Sample records for preparing drosophila embryos

  1. The preparation of Drosophila embryos for live-imaging using the hanging drop protocol. (United States)

    Reed, Bruce H; McMillan, Stephanie C; Chaudhary, Roopali


    Green fluorescent protein (GFP)-based timelapse live-imaging is a powerful technique for studying the genetic regulation of dynamic processes such as tissue morphogenesis, cell-cell adhesion, or cell death. Drosophila embryos expressing GFP are readily imaged using either stereoscopic or confocal microscopy. A goal of any live-imaging protocol is to minimize detrimental effects such as dehydration and hypoxia. Previous protocols for preparing Drosophila embryos for live-imaging analysis have involved placing dechorionated embryos in halocarbon oil and sandwiching them between a halocarbon gas-permeable membrane and a coverslip. The introduction of compression through mounting embryos in this manner represents an undesirable complication for any biomechanical-based analysis of morphogenesis. Our method, which we call the hanging drop protocol, results in excellent viability of embryos during live imaging and does not require that embryos be compressed. Briefly, the hanging drop protocol involves the placement of embryos in a drop of halocarbon oil that is suspended from a coverslip, which is, in turn, fixed in position over a humid chamber. In addition to providing gas exchange and preventing dehydration, this arrangement takes advantage of the buoyancy of embryos in halocarbon oil to prevent them from drifting out of position during timelapse acquisition. This video describes in detail how to collect and prepare Drosophila embryos for live imaging using the hanging drop protocol. This protocol is suitable for imaging dechorionated embryos using stereomicroscopy or any upright compound fluorescence microscope.

  2. Sample Preparation and Mounting of Drosophila Embryos for Multiview Light Sheet Microscopy. (United States)

    Schmied, Christopher; Tomancak, Pavel


    Light sheet fluorescent microscopy (LSFM), and in particular its most widespread flavor Selective Plane Illumination Microscopy (SPIM), promises to provide unprecedented insights into developmental dynamics of entire living systems. By combining minimal photo-damage with high imaging speed and sample mounting tailored toward the needs of the specimen, it enables in toto imaging of embryogenesis with high spatial and temporal resolution. Drosophila embryos are particularly well suited for SPIM imaging because the volume of the embryo does not change from the single cell embryo to the hatching larva. SPIM microscopes can therefore image Drosophila embryos embedded in rigid media, such as agarose, from multiple angles every few minutes from the blastoderm stage until hatching. Here, we describe sample mounting strategies to achieve such a recording. We also provide detailed protocols to realize multiview, long-term, time-lapse recording of Drosophila embryos expressing fluorescent markers on the commercially available Zeiss Lightsheet Z.1 microscope and the OpenSPIM.

  3. Effect of localized hypoxia on Drosophila embryo development.

    Directory of Open Access Journals (Sweden)

    Zhinan Wang

    Full Text Available Environmental stress, such as oxygen deprivation, affects various cellular activities and developmental processes. In this study, we directly investigated Drosophila embryo development in vivo while cultured on a microfluidic device, which imposed an oxygen gradient on the developing embryos. The designed microfluidic device enabled both temporal and spatial control of the local oxygen gradient applied to the live embryos. Time-lapse live cell imaging was used to monitor the morphology and cellular migration patterns as embryos were placed in various geometries relative to the oxygen gradient. Results show that pole cell movement and tail retraction during Drosophila embryogenesis are highly sensitive to oxygen concentrations. Through modeling, we also estimated the oxygen permeability across the Drosophila embryonic layers for the first time using parameters measured on our oxygen control device.

  4. Determination of gene expression patterns using high-throughput RNA in situ hybridizaion to whole-mount Drosophila embryos

    Energy Technology Data Exchange (ETDEWEB)

    Weiszmann, R.; Hammonds, A.S.; Celniker, S.E.


    We describe a high-throughput protocol for RNA in situ hybridization (ISH) to Drosophila embryos in a 96-well format. cDNA or genomic DNA templates are amplified by PCR and then digoxigenin-labeled ribonucleotides are incorporated into antisense RNA probes by in vitro transcription. The quality of each probe is evaluated before ISH using a RNA probe quantification (dot blot) assay. RNA probes are hybridized to fixed, mixed-staged Drosophila embryos in 96-well plates. The resulting stained embryos can be examined and photographed immediately or stored at 4oC for later analysis. Starting with fixed, staged embryos, the protocol takes 6 d from probe template production through hybridization. Preparation of fixed embryos requires a minimum of 2 weeks to collect embryos representing all stages. The method has been used to determine the expression patterns of over 6,000 genes throughout embryogenesis.

  5. Gene expression profiling of brakeless mutant Drosophila embryos. (United States)

    Crona, Filip; Singla, Bhumica; Mannervik, Mattias


    The transcriptional co-regulator Brakeless performs many important functions during Drosophila development, but few target genes have been identified. Here we use Affymetrix microarrays to identify Brakeless-regulated genes in 2-4 h old Drosophila embryos. Robust multi-array analysis (RMA) and statistical tests revealed 240 genes that changed their expression more than 1.5 fold. We find that up- and down-regulated genes fall into distinct gene ontology categories. In our associated study [2] we demonstrate that both up- and down-regulated genes can be direct Brakeless targets. Our results indicate that the co-repressor and co-activator activities of Brakeless may result in distinct biological responses. The microarray data complies with MIAME guidelines and is deposited in GEO under accession number GSE60048.

  6. Single molecule transcription factor dynamics in the syncytial Drosophila embryo (United States)

    Darzacq, Xavier

    During early development in the Drosophila embryo, cell fates are determined over the course of just 2 hours with exquisite spatio-temoral precision. One of the key regulators of this process is the transcription factor Bicoid which forms a concentration gradient across the long axis of the embryo. Although Bicoids' primary role is activation at the anterior, where concentrations are highest, it is also known to play a role in the posterior where there are only 100s of molecules per nucleus. Understanding how Bicoid can find its target at such low concentrations has remained intractable, largely due to the inability to perform single molecule imaging in the context of the developing embryo. Here we use lattice light sheet microscopy to overcome the technical barriers of sample thickness and auto-fluorescence to characterize the single molecule dynamics of Bicoid. We find that off-rates do not vary across the embryo and that instead the on-rates are modulated through the formation of clusters that enrich local concentration. This data is contrary to the current concentration dependent model of Bicoid function since local concentration within the nucleus is now a regulated parameter and suggests a previously unknown mechanism for regulation at extremely low concentrations.

  7. Techniques for preparation prior to embryo transfer

    NARCIS (Netherlands)

    Derks, Roos S.; Farquhar, Cindy; Mol, Ben Willem J.; Buckingham, Karen; Heineman, Maas Jan


    BACKGROUND: Embryo transfer (ET) is the final and most vulnerable step in in vitro fertilisation (IVF) treatment. Pregnancy rates after ET may be influenced by several factors including cervical preparation, the performance of a dummy or mock transfer, the choice of catheter, the use of ultrasound

  8. Stable, precise, and reproducible patterning of bicoid and hunchback molecules in the early Drosophila embryo.

    Directory of Open Access Journals (Sweden)

    Yurie Okabe-Oho


    Full Text Available Precise patterning of morphogen molecules and their accurate reading out are of key importance in embryonic development. Recent experiments have visualized distributions of proteins in developing embryos and shown that the gradient of concentration of Bicoid morphogen in Drosophila embryos is established rapidly after fertilization and remains stable through syncytial mitoses. This stable Bicoid gradient is read out in a precise way to distribute Hunchback with small fluctuations in each embryo and in a reproducible way, with small embryo-to-embryo fluctuation. The mechanisms of such stable, precise, and reproducible patterning through noisy cellular processes, however, still remain mysterious. To address these issues, here we develop the one- and three-dimensional stochastic models of the early Drosophila embryo. The simulated results show that the fluctuation in expression of the hunchback gene is dominated by the random arrival of Bicoid at the hunchback enhancer. Slow diffusion of Hunchback protein, however, averages out this intense fluctuation, leading to the precise patterning of distribution of Hunchback without loss of sharpness of the boundary of its distribution. The coordinated rates of diffusion and transport of input Bicoid and output Hunchback play decisive roles in suppressing fluctuations arising from the dynamical structure change in embryos and those arising from the random diffusion of molecules, and give rise to the stable, precise, and reproducible patterning of Bicoid and Hunchback distributions.

  9. Fluorescently labeled inhibitors detect localized serine protease activities in Drosophila melanogaster pole cells, embryos, and ovarian egg chambers

    DEFF Research Database (Denmark)

    Jakobsen, Rasmus Kragh; Ono, S.; Powers, J. C.


    processes that they mediate. Until only recently, the tools to conveniently address the question of where and when serine proteases are active within complex tissues have been lacking. In order to detect spatially restricted serine protease activities in Drosophila embryos and ovaries we introduce...... activity localized to the oocyte-somatic follicle cell interface of the developing egg chamber. Our results suggest that this technique holds promise to identify new spatially restricted activities in adult Drosophila tissues and developing embryos....

  10. Repair of lesions provoked by X-rays in embryos of Drosophila (D. melanogaster Meig)

    International Nuclear Information System (INIS)

    Ghelelovitch, S.


    The sensitivity of Drosophila eggs to the lethal action of X-rays did not remain constant during embryogenesis. The X-ray doses used in the present investigation may have retarded the hatching of the larvae but did not block development immediately after irradiation. A fraction of the damage induced in young embryos was repaired during gastrulation. The amount of repair was independent of the X-ray dose but was influenced by the temperature. The damage could be repaired even after the cells of the embryo had undergone many mitotic cycles. (author)

  11. Stochastic model for gene transcription on Drosophila melanogaster embryos (United States)

    Prata, Guilherme N.; Hornos, José Eduardo M.; Ramos, Alexandre F.


    We examine immunostaining experimental data for the formation of stripe 2 of even-skipped (eve) transcripts on D. melanogaster embryos. An estimate of the factor converting immunofluorescence intensity units into molecular numbers is given. The analysis of the eve dynamics at the region of stripe 2 suggests that the promoter site of the gene has two distinct regimes: an earlier phase when it is predominantly activated until a critical time when it becomes mainly repressed. That suggests proposing a stochastic binary model for gene transcription on D. melanogaster embryos. Our model has two random variables: the transcripts number and the state of the source of mRNAs given as active or repressed. We are able to reproduce available experimental data for the average number of transcripts. An analysis of the random fluctuations on the number of eves and their consequences on the spatial precision of stripe 2 is presented. We show that the position of the anterior or posterior borders fluctuate around their average position by ˜1 % of the embryo length, which is similar to what is found experimentally. The fitting of data by such a simple model suggests that it can be useful to understand the functions of randomness during developmental processes.

  12. Parallel imaging of Drosophila embryos for quantitative analysis of genetic perturbations of the Ras pathway

    Directory of Open Access Journals (Sweden)

    Yogesh Goyal


    Full Text Available The Ras pathway patterns the poles of the Drosophila embryo by downregulating the levels and activity of a DNA-binding transcriptional repressor Capicua (Cic. We demonstrate that the spatiotemporal pattern of Cic during this signaling event can be harnessed for functional studies of mutations in the Ras pathway in human diseases. Our approach relies on a new microfluidic device that enables parallel imaging of Cic dynamics in dozens of live embryos. We found that although the pattern of Cic in early embryos is complex, it can be accurately approximated by a product of one spatial profile and one time-dependent amplitude. Analysis of these functions of space and time alone reveals the differential effects of mutations within the Ras pathway. Given the highly conserved nature of Ras-dependent control of Cic, our approach provides new opportunities for functional analysis of multiple sequence variants from developmental abnormalities and cancers.

  13. Cdk1 and Okadaic Acid-sensitive Phosphatases Control Assembly of Nuclear Pore Complexes in Drosophila EmbryosV⃞


    Onischenko, Evgeny A.; Gubanova, Natalia V.; Kiseleva, Elena V.; Hallberg, Einar


    Disassembly and reassembly of the nuclear pore complexes (NPCs) is one of the major events during open mitosis in higher eukaryotes. However, how this process is controlled by the mitotic machinery is not clear. To investigate this we developed a novel in vivo model system based on syncytial Drosophila embryos. We microinjected different mitotic effectors into the embryonic cytoplasm and monitored the dynamics of disassembly/reassembly of NPCs in live embryos using fluorescently labeled wheat...

  14. Drosophila embryos as model to assess cellular and developmental toxicity of multi-walled carbon nanotubes (MWCNT in living organisms.

    Directory of Open Access Journals (Sweden)

    Boyin Liu

    Full Text Available Different toxicity tests for carbon nanotubes (CNT have been developed to assess their impact on human health and on aquatic and terrestrial animal and plant life. We present a new model, the fruit fly Drosophila embryo offering the opportunity for rapid, inexpensive and detailed analysis of CNTs toxicity during embryonic development. We show that injected DiI labelled multi-walled carbon nanotubes (MWCNTs become incorporated into cells in early Drosophila embryos, allowing the study of the consequences of cellular uptake of CNTs on cell communication, tissue and organ formation in living embryos. Fluorescently labelled subcellular structures showed that MWCNTs remained cytoplasmic and were excluded from the nucleus. Analysis of developing ectodermal and neural stem cells in MWCNTs injected embryos revealed normal division patterns and differentiation capacity. However, an increase in cell death of ectodermal but not of neural stem cells was observed, indicating stem cell-specific vulnerability to MWCNT exposure. The ease of CNT embryo injections, the possibility of detailed morphological and genomic analysis and the low costs make Drosophila embryos a system of choice to assess potential developmental and cellular effects of CNTs and test their use in future CNT based new therapies including drug delivery.

  15. A modifier screen for Bazooka/PAR-3 interacting genes in the Drosophila embryo epithelium.

    Directory of Open Access Journals (Sweden)

    Wei Shao


    Full Text Available The development and homeostasis of multicellular organisms depends on sheets of epithelial cells. Bazooka (Baz; PAR-3 localizes to the apical circumference of epithelial cells and is a key hub in the protein interaction network regulating epithelial structure. We sought to identify additional proteins that function with Baz to regulate epithelial structure in the Drosophila embryo.The baz zygotic mutant cuticle phenotype could be dominantly enhanced by loss of known interaction partners. To identify additional enhancers, we screened molecularly defined chromosome 2 and 3 deficiencies. 37 deficiencies acted as strong dominant enhancers. Using deficiency mapping, bioinformatics, and available single gene mutations, we identified 17 interacting genes encoding known and predicted polarity, cytoskeletal, transmembrane, trafficking and signaling proteins. For each gene, their loss of function enhanced adherens junction defects in zygotic baz mutants during early embryogenesis. To further evaluate involvement in epithelial polarity, we generated GFP fusion proteins for 15 of the genes which had not been found to localize to the apical domain previously. We found that GFP fusion proteins for Drosophila ASAP, Arf79F, CG11210, Septin 5 and Sds22 could be recruited to the apical circumference of epithelial cells. Nine of the other proteins showed various intracellular distributions, and one was not detected.Our enhancer screen identified 17 genes that function with Baz to regulate epithelial structure in the Drosophila embryo. Our secondary localization screen indicated that some of the proteins may affect epithelial cell polarity by acting at the apical cell cortex while others may act through intracellular processes. For 13 of the 17 genes, this is the first report of a link to baz or the regulation of epithelial structure.

  16. The Brakeless co-regulator can directly activate and repress transcription in early Drosophila embryos. (United States)

    Crona, Filip; Holmqvist, Per-Henrik; Tang, Min; Singla, Bhumica; Vakifahmetoglu-Norberg, Helin; Fantur, Katrin; Mannervik, Mattias


    The Brakeless protein performs many important functions during Drosophila development, but how it controls gene expression is poorly understood. We previously showed that Brakeless can function as a transcriptional co-repressor. In this work, we perform transcriptional profiling of brakeless mutant embryos. Unexpectedly, the majority of affected genes are down-regulated in brakeless mutants. We demonstrate that genomic regions in close proximity to some of these genes are occupied by Brakeless, that over-expression of Brakeless causes a reciprocal effect on expression of these genes, and that Brakeless remains an activator of the genes upon fusion to an activation domain. Together, our results show that Brakeless can both repress and activate gene expression. A yeast two-hybrid screen identified the Mediator complex subunit Med19 as interacting with an evolutionarily conserved part of Brakeless. Both down- and up-regulated Brakeless target genes are also affected in Med19-depleted embryos, but only down-regulated targets are influenced in embryos depleted of both Brakeless and Med19. Our data provide support for a Brakeless activator function that regulates transcription by interacting with Med19. We conclude that the transcriptional co-regulator Brakeless can either activate or repress transcription depending on context. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The Atg1-Tor pathway regulates yolk catabolism in Drosophila embryos. (United States)

    Kuhn, Hallie; Sopko, Richelle; Coughlin, Margaret; Perrimon, Norbert; Mitchison, Tim


    Yolk provides an important source of nutrients during the early development of oviparous organisms. It is composed mainly of vitellogenin proteins packed into membrane-bound compartments called yolk platelets. Catabolism of yolk is initiated by acidification of the yolk platelet, leading to the activation of Cathepsin-like proteinases, but it is unknown how this process is triggered. Yolk catabolism initiates at cellularization in Drosophila melanogaster embryos. Using maternal shRNA technology we found that yolk catabolism depends on the Tor pathway and on the autophagy-initiating kinase Atg1. Whereas Atg1 was required for a burst of spatially regulated autophagy during late cellularization, autophagy was not required for initiating yolk catabolism. We propose that the conserved Tor metabolic sensing pathway regulates yolk catabolism, similar to Tor-dependent metabolic regulation on the lysosome. © 2015. Published by The Company of Biologists Ltd.

  18. Origin and specification of type II neuroblasts in the Drosophila embryo. (United States)

    Álvarez, José-Andrés; Díaz-Benjumea, Fernando J


    In Drosophila , neural stem cells or neuroblasts (NBs) acquire different identities according to their site of origin in the embryonic neuroectoderm. Their identity determines the number of times they will divide and the types of daughter cells they will generate. All NBs divide asymmetrically, with type I NBs undergoing self-renewal and generating another cell that will divide only once more. By contrast, a small set of NBs in the larval brain, type II NBs, divides differently, undergoing self-renewal and generating an intermediate neural progenitor (INP) that continues to divide asymmetrically several more times, generating larger lineages. In this study, we have analysed the origin of type II NBs and how they are specified. Our results indicate that these cells originate in three distinct clusters in the dorsal protocerebrum during stage 12 of embryonic development. Moreover, it appears that their specification requires the combined action of EGFR signalling and the activity of the related genes buttonhead and Drosophila Sp1 In addition, we also show that the INPs generated in the embryo enter quiescence at the end of embryogenesis, resuming proliferation during the larval stage. © 2018. Published by The Company of Biologists Ltd.

  19. Mitochondrial DNA polymerase from embryos of Drosophila melanogaster: purification, subunit structure, and partial characterization

    International Nuclear Information System (INIS)

    Wernette, C.M.; Kaguni, L.S.


    The mitochondrial DNA polymerase has been purified to near-homogeneity from early embryos of Drosophila melanogaster. Sodium dodecyl sulfate gel electrophoresis of the highly purified enzyme reveals two polypeptides with molecular masses of 125,000 and 35,000 daltons, in a ratio of 1:1. The enzyme has a sedimentation coefficient of 7.6 S and a stokes radius of 51 A. Taken together, the data suggest that the D. melanogaster DNA polymerase γ is a heterodimer. DNA polymerase activity gel analysis has allowed the assignment of the DNA polymerization function to the large subunit. The DNA polymerase exhibits a remarkable ability to utilize efficiently a variety of template-primers including gapped DNA, poly(rA).oligo(dT) and singly primed phiX174 DNA. Both the crude and the highly purified enzymes are stimulated by KCl, and inhibited by dideoxythymidine triphosphate and by N-ethylmaleimide. Thus, the catalytic properties of the near-homogeneous Drosophila enzyme are consistent with those of DNA polymerase γ as partially purified from several vertebrates

  20. Overlapping functions of argonaute proteins in patterning and morphogenesis of Drosophila embryos.

    Directory of Open Access Journals (Sweden)

    Wibke J Meyer


    Full Text Available Argonaute proteins are essential components of the molecular machinery that drives RNA silencing. In Drosophila, different members of the Argonaute family of proteins have been assigned to distinct RNA silencing pathways. While Ago1 is required for microRNA function, Ago2 is a crucial component of the RNA-induced silencing complex in siRNA-triggered RNA interference. Drosophila Ago2 contains an unusual amino-terminus with two types of imperfect glutamine-rich repeats (GRRs of unknown function. Here we show that the GRRs of Ago2 are essential for the normal function of the protein. Alleles with reduced numbers of GRRs cause specific disruptions in two morphogenetic processes associated with the midblastula transition: membrane growth and microtubule-based organelle transport. These defects do not appear to result from disruption of siRNA-dependent processes but rather suggest an interference of the mutant Ago2 proteins in an Ago1-dependent pathway. Using loss-of-function alleles, we further demonstrate that Ago1 and Ago2 act in a partially redundant manner to control the expression of the segment-polarity gene wingless in the early embryo. Our findings argue against a strict separation of Ago1 and Ago2 functions and suggest that these proteins act in concert to control key steps of the midblastula transition and of segmental patterning.

  1. A biomechanical analysis of ventral furrow formation in the Drosophila melanogaster embryo.

    Directory of Open Access Journals (Sweden)

    Vito Conte

    Full Text Available The article provides a biomechanical analysis of ventral furrow formation in the Drosophila melanogaster embryo. Ventral furrow formation is the first large-scale morphogenetic movement in the fly embryo. It involves deformation of a uniform cellular monolayer formed following cellularisation, and has therefore long been used as a simple system in which to explore the role of mechanics in force generation. Here we use a quantitative framework to carry out a systematic perturbation analysis to determine the role of each of the active forces observed. The analysis confirms that ventral furrow invagination arises from a combination of apical constriction and apical-basal shortening forces in the mesoderm, together with a combination of ectodermal forces. We show that the mesodermal forces are crucial for invagination: the loss of apical constriction leads to a loss of the furrow, while the mesodermal radial shortening forces are the primary cause of the internalisation of the future mesoderm as the furrow rises. Ectodermal forces play a minor but significant role in furrow formation: without ectodermal forces the furrow is slower to form, does not close properly and has an aberrant morphology. Nevertheless, despite changes in the active mesodermal and ectodermal forces lead to changes in the timing and extent of furrow, invagination is eventually achieved in most cases, implying that the system is robust to perturbation and therefore over-determined.

  2. Notch and PKC Are Involved in Formation of the Lateral Region of the Dorso-Ventral Axis in Drosophila Embryos


    Tremmel, Daniel M.; Resad, Sedat; Little, Christopher J.; Wesley, Cedric S.


    The Notch gene encodes an evolutionarily conserved cell surface receptor that generates regulatory signals based on interactions between neighboring cells. In Drosophila embryos it is normally expressed at a low level due to strong negative regulation. When this negative regulation is abrogated neurogenesis in the ventral region is suppressed, the development of lateral epidermis is severely disrupted, and the dorsal aminoserosa is expanded. Of these phenotypes only the anti-neurogenic phenot...

  3. Global sensitivity analysis of a dynamic model for gene expression in Drosophila embryos (United States)

    McCarthy, Gregory D.; Drewell, Robert A.


    It is well known that gene regulation is a tightly controlled process in early organismal development. However, the roles of key processes involved in this regulation, such as transcription and translation, are less well understood, and mathematical modeling approaches in this field are still in their infancy. In recent studies, biologists have taken precise measurements of protein and mRNA abundance to determine the relative contributions of key factors involved in regulating protein levels in mammalian cells. We now approach this question from a mathematical modeling perspective. In this study, we use a simple dynamic mathematical model that incorporates terms representing transcription, translation, mRNA and protein decay, and diffusion in an early Drosophila embryo. We perform global sensitivity analyses on this model using various different initial conditions and spatial and temporal outputs. Our results indicate that transcription and translation are often the key parameters to determine protein abundance. This observation is in close agreement with the experimental results from mammalian cells for various initial conditions at particular time points, suggesting that a simple dynamic model can capture the qualitative behavior of a gene. Additionally, we find that parameter sensitivites are temporally dynamic, illustrating the importance of conducting a thorough global sensitivity analysis across multiple time points when analyzing mathematical models of gene regulation. PMID:26157608

  4. Interdependence of macrophage migration and ventral nerve cord development in Drosophila embryos. (United States)

    Evans, Iwan R; Hu, Nan; Skaer, Helen; Wood, Will


    During embryonic development, Drosophila macrophages (haemocytes) undergo a series of stereotypical migrations to disperse throughout the embryo. One major migratory route is along the ventral nerve cord (VNC), where haemocytes are required for the correct development of this tissue. We show, for the first time, that a reciprocal relationship exists between haemocytes and the VNC and that defects in nerve cord development prevent haemocyte migration along this structure. Using live imaging, we demonstrate that the axonal guidance cue Slit and its receptor Robo are both required for haemocyte migration, but signalling is not autonomously required in haemocytes. We show that the failure of haemocyte migration along the VNC in slit mutants is not due to a lack of chemotactic signals within this structure, but rather to a failure in its detachment from the overlying epithelium, creating a physical barrier to haemocyte migration. This block of haemocyte migration in turn disrupts the formation of the dorsoventral channels within the VNC, further highlighting the importance of haemocyte migration for correct neural development. This study illustrates the important role played by the three-dimensional environment in directing cell migration in vivo and reveals an intriguing interplay between the developing nervous system and the blood cells within the fly, demonstrating that their development is both closely coupled and interdependent.

  5. Maternal Nanos-Dependent RNA Stabilization in the Primordial Germ Cells of Drosophila Embryos. (United States)

    Sugimori, Seiko; Kumata, Yuji; Kobayashi, Satoru


    Nanos (Nos) is an evolutionary conserved protein expressed in the germline of various animal species. In Drosophila, maternal Nos protein is essential for germline development. In the germline progenitors, or the primordial germ cells (PGCs), Nos binds to the 3' UTR of target mRNAs to repress their translation. In contrast to this prevailing role of Nos, here we report that the 3' UTR of CG32425 mRNA mediates Nos-dependent RNA stabilization in PGCs. We found that the level of mRNA expressed from a reporter gene fused to the CG32425 3' UTR was significantly reduced in PGCs lacking maternal Nos (nos PGCs) as compared with normal PGCs. By deleting the CG32425 3' UTR, we identified the region required for mRNA stabilization, which includes Nos-binding sites. In normal embryos, CG32425 mRNA was maternally supplied into PGCs and remained in this cell type during embryogenesis. However, as expected from our reporter assay, the levels of CG32425 mRNA and its protein product expressed in nos PGCs were lower than in normal PGCs. Thus, we propose that Nos protein has dual functions in translational repression and stabilization of specific RNAs to ensure proper germline development. © 2017 Japanese Society of Developmental Biologists.

  6. Preparation and mounting of adult Drosophila structures in Canada balsam. (United States)

    Stern, David L; Sucena, Elio


    The Drosophila cuticle carries a rich array of morphological details. Thus, cuticle examination has had a central role in the history of genetics. To prepare fine "museum-quality," permanent slides, it is best to mount specimens in Canada Balsam. It is difficult to give precise recipes for Canada Balsam, because every user seems to prefer a slightly different viscosity. Dilute solutions spread easily and do not dry too rapidly while mounting specimens. The disadvantage is that there is actually less Balsam in a "drop" of the solution, and when dried, it can contract from the sides of the coverslip, sometimes disturbing the specimen. Unfortunately, there is no substitute for experience when using Canada Balsam. This protocol describes a procedure for mounting adult cuticles in Canada Balsam.

  7. Mid-embryo patterning and precision in Drosophila segmentation: Krüppel dual regulation of hunchback.

    Directory of Open Access Journals (Sweden)

    David M Holloway

    Full Text Available In early development, genes are expressed in spatial patterns which later define cellular identities and tissue locations. The mechanisms of such pattern formation have been studied extensively in early Drosophila (fruit fly embryos. The gap gene hunchback (hb is one of the earliest genes to be expressed in anterior-posterior (AP body segmentation. As a transcriptional regulator for a number of downstream genes, the spatial precision of hb expression can have significant effects in the development of the body plan. To investigate the factors contributing to hb precision, we used fine spatial and temporal resolution data to develop a quantitative model for the regulation of hb expression in the mid-embryo. In particular, modelling hb pattern refinement in mid nuclear cleavage cycle 14 (NC14 reveals some of the regulatory contributions of simultaneously-expressed gap genes. Matching the model to recent data from wild-type (WT embryos and mutants of the gap gene Krüppel (Kr indicates that a mid-embryo Hb concentration peak important in thoracic development (at parasegment 4, PS4 is regulated in a dual manner by Kr, with low Kr concentration activating hb and high Kr concentration repressing hb. The processes of gene expression (transcription, translation, transport are intrinsically random. We used stochastic simulations to characterize the noise generated in hb expression. We find that Kr regulation can limit the positional variability of the Hb mid-embryo border. This has been recently corroborated in experimental comparisons of WT and Kr- mutant embryos. Further, Kr regulation can decrease uncertainty in mid-embryo hb expression (i.e. contribute to a smooth Hb boundary and decrease between-copy transcriptional variability within nuclei. Since many tissue boundaries are first established by interactions between neighbouring gene expression domains, these properties of Hb-Kr dynamics to diminish the effects of intrinsic expression noise may

  8. Endometrial preparation methods in frozen-thawed embryo transfer

    NARCIS (Netherlands)

    Groenewoud, E.R.


    One in six couples suffer from infertility, and many undergo treatment with in-vitro fertilization (IVF). Given that IVF often results in more embryos than can be transferred during one embryo transfer cryopreservation of the supernumerary embryos has been an important addition to IVF. In recent

  9. Protein O-Mannosyltransferases Affect Sensory Axon Wiring and Dynamic Chirality of Body Posture in the Drosophila Embryo. (United States)

    Baker, Ryan; Nakamura, Naosuke; Chandel, Ishita; Howell, Brooke; Lyalin, Dmitry; Panin, Vladislav M


    Genetic defects in protein O-mannosyltransferase 1 (POMT1) and POMT2 underlie severe muscular dystrophies. POMT genes are evolutionarily conserved in metazoan organisms. In Drosophila , both male and female POMT mutants show a clockwise rotation of adult abdominal segments, suggesting a chirality of underlying pathogenic mechanisms. Here we described and analyzed a similar phenotype in POMT mutant embryos that shows left-handed body torsion. Our experiments demonstrated that coordinated muscle contraction waves are associated with asymmetric embryo rolling, unveiling a new chirality marker in Drosophila development. Using genetic and live-imaging approaches, we revealed that the torsion phenotype results from differential rolling and aberrant patterning of peristaltic waves of muscle contractions. Our results demonstrated that peripheral sensory neurons are required for normal contractions that prevent the accumulation of torsion. We found that POMT mutants show abnormal axonal connections of sensory neurons. POMT transgenic expression limited to sensory neurons significantly rescued the torsion phenotype, axonal connectivity defects, and abnormal contractions in POMT mutant embryos. Together, our data suggested that protein O-mannosylation is required for normal sensory feedback to control coordinated muscle contractions and body posture. This mechanism may shed light on analogous functions of POMT genes in mammals and help to elucidate the etiology of neurological defects in muscular dystrophies. SIGNIFICANCE STATEMENT Protein O-mannosyltransferases (POMTs) are evolutionarily conserved in metazoans. Mutations in POMTs cause severe muscular dystrophies associated with pronounced neurological defects. However, neurological functions of POMTs remain poorly understood. We demonstrated that POMT mutations in Drosophila result in abnormal muscle contractions and cause embryo torsion. Our experiments uncovered a chirality of embryo movements and a unique POMT -dependent

  10. Cdk1 and okadaic acid-sensitive phosphatases control assembly of nuclear pore complexes in Drosophila embryos. (United States)

    Onischenko, Evgeny A; Gubanova, Natalia V; Kiseleva, Elena V; Hallberg, Einar


    Disassembly and reassembly of the nuclear pore complexes (NPCs) is one of the major events during open mitosis in higher eukaryotes. However, how this process is controlled by the mitotic machinery is not clear. To investigate this we developed a novel in vivo model system based on syncytial Drosophila embryos. We microinjected different mitotic effectors into the embryonic cytoplasm and monitored the dynamics of disassembly/reassembly of NPCs in live embryos using fluorescently labeled wheat germ agglutinin (WGA) or in fixed embryos using electron microscopy and immunostaining techniques. We found that in live embryos Cdk1 activity was necessary and sufficient to induce disassembly of NPCs as well as their cytoplasmic mimics: annulate lamellae pore complexes (ALPCs). Cdk1 activity was also required for keeping NPCs and ALPCs disassembled during mitosis. In agreement recombinant Cdk1/cyclin B was able to induce phosphorylation and dissociation of nucleoporins from the NPCs in vitro. Conversely, reassembly of NPCs and ALPCs was dependent on the activity of protein phosphatases, sensitive to okadaic acid (OA). Our findings suggest a model where mitotic disassembly/reassembly of the NPCs is regulated by a dynamic equilibrium of Cdk1 and OA-sensitive phosphatase activities and provide evidence that mitotic phosphorylation mediates disassembly of the NPC.

  11. Changes in protein synthetic activity in early Drosophila embryos mutant for the segmentation gene Krueppel

    International Nuclear Information System (INIS)

    Bedian, V.; Summers, M.C.; Kauffman, S.A.


    We have identified early embryo proteins related to the segmentation gene Krueppel by [35S]methionine pulse labelling and two-dimensional gel electrophoresis. Protein synthesis differences shared by homozygous embryos of two Krueppel alleles when compared to heterozygous and wild-type embryos are reported. The study was extended to syncytial blastoderm stages by pulse labelling and gel analysis of single embryos, using Krueppel-specific proteins from gastrula stages as molecular markers for identifying homozygous Krueppel embryos. Localized expression of interesting proteins was examined in embryo fragments. The earliest differences detected at nuclear migration stages showed unregulated synthesis in mutant embryos of two proteins that have stage specific synthesis in normal embryos. At the cellular blastoderm stage one protein was not synthesized and two proteins showed apparent shifts in isoelectric point in mutant embryos. Differences observed in older embryos included additional proteins with shifted isoelectric points and a number of qualitative and quantitative changes in protein synthesis. Five of the proteins with altered rates of synthesis in mutant embryos showed localized synthesis in normal embryos. The early effects observed are consistent with the hypothesis that the Krueppel product can be a negative or positive regulator of expression of other loci, while blastoderm and gastrula stage shifts in isoelectric point indicate that a secondary effect of Krueppel function may involve post-translational modification of proteins

  12. Notch and PKC are involved in formation of the lateral region of the dorso-ventral axis in Drosophila embryos. (United States)

    Tremmel, Daniel M; Resad, Sedat; Little, Christopher J; Wesley, Cedric S


    The Notch gene encodes an evolutionarily conserved cell surface receptor that generates regulatory signals based on interactions between neighboring cells. In Drosophila embryos it is normally expressed at a low level due to strong negative regulation. When this negative regulation is abrogated neurogenesis in the ventral region is suppressed, the development of lateral epidermis is severely disrupted, and the dorsal aminoserosa is expanded. Of these phenotypes only the anti-neurogenic phenotype could be linked to excess canonical Notch signaling. The other phenotypes were linked to high levels of Notch protein expression at the surface of cells in the lateral regions indicating that a non-canonical Notch signaling activity normally functions in these regions. Results of our studies reported here provide evidence. They show that Notch activities are inextricably linked to that of Pkc98E, the homolog of mammalian PKCδ. Notch and Pkc98E up-regulate the levels of the phosphorylated form of IκBCactus, a negative regulator of Toll signaling, and Mothers against dpp (MAD), an effector of Dpp signaling. Our data suggest that in the lateral regions of the Drosophila embryos Notch activity, in conjunction with Pkc98E activity, is used to form the slopes of the opposing gradients of Toll and Dpp signaling that specify cell fates along the dorso-ventral axis.

  13. Notch and PKC are involved in formation of the lateral region of the dorso-ventral axis in Drosophila embryos.

    Directory of Open Access Journals (Sweden)

    Daniel M Tremmel

    Full Text Available The Notch gene encodes an evolutionarily conserved cell surface receptor that generates regulatory signals based on interactions between neighboring cells. In Drosophila embryos it is normally expressed at a low level due to strong negative regulation. When this negative regulation is abrogated neurogenesis in the ventral region is suppressed, the development of lateral epidermis is severely disrupted, and the dorsal aminoserosa is expanded. Of these phenotypes only the anti-neurogenic phenotype could be linked to excess canonical Notch signaling. The other phenotypes were linked to high levels of Notch protein expression at the surface of cells in the lateral regions indicating that a non-canonical Notch signaling activity normally functions in these regions. Results of our studies reported here provide evidence. They show that Notch activities are inextricably linked to that of Pkc98E, the homolog of mammalian PKCδ. Notch and Pkc98E up-regulate the levels of the phosphorylated form of IκBCactus, a negative regulator of Toll signaling, and Mothers against dpp (MAD, an effector of Dpp signaling. Our data suggest that in the lateral regions of the Drosophila embryos Notch activity, in conjunction with Pkc98E activity, is used to form the slopes of the opposing gradients of Toll and Dpp signaling that specify cell fates along the dorso-ventral axis.

  14. Drosophila brakeless interacts with atrophin and is required for tailless-mediated transcriptional repression in early embryos. (United States)

    Haecker, Achim; Qi, Dai; Lilja, Tobias; Moussian, Bernard; Andrioli, Luiz Paulo; Luschnig, Stefan; Mannervik, Mattias


    Complex gene expression patterns in animal development are generated by the interplay of transcriptional activators and repressors at cis-regulatory DNA modules (CRMs). How repressors work is not well understood, but often involves interactions with co-repressors. We isolated mutations in the brakeless gene in a screen for maternal factors affecting segmentation of the Drosophila embryo. Brakeless, also known as Scribbler, or Master of thickveins, is a nuclear protein of unknown function. In brakeless embryos, we noted an expanded expression pattern of the Krüppel (Kr) and knirps (kni) genes. We found that Tailless-mediated repression of kni expression is impaired in brakeless mutants. Tailless and Brakeless bind each other in vitro and interact genetically. Brakeless is recruited to the Kr and kni CRMs, and represses transcription when tethered to DNA. This suggests that Brakeless is a novel co-repressor. Orphan nuclear receptors of the Tailless type also interact with Atrophin co-repressors. We show that both Drosophila and human Brakeless and Atrophin interact in vitro, and propose that they act together as a co-repressor complex in many developmental contexts. We discuss the possibility that human Brakeless homologs may influence the toxicity of polyglutamine-expanded Atrophin-1, which causes the human neurodegenerative disease dentatorubral-pallidoluysian atrophy (DRPLA).

  15. The presence of nuclear cactus in the early Drosophila embryo may extend the dynamic range of the dorsal gradient.

    Directory of Open Access Journals (Sweden)

    Michael D O'Connell


    Full Text Available In a developing embryo, the spatial distribution of a signaling molecule, or a morphogen gradient, has been hypothesized to carry positional information to pattern tissues. Recent measurements of morphogen distribution have allowed us to subject this hypothesis to rigorous physical testing. In the early Drosophila embryo, measurements of the morphogen Dorsal, which is a transcription factor responsible for initiating the earliest zygotic patterns along the dorsal-ventral axis, have revealed a gradient that is too narrow to pattern the entire axis. In this study, we use a mathematical model of Dorsal dynamics, fit to experimental data, to determine the ability of the Dorsal gradient to regulate gene expression across the entire dorsal-ventral axis. We found that two assumptions are required for the model to match experimental data in both Dorsal distribution and gene expression patterns. First, we assume that Cactus, an inhibitor that binds to Dorsal and prevents it from entering the nuclei, must itself be present in the nuclei. And second, we assume that fluorescence measurements of Dorsal reflect both free Dorsal and Cactus-bound Dorsal. Our model explains the dynamic behavior of the Dorsal gradient at lateral and dorsal positions of the embryo, the ability of Dorsal to regulate gene expression across the entire dorsal-ventral axis, and the robustness of gene expression to stochastic effects. Our results have a general implication for interpreting fluorescence-based measurements of signaling molecules.

  16. Comparative gene expression analysis of Dtg, a novel target gene of Dpp signaling pathway in the early Drosophila melanogaster embryo. (United States)

    Hodar, Christian; Zuñiga, Alejandro; Pulgar, Rodrigo; Travisany, Dante; Chacon, Carlos; Pino, Michael; Maass, Alejandro; Cambiazo, Verónica


    In the early Drosophila melanogaster embryo, Dpp, a secreted molecule that belongs to the TGF-β superfamily of growth factors, activates a set of downstream genes to subdivide the dorsal region into amnioserosa and dorsal epidermis. Here, we examined the expression pattern and transcriptional regulation of Dtg, a new target gene of Dpp signaling pathway that is required for proper amnioserosa differentiation. We showed that the expression of Dtg was controlled by Dpp and characterized a 524-bp enhancer that mediated expression in the dorsal midline, as well as, in the differentiated amnioserosa in transgenic reporter embryos. This enhancer contained a highly conserved region of 48-bp in which bioinformatic predictions and in vitro assays identified three Mad binding motifs. Mutational analysis revealed that these three motifs were necessary for proper expression of a reporter gene in transgenic embryos, suggesting that short and highly conserved genomic sequences may be indicative of functional regulatory regions in D. melanogaster genes. Dtg orthologs were not detected in basal lineages of Dipterans, which unlike D. melanogaster develop two extra-embryonic membranes, amnion and serosa, nevertheless Dtg orthologs were identified in the transcriptome of Musca domestica, in which dorsal ectoderm patterning leads to the formation of a single extra-embryonic membrane. These results suggest that Dtg was recruited as a new component of the network that controls dorsal ectoderm patterning in the lineage leading to higher Cyclorrhaphan flies, such as D. melanogaster and M. domestica. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. No significant regulation of bicoid mRNA by Pumilio or Nanos in the early Drosophila embryo. (United States)

    Wharton, Tammy H; Nomie, Krystle J; Wharton, Robin P


    Drosophila Pumilio (Pum) is a founding member of the conserved Puf domain class of RNA-binding translational regulators. Pum binds with high specificity, contacting eight nucleotides, one with each of the repeats in its RNA-binding domain. In general, Pum is thought to block translation in collaboration with Nanos (Nos), which exhibits no binding specificity in isolation but is recruited jointly to regulatory sequences containing a Pum binding site in the 3'-UTRs of target mRNAs. Unlike Pum, which is ubiquitous in the early embryo, Nos is tightly restricted to the posterior, ensuring that repression of its best-characterized target, maternal hunchback (hb) mRNA, takes place exclusively in the posterior. An exceptional case of Nos-independent regulation by Pum has been described-repression of maternal bicoid (bcd) mRNA at the anterior pole of the early embryo, dependent on both Pum and conserved Pum binding sites in the 3'-UTR of the mRNA. We have re-investigated regulation of bcd in the early embryo; our experiments reveal no evidence of a role for Pum or its conserved binding sites in regulation of the perdurance of bcd mRNA or protein. Instead, we find that Pum and Nos control the accumulation of bcd mRNA in testes.

  18. Loss of PTB or negative regulation of Notch mRNA reveals distinct zones of Notch and actin protein accumulation in Drosophila embryo.

    Directory of Open Access Journals (Sweden)

    Cedric S Wesley

    Full Text Available Polypyrimidine Tract Binding (PTB protein is a regulator of mRNA processing and translation. Genetic screens and studies of wing and bristle development during the post-embryonic stages of Drosophila suggest that it is a negative regulator of the Notch pathway. How PTB regulates the Notch pathway is unknown. Our studies of Drosophila embryogenesis indicate that (1 the Notch mRNA is a potential target of PTB, (2 PTB and Notch functions in the dorso-lateral regions of the Drosophila embryo are linked to actin regulation but not their functions in the ventral region, and (3 the actin-related Notch activity in the dorso-lateral regions might require a Notch activity at or near the cell surface that is different from the nuclear Notch activity involved in cell fate specification in the ventral region. These data raise the possibility that the Drosophila embryo is divided into zones of different PTB and Notch activities based on whether or not they are linked to actin regulation. They also provide clues to the almost forgotten role of Notch in cell adhesion and reveal a role for the Notch pathway in cell fusions.

  19. Loss of PTB or Negative Regulation of Notch mRNA Reveals Distinct Zones of Notch and Actin Protein Accumulation in Drosophila Embryo (United States)

    Wesley, Cedric S.; Guo, Heng; Chaudhry, Kanita A.; Thali, Markus J.; Yin, Jerry C.; Clason, Todd; Wesley, Umadevi V.


    Polypyrimidine Tract Binding (PTB) protein is a regulator of mRNA processing and translation. Genetic screens and studies of wing and bristle development during the post-embryonic stages of Drosophila suggest that it is a negative regulator of the Notch pathway. How PTB regulates the Notch pathway is unknown. Our studies of Drosophila embryogenesis indicate that (1) the Notch mRNA is a potential target of PTB, (2) PTB and Notch functions in the dorso-lateral regions of the Drosophila embryo are linked to actin regulation but not their functions in the ventral region, and (3) the actin-related Notch activity in the dorso-lateral regions might require a Notch activity at or near the cell surface that is different from the nuclear Notch activity involved in cell fate specification in the ventral region. These data raise the possibility that the Drosophila embryo is divided into zones of different PTB and Notch activities based on whether or not they are linked to actin regulation. They also provide clues to the almost forgotten role of Notch in cell adhesion and reveal a role for the Notch pathway in cell fusions. PMID:21750738

  20. Spatial Reorganization of the Endoplasmic Reticulum during Mitosis Relies on Mitotic Kinase Cyclin A in the Early Drosophila Embryo (United States)

    Bergman, Zane J.; Mclaurin, Justin D.; Eritano, Anthony S.; Johnson, Brittany M.; Sims, Amanda Q.; Riggs, Blake


    Mitotic cyclin-dependent kinase with their cyclin partners (cyclin:Cdks) are the master regulators of cell cycle progression responsible for regulating a host of activities during mitosis. Nuclear mitotic events, including chromosome condensation and segregation have been directly linked to Cdk activity. However, the regulation and timing of cytoplasmic mitotic events by cyclin:Cdks is poorly understood. In order to examine these mitotic cytoplasmic events, we looked at the dramatic changes in the endoplasmic reticulum (ER) during mitosis in the early Drosophila embryo. The dynamic changes of the ER can be arrested in an interphase state by inhibition of either DNA or protein synthesis. Here we show that this block can be alleviated by micro-injection of Cyclin A (CycA) in which defined mitotic ER clusters gathered at the spindle poles. Conversely, micro-injection of Cyclin B (CycB) did not affect spatial reorganization of the ER, suggesting CycA possesses the ability to initiate mitotic ER events in the cytoplasm. Additionally, RNAi-mediated simultaneous inhibition of all 3 mitotic cyclins (A, B and B3) blocked spatial reorganization of the ER. Our results suggest that mitotic ER reorganization events rely on CycA and that control and timing of nuclear and cytoplasmic events during mitosis may be defined by release of CycA from the nucleus as a consequence of breakdown of the nuclear envelope. PMID:25689737

  1. Pipe-dependent ventral processing of Easter by Snake is the defining step in Drosophila embryo DV axis formation. (United States)

    Cho, Yong Suk; Stevens, Leslie M; Stein, David


    The establishment of Drosophila embryonic dorsal-ventral (DV) polarity relies on serine proteolytic activity in the perivitelline space between the embryonic membrane and the eggshell. Gastrulation Defective cleaves and activates Snake, which processes and activates Easter, which cleaves Spätzle to form the activating ligand for the Toll receptor. Ventral restriction of ligand formation depends on the Pipe sulfotransferase, which is expressed in ventral cells of the follicular epithelium surrounding the developing oocyte. Pipe modifies components of the developing eggshell to produce a ventral cue embedded in the vitelline membrane. This ventral cue is believed to promote one or more of the proteolysis steps in the perivitelline space. By examining the processing of transgenic, tagged versions of the perivitelline proteins during DV patterning, we find that the proteolysis of Easter by Snake is the first Pipe-dependent step and therefore the key ventrally restricted event in the protease cascade. We also find that Snake and Easter associate together in a complex in both wild-type and pipe mutant-derived embryos. This observation suggests a mechanism in which the sulfated target of Pipe promotes a productive interaction between Snake and Easter, perhaps by facilitating conformational changes in a complex containing the two proteins. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. The L1-type cell adhesion molecule Neuroglian is necessary for maintenance of sensory axon advance in the Drosophila embryo

    Directory of Open Access Journals (Sweden)

    Martin Veronica


    Full Text Available Abstract Background Cell adhesion molecules have long been implicated in the regulation of axon growth, but the precise cellular roles played by individual cell adhesion molecules and the molecular basis for their action are still not well understood. We have used the sensory system of the Drosophila embryo to shed light on the mechanism by which the L1-type cell adhesion molecule Neuroglian regulates axon growth. Results We have found a highly penetrant sensory axon stalling phenotype in neuroglian mutant embryos. Axons stalled at a variety of positions along their normal trajectory, but most commonly in the periphery some distance along the peripheral nerve. All lateral and dorsal cluster sensory neurons examined, except for the dorsal cluster neuron dbd, showed stalling. Sensory axons were never seen to project along inappropriate pathways in neuroglian mutants and stalled axons showed normal patterns of fasciculation within nerves. The growth cones of stalled axons possessed a simple morphology, similar to their appearance in wild-type embryos when advancing along nerves. Driving expression of the wild-type form of Neuroglian in sensory neurons alone rescued the neuroglian mutant phenotype of both pioneering and follower neurons. A partial rescue was achieved by expressing the Neuroglian extracellular domain. Over/mis-expression of Neuroglian in all neurons, oenocytes or trachea had no apparent effect on sensory axon growth. Conclusion We conclude that Neuroglian is necessary to maintain axon advance along axonal substrates, but is not required for initiation of axon outgrowth, axon fasciculation or recognition of correct growth substrates. Expression of Neuroglian in sensory neurons alone is sufficient to promote axon advance and the intracellular region of the molecule is largely dispensable for this function. It is unlikely, therefore, that Nrg acts as a molecular 'clutch' to couple adhesion of F-actin within the growth cone to the

  3. Cortical movement of Bicoid in early Drosophila embryos is actin- and microtubule-dependent and disagrees with the SDD diffusion model.

    Directory of Open Access Journals (Sweden)

    Xiaoli Cai

    Full Text Available The Bicoid (Bcd protein gradient in Drosophila serves as a paradigm for gradient formation in textbooks. The SDD model (synthesis, diffusion, degradation was proposed to explain the formation of the gradient. The SDD model states that the bcd mRNA is located at the anterior pole of the embryo at all times and serves a source for translation of the Bicoid protein, coupled with diffusion and uniform degradation throughout the embryo. Recently, the ARTS model (active RNA transport, synthesis challenged the SDD model. In this model, the mRNA is transported at the cortex along microtubules to form a mRNA gradient which serves as template for the production of Bcd, hence little Bcd movement is involved. To test the validity of the SDD model, we developed a sensitive assay to monitor the movement of Bcd during early nuclear cycles. We observed that Bcd moved along the cortex and not in a broad front towards the posterior as the SDD model would have predicted. We subjected embryos to hypoxia where the mRNA remained strictly located at the tip at all times, while the protein was allowed to move freely, thus conforming to an ideal experimental setup to test the SDD model. Unexpectedly, Bcd still moved along the cortex. Moreover, cortical Bcd movement was sparse, even under longer hypoxic conditions. Hypoxic embryos treated with drugs compromising microtubule and actin function affected Bcd cortical movement and stability. Vinblastine treatment allowed the simulation of an ideal SDD model whereby the protein moved throughout the embryo in a broad front. In unfertilized embryos, the Bcd protein followed the mRNA which itself was transported into the interior of the embryo utilizing a hitherto undiscovered microtubular network. Our data suggest that the Bcd gradient formation is probably more complex than previously anticipated.

  4. Embryo-larval exposure to atrazine reduces viability and alters oxidative stress parameters in Drosophila melanogaster. (United States)

    Figueira, Fernanda Hernandes; Aguiar, Lais Mattos de; Rosa, Carlos Eduardo da


    The herbicide atrazine has been used worldwide with subsequent residual contamination of water and food, which may cause adverse effects on non-target organisms. Animal exposure to this herbicide may affect development, reproduction and energy metabolism. Here, the effects of atrazine regarding survival and redox metabolism were assessed in the fruit fly D. melanogaster exposed during embryonic and larval development. The embryos (newly fertilized eggs) were exposed to different atrazine concentrations (10μM and 100μM) in the diet until the adult fly emerged. Pupation and emergence rates, developmental time and sex ratio were determined as well as oxidative stress parameters and gene expression of the antioxidant defence system were evaluated in newly emerged male and female flies. Atrazine exposure reduced pupation and emergence rates in fruit flies without alterations to developmental time and sex ratio. Different redox imbalance patterns were observed between males and females exposed to atrazine. Atrazine caused an increase in oxidative damage, reactive oxygen species generation and antioxidant capacity and decreased thiol-containing molecules. Further, atrazine exposure altered the mRNA expression of antioxidant genes (keap1, sod, sod2, cat, irc, gss, gclm, gclc, trxt, trxr-1 and trxr-2). Reductions in fruit fly larval and pupal viability observed here are likely consequences of the oxidative stress induced by atrazine exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Effect of Adding Human Chorionic Gonadotropin to The Endometrial Preparation Protocol in Frozen Embryo Transfer Cycles

    Directory of Open Access Journals (Sweden)

    Maryam Eftekhar


    Full Text Available Background: Human chorionic gonadotropin (HCG, one of the initial embryonic signals, isprobably a major regulator of the embryo-endometrial relationship. This study aims to assess theadvantage of HCG supplementation during the secretory phase of hormonally prepared cycles forthe transfer of cryopreserved-thawed embryos.Materials and Methods: This study was a randomized clinical trial. Infertile women who werecandidates for frozen-thawed embryo transfers entered the study and were divided into two groups,HCG and control. The endometrial preparation method was similar in both groups: all women receivedestradiol valerate (6 mg po per day from the second day of the menstrual cycle and progesteronein oil (100 mg intramuscular (I.M. when the endometrial thickness reached 8 mm. Estradiol andprogesterone were continued until the tenth week of gestation. In the HCG group, patients received anHCG 5000 IU injection on the first day of progesterone administration and the day of embryo transfer.Results: In this study, 130 couples participated: 65 in the HCG group and 65 in the control group.There was no statistically significant difference between groups regarding basic characteristics.Implantation rate, chemical pregnancy, clinical pregnancy, ongoing pregnancy, and abortion rateswere similar in both groups.Conclusion: Although HCG has some advantages in assisted reproductive technology (ARTcycles, our study did not show any benefit of HCG supplementation during the secretory phase offrozen cycles (Registration Number: IRCT201107266420N4.

  6. Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein. (United States)

    Chen, Linan; Dumelie, Jason G; Li, Xiao; Cheng, Matthew Hk; Yang, Zhiyong; Laver, John D; Siddiqui, Najeeb U; Westwood, J Timothy; Morris, Quaid; Lipshitz, Howard D; Smibert, Craig A


    Smaug is an RNA-binding protein that induces the degradation and represses the translation of mRNAs in the early Drosophila embryo. Smaug has two identified direct target mRNAs that it differentially regulates: nanos and Hsp83. Smaug represses the translation of nanos mRNA but has only a modest effect on its stability, whereas it destabilizes Hsp83 mRNA but has no detectable effect on Hsp83 translation. Smaug is required to destabilize more than one thousand mRNAs in the early embryo, but whether these transcripts represent direct targets of Smaug is unclear and the extent of Smaug-mediated translational repression is unknown. To gain a panoramic view of Smaug function in the early embryo, we identified mRNAs that are bound to Smaug using RNA co-immunoprecipitation followed by hybridization to DNA microarrays. We also identified mRNAs that are translationally repressed by Smaug using polysome gradients and microarrays. Comparison of the bound mRNAs to those that are translationally repressed by Smaug and those that require Smaug for their degradation suggests that a large fraction of Smaug's target mRNAs are both translationally repressed and degraded by Smaug. Smaug directly regulates components of the TRiC/CCT chaperonin, the proteasome regulatory particle and lipid droplets, as well as many metabolic enzymes, including several glycolytic enzymes. Smaug plays a direct and global role in regulating the translation and stability of a large fraction of the mRNAs in the early Drosophila embryo, and has unanticipated functions in control of protein folding and degradation, lipid droplet function and metabolism.

  7. Time-lapse cinematography in living Drosophila tissues: preparation of material. (United States)

    Davis, Ilan; Parton, Richard M


    The fruit fly, Drosophila melanogaster, has been an extraordinarily successful model organism for studying the genetic basis of development and evolution. It is arguably the best-understood complex multicellular model system, owing its success to many factors. Recent developments in imaging techniques, in particular sophisticated fluorescence microscopy methods and equipment, now allow cellular events to be studied at high resolution in living material. This ability has enabled the study of features that tend to be lost or damaged by fixation, such as transient or dynamic events. Although many of the techniques of live cell imaging in Drosophila are shared with the greater community of cell biologists working on other model systems, studying living fly tissues presents unique difficulties in keeping the cells alive, introducing fluorescent probes, and imaging through thick hazy cytoplasm. This protocol outlines the preparation of major tissue types amenable to study by time-lapse cinematography and different methods for keeping them alive.

  8. Microdrop preparation factors influence culture-media osmolality, which can impair mouse embryo preimplantation development. (United States)

    Swain, J E; Cabrera, L; Xu, X; Smith, G D


    Because media osmolality can impact embryo development, the effect of conditions during microdrop preparation on osmolality was examined. Various sizes of microdrops were prepared under different laboratory conditions. Drops were pipetted directly onto a dish and covered by oil (standard method) or pipetted on the dish, overlaid with oil before removing the underlying media and replaced with fresh media (wash-drop method). Drops were made at 23°C or on a heated stage (37°C) and with or without airflow. Osmolality was assessed at 5 min and 24h. The biological impact of osmolality change was demonstrated by culturing 1-cell mouse embryos in media with varying osmolality. Reduced drop volume, increased temperature and standard method were associated with a significant increase in osmolality at both 5 min and 24h (P-values media with elevated osmolality (>310mOsm/kg; P<0.05). Procedures in the IVF laboratory can alter osmolality and impact embryo development. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  9. A novel function for the IκB inhibitor Cactus in promoting Dorsal nuclear localization and activity in the Drosophila embryo. (United States)

    Cardoso, Maira Arruda; Fontenele, Marcio; Lim, Bomyi; Bisch, Paulo Mascarello; Shvartsman, Stanislav Y; Araujo, Helena Marcolla


    The evolutionarily conserved Toll signaling pathway controls innate immunity across phyla and embryonic patterning in insects. In the Drosophila embryo, Toll is required to establish gene expression domains along the dorsal-ventral axis. Pathway activation induces degradation of the IκB inhibitor Cactus, resulting in a ventral-to-dorsal nuclear gradient of the NFκB effector Dorsal. Here, we investigate how cactus modulates Toll signals through its effects on the Dorsal gradient and on Dorsal target genes. Quantitative analysis using a series of loss- and gain-of-function conditions shows that the ventral and lateral aspects of the Dorsal gradient can behave differently with respect to Cactus fluctuations. In lateral and dorsal embryo domains, loss of Cactus allows more Dorsal to translocate to the nucleus. Unexpectedly, cactus loss-of-function alleles decrease Dorsal nuclear localization ventrally, where Toll signals are high. Overexpression analysis suggests that this ability of Cactus to enhance Toll stems from the mobilization of a free Cactus pool induced by the Calpain A protease. These results indicate that Cactus acts to bolster Dorsal activation, in addition to its role as a NFκB inhibitor, ensuring a correct response to Toll signals. © 2017. Published by The Company of Biologists Ltd.

  10. Flat mount preparation for observation and analysis of zebrafish embryo specimens stained by whole mount in situ hybridization. (United States)

    Cheng, Christina N; Li, Yue; Marra, Amanda N; Verdun, Valerie; Wingert, Rebecca A


    The zebrafish embryo is now commonly used for basic and biomedical research to investigate the genetic control of developmental processes and to model congenital abnormalities. During the first day of life, the zebrafish embryo progresses through many developmental stages including fertilization, cleavage, gastrulation, segmentation, and the organogenesis of structures such as the kidney, heart, and central nervous system. The anatomy of a young zebrafish embryo presents several challenges for the visualization and analysis of the tissues involved in many of these events because the embryo develops in association with a round yolk mass. Thus, for accurate analysis and imaging of experimental phenotypes in fixed embryonic specimens between the tailbud and 20 somite stage (10 and 19 hours post fertilization (hpf), respectively), such as those stained using whole mount in situ hybridization (WISH), it is often desirable to remove the embryo from the yolk ball and to position it flat on a glass slide. However, performing a flat mount procedure can be tedious. Therefore, successful and efficient flat mount preparation is greatly facilitated through the visual demonstration of the dissection technique, and also helped by using reagents that assist in optimal tissue handling. Here, we provide our WISH protocol for one or two-color detection of gene expression in the zebrafish embryo, and demonstrate how the flat mounting procedure can be performed on this example of a stained fixed specimen. This flat mounting protocol is broadly applicable to the study of many embryonic structures that emerge during early zebrafish development, and can be implemented in conjunction with other staining methods performed on fixed embryo samples.

  11. Disparities in reproductive outcomes according to the endometrial preparation protocol in frozen embryo transfer : The risk of early pregnancy loss in frozen embryo transfer cycles. (United States)

    Hatoum, I; Bellon, L; Swierkowski, N; Ouazana, M; Bouba, S; Fathallah, K; Paillusson, B; Bailly, M; Boitrelle, F; Alter, L; Bergère, M; Selva, J; Wainer, R


    The purpose of this study was to determine the effect of stimulated and artificial endometrial preparation protocols on reproductive outcomes in frozen embryo transfer (FET) cycles. We performed a retrospective study of 1926 FET cycles over a 3.5-year period in the Fertility Unit at a University Hospital. Stimulated and artificial protocols were used for endometrial preparation. The embryos for FET were obtained from either in vitro fertilization or intracytoplasmic sperm injection cycles. Live birth rate and early pregnancy loss rates were retrospectively compared. In artificial protocols, oral or vaginal administration of oestradiol 2 mg two or three times a day was followed by vaginal supplementation with progesterone 200 mg two or three times a day. In stimulated protocols, recombinant follicle-stimulating hormone was administered from day 4 onward. Vaginal ultrasound was used for endometrial and ovarian monitoring. A pregnancy test was performed 14 days after FET. If it was positive, oestradiol and progesterone were administered up until the 12th week of gestation in artificial cycles. We defined early pregnancy losses as biochemical pregnancies (preclinical losses) and miscarriages. Data on 865 artificial cycles (45% of the total) and 1061 stimulated cycles (55%) were collected. Early pregnancy loss rate was significantly lower for stimulated cycles (34.2%) than for artificial cycles (56.9%), and the live birth rate was significantly higher for stimulated cycles (59.7%) than for artificial cycles (29.1%). In frozen embryo transfer, artificial cycles were associated with more early pregnancy loss and lower live birth rate than stimulated cycles.

  12. Effects of reactive oxygen species levels in prepared culture media on embryo development: a comparison of two media. (United States)

    Shih, Ying-Fu; Lee, Tsung-Hsien; Liu, Chung-Hsien; Tsao, Hui-Mei; Huang, Chun-Chia; Lee, Maw-Sheng


    This study determined the correlation between the levels of reactive oxygen species (ROS) in prepared culture media and the early development of human embryos. This was an autocontrolled comparison study. A total of 159 patients undergoing in vitro fertilization/intracytoplasmic sperm injection treatment were recruited in this study. The pH values, osmolarity pressures, and ROS levels of 15 batches of two culture media were measured. Sibling oocytes or embryos from individual patients were randomly assigned to two culture groups with Quinn's Advantage Cleavage and Blastocyst media (QAC/QAB) or GIII series cleavage and blastocyst media (G1.3/G2.3). The difference between the two culture groups was analyzed using one-sample t test. The QAC/QAB and G1.3/G2.3 media exhibited similar pH values and osmolarity pressures. However, the prepared QAC/QAB media were characterized to contain lower amounts of ROS than the G1.3/G2.3 media. Furthermore, the blastocysts that developed under the QAC/QAB media were morphologically superior to those that developed under the G1.3/G2.3 media. The elevated ROS levels in culture media were associated with poor development of blastocyst-stage embryos. Measurement of ROS levels may be a valuable process for medium selection or modification. Copyright © 2014. Published by Elsevier B.V.

  13. Preparation and evaluation of chicken embryo-adapted fowl adenovirus serotype 4 vaccine in broiler chickens. (United States)

    Mansoor, Muhammad Khalid; Hussain, Iftikhar; Arshad, Muhammad; Muhammad, Ghulam


    The current study was planned to develop an efficient vaccine against hydropericardium syndrome virus (HSV). Currently, formalin-inactivated liver organ vaccines failed to protect the Pakistan broiler industry from this destructive disease of economic importance. A field isolate of the pathogenic hydropericardium syndrome virus was adapted to chicken embryos after four blind passages. The chicken embryo-adapted virus was further serially passaged (12 times) to get complete attenuation. Groups of broiler chickens free from maternal antibodies against HSV at the age of 14 days were immunized either with 16th passage attenuated HSV vaccine or commercially formalized liver organ vaccine. The antibody response, measured by enzyme-linked immunosorbent assay was significantly higher (P attenuated HSV vaccine compared to the group immunized with liver organ vaccine at 7, 14, and 21 days post-immunization. At 24 days of age, the broiler chickens in each group were challenged with 10(3.83) embryo infectious dose(50) of pathogenic HSV and were observed for 7 days post-challenge. Vaccination with the 16th passage attenuated HSV gave 94.73% protection as validated on the basis of clinical signs (5.26%), gross lesions in the liver and heart (5.26%), histopathological lesions in the liver (1.5 ± 0.20), and mortality (5.26%). The birds inoculated with liver organ vaccine showed significantly low (p vaccine proved to be immunogenic and has potential for controlling HSV infections in chickens.

  14. Differential effects of phytotherapic preparations in the hSOD1 Drosophila melanogaster model of ALS (United States)

    De Rose, Francescaelena; Marotta, Roberto; Talani, Giuseppe; Catelani, Tiziano; Solari, Paolo; Poddighe, Simone; Borghero, Giuseppe; Marrosu, Francesco; Sanna, Enrico; Kasture, Sanjay; Acquas, Elio; Liscia, Anna


    The present study was aimed at characterizing the effects of Withania somnifera (Wse) and Mucuna pruriens (Mpe) on a Drosophila melanogaster model for Amyotrophic Lateral Sclerosis (ALS). In particular, the effects of Wse and Mpe were assessed following feeding the flies selectively overexpressing the wild human copper, zinc-superoxide dismutase (hSOD1-gain-of-function) in Drosophila motoneurons. Although ALS-hSOD1 mutants showed no impairment in life span, with respect to GAL4 controls, the results revealed impairment of climbing behaviour, muscle electrophysiological parameters (latency and amplitude of ePSPs) as well as thoracic ganglia mitochondrial functions. Interestingly, Wse treatment significantly increased lifespan of hSDO1 while Mpe had not effect. Conversely, both Wse and Mpe significantly rescued climbing impairment, and also latency and amplitude of ePSPs as well as failure responses to high frequency DLM stimulation. Finally, mitochondrial alterations were any more present in Wse- but not in Mpe-treated hSOD1 mutants. Hence, given the role of inflammation in the development of ALS, the high translational impact of the model, the known anti-inflammatory properties of these extracts, and the viability of their clinical use, these results suggest that the application of Wse and Mpe might represent a valuable pharmacological strategy to counteract the progression of ALS and related symptoms. PMID:28102336

  15. A rapid method for whole mount preparations of mammalian oocytes and early embryos. (United States)

    Moses, R M; Masui, Y


    Whole mounts of mouse oocytes and embryos are useful for observing intracellular structures while preserving morphological integrity. This method is inconvenient for rapid processing of a large number of specimens because washing each specimen in a protein-free solution is required prior to transfer into the fixative. We have developed a new fixative which does not cause protein precipitation which can be added directly to the culture medium. Specimens can be preserved in culture dishes for at least one month, and processed for cytological observation at a convenient time. When stained with hematoxylin, details of cellular structures such as nuclei, nucleoli, chromosomes and spindle microtubules can be observed while maintaining the organization of the organelles.

  16. Determination of Relative Biological Efficacy (RBE) and Oxygen Enhancement Ratio (OER) for the entire negative and positive pion beam profile using Vicia faba roots and Drosophila embryos as biological model systems

    International Nuclear Information System (INIS)

    Baarli, J.; Bianchi, M.; Keusch, F.; Mindek, G.; Sullivan, A.H.

    As an introduction to preclinical studies, pilot studies of pion beams are planned with relatively simple biological model systems that can be quickly evaluated and that yield indicative data for further action. Inhibition of growth was studied in Vicia faba roots, a biological system excellently suited for RBE and OER studies. For comparison there are already results from a low-intensity pion irradiation. A second system used Drosophila embryos 1 and 4 hours old, which are especially well suited for LET studies. The unambiguous criterion will be failure to slip out of the oolemma. The smallness of the objects (their beam sensitivity) will make it possible to determine empirically the peak region and to determine Gain factors; furthermore, the known dependency of RBE on the development stage promises highly informative results

  17. Electron microscopy of Drosophila garland cell nephrocytes: Optimal preparation, immunostaining and STEM tomography. (United States)

    Hochapfel, Florian; Denk, Lucia; Maaßen, Christine; Zaytseva, Yulia; Rachel, Reinhard; Witzgall, Ralph; Krahn, Michael P


    Due to its structural and molecular similarities to mammalian podocytes, the Drosophila nephrocyte emerged as a model system to study podocyte development and associated diseases. Similar to podocytes, nephrocytes establish a slit diaphragm between foot process-like structures in order to filter the hemolymph. One major obstacle in nephrocyte research is the distinct visualization of this subcellular structure to assess its integrity. Therefore, we developed a specialized dissection and fixation protocol, including high pressure freezing and freeze substitution techniques, to improve the preservation of the intricate ultrastructural details necessary for electron microscopic assessment. By means of scanning transmission electron microscopy (STEM) tomography, a three-dimensional dataset was generated to further understand the complex architecture of the nephrocyte channel system. Moreover, a staining protocol for immunolabeling of ultrathin sections of Epon-embedded nephrocytes is discussed, which allows the reliable detection of GFP-tagged fusion proteins combined with superior sample preservation. Due to the growing number of available GFP-trap fly lines, this approach is widely applicable for high resolution localization studies in wild type and mutant nephrocytes. © 2018 Wiley Periodicals, Inc.

  18. Metabolome analysis of Drosophila melanogaster during embryogenesis. (United States)

    An, Phan Nguyen Thuy; Yamaguchi, Masamitsu; Bamba, Takeshi; Fukusaki, Eiichiro


    The Drosophila melanogaster embryo has been widely utilized as a model for genetics and developmental biology due to its small size, short generation time, and large brood size. Information on embryonic metabolism during developmental progression is important for further understanding the mechanisms of Drosophila embryogenesis. Therefore, the aim of this study is to assess the changes in embryos' metabolome that occur at different stages of the Drosophila embryonic development. Time course samples of Drosophila embryos were subjected to GC/MS-based metabolome analysis for profiling of low molecular weight hydrophilic metabolites, including sugars, amino acids, and organic acids. The results showed that the metabolic profiles of Drosophila embryo varied during the course of development and there was a strong correlation between the metabolome and different embryonic stages. Using the metabolome information, we were able to establish a prediction model for developmental stages of embryos starting from their high-resolution quantitative metabolite composition. Among the important metabolites revealed from our model, we suggest that different amino acids appear to play distinct roles in different developmental stages and an appropriate balance in trehalose-glucose ratio is crucial to supply the carbohydrate source for the development of Drosophila embryo.

  19. Tissue-specific direct microtransfer of nanomaterials into Drosophila embryos as a versatile in vivo test bed for nanomaterial toxicity assessment

    Directory of Open Access Journals (Sweden)

    Vega-Alvarez S


    Full Text Available Sasha Vega-Alvarez,1 Adriana Herrera,2 Carlos Rinaldi,2–4 Franklin A Carrero-Martínez1,5 1Department of Biology, 2Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico; 3J Crayton Pruitt Family Department of Biomedical Engineering, 4Department of Chemical Engineering, University of Florida, Gainesville, FL, USA; 5Department of Anatomy and Neuroscience, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico Abstract: Nanomaterials are the subject of intense research, focused on their synthesis, modification, and biomedical applications. Increased nanomaterial production and their wide range of applications imply a higher risk of human and environmental exposure. Unfortunately, neither environmental effects nor toxicity of nanomaterials to organisms are fully understood. Cost-effective, rapid toxicity assays requiring minimal amounts of materials are needed to establish both their biomedical potential and environmental safety standards. Drosophila exemplifies an efficient and cost-effective model organism with a vast repertoire of in vivo tools and techniques, all with high-throughput scalability and screening feasibility throughout its life cycle. Here we report tissue specific nanomaterial assessment through direct microtransfer into target tissues. We tested several nanomaterials with potential biomedical applications such as single-wall carbon nanotubes, multiwall carbon nanotubes, silver, gold, titanium dioxide, and iron oxide nanoparticles. Assessment of nanomaterial toxicity was conducted by evaluating progression through developmental morphological milestones in Drosophila. This cost-effective assessment method is amenable to high-throughput screening. Keywords: nanotoxicity, Drosophila, microtransfer, nanoparticle, iron oxide, silver, gold, titanium dioxide, carbon nanotube

  20. Whole mount preparation of the adult Drosophila ventral nerve cord for giant fiber dye injection. (United States)

    Boerner, Jana; Godenschwege, Tanja A


    To analyze the axonal and dendritic morphology of neurons, it is essential to obtain accurate labeling of neuronal structures. Preparing well labeled samples with little to no tissue damage enables us to analyze cell morphology and to compare individual samples to each other, hence allowing the identification of mutant anomalies. In the demonstrated dissection method the nervous system remains mostly inside the adult fly. Through a dorsal incision, the abdomen and thorax are opened and most of the internal organs are removed. Only the dorsal side of the ventral nerve cord (VNC) and the cervical connective (CvC) containing the big axons of the giant fibers (GFs) are exposed, while the brain containing the GF cell body and dendrites remains in the intact head. In this preparation most nerves of the VNC should remain attached to their muscles. Following the dissection, the intracellular filling of the giant fiber (GF) with a fluorescent dye is demonstrated. In the CvC the GF axons are located at the dorsal surface and thus can be easily visualized under a microscope with differential interference contrast (DIC) optics. This allows the injection of the GF axons with dye at this site to label the entire GF including the axons and their terminals in the VNC. This method results in reliable and strong staining of the GFs allowing the neurons to be imaged immediately after filling with an epifluorescent microscope. Alternatively, the fluorescent signal can be enhanced using standard immunohistochemistry procedures suitable for high resolution confocal microscopy.

  1. Embryo splitting

    Directory of Open Access Journals (Sweden)

    Karl Illmensee


    Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.

  2. What is the optimal means of preparing the endometrium in frozen-thawed embryo transfer cycles? A systematic review and meta-analysis. (United States)

    Groenewoud, Eva R; Cantineau, Astrid E P; Kollen, Boudewijn J; Macklon, Nick S; Cohlen, Ben J


    BACKGROUND Frozen-thawed embryo transfer (FET) enables surplus embryos derived from IVF or IVF-ICSI treatment to be stored and transferred at a later date. In recent years the number of FET cycles performed has increased due to transferring fewer embryos per transfer and improved laboratory techniques. Currently, there is little consensus on the most effective method of endometrium preparation prior to FET. METHODS Using both MEDLINE and EMBASE database a systematic review and meta-analysis of literature was performed. Case-series, case-control studies and articles in languages other than English, Dutch or Spanish were excluded. Those studies comparing clinical and ongoing pregnancy rates as well as live birth rates in (i) true natural cycle FET (NC-FET) versus modified NC-FET, (ii) NC-FET versus artificial cycle FET (AC-FET), (iii) AC-FET versus artificial with GnRH agonist cycle FET and (iv) NC-FET versus artificial with GnRH agonist cycle FET were included. Forest plots were constructed and relative risks or odds ratios were calculated. RESULTS A total of 43 publications were selected for critical appraisal and 20 articles were included in the final review. For all comparisons, no differences in the clinical pregnancy rate, ongoing pregnancy rate or live birth rate could be found. Based on information provided in the articles no conclusions could be drawn with regard to cancellation rates. CONCLUSIONS Based on the current literature it is not possible to identify one method of endometrium preparation in FET as being more effective than another. Therefore, all of the current methods of endometrial preparation appear to be equally successful in terms of ongoing pregnancy rate. However, in some comparisons predominantly retrospective studies were included leaving these comparisons subject to selection and publication bias. Also patients' preferences as well as cost-efficiency were not addressed in any of the included studies. Therefore, prospective randomized

  3. Sun light mediated synthesis of gold nanoparticles as carrier for 6-mercaptopurine: Preparation, characterization and toxicity studies in zebrafish embryo model

    Energy Technology Data Exchange (ETDEWEB)

    Ganeshkumar, Moorthy [Department of Biochemistry, Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai 600020 (India); Sastry, Thotapalli Parvathaleswara [Bioproducts Laboratory, Central Leather Research Institute, Chennai 600020 (India); Sathish Kumar, Muniram [Department of Pharmaceutics, Anna University, Trichy, Tamilnadu (India); Dinesh, Murugan Girija [Thanthai Hansroever College, Perambalur, Tamilnadu (India); Kannappan, Sudalyandi [Central Institute of Brackish Water Aquaculture, Chennai 600028 (India); Suguna, Lonchin, E-mail: [Department of Biochemistry, Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai 600020 (India)


    Highlights: ► Gold nanoparticles prepared using eco-friendly method with good in vitro stability. ► Can be used as drug delivery system. ► Did not show any toxicity in zebrafish embryo. ► More toxic to cancer cells when compared to N-Au-Mp and Mp. -- Abstract: The objective of this study is to synthesize green chemistry based gold nanoparticles by sun light irradiation method. The prepared gold nanoparticles (AuNPs) were modified using folic acid and then coupled with 6-mercaptopurine. These modified nanoparticles were used as a tool for targeted drug delivery to treat laryngeal cancer. In the present study, novel bionanocomposites containing nutrient agar coated gold nano particles (N-AuNPs) coupled with 6-mercaptopurine (drug) (N-AuNPs-Mp), folic acid (ligand) (N-AuNPs-Mp-Fa) and rhodamine (dye) (N-AuNPs-Rd), a fluorescent agent, were prepared and characterized by IR, UV, TEM, Particle size analysis and in vitro stability. The toxicity and fluorescence of N-Au was studied using zebrafish embryo model. The in vitro cytotoxicity of free Mp, N-Au-Mp and N-Au-Mp-Fa against HEp-2 cells was compared and found that the amount of Mp required to achieve 50% of growth of inhibition (IC{sub 50}) was much lower in N-Au-Mp-Fa than in free Mp and N-Au-Mp.

  4. Sun light mediated synthesis of gold nanoparticles as carrier for 6-mercaptopurine: Preparation, characterization and toxicity studies in zebrafish embryo model

    International Nuclear Information System (INIS)

    Ganeshkumar, Moorthy; Sastry, Thotapalli Parvathaleswara; Sathish Kumar, Muniram; Dinesh, Murugan Girija; Kannappan, Sudalyandi; Suguna, Lonchin


    Highlights: ► Gold nanoparticles prepared using eco-friendly method with good in vitro stability. ► Can be used as drug delivery system. ► Did not show any toxicity in zebrafish embryo. ► More toxic to cancer cells when compared to N-Au-Mp and Mp. -- Abstract: The objective of this study is to synthesize green chemistry based gold nanoparticles by sun light irradiation method. The prepared gold nanoparticles (AuNPs) were modified using folic acid and then coupled with 6-mercaptopurine. These modified nanoparticles were used as a tool for targeted drug delivery to treat laryngeal cancer. In the present study, novel bionanocomposites containing nutrient agar coated gold nano particles (N-AuNPs) coupled with 6-mercaptopurine (drug) (N-AuNPs-Mp), folic acid (ligand) (N-AuNPs-Mp-Fa) and rhodamine (dye) (N-AuNPs-Rd), a fluorescent agent, were prepared and characterized by IR, UV, TEM, Particle size analysis and in vitro stability. The toxicity and fluorescence of N-Au was studied using zebrafish embryo model. The in vitro cytotoxicity of free Mp, N-Au-Mp and N-Au-Mp-Fa against HEp-2 cells was compared and found that the amount of Mp required to achieve 50% of growth of inhibition (IC 50 ) was much lower in N-Au-Mp-Fa than in free Mp and N-Au-Mp.

  5. Myoblast fusion in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Haralalka, Shruti [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Abmayr, Susan M., E-mail: [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO 66160 (United States)


    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase ( but provide Table 1 with alternative names and references.

  6. Myoblast fusion in Drosophila

    International Nuclear Information System (INIS)

    Haralalka, Shruti; Abmayr, Susan M.


    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase ( but provide Table 1 with alternative names and references.

  7. What is the optimal means of preparing the endometrium in frozenthawed embryo transfer cycles? A systematic review and meta-analysis

    NARCIS (Netherlands)

    Groenewoud, Eva R.; Cantineau, Astrid E. P.; Kollen, Boudewijn J.; Macklon, Nick S.; Cohlen, Ben J.


    Frozenthawed embryo transfer (FET) enables surplus embryos derived from IVF or IVF-ICSI treatment to be stored and transferred at a later date. In recent years the number of FET cycles performed has increased due to transferring fewer embryos per transfer and improved laboratory techniques.

  8. Modified hMG stimulated: an effective option in endometrial preparation for frozen-thawed embryo transfer in patients with normal menstrual cycles. (United States)

    Huang, Pinxiu; Wei, Lihong; Li, Xinlin; Lin, Zhong


    To evaluate the clinical efficacy of modified human menopausal gonadotropin (hMG) stimulated, hormone replacement therapy (HRT), natural cycling and letrozole ovulation induction during endometrial preparation for frozen-thawed embryo transfer (FET) in patients with normal menstrual cycles. This retrospective analysis included a total of 5070 cycles of patients with normal menstrual patterns who underwent FET between October 2009 and September 2015. The patients were divided into four groups according to the method of endometrial preparation for FET: 1838 cycles were natural, 1666 underwent HRT, 340 underwent letrozole ovulation induction and 1226 underwent modified hMG stimulated. Reproduction-related clinical outcomes in the four groups were compared. The clinical pregnancy rates and live birth rates of patients in the modified hMG stimulated group were significantly higher than that in the other groups p .05). Modified hMG stimulated resulted in a higher pregnancy rate compared to the other treatment groups. Therefore, modified hMG stimulated may be an effective option in endometrial preparation for FET in patients with normal menstrual cycles.

  9. Laboratory techniques for human embryos. (United States)

    Geber, Selmo; Sales, Liana; Sampaio, Marcos A C


    This review is concerned with laboratory techniques needed for assisted conception, particularly the handling of gametes and embryos. Such methods are being increasingly refined. Successive stages of fertilization and embryogenesis require especial care, and often involve the use of micromanipulative methods for intracytoplasmic sperm injection (ICSI) or preimplantation genetic diagnosis. Embryologists must take responsibility for gamete collection and preparation, and for deciding on the means of insemination or ICSI. Embryos must be assessed in culture, during the 1-cell, cleaving and morula/blastocyst stages, and classified according to quality. Co-culture methods may be necessary. The best embryos for transfer must be selected and loaded into the transfer catheter. Embryos not transferred must be cryopreserved, which demands the correct application of current methods of media preparation, seeding and the correct speed for cooling and warming. Before too long, methods of detecting abnormal embryos and avoiding their transfer may become widespread.

  10. Effects of acute feed restriction combined with targeted use of increasing luteinizing hormone content of follicle-stimulating hormone preparations on ovarian superstimulation, fertilization, and embryo quality in lactating dairy cows (United States)

    Bender, R. W.; Hackbart, K. S.; Dresch, A. R.; Carvalho, P. D.; Vieira, L. M.; Crump, P. M.; Guenther, J. N.; Fricke, P. M.; Shaver, R. D.; Combs, D. K.; Wiltbank, M. C.


    Multiple metabolic and hormonal factors can affect the success of protocols for ovarian superstimulation. In this study, the effect of acute feed restriction and increased LH content in the superstimulatory FSH preparation on numbers of ovulations, fertilization, and embryo quality in lactating dairy cows was evaluated. Two experiments were performed using a Latin square design with treatments arranged as a 2 × 2 factorial: feed restriction (FR; 25% reduction in dry matter intake) compared with ad libitum (AL) feeding, combined with high (H) versus low (L) LH in the last 4 injections of the superstimulatory protocol. As expected, FR decreased circulating insulin concentrations (26.7 vs. 46.0 μU/mL). Two analyses were performed: one that evaluated the complete Latin square in experiment 2 and a second that evaluated only the first periods of experiments 1 and 2. For both analyses, follicle numbers, ovulation rates, and corpora lutea on d 7 were not different. In the first period analysis of experiments 1 and 2, we observed an interaction between feed allowance and amount of LH on fertilization rates, percentage of embryos or oocytes that were quality 1 and 2 embryos, and number of embryos or oocytes that were degenerate. Fertilization rates were greater for the AL-L (89.4%) and FR-H (80.1%) treatments compared with the AL-H (47.9%) and FR-L (59.9%) treatments. Similarly, the proportion of total embryos or oocytes designated as quality 1 and 2 embryos was greater for AL-L (76.7%) and FR-H (73.4%) treatments compared with AL-H (35.6%) and FR-L (47.3%) treatments. In addition, the number of degenerate embryos was decreased for AL-L (1.3) and FR-H (0.4) treatments compared with the AL-H (2.6) and FR-L (2.3) treatments. Thus, cows with either too low (FR-L) or too high (AL-H) insulin and LH stimulation had lesser embryo production after superstimulation because of reduced fertilization rate and increased percentage of degenerate embryos. Therefore, interaction of the

  11. Molecular cloning, functional expression, and gene silencing of two Drosophila receptors for the Drosophila neuropeptide pyrokinin-2

    DEFF Research Database (Denmark)

    Rosenkilde, Carina; Cazzamali, Giuseppe; Williamson, Michael


    The database of the Drosophila Genome Project contains the sequences of two genes, CG8784 and CG8795, predicted to code for two structurally related G protein-coupled receptors. We have cloned these genes and expressed their coding parts in Chinese hamster ovary cells. We found that both receptors...... can be activated by low concentrations of the Drosophila neuropeptide pyrokinin-2 (CG8784, EC(50) for pyrokinin-2, 1x10(-9)M; CG8795, EC(50) for pyrokinin-2, 5 x 10(-10)M). The precise role of Drosophila pyrokinin-2 (SVPFKPRLamide) in Drosophila is unknown, but in other insects, pyrokinins have...... embryos and first instar larvae. In addition to the two Drosophila receptors, we also identified two probable pyrokinin receptors in the genomic database from the malaria mosquito Anopheles gambiae. The two Drosophila pyrokinin receptors are, to our knowledge, the first invertebrate pyrokinin receptors...

  12. Rearing the Fruit Fly Drosophila melanogaster Under Axenic and Gnotobiotic Conditions. (United States)

    Koyle, Melinda L; Veloz, Madeline; Judd, Alec M; Wong, Adam C-N; Newell, Peter D; Douglas, Angela E; Chaston, John M


    The influence of microbes on myriad animal traits and behaviors has been increasingly recognized in recent years. The fruit fly Drosophila melanogaster is a model for understanding microbial interactions with animal hosts, facilitated by approaches to rear large sample sizes of Drosophila under microorganism-free (axenic) conditions, or with defined microbial communities (gnotobiotic). This work outlines a method for collection of Drosophila embryos, hypochlorite dechorionation and sterilization, and transfer to sterile diet. Sterilized embryos are transferred to sterile diet in 50 ml centrifuge tubes, and developing larvae and adults remain free of any exogenous microbes until the vials are opened. Alternatively, flies with a defined microbiota can be reared by inoculating sterile diet and embryos with microbial species of interest. We describe the introduction of 4 bacterial species to establish a representative gnotobiotic microbiota in Drosophila. Finally, we describe approaches for confirming bacterial community composition, including testing if axenic Drosophila remain bacteria-free into adulthood.

  13. Comparison between thaw-mounting and use of conductive tape for sample preparation in ToF-SIMS imaging of lipids in Drosophila microRNA-14 model. (United States)

    Le, Minh Uyen Thi; Son, Jin Gyeong; Shon, Hyun Kyoung; Park, Jeong Hyang; Lee, Sung Bae; Lee, Tae Geol


    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging elucidates molecular distributions in tissue sections, providing useful information about the metabolic pathways linked to diseases. However, delocalization of the analytes and inadequate tissue adherence during sample preparation are among some of the unfortunate phenomena associated with this technique due to their role in the reduction of the quality, reliability, and spatial resolution of the ToF-SIMS images. For these reasons, ToF-SIMS imaging requires a more rigorous sample preparation method in order to preserve the natural state of the tissues. The traditional thaw-mounting method is particularly vulnerable to altered distributions of the analytes due to thermal effects, as well as to tissue shrinkage. In the present study, the authors made comparisons of different tissue mounting methods, including the thaw-mounting method. The authors used conductive tape as the tissue-mounting material on the substrate because it does not require heat from the finger for the tissue section to adhere to the substrate and can reduce charge accumulation during data acquisition. With the conductive-tape sampling method, they were able to acquire reproducible tissue sections and high-quality images without redistribution of the molecules. Also, the authors were successful in preserving the natural states and chemical distributions of the different components of fat metabolites such as diacylglycerol and fatty acids by using the tape-supported sampling in microRNA-14 (miR-14) deleted Drosophila models. The method highlighted here shows an improvement in the accuracy of mass spectrometric imaging of tissue samples.

  14. P element excision in drosophila melanogaster and related drosophilids (United States)

    The frequency of P element excision and the structure of the resulting excision products were determined in three drosophilid species, Drosophila melanogaster, D. virilis, and Chymomyza procnemis. A transient P element mobility assay was conducted in the cells of developing insect embryos, but unlik...

  15. Congenital malformations induced by ionizing radiation in mouse embryos: investigating molecular changes. Doctoral Thesis Prepared at SCK-CEN and Defended in 2006

    International Nuclear Information System (INIS)

    Derradji, H.


    Irradiation of the mammalian embryo during development results in diverse effects depending on the dose and the specific gestational phase at irradiation. In this work cellular and molecular changes associated with X-irradiation of embryos were therefore investigated at both early and late gestational stages at the moment of radiation exposure. Our goal was to find biological markers indicative of teratogenic effects of radiation, and provide a holistic model of the impact of irradiation during early and late development. In the first part of this doctoral thesis, we investigated telomere length in the irradiated and non-irradiated embryos bearing different p53 genotypes and malformation status as telomere shortening was associated with neural tube defects in mTR-/- embryos. Moreover, the loss of telomere function has been shown to elicit DNA damage checkpoints and p53-dependent apoptosis in vitro. We conclude that telomere shortening is associated with the malformation status as well with the p53 genotype. These data assign telomere length as a potential predictor of a malformed phenotype, a feature that is modulated according to the p53 genotype and the developmental stage at the moment of irradiation. In the second part of this work, we focused on a specific malformation phenotype, namely: forelimb defect. To identify potential genes involved in the radiation-induced forelimb teratogenesis, we investigated differential gene expression between irradiated and non-irradiated fetuses using RT-q-PCR. The results indicate that forelimb defects observed in p53 wild type fetuses irradiated at the organogenesis period was due to excessive cellular death as shown by the high expression of the pro-apoptotic factors caspase-3 and Bax. This suggestion was supported by the positive TUNEL assay performed on forelimb tissue sections of malformed irradiated fetuses. Moreover, overexpression in malformed fetuses of MKK3 and MKK7, both members of the stress-activated MAP kinase

  16. mei-9/sup a/ mutant of Drosophila melanogaster increases mutagen sensitivity and decreases excision repair

    International Nuclear Information System (INIS)

    Boyd, J.B.; Golino, M.D.; Setlow, R.B.


    The mei-9/sup a/ mutant of Drosophila melanogaster, which reduces meiotic recombination in females, is deficient in the excision of uv-induced pyrimidine dimers in both sexes. Assays were performed in primary cultures and established cell lines derived from embryos. An endonuclease preparation from M. luteus, which is specific for pyrimidine dimers, was employed to monitor uv-induced dimers in cellular DNA. The rate of disappearance of endonuclease-sensitive sites from DNA of control cells is 10-20 times faster than that from mei-9/sup a/ cells. The mutant mei-218, which is also deficient in meiotic recombination, removes nuclease-sensitive sites at control rates. The mei-9/sup a/ cells exhibit control levels of photorepair, postreplication repair and repair of single strand breaks. In mei-9 cells DNA synthesis and possibly postreplication repair are weakly sensitive to caffeine. Larvae which are hemizygous for either of the two mutants that define the mei-9 locus are hypersensitive to killing by the mutagens methyl methanesulfonate, nitrogen mustard and 2-acetylaminofluorene. Larvae hemizygous for the mei-218 mutant are insensitive to each of these reagents. These data demonstrate that the mei-9 locus is active in DNA repair of somatic cells. Thus functions involved in meiotic recombination are also active in DNA repair in this higher eukaryote. The results are consistent with the earlier suggestions that the mei-9 locus functions in the exchange events of meiosis. The mei-218 mutation behaves differently in genetic tests and our data suggest its function may be restricted to meiosis. These studies demonstrate that currently recognized modes of DNA repair can be efficiently detected in primary cell cultures derived from Drosophila embryos

  17. Lethals induced by γ-radiation in drosophila somatic cells

    International Nuclear Information System (INIS)

    Ivanov, A.I.


    Exposure of 3-hour drosophila male embryos to γ-radiation during the topographic segregation of the germ anlage nuclei caused recessive sex-linked lethals in somatic cells only. The selectivity of the screening was determined by the ratio of mutation frequencies induced in embryos and adult males. Analysis of lethal mutations shows that a minimal rate of the divergence between germinal and somatic patterns of the cell development is observed in the embryogenesis, the 3d instar larva and prepupa, and maximal in the 1st and 2nd larva and pupa

  18. Digital microfluidic processing of mammalian embryos for vitrification.

    Directory of Open Access Journals (Sweden)

    Derek G Pyne

    Full Text Available Cryopreservation is a key technology in biology and clinical practice. This paper presents a digital microfluidic device that automates sample preparation for mammalian embryo vitrification. Individual micro droplets manipulated on the microfluidic device were used as micro-vessels to transport a single mouse embryo through a complete vitrification procedure. Advantages of this approach, compared to manual operation and channel-based microfluidic vitrification, include automated operation, cryoprotectant concentration gradient generation, and feasibility of loading and retrieval of embryos.

  19. Abnormal recovery of DNA replication in ultraviolet-irradiated cell cultures of Drosophila melanogaster which are defective in DNA repair

    International Nuclear Information System (INIS)

    Brown, T.C.; Boyd, J.B.


    Cell cultures prepared from embryos of a control stock of Drosophila melanogaster respond to ultraviolet light with a decline and subsequent recovery both of thymidine incorporation and in the ability to synthesize nascent DNA in long segments. Recovery of one or both capacities is absent or diminished in irradiated cells from ten nonallelic mutants that are defective in DNA repair and from four of five nonallelic mutagen-sensitive mutants that exhibit normal repair capabilities. Recovery of thymidine incorporation is not observed in nine of ten DNA repair-defective mutants. On the other hand, partial or complete recovery of incorporation is observed in all but one repair-proficient mutagen-sensitive mutant. (orig./AJ) [de

  20. Maternal control of the Drosophila dorsal–ventral body axis (United States)

    Stein, David S.; Stevens, Leslie M.


    The pathway that generates the dorsal–ventral (DV) axis of the Drosophila embryo has been the subject of intense investigation over the previous three decades. The initial asymmetric signal originates during oogenesis by the movement of the oocyte nucleus to an anterior corner of the oocyte, which establishes DV polarity within the follicle through signaling between Gurken, the Drosophila Transforming Growth Factor (TGF)-α homologue secreted from the oocyte, and the Drosophila Epidermal Growth Factor Receptor (EGFR) that is expressed by the follicular epithelium cells that envelop the oocyte. Follicle cells that are not exposed to Gurken follow a ventral fate and express Pipe, a sulfotransferase that enzymatically modifies components of the inner vitelline membrane layer of the eggshell, thereby transferring DV spatial information from the follicle to the egg. These ventrally sulfated eggshell proteins comprise a localized cue that directs the ventrally restricted formation of the active Spätzle ligand within the perivitelline space between the eggshell and the embryonic membrane. Spätzle activates Toll, a transmembrane receptor in the embryonic membrane. Transmission of the Toll signal into the embryo leads to the formation of a ventral-to-dorsal gradient of the transcription factor Dorsal within the nuclei of the syncytial blastoderm stage embryo. Dorsal controls the spatially specific expression of a large constellation of zygotic target genes, the Dorsal gene regulatory network, along the embryonic DV circumference. This article reviews classic studies and integrates them with the details of more recent work that has advanced our understanding of the complex pathway that establishes Drosophila embryo DV polarity. PMID:25124754

  1. Precocious germination and its regulation in embryos of triticale caryopses

    Directory of Open Access Journals (Sweden)

    Stanisław Weidner


    Full Text Available Triticale var. Lasko embryos, isolated from grain gathered at milk ripeness, the beginning of wax ripeness and at full ripeness, were allowed to germinate for 48 h on agar with glucose. The highest incorporation of tritiated adenosine into polyribosomal RNA during germination was found in the ribosome fractions from embryos of grain gathered at full ripeness, lower incorporation was in preparations from embryos of milk ripe grain and the lowest in preparations from embryos of wax ripe grain. Different tendencies were observed in respect to the synthesis of ribosomal proteins. The highest incorporation of 14C-amino acids into ribosomal proteins was found in preparations of ribosome fractions from embryos of milk ripe grain, lower in preparations of embryos from fully ripe grain, the lowest in preparations of embryos from wax ripe grain. ABA (10-4 M completely inhibited the external symptoms of germination of immature embryos, while its inhibition of the synthesis of polyribosomal RNA and ribosomal proteins was greater the more mature the embryos that were germinated. The greatest stimulation of precocious germination by exogenous BA and GA3 was demonstrated in the least mature embryos isolated from milk ripe grain. Under the influence of both stimulators, an increase of the proportion of polyribosomes in the total ribosome fraction occurred in this sample, as did a rise in the intensity of ribosomal protein synthesis. The incorporation of 3H-adenosine into polyribosomal RNA, however, was lower than in the control sample. The results obtained suggest that the regulation of precocious germination of triticale embryos by phyto-hormones is not directly related to transcription.

  2. Tet protein function during Drosophila development.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available The TET (Ten-eleven translocation 1, 2 and 3 proteins have been shown to function as DNA hydroxymethylases in vertebrates and their requirements have been documented extensively. Recently, the Tet proteins have been shown to also hydroxylate 5-methylcytosine in RNA. 5-hydroxymethylcytosine (5hmrC is enriched in messenger RNA but the function of this modification has yet to be elucidated. Because Cytosine methylation in DNA is barely detectable in Drosophila, it serves as an ideal model to study the biological function of 5hmrC. Here, we characterized the temporal and spatial expression and requirement of Tet throughout Drosophila development. We show that Tet is essential for viability as Tet complete loss-of-function animals die at the late pupal stage. Tet is highly expressed in neuronal tissues and at more moderate levels in somatic muscle precursors in embryos and larvae. Depletion of Tet in muscle precursors at early embryonic stages leads to defects in larval locomotion and late pupal lethality. Although Tet knock-down in neuronal tissue does not cause lethality, it is essential for neuronal function during development through its affects upon locomotion in larvae and the circadian rhythm of adult flies. Further, we report the function of Tet in ovarian morphogenesis. Together, our findings provide basic insights into the biological function of Tet in Drosophila, and may illuminate observed neuronal and muscle phenotypes observed in vertebrates.

  3. Effects of alpha particles on zebrafish embryos

    International Nuclear Information System (INIS)

    Yum, E.H.W.; Choi, V.W.Y.; Yu, K.N.; Li, V.W.T.; Cheng, S.H.


    Full text: Ionizing radiation such as X-ray and alpha particles can damage cellular macromolecules, which can lead to DNA single- and double-strand breaks. In the present work, we studied the effects of alpha particles on dechorionated zebrafish embryos. Thin polyallyldiglycol carbonate (PADC) films with a thickness of 16 μm were prepared from commercially available PADC films (with thickness of 100 μm) by chemical etching and used as support substrates for holding zebrafish embryos for alpha-particle irradiation. These films recorded alpha-particle hit positions, quantified the number and energy of alpha particles actually incident on the embryo cells, and thus enabled the calculation of the dose absorbed by the embryo cells. Irradiation was made at 1.25 hours post fertilization (hpf) with various absorbed dose. TdT-mediated dUTP Nick-End Labeling (TUNEL) assay was performed on the embryos at different time stages after irradiation. Marked apoptosis was detected only in embryos at earlier time stages. The results showed that DNA double-strand break during zebrafish embryogenesis can be induced by alpha-particle irradiation, which suggests that zebrafish is a potential model for assessing the effects of alpha-particle radiation

  4. Metabolomic Studies in Drosophila. (United States)

    Cox, James E; Thummel, Carl S; Tennessen, Jason M


    Metabolomic analysis provides a powerful new tool for studies of Drosophila physiology. This approach allows investigators to detect thousands of chemical compounds in a single sample, representing the combined contributions of gene expression, enzyme activity, and environmental context. Metabolomics has been used for a wide range of studies in Drosophila , often providing new insights into gene function and metabolic state that could not be obtained using any other approach. In this review, we survey the uses of metabolomic analysis since its entry into the field. We also cover the major methods used for metabolomic studies in Drosophila and highlight new directions for future research. Copyright © 2017 by the Genetics Society of America.

  5. Embryo-maternal communication

    DEFF Research Database (Denmark)

    Østrup, Esben; Hyttel, Poul; Østrup, Olga


    Communication during early pregnancy is essential for successful reproduction. In this review we address the beginning of the communication between mother and developing embryo; including morphological and transcriptional changes in the endometrium as well as epigenetic regulation mechanisms dire...... directing the placentation. An increasing knowledge of the embryo-maternal communication might not only help to improve the fertility of our farm animals but also our understanding of human health and reproduction.......Communication during early pregnancy is essential for successful reproduction. In this review we address the beginning of the communication between mother and developing embryo; including morphological and transcriptional changes in the endometrium as well as epigenetic regulation mechanisms...

  6. Radioactive marking of proteins in cultured mouse embryos

    International Nuclear Information System (INIS)

    Nowak, J.


    The purpose of this work was to build an in vitro test system, with which on the one hand postimplantation embryos of the mouse could be cultured without morphological of physiological damage and on the other hand their protein could be as highly marked as possible. With this radioactively marked proteins were to be won, which are optimally suited for a high separation by two-dimensional electrophoresis. In addition incubation and preparation methods were found for the ages of day 10, 11 and 12 of the embryonic development. With the use of 3 H-marked amino acids in the culture medium it was determined that embryos without embryonic membranes, so-called N-embryos, built in more radioactivity into their proteins than the embryos with embryonic membranes, the so-called DAO-embryos or the DO-embryos. On the contrary, the embryos with intact blood circulation (DO-embryos) showed an even distribution of radioactive marker in their bodies. Since an even distribution of the marker in the embryo is a necessary prerequisite for a representative presentation of the proteins by 2DE, the DO-preparation was considered the best suited method. In order to increase the amount of radioactivity incorporated into the proteins of the DO-embryos, the concentration of the used isotope or the incubation length could be increased. A combination of both proved to be the best method. A 14 C-marked amino acid mixture of 20 μCi/corresponds to 20 μl instead of the usual 150 μCi 3 H-marked amino acids in a culture medium proved to be equally suitable. Notable changes which would have indicated a damaging affect of the used radioactivity or the in vitro culturing were not observed. The achieved methodical conditions were used for the presentation of the embryo proteins by two-dimensional electrophoresis and fluorography. (orig./MG) [de

  7. JAK/Stat signaling regulates heart precursor diversification in Drosophila (United States)

    Johnson, Aaron N.; Mokalled, Mayssa H.; Haden, Tom N.; Olson, Eric N.


    Intercellular signal transduction pathways regulate the NK-2 family of transcription factors in a conserved gene regulatory network that directs cardiogenesis in both flies and mammals. The Drosophila NK-2 protein Tinman (Tin) was recently shown to regulate Stat92E, the Janus kinase (JAK) and Signal transducer and activator of transcription (Stat) pathway effector, in the developing mesoderm. To understand whether the JAK/Stat pathway also regulates cardiogenesis, we performed a systematic characterization of JAK/Stat signaling during mesoderm development. Drosophila embryos with mutations in the JAK/Stat ligand upd or in Stat92E have non-functional hearts with luminal defects and inappropriate cell aggregations. Using strong Stat92E loss-of-function alleles, we show that the JAK/Stat pathway regulates tin expression prior to heart precursor cell diversification. tin expression can be subdivided into four phases and, in Stat92E mutant embryos, the broad phase 2 expression pattern in the dorsal mesoderm does not restrict to the constrained phase 3 pattern. These embryos also have an expanded pericardial cell domain. We show the E(spl)-C gene HLHm5 is expressed in a pattern complementary to tin during phase 3 and that this expression is JAK/Stat dependent. In addition, E(spl)-C mutant embryos phenocopy the cardiac defects of Stat92E embryos. Mechanistically, JAK/Stat signals activate E(spl)-C genes to restrict Tin expression and the subsequent expression of the T-box transcription factor H15 to direct heart precursor diversification. This study is the first to characterize a role for the JAK/Stat pathway during cardiogenesis and identifies an autoregulatory circuit in which tin limits its own expression domain. PMID:21965617

  8. Mapping organism expression levels at cellular resolution in developing Drosophila (United States)

    Knowles, David W.; Keranen, Soile; Biggin, Mark D.; Sudar, Damir


    The development of an animal embryo is orchestrated by a network of genetically determined, temporal and spatial gene expression patterns that determine the animals final form. To understand such networks, we are developing novel quantitative optical imaging techniques to map gene expression levels at cellular and sub-cellular resolution within pregastrula Drosophila. Embryos at different stages of development are labeled for total DNA and specific gene products using different fluorophors and imaged in 3D with confocal microscopy. Innovative steps have been made which allow the DNA-image to be automatically segmented to produce a morphological mask of the individual nuclear boundaries. For each stage of development an average morphology is chosen to which images from different embryo are compared. The morphological mask is then used to quantify gene-product on a per nuclei basis. What results is an atlas of the relative amount of the specific gene product expressed within the nucleus of every cell in the embryo at the various stages of development. We are creating a quantitative database of transcription factor and target gene expression patterns in wild-type and factor mutant embryos with single cell resolution. Our goal is to uncover the rules determining how patterns of gene expression are generated.

  9. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis. (United States)

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Chowdhury, Debabani Roy; Bhadra, Utpal; Pal-Bhadra, Manika


    In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof¹/+; mnkp⁶/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF

  10. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis

    Directory of Open Access Journals (Sweden)

    Pushpavalli Sreerangam NCVL


    Full Text Available Abstract Background In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Results Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof1/+; mnkp6/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. Conclusion mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using

  11. Manipulating early pig embryos. (United States)

    Niemann, H; Reichelt, B


    On the basis of established surgical procedures for embryo recovery and transfer, the early pig embryo can be subjected to various manipulations aimed at a long-term preservation of genetic material, the generation of identical multiplets, the early determination of sex or the alteration of the genetic make-up. Most of these procedures are still at an experimental stage and despite recent considerable progress are far from practical application. Normal piglets have been obtained after cryopreservation of pig blastocysts hatched in vitro, whereas all attempts to freeze embryos with intact zona pellucida have been unsuccessful. Pig embryos at the morula and blastocyst stage can be bisected microsurgically and the resulting demi-embryos possess a high developmental potential in vitro, whereas their development in vivo is impaired. Pregnancy rates are similar (80%) but litter size is reduced compared with intact embryos and twinning rate is approximately 2%. Pig blastomeres isolated from embryos up to the 16-cell stage can be grown in culture and result in normal blastocysts. Normal piglets have been born upon transfer of blastocysts derived from isolated eight-cell blastomeres, clearly underlining the totipotency of this developmental stage. Upon nuclear transfer the developmental capacity of reconstituted pig embryos is low and culture. Sex determination can be achieved either by separation of X and Y chromosome bearing spermatozoa by flow cytometry or by analysing the expression of the HY antigen in pig embryos from the eight-cell to morula stage. Microinjection of foreign DNA has been successfully used to alter growth and development of transgenic pigs, and to produce foreign proteins in the mammary gland or in the bloodstream, indicating that pigs can be used as donors for valuable human pharmaceutical proteins. Another promising area of gene transfer is the increase of disease resistance in transgenic lines of pigs. Approximately 30% of pig spermatozoa bind

  12. Mouse Embryo Compaction. (United States)

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N


    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.

  13. Fluorescent visualization of macromolecules in Drosophila whole mounts. (United States)

    Ramos, Ricardo Guelerman Pinheiro; Machado, Luciana Claudia Herculano; Moda, Livia Maria Rosatto


    The ability to determine the expression dynamics of individual genes "in situ" by visualizing the precise spatial and temporal distribution of their products in whole mounts by histochemical and immunocytochemical reactions has revolutionized our understanding of cellular processes. Drosophila developmental genetics was one of the fields that benefited most from these technologies, and a variety of fluorescent methods were specifically designed for investigating the localization of developmentally important proteins and cell markers during embryonic and post embryonic stages of this model organism. In this chapter we present detailed protocols for fluorescence immunocytochemistry of whole mount embryos, imaginal discs, pupal retinas, and salivary glands of Drosophila melanogaster, as well as methods for fluorescent visualization of specific subcellular structures in these tissues.

  14. Hearing regulates Drosophila aggression. (United States)

    Versteven, Marijke; Vanden Broeck, Lies; Geurten, Bart; Zwarts, Liesbeth; Decraecker, Lisse; Beelen, Melissa; Göpfert, Martin C; Heinrich, Ralf; Callaerts, Patrick


    Aggression is a universal social behavior important for the acquisition of food, mates, territory, and social status. Aggression in Drosophila is context-dependent and can thus be expected to involve inputs from multiple sensory modalities. Here, we use mechanical disruption and genetic approaches in Drosophila melanogaster to identify hearing as an important sensory modality in the context of intermale aggressive behavior. We demonstrate that neuronal silencing and targeted knockdown of hearing genes in the fly's auditory organ elicit abnormal aggression. Further, we show that exposure to courtship or aggression song has opposite effects on aggression. Our data define the importance of hearing in the control of Drosophila intermale aggression and open perspectives to decipher how hearing and other sensory modalities are integrated at the neural circuit level.

  15. Negative regulation of P element excision by the somatic product and terminal sequences of P in drosophila melanogaster (United States)

    A transient in vivo P element excision assay was used to test the regulatory properties of putative repressor-encoding plasmids in Drosophila melanogaster embryos. The somatic expression of an unmodified transposase transcription unit under the control of a heat shock gene promoter (phsn) effectivel...

  16. The First Human Cloned Embryo. (United States)

    Cibelli, Jose B.; Lanza, Robert P.; West, Michael D.; Ezzell, Carol


    Describes a process known as parthenogenesis which produces cloned, early-stage embryos and human embryos generated only from eggs. Speculates that this technology puts therapeutic cloning within reach. (DDR)

  17. The developmental transcriptome of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    University of Connecticut; Graveley, Brenton R.; Brooks, Angela N.; Carlson, Joseph W.; Duff, Michael O.; Landolin, Jane M.; Yang, Li; Artieri, Carlo G.; van Baren, Marijke J.; Boley, Nathan; Booth, Benjamin W.; Brown, James B.; Cherbas, Lucy; Davis, Carrie A.; Dobin, Alex; Li, Renhua; Lin, Wei; Malone, John H.; Mattiuzzo, Nicolas R.; Miller, David; Sturgill, David; Tuch, Brian B.; Zaleski, Chris; Zhang, Dayu; Blanchette, Marco; Dudoit, Sandrine; Eads, Brian; Green, Richard E.; Hammonds, Ann; Jiang, Lichun; Kapranov, Phil; Langton, Laura; Perrimon, Norbert; Sandler, Jeremy E.; Wan, Kenneth H.; Willingham, Aarron; Zhang, Yu; Zou, Yi; Andrews, Justen; Bicke, Peter J.; Brenner, Steven E.; Brent, Michael R.; Cherbas, Peter; Gingeras, Thomas R.; Hoskins, Roger A.; Kaufman, Thomas C.; Oliver, Brian; Celniker, Susan E.


    . Whereas, 20% of Drosophila genes are annotated as encoding alternatively spliced premRNAs, splice-junction microarray experiments indicate that this number is at least 40% (ref. 7). Determining the diversity of mRNAs generated by alternative promoters, alternative splicing and RNA editing will substantially increase the inferred protein repertoire. Non-coding RNA genes (ncRNAs) including short interfering RNAs (siRNAs) and microRNAS (miRNAs) (reviewed in ref. 10), and longer ncRNAs such as bxd (ref. 11) and rox (ref. 12), have important roles in gene regulation, whereas others such as small nucleolar RNAs (snoRNAs)and small nuclear RNAs (snRNAs) are important components of macromolecular machines such as the ribosome and spliceosome. The transcription and processing of these ncRNAs must also be fully documented and mapped. As part of the modENCODE project to annotate the functional elements of the D. melanogaster and Caenorhabditis elegans genomes, we used RNA-Seq and tiling microarrays to sample the Drosophila transcriptome at unprecedented depth throughout development from early embryo to ageing male and female adults. We report on a high-resolution view of the discovery, structure and dynamic expression of the D. melanogaster transcriptome.

  18. Analysis of a new morphogenetic mutation in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Mglinets, V.A.


    Somatic mosaicism for mutations monster and yellow was induced by gamma-irradiation of Drosophila melanogaster y/y; Dp(1; 2)sc 19 M(2)z/mn d embryos and larvae. Frequencies of mosaicism increased with the age of treated larvae, especially in the end of the 2nd larval instar. Autonomous expression of mn was observed throughout the whole range of larval age studied, though neither for all y/y spots nor for all parts of the spots. Dissimilarities in dynamics of mosaic spots and duplication induction suggest that the latter are not due to mn expression in somatic clones

  19. Ovarian stimulation and embryo quality

    NARCIS (Netherlands)

    Baart, Esther; Macklon, Nick S.; Fauser, Bart J. C. M.

    To Study the effects of different ovarian stimulation approaches on oocyte and embryo quality, it is imperative to assess embryo quality with a reliable and objective method. Embryos rated as high quality by standardized morphological assessment are associated with higher implantation and pregnancy

  20. impact on embryo quality

    Directory of Open Access Journals (Sweden)

    Marijan Tandara


    Conclusions: In men with poorer semen quality, evaluated by standard semen parameters, a higher proportion of sperm with damaged DNA can also be expected. Higher sperm DNA damage, established by Halosperm test, also had an impact on embryo quality in this group of patients.

  1. BMAA neurotoxicity in Drosophila. (United States)

    Zhou, Xianchong; Escala, Wilfredo; Papapetropoulos, Spyridon; Bradley, Walter G; Zhai, R Grace


    We report the establishment of an in vivo model using the fruit fly Drosophila melanogaster to investigate the toxic effects of L-BMAA. We found that dietary intake of BMAA reduced the lifespan as well as the neurological functions of flies. Furthermore, we have developed an HPLC method to reliably detect both free and protein-bound BMAA in fly tissue extracts.

  2. Cancer in Drosophila

    DEFF Research Database (Denmark)

    Herranz, Héctor; Eichenlaub, Teresa; Cohen, Stephen M


    Cancer genomics has greatly increased our understanding of the complexity of the genetic and epigenetic changes found in human tumors. Understanding the functional relationships among these elements calls for the use of flexible genetic models. We discuss the use of Drosophila models to study...

  3. Embryo Aggregation in Pig Improves Cloning Efficiency and Embryo Quality. (United States)

    Buemo, Carla Paola; Gambini, Andrés; Moro, Lucia Natalia; Hiriart, María Inés; Fernández-Martín, Rafael; Collas, Philippe; Salamone, Daniel Felipe


    In this study, we analyzed the effects of the cloned embryo aggregation on in vitro embryo development and embryo quality by measuring blastocyst diameter and cell number, DNA fragmentation levels and the expression of genes associated with pluripotency, apoptosis, trophoblast and DNA methylation in the porcine. Zona-free reconstructed cloned embryos were cultured in the well of the well system, placing one (1x non aggregated group) or three (3x group) embryos per microwell. Our results showed that aggregation of three embryos increased blastocyst formation rate and blastocyst diameter of cloned pig embryos. DNA fragmentation levels in 3x aggregated cloned blastocysts were significantly decreased compared to 1x blastocysts. Levels of Oct4, Klf4, Igf2, Bax and Dnmt 1 transcripts were significantly higher in aggregated embryos, whereas Nanog levels were not affected. Transcripts of Cdx2 and Bcl-xl were essentially non-detectable. Our study suggests that embryo aggregation in the porcine may be beneficial for cloned embryo development and embryo quality, through a reduction in apoptotic levels and an improvement in cell reprogramming.

  4. Effects of hypo-O-GlcNAcylation on Drosophila development. (United States)

    Mariappa, Daniel; Ferenbach, Andrew T; van Aalten, Daan M F


    Post-translational modification of serine/threonine residues in nucleocytoplasmic proteins with GlcNAc ( O -GlcNAcylation) is an essential regulatory mechanism in many cellular processes. In Drosophila , null mutants of the Polycomb gene O -GlcNAc transferase ( OGT ; also known as super sex combs ( sxc )) display homeotic phenotypes. To dissect the requirement for O -GlcNAc signaling in Drosophila development, we used CRISPR/Cas9 gene editing to generate rationally designed sxc catalytically hypomorphic or null point mutants. Of the fertile males derived from embryos injected with the CRISPR/Cas9 reagents, 25% produced progeny carrying precise point mutations with no detectable off-target effects. One of these mutants, the catalytically inactive sxc K872M , was recessive lethal, whereas a second mutant, the hypomorphic sxc H537A , was homozygous viable. We observed that reduced total protein O -GlcNAcylation in the sxc H537A mutant is associated with a wing vein phenotype and temperature-dependent lethality. Genetic interaction between sxc H537A and a null allele of Drosophila host cell factor ( dHcf ), encoding an extensively O -GlcNAcylated transcriptional coactivator, resulted in abnormal scutellar bristle numbers. A similar phenotype was also observed in sxc H537A flies lacking a copy of skuld ( skd ), a Mediator complex gene known to affect scutellar bristle formation. Interestingly, this phenotype was independent of OGT Polycomb function or dHcf downstream targets. In conclusion, the generation of the endogenous OGT hypomorphic mutant sxc H537A enabled us to identify pleiotropic effects of globally reduced protein O -GlcNAc during Drosophila development. The mutants generated and phenotypes observed in this study provide a platform for discovery of OGT substrates that are critical for Drosophila development. © 2018 Mariappa et al.

  5. Low doze γ-irradiation influence on drosophila life span in different genetics background

    International Nuclear Information System (INIS)

    Moskalev, A.


    Complete text of publication follows. The main goal of this work was to study in Drosophila melanogaster the contribution of DNA damage sensing and repair, apoptosis and heat shock defence into life span and physical activity alteration after gamma-irradiation at low doze rate. In our experiments, the strains were exposed to chronic gamma-irradiation from a 226Ra source (50 R/h) at doze rate 0.17 cGy/h at pre-imago development stages only. The absorbed radiation dose per generation (from embryo to imago, 12 days) was 60 cGy. Life span estimation was prepared in adult males and females separately. We compared the life span of apoptotic (p53, DIAP-1, dApaf-1, Dcp-1, reaper, grim and hid), heat shock defence (HSP70, HSP23, HSF), DNA damage sensing (ATR) and repair (XPF, XPC, PCNA, DSB repair helicase homologs) mutants after chronic irradiation with the control. On the basis of our investigation we have concluded: 1) Low doze irradiation alter the life span depending on genetic background (mutant alleles, heterozygosity level and sex); 2) Age dynamics of physical activity positively correlates with the life span; 3) Longevity potential forms at early development stages; 4) DNA damage sensing, DNA repair, heat shock defence and apoptosis as aging preventing mechanisms play crucial role in radiation-induced life span hormesis.

  6. Modeling Human Cancers in Drosophila. (United States)

    Sonoshita, M; Cagan, R L


    Cancer is a complex disease that affects multiple organs. Whole-body animal models provide important insights into oncology that can lead to clinical impact. Here, we review novel concepts that Drosophila studies have established for cancer biology, drug discovery, and patient therapy. Genetic studies using Drosophila have explored the roles of oncogenes and tumor-suppressor genes that when dysregulated promote cancer formation, making Drosophila a useful model to study multiple aspects of transformation. Not limited to mechanism analyses, Drosophila has recently been showing its value in facilitating drug development. Flies offer rapid, efficient platforms by which novel classes of drugs can be identified as candidate anticancer leads. Further, we discuss the use of Drosophila as a platform to develop therapies for individual patients by modeling the tumor's genetic complexity. Drosophila provides both a classical and a novel tool to identify new therapeutics, complementing other more traditional cancer tools. © 2017 Elsevier Inc. All rights reserved.

  7. Calcium and Egg Activation in Drosophila (United States)

    Sartain, Caroline V.; Wolfner, Mariana F.


    Summary In many animals, a rise in intracellular calcium levels is the trigger for egg activation, the process by which an arrested mature oocyte transitions to prepare for embryogenesis. In nearly all animals studied to date, this calcium rise, and thus egg activation, is triggered by the fertilizing sperm. However in the insects that have been examined, fertilization is not necessary to activate their oocytes. Rather, these insects’ eggs activate as they transit through the female’s reproductive tract, regardless of male contribution. Recent studies in Drosophila have shown that egg activation nevertheless requires calcium and that the downstream events and molecules of egg activation are also conserved, despite the difference in initial trigger. Genetic studies have uncovered essential roles for the calcium-dependent enzyme calcineurin and its regulator calcipressin, and have hinted at roles for calmodulin, in Drosophila egg activation. Physiological and in vitro studies have led to a model in which mechanical forces that impact the Drosophila oocyte as it moves through the reproductive tract triggers the influx of calcium from the external environment, thereby initiating egg activation. Future research will aim to test this model, as well as to determine the spatiotemporal dynamics of cytoplasmic calcium flux and mode of signal propagation in this unique system. PMID:23218670

  8. Response of maternal immune cells of irradiation of mouse embryos

    International Nuclear Information System (INIS)

    Nicholls, E.M.; Markovic, B.


    This work began as an attempt to explain the paradox of pregnancy - the survival and growth of the semi-allogenic embryo in an immunologically hostile environment. In 1982 and 1983 we reported the tracing of quinacrine labelled maternal leukocytes (WBC) in maternal, placental and embryonic mouse tissues by fluorescence microscopy. We found that cells in the placenta phagocytose labelled WBC, so that after 1-2 hours the labelled nuclear DNA is found as brightly fluorescing particles in the cytoplasm of the phagocytes with no evidence of it in the nuclei. Identical cells were observed in slide preparations of embryos which had been carefully separated from their placentas. We also found a small population of intact labelled lymphocytes, clearly maternal in origin, in the embryos. This seems to be another paradox - placental phagocytes are observed to be phagocytosing maternal WBC in the placenta and embryo, but there are also free maternal cells in the placenta and embryo. A theoretical explanation is that maternal lymphocytes alloreactive against the embryo will attempt to react with placental cells and in the process be phagocytosed, while other maternal cells will be able to enter the embryo where they could have a surveillance function, removing dead or mutant embryonic cells. To test this theory a series of experiments were carried out and are reported

  9. Immunoelectron microscopy in embryos. (United States)

    Sierralta, W D


    Immunogold labeling of proteins in sections of embryos embedded in acrylate media provides an important analytical tool when the resolving power of the electron microscope is required to define sites of protein function. The protocol presented here was established to analyze the role and dynamics of the activated protein kinase C/Rack1 regulatory system in the patterning and outgrowth of limb bud mesenchyme. With minor changes, especially in the composition of the fixative solution, the protocol should be easily adaptable for the postembedding immunogold labeling of any other antigen in tissues of embryos of diverse species. Quantification of the labeling can be achieved by using electron microscope systems capable of supporting digital image analysis. Copyright 2001 Academic Press.

  10. Tolerance in Drosophila


    Atkinson, Nigel S.


    The set of genes that underlie ethanol tolerance (inducible resistance) are likely to overlap with the set of genes responsible for ethanol addiction. Whereas addiction is difficult to recognize in simple model systems, behavioral tolerance is readily identifiable and can be induced in large populations of animals. Thus, tolerance lends itself to analysis in model systems with powerful genetics. Drosophila melanogaster has been used by a variety of laboratories for the identification of genes...

  11. Genome-wide analysis of promoter architecture in Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Hoskins, Roger A.; Landolin, Jane M.; Brown, James B.; Sandler, Jeremy E.; Takahashi, Hazuki; Lassmann, Timo; Yu, Charles; Booth, Benjamin W.; Zhang, Dayu; Wan, Kenneth H.; Yang, Li; Boley, Nathan; Andrews, Justen; Kaufman, Thomas C.; Graveley, Brenton R.; Bickel, Peter J.; Carninci, Piero; Carlson, Joseph W.; Celniker, Susan E.


    Core promoters are critical regions for gene regulation in higher eukaryotes. However, the boundaries of promoter regions, the relative rates of initiation at the transcription start sites (TSSs) distributed within them, and the functional significance of promoter architecture remain poorly understood. We produced a high-resolution map of promoters active in the Drosophila melanogaster embryo by integrating data from three independent and complementary methods: 21 million cap analysis of gene expression (CAGE) tags, 1.2 million RNA ligase mediated rapid amplification of cDNA ends (RLMRACE) reads, and 50,000 cap-trapped expressed sequence tags (ESTs). We defined 12,454 promoters of 8037 genes. Our analysis indicates that, due to non-promoter-associated RNA background signal, previous studies have likely overestimated the number of promoter-associated CAGE clusters by fivefold. We show that TSS distributions form a complex continuum of shapes, and that promoters active in the embryo and adult have highly similar shapes in 95% of cases. This suggests that these distributions are generally determined by static elements such as local DNA sequence and are not modulated by dynamic signals such as histone modifications. Transcription factor binding motifs are differentially enriched as a function of promoter shape, and peaked promoter shape is correlated with both temporal and spatial regulation of gene expression. Our results contribute to the emerging view that core promoters are functionally diverse and control patterning of gene expression in Drosophila and mammals.

  12. Behavioral Teratogenesis in Drosophila melanogaster. (United States)

    Mishra, Monalisa; Barik, Bedanta Kumar


    Developmental biology is a fascinating branch of science which helps us to understand the mechanism of development, thus the findings are used in various therapeutic approach. Drosophila melanogaster served as a model to find the key molecules that initiate and regulate the mechanism of development. Various genes, transcription factors, and signaling pathways helping in development are identified in Drosophila. Many toxic compounds, which can affect the development, are also recognized using Drosophila model. These compounds, which can affect the development, are named as a teratogen. Many teratogens identified using Drosophila may also act as a teratogen for a human being since 75% of conservation exist between the disease genes present in Drosophila and human. There are certain teratogens, which do not cause developmental defect if exposed during pregnancy, however; behavioral defect appears in later part of development. Such compounds are named as a behavioral teratogen. Thus, it is worthy to identify the potential behavioral teratogen using Drosophila model. Drosophila behavior is well studied in various developmental stages. This chapter describes various methods which can be employed to test behavioral teratogenesis in Drosophila.

  13. The Drosophila melanogaster host model (United States)

    Igboin, Christina O.; Griffen, Ann L.; Leys, Eugene J.


    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed. PMID:22368770

  14. The Drosophila melanogaster host model

    Directory of Open Access Journals (Sweden)

    Christina O. Igboin


    Full Text Available The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  15. The Drosophila melanogaster host model. (United States)

    Igboin, Christina O; Griffen, Ann L; Leys, Eugene J


    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  16. Mechanisms of gap gene expression canalization in the Drosophila blastoderm

    Directory of Open Access Journals (Sweden)

    Samsonova Maria G


    Full Text Available Abstract Background Extensive variation in early gap gene expression in the Drosophila blastoderm is reduced over time because of gap gene cross regulation. This phenomenon is a manifestation of canalization, the ability of an organism to produce a consistent phenotype despite variations in genotype or environment. The canalization of gap gene expression can be understood as arising from the actions of attractors in the gap gene dynamical system. Results In order to better understand the processes of developmental robustness and canalization in the early Drosophila embryo, we investigated the dynamical effects of varying spatial profiles of Bicoid protein concentration on the formation of the expression border of the gap gene hunchback. At several positions on the anterior-posterior axis of the embryo, we analyzed attractors and their basins of attraction in a dynamical model describing expression of four gap genes with the Bicoid concentration profile accounted as a given input in the model equations. This model was tested against a family of Bicoid gradients obtained from individual embryos. These gradients were normalized by two independent methods, which are based on distinct biological hypotheses and provide different magnitudes for Bicoid spatial variability. We showed how the border formation is dictated by the biological initial conditions (the concentration gradient of maternal Hunchback protein being attracted to specific attracting sets in a local vicinity of the border. Different types of these attracting sets (point attractors or one dimensional attracting manifolds define several possible mechanisms of border formation. The hunchback border formation is associated with intersection of the spatial gradient of the maternal Hunchback protein and a boundary between the attraction basins of two different point attractors. We demonstrated how the positional variability for hunchback is related to the corresponding variability of the

  17. From stem cell to embryo without centrioles. (United States)

    Stevens, Naomi R; Raposo, Alexandre A S F; Basto, Renata; St Johnston, Daniel; Raff, Jordan W


    Centrosome asymmetry plays a key role in ensuring the asymmetric division of Drosophila neural stem cells (neuroblasts [NBs]) and male germline stem cells (GSCs) [1-3]. In both cases, one centrosome is anchored close to a specific cortical region during interphase, thus defining the orientation of the spindle during the ensuing mitosis. To test whether asymmetric centrosome behavior is a general feature of stem cells, we have studied female GSCs, which divide asymmetrically, producing another GSC and a cystoblast. The cystoblast then divides and matures into an oocyte, a process in which centrosomes exhibit a series of complex behaviors proposed to play a crucial role in oogenesis [4-6]. We show that the interphase centrosome does not define spindle orientation in female GSCs and that DSas-4 mutant GSCs [7], lacking centrioles and centrosomes, invariably divide asymmetrically to produce cystoblasts that proceed normally through oogenesis-remarkably, oocyte specification, microtubule organization, and mRNA localization are all unperturbed. Mature oocytes can be fertilized, but embryos that cannot support centriole replication arrest very early in development. Thus, centrosomes are dispensable for oogenesis but essential for early embryogenesis. These results reveal that asymmetric centrosome behavior is not an essential feature of stem cell divisions.

  18. ART culture conditions change the probability of mouse embryo gestation through defined cellular and molecular responses

    NARCIS (Netherlands)

    Schwarzer, Caroline; Esteves, Telma Cristina; Arau´zo-Bravo, Marcos J.; le Gac, Severine; Nordhoff, Verena; Schlatt, Stefan; Boiani, Michele


    Do different human ART culture protocols prepare embryos differently for post-implantation development? ... Our data promote awareness that human ART culture media affect embryo development. Effects reported here in the mouse may apply also in human, because no ART medium presently available on the

  19. Compartmentalizing the embryo (United States)

    Ile, Kristina E.; Renault, Andrew D.


    Lipid phosphate phosphatases (LPPs) are a class of enzymes that can dephosphorylate a number of lysophopholipids in vitro. Analysis of knockouts of LPP family members has demonstrated striking but diverse developmental roles for these enzymes. LPP3 is required for mouse vascular development while the Drosophila LPPs Wunen (Wun) and Wunen2 (Wun2) are required during embryogenesis for germ cell migration and survival. In a recent publication we examined if these fly LPPs have further developmental roles and found that Wun is required for proper tracheal formation. In particular we highlight a role for Wun in septate junction mediated barrier function in the tracheal system. In this paper we discuss further the possible mechanisms by which LPPs may influence barrier activity. PMID:23221483

  20. Who abandons embryos after IVF?

    LENUS (Irish Health Repository)

    Walsh, A P H


    This investigation describes features of in vitro fertilisation (IVF) patients who never returned to claim their embryos following cryopreservation. Frozen embryo data were reviewed to establish communication patterns between patient and clinic; embryos were considered abandoned when 1) an IVF patient with frozen embryo\\/s stored at our facility failed to make contact with our clinic for > 2 yrs and 2) the patient could not be located after a multi-modal outreach effort was undertaken. For these patients, telephone numbers had been disconnected and no forwarding address was available. Patient, spouse and emergency family contact\\/s all escaped detection efforts despite an exhaustive public database search including death records and Internet directory portals. From 3244 IVF cycles completed from 2000 to 2008, > or = 1 embryo was frozen in 1159 cases (35.7%). Those without correspondence for > 2 yrs accounted for 292 (25.2%) patients with frozen embryos; 281 were contacted by methods including registered (signature involving abandoned embryos did not differ substantially from other patients. The goal of having a baby was achieved by 10\\/11 patients either by spontaneous conception, adoption or IVF. One patient moved away with conception status unconfirmed. The overall rate of embryo abandonment was 11\\/1159 (< 1%) in this IVF population. Pre-IVF counselling minimises, but does not totally eliminate, the problem of abandoned embryos. As the number of abandoned embryos from IVF accumulates, their fate urgently requires clarification. We propose that clinicians develop a policy consistent with relevant Irish Constitutional provisions to address this medical dilemma.

  1. Nucleolar re-activation is delayed in mouse embryos cloned from two different cell lines

    DEFF Research Database (Denmark)

    Svarcova, Olga; Dinnyes, A.; Polgar, Z.


    displayed early NPBs transformation. In conclusion, despite normal onset of EGA in cloned embryos, activation of functional nucleoli was one cell cycle delayed in NT embryos. NT-MEF embryos displayed normal targeting but delayed activation of nucleolar proteins. Contrary, in NT-HM1 embryos, both......Aim of this study was to evaluate and compare embryonic genome activation (EGA) in mouse embryos of different origin using nucleolus as a marker. Early and late 2-cell and late 4-cell stage embryos, prepared by in vitro fertilization (IVF), parthenogenetic activation (PG), and nuclear transfer...... ofmouse embryonic fibroblast (MEF) and mouse HM1 emryonic stem cells (HM1), were processed for autoradiography following 3H-uridine incubation (transcriptional activity), transmission electron microscopy (ultrastructure) and immunofluorescence (nucleolar proteins; upstream binding factor, UBF...

  2. Influence of recipient cytoplasm cell stage on transcription in bovine nucleus transfer embryos

    DEFF Research Database (Denmark)

    Smith, Steven D.; Soloy, Eva; Kanka, Jiri


    Nucleus transfer for the production of multiple embryos derived from a donor embryo relies upon the reprogramming of the donor nucleus so that it behaves similar to a zygotic nucleus. One indication of nucleus reprogramming is the RNA synthetic activity. In normal bovine embryogenesis, the embryo....... NTE were produced using either a MII phase (nonactivated) cytoplasts at 32 hr of maturation or S-phase (activated) cytoplasts activated with calcium ionophore A23187 and cycloheximide treatment approximately 8 hr prior to fusion with a blastomere from an in-vitro-produced morula stage embryo at 32 hr...... of maturation. Control in-vitro-produced embryos were 3H-uridine-labelled and fixed at the 2-, 4-, early 8-, and late 8-cell stages. NTE were similarly prepared at 1, 3, and 20 hr postfusion and at the 2-, 4-, and 8-cell stages. In the control embryos, RNA synthesis was absent in the 2-, 4-, and early 8-cell...

  3. Embryos, genes, and birth defects

    National Research Council Canada - National Science Library

    Ferretti, Patrizia


    ... Structural anomalies The genesis of chromosome abnormalities Embryo survival The cause of high levels of chromosome abnormality in human embryos Relative parental risks - age, translocations, inversions, gonadal and germinal mosaics 33 33 34 35 36 44 44 45 4 Identification and Analysis of Genes Involved in Congenital Malformation Syndromes Peter J. Scambler Ge...

  4. Mutagenic Potential of: 4-Nitrophenyl Dimethyl Phosphinate (TA007) using the Sex-Linked Recessive Lethal Test in Drosophila melanogaster. (United States)


    Drosophila Stock Center, Bowling Green State University, Bowling Green, Ohio. Diet The diet was the standard medium consisting of cornmeal , unsulfured mol...isses, yeast, and nutrient agar used for colony rearing of D. melanogaster. A materials list and instructions for its preparation are contained in LAIR...SOP-OP-STX-5 Drosophila Media Preparation. Restraint Ether anesthesia was used for restraint of flies being collected for mating and for general

  5. Identification of a novel Drosophila gene, beltless, using injectable embryonic and adult RNA interference (RNAi

    Directory of Open Access Journals (Sweden)

    Manev Hari


    Full Text Available Abstract Background RNA interference (RNAi is a process triggered by a double-stranded RNA that leads to targeted down-regulation/silencing of gene expression and can be used for functional genomics; i.e. loss-of-function studies. Here we report on the use of RNAi in the identification of a developmentally important novel Drosophila (fruit fly gene (corresponding to a putative gene CG5652/GM06434, that we named beltless based on an embryonic loss-of-function phenotype. Results Beltless mRNA is expressed in all developmental stages except in 0–6 h embryos. In situ RT-PCR localized beltless mRNA in the ventral cord and brain of late stage embryos and in the nervous system, ovaries, and the accessory glands of adult flies. RNAi was induced by injection of short (22 bp beltless double-stranded RNAs into embryos or into adult flies. Embryonic RNAi altered cuticular phenotypes ranging from partially-formed to missing denticle belts (thus beltless of the abdominal segments A2–A4. Embryonic beltless RNAi was lethal. Adult RNAi resulted in the shrinkage of the ovaries by half and reduced the number of eggs laid. We also examined Df(1RK4 flies in which deletion removes 16 genes, including beltless. In some embryos, we observed cuticular abnormalities similar to our findings with beltless RNAi. After differentiating Df(1RK4 embryos into those with visible denticle belts and those missing denticle belts, we assayed the presence of beltless mRNA; no beltless mRNA was detectable in embryos with missing denticle belts. Conclusions We have identified a developmentally important novel Drosophila gene, beltless, which has been characterized in loss-of-function studies using RNA interference. The putative beltless protein shares homologies with the C. elegans nose resistant to fluoxetine (NRF NRF-6 gene, as well as with several uncharacterized C. elegans and Drosophila melanogaster genes, some with prominent acyltransferase domains. Future studies should

  6. Viability of bovine demi embryo after splitting of fresh and frozen thawed embryo derived from in vitro embryo production

    Directory of Open Access Journals (Sweden)

    M Imron


    Full Text Available In vivo embryo production was limited by number of donor, wide variability respond due to superovulation program and also immunoactifity of superovulation hormone (FSH. Splitting technology could be an alternative to increase the number of transferrable embryos into recipien cows. Splitting is done with cutting embryo becoming two equal pieces (called demi embrio base on ICM orientation. The objective of this research was to determine the viability of demi embryo obtained from embryo splitting of fresh and frozen thawed embryo. The results showed that demi embryos which performed blastocoel reexpansion 3 hours after embryo splitting using fresh and frozen thawed embryos were 76.9 and 76.2% respectively. Base on existention of inner cell mass (ICM, the number of demi embryos developed with ICM from fresh and frozen thawed embryos were not significantly different (90.6 and 85.7% respectively. The cell number of demi embryo from fresh embryos splitting was not different compared with those from frozen thawed embryos (36.1 and 35.9 respectively. These finding indicated that embryo splitting can be applied to frozen thawed embryos with certain condition as well as fresh embryos.


    Institute of Scientific and Technical Information of China (English)

    LINXin-da; LINXin-hua; CHENGJia-an


    Wg/Wnt signaling is a key signaling pathway in Drosophila. Many genes involved in Wingless(wg) signal transduction pathway downstream of Wg, or it'' s vertebrate Wg homologue Wnt, have been identified.Transduction of the Wg signal downstream of Wg is mediated by nuclear TCF/LEF-1, through association with Ar-madillo (Arm)/β-catenin. Pygopus (pygo) is a new identified component in this pathway . Cellular localization experiment showed that pygo was expressed specifically in the nucleus. The expression profile of pygo in embryos was examined using in situ hybridization. Although pygo expressed ubiquitously in the embryos, it expressed at relatively high level in pre-blastoderm embryos which indicate a high degree of maternally provided message, fol-lowed by a low level of ubiquitous zygotic expression. This continues into larval tissues (including wing disc, eye disc and leg disc), where pygo appears to be expressed at low level. Comparison of pygo expression levels, in the wing disc, eye disc and leg disc, showed pygo expression level in the wing disc pouch and leg disc were rela-tive higher.

  8. SUMOylation in Drosophila Development

    Directory of Open Access Journals (Sweden)

    Albert J. Courey


    Full Text Available Small ubiquitin-related modifier (SUMO, an ~90 amino acid ubiquitin-like protein, is highly conserved throughout the eukaryotic domain. Like ubiquitin, SUMO is covalently attached to lysine side chains in a large number of target proteins. In contrast to ubiquitin, SUMO does not have a direct role in targeting proteins for proteasomal degradation. However, like ubiquitin, SUMO does modulate protein function in a variety of other ways. This includes effects on protein conformation, subcellular localization, and protein–protein interactions. Significant insight into the in vivo role of SUMOylation has been provided by studies in Drosophila that combine genetic manipulation, proteomic, and biochemical analysis. Such studies have revealed that the SUMO conjugation pathway regulates a wide variety of critical cellular and developmental processes, including chromatin/chromosome function, eggshell patterning, embryonic pattern formation, metamorphosis, larval and pupal development, neurogenesis, development of the innate immune system, and apoptosis. This review discusses our current understanding of the diverse roles for SUMO in Drosophila development.

  9. Effects of Spaceflight on Drosophila Neural Development (United States)

    Keshishian, Haig S.


    The major goal from the animal side, however, has been achieved, namely to develop Drosophila lines where we can assay individual neuromuscular endings directly without dissection. This was achieved by means of using the GAL4-UAS system, where we have succeeded in establishing stocks of flies where the key neuromuscular connections can be assayed directly in undissected larvae by means of the expression of endogenously fluorescent reporters in the specific motor endings. The green fluorescent protein (GFP) as a reporter allows scoring of neural anatomy en-masse in whole mount using fluorescent microscopy without the need for either dissection or specific labeling. Two stocks have been developed. The first, which we developed first, uses the S65T mutant form, which has a dramatically brighter expression than the native protein. This animal will use GAL4 drivers with expression under the control of the elav gene, and which will ensure expression in all neurons of the embryo and larva. The second transgenic animal we have developed is of a novel kind, and makes use of dicistronic design, so that two copies of the protein will be expressed per insert. We have also developed a tricistronic form, but this has not yet been transformed into flies, and we do not imagine that this third line will be ready in time for the flight.

  10. Evolutionary genetics: the Drosophila model

    Indian Academy of Sciences (India)


    Evolutionary genetics straddles the two fundamental processes of life, ... of the genus Drosophila have been used extensively as model systems in experimental ... issue will prove interesting, informative and thought-provoking for both estab-.

  11. Surgical manipulation of mammalian embryos in vitro. (United States)

    Naruse, I; Keino, H; Taniguchi, M


    Whole-embryo culture systems are useful in the fields of not only embryology but also teratology, toxicology, pharmacology, and physiology. Of the many advantages of whole-embryo culture, we focus here on the surgical manipulation of mammalian embryos. Whole-embryo culture allows us to manipulate mammalian embryos, similarly to fish, amphibian and avian embryos. Many surgical experiments have been performed in mammalian embryos in vitro. Such surgical manipulation alters the destiny of morphogenesis of the embryos and can answer many questions concerning developmental issues. As an example of surgical manipulation using whole-embryo culture systems, one of our experiments is described. Microsurgical electrocauterization of the deep preaxial mesodermal programmed cell death zone (fpp) in the footplate prevented the manifestation of polydactyly in genetic polydactyly mouse embryos (Pdn/Pdn), in which fpp was abolished.

  12. Oxygen diffusion in fish embryos

    NARCIS (Netherlands)

    Kranenbarg, S.


    All vertebrate embryos pass through a developmental period of remarkably low morphological variability. This period has been called phylotypic period. During the phylotypic period, organogenesis takes place, including blood vessel development. Before the phylotypic

  13. Humidity Sensing in Drosophila. (United States)

    Enjin, Anders; Zaharieva, Emanuela E; Frank, Dominic D; Mansourian, Suzan; Suh, Greg S B; Gallio, Marco; Stensmyr, Marcus C


    Environmental humidity influences the fitness and geographic distribution of all animals [1]. Insects in particular use humidity cues to navigate the environment, and previous work suggests the existence of specific sensory mechanisms to detect favorable humidity ranges [2-5]. Yet, the molecular and cellular basis of humidity sensing (hygrosensation) remains poorly understood. Here we describe genes and neurons necessary for hygrosensation in the vinegar fly Drosophila melanogaster. We find that members of the Drosophila genus display species-specific humidity preferences related to conditions in their native habitats. Using a simple behavioral assay, we find that the ionotropic receptors IR40a, IR93a, and IR25a are all required for humidity preference in D. melanogaster. Yet, whereas IR40a is selectively required for hygrosensory responses, IR93a and IR25a mediate both humidity and temperature preference. Consistent with this, the expression of IR93a and IR25a includes thermosensory neurons of the arista. In contrast, IR40a is excluded from the arista but is expressed (and required) in specialized neurons innervating pore-less sensilla of the sacculus, a unique invagination of the third antennal segment. Indeed, calcium imaging showed that IR40a neurons directly respond to changes in humidity, and IR40a knockdown or IR93a mutation reduced their responses to stimuli. Taken together, our results suggest that the preference for a specific humidity range depends on specialized sacculus neurons, and that the processing of environmental humidity can happen largely in parallel to that of temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Heterologous expression of mammalian Plk1 in Drosophila reveals divergence from Polo during late mitosis

    International Nuclear Information System (INIS)

    Pearson, John; Godinho, Susana A.; Tavares, Alvaro; Glover, David M.


    Drosophila Polo kinase is the founder member of a conserved kinase family required for multiple stages of mitosis. We assessed the ability of mouse Polo-like kinase 1 (Plk1) to perform the multiple mitotic functions of Polo kinase, by expressing a Plk1-GFP fusion in Drosophila. Consistent with the previously reported localization of Polo kinase, Plk1-GFP was strongly localized to centrosomes and recruited to the centromeric regions of condensing chromosomes during early mitosis. However, in contrast to a functional Polo-GFP fusion, Plk1-GFP failed to localize to the central spindle midzone in both syncytial embryo mitosis and the conventional mitoses of cellularized embryos and S2 cells. Moreover, unlike endogenous Polo kinase and Polo-GFP, Plk1-GFP failed to associate with the contractile ring. Expression of Plk1-GFP enhanced the lethality of hypomorphic polo mutants and disrupted the organization of the actinomyosin cytoskeleton in a dominant-negative manner. Taken together, our results suggest that endogenous Polo kinase has specific roles in regulating actinomyosin rearrangements during Drosophila mitoses that its mammalian counterpart, Plk1, cannot fulfill. Consistent with this hypothesis, we observed defects in the cortical recruitment of myosin and myosin regulatory light chain in Polo deficient cells

  15. [The destiny of cryopreserved embryos]. (United States)

    Karpel, L; Achour-Frydman, N; Frydman, R; Flis-Trèves, M


    To know the psychological motivations of couples who keep their embryos so long (five years and more) and do not make a decision about them. We studied 84 couples refrained from making a decision on their cryopreserved embryos for at least five years. They were invited to fill out a questionnaire focusing on three points: the reasons of the indecision, their own representation of the cryopreserved embryos and their choice for the future: donation to another couple, to research, pregnancy or no solution for the moment. Mean (S.D.) women's and men's age were respectively, 38.8 (2.5)- and 41.3 (2.5)-years old. On average, three (1-9) embryos are preserved since 7.5 (5-12) years. Most of couples are parents. Four major reasons explain their attitudes: feeling of being too aged (25%), fear of a multiple pregnancy (45%), disagreement between members of couple (20%) and fear of failure (42.5%). Multiple choices were given to the future of the embryos: 25% wanted a pregnancy, 8% wanted to give them to infertile couples, 20% to research and 27.5% did not find any solution. Twenty percent were hesitating. The representation of those embryos is more symbolic than material. Most of the time, they see them like a potential child, a hope for the future or a brother or sister of their alive children. Those embryos are symbolized. They are a proof of fertility, a hope for another child. So, whatever the legal statement, couples will be in a dilemma because it is never easy for an infertile person to renounce to embryos, and the hope for children.

  16. Hermann Muller and Mutations in Drosophila (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Hermann Muller and Mutations in Drosophila Resources with University of Texas. In Austin his experiments on fruit flies (Drosophila) first showed that exposure to September to spend a year at the only Drosophila laboratory in Europe which was doing parallel work

  17. Use of Drosophila to study DNA repair

    International Nuclear Information System (INIS)

    Boyd, J.B.; Harris, P.V.; Sakaguchi, K.


    This paper discusses Drosophila, the premier metazoan organism for analyzing many fundamental features of eukaryotic gene regulation. The authors present adaptations of several approaches for studying DNA repair to an analysis of repair-defective mutants in Drosophila. A current understanding of Drosophila DNA repair is described

  18. Lessons from Embryos: Haeckel's Embryo Drawings, Evolution, and Secondary Biology Textbooks (United States)

    Wellner, Karen L.


    In 1997, developmental biologist Michael Richardson compared his research team's embryo photographs to Ernst Haeckel's 1874 embryo drawings and called Haeckel's work "noncredible". "Science" soon published "Haeckel's Embryos: Fraud Rediscovered," and Richardson's comments further reinvigorated criticism of Haeckel by…

  19. Disparate patterns of thermal adaptation between life stages in temperate vs. tropical Drosophila melanogaster. (United States)

    Lockwood, B L; Gupta, T; Scavotto, R


    Many terrestrial ectothermic species exhibit limited variation in upper thermal tolerance across latitude. However, these trends may not signify limited adaptive capacity to increase thermal tolerance in the face of climate change. Instead, thermal tolerance may be similar among populations because behavioural thermoregulation by mobile organisms or life stages may buffer natural selection for thermal tolerance. We compared thermal tolerance of adults and embryos among natural populations of Drosophila melanogaster from a broad range of thermal habitats around the globe to assess natural variation of thermal tolerance in mobile vs. immobile life stages. We found no variation among populations in adult thermal tolerance, but embryonic thermal tolerance was higher in tropical strains than in temperate strains. We further report that embryos live closer to their upper thermal limits than adults - that is, thermal safety margins are smaller for embryos than adults. F1 hybrid embryos from crosses between temperate and tropical populations had thermal tolerance that matched that of tropical embryos, suggesting the dominance of heat-tolerant alleles. Together, our findings suggest that thermal selection has led to divergence in embryonic thermal tolerance but that selection for divergent thermal tolerance may be limited in adults. Further, our results suggest that thermal traits should be measured across life stages to better predict adaptive limits. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  20. Fresh embryo transfer versus frozen embryo transfer in in vitro fertilization cycles: a systematic review and meta-analysis. (United States)

    Roque, Matheus; Lattes, Karinna; Serra, Sandra; Solà, Ivan; Geber, Selmo; Carreras, Ramón; Checa, Miguel Angel


    To examine the available evidence to assess if cryopreservation of all embryos and subsequent frozen embryo transfer (FET) results in better outcomes compared with fresh transfer. Systematic review and meta-analysis. Centers for reproductive care. Infertility patient(s). An exhaustive electronic literature search in MEDLINE, EMBASE, and the Cochrane Library was performed through December 2011. We included randomized clinical trials comparing outcomes of IVF cycles between fresh and frozen embryo transfers. The outcomes of interest were ongoing pregnancy rate, clinical pregnancy rate, and miscarriage. We included three trials accounting for 633 cycles in women aged 27-33 years. Data analysis showed that FET resulted in significantly higher ongoing pregnancy rates and clinical pregnancy rates. Our results suggest that there is evidence that IVF outcomes may be improved by performing FET compared with fresh embryo transfer. This could be explained by a better embryo-endometrium synchrony achieved with endometrium preparation cycles. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila (United States)

    Verd, Berta; Clark, Erik; Wotton, Karl R.; Janssens, Hilde; Jiménez-Guri, Eva; Crombach, Anton


    Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments simultaneously through a hierarchical cascade of gene regulation. Gap genes constitute the first layer of the Drosophila segmentation gene hierarchy, downstream of maternal gradients such as that of Caudal (Cad). We use data-driven mathematical modelling and phase space analysis to show that shifting gap domains in the posterior half of the Drosophila embryo are an emergent property of a robust damped oscillator mechanism, suggesting that the regulatory dynamics underlying long- and short-germband segmentation are much more similar than previously thought. In Tribolium, Cad has been proposed to modulate the frequency of the segmentation oscillator. Surprisingly, our simulations and experiments show that the shift rate of posterior gap domains is independent of maternal Cad levels in Drosophila. Our results suggest a novel evolutionary scenario for the short- to long-germband transition and help explain why this transition occurred convergently multiple times during the radiation of the holometabolan insects. PMID:29451884

  2. Embryo density may affect embryo quality during in vitro culture in a microwell group culture dish. (United States)

    Lehner, Adam; Kaszas, Zita; Murber, Akos; Rigo, Janos; Urbancsek, Janos; Fancsovits, Peter


    Culturing embryos in groups is a common practice in mammalian embryology. Since the introduction of different microwell dishes, it is possible to identify oocytes or embryos individually. As embryo density (embryo-to-volume ratio) may affect the development and viability of the embryos, the purpose of this study was to assess the effect of different embryo densities on embryo quality. Data of 1337 embryos from 228 in vitro fertilization treatment cycles were retrospectively analyzed. Embryos were cultured in a 25 μl microdrop in a microwell group culture dish containing 9 microwells. Three density groups were defined: Group 1 with 2-4 (6.3-12.5 μl/embryo), Group 2 with 5-6 (4.2-5.0 μl/embryo), and Group 3 with 7-9 (2.8-3.6 μl/embryo) embryos. Proportion of good quality embryos was higher in Group 2 on both days (D2: 18.9 vs. 31.5 vs. 24.7%; p Culturing 5-6 embryos together in a culture volume of 25 μl may benefit embryo quality. As low egg number, position, and distance of the embryos may influence embryo quality, results should be interpreted with caution.

  3. The Centrioles, Centrosomes, Basal Bodies, and Cilia of Drosophila melanogaster. (United States)

    Lattao, Ramona; Kovács, Levente; Glover, David M


    Centrioles play a key role in the development of the fly. They are needed for the correct formation of centrosomes, the organelles at the poles of the spindle that can persist as microtubule organizing centers (MTOCs) into interphase. The ability to nucleate cytoplasmic microtubules (MTs) is a property of the surrounding pericentriolar material (PCM). The centriole has a dual life, existing not only as the core of the centrosome but also as the basal body, the structure that templates the formation of cilia and flagellae. Thus the structure and functions of the centriole, the centrosome, and the basal body have an impact upon many aspects of development and physiology that can readily be modeled in Drosophila Centrosomes are essential to give organization to the rapidly increasing numbers of nuclei in the syncytial embryo and for the spatially precise execution of cell division in numerous tissues, particularly during male meiosis. Although mitotic cell cycles can take place in the absence of centrosomes, this is an error-prone process that opens up the fly to developmental defects and the potential of tumor formation. Here, we review the structure and functions of the centriole, the centrosome, and the basal body in different tissues and cultured cells of Drosophila melanogaster , highlighting their contributions to different aspects of development and cell division. Copyright © 2017 Lattao et al.

  4. The Origin of the Second Centriole in the Zygote of Drosophila melanogaster (United States)

    Blachon, Stephanie; Khire, Atul; Avidor-Reiss, Tomer


    Centrosomes are composed of two centrioles surrounded by pericentriolar material (PCM). However, the sperm and the oocyte modify or lose their centrosomes. Consequently, how the zygote establishes its first centrosome, and in particular, the origin of the second zygotic centriole, is uncertain. Drosophila melanogaster spermatids contain a single centriole called the Giant Centriole (GC) and a Proximal centriole-like (PCL) structure whose function is unknown. We found that, like the centriole, the PCL loses its protein markers at the end of spermiogenesis. After fertilization, the first two centrioles are observed via the recruitment of the zygotic PCM proteins and are seen in asterless mutant embryos that cannot form centrioles. The zygote’s centriolar proteins label only the daughter centrioles of the first two centrioles. These observations demonstrate that the PCL is the origin for the second centriole in the Drosophila zygote and that a paternal centriole precursor, without centriolar proteins, is transmitted to the egg during fertilization. PMID:24532732

  5. Functional conservation of the Drosophila gooseberry gene and its evolutionary alleles.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available The Drosophila Pax gene gooseberry (gsb is required for development of the larval cuticle and CNS, survival to adulthood, and male fertility. These functions can be rescued in gsb mutants by two gsb evolutionary alleles, gsb-Prd and gsb-Pax3, which express the Drosophila Paired and mouse Pax3 proteins under the control of gooseberry cis-regulatory region. Therefore, both Paired and Pax3 proteins have conserved all the Gsb functions that are required for survival of embryos to fertile adults, despite the divergent primary sequences in their C-terminal halves. As gsb-Prd and gsb-Pax3 uncover a gsb function involved in male fertility, construction of evolutionary alleles may provide a powerful strategy to dissect hitherto unknown gene functions. Our results provide further evidence for the essential role of cis-regulatory regions in the functional diversification of duplicated genes during evolution.

  6. Characterization of a Smad motif similar to Drosophila mad in the mouse Msx 1 promoter. (United States)

    Alvarez Martinez, Cristina E; Binato, Renata; Gonzalez, Sayonara; Pereira, Monica; Robert, Benoit; Abdelhay, Eliana


    Mouse Msx 1 gene, orthologous of the Drosophila msh, is involved in several developmental processes. BMP family members are major proteins in the regulation of Msx 1 expression. BMP signaling activates Smad 1/5/8 proteins, which associate to Smad 4 before translocating to the nucleus. Analysis of Msx 1 promoter revealed the presence of three elements similar to the consensus established for Mad, the Smad 1 Drosophila counterpart. Notably, such an element was identified in an enhancer important for Msx 1 regulation. Gel shift analysis demonstrated that proteins from 13.5 dpc embryo associate to this enhancer. Remarkably, supershift assays showed that Smad proteins are present in the complex. Purified Smad 1 and 4 also bind to this fragment. We demonstrate that functional binding sites in this enhancer are confined to the Mad motif and flanking region. Our data suggest that this Mad motif may be functional in response to BMP signaling. ©2002 Elsevier Science (USA).

  7. Efficient gene knock-out and knock-in with transgenic Cas9 in Drosophila. (United States)

    Xue, Zhaoyu; Ren, Mengda; Wu, Menghua; Dai, Junbiao; Rong, Yikang S; Gao, Guanjun


    Bacterial Cas9 nuclease induces site-specific DNA breaks using small gRNA as guides. Cas9 has been successfully introduced into Drosophila for genome editing. Here, we improve the versatility of this method by developing a transgenic system that expresses Cas9 in the Drosophila germline. Using this system, we induced inheritable knock-out mutations by injecting only the gRNA into embryos, achieved highly efficient mutagenesis by expressing gRNA from the promoter of a novel non-coding RNA gene, and recovered homologous recombination-based knock-in of a fluorescent marker at a rate of 4.5% by co-injecting gRNA with a circular DNA donor. Copyright © 2014 Xue et al.

  8. Phylogeny of the Genus Drosophila (United States)

    O’Grady, Patrick M.; DeSalle, Rob


    Understanding phylogenetic relationships among taxa is key to designing and implementing comparative analyses. The genus Drosophila, which contains over 1600 species, is one of the most important model systems in the biological sciences. For over a century, one species in this group, Drosophila melanogaster, has been key to studies of animal development and genetics, genome organization and evolution, and human disease. As whole-genome sequencing becomes more cost-effective, there is increasing interest in other members of this morphologically, ecologically, and behaviorally diverse genus. Phylogenetic relationships within Drosophila are complicated, and the goal of this paper is to provide a review of the recent taxonomic changes and phylogenetic relationships in this genus to aid in further comparative studies. PMID:29716983

  9. Feminists on the inalienability of human embryos. (United States)

    McLeod, Carolyn; Baylis, Francoise


    The feminist literature against the commodification of embryos in human embryo research includes an argument to the effect that embryos are "intimately connected" to persons, or morally inalienable from them. We explore why embryos might be inalienable to persons and why feminists might find this view appealing. But, ultimately, as feminists, we reject this view because it is inconsistent with full respect for women's reproductive autonomy and with a feminist conception of persons as relational, embodied beings. Overall, feminists should avoid claims about embryos' being inalienable to persons in arguments for or against the commodification of human embryos.

  10. Localization and activation of the Drosophila protease easter require the ER-resident saposin-like protein seele. (United States)

    Stein, David; Charatsi, Iphigenie; Cho, Yong Suk; Zhang, Zhenyu; Nguyen, Jesse; DeLotto, Robert; Luschnig, Stefan; Moussian, Bernard


    Drosophila embryonic dorsal-ventral polarity is generated by a series of serine protease processing events in the egg perivitelline space. Gastrulation Defective processes Snake, which then cleaves Easter, which then processes Spätzle into the activating ligand for the Toll receptor. seele was identified in a screen for mutations that, when homozygous in ovarian germline clones, lead to the formation of progeny embryos with altered embryonic patterning; maternal loss of seele function leads to the production of moderately dorsalized embryos. By combining constitutively active versions of Gastrulation Defective, Snake, Easter, and Spätzle with loss-of-function alleles of seele, we find that Seele activity is dispensable for Spätzle-mediated activation of Toll but is required for Easter, Snake, and Gastrulation Defective to exert their effects on dorsal-ventral patterning. Moreover, Seele function is required specifically for secretion of Easter from the developing embryo into the perivitelline space and for Easter processing. Seele protein resides in the endoplasmic reticulum of blastoderm embryos, suggesting a role in the trafficking of Easter to the perivitelline space, prerequisite to its processing and function. Easter transport to the perivitelline space represents a previously unappreciated control point in the signal transduction pathway that controls Drosophila embryonic dorsal-ventral polarity. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Modelling Cooperative Tumorigenesis in Drosophila (United States)


    The development of human metastatic cancer is a multistep process, involving the acquisition of several genetic mutations, tumour heterogeneity, and interactions with the surrounding microenvironment. Due to the complexity of cancer development in mammals, simpler model organisms, such as the vinegar fly, Drosophila melanogaster, are being utilized to provide novel insights into the molecular mechanisms involved. In this review, we highlight recent advances in modelling tumorigenesis using the Drosophila model, focusing on the cooperation of oncogenes or tumour suppressors, and the interaction of mutant cells with the surrounding tissue in epithelial tumour initiation and progression. PMID:29693007

  12. Modelling Cooperative Tumorigenesis in Drosophila

    Directory of Open Access Journals (Sweden)

    Helena E. Richardson


    Full Text Available The development of human metastatic cancer is a multistep process, involving the acquisition of several genetic mutations, tumour heterogeneity, and interactions with the surrounding microenvironment. Due to the complexity of cancer development in mammals, simpler model organisms, such as the vinegar fly, Drosophila melanogaster, are being utilized to provide novel insights into the molecular mechanisms involved. In this review, we highlight recent advances in modelling tumorigenesis using the Drosophila model, focusing on the cooperation of oncogenes or tumour suppressors, and the interaction of mutant cells with the surrounding tissue in epithelial tumour initiation and progression.

  13. Early detection and staging of spontaneous embryo resorption by ultrasound biomicroscopy in murine pregnancy. (United States)

    Flores, Luis E; Hildebrandt, Thomas B; Kühl, Anja A; Drews, Barbara


    Embryo resorption is a major problem in human medicine, agricultural animal production and in conservation breeding programs. Underlying mechanisms have been investigated in the well characterised mouse model. However, post mortem studies are limited by the rapid disintegration of embryonic structures. A method to reliably identify embryo resorption in alive animals has not been established yet. In our study we aim to detect embryos undergoing resorption in vivo at the earliest possible stage by ultra-high frequency ultrasound. In a longitudinal study, we monitored 30 pregnancies of wild type C57BI/6 mice using ultra-high frequency ultrasound (30-70 MHz), so called ultrasound biomicroscopy (UBM). We compared the sonoembryology of mouse conceptuses under spontaneous resorption and neighbouring healthy conceptuses and correlated the live ultrasound data with the respective histology. The process of embryo resorption comprised of four stages: first, the conceptus exhibited growth retardation, second, bradycardia and pericardial edema were observed, third, further development ceased and the embryo died, and finally embryo remnants were resorbed by maternal immune cells. In early gestation (day 7 and 8), growth retardation was characterized by a small embryonic cavity. The embryo and its membranes were ill defined or did not develop at all. The echodensity of the embryonic fluid increased and within one to two days, the embryo and its cavity disappeared and was transformed into echodense tissue surrounded by fluid filled caverns. In corresponding histologic preparations, fibrinoid material interspersed with maternal granulocytes and lacunae filled with maternal blood were observed. In later stages (day 9-11) resorption prone embryos were one day behind in their development compared to their normal siblings. The space between Reichert's membrane and inner yolk sac membrane was enlarged The growth retarded embryos exhibited bradycardia and ultimately cessation of heart

  14. Single-embryo transfer versus multiple-embryo transfer. (United States)

    Gerris, Jan


    Despite the progress made in assisted reproductive technology, live birth rates remain disappointingly low. Multiple-embryo transfer has been an accepted practice with which to increase the success rate. This has led to a higher incidence of multiple-order births compared with natural conception, which not only increase the risk of mortality and morbidity to both mother and children but are also associated with social and economic consequences. Elective single-embryo transfer (eSET) was developed in an effort to increase singleton pregnancies in assisted reproduction. Studies comparing eSET with multiple-embryo transfer highlight the benefit of this approach and suggest that, with careful patient selection and the transfer of good-quality embryos, the risk of a multiple-order pregnancy can be reduced without significantly decreasing live birth rates. Although the use of eSET has gradually increased in clinical practice, its acceptance has been limited by factors such as availability of funding and awareness of the procedure. An open discussion of eSET is warranted in an effort to enable a broader understanding by physicians and patients of the merits of this approach. Ultimately, eSET may provide a more cost-effective, potentially safer approach to patients undergoing assisted reproduction technology.

  15. Quantitation of chordin in developing Huso huso embryos and larvae by radioimmunoassay

    International Nuclear Information System (INIS)

    Preobrazhensky, A.A.; Glinka, A.V.


    Chordin is a protein discovered in the notochord cells of the representatives of Acipenseridae; giant sturgeon, stellate sturgeon and sterlet. Some characteristics of the purified chordin preparation which justify its use in radioimmunoassay are described. A sensitive competitive-binding double-antibody radioimmunoassay for chordin is described by which its content in the extracts from giant sturgeon embryos and larvae has been measured. It is shown that chordin biosynthesis started in the embryos from stage 32. (Auth.)

  16. Improving embryo quality in assisted reproduction

    NARCIS (Netherlands)

    Mantikou, E.


    The goal of this thesis was to improve embryo quality in assisted reproductive technologies by gaining more insight into human preimplantation embryo development and by improving in vitro culture conditions. To do so, we investigated an intriguing feature of the human preimplantation embryo, i.e.

  17. Mechanistic dissection of plant embryo initiation

    NARCIS (Netherlands)

    Radoeva, T.M.


    Land plants can reproduce sexually by developing an embryo from a fertilized egg cell, the zygote. After fertilization, the zygote undergoes several rounds of controlled cell divisions to generate a mature embryo. However, embryo formation can also be induced in a variety of other cell types in

  18. Untwisting the Caenorhabditis elegans embryo (United States)

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari


    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software ( that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis. DOI: PMID:26633880

  19. Untwisting the Caenorhabditis elegans embryo. (United States)

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari


    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software ( that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis.

  20. Functional evolution of cis-regulatory modules at a homeotic gene in Drosophila.

    Directory of Open Access Journals (Sweden)

    Margaret C W Ho


    Full Text Available It is a long-held belief in evolutionary biology that the rate of molecular evolution for a given DNA sequence is inversely related to the level of functional constraint. This belief holds true for the protein-coding homeotic (Hox genes originally discovered in Drosophila melanogaster. Expression of the Hox genes in Drosophila embryos is essential for body patterning and is controlled by an extensive array of cis-regulatory modules (CRMs. How the regulatory modules functionally evolve in different species is not clear. A comparison of the CRMs for the Abdominal-B gene from different Drosophila species reveals relatively low levels of overall sequence conservation. However, embryonic enhancer CRMs from other Drosophila species direct transgenic reporter gene expression in the same spatial and temporal patterns during development as their D. melanogaster orthologs. Bioinformatic analysis reveals the presence of short conserved sequences within defined CRMs, representing gap and pair-rule transcription factor binding sites. One predicted binding site for the gap transcription factor KRUPPEL in the IAB5 CRM was found to be altered in Superabdominal (Sab mutations. In Sab mutant flies, the third abdominal segment is transformed into a copy of the fifth abdominal segment. A model for KRUPPEL-mediated repression at this binding site is presented. These findings challenge our current understanding of the relationship between sequence evolution at the molecular level and functional activity of a CRM. While the overall sequence conservation at Drosophila CRMs is not distinctive from neighboring genomic regions, functionally critical transcription factor binding sites within embryonic enhancer CRMs are highly conserved. These results have implications for understanding mechanisms of gene expression during embryonic development, enhancer function, and the molecular evolution of eukaryotic regulatory modules.

  1. Influence of carbon nanotube length on toxicity to zebrafish embryos

    Directory of Open Access Journals (Sweden)

    Cheng J


    Full Text Available Jinping Cheng,1,2 Shuk Han Cheng11Department of Biology and Chemistry, City University of Hong Kong, Hong Kong; 2State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, ChinaAbstract: There is currently a large difference of opinion in nanotoxicology studies of nanomaterials. There is concern about why some studies have indicated that there is strong toxicity, while others have not. In this study, the length of carbon nanotubes greatly affected their toxicity in zebrafish embryos. Multiwalled carbon nanotubes (MWCNTs were sonicated in a nitric acid solution for 24 hours and 48 hours. The modified MWCNTs were tested in early developing zebrafish embryo. MWCNTs prepared with the longer sonication time resulted in severe developmental toxicity; however, the shorter sonication time did not induce any obvious toxicity in the tested developing zebrafish embryos. The cellular and molecular changes of the affected zebrafish embryos were studied and the observed phenotypes scored. This study suggests that length plays an important role in the in vivo toxicity of functionalized CNTs. This study will help in furthering the understanding on current differences in toxicity studies of nanomaterials.Keywords: length, carbon nanotubes, sonication, developmental toxicity, zebrafish

  2. Embryo density and medium volume effects on early murine embryo development. (United States)

    Canseco, R S; Sparks, A E; Pearson, R E; Gwazdauskas, F C


    One-cell mouse embryos were used to determine the effects of drop size and number of embryos per drop for optimum development in vitro. Embryos were collected from immature C57BL6 female mice superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin and mated by CD1 males. Groups of 1, 5, 10, or 20 embryos were cultured in 5-, 10-, 20-, or 40-microliters drops of CZB under silicon oil at 37.5 degrees C in a humidified atmosphere of 5% CO2 and 95% air. Development score for embryos cultured in 10 microliters was higher than that of embryos cultured in 20 or 40 microliters. Embryos cultured in groups of 5, 10, or 20 had higher development scores than embryos cultured singly. The highest development score was obtained by the combination of 5 embryos per 10-microliters drop. The percentage of live embryos in 20 or 40 microliters was lower than that of embryos cultured in 10 microliters. Additionally, the percentage of live embryos cultured singly was lower than that of embryos cultured in groups. Our results suggest that a stimulatory interaction occurs among embryos possibly exerted through the secretion of growth factors. This effect can be diluted if the embryos are cultured in large drops or singly.

  3. Semi-automated quantitative Drosophila wings measurements. (United States)

    Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan


    Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

  4. Non-invasive long-term fluorescence live imaging of Tribolium castaneum embryos. (United States)

    Strobl, Frederic; Stelzer, Ernst H K


    Insect development has contributed significantly to our understanding of metazoan development. However, most information has been obtained by analyzing a single species, the fruit fly Drosophila melanogaster. Embryonic development of the red flour beetle Tribolium castaneum differs fundamentally from that of Drosophila in aspects such as short-germ development, embryonic leg development, extensive extra-embryonic membrane formation and non-involuted head development. Although Tribolium has become the second most important insect model organism, previous live imaging attempts have addressed only specific questions and no long-term live imaging data of Tribolium embryogenesis have been available. By combining light sheet-based fluorescence microscopy with a novel mounting method, we achieved complete, continuous and non-invasive fluorescence live imaging of Tribolium embryogenesis at high spatiotemporal resolution. The embryos survived the 2-day or longer imaging process, developed into adults and produced fertile progeny. Our data document all morphogenetic processes from the rearrangement of the uniform blastoderm to the onset of regular muscular movement in the same embryo and in four orientations, contributing significantly to the understanding of Tribolium development. Furthermore, we created a comprehensive chronological table of Tribolium embryogenesis, integrating most previous work and providing a reference for future studies. Based on our observations, we provide evidence that serosa window closure and serosa opening, although deferred by more than 1 day, are linked. All our long-term imaging datasets are available as a resource for the community. Tribolium is only the second insect species, after Drosophila, for which non-invasive long-term fluorescence live imaging has been achieved. © 2014. Published by The Company of Biologists Ltd.

  5. Drosophila homologues of adenomatous polyposis coli (APC) and the formin diaphanous collaborate by a conserved mechanism to stimulate actin filament assembly. (United States)

    Jaiswal, Richa; Stepanik, Vince; Rankova, Aneliya; Molinar, Olivia; Goode, Bruce L; McCartney, Brooke M


    Vertebrate APC collaborates with Dia through its Basic domain to assemble actin filaments. Despite limited sequence homology between the vertebrate and Drosophila APC Basic domains, Drosophila APC1 collaborates with Dia to stimulate actin assembly in vitro. The mechanism of actin assembly is highly conserved over evolution. APC-Dia collaborations may be crucial in a wide range of animal cells. Adenomatous polyposis coli (APC) is a large multidomain protein that regulates the cytoskeleton. Recently, it was shown that vertebrate APC through its Basic domain directly collaborates with the formin mDia1 to stimulate actin filament assembly in the presence of nucleation barriers. However, it has been unclear whether these activities extend to homologues of APC and Dia in other organisms. Drosophila APC and Dia are each required to promote actin furrow formation in the syncytial embryo, suggesting a potential collaboration in actin assembly, but low sequence homology between the Basic domains of Drosophila and vertebrate APC has left their functional and mechanistic parallels uncertain. To address this question, we purified Drosophila APC1 and Dia and determined their individual and combined effects on actin assembly using both bulk fluorescence assays and total internal reflection fluorescence microscopy. Our data show that APC1, similar to its vertebrate homologue, bound to actin monomers and nucleated and bundled filaments. Further, Drosophila Dia nucleated actin assembly and protected growing filament barbed ends from capping protein. Drosophila APC1 and Dia directly interacted and collaborated to promote actin assembly in the combined presence of profilin and capping protein. Thus, despite limited sequence homology, Drosophila and vertebrate APCs exhibit highly related activities and mechanisms and directly collaborate with formins. These results suggest that APC-Dia interactions in actin assembly are conserved and may underlie important in vivo functions in a broad

  6. Noninvasive embryo assessment technique based on buoyancy and its association with embryo survival after cryopreservation. (United States)

    Wessels, Cara; Penrose, Lindsay; Ahmad, Khaliq; Prien, Samuel


    Embryo cryopreservation offers many benefits by allowing genetic preservation, genetic screening, cost reduction, global embryo transport and single embryo transfer. However, freezing of embryos decreases embryo viability, as intracellular ice crystal formation often damages embryos. Success rates of frozen embryo transfer are expected to be 15-20% less than fresh embryo transfer. We have developed a noninvasive embryo assessment technique (NEAT) which enables us to predict embryo viability based on buoyancy. The purpose of this research was twofold. First was to determine if a NEAT, through a specific gravity device can detect embryo survival of cryopreservation. Second, it was to relate embryo buoyancy to embryo viability for establishing pregnancies in sheep. Blastocysts descent times were measured on one-hundred sixty-nine mice blastocysts before cryopreservation, according to standard protocol and post-thawing blastocysts descent times were measured again. There was a significant difference in blastocyst post-thaw descent times with NEAT in those blastocysts which demonstrated viability from those that did not (P embryos. Further studies on a larger scale commercial setting will evaluate the efficacy of NEAT. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Manipulation of gene expression by infrared laser heat shock and its application to the study of tracheal development in Drosophila. (United States)

    Miao, Guangxia; Hayashi, Shigeo


    Induction of gene expression in a specific cell and a defined time window is desirable to investigate gene function at the cellular level during morphogenesis. To achieve this, we attempted to introduce the infrared laser-evoked gene operator system (IR-LEGO, Kamei et al., 2009) in the Drosophila embryo. In this technique, infrared laser light illumination induces genes to be expressed under the control of heat shock promoters at the single cell level. We applied IR-LEGO to a transgenic fly stock, HS-eGFP, in which the enhanced green fluorescent protein (eGFP) gene is placed under the control of heat shock protein 70 promoter, and showed that eGFP expression can be induced in single cells within 1-2 hr after IR illumination. Furthermore, induction of HS-Branchless transgene encoding the Drosophila fibroblast growth factor (FGF) effectively altered the migration and branching patterns of the tracheal system. Our results indicated that IR-LEGO is a promising choice for the timely control of gene expression in a small group of cells in the Drosophila embryo. By using IR-LEGO, we further demonstrated that the tracheal terminal branching program is sensitive to localized expression of exogenous FGF. © 2014 Wiley Periodicals, Inc.

  8. A Drosophila wing spot test

    International Nuclear Information System (INIS)

    Ayaki, Toshikazu; Yoshikawa, Isao; Niikawa, Norio; Hoshi, Masaharu.


    A Drosophila wing spot test system was used to investigate the effects of low doses of X-rays, gamma rays, and both 2.3 and 14.1 MeV neutrons on somatic chromosome mutation (SCM) induction. The incidence of SCM was significantly increased with any type of radiation, with evident linear dose-response relationship within the range of 3 to 20 cGy. It was estimated that relative biological effectiveness value for SCM induction of 2.3 MeV neutrons to X-rays and gamma rays is much higher than that of 14.1 MeV neutrons to those photons (2.4 vs 8.0). The Drosophila wing spot test system seems to become a promising in vivo experimental method for higher animals in terms of the lack of necessity for a marvelously large number of materials required in conventional test system. (Namekawa, K.)

  9. Limited taste discrimination in Drosophila. (United States)

    Masek, Pavel; Scott, Kristin


    In the gustatory systems of mammals and flies, different populations of sensory cells recognize different taste modalities, such that there are cells that respond selectively to sugars and others to bitter compounds. This organization readily allows animals to distinguish compounds of different modalities but may limit the ability to distinguish compounds within one taste modality. Here, we developed a behavioral paradigm in Drosophila melanogaster to evaluate directly the tastes that a fly distinguishes. These studies reveal that flies do not discriminate among different sugars, or among different bitter compounds, based on chemical identity. Instead, flies show a limited ability to distinguish compounds within a modality based on intensity or palatability. Taste associative learning, similar to olfactory learning, requires the mushroom bodies, suggesting fundamental similarities in brain mechanisms underlying behavioral plasticity. Overall, these studies provide insight into the discriminative capacity of the Drosophila gustatory system and the modulation of taste behavior.

  10. A software tool to model genetic regulatory networks. Applications to the modeling of threshold phenomena and of spatial patterning in Drosophila.

    Directory of Open Access Journals (Sweden)

    Rui Dilão

    Full Text Available We present a general methodology in order to build mathematical models of genetic regulatory networks. This approach is based on the mass action law and on the Jacob and Monod operon model. The mathematical models are built symbolically by the Mathematica software package GeneticNetworks. This package accepts as input the interaction graphs of the transcriptional activators and repressors of a biological process and, as output, gives the mathematical model in the form of a system of ordinary differential equations. All the relevant biological parameters are chosen automatically by the software. Within this framework, we show that concentration dependent threshold effects in biology emerge from the catalytic properties of genes and its associated conservation laws. We apply this methodology to the segment patterning in Drosophila early development and we calibrate the genetic transcriptional network responsible for the patterning of the gap gene proteins Hunchback and Knirps, along the antero-posterior axis of the Drosophila embryo. In this approach, the zygotically produced proteins Hunchback and Knirps do not diffuse along the antero-posterior axis of the embryo of Drosophila, developing a spatial pattern due to concentration dependent thresholds. This shows that patterning at the gap genes stage can be explained by the concentration gradients along the embryo of the transcriptional regulators.

  11. Mutagenic Potential of Nitrosoguanidine in the Drosophila melanogaster Sex-Linked Recessive Lethal Test (United States)


    standard medium consisting of cornmeal (NBCO Chemicals), unsulphured molasses (Ingredient Technology Corp.), yeast (Nabisco Brands, Inc.), and nutrient agar ...following inspections were made: 09 March 1987 - Media Preparation 18 March 1987 - CS Exposure 25 March 1987 - Brood 3 Mating 06 April 1987 - F...LAIR SOP-OP-STX-5 "Drosophila Media Preparation." 4.. 0 % %RP LZ -’ GUPTA e: al. -- 5 Restraint Ether (J. T. Baker Chemical Co.) anesthesia was used to

  12. Studies on Drosophila radiosensitive strains

    International Nuclear Information System (INIS)

    Varentsova, E.P.; Zakharov, I.A.


    45 of radiosensitive strains of Drosophila melanogaster were isolated by Curly/Lobe technique after EMS treatment of Livadia population males. The lethality of non-Curly late larvae after gamma-irradiation (4000r) characterized radiosensitivity strains. Most of them exhibited higher frequency of the spontaneous dominant lethals (up to 69%). The males of 6 strains were semi-sterile. 5 of these strains exhibited higher frequency of X-chromosome non-disjunction

  13. Olfactory memory traces in Drosophila


    Berry, Jacob; Krause, William C.; Davis, Ronald L.


    In Drosophila the fruit fly, coincident exposure to an odor and an aversive electric shock can produce robust behavioral memory. This behavioral memory is thought to be regulated by cellular memory traces within the central nervous system of the fly. These molecular, physiological or structural changes in neurons, induced by pairing odor and shock, regulate behavior by altering the neurons’ response to the learned environment. Recently, novel in vivo functional imaging techniques have allowed...

  14. Cultures of preimplantation mouse embryos

    International Nuclear Information System (INIS)

    Streffer, C.; Molls, M.


    In the preimplantation mouse embryos the chromosomal damage develops through several postradiation cell cycles and mitoses. New chromosome aberrations are seen during the second and third postradiation mitoses. Also, more micronuclei appear during later postradiation interphases. This is in agreement with the assumption that unrepaired chromosomal radiation damage develops during the cell generation cycle to such a form (i.e. double-strand breaks in DNA) that chromosomal breaks occur. This proposition is strengthened by the observation that radiation-induced damage is more rapidly expressed after neutron exposure (first or second postradiation mitosis) than after exposure to X rays at the one- or two-cell stage. The preimplantation mouse embryo culture is an inviting system for additional studies at the molecular level, especially now that within the last few years more sensitive methods have been developed for study of DNA and protein structure, regulation, and synthesis. The results from these studies of cultures of preimplantation mouse embryos present a favorable case for the study of complex biological systems under very defined conditions in vitro for extrapolation to effects in vivo

  15. Human embryo culture media comparisons. (United States)

    Pool, Thomas B; Schoolfield, John; Han, David


    Every program of assisted reproduction strives to maximize pregnancy outcomes from in vitro fertilization and selecting an embryo culture medium, or medium pair, consistent with high success rates is key to this process. The common approach is to replace an existing medium with a new one of interest in the overall culture system and then perform enough cycles of IVF to see if a difference is noted both in laboratory measures of embryo quality and in pregnancy. This approach may allow a laboratory to select one medium over another but the outcomes are only relevant to that program, given that there are well over 200 other variables that may influence the results in an IVF cycle. A study design that will allow for a more global application of IVF results, ones due to culture medium composition as the single variable, is suggested. To perform a study of this design, the center must have a patient caseload appropriate to meet study entrance criteria, success rates high enough to reveal a difference if one exists and a strong program of quality assurance and control in both the laboratory and clinic. Sibling oocytes are randomized to two study arms and embryos are evaluated on day 3 for quality grades. Inter and intra-observer variability are evaluated by kappa statistics and statistical power and study size estimates are performed to bring discriminatory capability to the study. Finally, the complications associated with extending such a study to include blastocyst production on day 5 or 6 are enumerated.

  16. Drosophila: Retrotransposons Making up Telomeres. (United States)

    Casacuberta, Elena


    Drosophila and extant species are the best-studied telomerase exception. In this organism, telomere elongation is coupled with targeted retrotransposition of Healing Transposon (HeT-A) and Telomere Associated Retrotransposon (TART) with sporadic additions of Telomere Associated and HeT-A Related (TAHRE), all three specialized non-Long Terminal Repeat (non-LTR) retrotransposons. These three very special retroelements transpose in head to tail arrays, always in the same orientation at the end of the chromosomes but never in interior locations. Apparently, retrotransposon and telomerase telomeres might seem very different, but a detailed view of their mechanisms reveals similarities explaining how the loss of telomerase in a Drosophila ancestor could successfully have been replaced by the telomere retrotransposons. In this review, we will discover that although HeT-A, TART, and TAHRE are still the only examples to date where their targeted transposition is perfectly tamed into the telomere biology of Drosophila, there are other examples of retrotransposons that manage to successfully integrate inside and at the end of telomeres. Because the aim of this special issue is viral integration at telomeres, understanding the base of the telomerase exceptions will help to obtain clues on similar strategies that mobile elements and viruses could have acquired in order to ensure their survival in the host genome.

  17. Optogenetic pacing in Drosophila melanogaster (United States)

    Alex, Aneesh; Li, Airong; Tanzi, Rudolph E.; Zhou, Chao


    Electrical stimulation is currently the gold standard for cardiac pacing. However, it is invasive and nonspecific for cardiac tissues. We recently developed a noninvasive cardiac pacing technique using optogenetic tools, which are widely used in neuroscience. Optogenetic pacing of the heart provides high spatial and temporal precisions, is specific for cardiac tissues, avoids artifacts associated with electrical stimulation, and therefore promises to be a powerful tool in basic cardiac research. We demonstrated optogenetic control of heart rhythm in a well-established model organism, Drosophila melanogaster. We developed transgenic flies expressing a light-gated cation channel, channelrhodopsin-2 (ChR2), specifically in their hearts and demonstrated successful optogenetic pacing of ChR2-expressing Drosophila at different developmental stages, including the larva, pupa, and adult stages. A high-speed and ultrahigh-resolution optical coherence microscopy imaging system that is capable of providing images at a rate of 130 frames/s with axial and transverse resolutions of 1.5 and 3.9 μm, respectively, was used to noninvasively monitor Drosophila cardiac function and its response to pacing stimulation. The development of a noninvasive integrated optical pacing and imaging system provides a novel platform for performing research studies in developmental cardiology. PMID:26601299

  18. 'Peer pressure' in larval Drosophila? (United States)

    Niewalda, Thomas; Jeske, Ines; Michels, Birgit; Gerber, Bertram


    Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on 'peer pressure', that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila. © 2014. Published by The Company of Biologists Ltd.

  19. Quantification of Drosophila Grooming Behavior. (United States)

    Barradale, Francesca; Sinha, Kairav; Lebestky, Tim


    Drosophila grooming behavior is a complex multi-step locomotor program that requires coordinated movement of both forelegs and hindlegs. Here we present a grooming assay protocol and novel chamber design that is cost-efficient and scalable for either small or large-scale studies of Drosophila grooming. Flies are dusted all over their body with Brilliant Yellow dye and given time to remove the dye from their bodies within the chamber. Flies are then deposited in a set volume of ethanol to solubilize the dye. The relative spectral absorbance of dye-ethanol samples for groomed versus ungroomed animals are measured and recorded. The protocol yields quantitative data of dye accumulation for individual flies, which can be easily averaged and compared across samples. This allows experimental designs to easily evaluate grooming ability for mutant animal studies or circuit manipulations. This efficient procedure is both versatile and scalable. We show work-flow of the protocol and comparative data between WT animals and mutant animals for the Drosophila type I Dopamine Receptor (DopR).

  20. Insights from imaging the implanting embryo and the uterine environment in three dimensions (United States)

    Arora, Ripla; Fries, Adam; Oelerich, Karina; Marchuk, Kyle; Sabeur, Khalida; Giudice, Linda C.


    Although much is known about the embryo during implantation, the architecture of the uterine environment in which the early embryo develops is not well understood. We employed confocal imaging in combination with 3D analysis to identify and quantify dynamic changes to the luminal structure of murine uterus in preparation for implantation. When applied to mouse mutants with known implantation defects, this method detected striking peri-implantation abnormalities in uterine morphology that cannot be visualized by histology. We revealed 3D organization of uterine glands and found that they undergo a stereotypical reorientation concurrent with implantation. Furthermore, we extended this technique to generate a 3D rendering of the cycling human endometrium. Analyzing the uterine and embryo structure in 3D for different genetic mutants and pathological conditions will help uncover novel molecular pathways and global structural changes that contribute to successful implantation of an embryo. PMID:27836961

  1. The Drosophila Pericentrin-like-protein (PLP cooperates with Cnn to maintain the integrity of the outer PCM

    Directory of Open Access Journals (Sweden)

    Jennifer H. Richens


    Full Text Available Centrosomes comprise a pair of centrioles surrounded by a matrix of pericentriolar material (PCM. In vertebrate cells, Pericentrin plays an important part in mitotic PCM assembly, but the Drosophila Pericentrin-like protein (PLP appears to have a more minor role in mitotic fly cells. Here we investigate the function of PLP during the rapid mitotic cycles of the early Drosophila embryo. Unexpectedly, we find that PLP is specifically enriched in the outer-most regions of the PCM, where it largely co-localizes with the PCM scaffold protein Cnn. In the absence of PLP the outer PCM appears to be structurally weakened, and it rapidly disperses along the centrosomal microtubules (MTs. As a result, centrosomal MTs are subtly disorganized in embryos lacking PLP, although mitosis is largely unperturbed and these embryos develop and hatch at near-normal rates. Y2H analysis reveals that PLP can potentially form multiple interactions with itself and with the PCM recruiting proteins Asl, Spd-2 and Cnn. A deletion analysis suggests that PLP participates in a complex network of interactions that ultimately help to strengthen the PCM.

  2. Germline progenitors escape the widespread phenomenon of homolog pairing during Drosophila development.

    Directory of Open Access Journals (Sweden)

    Eric F Joyce

    Full Text Available Homolog pairing, which plays a critical role in meiosis, poses a potential risk if it occurs in inappropriate tissues or between nonallelic sites, as it can lead to changes in gene expression, chromosome entanglements, and loss-of-heterozygosity due to mitotic recombination. This is particularly true in Drosophila, which supports organismal-wide pairing throughout development. Discovered over a century ago, such extensive pairing has led to the perception that germline pairing in the adult gonad is an extension of the pairing established during embryogenesis and, therefore, differs from the mechanism utilized in most species to initiate pairing specifically in the germline. Here, we show that, contrary to long-standing assumptions, Drosophila meiotic pairing in the gonad is not an extension of pairing established during embryogenesis. Instead, we find that homologous chromosomes are unpaired in primordial germ cells from the moment the germline can be distinguished from the soma in the embryo and remain unpaired even in the germline stem cells of the adult gonad. We further establish that pairing originates immediately after the stem cell stage. This pairing occurs well before the initiation of meiosis and, strikingly, continues through the several mitotic divisions preceding meiosis. These discoveries indicate that the spatial organization of the Drosophila genome differs between the germline and the soma from the earliest moments of development and thus argue that homolog pairing in the germline is an active process as versus a passive continuation of pairing established during embryogenesis.

  3. The Drosophila melanogaster methuselah gene: a novel gene with ancient functions.

    Directory of Open Access Journals (Sweden)

    Ana Rita Araújo

    Full Text Available The Drosophila melanogaster G protein-coupled receptor gene, methuselah (mth, has been described as a novel gene that is less than 10 million years old. Nevertheless, it shows a highly specific expression pattern in embryos, larvae, and adults, and has been implicated in larval development, stress resistance, and in the setting of adult lifespan, among others. Although mth belongs to a gene subfamily with 16 members in D. melanogaster, there is no evidence for functional redundancy in this subfamily. Therefore, it is surprising that a novel gene influences so many traits. Here, we explore the alternative hypothesis that mth is an old gene. Under this hypothesis, in species distantly related to D. melanogaster, there should be a gene with features similar to those of mth. By performing detailed phylogenetic, synteny, protein structure, and gene expression analyses we show that the D. virilis GJ12490 gene is the orthologous of mth in species distantly related to D. melanogaster. We also show that, in D. americana (a species of the virilis group of Drosophila, a common amino acid polymorphism at the GJ12490 orthologous gene is significantly associated with developmental time, size, and lifespan differences. Our results imply that GJ12490 orthologous genes are candidates for developmental time and lifespan differences in Drosophila in general.

  4. Neurl4 contributes to germ cell formation and integrity in Drosophila

    Directory of Open Access Journals (Sweden)

    Jennifer Jones


    Full Text Available Primordial germ cells (PGCs form at the posterior pole of the Drosophila embryo, and then migrate to their final destination in the gonad where they will produce eggs or sperm. Studies of the different stages in this process, including assembly of germ plasm in the oocyte during oogenesis, specification of a subset of syncytial embryonic nuclei as PGCs, and migration, have been informed by genetic analyses. Mutants have defined steps in the process, and the identities of the affected genes have suggested biochemical mechanisms. Here we describe a novel PGC phenotype. When Neurl4 activity is reduced, newly formed PGCs frequently adopt irregular shapes and appear to bud off vesicles. PGC number is also reduced, an effect exacerbated by a separate role for Neurl4 in germ plasm formation during oogenesis. Like its mammalian homolog, Drosophila Neurl4 protein is concentrated in centrosomes and downregulates centrosomal protein CP110. Reducing CP110 activity suppresses the abnormal PGC morphology of Neurl4 mutants. These results extend prior analyses of Neurl4 in cultured cells, revealing a heightened requirement for Neurl4 in germ-line cells in Drosophila.

  5. Radioresistance and radiosensitivity in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Reguly, M.L.


    Studying the mechanisms controlling radioresistant in Drosophila the sensibility of four strains of Drosophila melanogaster to sex-linked recessive lethal mutations induced by 5kR Cobalt-60 gamma radiation and 0,006 M EMS or 0,25% of caffeine was determined. (M.A.C.) [pt

  6. The Drosophila melanogaster circadian pacemaker circuit

    Indian Academy of Sciences (India)


    Aug 26, 2016 ... Keywords. circadian rhythm; neuronal network; ion channel; behaviour; neurotransmitter; electrophysiology; Drosophila. Abstract. As an experimental model system, the fruit fly Drosophila melanogaster has been seminal in shaping our understanding of the circadian clockwork. The wealth of genetic tools ...

  7. Radionuclide transfer from mother to embryo

    International Nuclear Information System (INIS)

    Toader, M.; Vasilache, R.A.; Scridon, R.; Toader, M.L.


    The transfer of radionuclides from mother to embryo is still a matter of high interest. Therefore, the relation was investigated between the amount of radionuclides in the embryo and the dietary intake of the mother, this for two scenarios: a recurrent intake of variable amounts of radionuclides, and a long-term intake of a relatively constant amount of radionuclides, the radionuclide being 137 Cs. In the first case, the amount of radionuclides present in the embryo increases with the age of the embryo and with the intake of the mother. In the second case, no correlation could be found between the age of the embryo and its radioactive content; only the correlation between the intake of the mother and the radionuclide content of the embryo remained. (A.K.)

  8. Large-scale discovery of promoter motifs in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Thomas A Down


    Full Text Available A key step in understanding gene regulation is to identify the repertoire of transcription factor binding motifs (TFBMs that form the building blocks of promoters and other regulatory elements. Identifying these experimentally is very laborious, and the number of TFBMs discovered remains relatively small, especially when compared with the hundreds of transcription factor genes predicted in metazoan genomes. We have used a recently developed statistical motif discovery approach, NestedMICA, to detect candidate TFBMs from a large set of Drosophila melanogaster promoter regions. Of the 120 motifs inferred in our initial analysis, 25 were statistically significant matches to previously reported motifs, while 87 appeared to be novel. Analysis of sequence conservation and motif positioning suggested that the great majority of these discovered motifs are predictive of functional elements in the genome. Many motifs showed associations with specific patterns of gene expression in the D. melanogaster embryo, and we were able to obtain confident annotation of expression patterns for 25 of our motifs, including eight of the novel motifs. The motifs are available through Tiffin, a new database of DNA sequence motifs. We have discovered many new motifs that are overrepresented in D. melanogaster promoter regions, and offer several independent lines of evidence that these are novel TFBMs. Our motif dictionary provides a solid foundation for further investigation of regulatory elements in Drosophila, and demonstrates techniques that should be applicable in other species. We suggest that further improvements in computational motif discovery should narrow the gap between the set of known motifs and the total number of transcription factors in metazoan genomes.

  9. Methanol as a cryoprotectant for equine embryos. (United States)

    Bass, L D; Denniston, D J; Maclellan, L J; McCue, P M; Seidel, G E; Squires, E L


    Equine embryos (n=43) were recovered nonsurgically 7-8 days after ovulation and randomly assigned to be cryopreserved in one of two cryoprotectants: 48% (15M) methanol (n=22) or 10% (136 M) glycerol (n=21). Embryos (300-1000 microm) were measured at five intervals after exposure to glycerol (0, 2, 5, 10 and 15 min) or methanol (0, 15, 35, 75 and 10 min) to determine changes (%) in diameter over time (+/-S.D.). Embryos were loaded into 0.25-ml plastic straws, sealed, placed in a programmable cell freezer and cooled from room temperature (22 degrees C) to -6 degrees C. Straws were then seeded, held at -6 degrees C for 10 min and then cooled to -33 degrees C before being plunged into liquid nitrogen. Two or three embryos within a treatment group were thawed and assigned to be either cultured for 12 h prior to transfer or immediately nonsurgically transferred to a single mare. Embryo diameter decreased in all embryos upon initial exposure to cryoprotectant. Embryos in methanol shrank and recovered slightly to 76+/-8 % of their original diameter; however, embryos in glycerol continued to shrink, reaching 57+/-6 % of their original diameter prior to cryopreservation. Survival rates of embryos through Day 16 of pregnancy were 38 and 23%, respectively (P>0.05) for embryos cryopreserved in the presence of glycerol or methanol. There was no difference in pregnancy rates of mares receiving embryos that were cultured prior to transfer or not cultured (P>0.05). Preliminary experiments indicated that 48% methanol was not toxic to fresh equine embryos but methanol provided no advantage over glycerol as a cryoprotectant for equine blastocysts.

  10. Lethality of radioisotopes in early mouse embryos

    International Nuclear Information System (INIS)

    Macqueen, H.A.


    The development of pre-implantation mouse embryos was found to be prevented by exposure of the embryos to [ 35 S]methionine, but not to [ 3 H]methionine. Such embryos have also been shown to be highly sensitive to [ 3 H]thymidine. These observations are discussed with reference to the path lengths and energies of electrons emitted from the different radioisotopes. (author)

  11. Theory about the Embryo Cryo-Treatment. (United States)

    Vladimirov, Iavor K; Tacheva, Desislava; Diez, Antonio


    To create hypothesis, which can give a logical explanation related to the benefits of freezing/thawing embryos. Cryopreservation is not only a technology used for storing embryos, but also a method of embryo treatment that can potentially improve the success rate in infertile couples. From the analysis of multiple results in assisted reproductive technology, which have no satisfactory explanation to date, we found evidence to support a 'therapeutic' effect of the freezing/thawing of embryos on the process of recovery of the embryo and its subsequent implantation. Freezing/thawing is a way to activate the endogenous survival and repair responses in preimplantation embryos. Several molecular mechanisms can explain the higher success rate of ET using thawed embryos compared to fresh ET in women of advanced reproductive age, the higher miscarriage rate in cases of thawed blastocyst ET compared to thawed ET at early cleavage embryo, and the higher perinatal parameters of born children after thawed ET. Embryo thawing induces a stress. Controlled stress is not necessarily detrimental, because it generates a phenomenon that is counteracted by several known biological responses aimed to repair mitochondrial damage of membrane and protein misfolding. The term for favorable biological responses to low exposures to stress is called hormesis. This thesis will summarize the role of cryopreservation in the activation of a hormetic response, preserving the mitochondrial function, improving survival, and having an impact on the process of implantation, miscarriage, and the development of pregnancy.

  12. Nano-nutrition of chicken embryos

    DEFF Research Database (Denmark)

    Sawosz, Filip; Pineda, Lane Manalili; Hotowy, Anna


    It has been suggested that the quantity and quality of nutrients stored in the egg might not be optimal for the fast rate of chicken embryo development in modern broilers, and embryos could be supplemented with nutrients by in ovo injection. Recent experiments showed that in ovo feeding reduces...... broiler eggs was randomly divided into a Control group without injection and injected groups with hydrocolloids of Nano-Ag, ATP or a complex of Nano-Ag and ATP (Nano-Ag/ATP). The embryos were evaluated on day 20 of incubation. The results indicate that the application of ATP to chicken embryos increases...

  13. Die Behandlung menschliches Embryos und Menschenwurde


    Matsui, Fumio


    We are confronted with an old and new problem, which has come up with the progress of modern biotechnologies: what is a life or when does a life begin? The expectation of order-made medicine has build up since the discovery of Embryo Stem cell called "a dream master cell", while there is any condemnation against the destruction of human embryo in order to gain it. It is a question whether a human embryo is a human being in the world. Human dignity(=HD) is a principle that keeps human embryos ...

  14. Evaluation of cell number and DNA content in mouse embryos cultivated with uranium

    International Nuclear Information System (INIS)

    Kundt, Mirian S.; Cabrini, Romulo L.


    The evaluation of the degree of development, the number of cells and the DNA content, were used to evaluate the embryotoxicity of uranium. Embryos at a one cell stage were cultured with uranyl nitrate hexahydrate (UN) at a final concentration of uranium (U) of 26, 52 and 104 μgU/ml. At 24 hs of culture, the embryos at the 2 cell stage, were put in new wells with the same concentrations of U as the previous day, until the end of the period of incubation at 72 hs. At 72 hs of culture, 87% of the original one cell embryos were at morula stage, and in those cultivated with uranium, the percentage decreased significantly to 77; 63.24 and 40.79% respectively for the different U concentrations. Those embryos that exhibited a normal morphology, were selected and fixed on slides. The number of cells per embryo was evaluated in Giemsa stained preparations. The DNA content was evaluated cytophotometrically in Feulgen stained nuclei. The number of cells decreased significantly from 20,3 ± 5.6 in the control to 19 ± 6; 14 ± 3 and 13.9 ± 5.6 for the different concentrations. All the embryos evaluated showed one easy recognizable polar body, which was used a haploid indicator (n). The content of DNA was measured in a total of 20 control embryos and 16 embryos cultivated with UN. In control embryos, 92,7% of the nuclei presented a normal ploidy from 2n to 4n, 2,9% nuclei were hypoploid and 4,4% were hyperploid. The percentage of hypoploid nuclei rose in a dose-dependent fashion to 3.45; 44.45 and 50.34% respectively for the embryos cultured at the different U concentrations. The results indicate that U is embryotoxic, that its effects are dose dependent at the concentrations used in this study and that even those embryos that show a normal morphology, can be genetically affected. We show that the model employed is extremely sensitive. It is possible to use the preimplantation embryos, as a model to test the effect of possibly mutagenic agents of the nuclear industry. (author)

  15. Identification and characterization of pyrokinin and CAPA peptides, and corresponding GPCRs from spotted wing drosophila, Drosophila suzukii. (United States)

    Choi, Man-Yeon; Ahn, Seung-Joon; Kim, A Young; Koh, Youngho


    The family of FXPRLamide peptides serves as a major insect hormone. It is characterized by a core active amino acid sequence conserved at the C-terminal ends, and provides various physiological roles across the Insecta. In this study we identified and characterized pyrokinin (PK) and CAPA cDNAs encoding two FXPRLamide peptides, pyrokinin and CAPA-DH (diapause hormone), and two corresponding G protein-coupled receptors (GPCRs) from spotted wing drosophila (SWD), Drosophila suzukii. Expressions of PK and CAPA mRNAs were differentially observed during all life stages except the embryo, and the detection of CAPA transcription was relatively strong compared with the PK gene in SWD. Both D. suzukii pyrokinin receptor (DrosuPKr) and CAPA-DH receptor (DrosuCAPA-DHr) were functionally expressed and confirmed through binding to PK and DH peptides. Differential expression of two GPCRs occurred during all life stages; a strong transcription of DrosuPKr was observed in the 3rd instar. DrosuCAPA-DHr was clearly expressed from the embryo to the larva, but not detected in the adult. Gene regulation during the life stages was not synchronized between ligand and receptor. For example, SWD CAPA mRNA has been up-regulated in the adult while CAPA-DHr was down-regulated. The difference could be from the CAPA mRNA translating multiple peptides including CAPA-DH and two CAPA-PVK (periviscerokinin) peptides to act on different receptors. Comparing the genes of SWD PK, CAPA, PKr and CAPA-DHr to four corresponding genes of D. melanogaster, SWD CAPA and the receptor are more similar to D. melanogaster than PK and the receptor. These data suggest that the CAPA gene could be evolutionally more conserved to have a common biological role in insects. In addition, the effect of Kozak sequences was investigated by the expression of the GPCRs with or without Kozak sequences in Sf9 insect cells. The Kozak sequenced PK receptor was significantly less active than the original (= no Kozak sequenced

  16. [Relationship between mitochondrial DNA copy number, membrane potential of human embryo and embryo morphology]. (United States)

    Zhao, H; Teng, X M; Li, Y F


    Objective: To explore the relationship between the embryo with the different morphological types in the third day and its mitochondrial copy number, the membrane potential. Methods: Totally 117 embryos with poor development after normal fertilization and were not suitable transferred in the fresh cycle and 106 frozen embryos that were discarded voluntarily by infertility patients with in vitro fertilization-embryo transfer after successful pregnancy were selected. According to evaluation of international standard in embryos, all cleavage stage embryos were divided into class Ⅰ frozen embryo group ( n= 64), class Ⅱ frozen embryo group ( n= 42) and class Ⅲ fresh embryonic group (not transplanted embryos; n= 117). Real-time PCR and confocal microscopy methods were used to detect mitochondrial DNA (mtDNA) copy number and the mitochondrial membrane potential of a single embryo. The differences between embryo quality and mtDNA copy number and membrane potential of each group were compared. Results: The copy number of mtDNA and the mitochondrial membrane potential in class Ⅲ fresh embryonic group [(1.7±1.0)×10(5) copy/μl, 1.56±0.32] were significantly lower than those in class Ⅰ frozen embryo group [(3.4±1.7)×10(5) copy/μl, 2.66±0.21] and class Ⅱ frozen embryo group [(2.6±1.2)×10(5) copy/μl, 1.80±0.32; all Pembryo group were significantly higher than those in classⅡ frozen embryo group (both Pembryos of the better quality embryo are higher.

  17. OCT imaging of craniofacial anatomy in xenopus embryos (Conference Presentation) (United States)

    Deniz, Engin; Jonas, Stephan M.; Griffin, John; Hooper, Michael C.; Choma, Michael A.; Khokha, Mustafa K.


    The etiology of craniofacial defects is incompletely understood. The ability to obtain large amounts of gene sequence data from families affected by craniofacial defects is opening up new ways to understand molecular genetic etiological factors. One important link between gene sequence data and clinical relevance is biological research into candidate genes and molecular pathways. We present our recent research using OCT as a nondestructive phenotyping modality of craniofacial morphology in Xenopus embryos, an important animal model for biological research in gene and pathway discovery. We define 2D and 3D scanning protocols for a standardized approach to craniofacial imaging in Xenopus embryos. We define standard views and planar reconstructions for visualizing normal anatomy and landmarks. We compare these views and reconstructions to traditional histopathology using alcian blue staining. In addition to being 3D, nondestructive, and having much faster throughout, OCT can identify craniofacial features that are lost during traditional histopathological preparation. We also identify quantitative morphometric parameters to define normative craniofacial anatomy. We also note that craniofacial and cardiac defects are not infrequently present in the same patient (e.g velocardiofacial syndrome). Given that OCT excels at certain aspects of cardiac imaging in Xenopus embryos, our work highlights the potential of using OCT and Xenopus to study molecular genetic factors that impact both cardiac and craniofacial development.

  18. Experimental setup for studying the effects of alpha particles on zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Yum, E.H.W.; Ng, C.K.M. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Lin, A.C.C.; Cheng, S.H. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Yu, K.N. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China)], E-mail:


    In the present work, we have studied the feasibility to use an experimental setup based on polyallyldiglycol-carbonate (PADC) films to study effects of alpha particles on dechorionated zebrafish embryos. Thin PADC films with a thickness of 16 {mu}m were prepared from commercially available CR-39 films by chemical etching and used as support substrates for holding zebrafish embryos for alpha-particle irradiation. These films recorded alpha-particle hit positions, quantified the number and energy of alpha particles actually incident on the embryo cells, and thus enabled the calculation of the dose absorbed by the embryo cells. Irradiation was made at 4 h post fertilization (hpf) with absorbed doses up to 2.3 mGy. Images of the embryos at 48 hpf were examined for identification of morphologic abnormalities. The preliminary results showed that absorbed doses corresponding to the abnormally developed embryos ranged from 0.41 to 2.3 mGy, which was equivalent to 0.21-1.2 mGy in human.

  19. Experimental setup for studying the effects of alpha particles on zebrafish embryos

    International Nuclear Information System (INIS)

    Yum, E.H.W.; Ng, C.K.M.; Lin, A.C.C.; Cheng, S.H.; Yu, K.N.


    In the present work, we have studied the feasibility to use an experimental setup based on polyallyldiglycol-carbonate (PADC) films to study effects of alpha particles on dechorionated zebrafish embryos. Thin PADC films with a thickness of 16 μm were prepared from commercially available CR-39 films by chemical etching and used as support substrates for holding zebrafish embryos for alpha-particle irradiation. These films recorded alpha-particle hit positions, quantified the number and energy of alpha particles actually incident on the embryo cells, and thus enabled the calculation of the dose absorbed by the embryo cells. Irradiation was made at 4 h post fertilization (hpf) with absorbed doses up to 2.3 mGy. Images of the embryos at 48 hpf were examined for identification of morphologic abnormalities. The preliminary results showed that absorbed doses corresponding to the abnormally developed embryos ranged from 0.41 to 2.3 mGy, which was equivalent to 0.21-1.2 mGy in human

  20. Neural network classification of sweet potato embryos (United States)

    Molto, Enrique; Harrell, Roy C.


    Somatic embryogenesis is a process that allows for the in vitro propagation of thousands of plants in sub-liter size vessels and has been successfully applied to many significant species. The heterogeneity of maturity and quality of embryos produced with this technique requires sorting to obtain a uniform product. An automated harvester is being developed at the University of Florida to sort embryos in vitro at different stages of maturation in a suspension culture. The system utilizes machine vision to characterize embryo morphology and a fluidic based separation device to isolate embryos associated with a pre-defined, targeted morphology. Two different backpropagation neural networks (BNN) were used to classify embryos based on information extracted from the vision system. One network utilized geometric features such as embryo area, length, and symmetry as inputs. The alternative network utilized polar coordinates of an embryo's perimeter with respect to its centroid as inputs. The performances of both techniques were compared with each other and with an embryo classification method based on linear discriminant analysis (LDA). Similar results were obtained with all three techniques. Classification efficiency was improved by reducing the dimension of the feature vector trough a forward stepwise analysis by LDA. In order to enhance the purity of the sample selected as harvestable, a reject to classify option was introduced in the model and analyzed. The best classifier performances (76% overall correct classifications, 75% harvestable objects properly classified, homogeneity improvement ratio 1.5) were obtained using 8 features in a BNN.

  1. Embryo transfer using cryopreserved Boer goat blastocysts ...

    African Journals Online (AJOL)

    The aim of this trial was to evaluate the effect of embryo cryopreservation techniques on the survivability of embryos and fertility following transfer to Boer goat does. The oestrous cycles of 27 mature recipients Boer goat does were synchronised using controlled internal drug release dispensers (CIDR's) for 16 days. At CIDR ...

  2. Novel embryo selection techniques to increase embryo implantation in IVF attempts. (United States)

    Sigalos, George Α; Triantafyllidou, Olga; Vlahos, Nikos F


    The final success of an IVF attempt depends on several steps and decisions taken during the ovarian stimulation, the oocyte retrieval, the embryo culture and the embryo transfer. The final selection of the embryos most likely to implant is the final step in this process and the responsibility of the lab. Apart from strict morphologic criteria that historically have been used in embryo selection, additional information on genetic, metabolomic and morphokinetic characteristics of the embryo is recently combined to morphology to select the embryo most likely to produce a pregnancy. In this manuscript, we review the most recent information on the current methods used for embryo selection presenting the predictive capability of each one. A literature search was performed on Pubmed, Medline and Cochrane Database of Systematic Reviews for published studies using appropriate key words and phrases with no limits placed on time. It seems that the combination of morphologic criteria in conjunction to embryo kinetics as documented by time-lapse technology provides the most reliable information on embryo quality. Blastocyst biopsy with subsequent comprehensive chromosome analysis allows the selection of the euploid embryos with the higher implantation potential. Embryo time-lapse imaging and blastocyst biopsy combined to comprehensive chromosome analysis are the most promising technologies to increase pregnancy rates and reduce the possibility of multiple pregnancies. However, further studies will demonstrate the capability of routinely using these technologies to significantly improve IVF outcomes.

  3. Gas exchange in avian embryos and hatchlings. (United States)

    Mortola, Jacopo P


    The avian egg has been proven to be an excellent model for the study of the physical principles and the physiological characteristics of embryonic gas exchange. In recent years, it has become a model for the studies of the prenatal development of pulmonary ventilation, its chemical control and its interaction with extra-pulmonary gas exchange. Differently from mammals, in birds the initiation of pulmonary ventilation and the transition from diffusive to convective gas exchange are gradual and slow-occurring events amenable to detailed investigations. The absence of the placenta and of the mother permits the study of the mechanisms of embryonic adaptation to prenatal perturbations in a way that would be impossible with mammalian preparations. First, this review summarises the general aspects of the natural history of the avian egg that are pertinent to embryonic metabolism, growth and gas exchange and the characteristics of the structures participating in gas exchange. Then, the review focuses on the embryonic development of pulmonary ventilation, its regulation in relation to the embryo's environment and metabolic state, the effects that acute or sustained changes in embryonic temperature or oxygenation can have on growth, metabolism and ventilatory control.

  4. Adaptive genic evolution in the Drosophila genomes

    DEFF Research Database (Denmark)

    Shapiro, Joshua A; Huang, Wei; Zhang, Chenhui


    and stable population. In this study, we sequenced 419 genes from 24 lines of Drosophila melanogaster and its close relatives. Together with data from Drosophila simulans, these data reveal the following. (i) Approximately 10% of the loci in regions of normal recombination are much less polymorphic at silent...... sites than expected, hinting at the action of selective sweeps. (ii) The level of polymorphism is negatively correlated with the rate of nonsynonymous divergence across loci. Thus, even under strict neutrality, the ratio of amino acid to silent nucleotide changes (A:S) between Drosophila species...

  5. Noninvasive metabolomic profiling as an adjunct to morphology for noninvasive embryo assessment in women undergoing single embryo transfer

    NARCIS (Netherlands)

    Seli, E.; Vergouw, C.G.; Morita, H.; Botros, L.; Roos, P.; Lambalk, C.B.; Yamashita, N.; Kato, O.; Sakkas, D.


    Objective: To determine whether metabolomic profiling of spent embryo culture media correlates with reproductive potential of human embryos. Design: Retrospective study. Setting: Academic and a private assisted reproductive technology (ART) programs. Patient(s): Women undergoing single embryo

  6. Rape embryogenesis. III. Embryo development in time

    Directory of Open Access Journals (Sweden)

    Teresa Tykarska


    Full Text Available It was found that the growth curve of the rape embryo axis is of triple sigmoid type. Embryo growth occurs in 3 phases corresponding to 3 different periods of development. Phase I includes growth of the apical cell up to it's division into two layers of octants. Phase II comprises the increase of the spherical proembryo to the change of its symmetry from radial to bilateral. Phase III includes, growth of the embryo from the heart stage up to the end of embryogenesis. In each phase the relative growth rate increases drastically and then diminishes. The differences in growth intensity during the same phase are several-fold. The growth intensity maximum of the embryo axis occurs in phase II. The phasic growth intensity maxima occur: in phase I during apical cell elongation, :before its division, and in phases II and III in the periods of cell division ;growth in globular and torpedo-shaped -shaped embryos.

  7. The effect of elevated progesterone levels before HCG triggering in modified natural cycle frozen-thawed embryo transfer cycles

    DEFF Research Database (Denmark)

    Groenewoud, Eva R; Macklon, Nick S; Cohlen, Ben J


    follicular phase progesterone levels may occur in unstimulated cycles before frozen-thawed embryo transfer, or what affect they may have on outcomes. In this cohort study, 271 patients randomized to the modified natural cycle arm of a randomized controlled trial comparing two endometrial preparation regimens....... Whether monitoring of progesterone and LH in natural cycle frozen-thawed embryo transfer has added clinical value should studied further....

  8. Maintaining the proper connection between the centrioles and the pericentriolar matrix requires Drosophila centrosomin. (United States)

    Lucas, Eliana P; Raff, Jordan W


    Centrosomes consist of two centrioles surrounded by an amorphous pericentriolar matrix (PCM), but it is unknown how centrioles and PCM are connected. We show that the centrioles in Drosophila embryos that lack the centrosomal protein Centrosomin (Cnn) can recruit PCM components but cannot maintain a proper attachment to the PCM. As a result, the centrioles "rocket" around in the embryo and often lose their connection to the nucleus in interphase and to the spindle poles in mitosis. This leads to severe mitotic defects in embryos and to errors in centriole segregation in somatic cells. The Cnn-related protein CDK5RAP2 is linked to microcephaly in humans, but cnn mutant brains are of normal size, and we observe only subtle defects in the asymmetric divisions of mutant neuroblasts. We conclude that Cnn maintains the proper connection between the centrioles and the PCM; this connection is required for accurate centriole segregation in somatic cells but is not essential for the asymmetric division of neuroblasts.

  9. Potential of human twin embryos generated by embryo splitting in assisted reproduction and research. (United States)

    Noli, Laila; Ogilvie, Caroline; Khalaf, Yacoub; Ilic, Dusko


    Embryo splitting or twinning has been widely used in veterinary medicine over 20 years to generate monozygotic twins with desirable genetic characteristics. The first human embryo splitting, reported in 1993, triggered fierce ethical debate on human embryo cloning. Since Dolly the sheep was born in 1997, the international community has acknowledged the complexity of the moral arguments related to this research and has expressed concerns about the potential for reproductive cloning in humans. A number of countries have formulated bans either through laws, decrees or official statements. However, in general, these laws specifically define cloning as an embryo that is generated via nuclear transfer (NT) and do not mention embryo splitting. Only the UK includes under cloning both embryo splitting and NT in the same legislation. On the contrary, the Ethics Committee of the American Society for Reproductive Medicine does not have a major ethical objection to transferring two or more artificially created embryos with the same genome with the aim of producing a single pregnancy, stating that 'since embryo splitting has the potential to improve the efficacy of IVF treatments for infertility, research to investigate the technique is ethically acceptable'. Embryo splitting has been introduced successfully to the veterinary medicine several decades ago and today is a part of standard practice. We present here an overview of embryo splitting experiments in humans and non-human primates and discuss the potential of this technology in assisted reproduction and research. A comprehensive literature search was carried out using PUBMED and Google Scholar databases to identify studies on embryo splitting in humans and non-human primates. 'Embryo splitting' and 'embryo twinning' were used as the keywords, alone or in combination with other search phrases relevant to the topics of biology of preimplantation embryos. A very limited number of studies have been conducted in humans and non

  10. Cloning of a postreplication repair gene in Drosophila

    International Nuclear Information System (INIS)

    Banga, S.S.; Yamamoto, A.H.; Mason, J.M.; Boyd, J.B.


    Mutants at the mei-41 locus in Drosophila are strongly hypersensitive to each of eight tested mutagens. Mutant flies exhibit reduced meiotic recombination and elevated levels of chromosomal aberrations. In analogy with the defect in xeroderma pigmentosum variant cells, mei-41 cells are strongly defective in postreplication repair following UV radiation. In preparation for cloning that gene they have performed complementation studies between chromosomal aberrations and mei-41 mutants. That study has localized the mei-41 gene to polytene chromosome bands 14C4-6. A chromosomal walk conducted in that region has recovered about 65 kb of contiguous DNA sequence. The position of the mei-41 gene within that region has been established with the aid of a mutation in that gene which was generated by the insertion of a transposable element. Transcription mapping is being employed to define the complete coding region of the gene in preparation for investigations of gene function

  11. Studies on Drosophila radiosensitivity strains

    International Nuclear Information System (INIS)

    Varentsova, E.R.; Sharygin, V.I.; Khromykh, Yu.U.


    Fertility of radiosensitive mutant drosophila female strain rad (2) 201 61 after irradiation and frequency of dominant lethal mutations (DLM), induced by γ-radiation for 0-5 h and 5-7 days, are investigated. It is shown, that oocytes of the mutant strain are more radiosensitive as compared with cells of mongrel flies as to criterion of DLM appearance over the period of maturing. Early oocytes of stages 2-7 are the most sensitive, i.e. at the stages, corresponding to the manifestation of previously established recombination-defective properties of mutations rad (2) 201 61 . It is also sown, that doses of γ-rays, exceeding 10 Gy produce a strong sterilizing effect on mutant females due to destruction and resorption of egg chambers, irradiated at the stages of previtellogenetic growth of oocytes. In females, carrying mutation of radiosensitivity there is no direct correlation betwen sensitivity of oocytes proper to DLM induction and sensitivity of egg folleicles to resorbing effect of γ-rays. The ways of possible involvement of mutant locus studied into genetic processes in various specialized cells of drosophila

  12. Cryo-thawed embryo transfer : natural versus artificial cycle. A non-inferiority trial. (ANTARCTICA trial)

    NARCIS (Netherlands)

    Groenewoud, Eva R.; Macklon, Nick S.; Cohlen, Ben J.


    Background: Frozen thawed embryo transfer (FET) is a cost-effective adjunct to IVF or IVF-ICSI treatment. In order to optimize treatment outcome, FET should be carried out during a period of optimal endometrial receptivity. To optimize implantation several methods for endometrium preparation have

  13. Cytoplasmic vitamin A binding proteins in chick embryo dermis and epidermis

    International Nuclear Information System (INIS)

    Gates, R.E.; King, L.E. Jr.


    Excess vitamin A has striking morphologic and developmental effects on chick embryo skin. While cytoplasmic retinoic acid-binding protein (CRABP) was known to be abundant in chick embryo skin, neither quantitative values nor the distribution between dermis and epidermis have been established. The authors determined CRABP levels in collagenase-separated dermis and epidermis from 8-day-old embryos using specific binding of all-trans-[11- 3 H]retinoic acid in cytosols prepared from gram quantities of these tissues. The level of CRABP in dermis was twice the level in epidermis whether calculated on the basis of wet weight, cytosol protein, or DNA. When averaged over many preparations, 3 times as much dermis as epidermis was recovered from a single piece of skin. Therefore, the dermis contained 85% of the extremely high CRABP levels found in collagenase-treated skin, while epidermis contributed only 15%. Cytoplasmic retinol binding protein (CRBP) was also detected in chick embryo skin, but the binding was low and the levels in epidermis and dermis were not significantly different. The amount of CRABP in chick embryo skin (1600 pmol/g wet weight or 100 pmol/mg cytosol protein) is the highest level reported in any tissue and suggests an important role for vitamin A in the normal development and maturation of skin

  14. Emergent properties during dorsal closure in Drosophila morphogenesis

    International Nuclear Information System (INIS)

    Peralta, X G; Toyama, Y; Edwards, G S; Kiehart, D P


    Dorsal closure is an essential stage of Drosophila development that is a model system for research in morphogenesis and biological physics. Dorsal closure involves an orchestrated interplay between gene expression and cell activities that produce shape changes, exert forces and mediate tissue dynamics. We investigate the dynamics of dorsal closure based on confocal microscopic measurements of cell shortening in living embryos. During the mid-stages of dorsal closure we find that there are fluctuations in the width of the leading edge cells but the time-averaged analysis of measurements indicate that there is essentially no net shortening of cells in the bulk of the leading edge, that contraction predominantly occurs at the canthi as part of the process for zipping together the two leading edges of epidermis and that the rate constant for zipping correlates with the rate of movement of the leading edges. We characterize emergent properties that regulate dorsal closure, i.e., a velocity governor and the coordination and synchronization of tissue dynamics

  15. PH Domain-Arf G Protein Interactions Localize the Arf-GEF Steppke for Cleavage Furrow Regulation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Donghoon M Lee

    Full Text Available The recruitment of GDP/GTP exchange factors (GEFs to specific subcellular sites dictates where they activate small G proteins for the regulation of various cellular processes. Cytohesins are a conserved family of plasma membrane GEFs for Arf small G proteins that regulate endocytosis. Analyses of mammalian cytohesins have identified a number of recruitment mechanisms for these multi-domain proteins, but the conservation and developmental roles for these mechanisms are unclear. Here, we report how the pleckstrin homology (PH domain of the Drosophila cytohesin Steppke affects its localization and activity at cleavage furrows of the early embryo. We found that the PH domain is necessary for Steppke furrow localization, and for it to regulate furrow structure. However, the PH domain was not sufficient for the localization. Next, we examined the role of conserved PH domain amino acid residues that are required for mammalian cytohesins to bind PIP3 or GTP-bound Arf G proteins. We confirmed that the Steppke PH domain preferentially binds PIP3 in vitro through a conserved mechanism. However, disruption of residues for PIP3 binding had no apparent effect on GFP-Steppke localization and effects. Rather, residues for binding to GTP-bound Arf G proteins made major contributions to this Steppke localization and activity. By analyzing GFP-tagged Arf and Arf-like small G proteins, we found that Arf1-GFP, Arf6-GFP and Arl4-GFP, but not Arf4-GFP, localized to furrows. However, analyses of embryos depleted of Arf1, Arf6 or Arl4 revealed either earlier defects than occur in embryos depleted of Steppke, or no detectable furrow defects, possibly because of redundancies, and thus it was difficult to assess how individual Arf small G proteins affect Steppke. Nonetheless, our data show that the Steppke PH domain and its conserved residues for binding to GTP-bound Arf G proteins have substantial effects on Steppke localization and activity in early Drosophila embryos.

  16. Functional Analysis of Drosophila NF1

    National Research Council Canada - National Science Library

    Bernards, Andre


    ...) for Ras, yet homozygous loss of a highly conserved Drosophila NF1 ortholog results in several phenotypes that are insensitive to manipulating Ras signal transduction, but rescued by increasing...

  17. The Drosophila bipectinata species complex: phylogenetic ...

    Indian Academy of Sciences (India)


    c Indian Academy of Sciences. RESEARCH ARTICLE. The Drosophila bipectinata species complex: phylogenetic relationship among different members based on chromosomal variations. PARUL BANERJEE and BASHISTH N. SINGH. ∗. Genetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi ...

  18. Drosophila melanogaster gene expression changes after spaceflight. (United States)

    National Aeronautics and Space Administration — Gene expression levels were determined in 3rd instar and adult Drosophila melanogaster reared during spaceflight to elucidate the genetic and molecular mechanisms...

  19. Ecdysteroid receptors in Drosophila melanogaster adult females (United States)

    Ecdysteroid receptors were identified and partially characterized from total cell extracts of whole animals and dissected tissues from Drosophila melanogaster adult females. Binding studies indicated the presence of two ecdysteroid binding components having high affinity and specificity consistent w...

  20. Embryo cryopreservation and preeclampsia risk. (United States)

    Sites, Cynthia K; Wilson, Donna; Barsky, Maya; Bernson, Dana; Bernstein, Ira M; Boulet, Sheree; Zhang, Yujia


    To determine whether assisted reproductive technology (ART) cycles involving cryopreserved-warmed embryos are associated with the development of preeclampsia. Retrospective cohort study. IVF clinics and hospitals. A total of 15,937 births from ART: 9,417 singleton and 6,520 twin. We used linked ART surveillance, birth certificate, and maternal hospitalization discharge data, considering resident singleton and twin births from autologous or donor eggs from 2005-2010. We compared the frequency of preeclampsia diagnosis for cryopreserved-warmed versus fresh ET and used multivariable logistic regression to adjust for confounders. Among pregnancies conceived with autologous eggs resulting in singletons, preeclampsia was greater after cryopreserved-warmed versus fresh ET (7.51% vs. 4.29%, adjusted odds ratio = 2.17 [95% CI 1.67-2.82]). Preeclampsia without and with severe features, preeclampsia with preterm delivery, and chronic hypertension with superimposed preeclampsia were more frequent after cryopreserved-warmed versus fresh ET (3.99% vs. 2.55%; 2.95% vs. 1.41%; 2.76 vs. 1.48%; and 0.95% vs. 0.43%, respectively). Among pregnancies from autologous eggs resulting in twins, the frequency of preeclampsia with severe features (9.26% vs. 5.70%) and preeclampsia with preterm delivery (14.81% vs. 11.74%) was higher after cryopreserved versus fresh transfers. Among donor egg pregnancies, rates of preeclampsia did not differ significantly between cryopreserved-warmed and fresh ET (10.78% vs. 12.13% for singletons and 28.0% vs. 25.15% for twins). Among ART pregnancies conceived using autologous eggs resulting in live births, those involving transfer of cryopreserved-warmed embryos, as compared with fresh ETs, had increased risk for preeclampsia with severe features and preeclampsia with preterm delivery. Copyright © 2017 American Society for Reproductive Medicine. All rights reserved.

  1. Mapping of gene mutations in drosophila melanogaster


    Halvorsen, Charlotte Marie


    In this experiment, mutant genes of a given unknown mutant strain of Drosophila melanogaster were mapped to specific chromosomes. Drosophila melanogaster, commonly known as the fruit fly, was the appropriate choice for the organism to use in this specific experiment because of its relatively rapid life cycle of 10-14 days and because of the small amount of space and food neccessary for maintaining thousands of flies. The D. Melanogaster unknown strain specifically used in this experiment wa...

  2. [Association of human chorionic gonadotropin level in embryo culture media with early embryo development]. (United States)

    Wang, Haiying; Zhang, Renli; Han, Dong; Liu, Caixia; Cai, Jiajie; Bi, Yanling; Wen, Anmin; Quan, Song


    To investigate the association of human chorionic gonadotropin (HCG) level on day 3 of embryo culture with embryo development. Spent culture media were collected from individually cultured embryos on day 3 of in vitro fertilization and embryo transfer (IVF-ET) cycles. HCG concentration in the culture media was measured using an ELISA kit and its association with embryo development was assessed. In the 163 samples of embryo culture media from 60 patients, HCG was positive in 153 sample (93.8%) with a mean level of 0.85 ± 0.43 mIU/ml. The concentration of hCG in the culture media increased gradually as the number of blastomeres increased (F=2.273, P=0.03), and decreased as the morphological grade of the embryo was lowered (F=3.900, P=0.02). ELISA is capable of detecting HCG levels in spent culture media of embryos on day 3 of in vitro culture. The concentration of HCG in spent culture media is positively correlated with the status of early embryo development and implantation rate and thus serves as a useful marker for embryo selection in IVF-ET procedure.

  3. Use of purified FSH and LH for embryo production, cryopreservation by conventional freezing or vitrification and transfer of embryos in dairy ewes

    Directory of Open Access Journals (Sweden)

    Giovanni Martemucci


    Full Text Available Three experiments were carried out with the aim of evaluating the efficiency of techniques of in vivo production, storageand transfer of embryos in dairy sheep. Experiment I - For embryo production, thirty-one ewes were synchronized withFGA (vaginal sponges, 40 mg, 9 d and PGF2α (ICI; 50 μg, 7th d, and subdivided into three groups corresponding to thefollowing superovulatory treatments over 3 days with purified gonadotrophic preparations: A control, FSH/LH ratio = 1(250 IU p-FSH : 250 UI p-LH; B FSH/LH ratio = 2 (250 IU p-FSH : 125 IU p-LH and daily FSH/LH ratio of 3.4 – 1.7 –0.8 in the 3 days of treatment, respectively; C FSH/LH ratio = 2 (250 IU p-FSH : 125 IU p-LH and daily FSH/LH ratioof 5.0 – 1.0 – 0.3. On the 7th day after oestrus and mating, ovarian response and embryo production were evaluated.Experiment II – Three freezing methods were evaluated based upon post-thaw embryo quality: CF conventional slowfreezing by 1.5 M ethylene glycol (EG; V-1 one-step vitrification based on exposure of the embryos to one solution (EG7.15 M + ficoll 2.5 mM; V-3 vitrification in three steps, corresponding to three solutions at increasing concentration ofglycerol (GLY and EG (GLY 1.4 M; GLY 3.4 M + EG 1.4 M; GLY 4.6 M + EG 3.4 M. V-1 and V-3 frozen embryos weredirectly plunged in liquid nitrogen. At thawing, embryo viability was evaluated on the basis of morphological features.Experiment III – For embryo transfer, a total of 26 recipient ewes were synchronized with donors. On the 7th d fromoestrus, 11 recipient ewes received fresh embryos (Group FE – control and 15 recipients received vitrified-thawedembryos (Group VTE. Each recipient received 2 embryos. Superovulatory treatment B significantly advanced the onsetof oestrus compared to the control (27.3 vs 34.7 h; P10.8. Transferable embryos in Group B (7.2 resulted similar to Group A (5.3 and significantly (Pcompared to Group C (3.2. V3-method resulted in the highest (PCF- and V1-methods

  4. Asterless licenses daughter centrioles to duplicate for the first time in Drosophila embryos. (United States)

    Novak, Zsofia A; Conduit, Paul T; Wainman, Alan; Raff, Jordan W


    Centrioles form centrosomes and cilia, and defects in any of these three organelles are associated with human disease [1]. Centrioles duplicate once per cell cycle, when a mother centriole assembles an adjacent daughter during S phase. Daughter centrioles cannot support the assembly of another daughter until they mature into mothers during the next cell cycle [2-5]. The molecular nature of this daughter-to-mother transition remains mysterious. Pioneering studies in C. elegans identified a set of core proteins essential for centriole duplication [6-12], and a similar set have now been identified in other species [10, 13-18]. The protein kinase ZYG-1/Sak/Plk4 recruits the inner centriole cartwheel components SAS-6 and SAS-5/Ana2/STIL, which then recruit SAS-4/CPAP, which in turn helps assemble the outer centriole microtubules [19, 20]. In flies and humans, the Asterless/Cep152 protein interacts with Sak/Plk4 and Sas-4/CPAP and is required for centriole duplication, although its precise role in the assembly pathway is unclear [21-24]. Here, we show that Asl is not incorporated into daughter centrioles as they assemble during S phase but is only incorporated once mother and daughter separate at the end of mitosis. The initial incorporation of Asterless (Asl) is irreversible, requires DSas-4, and, crucially, is essential for daughter centrioles to mature into mothers that can support centriole duplication. We therefore propose a "dual-licensing" model of centriole duplication, in which Asl incorporation provides a permanent primary license to allow new centrioles to duplicate for the first time, while centriole disengagement provides a reduplication license to allow mother centrioles to duplicate again. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Causality analysis detects the regulatory role of maternal effect genes in the early Drosophila embryo

    Directory of Open Access Journals (Sweden)

    Zara Ghodsi


    Full Text Available In developmental studies, inferring regulatory interactions of segmentation genetic network play a vital role in unveiling the mechanism of pattern formation. As such, there exists an opportune demand for theoretical developments and new mathematical models which can result in a more accurate illustration of this genetic network. Accordingly, this paper seeks to extract the meaningful regulatory role of the maternal effect genes using a variety of causality detection techniques and to explore whether these methods can suggest a new analytical view to the gene regulatory networks. We evaluate the use of three different powerful and widely-used models representing time and frequency domain Granger causality and convergent cross mapping technique with the results being thoroughly evaluated for statistical significance. Our findings show that the regulatory role of maternal effect genes is detectable in different time classes and thereby the method is applicable to infer the possible regulatory interactions present among the other genes of this network.

  6. Glassfrog embryos hatch early after parental desertion. (United States)

    Delia, Jesse R J; Ramírez-Bautista, Aurelio; Summers, Kyle


    Both parental care and hatching plasticity can improve embryo survival. Research has found that parents can alter hatching time owing to a direct effect of care on embryogenesis or via forms of care that cue the hatching process. Because parental care alters conditions critical for offspring development, hatching plasticity could allow embryos to exploit variation in parental behaviour. However, this interaction of parental care and hatching plasticity remains largely unexplored. We tested the hypothesis that embryos hatch early to cope with paternal abandonment in the glassfrog Hyalinobatrachium fleischmanni (Centrolenidae). We conducted male-removal experiments in a wild population, and examined embryos' response to conditions with and without fathers. Embryos hatched early when abandoned, but extended development in the egg stage when fathers continued care. Paternal care had no effect on developmental rate. Rather, hatching plasticity was due to embryos actively hatching at different developmental stages, probably in response to deteriorating conditions without fathers. Our experimental results are supported by a significant correlation between the natural timing of abandonment and hatching in an unmanipulated population. This study demonstrates that embryos can respond to conditions resulting from parental abandonment, and provides insights into how variation in care can affect selection on egg-stage adaptations.

  7. Glassfrog embryos hatch early after parental desertion (United States)

    Delia, Jesse R. J.; Ramírez-Bautista, Aurelio; Summers, Kyle


    Both parental care and hatching plasticity can improve embryo survival. Research has found that parents can alter hatching time owing to a direct effect of care on embryogenesis or via forms of care that cue the hatching process. Because parental care alters conditions critical for offspring development, hatching plasticity could allow embryos to exploit variation in parental behaviour. However, this interaction of parental care and hatching plasticity remains largely unexplored. We tested the hypothesis that embryos hatch early to cope with paternal abandonment in the glassfrog Hyalinobatrachium fleischmanni (Centrolenidae). We conducted male-removal experiments in a wild population, and examined embryos' response to conditions with and without fathers. Embryos hatched early when abandoned, but extended development in the egg stage when fathers continued care. Paternal care had no effect on developmental rate. Rather, hatching plasticity was due to embryos actively hatching at different developmental stages, probably in response to deteriorating conditions without fathers. Our experimental results are supported by a significant correlation between the natural timing of abandonment and hatching in an unmanipulated population. This study demonstrates that embryos can respond to conditions resulting from parental abandonment, and provides insights into how variation in care can affect selection on egg-stage adaptations. PMID:24789892

  8. Protein phosphorylation during coconut zygotic embryo development

    International Nuclear Information System (INIS)

    Islas-Flores, I.; Oropeza, C.; Hernandez-Sotomayor, S.M.T.


    Evidence was obtained on the occurrence of protein threonine, serine, and tyrosine (Tyr) kinases in developing coconut (Cocos nucifera L.) zygotic embryos, based on in vitro phosphorylation of proteins in the presence of [gamma-32P]ATP, alkaline treatment, and thin-layer chromatography analysis, which showed the presence of [32P]phosphoserine, [32P]phosphothreonine, and [32P]phosphotyrosine in [32P]-labeled protein hydrolyzates. Tyr kinase activity was further confirmed in extracts of embryos at different stages of development using antiphosphotyrosine monoclonal antibodies and the synthetic peptide derived from the amino acid sequence surrounding the phosphorylation site in pp60src (RR-SRC), which is specific for Tyr kinases. Anti-phosphotyrosine western blotting revealed a changing profile of Tyr-phosphorylated proteins during embryo development. Tyr kinase activity, as assayed using RR-SRC, also changed during embryo development, showing two peaks of activity, one during early and another during late embryo development. In addition, the use of genistein, a Tyr kinase inhibitor, diminished the ability of extracts to phosphorylate RR-SRC. Results presented here show the occurrence of threonine, serine, and Tyr kinases in developing coconut zygotic embryos, and suggest that protein phosphorylation, and the possible inference of Tyr phosphorylation in particular, may play a role in the coordination of the development of embryos in this species

  9. Characterization of Autophagic Responses in Drosophila melanogaster. (United States)

    Xu, T; Kumar, S; Denton, D


    Drosophila is an excellent model system for studying autophagy during animal development due to the availability of genetic reagents and opportunity for in vivo cell biological analysis. The regulation and mechanism of autophagy are highly evolutionarily conserved and the role of autophagy has been characterized during various stages of Drosophila development as well as following starvation. Studies in Drosophila have revealed novel insights into the role of distinct components of the autophagy machinery. This chapter describes protocols for examining autophagy during Drosophila development. A crucial step in the induction of autophagy is the incorporation of Atg8a into the autophagosome. This can be measured as autophagic puncta using live fluorescent imaging, immunostaining, or immunoblot analysis of LC3/Atg8a processing. The level of autophagy can also be examined using other specific components of the autophagy pathway as markers detected by immunofluorescent imaging. Based on the distinct morphology of autophagy, it can also be examined by transmission electron microscopy. In addition, one of the advantages of using Drosophila as a model is the ability to undertake genetic analysis of individual components of the autophagy machinery. Current approaches that can be used to monitor autophagy, including the overall flux and individual steps in Drosophila melanogaster, will be discussed. © 2017 Elsevier Inc. All rights reserved.

  10. Effect of non-nutritive sugars to decrease the survivorship of spotted wing drosophila, Drosophila suzukii (United States)

    In this study, we investigated the effects of non-nutritive sugars and sugar alcohols on the survivorship of spotted wing drosophila, Drosophila suzukii, and found erythritol and erythrose as potentially toxic to the fly. In a dose-dependent study, erythritol and erythrose significantly reduced fly ...

  11. New record for the invasive Spotted Wing Drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae) in Anillaco, Argentina (United States)

    The invasive Spotted Wing Drosophila (SWD), Drosophila suzukii Matsumura, is reported for the first time in La Rioja, Argentina. This represents a major range expansion for this species. The natural enemies of SWD, Leptopilina clavipes and Ganaspis hookeri were also collected with the SWD at the s...

  12. To transfer fresh or thawed embryos?

    DEFF Research Database (Denmark)

    Pinborg, Anja


    Worldwide freezing and thawing of embryos has been increasingly used since the first infant was born as a result of this technique in 1984. The use of frozen embryo replacement (FER) currently even exceeds the number of fresh cycles performed in some countries. This article discusses the pros...... and multiple pregnancies, thereby increasing the safety for mother and child. Finally the article describes the accumulating literature on perinatal and long-term child outcome after transfer of frozen/thawed embryos, including a discussion on the concerns regarding cryo techniques and their possible roles...

  13. Identification of four Drosophila allatostatins as the cognate ligands for the Drosophila orphan receptor DAR-2

    DEFF Research Database (Denmark)

    Lenz, C; Williamson, M; Hansen, G N


    The allatostatins are generally inhibitory insect neuropeptides. The Drosophila orphan receptor DAR-2 is a G-protein-coupled receptor, having 47% amino acid residue identity with another Drosophila receptor, DAR-1 (which is also called dros. GPCR, or DGR) that was previously shown...... to be the receptor for an intrinsic Drosophila A-type (cockroach-type) allatostatin. Here, we have permanently expressed DAR-2 in CHO cells and found that it is the cognate receptor for four Drosophila A-type allatostatins, the drostatins-A1 to -A4. Of all the drostatins, drostatin-A4 (Thr...... weakly in the brain. The Drosophila larval gut also contains about 20-30 endocrine cells, expressing the gene for the drostatins-A1 to -A4. We suggest, therefore, that DAR-2 mediates an allatostatin (drostatin)-induced inhibition of gut motility. This is the first report on the permanent and functional...

  14. Effect of Hawthorn on Drosophila Melanogaster Antioxidant-Related ...

    African Journals Online (AJOL)

    Results: The results indicate that hawthorn extract prolonged the life span of Drosophila, with 50 % survival time of 0.8 ... Drosophila's aging gene is highly similar to humans [4,5]. ..... reduces lipid peroxidation in senescence-accelerated mice .

  15. Gustatory Processing in Drosophila melanogaster. (United States)

    Scott, Kristin


    The ability to identify nutrient-rich food and avoid toxic substances is essential for an animal's survival. Although olfaction and vision contribute to food detection, the gustatory system acts as a final checkpoint control for food acceptance or rejection. The vinegar fly Drosophila melanogaster tastes many of the same stimuli as mammals and provides an excellent model system for comparative studies of taste detection. The relative simplicity of the fly brain and behaviors, along with the molecular genetic and functional approaches available in this system, allow the examination of gustatory neural circuits from sensory input to motor output. This review discusses the molecules and cells that detect taste compounds in the periphery and the circuits that process taste information in the brain. These studies are providing insight into how the detection of taste compounds regulates feeding decisions.

  16. Monoclonal antibodies to drosophila cytochrome P-450's

    International Nuclear Information System (INIS)

    Sundseth, S.S.; Kennel, S.J.; Waters, L.C.


    Hybridomas producing monoclonal antibodies were prepared by the fusion of SP2/0 myeloma cells and spleen cells from a female BALB/c mouse immunized by cytochrome P-450-A and P-450-B purified from Drosophila Hikone-R (BG) microsomes. P-450-A and P-450-B are electrophoretically distinct subsets of Drosophila P-450. P-450-A is ubiquitous among strains tested, while P-450-B is present in only a few strains displaying unique enzyme activities and increased insecticide resistance. The Oregon-R strain contains only cytochromes P-450-A and is susceptible to insecticides. The authors Hikone-R (BG) strain expresses both cytochromes P-450-A and P-450-B and is insecticide resistant. Antibody producing hybridomas were detected in a solid-phase radioimmunoassay (RIA) by binding to Hikone-R (BG) or Oregon-R microsomes. Four independent hybridomas were identified as producing monoclonal antibodies that recognized proteins in the P-450 complex by immunoblot experiments. Three monoclonal antibodies recognized P-450-A proteins, while one monoclonal antibody bound predominantly P-450-B. This monoclonal antibody also recognized southern armyworm (Spodoptera eridania, Cramer) microsomal proteins

  17. Single Nucleotide Polymorphism Markers for Genetic Mapping in Drosophila melanogaster


    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.


    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that recently have revolutionized human, mouse, and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila by using a sequence tagged site-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that sp...

  18. Nucleolar remodeling in nuclear transfer embryos

    DEFF Research Database (Denmark)

    Laurincik, Jozef; Maddox-Hyttel, Poul


    Transcription of the ribosomal RNA (rRNA) genes occurs in the nucleolus and results in ribosome biogenesis. The rRNA gene activation and the associated nucleolus formation may be used as a marker for the activation of the embryonic genome in mammalian embryos and, thus serve to evaluate the devel......Transcription of the ribosomal RNA (rRNA) genes occurs in the nucleolus and results in ribosome biogenesis. The rRNA gene activation and the associated nucleolus formation may be used as a marker for the activation of the embryonic genome in mammalian embryos and, thus serve to evaluate...... nucleoli are not apparent until the 5th cell cycle, whereas in somatic cell nuclear transfer embryos the functional nucleoli emerge already during the 3rd cell cycle. Intergeneric reconstructed embryos produced by the fusion of bovine differentiated somatic cell to a nonactivated ovine cytoplast fail...

  19. Testing the embryo, testing the fetus. (United States)

    Ehrich, K; Farsides, B; Williams, C; Scott, Rosamund


    This paper stems from an ethnographic, multidisciplinary study that explored the views and experiences of practitioners and scientists on social, ethical and clinical dilemmas encountered when working in the area of PGD for serious genetic disorders. We focus here on staff perceptions and experiences of working with embryos and helping women/couples to make choices that will result in selecting embryos for transfer and disposal of 'affected' embryos, compared to the termination of affected pregnancies following PND. Analysis and discussion of our data led us to consider the possible advantages of PGD and whether a gradualist account of the embryo's and fetus's moral status can account for all of these, particularly since a gradualist account concentrates on the significance of time (developmental stage) and makes no comment as to the significance of place (in-vitro, in-utero).

  20. Bovine in vitro embryo production : An overview

    Directory of Open Access Journals (Sweden)

    V. S. Suthar

    Full Text Available Dairy industry perfected the application of the first reproductive biotechnology, i.e. artificial insemination (AI - a great success story and also remains the user of embryo transfer technology (ETT. In addition, recently the researchers taking interest to embraced the field of Transvaginal OocyteRecovery (TVOR and in vitro production (IVEP of embryos. IVF provides the starting point for the generation of reproductive material for a number of advanced reproduction techniques including sperm microinjection and nuclear transfer (cloning. In several countries commercial IVF facilities are already being employed by cattle ET operators. Various research groups have reported on modification of TVOR technique to give greater efficiency. Much research is still needed in domestic animal (Especially Indian species on mechanisms controlling embryo development and on development of totally in vitro system for embryo culture. [Vet World 2009; 2(12.000: 478-479`

  1. Nucleolar ultrastructure in bovine nuclear transfer embryos

    DEFF Research Database (Denmark)

    Kanka, J; Smith, S D; Soloy, E


    in nuclear morphology as a transformation of the nucleolus precursor body into a functional rRNA synthesising nucleolus with a characteristic ultrastructure. We examined nucleolar ultrastructure in bovine in vitro produced (control) embryos and in nuclear transfer embryos reconstructed from a MII phase...... at 1 hr after fusion and, by 3 hr after fusion, it was restored again. At this time, the reticulated fibrillo-granular nucleolus had an almost round shape. The nucleolar precursor body seen in the two-cell stage nuclear transfer embryos consisted of intermingled filamentous components and secondary...... time intervals after fusion. In the two-cell stage nuclear transfer embryo, the originally reticulated nucleolus of the donor blastomere had changed into a typical nucleolar precursor body consisting of a homogeneous fibrillar structure. A primary vacuole appeared in the four-cell stage nuclear...

  2. Predator recognition in rainbowfish, Melanotaenia duboulayi, embryos.

    Directory of Open Access Journals (Sweden)

    Lois Jane Oulton

    Full Text Available Exposure to olfactory cues during embryonic development can have long term impacts on birds and amphibians behaviour. Despite the vast literature on predator recognition and responses in fishes, few researchers have determined how fish embryos respond to predator cues. Here we exposed four-day-old rainbowfish (Melanotaenia duboulayi embryos to cues emanating from a novel predator, a native predator and injured conspecifics. Their response was assessed by monitoring heart rate and hatch time. Results showed that embryos have an innate capacity to differentiate between cues as illustrated by faster heart rates relative to controls. The greatest increase in heart rate occurred in response to native predator odour. While we found no significant change in the time taken for eggs to hatch, all treatments experienced slight delays as expected if embryos are attempting to reduce exposure to larval predators.

  3. Glassfrog embryos hatch early after parental desertion


    Delia, Jesse R. J.; Ramírez-Bautista, Aurelio; Summers, Kyle


    Both parental care and hatching plasticity can improve embryo survival. Research has found that parents can alter hatching time owing to a direct effect of care on embryogenesis or via forms of care that cue the hatching process. Because parental care alters conditions critical for offspring development, hatching plasticity could allow embryos to exploit variation in parental behaviour. However, this interaction of parental care and hatching plasticity remains largely unexplored. We tested th...

  4. Embryo disposition and the new death scene

    Directory of Open Access Journals (Sweden)

    Ellison, David


    Full Text Available In the IVF clinic - a place designed principally for the production and implantation of embryos - scientists and IVF recipients are faced with decisions regarding the disposition of frozen embryos. At this time there are hundred of thousands of cryopreserved embryos awaiting such determinations. They may be thawed for transfer to the woman herself, they may be donated for research or for use by other infertile couples, they may remain in frozen storage, or they may variously be discarded by being allowed to 'succumb', or 'perish'. Where the choice is discard, some IVF clients have chosen to formalise the process through ceremony. A new language is emerging in response to the desires of the would-be-parents who might wish to characterise the discard experience as a ‘good death’. This article examines the procedure known as ‘compassionate transfer’ where the embryo to be discarded is placed in the woman’s vagina where it is clear that it will not develop further. An alternate method has the embryo transferred in the usual manner but without the benefit of fertility-enhancing hormones at a point in the cycle unreceptive to implantation. The embryo destined for disposal is thus removed from the realm of technological possibility and ‘returned’ to the female body for a homely death. While debates continue about whether or not embryos constitute life, new practices are developing in response to the emotional experience of embryo discard. We argue that compassionate transfer is a death scene taking shape. In this article, we take the measure of this new death scene’s fabrication, and consider the form, significance, and legal complexity of its ceremonies.

  5. Role of melatonin in embryo fetal development


    Voiculescu, SE; Zygouropoulos, N; Zahiu, CD; Zagrean, AM


    Melatonin is an indoleamine produced by the pineal gland and secreted in a circadian manner. In the past few decades, research over this topic has been enhanced. Melatonin has many important roles in the human physiology: regulator of the circadian rhythms, sleep inducer, antioxidant, anticarcinogenic. This paper reviews the involvement of melatonin in embryo fetal development. The pineal gland develops completely postpartum, so both the embryo and the fetus are dependent on the maternal mela...

  6. [Assisted reproductive technologies and the embryo status]. (United States)

    Englert, Y

    The status of the human embryo has always be a subject of philosophical and theological thoughts with major social consequences, but, until the 19th century, it has been mainly an abstraction. The arrival of the human embryo in vitro, materialized by Louise Brown's birth in 1978 and above all by the supernumerary embryos produced by the Australian team of Trounson and Wood following the introduction of ovarian stimulation, will turn theoretical thoughts into a reality. Nobody may ignore the hidden intentions behind the debate, as to recognise a status to a few days old embryo will immediately have a major impact on the status of a few weeks old foetus and therefore on the abortion rights. We will see that the embryo status, essentially based as well on a vision on the good and evil as on social order, cannot be based on a scientific analysis of the reproduction process but comes from a society's choice, by essence " arbitrary " and always disputable. This does not preclude the collectivity right and legitimacy to give a precise status and it is remarkable to observe the law is careful not to specify which status to give to the human embryo. It is more thru handling procedures and functioning rules that the law designed the embryo position, neither with a status of a person, nor of a thing. It nevertheless remains true that there is a constant risk that the legislation gives the embryo a status that would call into question it's unique characteristic of early reproductive stage, jeopardizing at once the hard-won reproductive freedom (reproductive choice) as well as freedom of research on embryonic stem cells, one of the most promising field of medical research.

  7. Cryopreservation of Arachis pintoi (leguminosae) somatic embryos. (United States)

    Rey, H Y; Faloci, M; Medina, R; Dolce, N; Engelmann, F; Mroginski, L


    In this study, we successfully cryopreserved cotyledonary somatic embryos of diploid and triploid Arachis pintoi cytotypes using the encapsulation-dehydration technique. The highest survival rates were obtained when somatic embryos were encapsulated in calcium alginate beads and precultured in agitated (80 rpm) liquid establishment medium (EM) with daily increasing sucrose concentration (0.50, 0.75, and 1.0 M). The encapsulated somatic embryos were then dehydrated with silica gel for 5 h to 20% moisture content (fresh weight basis) and cooled either rapidly (direct immersion in liquid nitrogen, LN) or slowly (1 degree C per min from 25 degree C to -30 degree C followed by immersion in LN). Beads were kept in LN for a minimum of 1 h and then were rapidly rewarmed in a 30 degree C water-bath for 2 min. Finally, encapsulated somatic embryos were post-cultured in agitated (80 rpm) liquid EM with daily decreasing sucrose concentration (0.75 and 0.5 M) and transferred to solidified EM. Using this protocol, we obtained 26% and 30% plant regeneration from cryopreserved somatic embryos of diploid and triploid cytotypes. No morphological abnormalities were observed in any of the plants regenerated from cryopreserved embryos and their genetic stability was confirmed with 10 isozyme systems and nine RAPD profiles.

  8. Wash functions downstream of Rho1 GTPase in a subset of Drosophila immune cell developmental migrations (United States)

    Verboon, Jeffrey M.; Rahe, Travis K.; Rodriguez-Mesa, Evelyn; Parkhurst, Susan M.


    Drosophila immune cells, the hemocytes, undergo four stereotypical developmental migrations to populate the embryo, where they provide immune reconnoitering, as well as a number of non–immune-related functions necessary for proper embryogenesis. Here, we describe a role for Rho1 in one of these developmental migrations in which posteriorly located hemocytes migrate toward the head. This migration requires the interaction of Rho1 with its downstream effector Wash, a Wiskott–Aldrich syndrome family protein. Both Wash knockdown and a Rho1 transgene harboring a mutation that prevents Wash binding exhibit the same developmental migratory defect as Rho1 knockdown. Wash activates the Arp2/3 complex, whose activity is needed for this migration, whereas members of the WASH regulatory complex (SWIP, Strumpellin, and CCDC53) are not. Our results suggest a WASH complex–independent signaling pathway to regulate the cytoskeleton during a subset of hemocyte developmental migrations. PMID:25739458

  9. Functions and Mechanisms of Fibroblast Growth Factor (FGF Signalling in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Hans-Arno J. Müller


    Full Text Available Intercellular signalling via growth factors plays an important role in controlling cell differentiation and cell movements during the development of multicellular animals. Fibroblast Growth Factor (FGF signalling induces changes in cellular behaviour allowing cells in the embryo to move, to survive, to divide or to differentiate. Several examples argue that FGF signalling is used in multi-step morphogenetic processes to achieve and maintain a transitional state of the cells required for the control of cell fate. In the genetic model Drosophila melanogaster, FGF signalling via the receptor tyrosine kinases Heartless (Htl and Breathless (Btl is particularly well studied. These FGF receptors affect gene expression, cell shape and cell–cell interactions during mesoderm layer formation, caudal visceral muscle (CVM formation, tracheal morphogenesis and glia differentiation. Here, we will address the current knowledge of the biological functions of FGF signalling in the fly on the tissue, at a cellular and molecular level.

  10. Characterization of a depurinated-DNA purine-base-insertion activity from Drosophila. (United States)

    Deutsch, W A; Spiering, A L


    An activity that binds preferentially to depurinated DNA and inserts purines into those sites was partially purified from Drosophila melanogaster embryos. The protein has a sedimentation coefficient of 4.9 S and is devoid of AP (apurinic/apyrimidinic) endonuclease activity. Upon incorporation of purines into apurinic DNA, the number of alkali-labile sites decreases, thus establishing the conversion of depurinated sites into normal nucleotides. The activity requires K+, and is totally inhibited by caffeine or EDTA. Guanine is specifically incorporated into partially depurinated poly(dG-dC) and adenine is specifically incorporated into poly(dA-dT), thus demonstrating the apparent template specificity of the enzyme. PMID:2417589

  11. Transcripts of mobile element MDG1 during ontogenesis of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Kuvakina, A.I.; Nurminskii, D.I.; Kogan, G.L.; Gvozdev, V.A.


    It has been demonstrated by Northern hybridization using a single-stranded labeled probes that the number of MDG1 transcripts as well as their size change during ontogenesis of Drosophila. The transcripts of MDG1 were not found in unfertilized eggs. The full-length transcript of MDG1 (about 7 kb long) appears in the embryonic and larval cells, and its quantity sharply increases in pupae and adults. A transcript of about 5 kb length is also found in the pupae and adults. Another, about 2 kb long transcript forms in the embryos, pupae and adults, which is absent in larvae. The main transcript in the larval cells, complementary to the inner part of the body of MDG1, is about 1 kb long. The transcription level of MDG1 and the mobile element copia do not change under heat shock at adult stage

  12. Control of protein synthesis in cell-free extracts of sea urchin embryos

    International Nuclear Information System (INIS)

    Hansen, L.J.; Huang, W.I.; Jagus, R.


    Although the increase in protein synthesis that occurs after fertilization of sea urchin eggs results from increased utilization of stored maternal mRNA, the underlying mechanism is unknown. The authors have prepared cell-free extracts from S.purpuratus and A.puctulata unfertilized eggs and 2-cell embryos that retain the protein synthetic differences observed in vivo. The method is based on that of Dr. Alina Lopo. 35 S methionine incorporation is linear during a 30 min incubation and is 10-20 fold higher in extracts from 2-cell embryos than unfertilized eggs. Addition of purified mRNA does not stimulate these systems, suggesting a regulatory mechanism other than mRNA masking. Addition of rabbit reticulocyte ribosomal salt wash stimulated protein synthesis in extracts from eggs but not embryos, suggesting deficiencies in translational components in unfertilized eggs. Mixing of egg and embryo lysates indicated the presence of a weak protein synthesis inhibitor in eggs. Translational control in developing sea urchin embryos thus appears to be complex, involving both stimulatory and inhibitory factors

  13. Type II cytokeratin gene expression is indicative of early cell differentiation in the chick embryo

    International Nuclear Information System (INIS)

    Charlebois, T.S.


    Embryonic development in vertebrates appears to involve a series of inductive tissue interactions that lead to regional specializations, which eventually become elaborated in the basic body plan of the embryo. The inductive interactions leading to early regionalization of the embryo are often particularly difficult to evaluate because of the absence of available morphological or biochemical evidence that such events have occurred. In the 36 hour chick embryo, the regional subdivision of the early ectoderm is evidence by a marked lens-forming bias in the head ectoderm, which is absent in the presumptive dorsal epidermis of the trunk region. As a strategy for isolating genes whose differential expression might reflect this regional subdivision, a cDNA library from 36 hour embryos was prepared and screened for differential hybridization to [ 32 P]cDNA probes synthesized using template RNA isolated from 36 hour head ectoderm and trunk ectoderm. A cDNA clone (T4) was isolated which hybridizes to transcripts present at much higher levels in trunk ectoderm than in head ectoderm. Partial nucleotide and deduced amino acid sequences of this clone indicate that it represents a gene encoding a type II cytokeratin. The distribution of transcripts complementary to the T4 probe was evaluated in early embryos using RNA gel blot analysis and in situ hybridization to tissue sections

  14. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation. (United States)

    Stigliani, S; Anserini, P; Venturini, P L; Scaruffi, P


    Is the amount of cell-free DNA released by human embryos into culture medium correlated with embryo morphological features? The mitochondrial DNA (mtDNA) content of culture medium is significantly associated with the fragmentation rate on Days 2 and 3 of embryo development, whether the oocyte came from women ≤ 35 or >35 years old. Cellular fragmentation is often utilized as one of the morphological parameters for embryo quality assessment. The amount of cellular fragments is considered to be an important morphological parameter for embryo implantation potential. It has been hypothesized that fragments are apoptotic bodies or anuclear cytoplasmatic pieces of blastomeres, although no definitive conclusion has been drawn about their pathogenesis. Human fertilized oocytes were individually cultured from Day 1 to Days 2 and 3. A total of 800 samples (166 spent media from Day 2 and 634 from Day 3) were enrolled into the present study. Double-stranded DNA (dsDNA) was quantified in 800 spent embryo culture media by Pico Green dye fluorescence assay. After DNA purification, genomic DNA (gDNA) and mtDNA were profiled by specific quantitative PCR. Statistical analyses defined correlations among DNA contents, embryo morphology and maternal age. Different independent tests confirmed the presence of DNA into embryo culture medium and, for the first time, we demonstrate that both gDNA and mtDNA are detectable in the secretome. The amount of DNA is larger in embryos with bad quality cleavage compared with high-grade embryos, suggesting that the DNA profile of culture medium is an objective marker for embryo quality assessment. In particular, DNA profiles are significantly associated with fragmentation feature (total dsDNA: P = 0.0010; mtDNA; P = 0.0247) and advanced maternal age. It is necessary to establish whether DNA profiling of spent embryo culture medium is a robust onsite test that can improve the prediction of blastulation, implantation and/or pregnancy rate. The

  15. Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Jin Akagi

    Full Text Available Zebrafish (Danio rerio has recently emerged as a powerful experimental model in drug discovery and environmental toxicology. Drug discovery screens performed on zebrafish embryos mirror with a high level of accuracy the tests usually performed on mammalian animal models, and fish embryo toxicity assay (FET is one of the most promising alternative approaches to acute ecotoxicity testing with adult fish. Notwithstanding this, automated in-situ analysis of zebrafish embryos is still deeply in its infancy. This is mostly due to the inherent limitations of conventional techniques and the fact that metazoan organisms are not easily susceptible to laboratory automation. In this work, we describe the development of an innovative miniaturized chip-based device for the in-situ analysis of zebrafish embryos. We present evidence that automatic, hydrodynamic positioning, trapping and long-term immobilization of single embryos inside the microfluidic chips can be combined with time-lapse imaging to provide real-time developmental analysis. Our platform, fabricated using biocompatible polymer molding technology, enables rapid trapping of embryos in low shear stress zones, uniform drug microperfusion and high-resolution imaging without the need of manual embryo handling at various developmental stages. The device provides a highly controllable fluidic microenvironment and post-analysis eleuthero-embryo stage recovery. Throughout the incubation, the position of individual embryos is registered. Importantly, we also for first time show that microfluidic embryo array technology can be effectively used for the analysis of anti-angiogenic compounds using transgenic zebrafish line (fli1a:EGFP. The work provides a new rationale for rapid and automated manipulation and analysis of developing zebrafish embryos at a large scale.

  16. Gut-associated microbes of Drosophila melanogaster (United States)

    Broderick, Nichole; Lemaitre, Bruno


    There is growing interest in using Drosophila melanogaster to elucidate mechanisms that underlie the complex relationships between a host and its microbiota. In addition to the many genetic resources and tools Drosophila provides, its associated microbiota is relatively simple (1–30 taxa), in contrast to the complex diversity associated with vertebrates (> 500 taxa). These attributes highlight the potential of this system to dissect the complex cellular and molecular interactions that occur between a host and its microbiota. In this review, we summarize what is known regarding the composition of gut-associated microbes of Drosophila and their impact on host physiology. We also discuss these interactions in the context of their natural history and ecology and describe some recent insights into mechanisms by which Drosophila and its gut microbiota interact. “Workers with Drosophila have been considered fortunate in that they deal with the first multicellular invertebrate to be cultured monoxenically (Delcourt and Guyenot, 1910); the first to be handled axenically on a semisynthetic diet (Guyenot, 1917); and the first to be grown on a defined diet (Schultz et al., 1946). This list of advantages is somewhat embarrassing, since it implies an interest in nutrition that, in reality, was only secondary. The very first studies were concerned with the reduction of variability in genetic experiments (Delcourt and Guyenot, 1910) and standardization of the nutritional environment.” -James Sang, 1959 Ann NY Acad 1 PMID:22572876

  17. Wolbachia-induced cytoplasmic incompatibility is associated with decreased Hira expression in male Drosophila.

    Directory of Open Access Journals (Sweden)

    Ya Zheng

    Full Text Available BACKGROUND: Wolbachia are obligate endosymbiotic bacteria that infect numerous species of arthropods and nematodes. Wolbachia can induce several reproductive phenotypes in their insect hosts including feminization, male-killing, parthenogenesis and cytoplasmic incompatibility (CI. CI is the most common phenotype and occurs when Wolbachia-infected males mate with uninfected females resulting in no or very low numbers of viable offspring. However, matings between males and females infected with the same strain of Wolbachia result in viable progeny. Despite substantial scientific effort, the molecular mechanisms underlying CI are currently unknown. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression studies were undertaken in Drosophila melanogaster and D. simulans which display differential levels of CI using quantitative RT-PCR. We show that Hira expression is correlated with the induction of CI and occurs in a sex-specific manner. Hira expression is significantly lower in males which induce strong CI when compared to males inducing no CI or Wolbachia-uninfected males. A reduction in Hira expression is also observed in 1-day-old males that induce stronger CI compared to 5-day-old males that induce weak or no CI. In addition, Hira mutated D. melanogaster males mated to uninfected females result in significantly decreased hatch rates comparing with uninfected crosses. Interestingly, wMel-infected females may rescue the hatch rates. An obvious CI phenotype with chromatin bridges are observed in the early embryo resulting from Hira mutant fertilization, which strongly mimics the defects associated with CI. CONCLUSIONS/SIGNIFICANCE: Our results suggest Wolbachia-induced CI in Drosophila occurs due to a reduction in Hira expression in Wolbachia-infected males leading to detrimental effects on sperm fertility resulting in embryo lethality. These results may help determine the underlying mechanism of CI and provide further insight in to the important role

  18. Time to take human embryo culture seriously. (United States)

    Sunde, Arne; Brison, Daniel; Dumoulin, John; Harper, Joyce; Lundin, Kersti; Magli, M Cristina; Van den Abbeel, Etienne; Veiga, Anna


    Is it important that end-users know the composition of human embryo culture media? We argue that there is as strong case for full transparency concerning the composition of embryo culture media intended for human use. Published data suggest that the composition of embryo culture media may influence the phenotype of the offspring. A review of the literature was carried out. Data concerning the potential effects on embryo development of culture media were assessed and recommendations for users made. The safety of ART procedures, especially with respect to the health of the offspring, is of major importance. There are reports from the literature indicating a possible effect of culture conditions, including culture media, on embryo and fetal development. Since the introduction of commercially available culture media, there has been a rapid development of different formulations, often not fully documented, disclosed or justified. There is now evidence that the environment the early embryo is exposed to can cause reprogramming of embryonic growth leading to alterations in fetal growth trajectory, birthweight, childhood growth and long-term disease including Type II diabetes and cardiovascular problems. The mechanism for this is likely to be epigenetic changes during the preimplantation period of development. In the present paper the ESHRE working group on culture media summarizes the present knowledge of potential effects on embryo development related to culture media, and makes recommendations. There is still a need for large prospective randomized trials to further elucidate the link between the composition of embryo culture media used and the phenotype of the offspring. We do not presently know if the phenotypic changes induced by in vitro embryo culture represent a problem for long-term health of the offspring. Published data indicate that there is a strong case for demanding full transparency concerning the compositions of and the scientific rationale behind the

  19. Meanings of the embryo in Japan: narratives of IVF experience and embryo ownership

    NARCIS (Netherlands)

    Kato, M.; Sleeboom-Faulkner, M.


    This article explores the sociocultural meanings of the embryo implied in the narratives of 58 women who have undergone in vitro fertilisation in Japan over a period from 2006 to 2008. We argue that a lack of sufficient analysis of the sociocultural meanings of the embryo result in a situation where

  20. Differentiated muscles are mandatory for gas-filling of the Drosophila airway system

    Directory of Open Access Journals (Sweden)

    Yiwen Wang


    Full Text Available At the end of development, organs acquire functionality, thereby ensuring autonomy of an organism when it separates from its mother or a protective egg. In insects, respiratory competence starts when the tracheal system fills with gas just before hatching of the juvenile animal. Cellular and molecular mechanisms of this process are not fully understood. Analyses of the phenotype of Drosophila embryos with malformed muscles revealed that they fail to gas-fill their tracheal system. Indeed, we show that major regulators of muscle formation like Lame duck and Blown fuse are important, while factors involved in the development of subsets of muscles including cardiac and visceral muscles are dispensable for this process, suggesting that somatic muscles (or parts of them are essential to enable tracheal terminal differentiation. Based on our phenotypic data, we assume that somatic muscle defect severity correlates with the penetrance of the gas-filling phenotype. This argues that a limiting molecular or mechanical muscle-borne signal tunes tracheal differentiation. We think that in analogy to the function of smooth muscles in vertebrate lungs, a balance of physical forces between muscles and the elasticity of tracheal walls may be decisive for tracheal terminal differentiation in Drosophila.

  1. Characterization of postreplication repair in mutagen-sensitive strains of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Boyd, J.B.; Setlow, R.B.


    Mutants of Drosophila melanogaster, with suspected repair deficiencies, were analyzed for their capacity to repair damage induced by x-rays, and uv radiation. Analysis was performed on cell cultures derived from embryos of homozygous mutant stocks. Postreplication repair following uv radiation has been analyzed in mutant stocks derived from a total of ten complementation groups. Cultures were irradiated, pulse-labeled, and incubated in the dark prior to analysis by alkaline sucrose gradient centrifugation. Kinetics of the molecular weight increase in newly synthesized DNA were assayed after cells had been incubated in the presence or absence of caffeine. Two separate pathways of postreplication repair have been tentatively identified by mutants derived from four complementation groups. The proposed caffeine sensitive pathway (CAS) is defined by mutants which also disrupt meiosis. The second pathway (CIS) is caffeine insensitive and is not yet associated with meiotic functions. All mutants deficient in postreplication repair are also sensitive to nitrogen mustard. The mutants investigated display a normal capacity to repair single-strand breaks induced in DNA by x-rays, although two may possess a reduced capacity to repair damage caused by localized incorporation of high specific activity thymidine- 3 H. The data have been employed to construct a model for repair of uv-induced damage in Drosophila DNA. Implications of the model for DNA repair in mammals are discussed

  2. High-dose irradiation induces cell cycle arrest, apoptosis, and developmental defects during Drosophila oogenesis.

    Directory of Open Access Journals (Sweden)

    Hee Jin Shim

    Full Text Available Ionizing radiation (IR treatment induces a DNA damage response, including cell cycle arrest, DNA repair, and apoptosis in metazoan somatic cells. Because little has been reported in germline cells, we performed a temporal analysis of the DNA damage response utilizing Drosophila oogenesis as a model system. Oogenesis in the adult Drosophila female begins with the generation of 16-cell cyst by four mitotic divisions of a cystoblast derived from the germline stem cells. We found that high-dose irradiation induced S and G2 arrests in these mitotically dividing germline cells in a grp/Chk1- and mnk/Chk2-dependent manner. However, the upstream kinase mei-41, Drosophila ATR ortholog, was required for the S-phase checkpoint but not for the G2 arrest. As in somatic cells, mnk/Chk2 and dp53 were required for the major cell death observed in early oogenesis when oocyte selection and meiotic recombination occurs. Similar to the unscheduled DNA double-strand breaks (DSBs generated from defective repair during meiotic recombination, IR-induced DSBs produced developmental defects affecting the spherical morphology of meiotic chromosomes and dorsal-ventral patterning. Moreover, various morphological abnormalities in the ovary were detected after irradiation. Most of the IR-induced defects observed in oogenesis were reversible and were restored between 24 and 96 h after irradiation. These defects in oogenesis severely reduced daily egg production and the hatch rate of the embryos of irradiated female. In summary, irradiated germline cells induced DSBs, cell cycle arrest, apoptosis, and developmental defects resulting in reduction of egg production and defective embryogenesis.

  3. Characterization of the Drosophila ortholog of the human Usher Syndrome type 1G protein sans.

    Directory of Open Access Journals (Sweden)

    Fabio Demontis

    Full Text Available BACKGROUND: The Usher syndrome (USH is the most frequent deaf-blindness hereditary disease in humans. Deafness is attributed to the disorganization of stereocilia in the inner ear. USH1, the most severe subtype, is associated with mutations in genes encoding myosin VIIa, harmonin, cadherin 23, protocadherin 15, and sans. Myosin VIIa, harmonin, cadherin 23, and protocadherin 15 physically interact in vitro and localize to stereocilia tips in vivo, indicating that they form functional complexes. Sans, in contrast, localizes to vesicle-like structures beneath the apical membrane of stereocilia-displaying hair cells. How mutations in sans result in deafness and blindness is not well understood. Orthologs of myosin VIIa and protocadherin 15 have been identified in Drosophila melanogaster and their genetic analysis has identified essential roles in auditory perception and microvilli morphogenesis, respectively. PRINCIPAL FINDINGS: Here, we have identified and characterized the Drosophila ortholog of human sans. Drosophila Sans is expressed in tubular organs of the embryo, in lens-secreting cone cells of the adult eye, and in microvilli-displaying follicle cells during oogenesis. Sans mutants are viable, fertile, and mutant follicle cells appear to form microvilli, indicating that Sans is dispensable for fly development and microvilli morphogenesis in the follicle epithelium. In follicle cells, Sans protein localizes, similar to its vertebrate ortholog, to intracellular punctate structures, which we have identified as early endosomes associated with the syntaxin Avalanche. CONCLUSIONS: Our work is consistent with an evolutionary conserved function of Sans in vesicle trafficking. Furthermore it provides a significant basis for further understanding of the role of this Usher syndrome ortholog in development and disease.

  4. Cryopreservation of peach palm zygotic embryos. (United States)

    Steinmacher, Douglas A; Saldanha, Cleber W; Clement, Charles R; Guerra, Miguel P


    Cryopreservation is a safe and cost-effective option for long-term germplasm conservation of non-orthodox seed species, such as peach palm (Bactris gasipaes). The objective of the present study was to establish a cryopreservation protocol for peach palm zygotic embryos based on the encapsulation-dehydration technique. After excision, zygotic embryos were encapsulated with 3 percent sodium alginate plus 2 M glycerol and 0.4 M sucrose, and pre-treated or not with 1 M sucrose during 24 h, followed by air-drying. Fresh weight water contents of beads decreased from 83 percent and 87 percent to 18 percent and 20 percent for pre-treated or non-pretreated beads, respectively, after 4 h of dehydration. Sucrose pre-treatment at 1 M caused lower zygotic embryo germination and plantlet height in contrast to non-treated beads. All the variables were statistically influenced by dehydration time. Optimal conditions for recovery of cryopreserved zygotic embryos include encapsulation and dehydration for 4 h in a forced air cabinet to 20 percent water content, followed by rapid freezing in liquid nitrogen (-196 degree C) and rapid thawing at 45 degree C. In these conditions 29 percent of the zygotic embryos germinated in vitro. However, plantlets obtained from dehydrated zygotic embryos had stunted haustoria and lower heights. Histological analysis showed that haustorium cells were large, vacuolated, with few protein bodies. In contrast, small cells with high nucleus:cytoplasm ratio formed the shoot apical meristem of the embryos, which were the cell types with favorable characteristics for survival after exposure to liquid nitrogen. Plantlets were successfully acclimatized and showed 41+/-9 percent and 88+/-4 percent survival levels after 12 weeks of acclimatization from cryopreserved and non-cryopreserved treatments, respectively.

  5. Developmental competence of porcine chimeric embryos produced by aggregation

    DEFF Research Database (Denmark)

    Li, Juan; Jakobsen, Jannik E.; Xiong, Qiang


    The purpose of our study was to compare the developmental competence and blastomere allocation of porcine chimeric embryos formed by micro-well aggregation. Chimeras were created by aggregating either two blastomeres originating from 2-cell embryos or two whole embryos, where embryos were produced...... either by parthenogenetic activation (PA) or handmade cloning (HMC). Results showed that the developmental competence of chimeric embryos, evaluated based on their blastocyst rate and total cell number per blastocyst, was increased when two whole 2-cell stage embryos (PA or HMC) were aggregated....... In comparison, when two blastomeres were aggregated, the developmental competence of the chimeric embryos decreased if the blastomeres were either from PA or from HMC embryos, but not if they were from different sources, i.e. one PA and one HMC blastomere. To evaluate the cell contribution in embryo formation...

  6. Patients' Attitudes towards the Surplus Frozen Embryos in China

    Directory of Open Access Journals (Sweden)

    Xuan Jin


    Full Text Available Background. Assisted reproductive techniques have been used in China for more than 20 years. This study investigates the attitudes of surplus embryo holders towards embryos storage and donation for medical research. Methods. A total of 363 couples who had completed in vitro fertilization (IVF treatment and had already had biological children but who still had frozen embryos in storage were invited to participate. Interviews were conducted by clinics in a narrative style. Results. Family size was the major reason for participants’ (discontinuation of embryo storage; moreover, the moral status of embryos was an important factor for couples choosing embryo storage, while the storage fee was an important factor for couples choosing embryo disposal. Most couples discontinued the storage of their embryos once their children were older than 3 years. In our study, 58.8% of the couples preferred to dispose of surplus embryos rather than donate them to research, citing a lack of information and distrust in science as significant reasons for their decision. Conclusions. Interviews regarding frozen embryos, including patients’ expectations for embryo storage and information to assist them with decisions regarding embryo disposal, are beneficial for policies addressing embryo disposition and embryo donation in China.

  7. Embryos, individuals, and persons: an argument against embryo creation and research. (United States)

    Tollefsen, C


    One strategy for arguing that it should be legally permissible to create human embryos, or to use spare human embryos, for scientific research purposes involves the claim that such embryos cannot be persons because they are not human individuals while twinning may yet take place. Being a human individual is considered to be by most people a necessary condition for being a human person. I argue first that such an argument against the personhood of embryos must be rationally conclusive if their destruction in public places such as laboratories is to be countenanced. I base this argument on a popular understanding of the role that the notion of privacy plays in abortion laws. I then argue that such arguments against personhood are not rationally conclusive. The claim that the early embryos is not a human individual is not nearly as obvious as some assert.

  8. Release of somatic embryogenic potential from excised zygotic embryos of carrot and maintenance of proembryonic cultures in hormone-free medium (United States)

    Smith, D. L.; Krikorian, A. D.


    multiplication of globular somatic proembryos. The sequence of events leading from excised broken zygotic embryos to the formation of somatic embryos and the maintenance of somatic proembryos are demonstrated by scanning electron microscopy and histological preparations. Germination levels from intact zygotic embryos on media with varying levels and ratios of unreduced vs. reduced inorganic nitrogen were determined as well and provided baseline or control data on the type of response obtained from nonwounded material.

  9. Viruses and Antiviral Immunity in Drosophila (United States)

    Xu, Jie; Cherry, Sara


    Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools available in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue. PMID:23680639

  10. Receptor Tyrosine Kinases in Drosophila Development (United States)

    Sopko, Richelle; Perrimon, Norbert


    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  11. Apoptosis in Drosophila: which role for mitochondria? (United States)

    Clavier, Amandine; Rincheval-Arnold, Aurore; Colin, Jessie; Mignotte, Bernard; Guénal, Isabelle


    It is now well established that the mitochondrion is a central regulator of mammalian cell apoptosis. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, mainly because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and cell death in Drosophila occurs at the mitochondrial level. Numerous proteins, including RHG proteins and proteins of the Bcl-2 family that are key regulators of Drosophila apoptosis, constitutively or transiently localize in mitochondria. These proteins participate in the cell death process at different levels such as degradation of Diap1, a Drosophila IAP, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. Here, we review these mitochondrial events that might have their counterpart in human.

  12. Isolation of insecticide resistance-related forms of cytochrome P-450 from Drosophila melanogaster.


    Sundseth, S S; Nix, C E; Waters, L C


    Significant purification of the ubiquitous cytochrome P-450-A and the strain-specific P-450-B from Drosophila melanogaster has been achieved by sequential chromatography on octylamino-agarose, DEAE-cellulose and hydroxyapatite. Preparations of P-450-A (specific contents of 7-9 nmol/mg) were homogeneous as determined by SDS/polyacrylamide-gel electrophoresis (PAGE) analysis. Preparations enriched for P-450-B (specific contents of 4-7 nmol/mg) contained significant amounts of P-450-A but were e...

  13. Generation of single-copy transgenic mouse embryos directly from ES cells by tetraploid embryo complementation

    Directory of Open Access Journals (Sweden)

    Zhao Roong


    Full Text Available Abstract Background Transgenic mice have been used extensively to analyze gene function. Unfortunately, traditional transgenic procedures have only limited use in analyzing alleles that cause lethality because lines of founder mice cannot be established. This is frustrating given that such alleles often reveal crucial aspects of gene function. For this reason techniques that facilitate the generation of embryos expressing such alleles would be of enormous benefit. Although the transient generation of transgenic embryos has allowed limited analysis of lethal alleles, it is expensive, time consuming and technically challenging. Moreover a fundamental limitation with this approach is that each embryo generated is unique and transgene expression is highly variable due to the integration of different transgene copy numbers at random genomic sites. Results Here we describe an alternative method that allows the generation of clonal mouse embryos harboring a single-copy transgene at a defined genomic location. This was facilitated through the production of Hprt negative embryonic stem cells that allow the derivation of embryos by tetraploid embryo complementation. We show that targeting transgenes to the hprt locus in these ES cells by homologous recombination can be efficiently selected by growth in HAT medium. Moreover, embryos derived solely from targeted ES cells containing a single copy LacZ transgene under the control of the α-myosin heavy chain promoter exhibited the expected cardiac specific expression pattern. Conclusion Our results demonstrate that tetraploid embryo complementation by F3 hprt negative ES cells facilitates the generation of transgenic mouse embryos containing a single copy gene at a defined genomic locus. This approach is simple, extremely efficient and bypasses any requirement to generate chimeric mice. Moreover embryos generated by this procedure are clonal in that they are all derived from a single ES cell lines. This

  14. Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm and testa

    Directory of Open Access Journals (Sweden)

    Traud eWinkelmann


    Full Text Available Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified.Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos.

  15. Microwave effects in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Dardalhon, M.; Averbeck, D.; Berteaud, A.J.


    Experiments were set up to investigate the effects of open space microwave irradiation of the millimeter (73 GHz) and the centimeter (17 GHz) range in Drosophila melanogaster. We used the wild type strain Paris and the strain delta carrying melanitic tumors in the 3rd larval stage, in the pupae and the adults. The power densities were up to -2 for 73 GHz and about 60 -2 for microwaves at 17 GHz. After 2h exposure to microwaves of 17 GHz or 73 GHz the hatching of the irradiated eggs and their development were normal. In a few cases there was a tendency towards a diminution of the survival of eggs treated at different stages, of larvae treated in the stages 1, 2 and 3 and of treated pupae. However, this was not always statistically significant. The microwave treatment did not induce teratological changes in the adults. A statistical analysis brought about slight diminutions in the incidence and multiplicity of tumors in adult flies. When wild type females were exposed to microwaves of 17 GHz for 16 or 21 h and crossed with untreated males we observed a marked increase in fertility as compared to untreated samples. The viability and tumor incidence in the offspring was not affected. Similar results were obtained when microwaves treated males were crossed with untreated females

  16. Olfactory memory traces in Drosophila. (United States)

    Berry, Jacob; Krause, William C; Davis, Ronald L


    In Drosophila, the fruit fly, coincident exposure to an odor and an aversive electric shock can produce robust behavioral memory. This behavioral memory is thought to be regulated by cellular memory traces within the central nervous system of the fly. These molecular, physiological, or structural changes in neurons, induced by pairing odor and shock, regulate behavior by altering the neurons' response to the learned environment. Recently, novel in vivo functional imaging techniques have allowed researchers to observe cellular memory traces in intact animals. These investigations have revealed interesting temporal and spatial dynamics of cellular memory traces. First, a short-term cellular memory trace was discovered that exists in the antennal lobe, an early site of olfactory processing. This trace represents the recruitment of new synaptic activity into the odor representation and forms for only a short period of time just after training. Second, an intermediate-term cellular memory trace was found in the dorsal paired medial neuron, a neuron thought to play a role in stabilizing olfactory memories. Finally, a long-term protein synthesis-dependent cellular memory trace was discovered in the mushroom bodies, a structure long implicated in olfactory learning and memory. Therefore, it appears that aversive olfactory associations are encoded by multiple cellular memory traces that occur in different regions of the brain with different temporal domains.

  17. Gene expression variations during Drosophila metamorphosis in real and simulated gravity (United States)

    Marco, R.; Leandro-García, L. J.; Benguría, A.; Herranz, R.; Zeballos, A.; Gassert, G.; van Loon, J. J.; Medina, F. J.

    Establishing the extent and significance of the effects of the exposure to microgravity of complex living organisms is a critical piece of information if the long-term exploration of near-by planets involving human beings is going to take place in the Future As a first step in this direction we have started to look into the patterns of gene expression during Drosophila development in real and simulated microgravity using microarray analysis of mRNA isolated from samples exposed to different environmental conditions In these experiments we used Affymetrix chips version 1 0 containing probes for more than 14 000 genes almost the complete Drosophila genome 55 of which are tagged with some molecular or functional designation while 45 are still waiting to be identified in functional terms The real microgravity exposure was imposed on the samples during the crew exchanging Soyuz 8 Mission to the ISS in October 2003 when after 11 days in Microgravity the Spanish-born astronaut Pedro Duque returned in the Soyuz 7 capsule carrying the experiments prepared by our Team Due to the constraints in the current ISS experiments in these Missions we limited the stages explored in our experiment to the developmental processes occurring during Drosophila metamorphosis As the experimental conditions at the launch site Baikonour were fairly limited we prepared the experiment in Madrid Toulouse and transp o rted the samples at 15 C in a temperature controlled container to slow down the developmental process a

  18. Proteomic changes in response to crystal formation in Drosophila Malpighian tubules. (United States)

    Chung, Vera Y; Konietzny, Rebecca; Charles, Philip; Kessler, Benedikt; Fischer, Roman; Turney, Benjamin W


    Kidney stone disease is a major health burden with a complex and poorly understood pathophysiology. Drosophila Malpighian tubules have been shown to resemble human renal tubules in their physiological function. Herein, we have used Drosophila as a model to study the proteomic response to crystal formation induced by dietary manipulation in Malpighian tubules. Wild-type male flies were reared in parallel groups on standard medium supplemented with lithogenic agents: control, Sodium Oxalate (NaOx) and Ethylene Glycol (EG). Malpighian tubules were dissected after 2 weeks to visualize crystals with polarized light microscopy. The parallel group was dissected for protein extraction. A new method of Gel Assisted Sample Preparation (GASP) was used for protein extraction. Differentially abundant proteins (p<0.05) were identified by label-free quantitative proteomic analysis in flies fed with NaOx and EG diet compared with control. Their molecular functions were further screened for transmembrane ion transporter, calcium or zinc ion binder. Among these, 11 candidate proteins were shortlisted in NaOx diet and 16 proteins in EG diet. We concluded that GASP is a proteomic sample preparation method that can be applied to individual Drosophila Malpighian tubules. Our results may further increase the understanding of the pathophysiology of human kidney stone disease.

  19. Drosophila Studies on Autism Spectrum Disorders

    Institute of Scientific and Technical Information of China (English)

    Yao Tian; Zi Chao Zhang; Junhai Han


    In the past decade,numerous genes associated with autism spectrum disorders (ASDs) have been identified.These genes encode key regulators of synaptogenesis,synaptic function,and synaptic plasticity.Drosophila is a prominent model system for ASD studies to define novel genes linked to ASDs and decipher their molecular roles in synaptogenesis,synaptic function,synaptic plasticity,and neural circuit assembly and consolidation.Here,we review Drosophila studies on ASD genes that regulate synaptogenesis,synaptic function,and synaptic plasticity through modulating chromatin remodeling,transcription,protein synthesis and degradation,cytoskeleton dynamics,and synaptic scaffolding.

  20. REDfly: a Regulatory Element Database for Drosophila. (United States)

    Gallo, Steven M; Li, Long; Hu, Zihua; Halfon, Marc S


    Bioinformatics studies of transcriptional regulation in the metazoa are significantly hindered by the absence of readily available data on large numbers of transcriptional cis-regulatory modules (CRMs). Even the richly annotated Drosophila melanogaster genome lacks extensive CRM information. We therefore present here a database of Drosophila CRMs curated from the literature complete with both DNA sequence and a searchable description of the gene expression pattern regulated by each CRM. This resource should greatly facilitate the development of computational approaches to CRM discovery as well as bioinformatics analyses of regulatory sequence properties and evolution.

  1. Longevity and the stress response in Drosophila

    DEFF Research Database (Denmark)

    Vermeulen, Corneel J.; Loeschcke, Volker


    briefly review the state of the art of research on ageing and longevity in the model organism Drosophila, with focus on the role of the general stress response. We will conclude by contemplating some of the implications of the findings in this research and will suggest several directions for future...... research. Keywords: Ageing; Stress response; Hsp; Drosophila; Stress......The concept that lifespan is a function of the capacity to withstand extrinsic stress is very old. In concordance with this, long-lived individuals often have increased resistance against a variety of stresses throughout life. Genes underlying the stress response may therefore have the ability...

  2. Assay using embryo aggregation chimeras for the detection of nonlethal changes in X-irradiated mouse preimplantation embryos

    International Nuclear Information System (INIS)

    Obasaju, M.F.; Wiley, L.M.; Oudiz, D.J.; Miller, L.; Samuels, S.J.; Chang, R.J.; Overstreet, J.W.


    We have developed a short-term in vitro assay for the detection of sublethal effects produced by very low levels of ionizing radiation. The assay utilizes mouse embryo aggregation chimeras consisting of one irradiated embryo paired with an unirradiated embryo whose blastomeres have been labeled with fluorescein isothiocyanate (FITC). X irradiation (from 0.05 to 2 Gy) and chimera construction were performed with four-cell stage embryos, and the chimeras were cultured for 40 h to the morula stage. The morulae were partially dissociated with calcium-free culture medium and viewed under phase contrast and epifluorescence microscopy to obtain total embryo cell number and the cellular contribution of irradiated (unlabeled) and control (FITC labeled) embryos per chimera. In chimeras where neither embryo was irradiated, the ratio of the unlabeled blastomeres to the total number of blastomeres per chimera embryo was 0.50 (17.8 +/- 5.6 cells per unlabeled embryo and 17.4 +/- 5.5 cells per FITC-labeled partner embryo). However, in chimeras formed after the unlabeled embryos were irradiated with as little as 0.05 Gy, the ratio of unlabeled blastomeres to the total number of blastomeres per chimera embryo was 0.43 (P less than 0.01). The apparent decreases in cell proliferation were not observed in irradiated embryos that were merely cocultured with control embryos, regardless of whether the embryos were zona enclosed or zona free. We conclude that very low levels of radiation induce sublethal changes in cleaving embryos that are expressed as a proliferative disadvantage within two cell cycles when irradiated embryos are in direct cell-to-cell contact with unirradiated embryos

  3. The Ubx Polycomb response element bypasses an unpaired Fab-8 insulator via cis transvection in Drosophila. (United States)

    Lu, Danfeng; Li, Zhuoran; Li, Lingling; Yang, Liping; Chen, Guijun; Yang, Deying; Zhang, Yue; Singh, Vikrant; Smith, Sheryl; Xiao, Yu; Wang, Erlin; Ye, Yunshuang; Zhang, Wei; Zhou, Lei; Rong, Yikang; Zhou, Jumin


    Chromatin insulators or boundary elements protect genes from regulatory activities from neighboring genes or chromatin domains. In the Drosophila Abdominal-B (Abd-B) locus, the deletion of such elements, such as Frontabdominal-7 (Fab-7) or Fab-8 led to dominant gain of function phenotypes, presumably due to the loss of chromatin barriers. Homologous chromosomes are paired in Drosophila, creating a number of pairing dependent phenomena including transvection, and whether transvection may affect the function of Polycomb response elements (PREs) and thus contribute to the phenotypes are not known. Here, we studied the chromatin barrier activity of Fab-8 and how it is affected by the zygosity of the transgene, and found that Fab-8 is able to block the silencing effect of the Ubx PRE on the DsRed reporter gene in a CTCF binding sites dependent manner. However, the blocking also depends on the zygosity of the transgene in that the barrier activity is present when the transgene is homozygous, but absent when the transgene is heterozygous. To analyze this effect, we performed chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR) experiments on homozygous transgenic embryos, and found that H3K27me3 and H3K9me3 marks are restricted by Fab-8, but they spread beyond Fab-8 into the DsRed gene when the two CTCF binding sites within Fab-8 were mutated. Consistent with this, the mutation reduced H3K4me3 and RNA Pol II binding to the DsRed gene, and consequently, DsRed expression. Importantly, in heterozygous embryos, Fab-8 is unable to prevent the spread of H3K27me3 and H3K9me3 marks from crossing Fab-8 into DsRed, suggesting an insulator bypass. These results suggest that in the Abd-B locus, deletion of the insulator in one copy of the chromosome could lead to the loss of insulator activity on the homologous chromosome, and in other loci where chromosomal deletion created hemizygous regions of the genome, the chromatin barrier could be compromised. This study highlights

  4. In vitro manipulation techniques of porcine embryos

    DEFF Research Database (Denmark)

    Liu, Ying; Li, Juan; Løvendahl, Peter


    During the last 17 years, considerable advancements have been achieved in the production of pigs, transgenic and non-transgenic, by methods of somatic cell nuclear transfer, in vitro fertilisation, intracytoplasmic sperm injection, microinjection and sperm-mediated gene transfer by artificial...... insemination. Therefore, a review of the overall efficiency for the developmental competence of embryos produced by these in vitro methods would be useful in order to obtain a more thorough overview of this growing area with respect to its development and present status. In this review a meta-analysis was used...... to analyse data collected from all published articles with a focus on zygotes and embryos for transfer, pregnancy, full-term development and piglets born. It was generally concluded that an increasing level of in vitro manipulation of porcine embryos decreased the overall efficiency for production of piglets...

  5. [Chapter 9. The embryo in comparative law]. (United States)

    Mastor, Wanda


    On the boundaries of life and, as a result, almost a question of metaphysics, still dividing science and continually fuelling debates, one question does seem to be legally insoluble, ie the question of the status of the human embryo. A comparatist look allows us to put into perspective the various national postures with regard to the embryo in order to confront them, by putting forward the areas where they converge or diverge. Although a very global approach allows us to note certain similarities, a more precise study of the question of abortion in particular reflects the evidence of the contextualisation of the embryo. It is what it is, subject or object, enjoying absolute or very relative protection, a simply legislative or constitutional status, only with regard to legal systems, but also moral and religious systems in which it takes its place.

  6. Embryo aggregation does not improve the development of interspecies somatic cell nuclear transfer embryos in the horse. (United States)

    Gambini, Andrés; De Stéfano, Adrián; Jarazo, Javier; Buemo, Carla; Karlanian, Florencia; Salamone, Daniel Felipe


    The low efficiency of interspecies somatic cell nuclear transfer (iSCNT) makes it necessary to investigate new strategies to improve embryonic developmental competence. Embryo aggregation has been successfully applied to improve cloning efficiency in mammals, but it remains unclear whether it could also be beneficial for iSCNT. In this study, we first compared the effect of embryo aggregation over in vitro development and blastocyst quality of porcine, bovine, and feline zona-free (ZF) parthenogenetic (PA) embryos to test the effects of embryo aggregation on species that were later used as enucleated oocytes donors in our iSCNT study. We then assessed whether embryo aggregation could improve the in vitro development of ZF equine iSCNT embryos after reconstruction with porcine, bovine, and feline ooplasm. Bovine- and porcine-aggregated PA blastocysts had significantly larger diameters compared with nonaggregated embryos. On the other hand, feline- and bovine-aggregated PA embryos had higher blastocyst cell number. Embryo aggregation of equine-equine SCNT was found to be beneficial for embryo development as we have previously reported, but the aggregation of three ZF reconstructed embryos did not improve embryo developmental rates on iSCNT. In vitro embryo development of nonaggregated iSCNT was predominantly arrested around the stage when transcriptional activation of the embryonic genome is reported to start on the embryo of the donor species. Nevertheless, independent of embryo aggregation, equine blastocyst-like structures could be obtained in our study using domestic feline-enucleated oocytes. Taken together, these results reported that embryo aggregation enhance in vitro PA embryo development and embryo quality but effects vary depending on the species. Embryo aggregation also improves, as expected, the in vitro embryo development of equine-equine SCNT embryos; however, we did not observe positive effects on equine iSCNT embryo development. Among oocytes

  7. Laser confers less embryo exposure than acid tyrode for embryo biopsy in preimplantation genetic diagnosis cycles: a randomized study. (United States)

    Geber, Selmo; Bossi, Renata; Lisboa, Cintia B; Valle, Marcelo; Sampaio, Marcos


    We compared two methods of zona pellucida drilling. 213 embryos were biopsied with acid Tyrode. Each biopsy took 3 minutes and the entire procedure ~29 minutes. 5% of blastomeres lysed, 49% of embryos became blastocyst and 36% of patients became pregnant. 229 embryos were biopsied with laser. Each biopsy took 30 seconds and the entire procedure ~7 minutes. 2.5% of blastomeres lysed, 50.6% of embryos became blastocyst and 47% of patients became pregnant. We can conclude that laser can be used for embryo biopsy. Reduction of embryo exposure and of removed blastomeres is associated with increased blastocysts available for transfer and a better clinical outcome.

  8. Laser confers less embryo exposure than acid tyrode for embryo biopsy in preimplantation genetic diagnosis cycles: a randomized study

    Directory of Open Access Journals (Sweden)

    Valle Marcelo


    Full Text Available Abstract We compared two methods of zona pellucida drilling. 213 embryos were biopsied with acid Tyrode. Each biopsy took 3 minutes and the entire procedure ~29 minutes. 5% of blastomeres lysed, 49% of embryos became blastocyst and 36% of patients became pregnant. 229 embryos were biopsied with laser. Each biopsy took 30 seconds and the entire procedure ~7 minutes. 2.5% of blastomeres lysed, 50.6% of embryos became blastocyst and 47% of patients became pregnant. We can conclude that laser can be used for embryo biopsy. Reduction of embryo exposure and of removed blastomeres is associated with increased blastocysts available for transfer and a better clinical outcome.

  9. Topology and robustness in the Drosophila segment polarity network.

    Directory of Open Access Journals (Sweden)

    Nicholas T Ingolia


    Full Text Available A complex hierarchy of genetic interactions converts a single-celled Drosophila melanogaster egg into a multicellular embryo with 14 segments. Previously, von Dassow et al. reported that a mathematical model of the genetic interactions that defined the polarity of segments (the segment polarity network was robust (von Dassow et al. 2000. As quantitative information about the system was unavailable, parameters were sampled randomly. A surprisingly large fraction of these parameter sets allowed the model to maintain and elaborate on the segment polarity pattern. This robustness is due to the positive feedback of gene products on their own expression, which induces individual cells in a model segment to adopt different stable expression states (bistability corresponding to different cell types in the segment polarity pattern. A positive feedback loop will only yield multiple stable states when the parameters that describe it satisfy a particular inequality. By testing which random parameter sets satisfy these inequalities, I show that bistability is necessary to form the segment polarity pattern and serves as a strong predictor of which parameter sets will succeed in forming the pattern. Although the original model was robust to parameter variation, it could not reproduce the observed effects of cell division on the pattern of gene expression. I present a modified version that incorporates recent experimental evidence and does successfully mimic the consequences of cell division. The behavior of this modified model can also be understood in terms of bistability in positive feedback of gene expression. I discuss how this topological property of networks provides robust pattern formation and how large changes in parameters can change the specific pattern produced by a network.

  10. Transcriptional control in the segmentation gene network of Drosophila.

    Directory of Open Access Journals (Sweden)

    Mark D Schroeder


    Full Text Available The segmentation gene network of Drosophila consists of maternal and zygotic factors that generate, by transcriptional (cross- regulation, expression patterns of increasing complexity along the anterior-posterior axis of the embryo. Using known binding site information for maternal and zygotic gap transcription factors, the computer algorithm Ahab recovers known segmentation control elements (modules with excellent success and predicts many novel modules within the network and genome-wide. We show that novel module predictions are highly enriched in the network and typically clustered proximal to the promoter, not only upstream, but also in intronic space and downstream. When placed upstream of a reporter gene, they consistently drive patterned blastoderm expression, in most cases faithfully producing one or more pattern elements of the endogenous gene. Moreover, we demonstrate for the entire set of known and newly validated modules that Ahab's prediction of binding sites correlates well with the expression patterns produced by the modules, revealing basic rules governing their composition. Specifically, we show that maternal factors consistently act as activators and that gap factors act as repressors, except for the bimodal factor Hunchback. Our data suggest a simple context-dependent rule for its switch from repressive to activating function. Overall, the composition of modules appears well fitted to the spatiotemporal distribution of their positive and negative input factors. Finally, by comparing Ahab predictions with different categories of transcription factor input, we confirm the global regulatory structure of the segmentation gene network, but find odd skipped behaving like a primary pair-rule gene. The study expands our knowledge of the segmentation gene network by increasing the number of experimentally tested modules by 50%. For the first time, the entire set of validated modules is analyzed for binding site composition under a

  11. Normal Female Germ Cell Differentiation Requires the Female X Chromosome to Autosome Ratio and Expression of Sex-Lethal in DROSOPHILA MELANOGASTER


    Schüpbach, Trudi


    In somatic cells of Drosophila, the ratio of X chromosomes to autosomes (X:A ratio) determines sex and dosage compensation. The present paper addresses the question of whether germ cells also use the X:A ratio for sex determination and dosage compensation. Triploid female embryos were generated which, through the loss of an unstable ring-X chromosome, contained some germ cells of 2X;3A constitution in their ovaries. Such germ cells were shown to differentiate along one of two alternative pat...

  12. Novel isoforms of Dlg are fundamental for neuronal development in Drosophila. (United States)

    Mendoza, Carolina; Olguín, Patricio; Lafferte, Gabriela; Thomas, Ulrich; Ebitsch, Susanne; Gundelfinger, Eckart D; Kukuljan, Manuel; Sierralta, Jimena


    Drosophila discs-large (dlg) mutants exhibit multiple developmental abnormalities, including severe defects in neuronal differentiation and synaptic structure and function. These defects have been ascribed to the loss of a single gene product, Dlg-A, a scaffold protein thought to be expressed in many cell types. Here, we describe that additional isoforms arise as a consequence of different transcription start points and alternative splicing of dlg. At least five different dlg gene products are predicted. We identified a subset of dlg-derived cDNAs that include novel exons encoding a peptide homologous to the N terminus of the mammalian protein SAP97/hDLG (S97N). Dlg isoforms containing the S97N domain are expressed at larval neuromuscular junctions and within the CNS of both embryos and larvae but are not detectable in epithelial tissues. Strong hypomorphic dlg alleles exhibit decreased expression of S97N, which may account for neural-specific aspects of the pleiomorphic dlg mutant phenotype. Selective inhibition of the expression of S97N-containing proteins in embryos by double-strand RNA leads to severe defects in neuronal differentiation and axon guidance, without overt perturbations in epithelia. These results indicate that the differential expression of dlg products correlates with distinct functions in non-neural and neural cells. During embryonic development, proteins that include the S97N domain are essential for proper neuronal differentiation and organization, acting through mechanisms that may include the adequate localization of cell fate determinants.

  13. A dual role of the extracellular domain of Drosophila Crumbs for morphogenesis of the embryonic neuroectoderm

    Directory of Open Access Journals (Sweden)

    Shradha Das


    Full Text Available Epithelia are highly polarised tissues and several highly conserved polarity protein complexes serve to establish and maintain polarity. The transmembrane protein Crumbs (Crb, the central component of the Crb protein complex, is required, among others, for the maintenance of polarity in most epithelia in the Drosophila embryo. However, different epithelia exhibit different phenotypic severity upon loss of crb. Using a transgenomic approach allowed us to more accurately define the role of crb in different epithelia. In particular, we provide evidence that the loss of epithelial tissue integrity in the ventral epidermis of crb mutant embryos is due to impaired actomyosin activity and an excess number of neuroblasts. We demonstrate that the intracellular domain of Crb could only partially rescue this phenotype, while it is able to completely restore tissue integrity in other epithelia. Based on these results we suggest a dual role of the extracellular domain of Crb in the ventral neuroectoderm. First, it is required for apical enrichment of the Crb protein, which in turn regulates actomyosin activity and thereby ensures tissue integrity; and second, the extracellular domain of Crb stabilises the Notch receptor and thereby ensures proper Notch signalling and specification of the correct number of neuroblasts.

  14. Tre1, a G protein-coupled receptor, directs transepithelial migration of Drosophila germ cells.

    Directory of Open Access Journals (Sweden)

    Prabhat S Kunwar


    Full Text Available In most organisms, germ cells are formed distant from the somatic part of the gonad and thus have to migrate along and through a variety of tissues to reach the gonad. Transepithelial migration through the posterior midgut (PMG is the first active step during Drosophila germ cell migration. Here we report the identification of a novel G protein-coupled receptor (GPCR, Tre1, that is essential for this migration step. Maternal tre1 RNA is localized to germ cells, and tre1 is required cell autonomously in germ cells. In tre1 mutant embryos, most germ cells do not exit the PMG. The few germ cells that do leave the midgut early migrate normally to the gonad, suggesting that this gene is specifically required for transepithelial migration and that mutant germ cells are still able to recognize other guidance cues. Additionally, inhibiting small Rho GTPases in germ cells affects transepithelial migration, suggesting that Tre1 signals through Rho1. We propose that Tre1 acts in a manner similar to chemokine receptors required during transepithelial migration of leukocytes, implying an evolutionarily conserved mechanism of transepithelial migration. Recently, the chemokine receptor CXCR4 was shown to direct migration in vertebrate germ cells. Thus, germ cells may more generally use GPCR signaling to navigate the embryo toward their target.

  15. A positional code and anisotropic forces control tissue remodeling in Drosophila (United States)

    Zallen, Jennifer

    A major challenge in developmental biology is to understand how tissue-scale changes in organism structure arise from events that occur on a cellular and molecular level. We are using cell biological, biophysical, and quantitative live-embryo imaging approaches to understand how genes encode the forces that shape tissues, and to identify the mechanisms that modulate cell behavior in response to local forces. In many animals, the elongated head-to-tail body axis is achieved by rapid and coordinated movements of hundreds of cells. We found that in the fruit fly, these cell movements are regulated by subcellular asymmetries in the localization of proteins that generate contractile and adhesive forces between cells. Asymmetries in the force-generating machinery are in turn controlled by a positional code of spatial information provided by an ancient family of Toll-related receptors that are widely used for pathogen recognition by the innate immune system. I will describe how this spatial system systematically orients local cell movements and collective rosette-like clusters in the Drosophila embryo. Rosettes have now also been shown to shape the body axis in chicks, frogs, and mice, demonstrating that rosette behaviors are a general mechanism linking cellular asymmetry to tissue reorganization.

  16. Embryonic origins of a motor system: motor dendrites form a myotopic map in Drosophila.

    Directory of Open Access Journals (Sweden)

    Matthias Landgraf


    Full Text Available The organisational principles of locomotor networks are less well understood than those of many sensory systems, where in-growing axon terminals form a central map of peripheral characteristics. Using the neuromuscular system of the Drosophila embryo as a model and retrograde tracing and genetic methods, we have uncovered principles underlying the organisation of the motor system. We find that dendritic arbors of motor neurons, rather than their cell bodies, are partitioned into domains to form a myotopic map, which represents centrally the distribution of body wall muscles peripherally. While muscles are segmental, the myotopic map is parasegmental in organisation. It forms by an active process of dendritic growth independent of the presence of target muscles, proper differentiation of glial cells, or (in its initial partitioning competitive interactions between adjacent dendritic domains. The arrangement of motor neuron dendrites into a myotopic map represents a first layer of organisation in the motor system. This is likely to be mirrored, at least in part, by endings of higher-order neurons from central pattern-generating circuits, which converge onto the motor neuron dendrites. These findings will greatly simplify the task of understanding how a locomotor system is assembled. Our results suggest that the cues that organise the myotopic map may be laid down early in development as the embryo subdivides into parasegmental units.

  17. Arabidopsis mitochondrial protein slow embryo development1 is essential for embryo development

    International Nuclear Information System (INIS)

    Ju, Yan; Liu, Chunying; Lu, Wenwen; Zhang, Quan; Sodmergen


    The plant seeds formation are crucial parts in reproductive process in seed plants as well as food source for humans. Proper embryo development ensure viable seed formation. Here, we showed an Arabidopsis T-DNA insertion mutant slow embryo development1 (sed1) which exhibited retarded embryogenesis, led to aborted seeds. Embryo without SED1 developed slower compared to normal one and could be recognized at early globular stage by its white appearance. In later development stage, storage accumulated poorly with less protein and lipid body production. In vitro culture did not rescue albino embryo. SED1 encoded a protein targeted to mitochondria. Transmission electron microscopic analysis revealed that mitochondria developed abnormally, and more strikingly plastid failed to construct grana in time in sed1/sed1 embryo. These data indicated that SED1 is indispensable for embryogenesis in Arabidopsis, and the mitochondria may be involved in the regulation of many aspects of seed development. -- Highlights: •Arabidopsis SED1 is essential for embryo development. •The sed1 embryo accumulates less storage and has abnormal ultrastructure. •SED1 localizes to the mitochondrion.

  18. Migration and growth of protoplanetary embryos. I. Convergence of embryos in protoplanetary disks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaojia; Lin, Douglas N. C. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Liu, Beibei [Kavli Institute for Astronomy and Astrophysics and Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Li, Hui, E-mail: [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)


    According to the core accretion scenario, planets form in protostellar disks through the condensation of dust, coagulation of planetesimals, and emergence of protoplanetary embryos. At a few AU in a minimum mass nebula, embryos' growth is quenched by dynamical isolation due to the depletion of planetesimals in their feeding zone. However, embryos with masses (M{sub p} ) in the range of a few Earth masses (M {sub ⊕}) migrate toward a transition radius between the inner viscously heated and outer irradiated regions of their natal disk. Their limiting isolation mass increases with the planetesimals surface density. When M{sub p} > 10 M {sub ⊕}, embryos efficiently accrete gas and evolve into cores of gas giants. We use a numerical simulation to show that despite stream line interference, convergent embryos essentially retain the strength of non-interacting embryos' Lindblad and corotation torques by their natal disks. In disks with modest surface density (or equivalently accretion rates), embryos capture each other in their mutual mean motion resonances and form a convoy of super-Earths. In more massive disks, they could overcome these resonant barriers to undergo repeated close encounters, including cohesive collisions that enable the formation of massive cores.

  19. Survival of embryo irradiated with gamma rays by embryo culture in Brassica pekinensis Rupr

    International Nuclear Information System (INIS)

    Moue, T.


    The effect of irradiation on the survival rates and embryonic development of Brassica pekinensis RUPR. (Varieties; Kashin, Kohai 65 nichi and kairyochitose) was investigated. The purpose of this study was to seek ways of increasing the survival rates of embryos such as B.oleracea obtained through embryo culture techniques after irradiation doses affecting seed fertility and germination, for the purpose of increasing mutation rates. Embryos at different developmental stages ranging from the globular to the early heart stages were irradiated with 20 KR of gamma rays at the daily rate 0L 20 KR or 10 KR (Fig.1 and Table 1). The embryos were excised from ovules 4 to 10 days after irradiation and cultured on White's medium. The shooting and rooting rates on the 34th day of culture were higher at the dose of 10 KR/day than 20 KR/day and were lower when the materials were irradiated at the young embryonic stage (Table 3). Varietal differences in the shooting and rooting rates were also observed. The irradiated embryos survived mainly in the state of callus. It was concluded that the embryo culture technique was successful when applied to irradiated embryos excised at the young embryonic stage and that the technique affected B.pekinensis less than B.oleracea

  20. Arabidopsis mitochondrial protein slow embryo development1 is essential for embryo development

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yan; Liu, Chunying; Lu, Wenwen; Zhang, Quan; Sodmergen, E-mail:


    The plant seeds formation are crucial parts in reproductive process in seed plants as well as food source for humans. Proper embryo development ensure viable seed formation. Here, we showed an Arabidopsis T-DNA insertion mutant slow embryo development1 (sed1) which exhibited retarded embryogenesis, led to aborted seeds. Embryo without SED1 developed slower compared to normal one and could be recognized at early globular stage by its white appearance. In later development stage, storage accumulated poorly with less protein and lipid body production. In vitro culture did not rescue albino embryo. SED1 encoded a protein targeted to mitochondria. Transmission electron microscopic analysis revealed that mitochondria developed abnormally, and more strikingly plastid failed to construct grana in time in sed1/sed1 embryo. These data indicated that SED1 is indispensable for embryogenesis in Arabidopsis, and the mitochondria may be involved in the regulation of many aspects of seed development. -- Highlights: •Arabidopsis SED1 is essential for embryo development. •The sed1 embryo accumulates less storage and has abnormal ultrastructure. •SED1 localizes to the mitochondrion.

  1. Brachyury expression in tailless Molgulid ascidian embryos. (United States)

    Takada, Norio; York, Jonathan; Davis, J Muse; Schumpert, Brenda; Yasuo, Hitoyoshi; Satoh, Nori; Swalla, Billie J


    The T-box transcription factor gene Brachyury is important for the differentiation of notochord in all chordates, including the ascidians Halocynthia roretzi and Ciona intestinalis. We isolated Brachyury from molgulid ascidians, which have evolved tailless larvae multiple times independently, and found the genes appear functional by cDNA sequence analyses. We then compared the expression of Mocu-Bra in tailed Molgula oculata embryos to two tailless species, Molgula occulta (Mocc-Bra) and Molgula tectiformis (Mt-Bra). Here we show that both tailless species express Brachyury in the notochord lineage during embryogenesis. Initial expression of Mocu-Bra is normal in tailed M. oculata embryos; 10 precursor notochord cells divide twice to result in 40 notochord cells that converge and extend to make a notochord down the center of the tail. In contrast, in tailless Molgula occulta, Mocc-Bra expression disappears prematurely, and there is only one round of division, resulting in 20 cells in the final notochord lineage that never converge or extend. In M. occulta x M. oculata hybrid embryos, expression of Mocu-Bra is prolonged, and the embryos form a tail with 20 notochord cells that converge and extend normally. However, in Molgula tectiformis, a different tailless ascidian, Mt-Bra was expressed only in the 10 notochord precursor cells, which never divide, converge, or extend. In summary, neither Brachyury function nor the early establishment of the notochord lineage appears to be impaired in tailless embryos. In light of these results, we are continuing to investigate how and why notochord development is lost in tailless molgulid ascidian embryos.

  2. Noninvasive technique for measurement of heartbeat regularity in zebrafish (Danio rerio embryos

    Directory of Open Access Journals (Sweden)

    Cheng Shuk


    Full Text Available Abstract Background Zebrafish (Danio rerio, due to its optical accessibility and similarity to human, has emerged as model organism for cardiac research. Although various methods have been developed to assess cardiac functions in zebrafish embryos, there lacks a method to assess heartbeat regularity in blood vessels. Heartbeat regularity is an important parameter for cardiac function and is associated with cardiotoxicity in human being. Using stereomicroscope and digital video camera, we have developed a simple, noninvasive method to measure the heart rate and heartbeat regularity in peripheral blood vessels. Anesthetized embryos were mounted laterally in agarose on a slide and the caudal blood circulation of zebrafish embryo was video-recorded under stereomicroscope and the data was analyzed by custom-made software. The heart rate was determined by digital motion analysis and power spectral analysis through extraction of frequency characteristics of the cardiac rhythm. The heartbeat regularity, defined as the rhythmicity index, was determined by short-time Fourier Transform analysis. Results The heart rate measured by this noninvasive method in zebrafish embryos at 52 hour post-fertilization was similar to that determined by direct visual counting of ventricle beating (p > 0.05. In addition, the method was validated by a known cardiotoxic drug, terfenadine, which affects heartbeat regularity in humans and induces bradycardia and atrioventricular blockage in zebrafish. A significant decrease in heart rate was found by our method in treated embryos (p p Conclusion The data support and validate this rapid, simple, noninvasive method, which includes video image analysis and frequency analysis. This method is capable of measuring the heart rate and heartbeat regularity simultaneously via the analysis of caudal blood flow in zebrafish embryos. With the advantages of rapid sample preparation procedures, automatic image analysis and data analysis, this

  3. PEP activity and expression of photosynthesis genes required for embryo and seed development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Dmitry eKremnev


    Full Text Available Chloroplast biogenesis and function is essential for proper plant embryo and seed development but the molecular mechanisms underlying the role of plastids during embryogenesis are poorly understood. Expression of plastid encoded genes is dependent on two different transcription machineries; a plastid-encoded bacterial-type RNA polymerase (PEP and a nuclear-encoded phage-type RNA polymerase (NEP, which recognize distinct types of promoters. However, the division of labor between PEP and NEP during plastid development and in mature chloroplasts is unclear. We show here that PRIN2 and CSP41b, two proteins identified in plastid nucleoid preparations, are essential for proper plant embryo development. Using Co-IP assays and native PAGE we have shown a direct physical interaction between PRIN2 and CSP41b. Moreover, PRIN2 and CSP41b form a distinct protein complex in vitro that binds DNA. The prin2.2 and csp41b-2 single mutants displayed pale phenotypes, abnormal chloroplasts with reduced transcript levels of photosynthesis genes and defects in embryo development. The respective csp41b-2prin2.2 homo/heterozygote double mutants produced abnormal white colored ovules and shrunken seeds. Thus, the csp41b-2prin2.2 double mutant is embryo lethal. In silico analysis of available array data showed that a large number of genes traditionally classified as PEP dependent genes are transcribed during early embryo development from the pre-globular stage to the mature-green-stage. Taken together, our results suggest that PEP activity and consequently the switch from NEP to PEP activity, is essential during embryo development and that the PRIN2-CSP41b DNA binding protein complex possibly is important for full PEP activity during this process.

  4. Genetic changeover in Drosophila populations

    International Nuclear Information System (INIS)

    Wallace, B.


    Three populations of Drosophila melanogaster that were daughter populations of two others with histories of high, continuous radiation exposure [population 5 (irradiated, small population size) gave rise to populations 17 (small) and 18 (large); population 6 (irradiated, large population size) gave rise to population 19 (large)] were maintained for 1 year with no radiation exposure. The frequency with which random combinations of second chromosomes taken from population 19 proved to be lethal changed abruptly after about 8 months, thus revealing the origin of a selectively favored element in that population. (This element may or may not have been the cause of the lethality.) A comparison of the loss of lethals in populations 17 and 18 with a loss that occurred concurrently in the still-irradiated population 5 suggests that a second, selectively favored element had arisen in that population just before populations 17 and 18 were split off. This element was on a nonlethal chromosome. The result in population 5 was the elimination of many lethals from that population, followed by a subsequent increase as mutations occurred in the favored nonlethal chromosome. Populations 17 and 18, with no radiation exposure, underwent a loss of lethals with no subsequent increase. The events described here, as well as others to be described elsewhere, suggest that populations may be subject to episodic periods of rapid gene frequency changes that occur under intense selection pressure. In the instances in which the changeover was revealed by the elimination of preexisting lethals, earlier lethal frequencies were reduced by approximately one-half; the selectively favored elements appear, then, to be favored in the heterozygous--not homozygous--condition

  5. Cryopreservation of Embryos and Oocytes in Human Assisted Reproduction

    Directory of Open Access Journals (Sweden)

    János Konc


    Full Text Available Both sperm and embryo cryopreservation have become routine procedures in human assisted reproduction and oocyte cryopreservation is being introduced into clinical practice and is getting more and more widely used. Embryo cryopreservation has decreased the number of fresh embryo transfers and maximized the effectiveness of the IVF cycle. The data shows that women who had transfers of fresh and frozen embryos obtained 8% additional births by using their cryopreserved embryos. Oocyte cryopreservation offers more advantages compared to embryo freezing, such as fertility preservation in women at risk of losing fertility due to oncological treatment or chronic disease, egg donation, and postponing childbirth, and eliminates religious and/or other ethical, legal, and moral concerns of embryo freezing. In this review, the basic principles, methodology, and practical experiences as well as safety and other aspects concerning slow cooling and ultrarapid cooling (vitrification of human embryos and oocytes are summarized.

  6. In vitro embryo rescue and plant regeneration following self ...

    African Journals Online (AJOL)

    In vitro embryo rescue and plant regeneration following self-pollination with irradiated ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... shows that pollen irradiation coupled with self-pollination and embryo rescue ...

  7. Using fertile couples as embryo donors: An ethical dilemma. (United States)

    Alizadeh, Leila; Omani Samani, Reza


    The use of donated embryos has offered hope for infertile couples who have no other means to have children. In Iran, fertility centers use fertile couples as embryo donors. In this paper, the advantages and disadvantages of this procedure will be discussed. We conclude that embryo-donation should be performed with frozen embryos thus preventing healthy donors from being harmed by fertility drugs. There must be guidelines for choosing the appropriate donor families. In countries where commercial egg donation is acceptable, fertile couples can be procured as embryo donors thus fulfilling the possible shortage of good quality embryos. Using frozen embryos seems to have less ethical, religious and legal problems when compared to the use of fertile embryo donors.

  8. Cryopreservation of embryos and oocytes in human assisted reproduction. (United States)

    Konc, János; Kanyó, Katalin; Kriston, Rita; Somoskői, Bence; Cseh, Sándor


    Both sperm and embryo cryopreservation have become routine procedures in human assisted reproduction and oocyte cryopreservation is being introduced into clinical practice and is getting more and more widely used. Embryo cryopreservation has decreased the number of fresh embryo transfers and maximized the effectiveness of the IVF cycle. The data shows that women who had transfers of fresh and frozen embryos obtained 8% additional births by using their cryopreserved embryos. Oocyte cryopreservation offers more advantages compared to embryo freezing, such as fertility preservation in women at risk of losing fertility due to oncological treatment or chronic disease, egg donation, and postponing childbirth, and eliminates religious and/or other ethical, legal, and moral concerns of embryo freezing. In this review, the basic principles, methodology, and practical experiences as well as safety and other aspects concerning slow cooling and ultrarapid cooling (vitrification) of human embryos and oocytes are summarized.

  9. Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine

    DEFF Research Database (Denmark)

    Knecht, Wolfgang; Mikkelsen, N.E.; Clausen, A.R.


    Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2 angstrom resolution...

  10. Functional Neuroanatomy of "Drosophila" Olfactory Memory Formation (United States)

    Guven-Ozkan, Tugba; Davis, Ronald L.


    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying "Drosophila" learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive…

  11. Second-Order Conditioning in "Drosophila" (United States)

    Tabone, Christopher J.; de Belle, J. Steven


    Associative conditioning in "Drosophila melanogaster" has been well documented for several decades. However, most studies report only simple associations of conditioned stimuli (CS, e.g., odor) with unconditioned stimuli (US, e.g., electric shock) to measure learning or establish memory. Here we describe a straightforward second-order conditioning…

  12. Behavioural reproductive isolation and speciation in Drosophila

    Indian Academy of Sciences (India)

    In the genus Drosophila, the phenomenon of behavioural reproductive isolation, which is an important type of premating (prezygotic) reproductive isolating mechanisms, has been extensively studied and interesting data have been documented. In many cases incomplete sexual isolation has been observed and the pattern ...

  13. Radiation effects on the drosophila melanogaster genoma

    International Nuclear Information System (INIS)

    Arceo-Maldonado, C.


    When DNA of living beings has been damaged, the cells show different responses depending on their physiological state. Repair mechanisms can be classified into two groups: constitutive which are always present in the cells and inductible, which must be stimulated to show themselves. It is suggested that a repair mechanism exists in the drosophila ovules which act upon the damage present in mature spermatozoids. Our aim is to verify whether or not a radiation dosis applied to the female drosophila will modify the frequency of individuals which have lost the paternal sex chromosomes. YW/YW virgin females and XEZ males and fbb-/bS Y y + y were mated for two days in order to collect radiation treated spermatozoids. The results were consistent as to the parameters being evaluated and lead one to suppose that the radiation applied to the female drosophila produced some changes in the ovule metabolism which reduced the frequency of individuals with lost chromosomes. It is believed that ionizing radiation interferes with the repair mechanisms that are existent and constitutive, retarding and hindering the restoration of chromosome fragments and this brings about death of the zygote or death of the eggs which lessens the frequencies of individuals carriers of chromosomic aberrations. Ionizing radiations applied to the female drosophila modifies the frequency of loss of patternal chromosomes and comes about when the radiation dose to the female is 700 rad. (Author)

  14. Low-resolution structure of Drosophila translin (United States)

    Kumar, Vinay; Gupta, Gagan D.


    Crystals of native Drosophila melanogaster translin diffracted to 7 Å resolution. Reductive methylation of the protein improved crystal quality. The native and methylated proteins showed similar profiles in size-exclusion chromatography analyses but the methylated protein displayed reduced DNA-binding activity. Crystals of the methylated protein diffracted to 4.2 Å resolution at BM14 of the ESRF synchrotron. Crystals with 49% solvent content belonged to monoclinic space group P21 with eight protomers in the asymmetric unit. Only 2% of low-resolution structures with similar low percentage solvent content were found in the PDB. The crystal structure, solved by molecular replacement method, refined to Rwork (Rfree) of 0.24 (0.29) with excellent stereochemistry. The crystal structure clearly shows that drosophila protein exists as an octamer, and not as a decamer as expected from gel-filtration elution profiles. The similar octameric quaternary fold in translin orthologs and in translin–TRAX complexes suggests an up-down dimer as the basic structural subunit of translin-like proteins. The drosophila oligomer displays asymmetric assembly and increased radius of gyration that accounts for the observed differences between the elution profiles of human and drosophila proteins on gel-filtration columns. This study demonstrates clearly that low-resolution X-ray structure can be useful in understanding complex biological oligomers. PMID:23650579

  15. Biological effects of radon in Drosophila

    International Nuclear Information System (INIS)

    Pimentel P, A.E.; Tavera D, L.; Cruces M, M.P.; Arceo M, C.; Rosa D, M.E. de la


    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  16. Radioresistance and radiosensitivity in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Reguly, M.L.; Marques, E.K.


    The mechanisms of radioresistance in Drosophila are studied. The mutagenic effects of 5KR of 60 Cobalt gamma radiation and of 0,006M dose of ethyl methanesulfonate (EMS) on four D. Melanogaster strains (RC 1 , CO 3 , BUE and LEN) are investigated. (M.A.C.) [pt

  17. Drosophila Melanogaster as an Experimental Organism. (United States)

    Rubin, Gerald M.


    Discusses the role of the fruit fly in genetics research requiring a multidisciplinary approach. Describes embryological and genetic methods used in the experimental analysis of this organism. Outlines the use of Drosophila in the study of the development and function of the nervous system. (RT)

  18. The Drosophila bipectinata species complex: phylogenetic ...

    Indian Academy of Sciences (India)

    [Banerjee P. and Singh B. N. 2017 The Drosophila bipectinata species complex: phylogenetic relationship among different members based on chromosomal variations. J. Genet. 96, 97–107]. Introduction ..... loops touch the chromocenter and in our microphotograph. (depicting both the arms) too, the involvement of chromo-.

  19. Frozen-Thawed Embryo Transfer Cycles Have a Lower Incidence of Ectopic Pregnancy Compared With Fresh Embryo Transfer Cycles. (United States)

    Zhang, Xinyu; Ma, Caihong; Wu, Zhangxin; Tao, Liyuan; Li, Rong; Liu, Ping; Qiao, Jie


    To evaluate the risk of ectopic pregnancy of embryo transfer. A retrospective cohort study on the incidence of ectopic pregnancy in fresh and frozen-thawed embryo transfer cycles from January 1 st , 2010, to January 1 st , 2015. Infertile women undergoing frozen-thawed transfer cycles or fresh transfer cycles. In-vitro fertilization, fresh embryo transfer, frozen-thawed embryo transfer, ectopic pregnancy. Ectopic pregnancy rate and clinical pregnancy rate. A total of 69 756 in vitro fertilization-embryo transfer cycles from 2010 to 2015 were analyzed, including 45 960 (65.9%) fresh and 23 796 (34.1%) frozen-thawed embryo transfer cycles. The clinical pregnancy rate per embryo transfer was slightly lower in fresh embryo transfer cycles compared with frozen-thawed embryo transfer cycles (40.8% vs 43.1%, P cycles, blastocyst transfer shows a significantly lower incidence of ectopic pregnancy (0.8% vs 1.8%, P = .002) in comparison with day 3 cleavage embryo transfer. The risk of ectopic pregnancy is lower in frozen-thawed embryo transfer cycles than fresh embryo transfer cycles, and blastocyst transfer could further decrease the ectopic pregnancy rate in frozen-thawed embryo transfer cycles.

  20. The plasma membrane proteome of germinating barley embryos

    DEFF Research Database (Denmark)

    Hynek, Radovan; Svensson, Birte; Jensen, O.N.


    Cereal seed germination involves a complex coordination between different seed tissues. Plasma membranes must play crucial roles in coordination and execution of germination; however, very little is known about seed plasma membrane proteomes due to limited tissue amounts combined...... with amphiphilicity and low abundance of membrane proteins. A fraction enriched in plasma membranes was prepared from embryos dissected from 18 h germinated barley seeds using aqueous two-phase partitioning. Reversed-phase chromatography on C-4 resin performed in micro-spin columns with stepwise elution by 2-propanol...... was used to reduce soluble protein contamination and enrich for hydrophobic proteins. Sixty-one proteins in 14 SDS-PAGE bands were identified by LC-MS/MS and database searches. The identifications provide new insight into the plasma membrane functions in seed germination....

  1. Molecular landscape of modified histones in Drosophila heterochromatic genes and euchromatin-heterochromatin transition zones.

    Directory of Open Access Journals (Sweden)

    Jiro C Yasuhara


    Full Text Available Constitutive heterochromatin is enriched in repetitive sequences and histone H3-methylated-at-lysine 9. Both components contribute to heterochromatin's ability to silence euchromatic genes. However, heterochromatin also harbors hundreds of expressed genes in organisms such as Drosophila. Recent studies have provided a detailed picture of sequence organization of D. melanogaster heterochromatin, but how histone modifications are associated with heterochromatic sequences at high resolution has not been described. Here, distributions of modified histones in the vicinity of heterochromatic genes of normal embryos and embryos homozygous for a chromosome rearrangement were characterized using chromatin immunoprecipitation and genome tiling arrays. We found that H3-di-methylated-at-lysine 9 (H3K9me2 was depleted at the 5' ends but enriched throughout transcribed regions of heterochromatic genes. The profile was distinct from that of euchromatic genes and suggests that heterochromatic genes are integrated into, rather than insulated from, the H3K9me2-enriched domain. Moreover, the profile was only subtly affected by a Su(var3-9 null mutation, implicating a histone methyltransferase other than SU(VAR3-9 as responsible for most H3K9me2 associated with heterochromatic genes in embryos. On a chromosomal scale, we observed a sharp transition to the H3K9me2 domain, which coincided with increased retrotransposon density in the euchromatin-heterochromatin (eu-het transition zones on the long chromosome arms. Thus, a certain density of retrotransposons, rather than specific boundary elements, may demarcate Drosophila pericentric heterochromatin. We also demonstrate that a chromosome rearrangement that created a new eu-het junction altered H3K9me2 distribution and induced new euchromatic sites of enrichment as far as several megabases away from the breakpoint. Taken together, the findings argue against simple classification of H3K9me as the definitive signature

  2. Sourcing human embryos for embryonic stem cell lines: Problems & perspectives

    Directory of Open Access Journals (Sweden)

    Rajvi H Mehta


    Full Text Available The ability to successfully derive human embryonic stem cells (hESC lines from human embryos following in vitro fertilization (IVF opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been ′discarded′ or ′spare′ fresh or frozen human embryos following IVF. It is a common practice to stimulate the ovaries of women undergoing any of the assisted reproductive technologies (ART and retrieve multiple oocytes which subsequently lead to multiple embryos. Of these, only two or maximum of three embryos are transferred while the rest are cryopreserved as per the decision of the couple. In case a couple does not desire to ′cryopreserve′ their embryos then all the embryos remaining following embryo transfer can be considered ′spare′ or if a couple is no longer in need of the ′cryopreserved′ embryos then these also can be considered as ′spare′. But, the question raised by the ethicists is, "what about ′slightly′ over-stimulating a woman to get a few extra eggs and embryos? The decision becomes more difficult when it comes to ′discarded′ embryos. As of today, the quality of the embryos is primarily assessed based on morphology and the rate of development mainly judged by single point assessment. Despite many criteria described in the literature, the quality assessment is purely subjective. The question that arises is on the decision of ′discarding′ embryos. What would be the criteria for discarding embryos and the potential ′use′ of ESC derived from the ′abnormal appearing′ embryos? This paper discusses some of the newer methods to procure embryos for the derivation of embryonic stem cell lines which will respect the ethical concerns but still provide the source material.

  3. Toxicity of weathered Deepwater Horizon oil to bay anchovy (Anchoa mitchilli) embryos. (United States)

    O'Shaughnessy, Kathryn A; Forth, Heather; Takeshita, Ryan; Chesney, Edward J


    The BP-contracted Deepwater Horizon Macondo well blowout occurred on 20 April 2010 and lasted nearly three months. The well released millions of barrels of crude oil into the northern Gulf of Mexico, causing extensive impacts on pelagic, benthic, and estuarine fish species. The bay anchovy (Anchoa mitchilli) is an important zooplanktivore in the Gulf, serving as an ecological link between lower trophic levels and pelagic predatory fish species. Bay anchovy spawn from May through November in shallow inshore and estuarine waters throughout the Gulf. Because their buoyant embryos are a dominant part of the inshore ichthyoplankton throughout the summer, it is likely bay anchovy embryos encountered oil in coastal estuaries during the summer and fall of 2010. Bay anchovy embryos were exposed to a range of concentrations of two field-collected Deepwater Horizon oils as high-energy and low-energy water accommodated fractions (HEWAFs and LEWAFs, respectively) for 48h. The median lethal concentrations (LC 50 ) were lower in exposures with the more weathered oil (HEWAF, 1.48µg/L TPAH50; LEWAF, 1.58µg/L TPAH50) compared to the less weathered oil (HEWAF, 3.87µg/L TPAH50; LEWAF, 4.28µg/L TPAH50). To measure delayed mortality and life stage sensitivity between embryos and larvae, an additional 24h acute HEWAF exposure using the more weathered oil was run followed by a 24h grow-out period. Here the LC 50 was 9.71µg/L TPAH50 after the grow-out phase, suggesting a toxic effect of oil at the embryonic or hatching stage. We also found that exposures prepared with the more weathered Slick B oil produced lower LC 50 values compared to the exposures prepared with Slick A oil. Our results demonstrate that even relatively acute environmental exposure times can have a detrimental effect on bay anchovy embryos. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Oviduct-on-a-chip : Creating an in vitro oviduct to study bovine gamete interaction and early embryo development

    NARCIS (Netherlands)

    de Almeida Monteiro Melo Ferraz, M.


    The oviduct is host to the period in which the early embryo undergoes complete reprogramming of its (epi)genome in preparation for the reacquisition of epigenetic marks as differentiation proceeds. This reprogramming period is vulnerable to changes in environmental conditions, such as compromised

  5. Drosophila increase exploration after visually detecting predators.

    Directory of Open Access Journals (Sweden)

    Miguel de la Flor

    Full Text Available Novel stimuli elicit behaviors that are collectively known as specific exploration. These behaviors allow the animal to become more familiar with the novel objects within its environment. Specific exploration is frequently suppressed by defensive reactions to predator cues. Herein, we examine if this suppression occurs in Drosophila melanogaster by measuring the response of these flies to wild harvested predators. The flies used in our experiments have been cultured and had not lived under predator threat for multiple decades. In a circular arena with centrally-caged predators, wild type Drosophila actively avoided the pantropical jumping spider, Plexippus paykulli, and the Texas unicorn mantis, Phyllovates chlorophaena, indicating an innate defensive reaction to these predators. Interestingly, wild type Drosophila males also avoided a centrally-caged mock spider, and the avoidance of the mock spider became exaggerated when it was made to move within the cage. Visually impaired Drosophila failed to detect and avoid the Plexippus paykulli and the moving mock spider, while the broadly anosmic orco2 mutants were fully capable of detecting and avoiding Plexippus paykulli, indicating that these flies principally relied upon vison to perceive the predator stimuli. During early exploration of the arena, exploratory activity increased in the presence of Plexippus paykulli and the moving mock spider. The elevated activity induced by Plexippus paykulli disappeared after the fly had finished exploring, suggesting the flies were capable of habituating the predator cues. Taken together, these results indicate that despite being isolated from predators for decades Drosophila will visually detect these predators, retain innate defensive behaviors, respond by increasing exploratory activity in the arena rather than suppressing activity, and may habituate to normal predator cues.

  6. Optogenetic pacing in Drosophila melanogaster (Conference Presentation) (United States)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao


    A non-invasive, contact-less cardiac pacing technology can be a powerful tool in basic cardiac research and in clinics. Currently, electrical pacing is the gold standard for cardiac pacing. Although highly effective in controlling the cardiac function, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its capabilities. Optical pacing of heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids shortcomings in electrical stimulation. Optical coherence tomography has been proved to be an effective technique in non-invasive imaging in vivo with ultrahigh resolution and imaging speed. In the last several years, non-invasive specific optical pacing in animal hearts has been reported in quail, zebrafish, and rabbit models. However, Drosophila Melanogaster, which is a significant model with orthologs of 75% of human disease genes, has rarely been studied concerning their optical pacing in heart. Here, we combined optogenetic control of Drosophila heartbeat with optical coherence microscopy (OCM) technique for the first time. The light-gated cation channel, channelrhodopsin-2 (ChR2) was specifically expressed by transgene as a pacemaker in drosophila heart. By stimulating the pacemaker with 472 nm pulsed laser light at different frequencies, we achieved non-invasive and more specific optical control of the Drosophila heart rhythm, which demonstrates the wide potential of optical pacing for studying cardiac dynamics and development. Imaging capability of our customized OCM system was also involved to observe the pacing effect visually. No tissue damage was found after long exposure to laser pulses, which proved the safety of optogenetic control of Drosophila heart.

  7. Xenopus laevis embryos and tadpoles as models for testing for ...

    African Journals Online (AJOL)

    The toxicity of bio available Zn, Cu, Pb, and Cd on the life stages of Xenopus laevis embryos and tadpoles was investigated. Cu and Cd were found to affect the hatching success of the embryos, with a strong negative relationship existing between the increase in Cu concentrations and the hatching of the embryos.

  8. The development of ovary in quail's embryo | Rong | African Journal ...

    African Journals Online (AJOL)

    The experiment was conducted to study the development of ovary in quails' embryos which were incubated for 4 to 17 days and incubated out for 1 day. The quails' embryos or gonads were cut out and HE staining was carried out. The results showed that when embryo was hatched for 4 days, lots of primordial germ cells ...

  9. Sexing bovine pre-implantation embryos using the polymerase ...

    African Journals Online (AJOL)

    The paper aims to present a bovine model for human embryo sexing. Cows were super-ovulated, artificially inseminated and embryos were recovered 7 days later. Embryo biopsy was performed; DNA was extracted from blastomeres and amplified using bovine-specific and bovine-Y-chromosomespecific primers, followed ...

  10. What Drives Embryo Development? Chromosomal Normality or Mitochondria?

    Directory of Open Access Journals (Sweden)

    A. Bayram


    Full Text Available Objective. To report the arrest of euploid embryos with high mtDNA content. Design. A report of 2 cases. Setting. Private fertility clinic. Patients. 2 patients, 45 and 40 years old undergoing IVF treatment. Interventions. Mature oocytes were collected and vitrified from two ovarian stimulations. Postthaw, survived mature oocytes underwent fertilization by intracytoplasmic sperm injection (ICSI. Preimplantation genetic screening (PGS and mitochondrial DNA (mtDNA copy number were done using next generation sequencing (NGS. The only normal embryo among the all-biopsied embryos had the highest “Mitoscore” value and was the only arrested embryo in both cases. Therefore, the embryo transfer was cancelled. Main Outcome Measures. Postthaw survival and fertilization rate, embryo euploidy, mtDNA copy number, and embryo development. Results. In both patients, after PGS only 1 embryo was euploid. Both embryos had the highest mtDNA copy number from all tested embryos and both embryos were arrested on further development. Conclusions. These cases clearly demonstrate the lack of correlation between mtDNA value (Mitoscore and chromosomal status of embryo.

  11. A highly conserved Poc1 protein characterized in embryos of the hydrozoan Clytia hemisphaerica: localization and functional studies.

    Directory of Open Access Journals (Sweden)

    Cécile Fourrage

    Full Text Available Poc1 (Protein of Centriole 1 proteins are highly conserved WD40 domain-containing centriole components, well characterized in the alga Chlamydomonas, the ciliated protazoan Tetrahymena, the insect Drosophila and in vertebrate cells including Xenopus and zebrafish embryos. Functions and localizations related to the centriole and ciliary axoneme have been demonstrated for Poc1 in a range of species. The vertebrate Poc1 protein has also been reported to show an additional association with mitochondria, including enrichment in the specialized "germ plasm" region of Xenopus oocytes. We have identified and characterized a highly conserved Poc1 protein in the cnidarian Clytia hemisphaerica. Clytia Poc1 mRNA was found to be strongly expressed in eggs and early embryos, showing a punctate perinuclear localization in young oocytes. Fluorescence-tagged Poc1 proteins expressed in developing embryos showed strong localization to centrioles, including basal bodies. Anti-human Poc1 antibodies decorated mitochondria in Clytia, as reported in human cells, but failed to recognise endogenous or fluorescent-tagged Clytia Poc1. Injection of specific morpholino oligonucleotides into Clytia eggs prior to fertilization to repress Poc1 mRNA translation interfered with cell division from the blastula stage, likely corresponding to when neosynthesis normally takes over from maternally supplied protein. Cell cycle lengthening and arrest were observed, phenotypes consistent with an impaired centriolar biogenesis or function. The specificity of the defects could be demonstrated by injection of synthetic Poc1 mRNA, which restored normal development. We conclude that in Clytia embryos, Poc1 has an essentially centriolar localization and function.

  12. Organization and evolution of Drosophila terminin: similarities and differences between Drosophila and human telomeres

    Directory of Open Access Journals (Sweden)

    Grazia Daniela Raffa


    Full Text Available Drosophila lacks telomerase and fly telomeres are elongated by occasional transposition of three specialized retroelements. Drosophila telomeres do not terminate with GC-rich repeats and are assembled independently of the sequence of chromosome ends. Recent work has shown that Drosophila telomeres are capped by the terminin complex, which includes the fast-evolving proteins HOAP, HipHop, Moi and Ver. These proteins are not conserves outside Drosophilidae and localize and function exclusively at telomeres, protecting them from fusion events. Other proteins required to prevent end-to-end fusion in flies include HP1, Eff/UbcD1, ATM, the components of the Mre11-Rad50-Nbs (MRN complex, and the Woc transcription factor. These proteins do not share the terminin properties; they are evolutionarily conserved non-fast-evolving proteins that do not accumulate only telomeres and do not serve telomere-specific functions. We propose that following telomerase loss, Drosophila rapidly evolved terminin to bind chromosome ends in a sequence-independent manner. This hypothesis suggests that terminin is the functional analog of the shelterin complex that protects human telomeres. The non-terminin proteins are instead likely to correspond to ancestral telomere-associated proteins that did not evolve as rapidly as terminin because of the functional constraints imposed by their involvement in diverse cellular processes. Thus, it appears that the main difference between Drosophila and human telomeres is in the protective complexes that specifically associate with the DNA termini. We believe that Drosophila telomeres offer excellent opportunities for investigations on human telomere biology. The identification of additional Drosophila genes encoding non-terminin proteins involved in telomere protection might lead to the discovery of novel components of human telomeres.

  13. Genetic transformation of olive somatic embryos through ...

    African Journals Online (AJOL)



    Jun 20, 2011 ... 2Department of Biochemistry, National Center of Genetic Engineering and Biotechnology, Tehran, Iran. Accepted 9 March, 2011. Transformed olive plants were regenerated from inoculated somatic embryos with Agrobacterium tumefacience strain GV3101, which carries the plasmid pBI-P5CS containing ...

  14. Effects of fluoxetine on human embryo development

    NARCIS (Netherlands)

    Kaihola, Helena; Yaldir, Fatma G.; Hreinsson, Julius; Hornaeus, Katarina; Bergquist, Jonas; Olivier, Jocelien D. A.; Akerud, Helena; Sundstrom-Poromaa, Inger


    The use of antidepressant treatment during pregnancy is increasing, and selective serotonin reuptake inhibitors (SSRIs) are the most widely prescribed antidepressants in pregnant women. Serotonin plays a role in embryogenesis, and serotonin transporters are expressed in two-cell mouse embryos. Thus,

  15. The endometrial factor in human embryo implantation

    NARCIS (Netherlands)

    Boomsma, C.M.


    The studies presented in this thesis aimed to explore the role of the endometrium in the implantation process. At present, embryo implantation is the major rate-limiting step for success in fertility treatment. Clinicians have sought to develop clinical interventions aimed at enhancing implantation

  16. Plant regeneration in wheat mature embryo culture

    African Journals Online (AJOL)

    Kamil Haliloğlu


    Nov 9, 2011 ... Success in genetic engineering of cereals depends on the callus formation and efficient plant regeneration system. Callus formation and plant regeneration of wheat mature embryos ... compiled by modification of methods previously mentioned in ..... of more and readily available nutrition than artificial cul-.

  17. Nano-nutrition of chicken embryos

    DEFF Research Database (Denmark)

    Grodzik, Marta; Sawosz, Filip; Sawosz, Ewa


    factors of chicken embryo pectoral muscles. ND, Gln, and Gln/ND solutions (50 mg/L) were injected into fertilized broiler chicken eggs at the beginning of embryogenesis. Muscle tissue was dissected at day 20 of incubation and analysed for gene expression of FGF2, VEGF-A, and MyoD1. ND and especially Gln...

  18. Computational identification of developmental enhancers:conservation and function of transcription factor binding-site clustersin drosophila melanogaster and drosophila psedoobscura

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Benjamin P.; Pfeiffer, Barret D.; Laverty, Todd R.; Salzberg, Steven L.; Rubin, Gerald M.; Eisen, Michael B.; Celniker, SusanE.


    The identification of sequences that control transcription in metazoans is a major goal of genome analysis. In a previous study, we demonstrated that searching for clusters of predicted transcription factor binding sites could discover active regulatory sequences, and identified 37 regions of the Drosophila melanogaster genome with high densities of predicted binding sites for five transcription factors involved in anterior-posterior embryonic patterning. Nine of these clusters overlapped known enhancers. Here, we report the results of in vivo functional analysis of 27 remaining clusters. We generated transgenic flies carrying each cluster attached to a basal promoter and reporter gene, and assayed embryos for reporter gene expression. Six clusters are enhancers of adjacent genes: giant, fushi tarazu, odd-skipped, nubbin, squeeze and pdm2; three drive expression in patterns unrelated to those of neighboring genes; the remaining 18 do not appear to have enhancer activity. We used the Drosophila pseudoobscura genome to compare patterns of evolution in and around the 15 positive and 18 false-positive predictions. Although conservation of primary sequence cannot distinguish true from false positives, conservation of binding-site clustering accurately discriminates functional binding-site clusters from those with no function. We incorporated conservation of binding-site clustering into a new genome-wide enhancer screen, and predict several hundred new regulatory sequences, including 85 adjacent to genes with embryonic patterns. Measuring conservation of sequence features closely linked to function--such as binding-site clustering--makes better use of comparative sequence data than commonly used methods that examine only sequence identity.

  19. Interorgan Communication Pathways in Physiology: Focus on Drosophila


    Droujinine, Ilia A.; Perrimon, Norbert


    Studies in mammals and Drosophila have demonstrated the existence and significance of secreted factors involved in communication between distal organs. In this review, primarily focusing on Drosophila, we examine the known interorgan communication factors and their functions, physiological inducers, and integration in regulating physiology. Moreover, we describe how organ-sensing screens in Drosophila can systematically identify novel conserved interorgan communication factors. Finally, we di...

  20. Early Olfactory Processing in Drosophila: Mechanisms and Principles


    Wilson, Rachel I.


    In the olfactory system of Drosophila melanogaster, it is relatively straightforward to make in vivo measurements of activity in neurons corresponding to targeted processing. This, together with the numerical simplicity of the Drosophila olfactory system, has produced rapid gains in our understanding of Drosophila olfaction. This review summarizes the neurophysiology of the first two layers of this system: the peripheral olfactory receptor neurons and their postsynaptic targets in the antenna...

  1. Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model (United States)

    Hu, Yu-Lan; Qi, Wang; Han, Feng; Shao, Jian-Zhong; Gao, Jian-Qing


    Background Although there are a number of reports regarding the toxicity evaluation of inorganic nanoparticles, knowledge on biodegradable nanomaterials, which have always been considered safe, is still limited. For example, the toxicity of chitosan nanoparticles, one of the most widely used drug/gene delivery vehicles, is largely unknown. In the present study, the zebrafish model was used for a safety evaluation of this nanocarrier. Methods Chitosan nanoparticles with two particle sizes were prepared by ionic cross-linking of chitosan with sodium tripolyphosphate. Chitosan nanoparticles of different concentrations were incubated with zebrafish embryos, and ZnO nanoparticles were used as the positive control. Results Embryo exposure to chitosan nanoparticles and ZnO nanoparticles resulted in a decreased hatching rate and increased mortality, which was concentration-dependent. Chitosan nanoparticles at a size of 200 nm caused malformations, including a bent spine, pericardial edema, and an opaque yolk in zebrafish embryos. Furthermore, embryos exposed to chitosan nanoparticles showed an increased rate of cell death, high expression of reactive oxygen species, as well as overexpression of heat shock protein 70, indicating that chitosan nanoparticles can cause physiological stress in zebrafish. The results also suggest that the toxicity of biodegradable nanocarriers such as chitosan nanoparticles must be addressed, especially considering the in vivo distribution of these nanoscaled particles. Conclusion Our results add new insights into the potential toxicity of nanoparticles produced by biodegradable materials, and may help us to understand better the nanotoxicity of drug delivery carriers. PMID:22267920

  2. Expression of multiple transgenes from a single construct using viral 2A peptides in Drosophila.

    Directory of Open Access Journals (Sweden)

    Richard W Daniels

    Full Text Available Expression of multiple reporter or effector transgenes in the same cell from a single construct is increasingly necessary in various experimental paradigms. The discovery of short, virus-derived peptide sequences that mediate a ribosome-skipping event enables generation of multiple separate peptide products from one mRNA. Here we describe methods and vectors to facilitate easy production of polycistronic-like sequences utilizing these 2A peptides tailored for expression in Drosophila both in vitro and in vivo. We tested the separation efficiency of different viral 2A peptides in cultured Drosophila cells and in vivo and found that the 2A peptides from porcine teschovirus-1 (P2A and Thosea asigna virus (T2A worked best. To demonstrate the utility of this approach, we used the P2A peptide to co-express the red fluorescent protein tdTomato and the genetically-encoded calcium indicator GCaMP5G in larval motorneurons. This technique enabled ratiometric calcium imaging with motion correction allowing us to record synaptic activity at the neuromuscular junction in an intact larval preparation through the cuticle. The tools presented here should greatly facilitate the generation of 2A peptide-mediated expression of multiple transgenes in Drosophila.

  3. Ultrastructural changes in goat interspecies and intraspecies reconstructed early embryos

    DEFF Research Database (Denmark)

    Tao, Yong; Gheng, Lizi; Zhang, Meiling


    and dispered gradually from the 4-cell period. The nucleolus of GC and GG embryos changed from electron dense to a fibrillo-granular meshwork at the 16-cell stage, showing that nucleus function in the reconstructed embryos was activated. The broken nuclear envelope and multiple nucleoli in one blastomere......- and intraspecies reconstructed embryos have a similar pattern of developmental change to that of in vivo-produced embryos for ZP, rough ER, Gi and nucleolus, but differ for mitochondria, LD, vesicles, nucleus and gap junction development. In particular, the interspecies cloned embryos showed more severe...

  4. Mutants dissecting development and behaviour in drosophila

    International Nuclear Information System (INIS)

    Joshi, Adita; Chandrashekaran, Shanti; Sharma, R.P.


    We have traced in this paper the progress in Drosophila genetics research from the 1960s, at the IARI, spearheaded by the visionary insight of M. S. Swaminathan. The work started with the study of indirect effect of radiation and the synergistic interaction of physical and chemical mutagens on chromosomal and genetic changes. This paved the way for the study of single gene mutants in dissecting developmental and behavioural processes. New genes discovered by us have been shown to encode conserved cell signalling molecules controlling developmental and behavioural pathways. With the complete sequencing of the Drosophila genome, in the year 2000, mounting evidence for the homology between Drosophila and human genes controlling genetic disorders became available. This has led to the fly becoming an indispensable tool for studying human diseases as well as a model to test for drugs and pharmaceuticals against human diseases and complex behavioural processes. For example wingless in Drosophila belongs to the conserved Wnt gene family and aberrant WNT signalling is linked to a range of human diseases, most notably cancer. Inhibition as well as activation of WNT signalling form the basis of an effective therapy for some cancers as well as several other clinical conditions. Recent experiments have shown that WNTs might also normally participate in self-renewal, proliferation or differentiation of stem cells and altering WNT signalling might be beneficial to the use of stem cells for therapeutic means. Likewise, the stambhA mutant of Drosophila which was discovered for its temperature-dependent paralytic behaviour is the fly homologue of Phospholipase Cβ. Phospholipase C mediated G protein signalling plays a central role in vital processes controlling epilepsy, vision, taste, and olfaction in animals. Proteins of the G-signalling pathway are of intense research interest since many human diseases involve defects in G-protein signalling pathways. In fact, approximately 50

  5. Effect of Withania somnifera leaf extract on the dietary supplementation in transgenic Drosophila model of Parkinson’s disease

    Directory of Open Access Journals (Sweden)



    Full Text Available The role of Withania somnifera L. leaf extract was studied on the transgenic Drosophila model flies expressing normal human alpha synuclein (h-αS in the neurons. The leaf extract was prepared in acetone and was subjected to GC-MS analysis. W. somnifera extract at final concentration of 0.25, 0.50 and 1.0 µL/mL was mixed with the diet and the flies were allowed to feed for 24 days. The effect of extract was studied on the climbing ability, lipid peroxidation and protein carbonyl content in the brains of transgenic Drosophila. The exposure of extract to PD model flies did not show any significant delay in the loss of climbing ability nor reduced the oxidative stress in the brains of transgenic Drosophila as compared to untreated PD model flies. The results suggest that W. somnifera leaf extract is not potent in reducing the PD symptoms in transgenic Drosophila model of Parkinson’s disease.

  6. Comprehensive embryo testing. Experts' opinions regarding future directions: an expert panel study on comprehensive embryo testing. (United States)

    Hens, Kristien; Dondorp, Wybo J; Geraedts, Joep P M; de Wert, Guido M


    What do scientists in the field of preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS) consider to be the future direction of comprehensive embryo testing? Although there are many biological and technical limitations, as well as uncertainties regarding the meaning of genetic variation, comprehensive embryo testing will impact the IVF/PGD practice and a timely ethical reflection is needed. Comprehensive testing using microarrays is currently being introduced in the context of PGD and PGS, and it is to be expected that whole-genome sequencing will also follow. Current ethical and empirical sociological research on embryo testing focuses on PGD as it is practiced now. However, empirical research and systematic reflection regarding the impact of comprehensive techniques for embryo testing is missing. In order to understand the potential of this technology and to be able to adequately foresee its implications, we held an expert panel with seven pioneers in PGD. We conducted an expert panel in October 2011 with seven PGD pioneers from Belgium, The Netherlands, Germany and the UK. Participants expected the use of comprehensive techniques in the context of PGD. However, the introduction of these techniques in embryo testing requires timely ethical reflection as it involves a shift from choosing an embryo without a particular genetic disease (i.e. PGD) or most likely to result in a successful pregnancy (i.e. PGS) to choosing the best embryo based on a much wider set of criteria. Such ethical reflection should take account of current technical and biological limitations and also of current uncertainties with regard to the meaning of genetic variance. However, ethicists should also not be afraid to look into the future. There was a general agreement that embryo testing will be increasingly preceded by comprehensive preconception screening, thus enabling smart combinations of genetic testing. The group was composed of seven participants from

  7. Somatic Embryos in Catharanthus roseus: A Scanning Electron Microscopic Study

    Directory of Open Access Journals (Sweden)

    Junaid ASLAM


    Full Text Available Catharanthus roseus (L. G. Don is an important medicinal plant as it contains several anti-cancerous compounds, like vinblastine and vincristine. Plant tissue culture technology (organogenesis and embryogenesis has currently been used in fast mass propagating raw materials for secondary metabolite synthesis. In this present communication, scanning electron microscopic (SEM study of somatic embryos was conducted and discussed. The embryogenic callus was first induced from hypocotyls of in vitro germinated seeds on which somatic embryos, differentiated in numbers, particularly on 2,4-D (1.0 mg/L Murashige and Skoog (MS was medium. To understand more about the regeneration method and in vitro formed embryos SEM was performed. The SEM study revealed normal somatic embryo origin and development from globular to heart-, torpedo- and then into cotyledonary-stage of embryos. At early stage, the embryos were clustered together in a callus mass and could not easily be detached from the parental tissue. The embryos were often long cylindrical structure with or without typical notch at the tip. Secondary embryos were also formed on primary embryo structure. The advanced cotyledonary embryos showed prominent roots and shoot axis, which germinated into plantlets. The morphology, structure and other details of somatic embryos at various stages were presented.

  8. Effect of embryo density on in vitro developmental characteristics of bovine preimplantative embryos with respect to micro and macroenvironments. (United States)

    Hoelker, M; Rings, F; Lund, Q; Phatsara, C; Schellander, K; Tesfaye, D


    To overcome developmental problems as a consequence of single embryo culture, the Well of the Well (WOW) culture system has been developed. In this study, we aimed to examine the effect of embryo densities with respect to both microenvironment and macroenvironment on developmental rates and embryo quality to get a deeper insight into developmentally important mechanisms. WOW diameter and depth significantly affected developmental rates (p < 0.05). WOWs with diameter of 500 μm reached significantly higher blastocyst rates (32.5 vs 21.1% vs 20.3%) compared to embryos cultured in WOWs of 300 μm diameter or plain cultured controls. Embryos cultured in WOWs with 700 μm depth reached significant higher developmental rates compared with embryos cultured in WOWs of 300 μm depth and control embryos (30.6 vs 22.6% vs 20.3%). Correlation of the embryo per WOW volume with developmental rates was higher (r(2) = 0.92, p = 0.0004) than correlation of WOW diameter or WOW depth with developmental rates. However, the embryo per WOW volume did not affect differential cell counts. An embryo per culture dish volume of 1 : 30 μl was identified to be optimal when the embryo per WOW volume was 1 : 0.27 μl increasing developmental rates up to the level of mass embryo production. Giving the opportunity to track each embryo over the complete culture period while keeping high developmental rates with normal mitotic dynamics, the results of this work will provide benefit for the single culture of embryos in human assisted reproduction, mammalian embryos with high economic interest as well as for scientific purpose. © 2009 Blackwell Verlag GmbH.

  9. Assessing embryo development using swept source optical coherence tomography (United States)

    Caujolle, S.; Cernat, R.; Silvestri, G.; Marques, M. J.; Bradu, A.; Feuchter, T.; Robinson, G.; Griffin, D.; Podoleanu, A.


    A detailed assessment of embryo development would assist biologists with selecting the most suitable embryos for transfer leading to higher pregnancy rates. Currently, only low resolution microscopy is employed to perform this assessment. Although this method delivers some information on the embryo surface morphology, no specific details are shown related to its inner structure. Using a Master-Slave Swept-Source Optical Coherence Tomography (SS-OCT), images of bovine embryos from day 7 after fertilization were collected from different depths. The dynamic changes inside the embryos were examined, in detail and in real-time from several depths. To prove our ability to characterize the morphology, a single embryo was imaged over 26 hours. The embryo was deprived of its life support environment, leading to its death. Over this period, clear morphological changes were observed.

  10. Classification of embryo sacs in the Eragrostis curvula Complex

    Directory of Open Access Journals (Sweden)

    T. B. Vorster


    Full Text Available At each of 17 collecting points between Johannesburg and Brits in the Transvaal, three plants which belong to the  Eragrostis curvula Complex were collected and studied. A total o f 3 902 embryo sacs was examined in this sample. Of the embryo sacs examined, 3 306 were apomictic by means of diplospory, whereas 99 were sexual monosporic Polygonum-type embryo sacs. One hundred and nineteen embryo sacs were abnormal or divergent, and 378 were degenerated. There are indications that seasonal climatic fluctuations may be responsible for embryo sacs developing abnormally or degenerating. Simple and multiple correlations confirmed that sexual embryo sacs usually do not develop abnormally or degenerate during the later developmental stages. This finding lends credence to both the system of classification of individual embryo sacs and to the validity of the estimate of the proportion of sexuality of the plants sampled at each sampling point.

  11. How do laboratory embryo transfer techniques affect IVF outcomes? A review of current literature. (United States)

    Sigalos, George; Triantafyllidou, Olga; Vlahos, Nikos


    Over the last few years, many studies have focused on embryo selection methods, whereas little attention has been given to the standardization of the procedure of embryo transfer. In this review, several parameters of the embryo transfer procedure are examined, such as the: (i) culture medium volume and loading technique; (ii) syringe and catheters used for embryo transfer; (iii) viscosity and composition of the embryo transfer medium; (iv) environment of embryo culture; (v) timing of embryo transfer; (vi) and standardization of the embryo transfer techniques. The aim of this manuscript is to review these factors and compare the existing embryo transfer techniques and highlight the need for better embryo transfer standardization.

  12. Drosophila VAMP7 regulates Wingless intracellular trafficking. (United States)

    Gao, Han; He, Fang; Lin, Xinhua; Wu, Yihui


    Drosophila Wingless (Wg) is a morphogen that determines cell fate during development. Previous studies have shown that endocytic pathways regulate Wg trafficking and signaling. Here, we showed that loss of vamp7, a gene required for vesicle fusion, dramatically increased Wg levels and decreased Wg signaling. Interestingly, we found that levels of Dally-like (Dlp), a glypican that can interact with Wg to suppress Wg signaling at the dorsoventral boundary of the Drosophila wing, were also increased in vamp7 mutant cells. Moreover, Wg puncta in Rab4-dependent recycling endosomes were Dlp positive. We hypothesize that VAMP7 is required for Wg intracellular trafficking and the accumulation of Wg in Rab4-dependent recycling endosomes might affect Wg signaling.

  13. Exquisite light sensitivity of Drosophila melanogaster cryptochrome.

    Directory of Open Access Journals (Sweden)

    Pooja Vinayak

    Full Text Available Drosophila melanogaster shows exquisite light sensitivity for modulation of circadian functions in vivo, yet the activities of the Drosophila circadian photopigment cryptochrome (CRY have only been observed at high light levels. We studied intensity/duration parameters for light pulse induced circadian phase shifts under dim light conditions in vivo. Flies show far greater light sensitivity than previously appreciated, and show a surprising sensitivity increase with pulse duration, implying a process of photic integration active up to at least 6 hours. The CRY target timeless (TIM shows dim light dependent degradation in circadian pacemaker neurons that parallels phase shift amplitude, indicating that integration occurs at this step, with the strongest effect in a single identified pacemaker neuron. Our findings indicate that CRY compensates for limited light sensitivity in vivo by photon integration over extraordinarily long times, and point to select circadian pacemaker neurons as having important roles.

  14. Evidence for transgenerational metabolic programming in Drosophila

    Directory of Open Access Journals (Sweden)

    Jessica L. Buescher


    Worldwide epidemiologic studies have repeatedly demonstrated an association between prenatal nutritional environment, birth weight and susceptibility to adult diseases including obesity, cardiovascular disease and type 2 diabetes. Despite advances in mammalian model systems, the molecular mechanisms underlying this phenomenon are unclear, but might involve programming mechanisms such as epigenetics. Here we describe a new system for evaluating metabolic programming mechanisms using a simple, genetically tractable Drosophila model. We examined the effect of maternal caloric excess on offspring and found that a high-sugar maternal diet alters body composition of larval offspring for at least two generations, augments an obese-like phenotype under suboptimal (high-calorie feeding conditions in adult offspring, and modifies expression of metabolic genes. Our data indicate that nutritional programming mechanisms could be highly conserved and support the use of Drosophila as a model for evaluating the underlying genetic and epigenetic contributions to this phenomenon.

  15. The fabulous destiny of the Drosophila heart. (United States)

    Medioni, Caroline; Sénatore, Sébastien; Salmand, Pierre-Adrien; Lalevée, Nathalie; Perrin, Laurent; Sémériva, Michel


    For the last 15 years the fly cardiovascular system has attracted developmental geneticists for its potential as a model system of organogenesis. Heart development in Drosophila indeed provides a remarkable system for elucidating the basic molecular and cellular mechanisms of morphogenesis and, more recently, for understanding the genetic control of cardiac physiology. The success of these studies can in part be attributed to multidisciplinary approaches, the multiplicity of existing genetic tools, and a detailed knowledge of the system. Striking similarities with vertebrate cardiogenesis have long been stressed, in particular concerning the conservation of key molecular regulators of cardiogenesis and the new data presented here confirm Drosophila cardiogenesis as a model not only for organogenesis but also for the study of molecular mechanisms of human cardiac disease.

  16. Remembering components of food in Drosophila

    Directory of Open Access Journals (Sweden)

    Gaurav eDas


    Full Text Available Remembering features of past feeding experience can refine foraging and food choice. Insects can learn to associate sensory cues with components of food, such as sugars, amino acids, water, salt, alcohol, toxins and pathogens. In the fruit fly Drosophila some food components activate unique subsets of dopaminergic neurons that innervate distinct functional zones on the mushroom bodies. This architecture suggests that the overall dopaminergic neuron population could provide a potential cellular substrate through which the fly might learn to value a variety of food components. In addition, such an arrangement predicts that individual component memories reside in unique locations. Dopaminergic neurons are also critical for food memory consolidation and deprivation-state dependent motivational control of the expression of food-relevant memories. Here we review our current knowledge of how nutrient-specific memories are formed, consolidated and specifically retrieved in insects, with a particular emphasis on Drosophila.

  17. Imaging cell competition in Drosophila imaginal discs. (United States)

    Ohsawa, Shizue; Sugimura, Kaoru; Takino, Kyoko; Igaki, Tatsushi


    Cell competition is a process in which cells with higher fitness ("winners") survive and proliferate at the expense of less fit neighbors ("losers"). It has been suggested that cell competition is involved in a variety of biological processes such as organ size control, tissue homeostasis, cancer progression, and the maintenance of stem cell population. By advent of a genetic mosaic technique, which enables to generate fluorescently marked somatic clones in Drosophila imaginal discs, recent studies have presented some aspects of molecular mechanisms underlying cell competition. Now, with a live-imaging technique using ex vivo-cultured imaginal discs, we can dissect the spatiotemporal nature of competitive cell behaviors within multicellular communities. Here, we describe procedures and tips for live imaging of cell competition in Drosophila imaginal discs. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Plasticity in the Drosophila larval visual System

    Directory of Open Access Journals (Sweden)

    Abud J Farca-Luna


    Full Text Available The remarkable ability of the nervous system to modify its structure and function is mostly experience and activity modulated. The molecular basis of neuronal plasticity has been studied in higher behavioral processes, such as learning and memory formation. However, neuronal plasticity is not restricted to higher brain functions, but may provide a basic feature of adaptation of all neural circuits. The fruit fly Drosophila melanogaster provides a powerful genetic model to gain insight into the molecular basis of nervous system development and function. The nervous system of the larvae is again a magnitude simpler than its adult counter part, allowing the genetic assessment of a number of individual genetically identifiable neurons. We review here recent progress on the genetic basis of neuronal plasticity in developing and functioning neural circuits focusing on the simple visual system of the Drosophila larva.

  19. Overview of Drosophila immunity: a historical perspective. (United States)

    Imler, Jean-Luc


    The functional analysis of genes from the model organism Drosophila melanogaster has provided invaluable information for many cellular and developmental or physiological processes, including immunity. The best-understood aspect of Drosophila immunity is the inducible humoral response, first recognized in 1972. This pioneering work led to a remarkable series of findings over the next 30 years, ranging from the identification and characterization of the antimicrobial peptides produced, to the deciphering of the signalling pathways activating the genes that encode them and, ultimately, to the discovery of the receptors sensing infection. These studies on an insect model coincided with a revival of the field of innate immunity, and had an unanticipated impact on the biomedical field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Some Aspects of Transmutation Studies in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Oftedal, P.; Kaplan, W. D. [Norsk Hydro Institute for Cancer Research, Oslo (Norway); City of Hope Medical Research Center, Duarte, CA (United States)


    The experimental data pertaining to the mutagenic efficiency of {sup 32}P in Drosophila are discussed. It is estimated that the efficiency of the transmutation phenomena is of the order of 10{sup -9} to 10{sup -3} for the induction of recessive lethals. It is thus orders of magnitude lower than that found in bacteria and fungi. The efficiency would be lower - in comparison with the radiation effects - in organisms of greater dimensions than Drosophila, where a smaller fraction of dose is lost through the escape from the organism of high-energy {beta}-particles. Data are also reported on the genetic effects of {sup 3}H-thymidine, {sup 3}H-lysine and {sup 3}H-arginine. It appears that in all probability the effects may be interpreted as caused by radiation alone, if due regard is given to variations in radiation sensitivity and cellular dimensions during spermiogenesis. (author)

  1. Neuromodulation of Innate Behaviors in Drosophila. (United States)

    Kim, Susy M; Su, Chih-Ying; Wang, Jing W


    Animals are born with a rich repertoire of robust behaviors that are critical for their survival. However, innate behaviors are also highly adaptable to an animal's internal state and external environment. Neuromodulators, including biogenic amines, neuropeptides, and hormones, are released to signal changes in animals' circumstances and serve to reconfigure neural circuits. This circuit flexibility allows animals to modify their behavioral responses according to environmental cues, metabolic demands, and physiological states. Aided by powerful genetic tools, researchers have made remarkable progress in Drosophila melanogaster to address how a myriad of contextual information influences the input-output relationship of hardwired circuits that support a complex behavioral repertoire. Here we highlight recent advances in understanding neuromodulation of Drosophila innate behaviors, with a special focus on feeding, courtship, aggression, and postmating behaviors.

  2. The translation factors of Drosophila melanogaster. (United States)

    Marygold, Steven J; Attrill, Helen; Lasko, Paul


    Synthesis of polypeptides from mRNA (translation) is a fundamental cellular process that is coordinated and catalyzed by a set of canonical 'translation factors'. Surprisingly, the translation factors of Drosophila melanogaster have not yet been systematically identified, leading to inconsistencies in their nomenclature and shortcomings in functional (Gene Ontology, GO) annotations. Here, we describe the complete set of translation factors in D. melanogaster, applying nomenclature already in widespread use in other species, and revising their functional annotation. The collection comprises 43 initiation factors, 12 elongation factors, 3 release factors and 6 recycling factors, totaling 64 of which 55 are cytoplasmic and 9 are mitochondrial. We also provide an overview of notable findings and particular insights derived from Drosophila about these factors. This catalog, together with the incorporation of the improved nomenclature and GO annotation into FlyBase, will greatly facilitate access to information about the functional roles of these important proteins.

  3. Motor Control of Drosophila Courtship Song

    Directory of Open Access Journals (Sweden)

    Troy R. Shirangi


    Full Text Available Many animals utilize acoustic signals—or songs—to attract mates. During courtship, Drosophila melanogaster males vibrate a wing to produce trains of pulses and extended tone, called pulse and sine song, respectively. Courtship songs in the genus Drosophila are exceedingly diverse, and different song features appear to have evolved independently of each other. How the nervous system allows such diversity to evolve is not understood. Here, we identify a wing muscle in D. melanogaster (hg1 that is uniquely male-enlarged. The hg1 motoneuron and the sexually dimorphic development of the hg1 muscle are required specifically for the sine component of the male song. In contrast, the motoneuron innervating a sexually monomorphic wing muscle, ps1, is required specifically for a feature of pulse song. Thus, individual wing motor pathways can control separate aspects of courtship song and may provide a “modular” anatomical substrate for the evolution of diverse songs.

  4. Adaptive Evolution of Gene Expression in Drosophila

    Directory of Open Access Journals (Sweden)

    Armita Nourmohammad


    Full Text Available Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis.

  5. Genome-wide DNA binding pattern of the homeodomain transcription factor Sine oculis (So in the developing eye of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Barbara Jusiak


    Full Text Available The eye of the fruit fly Drosophila melanogaster provides a highly tractable genetic model system for the study of animal development, and many genes that regulate Drosophila eye formation have homologs implicated in human development and disease. Among these is the homeobox gene sine oculis (so, which encodes a homeodomain transcription factor (TF that is both necessary for eye development and sufficient to reprogram a subset of cells outside the normal eye field toward an eye fate. We have performed a genome-wide analysis of So binding to DNA prepared from developing Drosophila eye tissue in order to identify candidate direct targets of So-mediated transcriptional regulation, as described in our recent article [20]. The data are available from NCBI Gene Expression Omnibus (GEO with the accession number GSE52943. Here we describe the methods, data analysis, and quality control of our So ChIP-seq dataset.

  6. Sexual Communication in the Drosophila Genus


    Gwénaëlle Bontonou; Claude Wicker-Thomas


    In insects, sexual behavior depends on chemical and non-chemical cues that might play an important role in sexual isolation. In this review, we present current knowledge about sexual behavior in the Drosophila genus. We describe courtship and signals involved in sexual communication, with a special focus on sex pheromones. We examine the role of cuticular hydrocarbons as sex pheromones, their implication in sexual isolation, and their evolution. Finally, we discuss the roles of male cuticular...

  7. Adaptive dynamics of cuticular hydrocarbons in Drosophila

    Czech Academy of Sciences Publication Activity Database

    Rajpurohit, S.; Hanus, Robert; Vrkoslav, Vladimír; Behrman, E. L.; Bergland, A. O.; Petrov, D.; Cvačka, Josef; Schmidt, P. S.


    Roč. 30, č. 1 (2017), s. 66-80 ISSN 1010-061X R&D Projects: GA ČR GAP206/12/1093 Institutional support: RVO:61388963 Keywords : cuticular hydrocarbons * Drosophila * experimental evolution * spatiotemporal variation * thermal plasticity Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 2.792, year: 2016

  8. Diet-induced mating preference in Drosophila


    Rosenberg, Eugene; Zilber-Rosenberg, Ilana; Sharon, Gil; Segal, Daniel


    Diet-induced mating preference was initially observed by Dodd (1). Subsequently, we reported that diet-induced mating preference occurred in Drosophila melanogaster. Treatment of the flies with antibiotics abolished the mating preference, suggesting that fly-associated commensal bacteria were responsible for the phenomenon (2). The hypothesis was confirmed when it was shown that colonizing antibiotic-treated flies with Lactobacillus plantarum reestablished mating preference in multiple-choice...

  9. Studies on maternal repair in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Mendelson, D.


    The work reported in this thesis is mainly concerned with studies on the nature of the repair mechanism(s) operating in Drosophila oocytes, and which act on chromosome damage induced by X-irradiation of post-meiotic male germ-cells. Caffeine treatment of the females has been used as an analytical tool to gain an insight into the nature of this repair mechanism and its genetic basis

  10. A Drosophila Model to Image Phagosome Maturation

    Directory of Open Access Journals (Sweden)

    Douglas A. Brooks


    Full Text Available Phagocytosis involves the internalization of extracellular material by invagination of the plasma membrane to form intracellular vesicles called phagosomes, which have functions that include pathogen degradation. The degradative properties of phagosomes are thought to be conferred by sequential fusion with endosomes and lysosomes; however, this maturation process has not been studied in vivo. We employed Drosophila hemocytes, which are similar to mammalian professional macrophages, to establish a model of phagosome maturation. Adult Drosophila females, carrying transgenic Rab7-GFP endosome and Lamp1-GFP lysosome markers, were injected with E. coli DH5α and the hemocytes were collected at 15, 30, 45 and 60 minutes after infection. In wild-type females, E. coli were detected within enlarged Rab7-GFP positive phagosomes at 15 to 45 minutes after infection; and were also observed in enlarged Lamp1-GFP positive phagolysosomes at 45 minutes. Two-photon imaging of hemocytes in vivo confirmed this vesicle morphology, including enlargement of Rab7-GFP and Lamp1-GFP structures that often appeared to protrude from hemocytes. The interaction of endosomes and lysosomes with E. coli phagosomes observed in Drosophila hemocytes was consistent with that previously described for phagosome maturation in human ex vivo macrophages. We also tested our model as a tool for genetic analysis using 14-3-3e mutants, and demonstrated altered phagosome maturation with delayed E. coli internalization, trafficking and/or degradation. These findings demonstrate that Drosophila hemocytes provide an appropriate, genetically amenable, model for analyzing phagosome maturation ex vivo and in vivo.

  11. Three-dimensional imaging of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Leeanne McGurk


    Full Text Available The major hindrance to imaging the intact adult Drosophila is that the dark exoskeleton makes it impossible to image through the cuticle. We have overcome this obstacle and describe a method whereby the internal organs of adult Drosophila can be imaged in 3D by bleaching and clearing the adult and then imaging using a technique called optical projection tomography (OPT. The data is displayed as 2D optical sections and also in 3D to provide detail on the shape and structure of the adult anatomy.We have used OPT to visualize in 2D and 3D the detailed internal anatomy of the intact adult Drosophila. In addition this clearing method used for OPT was tested for imaging with confocal microscopy. Using OPT we have visualized the size and shape of neurodegenerative vacuoles from within the head capsule of flies that suffer from age-related neurodegeneration due to a lack of ADAR mediated RNA-editing. In addition we have visualized tau-lacZ expression in 2D and 3D. This shows that the wholemount adult can be stained without any manipulation and that this stain penetrates well as we have mapped the localization pattern with respect to the internal anatomy.We show for the first time that the intact adult Drosophila can be imaged in 3D using OPT, also we show that this method of clearing is also suitable for confocal microscopy to image the brain from within the intact head. The major advantage of this is that organs can be represented in 3D in their natural surroundings. Furthermore optical sections are generated in each of the three planes and are not prone to the technical limitations that are associated with manual sectioning. OPT can be used to dissect mutant phenotypes and to globally map gene expression in both 2D and 3D.

  12. Functional neuroanatomy of Drosophila olfactory memory formation


    Guven-Ozkan, Tugba; Davis, Ronald L.


    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry exten...

  13. Neurophysiology of Drosophila Models of Parkinson's Disease


    West, Ryan J. H.; Furmston, Rebecca; Williams, Charles A. C.; Elliott, Christopher J. H.


    We provide an insight into the role Drosophila has played in elucidating neurophysiological perturbations associated with Parkinson's disease- (PD-) related genes. Synaptic signalling deficits are observed in motor, central, and sensory systems. Given the neurological impact of disease causing mutations within these same genes in humans the phenotypes observed in fly are of significant interest. As such we observe four unique opportunities provided by fly nervous system models of Parkinson's ...

  14. Research of the low dose gamma-irradiation influence on life span and aging speed of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Moskalev, A.


    Full text: Researches of radioinduced life span alteration of Drosophila which is carried out in our laboratory in 1996-2003 years, have revealed interrelation between mutations of several genes of DNA repair and apoptosis pathways with low doses ionizing irradiation and speed of aging. It was used Drosophila individuals, developing in conditions of a chronic low dose irradiation or on nutrition medium with apoptosis inducer etoposide addition. The exposition doze was 0.17 sGy/h. The absorbed doze for one generation (from an embryo stage up to an imago start, 10-12 days) corresponded 60 sGy. Etoposide treatment carried out on preimago stages (5 mkM in a nutrient medium n concentration). We investigated the life span after irradiation and etoposide treatment of Drosophila melanogaster laboratory populations with defects of some genes of DNA repair machinery and apoptosis pathways in homozygous and heterozygous state, such as mei-41 (ATM homolog), two alleles of Dcp-1 (Drosophila caspase), dArk (Apaf-1 homolog), rpr, grim, hid, three alleles of th (IAP homolog), wg (Wnt family member). It is shown, that the irradiation and etoposide treatment of these strains results in life span change depending on a genotype of the investigated line. The results will be considering in the report. As well, the analysis of age-dependent change of nervous system activity (as the test of aging speed) of Drosophila melanogaster imago was carried out. It was shown, that the irradiation of strains with the increased apoptosis sensitivity results in elevated nervous - muscular activity of imago during all experiment periods. At th1 strain increase of activity in comparison with the control in the first week has made 41 %, and in two subsequent - about 80 %. Last week authentic increase did not observe. At th4 strain statistically significant increase of activity in comparison with the control observed in the first week of experiment (18 %), in the second (67 %) and the fourth (88 %). The

  15. Flying Drosophila orient to sky polarization. (United States)

    Weir, Peter T; Dickinson, Michael H


    Insects maintain a constant bearing across a wide range of spatial scales. Monarch butterflies and locusts traverse continents [1, 2], and foraging bees and ants travel hundreds of meters to return to their nests [1, 3, 4], whereas many other insects fly straight for only a few centimeters before changing direction. Despite this variation in spatial scale, the brain region thought to underlie long-distance navigation is remarkably conserved [5, 6], suggesting that the use of a celestial compass is a general and perhaps ancient capability of insects. Laboratory studies of Drosophila have identified a local search mode in which short, straight segments are interspersed with rapid turns [7, 8]. However, this flight mode is inconsistent with measured gene flow between geographically separated populations [9-11], and individual Drosophila can travel 10 km across desert terrain in a single night [9, 12, 13]-a feat that would be impossible without prolonged periods of straight flight. To directly examine orientation behavior under outdoor conditions, we built a portable flight arena in which a fly viewed the natural sky through a liquid crystal device that could experimentally rotate the polarization angle. Our findings indicate that Drosophila actively orient using the sky's natural polarization pattern. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. An automated paradigm for Drosophila visual psychophysics.

    Directory of Open Access Journals (Sweden)

    Oliver Evans

    Full Text Available BACKGROUND: Mutations that cause learning and memory defects in Drosophila melanogaster have been found to also compromise visual responsiveness and attention. A better understanding of attention-like defects in such Drosophila mutants therefore requires a more detailed characterization of visual responsiveness across a range of visual parameters. METHODOLOGY/PRINCIPAL FINDINGS: We designed an automated behavioral paradigm for efficiently dissecting visual responsiveness in Drosophila. Populations of flies walk through multiplexed serial choice mazes while being exposed to moving visuals displayed on computer monitors, and infra-red fly counters at the end of each maze automatically score the responsiveness of a strain. To test our new design, we performed a detailed comparison between wild-type flies and a learning and memory mutant, dunce(1. We first confirmed that the learning mutant dunce(1 displays increased responsiveness to a black/green moving grating compared to wild type in this new design. We then extended this result to explore responses to a wide range of psychophysical parameters for moving gratings (e.g., luminosity, contrast, spatial frequency, velocity as well as to a different stimulus, moving dots. Finally, we combined these visuals (gratings versus dots in competition to investigate how dunce(1 and wild-type flies respond to more complex and conflicting motion effects. CONCLUSIONS/SIGNIFICANCE: We found that dunce(1 responds more strongly than wild type to high contrast and highly structured motion. This effect was found for simple gratings, dots, and combinations of both stimuli presented in competition.

  17. Neurophysiology of Drosophila models of Parkinson's disease. (United States)

    West, Ryan J H; Furmston, Rebecca; Williams, Charles A C; Elliott, Christopher J H


    We provide an insight into the role Drosophila has played in elucidating neurophysiological perturbations associated with Parkinson's disease- (PD-) related genes. Synaptic signalling deficits are observed in motor, central, and sensory systems. Given the neurological impact of disease causing mutations within these same genes in humans the phenotypes observed in fly are of significant interest. As such we observe four unique opportunities provided by fly nervous system models of Parkinson's disease. Firstly, Drosophila models are instrumental in exploring the mechanisms of neurodegeneration, with several PD-related mutations eliciting related phenotypes including sensitivity to energy supply and vesicular deformities. These are leading to the identification of plausible cellular mechanisms, which may be specific to (dopaminergic) neurons and synapses rather than general cellular phenotypes. Secondly, models show noncell autonomous signalling within the nervous system, offering the opportunity to develop our understanding of the way pathogenic signalling propagates, resembling Braak's scheme of spreading pathology in PD. Thirdly, the models link physiological deficits to changes in synaptic structure. While the structure-function relationship is complex, the genetic tractability of Drosophila offers the chance to separate fundamental changes from downstream consequences. Finally, the strong neuronal phenotypes permit relevant first in vivo drug testing.

  18. Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model

    Directory of Open Access Journals (Sweden)

    Hu YL


    Full Text Available Yu-Lan Hu1, Wang Qi1, Feng Han2, Jian-Zhong Shao3, Jian-Qing Gao11Institute of Pharmaceutics, College of Pharmaceutical Sciences, 2Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, 3College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, People's Republic of ChinaBackground: Although there are a number of reports regarding the toxicity evaluation of inorganic nanoparticles, knowledge on biodegradable nanomaterials, which have always been considered safe, is still limited. For example, the toxicity of chitosan nanoparticles, one of the most widely used drug/gene delivery vehicles, is largely unknown. In the present study, the zebrafish model was used for a safety evaluation of this nanocarrier.Methods: Chitosan nanoparticles with two particle sizes were prepared by ionic cross-linking of chitosan with sodium tripolyphosphate. Chitosan nanoparticles of different concentrations were incubated with zebrafish embryos, and ZnO nanoparticles were used as the positive control.Results: Embryo exposure to chitosan nanoparticles and ZnO nanoparticles resulted in a decreased hatching rate and increased mortality, which was concentration-dependent. Chitosan nanoparticles at a size of 200 nm caused malformations, including a bent spine, pericardial edema, and an opaque yolk in zebrafish embryos. Furthermore, embryos exposed to chitosan nanoparticles showed an increased rate of cell death, high expression of reactive oxygen species, as well as overexpression of heat shock protein 70, indicating that chitosan nanoparticles can cause physiological stress in zebrafish. The results also suggest that the toxicity of biodegradable nanocarriers such as chitosan nanoparticles must be addressed, especially considering the in vivo distribution of these nanoscaled particles.Conclusion: Our results add new insights into the potential toxicity of nanoparticles produced by

  19. Transcriptome Analysis of Genes Involved in Lipid Biosynthesis in the Developing Embryo of Pecan (Carya illinoinensis). (United States)

    Huang, Ruimin; Huang, Youjun; Sun, Zhichao; Huang, Jianqin; Wang, Zhengjia


    Pecan (Carya illinoinensis) is an important woody tree species because of the high content of healthy oil in its nut. Thus far, the pathways and key genes related to oil biosynthesis in developing pecan seeds remain largely unclear. Our analyses revealed that mature pecan embryo accumulated more than 80% oil, in which 90% was unsaturated fatty acids with abundant oleic acid. RNA sequencing generated 84,643 unigenes in three cDNA libraries prepared from pecan embryos collected at 105, 120, and 165 days after flowering (DAF). We identified 153 unigenes associated with lipid biosynthesis, including 107 unigenes for fatty acid biosynthesis, 34 for triacylglycerol biosynthesis, 7 for oil bodies, and 5 for transcription factors involved in oil synthesis. The genes associated with fatty acid synthesis were the most abundantly expressed genes at 120 DAF. Additionally, the biosynthesis of oil began to increase while crude fat contents increased from 16.61 to 74.45% (165 DAF). We identified four SAD, two FAD2, one FAD6, two FAD7, and two FAD8 unigenes responsible for unsaturated fatty acid biosynthesis. However, FAD3 homologues were not detected. Consequently, we inferred that the linolenic acid in developing pecan embryos is generated by FAD7 and FAD8 in plastids rather than FAD3 in endoplasmic reticula. During pecan embryo development, different unigenes are expressed for plastidial and cytosolic glycolysis. Plastidial glycolysis is more relevant to lipid synthesis than cytosolic glycolysis. The 18 most important genes associated with lipid biosynthesis were evaluated in five stages of developing embryos using quantitative PCR (qPCR). The qPCR data were well consistent with their expression in transcriptomic analyses. Our data would be important for the metabolic engineering of pecans to increase oil contents and modify fatty acid composition.

  20. Embryo Cell Membranes Reconstruction by Tensor Voting


    Michelin , Gaël; Guignard , Léo; Fiuza , Ulla-Maj; Malandain , Grégoire


    International audience; Image-based studies of developing organs or embryos produce a huge quantity of data. To handle such high-throughput experimental protocols, automated computer-assisted methods are highly desirable. This article aims at designing an efficient cell segmentation method from microscopic images. The proposed approach is twofold: first, cell membranes are enhanced or extracted by the means of structure-based filters, and then perceptual grouping (i.e. tensor voting) allows t...

  1. DDT-induced feminization of gull embryos

    International Nuclear Information System (INIS)

    Fry, D.M.; Toone, C.K.


    Injection of DDT [1, 1, 1-trichloro-2,2-bis(p-chlorophenyl)ethane] into gull eggs at concentrations comparable to those found in contaminated seabird eggs in 1970 induces abnormal development of ovarian tissue and oviducts in male embryos. Developmental feminization of males is associated with inability to breed as adults and may explain the highly skewed sex ratio and reduced number of male gulls breeding on Santa Barbara Island in southern California

  2. Developmental toxicity of cartap on zebrafish embryos. (United States)

    Zhou, Shengli; Dong, Qiaoxiang; Li, Shaonan; Guo, Jiangfeng; Wang, Xingxing; Zhu, Guonian


    Cartap is a widely used insecticide which belongs to a member of nereistoxin derivatives and acts on nicotinic acetylcholine receptor site. Its effects on aquatic species are of grave concern. To explore the potential developmental toxicity of cartap, zebrafish embryos were continually exposed, from 0.5 to 144h post-fertilization, to a range of concentrations of 25-1000microg/l. Results of the experiment indicated that cartap concentrations of 100microg/l and above negatively affected embryo survival and hatching success. Morphological analysis uncovered a large suite of abnormalities such as less melanin pigmentation, wavy notochord, crooked trunk, fuzzy somites, neurogenesis defects and vasculature defects. The most sensitive organ was proved to be the notochord which displayed defects at concentrations as low as 25microg/l. Both sensitivity towards exposure and localization of the defect were stage specific. To elucidate mechanisms concerning notochord, pigmentation, and hatching defects, enzyme assay, RT Q-PCR, and different exposure strategies were performed. For embryos with hatching failure, chorion was verified not to be digested, while removing cartap from exposure at early pre-hatching stage could significantly increase the hatching success. However, cartap was proved, via vitro assay, to have no effect on proteolytic activity of hatching enzyme. These findings implied that the secretion of hatching enzyme might be blocked. We also revealed that cartap inhibited the activity of melanogenic enzyme tyrosinase and matrix enzyme lysyl oxidase and induced expression of their genes. These suggested that cartap could impaired melanin pigmentation of zebrafish embryos through inhibiting tyrosinase activity, while inhibition of lysyl oxidase activity was responsible for notochord undulation, which subsequently caused somite defect, and at least partially responsible for defects in vasculature and neurogenesis.

  3. Automation and Optimization of Multipulse Laser Zona Drilling of Mouse Embryos During Embryo Biopsy. (United States)

    Wong, Christopher Yee; Mills, James K


    Laser zona drilling (LZD) is a required step in many embryonic surgical procedures, for example, assisted hatching and preimplantation genetic diagnosis. LZD involves the ablation of the zona pellucida (ZP) using a laser while minimizing potentially harmful thermal effects on critical internal cell structures. Develop a method for the automation and optimization of multipulse LZD, applied to cleavage-stage embryos. A two-stage optimization is used. The first stage uses computer vision algorithms to identify embryonic structures and determines the optimal ablation zone farthest away from critical structures such as blastomeres. The second stage combines a genetic algorithm with a previously reported thermal analysis of LZD to optimize the combination of laser pulse locations and pulse durations. The goal is to minimize the peak temperature experienced by the blastomeres while creating the desired opening in the ZP. A proof of concept of the proposed LZD automation and optimization method is demonstrated through experiments on mouse embryos with positive results, as adequately sized openings are created. Automation of LZD is feasible and is a viable step toward the automation of embryo biopsy procedures. LZD is a common but delicate procedure performed by human operators using subjective methods to gauge proper LZD procedure. Automation of LZD removes human error to increase the success rate of LZD. Although the proposed methods are developed for cleavage-stage embryos, the same methods may be applied to most types LZD procedures, embryos at different developmental stages, or nonembryonic cells.

  4. In vitro embryo culture of rarely endangered musella lasiocarpa (musaceae) with embryo dormancy

    International Nuclear Information System (INIS)

    Anjun, T.


    Musella lasiocarpa (Musaceae) is an ornamental annually producing many viable seeds, but seldom recruited by seeds in the wild. One mature Musella seed has a small mushroom-shaped embryo without discernible organ differentiation. Therefore, freshly-harvested mature seeds are dormant. When the seeds gradually finished differentiation during warm stratification at 23 degree C, they germinated to 82%. Besides, extracted embryos from fresh seeds did not germinate on the basal medium of Murshige and Skoog medium (MS) supplemented with 3% sucrose and 0.8% agar, but they were induced to form calli and root by media. The optimum medium for inducing calli was MS + 1.0 mg/L 6-BA + 0.05 mg/L NAA + 100 mg/L Vc with the highest proliferation coefficient (7.3) in 35 days. Moreover, the embryos from the 6-month warm stratified seeds could proliferate on the suitable medium. The optimal medium for rooting was MS + 0.5 mg/L 2, 4-D + Vitamin C 100 mg/L. The results confirmed that both the embryo developmental stage and appropriate combination of chemicals significantly affected seed germination and In vitro embryo culture of this species. (author)

  5. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region (United States)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas


    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs. PMID:23593258

  6. Dynamics of cell polarity in tissue morphogenesis: a comparative view from Drosophila and Ciona [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Michael T. Veeman


    Full Text Available Tissues in developing embryos exhibit complex and dynamic rearrangements that shape forming organs, limbs, and body axes. Directed migration, mediolateral intercalation, lumen formation, and other rearrangements influence the topology and topography of developing tissues. These collective cell behaviors are distinct phenomena but all involve the fine-grained control of cell polarity. Here we review recent findings in the dynamics of polarized cell behavior in both the Drosophila ovarian border cells and the Ciona notochord. These studies reveal the remarkable reorganization of cell polarity during organ formation and underscore conserved mechanisms of developmental cell polarity including the Par/atypical protein kinase C (aPKC and planar cell polarity pathways. These two very different model systems demonstrate important commonalities but also key differences in how cell polarity is controlled in tissue morphogenesis. Together, these systems raise important, broader questions on how the developmental control of cell polarity contributes to morphogenesis of diverse tissues across the metazoa.

  7. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  8. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region. (United States)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas


    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  9. In vivo photoacoustic imaging of mouse embryos (United States)

    Laufer, Jan; Norris, Francesca; Cleary, Jon; Zhang, Edward; Treeby, Bradley; Cox, Ben; Johnson, Peter; Scambler, Pete; Lythgoe, Mark; Beard, Paul


    The ability to noninvasively image embryonic vascular anatomy in mouse models is an important requirement for characterizing the development of the normal cardiovascular system and malformations in the heart and vascular supply. Photoacoustic imaging, which can provide high resolution non invasive images of the vasculature based upon optical absorption by endogenous hemoglobin, is well suited to this application. In this study, photoacoustic images of mouse embryos were obtained ex vivo and in vivo. The images show intricate details of the embryonic vascular system to depths of up to 10 mm, which allowed whole embryos to be imaged in situ. To achieve this, an all-optical photoacoustic scanner and a novel time reversal image reconstruction algorithm, which provide deep tissue imaging capability while maintaining high spatial resolution and contrast were employed. This technology may find application as an imaging tool for preclinical embryo studies in developmental biology as well as more generally in preclinical and clinical medicine for studying pathologies characterized by changes in the vasculature.

  10. Human embryo cloning prohibited in Hong Kong. (United States)

    Liu, Athena


    Since the birth of Dolly (the cloned sheep) in 1997, debates have arisen on the ethical and legal questions of cloning-for-biomedical-research (more commonly termed "therapeutic cloning") and of reproductive cloning using human gametes. Hong Kong enacted the Human Reproductive Technology Ordinance (Cap 561) in 2000. Section 15(1)(e) of this Ordinance prohibits the "replacing of the nucleus of a cell of an embryo with a nucleus taken from any other cell," i.e., nucleus substitution. Section 15(1)(f) prohibits the cloning of any embryo. The scope of the latter, therefore, is arguably the widest, prohibiting all cloning techniques such as cell nucleus replacement, embryo splitting, parthenogenesis, and cloning using stem cell lines. Although the Human Reproductive Technology Ordinance is not yet fully operative, this article examines how these prohibitions may adversely impact on basic research and the vision of the Hong Kong scientific community. It concludes that in light of recent scientific developments, it is time to review if the law offers a coherent set of policies in this area.

  11. Role of melatonin in embryo fetal development. (United States)

    Voiculescu, S E; Zygouropoulos, N; Zahiu, C D; Zagrean, A M


    Melatonin is an indoleamine produced by the pineal gland and secreted in a circadian manner. In the past few decades, research over this topic has been enhanced. Melatonin has many important roles in the human physiology: regulator of the circadian rhythms, sleep inducer, antioxidant, anticarcinogenic. This paper reviews the involvement of melatonin in embryo fetal development. The pineal gland develops completely postpartum, so both the embryo and the fetus are dependent on the maternal melatonin provided transplacentally. Melatonin appears to be involved in the normal outcome of pregnancy beginning with the oocyte quality and finishing with the parturition. Its pregnancy night-time concentrations increase after 24 weeks of gestation, with significantly high levels after 32 weeks. Melatonin receptors are widespread in the embryo and fetus since early stages. There is solid evidence that melatonin is neuroprotective and has a positive effect on the outcome of the compromised pregnancies. In addition, chronodisruption leads to a reproductive dysfunction. Thus, the influence of melatonin on the developing human fetus may not be limited to the entertaining of circadian rhythmicity, but further studies are needed.

  12. Cryopreservation of preimplantation embryos of cattle, sheep, and goats. (United States)

    Youngs, Curtis R


    Preimplantation embryos from cattle, sheep, and goats may be cryopreserved for short- or long-term storage. Preimplantation embryos consist predominantly of water, and the avoidance of intracellular ice crystal formation during the cryopreservation process is of paramount importance to maintain embryo viability. Embryos are placed into a hypertonic solution (1.4 - 1.5 M) of a cryoprotective agent (CPA) such as ethylene glycol (EG) or glycerol (GLYC) to create an osmotic gradient that facilitates cellular dehydration. After embryos reach osmotic equilibrium in the CPA solution, they are individually loaded in the hypertonic CPA solution into 0.25 ml plastic straws for freezing. Embryos are placed into a controlled rate freezer at a temperature of -6°C. Ice crystal formation is induced in the CPA solution surrounding the embryo, and crystallization causes an increase in the concentration of CPA outside of the embryo, causing further cellular dehydration. Embryos are cooled at a rate of 0.5°C/min, enabling further dehydration, to a temperature of -34°C before being plunged into liquid nitrogen (-196°C). Cryopreserved embryos must be thawed prior to transfer to a recipient (surrogate) female. Straws containing the embryos are removed from the liquid nitrogen dewar, held in room temperature air for 3 to 5 sec, and placed into a 37°C water bath for 25 to 30 sec. Embryos cryopreserved in GLYC are placed into a 1 M solution of sucrose for 10 min for removal of the CPA before transfer to a recipient (surrogate) female. Embryos cryopreserved in EG, however, may be directly transferred to the uterus of a recipient.

  13. Preimplantation development of embryos in women of advanced maternal age

    Directory of Open Access Journals (Sweden)

    O. V. Chaplia


    Full Text Available In order to reveal the influence of genetic component on the early embryo development, the retrospective study of morphokinetic characteristics of 717 embryos subjected to preimplantation genetic testing was conducted. Blastomere biopsy for FISH-based preimplantation genetic screening of 7 chromosomes was performed on the third day of culture, while embryo developmental potential and morphological features at the cleavage and blastulation stage were studied regarding maternal age particularly in the group of younger women and patients older than 36. Results of genetic testing revealed that euploid embryos rate gradually decreased with maternal age comprising 39.9% in young women group and 25.3% of specimen belonging to elder patients. At the cleavage stage, morphological characteristics of aneuploid and euploid embryos didn’t differ significantly regardless of the age of patients that could be accounted for the transcriptional silence of embryo genome till the third day of its development. However, in case of prolonged culture chromosomally balanced embryos rarely faced developmental arrest (in 7.9% and formed blastocysts half more frequently compared to aberrant embryos (respectively 75.6 versus 49.8%. Nevertheless, no substantial difference was found between blastocyst formation rate among embryos with similar genetic component regardless of the maternal age. Taking into consideration high rate of chromosomally unbalanced embryos specific to patients of advanced maternal age, the relative proportion of aneuplouid blastocysts was significantly higher in this group of embryos. Thus, without genetic screening there is a possibility of inaccurate selection of embryos for women of advanced reproductive age for transfer procedure even in case of prolonged culture. Consequently, increase of aneuploid embryos frequency associated with permanent preimplantation natural selection effectiveness along with the postimplantation natural selection failure

  14. First foreign exploration for asian parasitoids of Drosophila suzukii (United States)

    The invasive spotted wing drosophila, Drosophila suzukii Matsumura (Dipt.: Drosophilidae), is a native of East Asia and is now widely established in North America and Europe, where it is a serious pest of small and stone fruit crops. The lack of effective indigenous parasitoids of D. suzukii in the ...

  15. Ionizing radiation causes the stress response in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Gruntenko, N.E.; Zakharenko, L.P.; Raushenbakh, I.Yu.


    Potentiality of the stress-reaction arising in Drosophila melanogaster under gamma-irradiation of the source with 137 Cs (irradiation dose is 10 Gy , radiation dose rate amounts 180 c Gy/min) is studied. It is shown that radiation induces the stress-reaction in Drosophila resulting in alterations in energetic metabolism (biogenic amines metabolic system) and in reproductive function [ru

  16. Drosophila suzukii population response to environment and management strategies (United States)

    Spotted wing drosophila, Drosophila suzukii, quickly emerged as a devastating invasive pest of small and stone fruits in the Americas and Europe. To better understand the population dynamics of D. suzukii, we reviewed recent work on juvenile development, adult reproduction, and seasonal variation in...

  17. Drosophila Courtship Conditioning As a Measure of Learning and Memory

    NARCIS (Netherlands)

    Koemans, T.S.; Oppitz, C.; Donders, R.; Bokhoven, H. van; Schenck, A.; Keleman, K.; Kramer, J.M.


    Many insights into the molecular mechanisms underlying learning and memory have been elucidated through the use of simple behavioral assays in model organisms such as the fruit fly, Drosophila melanogaster. Drosophila is useful for understanding the basic neurobiology underlying cognitive deficits

  18. Genetic monitoring of irradiated Drosophila populations treated with antimutagen melanine

    International Nuclear Information System (INIS)

    Mosseh, I.B.; Savchenko, V.K.; Lyakh, I.P.


    It was shown that viability of irradiated Drosophila is, on an average, lower than in intact populations. The fertility first decreases then increases exceeding the control level. Melanine added to the diet increases fertility and viability of both exposed and intact Drosophila populations

  19. Medium-term changes in Drosophila subobscura chromosomal ...

    Indian Academy of Sciences (India)


    Jun 2, 2015 ... Krimbas C. B. 1993 Drosophila subobscura: biology, genetics and inversion polymorphism. Verlag Dr, Kovac, Hamburg. Menozzi P. and Krimbas C. B. 1992 The inversion polymorphism of Drosophila subobscura revisited: synthetic maps of gene arrangements frequencies and their interpretation. J. Evol.

  20. Behavior of the P1.HTR mastocytoma cell line implanted in the chorioallantoic membrane of chick embryos

    Directory of Open Access Journals (Sweden)

    S.F. Avram


    Full Text Available The P1.HTR cell line includes highly transfectable cells derived from P815 mastocytoma cells originating from mouse breast tissue. Despite its widespread use in immunogenic studies, no data are available about the behavior of P1.HTR cells in the chick embryo chorioallantoic membrane model. The objective of the present investigation was to study the effects of P1.HTR cells implanted on the chorioallantoic membrane of chick embryos. We inoculated P1.HTR cells into the previously prepared chick embryo chorioallantoic membrane and observed the early and late effects of these cells by stereomicroscopy, histochemistry and immunohistochemistry. A highly angiotropic and angiogenic effect occurred early after inoculation and a tumorigenic potential with the development of mastocytoma keeping well mast cells immunophenotype was detected later during the development. The P1.HTR mastocytoma cell line is a good tool for the development of the chick embryo chorioallantoic membrane mastocytoma model and also for other studies concerning the involvement of blood vessels. The chick embryo chorioallantoic membrane model of mastocytoma retains the mast cell immunophenotype under experimental conditions and could be used as an experimental tool for in vivo preliminary testing of antitumor and antivascular drugs.

  1. Contribution to the study of the reduction of sulfate by the yolk sac of the chicken embryo

    International Nuclear Information System (INIS)

    Bourgeois, Claude


    This academic reports addresses additional information obtained about the reduction of sulfate into sulphite by the yolk sac of a chicken embryo. Two important difficulties have been faced: the impossibility to isolate this reduction from reactions which immediately use the formed sulphite, and the impossibility to obtain an acellular preparation able to reduce the sulfate. Then, the problem of reduction of sulfate into sulphite by the yolk sac is associated with the problem of permeability of yolk sac cells to the studied substances. Thus, the author studied whether other animal species could provide a better material than the chicken embryo for this study of sulfate reduction. It appears that some vertebrate embryos present some evidence of sulphur metabolism similar to that of chicken embryo. However, this last one revealed to be the most favourable for the study. The author reports the study of the evolution of the reduction activity of the yolk sac sulfate with respect to the embryo age, and the effect of some metabolic inhibitors on this activity [fr

  2. Review of NCRP radiation dose limit for embryo and fetus in occupationally-exposed women

    International Nuclear Information System (INIS)



    On the basis of the current review, the NCRP has decided to make no change in the current recommendation of its radiation dose limit to the unborn. The NCRP recommendation is restated here as follows: During the entire gestation period, the maximum permissible dose equivalent to the embryo-fetus from occupational exposure of the expectant mother should be 0.5 rem. Since the preparation of the 1971 report there has been no new evidence concerning teratogenic or carcinogenic effects of irradiation of the embryo-fetus that would justify a change in the limit in either direction. It is implicit in this position and recommendation that women who can reasonably be expected to be pregnant should not, in certain instances, be exposed to the same radiation environment as women who are not considered fertile or as men. This applies particularly to conditions where radiation workers can receive dose equivalents of 0.5 rem or more in short periods

  3. Embedding, serial sectioning and staining of zebrafish embryos using JB-4 resin. (United States)

    Sullivan-Brown, Jessica; Bisher, Margaret E; Burdine, Rebecca D


    Histological techniques are critical for observing tissue and cellular morphology. In this paper, we outline our protocol for embedding, serial sectioning, staining and visualizing zebrafish embryos embedded in JB-4 plastic resin-a glycol methacrylate-based medium that results in excellent preservation of tissue morphology. In addition, we describe our procedures for staining plastic sections with toluidine blue or hematoxylin and eosin, and show how to couple these stains with whole-mount RNA in situ hybridization. We also describe how to maintain and visualize immunofluorescence and EGFP signals in JB-4 resin. The protocol we outline-from embryo preparation, embedding, sectioning and staining to visualization-can be accomplished in 3 d. Overall, we reinforce that plastic embedding can provide higher resolution of cellular details and is a valuable tool for cellular and morphological studies in zebrafish.

  4. Propylthiouracil is teratogenic in murine embryos.

    Directory of Open Access Journals (Sweden)

    Valeria C Benavides

    Full Text Available Hyperthyroidism during pregnancy is treated with the antithyroid drugs (ATD propylthiouracil (PTU and methimazole (MMI. PTU currently is recommended as the drug of choice during early pregnancy. Yet, despite widespread ATD use in pregnancy, formal studies of ATD teratogenic effects have not been performed.We examined the teratogenic effects of PTU and MMI during embryogenesis in mice. To span different periods of embryogenesis, dams were treated with compounds or vehicle daily from embryonic day (E 7.5 to 9.5 or from E3.5 to E7.5. Embryos were examined for gross malformations at E10.5 or E18.5 followed by histological and micro-CT analysis. Influences of PTU on gene expression levels were examined by RNA microarray analysis.When dams were treated from E7.5 to E9.5 with PTU, neural tube and cardiac abnormalities were observed at E10.5. Cranial neural tube defects were significantly more common among the PTU-exposed embryos than those exposed to MMI or vehicle. Blood in the pericardial sac, which is a feature indicative of abnormal cardiac function and/or abnormal vasculature, was observed more frequently in PTU-treated than MMI-treated or vehicle-treated embryos. Following PTU treatment, a total of 134 differentially expressed genes were identified. Disrupted genetic pathways were those associated with cytoskeleton remodeling and keratin filaments. At E 18.5, no gross malformations were evident in either ATD group, but the number of viable PTU embryos per dam at E18.5 was significantly lower from those at E10.5, indicating loss of malformed embryos. These data show that PTU exposure during embryogenesis is associated with delayed neural tube closure and cardiac abnormalities. In contrast, we did not observe structural or cardiac defects associated with MMI exposure except at the higher dose. We find that PTU exposure during embryogenesis is associated with fetal loss. These observations suggest that PTU has teratogenic potential.

  5. Detecting novel low-abundant transcripts in Drosophila

    DEFF Research Database (Denmark)

    Lee, Sanggyu; Bao, Jingyue; Zhou, Guolin


    Increasing evidence suggests that low-abundant transcripts may play fundamental roles in biological processes. In an attempt to estimate the prevalence of low-abundant transcripts in eukaryotic genomes, we performed a transcriptome analysis in Drosophila using the SAGE technique. We collected 244......,313 SAGE tags from transcripts expressed in Drosophila embryonic, larval, pupae, adult, and testicular tissue. From these SAGE tags, we identified 40,823 unique SAGE tags. Our analysis showed that 55% of the 40,823 unique SAGE tags are novel without matches in currently known Drosophila transcripts...... in the Drosophila genome. Our study reveals the presence of a significant number of novel low-abundant transcripts in Drosophila, and highlights the need to isolate these novel low-abundant transcripts for further biological studies. Udgivelsesdato: 2005-Jun...

  6. Patterns of mutation and selection at synonymous sites in Drosophila

    DEFF Research Database (Denmark)

    Singh, Nadia D; Bauer DuMont, Vanessa L; Hubisz, Melissa J


    , when applied to 18 coding sequences in 3 species of Drosophila, confirmed an earlier report that the Notch gene in Drosophila melanogaster was evolving under selection in favor of those codons defined as unpreferred in this species. This finding opened the possibility that synonymous sites may...... be subject to a variety of selective pressures beyond weak selection for increased frequencies of the codons currently defined as "preferred" in D. melanogaster. To further explore patterns of synonymous site evolution in Drosophila in a lineage-specific manner, we expanded the application of the maximum...... likelihood framework to 8,452 protein coding sequences with well-defined orthology in D. melanogaster, Drosophila sechellia, and Drosophila yakuba. Our analyses reveal intragenomic and interspecific variation in mutational patterns as well as in patterns and intensity of selection on synonymous sites. In D...

  7. Drosophila melanogaster as a model organism to study nanotoxicity. (United States)

    Ong, Cynthia; Yung, Lin-Yue Lanry; Cai, Yu; Bay, Boon-Huat; Baeg, Gyeong-Hun


    Drosophila melanogaster has been used as an in vivo model organism for the study of genetics and development since 100 years ago. Recently, the fruit fly Drosophila was also developed as an in vivo model organism for toxicology studies, in particular, the field of nanotoxicity. The incorporation of nanomaterials into consumer and biomedical products is a cause for concern as nanomaterials are often associated with toxicity in many in vitro studies. In vivo animal studies of the toxicity of nanomaterials with rodents and other mammals are, however, limited due to high operational cost and ethical objections. Hence, Drosophila, a genetically tractable organism with distinct developmental stages and short life cycle, serves as an ideal organism to study nanomaterial-mediated toxicity. This review discusses the basic biology of Drosophila, the toxicity of nanomaterials, as well as how the Drosophila model can be used to study the toxicity of various types of nanomaterials.

  8. Intestinal stem cells in the adult Drosophila midgut

    International Nuclear Information System (INIS)

    Jiang, Huaqi; Edgar, Bruce A.


    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: ► The homeostasis and regeneration of adult fly midguts are mediated by ISCs. ► Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). ► EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. ► Notch signaling regulates ISC self-renewal and differentiation.

  9. Embryo quality and impact of specific embryo characteristics on ongoing implantation in unselected embryos derived from modified natural cycle in vitro fertilization

    NARCIS (Netherlands)

    Pelinck, Marie-Jose; Hoek, Annemieke; Simons, Arnold H. M.; Heineman, Maas Jan; van Echten-Arends, Janny; Arts, Eus G. J. M.

    Objective: To study the implantation potential of unselected embryos derived from modified natural cycle IVF according to their morphological characteristics. Design: Cohort study. Setting: Academic department of reproductive medicine. Patient(S): A series of 449 single embryo transfers derived from

  10. Identification of PNG kinase substrates uncovers interactions with the translational repressor TRAL in the oocyte-to-embryo transition. (United States)

    Hara, Masatoshi; Lourido, Sebastian; Petrova, Boryana; Lou, Hua Jane; Von Stetina, Jessica R; Kashevsky, Helena; Turk, Benjamin E; Orr-Weaver, Terry L


    The Drosophila Pan Gu (PNG) kinase complex regulates hundreds of maternal mRNAs that become translationally repressed or activated as the oocyte transitions to an embryo. In a previous paper (Hara et al., 2017), we demonstrated PNG activity is under tight developmental control and restricted to this transition. Here, examination of PNG specificity showed it to be a Thr-kinase yet lacking a clear phosphorylation site consensus sequence. An unbiased biochemical screen for PNG substrates identified the conserved translational repressor Trailer Hitch (TRAL). Phosphomimetic mutation of the PNG phospho-sites in TRAL reduced its ability to inhibit translation in vitro. In vivo, mutation of tral dominantly suppressed png mutants and restored Cyclin B protein levels. The repressor Pumilio (PUM) has the same relationship with PNG, and we also show that PUM is a PNG substrate. Furthermore, PNG can phosphorylate BICC and ME31B, repressors that bind TRAL in cytoplasmic RNPs. Therefore, PNG likely promotes translation at the oocyte-to-embryo transition by phosphorylating and inactivating translational repressors. © 2018, Hara et al.

  11. Efficiency of assisted hatching of the cryopreserved–melted embryos

    Directory of Open Access Journals (Sweden)

    V. A. Pitko


    Full Text Available Purpose. To measure outcomes of clinical research of efficiency of assisted hatching of cryopreserved embryos. Materials and methods. Patients who had un successful cycles IVF/ICSI with transfer of fresh embryos have been selected for participation in the research between 2014 and 2016 years. Patients were distributed in a random way for participation in the experiment and control groups. Results of embryos transfer of one or two cryopreserved and melted embryos were considered only. Embryos were cryopreserved at a stage of blastocyst, 5 days after extraction of oocytes by method of vitrification. Melting procedure was conducted in the morning of a day of embryos transfer following the instructions of the vitrification medium producer Cryotech (Japan. Assisted hatching was conducted with use of micropipettes of Holding Pipette Cook Medical (Australia and Assisted Hatching/Zona Drilling Pipette Cook Medical (Australia. The treated embryos were cultivated up to a repeated estimation of morphology of embryos before transfer. Transfer of embryos has been conducted by a standard method with the use of catheter for non-invasive transfer of embryo Sydney IVF Cook Medical (Australia. The quantity of the transferred embryos varied from one to two. Results. 100 cryopreserved embryos were transferred which have been distributed in a random way either to the group with the assisted hatching or to the control group (without assisted hatching. A number of parameters of patients from both groups was analyzed, i.e. age of the patient at the time of melting of embryos, duration of infertility, causes of infertility, quantity of previous unsuccessful cycles IVF/ICSI. Any essential differences between patients within two groups based on the aforementioned parameters were not revealed. Also, there were no essential differences in number of the melted embryos, survival rate of embryos, quantity of the embryos transferred to patients. However, at the same time

  12. Can Chlamydia abortus be transmitted by embryo transfer in goats? (United States)

    Oseikria, M; Pellerin, J L; Rodolakis, A; Vorimore, F; Laroucau, K; Bruyas, J F; Roux, C; Michaud, S; Larrat, M; Fieni, F


    The objectives of this study were to determine (i) whether Chlamydia abortus would adhere to or penetrate the intact zona pellucida (ZP-intact) of early in vivo-derived caprine embryos, after in vitro infection; and (ii) the efficacy of the International Embryo Transfer Society (IETS) washing protocol for bovine embryos. Fifty-two ZP-intact embryos (8-16 cells), obtained from 14 donors were used in this experiment. The embryos were randomly divided into 12 batches. Nine batches (ZP-intact) of five embryos were incubated in a medium containing 4 × 10(7)Chlamydia/mL of AB7 strain. After incubation for 18 hours at 37 °C in an atmosphere of 5% CO2, the embryos were washed in batches in 10 successive baths of a phosphate buffer saline and 5% fetal calf serum solution in accordance with IETS guidelines. In parallel, three batches of ZP-intact embryos were used as controls by being subjected to similar procedures but without exposure to C. abortus. The 10 wash baths were collected separately and centrifuged for 1 hour at 13,000 × g. The washed embryos and the pellets of the 10 centrifuged wash baths were frozen at -20 °C before examination for evidence of C. abortus using polymerase chain reaction. C. abortus DNA was found in all of the infected batches of ZP-intact embryos (9/9) after 10 successive washes. It was also detected in the 10th wash fluid for seven batches of embryos, whereas for the two other batches, the last positive wash bath was the eighth and the ninth, respectively. In contrast, none of the embryos or their washing fluids in the control batches were DNA positive. These results report that C. abortus adheres to and/or penetrates the ZP of in vivo caprine embryos after in vitro infection, and that the standard washing protocol recommended by the IETS for bovine embryos, failed to remove it. The persistence of these bacteria after washing makes the embryo a potential means of transmission of the bacterium during embryo transfer from

  13. Serine Proteolytic Pathway Activation Reveals an Expanded Ensemble of Wound Response Genes in Drosophila (United States)

    Patterson, Rachel A.; Juarez, Michelle T.; Hermann, Anita; Sasik, Roman; Hardiman, Gary; McGinnis, William


    After injury to the animal epidermis, a variety of genes are transcriptionally activated in nearby cells to regenerate the missing cells and facilitate barrier repair. The range and types of diffusible wound signals that are produced by damaged epidermis and function to activate repair genes during epidermal regeneration remains a subject of very active study in many animals. In Drosophila embryos, we have discovered that serine protease function is locally activated around wound sites, and is also required for localized activation of epidermal repair genes. The serine protease trypsin is sufficient to induce a striking global epidermal wound response without inflicting cell death or compromising the integrity of the epithelial barrier. We developed a trypsin wounding treatment as an amplification tool to more fully understand the changes in the Drosophila transcriptome that occur after epidermal injury. By comparing our array results with similar results on mammalian skin wounding we can see which evolutionarily conserved pathways are activated after epidermal wounding in very diverse animals. Our innovative serine protease-mediated wounding protocol allowed us to identify 8 additional genes that are activated in epidermal cells in the immediate vicinity of puncture wounds, and the functions of many of these genes suggest novel genetic pathways that may control epidermal wound repair. Additionally, our data augments the evidence that clean puncture wounding can mount a powerful innate immune transcriptional response, with different innate immune genes being activated in an interesting variety of ways. These include puncture-induced activation only in epidermal cells in the immediate vicinity of wounds, or in all epidermal cells, or specifically in the fat body, or in multiple tissues. PMID:23637905

  14. Mapping Sites of O-Glycosylation and Fringe Elongation on Drosophila Notch* (United States)

    Harvey, Beth M.; Rana, Nadia A.; Moss, Hillary; Leonardi, Jessica; Jafar-Nejad, Hamed; Haltiwanger, Robert S.


    Glycosylation of the Notch receptor is essential for its activity and serves as an important modulator of signaling. Three major forms of O-glycosylation are predicted to occur at consensus sites within the epidermal growth factor-like repeats in the extracellular domain of the receptor: O-fucosylation, O-glucosylation, and O-GlcNAcylation. We have performed comprehensive mass spectral analyses of these three types of O-glycosylation on Drosophila Notch produced in S2 cells and identified peptides containing all 22 predicted O-fucose sites, all 18 predicted O-glucose sites, and all 18 putative O-GlcNAc sites. Using semiquantitative mass spectral methods, we have evaluated the occupancy and relative amounts of glycans at each site. The majority of the O-fucose sites were modified to high stoichiometries. Upon expression of the β3-N-acetylglucosaminyltransferase Fringe with Notch, we observed varying degrees of elongation beyond O-fucose monosaccharide, indicating that Fringe preferentially modifies certain sites more than others. Rumi modified O-glucose sites to high stoichiometries, although elongation of the O-glucose was site-specific. Although the current putative consensus sequence for O-GlcNAcylation predicts 18 O-GlcNAc sites on Notch, we only observed apparent O-GlcNAc modification at five sites. In addition, we performed mass spectral analysis on endogenous Notch purified from Drosophila embryos and found that the glycosylation states were similar to those found on Notch from S2 cells. These data provide foundational information for future studies investigating the mechanisms of how O-glycosylation regulates Notch activity. PMID:27268051

  15. The Him gene inhibits the development of Drosophila flight muscles during metamorphosis. (United States)

    Soler, Cédric; Taylor, Michael V


    During Drosophila metamorphosis some larval tissues escape the general histolysis and are remodelled to form adult tissues. One example is the dorso-longitudinal muscles (DLMs) of the indirect flight musculature. They are formed by an intriguing process in which residual larval oblique muscles (LOMs) split and fuse with imaginal myoblasts associated with the wing disc. These myoblasts arise in the embryo, but remain undifferentiated throughout embryogenesis and larval life, and thus share characteristics with mammalian satellite cells. However, the mechanisms that maintain the Drosophila myoblasts in an undifferentiated state until needed for LOM remodelling are not understood. Here we show that the Him gene is expressed in these myoblasts, but is undetectable in developing DLM fibres. Consistent with this, we found that Him could inhibit DLM development: it inhibited LOM splitting and resulted in fibre degeneration. We then uncovered a balance between mef2, a positive factor required for proper DLM development, and the inhibitory action of Him. Mef2 suppressed the inhibitory effect of Him on DLM development, while Him could suppress the premature myosin expression induced by mef2 in myoblasts. Furthermore, either decreased Him function or increased mef2 function disrupted DLM development. These findings, together with the co-expression of Him and Mef2 in myoblasts, indicate that Him may antagonise mef2 function during normal DLM development and that Him participates in a balance of signals that controls adult myoblast differentiation and remodelling of these muscle fibres. Lastly, we provide evidence for a link between Notch function and Him and mef2 in this balance.

  16. In vitro culture of individual mouse preimplantation embryos: the role of embryo density, microwells, oxygen, timing and conditioned media. (United States)

    Kelley, Rebecca L; Gardner, David K


    Single embryo culture is suboptimal compared with group culture, but necessary for embryo monitoring, and culture systems should be improved for single embryos. Pronucleate mouse embryos were used to assess the effect of culture conditions on single embryo development. Single culture either before or after compaction reduced cell numbers (112.2 ± 3.1; 110.2 ± 3.5) compared with group culture throughout (127.0 ± 3.4; P media volume from 20 µl to 2 µl increased blastocyst cell numbers in single embryos cultured in 5% oxygen (84.4 ± 3.2 versus 97.8 ± 2.8; P Culture in microwell plates for the EmbryoScope and Primo Vision time-lapse systems changed cleavage timings and increased inner cell mass cell number (24.1 ± 1.0; 23.4 ± 1.2) compared with a 2 µl microdrop (18.4 ± 1.0; P media to single embryos increased hatching rate and blastocyst cell number (91.5 ± 4.7 versus 113.1 ± 4.4; P culture before or after compaction is therefore detrimental; oxygen, media volume and microwells influence single embryo development; and embryo-conditioned media may substitute for group culture. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  17. Effects of embryo-derived exosomes on the development of bovine cloned embryos.

    Directory of Open Access Journals (Sweden)

    Pengxiang Qu

    Full Text Available The developmental competence of in vitro cultured (IVC embryos is markedly lower than that of their in vivo counterparts, suggesting the need for optimization of IVC protocols. Embryo culture medium is routinely replaced three days after initial culture in bovine, however, whether this protocol is superior to continuous nonrenewal culture method under current conditions remains unclear. Using bovine somatic cell nuclear transfer (SCNT embryos as the model, our results showed that compared with routine renewal treatment, nonrenewal culture system significantly improved blastocyst formation, blastocyst quality (increased total cell number, decreased stress and apoptosis, enhanced Oct-4 expression and ratio of ICM/TE, as well as following development to term. Existence and function of SCNT embryo-derived exosomes were then investigated to reveal the cause of impaired development induced by culture medium replacement. Exosomes were successfully isolated through differential centrifugation and identified by both electron microscopy and immunostaining against exosomal membrane marker CD9. Supplementation of extracted exosomes into freshly renewed medium significantly rescued not only blastocyst formation and quality (in vitro development, but also following growth to term (in vivo development. Notably, ratio of ICM/TE and calving rate were enhanced to a similar level as that in nonrenewal group. In conclusion, our results for the first time indicate that 1: bovine SCNT embryos can secrete exosomes into chemically defined culture medium during IVC; 2: secreted exosomes are essential for SCNT blastocyst formation, blastocyst quality, and following development to term; 3: removal of exosomes induced by culture medium replacement impairs SCNT embryo development, which can be avoided by nonrenewal culture procedure or markedly recovered by exosome supplementation.

  18. Rapid and highly accurate detection of Drosophila suzukii, spotted wing Drosophila (Diptera: Drosophilidae) by loop-mediated isothermal amplification assays (United States)

    Drosophila suzukii, the spotted wing drosophila (SWD), is currently a major pest that causes severe economic losses to thin-skinned, small fruit growers in North America and Europe. The monitoring and early detection of SWD in the field is of the utmost importance for its proper management. Althou...

  19. Isolation of protease-free alcohol dehydrogenase (ADH) from Drosophila simulans and several homozygous and heterozygous Drosophila melanogaster variants

    NARCIS (Netherlands)

    Smilda, T; Lamme, DA; Collu, G; Jekel, PA; Reinders, P; Beintema, JJ

    The enzyme alcohol dehydrogenase (ADH) from several naturally occurring ADH variants of Drosophila melanogaster and Drosophila simulans Lc,as isolated. Affinity chromatography with the ligand Cibacron Blue and elution with NAD(+) showed similar behavior for D. melanogaster ADH-FF, ADH-71k, and D.

  20. Severe Fertility Effects of sheepish Sperm Caused by Failure To Enter Female Sperm Storage Organs in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Masatoshi Tomaru


    Full Text Available In Drosophila, mature sperm are transferred from males to females during copulation, stored in the sperm storage organs of females, and then utilized for fertilization. Here, we report a gene named sheepish (shps of Drosophila melanogaster that is essential for sperm storage in females. shps mutant males, although producing morphologically normal and motile sperm that are effectively transferred to females, produce very few offspring. Direct counts of sperm indicated that the primary defect was correlated to failure of shps sperm to migrate into the female sperm storage organs. Increased sperm motion parameters were seen in the control after transfer to females, whereas sperm from shps males have characteristics of the motion parameters different from the control. The few sperm that occasionally entered the female sperm storage organs showed no obvious defects in fertilization and early embryo development. The female postmating responses after copulation with shps males appeared normal, at least with respect to conformational changes of uterus, mating plug formation, and female remating rates. The shps gene encodes a protein with homology to amine oxidases, including as observed in mammals, with a transmembrane region at the C-terminal end. The shps mutation was characterized by a nonsense replacement in the third exon of CG13611, and shps was rescued by transformants of the wild-type copy of CG13611. Thus, shps may define a new class of gene responsible for sperm storage.

  1. Novel synthetic Medea selfish genetic elements drive population replacement in Drosophila; a theoretical exploration of Medea-dependent population suppression. (United States)

    Akbari, Omar S; Chen, Chun-Hong; Marshall, John M; Huang, Haixia; Antoshechkin, Igor; Hay, Bruce A


    Insects act as vectors for diseases of plants, animals, and humans. Replacement of wild insect populations with genetically modified individuals unable to transmit disease provides a potentially self-perpetuating method of disease prevention. Population replacement requires a gene drive mechanism in order to spread linked genes mediating disease refractoriness through wild populations. We previously reported the creation of synthetic Medea selfish genetic elements able to drive population replacement in Drosophila. These elements use microRNA-mediated silencing of myd88, a maternally expressed gene required for embryonic dorso-ventral pattern formation, coupled with early zygotic expression of a rescuing transgene, to bring about gene drive. Medea elements that work through additional mechanisms are needed in order to be able to carry out cycles of population replacement and/or remove existing transgenes from the population, using second-generation elements that spread while driving first-generation elements out of the population. Here we report the synthesis and population genetic behavior of two new synthetic Medea elements that drive population replacement through manipulation of signaling pathways involved in cellular blastoderm formation or Notch signaling, demonstrating that in Drosophila Medea elements can be generated through manipulation of diverse signaling pathways. We also describe the mRNA and small RNA changes in ovaries and early embryos associated from Medea-bearing females. Finally, we use modeling to illustrate how Medea elements carrying genes that result in diapause-dependent female lethality could be used to bring about population suppression.

  2. The Hrs/Stam complex acts as a positive and negative regulator of RTK signaling during Drosophila development.

    Directory of Open Access Journals (Sweden)

    Hélène Chanut-Delalande

    Full Text Available BACKGROUND: Endocytosis is a key regulatory step of diverse signalling pathways, including receptor tyrosine kinase (RTK signalling. Hrs and Stam constitute the ESCRT-0 complex that controls the initial selection of ubiquitinated proteins, which will subsequently be degraded in lysosomes. It has been well established ex vivo and during Drosophila embryogenesis that Hrs promotes EGFR down regulation. We have recently isolated the first mutations of stam in flies and shown that Stam is required for air sac morphogenesis, a larval respiratory structure whose formation critically depends on finely tuned levels of FGFR activity. This suggest that Stam, putatively within the ESCRT-0 complex, modulates FGF signalling, a possibility that has not been examined in Drosophila yet. PRINCIPAL FINDINGS: Here, we assessed the role of the Hrs/Stam complex in the regulation of signalling activity during Drosophila development. We show that stam and hrs are required for efficient FGFR signalling in the tracheal system, both during cell migration in the air sac primordium and during the formation of fine cytoplasmic extensions in terminal cells. We find that stam and hrs mutant cells display altered FGFR/Btl localisation, likely contributing to impaired signalling levels. Electron microscopy analyses indicate that endosome maturation is impaired at distinct steps by hrs and stam mutations. These somewhat unexpected results prompted us to further explore the function of stam and hrs in EGFR signalling. We show that while stam and hrs together downregulate EGFR signalling in the embryo, they are required for full activation of EGFR signalling during wing development. CONCLUSIONS/SIGNIFICANCE: Our study shows that the ESCRT-0 complex differentially regulates RTK signalling, either positively or negatively depending on tissues and developmental stages, further highlighting the importance of endocytosis in modulating signalling pathways during development.

  3. [Single embryo transfer: is Scandinavian model valuable in France?]. (United States)

    Belaisch-Allart, J; Mayenga, J-M; Grefenstette, I; Chouraqui, A; Serkine, A-M; Abirached, F; Kulski, O


    The aim of infertility treatment is clearly to obtain one healthy baby. If the transfer of a top quality single embryo could provide a baby to all the patients, there would be no more discussion. The problem is that, nowadays, French pregnancy rates after fresh embryo or frozen embryo transfer are not the same as in Nordic countries. All studies show that in unselected patients, single embryo transfer decreases twin pregnancy rate but decreases pregnancy rate too. Pregnancy rate is dependent on embryo quality, women's age, rank of IVF attempt (clear data) but also on body mass index, ovarian reserve, smoking habits. All these data cannot be taken into account in a law. That is the reason why a flexible policy of transfer adapted to each couple is preferable. Each couple and each IVF team are unique and must keep the freedom to choose how many embryos must be transferred to obtain healthy babies, and to avoid twin pregnancies but without demonizing them.

  4. Peptidergic control of a fruit crop pest: the spotted-wing drosophila, Drosophila suzukii (United States)

    Neuropeptides play an important role in the regulation of feeding in insects and offer potential targets for the development of new chemicals to control insect pests. A pest that has attracted much recent attention is the highly invasive Drosophila suzukii, a polyphagous pest that can cause serious...

  5. Biological effects of radon in Drosophila; Efectos biologicos del radon en Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel P, A E; Tavera D, L; Cruces M, M P; Arceo M, C; Rosa D, M.E. de la


    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  6. Biological effects of radon in Drosophila; Efectos biologicos del radon en Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel P, A.E.; Tavera D, L.; Cruces M, M.P.; Arceo M, C.; Rosa D, M.E. de la


    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  7. First record of spotted wing drosophila Drosophila suzukii (Diptera: Drosophilidae in Montenegro

    Directory of Open Access Journals (Sweden)

    Snježana Hrnčić


    Full Text Available The spotted wing drosophila Drosophila suzukii Matsumura (Diptera: Drosophilidae is an invasive pest originating from Southeast Asia. It was detected for the first time in Europe in 2008 (Spain and Italy and subsequently in other European countries. It is a highly polyphagous pest that infests healthy, ripening fruit and presents a serious threat to fruit production, particularly of soft skinned fruit. In the first half of October 2013, a new fruit fly species was unexpectedly detected in Tephri traps baited with the three-component female-biased attractant BioLure that is regularly used for monitoring the Mediterranean fruit fly Ceratitis capitata Wiedem. (Diptera: Tephritidae in Montenegro. Brief visual inspection identified the new species as the spotted wing drosophila D. suzukii. The pest was first recorded in several localities on the Montenegrin seacoast around Boka Kotor Bay. After the finding, all Drosophila specimens were collected from traps for further laboratory observation. A quick follow-up monitoring of other Tephri traps was carried out within the next few days on the rest of the seacoast (localities from Tivat to Ulcinj. Additionally, Tephri traps were set up around Lake Skadar and in the city of Podgorica, as well as on fresh fruit markets in Podgorica. The results of this preliminary study showed that D. suzukii was present in all surveyed locations and adults were captured until late December. Both sexes were found in traps with BioLure. Our data show that D. suzukii is present in southern parts of Montenegro and there is a serious threat of its further spreading, particularly towards northern parts of the country where the main raspberry and blueberry production is placed. The results also show that Tephri traps baited with BioLure can be used for detection and monitoring of spotted wing drosophila.

  8. Nematocytes: Discovery and characterization of a novel anculeate hemocyte in Drosophila falleni and Drosophila phalerata.

    Directory of Open Access Journals (Sweden)

    Julianna Bozler

    Full Text Available Immune challenges, such as parasitism, can be so pervasive and deleterious that they constitute an existential threat to a species' survival. In response to these ecological pressures, organisms have developed a wide array of novel behavioral, cellular, and molecular adaptations. Research into these immune defenses in model systems has resulted in a revolutionary understanding of evolution and functional biology. As the field has expanded beyond the limited number of model organisms our appreciation of evolutionary innovation and unique biology has widened as well. With this in mind, we have surveyed the hemolymph of several non-model species of Drosophila. Here we identify and describe a novel hemocyte, type-II nematocytes, found in larval stages of numerous Drosophila species. Examined in detail in Drosophila falleni and Drosophila phalerata, we find that these remarkable cells are distinct from previously described hemocytes due to their anucleate state (lacking a nucleus and unusual morphology. Type-II nematocytes are long, narrow cells with spindle-like projections extending from a cell body with high densities of mitochondria and microtubules, and exhibit the ability to synthesize proteins. These properties are unexpected for enucleated cells, and together with our additional characterization, we demonstrate that these type-II nematocytes represent a biological novelty. Surprisingly, despite the absence of a nucleus, we observe through live cell imaging that these cells remain motile with a highly dynamic cellular shape. Furthermore, these cells demonstrate the ability to form multicellular structures, which we suggest may be a component of the innate immune response to macro-parasites. In addition, live cell imaging points to a large nucleated hemocyte, type-I nematocyte, as the progenitor cell, leading to enucleation through a budding or asymmetrical division process rather than nuclear ejection: This study is the first to report such a

  9. Selection of Norway spruce somatic embryos by computer vision (United States)

    Hamalainen, Jari J.; Jokinen, Kari J.


    A computer vision system was developed for the classification of plant somatic embryos. The embryos are in a Petri dish that is transferred with constant speed and they are recognized as they pass a line scan camera. A classification algorithm needs to be installed for every plant species. This paper describes an algorithm for the recognition of Norway spruce (Picea abies) embryos. A short review of conifer micropropagation by somatic embryogenesis is also given. The recognition algorithm is based on features calculated from the boundary of the object. Only part of the boundary corresponding to the developing cotyledons (2 - 15) and the straight sides of the embryo are used for recognition. An index of the length of the cotyledons describes the developmental stage of the embryo. The testing set for classifier performance consisted of 118 embryos and 478 nonembryos. With the classification tolerances chosen 69% of the objects classified as embryos by a human classifier were selected and 31$% rejected. Less than 1% of the nonembryos were classified as embryos. The basic features developed can probably be easily adapted for the recognition of other conifer somatic embryos.

  10. The impact of preimplantation genetic diagnosis on human embryos

    Directory of Open Access Journals (Sweden)

    García-Ferreyra J.


    Full Text Available Chromosome abnormalities are extremely common in human oocytes and embryos and are associated with a variety of negative outcomes for both natural cycles and those using assisted reproduction techniques. Aneuploidies embryos may fail to implant in the uterus, miscarry, or lead to children with serious medical problems (e.g., Down syndrome. Preimplantation genetic diagnosis (PGD is a technique that allows the detection of aneuploidy in embryos and seeks to improve the clinical outcomes od assisted reproduction treatments, by ensuring that the embryos chosen for the transfer are chromosomally normal.

  11. Air bubble migration is a random event post embryo transfer. (United States)

    Confino, E; Zhang, J; Risquez, F


    Air bubble location following embryo transfer (ET) is the presumable placement spot of embryos. The purpose of this study was to document endometrial air bubble position and migration following embryo transfer. Multicenter prospective case study. Eighty-eight embryo transfers were performed under abdominal ultrasound guidance in two countries by two authors. A single or double air bubble was loaded with the embryos using a soft, coaxial, end opened catheters. The embryos were slowly injected 10-20 mm from the fundus. Air bubble position was recorded immediately, 30 minutes later and when the patient stood up. Bubble marker location analysis revealed a random distribution without visible gravity effect when the patients stood up. The bubble markers demonstrated splitting, moving in all directions and dispersion. Air bubbles move and split frequently post ET with the patient in the horizontal position, suggestive of active uterine contractions. Bubble migration analysis supports a rather random movement of the bubbles and possibly the embryos. Standing up changed somewhat bubble configuration and distribution in the uterine cavity. Gravity related bubble motion was uncommon, suggesting that horizontal rest post ET may not be necessary. This report challenges the common belief that a very accurate ultrasound guided embryo placement is mandatory. The very random bubble movement observed in this two-center study suggests that a large "window" of embryo placement maybe present.

  12. Ultrastructural studies of Biomphalaria glabrata (Say, 1818) embryo

    International Nuclear Information System (INIS)

    Kikuchi, O.K.; Okazaki, K.; Kawano, T.; Ribeiro, A.A.G.F.C.


    Ultrastructural studies of Biomphalaria glabrata embryos (MOllusca: Gastropoda), and important snail vector of schistosomiasis has not been explored. In the present work it was evaluated a suitable electron microscopical technique for embryos processing. Promising results was obtained with double fixation in 1% glutaraldehyde plus 1% osmium tetroxide in 0.05 M cacodylate buffer (pH 7.4), preliminary staining overnight in 1% uranyl acetate and embedding in EPON or Polylite under vacuum. It was used embryos at young trochophore stage wich is characterized by active organogenesis. Some ultrastructural aspects of B. glabrata embryos cells are presented. (author) [pt

  13. Whole genome phylogenies for multiple Drosophila species

    Directory of Open Access Journals (Sweden)

    Seetharam Arun


    Full Text Available Abstract Background Reconstructing the evolutionary history of organisms using traditional phylogenetic methods may suffer from inaccurate sequence alignment. An alternative approach, particularly effective when whole genome sequences are available, is to employ methods that don’t use explicit sequence alignments. We extend a novel phylogenetic method based on Singular Value Decomposition (SVD to reconstruct the phylogeny of 12 sequenced Drosophila species. SVD analysis provides accurate comparisons for a high fraction of sequences within whole genomes without the prior identification of orthologs or homologous sites. With this method all protein sequences are converted to peptide frequency vectors within a matrix that is decomposed to provide simplified vector representations for each protein of the genome in a reduced dimensional space. These vectors are summed together to provide a vector representation for each species, and the angle between these vectors provides distance measures that are used to construct species trees. Results An unfiltered whole genome analysis (193,622 predicted proteins strongly supports the currently accepted phylogeny for 12 Drosophila species at higher dimensions except for the generally accepted but difficult to discern sister relationship between D. erecta and D. yakuba. Also, in accordance with previous studies, many sequences appear to support alternative phylogenies. In this case, we observed grouping of D. erecta with D. sechellia when approximately 55% to 95% of the proteins were removed using a filter based on projection values or by reducing resolution by using fewer dimensions. Similar results were obtained when just the melanogaster subgroup was analyzed. Conclusions These results indicate that using our novel phylogenetic method, it is possible to consult and interpret all predicted protein sequences within multiple whole genomes to produce accurate phylogenetic estimations of relatedness between

  14. Embryo sac formation and early embryo development in Agave tequilana (Asparagaceae). (United States)

    González-Gutiérrez, Alejandra G; Gutiérrez-Mora, Antonia; Rodríguez-Garay, Benjamín


    Agave tequilana is an angiosperm species that belongs to the family Asparagaceae (formerly Agavaceae). Even though there is information regarding to some aspects related to the megagametogenesis of A. tequilana, this is the first report describing the complete process of megasporogenesis, megagametogenesis, the early embryo and endosperm development process in detail. The objective of this work was to study and characterize all the above processes and the distinctive morphological changes of the micropylar and chalazal extremes after fertilization in this species. The agave plant material for the present study was collected from commercial plantations in the state of Jalisco, Mexico. Ovules and immature seeds, previously fixed in FAA and kept in ethanol 70%, were stained based on a tissue clarification technique by using a Mayer's-Hematoxylin solution. The tissue clarification technique was successfully used for the characterization of the megasporogenesis, megagametogenesis, mature embryo sac formation, the early embryo and endosperm development processes by studying intact cells. The embryo sac of A. tequilana was confirmed to be of the monosporic Polygonum-type and an helobial endosperm formation. Also, the time-lapse of the developmental processes studied was recorded.

  15. Diseases of amphibian eggs and embryos (United States)

    Green, D.E.; Converse, K.A.; Majumdar, S.K.; Huffman, J.E.; Brenner, F.J.; Panah, A.I.


    Amphibians generally are prolific egg producers. In tropical and semi-tropical regions, deposition of eggs may occur year-round or may coincide with rainy seasons, while in temperate regions, deposition of eggs usually occurs immediately after emergence from hibernation. Numbers of eggs produced by each species may vary from a few dozen to thousands. Accordingly, some eggs may be infertile and wastage of embryos is to be expected. Fertility, viability and decomposition of eggs and embryos must be considered before it is assumed that diseases are present. An important consideration in the evaluation of egg masses is the fact that some will contain infertile and non-viable eggs. These infertile and nonviable eggs will undergo decomposition and they may appear similar to eggs that are infected by a pathogen. Evaluation of egg masses and embryos for the presence of disease may require repeated observations in a given breeding season as well as continued monitoring of egg masses during their growth and development and over successive breeding seasons. Amphibian eggs rarely are subjected to a comprehensive health (diagnostic) examination; hence, there is scant literature on the diseases of this life stage. Indeed, the eggs of some North American amphibians have yet to be described. Much basic physiology and normal biomedical baseline data on amphibian eggs is lacking. For example, it is known that the aquatic eggs of some species of shrimp quickly are coated by a protective and commensal bacterium that effectively impedes invasion of the eggs by other environmental organisms and potential pathogens. In the absence of this bacterium, shrimp eggs are rapidly killed by other bacteria and fungi (Green, 2001). The possibility that amphibian eggs also have important symbiotic or commensal bacteria needs to be investigated. Furthermore, the quantity and types of chemicals in the normal gelatinous capsules of amphibian eggs have scarcely been examined. Abnormalities of the

  16. The legal status of in vitro embryos

    Directory of Open Access Journals (Sweden)

    Samardžić Sandra


    Full Text Available Our science has advanced greatly and continues to do so. While being witnesses to this phenomenon, we are not yet ready to fully accept all of its results which can lead to the improvements of our biological structure, or our lives, in other words. There is a wide range of objections aimed at preventing any tests on embryos, deeming such actions as immoral, discriminatory or contrary to nature. However, the question is whether we are actually able to prevent such actions, to prevent obtaining further information that can assist in improving human life, i.e. to prevent future parents from providing the best future possible for their children?.

  17. Rapid DNA Synthesis During Early Drosophila Embryogenesis Is Sensitive to Maternal Humpty Dumpty Protein Function. (United States)

    Lesly, Shera; Bandura, Jennifer L; Calvi, Brian R


    Problems with DNA replication cause cancer and developmental malformations. It is not fully understood how DNA replication is coordinated with development and perturbed in disease. We had previously identified the Drosophila gene humpty dumpty ( hd ), and showed that null alleles cause incomplete DNA replication, tissue undergrowth, and lethality. Animals homozygous for the missense allele, hd 272-9 , were viable, but adult females had impaired amplification of eggshell protein genes in the ovary, resulting in the maternal effects of thin eggshells and embryonic lethality. Here, we show that expression of an hd transgene in somatic cells of the ovary rescues amplification and eggshell synthesis but not embryo viability. The germline of these mothers remain mutant for the hd 272-9 allele, resulting in reduced maternal Hd protein and embryonic arrest during mitosis of the first few S/M nuclear cleavage cycles with chromosome instability and chromosome bridges. Epistasis analysis of hd with the rereplication mutation plutonium indicates that the chromosome bridges of hd embryos are the result of a failed attempt to segregate incompletely replicated sister chromatids. This study reveals that maternally encoded Humpty dumpty protein is essential for DNA replication and genome integrity during the little-understood embryonic S/M cycles. Moreover, the two hd 272-9 maternal-effect phenotypes suggest that ovarian gene amplification and embryonic cleavage are two time periods in development that are particularly sensitive to mild deficits in DNA replication function. This last observation has broader relevance for interpreting why mild mutations in the human ortholog of humpty dumpty and other DNA replication genes cause tissue-specific malformations of microcephalic dwarfisms. Copyright © 2017 by the Genetics Society of America.

  18. Gap-Junctional communication between developing Drosophila muscles is essential for their normal development. (United States)

    Todman, M G; Baines, R A; Stebbings, L A; Davies, J A; Bacon, J P


    Recent experiments have demonstrated that a family of proteins, known as the innexins, are structural components of invertebrate gap junctions. The shaking-B (shak-B) locus of Drosophila encodes two members of this emerging family, Shak-B(lethal) and Shak-B(neural). This study focuses on the role of Shak-B gap junctions in the development of embryonic and larval muscle. During embryogenesis, shak-B transcripts are expressed in a subset of the somatic muscles; expression is strong in ventral oblique muscles (VO4-6) but only weak in ventral longitudinals (VL3 and 4). Carboxyfluorescein injected into VO4 of wild-type early stage 16 embryos spreads, via gap junctions, to label adjacent muscles, including VL3 and 4. In shak-B2 embryos (in which the shak-B(neural) function is disrupted), dye injected into VO4 fails to spread into other muscles. In the first instar larva, when dye coupling between muscles is no longer present, another effect of the shak-B2 mutation is revealed by whole-cell voltage clamp. In a calcium-free saline, only two voltage-activated potassium currents are present in wild-type muscles; a fast IA and a slow IK current. In shak-B2 larvae, these two currents are significantly reduced in magnitude in VO4 and 5, but remain normal in VL3. Expression of shak-B(neural) in a shak-B2 background fully rescues both dye coupling in embryonic muscle and whole-cell currents in first instar VO4 and 5. Our observations show that Shak-B(neural) is one of a set of embryonic gap-junction proteins, and that it is required for the normal temporal development of potassium currents in some larval muscles.

  19. Effect of culture medium volume and embryo density on early mouse embryonic development: tracking the development of the individual embryo. (United States)

    Dai, Shan-Jun; Xu, Chang-Long; Wang, Jeffrey; Sun, Ying-Pu; Chian, Ri-Cheng


    To determine the optimal volume or density of embryos for the well-of-the-well (WOW) system in order to track the development of individual embryos and to determine whether the WOW system can reverse the negative impact of culturing embryos singly. (1) Mouse embryos (groups of nine at the 2-cell stage) were cultured in 6.25 μl, 12.50 μl, 25.00 μl and 50.00 μl of droplets of culture medium under paraffin oil; (2) Groups of three, six, nine and twelve embryos at the 2-cell stage were cultured in 50 μl of droplet of culture medium under paraffin oil; (3) Groups of nine embryos at the 2-cell stage were cultured in 50 μl of droplet under paraffin oil with or without nine micro-wells made on the bottom of the Petri dish into each of which were placed one of the nine embryos (WOW system). Also single 2-cell stage embryos was cultured individually in 5.5 μl of droplet of culture medium under paraffin oil with or without a single micro-well made on the bottom of the Petri dish (WOW system for single culture). At the end of culture, the percentages of blastocyst development, hatching and hatched blastocysts were compared in each group. The blastocysts were fixed for differential staining. The blastocyst development was significantly higher (P WOW system. The blastocyst development was not improved when single embryo cultured individually in a micro-well was compared to single embryo cultured individually without micro-well. The total cell numbers of blastocysts were significantly higher in group embryo culture than single embryo culture regardless of whether the WOW system was used. In addition, the total cell numbers of blastocysts were significantly higher (P WOW system than without. Group embryo culture is superior to single embryo culture for blastocyst development. The WOW system with 50 μl of droplet of culture medium can be used to track the individual development of embryo cultured in groups while preserving good embryonic development. The reduced

  20. Developing a Drosophila Model of Schwannomatosis (United States)


    processed for ChIP as described above. Cell culture and dsRNA S2 cells were cultured at 25°C in Schneider’s insect medium (Sigma; 10% fetal bovine serum...destroy pathogens. In Drosophila, circulating blood cells called hemocytes phagocytose bacteria, fungi, and parasitic wasp eggs [28]. RBF1 and dCAP-D3...hTERT-RPE-1 cells were grown in Dulbecco’sModified Essential Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin

  1. The intimate genetics of Drosophila fertilization (United States)

    Loppin, Benjamin; Dubruille, Raphaëlle; Horard, Béatrice


    The union of haploid gametes at fertilization initiates the formation of the diploid zygote in sexually reproducing animals. This founding event of embryogenesis includes several fascinating cellular and nuclear processes, such as sperm–egg cellular interactions, sperm chromatin remodelling, centrosome formation or pronuclear migration. In comparison with other aspects of development, the exploration of animal fertilization at the functional level has remained so far relatively limited, even in classical model organisms. Here, we have reviewed our current knowledge of fertilization in Drosophila melanogaster, with a special emphasis on the genes involved in the complex transformation of the fertilizing sperm nucleus into a replicated set of paternal chromosomes. PMID:26246493

  2. Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, Wolfgang [BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby (Denmark); Mikkelsen, Nils Egil [Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Centre, SE-751 24 Uppsala (Sweden); Clausen, Anders Ranegaard [Cell and Organism Biology, Lund University, Soelvegatan 35, SE-22362 Lund (Sweden); Willer, Mette [ZGene A/S, Agern Alle 7, DK-2970 Horsholm (Denmark); Eklund, Hans [Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Centre, SE-751 24 Uppsala (Sweden); Gojkovic, Zoran [ZGene A/S, Agern Alle 7, DK-2970 Horsholm (Denmark); Piskur, Jure, E-mail: [BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby (Denmark); Cell and Organism Biology, Lund University, Soelvegatan 35, SE-22362 Lund (Sweden)


    Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2 A resolution structure of Dm-dNK in complex with gemcitabine shows that the residues Tyr70 and Arg105 play a crucial role in the firm positioning of gemcitabine by extra interactions made by the fluoride atoms. This explains why gemcitabine is a good substrate for Dm-dNK.

  3. Biases in Drosophila melanogaster protein trap screens

    Directory of Open Access Journals (Sweden)

    Müller Ilka


    Full Text Available Abstract Background The ability to localise or follow endogenous proteins in real time in vivo is of tremendous utility for cell biology or systems biology studies. Protein trap screens utilise the random genomic insertion of a transposon-borne artificial reporter exon (e.g. encoding the green fluorescent protein, GFP into an intron of an endogenous gene to generate a fluorescent fusion protein. Despite recent efforts aimed at achieving comprehensive coverage of the genes encoded in the Drosophila genome, the repertoire of genes that yield protein traps is still small. Results We analysed the collection of available protein trap lines in Drosophila melanogaster and identified potential biases that are likely to restrict genome coverage in protein trap screens. The protein trap screens investigated here primarily used P-element vectors and thus exhibit some of the same positional biases associated with this transposon that are evident from the comprehensive Drosophila Gene Disruption Project. We further found that protein trap target genes usually exhibit broad and persistent expression during embryonic development, which is likely to facilitate better detection. In addition, we investigated the likely influence of the GFP exon on host protein structure and found that protein trap insertions have a significant bias for exon-exon boundaries that encode disordered protein regions. 38.8% of GFP insertions land in disordered protein regions compared with only 23.4% in the case of non-trapping P-element insertions landing in coding sequence introns (p -4. Interestingly, even in cases where protein domains are predicted, protein trap insertions frequently occur in regions encoding surface exposed areas that are likely to be functionally neutral. Considering the various biases observed, we predict that less than one third of intron-containing genes are likely to be amenable to trapping by the existing methods. Conclusion Our analyses suggest that the

  4. Sexual Communication in the Drosophila Genus. (United States)

    Bontonou, Gwénaëlle; Wicker-Thomas, Claude


    In insects, sexual behavior depends on chemical and non-chemical cues that might play an important role in sexual isolation. In this review, we present current knowledge about sexual behavior in the Drosophila genus. We describe courtship and signals involved in sexual communication, with a special focus on sex pheromones. We examine the role of cuticular hydrocarbons as sex pheromones, their implication in sexual isolation, and their evolution. Finally, we discuss the roles of male cuticular non-hydrocarbon pheromones that act after mating: cis-vaccenyl acetate, developing on its controversial role in courtship behavior and long-chain acetyldienylacetates and triacylglycerides, which act as anti-aphrodisiacs in mated females.

  5. Research resources for Drosophila: the expanding universe. (United States)

    Matthews, Kathleen A; Kaufman, Thomas C; Gelbart, William M


    Drosophila melanogaster has been the subject of research into central questions about biological mechanisms for almost a century. The experimental tools and resources that are available or under development for D. melanogaster and its related species, particularly those for genomic analysis, are truly outstanding. Here we review three types of resource that have been developed for D. melanogaster research: databases and other sources of information, biological materials and experimental services. These resources are there to be exploited and we hope that this guide will encourage new uses for D. melanogaster information, materials and services, both by those new to flies and by experienced D. melanogaster researchers.

  6. Hypergravity-induced altered behavior in Drosophila (United States)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila


    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  7. Crystal structure of enolase from Drosophila melanogaster. (United States)

    Sun, Congcong; Xu, Baokui; Liu, Xueyan; Zhang, Zhen; Su, Zhongliang


    Enolase is an important enzyme in glycolysis and various biological processes. Its dysfunction is closely associated with diseases. Here, the enolase from Drosophila melanogaster (DmENO) was purified and crystallized. A crystal of DmENO diffracted to 2.0 Å resolution and belonged to space group R32. The structure was solved by molecular replacement. Like most enolases, DmENO forms a homodimer with conserved residues in the dimer interface. DmENO possesses an open conformation in this structure and contains conserved elements for catalytic activity. This work provides a structural basis for further functional and evolutionary studies of enolase.

  8. Culture of bovine embryos on a polydimethylsiloxane (PDMS) microwell plate. (United States)

    Akagi, Satoshi; Hosoe, Misa; Matsukawa, Kazutsugu; Ichikawa, Akihiko; Tanikawa, Tamio; Takahashi, Seiya


    We fabricated a polydimethylsiloxane (PDMS)-based microwell plate (PDMS-MP) containing 100 microwells with a rounded bottom and examined whether it can be used for culture of individual in vitro fertilized (IVF) embryos or parthenogenetically activated zona-free embryos in cattle. In Experiment 1, we examined the in vitro developmental ability of IVF embryos cultured individually on PDMS-MP. After IVF, 20 embryos were transferred into 100 microl drops on PDMS-MP and cultured individually in each well of PDMS-MP (PDMS group). After 7 days of culture, the embryos in the PDMS group developed to the blastocyst stage at the same rate of those in the control group cultured in a group of 20 embryos without PDMS-MP. There were no differences in total number of cells and the ratio of inner cell mass to total cells between the PDMS and control groups. In Experiment 2, we examined the in vitro developmental ability of parthenogenetically activated zona-free bovine embryos cultured individually on PDMS-MP. The zona-free embryos were cultured individually in each well of a PDMS-MP or in each well produced by pressing a darning needle onto the bottom of a culture dish (WOW group). After 7 days of culture, the blastocyst formation rate and cell number of blastocysts in the PDMS group did not differ from those of the zona-intact embryos in the control group. Also, there were no differences in the blastocyst formation rate and cell number of blastocysts between the WOW and PDMS groups. These results suggest that the culture system using PDMS-MP is useful for individual embryos or zona-free embryos in cattle.

  9. Embryo selection: the role of time-lapse monitoring. (United States)

    Kovacs, Peter


    In vitro fertilization has been available for over 3 decades. Its use is becoming more widespread worldwide, and in the developed world, up to 5% of children have been born following IVF. It is estimated that over 5 million children have been conceived in vitro. In addition to giving hope to infertile couples to have their own family, in vitro fertilization has also introduced risks as well. The risk of multiple gestation and the associated maternal and neonatal morbidity/mortality has increased significantly over the past few decades. While stricter transfer policies have eliminated the majority of the high-order multiples, these changes have not yet had much of an impact on the incidence of twins. A twin pregnancy can be avoided by the transfer of a single embryo only. However, the traditionally used method of morphologic embryo selection is not predictive enough to allow routine single embryo transfer; therefore, new screening tools are needed. Time-lapse embryo monitoring allows continuous, non-invasive embryo observation without the need to remove the embryo from optimal culturing conditions. The extra information on the cleavage pattern, morphologic changes and embryo development dynamics could help us identify embryos with a higher implantation potential. These technologic improvements enable us to objectively select the embryo(s) for transfer based on certain algorithms. In the past 5-6 years, numerous studies have been published that confirmed the safety of time-lapse technology. In addition, various markers have already been identified that are associated with the minimal likelihood of implantation and others that are predictive of blastocyst development, implantation potential, genetic health and pregnancy. Various groups have proposed different algorithms for embryo selection based on mostly retrospective data analysis. However, large prospective trials are needed to study the full benefit of these (and potentially new) algorithms before their

  10. Sex and PRNP genotype determination in preimplantation caprine embryos. (United States)

    Guignot, F; Perreau, C; Cavarroc, C; Touzé, J-L; Pougnard, J-L; Dupont, F; Beckers, J-F; Rémy, B; Babilliot, J-M; Bed'Hom, B; Lamorinière, J M; Mermillod, P; Baril, G


    The objective of this study was to test the accuracy of genotype diagnosis after whole amplification of DNA extracted from biopsies obtained by trimming goat embryos and to evaluate the viability of biopsied embryos after vitrification/warming and transfer. Whole genome amplification (WGA) was performed using Multiple Displacement Amplification (MDA). Sex and prion protein (PRNP) genotypes were determined. Sex diagnosis was carried out by PCR amplification of ZFX/ZFY and Y chromosome-specific sequences. Prion protein genotype determination was performed on codons 142, 154, 211, 222 and 240. Embryos were collected at day 7 after oestrus and biopsied either immediately after collection (blastocysts and expanded blastocysts) or after 24 h of in vitro culture (compacted morulae). Biopsied embryos were frozen by vitrification. Vitrified whole embryos were kept as control. DNA of biopsies was extracted and amplified using MDA. Sex diagnosis was efficient for 97.4% of biopsies and PRNP genotyping was determined in 78.7% of biopsies. After embryo transfer, no significant difference was observed in kidding rate between biopsied and vitrified control embryos, whereas embryo survival rate was different between biopsied and whole vitrified embryos (p = 0.032). At birth, 100% of diagnosed sex and 98.2% of predetermined codons were correct. Offspring PRNP profiles were in agreement with parental genotype. Whole genome amplification with MDA kit coupled with sex diagnosis and PRNP genotype predetermination are very accurate techniques to genotype goat embryos before transfer. These novel results allow us to plan selection of scrapie-resistant genotypes and kid sex before transfer of cryopreserved embryo. © 2010 Blackwell Verlag GmbH.

  11. A dysmorphology score system for assessing embryo abnormalities in rat whole embryo culture. (United States)

    Zhang, Cindy X; Danberry, Tracy; Jacobs, Mary Ann; Augustine-Rauch, Karen


    The rodent whole embryo culture (WEC) system is a well-established model for characterizing developmental toxicity of test compounds and conducting mechanistic studies. Laboratories have taken various approaches in describing type and severity of developmental findings of organogenesis-stage rodent embryos, but the Brown and Fabro morphological score system is commonly used as a quantitative approach. The associated score criteria is based upon developmental stage and growth parameters, where a series of embryonic structures are assessed and assigned respective scores relative to their gestational stage, with a Total Morphological Score (TMS) assigned to the embryo. This score system is beneficial because it assesses a series of stage-specific anatomical landmarks, facilitating harmonized evaluation across laboratories. Although the TMS provides a quantitative approach to assess growth and determine developmental delay, it is limited to its ability to identify and/or delineate subtle or structure-specific abnormalities. Because of this, the TMS may not be sufficiently sensitive for identifying compounds that induce structure or organ-selective effects. This study describes a distinct morphological score system called the "Dysmorphology Score System (DMS system)" that has been developed for assessing gestation day 11 (approximately 20-26 somite stage) rat embryos using numerical scores to differentiate normal from abnormal morphology and define the respective severity of dysmorphology of specific embryonic structures and organ systems. This method can also be used in scoring mouse embryos of the equivalent developmental stage. The DMS system enhances capabilities to rank-order compounds based upon teratogenic potency, conduct structure- relationships of chemicals, and develop statistical prediction models to support abbreviated developmental toxicity screens. © 2010 Wiley-Liss, Inc.

  12. Genetic and proteomic evidence for roles of Drosophila SUMO in cell cycle control, Ras signaling, and early pattern formation.

    Directory of Open Access Journals (Sweden)

    Minghua Nie


    Full Text Available SUMO is a protein modifier that is vital for multicellular development. Here we present the first system-wide analysis, combining multiple approaches, to correlate the sumoylated proteome (SUMO-ome in a multicellular organism with the developmental roles of SUMO. Using mass-spectrometry-based protein identification, we found over 140 largely novel SUMO conjugates in the early Drosophila embryo. Enriched functional groups include proteins involved in Ras signaling, cell cycle, and pattern formation. In support of the functional significance of these findings, sumo germline clone embryos exhibited phenotypes indicative of defects in these same three processes. Our cell culture and immunolocalization studies further substantiate roles for SUMO in Ras signaling and cell cycle regulation. For example, we found that SUMO is required for efficient Ras-mediated MAP kinase activation upstream or at the level of Ras activation. We further found that SUMO is dynamically localized during mitosis to the condensed chromosomes, and later also to the midbody. Polo kinase, a SUMO substrate found in our screen, partially colocalizes with SUMO at both sites. These studies show that SUMO coordinates multiple regulatory processes during oogenesis and early embryogenesis. In addition, our database of sumoylated proteins provides a valuable resource for those studying the roles of SUMO in development.

  13. Interorgan Communication Pathways in Physiology: Focus on Drosophila. (United States)

    Droujinine, Ilia A; Perrimon, Norbert


    Studies in mammals and Drosophila have demonstrated the existence and significance of secreted factors involved in communication between distal organs. In this review, primarily focusing on Drosophila, we examine the known interorgan communication factors and their functions, physiological inducers, and integration in regulating physiology. Moreover, we describe how organ-sensing screens in Drosophila can systematically identify novel conserved interorgan communication factors. Finally, we discuss how interorgan communication enabled and evolved as a result of specialization of organs. Together, we anticipate that future studies will establish a model for metazoan interorgan communication network (ICN) and how it is deregulated in disease.

  14. Drosophila as a model object in to study Chernobyl NPP after

    International Nuclear Information System (INIS)

    Marinenko, T.V.; Kozeretskaya, I.A.; Gorodetski, G.V.


    Complete text of publication follows. Water extractions of soil probes, which were selected on areas with different density of radioactive pollutions near Chernobyl exclusion zone ('Apple-tree garden' (Chernobyl); 'Island' (the bank of the pond-cooler of the Chernobyl nuclear power plant); 'Torch' (the area of revegetation near the Chernobyl nuclear power plant); 'Red forest' (side of a road) and 'Red forest' (edge of a forest)) were investigated. Dosimetric metering of all studied areas was conducted. γ- and β-activities of soil probes were determined by spectrometry and radiochemistry methods. The contents of trace elements in the soil probes of areas the 'Appletree garden' and 'Island' were determined. Water extractions from soil were prepared according to standard method (ratio - 1 : 2,5). The mutagenicity of water extractions of soil was estimated using the test of frequency of the sex-linked lethal mutations of Drosophila melanogaster. Water extractions were directly adds to a nourishing medium instead of standard component - distilled water. The strain of wild type of Drosophila Canton-S and natural populations of Drosophila from Pyriatin and Chernobyl were used in our study. The natural populations of Chernobyl and Pyriatin were included in study for more fully estimation of influence of factor on genetic processes of Drosophila, because of presence of unspecific adaptations of natural populations from radioactive polluted territories (as was shown before). According to dosimetric analysis data radiation activity of all water extractions of soils did not exceed a natural background. The probes of soil from areas the 'Red forest' and the 'Torch' were marked the higher activity; total activity of them was over 110 Mbk/kg. It is possibly that this fact was the reason of the absence of descendants in all variants of experiments conducted on medium with water extraction the 'Red forest' and in a variant of experiments concerned on study of activity of water

  15. Mechanisms underlying stage-1 TRPL channel translocation in Drosophila photoreceptors.

    Directory of Open Access Journals (Sweden)

    Minh-Ha Lieu

    Full Text Available TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere, TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels.We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content.Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protein transport, and not degradation/re-synthesis. Re-localization from each stage to the rhabdomere likely involves different strategies. Since TRPL channels can translocate to stage-1 in the absence of ATP, with no major requirement of the cytoskeleton, we suggest that stage-1 translocation involves simple diffusion through the apical membrane, which may be regulated by release of a light-dependent anchor in the rhabdomere.

  16. Deoxyribonuclease probing of sea urchin embryo chromatin

    International Nuclear Information System (INIS)

    Landsman, D.


    The role that the sea urchin, Parechinus angulosus, embryo and sperm histone variants plays in chromatin structure has been investigated. Chromatin structure has been determined at different levels of resolution in sperm and in developing embryos using micrococcal nuclease, pancreatic deoxyribonuclease (DNase I) and restriction endonucleases. Micrococcal nuclease and restriction endonuclease digestions of sea urchin gastrula chromatin have been analysed and it is shown that it is not possible to isolate large polynucleosomal chromatin complexes which are soluble in low ionic strength buffers. The repeat length for sperm is significantly larger than blastula and gastrula repeat lengths whereas blastula and gastrula repeat lengths are not significantly different. Nucleosomal core particles have been isolated from early blastula, gastrula and sperm of sea urchins. After DNase I digestion of 5'-labelled core particles the rate constants of cutting of the DNA at the susceptible sites on these core particles have been determined. The DNase I digestion kinetics of blastula and gastrula core particles are similar whereas sperm core particles are digested at a slower rate, mainly at the sites which are closest to the ends of the core particle DNA

  17. [Ethical viewpoints on cryopreservation of human embryos]. (United States)

    Weiler, R


    In the introduction the author describes how moral judgements are being formed in the pluralistic structures of today's societies. Moral relativism and subjectivism are the wide spread consequences of empirical anthropological theories. In this situation the necessity of an objective and normative moral theory (Christian natural law theory) is being stressed. Neither biology nor medicine can pronounce final judgements on the value of human life. The arguments in favour of cryoconservation (medical progress, parents wish to have children, cost-reduction) are outweighed by those arguments which maintain that man cannot dispose of human life through the manipulation of the progenitive act outside marriage and of the juman act of procreation. There are also the risks and the endangering of the human value of the embryo, up to prolicide which is considered to be permissible in some cases, on these moral grounds the author objects to the cryoconservation of embryos as does the relevant instruction of the papal magisterium of the Roman Catholic Church (Donum vitae 1987). He does not, however, take a final stance on how the subjective decision of the physician is to be judged in the individual case.

  18. [Embryo-fetal diseases in multiple pregnancies]. (United States)

    Colla, F; Alba, E; Grio, R


    Embryo-fetal diseases are the consequence of prenatal (progenetic and metagenetic or environmental) and intranatal (of a traumatic, infective, toxic nature) pathological factors. In multiple pregnancies this complex etiopathogenesis also includes an altered didymous embriogenesis. This study aimed to evaluate the pathologies affecting the fetus in multiple pregnancy, a special biological situation leading to the potential onset of severe fetal and neonatal damage. The authors studied 205 patients with multiple pregnancies, including 199 bigeminal, 5 trigeminal and 1 quadrigeminal, admitted to the Department B of the Obstetrics and Gynecological Clinic of Turin University between 1989-1999. Possible embyro-fetal damage was examined using a chronological criterion: namely following the development of the multiple fetuses from the zygotic to the neonatal phase. Pregnancies were biamniotic bichorionic in 54% of cases, biamniotic monochorionic in 45% and monochorionic monoamniotic in 1%. There were a total of 154 (79.38%) premature births out of 194 and neonatal birth weight was always SGA (small for gestational age). 66.84% of newborns were LBW (<2500 g) and 7.14% were VLBW (<1500 g). Fetal mortality (2.29%) was higher than early neonatal mortality (1.53%). Perinatal mortality (3.82%) was three times higher than in all neonates from the same period (1.03%). The severe embryo-fetal and neonatal damage found in multiple pregnancies is a clinical reality that calls for adequate diagnostic and therapeutic measures, and above all specific medical and social prevention to limit maternal pathogenic risks.

  19. Cardiac phenotyping in ex vivo murine embryos using microMRI. (United States)

    Cleary, Jon O; Price, Anthony N; Thomas, David L; Scambler, Peter J; Kyriakopoulou, Vanessa; McCue, Karen; Schneider, Jürgen E; Ordidge, Roger J; Lythgoe, Mark F


    Microscopic MRI (microMRI) is an emerging technique for high-throughput phenotyping of transgenic mouse embryos, and is capable of visualising abnormalities in cardiac development. To identify cardiac defects in embryos, we have optimised embryo preparation and MR acquisition parameters to maximise image quality and assess the phenotypic changes in chromodomain helicase DNA-binding protein 7 (Chd7) transgenic mice. microMRI methods rely on tissue penetration with a gadolinium chelate contrast agent to reduce tissue T(1), thus improving signal-to-noise ratio (SNR) in rapid gradient echo sequences. We investigated 15.5 days post coitum (dpc) wild-type CD-1 embryos fixed in gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) solutions for either 3 days (2 and 4 mM) or 2 weeks (2, 4, 8 and 16 mM). To assess penetration of the contrast agent into heart tissue and enable image contrast simulations, T(1) and T(*) (2) were measured in heart and background agarose. Compared to 3-day, 2-week fixation showed reduced mean T(1) in the heart at both 2 and 4 mM concentrations (p < 0.0001), resulting in calculated signal gains of 23% (2 mM) and 29% (4 mM). Using T(1) and T(*) (2) values from 2-week concentrations, computer simulation of heart and background signal, and ex vivo 3D gradient echo imaging, we demonstrated that 2-week fixed embryos in 8 mM Gd-DTPA in combination with optimised parameters (TE/TR/alpha/number of averages: 9 ms/20 ms/60 degrees /7) produced the largest SNR in the heart (23.2 +/- 1.0) and heart chamber contrast-to-noise ratio (CNR) (27.1 +/- 1.6). These optimised parameters were then applied to an MRI screen of embryos heterozygous for the gene Chd7, implicated in coloboma of the eye, heart defects, atresia of the choanae, retardation of growth, genital/urinary abnormalities, ear abnormalities and deafness (CHARGE) syndrome (a condition partly characterised by cardiovascular birth defects in humans). A ventricular septal defect was readily identified

  20. Uterine responses to early pre-attachment embryos in the domestic dog and comparisons with other domestic animal species. (United States)

    Graubner, Felix R; Gram, Aykut; Kautz, Ewa; Bauersachs, Stefan; Aslan, Selim; Agaoglu, Ali R; Boos, Alois; Kowalewski, Mariusz P


    In the dog, there is no luteolysis in the absence of pregnancy. Thus, this species lacks any anti-luteolytic endocrine signal as found in other species that modulate uterine function during the critical period of pregnancy establishment. Nevertheless, in the dog an embryo-maternal communication must occur in order to prevent rejection of embryos. Based on this hypothesis, we performed microarray analysis of canine uterine samples collected during pre-attachment phase (days 10-12) and in corresponding non-pregnant controls, in order to elucidate the embryo attachment signal. An additional goal was to identify differences in uterine responses to pre-attachment embryos between dogs and other mammalian species exhibiting different reproductive patterns with regard to luteolysis, implantation, and preparation for placentation. Therefore, the canine microarray data were compared with gene sets from pigs, cattle, horses, and humans. We found 412 genes differentially regulated between the two experimental groups. The functional terms most strongly enriched in response to pre-attachment embryos related to extracellular matrix function and remodeling, and to immune and inflammatory responses. Several candidate genes were validated by semi-quantitative PCR. When compared with other species, best matches were found with human and equine counterparts. Especially for the pig, the majority of overlapping genes showed opposite expression patterns. Interestingly, 1926 genes did not pair with any of the other gene sets. Using a microarray approach, we report the uterine changes in the dog driven by the presence of embryos and compare these results with datasets from other mammalian species, finding common-, contrary-, and exclusively canine-regulated genes. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction.

  1. DNA damage and repair in mouse embryos following treatment transplacentally with methylnitrosourea and methylmethanesulfonate

    International Nuclear Information System (INIS)

    Jirakulsomchok, S.; Yielding, K.L.


    Mouse embryos were labeled in vivo at 10 1/2-12 1/2 days of gestation with [ 3 H]-thymidine and subjected to DNA damage using x-ray, methylmethanesulfonate, or methylnitrosourea. DNA damage and its repair were assessed in specific cell preparations from embryos isolated at intervals thereafter using the highly sensitive method of nucleoid sedimentation, which evaluates the supercoiled state of the DNA. Repair of x-ray damage was demonstrated using trypsin-dispersed cells from whole embryos and from homogenized embryonic liver to show the validity of the analytical approach. The effects of the highly teratogenic methylnitrosourea and the much less teratogenic methylmethanesulfonate were compared in the targeted limb buds using equitoxic doses of the two alkylating agents. DNA supercoiling was fully restored after 24 hr in limb bud cells damaged with methylmethanesulfonate, while as much as 48 hr were required for full repair of methylnitrosourea damage. These results demonstrated the feasibility of studying DNA repair in embryonic tissues after damage in vivo and suggest that the potency of methylnitrosourea as a teratogen may be correlated with a prolonged period required for complete repair of DNA

  2. Correlation between mixed-function oxidase enzyme induction and aflatoxin B1-induced unscheduled DNA synthesis in the chick embryo, in vivo

    International Nuclear Information System (INIS)

    Hamilton, J.W.; Bloom, S.E.


    The unscheduled DNA synthesis (UDS) technique has been adapted for use in the chick embryo, in vivo, to determine the relationship between induction of the mixed-function oxidase (MFO) enzyme system and genetic damage from an indirect-acting mutagen-carcinogen. Embryos were injected at 6 days of incubation (DI) with either phenobarbital (PB), a specific inducer of P-450-associated enzyme activities, or 3,4,3',4'-tetrachlorobiphenyl (TCB), a specific inducer of P 1 -450-associated enzyme activities. Aflatoxin B 1 (AFB1) was injected 24 hr later (7 DI), followed by a 5-hr continuous 3 H-thymidine exposure. The livers were removed, prepared for autoradiography, and hepatocytes were scored for an increase in grains/nucleus, indicative of UDS. Aflatoxin B 1 caused a dose-related increase in UDS in all control and induction groups. Phenobarbital-induced embryos had an increased UDS response while TCB-induced embryos had a decreased UDS response, relative to noninduced embryos, for each dosage of AFB1. This suggests that the genotoxicity of an indirect-acting mutagen-carcinogen can be either increased or decreased, in vivo, depending on the inducer used. The chick embryo provides an excellent system for studying the effect of MFO induction on the genotoxicity of promutagen-carcinogens in a developing system

  3. Triazole-induced gene expression changes in the zebrafish embryo

    NARCIS (Netherlands)

    Hermsen, S.A.B.; Pronk, T.; van den Brandhof, E.J.; van der Ven, L.T.; Piersma, A.H.|info:eu-repo/dai/nl/071276947


    The zebrafish embryo is considered to provide a promising alternative test model for developmental toxicity testing. Most systems use morphological assessment of the embryos, however, microarray analyses may increase sensitivity and predictability of the test by detecting more subtle and detailed

  4. The Use of Light Microscopy for Detection of Somatic Embryos

    African Journals Online (AJOL)



    Feb 5, 2014 ... 2,4-D. After four weeks of culture of explants on the callus induction medium, globular structures were obtained. At the end of 20 days in maturation medium, somatic embryos were observed. Histological analysis showed somatic embryos with caulinar and root apex, protodermal tissue, and the vascular ...

  5. Embryo rescue of crosses between diploid and tetraploid grape ...

    African Journals Online (AJOL)

    ajl yemi


    Dec 19, 2011 ... embryo rescue from interspecific hybridization between diploid and tetraploid grape species. Wakana et al. (2003) and Motosugi et al. (2003) studied the formation and developments of hybrid seeds from cross between diploid and tetraploid, and then obtained triploid progenies through embryo rescue.

  6. Breakeven costs for embryo transfer in a commercial dairy herd. (United States)

    Ferris, T A; Troyer, B W


    Differences in Estimated Breeding Values expressed in dollars were compared by simulation of two, 100-cow, closed herds. One herd practiced normal intensity of female selection. The other herd generated various herd replacements by embryo transfer by varying 1) selection rate of embryo transfer dams and 2) numbers of daughters per dam from which embryos were transferred, while varying the merit of mates of embryo transfer dams. Estimated Breeding Value dollars were compounded each generation and regressed to remove age adjustments and added feed and health costs. Beginning values in both herds included a standard deviation of 55 Cow Index dollars, herd average of -23 Cow Index dollars, and a 120 Predicted Difference dollars for mates of dams not embryo transferred. Average merit of all sires used increased $12 per year. Herd calving rate (.70), proportion females (.5), calf loss (.15), and heifer survival rate (.83) were used. Breakeven cost per embryo transfer cow entering the milking herd was computed by Net Present Value analysis using a 10% discount rate over 10 and 20 yr. Breakeven cost or the maximum expense that would allow a 10% return on the expenditure ranged from $135 to $510 per surviving cow, $24 to $125 per transfer, $47 to $178 per pregnancy, and $81 to $357 per female calf born. As the number of replacements resulting from embryo transfer increased, breakeven cost per embryo transfer cow decreased due to diminishing return.

  7. Human embryo-conditioned medium stimulates in vitro endometrial angiogenesis

    NARCIS (Netherlands)

    Kapiteijn, K.; Koolwijk, P.; Weiden, R.M.F. van der; Nieuw Amerongen, G. van; Plaisier, M.; Hinsbergh, V.W.M. van; Helmerhorst, F.M.


    Objective: Successful implantation and placentation depend on the interaction between the endometrium and the embryo. Angiogenesis is crucial at this time. In this article we investigate the direct influence of the human embryo on in vitro endometrial angiogenesis. Design: In vitro study. Setting:

  8. Chromosomal mosaicism in human preimplantation embryos: a systematic review.

    NARCIS (Netherlands)

    Echten-Arends, J. van; Mastenbroek, S.; Sikkema-Raddatz, B.; Korevaar, J.C.; Heineman, M.J.; Veen, F. van der; Repping, S.


    BACKGROUND: Although chromosomal mosaicism in human preimplantation embryos has been described for almost two decades, its exact prevalence is still unknown. The prevalence of mosaicism is important in the context of preimplantation genetic screening in which the chromosomal status of an embryo is

  9. Chromosomal mosaicism in human preimplantation embryos : a systematic review

    NARCIS (Netherlands)

    van Echten-Arends, Jannie; Mastenbroek, Sebastiaan; Sikkema-Raddatz, Birgit; Korevaar, Johanna C.; Heineman, Maas Jan; van der Veen, Fulco; Repping, Sjoerd


    BACKGROUND: Although chromosomal mosaicism in human preimplantation embryos has been described for almost two decades, its exact prevalence is still unknown. The prevalence of mosaicism is important in the context of preimplantation genetic screening in which the chromosomal status of an embryo is

  10. The role of growth regulators, embryo age and genotypes on ...

    African Journals Online (AJOL)

    One of the most important problem of tomato breeders is lengthy seed to seed cycle in a breeding program. In vitro techiques provide a lot of advantages for breeders. The objective of this work was to determine the effect of growth regulators and immature embryo age on embryo germination and rapid generation ...

  11. Closure of the vertebral canal in human embryos and fetuses

    NARCIS (Netherlands)

    Mekonen, Hayelom K.; Hikspoors, Jill P. J. M.; Mommen, Greet; Kruepunga, Nutmethee; Köhler, S. Eleonore; Lamers, Wouter H.


    The vertebral column is the paradigm of the metameric architecture of the vertebrate body. Because the number of somites is a convenient parameter to stage early human embryos, we explored whether the closure of the vertebral canal could be used similarly for staging embryos between 7 and 10weeks of

  12. Fruit, seed and embryo development of different cassava (Manihot ...

    African Journals Online (AJOL)

    Fruit, seed and embryo developments of different cassava (Manihot esculenta Crantz) genotypes, as well as embryo rescue, were investigated. The fruits of three genotypes after uncontrolled open pollination presented the same progressive development with similar sizes at different stages. There are large differences in ...

  13. Patients' Preference for Number of Embryos Transferred During IVF ...

    African Journals Online (AJOL)

    Background: The Human Fertilization and Embryology Authority is considering limiting the number of embryos that can be transferred to single embryo per cycle as has been done in several European countries, with the aim of reducing the rate of multiple pregnancies and its attendant complications following in vitro ...

  14. Desiccation tolerance of embryos of Syagrus oleracea, a cerrado ...

    African Journals Online (AJOL)



    Mar 18, 2015 ... Tissue culture was used to test the effect of different fruit drying times (0, 4, 8 and 12 days) on embryo ... confers different colours to the embryos, allowing their ..... Superior – CAPES) and the National Council for Scientific.

  15. Plant regeneration from immature embryos of Kenyan maize inbred ...

    African Journals Online (AJOL)



    Apr 17, 2008 ... their respective single cross hybrids were evaluated for their ability form callus, somatic embryos and .... Callus was induced from embryos excised from ears at. 10, 15, 18, 21 and ..... Plant Cell Tissue Organ Cult., 18: 143-151.

  16. In vitro bulblet regeneration from immature embryos of Muscari ...

    African Journals Online (AJOL)

    A high frequency bulblet regeneration was achieved for endemic and endangered ornamental plant Muscari azureum using immature embryos. Immature embryos of M. azureum were cultured on callus induction medium consisting of N6 mineral salts and vitamins, 400 mg/L casein + 40 g/L sucrose + 2 g/l L-proline, 2 mg/L ...

  17. Optimal developmental stage for vitrification of parthenogenetically activated porcine embryos

    DEFF Research Database (Denmark)

    Li, Rong; Li, Juan; Kragh, Peter


    The objective of this experiment was to determine the optimal developmental stage to vitrify in-vitro cultured porcine parthenogenetically activated (PA) embryos. Embryos were vitrified by Cryotop on Day 4, 5 or 6 after oocyte activation (Day 0), and immediately after warming they were either time...

  18. Development of the ventral body wall in the human embryo

    NARCIS (Netherlands)

    Mekonen, Hayelom K.; Hikspoors, Jill P. J. M.; Mommen, Greet; Köhler, S. Eleonore; Lamers, Wouter H.


    Migratory failure of somitic cells is the commonest explanation for ventral body wall defects. However, the embryo increases ~ 25-fold in volume in the period that the ventral body wall forms, so that differential growth may, instead, account for the observed changes in topography. Human embryos

  19. Factors affecting conception rates in cattle following embryo transfer ...

    African Journals Online (AJOL)

    Embryo Transfer Technology (ETT) plays an important role in improving productivity of dairy cattle (Bos indicus). Embryo Transfer Technology allows top quality female livestock to improve a herd or flock in much the same way that artificial insemination has allowed greater use of superior sires. The technology hastens ...

  20. 9 CFR 98.16 - The embryo collection unit. (United States)


    ... impervious to moisture and constructed of materials that can withstand repeated cleaning and disinfection. If... materials that can withstand repeated cleaning and disinfection. If the outdoor area also has walls or a... withstand repeated cleaning and disinfection. (c) Embryo processing area. The embryo collection unit must...

  1. Centriole Remodeling during Spermiogenesis in Drosophila. (United States)

    Khire, Atul; Jo, Kyoung H; Kong, Dong; Akhshi, Tara; Blachon, Stephanie; Cekic, Anthony R; Hynek, Sarah; Ha, Andrew; Loncarek, Jadranka; Mennella, Vito; Avidor-Reiss, Tomer


    The first cell of an animal (zygote) requires centrosomes that are assembled from paternally inherited centrioles and maternally inherited pericentriolar material (PCM) [1]. In some animals, sperm centrioles with typical ultrastructure are the origin of the first centrosomes in the zygote [2-4]. In other animals, however, sperm centrioles lose their proteins and are thought to be degenerated and non-functional during spermiogenesis [5, 6]. Here, we show that the two sperm centrioles (the giant centriole [GC] and the proximal centriole-like structure [PCL]) in Drosophila melanogaster are remodeled during spermiogenesis through protein enrichment and ultrastructure modification in parallel to previously described centrosomal reduction [7]. We found that the ultrastructure of the matured sperm (spermatozoa) centrioles is modified dramatically and that the PCL does not resemble a typical centriole. We also describe a new phenomenon of Poc1 enrichment of the atypical centrioles in the spermatozoa. Using various mutants, protein expression during spermiogenesis, and RNAi knockdown of paternal Poc1, we found that paternal Poc1 enrichment is essential for the formation of centrioles during spermiogenesis and for the formation of centrosomes after fertilization in the zygote. Altogether, these findings demonstrate that the sperm centrioles are remodeled both in their protein composition and in ultrastructure, yet they are functional and are essential for normal embryogenesis in Drosophila. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Sigma virus and mutation in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Paquin, S.L.A.


    - The objectives of these experiments have been (1) to verify and evidence more fully the action of sigma in causing recessive lethal mutation on the X chromosome of Drosophila, both in the male and the female germ line; (2) to extend the study of sigma-induced recessive lethal mutation to the Drosophila autosomes; (3) to explore the possibility that this mutagenesis is site-directed; (4) to study the effects of sigma virus in conjunction with radiation in increasing non-disjunction and dominant lethality. The virus increases the rate of radiation-induced nondisjunction by altering meiotic chromosomal behavior. Percentage of non-disjunction with 500 rads of x-rays in the virus-free flies was 0.176, while in sigma-containing lines it was 0.333. With high doses of either x or neutron radiation, the presence of the virus enhances the frequency of dominant lethality. The difference is especially significant with the fast neutrons. The results indicate that sigma, and presumably other viruses, are indeed environmental mutagens and are, therefore, factors in the rate of background or spontaneous mutation

  3. Deconstructing host-pathogen interactions in Drosophila

    Directory of Open Access Journals (Sweden)

    Ethan Bier


    Full Text Available Many of the cellular mechanisms underlying host responses to pathogens have been well conserved during evolution. As a result, Drosophila can be used to deconstruct many of the key events in host-pathogen interactions by using a wealth of well-developed molecular and genetic tools. In this review, we aim to emphasize the great leverage provided by the suite of genomic and classical genetic approaches available in flies for decoding details of host-pathogen interactions; these findings can then be applied to studies in higher organisms. We first briefly summarize the general strategies by which Drosophila resists and responds to pathogens. We then focus on how recently developed genome-wide RNA interference (RNAi screens conducted in cells and flies, combined with classical genetic methods, have provided molecular insight into host-pathogen interactions, covering examples of bacteria, fungi and viruses. Finally, we discuss novel strategies for how flies can be used as a tool to examine how specific isolated virulence factors act on an intact host.

  4. Structure of PCNA from Drosophila melanogaster

    International Nuclear Information System (INIS)

    Wang, Ke; Shi, Zhubing; Zhang, Min; Cheng, Dianlin


    Proliferating cell nuclear antigen (PCNA) plays essential roles in DNA replication, DNA repair, cell-cycle regulation and chromatin metabolism. The PCNA from Drosophila melanogaster (DmPCNA) has been purified and crystallized. Proliferating cell nuclear antigen (PCNA) plays essential roles in DNA replication, DNA repair, cell-cycle regulation and chromatin metabolism. The PCNA from Drosophila melanogaster (DmPCNA) was purified and crystallized. The crystal of DmPCNA diffracted to 2.0 Å resolution and belonged to space group H3, with unit-cell parameters a = b = 151.16, c = 38.28 Å. The structure of DmPCNA was determined by molecular replacement. DmPCNA forms a symmetric homotrimer in a head-to-tail manner. An interdomain connector loop (IDCL) links the N- and C-terminal domains. Additionally, the N-terminal and C-terminal domains contact each other through hydrophobic associations. Compared with human PCNA, the IDCL of DmPCNA has conformational changes, which may explain their difference in function. This work provides a structural basis for further functional and evolutionary studies of PCNA

  5. Adaptive Evolution of Gene Expression in Drosophila. (United States)

    Nourmohammad, Armita; Rambeau, Joachim; Held, Torsten; Kovacova, Viera; Berg, Johannes; Lässig, Michael


    Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Modeling Fragile X Syndrome in Drosophila (United States)

    Drozd, Małgorzata; Bardoni, Barbara; Capovilla, Maria


    Intellectual disability (ID) and autism are hallmarks of Fragile X Syndrome (FXS), a hereditary neurodevelopmental disorder. The gene responsible for FXS is Fragile X Mental Retardation gene 1 (FMR1) encoding the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in RNA metabolism and modulating the expression level of many targets. Most cases of FXS are caused by silencing of FMR1 due to CGG expansions in the 5′-UTR of the gene. Humans also carry the FXR1 and FXR2 paralogs of FMR1 while flies have only one FMR1 gene, here called dFMR1, sharing the same level of sequence homology with all three human genes, but functionally most similar to FMR1. This enables a much easier approach for FMR1 genetic studies. Drosophila has been widely used to investigate FMR1 functions at genetic, cellular, and molecular levels since dFMR1 mutants have many phenotypes in common with the wide spectrum of FMR1 functions that underlay the disease. In this review, we present very recent Drosophila studies investigating FMRP functions at genetic, cellular, molecular, and electrophysiological levels in addition to research on pharmacological treatments in the fly model. These studies have the potential to aid the discovery of pharmacological therapies for FXS. PMID:29713264

  7. Embryo apoptosis identification: Oocyte grade or cleavage stage? (United States)

    Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul


    Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced. PMID:26858565

  8. Patients' attitudes to their embryos and their destiny: social conditioning? (United States)

    de Lacey, Sheryl


    The clinical management of embryo storage and disposal is dynamic and subject to changes in the cultural context such as public debate and the implementation of public policy. Studies of the decisions made by patient couples for their embryos, and trends in decision-making over time and in relation to issues arising in the cultural context are rare. Studies of the attitudes that patient couples have towards their frozen embryos have largely focused on measuring patients' intentions in relation to publicly contentious outcomes. A small but expanding number of interview studies are illuminating the meaning that couples attribute to frozen embryos and how this influences decisions for their destiny. This chapter maps both quantitative and qualitative studies of patients' attitudes and decisions illuminating similarities and contradictions in study findings, and ultimately highlights the range of attitudes in patients, clinics and the community towards what is evidently a difficult and morally challenging decision to end the storage of frozen embryos.


    Directory of Open Access Journals (Sweden)

    Nitin M. LABHANE


    Full Text Available The study of morphology of embryo is very significant considering the fact that the embryo represents the important step in the determination of the viability of the seed. Ruminate endosperm has been reported in about 58 families of angiosperms. The rumination caused by the activity of the seed coat or by the endosperm itself is quite recurrent in angiosperm. Ruminate endosperm due to seed coat is reported from the family Acanthaceae in Andrographis paniculata. The rumination of endosperm is also considered as phylogenetically important. Rumination of endosperm is very common, however very little is known about rumination in embryo. The present papers reports the de novo development of ruminate embryo in Blepharis repens. The development of ruminate embryo is seen as an adaptation to ensure proper aeration and optimum germination for survival of the species.

  10. The effect of insecticide Deltamethrin on development of chick embryos

    International Nuclear Information System (INIS)

    Al-Naal, R.; Bassal, M. Osman, M.


    This study was conducted to evaluate the cyto and the embryo toxicity of Deltamethrin and its commercial formulation DECIS 50 EC in chick embryo during its critical embryonic development period before and in the organogenesis. The embryos were incubated in well closed plastic caps containing the complete egg composition at 38 o. the Deltamethrin and DECIS were found to cause histological and morphological malformations, specially in the brain, also they reduced the majority of the synthetic activities of the DNA, RNA, and proteins in the embryonic and the vascular areas. The flow cytometric analysis showed alterations in frequency of cells in both embryonic and vascular areas in the treated embryo during the cell cycle phases. Our study also showed that the DECIS had greater cyto and embryo toxicity than the Seltamethrin for analysis (author). 149 refs., 36 figs., 16 tabs

  11. Sex determination of duck embryos: observations on syrinx development (United States)

    Wilson, Robert E.; Sonsthagen, Sarah A.; Franson, J. Christian


    Ducks exhibit sexual dimorphism in vocal anatomy. Asymmetrical ossification of the syrinx (bulla syringealis) is discernable at about 10 days of age in male Pekin duck (Anas platyrhynchos domestica) embryos, but information is lacking on the early development of the bulla in wild ducks. To evaluate the reliability of this characteristic for sexing developing embryos, we examined the syrinx of dead embryos and compared results with molecular sexing techniques in high arctic nesting Common Eiders (Somateria mollissima). Embryos 8 days or older were accurately (100%) sexed based on the presence/absence of a bulla, 2 days earlier than Pekin duck. The use of the tracheal bulla can be a valuable technique when sex identification of embryos or young ducklings is required.

  12. Protein synthesis in the embryo of Pinus thunbergii seed, 2

    International Nuclear Information System (INIS)

    Yamamoto, Naoaki; Sasaki, Satohiko.


    14 C-Amino acid incorporating activity in the absence of exogenous mRNA was found in a cell-free system from embryos of light-germinated Pinus thunbergii seeds, but not in that from dark-imbibed seed embryos. Template activity in the cell-free system from the light-germinated seed embryos was observed in the ribosome fraction, especially the polyribosome fraction, but not in the 100,000 x g supernatant fraction (s100). These facts suggest that the nature of the block in protein synthesis during the imbibition of seeds in the dark is due to the lack or inactivity of mRNA. The s100 from light-germinated seed embryos was found to be less active in amino acid incorporation than that from dark-imbibed seed embryos. (auth.)

  13. [TSA improve transgenic porcine cloned embryo development and transgene expression]. (United States)

    Kong, Qing-Ran; Zhu, Jiang; Huang, Bo; Huan, Yan-Jun; Wang, Feng; Shi, Yong-Qian; Liu, Zhong-Feng; Wu, Mei-Ling; Liu, Zhong-Hua


    Uncompleted epigenetic reprogramming is attributed to the low efficiency of producing transgenic cloned animals. Histone modification associated with epigenetics can directly influence the embryo development and transgene expression. Trichostatin A (TSA), as an inhibitor of histone deacetylase, can change the status of histone acetylation, improve somatic cell reprogramming, and enhance cloning efficiency. TSA prevents the chromatin structure from being condensed, so that transcription factor could binds to DNA sequence easily and enhance transgene expression. Our study established the optimal TSA treatment on porcine donor cells and cloned embryos, 250 nmol/L, 24 h and 40 nmol/L, 24 h, respectively. Furthermore, we found that both the cloned embryo and the donor cell treated by TSA resulted in the highest development efficiency. Meanwhile, TSA can improve transgene expression in donor cell and cloned embryo. In summary, TSA can significantly improve porcine reconstructed embryo development and transgene expression.

  14. Detection of programmed cell death in plant embryos. (United States)

    Filonova, Lada H; Suárez, María F; Bozhkov, Peter V


    Programmed cell death (PCD) is an integral part of embryogenesis. In plant embryos, PCD functions during terminal differentiation and elimination of the temporary organ, suspensor, as well as during establishment of provascular system. Embryo abortion is another example of embryonic PCD activated at pathological situations and in polyembryonic seeds. Recent studies identified the sequence of cytological events leading to cellular self-destruction in plant embryos. As in most if not all the developmental cell deaths in plants, embryonic PCD is hallmarked by autophagic degradation of the cytoplasm and nuclear disassembly that includes breakdown of the nuclear envelope and DNA fragmentation. The optimized setup of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) allows the routine in situ analysis of nuclear DNA fragmentation in plant embryos. This chapter provides step-by-step procedure of how to process embryos for TUNEL and how to combine TUNEL with immunolocalization of the protein of interest.

  15. Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos by vitrification. (United States)

    Sajini, K K; Karun, A; Amamath, C H; Engelmann, F


    The present study investigates the effect of preculture conditions, vitrification and unloading solutions on survival and regeneration of coconut zygotic embryos after cryopreservation. Among the seven plant vitrification solutions tested, PVS3 was found to be the most effective for regeneration of cryopreserved embryos. The optimal protocol involved preculture of embryos for 3 days on medium with 0.6 M sucrose, PVS3 treatment for 16 h, rapid cooling and rewarming and unloading in 1.2 M sucrose liquid medium for 1.5 h. Under these conditions, 70-80 survival (corresponding to size enlargement and weight gain) was observed with cryopreserved embryos and 20-25 percent of the plants regenerated (showing normal shoot and root growth) from cryopreserved embryos were established in pots.

  16. Morphogenesis and calcification of the statoconia in the chick (Gallus domesticus) embryo - Implications for future studies (United States)

    Fermin, C. D.; Igarashi, M.


    The morphogenesis of the statoconia in the chick, Gallus domesticus, injected with a carbon anhydrase inhibitor is studied. The preparation of the embryo specimens for analysis is described. The early, middle, and late stages of embryonic development are examined. The data reveal that acetozolamide inhibits statoconia formation in the middle stage of development and the calcification process follows statoconia formation. The spatial relationship between the development of type 1 and type 2 hair cells and the appearance and maturation of the statoconia is investigated.

  17. Molecular Cloning and Genomic Organization of a Novel Receptor from Drosophila melanogaster Structurally Related to Mammalian Galanin Receptors

    DEFF Research Database (Denmark)

    Lenz, Camilla; Søndergaard, L.; Grimmelikhuijzen, Cornelis J.P.


    neurobiologi, molekylærbiologi, zoologi, neurohormonereceptor, allatostatin, galanin, insekt, Drosophila......neurobiologi, molekylærbiologi, zoologi, neurohormonereceptor, allatostatin, galanin, insekt, Drosophila...

  18. Cryopreservation of mouse embryos by ethylene glycol-based vitrification. (United States)

    Mochida, Keiji; Hasegawa, Ayumi; Taguma, Kyuichi; Yoshiki, Atsushi; Ogura, Atsuo


    Cryopreservation of mouse embryos is a technological basis that supports biomedical sciences, because many strains of mice have been produced by genetic modifications and the number is consistently increasing year by year. Its technical development started with slow freezing methods in the 1970s(1), then followed by vitrification methods developed in the late 1980s(2). Generally, the latter technique is advantageous in its quickness, simplicity, and high survivability of recovered embryos. However, the cryoprotectants contained are highly toxic and may affect subsequent embryo development. Therefore, the technique was not applicable to certain strains of mice, even when the solutions are cooled to 4°C to mitigate the toxic effect during embryo handling. At the RIKEN BioResource Center, more than 5000 mouse strains with different genetic backgrounds and phenotypes are maintained(3), and therefore we have optimized a vitrification technique with which we can cryopreserve embryos from many different strains of mice, with the benefits of high embryo survival after vitrifying and thawing (or liquefying, more precisely) at the ambient temperature(4). Here, we present a vitrification method for mouse embryos that has been successfully used at our center. The cryopreservation solution contains ethylene glycol instead of DMSO to minimize the toxicity to embryos(5). It also contains Ficoll and sucrose for prevention of devitrification and osmotic adjustment, respectively. Embryos can be handled at room temperature and transferred into liquid nitrogen within 5 min. Because the original method was optimized for plastic straws as containers, we have slightly modified the protocol for cryotubes, which are more easily accessible in laboratories and more resistant to physical damages. We also describe the procedure of thawing vitrified embryos in detail because it is a critical step for efficient recovery of live mice. These methodologies would be helpful to researchers and

  19. Parameter estimation and determinability analysis applied to Drosophila gap gene circuits

    Directory of Open Access Journals (Sweden)

    Jaeger Johannes


    Full Text Available Abstract Background Mathematical modeling of real-life processes often requires the estimation of unknown parameters. Once the parameters are found by means of optimization, it is important to assess the quality of the parameter estimates, especially if parameter values are used to draw biological conclusions from the model. Results In this paper we describe how the quality of parameter estimates can be analyzed. We apply our methodology to assess parameter determinability for gene circuit models of the gap gene network in early Drosophila embryos. Conclusion Our analysis shows that none of the parameters of the considered model can be determined individually with reasonable accuracy due to correlations between parameters. Therefore, the model cannot be used as a tool to infer quantitative regulatory weights. On the other hand, our results show that it is still possible to draw reliable qualitative conclusions on the regulatory topology of the gene network. Moreover, it improves previous analyses of the same model by allowing us to identify those interactions for which qualitative conclusions are reliable, and those for which they are ambiguous.

  20. Spatiotemporal network motif reveals the biological traits of developmental gene regulatory networks in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Kim Man-Sun


    Full Text Available Abstract Background Network motifs provided a “conceptual tool” for understanding the functional principles of biological networks, but such motifs have primarily been used to consider static network structures. Static networks, however, cannot be used to reveal time- and region-specific traits of biological systems. To overcome this limitation, we proposed the concept of a “spatiotemporal network motif,” a spatiotemporal sequence of network motifs of sub-networks which are active only at specific time points and body parts. Results On the basis of this concept, we analyzed the developmental gene regulatory network of the Drosophila melanogaster embryo. We identified spatiotemporal network motifs and investigated their distribution pattern in time and space. As a result, we found how key developmental processes are temporally and spatially regulated by the gene network. In particular, we found that nested feedback loops appeared frequently throughout the entire developmental process. From mathematical simulations, we found that mutual inhibition in the nested feedback loops contributes to the formation of spatial expression patterns. Conclusions Taken together, the proposed concept and the simulations can be used to unravel the design principle of developmental gene regulatory networks.