphere are the fine-grained end member (5 - 50 microns in size) of the meteoritic material available for investigation in the laboratory. IDPs are derived from either cometary or asteroidal sources. Some IDPs contain cosmically primitive materials with isotopic signatures reflecting presolar origins. Recent detailed studies using the NanoSIMS have shown there is a wide variation of isotopic signatures within individual IDPs; grains with a presolar signature have been observed surrounded by material with a solar isotopic composition. The majority of IDPs studied have been anhydrous. We report here results from integrated NanoSIMS/FIB/TEM/Synchrotron IR studies of a hydrous IDP, focused on understanding the correlations between the isotopic, mineralogical and chemical compositions of IDPs.

  4. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei [Univ. of California, Riverside, CA (United States); Guo, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lee, I. [Univ. of California, Riverside, CA (United States); Ahmed, K. [Univ. of California, Riverside, CA (United States); Zhong, J. [Univ. of California, Riverside, CA (United States); Favors, Z. [Univ. of California, Riverside, CA (United States); Zaera, F. [Univ. of California, Riverside, CA (United States); Ozkan, M. [Univ. of California, Riverside, CA (United States); Ozkan, C. S [Univ. of California, Riverside, CA (United States)

    2014-03-25

    In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO₂) anchored graphene and CNT hybrid foam (RGM) architecture for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO₂ nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g⁻¹, areal capacitance: 1.11 F cm⁻²) which leads to an exceptionally high energy density of 39.28 Wh kg⁻¹ and power density of 128.01 kW kg⁻¹. The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications.

  5. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors.

    Science.gov (United States)

    Wang, Wei; Guo, Shirui; Lee, Ilkeun; Ahmed, Kazi; Zhong, Jiebin; Favors, Zachary; Zaera, Francisco; Ozkan, Mihrimah; Ozkan, Cengiz S

    2014-03-25

    In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO2) anchored graphene and CNT hybrid foam (RGM) architecture for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO2 nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g(-1), areal capacitance: 1.11 F cm(-2)) which leads to an exceptionally high energy density of 39.28 Wh kg(-1) and power density of 128.01 kW kg(-1). The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications.

  6. Preparation and characterization of microporous permeable titanium-based β-lead dioxide electrode%钛基β-二氧化铅微孔渗透电极的制备及表征

    Institute of Scientific and Technical Information of China (English)

    王龙耀; 刘朋; 王岚; 何明阳; 陈群

    2013-01-01

    A microporous permeable titanium-basedβ-PbO2 electrode was prepared using powder-sintered porous titanium plate as substrate through the following steps: (1) pickling with hydrochloric acid; (2) preparing an antimony-doped tin dioxide (ATO) intermediate layer by thermal decomposition; and (3) electrodepositing β-PbO2 coating. The properties of the electrode were characterized. The results showed that the packed structure of particles in porous titanium plate and the honeycomb-like structure after acid picking offer a specific area of 0.53 m2/g and effective stress compensation for adhesive layer. ATO can bond with titanium substrate closely in the form of solid solution, forming a protective layer. The permeable Ti-basedβ-PbO2 electrode features uniform and compact surface and good permeability, and has an oxygen evolution potential of 1.85 V and a service life of 38 h at a current density of 4 A/cm2 in 0.5 mol/L H2SO4 solution.%以多孔钛粉末烧结板为基材,制得钛基β-PbO2微孔渗透电极并对其性能进行表征。主要制备步骤为盐酸侵蚀、热分解涂覆锑掺杂二氧化锡(ATO)中间层及电沉积β-PbO2层。结果表明,多孔钛板自身的粒子堆积结构和酸蚀后的蜂窝状结构为附着层提供了约0.53 m2/g的比表面积和有效的应力补偿。ATO能够以固溶体形式与钛基材紧密结合形成致密的保护层。所得钛基β-PbO2微孔渗透电极表面均匀致密,渗透性能良好。在0.5 mol/L硫酸溶液中,其析氧电位达1.85 V,电流密度4 A/cm2下的电极寿命超过38 h。

  7. Titanium dioxide nanotube films

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Ioan, E-mail: roman@metav-cd.ro [S.C. METAV-Research and Development S.R.L., Bucharest, 31C. A. Rosetti, 020011 (Romania); Trusca, Roxana Doina; Soare, Maria-Laura [S.C. METAV-Research and Development S.R.L., Bucharest, 31C. A. Rosetti, 020011 (Romania); Fratila, Corneliu [Research and Development National Institute for Nonferrous and Rare Metals, Pantelimon, 102 Biruintei, 077145 (Romania); Krasicka-Cydzik, Elzbieta [University of Zielona Gora, Department of Biomedical Engineering Division, 9 Licealna, 65-417 (Poland); Stan, Miruna-Silvia; Dinischiotu, Anca [University of Bucharest, Department of Biochemistry and Molecular Biology, 36-46 Mihail Kogalniceanu, 050107 (Romania)

    2014-04-01

    Titania nanotubes (TNTs) were prepared by anodization on different substrates (titanium, Ti6Al4V and Ti6Al7Nb alloys) in ethylene glycol and glycerol. The influence of the applied potential and processing time on the nanotube diameter and length is analyzed. The as-formed nanotube layers are amorphous but they become crystalline when subjected to subsequent thermal treatment in air at 550 °C; TNT layers grown on titanium and Ti6Al4V alloy substrates consist of anatase and rutile, while those grown on Ti6Al7Nb alloy consist only of anatase. The nanotube layers grown on Ti6Al7Nb alloy are less homogeneous, with supplementary islands of smaller diameter nanotubes, spread across the surface. Better adhesion and proliferation of osteoblasts was found for the nanotubes grown on all three substrates by comparison to an unprocessed titanium plate. The sensitivity towards bovine alkaline phosphatase was investigated mainly by electrochemical impedance spectroscopy in relation to the crystallinity, the diameter and the nature of the anodization electrolyte of the TNT/Ti samples. The measuring capacity of the annealed nanotubes of 50 nm diameter grown in glycerol was demonstrated and the corresponding calibration curve was built for the concentration range of 0.005–0.1 mg/mL. - Highlights: • Titania nanotubes (TNTs) on Ti, Ti6Al4V and Ti6Al7Nb substrates were prepared. • Quantitative dependences of anodization conditions on TNT features were established. • Morphology and electrochemical tests revealed inhomogeneity of TNT/Ti6Al7Nb films. • Particular characteristics of TNT films induce electrochemical sensitivity to ALP. • Annealed TNT/Ti impedimetric sensitivity towards ALP was demonstrated and quantified.

  8. Preparation and characterization of hybrid materials of epoxy resin type bisphenol a with silicon and titanium oxides by sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo C, A.; Osuna A, J. G., E-mail: acc.carrillo@gmail.com [Universidad Autonoma de Coahuila, Facultad de Ciencias Quimicas, Blvd. Venustiano Carranza y Jose Cardenas Valdes, 25000 Saltillo, Coahuila (Mexico)

    2011-07-01

    Hybrid materials were synthesized from epoxy resins as a result bisphenol type A-silicon oxide and epoxy resin bisphenol type A-titanium oxide were obtained. The synthesis was done by sol-gel process using tetraethyl orthosilicate (Teos) and titanium isopropoxide (I Ti) as inorganic precursors. The molar ratio of bisphenol A to the inorganic precursors was the studied variable. The materials were characterized by thermal analysis, infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The hybrid nature of the materials was demonstrated through thermal analysis and infrared spectroscopy. In both systems, as the amount of alkoxide increased, the bands described above were more defined. This behavior indicates the interactions between the resin and the alkoxides. Hybrids with Teos showed a smoother and homogeneous surface in its entirety, without irregularities. Hybrids with titanium isopropoxide had low roughness. Both Teos and I Ti hybrids showed a decrease on the atomic weight percentage of carbon due to a slight reduction of the organic part on the surface. (Author)

  9. Removal of fluoride from fluoride-bering cerium sulfate solution by hydrous zirconium oxide

    Directory of Open Access Journals (Sweden)

    J. G. He

    2014-04-01

    Full Text Available In this paper the removal of fluoride from fluoride-bearing cerium sulfate solution by amorphous hydrous zirconium oxide was studied. The FTIR, SEM, EDS and UV-vis spectra show that fluoride is successfully adsorbed on hydrous zirconium oxide, and cerium exists as Ce4+ in solution. The study indicates that it is feasible to separate fluorine and cerium from fluorine-bearing rare earth sulfate solution using hydrous zirconium oxide, and eliminate the influence of fluoride on the extraction separation of rare earths.

  10. Preparation and Visible Light Photocatalytic Activity of Titanium Dioxide Coated Multiwalled Carbon Nanotubes%二氧化钛涂覆多壁碳纳米管的制备及可见光催化活性

    Institute of Scientific and Technical Information of China (English)

    丛野; 秦云; 李轩科; 董志军; 袁观明; 崔正威

    2011-01-01

    以多壁碳纳米管(MWCNTs)为反应性模板,金属钛粉为钛源,采用熔盐法制备碳化钛涂覆的MWCNTs中间体,然后通过控制氧化制备二氧化钛涂覆的MWCNTs复合光催化剂.考察了熔盐反应温度、MWCNTs和钛粉的摩尔比及氧化温度等对产物的结构和形貌的影响.采用X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等技术对其进行了系统的表征;以亚甲基蓝(MB)溶液的脱色降解为模型反应,考察了催化剂的可见光(λ>420 nm)催化活性.结果表明:所制备的催化剂基本保持了原始MWCNTs的纤维状形貌,二氧化钛涂层在MWCNTs表面分布均匀.并与MWCNTs之间结合紧密,形成了Ti-O-C键.MWCNTs增强了污染物亚甲基蓝在催化剂表面的吸附,Ti-O-C键的形成使得在二氧化钛价带附近形成了杂质能级,提高了对可见光的吸收和利用.因此所制备的TiO2/MWCNTs复合光催化剂表现出较高的可见光催化活性.%Titanium dioxide coated multiwalled carbon nanotubes (MWCNTs) composite photocatalysts were prepared by the controllable oxidation of titanium carbide coated MWCNTs obtained by the molten salt method using MWCNTs as a reaction template and metal titanium powder as a titanium source. The effects of the molten salt reaction temperature, the molar ratio of MWCNTs to titanium powder, and the oxidation temperature on the structure and morphology of the products were investigated. The samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM),transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The photodegradation of a methylene blue (MB) solution was used to evaluate the photocatalytic activity of the catalyst under visible light irradiation (λ>420 nm). The results suggest that the TiO2 coated MWCNTs keep the similar fibred morphology with the pristine MWCNTs. Uniform and fine

  11. Trace element mass balance in hydrous adiabatic mantle melting: The Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1)

    Science.gov (United States)

    Kimura, Jun-Ichi; Kawabata, Hiroshi

    2014-06-01

    numerical mass balance calculation model for the adiabatic melting of a dry to hydrous peridotite has been programmed in order to simulate the trace element compositions of basalts from mid-ocean ridges, back-arc basins, ocean islands, and large igneous provinces. The Excel spreadsheet-based calculator, Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1) uses (1) a thermodynamic model of fractional adiabatic melting of mantle peridotite, with (2) the parameterized experimental melting relationships of primitive to depleted mantle sources in terms of pressure, temperature, water content, and degree of partial melting. The trace element composition of the model basalt is calculated from the accumulated incremental melts within the adiabatic melting regime, with consideration for source depletion. The mineralogic mode in the primitive to depleted source mantle in adiabat is calculated using parameterized experimental results. Partition coefficients of the trace elements of mantle minerals are parameterized to melt temperature mostly from a lattice strain model and are tested using the latest compilations of experimental results. The parameters that control the composition of trace elements in the model are as follows: (1) mantle potential temperature, (2) water content in the source mantle, (3) depth of termination of adiabatic melting, and (4) source mantle depletion. HAMMS1 enables us to obtain the above controlling parameters using Monte Carlo fitting calculations and by comparing the calculated basalt compositions to primary basalt compositions. Additionally, HAMMS1 compares melting parameters with a major element model, which uses petrogenetic grids formulated from experimental results, thus providing better constraints on the source conditions.

  12. Opportunities in the electrowinning of molten titanium from titanium dioxide

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2005-10-01

    Full Text Available ; the high affinity of titanium for carbon, oxygen, and nitrogen; and physical and chemical properties of the different titanium oxide species when reducing titanium from Ti4+ to metallic titanium....

  13. 阳极氧化钛表面淫羊藿苷/PHBV药物缓释涂层的制备与表征%Preparation and characterization of icariin/PHBV drug delivery coatings on anodic oxidized titanium

    Institute of Scientific and Technical Information of China (English)

    戴瑶; 刘海蓉; 夏磊磊; 周征

    2011-01-01

    A composite material was fabricated by applying a biodegradable drug delivery coating,consisting of poly (3-hydroxyburyrate-co-3-hydroxyvalerate) (PHBV) and icariin,to an anodic oxidized titanium plate.The coating was prepared by evaporating chloroform solution containing PHBV and icariin on the titanium plate under vacuum condition.Icariin/PHBV coated titanium plates significantly enhance the proliferation of MG-63 cells compared with the PHBV coated and anodic oxidized ones.Increased icariin contained in the coating displays an elevated influence on cell proliferation.The results show that icariin gradually releases from the coating to cells mainly through the phospholipid-based cellular membrane instead of the culture medium.The overall results suggest that the novel icariin/PHBV coating can be used to enhance the bioactivity of titanium based orthopedic implants.%以聚3-羟基丁酸酯-co-3-羟基戊酸酯(PHBV)和中药淫羊藿苷的三氯甲烷溶液为原料,通过真空干燥使溶剂挥发,在阳极氧化钛表面制备可降解的药物缓释涂层.体外细胞实验表明,相比于阳极氧化钛和PHBV涂层,含淫羊藿苷PHBV涂层能够显著地促进成骨细胞MG-63在其表面增殖,并且随着涂层中淫羊藿苷含量的增加,促进细胞增殖的作用越明显.淫羊藿苷主要通过细胞膜吸收而不是通过溶解在培养液中的方式发挥作用.结果表明,此药物缓释涂层能够有效增强钛植入材料的生物活性.

  14. Analysis clinical lifespan of Protaper Universal nickel-titanium root canal preparation instruments%Protaper Universal镍钛根管预备器械临床使用寿命分析

    Institute of Scientific and Technical Information of China (English)

    罗剑; 童庆春

    2016-01-01

    ObjectiveTo investigate the factors affecting clinical lifespan of Protaper Universal nickel-titanium root canals preparation instruments.MethodsThe numbers of root canals prepared by 43 sets of Protaper Universal nickel-titaniumfiles within service life were recorded. Meanwhile, the serial number of broken or unwinding of files was also recorded. The reason was analyzed based on the preparation process, resistance position and whether the equipment broken.Results964 root canals was prepared by 43 sets of Protaper Universal nickel-titanium root canals instruments, the average number of each set prepared were 22.4 root canals. Only 5 sets was capable of prepared over 25 root canals (inclusive) without broken or unwinding, which accounted for 11.63%.ConclusionBoth fatigue fracture from stress and obstruction from calcified root canal are the main factors affecting torsional fracture of Protaper Universal nickel-titanium root canals preparation instruments. Thus, the numbers of root canal prepared by each Protaper Universal conventional root canalfile in clinical should be controlled within 22 times.%目的:探讨Protaper Universal镍钛根管预备锉临床使用寿命及其影响因素。方法对43套用于临床根管制备的机用Protaper Universal镍钛根管预备锉进行使用次数的计数,记录折断或解螺旋的扩大锉的号数。根据根管预备过程中顺畅性、阻力部位和器械是否折断来分析原因。结果43套机用Prota-per Universal镍钛根管预备锉共制备了964个根管,平均每套锉根管制备数为22.4个根管,其中只有5套(占11.63%)能制备25个根管及以上,未出现任何锉折断或解螺旋并被及时丢弃。结论影响Protaper Universal镍钛根管预备锉临床使用寿命的主要因素是镍钛合金的应力疲劳折断和根管钙化阻塞不畅造成器械的扭转断裂。建议临床根管预备过程中常规每套Protaper Universal根管锉制备根管数目控制在22次左右。

  15. Surface Modification of a Titanium Alloy with a Phospholipid Polymer Prepared by a Plasma-Induced Grafting Technique to Improve Surface Thromboresistance

    OpenAIRE

    Ye, Sang Ho; Johnson, Carl A.; Woolley, Joshua R.; Oh, Heung-Il; Gamble, Lara J.; Ishihara, Kazuhiko; Wagner, William R.

    2009-01-01

    To improve the thromboresistance of a titanium alloy (TiAl6V4) surface which is currently utilized in several ventricular assist devices (VADs), a plasma-induced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) was carried out and poly(MPC) (PMPC) chains were covalently attached onto a TiAl6V4 surface by a plasma induced technique. Cleaned TiAl6V4 surfaces were pretreated with H2O-vapor-plasma and silanated with 3-methacryloylpropyltrimethoxysilane (MPS). Next, a plasma-...

  16. Preparation of coherent deposits of metallic titanium and zirconium by fused salts electrolysis. Preparacion de depositos coherentes de titanio y circonio metalicos por electrolisis de sales fundidas

    Energy Technology Data Exchange (ETDEWEB)

    Perillo, P.M.; Botbol, J. (Comision Nacional de Energia Atomica, Departamento de Desarrollo de Procesos, Buenos Aires (Argentina))

    1994-01-01

    The production of coherent deposits of metallic titanium and zirconium bath composition and operating conditions were studied. The cathode was a striated iron cylinder and a graphite crucible served as anode. K[sub 2]TiF[sub 6] and K[sub 2]ZrF[sub 6] dissolved in fused NaCl at 800 degree centigree may be electrolyzed under an insert gas atmosphere. It was found that the deposits depend on the electrolytic composition of the bath while other variables in the studied values do not influence significantly. (Author) 11 refs.

  17. Preparation

    Directory of Open Access Journals (Sweden)

    M.M. Dardir

    2014-03-01

    Full Text Available Some hexanamide-mono and di-linoleniate esters were prepared by the reaction of linolenic acid and hexanamide (derived from the reaction of hexanoic acid and diethanolamine. The chemical structure for the newly prepared hexanamide-mono and di-linoleniate esters were elucidated using elemental analysis, (FTIR, H 1NMR and chemical ionization mass spectra (CI/Ms spectroscopic techniques. The results of the spectroscopic analysis indicated that they were prepared through the right method and they have high purity. The new prepared esters have high biodegradability and lower toxicity (environmentally friendly so they were evaluated as a synthetic-based mud (ester-based mud for oil-well drilling fluids. The evaluation included study of the rheological properties, filtration and thermal properties of the ester based-muds formulated with the newly prepared esters compared to the reference commercial synthetic-based mud.

  18. Mass production of two-dimensional oxides by rapid heating of hydrous chlorides

    Science.gov (United States)

    Zhao, Chunsong; Zhang, Haitian; Si, Wenjie; Wu, Hui

    2016-09-01

    Two-dimensional (2D) nanoscale oxides have attracted research interest owing to their electronic, magnetic optical and catalytic properties. If they could be manufactured on a large scale, 2D oxides would be attractive for applications ranging from electronics to energy conversion and storage. Herein, we report facile fabrication of oxide nanosheets by rapid thermal annealing of corresponding hydrous-chloride compounds. By heating CrCl3.6H2O, ZrOCl2.8H2O, AlCl3.6H2O and YCl3.6H2O crystals as precursors, we immediately collect large quantities of ultrathin Cr2O3, ZrO2, Al2O3 and Y2O3 nanosheets, respectively. The formation of layered nanosheets relies on exfoliation driven by rapid evaporation of water and/or other gas molecules generated under annealing. Our route allows simple, efficient and inexpensive production of 2D oxides. As a demonstration, we evaluate Cr2O3 nanosheets prepared by our method as anodes in lithium-ion batteries and find superior performance in comparison with their microcrystalline counterparts.

  19. Mass changes accompanying the pseudocapacitance of hydrous RuO{sub 2} under different experimental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sopcic, Suzana; Rokovic, Marijana Kraljic [Faculty of Chemical Engineering and Technology, Department of Electrochemistry, University of Zagreb, Marulicev trg 19, HR-10000 Zagreb (Croatia); Mandic, Zoran, E-mail: zmandic@fkit.h [Faculty of Chemical Engineering and Technology, Department of Electrochemistry, University of Zagreb, Marulicev trg 19, HR-10000 Zagreb (Croatia); Roka, Andras [Department of Physical Chemistry, Eoetvoes Lorand University, Pazmany Peter setany 1/A, H-1117 Budapest (Hungary); Inzelt, Gyoergy, E-mail: inzeltgy@chem.elte.h [Department of Physical Chemistry, Eoetvoes Lorand University, Pazmany Peter setany 1/A, H-1117 Budapest (Hungary)

    2011-04-01

    Pseudocapacitance reaction of hydrous ruthenium oxide was investigated by cyclic voltammetry combined with electrochemical quartz-crystal nanobalance (EQCN) in sulfuric acid as well as in neutral solutions of Na{sub 2}SO{sub 4} and K{sub 2}SO{sub 4}. The ruthenium oxide electrode was prepared by attaching the ruthenium oxide particles on gold covered quartz electrode. The results show that there are different types of charge taking place simultaneously during the redox reaction of ruthenium oxide electrode. Their contribution to the overall charge depends on the experimental conditions. Depending on the potential and electrolyte used the redox reaction of ruthenium oxide is accompanied either by mass loss or by mass gain. The average molar masses of the species exchanged between the solid phase and the electrolyte solution depend on the potential and scan rate. The effect of Nafion{sup TM} top layer was also investigated. It has been found that it does not affect significantly the overall specific capacitance of ruthenium oxide electrode but the apparent molar masses of exchanged species decrease in comparison with the uncovered electrodes.

  20. Spark Ignition Engine Combustion, Performance and Emission Products from Hydrous Ethanol and Its Blends with Gasoline

    Directory of Open Access Journals (Sweden)

    Musaab O. El-Faroug

    2016-11-01

    Full Text Available This paper reviews the serviceability of hydrous ethanol as a clean, cheap and green renewable substitute fuel for spark ignition engines and discusses the comparative chemical and physical properties of hydrous ethanol and gasoline fuels. The significant differences in the properties of hydrous ethanol and gasoline fuels are sufficient to create a significant change during the combustion phase of engine operation and consequently affect the performance of spark-ignition (SI engines. The stability of ethanol-gasoline-water blends is also discussed. Furthermore, the effects of hydrous ethanol, and its blends with gasoline fuel on SI engine combustion characteristics, cycle-to-cycle variations, engine performance parameters, and emission characteristics have been highlighted. Higher water solubility in ethanol‑gasoline blends may be obviously useful and suitable; nevertheless, the continuous ability of water to remain soluble in the blend is significantly affected by temperature. Nearly all published engine experimental results showed a significant improvement in combustion characteristics and enhanced engine performance for the use of hydrous ethanol as fuel. Moreover, carbon monoxide and oxides of nitrogen emissions were also significantly decreased. It is also worth pointing out that unburned hydrocarbon and carbon dioxide emissions were also reduced for the use of hydrous ethanol. However, unregulated emissions such as acetaldehyde and formaldehyde were significantly increased.

  1. Semi-transparent ordered TiO2 nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate

    Science.gov (United States)

    Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Skowroński, Łukasz; Karczewski, Jakub; Siuzdak, Katarzyna

    2016-09-01

    In a significant amount of cases, the highly ordered TiO2 nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO2 formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV-vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO2 films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm-2) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.

  2. 溶胶凝胶法制备TiO2实验条件的考察%The Conditions for Preparing Titanium Dioxide by Sol-gel Method

    Institute of Scientific and Technical Information of China (English)

    任铁强; 孙君; 孙悦

    2012-01-01

    实验以钛酸正丁酯为前驱体,采用溶胶凝胶法制备二氧化钛.设计正交试验,考察水、乙醇、冰醋酸、pH值和凝胶温度对凝胶时间和状态的影响.对凝胶时间的影响程度依次为:pH值、乙醇量、凝胶温度、冰醋酸量、水量.确定溶胶凝胶法合成二氧化钛最佳条件为:pH值为2~3、乙醇的量22~28mL、凝胶温度为55~65℃、冰醋酸的量1.75~2.5mL、水的量2.0~2.5mL.%The titanium dioxide was prepared by sol-gel method with using tetra-n -butyl titanate as precursor. The effects of the amount of ethanol, water and acetic acid, pH value and gelation temperature on gelation time were investigated by orthogonal experiment. The results showed that the order of the influencing factors on gelation time was pH value, amount of ethanol, gelation temperature, amount of acetic acid and water. The best experimental conditions for preparing titanium dioxide by sol-gel method were that pH value was 2 ~3, ethanol was 22-28mL, the gelation temperature was 55~65℃, the amount of acetic acid was 1.75~2.5mL and the amount of water was 2.0~2.5mL.

  3. Titanium and titanium alloys fundamentals and applications

    CERN Document Server

    Peters, Manfred

    2003-01-01

    This handbook is an excellent reference for materials scientists and engineers needing to gain more knowledge about these engineering materials. Following introductory chapters on the fundamental materials properties of titanium, readers will find comprehensive descriptions of the development, processing and properties of modern titanium alloys. There then follows detailed discussion of the applications of titanium and its alloys in aerospace, medicine, energy and automotive technology.

  4. Thermal stability of ladderane lipids as determined by hydrous pyrolysis

    Science.gov (United States)

    Jaeschke, A.; Lewan, M.D.; Hopmans, E.C.; Schouten, S.; Sinninghe, Damste J.S.

    2008-01-01

    Anaerobic ammonium oxidation (anammox) has been recognized as a major process resulting in loss of fixed inorganic nitrogen in the marine environment. Ladderane lipids, membrane lipids unique to anammox bacteria, have been used as markers for the detection of anammox in marine settings. However, the fate of ladderane lipids after sediment burial and maturation is unknown. In this study, anammox bacterial cell material was artificially matured by hydrous pyrolysis at constant temperatures ranging from 120 to 365 ??C for 72 h to study the stability of ladderane lipids during progressive dia- and catagenesis. HPLC-MS/MS analysis revealed that structural alterations of ladderane lipids already occurred at 120 ??C. At temperatures >140 ??C, ladderane lipids were absent and only more thermally stable products could be detected, i.e., ladderane derivatives in which some of the cyclobutane rings were opened. These diagenetic products of ladderane lipids were still detectable up to temperatures of 260 ??C using GC-MS. Thus, ladderane lipids are unlikely to occur in ancient sediments and sedimentary rocks, but specific diagenetic products of ladderane lipids will likely be present in sediments and sedimentary rocks of relatively low maturity (i.e., C31 hopane 22S/(22S + 22R) ratio 0.5). ?? 2008 Elsevier Ltd.

  5. Dietary bioavailability of Cu adsorbed to colloidal hydrous ferric oxide

    Science.gov (United States)

    Cain, Daniel J.; Croteau, Marie-Noële; Fuller, Christopher C.

    2013-01-01

    The dietary bioavailability of copper (Cu) adsorbed to synthetic colloidal hydrous ferric oxide (HFO) was evaluated from the assimilation of 65Cu by two benthic grazers, a gastropod and a larval mayfly. HFO was synthesized, labeled with 65Cu to achieve a Cu/Fe ratio comparable to that determined in naturally formed HFO, and then aged. The labeled colloids were mixed with a food source (the diatom Nitzschia palea) to yield dietary 65Cu concentrations ranging from 211 to 2204 nmol/g (dry weight). Animals were pulse fed the contaminated diet and assimilation of 65Cu from HFO was determined following 1–3 days of depuration. Mass transfer of 65Cu from HFO to the diatom was less than 1%, indicating that HFO was the source of 65Cu to the grazers. Estimates of assimilation efficiency indicated that the majority of Cu ingested as HFO was assimilated (values >70%), implying that colloidal HFO potentially represents a source of dietary Cu to benthic grazers, especially where there is active formation and infiltration of these particles into benthic substrates.

  6. Kinetics of oxytetracycline reaction with a hydrous manganese oxide.

    Science.gov (United States)

    Rubert, Kennedy F; Pedersen, Joel A

    2006-12-01

    Tetracycline antibiotics comprise a class of broad spectrum antimicrobial agents finding application in human therapy, animal husbandry, aquaculture, and fruit crop production. To better understand the processes affecting these antibiotics in soils and sediments, the kinetics of oxytetracycline transformation by a hydrous manganese oxide (MnO2) were investigated as a function of reactant concentration, pH, and temperature. Oxytetracycline was rapidly degraded by MnO2. Initial reaction rates exhibited pronounced pH-dependence, increasing as pH decreased. Reaction of oxytetracycline with MnO2 was accompanied by generation of Mn(II) ions, suggesting oxidative transformation of the antibiotic. At pH 5.6, apparent reaction orders for oxytetracycline and MnO2 were 0.7 and 0.8. Reaction order with respect to H+ was 0.6 between pH 4 and 9. Initial reaction rates increased by a factor of approximately 2.4 for 10 degrees C temperature increases; the apparent activation energy (60 kJ x mol(-1)) was consistent with a surface-controlled reaction. Reactivity of tetracycline antibiotics toward MnO2 increased in the following order: rolitetracyline oxytetracycline manganese oxides in soils and sediments are likely to promote appreciable degradation of tetracycline antibiotics, and that reaction rates are strongly dependent on reaction time scale and solution conditions.

  7. 钛表面双层纳米管制备及生物活性的测定%The preparation of titanium surface coated with double-layers nanotubes and the determination of its biological activity

    Institute of Scientific and Technical Information of China (English)

    孙磊; 夏荣; 徐基亮; 胡小晔; 刘春; 孙子环

    2014-01-01

    Two-step electrochemical anodic oxidation method was applied to prepare nanotube on titanium surface. Smooth titanium samples were regarded as a control group. Surface morphology, elemental composition, three-di-mensional topography, and the roughness were observed and analyzed by field emission scanning electron micro-scope,X-ray energy dispersive spectroscopy and atomic force microscopy,respectively. The mouse bone marrow mes-enchymal stem cells ( BMSCs) were cultured to determine the biological activity in vitro. The results showed that double honeycomb titania nanotube arrays were successfully prepared. The elements in the surface of nanotubes composed of titanium and oxygen. The roughness of nanotube group was greater than that in smooth group with sig-nificant difference (P<0.05). The surface of nanotube group promoted BMSCs adhesion, proliferation and differ-entiation.%采用电化学两步阳极氧化法在钛表面制备纳米管,光滑纯钛作为对照组,通过场发射电镜、X射线能量色散谱和原子力显微镜观察分析试件表面微观形貌、元素组成和三维形貌并计算粗糙度。体外培养小鼠骨髓间质干细胞( BM-SCs)进行生物活性的测定。结果显示在钛表面制备出有序的双层蜂窝状二氧化钛纳米管阵列,纳米管的表面由钛和氧元素组成,纳米管组粗糙度值大于光滑组,两组间比较差异有统计学意义(P<0.05),纳米管组试件促进了BMSCs的黏附、增殖和分化。

  8. 改进酸碱联合处理法制备钛基羟基磷灰石活性涂层%PREPARATION OF BIOACTIVE HYDROXYAPATITE COATING ON TITANIUM ALLOY SUBSTRATE WITH AN IMPROVED ACID-ALKALI-COMBINATION METHOD

    Institute of Scientific and Technical Information of China (English)

    杨辉; 肖兵娟

    2009-01-01

    In order to prepare bioactive hydroxyapatite (Ca10(PO4)6(OH)2, HA) coating with ideal bioactivity, the surface of titanium alloy was treated with acidity, alkalinity and their combination. After precalcification, the treated titanium alloy plates were immersed in simulated body fluid (SBF) to form HA coating on their surface, and then heat-treated. The chemical composition of the coating was analyzed by an X-ray diffraction (XRD) and the morphology was observed by a scanning electron microscope (SEM). The results indicate that the ideal titanium surface treatment is the acid-alkali-combination method. The treated surface is a porous structure and its roughness is favorable for the deposition of HA and the improvement of its coating adhesion strength. The formed bioactive coa-tings are mainly composed of HA crystal taking the shape of a cloud or sphere. Compared with the results reported in other documents, the prepared coating in this study has a higher HA content, no cracks, and some sheet crystals, which are tightly wrapped to the alloy surface and are evenly distributed. Many pores are distributed in the coating, which is useful for new bone to form and combine with the coating firmly.%为了制备理想的钛基羟基磷灰石(hydroxyapatite,HA)生物活性涂层,对钛合金表面分别采用酸处理、碱处理和酸碱联合处理,经过预钙化和热处理后,于模拟体液中进行HA沉积试验.采用X射线粉末衍射仪分析HA涂层的化学组成,以扫描电镜观察所得涂层的表面形态.结果表明:酸碱联合处理法是理想的钛合金表面处理法,所得表面呈多孔状,表面粗糙,对HA涂层沉积和结合强度的改善极为有利;模拟体液法所得涂层主要由HA组成,沉积物为云团状或球状;与相关文献比较,涂层HA含量高,没有裂纹,并且在钛基金属表面形成了片状晶体,均匀覆盖于金属表面,球状颗粒间有空隙存在,有利于新骨形成和牢固的结合.

  9. Inclusions of nanocrystalline hydrous aluminium silicate “Phase Egg” in superdeep diamonds from Juina (Mato Grosso State, Brazil)

    Science.gov (United States)

    Wirth, Richard; Vollmer, Christian; Brenker, Frank; Matsyuk, Stanislav; Kaminsky, Felix

    2007-07-01

    Inclusions in alluvial diamond from Juina (Mato Grosso, Brazil) have been investigated by TEM methods (electron diffraction, HRTEM, AEM, HAADF, EELS) and Raman spectroscopy. The inclusion paragenesis of Juina diamonds is dominated by ultrahigh-pressure ("superdeep") phases. One of these diamonds, sample #1.1/4, contains several micrometer-sized (approximately 200 μm by 50-70 μm) inclusions, which have been studied. TEM foils prepared applying Focused Ion Beam (FIB) technique revealed that these inclusions consist of a porous, nanocrystalline groundmass, which is composed of nanometre-sized crystals of a hydrous aluminium silicate phase with Al:Si approximately 1:1 and chemical composition of phase "Egg" (AlSiO 3(OH)), a minor volume fraction of nanocrystalline stishovite and pore space, which was originally filled with a fluid or gas. The nanocrystalline hydrous aluminium silicate phase is idiomorphic, randomly oriented (approximately 20-30 nm in size) predominantly with tetragonal crystal structure ( a0 = 0.743 nm, c0 = 0.706 nm). The monoclinic structure of synthetic phase "Egg" determined at ambient conditions [M.W. Schmidt, L.W. Finger, R.J. Ross, R.E. Dinnebier, Synthesis, crystal structure, and phase relations of AlSiO 3OH, a high-pressure hydrous phase, American Mineralogist 83 (1998) 881 - 888] is only occasionally observed. The fluid filling in the porosity has been released into the vacuum of the FIB during TEM specimen preparation. Quench products of the fluid containing minor concentrations of F- P- S- Cl- K- Ca and Ba were detected at the walls of the pores. In addition phase "Egg" is identified by μ-Raman spectroscopy within a second sample (RS 43a) from the same location. The presence of Phase "Egg" in the inclusions in diamond may suggest that crustal material has been subducted to a depth of the lower Transition Zone. Although, metastable growth of nanocrystalline high-pressure phases or extension of their respective stability fields to lower

  10. Low temperature synthesis of nanocrystalline titanium nitride from a single-source precursor of titanium and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Wu Meining, E-mail: wmn-wz@163.co [Oujiang College, Wenzhou University, Wenzhou, Zhejiang 325027 (China)

    2009-11-03

    Nanocrystalline titanium nitride has been prepared via a convenient route from a single-source precursor of titanium and nitrogen (ammonium fluotitanate) in an autoclave at 650 deg. C. X-ray powder diffraction patterns indicate that the product is cubic titanium nitride, and the cell constant is a = 4.235 A. Transmission electron microscopy image shows that it consists of particles with an average size of about 40 nm in diameter. The product was also studied by BET and TGA.

  11. Chinese titanium industry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>The effects of the financial crisis on the titanium industry are visible: investment plans for titanium smelting and processing have basically come to a halt in 2009, and projects under construction were also delayed. However, the

  12. Mantle hydrous-fluid interaction with Archaean granite.

    Science.gov (United States)

    Słaby, E.; Martin, H.; Hamada, M.; Śmigielski, M.; Domonik, A.; Götze, J.; Hoefs, J.; Hałas, S.; Simon, K.; Devidal, J.-L.; Moyen, J.-F.; Jayananda, M.

    2012-04-01

    Water content/species in alkali feldspars from late Archaean Closepet igneous bodies as well as growth and re-growth textures, trace element and oxygen isotope composition have been studied (Słaby et al., 2011). Both processes growth and re-growth are deterministic, however they differ showing increasing persistency in element behaviour during interaction with fluids. The re-growth process fertilized domains and didn't change their oxygen-isotope signature. Water speciation showed persistent behaviour during heating at least up to 600oC. Carbonate crystals with mantle isotope signature are associated with the recrystallized feldspar domains. Fluid-affected domains in apatite provide evidence of halide exchange. The data testify that the observed recrystallization was a high-temperature reaction with fertilized, halide-rich H2O-CO2 mantle-derived fluids of high water activity. A wet mantle being able to generate hydrous plumes, which appear to be hotter during the Archean in comparison to the present time is supposed by Shimizu et al. (2001). Usually hot fluids, which can be strongly carbonic, precede asthenospheric mantle upwelling. They are supposed to be parental to most recognized compositions, which can be derived by their immiscible separation into saline aqueous-silicic and carbonatitic members (Klein-BenDavid et al., 2007). The aqueous fractions are halogen-rich with a significant proportion of CO2. Both admixed fractions are supposed to be fertile. The Closepet granite emplaced in a major shear zone that delimitates two different terrains. Generally such shear zones, at many places, are supposed to be rooted deep into the mantle. The drain, that favoured and controlled magma ascent and emplacement, seemed to remain efficient after granite crystallization. In the southern part of the Closepet batholiths an evidence of intensive interaction of a lower crust fluid (of high CO2 activity) is provided by the extensive charnockitization of amphibolite facies (St

  13. Hydrous pyrolysis of crude oil in gold-plated reactors

    Science.gov (United States)

    Curiale, J.A.; Lundegard, P.D.; Kharaka, Y.K.

    1992-01-01

    Crude oils from Iraq and California have been pyrolyzed under hydrous conditions at 200 and 300??C for time periods up to 210 days, in gold-plated reactors. Elemental (vanadium, nickel), stable isotopic (carbon), and molecular (n-alkanes, acyclic isoprenoids, steranes, terpanes and aromatic steroid hydrocarbons) analyses were made on the original and pyrolyzed oils. Various conventional crude oil maturity parameters, including 20S/(20S + 20R)-24-ethylcholestane ratios and the side-chain-length distribution of aliphatic and aromatic steroidal hydrocarbons, were measured in an effort to assess the modification of molecular maturity parameters in clay-free settings, similar to those encountered in "clean" reservoirs. Concentrations of vanadium and nickel in the Iraq oil decrease significantly and the V/(V + Ni) ratio decreases slightly, with increasing pyrolysis time/temperature. Whole oil carbon isotope ratios remain fairly constant during pyrolysis, as do hopane/sterane ratios and carbon number distribution of 5??(H),14??(H),17??(H),20R steranes. These latter three parameters are considered maturity-invariant. The ratios of short side-chain components to long side-chain components of the regular steranes [C21/(C21 + C29R)] and the triaromatic steroid hydrocarbons [C21/(C21 + C28)] vary systematically with increasing pyrolysis time, indicating that these parameters may be useful as molecular maturity parameters for crude oils in clay-free reservoir rocks. In addition, decreases in bisnorhopane/hopane ratio with increasing pyrolysis time, in a clay-free and kerogen-free environment, suggest that the distribution of these compounds is controlled by either differential thermal stabilities or preferential release from a higher-molecular weight portion of the oil. ?? 1992.

  14. Effect of titanium addition on fracture toughness behavior of ZL108 alloy

    Institute of Scientific and Technical Information of China (English)

    WENG Yong-gang; LI Zi-jing; LIU Zhi-yong; LIU Wen-cai; WANG Ming-xing; SONG Tian-fu

    2006-01-01

    Two different titanium alloying methods were applied to ZL108 alloy for preparing specimens containing titanium. The specimens were tested on the MTS 810 material test system for studying their behavior of the plane strain fracture toughness KIC. The experimental data were analyzed by the statistical significance tests. The results show that the fracture toughness of the ZL108 alloy containing titanium is superior to that of common ZL108 alloy containing no titanium, but there is no significant difference for different titanium alloying methods. Therefore titanium addition is an effective method for improving the fracture toughness of the alloy ZL108.

  15. Cadmium Telluride-Titanium Dioxide Nanocomposite for Photodegradation of Organic Substance.

    Science.gov (United States)

    Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto

    2015-12-01

    Cadmium telluride-titanium dioxide nanocomposite was prepared by hydrothermal reaction of sol-gel derived titanium dioxide and organically modified cadmium telluride. The crystallinity of titanium dioxide in the nanocomposite was higher than that of pure titanium dioxide obtained by the reaction under the same temperature and pressure conditions, showing that cadmium telluride induced the crystallization of titanium dioxide. Diffuse reflectance spectrum of the nanocomposite showed the higher absorption efficiency in the UV-visible region due to band-gap excitation of titanium dioxide. The nanocomposite significantly showed the improvement of photocatalytic activity for 4-chlorophenol with UV light.

  16. Preparation of micro-nanostructure on titanium implants and its bioactivity%钛合金植入体表面微纳结构构建及其生物活性

    Institute of Scientific and Technical Information of China (English)

    张蕊; 万熠; 艾兴; 王滕; 门博

    2016-01-01

    Surface modification of medical implants was considered as an effective method to improve the cellular behaviors and the integration of tissue onto materials. The micro-nanostructured surface on the titanium alloy was prepared by laser treatment and multiple acid etching. The surface morphologies of different titanium alloy substrates were characterized by scanning electron microscopy (SEM). The effects of micro-nanostructured surfaces on the cellular responses were investigated in vitro by observing hydroxyapatite formation, cell morphology and cell adhesion. The results indicate that the micro-sized structure promoted the adhesion and proliferation of cultured osteoblasts. Furthermore, the micro-nanostructured surface was more conducive to cell adhension stretching compared with the micro-structured surface. All results suggest that the micro-nanostructured surface improved the biocompatibility and integration of tissue onto titanium alloy implants.%医用植入物的表面改性是改善细胞行为、提高植入体骨整合的一种有效方法。通过激光加工及多重酸蚀在钛合金表面制备出微纳复合结构。采用 SEM 对钛合表面形貌进行表征。通过对不同表面形貌的植入体进行体外细胞培养,观察羟基磷灰石的形成、细胞形态及细胞粘附,分析不同表面形貌的生物活性。结果表明:微米结构表面能够促进成骨细胞粘附与铺展;与微米结构表面相比,微纳复合结构表面更有利于细胞粘附与伸展。微纳复合结构能够提高钛合金植入体的生物活性及骨整合能力。

  17. Titanium Carbide-Graphite Composites

    Science.gov (United States)

    1991-11-08

    titanium carbide , titanium carbide with free graphite, titanium carbide /vanadium carbide alloy with free graphite, and titanium carbide with...from melts. The test pins were drawn across hot pressed titanium carbide wear plates with 5 newtons of normal force. The lowest friction coefficient at...22 C was 0.12 obtained with pure titanium carbide . The lowest friction coefficient at 900 C was 0.19 obtained with titanium carbide with boron and

  18. Titanium Oxide Nanotubes Prepared by Anodic Oxidation and Their Application in Solar Cells%阳极氧化法制备二氧化钛纳米管及其在太阳能电池中的应用

    Institute of Scientific and Technical Information of China (English)

    李欢欢; 陈润锋; 马琮; 张胜兰; 安众福; 黄维

    2011-01-01

    We review the history, fabrication procedures, and mechanisms of TiO2 nanotubes prepared by the anodic oxidation of titanium.The influence of various preparation factors, such as electrolytes, pH value, voltage, bath temperature, and post treatment, on the structure and morphology of the TiO2 nanotubes are discussed.This review also summarizes the application of TiO2 nanotubes to dye-sensitized solar cells, quantum dot solar cells, and bulk heterojunction solar cells.A perspective on the future development of TiO2nanotubes and their applications is tentatively discussed.%介绍了阳极氧化法制备二氧化钛纳米管的技术发展历程,论述了其制备过程及生长机理,探讨了电解液、pH值、氧化电压、氧化时间、氧化温度和后处理方法等因素对TiO2纳米管结构和形态的影响,综述了近几年来利用TiO2纳米管组装染料敏化、量子点和本体异质结等太阳能电池所取得的进展,展望了其未来发展趋势和应用前景.

  19. The Preparation of Pigment of Iron Black Oxide from the Byproduct of Titanium DioxideFeSO4.H2O%钛白副产硫酸亚铁制备氧化铁黑的研究

    Institute of Scientific and Technical Information of China (English)

    周宏民; 刘跃进; 熊双喜

    2001-01-01

    During the production of titanium pigment, there is a large amount of byproductFeSO4* H2O which contains some impurities, such as Ti, Mn etc. A new technology of preparing iron black oxide from the ferrous sulfate septihydrate was proposed in this paper. The method consists of steps: first purifying the by product FeSO4* H2O, then adding ammonia to form ferrous hydroxide and finally oxidizing ferrous hydroxide into iron black oxide by air under the given conditions. Comparing with the traditional technology, both lower product cost and less waste byproduct were obtained by the method. Some factors affecting the preparing of iron black oxide were tested and the optimal conditions of oxidizing reaction were obtained.%钛白生产中副产大量硫酸亚铁,且含有Ti、Mn等杂质.先将副产硫酸亚铁经净化处理,然后用氨水和空气进行反应生产氧化铁黑,产品质量达到国家标准.与传统工艺相比,生成成本低,减少了三废的排放.对合成氧化铁黑的影响因素也进行了试验研究,得出了较好的合成工艺条件.

  20. Effect of titanium incorporation on the structural, mechanical and biocompatible properties of DLC thin films prepared by reactive-biased target ion beam deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Bharathy, P. Vijai [Thin Films and Nanomaterials Lab, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Department of Mechanical Engineering, University of Saskatchewan, Saskatoon (Canada); Nataraj, D., E-mail: de.natraj@gmail.com [Thin Films and Nanomaterials Lab, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Chu, Paul K.; Wang, Huaiyu [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Yang, Q. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon (Canada); Kiran, M.S.R.N. [School of Physics, University of Hyderabad, Hyderabad, Andra Pradesh (India); Silvestre-Albero, J. [Laboratorio de Materiales Avanzados, Departmento de Quimica Inorganica, Universidad de Alicante, Ap 99, E-03080 Alicante (Spain); Mangalaraj, D. [Thin Films and Nanomaterials Lab, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India)

    2010-10-15

    Amorphous diamond like carbon (DLC) and titanium incorporated diamond like carbon (Ti-DLC) thin films were deposited by using reactive-biased target ion beam deposition method. The effects of Ti incorporation and target bias voltage on the microstructure and mechanical properties of the as-deposited films were investigated by means of X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy and nano-indentation. It was found that the Ti content in Ti-DLC films gets increased with increasing target bias voltage. At about 4.2 at.% of Ti, uniform sized well dispersed nanocrystals were seen in the DLC matrix. Using FFT analysis, a facility available in the TEM, it was found that the nanocrystals are in cubic TiC phase. Though at the core, the incorporated Ti atoms react with carbon to form cubic TiC; most of the surface exposed Ti atoms were found to react with the atmospheric oxygen to form weakly bonded Ti-O. The presence of TiC nanocrystals greatly modified the sp{sup 3}/sp{sup 2} hybridized bonding ratio and is reflected in mechanical hardness of Ti-DLC films. These films were then tested for their biocompatibility by an invitro cell culturing test. Morphological observation and the cell proliferation test have demonstrated that the human osteoblast cells well attach and proliferate on the surface of Ti incorporated DLC films, suggesting possible applications in bone related implant coatings.

  1. Porous Silicon & Titanium Dioxide Coatings Prepared by Atmospheric Pressure Plasma Jet Chemical Vapour Deposition Technique-A Novel Coating Technology for Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    S. Bhatt

    2011-01-01

    Full Text Available Atmospheric Pressure Plasma Jet (APPJ is an alternative for wet processes used to make anti reflection coatings and smooth substrate surface for the PV module. It is also an attractive technique because of it’s high growth rate, low power consumption, lower cost and absence of high cost vacuum systems. This work deals with the deposition of silicon oxide from hexamethyldisiloxane (HMDSO thin films and titanium dioxide from tetraisopropyl ortho titanate using an atmospheric pressure plasma jet (APPJ system in open air conditions. A sinusoidal high voltage with a frequency between 19-23 kHz at power up to 1000 W was applied between two tubular electrodes separated by a dielectric material. The jet, characterized by Tg ~ 600-800 K, was mostly laminar (Re ~ 1200 at the nozzle exit and became partially turbulent along the jet axis (Re ~ 3300. The spatially resolved emission spectra showed OH, N2, N2+ and CN molecular bands and O, H, N, Cu and Cr lines as well as the NO2 chemiluminescence continuum (450-800 nm. Thin films with good uniformity on the substrate were obtained at high deposition rate, between 800 -1000 nm.s-1, and AFM results revealed that coatings are relatively smooth (Ra ~ 2 nm. The FTIR and SEM analyses were better used to monitor the chemical composition and the morphology of the films in function of the different experimental conditions.

  2. Deposition of Ultrathin Nano-Hydroxyapatite Films on Laser Micro-Textured Titanium Surfaces to Prepare a Multiscale Surface Topography for Improved Surface Wettability/Energy

    Directory of Open Access Journals (Sweden)

    Maria Surmeneva

    2016-10-01

    Full Text Available The primary aim of this study was to analyse the correlation between topographical features and chemical composition with the changes in wettability and the surface free energy of microstructured titanium (Ti surfaces. Periodic microscale structures on the surface of Ti substrates were fabricated via direct laser interference patterning (DLIP. Radio-frequency magnetron sputter deposition of ultrathin nanostructured hydroxyapatite (HA films was used to form an additional nanoscale grain morphology on the microscale-structured Ti surfaces to generate multiscale surface structures. The surface characteristics were evaluated using atomic force microscopy and contact angle and surface free energy measurements. The structure and phase composition of the HA films were investigated using X-ray diffraction. The HA-coated periodic microscale structured Ti substrates exhibited a significantly lower water contact angle and a larger surface free energy compared with the uncoated Ti substrates. Control over the wettability and surface free energy was achieved using Ti substrates structured via the DLIP technique followed by the deposition of a nanostructured HA coating, which resulted in the changes in surface chemistry and the formation of multiscale surface topography on the nano- and microscale.

  3. High-pressure synchrotron x-ray diffraction and infrared microspectroscopy: applications to dense hydrous phases

    CERN Document Server

    Liu, Z; Yang, H; Mao Ho Kwang; Hemley, R J

    2002-01-01

    Synchrotron x-ray diffraction (XRD) and infrared (IR) absorption spectra of hydrous and 'anhydrous' forms of phase X were measured to 30 GPa at room temperature. Three OH stretching modes were found in the hydrous phase, and surprisingly one sharp OH mode was observed in the previously characterized anhydrous phase. All OH stretching modes soften and broaden with increasing pressure and become very weak above approx 20 GPa. XRD indicates that the crystal structure remains stable up to 30 GPa. Combining IR absorption and XRD results, the behaviour is attributed to pressure-induced distortion of the Si sub 2 O sub 7 groups and disorder of the hydrogen atoms. The bulk moduli of the hydrous and 'anhydrous' phases are in the region of 74 GPa.

  4. Optical Absorption Spectra of Hydrous Wadsleyite to 32 GPa

    Science.gov (United States)

    Thomas, S.; Goncharov, A. F.; Jacobsen, S. D.; Bina, C. R.; Frost, D. J.

    2009-05-01

    Optical absorption spectra of high-pressure minerals can be used as indirect tools to calculate radiative conductivity of the Earth's interior [e.g., 1]. Recent high-pressure studies show that e.g. ringwoodite, γ-(Mg,Fe)2SiO4, does not become opaque in the near infrared and visible region, as previously assumed, but remains transparent to 21.5 GPa [2]. Therefore, it has been concluded that radiative heat transfer does not necessarily become blocked at high pressures of the mantle and ferromagnesian minerals actually could contribute to the heat flow in the Earth's interior [2]. In this study we use gem-quality single-crystals of hydrous Fe-bearing wadsleyite, β-(Mg,Fe)2SiO4, that were synthesized at 18 GPa and 1400 °C in a multianvil apparatus. Crystals were analyzed by Mössbauer and Raman spectroscopy, electron microprobe analysis and single-crystal X-ray diffraction. For absorption measurements a double-polished 50 μm sized single-crystal of wadsleyite was loaded in a diamond-anvil cell with neon as pressure medium. Optical absorption spectra were recorded at ambient conditions as well as up to 32 GPa from 400 to 50000 cm-1. At ambient pressure the absorption spectrum reveals two broad bands at - 10000 cm-1 and -15000 cm-1, and an absorption edge in the visible-ultraviolet range. With increasing pressure the absorption spectrum changes, both bands continuously shift to higher frequencies as has been observed for ringwoodite [2], but is contrary to earlier presumptions for wadsleyite [3]. Here, we will discuss band assignment along with the influence of iron, compare our results to previous absorption studies of mantle materials [2], and analyze possible implications for radiative conductivity of the transition zone. References: [1] Goncharov et al. (2008), McGraw Yearbook Sci. Tech., 242-245. [2] Keppler & Smyth (2005), Am. Mineral., 90 1209-1212. [3] Ross (1997), Phys. Chem. Earth, 22 113-118.

  5. Anchoring hydrous RuO{sub 2} on graphene sheets for high-performance electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhong-Shuai; Ren, Wencai; Zhao, Jinping; Zhou, Guangmin; Li, Feng; Cheng, Hui-Ming [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China); Wang, Da-Wei [ARC Centre of Excellence for Functional Nanomaterials, AIBN, University of Queensland, Brisbane (Australia)

    2010-10-22

    Hydrous ruthenium oxide (RuO{sub 2})/graphene sheet composites (ROGSCs) with different loadings of Ru are prepared by combining sol-gel and low-temperature annealing processes. The graphene sheets (GSs) are well-separated by fine RuO{sub 2} particles (5-20 nm) and, simultaneously, the RuO{sub 2} particles are anchored by the richly oxygen-containing functional groups of reduced, chemically exfoliated GSs onto their surface. Benefits from the combined advantages of GSs and RuO{sub 2} in such a unique structure are that the ROGSC-based supercapacitors exhibit high specific capacitance ({proportional_to}570 F g{sup -1} for 38.3 wt% Ru loading), enhanced rate capability, excellent electrochemical stability ({proportional_to}97.9% retention after 1000 cycles), and high energy density (20.1 Wh kg{sup -1}) at low operation rate (100 mA g{sup -1}) or high power density (10000 W kg{sup -1}) at a reasonable energy density (4.3 Wh kg{sup -1}). Interestingly, the total specific capacitance of ROGSCs is higher than the sum of specific capacitances of pure GSs and pure RuO{sub 2} in their relative ratios, which is indicative of a positive synergistic effect of GSs and RuO{sub 2} on the improvement of electrochemical performance. These findings demonstrate the importance and great potential of graphene-based composites in the development of high-performance energy-storage systems. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Atomic force microscopy study on the microtopography of natural organic matter and newly formed hydrous MnO2

    Institute of Scientific and Technical Information of China (English)

    GUO Jin; MA Jun; SHI Xuehua

    2007-01-01

    To understand the water purification mechanism of potassium permanganate as a coagulation-aid during the preoxidation process,the microtopography of its reductive products,the newly formed hydrous manganese dioxide and the aged hydrous manganese dioxide,was investigated.The morphology of natural organic matter(NOM)adsorbed by the newly formed hydrous manganese dioxide was also compared with that of NOM alone.By using the tapping mode atomic force microscopy(AFM),the observation results show that the newly formed hydrous manganese dioxide possess a perforated sheet(with a thickness of 0-1.75 nm)as well as some spherical particle structures compared with the hydrous manganese dioxide with 2 h aging time,which demonstrated that the newly formed hydrous manganese dioxide had a large surface area and adsorption capacity.When 1 mmol/L newly formed hydrous manganese dioxide was added,the microtopography of NOM molecules shifted from a loosely dispersed pancake shape(with adsorption height of 5-8.5 nm)to a densely dispersed and uniform spherical structure.These results provide a valid proof that it is the perfect adsorption capability of the newly formed hydrous manganese dioxide that might result in the coagulation aid effect of potassium permanganate preoxidation.

  7. Surface modification of a titanium alloy with a phospholipid polymer prepared by a plasma-induced grafting technique to improve surface thromboresistance.

    Science.gov (United States)

    Ye, Sang Ho; Johnson, Carl A; Woolley, Joshua R; Oh, Heung-Il; Gamble, Lara J; Ishihara, Kazuhiko; Wagner, William R

    2009-11-01

    To improve the thromboresistance of a titanium alloy (TiAl(6)V(4)) surface which is currently utilized in several ventricular assist devices (VADs), a plasma-induced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) was carried out and poly(MPC) (PMPC) chains were covalently attached onto a TiAl(6)V(4) surface by a plasma induced technique. Cleaned TiAl(6)V(4) surfaces were pretreated with H(2)O-vapor-plasma and silanated with 3-methacryloylpropyltrimethoxysilane (MPS). Next, a plasma-induced graft polymerization with MPC was performed after the surfaces were pretreated with Ar plasma. Surface compositions were verified by X-ray photoelectron spectroscopy (XPS). In vitro blood biocompatibility was evaluated by contacting the modified surfaces with ovine blood under continuous mixing. Bulk phase platelet activation was quantified by flow cytometric analysis, and surfaces were observed with scanning electron microscopy after blood contact. XPS data demonstrated successful modification of the TiAl(6)V(4) surfaces with PMPC as evidenced by increased N and P on modified surfaces. Platelet deposition was markedly reduced on the PMPC grafted surfaces and platelet activation in blood that contacted the PMPC-grafted samples was significantly reduced relative to the unmodified TiAl(6)V(4) and polystyrene control surfaces. Durability studies under continuously mixed water suggested no change in surface modification over a 1-month period. This modification strategy shows promise for further investigation as a means to reduce the thromboembolic risk associated with the metallic blood-contacting surfaces of VADs and other cardiovascular devices under development.

  8. Characterization and comparison of photocatalytic activities of prepared TiO2/graphene nanocomposites using titanium butoxide and TiO2 via microwave irradiation method

    Science.gov (United States)

    Darvishi, Motahareh; Seyed-Yazdi, Jamileh

    2016-08-01

    Photocatalysis based on TiO2 nanostructures with nanoscale hybridization of graphene, is a promising method to create highly conductive composite materials and surfaces with enhanced light absorption. In this study, graphite-oxide (GO) was produced by improved Hummers’ method followed by synthesis of TiO2/graphene nanocomposites. We used two precursors, titanium butoxide (TBO) and commercial TiO2, to produce nanocomposites in a mixture of water/ethanol and graphene-oxide, for hydrolysis of titania precursors on graphene-oxide sheets resulting in the formation of nanocomposites. Microwave irradiation is used to reduce graphene-oxide into graphene. TiO2/graphene nanocomposites in both cases demonstrate enhancement of overall photocatalytic activity compared with titania precursors which was examined by degradation of methylene blue (MB). In this study, nanocomposites were synthesized with different mass ratios of GO compare to titania precursors (i.e. GO: 1, 5 and 8 wt%). Photocatalytic performance increased with the increasing content of graphene in both cases. The reduction rate of MB for TiO2 was 62% and for TiO2/graphene (TiO2/G) (GO: 8 wt%) was 85% after 90 min, and for TBO and TBO/G (GO: 8 wt%) was 3% and 99.95%, respectively. SEM, XRD, Fourier transform infrared and UV-vis spectroscopy were used to characterize the synthesized nanocomposites. FTIR analysis demonstrates the formation of Ti-O-C bonds and confirms the formation of nanocomposites made of graphene and titania nanoparticles.

  9. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Yang; Hong, Shao-Chyang [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Hwang, Fu-Tsai [Department of Electro-Optical Engineering, National United University, Miao-Li, 36003, Taiwan (China); Lai, Li-Wen [ITRI South, Industrial Technology Research Institute, Liujia, Tainan, 73445, Taiwan (China); Lin, Tan-Wei [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Liu, Day-Shan, E-mail: dsliu@sunws.nfu.edu.tw [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China)

    2011-10-31

    The effect of a nickel oxide (NiO{sub x}) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO{sub x}) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO{sub x} films, with and without a NiO{sub x} seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO{sub x} film, deposited on a NiO{sub x} seed layer, was found to be lower than that of a pure TiO{sub x} film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO{sub x} film deposited onto the NiO{sub x} seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO{sub x}/TiO{sub x} system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  10. Equilibrium between titanium ions and high-purity titanium electrorefining in a NaCl-KCl melt

    Institute of Scientific and Technical Information of China (English)

    Jian-xun Song; Qiu-yu Wang; Guo-jing Hu; Xiao-bo Zhu; Shu-qiang Jiao; Hong-min Zhu

    2014-01-01

    TiClx (x=2.17) was prepared by using titanium sponge to reduce the concentration of TiCl4 in a NaCl−KCl melt under negative pressure. The as-prepared NaCl−KCl−TiClx melt was employed as the electrolyte, and two parallel crude titanium plates and one high-purity titanium plate were used as the anode and cathode, respectively. A series of electrochemical tests were performed to investigate the influence of electrolytic parameters on the current efficiency and quality of cathodic products. The results indicated that the quality of cathodic prod-ucts was related to the current efficiency, which is significantly dependent on the current density and the initial concentration of titanium ions. The significance of this study is the attainment of high-purity titanium with a low oxygen content of 30 × 10−6.

  11. The resistance to fracture of tooth after root canal preparation with two different rotary nickel-titanium systems%两种镍钛器械预备后牙根管抗折强度的对比研究

    Institute of Scientific and Technical Information of China (English)

    臧艳君; 王佳; 周磊; 王香兰

    2016-01-01

    s: Objective Comparison of 2 root canal preparation system ProTaper and TFA root canal preparation before the root canal preparation, analysis of root canal preparation and taper on the root fracture resistance.Methods Sixty pairs of maxillary and mandibullar premolars were selected which extracted from orthodontic. The teeth were non-carious and intact and were randomly divided into four groups. One of each pair was an experiment,the other was used as the control . which instrumented with nickel titanium ifles, namely A group: ProTaper\\ TFA,B group: TFA\\Complete teeth, C group: ProTaper\\Complete teeth, D group:ProTaperF3\\ ProTaperF1. Then the samples were tested after root canal filling with Universal Testing Machine. T tests was used to compare the results.Results Fracture resistance of A group of ProTaper in preparation of the premolar was signiifcantly lower than that in the preparation of TFA, B group and C group root canal preparation premolar fracture resistance was signiifcantly lower than that of intact teeth and group D ProTaper prepared to F3 fracture resistance was signiifcantly lower than the ProTaper prepared to F1.Conclusion The fracture resistance of premolar teeth reduced after root canal preparation. Taper on the root canal preparation of the impact of the impact of the taper,the greater the taper, the lower the fracture resistance.%目的:比较分析两种根管预备系统ProTaper和TFA进行根管预备离体前磨牙后,根管预备以及锥度对牙根抗折性的影响。方法:选用因正畸拔除的无龋、无损伤、完整的前磨牙,左右同名牙配对,共60对,分为四组。每对配对牙中,一个做实验,另一个做对照。A组:ProTaper预备\\ TFA预备,B组:TFA预备\\完整牙,C组:ProTaper预备\\完整牙,D组:ProTaper锉预备到F3\\ ProTaper锉预备到F1,完成根管充填后置于万能实验机上测试每对牙的最大载荷。用t检验比较各实验组与对照组抗折

  12. Photocatalytic degradation of pesticides by titanium dioxide and titanium pillared purified clays

    Directory of Open Access Journals (Sweden)

    M. Abdennouri

    2016-09-01

    Full Text Available Titanium dioxide was synthesized by the sol–gel method and titanium pillared purified clay was prepared with two titanium contents: 1.15 and 10.5 mmol of Ti per gram of clay. The composites were synthesized by immobilizing TiO2 onto surfactant-pillared clay via ion exchange reaction between clay with cation surfactant, cetyl-trimethyl ammonium bromide (CTMABr. The composition and texture of the prepared photocatalysts were characterized with X-ray powder diffraction (XRD, FT-IR spectroscopy, transmission electron microscopy (TEM and energy-dispersive spectroscopy (EDX. The adsorption performance and photocatalytic activities of the prepared samples were investigated using 2,4-dichlorophenoxyacetic acid (2,4-D and 2,4-dichlorophenoxypropionic acid (2,4-DP as models of organic pollutants. The results were obtained that these photocatalysts can effectively degrade selected pesticides. The removal efficiency increases with the Ti content in the pillared clay.

  13. Effect of whitening toothpaste on titanium and titanium alloy surfaces

    National Research Council Canada - National Science Library

    Faria, Adriana Cláudia Lapria; Bordin, Angelo Rafael de Vito; Pedrazzi, Vinícius; Rodrigues, Renata Cristina Silveira; Ribeiro, Ricardo Faria

    2012-01-01

    .... Whitening toothpastes with peroxides are available for patients with high aesthetic requirements, but the effect of whitening toothpastes on titanium surfaces is not yet known, although titanium...

  14. Melting the hydrous, subarc mantle: the origin of primitive andesites

    Science.gov (United States)

    Mitchell, Alexandra L.; Grove, Timothy L.

    2015-08-01

    This experimental study is the first comprehensive investigation of the melting behavior of an olivine + orthopyroxene ± spinel—bearing fertile mantle (FM) composition as a function of variable pressure and water content. The fertile composition was enriched with a metasomatic slab component of ≤0.5 % alkalis and investigated from 1135 to 1470 °C at 1.0-2.0 GPa. A depleted lherzolite with 0.4 % alkali addition was also studied from 1225 to 1240 °C at 1.2 GPa. Melts of both compositions were water-undersaturated: fertile lherzolite melts contained 0-6.4 wt% H2O, and depleted lherzolite melts contained ~2.5 wt% H2O. H2O contents of experimental glasses are measured using electron microprobe, secondary ion mass spectrometry, and synchrotron-source reflection Fourier transform infrared spectroscopy, a novel technique for analyzing H2O in petrologic experiments. Using this new dataset in conjunction with results from previous hydrous experimental studies, a thermobarometer and a hygrometer-thermometer are presented to determine the conditions under which primitive lavas were last in equilibration with the mantle. These predictive models are functions of H2O content and pressure, respectively. A predictive melting model is also presented that calculates melt compositions in equilibrium with an olivine + orthopyroxene ± spinel residual assemblage (harzburgite). This model quantitatively predicts the following influences of H2O on mantle lherzolite melting: (1) As melting pressure increases, melt compositions become more olivine-normative, (2) as melting extent increases, melt compositions become depleted in the normative plagioclase component, and (3) as melt H2O content increases, melts become more quartz-normative. Natural high-Mg# [molar Mg/(Mg + Fe2+)], high-MgO basaltic andesite and andesite lavas—or primitive andesites (PAs)—contain high SiO2 contents at mantle-equilibrated Mg#s. Their compositional characteristics cannot be readily explained by melting

  15. Sulfate Saturated Hydrous Magmas Associated with Hydrothermal Gold Ores

    Science.gov (United States)

    Chambefort, I.; Dilles, J. H.; Kent, A. J.

    2007-12-01

    -ICP-MS. Yanacocha anhydrite, hosted by amphiboles, are enriched in FeO (up to 0.6 wt%) and present positive anomalies in Eu and SrO (up to 8000ppm in anhydrite blebs hosted by high Al amphibole of the sample RC6). Anhydrite hosted by clinopyroxene (CPx) and low Al amphibole present higher Ce2O3 content (up to 2000ppm in CPx). In comparison, hydrothermal anhydrite analyzed from El Salvador, Butte and Ajo ore deposits contain less SrO (~ 2000 ppm) and no FeO. Pinatubo anhydrite phenocrysts and inclusions from the 1991 Pinatubo dacite yield low FeO contents, except anhydrite included in amphibole. These data suggest FeO in anhydrite is a product of subsolidus diffusion from the host. The breakdown of abundant anhydrite crystals "stored" in the magma may source of SO2-rich hydrothermal fluids that produced the sulfur enrichment (>500 M Tonnes) observed the Yanacocha hydrothermal gold deposits. The two populations of amphibole are evidence of magma mixing in the Yanacocha magmatic rocks. A sulfate-saturated oxidized dacitic magma chamber resided at about 4 to 8 km depth and 800°C was periodically underplated or fed by hydrous sulfate-rich oxidized basaltic-andesite magma. The shape of the irregular anhydrite blebs suggest that these inclusions could have been trapped as an immiscible sulfate- phosphate rich melt, despite the fact that anhydrite normally has a liquidus temperature of 1450°C and the host amphiboles crystallized at no more than 1050°C based on experiments on andesites and dacites.

  16. 染料敏化二氧化钛薄膜电极的制备及其光电性能研究%Preparation of Dye-sensitized Titanium Dioxide Film Electrode and Its Optical Properties

    Institute of Scientific and Technical Information of China (English)

    平从; 吴志明

    2011-01-01

    DSSC电池(染料敏二氧化钛纳米晶太阳能电池)作为一种新型光化学太阳能电池,具有制作工艺简单,制作成本低廉,使用性能稳定等诸多优点,在太阳能电池发展方面具有里程碑式的重要意义.本文针对染料敏化二氧化钛薄膜电极的制备及其光电性能进行了一些研究和探索.%DSSC cell, as a novel photochemical solar cell, has many advantages, such as the simple production process, low production cost, stable performance and so on, which has milestone significance in the development of solar cells. In this paper, the research and exploration on preparation of dye-sensitized titanium dioxide film electrode and its optical properties are conducted.

  17. Hydrous mineral dehydration around heat-generating nuclear waste in bedded salt formations.

    Science.gov (United States)

    Jordan, Amy B; Boukhalfa, Hakim; Caporuscio, Florie A; Robinson, Bruce A; Stauffer, Philip H

    2015-06-02

    Heat-generating nuclear waste disposal in bedded salt during the first two years after waste emplacement is explored using numerical simulations tied to experiments of hydrous mineral dehydration. Heating impure salt samples to temperatures of 265 °C can release over 20% by mass of hydrous minerals as water. Three steps in a series of dehydration reactions are measured (65, 110, and 265 °C), and water loss associated with each step is averaged from experimental data into a water source model. Simulations using this dehydration model are used to predict temperature, moisture, and porosity after heating by 750-W waste canisters, assuming hydrous mineral mass fractions from 0 to 10%. The formation of a three-phase heat pipe (with counter-circulation of vapor and brine) occurs as water vapor is driven away from the heat source, condenses, and flows back toward the heat source, leading to changes in porosity, permeability, temperature, saturation, and thermal conductivity of the backfill salt surrounding the waste canisters. Heat pipe formation depends on temperature, moisture availability, and mobility. In certain cases, dehydration of hydrous minerals provides sufficient extra moisture to push the system into a sustained heat pipe, where simulations neglecting this process do not.

  18. The application of Fe–Mn hydrous oxides based adsorbent for removing selenium species from water

    NARCIS (Netherlands)

    Szlachta, M.; Chubar, N.

    2013-01-01

    In this study, the adsorptive removal of selenium(IV) and selenium(VI) from water by a newly developed ion exchange adsorbent, based on Fe(III) and Mn(III) hydrous oxides, was examined. This study was conducted to determine the influence of various operating parameters, such as initial anion

  19. RATES OF HYDROUS FERRIC OXIDE CRYSTALLIZATION AND THE INFLUENCE ON COPRECIPITATED ARSENATE

    Science.gov (United States)

    Arsenate coprecipitated with hydrous ferric oxide (HFO) was stabilized against dissolution during transformation of HFO to more crystalline iron (hydr)oxides. The rate of arsenate stabilization approximately coincided with the rate of HFO transformation at pH 6 and 40 ?C. Compa...

  20. Mineralogical, Spectral, and Compositional Changes During Heating of Hydrous Carbonaceous Chondrites

    Science.gov (United States)

    Nakamura, T.; Matsuoka, M.; Yamashita, S.; Sato, Y.; Mogi, K.; Enokido, Y.; Nakata, A.; Okumura, S.; Furukawa, Y.; Zolensky, M.

    2017-01-01

    Hydrous carbonaceous chondrites experienced hydration and subsequent dehydration by heating, which resulted in a variety of mineralogical and spectral features [e. g., 1-6]. The degree of heating is classified according to heating stage (HS) II to IV based on mineralogy of phyllosilicates [2], because they change, with elevating temperature, to poorly crystal-line phases and subsequently to aggregates of small secondary anhydrous silicates of mainly olivine. Heating of hydrous carbonaceous chondrites also causes spectral changes and volatile loss [3-6]. Experimental heating of Murchison CM chondrite showed flattening of whole visible-near infrared spectra, especially weakening of the 3µm band strength [1, 4, 7]. In order to understand mineralogical, spectral, and compositional changes during heating of hydrous carbonaceous chondrites, we have carried out systematic investigation of mineralogy, reflectance spectra, and volatile composition of hydrated and dehydrated carbonaceous chondrites as well as experimentally-heated hydrous carbonaceous chondrites. In addition, we investigated reflectance spectra of tochilinite that is a major phase of CM chondrites and has a low dehydration temperature (250degC).

  1. 环氧树脂E-20改性有机钛硅树脂的制备%Preparation of titanium-doped silicone resins modified by epoxy resin E-20

    Institute of Scientific and Technical Information of China (English)

    廖昔虬; 唐博志; 杨佩铃; 陈林荣; 王雪镅; 吴雅红; 郝志峰

    2011-01-01

    在二月桂酸二丁基锡的催化作用下,用环氧树脂(E-20)与含钛的有机硅树脂缩聚合成了系列环氧改性有机钛硅树脂.通过红外光谱、羟值和相对分子质景分布的分析测定研究了改性树脂的固化活性、耐热性、附着力等.结果表明:以钛酸四正丁酯为固化剂的改性树脂具有高固化活性;在100℃下涂膜的固化时间小于或等于10min;当E-20和有机钛硅树脂的质量比为1.0:1.0时,固化膜附着力达1级,铅笔硬度达3H,冲击力大于50 kg·cm;改性树脂可耐450~500℃的高温,固化膜在500℃高温下烘烤3 h,涂层基本没有裂纹和脱落现象.%A series of epoxy modified titanium-doped silicone resins were prepared with dibutyltin dilaurate as catalyst via polycondensation of epoxy resin E-20 and titanium-contained silicone resins. The curing activity,thermal stability, adhesion and mechanical properties of the modified resins were studied by means of infrared spectrometry, hydroxyl value and relative molecular mass distribution analysis. The results show that the modified resins have high curing activity in the case of using tetra-n-butyltitanate as curing agent. The curing time of the film coating at 100 ℃ is less than or equal to 10 min. When the mass ratio of epoxy resin E-20 to titaniumcontained silicone resins is 1:1, the adhesion and pencil hardness of the cured film reaches level 1 and 3 H,respectively, and the impact resistance of the film is more than 50 kg·cm. The modified resins can resist service temperature of 450-500 ℃, and there exists no cracking and falling off phenomenon on the coating layer of the film after being baked at 500 ℃ for 3 h.

  2. 氮掺杂钛精矿的制备及其可见光催化活性%Preparation of nitric acid-modified titanium ore and its visible-light photocatalytic activity

    Institute of Scientific and Technical Information of China (English)

    雷雪飞; 薛向欣; 杨合

    2013-01-01

    Nitric acid-modified titanium ore (NATO) photocatalysts were prepared by the high energy ball milling method at different temperature. NATO photocatalysts were characterized by XRD, FT-IR, UV-Vis absorption spectra, TG-DTA and PL measurements. Its photocatalytic activity was checked through the photocatalytic oxidation of methyl orange as a model compound under vis light irradiation. The results showed that: mixed crystal structure was found in NATO photocatalysts; the photocatalytic activities of NATO calcined at 400℃ showed a higher catalytic activity compared to other catalysts; the higher concentration of nitrate and the visible absorption capacity,and the suitable phase ratio led to the enhancement of the photocatalytic activities of NATO calcined at 400℃ ; the decoloration rate of methyl orange reached 100% after 1h.%以硝酸作为氮源,钛精矿为原料,采用超声波复合高能球磨法,在不同煅烧温度下合成了硝酸掺杂的钛精矿催化剂(nitric acid-modified titanium ore,NATO).用X射线衍射(XRD)、傅立叶红外(FTIR)、紫外-可见漫反射光谱(UV-Vis)、差热-热重(TGDTA)和光致发光谱(PL)分析对NATO催化剂的结构和性能进行分析和表征,确定其由钛磁铁矿、钛铁矿、TiO2、钛铁氧化物等多种物相组成;在紫外-可见光区域都具有很强的光吸收能力.不同煅烧温度下,NATO催化剂的光催化活性由甲基橙的脱色率来评价,结果表明,煅烧温度为400℃时,NATO催化剂由于表面存在较高的硝酸盐含量和较高的可见光吸收能力及合适的晶相比,而具有较高的光催化活性,500W金卤灯照射1h,可将浓度为10mg/L的甲基橙废水完全降解.

  3. Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions

    Science.gov (United States)

    Behar, F.; Lewan, M.D.; Lorant, F.; Vandenbroucke, M.

    2003-01-01

    The objectives of the study are to compare product compositions and yields generated from lignite artificially matured by open nonhydrous pyrolysis, closed nonhydrous pyrolysis, and hydrous pyrolysis. The pyrolysis products were fractionated into CO2, H2O, CH4, C2-C5, C8-C14, C14+ saturates, C14+ aromatics and NSOs (resins+asphaltenes). All three methods generated high and similar quantities of water during pyrolysis that ranged between 14.6 and 15.2 wt.% of the original lignite. As a result of this high water content generated by the lignite, the experiments with no added water are referred to as nonhydrous rather than anhydrous. Rock-Eval pyrolysis and elemental analyses were conducted on the recovered lignite after solvent extraction to determine their residual hydrocarbon generation potential and to plot their position in a van Krevelen diagram, respectively. Residual lignite from the closed nonhydrous and hydrous experiments showed relationships between vitrinite reflectance (%Ro) values and atomic H/C ratios that occurred within the fields observed for natural maturation of coal. Although no significant differences in the atomic H/C ratios were observed between closed nonhydrous and hydrous pyrolysis, the vitrinite reflectance values were on the average 0.2% Ro lower in the residual lignite from the nonhydrous experiments. The remaining hydrocarbon generation potential as determined by Rock-Eval pyrolysis of the residual lignite showed that the nonhydrous residuals had on the average 16 mg more hydrocarbon potential per gram of original lignite than the hydrous residuals. This suggests there is a better release of the pyrolysis products from the lignite network in the hydrous experiments once generation occurs. For gas generation, at maximum yields, open nonhydrous pyrolysis generates the most hydrocarbon gas (21.0 mg/g original lignite), which is 20% more than closed nonhydrous pyrolysis and 29% more than hydrous pyrolysis. Closed nonhydrous pyrolysis

  4. TiO2/磁性膨胀石墨的制备及性能研究%Preparation and Properties of Titanium Dioxide Coated Magnetic Exfoliated Graphite

    Institute of Scientific and Technical Information of China (English)

    张晏清; 金诚瀛; 张雄

    2011-01-01

    Titanium dioxide coated magnetic exfoliated graphitefTMEG) was prepared with sol-gel method by depositing nickel ferrite and titanium dioxide on exfoliated graphite. The crystalline structure and particle character of the samples were studied by XRD, SEM and EDS. The adsorption abilitity to diesel oil of TMEG and polymer oil absorber felt was compared. VSM was used to analyze the magnetic property of the samples. The effect on the adsorption and photocatalytic degradation properties of TMEG to methylene blue /methyl orange dye were tested by ultraviolet spectrophotometer. The results showed that nickel ferrite and titanium dioxide particles deposited equably on the surface of exfoliated graphite whose loose porous structure was not influenced too much. TMEG have magnetization, oil adsorption and photocatalytic degradation properties. The specific saturation magnetization and oil adsorption capacity of TMEG are 4.7 emu/g and 17.2 g/g respectively. The degradation of methylene blue dye treated by the samples was 34% after exposing to ultraviolet radiation for 90 minutes and that of methyl orange dye was 55% in the same condition for 60 minutes.%采用溶胶-凝胶法在膨胀石墨表面负载镍铁氧体与TiO2,制备了TiO2/磁性膨胀石墨.采用XRD、SEM及EDS研究产物的晶相 组成与颗粒群特征,测试了TiO2/磁性膨胀石墨对柴机油的吸附性能,采用VSM和紫外分光光度计分析了TiO2/磁性膨胀石墨的磁性能及对亚甲基蓝/甲基橙的光催化降解效果.实验结果表明:铁氧体与TiO2以颗粒形式在膨胀石墨表面与内孔中均匀沉积,对膨胀石墨多孔结构影响不大;TiO2/磁性膨胀石墨具有磁性、吸附油污性与光催化降解性能.TiO2/磁性膨胀石墨的比饱和磁化强度为4.7 emu/g;质量吸油率达17.2 g/g;90min对亚甲基蓝的紫外光降解率为34%,60 min对甲基橙的紫外光降解率为55%.

  5. 钛合金表面氟化物-磷酸盐转化膜的制备及性能研究%Preparation and Properties of Fluoride-Phosphate Conversion Coating Formed on Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    叶君; 杜楠; 王力强; 尹茂生; 周国华; 王帅星

    2015-01-01

    目的:研究一种钛合金化学转化工艺,增强钛合金表面防护能力及其与涂层的结合能力。方法通过单因素实验确定TC1钛合金氟化物-磷酸盐转化工艺,采用SEM,EDS,XRD分析膜层的微观形貌及成分,同时测试转化膜的有关性能。结果在Na3 PO440 g/L,NaF 15 g/L,酸度调节剂A 25 mL/L,pH控制在4.4~4.6之间,温度30益条件下,可在TC1钛合金表面获得均匀一致的灰色转化膜。转化膜由许多细小的球状晶粒组成,主要相成分为Na3 TiOF5及Na2 TiF6。转化膜的摩擦系数仅为0.3~0.5,明显低于TC1基体。转化膜与TB06-9底漆的干性附着力为0级,浸泡48 h后的湿态附着力仍可达1级,远远好于TC1基体。结论氟化物-磷酸盐转化膜可以降低TC1钛合金的摩擦系数,提高其与有机涂层的附着力。%ABSTRACT:Objective A chemical conversion technique was researched to enhance the protective ability of titanium alloy surface and the adhesion between titanium alloy and organic coating. Methods The preparation technique of fluoride-phosphate conversion coating formed on TC1 alloy was determined by the single-factor experiments. The microstructure and composition of conversion coating were analyzed by SEM, EDS and XRD. Besides, the related properties of the conversion coating were researched. Results A uniform, coherent and gray conversion coating could be obtained on the surface of TC1 alloy when Na3 PO4 , NaF, Acidity Regu-lator A, pH and temperature were 40 g/L, 15 g/L, 25 mL/L, 4. 4~4. 6 and 30 ℃, respectively. The microstructure of the coa-ting showed many small spherical grains. The main phase components were Na3 TiOF5 and Na2 TiF6 . The friction coefficient of the fluoride-phosphate conversion coating was only 0. 3~0. 5, which was significantly lower than that of TC1 alloy. The dry adhesion level between conversion coating and TB06-9 organic coating was 0, and the wet adhesion level after 48 h immersion could still reach 1, both were far

  6. Preparation and thermal properties of titanium-containing hybrid silicone resin%含钛杂化硅树脂的制备与耐热性能研究∗

    Institute of Scientific and Technical Information of China (English)

    翟倩倩; 严岑琪; 赵士贵; 周传健; 周凯运

    2014-01-01

    以钛酸四正丁酯、甲基三乙氧基硅烷、二甲基二乙氧基硅烷、甲基苯基二甲氧基硅烷为原料,乙酰丙酮(acac)为螯合剂、盐酸为催化剂、乙醇为溶剂,利用溶胶-凝胶法、控制 n (Ti)∶n (Si)=0.1~0.5,50℃水解温度下制备了含钛硅树脂,钛的引入使得杂化硅树脂在不使用催化剂和室温固化剂的情况下,140℃3 d实现固化.通过涂层外观分析、光学显微镜、扫描电镜、紫外-可见吸收光谱、傅里叶变换红外光谱、变温傅里叶变换红外光谱、热重进行了表征.结果表明成功合成了含 Si—O—Ti 共价键的杂化硅树脂;当n (acac)/n (Ti)=0.3时,含钛硅树脂预聚物的储存稳定性较好;R/(Si+Ti)≥1.36时,能制备表面光滑的硅树脂;含钛杂化硅树脂具有较好的耐热性且其热性能随钛含量的增大而提高.%In this paper,a kind of titanium-containing hydrid silicone resin was prepared by the hydrolysis-con-densation of tetra-n-butyltitanate,methyltriethoxysilane,dimethyldiethoxylsilane and methylphenyldimethox-ysilane through sol-gel method in ethanol system,using hydrochloric acid as catalyst,acetylacetone as comple-xing agent,hydrolysis temperature 50 ℃,and n (Ti)∶n (Si)=0.1-0.5.The curing condition was 140 ℃ for 3 d. The appearance and structure of titanium-containing hybrid silicone resin was characterized by optical micro-scope,scanning electron microscope (SEM),energy dispersive spectroscopy (EDS),ultraviolet and visible spectroscopy (UV-Vis),Fourier transform infrared spectroscopy (FT-IR )and thermal gravimetric analysis (TGA).The results indicate that,titanium-containing hybrid silicone resin consists of Ti—O—Si covalent bond,when n (acac)/n (Ti)=0.3,the storage stability was well,and when R/(Si+Ti)≥1.36,the resin had a smooth surface without cracks.The introduction of Ti improves its thermal property.

  7. Titanium-hydroxyl defect-controlled rheology of the Earth's upper mantle

    Science.gov (United States)

    Faul, Ulrich H.; Cline, Christopher J.; David, Emmanuel C.; Berry, Andrew J.; Jackson, Ian

    2016-10-01

    Experiments were conducted with hydrous olivine to investigate the defect responsible for the influence of water (hydrogen structurally incorporated as hydroxyl) on the olivine rheology. Solution-gelation derived Fo90 olivine doped with nominally 0.04-0.1 wt.% TiO2 was first hot-pressed and then deformed in platinum capsules at 300 MPa confining pressure and temperatures from 1200- 1350°C. The water content was not buffered so that deformation occurred at water-undersaturated conditions. Due to the enhanced grain growth under hydrous conditions, the samples were at least a factor of three more coarse-grained than their dry counterparts and deformed in powerlaw creep at differential stresses as low as a few tens of MPa. Since all experiments were conducted at the same confining pressure, the essentially linear relationship between strain rate and water content was for the first time determined independently of an activation volume. Infrared spectra are dominated by absorption bands at 3572 and 3525 cm-1. These bands also predominate in infrared spectra of natural olivine, and can only be reproduced experimentally in the presence of titanium. In contrast to the previous interpretation of the hydrous rheology in terms of intrinsic point defects, the experiments show that extrinsic defects (impurities) in natural olivine play the dominant role for water weakening at the water contents expected for most of the upper mantle.

  8. Characterization, dielectric and electrical behaviour of BaTiO3 nanoparticles prepared via titanium(IV) triethanolaminato isopropoxide and hydrated barium hydroxide

    Indian Academy of Sciences (India)

    Ravindra H Upadhyay; Anant P Argekar; Rajendra R Deshmukh

    2014-05-01

    A new sol-precipitation technique for the preparation of nano BaTiO3 crystallite has been developed by reacting 0.2 M each of Ti(IV) triethanolaminato isopropoxide and hydrated barium hydroxide in methanol such that the molar ratio of Ba : Ti is 1.02 at 80 °C under stirring (1200 rpm) for one hour in alkaline media using tetra methyl ammonium hydroxide (TMAH). It was calcined at 100 °C for 12 h. Structural and compositional properties were investigated by XRD, SEM, EDX, TEM, SAED and DLS techniques. FT–IR and TG–DTA were used to characterize its purity and the thermal stability. The BaTiO3 particles prepared were found to be spherical, homogeneous and cubic in structure. The particle size was found to be 23–31 nm. The dielectric constant and dissipation factor after sintering at 400 °C were 5379 and 0.63, respectively at 100 Hz frequency. The a.c. conductivity (a.c.) was found to be 2 × 10-5 S-cm-1 at room temperature (30 °C). It increased with increasing temperature up to 50 °C and decreased with further increase in temperature. The impedance was 3.37 × 105 ohms at room temperature. It decreased with increasing frequency.

  9. Contamination Effects on Improving the Hydrogenation/Dehydrogenation Kinetics of Binary Magnesium Hydride/Titanium Carbide Systems Prepared by Reactive Ball Milling.

    Science.gov (United States)

    El-Eskandarany, M Sherif; Shaban, Ehab

    2015-10-10

    Ultrafine MgH₂ nanocrystalline powders were prepared by reactive ball milling of elemental Mg powders after 200 h of high-energy ball milling under a hydrogen gas pressure of 50 bar. The as-prepared metal hydride powders were contaminated with 2.2 wt. % of FeCr-stainless steel that was introduced to the powders upon using stainless steel milling tools made of the same alloy. The as-synthesized MgH₂ was doped with previously prepared TiC nanopowders, which were contaminated with 2.4 wt. % FeCr (materials of the milling media), and then ball milled under hydrogen gas atmosphere for 50 h. The results related to the morphological examinations of the fabricated nanocomposite powders beyond the micro-and nano-levels showed excellent distributions of 5.2 wt. % TiC/4.6 wt. % FeCr dispersoids embedded into the fine host matrix of MgH₂ powders. The as-fabricated nanocomposite MgH₂/5.2 wt. % TiC/4.6 wt. % FeCr powders possessed superior hydrogenation/dehydrogenation characteristics, suggested by the low value of the activation energy (97.74 kJ/mol), and the short time required for achieving a complete absorption (6.6 min) and desorption (8.4 min) of 5.51 wt. % H₂ at a moderate temperature of 275 °C under a hydrogen gas pressure ranging from 100 mbar to 8 bar. van't Hoff approach was used to calculate the enthalpy (DH) and entropy (DS) of hydrogenation for MgH₂, which was found to be -72.74 kJ/mol and 112.79 J/mol H₂/K, respectively. Moreover, van't Hoff method was employed to calculate the DH and DS of dehydrogenation, which was found to be 76.76 kJ/mol and 119.15 J/mol H₂/K, respectively. This new nanocomposite system possessed excellent absorption/desorption cyclability of 696 complete cycles, achieved in a cyclic-life-time of 682 h.

  10. Contamination Effects on Improving the Hydrogenation/Dehydrogenation Kinetics of Binary Magnesium Hydride/Titanium Carbide Systems Prepared by Reactive Ball Milling

    Science.gov (United States)

    El-Eskandarany, M. Sherif; Shaban, Ehab

    2015-01-01

    Ultrafine MgH2 nanocrystalline powders were prepared by reactive ball milling of elemental Mg powders after 200 h of high-energy ball milling under a hydrogen gas pressure of 50 bar. The as-prepared metal hydride powders were contaminated with 2.2 wt. % of FeCr-stainless steel that was introduced to the powders upon using stainless steel milling tools made of the same alloy. The as-synthesized MgH2 was doped with previously prepared TiC nanopowders, which were contaminated with 2.4 wt. % FeCr (materials of the milling media), and then ball milled under hydrogen gas atmosphere for 50 h. The results related to the morphological examinations of the fabricated nanocomposite powders beyond the micro-and nano-levels showed excellent distributions of 5.2 wt. % TiC/4.6 wt. % FeCr dispersoids embedded into the fine host matrix of MgH2 powders. The as-fabricated nanocomposite MgH2/5.2 wt. % TiC/4.6 wt. % FeCr powders possessed superior hydrogenation/dehydrogenation characteristics, suggested by the low value of the activation energy (97.74 kJ/mol), and the short time required for achieving a complete absorption (6.6 min) and desorption (8.4 min) of 5.51 wt. % H2 at a moderate temperature of 275 °C under a hydrogen gas pressure ranging from 100 mbar to 8 bar. van’t Hoff approach was used to calculate the enthalpy (∆H) and entropy (∆S) of hydrogenation for MgH2, which was found to be −72.74 kJ/mol and 112.79 J/mol H2/K, respectively. Moreover, van’t Hoff method was employed to calculate the ΔH and ΔS of dehydrogenation, which was found to be 76.76 kJ/mol and 119.15 J/mol H2/K, respectively. This new nanocomposite system possessed excellent absorption/desorption cyclability of 696 complete cycles, achieved in a cyclic-life-time of 682 h. PMID:28793606

  11. Contamination Effects on Improving the Hydrogenation/Dehydrogenation Kinetics of Binary Magnesium Hydride/Titanium Carbide Systems Prepared by Reactive Ball Milling

    Directory of Open Access Journals (Sweden)

    M. Sherif El-Eskandarany

    2015-10-01

    Full Text Available Ultrafine MgH2 nanocrystalline powders were prepared by reactive ball milling of elemental Mg powders after 200 h of high-energy ball milling under a hydrogen gas pressure of 50 bar. The as-prepared metal hydride powders were contaminated with 2.2 wt. % of FeCr-stainless steel that was introduced to the powders upon using stainless steel milling tools made of the same alloy. The as-synthesized MgH2 was doped with previously prepared TiC nanopowders, which were contaminated with 2.4 wt. % FeCr (materials of the milling media, and then ball milled under hydrogen gas atmosphere for 50 h. The results related to the morphological examinations of the fabricated nanocomposite powders beyond the micro-and nano-levels showed excellent distributions of 5.2 wt. % TiC/4.6 wt. % FeCr dispersoids embedded into the fine host matrix of MgH2 powders. The as-fabricated nanocomposite MgH2/5.2 wt. % TiC/4.6 wt. % FeCr powders possessed superior hydrogenation/dehydrogenation characteristics, suggested by the low value of the activation energy (97.74 kJ/mol, and the short time required for achieving a complete absorption (6.6 min and desorption (8.4 min of 5.51 wt. % H2 at a moderate temperature of 275 C under a hydrogen gas pressure ranging from 100 mbar to 8 bar. van’t Hoff approach was used to calculate the enthalpy (DH and entropy (DS of hydrogenation for MgH2, which was found to be 72.74 kJ/mol and 112.79 J/mol H2/K, respectively. Moreover, van’t Hoff method was employed to calculate the DH and DS of dehydrogenation, which was found to be 76.76 kJ/mol and 119.15 J/mol H2/K, respectively. This new nanocomposite system possessed excellent absorption/desorption cyclability of 696 complete cycles, achieved in a cyclic-life-time of 682 h.

  12. 手用ProTaper镍钛器械预备弯曲根管的临床研究%Clinical study of the curved root canal preparation by using hand ProTaper nickei-titanium instruments

    Institute of Scientific and Technical Information of China (English)

    丁永良

    2012-01-01

    Objective: To evaluate the clinical outcome of Hand ProTaper nickel-titanium instruments in root curved canal preparation. Method: 117 patients were divided into two groupB randomly: 59 cases were prepared with hand ProTaper CPT group):58 cases were prepared with hand stainless steel K file (SS group). The preparation time.the number of broken instrument,apical transportation!the incidence of post operative pain, and effect of root canal obturation was recorded. Re-SulttThe preparation time was (5.59±1.66)min in the PT group and (11.88±2.36)min in the SS group. The rate of broken instrument was 3.39 % in PT group and 0 in SS group. The incidence of apical transportation was 3.39 % in PT group and 17.24 % in SS group. The incidence of post operative pain was 5.08 % in PT group and 20.69 % in SS group. Conclusion: The hand ProTaper NiTi instruments could prepare curved root canals quickly which could maintain the original direction and curve of the canal. The canals prepared with hand ProTaper possessed excellent taper and flow characteristics. It was an efficient instrumentation method for curved canals and deserved to be recommended for clinical application. Meanwhile, the problem of instrument seperation due to many reasons such as variations in canal anatomy and cyclic fatigue of instruments should be prevented.%目的:观察手用ProTaper镍钛器械预备弯曲根管的临床效果.方法:117例患者分为两组,手用ProTaper镍钛(PT)组59例,采用手用ProTaper镍钛器械预备根管,不锈钢K型根管锉(SS)组58例,采用改良双敞法预备根管.记录操作时间、器械折断情况、根管偏移发生情况、术后疼痛的发生、根管充填效果.结果:根管预备时间 PT组为(5.59±1.66) min,SS组为(11.88±2.36) min;断针率PT组为3.39%,SS组为0;根管偏移率PT组为3.39%,SS组为17.24%;根充术后疼痛率PT组为5.08%,SS组为20.69%.结论:用手用ProTaper预备弯曲根管成形效果好,操作时间短,能很

  13. Processing of TiO2 from titanium-bearing blast furnace slag as titanium source

    Directory of Open Access Journals (Sweden)

    X. Li

    2016-07-01

    Full Text Available The titanium dioxide(TiO2 was prepared by efficient decomposition of titanium- bearing blast furnace slag (TBBFS in molten salt system. The as-prepared TiO2 were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM. Almost complete leaching of Ti was achieved when TBBFS was carried out at 500 °C for about 3 h with NaOH/TBBFS mass ratio of 3:1 and NaOH to NaF molar ratio of 3:1. The XRD pattern showed that the containing titanium product obtained under optimal conditions was Na2TiO3. The average size of the rutile TiO2 obtained was about 1.0μm and the content was up to 99,23 %.

  14. Preparation of nano-titanium dioxide doping phosphorus and its application in degradation of dyes%掺磷纳米TiO2的制备及其在染料降解中的应用

    Institute of Scientific and Technical Information of China (English)

    魏自辉; 黄玲; 姬书亮

    2011-01-01

    The nano-crystalline Tio2 photocatalyst was synthesized using Ti(OBu)4 as precursor, C2H5OH as solvent, and glacial acetic acid as inhibitor.The effects of reaction temperature, pH and assistant dosage on the gelation time were investigated, and the nano-titanium dioxide doping phosphorus was prepared.The morphology of nano-TiO2 was studied using X-ray diffraction (XRD) and ultraviolet-visible (UV-visl spectrophotometer.The photocatalytic experiment was carried out by investigating the photodegradation of methyl orange.The results showed that the optimum reaction conditions for preparing transparent stable TiO2 gelation was: deionized water was dropwised into the mixture of Ti(OBu)4 and alcohol, the temperature was controlled at 40 ℃, the pH of solution was 2.5, the molar ratio of Ti(OBu)4:C2H5OH:H2O:CH3COOH was 1:25:5:1.5.The prepared powder had best UV photocatalysis activity when the dosage of doping phosphours was 4% .%采用溶胶-凝胶法合成了纳米TiO光催化剂,以钛酸丁酯为前驱物,无水乙醇为溶剂,冰醋酸为抑制剂,探讨了不同反应条件(温度、pH、助剂用量等)对其凝胶时间的影响,在此基础上制备了掺磷纳米TiO.利用XRD、UV-vis等测试技术研究了纳米TiO的形态结构,并利用制备的粉体进行了甲基橙紫外光光催化试验.结果显示:制备透明稳定凝胶的最佳条件是将去离子水滴加到混合了钛酸丁酯的乙醇溶液中,并控制温度在40℃,pH为2.5,n(钛酸丁酯):n(无水乙醇):n(水):n(冰醋酸)=1:25:5:1.5,得到的凝胶透明度好;掺磷量为4%时,制备的粉体紫外光光催化活性最好.

  15. Comparison of dentinal microcracks of oval shaped canal prepared with different nickel-titanium instruments%新型镍钛机动器械预备椭圆形根管牙本质微裂比较

    Institute of Scientific and Technical Information of China (English)

    伍婉翠; 吴补领; 陈广盛

    2014-01-01

    目的:通过观察3种新型镍钛机动器械预备椭圆形根管后牙根牙本质微裂情况,比较不同根管预备器械对根管预备后牙根抗折能力的影响。方法收集65个具有椭圆形单根管的下颌前牙,分为3个试验组(每组n=20)和对照组(n=5),试验组分别用自调节锉(SAF)、ProTaper Universal和ProTaper Next进行根管预备,对照组不进行根管预备。离根尖3、6、9 mm处横断牙根,体视显微镜下评估牙本质微裂情况。结果 ProTaper Universal组根折发生率高于 ProTaper Next组和 SAF组(P<0.05)。ProTaper Next组和SAF组的牙根折裂发生率比较,差异无统计学意义(P>0.05)。结论新型镍钛器械ProTaper Next和 SAF根管预备后牙本质微裂形成少,能降低根管治疗后牙根折裂风险。%Objective To compare the effect of different nickel-titanium rotary files on fracture resistance of teeth by observing status of dentinal microcracks after root canal preparation with.Methods 6 5 mandibular anterior teeth with single oval canal were randomly divided into three experimental groups (n=20)and a control group (n=5),SAF、ProTaper Universal and ProTaper Next system were used to prepare root canal in experimental groups,while the control group were left unprepared.Roots were sectioned from 3,6,9 mm to the apex,its status of dentinal microcracks was evaluated under a stereomicroscope.Results Root fracture inci-dence rate of group ProTaper Universal was significantly higher than that of group SAF and group ProTaper Next (P0.05).Conclusion Roots with oval shaped canal prepared with SAF and ProTaper Next produce less dentinal microc-racks,which decrease risk of vertical root fracture.

  16. Structure and biological activity of radio-frequency magnetron sputtering prepared hydroxyapatite coating on titanium substrate%射频磁控溅射法制备钛基HA涂层的结构与生物活性

    Institute of Scientific and Technical Information of China (English)

    王国卿; 张乃生

    2013-01-01

    采用射频磁控溅射法在医用钛表面制备羟基磷灰石(HA)涂层,研究HA涂层的形貌、物相、力学性能、细胞相容性和在机体内的组织相容性,分析其在骨修复中应用的可能性。结果表明:射频磁控溅射法制备的钛基HA生物涂层呈粗糙岛屿状结构,HA平均粒径为(402) nm、厚度为1.0~1.6μm的涂层力学性能最好,其纳米硬度高于11 GPa,弹性模量大于136 GPa;HA涂层可促进成骨细胞增殖,成骨细胞粘附于HA涂层表面并形成伪足铺展生长;植入实验动物体内4周后材料表面被结缔组织覆盖,血管形成;植入12周后,骨小梁形成,其内部可见破骨细胞;植入12周后与植入前相比,涂层的结合强度未发生显著变化。说明该 HA涂层具有较高的成骨活性和稳定性,在骨修复方面具有良好的应用前景。%Hydroxyapatite (HA) coatings on medical titanium substrate were prepared by radio-frequency(RF) magnetron sputtering method. And the morphology, phase, mechanical properties, biocompatibility and histocompatibility of the coatings in body were researched to analyze the possibility of applying in bone repair. The results show that:HA coatings on medical titanium substrate prepared by RF magnetron sputtering show rough island-like structure; average particle diameter of HA is (402) nm; coating with thickness of 1.0~1.6 μm shows the best mechanical properties with nanohardness beyond 11 GPa and elastic modulus beyond 136 GPa. HA coating can promote the proliferation of osteoblasts which adhered to HA coating surface, and formed pseudopodia to spread out growth. After implanted in experimental animals’ body for 4 week, material surface is covered by connective tissue and blood vessel form;and after 12 week, trabecular bone forms and osteoclasts are visible inside. The comparison between Pre-implantation and the implantation for 12 week shows that the bonding strength of coating has no

  17. 粉末冶金生物医用Ti合金的研究及应用现状%Research progress and application of biomedical titanium alloys prepared by powder metallurgy

    Institute of Scientific and Technical Information of China (English)

    赵腾飞; 路新; 曲选辉

    2012-01-01

    Ti及Ti合金具有低密度、高比强度、较低的弹性模量以及优异的耐腐蚀性能和生物相容性,因而成为生物医用材料的首选.本文简要介绍了粉末冶金技术制备Ti及其合金的主要特点及其优势,从粉末准备、成形、烧结、性能4个方面综述了粉末冶金医用Ti合金的研究进展,并总结了目前粉末冶金医用Ti合金的应用状况;针对目前存在的主要问题,分析了粉末冶金医用Ti合金的发展方向及其应用前景.%With low density, high specific strength, low elastic modulus, high melting temperature and favorable corrosion resistance and tissue compatibility, Ti and its alloys have been considered as a first choice for biomedical application. In this paper, the main characteristics and advantages of titanium alloys fabricated by powder metallurgy were briefly introduced. The recent research progresses and application of the P/M biomedical Ti-alloys were reviewed, especially in terms of powder preparation, forming, sintering and properties. The further development trend and application prospect of P/M Ti-alloys were analyzed in view of the existing problems of clinical application.

  18. Study on Preparation of Titanium Carbide Powder by Radial Blast Shock%爆炸径向冲击法制备碳化钛粉末的研究

    Institute of Scientific and Technical Information of China (English)

    尹政; 于雁武; 刘玉存; 郭嘉昒

    2013-01-01

    In this paper, titanium carbide powder was prepared by radial blast shock, high pressure and temperature were created by octogen(HMX) , and titania powder mixture of the active carbon was used as the main precursor. The morphology, composition and performance of the samples were studied by scanning electron microscopy(SEM), X-ray diffraction(XRD) and differential scanning calorimeter-thermo gravimetric analyzer(DSC-TG). The research results show that the particle size of the sample was within 50nm, the distribution of the sample was well. XRD test data were in good agreement with the theoretical value and the sample was difficult to be oxidized in air atmosphere within 1 000℃.%以奥克托今炸药(HMX)为高温、高压源,二氧化钛粉末与活性碳粉混合物为主要前驱体,采用爆炸径向冲击法合成了碳化钛粉末。采用扫描电子显微镜(SEM)、X射线衍射(XRD)和差热失重分析仪(DSC-TG)分析了样品的形貌、成分和性能。研究结果表明:样品大小为50nm以内的颗粒,分布性良好,XRD测试数据与理论值吻合较好,且样品在空气气氛下1000℃范围内不易被氧化。

  19. 真空碳热还原酸浸含钛高炉渣制备 TiC 分析%Preparation of TiC by carbothermal reduction in vacuum and acid leaching process using titanium bearing blast furnace slag

    Institute of Scientific and Technical Information of China (English)

    胡蒙均; 尹方庆; 魏瑞瑞; 邓青宇; 扈玫珑

    2015-01-01

    含钛高炉渣中含有20%~30%的 TiO2,是一种附加值较高的二次资源,但在综合利用过程中存在氧化物还原难度大,硅钛难分离,二次污染严重等问题。基于热力学理论基础,采用真空碳热还原联合酸浸工艺处理含钛高炉渣制备 TiC。结果表明:真空有助于钛氧化物彻底还原,可实现渣中硅钛彻底分离,减少酸耗量,降低二次污染。真空碳热还原联合酸浸工艺处理含钛高炉渣(TiO2含量23%左右)制备 TiC 的最佳条件为:炉渣粒度200目,还原温度1673 K,渣碳质量比100∶38。%Titanium bearing blast furnace slag with 20%-30% titanium dioxide is a valuable second resource.The main problems to utilize the resource are the reduction of the titanium oxides,the separation of titanium and silicon and the second pollution.The main aim of the research is to prepare TiC by the united process of carbothermal reduction in vacuum and acid leaching based on the thermodynamics calculation.The results show that decreasing pressure of the system is helpful for the reduction of the titanium oxides.Titanium and silicon in slag can be separated completely.The second pollution decreases due to evaporation of Mg and SiO produced in vacuum condition.The optimum conditions for the united process to prepare TiC are slag size of 200 mesh,temperature of 1 673 K,and the mass ratio of slag to reductant of 100∶38.

  20. Differences in the electrochemical behavior of ruthenium and iridium oxide in electrocatalytic coatings of activated titanium anodes prepared by the sol–gel procedure

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIĆ

    2010-10-01

    Full Text Available The electrochemical characteristics of Ti0.6Ir0.4O2/Ti and Ti0.6Ru0.4O2/Ti anodes prepared by the sol–gel procedure from the corresponding oxide sols, obtained by force hydrolysis of the corresponding metal chlorides, were compared. The voltammetric properties in H2SO4 solution indicate that Ti0.6Ir0.4O2/Ti has more pronounced pseudocapacitive characteristics, caused by proton-assisted, solid state surface redox transitions of the oxide. At potentials negative to 0.0 VSCE, this electrode is of poor conductivity and activity, while the voltammetric behavior of the Ti0.6Ru0.4O2/Ti electrode is governed by proton injection/ejection into the oxide structure. The Ti0.6Ir0.4O2/Ti electrode had a higher electrocatalytical activity for oxygen evolution, while the investigated anodes were of similar activity for chlorine evolution. The potential dependence of the impedance characteristics showed that the Ti0.6Ru0.4O2/Ti electrode behaved like a capacitor over a wider potential range than the Ti0.6Ir0.4O2/Ti electrode, with fully-developed pseudocapacitive properties at potentials positive to 0.60 VSCE. However, the impedance characteristics of the Ti0.6Ir0.4O2/Ti electrode changed with increasing potential from resistor-like to capacitor-like behavior.

  1. UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium

    Directory of Open Access Journals (Sweden)

    Saita M

    2016-01-01

    Full Text Available Makiko Saita,1 Takayuki Ikeda,1,2 Masahiro Yamada,1,3 Katsuhiko Kimoto,4 Masaichi Chang-Il Lee,5 Takahiro Ogawa1 1Division of Advanced Prosthodontics, Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA; 2Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Yokosuka, Japan; 3Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan; 4Department of Prosthodontics and Oral Rehabilitation, 5Yokosuka-Shonan Disaster Health Emergency Research Center and ESR Laboratories, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan Background: Although biomimetic apatite coating is a promising way to provide titanium with osteoconductivity, the efficiency and quality of deposition is often poor. Most titanium implants have microscale surface morphology, and an addition of nanoscale features while preserving the micromorphology may provide further biological benefit. Here, we examined the effect of ultraviolet (UV light treatment of titanium, or photofunctionalization, on the efficacy of biomimetic apatite deposition on titanium and its biological capability.Methods and results: Micro-roughed titanium disks were prepared by acid-etching with sulfuric acid. Micro-roughened disks with or without photofunctionalization (20-minute exposure to UV light were immersed in simulated body fluid (SBF for 1 or 5 days. Photofunctionalized titanium disks were superhydrophilic and did not form surface air bubbles when immersed in SBF, whereas non-photofunctionalized disks were hydrophobic and largely covered with air bubbles during immersion. An apatite-related signal was observed by X-ray diffraction on photofunctionalized titanium after 1 day of SBF immersion, which was equivalent to the one observed after 5 days of immersion of control titanium. Scanning electron microscopy revealed nodular apatite deposition

  2. Determination of diffuse double layer protonation constants for hydrous ferric oxide (HFO): supporting evidence for the Dzombak and Morel compilation

    CSIR Research Space (South Africa)

    Pretorius, PJ

    1998-01-01

    Full Text Available The acid-base properties of hydrous ferric oxide were studied by glass electrode potentiometry. From the potentiometric data, surface protonation constants were derived according to the Diffuse Double Layer convention. Chemical equilibrium modelling...

  3. The Effect of Time Intervals on Heat Transfer to the Implant-Bone Interface during Preparation of a Titanium Abutment: An in Vitro Study

    Directory of Open Access Journals (Sweden)

    Raoofi S

    2015-09-01

    Full Text Available Statement of Problem: Thermal injury during dental implant placement and restoration is a clinical concern as it may cause bone damage and compromise osseointegration. The threshold level for heat-induced cortical bone necrosis is 47°C for 60 seconds. Objectives: To measure the amount of heat transferred to the implant-bone interface when a two-piece or one-piece abutment was prepared in vertical and horizontal direction using various time intervals. Materials and Methods: Three groups of samples (n = 24, one-piece and two-piece implant and natural teeth, were used in this study to compare the amount of heat transferred to the implant-bone interface. This study used cooling system in the 10, 20, 30, and 60 seconds time intervals. The Thermocouples (K type were attached to each sample at the crestal, middle and apical points. To have a similar condition with the oral cavity, each implant was embedded separately in transparent acrylic resin in a 37°C water bath. To have a constant cutting pressure, the turbine was fixed on the stable stand and a 100 g counterweight hanged to it. Then, the bath was fixed in front of it and cutting started at vertical and horizontal directions for 10, 20, 30, 60 seconds. Results: The maximum decrease from 37°C was observed in two-piece implant at the apical point (3.95°C after 60 seconds and the minimum decrease was seen in one-piece implant at the crestal point (0.6°C after 60 seconds. Also the minimum increase was observed in the natural teeth at the apical point (0.15°C at 10 seconds and the maximum temperature increase was seen in one-piece implant at the apical point (1.95°C at 20 seconds. Conclusions: Within the limitation of this study, it was concluded that to reduce the thermal damage on the bone tissue, an intermittent cut up to 20 seconds is acceptable. Cutting one-piece implant caused more heat transfer than that of two-piece implant

  4. Titanium oxide nanotube arrays prepared by anodic oxidation method and photocatalytic degradation of chloramine phosphorus%阳极氧化法制备氧化钛纳米管阵列及光催化降解氯胺磷

    Institute of Scientific and Technical Information of China (English)

    龚青; 尹荔松; 郭智博; 阳素玉; 安科云

    2011-01-01

    Using anodic oxidation in HF+ACOH+PEG solution at the constant voltage to deal with the titanium foil, the high-density TiO2 nanotube arrays with regular and orderly structure were prepared. The morphology of the nanotubes was characterized by SEM, and the crystal of the nanotubes was analyzed by XRD. The effect of oxidation time on the morphology and size of nanotube arrays were studied, and the current-time curve was obtained. The photocatalytic activities were evaluated by degradation of chloramine phosphorus. The ratio of degradation was measured and calculated by Molybdenum- Antimony Anti-Spectrophotometric method. The influences of annealing temperature and anodic oxidation time of solution were analyzed. The sol-gel method was used to prepare TiC>2 thin film, which is used to do photocatalytic comparative experiments.%采用阳极氧化法在氢氟酸+冰醋酸+聚乙二醇水溶液恒压处理钛箔,制备结构规整有序的高密度TiO2纳米管阵列.利用电子扫描电镜(SEM)和X线衍射仪(XRD)对纳米管形貌和结构进行表征,考察氧化时间对纳米管阵列形貌和尺寸的影响,绘制并分析电流-时间曲线.选用有机磷药氯胺磷为光催化降解对象,利用钼锑抗分光光度法测量并计算降解率,研究不同热处理温度和阳极氧化时间对光催化降解效果的影响,并采用溶胶-凝胶法制备TiO2纳米薄膜进行光催化对比实验.

  5. Performance study of molybdenum gels with titanium for preparation of {sup 99}Mo-{sup 99m}Tc generators; Estudo do desempenho de geis de molibdenio com titanio no preparo de geradores de {sup 99}Mo-{sup 99m}Tc

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Vanessa; Osso Junior, Joao Alberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: vmoraes@ipen.br

    2005-07-01

    {sup 99m}Tc is the most used radioisotope in Nuclear Medicine, due to nuclear characteristics. It is obtained by the radioactive decay of {sup 99}Mo, generator of radioisotope system. When {sup 99}Mo is produced by the activation in reactor, the most used technique for the preparation of the generators is the gel type generator, which incorporates {sup 99}Mo to the gel that is insoluble, chemically inert to the solutions and with properties of ion exchange. Several countries had already studied this methodology, as is the case of Vietnam, India, China, Australian. This work has the objective of studying the performance and characterization of molybdenum gels with titanium. Four variables in the preparation of the gel were studied: mass ratio between Mo and Ti (1.80 and 2.25), concentration of NaOH (2 and 4 mol/L), final temperature (25 and 50 deg C) and pH (3.5 and 4.5). The prepared gels were analyzed with relation to the size of its particles, identification of its structure, amount of molybdenum, amount of titanium, profile of elution, pH of the elution, determination of the radioisotopes in the eluate and final radiochemical purity. The final result is a formularization of the gel with the best characteristics for posterior preparation of the generator of {sup 99m}Tc-{sup 99}Mo. (author)

  6. 退火温度对溶胶-凝胶法制备TiO2薄膜的结构和光学特性的影响%Effect of annealing temperature on structural and optical properties of sol-gel prepared titanium dioxide thin-films

    Institute of Scientific and Technical Information of China (English)

    张璐; 李国强; 张洪良

    2012-01-01

    Titanium dioxide films were prepared on silica and quartz substrates by sol-gel dip-coating.These films were subsequently thermally annealed at temperatures for 30min;the structural and optical properties of prepared titanium dioxide films were analysed by X-ray diffraction(XRD),scanning electron microscopy(SEM) and UV-visible spectrophotometer,respectively.The ability to degrade methyl orange of these films was also studied.We found that the crystalline phase of the changed gradually from anatase to rutile as annealing temperature increased,and this transition took place at temperatures ranging from 700 to 800℃.During the transition,titanium dioxide films exhibited good,and no cracks were found even after annealing at 800℃.As annealing temperature increased,the absorption peak of titanium dioxide films had a blue-shifted,resulting in the expansion of absorption range in UV area.Titanium dioxide film prepared by this method and annealed at 800℃ for 30min which contained 31.4wt% anatase showed the highest degradation ratio of methyl orange.%采用溶胶-凝胶浸渍提拉法分别在氧化硅和石英衬底上制备TiO2薄膜,并以不同的退火温度保温30min。通过采用X射线衍射仪(XRD)、扫描电镜(SEM)及紫外-可见分光光度计,对TiO2薄膜的结构和光学性能进行了详细分析,并且进行了对甲基橙的降解实验。研究结果表明,随着退火温度的升高,薄膜的晶相由锐钛矿向金红石转变,转变温度在700~800℃之间。在该转变过程中,薄膜结晶程度良好,800℃时薄膜表面平整无开裂;随着热处理温度的升高,TiO2薄膜的吸收峰蓝移,紫外区吸收范围扩大。在800℃退火时,薄膜中所含锐钛矿TiO2为31.4%(质量分数)。此时薄膜表现出最高的甲基橙降解率。

  7. Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture.

    Science.gov (United States)

    Wang, Zhe; Lin, Yan; Wu, Deyi; Kong, Hainan

    2016-02-01

    A simple method to functionalize diatomite with hydrous iron oxide was attempted and its performance as a new active filtration material to remove and recover phosphate from water was investigated under varying solution conditions. The Langmuir phosphate adsorption capacity increased from 0.6 mgP/g for raw diatomite to 4.89, 14.71, 25.02 mgP/g for hydrous iron oxide modified diatomite (HIOMD), depending on the amount of iron loaded. Loading of hydrous iron oxide caused the increase in true and bulk density and a decline in filtration rate, but to a lesser extent. It was shown that the HIOMD product with suitable iron content could retain a good filtration performance with a greatly increased adsorption capacity for phosphate. The phosphate adsorption increased by decreasing pH and by increasing ionic strength at high pH levels. The adsorption process was interpreted by ligand exchange. Coexisting oxyanions of sulfate, nitrate, citrate, carbonate, silicate and humic acid showed different effects on phosphate fixation but it was presumed that their influence at their concentrations and pH levels commonly encountered in effluent or natural waters was limited, i.e., HIOMD had a reasonably good selectivity. Results in repeated adsorption, desorption and regeneration experiment showed that the adsorbed phosphate could be recovered and the material could be reused after regeneration. The column test showed that HIOMD could be potentially utilized as an adsorption filtration medium for phosphate removal and recovery from water.

  8. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  9. Titanium allergy: A literature review

    Directory of Open Access Journals (Sweden)

    Manish Goutam

    2014-01-01

    Full Text Available Titanium has gained immense popularity and has successfully established itself as the material of choice for dental implants. In both medical and dental fields, titanium and its alloys have demonstrated success as biomedical devices. Owing to its high resistance to corrosion in a physiological environment and the excellent biocompatibility that gives it a passive, stable oxide film, titanium is considered the material of choice for intraosseous use. There are certain studies which show titanium as an allergen but the resources to diagnose titanium sensivity are very limited. Attention is needed towards the development of new and precise method for early diagnosis of titanium allergy and also to find out the alternative biomaterial which can be used in place of titanium. A review of available articles from the Medline and PubMed database was done to find literature available regarding titanium allergy, its diagnosis and new alternative material for titanium.

  10. Optimisation of Sintering Factors of Titanium Foams Using Taguchi Method

    Directory of Open Access Journals (Sweden)

    S. Ahmad

    2010-06-01

    Full Text Available Metal foams have the potential to be used in the production of bipolar plates in Polymer Electron Membrane Fuel Cells (PEMFC. In this paper, pure titanium was used to prepare titanium foam using the slurry method. The electrical conductivity is the most important parameter to be considered in the production of good bipolar plates. To achieve a high conductivity of the titanium foam, the effects of various parameters including temperature, time profile and composition have to be characterised and optimised. This paper reports the use of the Taguchi method in optimising the processing parameters of pure titanium foams. The effects of four sintering factors, namely, composition, sintering temperature, heating rate and soaking time on the electrical conductivity has been studied. The titanium slurry was prepared by mixing titanium alloy powder, polyethylene glycol (PEG, methylcellulose and water. Polyurethane (PU foams were then impregnated into the slurry and later dried at room temperature. These were next sintered in a high temperature vacuum furnace. The various factors were assigned to an L9 orthogonal array. From the Analysis of Variance (ANOVA, the composition of titanium powder has the highest percentage of contribution (24.51 to the electrical conductivity followed by the heating rate (10.29. The optimum electrical conductivity was found to be 1336.227 ± 240.61 S/cm-1 for this titanium foam. It was achieved with a 70% composition of titanium, sintering temperature of 1200oC, a heating rate of 0.5oC/min and 2 hours soaking time. Confirmatory experiments have produced results that lay within the 90% confidence interval.

  11. 钛白粉-碳酸钙复合填料的制备及在水性油墨中的应用探讨%Preparation of Titanium Dioxide-CaCO3 Composite Filler and Its Application in Waterborne Ink

    Institute of Scientific and Technical Information of China (English)

    张本发

    2016-01-01

    Titanium dioxide is a kind of polymorphic compound,which has the characteristics of small particle size and high whiteness,and its particles are generally 0.1-0.2um.In addition,the color strength of titanium dioxide and light diffusion agent is very strong,when the titanium dioxide dispersed in the media,the ink can make the hiding power is significantly enhanced.In addition,the titanium dioxide,light resistance,alkali resistance and heat resistance is better,so its application to high-quality white ink can be a great use.Today,in the ink industry,titanium dioxide has been widely used.Practice has shown that,in the production of ink,different types of ink products for the quality requirements of titanium dioxide there are some differences.The rutile titanium dioxide is widely used today,its crystal shape,color strength and refractive index,fluorescence is better than other types of titanium dioxide.In addition,the quality of titanium dioxide for the quality of ink equipment will have a certain impact.Titanium dioxide-calcium carbonate composite filler is used in the preparation of a new ink raw materials,it absorbs the titanium dioxide and calcium carbonate material characteristics,and better play the role of titanium dioxide,the quality of the ink can be guaranteed.The preparation of titanium dioxide-calcium carbonate composite filler and its application in water-based ink were discussed in depth,with a view to preparing a higher quality water-based ink.%钛白粉属于一种多晶型化合物,具有颗粒细小、白度较高的特点,其颗粒一般为0.1~0.2um。并且,钛白粉的着色力以及光扩散剂很强,当二氧化钛在介质中分散的时候,可使得油墨的遮盖力得到明显增强。另外,钛白粉的耐光性、耐碱性以及耐热性较好,因此,将其运用到高质量的白色油墨中可得到很大的应用。现今,在油墨行业中,钛白粉得到广泛应用。实践表明,在进行油墨生产时,类

  12. The formation and chemistry of low degree hydrous partial melt on top of the transition zone

    Science.gov (United States)

    Frost, Daniel J.; Mookherjee, Mainak

    2010-05-01

    There is some geophysical evidence for the presence of silicate melt on top of the 410 km seismic discontinuity. It has also been argued that the difference in the water storage capacity of upper mantle versus transition zone minerals may cause dehydration melting as material up-wells across the 410. Studies have proposed that hydrous partial melts may be neutrally buoyant in the mantle at these conditions. In order to assess these possibilities it is important to determine the likely composition of small degree hydrous melts at these conditions and to measure the H2O contents of mantle minerals coexisting with this melt phase. The composition of a hydrous melt in equilibrium with a mantle peridotite composition has been determined at conditions of the 410 and 1450°C. Sandwich experiments were performed where an 'initial-guess' hydrous melt composition was equilibrated with 50% anhydrous peridotite. The resulting melt composition was used to assemble a further melt, which was then equilibrated in the same way. After several iterations it was possible to derive a melt composition, which was in equilibrium with a mineral assemblage identical to that observed for an anhydrous peridotite composition at the same conditions. We assess whether this melt composition could be neutrally buoyant at 410km. The 410 km discontinuity may also correspond to a transition in redox state in the mantle from a reducing transition zone to a less reduced upper mantle. Volatiles may also collect and induce melting at this horizon due to the oxidation of a rising mobile reduced fluid phase containing CH4. Minerals in mantle upwelling out of a hydrous melt layer would be expected to have H2O contents close to saturation; however, this may not be the case if the melt layer also contains other volatile components such as CO2 or CH4, which further lower the H2O activity in the melt. We assess ranges of melt compositions that may be in equilibrium with minerals containing relatively low H2O

  13. Temperature-induced transformation of electrochemically formed hydrous RuO2 layers over Ru(0001) model electrodes

    Science.gov (United States)

    Krause, Philipp P. T.; Camuka, Hava; Leichtweiss, Thomas; Over, Herbert

    2016-07-01

    Hydrous RuO2 reveals excellent performance both as a supercapacitor and as a heterogeneous oxidation catalyst. Molecular understanding of these processes needs, however, a model system with preferably low structural and morphological complexity. This goal is partly accomplished here by using single crystalline Ru(0001) as a template on which hydrous RuO2 is electrochemically formed. The hydrous RuO2 layers on Ru(0001) and their temperature induced transformation under ultra high vacuum (UHV) conditions are comprehensively characterized by scanning electron microscopy and X-ray photoemission spectroscopy. The hydrous RuO2 layer grows with an intricate morphology governed by the presence of step bunching regions of the Ru(0001) surface. Upon annealing to 200 °C in UHV the hydrous RuO2 layer transforms mostly into flat metallic Ru islands and occasionally into (100) and (111) oriented RuO2 particles aligned along the high symmetry direction of Ru(0001).Hydrous RuO2 reveals excellent performance both as a supercapacitor and as a heterogeneous oxidation catalyst. Molecular understanding of these processes needs, however, a model system with preferably low structural and morphological complexity. This goal is partly accomplished here by using single crystalline Ru(0001) as a template on which hydrous RuO2 is electrochemically formed. The hydrous RuO2 layers on Ru(0001) and their temperature induced transformation under ultra high vacuum (UHV) conditions are comprehensively characterized by scanning electron microscopy and X-ray photoemission spectroscopy. The hydrous RuO2 layer grows with an intricate morphology governed by the presence of step bunching regions of the Ru(0001) surface. Upon annealing to 200 °C in UHV the hydrous RuO2 layer transforms mostly into flat metallic Ru islands and occasionally into (100) and (111) oriented RuO2 particles aligned along the high symmetry direction of Ru(0001). Electronic supplementary information (ESI) available. See DOI: 10

  14. [Cr-Ti-Al-N complex coating on titanium to strengthen Ti/porcelain bonding].

    Science.gov (United States)

    Zhang, Hui; Guo, Tian-wen; Li, Jun-ming; Pan, Jing-guang; Dang, Yong-gang; Tong, Yu

    2006-02-01

    To study the feasibility of magnetron sputtering Cr-Ti-Al-N complex coating as an interlayer on titanium to enhance the titanium-ceramic binding strength. With a three-point bending test according to ISO 9693, the binding strength of Duceratin (Degussa) to titanium substrate prepared with 4 different surface treatments (polishing, polishing and megnetron sputtering Cr, Ti, Al, and N complex coating, sandblasting, sandblasting and coating) was evaluated. Ti/porcelain interface and fractured Ti surface were examined using scanning electron microscopy with energy-dispersive spectrometry (EDS). The binding strength of polished and coated titanium/Duceratin was significantly higher than polished titanium group (Pcoated titanium/Duceratin did not differ significantly from that of sandblasted titanium group (P>0.05), and the strength in the two sandblasted titanium groups was significantly higher than that in polished and coated titanium group (PCr-Ti-Al-N complex on polished titanium can increase the titanium/porcelain binding strength. Megnetron sputtering coating is a promising Ti/porcelain interlayer.

  15. Preparation and photocatalytic activity of TiO2 by hydrolysis of titanium tetrachloride%四氯化钛水解法制备TiO2及光催化性能的研究

    Institute of Scientific and Technical Information of China (English)

    赵婷婷; 田鹏; 苏桂田; 吕烨; 毛媚; 张璐

    2012-01-01

    Titanium tetrachloride with inorganic salts as raw materials in the experiment, TiO2 was prepared by the hydrolyzation method in ( NH4 ) 3 SO4 -modified TiCl4 solution, The photocatalytic activity to a number of different types of catalysts were investigated using methyl blue as the organic in wastewater, Considering these factors such as the amount of ammoonium sulfate,. water-bath temperature 、 different solvents 、 calcination temperature and SO4 2-, which affect the ability of photocatalytic degradation, the mechanism was analyzed. We came to optimal conditions of preparing TiO2 powder i. e. Degradation of methylene blue for 120 minutes, when the mole ratio of TiCl4: ( NH4 )2SO4 = 1 : 2, the degradation rate was 83% ; when the water-bath temperature of 90 ℃, the degradation rate was 87% ; when cleaning solvent with ethanol, the degradation rate was 80% ; when the calcination temperature of 500 ℃ , the degradation rate was 85%. So the best conditions of preparing TiO2 powder were that the mole ratio of TiCl4 : (NH4) 2SO4 = 1 : 2, the water-bath temperature of 90 ℃, cleaning solvent with ethanol and the calcination temperature of 500 ℃.%实验以无机盐四氯化钛为原料,采用水解法用硫酸铵修饰四氯化钛溶液制得二氧化钛粉末.以甲基蓝模拟废水中的有机污染物,考察了硫酸铵的用量、水解温度、不同溶剂、锻烧温度以及硫酸根离子对光催化降解能力的影响,并对其机理进行了分析.得到了二氧化钛粉末适宜的制备工艺条件,降解甲基蓝120min,当四氯化钛与硫酸铵的物质的量摩尔比为1:2时光催化降解率达到83%、水解温度为90℃时光催化降解率达到87%、用无水乙醇溶剂进行清洗时光催化降解率达到80%、锻烧温度在500℃条件下光催化降解率达到85%.因此,采用水解法制备二氧化钛粉末最佳反应条件为:四氯化钛与硫酸铵的物质的量摩尔比为1:2、水解温度为90℃、用无水

  16. Study on Crystallization of Titanium Silicalite (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    Lin Min; Zhu Bin; Shu Xingtian; Wang Xieqing

    2008-01-01

    In order to investigate the rules on preparation of titanium silicalite (TS-1) the 1H→13C CP/MAS NMR spectrometers were applied to track the function of template TPAOH in the process of crystal lization of titanium silicalite.The research results revealed that at the initial stage of crystallization the TPA+ ions acting as the template could predominantly absorb the polymers of negatively charged silicatitania sol and the interactions between silica sol and titania sol could gradually lead to the formation of tiny crystal nuclei that could slowly grow up to form molecular sieves.Upon investigating the course of crystallization of titanium silicalite the 1H→13C CP/MAS NMR spectrometers were applied to effectively enhance the resolution of 29Si signals in the titanium silicalite.Study results have shown that during the formation of tiny crystal nuclei upon interaction between titania sol and silica sol the influence of titania sol on the silica sol was insignificant.However,when tiny crystal nuclei broke out into molecular sieves the titania sol could enter the zeolite framework that could apparently impose an enhanced effect on the silica sol.

  17. The synthesis of titanium carbide-reinforced carbon nanofibers.

    Science.gov (United States)

    Zhu, Pinwen; Hong, Youliang; Liu, Bingbing; Zou, Guangtian

    2009-06-24

    Tailoring hard materials into nanoscale building blocks can greatly extend the applications of hard materials and, at the same time, also represents a significant challenge in the field of nanoscale science. This work reports a novel process for the preparation of carbon-based one-dimensional hard nanomaterials. The titanium carbide-carbon composite nanofibers with an average diameter of 90 nm are prepared by an electrospinning technique and a high temperature pyrolysis process. A composite solution containing polyacrylonitrile and titanium sources is first electrospun into the composite nanofibers, which are subsequently pyrolyzed to produce the desired products. The x-ray diffraction pattern and transmission electron microscopy results show that the main phase of the as-synthesized nanofibers is titanium carbide. The Raman analyses show that the composite nanofibers have low graphite clusters in comparison with the pure carbon nanofibers originating from the electrospun polyacrylonitrile nanofibers. The mechanical property tests demonstrate that the titanium carbide-carbon nanofiber membranes have four times higher tensile strength than the carbon nanofiber membranes, and the Young's modulus of the titanium carbide-carbon nanofiber membranes increases in direct proportion to the titanium quantity.

  18. Titanium metal: extraction to application

    Energy Technology Data Exchange (ETDEWEB)

    Gambogi, Joseph (USGS, Reston, VA); Gerdemann, Stephen J.

    2002-09-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium. In this paper, we discuss all aspects of the titanium industry from ore deposits through extraction to present and future applications. The methods of both primary (mining of ore, extraction, and purification) and secondary (forming and machining) operations will be analyzed. The chemical and physical properties of titanium metal will be briefly examined. Present and future applications for titanium will be discussed. Finally, the economics of titanium metal production also are analyzed as well as the advantages and disadvantages of various alternative extraction methods.

  19. Surface modification of titanium and titanium alloys by ion implantation.

    Science.gov (United States)

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation.

  20. The role of alkenes produced during hydrous pyrolysis of a shale

    Energy Technology Data Exchange (ETDEWEB)

    Leif, R.N.; Simoneit, B.R.T. [Oregon State Univ., Corvallis, OR (United States). College of Oceanic and Atmospheric Sciences

    2000-07-01

    Hydrous pyrolysis experiments conducted on Messel shale with D{sub 2}O demonstrated that a large amount of deuterium becomes incorporated into the hydrocarbons generated from the shale kerogen. In order to understand the pathway of deuterium (and protium) exchange and the role of water during hydrous pyrolysis, we conducted a series of experiments using aliphatic compounds (1,13-tetradecadiene, 1-hexadecene, eicosane and dotriacontane) as probe molecules. These compounds were pyrolyzed in D{sub 2}O, shale/D{sub 2}O, and shale/H{sub 2}O and the products analyzed by GC-MS. In the absence of powdered shale, the incorporation of deuterium from D{sub 2}O occurred only in olefinic compounds via double bond isomerization. The presence of shale accelerated deuterium incorporation into the olefins and resulted in a minor amount of deuterium incorporation in the saturated n-alkanes. The pattern of deuterium substitution of the diene closely matched the deuterium distribution observed in the n-alkanes generated from the shale kerogen in the D{sub 2}O/shale pyrolyses. The presence of the shale also resulted in reduction (hydrogenation) of olefins to saturated n-alkanes with concomitant oxidation of olefins to ketones. These results show that under hydrous pyrolysis conditions, kerogen breakdown generates n-alkanes and terminal n-alkenes by free radical hydrocarbon cracking of the aliphatic kerogen structure. The terminal n-alkenes rapidly isomerize to internal alkenes via acid-catalyzed isomerization under hydrothermal conditions, a significant pathway of deuterium (and protium) exchange between water and the hydrocarbons. These n-alkenes simultaneously undergo reduction to n-alkanes (major) or oxidation to ketones (minor) via alcohols formed by the hydration of the alkenes. (Author)

  1. Geochemical characterization of the hydrous pyrolysis products from a recent cyanobacteria-dominated microbial mat

    Energy Technology Data Exchange (ETDEWEB)

    Franco, N.; Mendoça-Filho, J.G.; Silva, T.F.; Stojanovic, K.; Fontana, L.F.; Carvalhal-Gomes, S.B.V.; Silva, F.S.; Furukawa, G.G.

    2016-07-01

    Hydrous pyrolysis experiments were performed on a recent microbial mat sample from Lagoa Vermelha, Brazil, to determine whether crude oil can be generated and expelled during artificial maturation of the Organic Matter (OM). The experiments were conducted at 280ºC, 330ºC and 350ºC during 20h. Two types of liquid pyrolysis products, assigned as free oil and bitumen, were isolated and analyzed. Free oil represents free organic phase released by hydrous pyrolysis, whereas bitumen was obtained by extraction from the solid pyrolysis residue with dichloromethane. Changes in the OM maturity were determined using Rock-Eval parameters and biomarker maturity ratios of original sample and pyrolysis products. Biomarker compositions of original sample extract and liquid pyrolysates were used for determination of dominant bacterial source. The yields of free oil and bitumen showed that a microbial mat OM has a high liquid hydrocarbons generation potential. Rock-Eval maturity parameters, biopolymer and biomarker compositions indicate a significant increase of the OM maturity during hydrous pyrolysis. At 280ºC the release of free, adsorbed and occluded compounds was observed; however, without a cracking of the OM. At 330ºC the generation of bitumen and free oil is mostly related to the OM cracking. The highest yield of free oil was recorded at this temperature. Distribution of biomarkers in the extract of original sample and liquid pyrolysates confirms cyanobacteria-dominated microbial mats, whereas the identification of long chain n-alkane series, with maximum at C26, and prominent C30 hop-17(21)-ene additionally suggest the presence of sulfate reducing bacteria. (Author)

  2. Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor

    Directory of Open Access Journals (Sweden)

    España-Gamboa Elda I

    2012-11-01

    Full Text Available Abstract Background A modified laboratory-scale upflow anaerobic sludge blanket (UASB reactor was used to obtain methane by treating hydrous ethanol vinasse. Vinasses or stillage are waste materials with high organic loads, and a complex composition resulting from the process of alcohol distillation. They must initially be treated with anaerobic processes due to their high organic loads. Vinasses can be considered multipurpose waste for energy recovery and once treated they can be used in agriculture without the risk of polluting soil, underground water or crops. In this sense, treatment of vinasse combines the elimination of organic waste with the formation of methane. Biogas is considered as a promising renewable energy source. The aim of this study was to determine the optimum organic loading rate for operating a modified UASB reactor to treat vinasse generated in the production of hydrous ethanol from sugar cane molasses. Results The study showed that chemical oxygen demand (COD removal efficiency was 69% at an optimum organic loading rate (OLR of 17.05 kg COD/m3-day, achieving a methane yield of 0.263 m3/kg CODadded and a biogas methane content of 84%. During this stage, effluent characterization presented lower values than the vinasse, except for potassium, sulfide and ammonia nitrogen. On the other hand, primers used to amplify the 16S-rDNA genes for the domains Archaea and Bacteria showed the presence of microorganisms which favor methane production at the optimum organic loading rate. Conclusions The modified UASB reactor proposed in this study provided a successful treatment of the vinasse obtained from hydrous ethanol production. Methanogen groups (Methanobacteriales and Methanosarcinales detected by PCR during operational optimum OLR of the modified UASB reactor, favored methane production.

  3. Water and Slabs in the Transition Zone - Hydrous Ringwoodite in Diamond

    Science.gov (United States)

    Pearson, D. G.; Brenker, F. E.; Nestola, F.; McNeill, J.; Nasdala, L.; Hutchison, M.; Matveev, S.; Mather, K.; Vincze, L.; Schmitz, S.; Vekemens, B.

    2014-12-01

    Theory and experiments have shown that the Earth's Transition Zone (TZ) could be a major repository for water, due to the ability of the higher-pressure polymorphs of olivine - wadsleyite and ringwoodite - to host up to ~2.5wt. % H2O. Despite experimental demonstration of the water-bearing capacity of these phases, geophysical probes such as electrical conductivity have provided conflicting results, and the issue of whether the TZ contains abundant water remains highly controversial. We report X-ray diffraction, Raman and infra-red spectroscopic evidence for the first terrestrial occurrence of any higher pressure polymorph of olivine: ringwoodite, included in a diamond from Juína, Brazil. The ringwoodite occurs with a Ca-walstromite phase that we interpret to be retrogressed Ca-silicate perovskite. The most likely interpretation of this two-phase assemblage is that it represents a partially retrogressed portion of a somewhat Fe-rich peridotitic mantle, in which hydrous ringwoodite, and former CaSiO3- perovskite co-existed above 15GPa. The ringwoodite has a Mg# of ~ 75, suggesting that it may be mantle hybrised with a more fertile component such as subducted oceanic crust. The water-rich nature of this inclusion (~1.5 wt%), along with the preservation of ringwoodite, is the first direct evidence that, at least locally, the TZ is hydrous, to about 1 wt%. As well as being in agreement with recent magnetotelluric estimates of the TZ water content, this amount of water helps to reconcile measured TZ seismic velocities with those predicted from lab experiments. The finding also indicates that some kimberlites must have their primary sources in this deep mantle region. The high water content of the ringwoodite suggests that it was not close to the mantle geotherm when trapped in the diamond. This may be an indication that the the assemblage was part of a water-rich subducted slab out of thermal equilibrium, within the transition zone. The water-rich nature of the

  4. Application and Research of Titanium Alloy Human Implants Prepared by 3D Printing%3D 打印钛合金人体植入物的应用与研究

    Institute of Scientific and Technical Information of China (English)

    罗丽娟; 余森; 于振涛; 刘春潮; 韩建业; 牛金龙

    2015-01-01

    Titanium and titanium alloys are used in the clinical treatment of human hard tissue implant and repair materials due to their biocompatibility .3 D printing technology is a special processing technology in recent years , and has broken the limits of the traditional processing technology .It can achieve near net shape forming , and can produce a complex structure.The material utilization rate is high , and the design-produce cycle is short.3D printing technology has a huge advantage in the fields of personalized appearance , internal fine structure processing and rapid precision forming , so it gets lots of attention in the field of medical implant processing .In this paper , the advantages and the application of 3 D printing titanium alloy human implants were summarized .The research progress of the biomechanical properties of 3 D titanium and titanium alloy human implants were introduced , and the domestic research status of 3 D printing technology in titanium alloy human implants was summarized .%钛及钛合金以其良好的生物相容性,在临床上用于人体硬组织植入和修复。3D打印技术是近年快速发展的特种加工技术,突破了传统加工技术的局限,可实现近净成形,并能够制作出复杂结构,且材料利用率高,设计制作周期短。3D打印技术在个性化外形和内部细微结构加工及快速精确成形方面的巨大优势,使其在医用植入物加工领域备受关注。为此,概述了3D打印成形钛合金人体植入物的优势、应用状况以及3D打印钛合金人体植入物的生物力学适配性能的研究进展,总结了国内3D打印技术在钛合金人体植入物领域的研究现状。

  5. 非直接接触式金属热还原制备金属钛的酸洗分离%Effects of Pickling on Purification of Titanium Prepared by Metallothermic Reduction with an Indirect Contact Method

    Institute of Scientific and Technical Information of China (English)

    郑海燕; 谷健; 王治卿; 沈峰满

    2012-01-01

    主要探讨酸洗条件对非直接接触式金属热还原后产物中杂质的洗除效果.研究表明,采用醋酸盐酸联合酸洗方案可去除金属热还原产物中的杂质(CaO,Ca,CaTiO3),达到提纯金属Ti的目的;Ti不与醋酸反应,但能溶于浓盐酸,故盐酸酸洗时间不能过长,否则金属Ti溶解,造成Ti损失,影响Ti收得率;酸洗过程中酸体积浓度越大,酸洗时间越长,金属Ti的纯度越高.综合考虑酸耗、酸洗效率和Ti的溶损等因素,采用体积浓度50%醋酸酸洗6 h和体积浓度20%盐酸酸洗0.5 h的联合酸洗方案效果最好.%The influences of pickling conditions on the purification effect of the titanium product from indirect-contact metallothermic reduction were investigated.The experiment results show that it is feasible to remove oxides and impurity elements from metallothermic reduction product by acid pickling for producing high-purity titanium.Titanium doesn't react with acetic acid,but dissolves in hydrochloric acid slowly,and thus the pickling time should not be too long.Otherwise the titanium loss due to dissolution will lead to decrease of its yield.With the increase of acid concentration and pickling time,the purity of metallic titanium increases.Considering the purity and the yield of titanium,the optimum pickling conditions are determined as the combination of 50% volume concentration acetic acid for 6 h and 20% volume concentration hydrochloric acid for 0.5 h.

  6. TC11微弧氧化膜制备及其结构性能研究%Preparation of micro-arc oxidation coating on TC11 titanium alloy and study on its microstructure and performance

    Institute of Scientific and Technical Information of China (English)

    杨眉; 刘清才; 薛屺; 王平; 王小红

    2011-01-01

    在Na2SiO3-Na2WO4-NaOH混合电解液中,利用微孤氧化(MAO)技术在TC11合金表面制备了氧化膜.用扫描电镜(SEM),X射线能谱仪(EDS),X射线衍射仪(XRD)对氧化膜微观结构、化学成分、厚度以及相组成进行了分析,采用HVS-1000维氏显微硬度计、MFT-4000划痕试验机、电化学测量系统完成氧化膜理化性能测试.实验结果表明,微孤氧化膜平均厚度达到135μm,分为两层结构,外层疏松,内层致密,氧化膜主要由TiO2、γ-A12O3、Al2TiO5以及部分非晶SiO2组成,主要元素在断面上呈现梯度分布.氧化膜最高显微硬度是基体的4.7倍,膜与基体结合力>48.50N.电化学极化曲线分析表明,氧化膜在4.5%盐水溶液中比基体的自腐蚀电流密度降低3个数量级,自腐蚀电位正移599mV.%The micro-arc oxidation (MAO) coatings were prepared on TCll titanium alloy in the Na2SiO3-Na2WO4-NaOH electrolytes. The micro-structure, thickness and phase component of MAO coatings were anlyzed by means of scanning electron microscopy(SEM),X-ray energy dispersive spectrum (EDS) and X-ray diffraction (XRD). The physical chemistry properties were studied by HVS-1000 micro Vicker, MFT-4000 Scratch Tester and electrochemical method. The results show that MAO coating is composed of the two layer structure with surface loose zone and compact zone, and its average thickness is 135μm. The main phases are TiO2, r-Al2O3 ,Al2TiO5 and amorphous SiO2, the key elements of MAO coatings take on a gradient distribution. The maximum micro-hardness is about 4.7 times as that of the substrate and bonding force between MAO coating and substrate is more than 48.50N. Compared with the substrate,the MAO coating has better corrosion resistance in 4.5% NaC1 water solution,whose corrosion current density decreases 3 orders of magnitude and corrosion potential increases 599mV in positive direction.

  7. Retrieving the hydrous minerals on Mars by sparse unmixing and the Hapke model using MRO/CRISM data

    Science.gov (United States)

    Lin, Honglei; Zhang, Xia

    2017-05-01

    The hydrous minerals on Mars preserve records of potential past aqueous activity. Quantitative information regarding mineralogical composition would enable a better understanding of the formation processes of these hydrous minerals, and provide unique insights into ancient habitable environments and the geological evolution of Mars. The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) has the advantage of both a high spatial and spectral resolution, which makes it suitable for the quantitative analysis of minerals on Mars. However, few studies have attempted to quantitatively retrieve the mineralogical composition of hydrous minerals on Mars using visible-infrared (VISIR) hyperspectral data due to their distribution characteristics (relatively low concentrations, located primarily in Noachian terrain, and unclear or unknown background minerals) and limitations of the spectral unmixing algorithms. In this study, we developed a modified sparse unmixing (MSU) method, combining the Hapke model with sparse unmixing. The MSU method considers the nonlinear mixed effects of minerals and avoids the difficulty of determining the spectra and number of endmembers from the image. The proposed method was tested successfully using laboratory mixture spectra and an Airborne Visible Infrared Imaging Spectrometer (AVIRIS) image of the Cuprite site (Nevada, USA). Then it was applied to CRISM hyperspectral images over Gale crater. Areas of hydrous mineral distribution were first identified by spectral features of water and hydroxyl absorption. The MSU method was performed on these areas, and the abundances were retrieved. The results indicated that the hydrous minerals consisted mostly of hydrous silicates, with abundances of up to 35%, as well as hydrous sulfates, with abundances ≤10%. Several main subclasses of hydrous minerals (e.g., Fe/Mg phyllosilicate, prehnite, and kieserite) were retrieved. Among these, Fe/Mg- phyllosilicate was the most abundant, with abundances

  8. Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere.

    Science.gov (United States)

    Yoshino, Takashi; Matsuzaki, Takuya; Yamashita, Shigeru; Katsura, Tomoo

    2006-10-26

    The oceanic asthenosphere is observed to have high electrical conductivity, which is highly anisotropic in some locations. In the directions parallel and normal to the plate motion, the conductivity is of the order of 10(-1) and 10(-2) S m(-1), respectively, which cannot be explained by the conductivity of anhydrous olivine. But because hydrogen can be incorporated in olivine at mantle pressures, this observation has been attributed to olivine hydration, which might cause anisotropically high conductivity by proton migration. To examine this hypothesis, here we report the effect of water on electrical conductivity and its anisotropy for hydrogen-doped and undoped olivine at 500-1,500 K and 3 GPa. The hydrous olivine has much higher conductivity and lower activation energy than anhydrous olivine in the investigated temperature range. Nevertheless, extrapolation of the experimental results suggests that conductivity of hydrous olivine at the top of the asthenosphere should be nearly isotropic and only of the order of 10(-2) S m(-1). Our data indicate that the hydration of olivine cannot account for the geophysical observations, which instead may be explained by the presence of partial melt elongated in the direction of plate motion.

  9. Generation of aliphatic acid anions and carbon dioxide by hydrous pyrolysis of crude oils

    Science.gov (United States)

    Kharaka, Y.K.; Lundegard, P.D.; Ambats, G.; Evans, William C.; Bischoff, J.L.

    1993-01-01

    Two crude oils with relatively high (0.60 wt%) and low (0.18 wt%) oxygen contents were heated in the presence of water in gold-plated reactors at 300??C for 2348 h. The high-oxygen oil was also heated at 200??C for 5711 h. The compositions of aqueous organic acid anions of the oils and of the headspace gases were monitored inn order to investigate the distribution of organic acids that can be generated from liquid petroleum. The oil with higher oxygen content generated about five times as much organic anions as the other oil. The dominant organic anions produced were acetate, propionate and butyrate. Small amounts of formate, succinate, methyl succinate and oxalate were also produced. The dominant oxygen-containing product was CO2, as has been observed in similar studies on the hydrous pyrolysis of kerogen. These results indicate that a significant portion (10-30%) of organic acid anions reported i be generated by thermal alteration of oils in reservoir rocks. The bulk of organic acid anions present in formation waters, however, is most likely generated by thermal alteration of kerogen in source rocks. Kerogen is more abundant than oil in sedimentary basins and the relative yields of organic acid anions reported from the hydrous pyrolysis of kerogen are much higher than the yields obtained for the two oils. ?? 1993.

  10. The Role of Molecule Clustering by Hydrogen Bond in Hydrous Ethanol on Laminar Burning Velocity

    Directory of Open Access Journals (Sweden)

    I Made Suarta

    2016-01-01

    Full Text Available The role of hydrogen bond molecule clustering in laminar burning velocities was observed. The water in hydrous ethanol can change the interaction between water-ethanol molecules. A certain amount of water can become oxygenated which increases the burning velocity. The hydrogen bond interaction pattern of ethanol and water molecules was modeled. Based on the molecular model, azeotropic behavior emerges from ethanol-water hydrogen bond, which is at a 95.1%v composition. The interaction with water molecule causes the ethanol molecule to be clustered with centered oxygenated compound. So, it supplies extra oxygen and provides intermolecular empty spaces that are easily infiltrated by the air. In the azeotropic composition, the molecular bond chain is the shortest, so hypothetically the burning velocity is anticipated to increase. The laminar burning velocity of ethanol fuel was tested in a cylindrical explosion bomb in lean, stoichiometric, and rich mixtures. The experimental result showed that the maximum burning velocity occurred at hydrous ethanol of 95.5%v composition. This discrepancy is the result of the addition of energy from 7.7% free ethanol molecules that are not clustered. At the rich mixture, the burning velocity of this composition is higher than that of anhydrous ethanol.

  11. 化学机械法制备叶蜡石基复合钛白粉体研究%Study on the Preparation of Pyrophyllite Compound Titanium Oxide by Mechanochemistry Method

    Institute of Scientific and Technical Information of China (English)

    严俊; 董楠; 方伟; 邵佳明; 盛嘉伟

    2011-01-01

    Using pyrophyllite and rutile titanium oxide powder as the substrates and outer covered material respectively, the compound powder was got with using the cooperative effects of chemical and the mechanical surface modification, which had the character of nuclear shell structure. TheHigh Resolution-Transmission Electronic Microscope, Energy Dispersion X-ray Spectrum, whiteness and hiding test results indicated the pyrophyllite surface was coated with titanium oxide better, the compound powder might take place of the pigment level titanium oxide powder.%以叶腊石微粉为基核材料、金红石型钛白粉为包覆基质,利用内核化学表面改性与机械研磨的协同效应,实现叶腊石/钛白粉的核壳包覆结构,进而得到新型的复合钛白粉体.高分辨透射电镜(HR-TEM)、能量分析光谱(EDX)、白度及遮盖力测试结果表明:钛白粉与叶腊石基质达到较好的包覆.复合粉体可实现颜料级钛白粉的替代.

  12. Nanoscale Bonding between Human Bone and Titanium Surfaces: Osseohybridization

    Directory of Open Access Journals (Sweden)

    Jun-Sik Kim

    2015-01-01

    Full Text Available Until now, the chemical bonding between titanium and bone has been examined only through a few mechanical detachment tests. Therefore, in this study, a sandblasted and acid-etched titanium mini-implant was removed from a human patient after 2 months of placement in order to identify the chemical integration mechanism for nanoscale osseointegration of titanium implants. To prepare a transmission electron microscopy (TEM specimen, the natural state was preserved as much as possible by cryofixation and scanning electron microscope/focused ion beam (SEM-FIB milling without any chemical treatment. High-resolution TEM (HRTEM, energy dispersive X-ray spectroscopy (EDS, and scanning TEM (STEM/electron energy loss spectroscopic analysis (EELS were used to investigate the chemical composition and structure at the interface between the titanium and bone tissue. HRTEM and EDS data showed evidence of crystalline hydroxyapatite and intermixing of bone with the oxide layer of the implant. The STEM/EELS experiment provided particularly interesting results: carbon existed in polysaccharides, calcium and phosphorus existed as tricalcium phosphate (TCP, and titanium existed as oxidized titanium. In addition, the oxygen energy loss near edge structures (ELNESs showed a possibility of the presence of CaTiO3. These STEM/EELS results can be explained by structures either with or without a chemical reaction layer. The possible existence of the osseohybridization area and the form of the carbon suggest that reconsideration of the standard definition of osseointegration is necessary.

  13. Surface modification by alkali and heat treatments in titanium alloys.

    Science.gov (United States)

    Lee, Baek-Hee; Do Kim, Young; Shin, Ji Hoon; Hwan Lee, Kyu

    2002-09-01

    Pure titanium and titanium alloys are normally used for orthopedic and dental prostheses. Nevertheless, their chemical, biological, and mechanical properties still can be improved by the development of new preparation technologies. This has been the limiting factor for these metals to show low affinity to living bone. The purpose of this study is to improve the bone-bonding ability between titanium alloys and living bone through a chemically activated process and a thermally activated one. Two kinds of titanium alloys, a newly designed Ti-In-Nb-Ta alloy and a commercially available Ti-6Al-4V ELI alloy, were used in this study. In this study, surface modification of the titanium alloys by alkali and heat treatments (AHT), alkali treated in 5.0M NaOH solution, and heat treated in vacuum furnace at 600 degrees C, is reported. After AHT, the effects of the AHT on the bone integration property were evaluated in vitro. Surface morphologies of AHT were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Chemical compositional surface changes were investigated by X-ray diffractometry (XRD), energy dispersive spectroscopy (EDS), and auger electron spectroscopy (AES). Titanium alloys with surface modification by AHT showed improved bioactive behavior, and the Ti-In-Nb-Ta alloy had better bioactivity than the Ti-6Al-4V ELI alloy in vitro.

  14. Properties of titanium-alloyed DLC layers for medical applications.

    Science.gov (United States)

    Joska, Ludek; Fojt, Jaroslav; Cvrcek, Ladislav; Brezina, Vitezslav

    2014-01-01

    DLC-type layers offer a good potential for application in medicine, due to their excellent tribological properties, chemical resistance, and bio-inert character. The presented study has verified the possibility of alloying DLC layers with titanium, with coatings containing three levels of titanium concentration prepared. Titanium was present on the surface mainly in the form of oxides. Its increasing concentration led to increased presence of titanium carbide as well. The behavior of the studied systems was stable during exposure in a physiological saline solution. Electrochemical impedance spectra practically did not change with time. Alloying, however, changed the electrochemical behavior of coated systems in a significant way: from inert surface mediating only exchange reactions of the environment in the case of unalloyed DLC layers to a response corresponding rather to a passive surface in the case of alloyed specimens. The effect of DLC layers alloying with titanium was tested by the interaction with a simulated body fluid, during which precipitation of a compound containing calcium and phosphorus--basic components of the bone apatite--occurred on all doped specimens, in contrast to pure DLC. The results of the specimens' surface colonization with cells test proved the positive effect of titanium in the case of specimens with a medium and highest content of this element.

  15. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Parcharoen, Yardnapar [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Kajitvichyanukul, Puangrat [Center of Excellence on Environmental Research and Innovation, Faculty of Engineering, Naresuan University, Phitsanulok (Thailand); Sirivisoot, Sirinrath [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Termsuksawad, Preecha, E-mail: preecha.ter@kmutt.ac.th [Division of Materials Technology, School of Energy, Environment and Materials, King Mongkut' s University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, ThungKhru, Bangkok 10140 (Thailand)

    2014-08-30

    Highlights: • We found that different anodization time of titanium significantly effects on nanotube length which further impacts adhesion strength of hydroxyapatite coating layers. • Adhesion strength of Hydroxyapatite (HA) coated on titanium dioxide nanotubes is better than that of HA coated on titanium plate. • Hydroxyapatite coated on titanium dioxide nanotubes showed higher cell density and better spreading of MC3T3-E1 cells (bone-forming cells) than that coated on titanium plate surface. - Abstract: Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO{sub 2}) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO{sub 2} nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH{sub 4}F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO{sub 2} nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO{sub 2} nanotubes were found when high viscous electrolyte, NH{sub 4}F in glycerol, was used. Negative voltage (−4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO{sub 2} nanotubes was significantly increased by times. The TiO{sub 2} nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO{sub 2} nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that

  16. Candida albicans biofilm on titanium: effect of peroxidase precoating

    Directory of Open Access Journals (Sweden)

    Mohamed Ahariz

    2010-08-01

    Full Text Available Mohamed Ahariz1, Philippe Courtois1,21Laboratory of Experimental Hormonology, Université Libre de Bruxelles, Brussels, 2UER de Biologie Médicale, Haute Ecole Francisco Ferrer, Brussels, BelgiumAbstract: The present study aimed to document Candida albicans biofilm development on titanium and its modulation by a peroxidase-precoated material which can generate antimicrobials, such as hypoiodite or hypothiocyanite, from hydrogen peroxide, iodide, or thiocyanate. For this purpose, titanium (powder or foil was suspended in Sabouraud liquid medium inoculated with C. albicans ATCC10231. After continuous stirring for 2–21 days at room temperature, the supernatant was monitored by turbidimetry at 600 nm and titanium washed three times in sterile Sabouraud broth. Using the tetrazolium salt MTT-formazan assay, the titanium-adherent fungal biomass was measured as 7.50 ± 0.60 × 106 blastoconidia per gram of titanium powder (n = 30 and 0.50 ± 0.04 × 106 blastoconidia per cm² of titanium foil (n = 12. The presence of yeast on the surface of titanium was confirmed by microscopy both on fresh preparations and after calcofluor white staining. However, in the presence of peroxidase systems (lactoperoxidase with substrates such as hydrogen peroxide donor, iodide, or thiocyanate, Candida growth in both planktonic and attached phases appeared to be inhibited. Moreover, this study demonstrates the possible partition of peroxidase systems between titanium material (peroxidase-precoated and liquid environment (containing peroxidase substrates to limit C. albicans biofilm formation.Keywords: adhesion, material, oral, yeast

  17. The effect of different titanium nitride coatings on the adhesion of Candida albicans to titanium.

    Science.gov (United States)

    Wang, Jing; An, Yanxin; Liang, Haifeng; Tong, Yu; Guo, Tianwen; Ma, Chufan

    2013-10-01

    The aim of the present study was an in vitro evaluation of the effects of different titanium nitride (TiNx) coatings on Candida albicans (C. albicans) adhesion to titanium and to correlate these findings to differences in specific surface characteristics (surface topography, roughness, chemical component, and surface free energy). TiNx coatings were prepared by physical vapour deposition (PVD), a plasma nitriding process or a dual nitriding process. Surface properties were analysed by the optical stereoscopic microscopy, scanning electron microscopy, roughmeter, and drop shape methods. Quantity comparisons of C. albicans on the four surfaces were assessed by cell count and XTT reduction assays. Types of adhesive C. albicans were explored by SEM and confocal laser scanning microscope. The nitrided modifications were found to influence the surface properties and fungal susceptivity of flat titanium. Compared to flat titanium, fewer adhered C. albicans in yeast form were observed on the TiN-coated surface, whereas the plasma nitrided surface did not show any reduced potential to adhere C. albicans in hyphal or yeast form. The dual nitrided coating showed anti-fungal characteristics, although a small quantity of hyphae were identified. Our findings indicate that the Ti2N phase is prone to C. albicans hyphae, while the TiN phase inhibits their adhesion. Different TiNx phases could influence the characteristics of C. albicans adhesion. TiN coating by PVD could be a potential modification to inhibit C. albicans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. High-temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    A.K. Gogia

    2005-04-01

    Full Text Available The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase equilibria and microstructural stability consideration haverestricted the use of conventional titanium alloys up to about 600 "C, alloys based on TiPl (or,, E,AINb (0, TiAl (y, and titaniumltitanium aluminides-based composites offer a possibility ofquantum jump in the temperature capability of titanium alloys.

  19. Hydrolytically stable titanium-45

    DEFF Research Database (Denmark)

    Severin, Gregory; Fonslet, Jesper; Zhuravlev, Fedor

    2014-01-01

    Introduction Titanium-45, a candidate PET isotope, is under-employed largely because of the challenging aqueous chemistry of Ti(IV). The propensity for hydrolysis of Ti(IV) compounds makes radio-labeling difficult and excludes 45Ti from use in bio-conjugate chemistry. This is unfortunate because...... metal-based chemotherapeutics such as cisplatin. The aim of our work has been to produce the radioactive analogue of one of these Ti(IV)-salan compounds, Ti-salan-dipic [2], which has hydro-lytic stability on the order of weeks. Not only will this allow us to shed some light on the still un......-known mechanism of antiproliferative action of titanium-based chemotherapeutics, but it will also make progress toward bioconjugate 45Ti PET tracers. In the current abstract, we present some of the methods we are using to separate 45Ti from irradiated Sc, and subsequent labeling conditions. Material and Methods...

  20. Casting behavior of titanium alloys in a centrifugal casting machine.

    Science.gov (United States)

    Watanabe, K; Miyakawa, O; Takada, Y; Okuno, O; Okabe, T

    2003-05-01

    Since dental casting requires replication of complex shapes with great accuracy, this study examined how well some commercial titanium alloys and experimental titanium-copper alloys filled a mold cavity. The metals examined were three types of commercial dental titanium [commercially pure titanium (hereinafter noted as CP-Ti), Ti-6Al-4V (T64) and Ti-6Al-7Nb (T67)], and experimental titanium-copper alloys [3%, 5% and 10% Cu (mass %)]. The volume percentage filling the cavity was evaluated in castings prepared in a very thin perforated sheet pattern and cast in a centrifugal casting machine. The flow behavior of the molten metal was also examined using a so-called "tracer element technique." The amounts of CP-Ti and all the Ti-Cu alloys filling the cavity were similar; less T64 and T67 filled the cavity. However, the Ti-Cu alloys failed to reach the end of the cavities due to a lower fluidity compared to the other metals. A mold prepared with specially designed perforated sheets was effective at differentiating the flow behavior of the metals tested. The present technique also revealed that the more viscous Ti-Cu alloys with a wide freezing range failed to sequentially flow to the end of the cavity.

  1. EUGENOL POLYMER MODIFIED TITANIUM ELECTRODE FOR THE ANALYSIS OF CARBOCYSTEINE

    Directory of Open Access Journals (Sweden)

    S. EL QOUATLI

    2012-06-01

    Full Text Available A eugenol polymer immobilized electrode was developed for the assay of the carbocysteine compound. The electrochemical sensor was made by in situ electropolymerization of eugenol at titanium electrode. Cyclic voltamperometry at prepared electrode permitted to point out a reversible pattern for carbocysteine electrooxidation.

  2. Titanium Carbide: Nanotechnology, Properties, Application

    OpenAIRE

    Galevsky, G. V.; Rudneva, V. V.; Garbuzova, A. K.; Valuev, Denis Viktorovich

    2015-01-01

    The paper develops scientific and technological bases for fabrication of titanium carbide which is a nanocomponent of composite materials. The authors determine optimum technology specifications and the main titanium carbide properties: fineness of titaniferous raw materials, carbide-forming agent quantity, set temperature of plasma flow, tempering temperature, titanium carbide yield, productivity, specific surface, size and shape of particles. The paper includes equations to describe how the...

  3. Titanium Nitride Cermets

    Science.gov (United States)

    1952-07-01

    C ermets 7 Effect of Amount of Metal on Strength of TiN-Ni-Cr....26 Cerme ts S Effect of Amount of Metal on Strength of TiN-Co-Cr....27 Cermets 9...Figures 7 and 8. Titanium Nitride-Nickel-Chromium Cerme ts From Figure 7, it can be seen that 2900OF was the better firing temperature. The 20% metal

  4. 水热法从含钛电炉熔分渣中制备纳米片状结构二氧化钛光催化剂%Hydrothermal preparation of nanoflake structured titanium dioxide photocatalysts from electric furnace molten slag

    Institute of Scientific and Technical Information of China (English)

    阙再青; 李克非; 刘洋; 郭敏; 张梅

    2012-01-01

    采用水热法,以氢氧化钠为分离剂,从含钛电炉熔分渣中成功制备出纳米片状结构二氧化钛光催化剂,并探讨了水热反应时间、水热温度以及碱液浓度对分离提取纳米片状结构二氧化钛的影响.随着水热反应时间的延长,水热温度以及氢氧化钠溶液浓度的提高,从含钛电炉熔分渣中分离提取的二氧化钛结晶度越好,微观形貌更趋近于纳米片状结构.水热法处理含钛电炉熔分渣的最佳反应条件是:水热温度高于180℃,水热反应时间大于24h,碱液浓度达到12mol·L^-1.以制备得到的纳米片状结构二氧化钛为光催化剂,在氙灯光照90min后,甲基蓝降解率可达81.1%.%Nanoflake structured titanium dioxide was successfully prepared from electric furnace molten slag by using a hydrotherreal method under the condition of alkaline solution. The effects of hydrothermal temperature, reaction time and sodium hydroxide solution concentration on the titanium extraction and morphology were investigated. Relatively pure and better crystallized nanoflake structured titanium dioxide can be obtained with increasing reaction temperature, time and alkaline solution concentration. The optimum preparing conditions are that the hydrothermal temperature is above 180 ℃ , the reaction time is above 24 h and the concentration of NaOH solution is 12 tool. L^-1. Using the as-prepared TiO2 as a photocatalyst, the degradation rate of methyl blue is above 81.1% under a xenon lamp for 90 min.

  5. Creation and Deformation of Hydrous Lithosphere at the Southern Mariana Margin

    Science.gov (United States)

    Martinez, F.; Kelley, K. A.; Stern, R. J.

    2012-04-01

    Mantle lithosphere formed at mid-ocean seafloor spreading centers is thought to be essentially anhydrous because water is strongly partitioned into melt and removed from the mantle during crustal formation. Since water weakens olivine this dehydration process is also thought to strengthen oceanic mantle lithosphere above solidus depths, perhaps helping to focus deformation and melt delivery to the narrow plate boundary zones observed at mid-ocean ridges. In contrast, convergent margins are sites of high water flux from subducting slabs and thereby provide an opportunity to study the creation and deformation of lithosphere in a hydrous environment. The southern Mariana margin presents a rare case in which the upper plate is undergoing active extension parallel to the trench and directly above the subducting slab. The extension has rifted preexisting Paleogene lithosphere resulting in the present-day creation of new lithosphere in this hydrous environment. Here we present preliminary results from R/V Thomas G. Thompson cruise TN273 in December 2011-January 2012 utilizing the Hawaii Mapping Research Group's IMI-30, a 30 kHz deep-towed side-scan sonar, and ship-based Simrad EM302 multibeam bathymetry. The sidescan sonar imagery and multibeam bathymetry map the tectonic and volcanic structure of a 32 x 80 km area referred to as the southeast Mariana forearc rifts (SEMFR), which extend from near the backarc spreading center toward the trench. The sonar imagery shows a complex volcanic and tectonic structure with no single spreading or rifting axis. Volcanism appears to be widely dispersed and separated by faulted areas. Bathymetry data show several rifts spanning this area but no single rift appears to be focusing tectonic activity as earthquake seismicity is broadly distributed across this region. The data depict a broad volcano-tectonic zone of complex deformation and distributed volcanism unlike the narrow plate boundary zones of mid-ocean ridges. This distributed

  6. Biomarker generation from Type II-S kerogens in claystone and limestone during hydrous and anhydrous pyrolysis

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Koopmans, M.P.; Carson, F.C.; Lewan, M.D.

    1998-01-01

    A claystone and a limestone containing immature Type II-S kerogen were thermally matured in the presence and absence of water, to study the influence of water and clay minerals on the generation of biomarkers. In contrast to hydrous pyrolysis, anhydrous pyrolysis of the claystone did not generate bi

  7. Titanium Carbide: Nanotechnology, Properties, Application

    Science.gov (United States)

    Galevsky, G. V.; Rudneva, V. V.; Garbuzova, A. K.; Valuev, D. V.

    2015-09-01

    The paper develops scientific and technological bases for fabrication of titanium carbide which is a nanocomponent of composite materials. The authors determine optimum technology specifications and the main titanium carbide properties: fineness of titaniferous raw materials, carbide-forming agent quantity, set temperature of plasma flow, tempering temperature, titanium carbide yield, productivity, specific surface, size and shape of particles. The paper includes equations to describe how the major specifications of the fabrication technique influence the content of titanium carbide and free carbon in the end product.

  8. Silver Doped Titanium Dioxide Nanomaterials for Enhanced Visible Light Photocatalysis

    OpenAIRE

    Seery, Michael; George, Reena; Pillai, Suresh; Floris, Patrick

    2007-01-01

    This paper presents a systematic study on two different preparation methods for titanium dioxide with silver. The silver can be incorporated by irradiating the reaction mixture during preparation to reduce silver ion to silver metal or by direct calcination of the sol–gel material to decompose silver nitrate to silver. Of the two methods, we found the latter produces a more effective photocatalytic material (6–50% improvement in catalytic efficiency), which is attributed to the fact that the ...

  9. Operation parameters of a small scale batch distillation column for hydrous ethanol fuel (HEF production

    Directory of Open Access Journals (Sweden)

    F. D. Mayer

    2015-04-01

    Full Text Available Batch distillation applied to hydrous ethanol fuel (HEF production on a small scale still requires operating conditions that ensure optimal top product quality and productivity. The aim of this study is to statistically validate a batch still through the employment of response surface methodology (RSM. Operational and productivity parameters were formulated in order to guarantee quality compliance with the legal requirements for the top product concentration, besides providing support information to control the production of HEF on a small scale. The reboiler control and dephlegmator temperatures maintained within the range of 97.5 to 99.5°C and 60 to 70°C, respectively, combined with a variable reflux ratio, was satisfactory in obtaining a top product concentration, in accordance with legal regulations, as well as high productivity. The results of this study may contribute to the assembly of a simple and low-cost batch distillation control system.

  10. The oxidative and adsorptive effectiveness of hydrous manganese dioxide for arsenite removal

    Institute of Scientific and Technical Information of China (English)

    Liu Ruiping; Yuan Baoling; Li Xing; Xia Shengji; Yang Yanling; Li Guibai

    2006-01-01

    This study focuses on the effectiveness of hydrous manganese dioxides (δMnO2) removing arsenite (As(Ⅲ)) from aqueous solution. Effects of such factors as permanganate oxidation, pH, humic acid and Ca2+ on As removal and possible mechanisms involved in have been investigated. Permanganate oxidation increases As removal to a certain extent; the higher pH results in the formation of more easily adsorbed As species, contributing to higher As removal; humic acid occupies adsorbing sites and decreases ζ potential of δMnO2, therefore inhibiting As removal; Ca2+ facilitates As adsorption on δMnO2, mainly through increasing ζ potential and decreasing repulsive forces between As and surface sites. δMnO2 exhibits oxidative and adsorptive potential for As(Ⅲ), and may be employed as adsorbents or filter coating for As removal in water treatment process.

  11. Can Hydrous Minerals Account for the Observed Mid-Latitude Water on Mars?

    Science.gov (United States)

    Bish, D. L.; Vaniman, D. T.; Fialips, C.; Carey, J. W.; Feldman, W. C.

    2003-01-01

    Clays, zeolites, and Mg-sulfates are all phases that could potentially retain H2O in martian regolith. The nature of the hydrogen-containing material observed in the equatorial martian regolith is of particular importance to the question of whether hydrous minerals have formed in the past on Mars. Also, whether these minerals exist in a hydrated (i.e., containing H2O molecules in their structures) or dehydrated state is a crucial question. The purpose of this communication is to estimate the possible magnitude of the H2O reservoir constituted by these H2O-bearing minerals. In other words, can minerals containing H2O and/or OH such clays, zeolites, or Mg-sulfates, reasonably be expected to account for the amounts of near-equatorial H2O-equivalent hydrogen recently documented by Mars Odyssey?

  12. Chemical changes of titanium and titanium dioxide under electron bombardment

    OpenAIRE

    Romins Brasca; Luciana Ines Vergara; Mario César Guillermo Passeggi; Julio Ferrón

    2007-01-01

    The electron induced effect on the first stages of the titanium (Ti0) oxidation and titanium dioxide (Ti4+) chemical reduction processes has been studied by means of Auger electron spectroscopy. Using factor analysis we found that both processes are characterized by the appearance of an intermediate Ti oxidation state, Ti2O3 (Ti3+).

  13. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide

    DEFF Research Database (Denmark)

    Guler, Urcan; Zemlyanov, Dmitry; Kim, Jongbum

    2017-01-01

    Plasmonic titanium nitride nanostructures are obtained via nitridation of titanium dioxide. Nanoparticles acquired a cubic shape with sharper edges following the rock-salt crystalline structure of TiN. Lattice constant of the resulting TiN nanoparticles matched well with the tabulated data. Energ...

  14. Chemical changes of titanium and titanium dioxide under electron bombardment

    Directory of Open Access Journals (Sweden)

    Romins Brasca

    2007-09-01

    Full Text Available The electron induced effect on the first stages of the titanium (Ti0 oxidation and titanium dioxide (Ti4+ chemical reduction processes has been studied by means of Auger electron spectroscopy. Using factor analysis we found that both processes are characterized by the appearance of an intermediate Ti oxidation state, Ti2O3 (Ti3+.

  15. Hydrous Ferric Oxides in Sediment Catalyze Formation of Reactive Oxygen Species during Sulfide Oxidation

    Directory of Open Access Journals (Sweden)

    Sarah A. Murphy

    2016-11-01

    Full Text Available Abstract: This article describes the formation of reactive oxygen species as a result of the oxidation of dissolved sulfide by Fe(III-containing sediments suspended in oxygenated seawater over the pH range 7.00 and 8.25. Sediment samples were obtained from across the coastal littoral zone in South Carolina, US, at locations from the beach edge to the forested edge of a Spartina dominated estuarine salt marsh and suspended in aerated seawater. Reactive oxygen species (superoxide and hydrogen peroxide production was initiated in sediment suspensions by the addition of sodium bisulfide. The subsequent loss of HS-, formation of Fe(II (as indicated by Ferrozine, and superoxide and hydrogen peroxide were monitored over time. The concentration of superoxide rose from the baseline and then persisted at an apparent steady state concentration of approximately 500 nanomolar at pH 8.25 and 200 nanomolar at pH 7.00 respectively until >97% hydrogen sulfide was consumed. Measured superoxide was used to predict hydrogen peroxide yield based on superoxide dismutation. Dismutation alone quantitatively predicted hydrogen peroxide formation at pH 8.25 but over predicted hydrogen peroxide formation at pH 7 by a factor of approximately 102. Experiments conducted with episodic spikes of added hydrogen peroxide indicated rapid hydrogen peroxide consumption could account for its apparent low instantaneous yield, presumably the result of its reaction with Fe(II species, polysulfides or bisulfite. All sediment samples were characterized for total Fe, Cu, Mn, Ni, Co and hydrous ferric oxide by acid extraction followed by mass spectrometric or spectroscopic characterization. Sediments with the highest loadings of hydrous ferric oxide were the only sediments that produced significant dissolved Fe(II species or ROS as a result of sulfide exposure.

  16. Electrical Properties of Hydrous Forsterite Derived from First-Principles Calculations

    Institute of Scientific and Technical Information of China (English)

    WANG Duo-Jun; LIU Zai-Yang; YI Li; SHI Bao-Ping

    2011-01-01

    @@ We investigate electrical properties of anhydrous and hydrous forsterite crystalwith 3.2 wt% water by using firstprinciples calculations.The calculation results indicate that the pressure weakly affects the electrical properties of anhydrous forsterite.Two types of defect configurations involving the two hydrogen atoms in different positions are considered.Type 1 involves the entrapment of two hydrogen atoms in a Mg vacancy,which demonstrates little effect on the electronic density of states(DoS) of the forsterite crystal.Type 2 corresponds to the replacement of one hydrogen atom into the Mg vacancy with the other one located in different orientations(free proton model).It is this configuration that can significantly change the DoS of the forsterite crystal.The gap energy of the free proton model derived at different orientations is in the range of 0.693-1.007eV.%We investigate electrical properties of anhydrous and hydrous forsterite crystal with 3.2 wt% water by using firstprinciples calculations. The calculation results indicate that the pressure weakly affects the electrical properties of anhydrous forsterite. Two types of defect configurations involving the two hydrogen atoms in different positions are considered. Type 1 involves the entrapment of two hydrogen atoms in a Mg vacancy, which demonstrates little effect on the electronic density of states (DoS) of the forsterite crystal. Type 2 corresponds to the replacement of one hydrogen atom into the Mg vacancy with the other one located in different orientations (free proton model).It is this configuration that can significantly change the DoS of the forsterite crystal. The gap energy of the free proton model derived at different orientations is in the range of 0.693-1.007eV.

  17. Experimental Investigation of Irradiation-driven Hydrogen Isotope Fractionation in Analogs of Protoplanetary Hydrous Silicate Dust

    Science.gov (United States)

    Roskosz, Mathieu; Laurent, Boris; Leroux, Hugues; Remusat, Laurent

    2016-11-01

    The origin of hydrogen in chondritic components is poorly understood. Their isotopic composition is heavier than the solar nebula gas. In addition, in most meteorites, hydrous silicates are found to be lighter than the coexisting organic matter. Ionizing irradiation recently emerged as an efficient hydrogen fractionating process in organics, but its effect on H-bearing silicates remains essentially unknown. We report the evolution of the D/H of hydrous silicates experimentally irradiated by electrons. Thin films of amorphous silica, amorphous “serpentine,” and pellets of crystalline muscovite were irradiated at 4 and 30 keV. For all samples, irradiation leads to a large hydrogen loss correlated with a moderate deuterium enrichment of the solid residue. The entire data set can be described by a Rayleigh distillation. The calculated fractionation factor is consistent with a kinetically controlled fractionation during the loss of hydrogen. Furthermore, for a given ionizing condition, the deuteration of the silicate residues is much lower than the deuteration measured on irradiated organic macromolecules. These results provide firm evidence of the limitations of ionizing irradiation as a driving mechanism for D-enrichment of silicate materials. The isotopic composition of the silicate dust cannot rise from a protosolar to a chondritic signature during solar irradiations. More importantly, these results imply that irradiation of the disk naturally induces a strong decoupling of the isotopic signatures of coexisting organics and silicates. This decoupling is consistent with the systematic difference observed between the heavy organic matter and the lighter water typically associated with minerals in the matrix of most carbonaceous chondrites.

  18. Structural and magnetic properties of mechanochemically synthesized nanocrystalline titanium monoxide

    Directory of Open Access Journals (Sweden)

    Barudžija Tanja

    2012-01-01

    Full Text Available Nano-sized titanium monoxide (TiO powder was prepared by mechanochemical synthesis. A mixture of commercial Ti and TiO2 (rutile powders with the molar ratio of 1:1 was milled in a planetary ball mill for 5, 10, 20, 30 and 60 min under argon atmosphere. The final single-phase titanium monoxide sample was characterized by X-ray diffraction (XRD, magnetic measurements using a superconducting quantum interference device magnetometer (SQUID and thermogravimetric analysis (TGA. The temperature dependency of the magnetic susceptibility is characterized by significant contribution of Pauli paramagnetism due to conduction electrons.

  19. Titanium: the mystery metal of implant dentistry. Dental materials aspects.

    Science.gov (United States)

    Parr, G R; Gardner, L K; Toth, R W

    1985-09-01

    A number of important points concerning titanium and its alloys have been discussed. They are summarized as follows. Ti and its alloys, particularly the alpha-beta alloys, possess mechanical properties that make them ideal implant materials. Ti and its alloys oxidize readily in air. This surface oxide is extremely stable in the physiologic environment of the body. The stability and inertness of this surface oxide layer acts to protect Ti from corrosive breakdown when used in the body. The elimination of surface irregularities and contaminants is important when preparing a metal for implantation. Titanium can be coupled with equally passive metals in the body without causing galvanic corrosion.

  20. 微弧氧化/电化学沉积钙磷涂层纯钛种植体的骨内植入*★%Endosseous implantation of calcium phosphate coated titanium implant prepared via micro-arc oxidation/electrochemical deposition

    Institute of Scientific and Technical Information of China (English)

    马盈; 孟祥才; 王静; 李德超

    2013-01-01

      背景:近年来已有对微弧氧化/电化学沉积技术制备涂层在材料性能方面的相关报道,但对这种材料植入体内的性能研究较少见。目的:观察纯钛种植体经微弧氧化/电化学沉积处理后的骨结合和新骨形成情况。方法:通过微弧氧化/电化学沉积方法在纯钛上制备含钙磷元素的涂层,然后将该种植体和纯钛种植体分别植入羊两侧胫骨种植窝内,于动物处死前15,5 d分别进行注射四环素进行四环素标记。术后4,12周分别进行X射线、扫描电镜及激光共聚焦观察。结果与结论:两侧X射线表现相似,种植体周围均无明显阴影,骨小梁排列和骨质密度与宿主骨基本一致。术后4周时,在电镜下可观察到两组种植体和骨组织之间均有间隙,部分见骨性结合;术后12周时,微弧氧化/电化学沉积种植体组可形成新骨,并且新骨与种植体和原来骨组织结合紧密,涂层与钛基体没有明显间隙,纯钛种植体组也可见新骨生成,但可看到明显裂隙。激光共聚焦观察显示,微弧氧化/电化学沉积种植体组双标记带间距离及骨矿化沉积率均高于纯钛种植体组(P <0.05)。表明微弧氧化/电化学沉积处理可增强纯钛种植体的骨结合能力及新骨形成。%  BACKGROUND: There are studies concerning material properties of coating prepared by micro-arc oxidation and electrochemical deposition, but there are few studies addressing properties of this kind of material implanted in the body. OBJECTIVE: To observe the synostosis and new bone formation of the pure titanium implant prepared by micro-arc oxidation/electrochemical deposition. METHODS: This research produces calcium and phosphate coatings on pure titanium though micro-arc oxidation/Electrochemical deposition technology, and the sheep were implanted with micro arc-oxidation/electrochemical deposition implant and pure titanium implant

  1. Development of the method of obtaining donor-acceptor complexes of titanium tetrachloride as a precursor of oxide materials based on titanium oxide and silicon matrix for the catalytically active nanoparticles of platinum group metals

    Directory of Open Access Journals (Sweden)

    A. M. Nemeryuk

    2015-12-01

    Full Text Available The method of preparation of the complex of titanium tetrachloride with dimethylformamide and reactivity when reacted with an alcohol and salts of hydrazine described. Obtained multinuclear complexes containing titanium and palladium as potential precursors of catalytically active materials.

  2. Characterization of titanium hydride film after long-term air interaction: SEM, ARXPS and AES depth profile studies

    NARCIS (Netherlands)

    Lisowski, W.; Berg, van den A.H.J.; Smithers, M.

    1998-01-01

    Thin titanium hydride (TiHy) films are compared with thin titanium films after analysis using a combination of scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and angle-resolved x-ray photoelectron spectroscopy (ARXPS). The TiHy films were prepared under ultrahigh vacuum condit

  3. Surface Modification of Nanometer TiO2 and Effect of Preparing TiO2/P(St-co-DVB) Composites by Dispersion Polymerization

    Institute of Scientific and Technical Information of China (English)

    WANG Jing; FENG Yaqing; LI Xianggao; XIE Jianyu; LI Gang

    2006-01-01

    Surface modification of nanometer titanium dioxide particles and effect of preparing TiO2/P (St-co-DVB) composites by dispersion polymerization are described. To introduce vinyl group onto the surface of titanium dioxide particles, the titanium dioxide particles were surface-modified with a silicane coupling agent, methacryloylpropyltrimethoxysilicane. Polymer encapsulation in the presence of either modified-titanium dioxide particles or unmodified-titanium dioxide particles was carried out by dispersion polymerization of styrene, divinylbenzene in ethanol medium with polyvinylpyrrolidone as stabilizer, and 2, 2'-azobis(isobutyronitrile) as initiator. The modified-titanium dioxide was analyzed with Fourier-transform infrared spectroscopy( FTIR), UV-Vis spectrophotometer, thermogravimetric analysis and transmission microscope. The polymer encapsulation of modified-titanium dioxide and unmodified-titanium dioxide particles was confirmed with FTIR and transmission electron microscope. Results show that compared with unmodified-titanium dioxide, modified-titanium dioxide is more suitable for preparing inorganic core/organic shell composites.

  4. A new route for the synthesis of titanium silicalite-1

    Energy Technology Data Exchange (ETDEWEB)

    Vasile, Aurelia, E-mail: aurelia_vasile@yahoo.com [Laboratory of Materials Chemistry, Faculty of Chemistry, ' Al.I. Cuza' University of Iasi, B-dul Carol I, No. 11, 700506 Iasi (Romania); Busuioc-Tomoiaga, Alina Maria [Laboratory of Materials Chemistry, Faculty of Chemistry, ' Al.I. Cuza' University of Iasi, B-dul Carol I, No. 11, 700506 Iasi (Romania); Catalysis Research Department, ChemPerformance SRL, Iasi 700337 (Romania)

    2012-01-15

    Graphical abstract: Well-prepared TS-1 was synthesized by an innovative procedure using inexpensive reagents such as fumed silica and TPABr as structure-directing agent. This is the first time when highly crystalline TS-1 is obtained in basic medium, using sodium hydroxide as HO{sup -} ion source required for the crystallization process. Hydrolysis of titanium source has been prevented by titanium complexation with acetylacetone before structuring gel. Highlights: Black-Right-Pointing-Pointer TS-1 was obtained using cheap reagents as fumed silica and tetrapropylammonium bromide. Black-Right-Pointing-Pointer First time NaOH was used as source of OH{sup -} ions required for crystallization process. Black-Right-Pointing-Pointer The hydrolysis Ti alkoxides was controlled by Ti complexation with 2,4-pentanedione. -- Abstract: A new and efficient route using inexpensive reagents such as fumed silica and tetrapropylammonium bromide is proposed for the synthesis of titanium silicalite-1. High crystalline titanium silicalite-1 was obtained in alkaline medium, using sodium hydroxide as HO{sup -} ion source required for the crystallization process. Hydrolysis of titanium source with formation of insoluble oxide species was prevented by titanium complexation with before structuring gel. The final solids were fully characterized by powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared, ultraviolet-visible diffuse reflectance, Raman and atomic absorption spectroscopies, as well as nitrogen sorption analysis. It was found that a molar ratio Ti:Si of about 0.04 in the initial reaction mixture is the upper limit to which well formed titanium silicalite-1 with channels free of crystalline or amorphous material can be obtained. Above this value, solids with MFI type structure containing both Ti isomorphously substituted in the network and extralattice anatase nanoparticles inside of channels is formed.

  5. Machining of Aircraft Titanium with Abrasive-Waterjets for Fatigue Critical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H. T.; Hovanski, Yuri; Dahl, Michael E.

    2012-02-01

    Laboratory tests were conducted to determine the fatigue performance of abrasive-waterjet- (AWJ-) machined aircraft titanium. Dog-bone specimens machined with AWJs were prepared and tested with and without sanding and dry-grit blasting with Al2O3 as secondary processes. The secondary processes were applied to remove the visual appearance of AWJ-generated striations and to clean up the garnet embedment. The fatigue performance of AWJ-machined specimens was compared with baseline specimens machined with CNC milling. Fatigue test results of the titanium specimens not only confirmed our previous findings in aluminum dog-bone specimens but in comparison also further enhanced the fatigue performance of the titanium. In addition, titanium is known to be difficult to cut, particularly for thick parts, however AWJs cut the material 34% faster han stainless steel. AWJ cutting and dry-grit blasting are shown to be a preferred ombination for processing aircraft titanium that is fatigue critical.

  6. Hydrous ZrO2 decorated polyaniline nanofibres: Synthesis, characterization and application as an efficient adsorbent for water defluoridation.

    Science.gov (United States)

    Parashar, Kamya; Ballav, Niladri; Debnath, Sushanta; Pillay, Kriveshini; Maity, Arjun

    2017-08-16

    A new hybrid material comprising hydrous zirconium oxide (HZrO2) supported onto polyaniline (PANI) nanofibres (HZrO2@PANI NFs) was prepared via the precipitation of HZrO2 onto as-synthesized PANI NFs and tested for its defluoridation capabilities. The developed adsorbent (HZrO2@PANI NFs) was fully characterized by FTIR, BET, XRD, SEM-EDX, TEM-(S)TEM, XPS, and zeta potential measurements. HZrO2@PANI NFs achieved 2-fold BET surface area ∼86.64 m(2)/gas compared to PANI NFs ∼44.72 m(2)/g, implying that the incorporation of HZrO2 onto the PANI nanofibres enhanced the available surface area for effective fluoride adsorption. Moreover, HZrO2@PANI NFs was found to be effective over a wide pH range (3-9) as designated by its high pHpzc ∼9.8. The adsorption kinetics obeyed the pseudo-second-order model well with equilibrium attainment in 30min. Adsorption isotherm was best described by the Langmuir model and the maximum adsorption capacities obtained were 83.23 and 28.77mg/g at pH 3 and 6.5, respectively, which is superior to most ZrO2 based adsorbents reported in the literature and better than that of native PANI. Furthermore, the developed adsorbent manifested quite a selective fluoride uptake at pH 3 as compared to pH 6.5±0.1 wherein significant chemical affinity competition was presented by phosphate ions followed by bicarbonate and sulfate. The recyclability of HZrO2@PANI NFs for four cycles and its applicability to fluoride spiked ground water has also been demonstrated. The adsorption mechanism was interpreted with the help of FTIR, XPS and Zeta potential analysis and the results revealed the involvement of both anion exchange and electrostatic attraction in the adsorption of F(-) ions. Thus, a new efficient adsorbent with reasonably high adsorption capacity and superior pH tolerance has been developed for fluoride removal. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Preparation and characterization of Ba{sub 1-x}Sr{sub x}TiO{sub 3} (x=0.1, 0.2) fibers by sol-gel process using catechol-complexed titanium isopropoxide

    Energy Technology Data Exchange (ETDEWEB)

    Lu Qifang; Chen Dairong; Jiao Xiuling

    2003-08-25

    Sol-gel synthesis of Ba{sub 1-x}Sr{sub x}TiO{sub 3} (x=0.1, 0.2) ceramic fibers with a diameter of 6-10 {mu}m using catechol-complexed titanium isopropoxide, barium acetate hydrate and strontium acetate hydrate as precursors has been investigated. The green fibers and those sintered at different temperatures were characterized by thermogravimetry analysis (TGA), infrared spectroscopy (IR), X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. Microstructural development of barium strontium titanate (Ba{sub 1-x}Sr{sub x}TiO{sub 3}) ceramic fibers as a function of strontium concentrations was studied. X-ray diffraction indicated that the well-developed cubic phase of (Ba, Sr)TiO{sub 3} was crystallized at 1100 deg. C.

  8. Titanium in 1980

    Science.gov (United States)

    Minkler, Ward W.

    1981-04-01

    Much attention is being focused on the availability and use of non-fuel minerals in the United States. Because of the rapid increase in demand since 1978, titanium has been one of the much-publicized metals in this group. Sponge producers are now expanding sponge manufacturing plants to meet this greater demand, and it now appears that there could be a surplus of sponge in 1981. A delay in airplane purchases caused by severe operating losses of the airlines could have a significant effect on mill product shipments in 1981. However, there is no reason to believe that titanium has reached maturity as a structural aerospace or industrial metal. While it is unreasonable to anticipate that demand will continue to grow at the same rate experienced between 1978 and 1980, new greenfield capacity will nevertheless be required in the early 1980s. Two basic issues must be resolved before such ventures become reality: 1) choice of process; and 2) method for financing, either public or private. Both will be the subject of study and debate in 1981.

  9. Compaction of Titanium Powders

    Energy Technology Data Exchange (ETDEWEB)

    Gerdemann, Stephen,J; Jablonski, Paul, J

    2011-05-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines<150 {micro}m,<75 {micro}m, and<45 {micro}m; two different sizes of a hydride-dehydride [HDH]<75 {micro}m and<45 {micro}m; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  10. Injury evaluation of ProTaper nickel-titanium rotary instruments and hand instruments after preparation of moderately curved canals in vitro%机用和手用ProTaper预备中度弯曲根管后的器械损伤情况评价

    Institute of Scientific and Technical Information of China (English)

    闫文娟

    2012-01-01

    AIM: To evaluate the injury of ProTaper rotary and hand instruments used in preparation of moderately curved root canals in vitro. METHODS: Six sets of ProTaper nickel-titanium rotary instruments and hand instruments were used respectively to prepare the moderately curved mesial buccal canals of mandibular first molars. After each canal preparation, the instruments were examined under a stereomicroscope by an inspector who was blind to the groups. Fracture of equipments and release of threads were recorded. After 5, 10 and 20 times of canal preparation, S1, Fl files without deformation were selected and the surfaces and cutting edges were observed under scanning electron microscope (SEM). RESULTS: SX, S1, F1 and F3 files were easy to fracture. The fracture position was 3 -4 mm from the tip. Cracks and damages could be easily observed on ProTaper nickel-titanium rotary instruments after 15 times of preparation, while they could be observed after 20 times on the hands instruments. More severe damage was frand on Pro-Taper nickel-titanium rotary instruments when used for the same times. CONCLUSION: ProTaper rotary instruments can be used for less than 15 canals, while hands instruments for 20 canals when used for moderately curved canals.%目的:评估机用和手用ProTaper镍钛器械预备中度弯曲根管后的损伤情况,为临床安全使用ProTaper镍钛器械提供理论指导.方法:使用机用和手用ProTaper镍钛器械各6套预备中度弯曲的下颌第一磨牙近中颊根.每预备1个根管后,在立体显微镜下观察并记录器械分离和螺纹松解情况.预备完成后,分别以扫描电镜观察全新、预备5次、15次和20次的SX和F1表面,观察其表面和切割刃的磨损情况.结果:预备中度弯曲根管时,SX、S1、F1、F3易发生器械分离,断裂位置一般位于距离锉尖3~4 mm处.机用ProTaper器械在使用15次后,可观察到明显的裂纹和损伤,手用ProTaper器械在使用20次后,可观察到明显

  11. Effects of sandblasting and electrical discharge machining on porcelain adherence to cast and machined commercially pure titanium.

    Science.gov (United States)

    Inan, Ozgür; Acar, Asli; Halkaci, Selçuk

    2006-08-01

    The aim of this study was to determine the effect of sandblasting and electrical discharge machining (EDM) on cast and machined titanium surfaces and titanium-porcelain adhesion. Twenty machined titanium specimens were prepared by manufacturer (groups 1 and 2). Thirty specimens were prepared with autopolymerizing acrylic resin. Twenty of these specimens (groups 3 and 4) were cast with commercially pure titanium and the alpha-case layer was removed. For control group (group 5), 10 specimens were cast by using NiCr alloy. Groups 2 and 4 were subjected to EDM while groups 1, 3, and 5 were subjected to sandblasting. Surface examinations were made by using a scanning electron microscope (SEM). A low-fusing porcelain was fused on the titanium surfaces, whereas NiCr specimens were covered using a conventional porcelain. Titanium-porcelain adhesion was characterized by a 3-point bending test. Results were analyzed by Kruskal-Wallis and Mann-Whitney U tests. Metal-porcelain interfaces were characterized by SEM. The bond strength of control group was higher than that of the titanium-porcelain system. There was no significant difference between cast and machined titanium groups (p > 0.05). There was no significant difference between EDM and sandblasting processes (p > 0.05). The use of EDM as surface treatment did not improve titanium-porcelain adhesion compared with sandblasting.

  12. Discoloration and dissolution of titanium and titanium alloys with immersion in peroxide- or fluoride-containing solutions.

    Science.gov (United States)

    Noguchi, Tatsumi; Takemoto, Shinji; Hattori, Masayuki; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka

    2008-01-01

    This study compared differences in discoloration and dissolution in several titanium alloys with immersion in peroxide- or fluoride-containing solution. Commercially pure titanium (CP-Ti) and six titanium-based alloys were used: Ti-0.15Pd, Ti-6Al-4V, Ti-7Nb-6Al, Ti-55Ni, Ti-10Cu, and Ti-20Cr. Two test solutions were prepared for immersion of polished titanium and titanium alloys: one consisting of 0.2% NaF + 0.9% NaCl (pH 3.8 with lactic acid) and the other of 0.1 mol/l H2O2 + 0.9% NaCl (pH 5.5). Following immersion, color changes were determined with a color meter and released elements were measured using ICP-OES. Discoloration and dissolution rates differed between the two solutions. In the hydrogen peroxide-containing solution, color difference was higher in Ti-55Ni and Ti-6Al-4V than in any of the other alloys, and that Ti-55Ni showed the highest degree of dissolution. In the acidulated fluoride-containing solution, CP-Ti, Ti-0.15Pd, Ti-6Al-4V, Ti-7Nb-6Al, and Ti-10Cu alloys showed remarkable discoloration and dissolution with immersion. On the contrary, Ti-20Cr alloy showed very little discoloration and dissolution in either solution.

  13. The compositions of Hydrous Fluids in equilibrium with the Peridotitic Mantle

    Science.gov (United States)

    Adam, J.; Locmelis, M.; Fiorentini, M.; Rushmer, T. A.

    2013-12-01

    The compositional characteristics of H2O-rich fluids are critical to determine because migrating hydrous fluids have the capacity to impart many of the compositional characteristics of arc magmas and the continental crust/hydrosphere, to mantle source regions. However, the compositions of H2O-fluids produced by near-solidus experiments on peridotite are intrinsically difficult to determine. In this study we avoided many previously encountered problems by using an indirect approach. This involved H2O-saturated experiments on a hydrous nepheline basanite for which conditions of equilibrium with garnet-lherzolite (~ 1200 °C and 2.6 GPa) had been independently established using near-liquidus phase equilibria. Following experiments in single Ag70Pd30 and Au capsules, the quenched products of melts and H2O-fluids could be easily distinguished and directly analysed by EDS and LAM ICP-MS. Solute concentrations in the fluid phase were then calculated from mass-balances using estimated H2O-solubilities in melts. Because mineral/melt partition coefficients had already been determined for trace and minor elements in the basanite, we indirectly obtained peridotite/fluid partition coefficients for the same elements. In addition, we were able to directly analyse co-existing fluid-solutes and peridotite phases (clinopyroxene + orthopyroxene + olivine + amphibole + mica + spinel) from one sub-solidus experiment at 950 °C and 2.0 GPa. At 2.0 GPa and 950-1100 °C the H2O-fluid contains between 10 and 20 wt. % of dissolved solute, which has a peralkaline phonolite composition. Relative to the co-existing basanite melt, the H2O-fluid is enriched in Cs, Rb, K, Pb, Ba and V, but otherwise has lower concentrations of most incompatible elements. It is not depleted in HFSE relative to REE. As pressure and temperature increase, the fluid becomes more solute-rich until at 4.0 GPa and 1100 °C no clear distinction between the fluid and melt phase is apparent. At 2-3 GPa and 1100

  14. Determination of thermal stability of specific biomarker lipids of the freshwater fern Azolla through hydrous pyrolysis

    Science.gov (United States)

    Sap, Merel; Speelman, Eveline N.; Lewan, Michael D.; Sinninghe Damsté, Jaap S.; Reichart, Gert-Jan

    2010-05-01

    Enormous blooms of the free-floating freshwater fern Azolla occurred within the Arctic Basin during an extended period of ~1.2 Ma during the middle Eocene (Brinkhuis et al. 2006; Speelman et al., GB, 2009). The sustained growth of Azolla, currently ranking among the fastest growing plants on Earth, in a major anoxic basin may have substantially contributed to decreasing atmospheric CO2 levels by burial of Azolla-derived organic matter. Speelman et al. (OG, 2009) reported biomarkers for Azolla (1,w20 C32 - C36 diols, structurally related C29 ω20,ω21 diols, C29 1,20,21 triols, C29 dihydroxy fatty acids as well as a series of wax esters containing these mono- and dihydroxy lipids), which can be used to reconstruct palaeo-environmental conditions. Here we assess the thermal stability of these compounds, to extend their biomarker potential. We specifically focused on the thermal stability of the Azolla biomarkers using hydrous pyrolysis in order to determine which burial conditions allow reconstruction of past occurrences of Azolla. In addition, hydrous pyrolysis was also performed on samples from the Eocene Arctic Ocean (ACEX core), to test if and how the biomarkers change under higher temperatures and pressures in situ. During hydrous pyrolysis, the biomass was heated under high pressure at temperatures ranging between 220 and 365°C for 72 hours. Four experiments were also run using different durations to explore the kinetics of biomarker degradation at specific temperatures. First results indicate that the Azolla specific diols are still present at 220°C, while the corresponding wax esters are already absent. At 300°C all Azolla specific biomarkers are destroyed. More specific determination of the different biomarkers' stability and kinetics would potentially allow the reconstruction of the temperature and pressure history of Azolla deposits. Literature: • Brinkhuis, H., Schouten, S., Collinson, M. E., Sluijs, A., Sinninghe Damste, J. S., Dickens, G. R., Huber

  15. Chemical synthesis and characterization of hydrous tin oxide (SnO2:H2O) thin films

    Indian Academy of Sciences (India)

    S N Pusawale; P R Deshmukh; C D Lokhande

    2011-10-01

    In the present investigation, we report chemical synthesis of hydrous tin oxide (SnO2:H2O) thin films by successive ionic layer adsorption and reaction (SILAR) method at room temperature (∼300 K). The films are characterized for their structural and surface morphological properties. The formation of nanocrystalline SnO2 with porous and agglomerated particle morphology is revealed from X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies, respectively. The Fourier transform infrared spectroscopy (FTIR) study confirmed the formation of Sn–O phase and hydrous nature of the deposited film. Static water contact angle studies showed the hydrophilic nature of SnO2:H2O thin film. Electrical resistivity showed the semiconducting behaviour with room temperature electrical resistivity of 105 cm. The electrochemical properties studied in 0.5 M Na2SO4 electrolyte showed a specific capacitance of 25 F g-1 at 5 mVs-1 scan rate.

  16. Comparison of Machine-used Rotary Nickel-titanium Files K3 and ProTaper in Molar Root Canal Preparation%机用镍钛锉K3和ProTaper预备磨牙根管的临床应用比较

    Institute of Scientific and Technical Information of China (English)

    汪莉; 钟素兰

    2016-01-01

    Objective To compare the clinical efficacy of machine-used rotary nickel-titanium files K3,ProTaper and hand-used stainless steel files K in molar root canal preparation. Methods 136 patients which received root canal treatment in the hospital from September 2013 to August 2015 were enrolled. And 150 molars in the 136 patients were randomized into experi-mental K3 group (50 molars,168 root canals),experimental ProTaper group (50 molars,165 root canals) and control stainless steel K group (50 molars,160 root canals). Patients in the three groups received root canal preparation using rotary nickel-titani-um files K3,root canal files ProTaper and stainless steel files K respectively. Lateral condensation was used during root canal fill-ing process in three groups. X-ray was used to evaluate the effect of root canal preparation and filling. Preparation time of every single root canal,instrument fracture,postoperative adverse events and long-term effect were recorded. Results Compared with the stainless steel files,using nickel-titanium files K3 and ProTaper for root canal preparation had shorter preparation time,lower inci-dence rate of postoperative pain,better root canal filling and 6-month clinical efficacy. There was no instrument fracture in the K3 group during root canal preparation,while 1 pair of files broke respectively in the ProTaper group and stainless steel K group. Con-clusion Nickel-titanium files K3 and ProTaper could be used for fast and efficient root canal preparation with better root canal filling,less postoperative pain. Nickel-titanium files K3 and ProTaperwere more suitable for molar root canal preparation.%目的:比较机用镍钛锉K3、ProTaper和手用不锈钢K挫对磨牙根管预备临床应用效果。方法将2013年9月至2015年8月期间在我院口腔科就诊的患者需要行根管治疗的磨牙的患者136例,共150颗磨牙,随机分实验组K3组(50颗,168个根管)、ProTaper组(50颗,165个

  17. 二氧化钛纳米管阵列薄膜的超声辐射阳极氧化制备%Supersonic Anodization Preparation of Thin Titanium Oxide Nanotube Arrays Films

    Institute of Scientific and Technical Information of China (English)

    熊必涛; 朱志艳; 王长荣; 陈宝信; 骆钧炎

    2013-01-01

    通过使用铂片作为对电极在含有氢氟酸的二甲基亚砜溶液中,将金属钛片进行阳极氧化的方法制备得到二氧化钛纳米管阵列薄膜.在施加40 V偏压超声辐射作用下阳极氧化24 h条件下得到的二氧化钛纳米管长达到680nm,管内直径25 nm,管壁厚度约3~5 nm.采用了XRD和TEM等分析手段表征了二氧化钛纳米管阵列薄膜的微观结构和表面形貌,分别测试了薄膜的光吸收性能、循环伏安特性和光化学转换效率,并和碱性溶胶-凝胶方法制备的纳米晶二氧化钛薄膜作了对比研究.实验制备的二氧化钛纳米管阵列薄膜电极的光吸收率比纳米晶二氧化钛薄膜提高了40%,光电化学转换效率前者是后者的6倍,实验结果表明二氧化钛纳米管阵列薄膜结构有利于加快电子的传输,并能减少电荷复合,采用这种二氧化钛纳米管阵列薄膜结构的染料敏化太阳能电池光电极有望进一步提高太阳能电池的效率.本文还探讨了在超声波辐射作用下二氧化钛纳米管阵列薄膜的形成机理.%Thin titanium oxide nanotube arrays (TNAs) films were synthesized by supersonic anodization of titanium foil in an aqueous dimethyl sulfoxide solution containing HE After anodization, TNAs up to 680 nm in length, 25 nm inner pore diameter, and 3~5 nm wall thickness were obtained. Their microstructure and surface morphologies were characterized by XRD and TEM. The optical absorption performances, cyclic voltammograms characteristics and light chemical conversion efficiencies of these films were tested. The results implied that the TNAs films have an outstanding accelerated electronic transportation and compressed recombination rate. Electrodes applying such kind of titania nanotubes will have a potential to further enhance the TNAs-based dye-sensitized solar cells efficiencies. The sonoelectrochemical mechanism of TNAs films formation was discussed along with the characterization and

  18. The two steps thermal decomposition of titanium hydride and two steps foaming of Al alloy

    Institute of Scientific and Technical Information of China (English)

    SHANG Jintang; HE Deping

    2005-01-01

    Two steps foaming (TSF) technique was proposed to prepare shaped Al alloy foam. Based on the thermal decomposition kinetics equation of titanium hydride, the relationship between two steps thermal decomposition kinetics of titanium hydride and two steps foaming Al alloy melt was studied. Two steps thermal decomposition curve of titanium hydride under increasing and constant temperature was calculated respectively. The hydrogen mass needed in the second foaming step was also calculated. Results showed that the hydrogen mass of the second thermal decomposition of titanium hydride is enough for the second foaming step in the condition of as-received Al melt foaming. Experimental and theoretical results indicate that two steps foaming technique can be used to prepare Al alloy foam with high porosity, shaped components and sandwich with Al alloy foam core.

  19. Thermal-maturity limit for primary thermogenic-gas generation from humic coals as determined by hydrous pyrolysis

    Science.gov (United States)

    Lewan, Michael; Kotarba, M.J.

    2014-01-01

    Hydrous-pyrolysis experiments at 360°C (680°F) for 72 h were conducted on 53 humic coals representing ranks from lignite through anthracite to determine the upper maturity limit for hydrocarbon-gas generation from their kerogen and associated bitumen (i.e., primary gas generation). These experimental conditions are below those needed for oil cracking to ensure that generated gas was not derived from the decomposition of expelled oil generated from some of the coals (i.e., secondary gas generation). Experimental results showed that generation of hydrocarbon gas ends before a vitrinite reflectance of 2.0%. This reflectance is equivalent to Rock-Eval maximum-yield temperature and hydrogen indices (HIs) of 555°C (1031°F) and 35 mg/g total organic carbon (TOC), respectively. At these maturity levels, essentially no soluble bitumen is present in the coals before or after hydrous pyrolysis. The equivalent kerogen atomic H/C ratio is 0.50 at the primary gas-generation limit and indicates that no alkyl moieties are remaining to source hydrocarbon gases. The convergence of atomic H/C ratios of type-II and -I kerogen to this same value at a reflectance of indicates that the primary gas-generation limits for humic coal and type-III kerogen also apply to oil-prone kerogen. Although gas generation from source rocks does not exceed vitrinite reflectance values greater than , trapped hydrocarbon gases can remain stable at higher reflectance values. Distinguishing trapped gas from generated gas in hydrous-pyrolysis experiments is readily determined by of the hydrocarbon gases when a -depleted water is used in the experiments. Water serves as a source of hydrogen in hydrous pyrolysis and, as a result, the use of -depleted water is reflected in the generated gases but not pre-existing trapped gases.

  20. The Fouling of Zirconium(IV) Hydrous Oxide–Polyacrylate Dynamically Formed Membranes during the Nanofiltration of Lactic Acid Solutions

    OpenAIRE

    Ewa Polom

    2013-01-01

    The results of investigations of flux decline during nanofiltration (NF) of lactic acid solutions using dynamically formed zirconium(IV) hydrous oxide/polyacrylate membranes (Zr(IV)/PAA) under conditions resulting in low and high lactic acid rejection are reported. The experimental permeate flux versus time curves were analyzed in the frame of resistance in a series model with the aim of developing the characteristic of resistances. Analysis of experimental data and results of calculations sh...

  1. Antimicrobial titanium/silver PVD coatings on titanium

    OpenAIRE

    Thull Roger; Glückermann Susanne K; Ewald Andrea; Gbureck Uwe

    2006-01-01

    Abstract Background Biofilm formation and deep infection of endoprostheses is a recurrent complication in implant surgery. Post-operative infections may be overcome by adjusting antimicrobial properties of the implant surface prior to implantation. In this work we described the development of an antimicrobial titanium/silver hard coating via the physical vapor deposition (PVD) process. Methods Coatings with a thickness of approximately 2 μm were deposited on titanium surfaces by simultaneous ...

  2. Titanium oxo-clusters: precursors for a Lego-like construction of nanostructured hybrid materials.

    Science.gov (United States)

    Rozes, Laurence; Sanchez, Clément

    2011-02-01

    Titanium oxo-clusters, well-defined monodispersed nano-objects, are appropriate nano-building blocks for the preparation of organic-inorganic materials by a bottom up approach. This critical review proposes to present the different structures of titanium oxo-clusters referenced in the literature and the different strategies followed to build up hybrid materials with these versatile building units. In particular, this critical review cites and reports on the most important papers in the literature, concentrating on recent developments in the field of synthesis, characterization, and the use of titanium oxo-clusters for the construction of advanced hybrid materials (137 references).

  3. Advanced titanium processing

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Alan D.; Gerdemann, Stephen J.; Schrems, Karol K.; Holcomb, Gordon R.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; Turner, Paul C.

    2001-01-01

    The Albany Research Center of the U.S. Department of Energy has been investigating a means to form useful wrought products by direct and continuous casting of titanium bars using cold-wall induction melting rather than current batch practices such as vacuum arc remelting. Continuous ingots produced by cold-wall induction melting, utilizing a bottomless water-cooled copper crucible, without slag (CaF2) additions had minor defects in the surface such as ''hot tears''. Slag additions as low as 0.5 weight percent were used to improve the surface finish. Therefore, a slag melted experimental Ti-6Al-4V alloy ingot was compared to a commercial Ti-6Al-4V alloy ingot in the areas of physical, chemical, mechanical, and corrosion attributes to address the question, ''Are any detrimental effects caused by slag addition''?

  4. Hemocompatibility of titanium nitride.

    Science.gov (United States)

    Dion, I; Baquey, C; Candelon, B; Monties, J R

    1992-10-01

    The left ventricular assist device is based on the principle of the Maillard-Wenkel rotative pump. The materials which make up the pump must present particular mechanical, tribological, thermal and chemical properties. Titanium nitride (TiN) because of its surface properties and graphite because of its bulk characteristics have been chosen. The present study evaluated the in vitro hemocompatibility of TiN coating deposited by the chemical vapor deposition process. Protein adsorption, platelet retention and hemolysis tests have been carried out. In spite of some disparities, the TiN behavior towards albumin and fibrinogen is interesting, compared with the one of a reference medical grade elastomer. The platelet retention test gives similar results as those achieved with the same elastomer. The hemolysis percentage is near to zero. TiN shows interesting characteristics, as far as mechanical and tribological problems are concerned, and presents very encouraging blood tolerability properties.

  5. Preparação e caracterização de microfibras de poli(álcool vinílico/dióxido de titânio Preparation and characterization of polyvinyl alcohol/titanium dioxide microfibers

    Directory of Open Access Journals (Sweden)

    Ariadne H. P. de Oliveira

    2013-01-01

    Full Text Available Compósitos de poli(álcool vinílico/dióxido de titânio preparados pela técnica de eletrofiação são potenciais candidatos para aplicações nas quais grande absorbância na região do ultra-violeta e transparência na região do visível são requeridas. A incorporação de semicondutor nas fibras pode ser inferida pela redução da impedância elétrica das fibras fabricadas por eletrofiação, como consequência do aumento na densidade de grãos de semicondutor dispersos nas fibras poliméricas. As propriedades térmicas do compósito polímero/semicondutor são dominadas pela resposta do PVA sendo a influência do dióxido de titânio detectada no espectro de absorção de luz pela maximização da absorbância na faixa de 240 nm a 400 nm. Os resultados indicam que o compósito de PVA/TiO2 pode ser convenientemente aplicado como curativo com proteção adicional contra efeitos de radiação ultravioleta (UVA e UVB na pele humana. Uma aplicação adicional para o compósito PVA/TiO2 foi abordada com o estudo dos processos fotocatalíticos na degradação da rodamina B.Electrospun composites of polyvinyl alcohol/titanium dioxide are potential candidates for applications that require high level of absorbance in the UV and transparency in the visible region. The incorporation of semiconductor particles in the core of fibers can be inferred from the reduction in the electrical impedance of electrospun fibers, as a consequence of the increased density of semiconductor granules along the fiber. The thermal properties of PVA dominate in the complete response of the composite while the influence from titanium dioxide is noted with an increased absorption from 240 nm to 400 nm. The results indicate that the PVA/TiO2 composites can be applied as wound dressing with additional protection against effects of ultraviolet radiation (UVA and UVB on human skin. An additional application studied here was based on the use of PVA/TiO2 nanocomposites as

  6. 钛合金上可焊性镍-金复合镀层的制备及表征%Preparation and characterization of solderable nickel-gold composite coating on titanium alloy

    Institute of Scientific and Technical Information of China (English)

    王从香; 牛通

    2013-01-01

    介绍了一种在TC4钛合金上获得可焊性镀层的工艺,其流程主要包括除油、酸蚀、活化、电镀氨基磺酸镍、镀纳米薄金、热处理和电镀金.讨论了TC4钛合金前处理和热处理工艺对镀层性能的影响.对前处理过程中钛合金表面形貌的变化以及各镀层的表面形貌和元素组成进行了表征.所得Ni-Au复合镀层结合力良好,经350℃×30 min的热震试验后无鼓泡、开裂,一次合格率达到95%.复合镀层与Sn37Pb焊料的润湿性良好,焊透率达98%.该工艺解决了TC4钛合金材料可焊性镀层批量镀覆的技术难题.%A process for forming a solderable nickel-gold composite coating on TC4 titanium alloy was introduced, which mainly includes degreasing, pickling, activating, sulfamate nickel plating, nanometer-thick gold plating, heat treatment, and gold plating. The effects of pretreatment and heat treatment on the properties of the composite coating were discussed. The morphological change of Ti alloy surface and the surface morphology and elemental composition of individual coating were characterized. The composite coating has good adhesion after thermal shock test at 350 ℃ for 30 min without any bubble or crack. The one-time qualification rate of the product reached 95%. The composite coating has good wettability with Sn37Pb and the penetration rate is up to 98%. The problem of large-scale production for solderable coating on titanium alloy was solved.

  7. Biologically Active Polycaprolactone/Titanium Hybrid Electrospun Nanofibers for Hard Tissue Engineering

    DEFF Research Database (Denmark)

    Barakat, Nasser A. M.; Sheikh, Faheem A.; Al-Deyab, Salem S.

    2011-01-01

    In this study, a novel strategy to improve the bioactivity of polycaprolactone nanofibers is proposed. Incorporation of pure titanium nanoparticles into polycaprolactone nanofibers strongly enhances the precipitation of bone-like apatite materials when the doped nanofibers are soaked in a simulat...... nanofiber mats and the successful incorporation of the titanium nanoparticles make the prepared polycaprolactone nanofiber mat a proper candidate for the hard-tissue engineering applications....

  8. Fabrication of a Biomass-Based Hydrous Zirconium Oxide Nanocomposite for Preferable Phosphate Removal and Recovery.

    Science.gov (United States)

    Qiu, Hui; Liang, Chen; Zhang, Xiaolin; Chen, Mindong; Zhao, Yunxia; Tao, Tao; Xu, Zhengwen; Liu, Gang

    2015-09-23

    Advanced removal of phosphate by low-cost adsorbents from municipal wastewater or industrial effluents is an effective and economic way to prevent the occurrence of eutrophication. Here, we proposed a novel method to immobilize hydrous zirconium oxide nanoparticle within quaternary-aminated wheat straw, and obtained an inexpensive, eco-friendly nanocomposite Ws-N-Zr. The biomass-based Ws-N-Zr exhibited higher preference toward phosphate than commercial anion exchanger IRA-900 when competing sulfate ions coexisted at relatively high levels. Such excellent performance of Ws-N-Zr resulted from its specific hybrid structure, the quaternary ammonium groups bonded on the host favor the preconcentration of phosphate ions inside the wheat straw based on Donnan effect, and the encapsulated HZO nanoparticle exhibits preferable sequestration of phosphate ions through specific interaction, as further demonstrated by FTIR and X-ray photoelectron spectroscopy. Cycle adsorption and regeneration experiments demonstrated that Ws-N-Zr could be employed for repeated use without significant capacity loss, when the binary NaOH-NaCl solution was employed as the regenerant. The influence of solution pH and contact time was also examined. The results suggested that Ws-N-Zr has a great potential in efficient removal of phosphate in contaminated waters.

  9. Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability.

    Science.gov (United States)

    Chen, Liang; Zhao, Xin; Pan, Bingcai; Zhang, Weixian; Hua, Ming; Lv, Lu; Zhang, Weiming

    2015-03-02

    In this study, we employed a new nanocomposite adsorbent HZO-201, which featured high stability under varying solution chemistry, for preferable removal of phosphate from synthetic solution and a real effluent. An anion exchange resin (D-201) was employed as the host of HZO-201, where nano-hydrous zirconium oxide (HZO) was encapsulated as the active species. D-201 binds phosphate through nonspecific electrostatic affinity, whereas the loaded HZO nanoparticles capture phosphate through formation of the inner-sphere complexes. Quantitative contribution of both species to phosphate adsorption was predicted based on the double-Langmuir model. Preferable removal of phosphate by HZO-201 was observed in the presence of the competing anions at higher levels (Cl(-), NO3(-), SO4(2-), HCO3(-)). Fixed-bed adsorption indicated that the effective volume capacity of a synthetic water (2.0 mg P-PO4(3-)/L) by using HZO-201 was ∼1600 BV in the first run (<0.5mg P-PO4(3-)/L), comparable to Fe(III)-based nanocomposite HFO-201 (∼1500 BV) and much larger than D-201 (<250 BV). The exhausted HZO-201 can be in situ regenerated by using a binary NaOH-NaCl solution for cyclic runs, whether fed with the synthetic solution or real effluent. In general, HZO-201 is a promising alternative to Fe(III)-based adsorbents for trace phosphate removal from effluent particularly at acidic pH.

  10. Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts

    Science.gov (United States)

    Mangan, M.; Sisson, T.

    2005-01-01

    We evaluate the melt-vapor surface tension (??) of natural, water-saturated dacite melt at 200 MPa, 950-1055??C, and 4.8-5.7 wt % H2O. We experimentally determine the critical supersaturation pressure for bubble nucleation as a function of dissolved water and then solve for ?? at those conditions using classical nucleation theory. The solutions obtained give dacite melt-vapor surface tensions that vary inversely with dissolved water from 0.042 (??0.003) J m-2 at 5.7 wt% H2O to 0.060 (??0.007) J m-2 at 5.2 wt% H2O to 0.073 (??0.003) J m-2 at 4.8 wt% H2O. Combining our dacite results with data from published hydrous haplogranite and high-silica rhyolite experiments reveals that melt-vapor surface tension also varies inversely with the concentration of mafic melt components (e.g., CaO, FeOtotal, MgO). We develop a thermodynamic context for these observations in which melt-vapor surface tension is represented by a balance of work terms controlled by melt structure. Overall, our results suggest that cooling, crystallization, and vapor exsolution cause systematic changes in ?? that should be considered in dynamic modeling of magmatic processes.

  11. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    Science.gov (United States)

    Verplanck, P.L.; Nordstrom, D.K.; Taylor, H.E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  12. Hydrogen generation from decomposition of hydrous hydrazine over Ni-Ir/CeO2 catalyst

    Directory of Open Access Journals (Sweden)

    Hongbin Dai

    2017-02-01

    Full Text Available The synthesis of highly active and selective catalysts is the central issue in the development of hydrous hydrazine (N2H4·H2O as a viable hydrogen carrier. Herein, we report the synthesis of bimetallic Ni-Ir nanocatalyts supported on CeO2 using a one-pot coprecipitation method. A combination of XRD, HRTEM and XPS analyses indicate that the Ni-Ir/CeO2 catalyst is composed of tiny Ni-Ir alloy nanoparticles with an average size of around 4 nm and crystalline CeO2 matrix. The Ni-Ir/CeO2 catalyst exhibits high catalytic activity and excellent selectivity towards hydrogen generation from N2H4·H2O at mild temperatures. Furthermore, in contrast to previously reported Ni-Pt catalysts, the Ni-Ir/CeO2 catalyst shows an alleviated requirement on alkali promoter to achieve its optimal catalytic performance.

  13. Textural and chemical consequences of interaction between hydrous mafic and felsic magmas: an experimental study

    Science.gov (United States)

    Pistone, Mattia; Blundy, Jonathan D.; Brooker, Richard A.

    2016-01-01

    Mantle-derived, hydrous mafic magmas are often invoked as a mechanism to transfer heat, mass and volatiles to felsic plutons in the Earth's crust. Field observations suggest that mafic, water-rich magmas often intrude viscous felsic crystal-rich mushes. This scenario can advect water from the crystallising mafic magma to the felsic magma, leading to an increase in melt fraction in the felsic mush and subsequent mobilisation, at the same time as the mafic magma becomes quenched through a combination of cooling and water loss. To investigate such a scenario, we conducted experiments on a water-undersaturated (4 wt% H2O in the interstitial melt) dacitic crystal mush (50-80 vol% quartz crystals) subject to volatile supply from a water-saturated (≥6 wt% H2O) andesite magma at 950 °C and 4 kbar. Our experimental run products show unidirectional solidification textures (i.e. comb layering) as crystals nucleate at the mafic-felsic interface and grow into the mafic end-member. This process is driven by isothermal and isobaric undercooling resulting from a change in liquidus temperature as water migrates from the mafic to the felsic magma. We refer to this process as "chemical quenching" and suggest that some textures associated with natural mafic-felsic interactions are not simply cooling-driven in origin, but can be caused by exsolution of volatiles adjacent to an interface, whether a water-undersaturated felsic magma (as in our experiments) or a fracture.

  14. Enhanced removal of As (V) from aqueous solution using modified hydrous ferric oxide nanoparticles

    Science.gov (United States)

    Huo, Lijuan; Zeng, Xibai; Su, Shiming; Bai, Lingyu; Wang, Yanan

    2017-01-01

    Hydrous ferric oxide (HFO) is most effective with high treatment capacity on arsenate [As(V)] sorption although its transformation and aggregation nature need further improvement. Here, HFO nanoparticles with carboxymethyl cellulose (CMC) or starch as modifier was synthesized for the purpose of stability improvement and As(V) removal from water. Comparatively, CMC might be the optimum stabilizer for HFO nanoparticles because of more effective physical and chemical stability. The large-pore structure, high surface specific area, and the non-aggregated nature of CMC-HFO lead to increased adsorption sites, and thus high adsorption capacities of As(V) without pre-treatment (355 mg·g‑1), which is much greater than those reported in previous studies. Second-order equation and dual-mode isotherm model could be successfully used to interpret the sorption kinetics and isotherms of As(V), respectively. FTIR, XPS and XRD analyses suggested that precipitation and surface complexation were primary mechanisms for As(V) removal by CMC modified HFO nanoparticles. A surface complexation model (SCM) was used to simulate As adsorption over pH 2.5–10.4. The predominant adsorbed arsenate species were modeled as bidentate binuclear surface complexes at low pH and as monodentate complexes at high pH. The immobilized arsenic remained stable when aging for 270 d at room temperature.

  15. Ianthinite: A rare hydrous uranium oxide mineral from Akkavaram, Andhra Pradesh, India

    Indian Academy of Sciences (India)

    Yamuna Singh; R Viswanathan; K K Parashar; S K Srivastava; P V Ramesh Babu; P S Parihar

    2014-02-01

    Ianthinite is the only known uranyl oxide hydrate mineral that contains both U6+ and U4+. For the first time, we report ianthinite from India (at Akkavaram, Andhra Pradesh), which is hosted in basement granitoids. The mineral occurs in the form of tiny grains, encrustations and coatings in intimate association with uraninite and uranophane. X-ray diffraction (XRD) data reveals that d-spacings of the investigated ianthinite are in close agreement with the corresponding values given for ianthinite standard in International Centre for Diffraction Data (ICDD) card no. 12-272. The crystallographic parameters of the studied ianthinite are: ao = 11.3 (1) Å, bo = 7.19 (3) Å and co = 30.46 (8) Å, with a unit cell volume of 2474 (27) Å3. The association of investigated ianthinite with uraninite suggests that the former has formed due to oxidation of the latter. Since a major part of the uraninite was exposed to oxidizing meteoric water, much of it has been transformed into hydrous uranium oxide (ianthinite) and very little part remained unaltered as uranium oxide (uraninite). Absence of schoepite in the investigated ianthinite suggests that after its formation it (ianthinite) was not exposed to oxygen/oxidizing meteoric water. As the oxidation was partial and short lived, some amount of primary uraninite is also preserved.

  16. Uranium extraction from laboratory-synthesized, uranium-doped hydrous ferric oxides.

    Science.gov (United States)

    Smith, Steven C; Douglas, Matthew; Moore, Dean A; Kukkadapu, Ravi K; Arey, Bruce W

    2009-04-01

    The extractability of uranium (U) from synthetic uranium-hydrous ferric oxide (HFO) coprecipitates has been shown to decrease as a function of mineral ripening, consistent with the hypothesis that the ripening process will decrease uranium lability. To evaluate this process, three HFO suspensions were coprecipitated with uranyl (UO2(2+)) and maintained at pH 7.0 +/- 0.1. Uranyl was added to the HFO postprecipitation in a fourth suspension. Two suspensions also contained either coprecipitated silicate (Si-U-HFO) or phosphate (P-U-HFO). After precipitation of the HFOs, at time intervals of 1 week, 1 month, 6 months, 1 year, and 2 years, aliquots of each suspension were contacted with five extractant solutions for a range of time. Uranium was preferentially extracted over Fe in varying degrees from all coprecipitates, by all extractants. The preference was dependent on the duration of mineral ripening and adjunct anion. Micro-X-ray diffraction analysis provides evidence for the transformation from amorphous material to phases containing substantial proportions of crystalline goethite and hematite, except the P-U-HFO, which remained primarily amorphous. Analysis of the U-HFO coprecipitate bythe Mössbauertechnique and scanning electron microscopy provides confirmation of an increase in particle size and evidence of mineral ripening to crystalline phases.

  17. Deuterium isotopic exchangeability of resin and amber at low thermal stress under hydrous conditions

    Science.gov (United States)

    Gonzalez, G.; Tappert, R.; Wolfe, A. P.; Muehlenbachs, K.

    2012-04-01

    Hydrous deuterium-exchange experiments have shown that a significant fraction of the original D/H composition of bulk kerogens, bitumens and expelled oils may participate in isotopic exchange reactions during burial diagenesis. However, it is unknown to what extent plant-derived secondary metabolites, namely resins and their fossil counterpart amber, exchange hydrogen isotopes following their biosynthesis. This situation hinders the application of resin D/H measurements in paleoenvironmental reconstruction. Here, we assess explicitly hydrogen exchange in resins and ambers using a series of immersion experiments in deuterated (D-enriched) waters over a period of several months at several temperatures. We are especially interested in assessing whether significant H-isotopic exchange occurs between resins and meteoric waters during early thermal maturation and polymerization. At 90°C, equivalent to ~3km of burial in most diagenetic regimes, modern conifer and angiosperm resins have an average post-metabolic H exchange of 4.6%, compared to only 1.1% for mature, polymerized ambers. At 55°C the degree of exchange is considerably lower: 1.9% for resins and 0.6% for ambers. These results indicate that most D/H isotopic exchange occurs prior to polymerization reactions, thereby confirming that D/H measurements from amber constitute a potentially sensitive proxy for environmental change.

  18. Adsorption of {sup 60}Co{sup 2+} on hydrous manganese oxide powder from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Granados Correa, F. [Inst. Nacional de Investigaciones Nucleares, Mexico (Mexico); Univ. Autonoma Metropolitana Iztapalapa, Mexico (Mexico); Jimenez-Becerril, J. [Inst. Nacional de Investigaciones Nucleares, Mexico (Mexico)

    2004-07-01

    Hydrous manganese oxide (HMO) was synthesized and its ability to sorb {sup 60}Co{sup 2+} from aqueous solution was studied under static conditions as a function of contact time, cobalt concentration (10{sup -2}-10{sup -7} M), temperature (303-333 K) and pH of adsorptive solution (2.2-11.4). X-ray diffraction was used in characterization of synthesized HMO. Low concentration of {sup 60}Co{sup 2+} solution, high pH and high temperature were the most favorable conditions for the adsorption process. The results show that the removal process is complete in 40 minutes, obeys a first order rate law and can be described using the Freundlich adsorption model. The standard enthalpy of the system was {delta}H{sup 0} = 12.5 {+-} 0.2 kJ mol{sup -1} and cobalt desorption indicates that the uptake process proceeds via cation exchange. The removal of cobalt ions by HMO appears to be endothermic and irreversible. The values of calculated {delta}G{sup 0} and {delta}S{sup 0} were -17.0 {+-} 3.0 kJ mol{sup -1} and (9.8 {+-} 0.2) x 10{sup -2} kJ K{sup -1} mol{sup -1} respectively, this indicates spontaneity of the process and the degree of freedom of ions is increased by adsorption. (orig.)

  19. Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles.

    Science.gov (United States)

    Pan, Bingcai; Xu, Jingsheng; Wu, Bing; Li, Zhigang; Liu, Xitong

    2013-08-20

    Here we fabricated a novel nanocomposite HZO-201, an encapsulated nanosized hydrous zirconium oxide (HZO) within a commercial porous polystyrene anion exchanger D201, for highly efficient defluoridation of water. HZO-201 exhibited much higher preference than activated alumina and D201 toward fluoride removal when competing anions (chloride, sulfate, nitrate, and bicarbonate) coexisted at relatively high levels. Fixed column adsorption indicated that the effective treatable volume of water with HZO-201 was about 7-14 times as much as with D201 irrespective of whether synthetic solution or groundwater was the feeding solution. In addition, HZO-201 could treat >3000 BV of the acidic effluent (around 3.5 mg F(-)/L) per run at pH 3.5, compared to only ∼4 BV with D201. The exhausted HZO-201 could be regenerated by NaOH solution for repeated use without any significant capacity loss. Such attractive performance of HZO-201 resulted from its specific hybrid structure, that is, the host anion exchanger D201 favors the preconcentration of fluoride ions inside the polymer based on the Donnan principle, and the encapsulated nanosized HZO exhibits preferable sequestration of fluoride through specific interaction, as further demonstrated by XPS spectra. The influence of solution pH, competitive anions, and contact time was also examined. The results suggested that HZO-201 has a great potential in efficient defluoridation of groundwater and acidic mine drainage.

  20. Removal of Pb(II) from aqueous solution by hydrous manganese dioxide: adsorption behavior and mechanism.

    Science.gov (United States)

    Xu, Meng; Wang, Hongjie; Di, Lei; Qu, Dan; Zhai, Yujia; Wang, Yili

    2013-03-01

    Hydrous manganese dioxide (HMO) synthesized by redox of potassium permanganate and hydrogen peroxide was used as an adsorbent for Pb(II) removal. The specific surface area, pore volume and BJH pore diameter of the HMO were 79.31 m2/g, 0.07 cm3/g and 3.38 nm, respectively. The adsorption equilibrium at 298 K could be well described by the Langmuir isotherm equation with qmax value of 352.55 mg/g. The negative values of deltaG and the positive values of deltaH and deltaS indicated the adsorption process was spontaneous and endothermic. The pseudo second-order equation could best fit the adsorption data. The value of the calculated activation energy for Pb(II) adsorption onto the HMO was 38.23 kJ/mol. The uptake of Pb(II) by HMO was correlated with increasing surface hydroxyl group content and the main adsorbed speciation was PbOH+. The final chemical state of Pb(II) on the surface of HMO was similar to PbO. HMO was a promising candidate for Pb(II) removal from aqueous solution.

  1. Superconducting magnetic separation of phosphate using freshly formed hydrous ferric oxide sols.

    Science.gov (United States)

    Li, Yiran; Li, Zhiyong; Xu, Fengyu; Zhang, Weimin

    2017-02-01

    Paramagnetic materials, such as ferric hydroxides, which are cost-effective and highly-efficient, have been little studied in relation to the magnetic separation process. In this study, freshly formed hydrous ferric oxide (HFO) sols were used to remove aqueous phosphate, followed by superconducting magnetic separation. The magnetization of HFO was determined to be 5.7 emu/g in 5.0 T. The particle size distributions ranged from 1 to 80 μm. Ferrihydrite was the primary mineral phase according to XRD analysis. Dissolved P (DP) was first adsorbed on HFO, and second, the P-containing HFO were separated by high gradient superconducting magnetic separation (HGSMS) to remove the Total P (TP). To obtain a P concentration of <0.05 mg/l in the effluent, 0.3, 1.0 and 1.3 g/l HFO were added to 2.5, 5 and 10 mg/l P solutions. The capacity of the HGSMS canister for capturing P-adsorbed HFO depends on the magnetic intensity and flow rate. In the 5.0 T HGSMS at a 1.0 cm/s flow rate, there were 75 column volumes in a single HGSMS cycle. The P concentration increased by 37.5 times after regeneration. Approximately 170 mg/l TP was measured in the backwash water.

  2. The effect of solids residence time on phosphorus adsorption to hydrous ferric oxide floc.

    Science.gov (United States)

    Conidi, Daniela; Parker, Wayne J

    2015-11-01

    The impact of solids residence time (SRT) on phosphate adsorption to hydrous ferric oxide (HFO) floc when striving for ultra-low P concentrations was characterized and an equilibrium model that describes the adsorption of P onto HFO floc of different ages was developed. The results showed that fresh HFO had a higher adsorption capacity in comparison to aged (2.8, 7.4, 10.8 and 22.8 days) HFO and contributed substantially to P removal at steady state. P adsorption onto HFO solids was determined to be best described by the Freundlich isotherm. P desorption from HFO solids was negligible supporting the hypothesis that chemisorption is the mechanism of P adsorption on HFO solids. A model that included the contribution of different classes of HFO solids (i.e. High, Low or Old, containing high concentration, low concentration or no active surface sites, respectively) to adsorption onto HFO from a sequencing batch reactor (SBR) system was found to adequately describe P adsorption onto HFO solids of different ages. From the model it was determined that the fractions of High and Low HFO decreased with SRT while the fraction of Old HFO increased with SRT. The transformation of High HFO to Low HFO did not limit the overall production of Old HFO and the fresh HFO solids contributed more to P removal at steady state than the aged solids.

  3. The application of Fe–Mn hydrous oxides based adsorbent for removing selenium species from water

    KAUST Repository

    Szlachta, Małgorzata

    2013-02-01

    In this study, the adsorptive removal of selenium(IV) and selenium(VI) from water by a newly developed ion exchange adsorbent, based on Fe(III) and Mn(III) hydrous oxides, was examined. This study was conducted to determine the influence of various operating parameters, such as initial anion concentration, contact time, adsorbent dose, pH, solution temperature, and the presence of competitive anions, on the treatment performance. The high Se(IV) adsorptive capacity of the adsorbent (up to 41.02. mg/g at pH 4) was due to its high affinity for selenite, as reflected in the fast rate of uptake (batch studies) and an efficient long-term removal (column experiments). Although adsorption of anions traditionally decreases as pH increases, the mixed adsorbent was capable of purifying large volumes of Se(IV)-containing water (at pH 7) to reach concentrations lower than 10 μg/L, which meets the European Commission standards. The presence of sulphate and carbonate did not influence Se(IV) adsorption. However, high phosphate and silicate concentrations may have decreased the removal efficiency of Se(IV). Data from the batch and column adsorption experiments were fitted with a number of approved models, which revealed the adsorption mechanism and allowed for a comparison of the results. © 2012 Elsevier B.V.

  4. Synthesis of self-ordered titanium oxide nanotubes by anodization of titanium

    Science.gov (United States)

    Krishnan, A. Yaadhav; Sivabalan, S.; Subhachandhar, S.; Balakrishnan, M.; Narayanan, R.

    2012-07-01

    Self-ordered arrays of titanium oxide nanotubes were prepared by anodization of Ti in sodium sulphate solution containing sodium fluoride. The dimensions of the nanotubes (diameter: 20-100 nm and length: 1000-1500 nm) could be tuned by changing the synthesis parameters. The as-anodized nanotubes showed amorphous structure which upon annealing at 500°C in oxygen atmosphere turned crystalline, according to XRD analysis. The pit morphologies show that pit initiation occurs due to NaF content in the electrolyte and nanotube formation starts after pit growth terminates.

  5. Electrochemical process of titanium extraction

    Institute of Scientific and Technical Information of China (English)

    CH. RVS. NAGESH; C. S. RAMACHANDRAN

    2007-01-01

    A wide variety of processes are being pursued by researchers for cost effective extraction of titanium metal. Electrochemical processes are promising due to simplicity and being less capital intensive. Some of the promising electrochemical processes of titanium extraction were reviewed and the results of laboratory scale experiments on electrochemical reduction of TiO2 granules were brought out. Some of the kinetic parameters of the reduction process were discussed while presenting the quality improvements achieved in the experimentation.

  6. Low cost titanium--myth or reality

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Paul C.; Hartman, Alan D.; Hansen, Jeffrey S.; Gerdemann, Stephen J.

    2001-01-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium, and titanium cost has prevented its use in non-aerospace applications including the automotive and heavy vehicle industries.

  7. Intermetallic communication in titanium(IV) ferrocenyldiketonates.

    Science.gov (United States)

    Dulatas, Lea T; Brown, Seth N; Ojomo, Edema; Noll, Bruce C; Cavo, Matthew J; Holt, Paul B; Wopperer, Matthew M

    2009-11-16

    A tetradentate bis(ferrocenyldiketonate) ligand, Fc(2)BobH(2), is prepared via Claisen condensation of acetylferrocene and 2,2'-biphenyldiacetyl chloride, and is metalated with titanium(IV) isopropoxide to give (Fc(2)Bob)Ti(O(i)Pr)(2) in good yield. The isopropoxide groups are replaced with di(4-nitrophenyl)phosphate groups on treatment with the corresponding acid, and with chlorides on treatment with trimethylsilyl chloride. Metathesis with catechol leads to the bis(o-hydroxyphenoxide) complex rather than the chelating catecholate complex. Hydrolysis selectively gives the mu-oxo trimer (Delta,Delta,Delta)/(Lambda,Lambda,Lambda)-{(Fc(2)Bob)Ti(mu-O)}(3). The solid-state structures of the mu-oxo trimer and the bis(o-hydroxyphenoxide) complex show that the ferrocene substituents are oriented proximal to the biphenyl backbone rather than pointed out toward the exogenous groups. The complexes show dramatic changes in color depending on the bound anions, ranging from the red isopropoxide (lambda(max) = 489 nm) to the green bis(di(4-nitrophenyl)phosphate) (lambda(max) = 653 nm). The oxidation potentials of the ferrocenes show modest shifts based on the titanium environment, but the redox potentials of the two ferrocenes are never separated by more than 60 mV. These results and those of density-functional theory (DFT) calculations indicate that the titanium interacts principally with the lowest unoccupied molecular orbital (LUMO) of the ferrocenyldiketonate and very little with its highest occupied molecular orbital (HOMO).

  8. Titanium in the geothermal industry

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R. [TIMET UK Ltd., Swansea (United Kingdom)

    2003-12-01

    Titanium resists seawater and brine at temperatures as high as 260{sup o}C, and is also resistant to corrosion by sulphur dioxide; hydrogen sulphide; and aqueous solutions of those gases. Titanium is fully resistant to corrosion and stress corrosion cracking in the standard NACE test solution containing 3000 ppm dissolved H{sub 2}S, 5% NACl, and 0.5% acetic acid (pH 3.5). To avoid pitting at temperatures above 80{sup o}C, titanium alloys containing nickel, molybdenum, palladium or ruthenium are used. Examples of equipment fabricated in titanium in order to withstand the corrosive fluids present in some geothermal installations are plate heat exchangers and well casing. By careful selection of the grade of titanium, material thickness (with no corrosion allowance) and fabrication method, an economic fabrication with low maintenance costs and high availability can be achieved. A prime example of the application of titanium in the geothermal industry is the use of Grade 29 well casing in the Salton Sea, USA, which enables the exploitation of a geothermal resource containing highly corrosive brine. Advances in production technology are being applied to reduce the cost of the casing pipe. This technology may enable the use of sea water injection to augment weak or depleted aquifers, or to generate steam from Hot Dry Rocks. (author)

  9. Deposition of silver nanoparticles on titanium surface for antibacterial effect

    Directory of Open Access Journals (Sweden)

    Liao Juan

    2010-04-01

    Full Text Available Liao Juan1, Zhu Zhimin3, Mo Anchun1,2, Li Lei1, Zhang Jingchao11State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, PR China; 2Department of Dental Implant, West China Stomatology Hospital, Sichuan University, Chengdu 610041, PR China; 3Department of Prosthodontics, West China Stomatology Hospital, Sichuan University, Chengdu 610041, PR ChinaAbstract: Microbial colonization on implanted devices and biofilm formation is a recurrent complication in implant surgery and may result in loss of implants. The aim of this study was to deposit silver nanoparticles on a titanium surface to obtain antibacterial properties. In the present study, we prepared a silver nanoparticle-modified titanium (Ti-nAg surface using silanization method. The morphology and chemical components of the Ti-nAg surface were characterized by scanning electron microscopy (SEM equipped with energy-dispersive spectroscopy (EDS. Two species of bacteria, Staphylococcus aureus and Escherichia coli, were utilized to test the antibacterial effect of the Ti-nAg treated surface. The SEM examination revealed that a small quantity of silver nanoparticles was sparsely deposited on the titanium surface. The diameter of these nanoparticles ranged from ten to several hundred nm. EDS analyses revealed that there was 4.26% of Ag present on the surface. After a 24-hour incubation, 94% of Staphylococcus aureus and over 95% of Escherichia coli had been killed on the Ti-nAg surface, and the SEM examination of anti-adhesive efficacy test showed that there were less bacteria attached to Ti-nAg surface than to a control surface of untreated Titanium. These data suggest that silver nanoparticle-modified titanium is a promising material with an antibacterial property that may be used as an implantable biomaterial.Keywords: nano-silver, titanium, antibacterial activity, silanization method

  10. 综合性实验-二氧化钛纳米片的制备及其光催化氧活性物种分析∗%A Comprehensive Experiment-Preparation of Titanium Dioxide Nanosheets and Analysis of Photocatalytic Oxygen Active Species

    Institute of Scientific and Technical Information of China (English)

    叶立群; 韩春秋; 马照宇; 刘欣欣; 李珏; 谢海泉; 黄子煊

    2016-01-01

    A comprehensive chemical experiment, preparation of titanium dioxide ( TiO2 ) nanosheets and analysis of photocatalytic oxygen active species, was demonstrated. TiO2 nanosheets photocatalytic material can be prepared through hydrothermal synthesis with HF as surface control agent. It was characterized by X-ray powder diffraction ( XRD ) and transmission electron microscope ( TEM ) . Finally, the photocatalytic activities of oxygen active species ( superoxide radical and hydroxy radical) generation over TiO2 were tested under the full spectrum irradiation with UV-vis spectrometer and fluorescence spectrometer. This experiment connected material preparation, application and mechanism study of nanomaterials. It is beneficial to improve student’s practice ability and comprehensive ability for inorganic chemistry, materials chemistry and physical chemistry, and cultivate their innovative ability.%介绍了一个化学综合性实验:二氧化钛纳米片的制备及其光催化氧活性物种分析。该实验以氢氟酸为表面控制剂,合成二氧化钛纳米片。采用分子探针的方法,分别通过紫外可见光谱和荧光光谱分析光催化过程中的超氧自由基和羟基自由基。本设计实验贯穿纳米材料的合成、应用、机理分析,十分有利于促进学生对纳米技术和催化技术的系统认识以及无机化学、材料化学、物理化学知识的综合运用,激发学生的创新能力。

  11. Initial bacterial adhesion on resin, titanium and zirconia in vitro

    OpenAIRE

    Lee, Byung-Chul; Jung, Gil-Yong; Kim, Dae-Joon; Han, Jung-Suk

    2011-01-01

    PURPOSE The aim of this in vitro study was to investigate the adhesion of initial colonizer, Streptococcus sanguis, on resin, titanium and zirconia under the same surface polishing condition. MATERIALS AND METHODS Specimens were prepared from Z-250, cp-Ti and 3Y-TZP and polished with 1 µm diamond paste. After coating with saliva, each specimen was incubated with Streptococcus sanguis. Scanning electron microscope, crystal violet staining and measurement of fluorescence intensity resulting fro...

  12. Preparation and biocompatibility study of medical micro-arc oxidation coating on titanium alloy%医用钛合金微弧氧化膜的制备及其生物相容性研究

    Institute of Scientific and Technical Information of China (English)

    王凤彪; 狄士春

    2011-01-01

    利用微弧氧化技术在Ti合金表面制备了医用羟基磷灰石(HA)膜,研究了HA膜在模拟体液中的生物相容性,通过SEM观察了HA膜在模拟体液中浸泡不同时间的表面形貌,并利用EDs测试了HA膜浸泡前后的Ca、P原子分数.结果表明,HA膜在模拟体液中浸泡后,体液的pH变化不大,而经过溶解-重结晶,新生成的HA晶粒发育更完整,更利于膜层与骨的结合;HA膜的钙磷比在浸泡前为1.97,浸泡20 d后下降为1.66,接近于人体骨骼标准.%A medicinal hydroxyapatite (HA) coating was fabricated on the surface of titanium alloy with micro-arc oxidation process, and the biocompatibility of the HA coating in simulated body fluid (SBF) was studied. The surface morphology of the HA coating immersed in SBF for different time was observed by SEM, and the atomic fractions of Ca and P in HA coating before and after immersion were determined by EDS. Results proved that the pH of SBF is slightly changed after immersion of HA coating in it, and the regenerated HA grains grow more completely during dissolution-recrystallization, resulting in favorable combination of the coating with bones. Ca/P ratio of the HA coating was decreased from 1.97 before immersion to 1.66 after immersion for 20 d, close to human body bones standard.

  13. Interfacial oxidations of pure titanium and titanium alloys with investments.

    Science.gov (United States)

    Ban, S; Watanabe, T; Mizutani, N; Fukui, H; Hasegawa, J; Nakamura, H

    2000-12-01

    External oxides of a commercially pure titanium (cpTi), Ti6Al4V alloy, and an experimental beta-type titanium alloy (Ti 53.4 wt%, Nb 29 wt%, Ta 13 wt%, and Zr 4.6 wt%) were characterized after heating to 600, 900, 1150, and 1400 degrees C in contact with three types of investments (alumina cement, magnesia cement, and phosphate-bonded) in air. XRD studies demonstrated that MgO, Li2TiO3 and/or Li2Ti3O7 were formed through reactions with the metal and the constituents in the magnesia cement-investment after heating to 900, 1150, and 1400 degrees C. Except for these conditions, TiO2 (rutile) was only formed on cpTi. For titanium alloys, the other components apart from Ti also formed simple and complex oxides such as Al2O3 and Al2TiO5 on Ti6Al4V, and Zr0.25Ti0.75Nb2O7 on the beta-type titanium alloy. However, no oxides containing V or Ta were formed. These results suggest that the constituents of titanium alloys reacted with the investment oxides and atmospheric oxygen to form external oxides due to the free energy of oxide formation and the concentration of each element on the metal surface.

  14. Cell response of anodized nanotubes on titanium and titanium alloys.

    Science.gov (United States)

    Minagar, Sepideh; Wang, James; Berndt, Christopher C; Ivanova, Elena P; Wen, Cuie

    2013-09-01

    Titanium and titanium alloy implants that have been demonstrated to be more biocompatible than other metallic implant materials, such as Co-Cr alloys and stainless steels, must also be accepted by bone cells, bonding with and growing on them to prevent loosening. Highly ordered nanoporous arrays of titanium dioxide that form on titanium surface by anodic oxidation are receiving increasing research interest due to their effectiveness in promoting osseointegration. The response of bone cells to implant materials depends on the topography, physicochemistry, mechanics, and electronics of the implant surface and this influences cell behavior, such as adhesion, proliferation, shape, migration, survival, and differentiation; for example the existing anions on the surface of a titanium implant make it negative and this affects the interaction with negative fibronectin (FN). Although optimal nanosize of reproducible titania nanotubes has not been reported due to different protocols used in studies, cell response was more sensitive to titania nanotubes with nanometer diameter and interspace. By annealing, amorphous TiO2 nanotubes change to a crystalline form and become more hydrophilic, resulting in an encouraging effect on cell behavior. The crystalline size and thickness of the bone-like apatite that forms on the titania nanotubes after implantation are also affected by the diameter and shape. This review describes how changes in nanotube morphologies, such as the tube diameter, the thickness of the nanotube layer, and the crystalline structure, influence the response of cells.

  15. Internal adaptation of cast titanium crowns

    Directory of Open Access Journals (Sweden)

    Sicknan Soares da Rocha

    2007-08-01

    Full Text Available As the adaptation of titanium crowns obtained by Rematitan Plus investment, specific for titanium, is not recognized to be suitable, this study evaluated the effect of the concentration of the specific liquid and the temperature of the mold of investments on the internal misfit of crowns cast on commercially pure titanium. Individual dies of epoxy resin were obtained, representing teeth prepared for full-crown restoration with a 6-degree axial surface convergence angle and shoulder (1.0 mm. For the waxing of each crown, a ring-shaped stainless steel matrix (8.0mm internal diameter; 7.5 mm height was adapted above the individual dies of epoxy resin. The Rematian Plus investment was mixed according to the manufacturer's instructions using two different concentrations of the specific liquid: 100%, 75%. Casting was performed in a Discovery Plasma Ar-arc vacuum-pressure casting machine with molds at temperatures of 430ºC, 515ºC and 600ºC. The crowns were cleaned individually in a solution (1% HF + 13% HNO3 for 10 min using a ultrasonic cleaner, with no internal adaptations, and luted with zinc phosphate cement under a 5 kg static load. The crown and die assemblies were embedded in resin and sectioned longitudinally. The area occupied by cement was observed using stereoscopic lens (10X and measured by the Leica Qwin image analysis system (mm². The data for each experimental condition (n=8 were analyzed by Kruskal-Wallis non-parametric test (á=0.05. The results showed that liquid dilution and the increase in mold temperature did not significantly influence the levels of internal fit of the cast titanium crowns. The lowest means (±SD of internal misfit were obtained for the 430ºC/100%: (7.25 mm² ±1.59 and 600ºC/100% (8.8 mm² ±2.25 groups, which presented statistically similar levels of internal misfit.

  16. Titanium nanostructures for biomedical applications

    Science.gov (United States)

    Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M.

    2015-02-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  17. Arsenate sorption by hydrous ferric oxide incorporated onto granular activated carbon with phenol formaldehyde resins coating.

    Science.gov (United States)

    Zhuang, J M; Hobenshield, E; Walsh, T

    2008-04-01

    A simple and effective method was developed using phenol formaldehyde (PF) resins to immobilize hydrous ferric oxide (HFO) onto granular activated carbon (GAC). The resulting sorbent possesses advantages for both the ferric oxide and the GAC, such as a great As-affinity of ferric oxide, large surface area of GAC, and enhanced physical strength. The studies showed that within one hour this sorbent was able to remove 85% of As(V) from water containing an initial As(V) concentration of 1.74 mg l(-1). The As(V) adsorption onto the sorbent was found to follow a pseudo-second order kinetics model. The adsorption isotherms were interpreted in terms of the Langmuir and Freundlich models. The equilibrium data fitted very well to both models. Column tests showed that this sorbent was able to achieve residual concentrations of As(V) in a range of 0.1-2.0 microg l(-1) while continuously treating about 180 bed volume (BV, 130 ml-BV) of arsenate water with an initial As(V) concentration of 1886 microg l(-1) at a filtration rate of 13.5 ml min(-1), i.e., an empty bed contact time (EBCT) of 9.6 min and a gram sorbent contact time (GSCT) of 0.15 min. After passing 635 BV of arsenate water, the exhausted sorbent was then tested by the Toxicity Characteristic Leaching Procedure (TCLP, US EPA Method 1311) test, and classified as non-hazardous for disposal. Hence, this HFO-PF-coated GAC has the capability to remove As(V) from industrial wastewater containing As(V) levels of about 2 mg l(-1).

  18. Partitioning of protactinium, uranium, thorium and other trace elements between columbite and hydrous silicate melt

    Science.gov (United States)

    Huang, F.; Schmidt, M. W.; Günther, D.; Eikenberg, J.

    2009-12-01

    U-series disequilibria are a unique powerful tool to constrain the time-scales and processes of magmatism in mid-ocean ridge, intra-plate, and convergent margin settings. 235U-231Pa is one of the important parent-daughter pairs (231Pa half life = 33 kyr) because protactinium is normally much more incompatible than U during magmatism and thus the ubiquitously observed 231Pa excess in young igneous rocks most likely reflects melting processes. However, because of the extreme incompatibility of protactinium in most silicate minerals (mineral/meltDPa determined at the permissible Pa doping level of 10 ppm (bulk). Experiments were run in a piston cylinder apparatus at 0.5 GPa and 1115 oC using Pt double capsules with NNO or FMQ as external fO2 buffers. The starting material is a hydrous per-aluminous granitic composition, doped with Pa solution in the Paul Scherrer Institute and also contains other trace elements including U, Th, REE, Zr, Hf, W, Mo, Ti, V, Ge, P, and Sn. Experiments employing an oscillating rather than constant temperature have produced columbite crystals up to 30 μm and large areas of crystal-free water-saturated silicate melts. Columbite/silicate melt partition coefficients of non-radioactive trace elements are presently measured by LA-ICP-MS, and Pa will be added as a next stage. The result will give the oxidation state of Pa at oxygen fugacities of the mantle and crust, and have important implications for the partitioning of Pa between silicate minerals and melt and on our understanding of 231Pa-235U disequilibrium in natural magmatic systems.

  19. Surface complexation modeling of Cu(II adsorption on mixtures of hydrous ferric oxide and kaolinite

    Directory of Open Access Journals (Sweden)

    Schaller Melinda S

    2008-09-01

    Full Text Available Abstract Background The application of surface complexation models (SCMs to natural sediments and soils is hindered by a lack of consistent models and data for large suites of metals and minerals of interest. Furthermore, the surface complexation approach has mostly been developed and tested for single solid systems. Few studies have extended the SCM approach to systems containing multiple solids. Results Cu adsorption was measured on pure hydrous ferric oxide (HFO, pure kaolinite (from two sources and in systems containing mixtures of HFO and kaolinite over a wide range of pH, ionic strength, sorbate/sorbent ratios and, for the mixed solid systems, using a range of kaolinite/HFO ratios. Cu adsorption data measured for the HFO and kaolinite systems was used to derive diffuse layer surface complexation models (DLMs describing Cu adsorption. Cu adsorption on HFO is reasonably well described using a 1-site or 2-site DLM. Adsorption of Cu on kaolinite could be described using a simple 1-site DLM with formation of a monodentate Cu complex on a variable charge surface site. However, for consistency with models derived for weaker sorbing cations, a 2-site DLM with a variable charge and a permanent charge site was also developed. Conclusion Component additivity predictions of speciation in mixed mineral systems based on DLM parameters derived for the pure mineral systems were in good agreement with measured data. Discrepancies between the model predictions and measured data were similar to those observed for the calibrated pure mineral systems. The results suggest that quantifying specific interactions between HFO and kaolinite in speciation models may not be necessary. However, before the component additivity approach can be applied to natural sediments and soils, the effects of aging must be further studied and methods must be developed to estimate reactive surface areas of solid constituents in natural samples.

  20. Geochemical signatures of thermochemical sulfate reduction in controlled hydrous pyrolysis experiments

    Science.gov (United States)

    Zhang, T.; Ellis, G.S.; Walters, C.C.; Kelemen, S.R.; Wang, K.-s.; Tang, Y.

    2008-01-01

    A series of gold tube hydrous pyrolysis experiments was conducted in order to investigate the effect of thermochemical sulfate reduction (TSR) on gas generation, residual saturated hydrocarbon compositional alteration, and solid pyrobitumen formation. The intensity of TSR significantly depends on the H2O/MgSO4 mole ratio, the smaller the ratio, the stronger the oxidizing conditions. Under highly oxidizing conditions (MgSO4/hydrocarbon wt/wt 20/1 and hydrocarbon/H2O wt/wt 1/1), large amounts of H2S and CO2 are generated indicating that hydrocarbon oxidation coupled with sulfate reduction is the dominant reaction. Starting with a mixture of C21-C35 n-alkanes, these hydrocarbons are consumed totally at temperatures below the onset of hydrocarbon thermal cracking in the absence of TSR (400 ??C). Moreover, once the longer chain length hydrocarbons are oxidized, secondarily formed hydrocarbons, even methane, are oxidized to CO2. Using whole crude oils as the starting reactants, the TSR reaction dramatically lowers the stability of hydrocarbons leading to increases in gas dryness and gas/oil ratio. While their concentrations decrease, the relative distributions of n-alkanes do not change appreciably from the original composition, and consequently, are non-diagnostic for TSR. However, distinct molecular changes related to TSR are observed, Pr/n-C17 and Ph/n-C18 ratios decrease at a faster rate under TSR compared to thermal chemical alteration (TCA) alone. TSR promotes aromatization and the incorporation of sulfur and oxygen into hydrocarbons leading to a decrease in the saturate to aromatic ratio in the residual oil and in the generation of sulfur and oxygen rich pyrobitumen. These experimental findings could provide useful geochemical signatures to identify TSR in settings where TSR has occurred in natural systems. ?? 2008 Elsevier Ltd. All rights reserved.

  1. Removal of arsenite and arsenate using hydrous ferric oxide incorporated into naturally occurring porous diatomite.

    Science.gov (United States)

    Jang, Min; Min, Soo-Hong; Kim, Tak-Hyun; Park, Jae Kwang

    2006-03-01

    In this study, a simplified and effective method was tried to immobilize iron oxide onto a naturally occurring porous diatomite. Experimental resultsfor several physicochemical properties and arsenic edges revealed that iron oxide incorporated into diatomite was amorphous hydrous ferric oxide (HFO). Sorption trends of Fe (25%)-diatomite for both arsenite and arsenate were similar to those of HFO, reported by Dixit and Hering (Environ. Sci. Technol. 2003, 37, 4182-4189). The pH at which arsenite and arsenate are equally sorbed was 7.5, which corresponds to the value reported for HFO. Judging from the number of moles of iron incorporated into diatomite, the arsenic sorption capacities of Fe (25%)-diatomite were comparable to or higher than those of the reference HFO. Furthermore, the surface complexation modeling showed that the constants of [triple bond]SHAsO4- or [triple bond]SAsO4(2-) species for Fe (25%)-diatomite were larger than those reference values for HFO or goethite. Larger differences in constants of arsenate surface species might be attributed to aluminum hydroxyl ([triple bond]Al-OH) groups that can work better for arsenate removal. The pH-controlled differential column batch reactor (DCBR) and small-scale column tests demonstrated that Fe (25%)-diatomite had high sorption speeds and high sorption capacities compared to those of a conventional sorbent (AAFS-50) that is known to be the first preference for arsenic removal performance in Bangladesh. These results could be explained by the fact that Fe (25%)-diatomite contained well-dispersed HFO having a great affinity for arsenic species and well-developed macropores as shown by scanning electron microscopy (SEM) and pore size distribution (PSD) analyses.

  2. Hydrous Na-garnet from Garnet Ridge; products of mantle metasomatism underneath the Colorado Plateau

    Science.gov (United States)

    Sakamaki, Kunihiko; Sato, Yuto; Ogasawara, Yoshihide

    2016-12-01

    This is the first report on amphibole exsolution in pyrope from the Colorado Plateau. Pyrope crystals delivered from mantle depths underneath the Colorado Plateau by kimberlitic volcanism at 30 Ma were collected at Garnet Ridge, northern Arizona. The garnet grains analyzed in this study occur as discrete crystals (without adjacent rock matrix) and are classified into two major groups, Cr-rich pyrope and Cr-poor pyrope. The Cr-poor pyrope group is divided into four subgroups based on exsolved phases: amphibole lamella type, ilmenite lamella type, dense lamellae type, and clinopyroxene/amphibole lamellae type. Exsolved amphibole occurs in amphibole lamella type, dense lamellae type, and clinopyroxene/amphibole lamellae type of Cr-poor pyrope. The amphibole crystals tend to have preferred orientations in their garnet hosts and occur as monomineralic hexagonal or rhombic prisms and tablets, and as multimineralic needles or blades with other exsolved phases. Exsolved amphibole has pargasitic compositions (Na2O up to 1.6 apfu based on 23 oxygen). Garnet host crystals that have undergone amphibole exsolution have low OH contents (2-42 ppmw H2O) compared to garnets that do not have amphibole lamellae (up to 115 ppmw H2O). The low OH contents of garnets hosting amphibole lamellae suggest loss of OH from garnet during amphibole exsolution. Amphibole exsolution from pyrope resulted from breakdown of a precursor "hydrous Na-garnet" composition (Mg,Na+ x)3(Al2 - x, Mgx)2Si3O12 - 2x(OH)2x. Exsolution of amphibole and other phases probably occurred during exhumation to depths shallower than 100 km prior to volcanic eruption.

  3. Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure

    Science.gov (United States)

    Pommier, A.; Gaillard, F.; Pichavant, M.; Scaillet, B.

    2008-05-01

    Quantitative interpretation of MT anomalies in volcanic regions requires laboratory measurements of electrical conductivities of natural magma compositions. The electrical conductivities of three lava compositions from Mount Vesuvius (Italy) have been measured using an impedance spectrometer. Experiments were conducted on both glasses and melts between 400 and 1300°C, at both ambient pressure in air and high pressures (up to 400 MPa). Both dry and hydrous (up to 5.6 wt % H2O) melt compositions were investigated. A change of the conduction mechanism corresponding to the glass transition was systematically observed. The conductivity data were fitted by sample-specific Arrhenius laws on either side of Tg. The electrical conductivity increases with temperature and is higher in the order tephrite, phonotephrite to phonolite. For the three investigated compositions, increasing pressure decreases the conductivity, although the effect of pressure is relatively small. The three investigated compositions have similar activation volumes (ΔV = 16-24 cm3 mol-1). Increasing the water content of the melt increases the conductivity. Comparison of activation energies (Ea) from conductivity and sodium diffusion and use of the Nernst-Einstein relation allow sodium to be identified as the main charge carrier in our melts and presumably also in the corresponding glasses. Our data and those of previous studies highlight the correlation between the Arrhenius parameters Ea and σ0. A semiempirical method allowing the determination of the electrical conductivity of natural magmatic liquids is proposed, in which the activation energy is modeled on the basis of the Anderson-Stuart model, σ0 being obtained from the compensation law and ΔV being fitted from our experimental data. The model enables the electrical conductivity to be calculated for the entire range of melt compositions at Mount Vesuvius and also satisfactorily predicts the electrical response of other melt compositions

  4. 多孔钛片载薄膜型光催化剂的制备与性质%PREPARATION AND PROPERTIES OF THIN PHOTOCATALYSTS FILMS ON POROUS TITANIUM PLATE

    Institute of Scientific and Technical Information of China (English)

    张渊明; 成英之

    2001-01-01

    The TiO2 films were prepared by sol-gel method on porous titaniumplate,and the products had been characterized by XRD,SEM,UV-Vis.spectra.The results showed that TiO2 was of catalytic actixity and the films absorbed UV and visible light intensively.

  5. Plasma quench production of titanium from titanium tetrachloride

    Energy Technology Data Exchange (ETDEWEB)

    Sears, J.W.

    1994-10-01

    This project, Plasma Quench Production of Titanium from Titanium Tetrachloride, centers on developing a technique for rapidly quenching the high temperature metal species and preventing back reactions with the halide. The quenching technique chosen uses the temperature drop produced in a converging/diverging supersonic nozzle. The rapid quench provided by this nozzle prevents the back reaction of the halide and metal. The nature of the process produces nanosized particles (10 to 100 nm). The powders are collected by cyclone separators, the hydrogen flared, and the acid scrubbed. Aluminum and titanium powders have been produced in the laboratory-scale device at 1 gram per hour. Efforts to date to scale up this process have not been successful.

  6. Plasmonic titanium nitride nanostructures for perfect absorbers

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Kinsey, Nathaniel

    2013-01-01

    We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material...

  7. Influence of sulfide concentration on the corrosion behavior of titanium in a simulated oral environment.

    Science.gov (United States)

    Harada, Rino; Takemoto, Shinji; Kinoshita, Hideaki; Yoshinari, Masao; Kawada, Eiji

    2016-05-01

    This study assessed the corrosion behavior of titanium in response to sulfide by determining the effects of sulfide concentration and pH over immersion period. Corrosion was evaluated through changes in color, glossiness, surface characterization, and titanium release. Sulfide solutions were prepared in 3 different concentrations with Na2S, each in pH unadjusted (sulfide-alkaline) and pH adjusted to 7.5 (sulfide-neutral). Titanium discoloration increased and glossiness decreased as sulfide concentration and immersion period increased in sulfide-alkaline solutions. Coral-like complexes were observed on the surface of these specimens, which became more pronounced as concentration increased. Small amounts of titanium release were detected in sulfide-alkaline solutions; however, this was not affected by immersion periods. Corrosion was indicated through considerable surface oxidation suggesting the formation of a thick oxide layer. No significant changes in color and glossiness, or titanium release were indicated for titanium specimens immersed in sulfide-neutral solutions indicating that pH had a significant effect on corrosion. Our findings suggest that a thick oxide layer on the titanium surface was formed in sulfide-alkaline solutions due to excessive oxidation.

  8. Effect of alkali treatment on surface morphology of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K. J., E-mail: gd130056@siswa.uthm.edu.my; Wahab, M. A. A., E-mail: cd110006@siswa.uthm.edu.my; Mahmod, S., E-mail: cd110201@siswa.uthm.edu.my; Idris, M. I., E-mail: izwana@uthm.edu.my; Abdullah, H. Z., E-mail: hasan@uthm.edu.my [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

    2015-07-22

    Alkali and heat treatments were first introduced by Kim et al. to prepare a bioactive surface on titanium. This method has been proven very effective and widely used in other studies to promote titanium osteointegration. This study aims to investigate further the effect of alkali treatment on surface morphology of high purity titanium. High purity titanium foils were immersed in NaOH aqueous solutions of 0.5 M, 5 M and 15 M at 60°C and 80 °C for 1, 3 and 7 days. The surface morphology was examined using Field Emission Scanning Electron Microscope (FESEM). The obtained phases were analysed using Fourier Transform Infrared Spectroscopy (FTIR) in the spectra range of 4000-600 cm{sup −1} at 4 cm{sup −1} resolution and 50 scans. At the same soaking temperature and soaking time, a thicker porous network was observed with increasing concentration of NaOH. At the same soaking temperature, a much porous structure was observed with increasing soaking time. At constant alkali concentration, more homogenously distributed porous surface structure was observed with increasing soaking temperature.

  9. Titanium complex formation of organic ligands in titania gels.

    Science.gov (United States)

    Nishikiori, Hiromasa; Todoroki, Kenta; Setiawan, Rudi Agus; Teshima, Katsuya; Fujii, Tsuneo; Satozono, Hiroshi

    2015-01-27

    Thin films of organic ligand-dispersing titania gels were prepared from titanium alkoxide sols containing ligand molecules by steam treatment without heating. The formation of the ligand-titanium complex and the photoinduced electron transfer process in the systems were investigated by photoelectrochemical measurements. The complex was formed between the 8-hydroxyquinoline (HQ) and titanium species, such as the titanium ion, on the titania nanoparticle surface through the oxygen and nitrogen atoms of the quinolate. A photocurrent was observed in the electrodes containing the complex due to the electron injection from the LUMO of the complex into the titania conduction band. A bidentate ligand, 2,3-dihydroxynaphthalene (DHN), formed the complex on the titania surface through dehydration between its two hydroxyl groups of DHN and two TiOH groups of the titania. The electron injection from the HOMO of DHN to the titania conduction band was observed during light irradiation. This direct electron injection was more effective than the two-step electron injection.

  10. Fast and Straightforward Synthesis of Luminescent Titanium(IV Dioxide Quantum Dots

    Directory of Open Access Journals (Sweden)

    Václav Štengl

    2017-01-01

    Full Text Available The nucleus of titania was prepared by reaction of solution titanium oxosulphate with hydrazine hydrate. These titania nuclei were used for titania quantum dots synthesis by a simple and fast method. The prepared titanium(IV dioxide quantum dots were characterized by measurement of X-ray powder diffraction (XRD, X-ray photoelectron spectroscopy (XPS, atomic force microscopy (AFM, high-resolution electron microscopy (HRTEM, and selected area electron diffraction (SAED. The optical properties were determined by photoluminescence (PL spectra. The prepared titanium(IV dioxide quantum dots have the narrow range of UV excitation (365–400 nm and also a close range of emission maxima (450–500 nm.

  11. Synthesis and characterization of ester and amide derivatives of titanium(IV) carboxymethylphosphonate

    Science.gov (United States)

    Melánová, Klára; Beneš, Ludvík; Trchová, Miroslava; Svoboda, Jan; Zima, Vítězslav

    2013-06-01

    A set of layered ester and amide derivatives of titanium(IV) carboxymethylphosphonate was prepared by solvothermal treatment of amorphous titanium(IV) carboxymethylphosphonate with corresponding 1-alkanols, 1,ω-alkanediols, 1-aminoalkanes, 1,ω-diaminoalkanes and 1,ω-amino alcohols and characterized by powder X-ray diffraction, IR spectroscopy and thermogravimetric analysis. Whereas alkyl chains with one functional group form bilayers tilted to the layers, 1,ω-diaminoalkanes and most of 1,ω-alkanediols form bridges connecting the adjacent layers. In the case of amino alcohols, the alkyl chains form bilayer and either hydroxyl or amino group is used for bonding. This simple method for the synthesis of ester and amide derivatives does not require preparation of acid chloride derivative as a precursor or pre-intercalation with alkylamines and can be used also for the preparation of ester and amide derivatives of titanium carboxyethylphosphonate and zirconium carboxymethylphosphonate.

  12. Photoelectrochemical Activity of Graphene Supported Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Rodrigo A. Segura

    2016-01-01

    Full Text Available Thin TiO2 layers grown over few-layers graphene were prepared in order to evaluate the photoinduced chemical response of this composite. Graphene was grown over copper foils by decomposition of acetylene in a standard chemical vapor deposition apparatus. Graphene was subsequently transferred to a silicon substrate, on which the titanium dioxide was grown to form a TiO2/FLG/SiO2/Si composite. The formation of each layered material was verified by Raman spectroscopy and the morphology was characterized by scanning electron microscopy. The photoelectrochemical evaluation of the resulting composite, using it as a photoanode, was accomplished with a potentiostat, a solar simulator, and a three-electrode configuration. The electrochemical response indicates that the new composite preserves the average photoactive properties of the base material and at the same time shows a singular transient response where explicit benefits seem to be derived from the FLG/TiO2 combination.

  13. Multifractal characteristics of titanium nitride thin films

    Directory of Open Access Journals (Sweden)

    Ţălu Ştefan

    2015-09-01

    Full Text Available The study presents a multi-scale microstructural characterization of three-dimensional (3-D micro-textured surface of titanium nitride (TiN thin films prepared by reactive DC magnetron sputtering in correlation with substrate temperature variation. Topographical characterization of the surfaces, obtained by atomic force microscopy (AFM analysis, was realized by an innovative multifractal method which may be applied for AFM data. The surface micromorphology demonstrates that the multifractal geometry of TiN thin films can be characterized at nanometer scale by the generalized dimensions Dq and the singularity spectrum f(α. Furthermore, to improve the 3-D surface characterization according with ISO 25178-2:2012, the most relevant 3-D surface roughness parameters were calculated. To quantify the 3-D nanostructure surface of TiN thin films a multifractal approach was developed and validated, which can be used for the characterization of topographical changes due to the substrate temperature variation.

  14. Lightweight Protective Coatings For Titanium Alloys

    Science.gov (United States)

    Wiedemann, Karl E.; Taylor, Patrick J.; Clark, Ronald K.

    1992-01-01

    Lightweight coating developed to protect titanium and titanium aluminide alloys and titanium-matrix composite materials from attack by environment when used at high temperatures. Applied by sol-gel methods, and thickness less than 5 micrometers. Reaction-barrier and self-healing diffusion-barrier layers combine to protect titanium alloy against chemical attack by oxygen and nitrogen at high temperatures with very promising results. Can be extended to protection of other environmentally sensitive materials.

  15. Anodic growth of titanium dioxide nanostructures

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a method of producing nanostructures of titanium dioxide (TiO 2 ) by anodisation of titanium (Ti) in an electrochemical cell, comprising the steps of: immersing a non-conducting substrate coated with a layer of titanium, defined as the anode, in an electrolyte solution...... an electrical contact to the layer of titanium on the anode, where the electrical contact is made in the electrolyte solution...

  16. Study on preparation of multi-element modified titanium dioxide and performances thereof%多元改性二氧化钛的制备及其性能研究

    Institute of Scientific and Technical Information of China (English)

    田永淑; 马思源; 侯润欣

    2012-01-01

    Fe-Sm-Yb-TiO2 photocatalysts were synthesized by immersion method.With phenol as degradation target,the influencing factors of catalyst performance and the methods of improving the performance of catalyst were discussed.A preliminary discussion about the mechanism of co-doping improving photocatalytic activity of TiO2 was also made by means of FE-SEM,XRD,and UV-Vis etc..Experiments showed that the most suitable conditions were as follow:when the mass concentration of phenol wastewater was 20 mg/L (normal temperature and pressure), the pH was 7, the dosage of catalyst was 2.5 g/L, the calcining temperature was 550 °C ,and the doping rate of Fe,Sm,and Yb were all 0.5%(mass fraction) ,the degradation rate was up to 90% under the UV light for 4 h.The modified titanium dioxide catalyst also demonstrated fine activity under the visible light.%采用浸渍法制备了铁-钐-镱-二氧化钛改性光催化剂,以苯酚为目标降解物,讨论了影响光催化剂性能的因素和提高光催化剂性能的方法.通过FE-SEM、XRD、UV-Vis等表征手段初步探讨了共掺杂提高二氧化钛光催化活性的机理.实验结果表明:常温、常压下,质量浓度为20 mg/L的苯酚废水(pH=7),当催化剂加入量为2.5 g/L、焙烧温度为550℃、金属(铁、钐、镱)掺杂量各为0.5%(质量分数)时,经4h紫外光照其对苯酚的去除率可达90%以上.改性后的二氧化钛光催化剂在可见光下也能够显示出很好的活性.

  17. Hydrous ferric oxide precipitation in the presence of nonmetabolizing bacteria: Constraints on the mechanism of a biotic effect

    Science.gov (United States)

    Rancourt, Denis G.; Thibault, Pierre-Jean; Mavrocordatos, Denis; Lamarche, Gilles

    2005-02-01

    We have used room temperature and cryogenic 57Fe Mössbauer spectroscopy, powder X-ray diffraction (pXRD), mineral magnetometry, and transmission electron microscopy (TEM), to study the synthetic precipitation of hydrous ferric oxides (HFOs) prepared either in the absence (abiotic, a-HFO) or presence (biotic, b-HFO) of nonmetabolizing bacterial cells ( Bacillus subtilis or Bacillus licheniformis, ˜10 8 cells/mL) and under otherwise identical chemical conditions, starting from Fe(II) (10 -2, 10 -3, or 10 -4 mol/L) under open oxic conditions and at different pH (6-9). We have also performed the first Mössbauer spectroscopy measurements of bacterial cell wall ( Bacillus subtilis) surface complexed Fe, where Fe(III) (10 -3.5-10 -4.5 mol/L) was added to a fixed concentration of cells (˜10 8 cells/mL) under open oxic conditions and at various pH (2.5-4.3). We find that non-metabolic bacterial cell wall surface complexation of Fe is not passive in that it affects Fe speciation in at least two ways: (1) it can reduce Fe(III) to sorbed-Fe 2+ by a proposed steric and charge transfer effect and (2) it stabilizes Fe(II) as sorbed-Fe 2+ against ambient oxidation. The cell wall sorption of Fe occurs in a manner that is not compatible with incorporation into the HFO structure (different coordination environment and stabilization of the ferrous state) and the cell wall-sorbed Fe is not chemically bonded to the HFO particle when they coexist (the sorbed Fe is not magnetically polarized by the HFO particle in its magnetically ordered state). This invalidates the concept that sorption is the first step in a heterogeneous nucleation of HFO onto bacterial cell walls. Both the a-HFOs and the b-HFOs are predominantly varieties of ferrihydrite (Fh), often containing admixtures of nanophase lepidocrocite (nLp), yet they show significant abiotic/biotic differences: Biotic Fh has less intraparticle (including surface region) atomic order (Mössbauer quadrupole splitting), smaller primary

  18. Evaluating Re-Os systematics in organic-rich sedimentary rocks in response to petroleum generation using hydrous pyrolysis experiments

    Science.gov (United States)

    Rooney, A.D.; Selby, D.; Lewan, M.D.; Lillis, P.G.; Houzay, J.-P.

    2012-01-01

    Successful application of the 187Re–187Os geochronometer has enabled the determination of accurate and precise depositional ages for organic-rich sedimentary rocks (ORS) as well as establishing timing constraints of petroleum generation. However, we do not fully understand the systematics and transfer behaviour of Re and Os between ORS and petroleum products (e.g., bitumen and oil). To more fully understand the behaviour of Re–Os systematics in both source rocks and petroleum products we apply hydrous pyrolysis to two immature hydrocarbon source rocks: the Permian Phosphoria Formation (TOC = 17.4%; Type II-S kerogen) and the Jurassic Staffin Formation (TOC = 2.5%; Type III kerogen). The laboratory-based hydrous pyrolysis experiments were carried out for 72 h at 250, 300, 325 and 350 °C. These experiments provided us with whole rock, extracted rock and bitumen and in some cases expelled oil and asphaltene for evaluation of Re–Os isotopic and elemental abundance. The data from these experiments demonstrate that the majority (>95%) of Re and Os are housed within extracted rock and that thermal maturation does not result in significant transfer of Re or Os from the extracted rock into organic phases. Based on existing thermodynamic data our findings suggest that organic chelating sites have a greater affinity for the quadravalent states of Re and Os than sulphides. Across the temperature range of the hydrous pyrolysis experiments both whole rock and extracted rock 187Re/188Os ratios show small variations (3.3% and 4.7%, for Staffin, respectively and 6.3% and 4.9% for Phosphoria, respectively). Similarly, the 187Os/188Os ratios show only minor variations for the Staffin and Phosphoria whole rock and extracted rock samples (0.6% and 1.4% and 1.3% and 2.2%). These isotopic data strongly suggest that crude oil generation through hydrous pyrolysis experiments does not disturb the Re–Os systematics in ORS as supported by various studies on natural systems. The

  19. Evaluating Re-Os systematics in organic-rich sedimentary rocks in response to petroleum generation using hydrous pyrolysis experiments

    Science.gov (United States)

    Rooney, Alan D.; Selby, David; Lewan, Michael D.; Lillis, Paul G.; Houzay, Jean-Pierre

    2012-01-01

    Successful application of the 187Re-187Os geochronometer has enabled the determination of accurate and precise depositional ages for organic-rich sedimentary rocks (ORS) as well as establishing timing constraints of petroleum generation. However, we do not fully understand the systematics and transfer behaviour of Re and Os between ORS and petroleum products (e.g., bitumen and oil). To more fully understand the behaviour of Re-Os systematics in both source rocks and petroleum products we apply hydrous pyrolysis to two immature hydrocarbon source rocks: the Permian Phosphoria Formation (TOC = 17.4%; Type II-S kerogen) and the Jurassic Staffin Formation (TOC = 2.5%; Type III kerogen). The laboratory-based hydrous pyrolysis experiments were carried out for 72 h at 250, 300, 325 and 350 °C. These experiments provided us with whole rock, extracted rock and bitumen and in some cases expelled oil and asphaltene for evaluation of Re-Os isotopic and elemental abundance. The data from these experiments demonstrate that the majority (>95%) of Re and Os are housed within extracted rock and that thermal maturation does not result in significant transfer of Re or Os from the extracted rock into organic phases. Based on existing thermodynamic data our findings suggest that organic chelating sites have a greater affinity for the quadravalent states of Re and Os than sulphides. Across the temperature range of the hydrous pyrolysis experiments both whole rock and extracted rock 187Re/188Os ratios show small variations (3.3% and 4.7%, for Staffin, respectively and 6.3% and 4.9% for Phosphoria, respectively). Similarly, the 187Os/188Os ratios show only minor variations for the Staffin and Phosphoria whole rock and extracted rock samples (0.6% and 1.4% and 1.3% and 2.2%). These isotopic data strongly suggest that crude oil generation through hydrous pyrolysis experiments does not disturb the Re-Os systematics in ORS as supported by various studies on natural systems. The elemental

  20. The Role of Hydrogen Bonding on Laminar Burning Velocity of Hydrous and Anhydrous Ethanol Fuel with Small Addition of n-Heptane

    Directory of Open Access Journals (Sweden)

    I Made Suarta

    2016-01-01

    Full Text Available The molecular structure of mixed hydrous and anhydrous ethanol with up to 10% v n-heptane had been studied. The burning velocity was examined in a cylindrical explosion combustion chamber. The result showed that the burning velocity of hydrous ethanol is higher than anhydrous ethanol and n-heptane at stoichiometric, rich, and very rich mixtures. The burning velocity of hydrous ethanol with n-heptane drops drastically compared to the burning velocity of anhydrous ethanol with n-heptane. It is caused by two reasons. Firstly, there was a composition change of azeotropic hydrous ethanol molecules within the mixture of fuel. Secondly, at the same volume the number of ethanol molecules in hydrous ethanol was less than in anhydrous ethanol at the same composition of the n-heptane in the mixture. At the mixture of anhydrous ethanol with n-heptane, the burning velocity decreases proportionally to the addition of the n-heptane composition. The burning velocity is between the velocities of anhydrous ethanol and n-heptane. It shows that the burning velocity of anhydrous ethanol mixed with n-heptane is only influenced by the mixture composition.

  1. 21 CFR 73.2575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the...

  2. 21 CFR 73.1575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the...

  3. 40 CFR 180.1195 - Titanium dioxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or...

  4. 21 CFR 73.3126 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891,...

  5. Differentiation of pre-existing trapped methane from thermogenic methane in an igneous-intruded coal by hydrous pyrolysis

    Science.gov (United States)

    Dias, Robert F.; Lewan, Michael D.; Birdwell, Justin E.; Kotarba, Maciej J.

    2014-01-01

    So as to better understand how the gas generation potential of coal changes with increasing rank, same-seam samples of bituminous coal from the Illinois Basin that were naturally matured to varying degrees by the intrusion of an igneous dike were subjected to hydrous pyrolysis (HP) conditions of 360 °C for 72 h. The accumulated methane in the reactor headspace was analyzed for δ13C and δ2H, and mol percent composition. Maximum methane production (9.7 mg/g TOC) occurred in the most immature samples (0.5 %Ro), waning to minimal methane values at 2.44 %Ro (0.67 mg/g TOC), and rebounding to 3.6 mg/g TOC methane in the most mature sample (6.76 %Ro). Methane from coal with the highest initial thermal maturity (6.76 %Ro) shows no isotopic dependence on the reactor water and has a microbial δ13C value of −61‰. However, methane from coal of minimal initial thermal maturity (0.5 %Ro) shows hydrogen isotopic dependence on the reaction water and has a δ13C value of −37‰. The gas released from coals under hydrous pyrolysis conditions represents a quantifiable mixture of ancient (270 Ma) methane (likely microbial) that was generated in situ and trapped within the rock during the rapid heating by the dike, and modern (laboratory) thermogenic methane that was generated from the indigenous organic matter due to thermal maturation induced by hydrous pyrolysis conditions. These findings provide an analytical framework for better assessment of natural gas sources and for differentiating generated gas from pre-existing trapped gas in coals of various ranks.

  6. Photonuclear reactions on titanium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Belyshev, S. S. [Moscow State University (Russian Federation); Dzhilavyan, L. Z. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Ishkhanov, B. S.; Kapitonov, I. M. [Moscow State University (Russian Federation); Kuznetsov, A. A., E-mail: kuznets@depni.sinp.msu.ru; Orlin, V. N.; Stopani, K. A. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2015-03-15

    The photodisintegration of titanium isotopes in the giant-dipole-resonance energy region is studied by the photon-activation method. Bremsstrahlung photons whose spectrum has the endpoint energy of 55 MeV is used. The yields and integrated cross sections are determined for photoproton reactions on the titanium isotopes {sup 47,48,49,50}Ti. The respective experimental results are compared with their counterparts calculated on the basis of the TALYS code and a combined photonucleon-reaction model. The TALYS code disregards the isospin structure of the giant dipole resonance and is therefore unable to describe the yield of photoproton reactions on the heavy titanium isotopes {sup 49,50}Ti.

  7. Adaptive mesh refinement in titanium

    Energy Technology Data Exchange (ETDEWEB)

    Colella, Phillip; Wen, Tong

    2005-01-21

    In this paper, we evaluate Titanium's usability as a high-level parallel programming language through a case study, where we implement a subset of Chombo's functionality in Titanium. Chombo is a software package applying the Adaptive Mesh Refinement methodology to numerical Partial Differential Equations at the production level. In Chombo, the library approach is used to parallel programming (C++ and Fortran, with MPI), whereas Titanium is a Java dialect designed for high-performance scientific computing. The performance of our implementation is studied and compared with that of Chombo in solving Poisson's equation based on two grid configurations from a real application. Also provided are the counts of lines of code from both sides.

  8. HA coating on titanium with nanotubular anodized TiO2 intermediate layer via electrochemical deposition

    Institute of Scientific and Technical Information of China (English)

    WANG Yue-qin; TAO Jie; WANG Ling; HE Ping-ting; WANG Tao

    2008-01-01

    Hydroxyapatite (HA) coating has been prepared on titanium substrate through an electrochemical deposition approach.In order to improve the bonding strength between HA coating and Ti substrate,a well oriented and uniform titanium oxide nanotube array on the surface of titanium substrate was applied by means of anodic oxidation pre-treatment.Then the calcium hydrogen phosphate (CaHPO4-2H2O,DCPD) coating,as the precursor of hydroxyapatite coating,was electrodeposited on the anodized Ti.At the initial stage of electro-deposition,the DCPD crystals,in nanometer precipitates,are anchored in and between the tubes.With increasing the deposition time,the nanometer DCPD crystals are connected together to form a continuous coating on titanium oxide nanotube array.Finally,the DCPD coating is converted into hydroxyapatite one simply by being immersed in alkaline solution.

  9. Compositional and structural evolution of the titanium dioxide formation by thermal oxidation

    Institute of Scientific and Technical Information of China (English)

    Su Wei-Feng; Gnaser Hubert; Fan Yong-Liang; Jiang Zui-Min; Le Yong-Kang

    2008-01-01

    Titanium oxide films were prepared by annealing DC magnetron sputtered titanium films in an oxygen ambi-ent. X-ray diffraction (XRD), Auger electron spectroscopy (AES) sputter profiling, MCs+-mode secondary ion mass spectrometry (MCs+-SIMS) and atomic force microscopy (AFM) were employed, respectively, for the structural, com-positional and morphological characterization of the obtained films. For temperatures below 875 K, titanium films could not be fully oxidized within one hour. Above that temperature, the completely oxidized films were found to be rutile in structure. Detailed studies on the oxidation process at 925 K were carried out for the understanding of the underlying mechanism of titanium dioxide (TiO2) formation by thermal oxidation. It was demonstrated that the formation of crystalline TiO2 could be divided into a short oxidation stage, followed by crystal forming stage. Relevance of this recognition was further discussed.

  10. Impurities especially titanium in the rare earth metal gadolinium-before and after solid state electrotransport

    Institute of Scientific and Technical Information of China (English)

    苗睿瑛; 张小伟; 朱琼; 张志琦; 王志强; 颜世宏; 陈德宏; 周林; 李宗安

    2014-01-01

    Gadolinium was prepared by conventional procedures of fluorination, reduction, distillation and solid state electrotransport (SSE). The electronegativities of the metals were found to have an important influence on the electrotransport process and result of the impurity element. Meanwhile, titanium particles in the distilled gadolinium as major metallic impurities were studied by high resolution transmission electron microscopy (HRTEM) before and after solid state electrotransport. The results showed that impurities especially titanium transported from anode to cathode during SSE. In the metal before SSE, there were impurities of titanium in strip shape or embedded round shape. After SSE processing, titanium particles in the metal smaller than 50 nm in the cathode, but existed 6 to 10 times bigger in the anode.

  11. The Fouling of Zirconium(IV) Hydrous Oxide–Polyacrylate Dynamically Formed Membranes during the Nanofiltration of Lactic Acid Solutions

    Science.gov (United States)

    Polom, Ewa

    2013-01-01

    The results of investigations of flux decline during nanofiltration (NF) of lactic acid solutions using dynamically formed zirconium(IV) hydrous oxide/polyacrylate membranes (Zr(IV)/PAA) under conditions resulting in low and high lactic acid rejection are reported. The experimental permeate flux versus time curves were analyzed in the frame of resistance in a series model with the aim of developing the characteristic of resistances. Analysis of experimental data and results of calculations showed that the reduction of fouling effects in the investigated system could be achieved due to appropriate hydrodynamic process conditions and regular rinsing with deionized water. PMID:24957066

  12. The Fouling of Zirconium(IV Hydrous Oxide–Polyacrylate Dynamically Formed Membranes during the Nanofiltration of Lactic Acid Solutions

    Directory of Open Access Journals (Sweden)

    Ewa Polom

    2013-12-01

    Full Text Available The results of investigations of flux decline during nanofiltration (NF of lactic acid solutions using dynamically formed zirconium(IV hydrous oxide/polyacrylate membranes (Zr(IV/PAA under conditions resulting in low and high lactic acid rejection are reported. The experimental permeate flux versus time curves were analyzed in the frame of resistance in a series model with the aim of developing the characteristic of resistances. Analysis of experimental data and results of calculations showed that the reduction of fouling effects in the investigated system could be achieved due to appropriate hydrodynamic process conditions and regular rinsing with deionized water.

  13. The Fouling of Zirconium(IV) Hydrous Oxide-Polyacrylate Dynamically Formed Membranes during the Nanofiltration of Lactic Acid Solutions.

    Science.gov (United States)

    Polom, Ewa

    2013-12-10

    The results of investigations of flux decline during nanofiltration (NF) of lactic acid solutions using dynamically formed zirconium(IV) hydrous oxide/polyacrylate membranes (Zr(IV)/PAA) under conditions resulting in low and high lactic acid rejection are reported. The experimental permeate flux versus time curves were analyzed in the frame of resistance in a series model with the aim of developing the characteristic of resistances. Analysis of experimental data and results of calculations showed that the reduction of fouling effects in the investigated system could be achieved due to appropriate hydrodynamic process conditions and regular rinsing with deionized water.

  14. A comparison between root canal deviations after root preparation using two kinds of nickel-titanium instruments%两种镍钛器械预备根管后根管偏移的比较研究

    Institute of Scientific and Technical Information of China (English)

    苗微铭; 王元银; 韩晓兰

    2015-01-01

    目的:以锥束CT( CBCT)为研究工具评价TF和Pro-taper在预备离体牙弯曲根管中所产生的根管偏移。方法将按纳入标准收集的40个离体牙随机分为两组,用冠向下( crown-down)法预备,TF组预备至0.06/#25;Protaper组预备至F2。预备前后均用CBCT对离体牙近中、远中根管壁的厚度进行测量,然后利用Gambill 提出的公式进行根管偏移和轴中心率的计算。结果 TF组较Protaper组所需预备时间短,效率较高( P<0.05);TF组和Protaper组器械在预备平均5个根管后都出现变形,无器械折断;在距根尖3、5、7 mm的内外侧壁所测得的根管偏移量比较中,TF组预备产生的根管偏移量小于Protaper组,而其轴中心率大于Protaper组,更接近于1。结论 TF在预备弯曲根管时能较好地维持根管原始形态,具有更高的效率;CBCT可在无创情况下评价预备器械对根管的成形能力。%Objective To evaluate the root canal deviations in vitro teeth curved root with TF and Protaper instru-ments by cone beam computer tomography( CBCT) . Methods 40 teeth in vitro in the standard collection were ran-domly assigned to two groups, prepared with the crown-down method, the TF group ready to 0. 06/#25; the Pro-taper group ready to F2 . CBCT scans were taken to measure the mesial and distal thicknesses of the tube wall in vitro teeth before and after preparation. The root canal deviation and the rate of shaft center were measured with ref-erence to the formula proposed by Gambill. Results The TF group need less time in preparation and has more effi-ciency(P<0. 05) than the Protaper group; both TF and Protaper devices appeared deformation after 5 root canal preparations in average, no instruments broken. Comparing the offset of the internal and external wall of root canal in 3, 5, 7 mm from the apex, the root canal deviation prepared by the TF group was less than the Protaper group, and its rate of axis center was greater than the

  15. Estudo da adsorção do surfatante catiônico brometo de cetiltrimetil amônio em diferentes matrizes inorgânicas preparadas via nióbio metálico Adsorption study of the cationic surfactant cetyl trimethylammonium bromide onto hydrous niobium oxide matrix

    Directory of Open Access Journals (Sweden)

    P. H. F. Pereira

    2009-12-01

    Full Text Available É mostrada a preparação de diferentes materiais inorgânicos a partir de nióbio metálico e seu comportamento no processo de adsorção de brometo de cetiltrimetil amônio (CTABr. Os materiais inorgânicos estudados são o óxido de nióbio e o fosfato de nióbio hidratado. Os óxidos de nióbio foram obtidos pelo método da precipitação em solução homogênea com a decomposição térmica de (NH42CO3 realizada a 45 ºC e a 90 ºC. O fosfato de nióbio hidratado foi obtido pela dissolução do nióbio metálico a uma mistura de ácido fluorídrico e nítrico e adição de ácido fosfórico. Pelo método de adsorção gasosa (BET e por microscopia eletrônica de varredura verificou-se que os materiais não apresentam mudança significativa nas características físicas. As isotermas de Langmuir e de Freundlich revelaram que o melhor resultado de adsorção do surfactante CTABr foi alcançado para o óxido de nióbio hidratado preparado a 90 ºC, com capacidade de adsorção máxima, segundo modelo de Langmuir, com 14,13 mg.g-1.The preparation in inorganic material different from metallic niobium and its effect onto adsorption process of the cetyl trimethylammonium bromide CTABr is reported. The inorganic materials are studied niobium oxide hydrous and niobium phosphate hydrous. The niobium oxide hydrous were obtained by homogeneous solution precipitation method with thermal decomposition of (NH42CO3 at 45 ºC and 90 ºC .The niobium phosphate hydrous were prepared using of metallic niobium dilution in a mixture of fluoridric/nitric (10:1 and after phosphoric acid addition. Through the BET method and the SEM technique it was verified that the material suffer no significant change in the physical characteristics. The Langmuir and Freundlich isotherms showed better result to surfactant CTABr adsorption using the material prepared at 90 ºC, according to Langmuir model with maximum adsorption capacity of 14.13 mg.g-1.

  16. Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface

    Directory of Open Access Journals (Sweden)

    Zheng Y

    2012-02-01

    Full Text Available Yanhua Zheng1, Jinbo Li2, Xuanyong Liu2, Jiao Sun11Shanghai Biomaterials Research and Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, People’s Republic of China; 2State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of ChinaAbstract: Ag-implanted titanium with a nanostructured surface was prepared by hydrothermal treatment with H2O2 followed by Ag plasma immersion ion implantation. Streptococcus mutans, Porphyromonas gingivalis and Candida albicans were chosen for antimicrobial tests. Genes related to microbial structure or adhesion, namely glucan-binding proteins B (GbpB, fimbria protein A (FimA, and agglutinin-like sequence4 (Als4, were examined. The osteoblast’s attachment, viability, and quantitative analysis of osteogenic gene expression (Alp, Ocn, RunX2 on titanium surfaces were evaluated. Scanning electron microscopy (SEM revealed that Ag nanoparticles of approximately 10 nm were incorporated on the nanostructured surface of titanium after Ag plasma immersion ion implantation. Trials showed that 93.99% of S. mutans, 93.57% of P. g, and 89.78% of C. albicans were killed on the Ag-implanted titanium with a nanostructured surface. Gene expressions from the three microorganisms confirmed the antimicrobial activities of the Ag-implanted titanium with a nanostructured surface. Furthermore, the adhesive images and viability assays indicated that the Ag-implanted titanium with a nanostructured surface did not impair osteoblasts. The expressions of osteoblast phenotype genes in cells grown on the Ag-implanted titanium surface were significantly increased. The results of this study suggest that the Ag-implanted titanium with a nanostructured surface displays good antimicrobial properties, reducing gene expressions of

  17. The technology of precision casting of titanium alloys by centrifugal process

    Directory of Open Access Journals (Sweden)

    A. Karwiński

    2011-07-01

    Full Text Available The article describes the development of a procedure for the preparation of foundry ceramic moulds and making first test castings. The presented studies included:development of technological parameters of the ceramic mould preparation process using water-based zirconium binders and zirconia ceramic materials, where moulds are next used for the centrifugal casting of titanium alloys melted in vacuum furnaces, designing of pouring process using simulation software, making test castings,testing and control of the casting properties. The technological process described in this paper enables making castings in titanium alloys weighing up to about 500 g and used in the majority of technical applications.

  18. Effect of whitening toothpaste on titanium and titanium alloy surfaces.

    Science.gov (United States)

    Faria, Adriana Cláudia Lapria; Bordin, Angelo Rafael de Vito; Pedrazzi, Vinícius; Rodrigues, Renata Cristina Silveira; Ribeiro, Ricardo Faria

    2012-01-01

    Dental implants have increased the use of titanium and titanium alloys in prosthetic applications. Whitening toothpastes with peroxides are available for patients with high aesthetic requirements, but the effect of whitening toothpastes on titanium surfaces is not yet known, although titanium is prone to fluoride ion attack. Thus, the aim of the present study was to compare Ti-5Ta alloy to cp Ti after toothbrushing with whitening and conventional toothpastes. Ti-5Ta (%wt) alloy was melted in an arc melting furnace and compared with cp Ti. Disks and toothbrush heads were embedded in PVC rings to be mounted onto a toothbrushing test apparatus. A total of 260,000 cycles were carried out at 250 cycles/minute under a load of 5 N on samples immersed in toothpaste slurries. Surface roughness and Vickers microhardness were evaluated before and after toothbrushing. One sample of each material/toothpaste was analyzed by Scanning Electron Microscopy (SEM) and compared with a sample that had not been submitted to toothbrushing. Surface roughness increased significantly after toothbrushing, but no differences were noted after toothbrushing with different toothpastes. Toothbrushing did not significantly affect sample microhardness. The results suggest that toothpastes that contain and those that do not contain peroxides in their composition have different effects on cp Ti and Ti-5Ta surfaces. Although no significant difference was noted in the microhardness and roughness of the surfaces brushed with different toothpastes, both toothpastes increased roughness after toothbrushing.

  19. Applications of x ray absorption fine structure to the in situ study of the effect of cobalt in nickel hydrous oxide electrodes for fuel cells and rechargeable batteries

    Science.gov (United States)

    Kim, Sunghyun; Tryk, Donald A.; Scherson, Daniel A.; Antonio, Mark R.

    1993-01-01

    Electronic and structural aspects of composite nickel-cobalt hydrous oxides have been examined in alkaline solutions using in situ X-ray absorption fine structure (XAFS). The results obtained have indicated that cobalt in this material is present as cobaltic ions regardless of the oxidation state of nickel in the lattice. Furthermore, careful analysis of the Co K-edge Extended X-ray absorption fine structure data reveals that the co-electrodeposition procedure generates a single phase, mixed metal hydrous oxide, in which cobaltic ions occupy nickel sites in the NiO2 sheet-like layers and not two intermixed phases each consisting of a single metal hydrous oxide.

  20. Evaluating transition-metal catalysis in gas generation from the Permian Kupferschiefer by hydrous pyrolysis

    Science.gov (United States)

    Lewan, M.D.; Kotarba, M.J.; Wieclaw, D.; Piestrzynski, A.

    2008-01-01

    Transition metals in source rocks have been advocated as catalysts in determining extent, composition, and timing of natural gas generation (Mango, F. D. (1996) Transition metal catalysis in the generation of natural gas. Org. Geochem.24, 977–984). This controversial hypothesis may have important implications concerning gas generation in unconventional shale-gas accumulations. Although experiments have been conducted to test the metal-catalysis hypothesis, their approach and results remain equivocal in evaluating natural assemblages of transition metals and organic matter in shale. The Permian Kupferschiefer of Poland offers an excellent opportunity to test the hypothesis with immature to marginally mature shale rich in both transition metals and organic matter. Twelve subsurface samples containing similar Type-II kerogen with different amounts and types of transition metals were subjected to hydrous pyrolysis at 330° and 355 °C for 72 h. The gases generated in these experiments were quantitatively collected and analyzed for molecular composition and stable isotopes. Expelled immiscible oils, reacted waters, and spent rock were also quantitatively collected. The results show that transition metals have no effect on methane yields or enrichment. δ13C values of generated methane, ethane, propane and butanes show no systematic changes with increasing transition metals. The potential for transition metals to enhance gas generation and oil cracking was examined by looking at the ratio of the generated hydrocarbon gases to generated expelled immiscible oil (i.e., GOR), which showed no systematic change with increasing transition metals. Assuming maximum yields at 355 °C for 72 h and first-order reaction rates, pseudo-rate constants for methane generation at 330 °C were calculated. These rate constants showed no increase with increasing transition metals. The lack of a significant catalytic effect of transition metals on the extent, composition, and timing of

  1. The Effect of Hydrous Supercritical Carbon Dioxide on the Mohr Coulomb Failure Envelope in Boise Sandstone

    Science.gov (United States)

    Choens, R. C., II; Dewers, T. A.; Ilgen, A.; Espinoza, N.; Aman, M.

    2016-12-01

    Experimental rock deformation was used to quantify the relationship between supercritical carbon dioxide (scCO2), water vapor, and failure strength in an analog for Tertiary sandstone saline formation reservoirs. Storing large volumes of carbon dioxide in depleted petroleum reservoirs and deep saline aquifers over geologic time is an important tool in mitigating effects of climate change. Carbon dioxide is injected as a supercritical phase, where it forms a buoyant plume. At brine-plume interfaces, scCO2 dissolves over time into the brine, lowering pH and perturbing the local chemical environment. Previous work has shown that the resulting geochemical changes at mineral-fluid interfaces can alter rock mechanical properties, generally causing a decrease in strength. Additionally, water from the native brine can dissolve into the scCO2 plume where it is present as humidity. This study investigates the effect of hydrous scCO2 and CO2-saturated brine on shear failure of Boise sandstone. Samples are held in a hydrostatic pressure vessel at 2250 PSI confining pressure (PC) and 70 C, and scCO2 at specific humidity is circulated through the core for 24 hours at 2000 PSI and 70 C. Experiments are conducted at relative humidity levels of 0, 14, 28, 42, 56, 70, 84, 98, and 100% relative humidity. After the scCO2 core flood is finished, triaxial compression experiments are conducted on the samples at room temperature and an axial strain rate of 10-5 sec-1. Experiments are conducted at 500, 1000, and 1500 PSI PC. The results demonstrate that water present as humidity in scCO2 can reduce failure strength and lower slopes of the Mohr-Coulomb failure envelope. These effects increase with increasing humidity, as dry scCO2 does not affect rock strength, and may be influenced by capillary condensation of water films from humid scCO2. The reductions in failure strength seen in this study could be important in predicting reservoir response to injection, reservoir caprock integrity, and

  2. Skull Reconstruction with Custom Made Three-Dimensional Titanium Implant

    Science.gov (United States)

    Cho, Hyung Rok; Roh, Tae Suk; Shim, Kyu Won; Kim, Yong Oock; Lew, Dae Hyun

    2015-01-01

    Background Source material used to fill calvarial defects includes autologous bones and synthetic alternatives. While autologous bone is preferable to synthetic material, autologous reconstruction is not always feasible due to defect size, unacceptable donor-site morbidity, and other issues. Today, advanced three-dimensional (3D) printing techniques allow for fabrication of titanium implants customized to the exact need of individual patients with calvarial defects. In this report, we present three cases of calvarial reconstructions using 3D-printed porous titanium implants. Methods From 2013 through 2014, three calvarial defects were repaired using custommade 3D porous titanium implants. The defects were due either to traumatic subdural hematoma or to meningioma and were located in parieto-occipital, fronto-temporo-parietal, and parieto-temporal areas. The implants were prepared using individual 3D computed tomography (CT) data, Mimics software, and an electron beam melting machine. For each patient, several designs of the implant were evaluated against 3D-printed skull models. All three cases had a custom-made 3D porous titanium implant laid on the defect and rigid fixation was done with 8 mm screws. Results The custom-made 3D implants fit each patient's skull defect precisely without any dead space. The operative site healed without any specific complications. Postoperative CTs revealed the implants to be in correct position. Conclusion An autologous graft is not a feasible option in the reconstruction of large calvarial defects. Ideally, synthetic materials for calvarial reconstruction should be easily applicable, durable, and strong. In these aspects, a 3D titanium implant can be an optimal source material in calvarial reconstruction.

  3. Effect of Ce4+-doping on Structural and Photocatalytic Properties of Sol-gel Prepared Titanium Dioxide Thin-Films%掺杂Ce4+对溶胶-凝胶法制备二氧化钛薄膜的结构和光催化特性的影响

    Institute of Scientific and Technical Information of China (English)

    张璐; 谢键; 李国强; 张洪良

    2013-01-01

    Ce-doped titanium dioxide (TiO2 ) films were prepared on silica and quartz substrates by sol-gel dip-coating. These films were subsequently thermally annealed at 800 ℃ for 30 min, and the structural and photocataytic properties of as-prepared titanium dioxide films were analyzed by X-ray diffraction ( XRD), scanning electron microscopy (SEM) and UV-visible spectrophotometer, respectively. The ability to degrade methyl orange of these films was also studied. It is found that the transition temperature of Anatase to Rutile phases increases after doping process. With the increase in Ce4+ doping concentration, TiO2 films experience a procedure from a clear particle-sized morphology to a well-formed film. And the film with 10% mole-percentage doping shows the best film formation. With the increase in Ce4+ doping concentration, the absorption peak of TiO2 films has a blue-shift then a red-shift, resulting in the expansion and then decreasing of absorption in the range of UV area. TiO2 films doped with Ce prepared by this method and annealed at 800℃ for 30 min show higher degradation ratio of methyl orange, and the films with 10% mole-percentage Ce4+ doping show the highest photocatalytic properties.%采用溶胶-凝胶浸渍提拉法分别在氧化硅和石英衬底上制备了Ce4+掺杂的二氧化钛(TiO2)薄膜,在800℃的退火温度下保温30 min.采用X射线衍射仪(XRD)、扫描电镜(SEM)及紫外-可见分光光度计,对TiO2薄膜的结构和光催化性能进行了详细分析,并且进行了对甲基橙的降解实验.研究结果表明:掺杂后的薄膜由锐钛矿向金红石的相转变温度升高.随着掺杂浓度的升高,薄膜经历了由颗粒粒度分明转变到薄膜形成好、未出现明显颗粒的过程,且Ce4+掺杂摩尔百分数为10%的薄膜形成较好.随着Ce4+掺杂浓度升高,TiO2薄膜的光吸收峰先红移再蓝移,紫外区吸收范围先增大后降低.掺杂后薄膜对甲基橙降

  4. Nanodispersed boriding of titanium alloy

    Directory of Open Access Journals (Sweden)

    Kateryna O. Kostyk

    2015-12-01

    Full Text Available The problem of improving the operational reliability of machines is becoming increasingly important due to the increased mechanical, thermal and other loads on the details. There are many surface hardening methods for machines parts which breakdown begins with surface corruption. The most promising methods are chemo-thermal treatment. Aim: The aim of this work is to study the impact of boriding on the structure and properties of titanium alloy. Materials and Methods: The material of this study is VT3-1 titanium alloy. The boriding were conducted using nanodispersed powder blend based on boric substances. Results: It is established that boriding of paste compounds allows obtaining the surface hardness within 30...29 GPa and with declining to 27...26 GPa in layer to the transition zone (with total thickness up to 110 μm owing to changes of the layer phase composition where Ti2B, TiB, TiB2 titanium borides are formed. The increasing of chemical-thermal treatment time from 15 minutes to 2 hours leads to thickening of the borated layer (30...110 µm and transition zone (30...190 µm. Conclusions: Due to usage of nanodispersed boric powder, the boriding duration is decreasing in 2...3 times. This allows saving time and electric energy. The developed optimal mode of boriding the VT3-1 titanium alloy allows obtaining the required operational characteristics and to combine the saturation of the surface layer with atomic boron and hardening.

  5. The use of anthracene as a model compound in a comparative study of hydrous pyrolysis methods for industrial waste remediation.

    Science.gov (United States)

    Nkansah, Marian Asantewah; Christy, Alfred A; Barth, Tanja

    2011-07-01

    Polycyclic aromatic hydrocarbons are very stable compounds and tend to bioaccumulate in the environment due to their high degree of conjugation and aromaticity. Hydrous pyrolysis is explored as a technique for the treatment of industrial water containing PAH, using anthracene as a model compound. The reactivity of anthracene under a range of temperatures and durations are studied in this paper. Aliquots of 1.0-10.0mg of anthracene in a range of 1.0-5.0 mL of H(2)O are subjected to hydrous pyrolysis under varied conditions of temperature, reagents and duration. The conditions include oxidising systems comprising distilled water, hydrogen peroxide and Nafion-SiO(2) solid catalyst in water; and reducing systems of formic acid and formic acid/Nafion-SiO(2)/Pd-C catalysts to assess a range of redox reaction conditions. Oxygen in air played a role in some of the reaction conditions. Pyrolysed products were identified and quantified by the use of Gas Chromatography-Mass Spectrometry (GC-MS). The major products were anthrone, anthraquinone, xanthone from oxidation; and multiple hydro-anthracene derivatives from reductive hydogenation. The nature of reaction conditions influenced the extent of anthracene degradation. The products formed are more reactive (less stable) as compared to anthracene the starting material and will therefore be less persistent in the environment.

  6. Adsorption of arsenite and selenite using an inorganic ion exchanger based on Fe–Mn hydrous oxide

    KAUST Repository

    Szlachta, Małgorzata

    2012-01-01

    The adsorption behaviour and mechanism of As(III) and Se(IV) oxyanion uptake using a mixed inorganic adsorbent were studied. The novel adsorbent, based on Fe(III)-Mn(III) hydrous oxides and manganese(II) carbonate, was synthesised using a hydrothermal precipitation approach in the presence of urea. The inorganic ion exchanger exhibited a high selectivity and adsorptive capacity towards As(III) (up to 47.6mg/g) and Se(IV) (up to 29.0mg/g), even at low equilibrium concentration. Although pH effects were typical for anionic species (i.e., the adsorption decreased upon pH increase), Se(IV) was more sensitive to pH changes than As(III). The rates of adsorption of both oxyanions were high. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) studies showed that the ion exchange adsorption of both anions took place via OH - groups, mainly from Fe(III) but also Mn(III) hydrous oxides. MnCO 3 did not contribute directly to As(III) and Se(IV) removal. A higher adsorptive capacity of the developed material towards As(III) was partly due to partial As(III) oxidation during adsorption. © 2011 Elsevier Inc.

  7. Shadow-casted ultrathin surface coatings of titanium and titanium/silicon oxide sol particles via ultrasound-assisted deposition.

    Science.gov (United States)

    Karahan, H Enis; Birer, Özgür; Karakuş, Kerem; Yıldırım, Cansu

    2016-07-01

    Ultrasound-assisted deposition (USAD) of sol nanoparticles enables the formation of uniform and inherently stable thin films. However, the technique still suffers in coating hard substrates and the use of fast-reacting sol-gel precursors still remains challenging. Here, we report on the deposition of ultrathin titanium and titanium/silicon hybrid oxide coatings using hydroxylated silicon wafers as a model hard substrate. We use acetic acid as the catalyst which also suppresses the reactivity of titanium tetraisopropoxide while increasing the reactivity of tetraethyl orthosilicate through chemical modifications. Taking the advantage of this peculiar behavior, we successfully prepared titanium and titanium/silicon hybrid oxide coatings by USAD. Varying the amount of acetic acid in the reaction media, we managed to modulate thickness and surface roughness of the coatings in nanoscale. Field-emission scanning electron microscopy and atomic force microscopy studies showed the formation of conformal coatings having nanoroughness. Quantitative chemical state maps obtained by x-ray photoelectron spectroscopy (XPS) suggested the formation of ultrathin (coatings and thickness measurements by rotating analyzer ellipsometry supported this observation. For the first time, XPS chemical maps revealed the transport effect of ultrasonic waves since coatings were directly cast on rectangular substrates as circular shadows of the horn with clear thickness gradient from the center to the edges. In addition to the progress made in coating hard substrates, employing fast-reacting precursors and achieving hybrid coatings; this report provides the first visual evidence on previously suggested "acceleration and smashing" mechanism as the main driving force of USAD.

  8. In vitro biocompatibility of equal channel angular processed (ECAP) titanium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taik Nam [Department of Information and Electronic Materials Engineering, Paichai University, Daejeon 302-735 (Korea, Republic of); Balakrishnan, A [Department of Information and Electronic Materials Engineering, Paichai University, Daejeon 302-735 (Korea, Republic of); Lee, B C [Department of Information and Electronic Materials Engineering, Paichai University, Daejeon 302-735 (Korea, Republic of); Kim, W S [Department of Dental Lab Technology, Daejeon Health Science College, Daejeon 300-711 (Korea, Republic of); Smetana, K [Center of Cell Therapy and Tissue Repair, Charles University, Prague 128-00 (Czech Republic); Park, J K [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Panigrahi, B B [Division of Advanced Technology, Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of)

    2007-09-15

    This work attempts to understand the in vitro biocompatibility of ultrafine grained titanium prepared by the ECAP route. The results obtained from the mouse fibroblast cell line 3T3 showed a better cell adherence and cell proliferation on ECAP titanium specimen compared to the coarse grain Grade-2 Ti and Ti6Al4V alloy. This could be attributed to the increased surface energy and grain boundary energy and possibly the presence of a large number of nano-size conical groove-like structures (at triple point junctions of grain boundaries on the surface) in the ECAP Ti specimen compared to the coarse grain Grade-2 Ti and Ti6Al4V alloy.

  9. 钛合金表面Ta-W涂层的制备及循环氧化行为%Preparation of Ta-W coating on titanium alloy and its oxidation behavior

    Institute of Scientific and Technical Information of China (English)

    彭小敏; 夏长清; 吴安如; 董丽君; 李东锋; 谭季秋

    2015-01-01

    采用电弧离子镀(AIP)在Ti-6.48Al-0.99Mo-0.91Fe(质量分数,%)钛合金表面制备Ta-10W(质量分数,%)涂层。通过扫描电镜(SEM)与能谱(EDS)分析、透射电镜(TEM)分析、电子探针分析(EPMA),X衍射分析(XRD),划痕及纳米压痕试验,研究钛合金基体与Ta-W涂层经900℃大气循环氧化前后的物相组成、组织形貌及性能,讨论涂层/基体的氧化行为。结果表明:沉积态Ta-W涂层连续、均匀、致密,由颗粒细小(≤50 nm)的α-Ta(W)堆积成100~250 nm的等轴晶组成,硬度为14.4~15 GPa,与基体的临界载荷为58.5 N;经900℃大气循环氧化后,钛合金表面形成带裂隙的层状TiO2、Al2O3疏松混合氧化膜,氧化膜明显脱落;Ta-W涂层能明显提高钛合金的抗循环氧化性能,形成以β-Ta2O5为主的致密氧化膜;随着氧化的进行,氧化膜中TiO2、Al2O3含量增加并出现AlTaO4、AlWO 4相,氧化膜始终保持完整;氧化过程中,基体中Ti、Al元素及涂层中Ta、W元素互扩散,在界面形成AlTa 2、Al2Ta3、Al3Ti、TixW1−x相,O元素扩散并固溶于基体,在近界面基体处形成厚度逐渐增加的富Ta、W、Al、O、α-Ti固溶体(稳定)区,涂层元素向氧化膜和基体扩散而被消耗为其失效的主要原因。%Ta-10W (mass fraction, %) coating was deposited on Ti-6.48Al-0.99Mo-0.91Fe (mass fraction, %) titanium alloy by arc ion plating (AIP). Scratch test, nano indentation test, SEM, EDS, TEM, EPMA and XRD analysis were carried out to study the phase composition, microstructure and properties of the substrate and coating before and after cyclic oxidation at 900℃in air. The oxidation behavior of the coating/substrate was discussed. The results show that the as-deposited Ta-W coating is continuous, uniform and compact with fine α-Ta(W) particles (≤50 nm) aggregating to form 100−250 nm equiaxed grains. The coating with hardness of 14.4−15 GPa and critical load of 58.5 N is

  10. Silicon-Doped Titanium Dioxide Nanotubes Promoted Bone Formation on Titanium Implants.

    Science.gov (United States)

    Zhao, Xijiang; Wang, Tao; Qian, Shi; Liu, Xuanyong; Sun, Junying; Li, Bin

    2016-02-26

    While titanium (Ti) implants have been extensively used in orthopaedic and dental applications, the intrinsic bioinertness of untreated Ti surface usually results in insufficient osseointegration irrespective of the excellent biocompatibility and mechanical properties of it. In this study, we prepared surface modified Ti substrates in which silicon (Si) was doped into the titanium dioxide (TiO₂) nanotubes on Ti surface using plasma immersion ion implantation (PIII) technology. Compared to TiO₂ nanotubes and Ti alone, Si-doped TiO₂ nanotubes significantly enhanced the expression of genes related to osteogenic differentiation, including Col-I, ALP, Runx2, OCN, and OPN, in mouse pre-osteoblastic MC3T3-E1 cells and deposition of mineral matrix. In vivo, the pull-out mechanical tests after two weeks of implantation in rat femur showed that Si-doped TiO₂ nanotubes improved implant fixation strength by 18% and 54% compared to TiO₂-NT and Ti implants, respectively. Together, findings from this study indicate that Si-doped TiO₂ nanotubes promoted the osteogenic differentiation of osteoblastic cells and improved bone-Ti integration. Therefore, they may have considerable potential for the bioactive surface modification of Ti implants.

  11. Increased chondrocyte adhesion on nanotubular anodized titanium.

    Science.gov (United States)

    Burns, Kevin; Yao, Chang; Webster, Thomas J

    2009-03-01

    Previous studies have demonstrated increased osteoblast (bone-forming cells) functions (including adhesion, synthesis of intracellular collagen, alkaline phosphatase activity, and deposition of calcium-containing minerals) on titanium anodized to possess nanometer features compared with their unanodized counterparts. Such titanium materials were anodized to possess novel nanotubes also capable of drug delivery. Since titanium has not only experienced wide spread commercial use in orthopedic but also in cartilage applications, the objective of the present in vitro study was for the first time to investigate chondrocyte (cartilage synthesizing cells) functions on titanium anodized to possess nanotubes. For this purpose, titanium was anodized in dilute hydrofluoric acid at 20 V for 20 min. Results showed increased chondrocyte adhesion on anodized titanium with nanotube structures compared with unanodized titanium. Importantly, the present study also provided evidence why. Since material characterization studies revealed significantly greater nanometer roughness and similar chemistry as well as crystallinity between nanotubular anodized and unanodized titanium, the results of the present study highlight the importance of the nanometer roughness provided by anodized nanotubes on titanium for enhancing chondrocyte adhesion. In this manner, the results of the present in vitro study indicated that anodization might be a promising quick and inexpensive method to modify the surface of titanium-based implants to induce better chondrocyte adhesion for cartilage applications.

  12. Immobilization Technology of Titanium Dioxide Photocatalyst%TiO2光催化剂的负载技术

    Institute of Scientific and Technical Information of China (English)

    杨学灵; 徐悦华; 陈明洁; 贾金亮

    2009-01-01

    从负载TiO2光催化剂的裁体、制备方法以及催化剂的负载机理等三个方面综述了近几年来TiO2光催化剂的负载技术.%The immobilization technology of titanium dioxide photocatalyst is reviewed, according to the carriers for immobilized titanium dioxide photocatalyst, preparation methods and immobilization mechanism.

  13. Sol-gel法制备纳米二氧化钛及其紫外吸收性能的研究%Research on Nanometer Titanium Dioxide Preparation by Sol -gel Method and its UV Absorptivity

    Institute of Scientific and Technical Information of China (English)

    武信

    2011-01-01

    Nanometer TiO2 powder is prepared by Sol-Gel method, and the characterization of nanometer TiO2 powder is made by X-ray diffraction instrument ( XRD) , transmission electron microscope (TEM) , UV spectrophotometer. The features of nanometer TiO2 powder, such as phase, morphology, absorbance and so on is analyzed in this paper, and the application of nanometer TiO2 in cosmetic industries is also analyzed.%采用溶胶—凝胶法制备纳米TiO2粉,用X射线衍射仪(XRD)、透射电镜(TEM)、紫外分光光度计对纳米TiO2粉进行了表征.分析了纳米TiO2粉末的物相、形貌、吸光度等特征,并分析纳米TiO2在化妆品中的应用.

  14. Effect of preoxidation on the bond strength of titanium and porcelain.

    Science.gov (United States)

    Mahale, K M; Nagda, S J

    2014-06-01

    The purpose of this study was to investigate the effect of preoxidation on porcelain titanium- bond strength and the effect of paste bonder (adhesive) on the titanium porcelain bond strength. 11 specimens of commercially pure titanium (26 x 7 x 3 mm) were prepared by different heat treatments in programmable dental furnace. Identification of the oxides formed on the metal surface was conducted with an X-Ray diffractometer with CuKalpha radiation. Vickers hardness numbers were determine. Additional 50 specimens of commercially pure titanium were used to bond with low fusing porcelain. The bond strength was measured in a universal testing machine. X-ray diffraction analysis of the surface of pure titanium revealed that the relative peak intensity of alpha -Ti decreased and that of TiO2 increased with increasing firing temperature. The Vickers hardness number decreased initially as the temperature increased but it increased remarkably above 900 degrees C & was harder in air than vacuum. The tensile shear bond strength was highest in the green stage i.e. without preoxidation of metal, and decreased above 900 degrees C, and was the lowest in the group without paste bonder application. The difference in bond strengths was statistically highly significant for all groups. Preoxidation under vacuum before porcelain firing can effectively improve bonding. The adhesive provided with the low fusing porcelain helps in the bond between titanium & porcelain.

  15. Fabrication and characterization of Mg-doped chitosan-gelatin nanocompound coatings for titanium surface functionalization.

    Science.gov (United States)

    Cai, Xinjie; Cai, Jing; Ma, Kena; Huang, Pin; Gong, Lingling; Huang, Dan; Jiang, Tao; Wang, Yining

    2016-07-01

    Titanium and its alloys have been widely used in clinic and achieved great success. Due to the bio-inertness of titanium surface, challenges still exit in some compromised conditions. The present study aimed to functionalize titanium surface with magnesium (Mg)-doped chitosan/gelatin (CS/G) nanocompound coatings via electrophoretic deposition (EPD). CS/G coatings loaded with different amount of magnesium were successfully prepared on titanium substrate via EPD. Physicochemical characterization of the coatings confirmed that magnesium ions were loaded into the coatings in a dose-dependent manner. XRD results demonstrated that co-deposition of magnesium influenced the crystallinity of the coatings, and a new crystalline substance presented, namely hydrated basic magnesium carbonate. Mechanical tests showed improved tensile and shear bond strength of the magnesium-doped coatings, while the excessively high magnesium concentration could eventually decrease the bonding strength. Sustained release of magnesium ion was detected by ICP-OES within 28 days. TEM images also displayed that nanoparticles could be released from the coatings. In vitro cellular response assays demonstrated that the Mg-doped nanocompound coatings could enhance the proliferation and osteogenic differentiation of MC3T3-E1 cells compared to CS/G coatings. Therefore, it could be concluded that Mg-doped CS/G nanocompound coatings were successfully fabricated on titanium substrates via EPD. It would be a promising candidate to functionalize titanium surface with such organic-inorganic nanocompound coatings.

  16. Biocompatibility of pure titanium modified by human endothelial cell-derived extracellular matrix

    Energy Technology Data Exchange (ETDEWEB)

    Xue Xiaoqing [Key Laboratory of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); Wang Jin, E-mail: jinxxwang@263.net [Key Laboratory of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); Zhu Ying; Tu Qiufen; Huang Nan [Key Laboratory of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China)

    2010-04-01

    Extracellular matrix (ECM) used to modify biomaterial surface is a promising method for improving cardiovascular material hemocompatibility. In the present work, human umbilical vein endothelial cells (HUVECs) are cultured and native ECM is obtained on pure titanium surface. Fourier infrared spectrum (FTIR) test proves the existence of amide I and amide II band on the modified titanium surface. X-ray photoelectron spectroscopy (XPS) further confirms the chemical composition and binding types of the ECM proteins on the titanium substrate. The results of light microscopy and atomic force microscopy (AFM) exhibit the morphology of HUVEC derived ECM. There are higher water contact angles on the ECM modified samples. Furthermore, some ECM components, including fibronectin (FN), laminin (LN) and type IV collagen (IV-COL) are presented on ECM-covered titanium surface by immunofluorescence staining. The biological behavior of cultured HUVECs and adherent platelets on different samples are investigated by in vitro HUVECs culture and platelet adhesion. Cells exhibit better morphology and their proliferation ability greatly improve on the ECM-covered titanium. At the same time, the platelet adhesion and spreading are inhibited on ECM-covered titanium surface. These investigations demonstrate that ECM produced by HUVECs cannot only improve adhesion and proliferation ability of endothelial cell but also inhibit adhesion and activation of platelets. Thus, the approach described here may provide a basis for preparation of modified surface in cardiovascular implants application.

  17. Electrochemical Investigation of Doped Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    J. W. J. Hamilton

    2008-01-01

    Full Text Available Thin films of transition-metal doped (0.2, 1.0, and 5.0 atom% TiO2 were prepared on titanium foil using a sol-gel route catalyzed by ammonium acetate. Dopants investigated were the fourth-period transition metals. The prepared films were characterised by Raman spectroscopy, Auger electron spectroscopy, and photoelectrochemical methods. The films doped with transition metals showed a lower photocurrent response than undoped samples. No major red shift in the photocurrent response spectra of the doped films was observed. A photocurrent response was observed under visible light irradiation of the samples and was potential dependent peaking around −0.3 V (SCE, which is indicative of electron promotion from a filled defect level. Examination of the defect level potential dependence by analysis of the current-time response under chopped illumination at fixed potential (−0.8 V–+1.07 V gave a good correlation with the potential dependence observed in the visible light irradiation studies.

  18. Antimicrobial titanium/silver PVD coatings on titanium

    Directory of Open Access Journals (Sweden)

    Thull Roger

    2006-03-01

    Full Text Available Abstract Background Biofilm formation and deep infection of endoprostheses is a recurrent complication in implant surgery. Post-operative infections may be overcome by adjusting antimicrobial properties of the implant surface prior to implantation. In this work we described the development of an antimicrobial titanium/silver hard coating via the physical vapor deposition (PVD process. Methods Coatings with a thickness of approximately 2 μm were deposited on titanium surfaces by simultaneous vaporisation of both metals in an inert argon atmosphere with a silver content of approximately 0.7 – 9% as indicated by energy dispersive X-ray analysis. On these surfaces microorganisms and eukaryotic culture cells were grown. Results The coatings released sufficient silver ions (0.5–2.3 ppb when immersed in PBS and showed significant antimicrobial potency against Staphylococcus epidermis and Klebsiella pneumoniae strains. At the same time, no cytotoxic effects of the coatings on osteoblast and epithelial cells were found. Conclusion Due to similar mechanical performance when compared to pure titanium, the TiAg coatings should be suitable to provide antimicrobial activity on load-bearing implant surfaces.

  19. Sol-Gel Preparation and Characterization of High Activity Titanium Dioxide Nanocrystalline Photocatalyst%高活性纳米二氧化钛光催化剂的溶胶-凝胶法制备和表征

    Institute of Scientific and Technical Information of China (English)

    邸云萍; 徐利华; 张文丽; 王缓

    2008-01-01

    采用溶胶-凝胶法合成了纳米二氧化钛光催化剂,利用X-射线衍射、原子力显微镜、紫外-可见分光光度计等测试技术研究了纳米二氧化钛的形态结构特征及其光催化性能,并探讨了甲基橙溶液的初始pH值和初始浓度、涂膜次数、光源种类、光照时间对光催化降解反应的影响机制.研究结果表明,采用紫外光源照射20min,纳米二氧化钛薄膜对甲基橙的光催化降解效率达到98%,纳米二氧化钛具有高光催化活性.%The nanocrystalline TiO2 photocatalyst was synthesized by sol-gel process.The microstructure,morphology and photocatalytic activities of as-prepared nano-TiO2 were studied using X-ray diffraction(XRD),atomic force microscopy(AFM)and ultraviolet-visible(UV-VIS)spectrophotometer.And the effects of methyl orange aqueous solution,coating times,illuminating source and irradiation time on the photodegradation of nano-TiO2 were also discussed.The results show that the photodegradation rate of methyl orange by nano-TiO2 film is 98%when illuminated for 20 min by UV source,indicating that the synthesized nanocrystalline anatase TiO2 thin film has remarkable photocatalytic efficiency.

  20. Hydrogen content in titanium and a titanium-zirconium alloy after acid etching.

    Science.gov (United States)

    Frank, Matthias J; Walter, Martin S; Lyngstadaas, S Petter; Wintermantel, Erich; Haugen, Håvard J

    2013-04-01

    Dental implant alloys made from titanium and zirconium are known for their high mechanical strength, fracture toughness and corrosion resistance in comparison with commercially pure titanium. The aim of the study was to investigate possible differences in the surface chemistry and/or surface topography of titanium and titanium-zirconium surfaces after sand blasting and acid etching. The two surfaces were compared by X-ray photoelectron spectroscopy, secondary ion mass spectroscopy, scanning electron microscopy and profilometry. The 1.9 times greater surface hydrogen concentration of titanium zirconium compared to titanium was found to be the major difference between the two materials. Zirconium appeared to enhance hydride formation on titanium alloys when etched in acid. Surface topography revealed significant differences on the micro and nanoscale. Surface roughness was increased significantly (pzirconium alloy. High-resolution images showed nanostructures only present on titanium zirconium.

  1. New inorganic (an)ion exchangers based on Mg–Al hydrous oxides: (Alkoxide-free) sol–gel synthesis and characterisation

    KAUST Repository

    Chubar, Natalia

    2011-05-01

    New inorganic ion exchangers based on double Mg-Al hydrous oxides were generated via the new non-traditional sol-gel synthesis method which avoids using metal alkoxides as raw materials. Surface chemical and adsorptive properties of the final products were controlled by several ways of hydrogels and xerogels treatments which produced the materials of the layered structure, mixed hydrous oxides or amorphous adsorbents. The final adsorptive materials obtained via thermal treatment of xerogels were the layered mesoporous materials with carbonate in the interlayer space, surface abundance with hydroxylic groups and maximum adsorptive capacity to arsenate. Higher affinity of Mg-Al hydrous oxides towards H2AsO4- is confirmed by steep adsorption isotherms having plateau (removal capacity) at 220. mg[As]. gdw-1 for the best sample at pH = 7, fast adsorption kinetics and little pH effect. Adsorption of arsenite, fluoride, bromate, bromide, selenate, borate by Mg-Al hydrous oxides was few times high either competitive (depending on the anion) as compare with the conventional inorganic ion exchange adsorbents. © 2011 Elsevier Inc.

  2. Carbon nanotube-based coatings on titanium

    Indian Academy of Sciences (India)

    Elzbieta Dlugon; Wojciech Simka; Aneta Fraczek-Szczypta; Wiktor Niemiec; Jaroslaw Markowski; Marzena Szymanska; Marta Blazewicz

    2015-09-01

    This paper reports results of the modification of titanium surface with multiwalled carbon nanotubes (CNTs). The Ti samples were covered with CNTs via electrophoretic deposition (EPD) process. Prior to EPD process, CNTs were functionalized by chemical treatment. Mechanical, electrochemical and biological properties of CNT-covered Ti samples were studied and compared to those obtained for unmodified titanium surface. Atomic force microscopy was used to investigate the surface topography. To determine micromechanical characteristics of CNT-covered metallic samples indentation tests were conducted. Throughout electrochemical studies were performed in order to characterize the impact of the coating on the corrosion of titanium substrate. In vitro experiments were conducted using the human osteoblast NHOst cell line. CNT layers shielded titanium from corrosion gave the surface-enhanced biointegrative properties. Cells proliferated better on the modified surface in comparison to unmodified titanium. The deposited layer enhanced cell adhesion and spreading as compared to titanium sample.

  3. 结合锥形束CT评价两种镍钛器械预备老年人磨牙弯曲根管的效果%Clinical evaluating of Twisted Files (TF) and ProTaper nickel-titanium rotary instruments in preparation of molar curved root canals in the elder combining with cone beam computed tomography

    Institute of Scientific and Technical Information of China (English)

    张秀琴; 王楠; 孟敏

    2014-01-01

    目的:比较镍钛器械Twisted Files(TF)和ProTaper 在老年人磨牙弯曲根管预备中的临床应用效果。方法:选择2011年8月至2013年8月在我科门诊就诊的有弯曲根管的牙髓炎或根尖周炎的老年患者磨牙90颗,随机分成三组,每组30颗, T 组和P 组分别采用机用镍钛器械Twisted Files(TF)和ProTaper 以冠向下技术预备根管, K 组采用手用不锈钢K 锉以逐步后退法预备根管,全部患牙均采用冷牙胶侧方加压技术充填。记录三组病例根管预备时间和器械折断数,根据治疗前、中、后的X 线片评价根管预备和充填情况,通过锥形束CT 记录预备前后距离根尖3mm 处根管偏移值。结果: T 组、P 组均能保持原根管的弯曲和走向,根管预备的锥度和流畅度好,根管充填质量高, T 组的偏移量比P 组和K 组的偏移量小,三组间差异有统计学意义(P<0.05)。T 组的操作时间比P 组和K 组短,三组间差异有统计学意义(P<0.05)。预备过程中T 组未发生器械折断, P 组3例发生器械折断。结论: TF 相对与Protaper 用于预备老年人磨牙弯曲根管,效率较高,成形效果佳,较安全,更适合于狭窄弯曲的老年根管。%Objective:To study and evaluate clinical application of Twisted File (TF) and ProTaper , two nickel-titanium instruments, during molar root canal preparation in elderly people.Methods:A total of 90 teeth with curved root canals , collected from August 2011 to August 2013 in Department of Stomatology, Affliliated Hospital of Jining Medical College, were prepared by TF(group t) ,ProTaper( groups p) with crown down technique in test groups and by stainless steel K files with Step-back technique in control group (group k).All root canals were filled with cold lateral condensation technique. The root canal preparation time and the numbers of broken equipment were recorded. The evaluation of preparation and root canal therapy

  4. 碳掺杂的二氧化钛纳米管的制备及其可见光催化性能%Preparation and Visible Light Photocatalytic Activity of Carbon Doped Titanium Dioxide Nanotubes

    Institute of Scientific and Technical Information of China (English)

    李向清; 康诗钊; 唐韵秋; 李国栋; 穆劲

    2013-01-01

    Urea was used as a precursor of carbon to prepare carbon doped TiO2 nanotubes.The products obtained were characterized with Brunauer-Emmett -Teller surface area measurement (BET),X-ray diffraction (XRD) ,transmission electron microscopy (TEM) ,energy dispersive X-ray fluoresence spectroscopy ( EDX) ,X-ray photoelectron spectroscopy (XPS) ,solid diffuse reflection UV-Vis spectroscopy (DRS) and fluorescence spectroscopy.The results showed that the visible light photocatalytic activity of the TiO2 nanotubes was improved obviously after doping C.In addition,the influences of doping amount of C,calcination temperature,dosage of catalyst and pH on the photocatalytic degradation activity of the TiO2 nanotubes were investigated.The degradation efficiency of rodamine B could reach 91% under 3 h visible light irradiation when the amount of doping C was 5.3% ,calcination temperature was 400℃ ,dosage of catalyst was 1.5 g/L,pH of solution was 5.%以尿素作为碳元素前驱体对TiO2纳米管进行掺杂,采用比表面积测定、X射线衍射、透射电子显微镜、能量色散X射线荧光光谱、X射线光电子能谱、固体漫反射紫外-可见吸收光谱和荧光光谱对产物进行了表征.结果表明,以尿素作为前驱体可制备C掺杂的TiO2纳米管,C掺杂后,TiO2纳米管的可见光催化活性明显提高.此外,研究了C掺杂量、煅烧温度、催化剂用量和pH值对TiO2纳米管光催化降解活性的影响,发现当C的掺杂量为5.3%、催化剂用量为1.5 g/L、溶液的pH值为5时,在其催化作用下,可见光光照3h后罗丹明B的降解率可达到91%.

  5. Preparation and properties on rare-earth element cerium doped nano-titanium dioxide photocatalyst%Ce-TiO2光催化剂的制备与性能研究

    Institute of Scientific and Technical Information of China (English)

    燕宁宁; 张莹; 龚昌杰; 朱忠其; 柳清菊

    2012-01-01

    采用溶胶-凝胶法制备了稀土Ce离子掺杂的纳米TiO2光催化剂(Ce-TiO2),通过XRD、FT-IR、UV-Vis、PL、Nano-sizer纳米粒度分析仪等对Ce-TiO2样品进行了表征和分析,并以亚甲基蓝(MB)作为目标降解物,考察了不同掺杂浓度及经不同温度热处理后的Ce-TiO2样品对MB的光催化降解效果,结果表明所制备样品的晶型均为锐钛矿相和金红石相的混晶相,Ce离子的掺杂拓展了TiO2在可见光区的光谱响应范围,提高了TiO2光催化活性。当pH值为1.5,Ce的掺杂量为n(Ce)∶n(TiO2)=1∶300,热处理温度为600℃条件下制备的样品其催化活性显著高于Degussa P25。%The nano-TiO2 doped with Ce was prepared by sol-gel method.The samples were analyzed by X-ray diffraction(XRD),FT-IR,UV-Vis,PL,Nano-sizer nano particle size analyzer,etc.The photocatalytic activity of Ce-TiO2 was investigated at different doping dosage and different calcinated temperatures by measuring the degradation rate of methyl blue(MB) under the irradiation of fluorescent lamp,the results show that crystal phase of Ce-TiO2 samples are all mixed phase of anatase and rutile.The existence of the doped element Ce expands TiO2's spectrum absorption under the visible light,and increases the photocatalytic activity of TiO2.Meanwhile,the photocatalytic activity of the sample at pH=1.5,n(Ce)∶n(TiO2)=1∶300 and the calcinated temperature of 600℃ is the best,and it is obvious higher than that of P25.

  6. Preparation and visible-light-driven photocatalytic performance of cerium-doped titanium dioxide%Ce掺杂TiO2的制备及其可见光光催化性能

    Institute of Scientific and Technical Information of China (English)

    富好; 罗秀针; 袁霞; 施俊新; 高碧芬

    2013-01-01

    Ce-doped TiO2 nanoparticles were prepared by sol-gel method.The structure and physicochemical properties of the catalysts were investigated by means of XRD,FT-IR,XPS,UV-Vis DRS,etc.The photocat-alytic activities of Ce-doped TiO2 were evaluated by the degradation of acid red under visible light irradiation. The experiment results show that Ce-O-Ti bonds are formed on the interface of cerium oxide and TiO2 ,so that the crystallization and phase transition processes of the catalyst are impeded.Ce-TiO2 has a significant ab-sorption in the visible region and the recombination of the photo-generated electron and hole pairs was greatly inhibited.Hence,the visible-light-driven photocatalytic efficiency of Ce-TiO2 was significantly enhanced.The catalyst doped with 20% Ce presents the best activity when calcinated at 400 ℃.%采用溶胶-凝胶法制备 Ce 掺杂 TiO2(Ce-TiO2)纳米颗粒,借助 XRD、XPS、UV-Vis、DRS 等手段对催化剂的结构和理化性质进行分析表征,并以酸性红染料作为模型污染物,考察 Ce-TiO2在可见光作用下的催化活性。实验结果表明,在 CeO2和 TiO2界面形成了Ce-O-Ti键,从而抑制了催化剂的晶化和相转变过程,并在 TiO2的禁带中引入了 Ce4f 掺杂能级。Ce-TiO2在可见光区具有显著吸收,且光生载流子的复合受到有效抑制,因此,Ce 掺杂明显提高了TiO2降解污染物的效率。当 Ce 掺杂量为20%(摩尔分数),煅烧温度为400℃时,催化剂的活性达到最佳。

  7. 玻璃纤维负载纳米TiO2的制备及光催化性能%Preparation and Photocatalytic Properties of Nano-titanium Dioxide Supported on Glass Fiber

    Institute of Scientific and Technical Information of China (English)

    林中信; 万隆; 张世英; 李云龙; 方志薇

    2011-01-01

    TiO2/GF composites were prepared by loading titania on the glass fiber with dipping method.The sample was characterized by X-ray diffraction (XRD), thermogravimetric-differential scanning calorimeter ( TG-DSC), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) analysis technologies. The results show that when the calcination temperature below 550 ℃, the titania dioxide crystalline phase were anatase. The titania dioxide gradually transformed into rutile crystal phase with the increasing of the calcination temperatures. The photocatalytic activitie of TiO2/GF composites were evaluated by the photocatalytic decomposition of methylene blue. The composites showed higher photocatalytic activities as P25 commercial pure titania dioxide nanoparticles. The decomposition of methylene blue was more than 80% after repeated use.%采用浸渍-提拉法在玻璃纤维(GF)表面负载纳米TiO2,制备TiO2/GF复合光催化剂.通过X射线衍射(XRD)、热重-差热分析(TG-DSC)、扫描电镜(SEM)及能谱元素分析(EDS)对TiO2/GF复合光催化剂的结构进行了表征.结果表明,经550 ℃以下热处理,TiO2的晶型为锐钛矿相,随着热处理温度的升高,TiO2的晶型逐渐转化为金红石相.以亚甲基蓝的光催化降解为探针反应,评价TiO2/GF复合材料的光催化活性.复合材料的光催化降解活性与P25相当,且经多次使用后,复合光催化剂对亚甲基蓝的降解率仍保持在80%以上.

  8. Analysis of metal surfaces coated with europium-doped titanium dioxide by laser induced breakdown spectroscopy.

    Science.gov (United States)

    Głogocka, Daria; Noculak, Agnieszka; Pucińska, Joanna; Jopek, Wojciech; Podbielska, Halina; Langner, Marek; Przybyło, Magdalena

    2015-01-01

    The surface passivation with titanium sol-gel coatings is a frequently used technique to control the adsorption of selected biological macromolecules and to reduce the exposure of the bulk material to biological matter. Due to the increasing number of new coating-preparation methods and new gel compositions with various types of additives, the quality and homogeneity determination of the surface covering is a critical factor affecting performance of any implanted material. While coating thickness is easy to determine, the homogeneity of the surface distribution of coating materials requires more elaborate methodologies. In the paper, the laser induced breakdown spectroscopy (LIBS) based method, capable to quantitate the homogeneity and uniformity of the europium in titanium dioxide sol-gel coatings on stainless steel surfaces prepared with two different procedures: spin-coating and dip-coating, is presented. The emission intensity of titanium has been used to determine the coating thickness whereas the relative values of europium and titanium emission intensities provide data on the coating homogeneity. The obtained results show that the spin-coating technique provides better surface coverage with titanium dioxide. However, when the surface coating compositions were compared the dip-coating technique was more reliable.

  9. Characterization of the human cerebrospinal fluid phosphoproteome by titanium dioxide affinity chromatography and mass spectrometry

    DEFF Research Database (Denmark)

    Bahl, Justyna Maria Czarna; Jensen, Søren Skov; Larsen, Martin R

    2008-01-01

    of phosphorylation aberrations in health and disease. Toward that goal we here describe a method for a comprehensive isolation and identification of phosphorylated tryptic peptides derived from CSF proteins using a simple sample preparation step and titanium dioxide-affinity chromatography followed by MALDI...

  10. Investigation of photocatalytic activity of titanium dioxide deposited on metallic substrates by DC magnetron sputtering

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Canulescu, Stela; Dirscherl, Kai

    2013-01-01

    The photocatalytic properties of titanium dioxide (TiO2) coating in the anatase crystalline structure deposited on aluminium AA1050 alloy and stainless steel S316L substrates were investigated. The coating was prepared by DC magnetron sputtering. The microstructure and surface morphology...

  11. Decomposition of thin titanium deuteride films; thermal desorption kinetics studies combined with microstructure analysis

    NARCIS (Netherlands)

    Lisowski, Wojciech; Keim, Enrico G.; Kaszkur, Zbigniew; Smithers, Mark A.

    2008-01-01

    The thermal evolution of deuterium from thin titanium films, prepared under UHV conditions and deuterated in situ at room temperature, has been studied by means of thermal desorption mass spectrometry (TDMS) and a combination of scanning electron microscopy (SEM), transmission electron microscopy (T

  12. Titanium - ceramic restoration: How to improve the binding between titanium and ceramic

    Directory of Open Access Journals (Sweden)

    Harry Laksono

    2011-03-01

    Full Text Available Background: Titanium alloys has been used as an alternative to nickel-chromium alloys for metal-ceramic restorations because of its good biocompatibility and mechanical properties. This indicated that it was possible to design coping according to standards established for metal-ceramics. However, titanium is chemically reacting strongly with gaseous elements which causes problems when ceramics are fused to titanium. Purpose: To provide information about improving the bonding between titanium and ceramic. Review: Titanium has two crystal modifications, the close-packed hexagonal (α structure, up to 880° C, and above this temperature the bodycentered cubic (β structure. The principal problems is the extensive dissolution of oxygen resulting in thick, oxygen-rich titanium layers called α-case that harms the bonding of ceramic to titanium and the great mismatch in the coefficient of thermal expansion of conventional ultra-low fusing ceramic. Methods have been developed for fusing ceramic to titanium like processing methods, the used of ultra-low fusing titanium ceramic, bonding agent, and protocol for ceramic bonding to titanium. Conclusion: Titanium and titanium alloys, based on their physical and chemical properties suitable for titanium-ceramic restorations, but careful selection of processing methods, ceramic materials, laboratory skill and strict protocol for ceramic bonding to titanium are necessary to improve the bonding between titanium and ceramic.Latar Belakang: Logam campur titanium telah dipakai sebagai salah satu bahan alternatif untuk logam nikel-krom pada pembuatan restorasi keramik taut logam karena mempunyai biokompatibilitas dan sifat mekanik yang baik. Hal ini menunjukkan bahwa logam titanium dapat dipakai untuk pembuatan koping logam berdasarkan standar yang dipakai untuk pembuatan restorasi keramik taut logam. Meskipun, secara kimiawi logam titanium bereaksi dengan elemen-elemen gas yang menyebabkan masalah pada perlekatan

  13. Nonvolatile buffer coating of titanium to prevent its biological aging and for drug delivery.

    Science.gov (United States)

    Suzuki, Takeo; Kubo, Katsutoshi; Hori, Norio; Yamada, Masahiro; Kojima, Norinaga; Sugita, Yoshihiko; Maeda, Hatsuhiko; Ogawa, Takahiro

    2010-06-01

    The osseointegration capability of titanium decreases over time. This phenomenon, defined as biological aging of titanium, is associated with the disappearance of hydrophilicity and the progressive accumulation of hydrocarbons on titanium surfaces. The objective of this study was to examine whether coating of titanium surfaces with 4-(2-Hydroxylethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, a nonvolatile zwitterionic chemical buffering agent, could prevent the time-dependent degradation of the bioactivity of titanium. Commercially pure titanium samples, prepared as disks and cylinders, were acid-etched with H(2)SO(4). A third of the samples were used for experiments immediately after processing (new surfaces), while another third were stored under dark ambient conditions for 3 months (3-month-old surfaces). The remaining third were coated with HEPES after acid-etching and were stored for 3 months (HEPES-coated 3-month-old surfaces). The 3-month-old surfaces were hydrophobic, while new and HEPES-coated 3-month-old surfaces were superhydrophilic. Protein adsorption and the number of osteoblasts attached during an initial culture period were substantially lower for 3-month-old surfaces than for new and HEPES-coated 3-month-old surfaces. Alkaline phosphatase activity and calcium deposition in osteoblast cultures were reduced by more than 50% on 3-month-old surfaces compared to new surfaces, whereas such degradation was not found on HEPES-coated 3-month-old surfaces. The strength of in vivo bone-implant integration for 3-month-old implants, evaluated by the push-in test, was 60% lower than that for new implants. The push-in value of HEPES-coated 3-month-old implants was equivalent to that of new implants. Coating titanium surfaces with HEPES containing an antioxidant amino acid derivative, N-acetyl cysteine (NAC), further enhanced osteoblast attachment to the surfaces, along with the increase level of intracellular glutathione reserves as a result of cellular

  14. Production of titanium from ilmenite: a review

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, R.

    1981-12-01

    The general principles for beneficiation of titanium ores are reviewed and the specific processes used in individual units in various countries are discussed. This is followed by a critical evaluation of various current and potential reduction methods for the production of titanium metal from the processed concentrates. Finally, the report outlines a research program for the development of a commercially viable alternative method for the production of titanium metal.

  15. Investigation of Infiltrated and Sintered Titanium Carbide

    Science.gov (United States)

    1952-04-01

    taneive investigations in this field during the ’time preceding this contract, and concentrated their effort® On titanium carbide as the’ refractospy...component • The Basic work of this investigation consisted of? X, KpälfiCÄVtloh and refinement of cOmätrcial grades of titanium carbide hj...facilitate a comparison between the different methods» an investigation was then carried out with composite bodies* consisting of titanium carbide asd

  16. Brazing titanium structures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pressly, H.B.

    1977-03-01

    A vacuum furnace brazing process using Ag-5A1-0.5Mn brazing alloy has been developed for joining titanium alloy Ti-6Al-4V structures. Lap-shear strengths of the braze joints and the effects of the brazing thermal cycle on the tensile and bending properties of mill-annealed Ti-6Al-4V alloy sheet are reported. Nondestructive test methods were evaluated for detecting defects in these braze joints.

  17. Titanium alloys Russian aircraft and aerospace applications

    CERN Document Server

    Moiseyev, Valentin N

    2005-01-01

    This text offers previously elusive information on state-of-the-art Russian metallurgic technology of titanium alloys. It details their physical, mechanical, and technological properties, as well as treatments and applications in various branches of modern industry, particularly aircraft and aerospace construction. Titanium Alloys: Russian Aircraft and Aerospace Applications addresses all facets of titanium alloys in aerospace and aviation technology, including specific applications, fundamentals, composition, and properties of commercial alloys. It is useful for all students and researchers interested in the investigation and applications of titanium.

  18. 2005 Xi'an International Titanium Conference

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ First Circular Call for Papers In the 98' Xi'an International Titanium Conference (XITC'98), more than 300 representatives of the research and industry circles from 12 countries were gathered in Xi'an to exchange the new progress on titanium R&D and industrialization. XITC'98played an important role in promoting titanium R&D for the world, especially for China. In order to let the people engaged in titanium industry know more Chinese and the world titanium industry, promote the exchange and cooperation of the world titanium circle, we decide to hold the 2005 Xi'an International titanium Conference (XITC'05), which will be held on October 16~19, 2005 in Xi'an, China. The conference will provide a forum on the exchange and discussion of new ideas and achievements related to the aspects of titanium technology and industry in recent years. At the same time, the 12th China National Conference on Titanium will be held on October 19~23, 2005 in the same place after XITC'05.

  19. Appcelerator Titanium patterns and best practices

    CERN Document Server

    Pollentine, Boydlee

    2013-01-01

    The book takes a step-by-step approach to help you understand CommonJS and Titanium architecture patterns, with easy to follow samples and plenty of in-depth explanations If you're an existing Titanium developer or perhaps a new developer looking to start off your Titanium applications "the right way", then this book is for you. With easy to follow examples and a full step-by-step account of architecting a sample application using CommonJS and MVC, along with chapters on new features such as ACS, you'll be implementing enterprise grade Titanium solutions in no time. You should have some JavaSc

  20. Titanium Matrix Composite Pressure Vessel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For over 15 years, FMW Composite Systems has developed Metal Matrix Composite manufacturing methodologies for fabricating silicon-carbide-fiber-reinforced titanium...

  1. Investigation on the preparation of metakaolin-supported titanium mineral admixture with photocatalytic activity%高岭土负载钛制备具有光催化活性矿物掺合料的研究

    Institute of Scientific and Technical Information of China (English)

    张旭; 严云; 谢斐琳; 付丽; 胡志华

    2013-01-01

    A new process for preparing metakaolin-supported titania with the feature of both photocatalytic and pozzolanic activity by so called single calcination method was investigated.The ground pyrite tailing was mixed with the titania sol by sol-gel method firstly and then calcining the mixture with the optimum calcination regime by which could turn the kaolin into metakaolin-supported titania which has both good pozzolanic activity and photocatalytic performance.The effect of metakaolin-supported titania mineral admixture's dosage,load time on the of cement slurry has been investigated.The results show that the optimum calcination regime was 750 ℃for 2 h;the optimum loading time was 2 h;the optimum mineral admixture's dosage was 1 5%.The 7 d pozzo-lanic activity index of the metakaolin-supported titania mineral admixture can reach up to 1 1 3%.The photocata-lytic degradation efficiency on the MB of the admixture was high up to 93. 5% with the initial concentration of the MB was 1 5 mg/L.Micro-analysis was examined by XRD,ABS and TAM.The crystal form of titania sup-ported on the metakaolin powder was anatase and had a good crystallinity.The metakaolin-supported titania mineral admixture fabricated by this method demonstrates both a good photocatalytic,self-cleaning effect and excellent pozzolanic activity while incorporating into cementitious materials.%将溶胶-凝胶法制备的钛溶胶负载到硫铁矿尾矿上,采用一步煅烧法把尾矿转化为具有一定火山灰活性和光催化性的负载钛偏高岭土,并用它作为掺合料掺加到了水泥基体中。研究了负载时间、煅烧制度及负载钛量对该掺合料对水泥基材料的力学性能、早期水化行为及光催化性能的影响。结果表明,最佳负载时间为2 h,最佳煅烧制度是750℃×2 h,TiO2的晶型为结晶度较好的锐钛矿型。掺入水泥中最佳掺量为15%,7 d 活性指数达到113%,此时水化热低。高岭土中最佳负载钛量为7.5%,此时,0

  2. 钒掺杂二氧化钛薄膜制备与材料特性分析%Preparation and characterization of V-doped titanium oxide thin films

    Institute of Scientific and Technical Information of China (English)

    刘欢; 龚树萍; 刘剑桥; 万久晓; 周东祥

    2011-01-01

    V-doped TiO2 films were prepared by sol-gel method starting from tetrabutyl titanate and vanadium(Ⅲ) 2,4-pentanedionate.Their properties were characterized by XRD,UV-Vis absorption spectra,FT-IR,and XPS with the undoped film samples as the control.Both the V-doped and undoped TiO2 films are anatase and the band gap decreases from 3.28 to 3.15eV,with a red shift in the absorption of V-doped TiO2 film compared to the undoped samples.The V-doped films consist of vanadium atoms in the V4+ and V5+ oxidation states,generating deep defect levels and the valence bandedge might extend into the forbidden band gap,inducing the band gap narrowing effect and enhancing the bandedge absorption.At the grain boundaries of TiO2,those impurity defects located deep inside the gap become closer to the top of the valence band and hence tend to trap the photo-generated holes,which would contribute to inhibit the recombination of photogenerated carriers and become highly attractive for application in photocatalytic materials.%以钛酸四丁酯和乙酰丙酮钒(Ⅲ)为主要原料,采用溶胶-凝胶法制备了钒掺杂二氧化钛薄膜,利用XRD、紫外-可见吸收光谱、FT-IR及XPS等表征手段,将其与未掺杂二氧化钛薄膜进行了材料特性对比研究。结果表明两种薄膜均为锐钛矿结构,引入钒后二氧化钛的禁带宽度由3.28eV减小至3.15eV,吸收带边红移至可见光范围;XPS分析证实制备的钒掺杂二氧化钛薄膜中钒以四价和五价两种氧化价态存在,可能在二氧化钛禁带中引入较深的杂质能级而引起价带顶向禁带拓展,从而产生引起禁带宽度变窄效应,扩展了二氧化钛带边光吸收。理论分析还表明,钒掺杂引起的深能级杂质在二氧化钛晶界处易于形成有效的陷阱俘获光生空穴,从而抑制光生载流子的复合,尤其适于用作光催化材料。

  3. SWA/TiO2微球的制备及催化α-蒎烯异构化性能%Preparation of nanometer microsphere of titanium dioxide supported silicotungstic acid and catalytic performance for α-pinene isomerization

    Institute of Scientific and Technical Information of China (English)

    马晓涛; 吴春华; 赵黔榕

    2012-01-01

    采用溶胶-凝胶法和浸溃法,制备了纳米负载型H4SiW12O40 (SWA)催化剂,考察了载体种类、SWA浸溃浓度对催化剂性能的影响.结果表明,用TiO2固载、8% SWA浸渍所得催化剂SWA/TiO2的催化性能较佳.利用XRD、TEM和BET比表面测定技术对其结构进行了表征.结果显示,该催化剂颗粒为圆球形,粒径为40~50 nm,具有较好的分散性.载体TiO2的引入明显增大了SWA的比表面积.将纳米SWA/TiO2用于催化α-蒎烯异构化反应,实验结果表明,该催化剂具有较好的催化活性和选择性,异构化反应的主产物是莰烯.在适宜的实验条件下,α-蒎烯的转化率达98%,莰烯的产率达58%.与其它负载型催化剂比较,SWA/TiO2具有用量少、活性高、反应时间短等特点.%Nanometer microsphere SWA/TiO2,a novel supported catalyst,was prepared by sol-gel method and impregnation. The effects of the kinds of carriers, the impregnating consistence of silicotungstic acid ( SWA) were investigated. The results showed that the catalyst displayed excellent activity when it supported, by TiO2 and impregnated with 8% SWA. The structure of SWA/TiO2 was characterized by XRD.TEM and BET surface area measurement technology. The results indicated that the catalyst had a narrow particle size distribution with an average particle diameter about 40 - 50 nm. The surface area of catalyst was obviously increased supported by TiO2. Nanometer SWA/TiO2 was used as a catalyst in a-pinene isomerization. Experimental results showed that the catalyst had better catalytic activity and selectivity. The main product of isomerizauon reaction was camphene. Under the suitable technology conditions, the conversion of a-pinene reached 98% and the camphene yield reached 58%. Compared with other supported catalysts, the SWA/TiOj can short reaction time,high activity and decrease catalyst quantity.

  4. Mechanism of Selenite Removal by a Mixed Adsorbent Based on Fe–Mn Hydrous Oxides Studied Using X-ray Absorption Spectroscopy

    KAUST Repository

    Chubar, Natalia

    2014-11-18

    © 2014 American Chemical Society. Selenium cycling in the environment is greatly controlled by various minerals, including Mn and Fe hydrous oxides. At the same time, such hydrous oxides are the main inorganic ion exchangers suitable (on the basis of their chemical nature) to sorb (toxic) anions, separating them from water solutions. The mechanism of selenite adsorption by the new mixed adsorbent composed of a few (amorphous and crystalline) phases [maghemite, MnCO3, and X-ray amorphous Fe(III) and Mn(III) hydrous oxides] was studied by extended X-ray absorption fine structure (EXAFS) spectroscopy [supported by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) data]. The complexity of the porous adsorbent, especially the presence of the amorphous phases of Fe(III) and Mn(III) hydrous oxides, is the main reason for its high selenite removal performance demonstrated by batch and column adsorption studies shown in the previous work. Selenite was bound to the material via inner-sphere complexation (via oxygen) to the adsorption sites of the amorphous Fe(III) and Mn(III) oxides. This anion was attracted via bidentate binuclear corner-sharing coordination between SeO3 2- trigonal pyramids and both FeO6 and MnO6 octahedra; however, the adsorption sites of Fe(III) hydrous oxides played a leading role in selenite removal. The contribution of the adsorption sites of Mn(III) oxide increased as the pH decreased from 8 to 6. Because most minerals have a complex structure (they are seldom based on individual substances) of various crystallinity, this work is equally relevant to environmental science and environmental technology because it shows how various solid phases control cycling of chemical elements in the environment.

  5. Mechanism of selenite removal by a mixed adsorbent based on Fe-Mn hydrous oxides studied using X-ray absorption spectroscopy.

    Science.gov (United States)

    Chubar, Natalia; Gerda, Vasyl; Szlachta, Małgorzata

    2014-11-18

    Selenium cycling in the environment is greatly controlled by various minerals, including Mn and Fe hydrous oxides. At the same time, such hydrous oxides are the main inorganic ion exchangers suitable (on the basis of their chemical nature) to sorb (toxic) anions, separating them from water solutions. The mechanism of selenite adsorption by the new mixed adsorbent composed of a few (amorphous and crystalline) phases [maghemite, MnCO3, and X-ray amorphous Fe(III) and Mn(III) hydrous oxides] was studied by extended X-ray absorption fine structure (EXAFS) spectroscopy [supported by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) data]. The complexity of the porous adsorbent, especially the presence of the amorphous phases of Fe(III) and Mn(III) hydrous oxides, is the main reason for its high selenite removal performance demonstrated by batch and column adsorption studies shown in the previous work. Selenite was bound to the material via inner-sphere complexation (via oxygen) to the adsorption sites of the amorphous Fe(III) and Mn(III) oxides. This anion was attracted via bidentate binuclear corner-sharing coordination between SeO3(2-) trigonal pyramids and both FeO6 and MnO6 octahedra; however, the adsorption sites of Fe(III) hydrous oxides played a leading role in selenite removal. The contribution of the adsorption sites of Mn(III) oxide increased as the pH decreased from 8 to 6. Because most minerals have a complex structure (they are seldom based on individual substances) of various crystallinity, this work is equally relevant to environmental science and environmental technology because it shows how various solid phases control cycling of chemical elements in the environment.

  6. Experimental controls on D/H and 13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis

    Science.gov (United States)

    Schimmelmann, A.; Boudou, J.-P.; Lewan, M.D.; Wintsch, R.P.

    2001-01-01

    Large isotopic transfers between water-derived hydrogen and organic hydrogen occurred during hydrous pyrolysis experiments of immature source rocks, in spite of only small changes in organic 13C/12C. Experiments at 330 ??C over 72 h using chips or powder containing kerogen types I and III identify the rock/water ratio as a main factor affecting ????D for water and organic hydrogen. Our data suggest that larger rock permeability and smaller rock grain size increase the H-isotopic transfer between water-derived hydrogen and thermally maturing organic matter. Increasing hydrostatic pressure may have a similar effect, but the evidence remains inconclusive. ?? 2001 Elsevier Science Ltd. All rights reserved.

  7. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Science.gov (United States)

    Parcharoen, Yardnapar; Kajitvichyanukul, Puangrat; Sirivisoot, Sirinrath; Termsuksawad, Preecha

    2014-08-01

    Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO2) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO2 nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH4F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO2 nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO2 nanotubes were found when high viscous electrolyte, NH4F in glycerol, was used. Negative voltage (-4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO2 nanotubes was significantly increased by times. The TiO2 nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO2 nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that growing on titanium plate surface.

  8. Effect of Superhydrophobic Surface of Titanium on Staphylococcus aureus Adhesion

    Directory of Open Access Journals (Sweden)

    Peifu Tang

    2011-01-01

    Full Text Available Despite the systemic antibiotics prophylaxis, orthopedic implants still remain highly susceptible to bacterial adhesion and resulting in device-associated infection. Surface modification is an effective way to decrease bacterial adhesion. In this study, we prepared surfaces with different wettability on titanium surface based on TiO2 nanotube to examine the effect of bacterial adhesion. Firstly, titanium plates were calcined to form hydrophilic TiO2 nanotube films of anatase phase. Subsequently, the nanotube films and inoxidized titaniums were treated with 1H, 1H, 2H, 2H-perfluorooctyl-triethoxysilane (PTES, forming superhydrophobic and hydrophobic surfaces. Observed by SEM and contact angle measurements, the different surfaces have different characteristics. Staphylococcus aureus (SA adhesion on different surfaces was evaluated. Our experiment results show that the superhydrophobic surface has contact angles of water greater than 150∘ and also shows high resistance to bacterial contamination. It is indicated that superhydrophobic surface may be a factor to reduce device-associated infection and could be used in clinical practice.

  9. Streptococcus mutans attachment on a cast titanium surface

    Directory of Open Access Journals (Sweden)

    Sicknan Soares da Rocha

    2009-03-01

    Full Text Available This study examined by means of scanning electron microscopy (SEM, the attachment of Streptococcus mutans and the corrosion of cast commercially pure titanium, used in dental dentures. The sample discs were cast in commercially pure titanium using the vacuum-pressure machine (Rematitan System. The surfaces of each metal were ground and polished with sandpaper (#300-4000 and alumina paste (0.3 µm. The roughness of the surface (Ra was measured using the Surfcorder rugosimeter SE 1700. Four coupons were inserted separately into Falcon tubes contained Mueller Hinton broth inoculated with S. mutans ATCC 25175 (10(9 cuf and incubated at 37 °C. The culture medium was changed every three days during a 365-day period, after which the falcons were prepared for observations by SEM. The mean Ra value of CP Ti was 0.1527 µm. After S. mutans biofilm removal, pits of corrosion were observed. Despite the low roughness, S. mutans attachment and biofilm formation was observed, which induced a surface corrosion of the cast pure titanium.

  10. Exploration of safe clinical use court of using ProTaper rotary nickel-titanium instruments during root canal preparation%ProTaper机用镍钛锉预备根管的临床安全使用次数探讨

    Institute of Scientific and Technical Information of China (English)

    刘艳; 陈玉荣; 路和平; 徐天舒; 范琳; 储殷佳

    2011-01-01

    目的 通过对ProTaper机用镍钛锉(后简称ProTaper锉)预备根管流程的改良,在确保临床疗效的同时,提高临床安全使用次数.方法 选取患牙162颗,其中前牙、前磨牙和磨牙分别为23颗、28颗和111颗,按照探查根管、确定工作长度、初步疏通根管、GG钻预敞开根管上段以及ProTaper锉扩大成形的流程预备根管,侧方加压充填根管,通过术前、中、后X片来评价根管预备和充填的效果.结果 ProTaper锉能很好的维持根管的形态,术后反应少而轻.使用的9套ProTaper锉最多预备51个根管,最少预备35个根管,平均预备41个根管;SX、S1、S2、F1、F2、F3分别平均用了19.4、43.3、43.3、43.2、38.3、6.7个根管;有2套锉最终出现F1折断,2套出现S1和F1解螺旋,其余5套表现为锉柄、锉刃的老化.结论 根管预备流程的改良、熟练的操作、详细的使用记录和妥善保管是提高ProTaper锉安全使用次数的保障,建议使用ProTaper锉混合预备前后牙根管总数不超过35个.%Objective To increase clinical use times of ProTaper rotary nickel-titanium instruments by improvement of root canal preparation,which ensuring clinical effect at the same time. Methods A total of 162 human teeth including 23 front teeth, 28 premo-lars and 111 molars were mainly managed with ProTaper rotary instruments followed by the sequence of root canal exploration,working length measurement,root canal dredging with hand file,coronal preflaring on the third of root canal with GG rotary files. Lateral condensation was used for root canal obturation. The effect of preparation and obturation were analyzed with radiographs before, during and after operation. Results ProTaper rotary instruments kept original shape of root canal very well, and endodontic flare-up seldom occurred. The most, lest and average root canal numbers prepared by all 9 series of ProTaper rotary instruments were 51, 35 and 41 respectively. TypeSX, S1, S2, F1

  11. Electrochemically promoted electroless nickel-phosphorous plating on titanium substrate

    Science.gov (United States)

    Gao, Ce; Dai, Lei; Meng, Wei; He, Zhangxing; Wang, Ling

    2017-01-01

    An electrochemically promoted electroless nickel-phosphorous plating process on titanium substrate is proposed. The influences of the temperature and current density on the phosphorous content, coating thickness and corrosion resistance are investigated. The results show that with the help of the electrochemical promotion, the uniform and amorphous nickel-phosphorous coatings with medium phosphorus content (6-8 wt%) are successfully prepared in the electroless bath at 40-60 °C. The phosphorous content of the coating increases with the temperature increasing, while decreases with current density increasing. Obvious passivation occurs for the nickel-phosphorous coatings during the anodic polarization in 3.5 wt% NaCl solution.

  12. Synthesis of brookite-typed titania from titanium chloride solution

    Institute of Scientific and Technical Information of China (English)

    Satoshi OKANO; Saeki YAMAMURO; Toshiro TANAKA

    2009-01-01

    The brookite-phase TiO2 was prepared by a hydrothermal synthesis of titanium chloride solution. The thermolysis time and the pH value of the solution were controlled during the synthesis. X-ray diffraction experiments showed that TiO2 powders partially containing the brookite-phase were successfully ob-tained. A great amount of OH in the reaction solution was found to be important to obtain the brookite phase because the intermediate complex leading to the brookite phase consumes more OH- than other phases like the rutile.

  13. Synthesis of brookite-typed titania from titanium chloride solution

    Institute of Scientific and Technical Information of China (English)

    Satoshi; OKANO; Saeki; YAMAMURO; Toshiro; TANAKA

    2009-01-01

    The brookite-phase TiO2 was prepared by a hydrothermal synthesis of titanium chloride solution. The thermolysis time and the pH value of the solution were controlled during the synthesis. X-ray diffraction experiments showed that TiO2 powders partially containing the brookite-phase were successfully obtained. A great amount of OH-in the reaction solution was found to be important to obtain the brookite phase because the intermediate complex leading to the brookite phase consumes more OH- than other phases like the rutile.

  14. Photoelectrochemical properties of sol–gel obtained titanium oxide

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIC

    2008-12-01

    Full Text Available The photoelectrochemical properties of a sol–gel prepared titanium oxide coating applied onto a Ti substrate were investigated. The oxide coating was formed from an inorganic sol thermally treated in air at 350 °C. The coating consisted of agglomerates of narrow size distribution around 100 nm. The photoelectrochemical characteristics were evaluated by investigating the changes in the open circuit potential, current transients and impedance characteristics of a Ti/TiO2 electrode upon illumination by UV light in H2SO4 solution and in the oxidation of benzyl alcohol. The electrode was found to be active for photoelectrochemical reactions in the investigated solutions.

  15. Study of a photostable thin films of TiO{sub 2} on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Pedemonte, M.M.; Visintin, A.; Capparelli, A.L. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Departamento de Quimica, Facultad de Ciencias Exactas, UNLP, CCT La Plata-CONICET, Casilla de correo 16, Sucursal 4, 1900 La Plata (Argentina)

    2010-06-15

    The preparation of supported TiO{sub 2} for photocatalytic application in solar cells is an active research field. In the present communication we report the preparation of immobilized TiO{sub 2} on metallic titanium for application as a photoelectrode in electrochemical cells as a prior stage for photosplitting of water molecules in hydrogen and oxygen. Films of TiO{sub 2} prepared at 300 , 450 , 600 , 700 , 750 , 800 and 900 C were let to grow on a mirrorlike surface of titanium. The photoelectrochemical answer of these photoelectrodes were analyzed as well as the film prepared under the previous conditions. TDA, TG, XRD and SEM were mainly applied for characterizing the films. Voltametric and chronoamperometric studies were obtained under dark and irradiation conditions under UVA-Visible radiation at controlled room temperature (25 C). The photoelectrochemical answer is strongly sensitive at the temperature at which the film is prepared on the surface of titanium. The photoelectrochemical answer on a given photoelectrode is reproducible in time, but the best answer is obtained on the TiO{sub 2} prepared at 750 C. (author)

  16. Preparation of three-dimensional shaped aluminum alloy foam by two-step foaming

    Energy Technology Data Exchange (ETDEWEB)

    Shang, J.T. [Key laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096 (China)], E-mail: Jshang@seu.edu.cn; Xuming, Chu; Deping, He [School of Materials Science and Engineering, Southeast University, Nanjing 210096 (China)

    2008-06-25

    A novel method, named two-step foaming, was investigated to prepare three-dimensional shaped aluminum alloy foam used in car industry, spaceflight, packaging and related areas. Calculations of thermal decomposition kinetics of titanium hydride showed that there is a considerable amount of hydrogen releasing when the titanium hydride is heated at a relatively high temperature after heated at a lower temperature. The hydrogen mass to sustain aluminum alloy foam, having a high porosity, was also estimated by calculations. Calculations indicated that as-received titanium hydride without any pre-treatment can be used as foaming agents in two-step foaming. The processes of two-step foaming, including preparing precursors and baking, were also studied by experiments. Results showed that, low titanium hydride dispersion temperature, long titanium hydride dispersion time and low precursors porosity are beneficial to prepare three-dimensional shaped aluminum alloy foams with uniform pores.

  17. [Experimental research on porcelain fused to the surface of pure titanium and titanium alloys].

    Science.gov (United States)

    Wang, D; Ai, S; Xu, J

    1995-07-01

    Titanium material has been widely used in prosthodontics since the end of 1980s. However, the research on porcelain fused to the surfaces of titanium material was quite few. This article introduced the technological process of low-fusing dental porcelain--Ceratin fused to pure titanium and titanium alloys. The values of the bond strength of Ceratin and titanium substrates were obtained by shearing test with INSTRON Model-1185. The average value of the shearing strength between TA2 and Ceratin was 31. 01MPa. The corresponding value between TC4 and Ceratin was 33.73MPa. The interface between Ceratin and titanium substrate was observed with scanning electron microscope (SEM). The results of this research proposed that it is hopeful that Ceratin is used as special procelain with titanium material.

  18. Titanium Carbide Bipolar Plate for Electrochemical Devices

    Energy Technology Data Exchange (ETDEWEB)

    LaConti, Anthony B.; Griffith, Arthur E.; Cropley, Cecelia C.; Kosek, John A.

    1998-05-08

    Titanium carbide comprises a corrosion resistant, electrically conductive, non-porous bipolar plate for use in an electrochemical device. The process involves blending titanium carbide powder with a suitable binder material, and molding the mixture, at an elevated temperature and pressure.

  19. Durability of polyimide to titanium bonds

    NARCIS (Netherlands)

    Akram, M.; Jansen, K.M.B.; Bhowmik, S.; Ernst, L.J.

    2012-01-01

    Titanium and its alloys are usually bonded together using a high temperature resistant polyimide or epoxy adhesives. Such adhesives can withstand temperatures from 200°C to300°C. Earlier research work indicates that Surface modification of titanium with mechanical treatment and atmospheric pressure

  20. Titanium tetrachloride burns to the eye.

    OpenAIRE

    Chitkara, D K; McNeela, B. J.

    1992-01-01

    We present eight cases of chemical burns of the eyes from titanium tetrachloride, an acidic corrosive liquid. However it causes severe chemical burns which have a protracted course and features more akin to severe alkali burns. Injuries related to titanium tetrachloride should be treated seriously and accordingly appropriate management is suggested.

  1. Wettability studies of topologically distinct titanium surfaces.

    Science.gov (United States)

    Kulkarni, Mukta; Patil-Sen, Yogita; Junkar, Ita; Kulkarni, Chandrashekhar V; Lorenzetti, Martina; Iglič, Aleš

    2015-05-01

    Biomedical implants made of titanium-based materials are expected to have certain essential features including high bone-to-implant contact and optimum osteointegration, which are often influenced by the surface topography and physicochemical properties of titanium surfaces. The surface structure in the nanoscale regime is presumed to alter/facilitate the protein binding, cell adhesion and proliferation, thereby reducing post-operative complications with increased lifespan of biomedical implants. The novelty of our TiO2 nanostructures lies mainly in the high level control over their morphology and roughness by mere compositional change and optimisation of the experimental parameters. The present work focuses on the wetting behaviour of various nanostructured titanium surfaces towards water. Kinetics of contact area of water droplet on macroscopically flat, nanoporous and nanotubular titanium surface topologies was monitored under similar evaporation conditions. The contact area of the water droplet on hydrophobic titanium planar surface (foil) was found to decrease during evaporation, whereas the contact area of the droplet on hydrophobic nanorough titanium surfaces practically remained unaffected until the complete evaporation. This demonstrates that the surface morphology and roughness at the nanoscale level substantially affect the titanium dioxide surface-water droplet interaction, opposing to previous observations for microscale structured surfaces. The difference in surface topographic nanofeatures of nanostructured titanium surfaces could be correlated not only with the time-dependency of the contact area, but also with time-dependency of the contact angle and electrochemical properties of these surfaces.

  2. Appcelerator Titanium business application development cookbook

    CERN Document Server

    Bahrenberg, Benjamin

    2013-01-01

    Presented in easy to follow, step by step recipes, this guide is designed to lead you through the most important aspects of application design.Titanium developers who already have a basic knowledge of working with Appcelerator Titanium but want to further develop their knowledge for use with business applications

  3. The preparation of nanometer silver antibacterial titanium plate and the test research of the physical and ;chemical properties%纳米银抗菌钛片的制备及其理化性能检测的实验研究

    Institute of Scientific and Technical Information of China (English)

    刘泉; 黄文; 熊颖铭; 秦晓丹

    2014-01-01

    目的:用硅烷偶联的方法将纳米银颗粒被覆在钛片上,使光滑钛表面具有抗菌性能。方法:扫描电镜观察硅烷偶联改性钛板表面形貌,纳米银颗粒的形态、大小以及在钛片上的附着情况;X射线能谱及线扫描分析钛片上各元素成分;X射线光电子能谱定量分析钛片表面元素。实验组为纳米银改性钛片,对照组为光滑钛片。结果:肉眼观察纳米龈改性后的钛片表面光滑,扫描电镜下可见实验组基底面有纳米银颗粒附着,直径约几十个纳米,形态成圆形或柱形,部分纳米颗粒团聚在一起;X射线光电子能谱分析结果显示实验组钛表面含Ti,Ag,C,O四种元素,其中Ag的原子百分比为5.3%,银元素结合能为367.9 ev。结论:通过硅烷化的方法将纳米银沉积在钛表面,该方法简单,无需特殊设备,可操控性强。%Objective:in order to smooth the titanium surface with antimicrobial properties,use the method of silane coupling the nanosize silver particles coating on the titanium plate, and its physical and chemical properties were analyzed. Method:the experimental group for modified titanium silver nanoparticles,the control for smooth titanium plate,each 10 pieces. Scanning electron microscope observation of titanium plate surface morphology,the nano silver particle morphology, size and adhesion on titanium plate;X-ray energy spectrum and titanium plate line scanning analysis on composition of each element;X-ray photoelectron spectroscopy quantitative analysis of the modified titanium surface elements. Result:macro-scopic observation of the modified nanometer gum titanium surface is smooth,basal surface by scanning electron microscopy (sem) with silver nanoparticles,diameter of dozens of nanometers,form into a circular or cylindrical,part of the nanoparticles reunion together;Titanium surface X-ray photoelectron spectroscopy analysis results show that the

  4. Biomolecule-coated metal nanoparticles on titanium.

    Science.gov (United States)

    Christensen, Stephen L; Chatt, Amares; Zhang, Peng

    2012-02-07

    Immobilizations of nanoparticles and biomolecules on biocompatible substrates such as titanium are two promising approaches to bringing new functionalities to Ti-based biomaterials. Herein, we used a variety of X-ray spectroscopic techniques to study and better understand metal-thiolate interactions in biofunctionalized metal nanoparticle systems supported on Ti substrates. Using a facile one-step procedure, a series of Au nanoparticle samples with varied biomolecule coatings ((2-mercatopropionyl)glycine (MPG) and bovine serum albumin (BSA)) and biomolecule concentrations are prepared. Ag and Pd systems are also studied to observe change with varying metal composition. The structure and properties of these biomolecule-coated nanoparticles are investigated with scanning electron microscopy (SEM) and element-specific X-ray techniques, including extended X-ray absorption fine structure (Au L(3)-edge), X-ray absorption near-edge structure (Au L(3), Ag L(3), Pd L(3), and S K-edge), and X-ray photoelectron spectroscopy (Au 4f, Ag 3d, Pd 3d, and S 2p core level). It was found that, by comparison of SEM and X-ray spectroscopy results, the coating of metal nanoparticles with varying model biomolecule systems can have a significant effect on both surface coverage and organization. This work offers a facile chemical method for bio- and nanofunctionalization of Ti substrates as well as provides a physical picture of the structure and bonding of biocoated metal nanoparticles, which may lead to useful applications in orthopedics and biomedicine.

  5. Titanium nitride room-temperature ferromagnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Iu.G., E-mail: morozov@ism.ac.ru [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 8 Academician Osipyan Street, Chernogolovka, Moscow Region, 142432 (Russian Federation); Belousova, O.V. [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 8 Academician Osipyan Street, Chernogolovka, Moscow Region, 142432 (Russian Federation); Belyakov, O.A. [Ogarev Mordovia State University, Saransk, 68 Bol' shevistskaya Street, 430005 (Russian Federation); Parkin, I.P., E-mail: i.p.parkin@ucl.ac.uk [Department of Chemistry, Materials Chemistry Research Centre, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Sathasivam, S. [Department of Chemistry, Materials Chemistry Research Centre, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Kuznetcov, M.V., E-mail: maxim1968@mail.ru [All-Russian Research Institute on Problems of Civil Defense and Emergencies of Emergency Control Ministry of Russia (EMERCOM), 7 Davidkovskaya Street, Moscow, 121352 (Russian Federation)

    2016-08-05

    Cubic and near-spherical TiN nanoparticles ranging in average size from 20 to 125 nm were prepared by levitation-jet aerosol synthesis through condensation of titanium vapor in an inert gas flow with gaseous nitrogen injection. The nanoparticles were characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), BET measurements, UV–Vis, FT-IR, Raman spectroscopy, XPS, and vibrating-sample magnetometry. Room-temperature ferromagnetism with maximum magnetization up to 2.5 emu/g was recorded for the nanoparticles. The results indicate that the observed ferromagnetic ordering was related to the defect Ti–N structures on the surface of nanoparticles. This suggestion is in good correlation with the measured spectroscopical data. - Highlights: • Levitation-jet aerosol synthesis of TiN nanoparticles (NPs). • SEM, XRD, BET, UV–vis, FT-IR, Raman, XPS and magnetic characterization of the NPs. • Correlation between optical and XPS measurements data and maximum magnetization of the NPs.

  6. Fabrication and performances of MWCNT/TiO2 composites derived from MWCNTs and titanium (IV) alkoxide precursors

    Indian Academy of Sciences (India)

    Mingliang Chen; Fengjun Zhang; Wonchun Oh

    2011-07-01

    Multi-walled carbon nanotubes (MWCNTs)/TiO2 composites were synthesized by sol–gel technique using titanium (IV) -butoxide (TNB), titanium (IV) isopropoxide (TIP) and titanium (IV) propoxide (TPP) as different titanium alkoxide precursors. The as-prepared composites were comprehensively characterized by BET surface area, SEM, XRD, EDX and UV-Vis absorption spectroscopy. The samples were evaluated for their photocatalytic activity towards the degradation of methylene blue (MB) under UV irradiation. The results indicated that the sample MPB had best excellent photocatalytic activity among the three kinds of samples. Furthermore, we also used piggery waste to determine the photocatalytic activity for the MWCNT/TiO2 composites by using a chemical oxygen demand (COD) method. It seemed all of the samples have an excellent removal effect of COD. From the results of the bactericidal test, MWCNT/TiO2 composites with sunlight had a greater effect on E. coli than any other experimental conditions.

  7. Deposition and characterization of titanium carbide thin films by magnetron sputtering using Ti and TiC targets

    Science.gov (United States)

    Ait Djafer, Amina Zouina; Saoula, Nadia; Madaoui, Noureddine; Zerizer, Abdellatif

    2014-09-01

    In this study we present the effect of negative bias applied to substrate and the pressure on the properties of TiC films (i.e. structure, Raman spectroscopy, electrical resistivity and hardness). The elaboration of our films has been carried out by RF-Magnetron Sputtering, 13.56 MHz, using two targets: titanium carbide and pure titanium. The film depositions have been done on silicon, glass and steel substrates. The total pressure was 10-60 mTorr. The attention was given to study the influence of different parameters, pressure and substrate-bias, on the properties of TiC layers. In this paper, a comparison between the properties of TiC prepared using pure titanium target and titanium carbide target is made. The deposited layers were characterized by XRD analysis, nanoindentation, four probe technique and Raman spectroscopy.

  8. Preparation of Zirconia-Ceria Powders with High Specific Surface Area

    Institute of Scientific and Technical Information of China (English)

    Wang Enguo; Mei Fang

    2004-01-01

    Zirconia-ceria mixed oxide powders were prepared by high temperature aging method.The effects of the temperature and the time of aging, cerium content and calcination on powder performance were studied.The result shows that high temperature aging is an efficient way of preparation of ZrO2-CeO2 mixed oxide powders with high specific surface area and good thermal stability, and that addition of a small amount of cerium to hydrous zirconia can promote the preparation of high specific surface area powders.

  9. Stress-corrosion cracking of titanium alloys.

    Science.gov (United States)

    Blackburn, M. J.; Feeney, J. A.; Beck, T. R.

    1973-01-01

    In the light of research material published up to May 1970, the current understanding of the experimental variables involved in the stress-corrosion cracking (SCC) behavior of titanium and its alloys is reviewed. Following a brief summary of the metallurgy and electrochemistry of titanium alloys, the mechanical, electrochemical, and metallurgical parameters influencing SCC behavior are explored with emphasis on crack growth kinetics. Macro- and microfeatures of fractures are examined, and it is shown that many transgranular SCC failures exhibit morphological and crystallographic features similar to mechanical cleavage failures. Current SCC models are reviewed with respect to their ability to explain the observed SCC behavior of titanium and its alloys. Possible methods for eliminating or minimizing stress corrosion hazards in titanium or titanium alloy components are described.

  10. [Use of titanium alloys for medical instruments].

    Science.gov (United States)

    Feofilov, R N; Chirkov, V K; Levin, M V

    1977-01-01

    On the ground of an analysis into properties of titanium and its alloys the fields of their possible utilization for making various medical instruments are proposed. Because of their insufficient hardness and wear-resistance the titanium alloys cannot be recommended for making medical instruments with thin cutting edges. For the reasons of their insufficient strength, low wear-resistance and substandard modulus of elasticity, it is inexpedient to use titanium alloys in making many types of clamping medical instruments. Nor is it advisable to employ titanium alloys in handles of the instruments, for this may lead to a contact corrosion of their working parts. The use of titanium alloys is recommended for making bone-joining members, retracting medical instruments, of the spatula and speculum types, some kinds of non-magnetic pincers and ultrasonic medical instruments.

  11. Titanium processing using selective laser sintering

    Science.gov (United States)

    Harlan, Nicole Renee

    1999-11-01

    A materials development workstation specifically designed to test high temperature metal and metal-matrix composites for direct selective laser sintering (SLS) was constructed. Using the workstation, a titanium-aluminum alloy was sintered into single layer coupons to demonstrate the feasibility of producing titanium components using direct SLS. A combination of low temperature indirect SLS and colloidal infiltration was used to create "partially-stabilized" zirconia molds for titanium casting. The base material,