WorldWideScience

Sample records for prepared zno nanostructures

  1. Facile Hydrothermal Preparation of ZNO/CO3O4 Heterogeneous Nanostructures and its Photovoltaic Effect

    Science.gov (United States)

    Wei, Fanan; Jiang, Minlin; Liu, Lianqing

    2015-07-01

    Photovoltaic technology offers great potential in the replacement of fossil fuel resources, but still suffers from high device fabrication cost. Herein, we attempted to provide a solution to these issues with heterogeneous nanostructures. Firstly, Zinc oxide (ZnO)/cobalt oxide (Co3O4) heterojunction nanowires are prepared through facile fabrication methods. By assembling Co(OH)2 nanoplates on ZnO nanowire arrays, the ZnO/Co3O4 heterogeneous nanostructures are uniformly synthesized on ITO coated glass and wafer. Current (I)-voltage (V) measurement through conductive atomic force microscope shows excellent photovoltaic effect. And, the heterojunction nanostructures shows unprecedented high open circuit voltage. Therefore, the potential application of the heterogeneous nanostructures in solar cells is demonstrated.

  2. Enhanced local piezoelectric response in the erbium-doped ZnO nanostructures prepared by wet chemical synthesis

    Directory of Open Access Journals (Sweden)

    Reza Zamiri

    2017-03-01

    Full Text Available Pure and erbium (Er doped ZnO nanostructures were prepared by simple and cost effective wet chemical precipitation method. The successful doping with phase purity of prepared ZnO nanostructure was confirmed by X-ray diffraction (XRD and their Rietveld analysis. The change in structural morphology of nanoscale features of prepared ZnO nanopowders on Er doping was observed from their scanning electron microscopy (SEM images. The presence of Er in prepared ZnO nanopowder was further confirmed from corresponding energy dispersive X-ray spectroscopy (EDX spectra of scanned SEM images. Piezoelectric properties of before (green samples and after sintering of consolidated compact of synthesized nanopowders were successfully measured. The out-of-plane (effective longitudinal and in-plane (effective shear coefficients of the samples were estimated from the local piezoresponse.

  3. Structural, optical and photocatalytic properties of flower-like ZnO nanostructures prepared by a facile wet chemical method

    Directory of Open Access Journals (Sweden)

    Sini Kuriakose

    2013-11-01

    Full Text Available Flower-like ZnO nanostructures were synthesized by a facile wet chemical method. Structural, optical and photocatalytic properties of these nanostructures have been studied by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, photoluminescence (PL and UV–vis absorption spectroscopy. SEM and TEM studies revealed flower-like structures consisting of nanosheets, formed due to oriented attachment of ZnO nanoparticles. Flower-like ZnO structures showed enhanced photocatalytic activity towards sun-light driven photodegradation of methylene blue dye (MB as compared to ZnO nanoparticles. XRD, UV–vis absorption, PL, FTIR and TEM studies revealed the formation of Zn(OH2 surface layer on ZnO nanostructures upon ageing. We demonstrate that the formation of a passivating Zn(OH2 surface layer on the ZnO nanostructures upon ageing deteriorates their efficiency to photocatalytically degrade of MB.

  4. Polyelectrolyte-assisted preparation and characterization of nanostructured ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shijun

    2005-05-15

    The present work focuses on the synthesis and characterization of nanostructured ZnO thin films onto silicon wafers modified by self-assembled-monolayers via chemical bath deposition. Two precursor solutions were designed and used for the film deposition, in which two different polymers were introduced respectively to control the growth of the ZnO colloidal particles in solution. ZnO films were deposited from an aqueous solution containing zinc salt and hexamethylenetetramine (HMTA) in the presence of a graft-copolymer (P (MAA{sub 0.50}-co(MAA-EO{sub 20}){sub 0.50}){sub 70}). A film-formation-diagram was established based on the results obtained by scanning electron microscopy (SEM) and atomic force microscopy (AFM), which describes the influence of the concentration of HMTA and copolymer on the ZnO film formation. According to the film morphology, film formation can be classified into three categories: (a) island-like films, (b) uniform films and (c) canyon-like films. The ZnO films annealed at temperatures of 450 C, 500 C, 600 C and 700 C were examined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). After annealing, the films are polycrystalline ZnO with wurtzite structure. XRD measurements indicate that with increasing annealing temperature, the average grain size increases accordingly and the crystallinity of the films is improved. Upon heating to 600 C, the ZnO films exhibit preferred orientation with c-axis normal to substrate, whereas the films annealed at 700 C even show a more explicit texture. By annealing at temperatures above 600 C the ZnO film reacts with the substrate to form an interfacial layer of Zn{sub 2}SiO{sub 4}, which grows thicker at elevated annealing temperatures. The ZnO films annealed at 600 C and 700 C show strong UV emission. Another non-aqueous solution system for ZnO thin film deposition was established, in which 2- propanol was used as a solvent and Zn(CH3COO){sub 2}.2H{sub 2}O as well as NaOH as reactants

  5. Nanostructured ZnO thin films prepared by sol–gel spin-coating

    Energy Technology Data Exchange (ETDEWEB)

    Heredia, E., E-mail: heredia.edu@gmail.com [UNIDEF (CONICET-MINDEF), J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Bojorge, C.; Casanova, J.; Cánepa, H. [UNIDEF (CONICET-MINDEF), J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Craievich, A. [Instituto de Física, Universidade de São Paulo, Cidade Universitária, 66318 São Paulo, SP (Brazil); Kellermann, G. [Universidade Federal do Paraná, 19044 Paraná (Brazil)

    2014-10-30

    Highlights: • ZnO films synthesized by sol–gel were deposited by spin-coating on flat substrates. • Structural features of ZnO films with several thicknesses were characterized by means of different techniques. • The thicknesses of different ZnO thin films were determined by means of FESEM and AFM. • The nanoporous structures of ZnO thin films were characterized by GISAXS using IsGISAXS software. • The average densities of ZnO thin films were derived from (i) the critical angle in 1D XR patterns, (ii) the angle of Yoneda peak in 2D GISAXS images, (iii) minimization of chi2 using IsGISAXS best fitting procedure. - Abstract: ZnO thin films deposited on silica flat plates were prepared by spin-coating and studied by applying several techniques for structural characterization. The films were prepared by depositing different numbers of layers, each deposition being followed by a thermal treatment at 200 °C to dry and consolidate the successive layers. After depositing all layers, a final thermal treatment at 450 °C during 3 h was also applied in order to eliminate organic components and to promote the crystallization of the thin films. The total thickness of the multilayered films – ranging from 40 nm up to 150 nm – was determined by AFM and FESEM. The analysis by GIXD showed that the thin films are composed of ZnO crystallites with an average diameter of 25 nm circa. XR results demonstrated that the thin films also exhibit a large volume fraction of nanoporosity, typically 30–40 vol.% in thin films having thicknesses larger than ∼70 nm. GISAXS measurements showed that the experimental scattering intensity is well described by a structural model composed of nanopores with shape of oblate spheroids, height/diameter aspect ratio within the 0.8–0.9 range and average diameter along the sample surface plane in the 5–7 nm range.

  6. Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass.

    Directory of Open Access Journals (Sweden)

    Tamil Many K Thandavan

    Full Text Available Vapor phase transport (VPT assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn was used to prepare un-doped and Al-doped zinc oxide (ZnO nanostructures (NSs. The structure and morphology were characterized by field emission scanning electron microscopy (FESEM and x-ray diffraction (XRD. Photoluminescence (PL properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni, oxygen interstitials (Oi, zinc vacancy (Vzn, singly charged zinc vacancy (VZn-, oxygen vacancy (Vo, singly charged oxygen vacancy (Vo+ and oxygen anti-site defects (OZn in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.

  7. Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass.

    Science.gov (United States)

    Thandavan, Tamil Many K; Gani, Siti Meriam Abdul; San Wong, Chiow; Md Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.

  8. Investigation on Fe-doped ZnO nanostructures prepared by a chemical route

    International Nuclear Information System (INIS)

    Mishra, A.K.; Das, D.

    2010-01-01

    Zn 1-x Fe x O (x = 0.03, 0.05 and 0.07) nanoparticles synthesized by a chemical route were characterized by different techniques. The structural characterization by XRD and TEM confirmed the phase purity of the samples and indicated a reduction in particle size with increase in the dopant (Fe) concentration in ZnO. The optical characterization of the nanoparticles by FTIR, PL and UV-visible spectroscopy confirmed the formation of wurtzite structure and incorporation of Fe in the ZnO lattice. Magnetization measurements by VSM and Faraday balance techniques indicate presence of room temperature ferromagnetism in the Fe-doped ZnO samples. Local environment around the Fe atoms has been probed by 57 Fe Moessbauer spectroscopy and the measured isomer shifts confirmed the charge state of iron as Fe 3+ . Positron annihilation lifetime spectroscopy (PALS) measurements confirm the presence of cation vacancies in the nanoparticles and indicate a reduction of overall defect concentration with incorporation of Fe atoms in the ZnO structure.

  9. Investigation on Fe-doped ZnO nanostructures prepared by a chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, A.K. [UGC-DAE Consortium for Scientific Research, Kolkata Centre III/LB-8, Bidhannagar, Kolkata 700098 (India); Das, D., E-mail: ddas@alpha.iuc.res.in [UGC-DAE Consortium for Scientific Research, Kolkata Centre III/LB-8, Bidhannagar, Kolkata 700098 (India)

    2010-07-25

    Zn{sub 1-x}Fe{sub x}O (x = 0.03, 0.05 and 0.07) nanoparticles synthesized by a chemical route were characterized by different techniques. The structural characterization by XRD and TEM confirmed the phase purity of the samples and indicated a reduction in particle size with increase in the dopant (Fe) concentration in ZnO. The optical characterization of the nanoparticles by FTIR, PL and UV-visible spectroscopy confirmed the formation of wurtzite structure and incorporation of Fe in the ZnO lattice. Magnetization measurements by VSM and Faraday balance techniques indicate presence of room temperature ferromagnetism in the Fe-doped ZnO samples. Local environment around the Fe atoms has been probed by {sup 57}Fe Moessbauer spectroscopy and the measured isomer shifts confirmed the charge state of iron as Fe{sup 3+}. Positron annihilation lifetime spectroscopy (PALS) measurements confirm the presence of cation vacancies in the nanoparticles and indicate a reduction of overall defect concentration with incorporation of Fe atoms in the ZnO structure.

  10. Efficient acetone sensor based on Ni-doped ZnO nanostructures prepared by spray pyrolysis technique

    Science.gov (United States)

    Darunkar, Swapnil S.; Acharya, Smita A.

    2018-05-01

    Ni-doped ZnO thin film was prepared by home-built spray pyrolysis unit for the detection of acetone at 300°C. Scanning electron microscopic (SEM) images of as-developed thin film of undoped ZnO exhibits large quantity of spherical, non-agglomerated particles with uniform size while in Ni-doped ZnO, particles are quite non-uniform in nature. The particle size estimated by using image J are obtained to be around 20-200 nm. Ni-doping effect on band gaps are determined by UV-vis optical spectroscopy and band gap of Ni-doped ZnO is found to be 3.046 eV. Nickel doping exceptionally enhances the sensing response of ZnO as compared to undoped ZnO system. The major role of the Ni-doping is to create more active sites for chemisorbed oxygen on the surface of sensor and correspondingly, to improve the sensing response. The 6 at.% of Ni-doped ZnO exhibits the highest response (92%) for 100 ppm acetone at 300 °C.

  11. Anodized ZnO nanostructures for photoelectrochemical water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Mao-Chia [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China); Wang, TsingHai [Department of Biomedical Engineering and Environment Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, Bin-Jui [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China); Lin, Jing-Chie, E-mail: jclin4046@gmail.com [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China); Wu, Ching-Chen [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan (China)

    2016-01-01

    Highlights: • ZnO nanostructures were synthesized by electrochemical anodic process. • The parameter of ZnO nanostructure was anodic potential. • The model of growth of ZnO nanostructure was investigated. - Abstract: Zinc oxide (ZnO) nanostructures were fabricated on the polished zinc foil by anodic deposition in an alkaline solution containing 1.0 M NaOH and 0.25 M Zn(NO{sub 3}){sub 2}. Potentiostatic anodization was conducted at two potentials (−0.7 V in the passive region and −1.0 V in the active region vs. SCE) which are higher than the open circuit potential (−1.03 V vs. SCE) and as-obtained ZnO nanostrcutures were investigated focusing on their structural, optical, electrical and photoelectrochemical (PEC) characteristics. All samples were confirmed ZnO by X-ray photoelectron spectroscopy and Raman spectra. Observations in the SEM images clearly showed that ZnO nanostructures prepared at −0.7 V vs. SCE were composed of nanowires at while those obtained at −1.0 V vs. SCE possessed nanosheets morphology. Result from transmission electron microscope and X-ray diffraction patterns suggested that the ZnO nanowires belonged to single crystalline with a preferred orientation of (0 0 2) whereas the ZnO nanosheets were polycrystalline. Following PEC experiments indicated that ZnO nanowires had higher photocurrent density of 0.32 mA/cm{sup 2} at 0.5 V vs. SCE under 100 mW/cm{sup 2} illumination. This value was about 1.9 times higher than that of ZnO nanosheets. Observed higher photocurrent was likely due to the single crystalline, preferred (0 0 2) orientation, higher carrier concentration and lower charge transfer resistance.

  12. Preparation and characterizations of CuO doped ZnO nano-structure for the photocatalytic degradation of 4-chlorophenol under visible light

    Directory of Open Access Journals (Sweden)

    Afsaneh Shokri

    2016-12-01

    Full Text Available In the present investigation, a ZnO nanostructure was synthesized by means of precipitation and sonochemical methods. The X-ray diffraction (XRD pattern indicated that the wurtzite structure of ZnO had a hexagonal symmetry and there was no impurity. The average ZnO particles crystallite size was calculated at about 41 nm. The SEM and TEM images revealed nanostructure ZnO particles with a cauliflower-like and rod morphology with dimensions of 85, 79 and 117 nm. In order to investigate the increment of ZnO photoactivity under visible light, the CuO doped ZnO nanostructures were fabricated by a wet impregnation method using copper oxide as the copper source and ZnO as the precursor. The XRD analysis confirmed that the CuO phase was present in the as-prepared sample and the average size of nano crystalline decreased to about 36 nm. The DRS spectra indicated the extended absorption of CuO-ZnO to the visible range as a result of band gap reduction to 2.9 eV (in comparison of 3.2 eV in ZnO. In order to investigate the photocatalytic activity of the synthesized photocatalyst, the degradation of 4-Chlorophenol under visible light was performed. Sixteen experiments using full factorial were executed by adjusting four parameters (amount of catalyst, initial concentration of 4-Chlorophenol, pH, and time of irradiation. An empirical expression was proposed and successfully used to model the photocatalytic process with a high correlation, and an optimal experimental region was also obtained. According to the developed model for degradation and the subsequent ANOVA test using Design Expert software, the time of irradiation with a 46.57% effect played the most important role in the photocatalytic activity, while the influences of parameters on each other were negligible. Optimal experimental conditions for 4-Chlorophenol concentration (0.01 g/L were found at an initial pH =8 and a catalyst loading of 0.07 g/L. The results indicated that CuO-ZnO can remove 95

  13. Synthesis and Characterization of Nanostructured ZnO Thick Film Gas Sensors Prepared by Screen Printing Method

    Directory of Open Access Journals (Sweden)

    R. Y. BORSE

    2010-12-01

    Full Text Available Nanosized ZnO was prepared by self propagating solution combustion synthesis method. The synthesized ZnO thick films were deposited on alumina substrate by using standard screen printing technique and fired at 700 0C. The films were characterized by X-ray diffractometer (XRD, Scanning Electron Microscopy (SEM and energy dispersive analysis of X-ray (EDAX. The electrical behaviors of ZnO thick films were investigated. From XRD spectra it is revealed that ZnO films are polycrystalline in nature. The average grain size of 87.44 nm has been estimated for the film fired at 700 0C using Scherrer’s formula. EDAX clearly shows the peaks corresponding to Zn and O element which confirms the successful growth of ZnO films. Gas sensing study for these samples shows high sensitivity and selectivity towards NO2 at all operating temperatures. The resistivity, TCR and activation energy of the ZnO films have been evaluated and discussed.

  14. ZnO Nanostructures for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Marco Laurenti

    2017-11-01

    Full Text Available This review focuses on the most recent applications of zinc oxide (ZnO nanostructures for tissue engineering. ZnO is one of the most investigated metal oxides, thanks to its multifunctional properties coupled with the ease of preparing various morphologies, such as nanowires, nanorods, and nanoparticles. Most ZnO applications are based on its semiconducting, catalytic and piezoelectric properties. However, several works have highlighted that ZnO nanostructures may successfully promote the growth, proliferation and differentiation of several cell lines, in combination with the rise of promising antibacterial activities. In particular, osteogenesis and angiogenesis have been effectively demonstrated in numerous cases. Such peculiarities have been observed both for pure nanostructured ZnO scaffolds as well as for three-dimensional ZnO-based hybrid composite scaffolds, fabricated by additive manufacturing technologies. Therefore, all these findings suggest that ZnO nanostructures represent a powerful tool in promoting the acceleration of diverse biological processes, finally leading to the formation of new living tissue useful for organ repair.

  15. Oriented ZnO nanostructures and their application in photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Man, Minh Tan [Department of Physics, Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju 54896 (Korea, Republic of); Kim, Ji-Hee [Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419 (Korea, Republic of); Sungkyunkwan University (SKKU), Suwon, 16419 (Korea, Republic of); Jeong, Mun Seok [Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon, 16419 (Korea, Republic of); Do, Anh-Thu Thi [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi (Viet Nam); Lee, Hong Seok, E-mail: hslee1@jbnu.ac.kr [Department of Physics, Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju 54896 (Korea, Republic of)

    2017-05-15

    We report a chemical bath deposition approach for the preparation of large arrays of oriented ZnO nanostructures by activated substrate processes, and precipitated ZnO nanorods by passive occupation of the crystal surface. Photoluminescence dynamics showed that various visible emission characteristics associated with defects such as oxygen vacancy, zinc interstitial or their complexes. In addition, the precipitated ZnO nanorods exhibited excellent performance in the adsorption and photocatalytic decomposition of organic dyes, achieving 95% photodegradation of Rhodamine 6B. Moreover, oxygen defects function as trap sites with strong adsorption abilities towards organic dyes and showed high performance in the photocatalytic degradation of the dye molecules.

  16. Nanostructured porous ZnO film with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Wang Lina; Zheng Yingying; Li Xiaoyun; Dong Wenjun; Tang Weihua; Chen Benyong; Li Chaorong; Li Xiao; Zhang Tierui

    2011-01-01

    Well-defined ZnO nanostructured films have been fabricated directly on Zn foil via hydrothermal synthesis. During the fabrication of the ZnO nanostructured films, the Zn foil serves as the Zn source and also the substrate. Porous nanosheet-based, nanotube-based and nanoflower-based ZnO films can all be easily prepared by adjusting the alkali type, reaction time and reaction temperature. The composition, morphology and structure of ZnO films are characterized by X-ray diffraction, scanning electron microscope and high-resolution transmission electron microscope. The porous ZnO nanosheet-based film exhibits enhanced photocatalytic activity in the degradation of Rhodamine B under UV light irradiation. This can be attributed to the high surface area of the ZnO nanosheet and the large percentage of the exposed [001] facet. Moreover, the self-supporting, recyclable and stable ZnO photocatalytic film can be readily recovered and potentially applied for pollution disposal.

  17. Solution precursor plasma deposition of nanostructured ZnO coatings

    International Nuclear Information System (INIS)

    Tummala, Raghavender; Guduru, Ramesh K.; Mohanty, Pravansu S.

    2011-01-01

    Highlights: → The solution precursor route employed is an inexpensive process with capability to produce large scale coatings at fast rates on mass scale production. → It is highly capable of developing tailorable nanostructures. → This technique can be employed to spray the coatings on any kind of substrates including polymers. → The ZnO coatings developed via solution precursor plasma spray process have good electrical conductivity and reflectivity properties in spite of possessing large amount of particulate boundaries, porosity and nanostructured grains. -- Abstract: Zinc oxide (ZnO) is a wide band gap semiconducting material that has various applications including optical, electronic, biomedical and corrosion protection. It is usually synthesized via processing routes, such as vapor deposition techniques, sol-gel, spray pyrolysis and thermal spray of pre-synthesized ZnO powders. Cheaper and faster synthesis techniques are of technological importance due to increased demand in alternative energy applications. Here, we report synthesis of nanostructured ZnO coatings directly from a solution precursor in a single step using plasma spray technique. Nanostructured ZnO coatings were deposited from the solution precursor prepared using zinc acetate and water/isopropanol. An axial liquid atomizer was employed in a DC plasma spray torch to create fine droplets of precursor for faster thermal treatment in the plasma plume to form ZnO. Microstructures of coatings revealed ultrafine particulate agglomerates. X-ray diffraction confirmed polycrystalline nature and hexagonal Wurtzite crystal structure of the coatings. Transmission electron microscopy studies showed fine grains in the range of 10-40 nm. Observed optical transmittance (∼65-80%) and reflectivity (∼65-70%) in the visible spectrum, and electrical resistivity (48.5-50.1 mΩ cm) of ZnO coatings are attributed to ultrafine particulate morphology of the coatings.

  18. Solution precursor plasma deposition of nanostructured ZnO coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tummala, Raghavender [Department of Mechanical Engineering, University of Michigan - Dearborn, MI 48128 (United States); Guduru, Ramesh K., E-mail: rkguduru@umich.edu [Department of Mechanical Engineering, University of Michigan - Dearborn, MI 48128 (United States); Mohanty, Pravansu S. [Department of Mechanical Engineering, University of Michigan - Dearborn, MI 48128 (United States)

    2011-08-15

    Highlights: {yields} The solution precursor route employed is an inexpensive process with capability to produce large scale coatings at fast rates on mass scale production. {yields} It is highly capable of developing tailorable nanostructures. {yields} This technique can be employed to spray the coatings on any kind of substrates including polymers. {yields} The ZnO coatings developed via solution precursor plasma spray process have good electrical conductivity and reflectivity properties in spite of possessing large amount of particulate boundaries, porosity and nanostructured grains. -- Abstract: Zinc oxide (ZnO) is a wide band gap semiconducting material that has various applications including optical, electronic, biomedical and corrosion protection. It is usually synthesized via processing routes, such as vapor deposition techniques, sol-gel, spray pyrolysis and thermal spray of pre-synthesized ZnO powders. Cheaper and faster synthesis techniques are of technological importance due to increased demand in alternative energy applications. Here, we report synthesis of nanostructured ZnO coatings directly from a solution precursor in a single step using plasma spray technique. Nanostructured ZnO coatings were deposited from the solution precursor prepared using zinc acetate and water/isopropanol. An axial liquid atomizer was employed in a DC plasma spray torch to create fine droplets of precursor for faster thermal treatment in the plasma plume to form ZnO. Microstructures of coatings revealed ultrafine particulate agglomerates. X-ray diffraction confirmed polycrystalline nature and hexagonal Wurtzite crystal structure of the coatings. Transmission electron microscopy studies showed fine grains in the range of 10-40 nm. Observed optical transmittance ({approx}65-80%) and reflectivity ({approx}65-70%) in the visible spectrum, and electrical resistivity (48.5-50.1 m{Omega} cm) of ZnO coatings are attributed to ultrafine particulate morphology of the coatings.

  19. Growth of novel ZnO nanostructures by soft chemical routes

    International Nuclear Information System (INIS)

    Saravana Kumar, R.; Sathyamoorthy, R.; Matheswaran, P.; Sudhagar, P.; Kang, Yong Soo

    2010-01-01

    Research highlights: Fabrication of diverse ZnO nanostructures through soft chemical routes is both fundamentally interesting and technologically important. Accordingly, in the present work novel ZnO nanostructures namely nanorods/nanospines were grown on glass substrate by integrating SILAR and CBD techniques. This simple approach not only would lead to the development of an effective and commercial growth process for diverse ZnO nanostructures, but also lead to the large-scale preparation of other nanomaterials for many important applications in nanotechnology. - Abstract: We explore a facile route to prepare one-dimensional (1D) ZnO nanostructures including nanorods/nanospines on glass substrates by integrating inexpensive successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) methods. The effect of seed layer on the growth and morphology of the ZnO nanostructures was investigated. Accordingly, the surface modification of the seed layer prepared by SILAR was carried out by employing two different drying processes namely (a) allowing the hot substrate to cool for certain period of time before immersing in the ion-exchange bath, and (b) immediate immersion of the hot substrate into the ion-exchange bath. X-ray diffraction (XRD) analysis of the ZnO films revealed hexagonal wurtzite structure with preferential orientation along c-axis, while the scanning electron microscopy (SEM) revealed the dart-like and spherical shaped ZnO seed particles. ZnO nanostructures grown by CBD over the dart-like and spherical shaped ZnO seed particles resulted in the hierarchical and aligned ZnO nanospines/nanorods respectively. Room temperature photoluminescence (PL) study exhibited highly intense UV emission with weak visible emissions in the visible region. The growth mechanism and the role of seed layer morphology on the formation of ZnO nanostructures were discussed.

  20. Growth of novel ZnO nanostructures by soft chemical routes

    Energy Technology Data Exchange (ETDEWEB)

    Saravana Kumar, R. [PG and Research, Department of Physics, Kongunadu Arts and Science College (Autonomous), Coimbatore 641 029, Tamil Nadu (India); Sathyamoorthy, R., E-mail: rsathya59@gmail.co [PG and Research, Department of Physics, Kongunadu Arts and Science College (Autonomous), Coimbatore 641 029, Tamil Nadu (India); Matheswaran, P. [PG and Research, Department of Physics, Kongunadu Arts and Science College (Autonomous), Coimbatore 641 029, Tamil Nadu (India); Sudhagar, P.; Kang, Yong Soo [Energy Materials Laboratory, WCU Program Department of Energy Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2010-09-10

    Research highlights: Fabrication of diverse ZnO nanostructures through soft chemical routes is both fundamentally interesting and technologically important. Accordingly, in the present work novel ZnO nanostructures namely nanorods/nanospines were grown on glass substrate by integrating SILAR and CBD techniques. This simple approach not only would lead to the development of an effective and commercial growth process for diverse ZnO nanostructures, but also lead to the large-scale preparation of other nanomaterials for many important applications in nanotechnology. - Abstract: We explore a facile route to prepare one-dimensional (1D) ZnO nanostructures including nanorods/nanospines on glass substrates by integrating inexpensive successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) methods. The effect of seed layer on the growth and morphology of the ZnO nanostructures was investigated. Accordingly, the surface modification of the seed layer prepared by SILAR was carried out by employing two different drying processes namely (a) allowing the hot substrate to cool for certain period of time before immersing in the ion-exchange bath, and (b) immediate immersion of the hot substrate into the ion-exchange bath. X-ray diffraction (XRD) analysis of the ZnO films revealed hexagonal wurtzite structure with preferential orientation along c-axis, while the scanning electron microscopy (SEM) revealed the dart-like and spherical shaped ZnO seed particles. ZnO nanostructures grown by CBD over the dart-like and spherical shaped ZnO seed particles resulted in the hierarchical and aligned ZnO nanospines/nanorods respectively. Room temperature photoluminescence (PL) study exhibited highly intense UV emission with weak visible emissions in the visible region. The growth mechanism and the role of seed layer morphology on the formation of ZnO nanostructures were discussed.

  1. Synthesis and characterization of ZnO nanostructures on noble-metal coated substrates

    Energy Technology Data Exchange (ETDEWEB)

    Dikovska, A.Og. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Sofia 1784 (Bulgaria); Atanasova, G.B. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 11, 1113 Sofia (Bulgaria); Avdeev, G.V. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 11, 1113 Sofia (Bulgaria); Nedyalkov, N.N. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Sofia 1784 (Bulgaria)

    2016-06-30

    Highlights: • ZnO nanostructures were fabricated on Au–Ag alloy coated silicon substrates by applying pulsed laser deposition. • Morphology of the ZnO nanostructures was related to the Au–Ag alloy content in the catalyst layer. • Increasing the Ag content in Au–Ag catalyst layer changes the morphology of the ZnO nanostructures from nanorods to nanobelts. - Abstract: In this work, ZnO nanostructures were fabricated on noble-metal (Au, Ag and Au–Ag alloys) coated silicon substrates by applying pulsed laser deposition. The samples were prepared at a substrate temperature of 550 °C, an oxygen pressure of 5 Pa, and a laser fluence of 2 J cm{sup −2} – process parameters usually used for deposition of smooth and dense thin films. The metal layer's role is substantial for the preparation of nanostructures. Heating of the substrate changed the morphology of the metal layer and, subsequently, nanoparticles were formed. The use of different metal particles resulted in different morphologies and properties of the ZnO nanostructures synthesized. The morphology of the ZnO nanostructures was related to the Au–Ag alloy's content of the catalyst layer. It was found that the morphology of the ZnO nanostructures evolved from nanorods to nanobelts as the ratio of Au/Ag in the alloy catalyst was varied. The use of a small quantity of Ag in the Au–Ag catalyst (Au{sub 3}Ag) layer resulted predominantly in the deposition of ZnO nanorods. A higher Ag content in the catalyst alloy (AuAg{sub 2}) layer resulted in the growth of a dense structure of ZnO nanobelts.

  2. Template-free sonochemical synthesis of flower-like ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Huawa [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China); School of Science, Xi' an Polytechnic University, Xi' an 710048 (China); Fan, Huiqing, E-mail: hqfan3@163.com [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China); Wang, Xin [Shaanxi Province Thin Film Technology and Optical Test Open Key Laboratory, School of Photoelectrical Engineering, Xi' an Technological University, Xi' an 710032 (China); Wang, Jing [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China); Cheng, Pengfei; Zhang, Xiaojun [School of Science, Xi' an Polytechnic University, Xi' an 710048 (China)

    2014-10-03

    Flower-like ZnO nanostructures have been successfully synthesized via a facile and template-free sonochemical method, using zinc acetate and potassium hydroxide as reactants only. The as-synthesized flower-like ZnO nanostructures were composed of nanorods with the width of ∼300–400 nm and the length of ∼2–3 μm. The structures, morphologies and optical properties of the as-prepared products were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscopy, UV-Vis spectrophotometry and Raman-scattering spectroscopy. A plausible formation mechanism of flower-like ZnO nanostructures was studied by SEM which monitors an intermediate morphology transformation of the product at the different ultrasonic time (t=80,90,95,105, and 120 min). - Highlights: • A facile and template-free sonochemical method to fabricate flower-like ZnO nanostructures was proposed. • The flower-like ZnO nanostructures follow the ingrowth of ZnO from the matrix of Zn(OH){sub 2} crystals. • The flower-like ZnO nanostructures are also expected to explore their application in the field of nano-electronic devices.

  3. Template-free sonochemical synthesis of flower-like ZnO nanostructures

    International Nuclear Information System (INIS)

    Yu, Huawa; Fan, Huiqing; Wang, Xin; Wang, Jing; Cheng, Pengfei; Zhang, Xiaojun

    2014-01-01

    Flower-like ZnO nanostructures have been successfully synthesized via a facile and template-free sonochemical method, using zinc acetate and potassium hydroxide as reactants only. The as-synthesized flower-like ZnO nanostructures were composed of nanorods with the width of ∼300–400 nm and the length of ∼2–3 μm. The structures, morphologies and optical properties of the as-prepared products were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscopy, UV-Vis spectrophotometry and Raman-scattering spectroscopy. A plausible formation mechanism of flower-like ZnO nanostructures was studied by SEM which monitors an intermediate morphology transformation of the product at the different ultrasonic time (t=80,90,95,105, and 120 min). - Highlights: • A facile and template-free sonochemical method to fabricate flower-like ZnO nanostructures was proposed. • The flower-like ZnO nanostructures follow the ingrowth of ZnO from the matrix of Zn(OH) 2 crystals. • The flower-like ZnO nanostructures are also expected to explore their application in the field of nano-electronic devices

  4. Hydrophobic ZnO nanostructured thin films on glass substrate by simple successive ionic layer absorption and reaction (SILAR) method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. Suresh; Raj, A. Dhayal [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore-641046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.co [Department of Nanoscience and Technology, Bharathiar University, Coimbatore-641046 (India); Nataraj, D. [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore-641046 (India)

    2010-10-01

    In the present work, ZnO nanostructured thin films were grown on glass substrates by a simple successive ionic layer absorption and reaction method (SILAR) process at relatively low temperature for its self cleaning application. X-ray diffraction, scanning electron microscopy and Photoluminescence (PL) spectra were used to characterize the prepared ZnO nanostructured film. XRD pattern clearly reviles that the grown ZnO nanostructure film reflect (002) orientation with c-direction. SEM image clearly shows the surface morphology with cluster of spindle and flower-like nanostructured with diameter various around 350 nm. Photoluminescence (PL) spectra of ZnO nanostructures film exhibit a UV emission around 385nm and visible emission in the range around 420-500 nm. Good water repellent behavior were observed for ZnO nanostructured film without any surface modification.

  5. Hydrophobic ZnO nanostructured thin films on glass substrate by simple successive ionic layer absorption and reaction (SILAR) method

    International Nuclear Information System (INIS)

    Kumar, P. Suresh; Raj, A. Dhayal; Mangalaraj, D.; Nataraj, D.

    2010-01-01

    In the present work, ZnO nanostructured thin films were grown on glass substrates by a simple successive ionic layer absorption and reaction method (SILAR) process at relatively low temperature for its self cleaning application. X-ray diffraction, scanning electron microscopy and Photoluminescence (PL) spectra were used to characterize the prepared ZnO nanostructured film. XRD pattern clearly reviles that the grown ZnO nanostructure film reflect (002) orientation with c-direction. SEM image clearly shows the surface morphology with cluster of spindle and flower-like nanostructured with diameter various around 350 nm. Photoluminescence (PL) spectra of ZnO nanostructures film exhibit a UV emission around 385nm and visible emission in the range around 420-500 nm. Good water repellent behavior were observed for ZnO nanostructured film without any surface modification.

  6. Photoelectrochemical properties of hierarchical ZnO micro-nanostructure sensitized with Sb2S3 nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhimin GUO

    2016-02-01

    Full Text Available By using electrochemical deposition method, and assisted with additions of PEG-400 and EDA, well-aligned ZnO nanorods and hierarchical ZnO micro-nanostructure are fabricated directly on indium doped tin oxide coated conducting glass (ITO substrate. The shell-core Sb2S3/ZnO nanorod structure and the shell-core hierarchical Sb2S3/ZnO micro-nanostructure are prepared by chemical bath deposition method. SEM, XRD, UV-Vis and photocurrent test are used to characterize the morphology, nanostructures and their photoelectrochemical properties. The studies show that the photocurrent on the array membranes with shell-core hierarchical Sb2S3/ZnO micro-nanostructure is apparently higher than that with shell-core Sb2S3/ZnO nanorods array.

  7. Surface morphology effects on the light-controlled wettability of ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Khranovskyy, V., E-mail: volkh@ifm.liu.se [Department of Physics, Chemistry and Biology (IFM), Linkoping University (Sweden); Ekblad, T.; Yakimova, R.; Hultman, L. [Department of Physics, Chemistry and Biology (IFM), Linkoping University (Sweden)

    2012-08-01

    ZnO nanostructures of diverse morphology with shapes of corrals and cabbages as well as open and filled hexagons and sheaves prepared by APMOCVD technique, are investigated with water contact angle (CA) analysis. The as-grown ZnO nanostructures exhibit pure hydrophobic behavior, which is enhanced with the increase of the nanostructure's surface area. The most hydrophobic structures (CA = 124 Degree-Sign ) were found to be the complex nanosheaf, containing both the macro-and nanoscale features. It is concluded that the nanoscale roughness contributes significantly to the hydrophobicity increase. The character of wettability was possible to switch from hydrophobic-to-superhydrophilic state upon ultra violet irradiation. Both the rate and amplitude of the contact angle depend on the characteristic size of nanostructure. The observed effect is explained due to the semiconductor properties of zinc oxide enhanced by increased surface chemistry effect in nanostructures.

  8. A novel low-temperature chemical solution route for straight and dendrite-like ZnO nanostructures

    International Nuclear Information System (INIS)

    Zhang Hui; Du Ning; Wu Jianbo; Ma, Xiangyang; Yang Deren; Zhang Xiaobin; Yang Zhiqing

    2007-01-01

    The straight and dendrite-like growths of ZnO have been completely and simply controlled by the status of ZnO seed instead of surfactant, template, oriented attachment, and ZnO buffer layer on the substrate in the chemical reaction synthesis of ZnO nanostructures. The monodisperse ZnO seeds, which are prepared by in situ quickly injecting the cool mixed zinc acetate and potassium hydrate ethanol solution into the hot matrix aqueous solution of zinc nitrate hydrate and diethylenetriamine at 95 deg. C, improve the straight growth and lots of uniform, straight, and single-crystalline ZnO nanorods with about 20-30 nm in diameter and 300 nm in length are achieved. While, the aggregated ZnO seeds, which are prepared by dropwise adding potassium hydrate ethanol solution into zinc acetate ethanol solution at 60 deg. C for 3 h, result in the dendrite-like growth and the bur-like ZnO nanostructures consisting of hundreds of nanorods with about 30-50 nm in diameter and several micrometers in length are formed. Furthermore, the approach presented here provides a simple, low-cost, environmental-friendly and high efficiency route to synthesize the high quality ZnO nanorods and bur-like ZnO nanostructures

  9. Piezoelectric ZnO nanostructure for energy harvesting

    CERN Document Server

    Leprince-Wang, Yamin

    2015-01-01

    Over the past decade, ZnO as an important II-VI semiconductor has attracted much attention within the scientific community over the world owing to its numerous unique and prosperous properties. This material, considered as a "future material", especially in nanostructural format, has aroused many interesting research works due to its large range of applications in electronics, photonics, acoustics, energy and sensing. The bio-compatibility, piezoelectricity & low cost fabrication make ZnO nanostructure a very promising material for energy harvesting.

  10. Optical function of bionic nanostructure of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Xu, C X [Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096 (China); Zhu, G P [Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096 (China); Liu, Y J [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, 639798 (Singapore); Sun, X W [Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096 (China); Li, X [Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096 (China); Liu, J P [Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096 (China); Cui, Y P [Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096 (China)

    2007-10-15

    A novel bionic network nanostructure of zinc oxide (ZnO), which is similar to the microstructure of a butterfly wing, was first fabricated by a vapor-phase transport method using zinc powder as a source. These bionic nanostructures are composed of three ordered multi-aperture gratings. Similar to the optical effect of butterfly wings, the diffraction patterns of the bionic network of ZnO were observed. The mechanism of the optical function was discussed based on the physical model of multi-aperture diffraction.

  11. Optical function of bionic nanostructure of ZnO

    International Nuclear Information System (INIS)

    Xu, C X; Zhu, G P; Liu, Y J; Sun, X W; Li, X; Liu, J P; Cui, Y P

    2007-01-01

    A novel bionic network nanostructure of zinc oxide (ZnO), which is similar to the microstructure of a butterfly wing, was first fabricated by a vapor-phase transport method using zinc powder as a source. These bionic nanostructures are composed of three ordered multi-aperture gratings. Similar to the optical effect of butterfly wings, the diffraction patterns of the bionic network of ZnO were observed. The mechanism of the optical function was discussed based on the physical model of multi-aperture diffraction

  12. On-chip surface modified nanostructured ZnO as functional pH sensors

    International Nuclear Information System (INIS)

    Zhang, Qing; Liu, Wenpeng; Sun, Chongling; Zhang, Hao; Pang, Wei; Zhang, Daihua; Duan, Xuexin

    2015-01-01

    Zinc oxide (ZnO) nanostructures are promising candidates as electronic components for biological and chemical applications. In this study, ZnO ultra-fine nanowire (NW) and nanoflake (NF) hybrid structures have been prepared by Au-assisted chemical vapor deposition (CVD) under ambient pressure. Their surface morphology, lattice structures, and crystal orientation were investigated by scanning electron microscopy (SEM), x-ray diffraction (XRD), and transmission electron microscopy (TEM). Two types of ZnO nanostructures were successfully integrated as gate electrodes in extended-gate field-effect transistors (EGFETs). Due to the amphoteric properties of ZnO, such devices function as pH sensors. We found that the ultra-fine NWs, which were more than 50 μm in length and less than 100 nm in diameter, performed better in the pH sensing process than NW–NF hybrid structures because of their higher surface-to-volume ratio, considering the Nernst equation and the Gouy–Chapman–Stern model. Furthermore, the surface coating of (3-Aminopropyl)triethoxysilane (APTES) protects ZnO nanostructures in both acidic and alkaline environments, thus enhancing the device stability and extending its pH sensing dynamic range. (paper)

  13. Enhanced photocatalytic performance of ZnO nanostructures by electrochemical hybridization with graphene oxide

    Science.gov (United States)

    Pruna, A.; Wu, Z.; Zapien, J. A.; Li, Y. Y.; Ruotolo, A.

    2018-05-01

    Synthesis of zinc oxide (ZnO) nanostructures is reported by electrochemical deposition from an aqueous electrolyte in presence of graphene oxide (GO) with varying oxidation degree. The properties of hybrids were investigated by scanning electron microscopy, X-ray diffraction, Raman, Fourier-Transform Infrared and X-ray photoelectron spectroscopy techniques and photocatalytic measurements. The results indicated the electrodeposition of ZnO in presence of GO with increased oxygen content led to marked differences in the morphology while Raman measurements indicated an increased defect level both in the ZnO and the electrochemically reduced GO (ErGO) within the hybrids. The decrease in C/O atomic ratio of GO (from 0.79 to 0.71) employed for the electrodeposition of ZnO resulted in an increase in photocatalytic efficiency for methylene blue degradation under UV irradiation from 4-folds to 10-folds with respect to non-hybridized ZnO. The observed synergetic effect of cathodic deposition potential and oxygen content in GO towards improving the photocatalytic activity of immobilized ZnO is expected to contribute to further development of more effective deposition approaches for the preparation of high performance hybrid nanostructures.

  14. Laser nanostructuring of ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nedyalkov, N., E-mail: nned@ie.bas.bg [Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa-ken 223-8522 (Japan); Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Koleva, M.; Nikov, R.; Atanasov, P. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Nakajima, Y.; Takami, A.; Shibata, A.; Terakawa, M. [Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa-ken 223-8522 (Japan)

    2016-06-30

    Highlights: • Nanosecond laser pulse nanostructuring of ZnO thin films on metal substrate is demonstrated. • Two regimes of the thin film modification are observed depending on the applied laser fluence. • At high fluence regime the ZnO film is homogeneously decomposed into nanosized particles. • The characteristic size of the formed nanostructures corresponds to the domain size of the thin film. - Abstract: In this work, results on laser processing of thin zinc oxide films deposited on metal substrate are presented. ZnO films are obtained by classical nanosecond pulsed laser deposition method in oxygen atmosphere on tantalum substrate. The produced films are then processed by nanosecond laser pulses at wavelength of 355 nm. The laser processing parameters and the film thickness are varied and their influence on the fabricated structures is estimated. The film morphology after the laser treatment is found to depend strongly on the laser fluence as two regimes are defined. It is shown that at certain conditions (high fluence regime) the laser treatment of the film leads to formation of a discrete nanostructure, composed of spherical like nanoparticles with narrow size distribution. The dynamics of the melt film on the substrate and fast cooling are found to be the main mechanisms for fabrication of the observed structures. The demonstrated method is an alternative way for direct fabrication of ZnO nanostructures on metal which can be easy implemented in applications as resistive sensor devices, electroluminescent elements, solar cell technology.

  15. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    Science.gov (United States)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  16. Hydrothermal temperature effect on crystal structures, optical properties and electrical conductivity of ZnO nanostructures

    Science.gov (United States)

    Dhafina, Wan Almaz; Salleh, Hasiah; Daud, Mohd Zalani; Ghazali, Mohd Sabri Mohd; Ghazali, Salmah Mohd

    2017-09-01

    ZnO is an wide direct band gap semiconductor and possess rich family of nanostructures which turned to be a key role in the nanotechnology field of applications. Hydrothermal method was proven to be simple, robust and low cost among the reported methods to synthesize ZnO nanostructures. In this work, the properties of ZnO nanostructures were altered by varying temperatures of hydrothermal process. The changes in term of morphological, crystal structures, optical properties and electrical conductivity were investigated. A drastic change of ZnO nanostructures morphology and decreases of 002 diffraction peak were observed as the hydrothermal temperature increased. The band gap of samples decreased as the size of ZnO nanostructure increased, whereas the electrical conductivity had no influence on the band gap value but more on the morphology of ZnO nanostructures instead.

  17. Fabrication of nanostructured ZnO film as a hole-conducting layer of organic photovoltaic cell

    Science.gov (United States)

    Kim, Hyomin; Kwon, Yiseul; Choe, Youngson

    2013-05-01

    We have investigated the effect of fibrous nanostructured ZnO film as a hole-conducting layer on the performance of polymer photovoltaic cells. By increasing the concentration of zinc acetate dihydrate, the changes of performance characteristics were evaluated. Fibrous nanostructured ZnO film was prepared by sol-gel process and annealed on a hot plate. As the concentration of zinc acetate dihydrate increased, ZnO fibrous nanostructure grew from 300 to 600 nm. The obtained ZnO nanostructured fibrous films have taken the shape of a maze-like structure and were characterized by UV-visible absorption, scanning electron microscopy, and X-ray diffraction techniques. The intensity of absorption bands in the ultraviolet region was increased with increasing precursor concentration. The X-ray diffraction studies show that the ZnO fibrous nanostructures became strongly (002)-oriented with increasing concentration of precursor. The bulk heterojunction photovoltaic cells were fabricated using poly(3-hexylthiophene-2,5-diyl) and indene-C60 bisadduct as active layer, and their electrical properties were investigated. The external quantum efficiency of the fabricated device increased with increasing precursor concentration.

  18. Room temperature ferromagnetism and gas sensing in ZnO nanostructures: Influence of intrinsic defects and Mn, Co, Cu doping

    Energy Technology Data Exchange (ETDEWEB)

    Mhlongo, Gugu H., E-mail: gmhlongo@csir.co.za [DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001 (South Africa); Shingange, Katekani; Tshabalala, Zamaswazi P.; Dhonge, Baban P. [DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001 (South Africa); Mahmoud, Fawzy A. [Solid State Physics Dept., National Research Centre, P.O. 12622, Dokki, Giza (Egypt); Mwakikunga, Bonex W.; Motaung, David E. [DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001 (South Africa)

    2016-12-30

    Highlights: • Preparation of Mn, Co, Cu doped ZnO via microwave-assisted method. • Doping alters the morphology of ZnO nanostructures. • Concentration of zinc and oxygen related defects vary with doping. • Correlation between PL and EPR was established. • Both undoped and doped ZnO nanostructures showed selectivity towards NH{sub 3}. - Abstract: Undoped and transition metal (Cu, Co and Mn) doped ZnO nanostructures were successfully prepared via a microwave-assisted hydrothermal method followed by annealing at 500 °C. Numerous characterization facilities such as X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM) were employed to acquire the structural and morphological information of the prepared ZnO based products. Combination of defect structure analysis based on photoluminescence (PL) and electron paramagnetic resonance (EPR) indicated that co-existing oxygen vacancies (V{sub O}) and zinc interstitials (Zn{sub i}) defects are responsible for the observed ferromagnetism in undoped and transition metal (TM) doped ZnO systems. PL analysis demonstrated that undoped ZnO has more donor defects (V{sub O} and Zn{sub i}) which are beneficial for gas response enhancement. Undoped ZnO based sensor exhibited a higher sensor response to NH{sub 3} gas compared to its counterparts owing to high content of donor defects while transition metal doped sensors showed short response and recovery times compared to undoped ZnO.

  19. Morphological transition of ZnO nanostructures influenced by magnesium doping

    International Nuclear Information System (INIS)

    Premkumar, T.; Zhou, Y.S.; Gao, Y.; Baskar, K.; Jiang, L.; Lu, Y.F.

    2012-01-01

    Wurtzite zinc oxide (ZnO) nanochains have been synthesized through high-pressure pulsed laser deposition. The chain-like ZnO nanostructures were obtained from magnesium (Mg) doped ZnO targets, whereas vertically aligned nanorods were obtained from primitive ZnO targets. The Mg doping has influenced the morphological transition of ZnO nanostructures from nanorods to nanochains. The field emission scanning electron microscope images revealed the growth of beaded ZnO nanochains. The ZnO nanochains of different diameters 40 and 120 nm were obtained. The corresponding micro-Raman spectra showed strong E 2H mode of ZnO, which confirmed the good crystallinity of the nanochains. In addition to near band edge emission at 3.28 eV, ZnO nanochains show broad deep level emission at 2.42 eV than that of ZnO nanorods.

  20. Random laser action in 3-D ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Miao, L.; Tanemura, S. [Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Nengyuan Rd. Tianhe district, Guangzhou (China); Materials R and D Laboratory, Japan Fine Ceramics Centre, Mutsuno, Atsuta-ku, Nagoya 456-8587 (Japan); Yang, H.Y.; Lau, S.P. [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore); Xu, G. [Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Nengyuan Rd. Tianhe district, Guangzhou (China)

    2009-05-15

    Room-temperature ultraviolet random lasing with low threshold pumping power was successfully achieved by ZnO 3-D random-wall nanostructure fabricated on ZnO/SiO{sub 2}/Si substrate through a thermal chemical reaction and vapor transportation deposition method in a simple horizontal tube furnace from the mixed ZnO and graphite powders. The nanorods grown along c-axis on the substrate are coalesced to form the 3-D nano-wall with 80{proportional_to}100 nm in wall thickness and irregular height ranging of 95-250 nm. Mueller matrix spectroscopic ellipsometry reveals that evaluated refractive indices n(E) of ZnO nanowalls are well interpreted by taking account of the ratio between ZnO and void achieved by effective medium theory analysis and isotropic depolarization feature of the designated nanowalls. Random lasing action observed in the wide wavelength range between 375 and 395 nm is realized by coherent amplification of the closed-loop scattered light inside 3-D random-wall nanostructure. It is demonstrated that both transverse electric (TE) and transverse magnetic (TM) modes show the same threshold and pumping power dependent trend, while the intensity of TM lasing is weaker than that of TE due to the different scattering strength originated from the features of the inside of nanowall. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. GaN and ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Fuendling, Soenke; Soekmen, Uensal; Behrends, Arne; Al-Suleiman, Mohamed Aid Mansur; Merzsch, Stephan; Li, Shunfeng; Bakin, Andrey; Wehmann, Hergo-Heinrich; Waag, Andreas [Institut fuer Halbleitertechnik, Technische Universitaet Braunschweig, Braunschweig (Germany); Laehnemann, Jonas; Jahn, Uwe; Trampert, Achim; Riechert, Henning [Paul-Drude-Institut fuer Festkoerperelektronik, Berlin (Germany)

    2010-10-15

    GaN and ZnO are both wide band gap semiconductors with interesting properties concerning optoelectronic and sensor device applications. Due to the lack or the high costs of native substrates, alternatives like sapphire, silicon, or silicon carbide are taken, but the resulting lattice and thermal mismatches lead to increased defect densities which reduce the material quality. In contrast, nanostructures with high aspect ratio have lower defect densities as compared to layers. In this work, we give an overview on our results achieved on both ZnO as well as GaN based nanorods. ZnO nanostructures were grown by a wet chemical approach as well as by VPT on different substrates - even on flexible polymers. To compare the growth results we analyzed the structures by XRD and PL and show possible device applications. The GaN nano- and microstructures were grown by metal organic vapor phase epitaxy either in a self-organized process or by selective area growth for a better control of shape and material composition. Finally we take a look onto possible device applications, presenting our attempts, e.g., to build LEDs based on GaN nanostructures. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. Simultaneous tuning of electric field intensity and structural properties of ZnO: Graphene nanostructures for FOSPR based nicotine sensor.

    Science.gov (United States)

    Tabassum, Rana; Gupta, Banshi D

    2017-05-15

    We report theoretical and experimental realization of a SPR based fiber optic nicotine sensor having coatings of silver and graphene doped ZnO nanostructure onto the unclad core of the optical fiber. The volume fraction (f) of graphene in ZnO was optimized using simulation of electric field intensity. Four types of graphene doped ZnO nanostructures viz. nanocomposites, nanoflowers, nanotubes and nanofibers were prepared using optimized value of f. The morphology, photoluminescence (PL) spectra and UV-vis spectra of these nanostructures were studied. The peak PL intensity was found to be highest for ZnO: graphene nanofibers. The optimized value of f in ZnO: graphene nanofiber was reconfirmed using UV-vis spectroscopy. The experiments were performed on the fiber optic probe fabricated with Ag/ZnO: graphene layer and optimized parameters for in-situ detection of nicotine. The interaction of nicotine with ZnO: graphene nanostructures alters the dielectric function of ZnO: graphene nanostructure which is manifested in terms of shift in resonance wavelength. From the sensing signal, the performance parameters were measured including sensitivity, limit of detection (LOD), limit of quantification (LOQ), stability, repeatability and selectivity. The real sample prepared using cigarette tobacco leaves and analyzed using the fabricated sensor makes it suitable for practical applications. The achieved values of LOD and LOQ are found to be unrivalled in comparison to the reported ones. The sensor possesses additional advantages such as, immunity to electromagnetic interference, low cost, capability of online monitoring, remote sensing. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Facile synthesis of one dimensional ZnO nanostructures for DSSC applications

    International Nuclear Information System (INIS)

    Marimuthu, T.; Anandhan, N.

    2016-01-01

    Development of zinc oxide (ZnO) nanostructure based third generation dye sensitized solar cell is interesting compared to conventional silicon solar cells. ZnO nanostructured thin films were electrochemically deposited onto fluorine doped tin oxide (FTO) glass substrate. The effect of ethylene-diamine-tetra-acetic acid (EDTA) on structural, morphological and optical properties is investigated using X-ray diffraction (XRD) meter, field emission scanning electron microscope (FE-SEM) and micro Raman spectroscopy. XRD patterns reveal that the prepared nanostructures are hexagonal wutrzite structures with (101) plane orientation, the nanostructure prepared using EDTA exhibits better crystallinity. FE-SEM images illustrate that the morphological changes are observed from nanorod structure to cauliflower like structure as EDTA is added. Micro Raman spectra predict that cauliflower like structure possesses a higher crystalline nature with less atomic defects compared to nanorod structures. Dye sensitized solar cell (DSSC) is constructed for the optimized cauliflower structure, and open circuit voltage, short circuit density, fill factor and efficiency are estimated from the J-V curve.

  4. Facile synthesis of one dimensional ZnO nanostructures for DSSC applications

    Energy Technology Data Exchange (ETDEWEB)

    Marimuthu, T.; Anandhan, N., E-mail: anandhan-kn@rediffmail.com [Advanced Materials and Thin Film Physics Lab, School of Physics, Alagappa University, Karaikudi – 630 003, India. (India)

    2016-05-06

    Development of zinc oxide (ZnO) nanostructure based third generation dye sensitized solar cell is interesting compared to conventional silicon solar cells. ZnO nanostructured thin films were electrochemically deposited onto fluorine doped tin oxide (FTO) glass substrate. The effect of ethylene-diamine-tetra-acetic acid (EDTA) on structural, morphological and optical properties is investigated using X-ray diffraction (XRD) meter, field emission scanning electron microscope (FE-SEM) and micro Raman spectroscopy. XRD patterns reveal that the prepared nanostructures are hexagonal wutrzite structures with (101) plane orientation, the nanostructure prepared using EDTA exhibits better crystallinity. FE-SEM images illustrate that the morphological changes are observed from nanorod structure to cauliflower like structure as EDTA is added. Micro Raman spectra predict that cauliflower like structure possesses a higher crystalline nature with less atomic defects compared to nanorod structures. Dye sensitized solar cell (DSSC) is constructed for the optimized cauliflower structure, and open circuit voltage, short circuit density, fill factor and efficiency are estimated from the J-V curve.

  5. Enhanced Photocatalytic Activity of Rare Earth Metal (Nd and Gd doped ZnO Nanostructures

    Directory of Open Access Journals (Sweden)

    P. Logamani

    2017-06-01

    Full Text Available Presence of harmful organic pollutants in wastewater effluents causes serious environmental problems and therefore purification of this contaminated water by a cost effective treatment method is one of the most important issue which is in urgent need of scientific research. One such promising treatment technique uses semiconductor photocatalyst for the reduction of recalcitrant pollutants in water. In the present work, rare earth metals (Nd and Gd doped ZnO nanostructured photocatalyst have been synthesized by wet chemical method. The prepared samples were characterized by X-ray diffraction (XRD, Field Emission Scanning Electron Microscopy (FESEM and energy dispersive X-ray spectroscopy (EDS. The XRD results showed that the prepared samples were well crystalline with hexagonal Wurtzite structure. The results of EDS revealed that rare earth elements were doped into ZnO structure. The effect of rare earth dopant on morphology and photocatalytic degradation properties of the prepared samples were studied and discussed. The results revealed that the rare earth metal doped ZnO samples showed enhanced visible light photocatalytic activity for the degradation of methylene blue dye than pure nano ZnO photocatalyst.

  6. Mechanisms of electron transport and recombination in ZnO nanostructures for dye-sensitized solar cells.

    Science.gov (United States)

    Vega-Poot, Alberto G; Macías-Montero, Manuel; Idígoras, Jesus; Borrás, Ana; Barranco, Angel; Gonzalez-Elipe, Agustín R; Lizama-Tzec, Francisco I; Oskam, Gerko; Anta, Juan A

    2014-04-14

    ZnO is an attractive material for applications in dye-sensitized solar cells and related devices. This material has excellent electron-transport properties in the bulk but its electron diffusion coefficient is much smaller in mesoporous films. In this work the electron-transport properties of two different kinds of dye-sensitized ZnO nanostructures are investigated by small-perturbation electrochemical techniques. For nanoparticulate ZnO photoanodes prepared via a wet-chemistry technique, the diffusion coefficient is found to reproduce the typical behavior predicted by the multiple-trapping and the hopping models, with an exponential increase with respect to the applied bias. In contrast, in ZnO nanostructured thin films of controlled texture and crystallinity prepared via a plasma chemical vapor deposition method, the diffusion coefficient is found to be independent of the electrochemical bias. This observation suggests a different transport mechanism not controlled by trapping and electron accumulation. In spite of the quite different transport features, the recombination kinetics, the electron-collection efficiency and the photoconversion efficiency are very similar for both kinds of photoanodes, an observation that indicates that surface properties rather than electron transport is the main efficiency-determining factor in solar cells based on ZnO nanostructured photoanodes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of seed layers on controlling of the morphology of ZnO nanostructures and superhydrophobicity of ZnO nanostructure/stearic acid composite films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Liu, Zhihua, E-mail: sdwfliu@163.com; Liu, Junqi; E, Lei; Liu, Zhifeng, E-mail: tjulzf@163.com

    2016-11-01

    Hydrophobic ZnO self-cleaning thin films with the nanobundles and nanocarpets structures fabricated on indium tin oxides (ITO) glass substrate are reported. The water contact angle of ZnO nanobundles and nanocarpets structures (79° and 67° respectively) is higher than that of unmodified ZnO nanorods. A subsequent chemical treatment with stearic acid (SA) contributed to a superhydrophobic surface with a water contact angle of 159°. Its superhydrophobic property is originated from the nanobundles or nanocarpets structures and surface energy of SA/ZnO nanobundles and SA/ZnO nanocarpets composite nanostructures. Moreover, this promising ZnO nanostructured materials show an important application in self-cleaning smart coatings. - Highlights: • PEG and CTAB are firstly introduced to modify the morphology of ZnO seed layers. • ZnO nanobundles and nanocarpets obtained from different seed layers. • Superhydrophobic surfaces obtained by chemcial treatment using SA.

  8. Hydrothermal growth and characterizations of dandelion-like ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kale, Rohidas B., E-mail: rb_kale@yahoo.co.in [Department of Physics, The Institute of Science, Madam Cama Road, Mumbai 400 032, (M.S.) (India); Lu, Shih-Yuan, E-mail: sylu@nthu.edu.tw [Department of Chemical Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2013-12-05

    Highlights: •The simple, low cost, environmental benign hydrothermal method has been used to synthesize ZnO nanostructure. •The SEM images reveal the interesting 3D dandelion-like morphology of synthesized ZnO nanostructure. The SAED pattern and HRTEM study confirms that the ZnO nanorods are single crystalline. •Change in experimental conditions dramatically changes the morphologies of the synthesized ZnO. •The room temperature PL study reveals strong band edge emission along with much weaker defect related blue emission. •The reaction and growth mechanism of ZnO nanostructure is also discussed. -- Abstract: Three dimensional (3D) ZnO nanostructures have been synthesized by using a facile low-cost hydrothermal method under mild conditions. Aqueous alkaline ammonia solution of Zn(CH{sub 3}COO){sub 2} is used to grow 3D ZnO nanostructures. The X-ray diffraction (XRD) study reveals the well crystallized hexagonal structure of ZnO. SEM observations depict that the ZnO product grows in the form of nanorods united together to form 3D dandelion-like nanostructures. The elemental analysis using EDAX technique confirms the stoichiometry of the ZnO nanorods. The product exhibits special optical properties with red-shifts in optical absorption peak (376 nm) as compared with those of conventional ZnO nanorods. PL spectra show emission peak (396 nm) at the near band-edge and peak (464 nm) originated from defects states that are produced during the hydrothermal growth. TEM and SAED results reveal single crystalline structure of the synthesized product. The reaction and growth mechanisms on the morphological evolution of the ZnO nanostructures are discussed. The morphology of ZnO product is investigated by varying the reaction time, temperature, and type of complexing reagent.

  9. Study of quantum confinement effects in ZnO nanostructures

    Science.gov (United States)

    Movlarooy, Tayebeh

    2018-03-01

    Motivation to fact that zinc oxide nanowires and nanotubes with successful synthesis and the mechanism of formation, stability and electronic properties have been investigated; in this study the structural, electronic properties and quantum confinement effects of zinc oxide nanotubes and nanowires with different diameters are discussed. The calculations within density functional theory and the pseudo potential approximation are done. The electronic structure and energy gap for Armchair and zigzag ZnO nanotubes with a diameter of about 4 to 55 Angstrom and ZnO nanowires with a diameter range of 4 to 23 Å is calculated. The results revealed that due to the quantum confinement effects, by reducing the diameter of nanowires and nanotubes, the energy gap increases. Zinc oxide semiconductor nanostructures since having direct band gap with size-dependent and quantum confinement effect are recommended as an appropriate candidate for making nanoscale optoelectronic devices.

  10. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires

    Science.gov (United States)

    He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho

    2017-06-01

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  11. Recent advances in ZnO nanostructures and thin films for biosensor applications: Review

    International Nuclear Information System (INIS)

    Arya, Sunil K.; Saha, Shibu; Ramirez-Vick, Jaime E.; Gupta, Vinay; Bhansali, Shekhar; Singh, Surinder P.

    2012-01-01

    Graphical abstract: ZnO nanostructures have shown binding of biomolecules in desired orientation with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, their compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes them suitable candidate for future small integrated biosensor devices. This review highlights various approaches to synthesize ZnO nanostructures and thin films, and their applications in biosensor technology. Highlights: ► This review highlights various approaches to synthesize ZnO nanostructures and thin films. ► Article highlights the importance of ZnO nanostructures as biosensor matrix. ► Article highlights the advances in various biosensors based on ZnO nanostructures. ► Article describes the potential of ZnO based biosensor for new generation healthcare devices. - Abstract: Biosensors have shown great potential for health care and environmental monitoring. The performance of biosensors depends on their components, among which the matrix material, i.e., the layer between the recognition layer of biomolecule and transducer, plays a crucial role in defining the stability, sensitivity and shelf-life of a biosensor. Recently, zinc oxide (ZnO) nanostructures and thin films have attracted much interest as materials for biosensors due to their biocompatibility, chemical stability, high isoelectric point, electrochemical activity, high electron mobility, ease of synthesis by diverse methods and high surface-to-volume ratio. ZnO nanostructures have shown the binding of biomolecules in desired orientations with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes ZnO nanostructures suitable candidate for future small integrated biosensor devices. This review

  12. Recent advances in ZnO nanostructures and thin films for biosensor applications: Review

    Energy Technology Data Exchange (ETDEWEB)

    Arya, Sunil K., E-mail: sunilarya333@gmail.com [Bioelectronics Program, Institute of Microelectronics, A-Star 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Saha, Shibu [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Ramirez-Vick, Jaime E. [Engineering Science and Materials Department, University of Puerto Rico, Mayaguez, PR 00681 (United States); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Bhansali, Shekhar [Department of Electrical and Computer Engineering, Florida International University, Miami, FL (United States); Singh, Surinder P., E-mail: singh.uprm@gmail.com [National Physical Laboratory, Dr K.S. Krishnan Marg, New Delhi 110012 (India)

    2012-08-06

    Graphical abstract: ZnO nanostructures have shown binding of biomolecules in desired orientation with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, their compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes them suitable candidate for future small integrated biosensor devices. This review highlights various approaches to synthesize ZnO nanostructures and thin films, and their applications in biosensor technology. Highlights: Black-Right-Pointing-Pointer This review highlights various approaches to synthesize ZnO nanostructures and thin films. Black-Right-Pointing-Pointer Article highlights the importance of ZnO nanostructures as biosensor matrix. Black-Right-Pointing-Pointer Article highlights the advances in various biosensors based on ZnO nanostructures. Black-Right-Pointing-Pointer Article describes the potential of ZnO based biosensor for new generation healthcare devices. - Abstract: Biosensors have shown great potential for health care and environmental monitoring. The performance of biosensors depends on their components, among which the matrix material, i.e., the layer between the recognition layer of biomolecule and transducer, plays a crucial role in defining the stability, sensitivity and shelf-life of a biosensor. Recently, zinc oxide (ZnO) nanostructures and thin films have attracted much interest as materials for biosensors due to their biocompatibility, chemical stability, high isoelectric point, electrochemical activity, high electron mobility, ease of synthesis by diverse methods and high surface-to-volume ratio. ZnO nanostructures have shown the binding of biomolecules in desired orientations with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes ZnO

  13. Role of Fe doping on structural and vibrational properties of ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyarajan, T.; Udayabhaskar, R.; Karthikeyan, B. [National Institute of Technology, Department of Physics, Tiruchirappalli (India)

    2012-05-15

    In this report, Raman and Fourier Transform Infrared (FTIR) measurements were carried out to study the phonon modes of pure and Fe doped ZnO nanoparticles. The nanoparticles were prepared by sol-gel technique at room temperature. The X-ray diffraction measurements reveal that the nanoparticles are in hexagonal wurtzite structure and doping makes the shrinkage of the lattice parameters, whereas there is no alteration in the unit cell. Raman measurements show both E{sub 2}{sup low} and E{sub 2}{sup High} optical phonon mode is shifted towards lower wave number with Fe incorporation and explained on the basis of force constant variation, stress measurements, respectively. In addition, Fe related local vibrational modes (LVM) were observed for higher concentration of Fe doping. FTIR spectra reveal a band at 444 cm{sup -1} which is specific to E{sub 1} (TO) mode; a red-shift of this mode in Fe doped samples and some surface phonon modes were observed. Furthermore, the observation of additional IR modes, which is considered to have an origin related to Fe dopant in the ZnO nanostructures, is also reported. These additional mode features can be regarded as an indicator for the incorporation of Fe ions into the lattice position of the ZnO nanostructures. (orig.)

  14. Nanostructure sword-like ZnO wires: Rapid synthesis and characterization through a microwave-assisted route

    International Nuclear Information System (INIS)

    Kajbafvala, Amir; Shayegh, Mohammad Reza; Mazloumi, Mahyar; Zanganeh, Saeid; Lak, Aidin; Mohajerani, Matin Sadat; Sadrnezhaad, S.K.

    2009-01-01

    Nanostructure sword-like ZnO wires with diameters of about 80-250 nm and the length of ∼1-4 μm have been synthesized by a fast, simple and template-free microwave-assisted method. X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy and room temperature photoluminescence (PL) measurements was used for characterization of the as-prepared products. The nanostructure sword-like ZnO wires have high crystallinity with the average crystallite size of about 53 nm and show a UV emission and a visible green band in their PL spectrum. The possible growth mechanism of the nanostructures along the crystallographic direction and subsequent formation of wires were also investigated

  15. Design of Highly Sensitive C2H5OH Sensors Using Self-Assembled ZnO Nanostructures

    Directory of Open Access Journals (Sweden)

    Jong-Heun Lee

    2011-10-01

    Full Text Available Various ZnO nanostructures such as porous nanorods and two hierarchical structures consisting of porous nanosheets or crystalline nanorods were prepared by the reaction of mixtures of oleic-acid-dissolved ethanol solutions and aqueous dissolved Zn-precursor solutions in the presence of NaOH. All three ZnO nanostructures showed sensitive and selective detection of C2H5OH. In particular, ultra-high responses (Ra/Rg = ~1,200, Ra: resistance in air, Rg: resistance in gas to 100 ppm C2H5OH was attained using porous nanorods and hierarchical structures assembled from porous nanosheets, which is one of the highest values reported in the literature. The gas response and linearity of gas sensors were discussed in relation to the size, surface area, and porosity of the nanostructures.

  16. On the possibility of room temperature ferromagnetism on chunk-shape BaSnO3/ZnO core/shell nanostructures

    Science.gov (United States)

    Rajamanickam, N.; Jayakumar, K.; Ramachandran, K.

    2018-04-01

    Core/shell BaSnO3/ZnO (BS-ZO) nanostructures were prepared by oxalate precipitation method and wet-chemical method. BaSnO3 (BSO) cubic perovskite structure and ZnO hexagonal wurtzite structure were confirmed by X-ray diffraction (XRD). The crystallite sizes is 23 nm, 29 nm and 27 nm for BSO, ZnO and BS-ZO, respectively. Chunk-shape and cuboids morphology observed from scanning electron microscopy (SEM) analysis. The magnetic properties were studied by VSM for bare and core-shell nano systems and the room temperature ferromagnetism observed for core-shell nanostructures. The BSO/ZnO shows enhanced coercivity and saturated magnetization as compared with BSO and ZnO nanostructures.

  17. Selective growth of ZnO thin film nanostructures: Structure, morphology and tunable optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Krishnakanth, Katturi Naga; Sunandana, C. S. [School of Physics, University of Hyderabad, Hyderabad-50046 (India); Rajesh, Desapogu, E-mail: rajesh.esapogu@gmail.com, E-mail: mperd@nus.edu.sg [School of Physics, University of Hyderabad, Hyderabad-50046 (India); Dept. of Mechanical Engineering, National University of Singapore (Singapore)

    2016-05-23

    The ZnO nanostructures (spherical, rod shape) have been successfully fabricated via a thermal evaporation followed by dip coating method. The pure, doped ZnO thin films were characterized by X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FESEM) and UV-Vis spectroscopy, respectively. A possible growth mechanism of the spherical, rod shape ZnO nanostructures are discussed. XRD patterns revealed that all films consist of pure ZnO phase and were well crystallized with preferential orientation towards (002) direction. Doping by PVA, PVA+Cu has effective role in the enhancement of the crystalline quality and increases in the band gap.

  18. Structural and optical properties of ZnMgO nanostructures formed by Mg in-diffused ZnO nanowires

    International Nuclear Information System (INIS)

    Pan, C.-J.; Hsu, H.-C.; Cheng, H.-M.; Wu, C.-Y.; Hsieh, W.-F.

    2007-01-01

    ZnMgO nanostructures with wurtzite phase were prepared by thermal diffusion of Mg into the ZnO nanowires. As ZnO light-emitting devices have been operated by using ZnMgO layers as energy barrier layers to confine the carriers, it is essential to realize the characterization of ZnMgO particularly. In this work, the Mg content in Zn 1 -x Mg x O alloy determined by X-ray diffraction (XRD) and photoluminescence (PL) shows a good coincidence. The variation of lattice constant and the blueshift of near-band-edge emission indicate that Zn 2+ ions are successfully substituted by Mg 2+ ions in the ZnO lattice. In Raman-scattering studies, the change of E 2 (high) phonon line shape in ZnO:Mg nanostructures reveals the microscopic substitutional disorder. In addition to the host phonons of ZnO, two additional bands around 383 and 510 cm -1 are presumably attributed to the Mg-related vibrational modes. - Graphical abstract: We reported the synthesis of the ZnMgO nanostructures prepared by a simple vapor transport method. Magnesium-related anomalous modes are observed by Raman spectra for the first time in ZnMgO system

  19. Morphology evolution of hydrothermally grown ZnO nanostructures on gallium doping and their defect structures

    Energy Technology Data Exchange (ETDEWEB)

    Pineda-Hernandez, G. [Facultad de Ingenieria Quimica, Benemerita Universidad Autonoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico); Escobedo-Morales, A., E-mail: alejandroescobedo@hotmail.com [Facultad de Ingenieria Quimica, Benemerita Universidad Autonoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico); Pal, U. [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apdo. Postal J-48, C.P. 72570 Puebla, Pue. (Mexico); Chigo-Anota, E. [Facultad de Ingenieria Quimica, Benemerita Universidad Autonoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico)

    2012-08-15

    In the present article, the effect of gallium doping on the morphology, structural, and vibrational properties of hydrothermally grown ZnO nanostructures has been studied. It has been observed that incorporated gallium plays an important role on the growth kinetics and hence on the morphology evolution of the ZnO crystals. Ga doping in high concentration results in the contraction of ZnO unit cell, mainly along c-axis. Although Ga has high solubility in ZnO, heavy doping promotes the segregation of Ga atoms as a secondary phase. Incorporated Ga atoms strongly affect the vibrational characteristics of ZnO lattice and induce anomalous Raman modes. Possible mechanisms of morphology evolution and origin of anomalous Raman modes in Ga doped ZnO nanostructures are discussed. -- Highlights: Black-Right-Pointing-Pointer Ga doped ZnO nanostructures were successfully grown by hydrothermal chemical route. Black-Right-Pointing-Pointer Ga doping has strong effect on the resulting morphology of ZnO nanostructures. Black-Right-Pointing-Pointer Anomalous vibrational modes in wurtzite ZnO lattice are induced by Ga doping. Black-Right-Pointing-Pointer Incorporated Ga atoms accommodate at preferential lattice sites.

  20. Preparation and Photoluminescence of ZnO Comb-Like Structure and Nanorod Arrays

    Science.gov (United States)

    Yin, Song; Chen, Yi-qing; Su, Yong; Zhou, Qing-tao

    2007-06-01

    A large quantity of Zinc oxide (ZnO) comb-like structure and high-density well-aligned ZnO nanorod arrays were prepared on silicon substrate via thermal evaporation process without any catalyst. The morphology, growth mechanism, and optical properties of the both structures were investigated using XRD, SEM, TEM and PL. The resulting comb-teeth, with a diameter about 20 nm, growing along the [0001] direction have a well-defined epitaxial relationship with the comb ribbon. The ZnO nanorod arrays have a diameter about 200 nm and length up to several micrometers growing approximately vertical to the Si substrate. A ZnO film was obtained before the nanorods growth. A growth model is proposed for interpreting the growth mechanism of comb-like zigzag-notch nanostructure. Room temperature photoluminescence measurements under excitation wavelength of 325 nm showed that the ZnO comb-like nanostructure has a weak UV emission at around 384 nm and a strong green emission around 491 nm, which correspond to a near band-edge transition and the singly ionized oxygen vacancy, respectively. In contrast, a strong and sharp UV peak and a weak green peak was obtained from the ZnO nanorod arrays.

  1. The structural properties of flower-like ZnO nanostructures on porous silicon

    Science.gov (United States)

    Eswar, Kevin Alvin; Suhaimi, Mohd Husairi Fadzillah; Guliling, Muliyadi; Mohamad, Maryam; Khusaimi, Zuraida; Rusop, M.; Abdullah, Saifollah

    2018-05-01

    The flower-like zinc oxide (ZnO) were successfully synthesized on porous silicon (PSi) via hydrothermal method. The characteristic of ZnO nanostructures was investigated using field emission scanning microscopy (FESEM) and X-ray diffraction (X-Ray). The FESEM images show the flower-like ZnO nanostructures composed ZnO nanoparticles. The X-ray diffraction shows that strong intensity of (100), (002) and (101) peaks. The structural analysis revealed that the peaks angles were shifted due to the stress or imperfection of the crystalline of ZnO nanostructures. The crystalline sizes in range of 42.60 to 54.09 nm were produced.

  2. Shape-selective dependence of room temperature ferromagnetism induced by hierarchical ZnO nanostructures

    CSIR Research Space (South Africa)

    Motaung, DE

    2014-05-01

    Full Text Available . These materials were synthesized in a shape-selective manner using simple microwave assisted hydrothermal synthesis. Thermogravimetric analyses demonstrated the as-synthesized ZnO nanostructures to be stable and of high purity. Structural analyses showed...

  3. Photo-driven autonomous hydrogen generation system based on hierarchically shelled ZnO nanostructures

    International Nuclear Information System (INIS)

    Kim, Heejin; Yong, Kijung

    2013-01-01

    A quantum dot semiconductor sensitized hierarchically shelled one-dimensional ZnO nanostructure has been applied as a quasi-artificial leaf for hydrogen generation. The optimized ZnO nanostructure consists of one dimensional nanowire as a core and two-dimensional nanosheet on the nanowire surface. Furthermore, the quantum dot semiconductors deposited on the ZnO nanostructures provide visible light harvesting properties. To realize the artificial leaf, we applied the ZnO based nanostructure as a photoelectrode with non-wired Z-scheme system. The demonstrated un-assisted photoelectrochemical system showed the hydrogen generation properties under 1 sun condition irradiation. In addition, the quantum dot modified photoelectrode showed 2 mA/cm 2 current density at the un-assisted condition

  4. Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application

    Directory of Open Access Journals (Sweden)

    Lili Yang

    2017-11-01

    Full Text Available Since the initial discovery of surface-enhanced Raman scattering (SERS in the 1970s, it has exhibited a huge potential application in many fields due to its outstanding advantages. Since the ultra-sensitive noble metallic nanostructures have increasingly exposed themselves as having some problems during application, semiconductors have been gradually exploited as one of the critical SERS substrate materials due to their distinctive advantages when compared with noble metals. ZnO is one of the most representative metallic oxide semiconductors with an abundant reserve, various and cost-effective fabrication techniques, as well as special physical and chemical properties. Thanks to the varied morphologies, size-dependent exciton, good chemical stability, a tunable band gap, carrier concentration, and stoichiometry, ZnO nanostructures have the potential to be exploited as SERS substrates. Moreover, other distinctive properties possessed by ZnO such as biocompatibility, photocatcalysis and self-cleaning, and gas- and chemo-sensitivity can be synergistically integrated and exerted with SERS activity to realize the multifunctional potential of ZnO substrates. In this review, we discuss the inevitable development trend of exploiting the potential semiconductor ZnO as a SERS substrate. After clarifying the root cause of the great disparity between the enhancement factor (EF of noble metals and that of ZnO nanostructures, two specific methods are put forward to improve the SERS activity of ZnO, namely: elemental doping and combination of ZnO with noble metals. Then, we introduce a distinctive advantage of ZnO as SERS substrate and illustrate the necessity of reporting a meaningful average EF. We also summarize some fabrication methods for ZnO nanostructures with varied dimensions (0–3 dimensions. Finally, we present an overview of ZnO nanostructures for the versatile SERS application.

  5. Fabrication of nanostructured Al-doped ZnO thin film for methane sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Shafura, A. K., E-mail: shafura@ymail.com; Azhar, N. E. I.; Uzer, M.; Mamat, M. H. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Sin, N. D. Md. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Faculty of Electrical Engineering, Universiti Teknologi MARA Cawangan Johor, Kampus Pasir Gudang, 81750 Masai, Johor (Malaysia); Saurdi, I. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Faculty of Electrical Engineering, Universiti Teknologi MARA Sarawak, Kampus Kota Samarahan Jalan Meranek, Sarawak (Malaysia); Shuhaimi, A. [Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University ofMalaya, 50603 Kuala Lumpur (Malaysia); Alrokayan, Salman A. H.; Khan, Haseeb A. [Research Chair of Targeting and Treatment Cancer Using Nanoparticles, Department Of Biochemistry, College Of Science, King Saud University, P.O: 2454 Riyadh 11451 (Saudi Arabia); Rusop, M., E-mail: nanouitm@gmail.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    CH{sub 4} gas sensor was fabricated using spin-coating method of the nanostructured ZnO thin film. Effect of annealing temperature on the electrical and structural properties of the film was investigated. Dense nanostructured ZnO film are obtained at higher annealing temperature. The optimal condition of annealing temperature is 500°C which has conductivity and sensitivity value of 3.3 × 10{sup −3} S/cm and 11.5%, respectively.

  6. Acoustoelectric Effect on the Responses of SAW Sensors Coated with Electrospun ZnO Nanostructured Thin Film

    Directory of Open Access Journals (Sweden)

    Zafer Ziya Ozturk

    2012-08-01

    Full Text Available In this study, zinc oxide (ZnO was a very good candidate for improving the sensitivity of gas sensor technology. The preparation of an electrospun ZnO nanostructured thin film on a 433 MHz Rayleigh wave based Surface Acoustic Wave (SAW sensor and the investigation of the acoustoelectric effect on the responses of the SAW sensor are reported. We prepared an electrospun ZnO nanostructured thin film on the SAW devices by using an electrospray technique. To investigate the dependency of the sensor response on the structure and the number of the ZnO nanoparticles, SAW sensors were prepared with different coating loads. The coating frequency shifts were adjusted to fall between 100 kHz and 2.4 MHz. The sensor measurements were performed against VOCs such as acetone, trichloroethylene, chloroform, ethanol, n-propanol and methanol vapor. The sensor responses of n-propanol have opposite characteristics to the other VOCs, and we attributed these characteristics to the elastic effect/acoustoelectric effect.

  7. Annealing Temperature Dependence of ZnO Nanostructures Grown by Facile Chemical Bath Deposition for EGFET pH Sensors

    Science.gov (United States)

    Bazilah Rosli, Aimi; Awang, Zaiki; Sobihana Shariffudin, Shafinaz; Herman, Sukreen Hana

    2018-03-01

    Zinc Oxide (ZnO) nanostructures were deposited using chemical bath deposition (CBD) technique in water bath at 95 °C for 4 h. Post-deposition heat treatment in air ambient at various temperature ranging from 200-600 °C for 30 min was applied in order to enhance the electrical properties of ZnO nanostructures as the sensing membrane of extended-gate field effect transistor (EGFET) pH sensor. The as-deposited sample was prepared for comparison. The samples were characterized in terms of physical and sensing properties. FESEM images showed that scattered ZnO nanorods were formed for the as-deposited sample, and the morphology of the ZnO nanorods changed to ZnO nanoflowers when the heat treatment was applied from 200-600 °C. For sensing properties, the samples heated at 300 °C showed the higher sensitivity which was 39.9 mV/pH with the linearity of 0.9792. The sensing properties was increased with the increasing annealing treatment temperature up to 300 °C before decreased drastically.

  8. Recent progress on doped ZnO nanostructures for visible-light photocatalysis

    International Nuclear Information System (INIS)

    Samadi, Morasae; Zirak, Mohammad; Naseri, Amene; Khorashadizade, Elham; Moshfegh, Alireza Z.

    2016-01-01

    Global environmental pollution and energy supply demand have been regarded as important concerns in recent years. Metal oxide semiconductor photocatalysts is a promising approach to apply environmental remediation as well as fuel generation from water splitting and carbon dioxide reduction. ZnO nanostructures have been shown promising photocatalytic activities due to their non-toxic, inexpensive, and highly efficient nature. However, its wide band gap hinders photo-excitation for practical photocatalytic applications under solar light as an abundant, clean and safe energy source. To overcome this barrier, many strategies have been developed in the last decade to apply ZnO nanostructured photocatalysts under visible light. In this review, we have classified different approaches to activate ZnO as a photocatalyst in visible-light spectrum. Utilization of various nonmetals, transition metals and rare-earth metals for doping in ZnO crystal lattice to create visible-light-responsive doped ZnO photocatalysts is discussed. Generation of localized energy levels within the gap in doped ZnO nanostructures has played an important role in effective photocatalytic reaction under visible-light irradiation. The effect of dopant type, ionic size and its concentration on the crystal structure, electronic property and morphology of doped ZnO with a narrower band gap is reviewed systematically. Finally, a comparative study is performed to evaluate two classes of metals and nonmetals as useful dopants for ZnO nanostructured photocatalysts under visible light. - Highlights: • Metals and nonmetals used as a dopant to shift ZnO band gap toward visible-light. • Modification of electronic structure played a crucial role in doped ZnO activity. • Correlation between dopant's characteristics and ZnO visible activity was reviewed. • Photo-degradation of doped ZnO was studied and compared for different dopants.

  9. Recent progress on doped ZnO nanostructures for visible-light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Samadi, Morasae; Zirak, Mohammad [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Naseri, Amene [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-8639, Tehran (Iran, Islamic Republic of); Khorashadizade, Elham [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Moshfegh, Alireza Z., E-mail: moshfegh@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-8639, Tehran (Iran, Islamic Republic of)

    2016-04-30

    Global environmental pollution and energy supply demand have been regarded as important concerns in recent years. Metal oxide semiconductor photocatalysts is a promising approach to apply environmental remediation as well as fuel generation from water splitting and carbon dioxide reduction. ZnO nanostructures have been shown promising photocatalytic activities due to their non-toxic, inexpensive, and highly efficient nature. However, its wide band gap hinders photo-excitation for practical photocatalytic applications under solar light as an abundant, clean and safe energy source. To overcome this barrier, many strategies have been developed in the last decade to apply ZnO nanostructured photocatalysts under visible light. In this review, we have classified different approaches to activate ZnO as a photocatalyst in visible-light spectrum. Utilization of various nonmetals, transition metals and rare-earth metals for doping in ZnO crystal lattice to create visible-light-responsive doped ZnO photocatalysts is discussed. Generation of localized energy levels within the gap in doped ZnO nanostructures has played an important role in effective photocatalytic reaction under visible-light irradiation. The effect of dopant type, ionic size and its concentration on the crystal structure, electronic property and morphology of doped ZnO with a narrower band gap is reviewed systematically. Finally, a comparative study is performed to evaluate two classes of metals and nonmetals as useful dopants for ZnO nanostructured photocatalysts under visible light. - Highlights: • Metals and nonmetals used as a dopant to shift ZnO band gap toward visible-light. • Modification of electronic structure played a crucial role in doped ZnO activity. • Correlation between dopant's characteristics and ZnO visible activity was reviewed. • Photo-degradation of doped ZnO was studied and compared for different dopants.

  10. Nanostructured hybrid ZnO thin films for energy conversion

    Directory of Open Access Journals (Sweden)

    Samantilleke Anura

    2011-01-01

    Full Text Available Abstract We report on hybrid films based on ZnO/organic dye prepared by electrodeposition using tetrasulfonated copper phthalocyanines (TS-CuPc and Eosin-Y (EoY. Both the morphology and porosity of hybrid ZnO films are highly dependent on the type of dyes used in the synthesis. High photosensitivity was observed for ZnO/EoY films, while a very weak photoresponse was obtained for ZnO/TS-CuPc films. Despite a higher absorption coefficient of TS-CuPc than EoY, in ZnO/EoY hybrid films, the excited photoelectrons between the EoY levels can be extracted through ZnO, and the porosity of ZnO/EoY can also be controlled.

  11. Controllable synthesis of periodic flower-like ZnO nanostructures on Si subwavelength grating structures

    International Nuclear Information System (INIS)

    Ko, Yeong Hwan; Leem, Jung Woo; Yu, Jae Su

    2011-01-01

    We report on the periodic well-defined flower-like zinc oxide (ZnO) nanostructures (NSs) self-assembled through a simple hydrothermal method using silicon (Si) subwavelength grating (SWG) structures. The Si SWGs serve as building blocks for constructing a two-dimensional (2D) periodic architecture to integrate the one-dimensional (1D) ZnO NSs. Various controlled morphologies of ZnO NSs with high crystallinity are obtained by changing the growth conditions. For 1D ZnO NSs integrated on periodic hexagonal Si SWG structures, the reflection characteristics are investigated in comparison with the conventional ZnO nanorod (NR) arrays. For a three-dimensional (3D) flower-like ZnO NS on Si SWGs, a relatively low total reflectance of < 8% at wavelengths of 300-1050 nm is achieved compared to the ZnO NRs on Si substrate.

  12. Studies of surface morphology and optical properties of ZnO nanostructures grown on different molarities of TiO_2 seed layer

    International Nuclear Information System (INIS)

    Asib, N. A. M.; Afaah, A. N.; Aadila, A.; Khusaimi, Z.; Rusop, M.

    2016-01-01

    Titanium dioxide (TiO_2) seed layer was prepared by using sol-gel spin-coating technique, followed by growth of 0.01 M of Zinc oxide (ZnO) nanostructures by solution-immersion. The molarities of TiO_2 seed layer were varied from 1.1 M to 0.100 M on glass substrates. The nanostructures thin films were characterized by Field Emission Scanning Electrons Microscope (FESEM), Photoluminescence (PL) spectroscopy and Ultraviolet-Visible (UV-Vis) spectroscopy. FESEM images demonstrate that needle-like ZnO nanostructures are formed on all TiO_2 seed layer. The smallest diameter of needle-like ZnO nanostructures (90.3 nm) were deposited on TiO_2 seed layer of 0.100 M. PL spectra of the TiO_2: ZnO nanostructures thin films show the blue shifted emissions in the UV regions compared to the ZnO thin film. Meanwhile, UV-vis spectra of films display high absorption in the UV region and high trasparency in the visible region. The highest absorbance at UV region was recorded for sample which has 0.100 M of TiO_2 seed layer.

  13. Preparation of ZnO nanocrystals via ultrasonic irradiation

    DEFF Research Database (Denmark)

    Qian, D.; Jiang, Jianzhong; Hansen, P. L.

    2003-01-01

    A simple and rapid process has been developed for the preparation of nanometer-sized ZnO crystals via ultrasonic irradiation, by which pure ZnO nanocrystals with an average size of 6 nm and narrow size distribution can be synthesized in a short time and without using any solvents for the precipit......A simple and rapid process has been developed for the preparation of nanometer-sized ZnO crystals via ultrasonic irradiation, by which pure ZnO nanocrystals with an average size of 6 nm and narrow size distribution can be synthesized in a short time and without using any solvents...

  14. Effect of co-doping process on topography, optical and electrical properties of ZnO nanostructured

    Science.gov (United States)

    Mohamed, R.; Mamat, M. H.; Malek, M. F.; Ismail, A. S.; Yusoff, M. M.; Syamsir, S. A.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    We investigated of Undoped ZnO and Magnesium (Mg)-Aluminium (Al) co-doped Zinc Oxide (MAZO) nanostructured films were prepared by sol gel spin coating technique. The surface topography was analyzed using Atomic Force Microscopy (AFM). Based on the AFM results, Root Mean Square (RMS) of MAZO films have rougher surface compared to pure ZnO films. The optical and electrical properties of thin film samples were characterized using Uv-Vis spectroscopy and two point probes, current-voltage (I-V) measurements. The transmittance spectra for both thin samples was above 80% in the visible wavelength. The MAZO film shows the highest conductivity compared to pure ZnO films. This result indicates that the improvement of carrier mobility throughout doping process and possibly contribute by extra ion charge.

  15. Three-dimensional ZnO hierarchical nanostructures: Solution phase synthesis and applications

    DEFF Research Database (Denmark)

    Wang, Xiaoliang; Ahmad, Mashkoor; Sun, Hongyu

    2017-01-01

    nanostructures in photocatalysis, field emission, electrochemical sensor, and lithium ion batteries. Throughout the discussion, the relationship between the device performance and the microstructures of 3D ZnO hierarchical nanostructures will be highlighted. This review concludes with a personal perspective...

  16. Optical and morphological properties of ZnO- and TiO2-derived nanostructures synthesized via a microwave-assisted hydrothermal method

    CSIR Research Space (South Africa)

    Moloto, N

    2012-01-01

    Full Text Available Corporation International Journal of Photoenergy Volume 2012, Article ID 189069, 6 pages doi:10.1155/2012/189069 Research Article Optical and Morphological Properties of ZnO- and TiO2-Derived Nanostructures Synthesized via a Microwave... International Journal of Photoenergy the sol-gel, hydrothermal process, and pulse laser deposition [22?24]. Although the sol-gel method is widely accepted for the preparation of both ZnO and TiO2 nanostructures, the calcinations process is essential and can...

  17. Use of Nanostructured ZnO for Production of Antimicrobial Textiles

    International Nuclear Information System (INIS)

    Chit Ko Ko Htwe

    2011-12-01

    An awareness of general sanitation, contact disease transmission, and personal protection has led to the development of antimicrobial textiles. The development of antimicrobial fabrics using nanostructure ZnO has been investigated in this present work. The nanostructure ZnO were produced using a microwave irradiation without any other calcinations and were directly applied on to the fabric using pad-dry-cure method.Synthesized nanostructure ZnO were characterized by XRD and SEM for ZnO purification and particle size examination. The antibacterial activity of the finished fabrics was assessed qualitatively by agar diffusion method. The results show that the finished fabric demonstrated significant antibacterial activity against Staphylococcus aureus and Escherichia coli in qualitative test.

  18. From Bloch to random lasing in ZnO self-assembled nanostructures

    DEFF Research Database (Denmark)

    Garcia-Fernandez, Pedro David; Cefe, López

    2013-01-01

    In this paper, we present measurements on UV lasing in ZnO ordered and disordered nanostructures. Bloch lasing is achieved in the ordered structures by exploiting very low group-velocity Bloch modes in ZnO photonic crystals. In the second case, random lasing is observed in ZnO photonic glasses. We...... study the lasing threshold in both cases and its dependence on the structural parameters. Finally, we present the transition from Bloch to random lasing by deliberately doping a ZnO inverse photonic crystal with a controlled amount of lattice vacancies effectively converting it into a translationally...

  19. Effect of morphology on the non-ohmic conduction in ZnO nanostructures

    Science.gov (United States)

    Praveen, E.; Jayakumar, K.

    2016-05-01

    Nanostructures of ZnO is synthesized with nanoflower like morphology by simple wet chemical method. The structural, morphological and electrical characterization have been carried out. The temperature dependent electrical characterization of ZnO pellets of thickness 1150 µm is made by the application of 925MPa pressure. The morphological dependence of non-ohmic conduction beyond some arbitrary tunneling potential and grain boundary barrier thickness is compared with the commercially available bulk ZnO. Our results show the suitability of nano-flower like ZnO for the devices like sensors, rectifiers etc.

  20. Effect of polar and non-polar surfaces of ZnO nanostructures on photocatalytic properties

    International Nuclear Information System (INIS)

    Yang Jinghai; Wang Jian; Li Xiuyan; Lang Jihui; Liu Fuzhu; Yang Lili; Zhai Hongju; Gao Ming; Zhao Xiaoting

    2012-01-01

    Highlights: ► Large-scale arrayed ZnO nanocrystals including ZnO hexagonal platforms and hamburger-like samples have been successfully fabricated by a simple hydrothermal method. ► ZnO with hexagonal platform-like morphology exhibited higher photocatalytic activity compared with that of the hamburger-like ZnO nanostructures. ► The theories of expose surfaces and oxygen vacancies were utilized to explain the photocatalytic mechanism. - Abstract: Large-scale arrayed ZnO nanocrystals with two different expose surfaces, including ZnO hexagonal nanoplatforms with the major expose plane of (0 0 0 1) and hamburger-like samples with the nonpolar planes of {101 ¯ 0} mainly exposed, were successfully fabricated by a simple hydrothermal method. Mechanisms for compare the photocatalytic activity of two typical ZnO nanostructures were systematic explained as the key point in the paper. Compared with the hamburger-like ZnO nanostructures, the ZnO with hexagonal platform-like morphology exhibited improved ability on the photocatalytic degradation of Rhodamine B (RhB) in aqueous solution under UV radiation. The relative higher photocatalytic activity of the ZnO hexagonal nanoplatforms was attributed to the exposed polar surfaces and the content of oxygen vacancy on the nanostructures surface. The Zn-terminated (0 0 0 1) polar face and the surface defects are facile to adsorb O 2− and OH − ions, resulting in a greater production rate of O 2 · − and OH· − , hence promoting the photocatalysis reaction.

  1. Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay

    International Nuclear Information System (INIS)

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo; Mohamed, Azman Seeni; Saifuddin, Siti Nazmin; Masudi, Sam’an Malik; Mohamad, Dasmawati

    2015-01-01

    ZnO has wide applications in medical and dentistry apart from being used as optoelectronic devices such as solar cells, photodetectors, sensors and light emitting diodes (LEDs). Therefore, the toxicity evaluation is important to know the toxicity level on normal cell line. The toxicity of two grades ZnO nanostructures, ZnO-4 and ZnO-8 have been carried out using cytotoxicity test of MTS assay on L929 rat fibroblast cell line. Prior to that, ZnO-4 and ZnO-8 were characterized for its morphology, structure and optical properties using FESEM, X-ray diffraction, and Photoluminescence respectively. The two groups revealed difference in morphology and exhibit slightly shifted of near band edge emission of Photoluminescence other than having a similar calculated crystallite size of nanostructures. The viability of cells after 72h were obtained and the statistical significance value was calculated using SPSS v20. The p value is more than 0.05 between untreated and treated cell with ZnO. This insignificant value of p>0.05 can be summarized as a non-toxic level of ZnO-4 and ZnO-8 on the L929 cell line

  2. Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay

    Energy Technology Data Exchange (ETDEWEB)

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo [Nano-optoelectronics Research and Technology Laboratory (NOR.), School of Physics, Universiti Sains Malaysia, 11800, USM, Pulau Pinang (Malaysia); Mohamed, Azman Seeni; Saifuddin, Siti Nazmin [Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bandar Putra Bertam, 13200 Kepala Batas, Pulau Pinang (Malaysia); Masudi, Sam’an Malik; Mohamad, Dasmawati [Craniofacial Science Laboratory, School of Dentistry, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-04-24

    ZnO has wide applications in medical and dentistry apart from being used as optoelectronic devices such as solar cells, photodetectors, sensors and light emitting diodes (LEDs). Therefore, the toxicity evaluation is important to know the toxicity level on normal cell line. The toxicity of two grades ZnO nanostructures, ZnO-4 and ZnO-8 have been carried out using cytotoxicity test of MTS assay on L929 rat fibroblast cell line. Prior to that, ZnO-4 and ZnO-8 were characterized for its morphology, structure and optical properties using FESEM, X-ray diffraction, and Photoluminescence respectively. The two groups revealed difference in morphology and exhibit slightly shifted of near band edge emission of Photoluminescence other than having a similar calculated crystallite size of nanostructures. The viability of cells after 72h were obtained and the statistical significance value was calculated using SPSS v20. The p value is more than 0.05 between untreated and treated cell with ZnO. This insignificant value of p>0.05 can be summarized as a non-toxic level of ZnO-4 and ZnO-8 on the L929 cell line.

  3. ZnO nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Attarad; Ambreen, Sidra; Javed, Rabia; Tabassum, Saira [Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ul Haq, Ihsan [Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Zia, Muhammad, E-mail: ziachaudhary@gmail.com [Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2017-05-01

    Zinc oxide (ZnO) nanostructures are synthesized in various organic solvents (acetone, chloroform, ethyl acetate, ethanol and methanol) and water via coprecipitation process using zinc acetate as precursor. The resultant ZnO nanoparticles, nano rods and nano sheets are characterized by UV–vis spectrophotometric analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transmission infrared spectroscopy (FTIR), and energy dispersive X-ray spectroscopy (EDX). The variable size and geometry of nanoparticles depend upon medium used for synthesis. The synthesized ZnO nanostructures exhibit minor to moderate antioxidative (DPPH based free radical scavenging activity, total antioxidative potential and total reducing power) response. Mild to moderate antibacterial and antifungal activities, excellent antileishmanial potential (IC50 up to 3.76), and good cytotoxic perspective (LD50 up to 49.4) is also observed by the synthesized ZnO NPs. The nanoparticles also exhibit moderate α-amylase inhibition response. Furthermore the nanostructures are evaluated for methylene blue photodegradation response within 60 min time period. It is found that organic solvent alters shape, size and other physio-chemical properties of ZnO that ultimately modulate the biological, chemical, and environmental properties. - Highlights: • Zinc oxide nanoparticles are fabricated in different solvents using co-precipitation method • SEM, XRD and FTIR analysis confirms variation in physical and chemical characteristics of synthesized ZnO NPs • The synthesized ZnO demonstrates variation in biological, phytochemical and photodegradable properties.

  4. ZnO nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties

    International Nuclear Information System (INIS)

    Ali, Attarad; Ambreen, Sidra; Javed, Rabia; Tabassum, Saira; Ul Haq, Ihsan; Zia, Muhammad

    2017-01-01

    Zinc oxide (ZnO) nanostructures are synthesized in various organic solvents (acetone, chloroform, ethyl acetate, ethanol and methanol) and water via coprecipitation process using zinc acetate as precursor. The resultant ZnO nanoparticles, nano rods and nano sheets are characterized by UV–vis spectrophotometric analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transmission infrared spectroscopy (FTIR), and energy dispersive X-ray spectroscopy (EDX). The variable size and geometry of nanoparticles depend upon medium used for synthesis. The synthesized ZnO nanostructures exhibit minor to moderate antioxidative (DPPH based free radical scavenging activity, total antioxidative potential and total reducing power) response. Mild to moderate antibacterial and antifungal activities, excellent antileishmanial potential (IC50 up to 3.76), and good cytotoxic perspective (LD50 up to 49.4) is also observed by the synthesized ZnO NPs. The nanoparticles also exhibit moderate α-amylase inhibition response. Furthermore the nanostructures are evaluated for methylene blue photodegradation response within 60 min time period. It is found that organic solvent alters shape, size and other physio-chemical properties of ZnO that ultimately modulate the biological, chemical, and environmental properties. - Highlights: • Zinc oxide nanoparticles are fabricated in different solvents using co-precipitation method • SEM, XRD and FTIR analysis confirms variation in physical and chemical characteristics of synthesized ZnO NPs • The synthesized ZnO demonstrates variation in biological, phytochemical and photodegradable properties.

  5. Three-Dimensional ZnO Hierarchical Nanostructures: Solution Phase Synthesis and Applications

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2017-11-01

    Full Text Available Zinc oxide (ZnO nanostructures have been studied extensively in the past 20 years due to their novel electronic, photonic, mechanical and electrochemical properties. Recently, more attention has been paid to assemble nanoscale building blocks into three-dimensional (3D complex hierarchical structures, which not only inherit the excellent properties of the single building blocks but also provide potential applications in the bottom-up fabrication of functional devices. This review article focuses on 3D ZnO hierarchical nanostructures, and summarizes major advances in the solution phase synthesis, applications in environment, and electrical/electrochemical devices. We present the principles and growth mechanisms of ZnO nanostructures via different solution methods, with an emphasis on rational control of the morphology and assembly. We then discuss the applications of 3D ZnO hierarchical nanostructures in photocatalysis, field emission, electrochemical sensor, and lithium ion batteries. Throughout the discussion, the relationship between the device performance and the microstructures of 3D ZnO hierarchical nanostructures will be highlighted. This review concludes with a personal perspective on the current challenges and future research.

  6. Electromagnetic and Microwave Absorption Properties of Carbonyl Tetrapod-Shaped Zno Nanostructures Composite Coatings

    Science.gov (United States)

    Yu, Haibo; Qin, Hui; Huang, Yunhua

    2012-08-01

    CIP/T-ZnO/EP composite coatings with carbonyl iron powders (CIP) and tetrapodshaped ZnO (T-ZnO) nanostructures as absorbers, and epoxy resin (EP) as matrix were prepared. The complex permittivity, permeability and microwave absorption properties of the coatings were investigated in the frequency range of 2-18 GHz. The effects of the weight ratio (CIP/T-ZnO/EP), the thickness and the solidification temperature on microwave absorption properties were discussed. When the weight ratio (CIP/TZnO/ EP), the thickness and the solidification temperature is 28:2:22, 1.8 mm, and 10°C, respectively, the optimal wave absorption with the minimum reflection loss (RL) value of -22.38 dB at 15.67 GHz and the bandwidth (RLcoatings may have a promising application in Ku-band (12-18 GHz).

  7. Growth of hybrid carbon nanostructures on iron-decorated ZnO nanorods

    Science.gov (United States)

    Mbuyisa, Puleng N.; Rigoni, Federica; Sangaletti, Luigi; Ponzoni, Stefano; Pagliara, Stefania; Goldoni, Andrea; Ndwandwe, Muzi; Cepek, Cinzia

    2016-04-01

    A novel carbon-based nanostructured material, which includes carbon nanotubes (CNTs), porous carbon, nanostructured ZnO and Fe nanoparticles, has been synthetized using catalytic chemical vapour deposition (CVD) of acetylene on vertically aligned ZnO nanorods (NRs). The deposition of Fe before the CVD process induces the presence of dense CNTs in addition to the variety of nanostructures already observed on the process done on the bare NRs, which range from amorphous graphitic carbon up to nanostructured dendritic carbon films, where the NRs are partially or completely etched. The combination of scanning electron microscopy and in situ photoemission spectroscopy indicate that Fe enhances the ZnO etching, and that the CNT synthesis is favoured by the reduced Fe mobility due to the strong interaction between Fe and the NRs, and to the presence of many defects, formed during the CVD process. Our results demonstrate that the resulting new hybrid shows a higher sensitivity to ammonia gas at ambient conditions (∼60 ppb) than the carbon nanostructures obtained without the aid of Fe, the bare ZnO NRs, or other one-dimensional carbon nanostructures, making this system of potential interest for environmental ammonia monitoring. Finally, in view of the possible application in nanoscale optoelectronics, the photoexcited carrier behaviour in these hybrid systems has been characterized by time-resolved reflectivity measurements.

  8. Low-temperature synthesis of rose-like ZnO nanostructures using surfactin and their photocatalytic activity.

    Science.gov (United States)

    Reddy, A Satyanarayana; Kuo, Yi-Hao; Atla, Shashi B; Chen, Chien-Yen; Chen, Chien-Cheng; Shih, Ruey-Chyuan; Chang, Young-Fo; Maity, Jyoti Prakash; Chen, How-Ji

    2011-06-01

    Rose-like ZnO nanostructures were synthesized by the precipitation method using a biosurfactant (surfactin) as a templating-agent stabilizer. The concentration of surfactin in the precursor solution significantly influenced the thickness and density of the petals in the rose-like structures, and all samples were of a wurtzite phase. The thickness of the petal was found to decrease with increasing surfactin concentration. The average thickness of the petals was found to be between 10 and 13 nm. Photocatalytic degradation of methylene blue using rose-like ZnO nanostuctures was investigated, and the morphology, density and thickness of the ZnO petals were found to influence the photodegradation activity. The samples with loosely-spread petals, or plate-like ZnO structures, brought about the strongest photodegradation in comparison with the dense rose-like structures. The greater activity of the loose-petal structures was correlated with their higher absorption in the UV region in comparison with the other samples. The ZnO samples prepared using low surfactin concentrations had higher rate constant values, i.e., 9.1 x 10(-3) min(-1), which revealed that the photodegradation of methylene blue under UV irradiation progressed by a pseudo first-order kinetic reaction.

  9. Superhydrophobic ZnAl double hydroxide nanostructures and ZnO films on Al and glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    De, Debasis, E-mail: debasis.de@bcrec.ac.in [Electronics and Instrumentation Engineering Department, Dr. B C Roy Engineering College, Durgapur, West Bengal 713206 (India); Sarkar, D.K. [Centre Universitaire de Recherche sur l' Aluminium (CURAL), L' Université du Québec à Chicoutimi, 555 Blvd. Université, Chicoutimi, Saguenay, Québec G7H 2B1 (Canada)

    2017-01-01

    Superhydrophobic nanostructured ZnAl: layered double hydroxides (LDHs) and ZnO films have been fabricated on Al and glass substrates, respectively, by a simple and cost effective chemical bath deposition technique. Randomly oriented hexagonal patterned of ZnAl: LDHs thin nanoplates are clearly observed on Al-substrate in the scanning electron microscopic images. The average size of these hexagonal plates is ∼4 μm side and ∼30 nm of thickness. While on the glass substrate, a oriented hexagonal patterned ZnO nanorods (height ∼5 μm and 1 μm diameter) are observed and each rod is further decorated throughout the top few nanometers with several nanosteps. At the top of the nanorod, a perfectly hexagonal patterned ZnO surface with ∼250 nm sides is observed. The tendency to form hexagonal morphological features is due to the hexagonal crystal structure of ZnO confirmed from X-ray diffraction patterns and transmission electron microscopy image. The ZnAl: LDHs and/or ZnO coated substrates have been passivated by using stearic acid (SA) molecules. Infrared spectra of passivated ZnAl: LDHs coated substrates confirm the presence of SA. X-ray diffraction pattern also corroborates the results of infrared spectrum. The contact angle of the as prepared samples is zero. The superhydrophobicity is achieved by observing contact angle of ∼161° with a hysteresis of ∼4° for Al-substrate. On the glass substrate, a higher contact angle of ∼168° with a lower hysteresis of ∼3° is observed. A lower surface roughness of ∼4.93 μm is measured on ZnAl: LDHs surface layer on the Al substrate as compare to a higher surface roughness of 6.87 μm measured on ZnO layer on glass substrate. The superhydrophobicity of passivated nanostructured films on two different substrates is observed due to high surface roughness and low surface energy. - Highlights: • ZnAl: layered double hydroxides (LDHs) nanoplates are fabricated on Al substrate. • ZnO nanorods are fabricated on

  10. Electrochemical synthesis and characterization of hierarchically branched ZnO nanostructures on ensembles of gold nanowires

    International Nuclear Information System (INIS)

    Ongaro, Michael; Gambirasi, Arianna; Favaro, Monica; Ugo, Paolo

    2012-01-01

    Highlights: ► ZnO branched nanofibres for photoelectrochemical applications. ► Branched nanostructures are obtained by electrochemical deposition of ZnO on gold template nanowires. ► Branched nanowires crystallographic phase determined by electron back scatter diffraction. ► Branched structures display improved performances for the photoelectrochemical oxidation of water. - Abstract: This study presents an electrosynthetic methodology to obtain hierarchically structured ZnO electrodes with improved surface area, by exploiting gold nanowires ensembles (3D-NEEs) as the growing substrate. By this way, semiconductor electrodes organized in the shape of fir-like branches are obtained. Branched nanofibres are characterized by electron microscopy and electron backscatter diffraction (EBSD), the latter technique allowing the determination of the crystalline habit of individual nanostructures. The hierarchical branched nanowires show enhanced performances with respect to water photooxidation in comparison with already known nanostructured materials such as 1D-ZnO nanowires.

  11. A Review on the Fabrication of Hierarchical ZnO Nanostructures for Photocatalysis Application

    Directory of Open Access Journals (Sweden)

    Yi Xia

    2016-11-01

    Full Text Available Semiconductor photocatalysis provides potential solutions for many energy and environmental-related issues. Recently, various semiconductors with hierarchical nanostructures have been fabricated to achieve efficient photocatalysts owing to their multiple advantages, such as high surface area, porous structures, as well as enhanced light harvesting. ZnO has been widely investigated and considered as the most promising alternative photocatalyst to TiO2. Herein, we present a review on the fabrication methods, growth mechanisms and photocatalytic applications of hierarchical ZnO nanostructures. Various synthetic strategies and growth mechanisms, including multistep sequential growth routes, template-based synthesis, template-free self-organization and precursor or self-templating strategies, are highlighted. In addition, the fabrication of multicomponent ZnO-based nanocomposites with hierarchical structures is also included. Finally, the application of hierarchical ZnO nanostructures and nanocomposites in typical photocatalytic reactions, such as pollutant degradation and H2 evolution, is reviewed.

  12. A Novel Sensor for VOCs Using Nanostructured ZnO and MEMS Technologies

    Directory of Open Access Journals (Sweden)

    H. J. Pandya

    2012-03-01

    Full Text Available A sensor for detection of vapors of volatile organic compounds (VOCs incorporating nanostructured zinc oxide film and silicon micromachining is reported. One of the key features of the sensor is the use of nanostructured ZnO material which has been synthesized using a novel low cost process. Considerable reduction in the operating temperature of the sensor has been achieved due to the use of nanostructured ZnO material as compared to a sensor having ZnO thin film as the sensing layer. The sensor is formed on a micromachined silicon platform thereby reducing the heat loss. This resulted in reduction in power consumption. The sensor has been tested for a variety of VOCs such as: ethanol, iso-propyl alcohol and acetone. The maximum sensitivity of sensor was observed for ethanol vapors.

  13. Growth stimulation of Bacillus cereus and Pseudomonas putida using nanostructured ZnO thin film as transducer element

    Energy Technology Data Exchange (ETDEWEB)

    Loukanov, Alexandre, E-mail: loukanov@mail.saitama-u.ac.jp [Saitama University, Department of Chemistry, Faculty of Science (Japan); Filipov, Chavdar [University of Forestry, Department of Infectious pathology, hygiene, technology and control of food stuffs of animal origin, Faculty of Veterinary Medicine (Bulgaria); Valcheva, Violeta [Bulgarian Academy of Science, Department of Infectious Diseases, Institute of microbiology (Bulgaria); Lecheva, Marta [University of Mining and Geology “St. Ivan Rilski”, Laboratory of Engineering NanoBiotechnology, Department of Engineering Geoecology (Bulgaria); Emin, Saim [University of Nova Gorica, Materials Research Laboratory (Slovenia)

    2015-04-15

    The semiconductor zinc oxide nanomaterial (ZnO or ZnO:H) is widely used in advanced biosensor technology for the design of highly-sensitive detector elements for various applications. In the attempt to evaluate its effect on common microorganisms, two types of nanostructured transducer films have been used (average diameter 600–1000 nm). They have been prepared by using both wet sol–gel method and magnetron sputtering. Their polycrystalline structure and specific surface features have been analyzed by X-ray diffraction (XRD), scanning electron microscope, and atomic force microscope. The assessment of growth stimulation of bacteria was determined using epifluorescent microscope by cell staining with Live/Dead BacLight kit. In our experiments, the growth stimulation of Gram-positive and Gram-negative bacteria on nanostructured ZnO film is demonstrated by Bacillus cereus and Pseudomonas putida. These two bacterial species have been selected, because they are well known and studied in biosensor technologies, with structural difference of their cell walls. These pathogens are easy for with common source in the liquid food or some commercial products. Our data has revealed that the method of transducer film preparation influences strongly bacterial inhibition and division. These results present the transforming signal precisely, when ZnO is used in biosensor applications.

  14. Growth stimulation of Bacillus cereus and Pseudomonas putida using nanostructured ZnO thin film as transducer element

    International Nuclear Information System (INIS)

    Loukanov, Alexandre; Filipov, Chavdar; Valcheva, Violeta; Lecheva, Marta; Emin, Saim

    2015-01-01

    The semiconductor zinc oxide nanomaterial (ZnO or ZnO:H) is widely used in advanced biosensor technology for the design of highly-sensitive detector elements for various applications. In the attempt to evaluate its effect on common microorganisms, two types of nanostructured transducer films have been used (average diameter 600–1000 nm). They have been prepared by using both wet sol–gel method and magnetron sputtering. Their polycrystalline structure and specific surface features have been analyzed by X-ray diffraction (XRD), scanning electron microscope, and atomic force microscope. The assessment of growth stimulation of bacteria was determined using epifluorescent microscope by cell staining with Live/Dead BacLight kit. In our experiments, the growth stimulation of Gram-positive and Gram-negative bacteria on nanostructured ZnO film is demonstrated by Bacillus cereus and Pseudomonas putida. These two bacterial species have been selected, because they are well known and studied in biosensor technologies, with structural difference of their cell walls. These pathogens are easy for with common source in the liquid food or some commercial products. Our data has revealed that the method of transducer film preparation influences strongly bacterial inhibition and division. These results present the transforming signal precisely, when ZnO is used in biosensor applications

  15. Growth stimulation of Bacillus cereus and Pseudomonas putida using nanostructured ZnO thin film as transducer element

    Science.gov (United States)

    Loukanov, Alexandre; Filipov, Chavdar; Valcheva, Violeta; Lecheva, Marta; Emin, Saim

    2015-04-01

    The semiconductor zinc oxide nanomaterial (ZnO or ZnO:H) is widely used in advanced biosensor technology for the design of highly-sensitive detector elements for various applications. In the attempt to evaluate its effect on common microorganisms, two types of nanostructured transducer films have been used (average diameter 600-1000 nm). They have been prepared by using both wet sol-gel method and magnetron sputtering. Their polycrystalline structure and specific surface features have been analyzed by X-ray diffraction (XRD), scanning electron microscope, and atomic force microscope. The assessment of growth stimulation of bacteria was determined using epifluorescent microscope by cell staining with Live/Dead BacLight kit. In our experiments, the growth stimulation of Gram-positive and Gram-negative bacteria on nanostructured ZnO film is demonstrated by Bacillus cereus and Pseudomonas putida. These two bacterial species have been selected, because they are well known and studied in biosensor technologies, with structural difference of their cell walls. These pathogens are easy for with common source in the liquid food or some commercial products. Our data has revealed that the method of transducer film preparation influences strongly bacterial inhibition and division. These results present the transforming signal precisely, when ZnO is used in biosensor applications.

  16. Influence of ZnO nanostructures in liquid crystal interfaces for bistable switching applications

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Kaushik, E-mail: kaushikpal@whu.edu.cn [School of Power and Mechanical Engineering, Wuhan University, 8 East Lake South Road, Wuhan 430072 (China); Zhan, Bihong, E-mail: bihong_zhan@whu.edu.cn [School of Power and Mechanical Engineering, Wuhan University, 8 East Lake South Road, Wuhan 430072 (China); Madhu Mohan, M.L.N. [Liquid Crystal Research Laboratory (LCRL), Bannari Amman Institute of Technology, Sathyamangalam 638 401 (India); Schirhagl, Romana [University Medical Center Groningen, Department of BioMedical Engineering, Ant. Deusinglaan 1, 9713 AV Groningen (Netherlands); Wang, Guoping, E-mail: guopingwang@whu.edu.cn [School of Power and Mechanical Engineering, Wuhan University, 8 East Lake South Road, Wuhan 430072 (China)

    2015-12-01

    Graphical abstract: - Highlights: • One step bench top novel synthesis and growth dynamics of ZnO structures are successfully performed. • Nanostructures dispersing liquid crystals (NDLC) is recently found to have significant influence on the nucleation and growth of many functional nanocrystals (NCs), and provide a fundamental approach to modify the crystallographic phase, size, morphology, and electronic configuration of nanomaterials. • Electro-optical switching application ensures the bright field droplet design marble pattern of smectic G phase, nematic and most significant twist nematic phase pattern are obtained. • Spontaneous polarization, rotational viscosity and response time study, exploring smart applications in LCD technology. - Abstract: The controlled fabrication of nanometer-scale objects is without doubt one of the central issues in current science and technology. In this article, we exhibit a simple, one-step bench top synthesis of zinc oxide nano-tetrapods and nano-spheres which were tailored by the facial growth of nano-wires (diameter ≈ 24 nm; length ≈ 118 nm) and nano-cubes (≈395 nm edge) to nano-sphere (diameter ≈ 585 nm) appeaded. The possibilities of inexpensive, simple solvo-chemical synthesis of nanostructures were considered. In this article, a successful attempt has been made that ZnO nano-structures dispersed on well aligned hydrogen bonded liquid crystals (HBLC) comprising azelaic acid (AC) with p-n-alkyloxy benzoic acid (nBAO) by varying the respective alkyloxy carbon number (n = 5). The dispersion of nanomaterials with HBLC is an effective route to enhance the existing functionalities. A series of these composite materials were analyzed by polarizing optical microscope's electro-optical switching. An interesting feature of AC + nBAO is the inducement of tilted smectic G phase with increasing carbon chain length. Phase diagrams of the above hybrid ZnO nanomaterial influenced LC complex and pure LC were

  17. Synthesis of cadmium oxide doped ZnO nanostructures using electrochemical deposition

    International Nuclear Information System (INIS)

    Singh, Trilok; Pandya, D.K.; Singh, R.

    2011-01-01

    Research highlights: → Ternary ZnCdO alloy semiconductor nanostructures were grown using electrochemical deposition. → X-ray diffraction measurements showed that the nanostructures were of wurtzite structure and possessed a compressive stress along the c-axis direction. → The cut-off wavelength shifted from blue to red on account of the Cd incorporation in the ZnO and the average transmittance decreased by ∼31%. → The bandgap tuning for 4-16 at% Cd in the initial solution was achieved in the range of 3.08-3.32 eV (up to 0.24 eV). - Abstract: Ternary ZnCdO alloy semiconductor nanostructures were grown using electrochemical deposition. Crystalline nanostructures/nanorods with cadmium concentration ranging from 4 to 16 at% in the initial solution were electrodeposited on tin doped indium oxide (ITO) conducting glass substrates at a constant cathodic potential -0.9 V and subsequently annealed in air at 300 deg. C. X-ray diffraction measurements showed that the nanostructures were of wurtzite structure and possessed a compressive stress along the c-axis direction. The elemental composition of nanostructures was confirmed by energy dispersive spectroscopy (EDS). ZnO nanostructures were found to be highly transparent and had an average transmittance of 85% in the visible range of the spectrum. After the incorporation of Cd content into ZnO the average transmittance decreased and the bandgap tuning was also achieved.

  18. Synthesis and characterization of flowerlike ZnO nanostructures via an ethylenediamine-meditated solution route

    International Nuclear Information System (INIS)

    Gao Xiangdong; Li Xiaomin; Yu Weidong

    2005-01-01

    Flowerlike ZnO nanostructures were deposited on Si substrate by choosing hexamethylenetetramine as the nucleation control reagent and ethylenediamine as the chelating and capping reagent. Structural and optical measurements reveal that obtained ZnO exhibits well-defined flowerlike morphology, hexagonal wurtzite structure, uniform distribution on substrate, and strong photoluminescence in ultraviolet band. The well-arrayed pedals of each ZnO flower possess the typical tapering feature, and are built up by many well-aligned ZnO nanorods. Moreover, each single nanorod building up the pedal exhibits the single crystal nature and the growth direction along c-axis. Effects of the precursor composition on the morphology of ZnO were discussed

  19. A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures

    Science.gov (United States)

    Wang, Zhenxing; Zhan, Xueying; Wang, Yajun; Muhammad, Safdar; Huang, Ying; He, Jun

    2012-03-01

    A low-cost, compatible with flexible electronics, high performance UV sensor has been achieved from a reduced graphene oxide (RGO) decorated hydrangea-like ZnO film on a PDMS substrate. The hydrangea-like ZnO UV sensor has the best UV sensing performance among devices made of three kinds of ZnO nanostructures synthesized by a hydrothermal method, and demonstrated a dramatic enhancement in on/off ratio and photoresponse current by introducing an appropriate weight ratio of RGO. The on/off ratio of the 0.05% RGO/ZnO sensor increases almost one order of magnitude compared to that of a pristine hydrangea-like ZnO UV sensor. While for the 5% RGO decorated ZnO sensor, the photoresponse current reaches as high as ~1 μA and exceeds 700 times that of a ZnO UV sensor. These results indicate that RGO is an appropriate material to enhance the performance of ZnO nanostructure UV sensors based on its unique features, especially the high optical transparency and excellent electronic conductivity. Our findings will make RGO/ZnO nanohybrids extraordinarily promising in optoelectronics, flexible electronics and sensor applications.

  20. Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors.

    Science.gov (United States)

    Zappa, Dario; Bertuna, Angela; Comini, Elisabetta; Kaur, Navpreet; Poli, Nicola; Sberveglieri, Veronica; Sberveglieri, Giorgio

    2017-01-01

    Preparation and characterization of different metal oxide (NiO, WO 3 , ZnO, SnO 2 and Nb 2 O 5 ) nanostructures for chemical sensing are presented. p-Type (NiO) and n-type (WO 3 , SnO 2 , ZnO and Nb 2 O 5 ) metal oxide nanostructures were grown on alumina substrates using evaporation-condensation, thermal oxidation and hydrothermal techniques. Surface morphologies and crystal structures were investigated through scanning electron microscopy and Raman spectroscopy. Furthermore, different batches of sensors have been prepared, and their sensing performances towards carbon monoxide and nitrogen dioxide have been explored. Moreover, metal oxide nanowires have been integrated into an electronic nose and successfully applied to discriminate between drinking and contaminated water.

  1. On quantum efficiency of photoluminescence in ZnO layers and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Reshchikov, M.A., E-mail: mreshchi@vcu.ed [Physics Department, Virginia Commonwealth University, 701 W. Grace St., Richmond, VA 23284 (United States); El-Shaer, A.; Behrends, A.; Bakin, A.; Waag, A. [Institute of Semiconductor Technology, Technical University of Braunschweig, Braunschweig D-38106 (Germany)

    2009-12-15

    In this work we studied PL in ZnO layers and nanostructures, including ZnO homoepitaxial layers on ZnO substrate and ZnO-Zn{sub 1-x}Mg{sub x}O single quantum well (SQW) structures grown on sapphire substrates by MBE, and ZnO nanowires grown on sapphire by MOCVD. The external quantum efficiency (QE) of PL in O-face ZnO layers exceeded that in Zn-face ZnO layers by two orders of magnitude at low temperatures. In a sample with SQW the combined external QE from the 4.6-nm-wide SQW and 50-nm-thick Zn{sub 1-x}Mg{sub x}O barriers achieved 28% at 15 K. The highest external QE was observed in one of the samples with ZnO nanowires-52% at 15 K and 2% at 300 K. Contribution of defect-related PL bands in ZnO nanowires samples was extremely low.

  2. The SL-assisted synthesis of hierarchical ZnO nanostructures and their enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Miao Tingting; Guo Yuanru; Pan Qingjiang

    2013-01-01

    Hierarchical ZnO nanoparticle-bar, nanomesh-lamina, and quasi-nanosphere structures have been successfully synthesized by the precipitation method with assistance of sodium lignosulphonate (SL). It is shown that the obtained ZnO nanomaterials are well crystallized and possess hexagonal wurtzite structure after calcination. Morphologies of ZnO with particle sizes ranging from 50 to 200 nm can be fabricated by tuning the SL amount in our synthetic route. Plenty of pores have been observed both in nanoparticle-bar and nanomesh-lamina ZnO. This may provide scaffold microenvironments to enhance their photocatalytic activity. It is evident that the synthesized ZnO exhibits good photocatalytic activity of degrading methylene blue, even under a very low-power UV illumination, which allows for the treatment of wastewater containing organic pollutants in an effective way. Among our synthesized nanomaterials, the nanomesh-lamina ZnO has the highest photodegradation efficiency, achieving nearly 100 % degradation only within 1.5 h (UV irradiation power of 12 W). As these ZnO nanomaterials are simply synthesized using SL which is a pulp industry by-product and their intrinsic hierarchical nanostructures show outstanding photocatalytic behavior, we expect the present controllable, environment-friendly, and cost-effective approach to be applied in the synthesis of small-sized ZnO materials.

  3. The SL-assisted synthesis of hierarchical ZnO nanostructures and their enhanced photocatalytic activity

    Science.gov (United States)

    Miao, Ting-Ting; Guo, Yuan-Ru; Pan, Qing-Jiang

    2013-06-01

    Hierarchical ZnO nanoparticle-bar, nanomesh-lamina, and quasi-nanosphere structures have been successfully synthesized by the precipitation method with assistance of sodium lignosulphonate (SL). It is shown that the obtained ZnO nanomaterials are well crystallized and possess hexagonal wurtzite structure after calcination. Morphologies of ZnO with particle sizes ranging from 50 to 200 nm can be fabricated by tuning the SL amount in our synthetic route. Plenty of pores have been observed both in nanoparticle-bar and nanomesh-lamina ZnO. This may provide scaffold microenvironments to enhance their photocatalytic activity. It is evident that the synthesized ZnO exhibits good photocatalytic activity of degrading methylene blue, even under a very low-power UV illumination, which allows for the treatment of wastewater containing organic pollutants in an effective way. Among our synthesized nanomaterials, the nanomesh-lamina ZnO has the highest photodegradation efficiency, achieving nearly 100 % degradation only within 1.5 h (UV irradiation power of 12 W). As these ZnO nanomaterials are simply synthesized using SL which is a pulp industry by-product and their intrinsic hierarchical nanostructures show outstanding photocatalytic behavior, we expect the present controllable, environment-friendly, and cost-effective approach to be applied in the synthesis of small-sized ZnO materials.

  4. Evaluation of gas-sensing properties of ZnO nanostructures electrochemically doped with Au nanophases

    Directory of Open Access Journals (Sweden)

    Elena Dilonardo

    2016-01-01

    Full Text Available A one-step electrochemical method based on sacrificial anode electrolysis (SAE was used to deposit stabilized gold nanoparticles (Au NPs directly on the surface of nanostructured ZnO powders, previously synthesized through a sol–gel process. The effect of thermal annealing temperatures (300 and 550 °C on chemical, morphological, and structural properties of pristine and Au-doped ZnO nancomposites (Au@ZnO was investigated. Transmission and scanning electron microscopy (TEM and SEM, as well as X-ray photoelectron spectroscopy (XPS, revealed the successful deposition of nanoscale gold on the surface of spherical and rod-like ZnO nanostructures, obtained after annealing at 300 and 550 °C, respectively. The pristine ZnO and Au@ZnO nanocomposites are proposed as active layer in chemiresistive gas sensors for low-cost processing. Gas-sensing measurements towards NO2 were collected at 300 °C, evaluating not only the Au-doping effect, but also the influence of the different ZnO nanostructures on the gas-sensing properties.

  5. Sensing performances of ZnO nanostructures grown under different oxygen pressures to hydrogen

    International Nuclear Information System (INIS)

    Chu, Jin; Peng, Xiaoyan; Wang, Zhenbo; Feng, Peter

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Surface morphology depends on the oxygen pressure. ► Structural degradation was observed for the ZnO samples when oxygen pressure was overhigh. ► The sensitivity of the ZnO-based sensors increase with grown oxygen pressure. -- Abstract: For extensive use in an industrialized process of individual ZnO nanostructures applied in gas sensors, a simple, inexpensive, and safe synthesis process is required. Here, nanostructured ZnO films were grown by a pulsed laser deposition technique under different oxygen pressures. Scanning electron microscopy images show nanopores, nanotips, and nanoparticles are obtained and energy dispersive X-ray spectroscopy data indicate oxygen concentration of the synthesized samples increases monotonously with oxygen pressure. The sensor based on ZnO with high oxygen concentration has high sensitivity, rapid response (9 s) and recovery (80 s) behavior to 500 ppm hydrogen below 150 °C. Experimental data indicate that high oxygen concentration effectively improves the sensing properties of nanostructured ZnO.

  6. Structural and photovoltaic characteristics of hierarchical ZnO nanostructures electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Muhammad, E-mail: saleem.malikape@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing 400044 (China); Fang, L. [Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing 400044 (China); Shaukat, Saleem F.; Ahmad, M. Ashfaq [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Raza, Rizwan, E-mail: razahussaini786@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Akhtar, Majid Niaz; Jamil, Ayesha; Aslam, Samia [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Abbas, Ghazanfar [Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan)

    2015-04-15

    Highlights: • Hierarchically ZnO nanostructures electrodes were grown using hot plate magnetic stirring at different growth reaction temperature. • We have investigated the effect of working temperature of 160°, 170°, 180°, and 190° on the growth mechanism of nanospheres and on the power conversion efficiency of DSSCs. • ZnO nanospheres with perfect aggregation show superior power conversion efficiency of 1.24% which is about 83% higher than nanoparticles DSSC. • An obvious vogue is that the overall power conversion efficiency decreases as the degree of the spherical aggregation is gradually destroyed. - Abstract: Structural and photovoltaic characteristics of hierarchical ZnO nanostructures solar cell have been studied in relation to growth reaction temperature. It is found that the hierarchical ZnO nanostructures network to act not only as large surface area substrates but also as a transport medium for electrons injected from the dye molecules. The incident photon-to-current conversion efficiency is decreased by increasing the growth reaction temperature of ZnO electrodes. The best conversion efficiency of a 0.25 cm{sup 2} cell is measured to be 1.24% under 100 mW cm{sup −2} irradiation.

  7. Structural and photovoltaic characteristics of hierarchical ZnO nanostructures electrodes

    International Nuclear Information System (INIS)

    Saleem, Muhammad; Fang, L.; Shaukat, Saleem F.; Ahmad, M. Ashfaq; Raza, Rizwan; Akhtar, Majid Niaz; Jamil, Ayesha; Aslam, Samia; Abbas, Ghazanfar

    2015-01-01

    Highlights: • Hierarchically ZnO nanostructures electrodes were grown using hot plate magnetic stirring at different growth reaction temperature. • We have investigated the effect of working temperature of 160°, 170°, 180°, and 190° on the growth mechanism of nanospheres and on the power conversion efficiency of DSSCs. • ZnO nanospheres with perfect aggregation show superior power conversion efficiency of 1.24% which is about 83% higher than nanoparticles DSSC. • An obvious vogue is that the overall power conversion efficiency decreases as the degree of the spherical aggregation is gradually destroyed. - Abstract: Structural and photovoltaic characteristics of hierarchical ZnO nanostructures solar cell have been studied in relation to growth reaction temperature. It is found that the hierarchical ZnO nanostructures network to act not only as large surface area substrates but also as a transport medium for electrons injected from the dye molecules. The incident photon-to-current conversion efficiency is decreased by increasing the growth reaction temperature of ZnO electrodes. The best conversion efficiency of a 0.25 cm 2 cell is measured to be 1.24% under 100 mW cm −2 irradiation

  8. Synthesis of ZnO comb-like nanostructures for high sensitivity H2S ...

    Indian Academy of Sciences (India)

    2017-09-15

    Sep 15, 2017 ... H2S gas sensor; ZnO comb-like nanostructures; chemical vapour deposition; vapour–solid growth; ... tube at a flow rate of 15 sccm, when the central temperature .... behaviour, in this case, under low input power implies ohmic.

  9. Life cycle assessment of facile microwave-assisted zinc oxide (ZnO) nanostructures

    CSIR Research Space (South Africa)

    Papadaki, D

    2017-05-01

    Full Text Available The life cycle assessment of several zinc oxide (ZnO) nanostructures, fabricated by a facile microwave technique, is presented. Key synthesis parameters such as annealing temperature, varied from 90 °C to 220 °C, and microwave power, varied from 110...

  10. Effect of indium dopant on surface and mechanical characteristics of ZnO : In nanostructured films

    Energy Technology Data Exchange (ETDEWEB)

    Fang, T.-H.; Kang, S.-H. [Institute of Mechanical and Electromechanical Engineering, National Formosa University, No 64, Wenhua Rd., Huwei, Yunlin 632, Taiwan (China)], E-mail: fang.tehua@msa.hinet.net

    2008-12-21

    Epitaxial ZnO : In nanorod films were grown on SiO{sub 2} substrates using a chemical solution method with a pre-coated ZnO sputtered seed layer. Structural and surface characterizations of the ZnO : In nanostructured films were achieved by means of x-ray diffraction, a scanning electron microscope, an atomic force microscope and contact angle measurements. The hardness and Young's modulus of the nanostructured films were investigated by nanoindentation measurements. The results showed that when the indium dopant was increased, the hardness and Young's modulus of the films also rose. The films exhibited hydrophobic behaviour with contact angles of about 128-138 deg., and a decrease in the hardness and Young's modulus with decreasing loads or indentation depths. Buckling behaviour took place during the indentation process, and the fracture strength of the films was also discussed.

  11. Ultra violet sensors based on nanostructured ZnO spheres in network of nanowires: a novel approach

    OpenAIRE

    Hullavarad, SS; Hullavarad, NV; Karulkar, PC; Luykx, A; Valdivia, P

    2007-01-01

    AbstractThe ZnO nanostructures consisting of micro spheres in a network of nano wires were synthesized by direct vapor phase method. X-ray Photoelectron Spectroscopy measurements were carried out to understand the chemical nature of the sample. ZnO nanostructures exhibited band edge luminescence at 383 nm. The nanostructure based ZnO thin films were used to fabricate UV sensors. The photoresponse measurements were carried out and the responsivity was measured to be 50 mA W−1. The rise a...

  12. Ultra violet sensors based on nanostructured ZnO spheres in network of nanowires: a novel approach

    Directory of Open Access Journals (Sweden)

    Luykx A

    2007-01-01

    Full Text Available AbstractThe ZnO nanostructures consisting of micro spheres in a network of nano wires were synthesized by direct vapor phase method. X-ray Photoelectron Spectroscopy measurements were carried out to understand the chemical nature of the sample. ZnO nanostructures exhibited band edge luminescence at 383 nm. The nanostructure based ZnO thin films were used to fabricate UV sensors. The photoresponse measurements were carried out and the responsivity was measured to be 50 mA W−1. The rise and decay time measurements were also measured.

  13. ZnO 1-D nanostructures: Low temperature synthesis and ...

    Indian Academy of Sciences (India)

    Wintec

    high-resolution transmission electron microscope (HRTEM;. JEOL 2010). ... low magnification image of the ZnO nanorod arrays show- ing uniformity of the .... in inverted nail like shape. .... where E (local) is the local electric field at the emitting.

  14. Fabrication of ZnO Nanostructures with Self-cleaning Functionality

    International Nuclear Information System (INIS)

    Kok, K.Y.; Ng, I.K.; Nur Ubaidah Saidin; Bustaman, F.K.A.

    2011-01-01

    The science of biomimicry has served as a fusion point between nature and technology where one could adopt natures best solution for humans use. Lotus leaf surface, for example, possesses self cleaning capability due to its unique physical and chemical properties. In this work, we aimed to mimic these features on glass surface using ZnO nanostructures to achieve the self-cleaning functionality. A series of ZnO films were electrochemically deposited on indium-doped tin oxide (ITO) conducting glasses from different aqueous electrolytes at systematically varied deposition potentials and electrolyte conditions. The surface morphology, density, orientation and aspect ratio of the ZnO micro/nanostructures obtained were characterized using X-ray diffraction and scanning electron microscopy. Results from these studies show that lower electrolyte concentrations tend to favor one-dimensional growth of ZnO nanostructures that self-assembled into nano flowers at higher deposition temperatures. This hierarchical micro/nano-structured ZnO-modified surface exhibits super hydrophobicity with water contact angle as high as 170 degree. (author)

  15. Doping effect on the optical properties of ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Stoehr, M. [Frederick Seitz Materials Research Laboratory, University of Illinois,104 South Goodwin Avenue, Urbana, IL 61801 (United States); Institut Universitaire de Technologie, Universite de Haute Alsace, 61 rue Albert Camus, 68093 Mulhouse Cedex (France); Juillaguet, S. [Groupe d' Etude des Semi-conducteurs, Universite Montpellier II, Place Eugene Bataillon, 34095 Montpellier Cedex 5 (France); Kyaw, T.M.; Wen, J.G. [Institut Universitaire de Technologie, Universite de Haute Alsace, 61 rue Albert Camus, 68093 Mulhouse Cedex (France)

    2007-04-15

    High quality undoped and Ga{sub 2}O{sub 3} or In{sub 2}O{sub 3} doped ZnO nanostructures are grown by chemical vapor transport and condensation. The doping effect on the optical properties is investigated by photoluminescence. At room temperature, photoluminescence on Ga{sub 2}O{sub 3} doped ZnO nanostructures reveals an enhancement of the ultraviolet near band edge emission at 390 nm, while the intensity of the deep level emission at 530 nm weakens. At 5 K, an intense neutral-donor-bound exciton (D{sup 0}X) line dominates the undoped and doped ZnO photoluminescence spectra. The presence of well resolved two-electron satellite lines allow to determine the type of donors. At 5 K, the results indicate that ZnO nanostructures grown with 10% of Ga{sub 2}O{sub 3} display an excellent optical quality, proved by an intense D{sup 0}X line, a high intensity ratio between the D{sup 0}X line and the deep level emission as well as the presence of numerous phonon replicas of the main lines. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Nanostructured ZnO films in forms of rod, plate and flower: Electrodeposition mechanisms and characterization

    International Nuclear Information System (INIS)

    Kıcır, Nur; Tüken, Tunç; Erken, Ozge; Gumus, Cebrail; Ufuktepe, Yuksel

    2016-01-01

    Highlights: • Electrosynthesis of ZnO nanostructures in the form of plate, rod and flower. • The role of type and concentration of supporting electrolytes on growth mechanism. • Detailed analysis of morphologies, in comparison with the Literature. • Nanoplate form of ZnO exhibits higher Fermi level and lower band gap. - Abstract: Uniformity and reproducibility of well-defined ZnO nanostructures are particularly important issues for fabrication and applications of these nanomaterials. In present study, we report selective morphology control during electrodeposition, by adjusting the hydroxyl generation rate and Zn(OH)_2 deposition. In presence of remarkably high chloride concentration (0.3 M) and −1.0 V deposition potential, slow precipitation conditions were provided in 5 mM Zn(NO_3)_2 solution. By doing so, we have obtained highly ordered, vertically aligned and uniformly spaced hexagon shaped nanoplates, on ITO surface. We have also investigated the mechanism for shifting the morphology from rod/plate to flower like structure of ZnO, for better understanding the reproducibility. For this reason, the influence of various supporting electrolytes (sodium/ammonium salts of acetate) has been investigated for interpretation of the influence of OH"− concentration nearby the surface. From rod to plate and flower nanostructures, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis were realized for characterization, also the optical properties were studied.

  17. Nanostructured ZnO films in forms of rod, plate and flower: Electrodeposition mechanisms and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kıcır, Nur, E-mail: nurkicir@gmail.com [Chemistry Department, Çukurova University, 01330 Adana (Turkey); Tüken, Tunç [Chemistry Department, Çukurova University, 01330 Adana (Turkey); Erken, Ozge [Physics Department, Adiyaman University, 02040 Adıyaman (Turkey); Gumus, Cebrail; Ufuktepe, Yuksel [Physics Department, Çukurova University, 01330 Adana (Turkey)

    2016-07-30

    Highlights: • Electrosynthesis of ZnO nanostructures in the form of plate, rod and flower. • The role of type and concentration of supporting electrolytes on growth mechanism. • Detailed analysis of morphologies, in comparison with the Literature. • Nanoplate form of ZnO exhibits higher Fermi level and lower band gap. - Abstract: Uniformity and reproducibility of well-defined ZnO nanostructures are particularly important issues for fabrication and applications of these nanomaterials. In present study, we report selective morphology control during electrodeposition, by adjusting the hydroxyl generation rate and Zn(OH){sub 2} deposition. In presence of remarkably high chloride concentration (0.3 M) and −1.0 V deposition potential, slow precipitation conditions were provided in 5 mM Zn(NO{sub 3}){sub 2} solution. By doing so, we have obtained highly ordered, vertically aligned and uniformly spaced hexagon shaped nanoplates, on ITO surface. We have also investigated the mechanism for shifting the morphology from rod/plate to flower like structure of ZnO, for better understanding the reproducibility. For this reason, the influence of various supporting electrolytes (sodium/ammonium salts of acetate) has been investigated for interpretation of the influence of OH{sup −} concentration nearby the surface. From rod to plate and flower nanostructures, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis were realized for characterization, also the optical properties were studied.

  18. Glancing angle deposited Al-doped ZnO nanostructures with different structural and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, A., E-mail: yildizab@gmail.com [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Department of Energy Systems Engineering, Faculty of Engineering and Natural Sciences, Yıldırım Beyazıt University, Ankara (Turkey); Cansizoglu, H. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Turkoz, M. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Department of Electrical-Electronic Engineering, Faculty of Engineering, University of Karabuk, Karabuk (Turkey); Abdulrahman, R.; Al-Hilo, Alaa; Cansizoglu, M.F.; Demirkan, T.M.; Karabacak, T. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States)

    2015-08-31

    Al-doped ZnO (AZO) nanostructure arrays with different shapes (tilted rods, vertical rods, spirals, and zigzags) were fabricated by utilizing glancing angle deposition (GLAD) technique in a DC sputter growth unit at room temperature. During GLAD, all the samples were tilted at an oblique angle of about 90° with respect to incoming flux direction. In order to vary the shapes of nanostructures, each sample was rotated at different speeds around the substrate normal axis. Rotation speed did not only affect the shape but also changed the microstructural and optical properties of GLAD AZO nanostructures. The experimental results reveal that GLAD AZO nanostructures of different shapes each have unique morphological, crystal structure, mechanical, and optical properties determined by scanning electron microscopy, X-ray diffraction, transmission, and reflectance measurements. Vertical nanorods display the largest grain size, minimum strain, lowest defect density, and highest optical transmittance compared to the other shapes. Growth dynamics of GLAD has been discussed to explain the dependence of structural and optical properties of nanostructures on the substrate rotation speed. - Highlights: • Al-doped ZnO (AZO) nanostructures with different shapes were fabricated. • They have unique morphological, crystal structure, and optical properties. • Vertical AZO nanorods show an enhanced optical transmittance.

  19. Porous nanostructured ZnO films deposited by picosecond laser ablation

    International Nuclear Information System (INIS)

    Sima, Cornelia; Grigoriu, Constantin; Besleaga, Cristina; Mitran, Tudor; Ion, Lucian; Antohe, Stefan

    2012-01-01

    Highlights: ► We deposite porous nanostructured ZnO films by picoseconds laser ablation (PLA). ► We examine changes of the films structure on the experimental parameter deposition. ► We demonstrate PLA capability to produce ZnO nanostructured films free of particulates. - Abstract: Porous nanostructured polycrystalline ZnO films, free of large particulates, were deposited by picosecond laser ablation. Using a Zn target, zinc oxide films were deposited on indium tin oxide (ITO) substrates using a picosecond Nd:YVO 4 laser (8 ps, 50 kHz, 532 nm, 0.17 J/cm 2 ) in an oxygen atmosphere at room temperature (RT). The morpho-structural characteristics of ZnO films deposited at different oxygen pressures (150–900 mTorr) and gas flow rates (0.25 and 10 sccm) were studied. The post-deposition influence of annealing (250–550 °C) in oxygen on the film characteristics was also investigated. At RT, a mixture of Zn and ZnO formed. At substrate temperatures above 350 °C, the films were completely oxidized, containing a ZnO wurtzite phase with crystallite sizes of 12.2–40.1 nm. At pressures of up to 450 mTorr, the porous films consisted of well-distinguished primary nanoparticles with average sizes of 45–58 nm, while at higher pressures, larger clusters (3.1–14.7 μm) were dominant, leading to thicker films; higher flow rates favored clustering.

  20. Ultrasound-assisted synthesis of nano-structured Zinc(II)-based metal-organic frameworks as precursors for the synthesis of ZnO nano-structures.

    Science.gov (United States)

    Bigdeli, Fahime; Ghasempour, Hosein; Azhdari Tehrani, Alireza; Morsali, Ali; Hosseini-Monfared, Hassan

    2017-07-01

    A 3D, porous Zn(II)-based metal-organic framework {[Zn 2 (oba) 2 (4-bpmn)]·(DMF) 1.5 } n (TMU-21), (4-bpmn=N,N'-Bis-pyridin-4-ylmethylene-naphtalene-1,5-diamine, H 2 oba=4,4'-oxybis(benzoic acid)) with nano-rods morphology under ultrasonic irradiation at ambient temperature and atmospheric pressure was prepared and characterized by scanning electron microscopy. Sonication time and concentration of initial reagents effects on the size and morphology of nano-structured MOFs were studied. Also {[Zn 2 (oba) 2 (4-bpmn)] (TMU-21) and {[Zn 2 (oba) 2 (4-bpmb)] (TMU-6), 4-bpmb=N,N'-(1,4-phenylene)bis(1-(pyridin-4-yl)methanimine) were easily prepared by mechanochemical synthesis. Nanostructures of Zinc(II) oxide were obtained by calcination of these compounds and their de-solvated analogue as activated MOFs, at 550°C under air atmosphere. As a result of that, different Nanostructures of Zinc(II) oxide were obtained. The ZnO nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and FT-IR spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Photoluminescence of Sequential Infiltration Synthesized ZnO nanostructures

    Science.gov (United States)

    Ocola, Leonidas; Gosztola, David; Yanguas-Gil, Angel; Connolly, Aine

    We have investigated a variation of atomic layer deposition (ALD), called sequential infiltration synthesis (SiS), as an alternate method to incorporate ZnO and other oxides inside polymethylmethacrylate (PMMA) and other polymers. Energy dispersive spectroscopy (EDS) results show that we synthesize ZnO up to 300 nm inside a PMMA film. Photoluminescence data on a PMMA film shows that we achieve a factor of 400X increase in photoluminescence (PL) intensity when comparing a blank Si sample and a 270 nm thick PMMA film, where both were treated with the same 12 alternating cycles of H2O and diethyl zinc (DEZ). PMMA is a well-known ebeam resist. We can expose and develop patterns useful for photonics or sensing applications first, and then convert them afterwards into a hybrid polymer-oxide material. We show that patterning does indeed affect the photoluminescence signature of native ZnO. We demonstrate we can track the growth of the ZnO inside the PMMA polymer using both photoluminescence and Raman spectroscopy and determine the point in the process where ZnO is first photoluminescent and also at which point ZnO first exhibits long range order in the polymer. This work was supported by the Department of Energy under Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  2. Influence Al doped ZnO nanostructure on structural and optical properties

    International Nuclear Information System (INIS)

    Ramelan, Ari Handono; Wahyuningsih, Sayekti; Chasanah, Uswatul; Munawaroh, Hanik

    2016-01-01

    The preparation of Al-doped ZnO (AZO) thin films prepared by the spin-coating method was reported. Preparation of AZO was conducted by annealing treatment at a temperature of 700°C. While the spin-coating process of AZO thin films were done at 2000 and 3000 rpm respectively. The structural properties of ZnO were determined by X- ray diffraction (XRD) analysis. ZnOnanostructure was formed after annealed at atemperature of 400°C.The morphology of ZnO was determined by Scanning Electron Microscopy (SEM) showed the irregular morphology about 30-50µm in size. Al doped on ZnO influenced the optical properties of those material. Increasing Al contain on ZnO cause of shifting to the lower wavelength. The optical properties of the ZnO as well as AZO films showed that higher reflectance on the ultraviolet region so those materials were used as anti-reflecting agent.Al addition significantly enhance the optical transparency and induce the blue-shift in optical bandgap of ZnO films.

  3. ZnO nanostructures induced by microwave plasma

    Directory of Open Access Journals (Sweden)

    Khaled A. Elsayed

    2015-07-01

    Full Text Available Microwave induced hydrogen plasma is used to fabricate ZnO thin films at low ambient gas pressure and controlled oxygen content in the gas mixture. The emission spectra have been observed. Optical emission spectroscopy was used to identify the chemical reaction mechanism. Structural quality of the so-obtained nanoparticles was studied by X-ray diffraction (XRD and high resolution scanning electron microscopy (SEM. SEM results showed that nanorods were formed in the process, and XRD results along with nanorod dimensions obtained from SEM are consistent with the formation of single and poly-crystalline ZnO nanorods. The alignment of these nanorods with respect to the substrates depends on the lattice mismatch between ZnO and the glass substrate. The minimum crystallite grain size as obtained from the SEM measurements was ∼24 nm and the average diameter is 70 nm with a length of 1–2 μm. The deposited ZnO thin films have a wide energy band gap that equals ∼3 eV.

  4. Synthesis and characterization of ZnO nanostructures with varying ...

    Indian Academy of Sciences (India)

    2017-05-13

    May 13, 2017 ... Composition of the reactant solution, pH and temperature ... due to the broad spectrum of UV radiation absorption, supe- ... In addition, ZnO is very useful to cure various other skin ... be used as promising candidate for coating of orthopedic ... tape and then coated with gold for 40 s in an auto-fine coater.

  5. Room temperature ferromagnetism in ZnO prepared by microemulsion

    Directory of Open Access Journals (Sweden)

    Qingyu Xu

    2011-09-01

    Full Text Available Clear room temperature ferromagnetism has been observed in ZnO powders prepared by microemulsion. The O vacancy (VO clusters mediated by the VO with one electron (F center contributed to the ferromagnetism, while the isolated F centers contributed to the low temperature paramagnetism. Annealing in H2 incorporated interstitial H (Hi in ZnO, and removed the isolated F centers, leading to the suppression of the paramagnetism. The ferromagnetism has been considered to originate from the VO clusters mediated by the Hi, leading to the enhancement of the coercivity. The ferromagnetism disappeared after annealing in air due to the reduction of Hi.

  6. A novel hierarchical ZnO disordered/ordered bilayer nanostructured film for dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yamin, E-mail: yaminfengccnuphy@outlook.com; Wu, Fei; Jiang, Jian; Zhu, Jianhui; Fodjouong, Ghislain Joel; Meng, Gaoxiang; Xing, Yanmin; Wang, Wenwu; Huang, Xintang, E-mail: xthuang@phy.ccnu.edu.cn

    2013-12-25

    Graphical abstract: A novel hierarchical disordered/ordered bilayer ZnO nanostructured film in the length of 18 μm have been successfully synthesized on the FTO substrate; the hierarchical ZnO nanostructured film electrodes applied in DSSCs exhibit photoelectric conversion efficiency as high as 5.16%. Highlights: •A novel hierarchical ZnO structure film was fabricated on a FTO substrate. •Hierarchical ZnO film is applied as the electrodes for dye sensitized solar cells. •The film possess high specific surface area and fast electron transport effect. •The light-scattering effect of the hierarchical film is pronounced. •The energy conversion efficiency of hierarchical ZnO electrode reaches to 5.16%. -- Abstract: A novel hierarchical ZnO nanostructured film is synthesized via a chemical bath deposition (CBD) method followed by a treatment of thermal decomposition onto a fluorine-doped tin oxide (FTO) substrate. This hierarchical film is composed of disordered ZnO nanorods (NRs) (top layer) and ordered ZnO nanowires (NWs) (bottom layer). The products possess the following features such as high specific surface area, fast electron transport, and pronounced light-scattering effect, which are quite suitable for dye sensitized solar cells (DSSCs) applications. A light-to-electricity conversion efficiency of 5.16% is achieved when the hierarchical ZnO nanostructured film is used as the photoanode under 100 mW cm{sup −2} illumination. This efficiency is found to be much higher than that of the DSSCs with pure ordered ZnO NWs (1.45%) and disordered ZnO NRs (3.31%) photoanodes.

  7. A novel hierarchical ZnO disordered/ordered bilayer nanostructured film for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Feng, Yamin; Wu, Fei; Jiang, Jian; Zhu, Jianhui; Fodjouong, Ghislain Joel; Meng, Gaoxiang; Xing, Yanmin; Wang, Wenwu; Huang, Xintang

    2013-01-01

    Graphical abstract: A novel hierarchical disordered/ordered bilayer ZnO nanostructured film in the length of 18 μm have been successfully synthesized on the FTO substrate; the hierarchical ZnO nanostructured film electrodes applied in DSSCs exhibit photoelectric conversion efficiency as high as 5.16%. Highlights: •A novel hierarchical ZnO structure film was fabricated on a FTO substrate. •Hierarchical ZnO film is applied as the electrodes for dye sensitized solar cells. •The film possess high specific surface area and fast electron transport effect. •The light-scattering effect of the hierarchical film is pronounced. •The energy conversion efficiency of hierarchical ZnO electrode reaches to 5.16%. -- Abstract: A novel hierarchical ZnO nanostructured film is synthesized via a chemical bath deposition (CBD) method followed by a treatment of thermal decomposition onto a fluorine-doped tin oxide (FTO) substrate. This hierarchical film is composed of disordered ZnO nanorods (NRs) (top layer) and ordered ZnO nanowires (NWs) (bottom layer). The products possess the following features such as high specific surface area, fast electron transport, and pronounced light-scattering effect, which are quite suitable for dye sensitized solar cells (DSSCs) applications. A light-to-electricity conversion efficiency of 5.16% is achieved when the hierarchical ZnO nanostructured film is used as the photoanode under 100 mW cm −2 illumination. This efficiency is found to be much higher than that of the DSSCs with pure ordered ZnO NWs (1.45%) and disordered ZnO NRs (3.31%) photoanodes

  8. Detectors based on Pd-doped and PdO-functionalized ZnO nanostructures

    Science.gov (United States)

    Postica, V.; Lupan, O.; Ababii, N.; Hoppe, M.; Adelung, R.; Chow, L.; Sontea, V.; Aschehoug, P.; Viana, V.; Pauporté, Th.

    2018-02-01

    In this work, zinc oxide (ZnO) nanostructured films were grown using a simple synthesis from chemical solutions (SCS) approach from aqueous baths at relatively low temperatures (room temperature (gas response of 2). Up to 200 °C operating temperature the samples are highly selective to H2 gas, with highest response of 12 at 150 °C. This study demonstrates that surface functionalization of n-ZnO nanostructured films with p-type oxides is very important for improvement of gas sensing properties.

  9. Nanostructured ZnO films for potential use in LPG gas sensors

    Science.gov (United States)

    Latyshev, V. M.; Berestok, T. O.; Opanasyuk, A. S.; Kornyushchenko, A. S.; Perekrestov, V. I.

    2017-05-01

    The aim of the work was to obtain ZnO nanostructures with heightened surface area and to study relationship between formation method and gas sensor properties towards propane-butane mixture (LPG). In order to synthesize ZnO nanostructures chemical and physical formation methods have been utilized. The first one was chemical bath deposition technology and the second one magnetron sputtering of Zn followed by oxidation. Optimal method and technological parameters corresponding to formation of material with the highest sensor response have been determined experimentally. Dynamical gas sensor response at different temperature values and dependencies of the sensor sensitivity on the temperature at different LPG concentrations in air have been investigated. It has been found, that sensor response depends on the sample morphology and has the highest value for the structure consisting of thin nanowires. The factors that lead to the decrease in the gas sensor operating temperature have been determined.

  10. Vibrational Order, Structural Properties, and Optical Gap of ZnO Nanostructures Sintered through Thermal Decomposition

    Directory of Open Access Journals (Sweden)

    Alejandra Londono-Calderon

    2014-01-01

    Full Text Available The sintering of different ZnO nanostructures by the thermal decomposition of zinc acetate is reported. Morphological changes from nanorods to nanoparticles are exhibited with the increase of the decomposition temperature from 300 to 500°C. The material showed a loss in the crystalline order with the increase in the temperature, which is correlated to the loss of oxygen due to the low heating rate used. Nanoparticles have a greater vibrational freedom than nanorods which is demonstrated in the rise of the main Raman mode E 2(high during the transformation. The energy band gap of the nanostructured material is lower than the ZnO bulk material and decreases with the rise in the temperature.

  11. Nanostructured ‘Anastacia’ flowers for Zn coating by electrodepositing ZnO at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Marta M., E-mail: martamalves@tecnico.ulisboa.pt [ICEMS Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa (Portugal); Santos, Catarina F.; Carmezim, Maria J. [ICEMS Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa (Portugal); EST Setúbal, DEM, Instituto Politécnico de Setúbal, Campus IPS, 2910 Setúbal (Portugal); Montemor, Maria F. [ICEMS Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa (Portugal)

    2015-03-30

    Graphical abstract: - Highlights: • Functional coating of Zn with ZnO ‘Anastacia’ flowers. • Flowers are composed by nano-hexagonal units of single-crystal wurtzite ZnO. • The growth mechanism of these flowers is discussed. • Room temperature yield cost-effective electrodeposited ZnO ‘Anastacia’ flowers. - Abstract: Functional coatings composed of ZnO, a new flowered structured denominated as ‘Anastacia’ flowers, were successfully obtained through a facile and green one-step electrodeposition approach on Zn substrate. Electrodeposition was performed at constant cathodic potential, in Zn(NO{sub 3}){sub 2} aqueous solution, at pH 6 and at room temperature. The resulting ZnO thin uniform layer, with an average thickness of 300 nm, bearing top 3D hierarchical nanostructures that compose ‘Anastacia’ flowers, was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman. The results reveal a nano-architecture structure composed by nano-hexagonal units of single-crystal wurtzite ZnO structure with a [0 0 0 1] growth direction along the longitudinal particles axis. Other morphological features, sphere-like, rod-like and random distributed hexagons were also obtained by varying the electrodeposition time as observed by SEM. The Raman spectroscopy revealed the typical peak of ZnO wurtzite for all the obtained morphologies. Coatings wettability was studied and the different morphologies display distinct water contact angles with the ‘Anastacia’ flowers coating showing a wettability of 110°. These results pave the way for simple and low-cost routes for the production of novel functionalized coatings of ZnO over Zn, with potential for biomedical devices.

  12. Nanostructured ‘Anastacia’ flowers for Zn coating by electrodepositing ZnO at room temperature

    International Nuclear Information System (INIS)

    Alves, Marta M.; Santos, Catarina F.; Carmezim, Maria J.; Montemor, Maria F.

    2015-01-01

    Graphical abstract: - Highlights: • Functional coating of Zn with ZnO ‘Anastacia’ flowers. • Flowers are composed by nano-hexagonal units of single-crystal wurtzite ZnO. • The growth mechanism of these flowers is discussed. • Room temperature yield cost-effective electrodeposited ZnO ‘Anastacia’ flowers. - Abstract: Functional coatings composed of ZnO, a new flowered structured denominated as ‘Anastacia’ flowers, were successfully obtained through a facile and green one-step electrodeposition approach on Zn substrate. Electrodeposition was performed at constant cathodic potential, in Zn(NO 3 ) 2 aqueous solution, at pH 6 and at room temperature. The resulting ZnO thin uniform layer, with an average thickness of 300 nm, bearing top 3D hierarchical nanostructures that compose ‘Anastacia’ flowers, was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman. The results reveal a nano-architecture structure composed by nano-hexagonal units of single-crystal wurtzite ZnO structure with a [0 0 0 1] growth direction along the longitudinal particles axis. Other morphological features, sphere-like, rod-like and random distributed hexagons were also obtained by varying the electrodeposition time as observed by SEM. The Raman spectroscopy revealed the typical peak of ZnO wurtzite for all the obtained morphologies. Coatings wettability was studied and the different morphologies display distinct water contact angles with the ‘Anastacia’ flowers coating showing a wettability of 110°. These results pave the way for simple and low-cost routes for the production of novel functionalized coatings of ZnO over Zn, with potential for biomedical devices

  13. High electro-catalytic activities of glucose oxidase embedded one-dimensional ZnO nanostructures

    International Nuclear Information System (INIS)

    Sarkar, Nirmal K; Bhattacharyya, Swapan K

    2013-01-01

    One-dimensional ZnO nanorods and nanowires are separately synthesized on Zn substrate by simple hydrothermal processes at low temperatures. Electro-catalytic responses of glucose oxidase/ZnO/Zn electrodes using these two synthesized nanostructures of ZnO are reported and compared with others available in literature. It is apparent the Michaelis–Menten constant, K M app , for the present ZnO nanowire, having a greater aspect ratio, is found to be the lowest when compared with others. This sensor shows lower oxidation peak potential with a long detection range of 6.6 μM–380 mM and the highest sensitivity of ∼35.1 μA cm −2 mM −1 , among the reported values in the literature. Enzyme catalytic efficiency and turnover numbers are also found to be remarkably high. (paper)

  14. Double-layered ZnO nanostructures for efficient perovskite solar cells

    KAUST Repository

    Mahmood, Khalid; S. Swain, Bhabani; Amassian, Aram

    2014-01-01

    To date, a single layer of TiO2 or ZnO has been the most successful implementations of any electron transport layer (ETL) in solution-processed perovskite solar cells. In a quest to improve the ETL, we explore a new nanostructured double-layer ZnO film for mesoscopic perovskite-based thin film photovoltaics. This approach yields a maximum power conversion efficiency of 10.35%, which we attribute to the morphology of oxide layer and to faster electron transport. The successful implementation of the low-temperature hydrothermally processed double-layer ZnO film as ETL in perovskite solar cells highlights the opportunities to further improve the efficiencies by focusing on the ETL in this rapidly developing field. This journal is

  15. Nanostructured Zn and ZnO nanowire thin films for mechanical and self-cleaning applications

    Energy Technology Data Exchange (ETDEWEB)

    Shaik, Ummar Pasha [Advanced Centre of Research in High Energy Materials, University of Hyderabad, Prof. C R Rao Road, Gachibowli, Hyderabad 500046 (India); Purkayastha, Debarun Dhar, E-mail: ddebarun@yahoo.com [Department of Physics, National Institute of Technology Nagaland, Chumukedima, Dimapur 797103 (India); Krishna, M. Ghanashyam [Advanced Centre of Research in High Energy Materials, University of Hyderabad, Prof. C R Rao Road, Gachibowli, Hyderabad 500046 (India); School of Physics, University of Hyderabad, Prof. C R Rao Road, Gachibowli, Hyderabad 500046 (India); Madhurima, V. [Department of Physics, Central University of Tamil Nadu, Thiruvarur 610004 (India)

    2015-03-01

    Highlights: • Zn metal films were deposited by thermal evaporation, on various substrates. • Upon annealing Zn there is transformation of the Zn nanosheets into ZnO nanowires. • ZnO nanowires are superhydrophobic and exhibit wetting transition on UV exposure. • ZnO will be useful in self-cleaning, mechanical and oxidation resistance surfaces. - Abstract: Nanostructured Zn metal films were deposited by thermal evaporation, on borosilicate glass, Quartz, sapphire, lanthanum aluminate and yttria stabilized zirconia substrates. The as-deposited films are nanocrystalline and show a morphology that consists of triangular nanosheets. The films are hydrophobic with contact angles between 102° and 120° with hardness and Young's modulus between 0.15–0.8 GPa and 18–300 GPa, respectively. Thermal annealing of the films at 500 °C results only in partial oxidation of Zn to ZnO, which indicates good oxidation resistance. Annealing also causes transformation of the Zn nanosheets into ZnO nanowires that are polycrystalline in nature. The ZnO nanowires are superhydrophobic with contact angles between 159° and 162°, contact angle hysteresis between 5° and 10° and exhibit a reversible superhydrophobic–hydrophilic transition under UV irradiation. The nanowires are much softer than the as-deposited Zn metal films, with hardness between 0.02 and 0.4 GPa and Young's modulus between 3 and 35 GPa. The current study thus demonstrates a simple process for fabrication of nanostructured Zn metal films followed by a one-step transformation to nanowires with properties that will be very attractive for mechanical and self-cleaning applications.

  16. Mechanism and Growth of Flexible ZnO Nanostructure Arrays in a Facile Controlled Way

    Directory of Open Access Journals (Sweden)

    Yangping Sheng

    2011-01-01

    Full Text Available Nanostructure arrays-based flexible devices have revolutionary impacts on the application of traditional semiconductor devices. Here, a one-step method to synthesize flexible ZnO nanostructure arrays on Zn-plated flexible substrate in Zn(NO32/NH3⋅H2O solution system at 70–90∘C was developed. We found out that the decomposition of Zn(OH2 precipitations, formed in lower NH3⋅H2O concentration, in the bulk solution facilitates the formation of flower-like structure. In higher temperature, 90∘C, ZnO nanoplate arrays were synthesized by the hydrolysis of zinc hydroxide. Highly dense ZnO nanoparticale layer formed by the reaction of NH3⋅H2O with Zn plating layer in the initial self-seed process could improve the vertical alignment of the nanowires arrays. The diameter of ZnO nanowire arrays, from 200 nm to 60 nm, could be effectively controlled by changing the stability of Zn(NH342+ complex ions by varying the ratio of Zn(NO32 to NH3⋅H2O which further influence the release rate of Zn2+ ions. This is also conformed by different amounts of the Zn vacancy as determined by different UV emissions of the PL spectra in the range of 380–403 nm.

  17. Superhydrophobic multi-scale ZnO nanostructures fabricated by chemical vapor deposition method.

    Science.gov (United States)

    Zhou, Ming; Feng, Chengheng; Wu, Chunxia; Ma, Weiwei; Cai, Lan

    2009-07-01

    The ZnO nanostructures were synthesized on Si(100) substrates by chemical vapor deposition (CVD) method. Different Morphologies of ZnO nanostructures, such as nanoparticle film, micro-pillar and micro-nano multi-structure, were obtained with different conditions. The results of XRD and TEM showed the good quality of ZnO crystal growth. Selected area electron diffraction analysis indicates the individual nano-wire is single crystal. The wettability of ZnO was studied by contact angle admeasuring apparatus. We found that the wettability can be changed from hydrophobic to super-hydrophobic when the structure changed from smooth particle film to single micro-pillar, nano-wire and micro-nano multi-scale structure. Compared with the particle film with contact angle (CA) of 90.7 degrees, the CA of single scale microstructure and sparse micro-nano multi-scale structure is 130-140 degrees, 140-150 degrees respectively. But when the surface is dense micro-nano multi-scale structure such as nano-lawn, the CA can reach to 168.2 degrees . The results indicate that microstructure of surface is very important to the surface wettability. The wettability on the micro-nano multi-structure is better than single-scale structure, and that of dense micro-nano multi-structure is better than sparse multi-structure.

  18. Strain modulated defect luminescence in ZnO nanostructures grown on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hung-Ing; Hsiao, Jui-Ju; Huang, Yi-Jen; Wang, Jen-Cheng [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC (China); Wu, Ya-Fen [Department of Electronic Engineering, Ming Chi University of Technology, Taishan, New Taipei 243, Taiwan, ROC (China); Lu, Bing-Yuh [Department of Electrical Engineering, Tun Gnan University, Shenkeng, New Taipei 222, Taiwan, ROC (China); Nee, Tzer-En, E-mail: neete@mail.cgu.edu.tw [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC (China)

    2015-12-15

    The strain modulated defect green luminescence from ZnO nanostructures grown on silicon substrates has been investigated in-depth. According to the Warren–Averbach Fourier analysis of the X-ray diffraction profiles, both the internal strain and the average crystallite size of the well-ordered nano-size ZnO nanostructures could be subtly modulated by careful adjustment of the aqueous solution of zinc nitrate (Zn(NO{sub 3}){sub 2}) and ammonium hydroxide (NH{sub 3}OH) used in the hydrothermal treatment. Visible defect-related and ultraviolet band-to-band emissions were characterized using temperature-dependent photoluminescence measurements over a broad temperature range from 20 to 300 K. It was found that the thermal-related tensile strain led to the blueshift of the green emission with increasing temperature, while the violet and ultraviolet emissions were thermally insensitive. These spectral observations were substantially corroborated by the deformation potential theory. - Highlights: • The strain modulated defect green luminescence from ZnO nanostructures. • Visible and ultraviolet emissions were characterized using photoluminescence. • The tensile strain led to the blueshift of the green emission. • The spectral observations were corroborated by the deformation potential theory.

  19. Effects of surface morphology on the optical and electrical properties of Schottky diodes of CBD deposited ZnO nanostructures

    Science.gov (United States)

    Mwankemwa, Benard S.; Akinkuade, Shadrach; Maabong, Kelebogile; Nel, Jackie M.; Diale, Mmantsae

    2018-04-01

    We report on effect of surface morphology on the optical and electrical properties of chemical bath deposited Zinc oxide (ZnO) nanostructures. ZnO nanostructures were deposited on the seeded conducting indium doped tin oxide substrate positioned in three different directions in the growth solution. Field emission scanning electron microscopy was used to evaluate the morphological properties of the synthesized nanostructures and revealed that the positioning of the substrate in the growth solution affects the surface morphology of the nanostructures. The optical absorbance, photoluminescence and Raman spectroscopy of the resulting nanostructures are discussed. The electrical characterization of the Schottky diode such as barrier height, ideality factor, rectification ratios, reverse saturation current and series resistance were found to depend on the nanostructures morphology. In addition, current transport mechanism in the higher forward bias of the Schottky diode was studied and space charge limited current was found to be the dominant transport mechanism in all samples.

  20. Sonochemical synthesis of Dy-doped ZnO nanostructures and their photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yayapao, Oranuch [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun, E-mail: ttpthongtem@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Phuruangrat, Anukorn, E-mail: phuruangrat@hotmail.com [Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Thongtem, Somchai [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-11-05

    Highlights: •Undoped and Dy-doped ZnO used as photocatalysts. •They were synthesized by sonochemistry. •The promising materials for treatment of organic pollutants. -- Abstract: Dy-doped ZnO nanostructures were synthesized by a sonochemical method. The concentration effect of Dy on their phase, morphology, optical properties and photocatalytic activities was investigated. XRD patterns indicated that the as-synthesized 0–3% Dy-doped ZnO was hexagonal wurtzite structure. SEM and TEM show that the products were nanorods with their growth direction along the c axis. The photoluminescence spectrum of 3% Dy-doped ZnO, applied by Gaussian analysis, consists of three emission peaks at 376 nm, 448 nm and 487 nm. The photocatalytic activities of the as-synthesized products were determined from the degradation of methylene blue (C{sub 16}H{sub 18}N{sub 3}SCl) by UV radiation. In this research, the 3% Dy-doped ZnO showed the highest photocatalytic activity.

  1. Sonochemical synthesis of Dy-doped ZnO nanostructures and their photocatalytic properties

    International Nuclear Information System (INIS)

    Yayapao, Oranuch; Thongtem, Titipun; Phuruangrat, Anukorn; Thongtem, Somchai

    2013-01-01

    Highlights: •Undoped and Dy-doped ZnO used as photocatalysts. •They were synthesized by sonochemistry. •The promising materials for treatment of organic pollutants. -- Abstract: Dy-doped ZnO nanostructures were synthesized by a sonochemical method. The concentration effect of Dy on their phase, morphology, optical properties and photocatalytic activities was investigated. XRD patterns indicated that the as-synthesized 0–3% Dy-doped ZnO was hexagonal wurtzite structure. SEM and TEM show that the products were nanorods with their growth direction along the c axis. The photoluminescence spectrum of 3% Dy-doped ZnO, applied by Gaussian analysis, consists of three emission peaks at 376 nm, 448 nm and 487 nm. The photocatalytic activities of the as-synthesized products were determined from the degradation of methylene blue (C 16 H 18 N 3 SCl) by UV radiation. In this research, the 3% Dy-doped ZnO showed the highest photocatalytic activity

  2. Boron doped nanostructure ZnO films deposited by ultrasonic spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Karakaya, Seniye, E-mail: seniyek@ogu.edu.tr; Ozbas, Omer

    2015-02-15

    Highlights: • Nanostructure undoped and boron doped ZnO films were deposited by USP technique. • Influences of doping on the surface and optical properties of the ZnO films were investigated. • XRD spectra of the films exhibited a variation in crystalline quality depending on the B content. - Abstract: ZnO is an II–VI compound semiconductor with a wide direct band gap of 3.3 eV at room temperature. Doped with group III elements (B, Al or Ga), it becomes an attractive candidate to replace tin oxide (SnO{sub 2}) or indium tin oxide (ITO) as transparent conducting electrodes in solar cell devices and flat panel display due to competitive electrical and optical properties. In this work, ZnO and boron doped ZnO (ZnO:B) films have been deposited onto glass substrates at 350 ± 5 °C by a cost-efficient ultrasonic spray pyrolysis technique. The optical, structural, morphological and electrical properties of nanostructure undoped and ZnO:B films have been investigated. Electrical resistivity of films has been analyzed by four-probe technique. Optical properties and thicknesses of the films have been examined in the wavelength range 1200–1600 nm by using spectroscopic ellipsometry (SE) measurements. The optical constants (refractive index (n) and extinction coefficient (k)) and the thicknesses of the films have been fitted according to Cauchy model. The optical method has been used to determine the band gap value of the films. Transmission spectra have been taken by UV spectrophotometer. It is found that both ZnO and ZnO:B films have high average optical transmission (≥80%). X-ray diffraction (XRD) patterns indicate that the obtained ZnO has a hexagonal wurtzite type structure. The morphological properties of the films were studied by atomic force microscopy (AFM). The surface morphology of the nanostructure films is found to depend on the concentration of B. As a result, ZnO:B films are promising contender for their potential use as transparent window layer and

  3. Structural, magnetic and optical properties of ZnO nanostructures converted from ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Prayas Chandra; Ghosh, Surajit; Srivastava, P.C., E-mail: pcsrivastava50@gmail.com

    2016-09-15

    Graphical abstract: The phase conversion of ZnS to highly crystalline hexagonal ZnO was done by heat treatment. - Highlights: • Phase change of cubic ZnS to hexagonal ZnO via heat treatment. • Band gap was found to decrease with increasing calcinations temperature. • ZnO samples have higher magnetic moment than ZnS. • Blocking Temperature of the samples is well above room temperature. • Maximum negative%MR with saturation value ∼38% was found for sample calcined at 600° C. - Abstract: The present work concentrates on the synthesis of cubic ZnS and hexagonal ZnO semiconducting nanoparticle from same precursor via co-precipitation method. The phase conversion of ZnS to highly crystalline hexagonal ZnO was done by heat treatment. From the analysis of influence of calcination temperature on the structural, optical and vibrational properties of the samples, an optimum temperature was found for the total conversion of ZnS nanoparticles to ZnO. Role of quantum confinement due to finite size is evident from the blue shift of the fundamental absorption in UV–vis spectra only in the ZnS nanoparticles. The semiconducting nature of the prepared samples is confirmed from the UV–vis, PL study and transport study. From the magnetic and transport studies, pure ZnO phase was found to be more prone to magnetic field.

  4. Synthesis of Cu Doped ZnO Nanostructures for Ultra Violet Sensing

    Directory of Open Access Journals (Sweden)

    Nazar Abbas SHAH

    2015-03-01

    Full Text Available This paper mainly focused on the synthesis of zinc oxide nanostructures, their characterization and their ultra violet light sensing response at room temperature. Nanowires, nanobelts and nanosheets were synthesized by varying doping material copper by using vapor transport technique governed by the vapor-liquid-solid or vapor-solid mechanisms. The structural, morphological and optical characterization was carried out using X-ray diffraction, scanning electron microscopy, energy dispersive X-Ray and ultra violet visible spectroscopy techniques. Finally the ultra violet light sensing response of these nanostructures was observed by using Keithley meter. The high ultra violet photosensitivity and fast response time justifies the effective utilization of these ZnO nanostructures as ultra violet sensors in different areas.

  5. Photoelectrochemical characterization of the role of organic sensitizers adsorbed on nanostructured ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Hastall, Andreas; Loewenstein, Thomas; Schlettwein, Derck [Institut fuer Angewandte Physik, Justus-Liebig-Universitaet Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany)

    2008-07-01

    Porous sensitized ZnO is a promising material for application as electrode in dye-sensitized solar cells (DSSC) to utilize the intense absorption of organic sensitizers in the visible spectral range. Electrochemical deposition of ZnO from aqueous solutions is a low temperature process (<150 C) which allows the use of various substrates. The process can be performed at low energy input and cost and is therefore promising short pay-back times and high net energy gains. The role of the adsorbed sensitizer dye and resulting charge carrier generation, collection, but also recombination in the interface of ZnO/sensitizer/electrolyte of DSSC were analyzed in detail by transient photocurrent measurements, intensity modulated photocurrent and photovoltage spectroscopy (IMPS/IMVS), photovoltage decay and charge-extraction. Results are discussed for different sensitizers adsorbed to the ZnO surface and for ZnO prepared on various substrates and optimized in structure and morphology.

  6. ZnO thin films and nanostructures for emerging optoelectronic applications

    Science.gov (United States)

    Rogers, D. J.; Teherani, F. H.; Sandana, V. E.; Razeghi, M.

    2010-02-01

    ZnO-based thin films and nanostructures grown by PLD for various emerging optoelectronic applications. AZO thin films are currently displacing ITO for many TCO applications due to recent improvements in attainable AZO conductivity combined with processing, cost and toxicity advantages. Advances in the channel mobilities and Id on/off ratios in ZnO-based TTFTs have opened up the potential for use as a replacement for a-Si in AM-OLED and AM-LCD screens. Angular-dependent specular reflection measurements of self-forming, moth-eye-like, nanostructure arrays grown by PLD were seen to have green gap in InGaN-based LEDs was combated by substituting low Ts PLD n-ZnO for MOCVD n-GaN in inverted hybrid heterojunctions. This approach maintained the integrity of the InGaN MQWs and gave LEDs with green emission at just over 510 nm. Hybrid n-ZnO/p-GaN heterojunctions were also seen to have the potential for UV (375 nm) EL, characteristic of ZnO NBE emission. This suggests that there was significant hole injection into the ZnO and that such LEDs could profit from the relatively high exciton binding energy of ZnO.

  7. Preparation and integration of nanostructured titanium dioxide

    KAUST Repository

    Zeng, Hua Chun

    2011-10-01

    Titanium dioxide (TiO2) is a chemically stable nontoxic transition-metal oxide associated with a wide range of existing chemical engineering processes. In this short review, recent research endeavors in preparation and integration of nanostructured TiO2 materials system will be featured and discussed for their potential new applications. Because material development always plays pivotal roles in the progress of a particular engineering discipline, the reviewed subjects will provide useful information to stimulate nanoscale research of chemical engineering, linking established fundamentals with practical applications. Some critical issues and challenges regarding further development of this important functional material for nanotechnology will also be addressed. © 2011 Elsevier Ltd. All rights reserved.

  8. Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst

    DEFF Research Database (Denmark)

    Sun, Jian-Hui; Dong, Shu-Ying; Wang, Yong-Kui

    2009-01-01

    achieved 68.0%, 99.0% and 98.5%, the TOC removal efficiencies achieved 43.2%, 59.4% and 70.6%, respectively. Compared to commercial ZnO, 16-22% higher TOC removal efficiency was obtained by the dumbbell-shaped ZnO. The results indicated that the prepared dumbbell-shaped ZnO microcrystal photocatalyst...

  9. Nanostructured ZnO films: A study of molecular influence on transport properties by impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sappia, Luciano D.; Trujillo, Matias R. [Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Chacabuco 461, T4000ILI San Miguel de Tucumán (Argentina); Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, Fac. de Cs. Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 San Miguel de Tucumán (Argentina); Lorite, Israel [Division of Superconductivity and Magnetism, Institute for Experimental Physics II, University of Leipzig, Linnéstrasse 5, 04103 Leipzig (Germany); Madrid, Rossana E., E-mail: rmadrid@herrera.unt.edu.ar [Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Chacabuco 461, T4000ILI San Miguel de Tucumán (Argentina); Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, Fac. de Cs. Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 San Miguel de Tucumán (Argentina); Tirado, Monica [NanoProject and Laboratorio de Nanomateriales y Propiedades Dieléctricas, Departamento de Física, Universidad Nacional de Tucumán, Avenida Independencia 1800, Tucumán (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); and others

    2015-10-15

    Graphical abstract: - Highlights: • We study electrical transport in nanostructured ZnO films by impedance spectroscopy. • Bioaggregates on the surface produce strong changes in film transport properties. • This behavior is explained by modeling data with RC parallel circuits. • Electrical responses of ZnO films to aggregates are promising for biosensing. - Abstract: Nanomaterials based on ZnO have been used to build glucose sensors due to its high isoelectric point, which is important when a protein like Glucose Oxidase (GOx) is attached to a surface. It also creates a biologically friendly environment to preserve the activity of the enzyme. In this work we study the electrical transport properties of ZnO thin films (TFs) and single crystals (SC) in contact with different solutions by using impedance spectroscopy. We have found that the composition of the liquid, by means of the charge of the ions, produces strong changes in the transport properties of the TF. The enzyme GOx and phosphate buffer solutions have the major effect in the conduction through the films, which can be explained by the entrapment of carriers at the grain boundaries of the TFs. These results can help to design a new concept in glucose biosensing.

  10. Role of VI/II ratio on the growth of ZnO nanostructures using chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Urgessa, Z.N., E-mail: zelalem.urgessa@nmmu.ac.za [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Oluwafemi, O.S. [Department of Chemistry and Chemical Technology, Walter Sisulu University, Mthatha Campus, Private Bag XI, 5117 (South Africa); Botha, J.R. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2012-05-15

    In this paper the growth process and morphological evolution of ZnO nanostructures were investigated in a series of experiments using chemical bath deposition. The experimental results indicate that the morphological evolution depends on the reaction conditions, particularly on OH{sup -} to Zn{sup 2+} ratio (which directly affects the pH). For low VI/II ratios, quasi-spherical nanoparticles of an average diameter 30 nm are obtained, whereas for larger VI/II ratios, nanorods with an average diameter less than 100 nm are produced, which indicates that by systematically controlling the VI/II ratio, it is possible to produce different shapes and sizes of ZnO nanostructures. A possible mechanism for the nanostructural change of the as-synthesized ZnO from particle to rod was elucidated based on the relative densities of H{sup +} and OH{sup -} in the solution.

  11. Role of VI/II ratio on the growth of ZnO nanostructures using chemical bath deposition

    International Nuclear Information System (INIS)

    Urgessa, Z.N.; Oluwafemi, O.S.; Botha, J.R.

    2012-01-01

    In this paper the growth process and morphological evolution of ZnO nanostructures were investigated in a series of experiments using chemical bath deposition. The experimental results indicate that the morphological evolution depends on the reaction conditions, particularly on OH − to Zn 2+ ratio (which directly affects the pH). For low VI/II ratios, quasi-spherical nanoparticles of an average diameter 30 nm are obtained, whereas for larger VI/II ratios, nanorods with an average diameter less than 100 nm are produced, which indicates that by systematically controlling the VI/II ratio, it is possible to produce different shapes and sizes of ZnO nanostructures. A possible mechanism for the nanostructural change of the as-synthesized ZnO from particle to rod was elucidated based on the relative densities of H + and OH − in the solution.

  12. Controllable synthesis of spindle-like ZnO nanostructures by a simple low-temperature aqueous solution route

    International Nuclear Information System (INIS)

    Lu Hongxia; Zhao Yunlong; Yu Xiujun; Chen Deliang; Zhang Liwei; Xu Hongliang; Yang Daoyuan; Wang Hailong; Zhang Rui

    2011-01-01

    Spindle-like ZnO nanostructures were successfully synthesized through direct precipitation of zinc acetate aqueous solution at 60 deg. C. Phase structure, morphology and microstructure of the products were investigated by X-ray diffraction, TG-DTA, FTIR and field emission scanning electron microscopy (FESEM). Result showed that hexagonal wurtzite structure ZnO nanostructures with about 100 nm in diameter and 100-200 nm in length were obtained. HMTA acted as a soft template in the process and played an important role in the formation of spindle-like ZnO nanostructures. Meanwhile, different morphologies were also obtained by altering synthetic temperature, additional agents and the ratios of Zn 2+ /OH - . Possible mechanism for the variations of morphology with synthesis parameters was also discussed in this paper.

  13. Growth of ZnO nanostructures on Au-coated Si: Influence of growth temperature on growth mechanism and morphology

    DEFF Research Database (Denmark)

    Kumar, Rajendra; McGlynn, E.; Biswas, M.

    2008-01-01

    ZnO nanostructures were grown on Au-catalyzed Si silicon substrates using vapor phase transport at growth temperatures from 800 to 1150 degrees C. The sample location ensured a low Zn vapor supersaturation during growth. Nanostructures grown at 800 and 850 degrees C showed a faceted rodlike...... growth tended to dominate resulting in the formation of a porous, nanostructured morphology. In all cases growth was seen only on the Au-coated region. Our results show that the majority of the nanostructures grow via a vapor-solid mechanism at low growth temperatures with no evidence of Au nanoparticles...

  14. Synthesis of ZnO Nanostructures for Low Temperature CO and UV Sensing

    Directory of Open Access Journals (Sweden)

    Nazar Abbas Shah

    2012-10-01

    Full Text Available In this paper, synthesis and results of the low temperature sensing of carbon monoxide (CO gas and room temperature UV sensors using one dimensional (1-D ZnO nanostructures are presented. Comb-like structures, belts and rods, and needle-shaped nanobelts were synthesized by varying synthesis temperature using a vapor transport method. Needle-like ZnO nanobelts are unique as, according to our knowledge, there is no evidence of such morphology in previous literature. The structural, morphological and optical characterization was carried out using X-ray diffraction, scanning electron microscopy and diffused reflectance spectroscopy techniques. It was observed that the sensing response of comb-like structures for UV light was greater as compared to the other grown structures. Comb-like structure based gas sensors successfully detect CO at 75 °C while other structures did not show any response.

  15. Nanostructured ZnO thin films by chemical bath deposition in basic aqueous ammonia solutions for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Chu, J.B.; Huang, S.M.; Zhang, D.W.; Bian, Z.Q.; Li, X.D.; Sun, Z. [East China Normal University, Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, Shanghai (China); Yin, X.J. [Singapore Polytechnic, Advanced Materials Technology Center, Singapore (Singapore)

    2009-06-15

    This paper presents further insights and observations of the chemical bath deposition (CBD) of ZnS thin films using an aqueous medium involving Zn-salt, ammonium sulfate, aqueous ammonia, and thiourea. Results on physical and chemical properties of the grown layers as a function of ammonia concentration are reported. Physical and chemical properties were analyzed using scanning electron microscopy (SEM), X-ray energy dispersive (EDX), and X-ray diffraction (XRD). Rapid growth of nanostructured ZnO films on fluorine-doped SnO{sub 2} (FTO) glass substrates was developed. ZnO films crystallized in a wurtzite hexagonal structure and with a very small quantity of Zn(OH){sub 2} and ZnS phases were obtained for the ammonia concentration ranging from 0.75 to 2.0 M. Flower-like and columnar nanostructured ZnO films were deposited in two ammonia concentration ranges, respectively: one between 0.75 and 1.0 M and the other between 1.4 and 2.0 M. ZnS films were formed with a high ammonia concentration of 3.0 M. The formation mechanisms of ZnO, Zn(OH){sub 2}, and ZnS phases were discussed in the CBD process. The developed technique can be used to directly and rapidly grow nanostructured ZnO film photoanodes. Annealed ZnO nanoflower and columnar nanoparticle films on FTO substrates were used as electrodes to fabricate the dye sensitized solar cells (DSSCs). The DSSC based on ZnO-nanoflower film showed an energy conversion efficiency of 0.84%, which is higher compared to that (0.45%) of the cell being constructed using a photoanode of columnar nanoparticle ZnO film. The results have demonstrated the potential applications of CBD nanostructured ZnO films for photovoltaic cells. (orig.)

  16. Tuning the nanostructures and optical properties of undoped and N-doped ZnO by supercritical fluid treatment

    Science.gov (United States)

    Li, Yaping; Wang, Hui-Qiong; Chu, Tian-Jian; Li, Yu-Chiuan; Li, Xiaojun; Liao, Xiaxia; Wang, Xiaodan; Zhou, Hua; Kang, Junyong; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Zheng, Jin-Cheng

    2018-05-01

    Treatment of ZnO films in a supercritical fluid (SCF) has been reported to improve the performance of devices in which the treated ZnO films are incorporated; however, the mechanism of this improvement remains unclear. In this paper, we study the transformation of the surface morphologies and emission properties of ZnO films before and after SCF treatment, establishing the relationship between the treated and untreated structures and thereby enabling tuning of the catalytic or opto-electronic performance of ZnO films or ZnO-film-based devices. Both undoped and N-doped ZnO nanostructures generated by SCF treatment of films are investigated using techniques to characterize their surface morphology (scanning electron microscopy (SEM) and atomic force microscopy (AFM)) as well as room-temperature photoluminescence (RT-PL) spectroscopy. The water-mixed supercritical CO2 (W-SCCO2) technology was found to form nanostructures in ZnO films through a self-catalyzed process enabled by the Zn-rich conditions in the ZnO films. The W-SCCO2 was also found to promote the inhibition of defect luminescence by introducing -OH groups onto the films. Two models are proposed to explain the effects of the treatment with W-SCCO2. This work demonstrates that the W-SCCO2 technology can be used as an effective tool for the nanodesign and property enhancement of functional metal oxides.

  17. Characterization of ZnO nanostructures: A challenge to positron annihilation spectroscopy and other methods

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, Gerhard; Anwand, Wolfgang; Grambole, Dieter; Skorupa, Wolfgang [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Egger, Werner; Sperr, Peter [Institut fuer Angewandte Physik und Messtechnik LRT2, Fakultaet fuer Luft- und Raumfahrttechnik, Werner-Heisenberg-Weg 39, Universitaet der Bundeswehr, Neubiberg (Germany); Beinik, Igor; Wang, Lin; Teichert, Christian [Institut fuer Physik, Montanuniversitaet Leoben (Austria); Kuriplach, Jan; Lang, Jan [Department of Low Temperature Physics, Charles University, Prague (Czech Republic); Zviagin, Sergei; Cizmar, Erik [Institut Hochfeld-Magnetlabor, Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Ling, Chi Chung; Hsu, Yuk Fan; Xi, Yan Yan; Chen, Xinyi; Djurisic, Aleksandra B. [Department of Physics, University of Hong Kong, Hong Kong (China)

    2009-11-15

    ZnO nanostructures are of special interest for device applications. However, their structural characterization remains an ongoing challenge. This paper reviews recent efforts and latest achievements in this direction. Results comprise PAS in the form of Slow Positron Implantation Spectroscopy (SPIS) and Pulsed Low Energy Positron Lifetime Spectroscopy (PLEPS), Nuclear Reaction Analysis (NRA), Atomic Force Microscopy (AFM), conductive AFM (C-AFM), Nuclear Magnetic Resonance (NMR), Electron Spin Resonance (ESR), Photoluminescence (PL) spectroscopy, and latest theoretical investigations of structure-related and positron properties of selected defects. The fundamental importance of a relationship between fabrication conditions, native defect formation, and resulting optical and electronic properties is demonstrated by getting either inferior (nanorods) or significantly improved (tetrapods) optical properties compared to single crystal samples, depending on the nanostructure fabrication method. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Electrical and photocatalytic properties of boron-doped ZnO nanostructure grown on PET-ITO flexible substrates by hydrothermal method

    Science.gov (United States)

    Wang, Wei; Ai, Taotao; Yu, Qi

    2017-02-01

    Boron-doped zinc oxide sheet-spheres were synthesized on PET-ITO flexible substrates using a hydrothermal method at 90 °C for 5 h. The results of X-ray diffraction and X-ray photoelectron spectroscopy indicated that the B atoms were successfully doped into the ZnO lattice, the incorporation of B led to an increase in the lattice constant of ZnO and a change in its internal stress. The growth mechanism of pure ZnO nanorods and B-doped ZnO sheet-spheres was specifically investigated. The as-prepared BZO/PET-ITO heterojunction possessed obvious rectification properties and its positive turn-on voltage was 0.4 V. The carrier transport mechanisms involved three models such as hot carrier tunneling theory, tunneling recombination, and series-resistance effect were explored. The BZO/PET-ITO nanostructures were more effective than pure ZnO to degrade the RY 15, and the degradation rate reached 41.45%. The decomposition process with BZO nanostructure followed first-order reaction kinetics. The photocurrent and electrochemical impedance spectroscopy revealed that the B-doping could promote the separation of photo-generated electron-hole pairs, which was beneficial to enhance the photocatalytic activity. The photocurrent density of B-doped and pure ZnO/PET-ITO were 0.055 mA/cm2 and 0.016 mA/cm2, respectively. The photocatalytic mechanism of the sample was analyzed by the energy band theory.

  19. Imprinted ZnO nanostructure-based electrochemical sensing of calcitonin: A clinical marker for medullary thyroid carcinoma

    International Nuclear Information System (INIS)

    Patra, Santanu; Roy, Ekta; Madhuri, Rashmi; Sharma, Prashant K.

    2015-01-01

    Highlights: • Molecular imprinting-based sensor for medullary thyroid carcinoma marker was developed. • ZnO nanostructure was used as a platform for synthesis of imprinted polymer. • Imprinted polymer was prepared by ARGET–ATRP method. • A novel and biocompatible tyrosine amino acid derivative was used as monomer. • Linear working range is found from 9.99 ng L −1 to 7.919 mg L −1 with LOD 3.09 ng L −1 . - Abstract: The present work describes an exciting method for the selective and sensitive determination of calcitonin in human blood serum samples. Adopting the surface molecular imprinting technique, a calcitonin-imprinted polymer was prepared on the surface of the zinc oxide nanostructure. Firstly, a biocompatible tyrosine derivative as a monomer was grafted onto the surface of zinc oxide nanostructure followed by their polymerization on vinyl functionalized electrode surface by activator regenerated by electron transfer–atom transfer radical polymerization (ARGET–ATRP) technique. Such sensor can predict the small change in the concentration of calcitonin in the human body and it may also consider to be as cost-effective, renewable, disposable, and reliable for clinical studies having no such cross-reactivity and matrix effect from real samples. The morphologies and properties of the proposed sensor were characterized by scanning electron microscopy, cyclic voltammetry, difference pulse voltammetry and chronocoulometry. The linear working range was found to be 9.99 ng L −1 to 7.919 mg L −1 and the detection limit as low as 3.09 ± 0.01 ng L −1 (standard deviation for three replicate measurements) (S/N = 3)

  20. ZnO layers prepared by spray pyrolysis

    Science.gov (United States)

    Messaoudi, C.; Abd-Lefdil, S.; Sayah, D.; Cadene, M.

    1998-02-01

    Highly transparent undoped and indium doped ZnO thin films have been grown on glass substrates by using the spray pyrolysis process. Conditions of preparation have been optimized to get good quality and reproducible films with required properties. Polycrystalline films with an hexagonal Wurtzite-type structure were easily obtained under the optimum spraying conditions. Both of samples have shown high transmission coefficient in the visible and infrared wavelength range with sharp absorption edge around 380 nm which closely corresponds to the intrinsic band-gap of ZnO (3.2 eV). Orientation and crystallites size were remarkably modified by deposition temperature and indium doping. Des couches minces de ZnO, hautement transparentes, non dopées et dopées à l'indium ont été élaborées sur un substrat en verre par le procédé de pulvérisation chimique réactive spray. Les conditions de préparation ont été optimisées pour l'obtention de couches reproductibles, de bonne qualité et ayant les propriétés requises. Des films polycristallins, présentant une structure hexagonale de type Wurtzite, ont été aisément obtenus dans les conditions optimales de pulvérisation. Tous les échantillons ont présenté un coefficient de transmission élevé dans le domaine du visible et du proche infrarouge, avec une absorption brutale au voisinage de 380 nm, correspondant au gap optique du ZnO (3,2 eV). L'orientation et la taille des cristallites ont été remarquablement modifiées par la température du dépôt et par le dopage à l'indium.

  1. Influences of Co doping on the structural and optical properties of ZnO nanostructured

    Science.gov (United States)

    Majeed Khan, M. A.; Wasi Khan, M.; Alhoshan, Mansour; Alsalhi, M. S.; Aldwayyan, A. S.

    2010-07-01

    Pure and Co-doped ZnO nanostructured samples have been synthesized by a chemical route. We have studied the structural and optical properties of the samples by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), field-emission transmission electron microscope (FETEM), energy-dispersive X-ray (EDX) analysis and UV-VIS spectroscopy. The XRD patterns show that all the samples are hexagonal wurtzite structures. Changes in crystallite size due to mechanical activation were also determined from X-ray measurements. These results were correlated with changes in particle size followed by SEM and TEM. The average crystallite sizes obtained from XRD were between 20 to 25 nm. The TEM images showed the average particle size of undoped ZnO nanostructure was about 20 nm whereas the smallest average grain size at 3% Co was about 15 nm. Optical parameters such as absorption coefficient ( α), energy band gap ( E g ), the refractive index ( n), and dielectric constants ( σ) have been determined using different methods.

  2. Magnetic Properties of Gadolinium-Doped ZnO Films and Nanostructures

    KAUST Repository

    Roqan, Iman S.

    2016-08-29

    The magnetic properties of Gd-doped ZnO films and nanostructures are important to the development of next-generation spintronic devices. Here, we elucidate the significant role played by Gd-oxygen-deficiency defects in mediating/inducing ferromagnetic coupling in in situ Gd-doped ZnO thin films deposited at low oxygen pressure by pulsed laser deposition (PLD). Samples deposited at higher oxygen pressures exhibited diamagnetic responses. Vacuum annealing was used on these diamagnetic samples (grown at a relatively high oxygen pressures) to create oxygen- deficiency defects with the aim of demonstrating reproducibility of room-temperature ferromagnetism (RTFM). Samples annealed at oxygen environment exhibited super‐ paramagnetism and blocking-temperature effects. The samples possessed secondary phases; Gd segregation led to superparamagnetism. Theoretical studies showed a shift of the 4f level of Gd to the conduction band minimum (CBM) in Gd-doped ZnO nanowires, which led to an overlap with the Fermi level, resulting in strong exchange coupling and consequently RTFM.

  3. Homogeneous ZnO nanostructure arrays on GaAs substrates by two-step chemical bath synthesis

    International Nuclear Information System (INIS)

    Huang, Chun-Yuan; Wu, Tzung-Han; Cheng, Chiao-Yang; Su, Yan-Kuin

    2012-01-01

    ZnO nanostructures, including nanowires, nanorods, and nanoneedles, have been deposited on GaAs substrates by the two-step chemical bath synthesis. It was demonstrated that the O 2 -plasma treatment of GaAs substrates prior to the sol–gel deposition of seed layers was essential to conformally grow the nanostructures instead of 2D ZnO bunches and grains on the seed layers. Via adjusting the growth time and concentration of precursors, nanostructures with different average diameter (26–225 nm), length (0.98–2.29 μm), and density (1.9–15.3 × 10 9 cm −2 ) can be obtained. To the best of our knowledge, this is the first demonstration of ZnO nanostructure arrays grown on GaAs substrates by the two-step chemical bath synthesis. As an anti-reflection layer on GaAs-based solar cells, the array of ZnO nanoneedles with an average diameter of 125 nm, a moderate length of 2.29 μm, and the distribution density of 9.8 × 10 9 cm −2 has increased the power conversion efficiency from 7.3 to 12.2 %, corresponding to a 67 % improvement.

  4. Functionalized tetrapod-like ZnO nanostructures for plasmid DNA purification, polymerase chain reaction and delivery

    International Nuclear Information System (INIS)

    Nie Leng; Gao Lizeng; Yan Xiyun; Wang Taihong

    2007-01-01

    Functionalized tetrapodal ZnO nanostructures are tested in plasmid DNA experiments (1) as a solid-phase adsorbent for plasmid DNA purification (2) as improving reagents in a polymerase chain reaction (PCR) and (3) as novel carriers for gene delivery. The amino-modification, the tetrapod-like shape of the nanostructure and its high biocompatibility all contribute to measurements showing promise for applications. A sol-gel method is used for silica coating and amino-modification. Plasmid DNA is purified through reversible conjugations of amino-modified ZnO tetrapods with DNA. Also, as additional reagents, functionalized tetrapods are shown to improve the amount of PCR product. For transfection, ZnO tetrapods provide some protection against deoxyribonuclease cleavage of plasmid DNA and deliver plasmid DNA into cells with little cytotoxicity

  5. Influence of External Gaseous Environments on the Electrical Properties of ZnO Nanostructures Obtained by a Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Marcin Procek

    2016-11-01

    Full Text Available This paper deals with experimental investigations of ZnO nanostructures, consisting of a mixture of nanoparticles and nanowires, obtained by the chemical (hydrothermal method. The influences of both oxidizing (NO2 and reducing gases (H2, NH3, as well as relative humidity (RH on the physical and chemical properties of ZnO nanostructures were tested. Carrier gas effect on the structure interaction with gases was also tested; experiments were conducted in air and nitrogen (N2 atmospheres. The effect of investigated gases on the resistance of the ZnO nanostructures was tested over a wide range of concentrations at room temperature (RT and at 200 °C. The impact of near- ultraviolet (UV excitation (λ = 390 nm at RT was also studied. These investigations indicated a high response of ZnO nanostructures to small concentrations of NO2. The structure responses to 1 ppm of NO2 amounted to about: 600% in N2/230% in air at 200 °C (in dark conditions and 430% in N2/340% in air at RT (with UV excitation. The response of the structure to the effect of NO2 at 200 °C is more than 105 times greater than the response to NH3, and more than 106 times greater than that to H2 in the relation of 1 ppm. Thus the selectivity of the structure for NO2 is very good. What is more, the selectivity to NO2 at RT with UV excitation increases in comparison at elevated temperature. This paper presents a great potential for practical applications of ZnO nanostructures (including nanoparticles in resistive NO2 sensors.

  6. Structural and optical properties of ZnO nanostructures electrochemically synthesized on AZO/Ag/AZO-multilayer-film-coated polyethersulfone substrates

    International Nuclear Information System (INIS)

    Oh, Dohyun; Yoo, Chanho; No, Youngsoo; Kim, Suyoun; Kim, Taewhan; Cho, Woonjo; Kim, Jinyoung

    2012-01-01

    ZnO nanostructures were formed on Al-doped ZnO (AZO)/Ag/AZO-multilayer-film-coated flexible polyethersulfone (PES) substrates at low temperature by using an electrochemical deposition method. The resistivity of the AZO/Ag/AZO multilayer films decreased with increasing thickness of the Ag film. X-ray diffraction patterns for the ZnO nanostructures showed that the crystal structure of the ZnO was hexagonal wurtzite and that the orientation was along the c-axis perpendicular to the substrate. Scanning electron microscopy images showed that the ZnO nanostructures grown at current densities of - 1.0 and - 1.5 mA/cm 2 were ZnO nanorods with diameters of 150 nm and ZnO nanoflowers with a planar dimension, respectively. Photoluminescence spectra showed that the band-edge emission peak of the ZnO nanostructures dominantly appeared in the ultraviolet region. These results showed that ZnO nanorods and nanoflowers with high quality were synthesized on AZO/Ag/AZO-multilayer-film-coated PES substrates.

  7. Preparation and characterization of Ce-doped ZnO nanofibers by an electrospinning method

    Directory of Open Access Journals (Sweden)

    Jong-Pil Kim

    2011-02-01

    Full Text Available ZnO and Ce-doped ZnO Nanofibers on (111 Pt/SiO2/Si substrates were produced using an electrospinning technique. The as-prepared composite fibres were subjected to high-temperature calcination to produce inorganic fibers. After calcining at a temperature of 500 °C, the average diameter of the ZnO and Ce-doped ZnO nanofibers were determined to be 170 nm and 225 nm, respectively. The average grain size of the ZnO and Ce-doped ZnO nanofibers were about 50 nm and 57 nm, respectively. The microstructure, chemical bonding state and photoluminescence of the produced ZnO and Ce-doped ZnO nanofibers were investigated. The Ce-doped ZnO nanofiber can be assigned to the presence of Ce ions on substitutional sites of Zn ions and the Ce3+ state from X-ray photoelectron spectra. Compared with PL spectra of ZnO nanofibers, the peak position of the UV emission of the Ce-doped ZnO nanofibers is sharply suppressed while the green emission band is highly enhanced.

  8. Synthesis of 1D, 2D, and 3D ZnO Polycrystalline Nanostructures Using the Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Yung-Kuan Tseng

    2012-01-01

    Full Text Available This study employed various polyol solvents to synthesize zinc oxide polycrystalline nanostructures in the form of fibers (1D, rhombic flakes (2D, and spheres (3D. The synthetic process primarily involved the use of zinc acetate dihydrate in polyol solutions, which were used to derive precursors of zinc alkoxides. Following hydrolysis at 160°C, the zinc alkoxide particles self-assembled into polycrystalline nanostructures with different morphologies. Following calcination at 500°C for 1 h, polycrystalline ZnO with good crystallinity was obtained. FE-SEM explored variations in surface morphology; XRD was used to analyze the crystalline structures and crystallinity of the products, which were confirmed as ZnO wurtzite structures. FE-TEM verified that the ZnO nanostructures were polycrystalline. Furthermore, we employed TGA/DSC to observe the phase transition. According to the results of property analyses, we proposed models of the relevant formation mechanisms. Finally, various ZnO structures were applied in the degradation of methylene blue to compare their photocatalytic efficiency.

  9. Studies on the adsorption of RuN{sub 3} dye on sheet-like nanostructured porous ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rong; Pan, Jie; Briggs, Evan P.; Thrash, Marvin; Kerr, Lei L. [Department of Paper and Chemical Engineering, Miami University, Oxford, OH 45056 (United States)

    2008-04-15

    The interface between the ZnO and dye directly impacts the dye-sensitized solar cell (DSSC) performance. Nanostructured porous ZnO film was developed by a simple chemical solution process. Scanning electron microscope (SEM) images demonstrated the uniform ZnO films with sheet-like nanostructure. Adsorption studies indicated that the maximum adsorption capacity of RuN{sub 3} dye on the surface of ZnO films was approximately 0.016 mmol RuN{sub 3}/g ZnO films. Adsorption studies were conducted at 25 and 40 C. The results showed that the dye adsorption was significantly influenced by temperatures. Moreover, the problem of the dye aggregation on the ZnO surface was reduced at higher adsorption temperatures. The adsorption chemistry was studied with Raman spectroscopy. (author)

  10. Photoluminescence quenching processes by NO2 adsorption in ZnO nanostructured films

    Science.gov (United States)

    Cretı, A.; Valerini, D.; Taurino, A.; Quaranta, F.; Lomascolo, M.; Rella, R.

    2012-04-01

    The optical response by NO2 gas adsorption at different concentrations has been investigated, at room temperature, in ZnO nanostructured films grown by controlled vapor phase deposition. The variation (quenching) in the photoluminescence signal from excitonic and defects bands, due to the interactions between the oxidizing gas molecules and the sample surface, has been detected and dynamic responses and calibration curves as a function of gas concentration have been obtained and analyzed for each band. We showed that the sensing response results larger in excitonic band than in defect one and that the emission signal rises from two different quenchable and unquenchable states. A simple model was proposed in order to explain the quenching processes on the emission intensity and to correlate them to the morphological features of the samples. Finally, the reversibility of the quenching effects has also been tested at high gas concentration.

  11. Morphology evolution of hierarchical ZnO nanostructures modulated by supersaturation and growth temperature

    Science.gov (United States)

    Yan, Youguo; Zhou, Lixia; Yu, Lianqing; Zhang, Ye

    2008-07-01

    Three kinds of ZnO hierarchical structures, nanocombs with tube- and needle-shaped teeth and hierarchical nanorod arrays, were successfully synthesized through the chemical vapor deposition method. Combining the experimental parameters, the microcosmic growing conditions (growth temperature and supersaturation) along the flux was discussed at length, and, based on the conclusions, three reasonable growth processes were proposed. The results and discussions were beneficial to further realize the relation between the growing behavior of the nanomaterial and microcosmic conditions, and the hierarchical nanostructures obtained were also expected to have potential applications as functional blocks in future nanodevices. Furthermore, the study of photoluminescence further indicated that the physical properties were strongly dependent on the crystal structure.

  12. Characterization of nanostructured ZnO thin films deposited through vacuum evaporation

    Directory of Open Access Journals (Sweden)

    Jose Alberto Alvarado

    2015-04-01

    Full Text Available This work presents a novel technique to deposit ZnO thin films through a metal vacuum evaporation technique using colloidal nanoparticles (average size of 30 nm, which were synthesized by our research group, as source. These thin films had a thickness between 45 and 123 nm as measured by profilometry. XRD patterns of the deposited thin films were obtained. According to the HRSEM micrographs worm-shaped nanostructures are observed in samples annealed at 600 °C and this characteristic disappears as the annealing temperature increases. The films obtained were annealed from 25 to 1000 °C, showing a gradual increase in transmittance spectra up to 85%. The optical band gaps obtained for these films are about 3.22 eV. The PL measurement shows an emission in the red and in the violet region and there is a correlation with the annealing process.

  13. Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Wolcott, Abraham; Zhang, Jin Z. [Department of Chemistry and Biochemistry, University of California, Santa Cruz 1156 High St. Santa Cruz, CA 95064 (United States); Smith, Wilson A.; Zhao, Yiping [Department of Physics and Astronomy, University of Georgia, Athens, GA 30602 (United States); Kuykendall, Tevye R. [Department of Chemistry, University of California, Berkeley Berkeley, CA 94720 (United States)

    2009-06-23

    Photoelectrochemical cells based on traditional and nanostructured ZnO thin films are investigated for hydrogen generation from water splitting. The ZnO thin films are fabricated using three different deposition geometries: normal pulsed laser deposition, pulsed laser oblique-angle deposition, and electron-beam glancing-angle deposition. The nanostructured films are characterized by scanning electron microscopy, X-ray diffraction, UV-vis spectroscopy and photoelectrochemical techniques. Normal pulsed laser deposition produces dense thin films with ca. 200 nm grain sizes, while oblique-angle deposition produces nanoplatelets with a fishscale morphology and individual features measuring ca. 900 by 450 nm on average. In contrast, glancing-angle deposition generates a highly porous, interconnected network of spherical nanoparticles of 15-40 nm diameter. Mott-Schottky plots show the flat band potential of pulsed laser deposition, oblique-angle deposition, and glancing-angle deposition samples to be -0.29, -0.28 and +0.20 V, respectively. Generation of photocurrent is observed at anodic potentials and no limiting photocurrents were observed with applied potentials up to 1.3 V for all photoelectrochemical cells. The effective photon-to-hydrogen efficiency is found to be 0.1%, 0.2% and 0.6% for pulsed laser deposition, oblique-angle deposition and glancing-angle deposition samples, respectively. The photoelectrochemical properties of the three types of films are understood to be a function of porosity, crystal defect concentration, charge transport properties and space charge layer characteristics. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  14. Ultrasonic spray pyrolysis growth of ZnO and ZnO:Al nanostructured films: Application to photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Kenanakis, G., E-mail: gkenanak@iesl.forth.gr [Institute of Electronic Structure and Laser, Foundation for Research and Technology – Hellas, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece); Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Katsarakis, N. [Institute of Electronic Structure and Laser, Foundation for Research and Technology – Hellas, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece); Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece)

    2014-12-15

    Highlights: • Al–ZnO thin films and nanostructures were obtained by ultrasonic spray pyrolysis. • The texture and morphology of the samples depend on the deposition parameters. • The photocatalytic degradation of stearic acid was studied upon UV-A irradiation. - Abstract: Pure and Al-doped ZnO (Al = 1, 3, 5%) nanostructured thin films were grown at 400 °C on glass substrates by ultrasonic spray pyrolysis, a simple, environmental-friendly and inexpensive method, using aqueous solutions as precursors. The structural and morphological characteristics of the samples depend drastically on deposition parameters; ZnO nanostructured films, nanopetals and nanorods were systematically obtained by simply varying the precursor solution and/or the spraying time. Transmittance measurements have shown that all samples are transparent in the visible wavelength region. Finally, the photocatalytic properties of the samples were investigated against the degradation of stearic acid under UV-A light illumination (365 nm); both pure and Al-doped ZnO nanostructured thin films show good photocatalytic activity regarding the degradation of stearic acid, due to their good crystallinity and large surface area.

  15. Structure and properties of nanostructured ZnO arrays and ZnO/Ag nanocomposites fabricated by pulsed electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Kopach, V. R.; Klepikova, K. S.; Klochko, N. P., E-mail: klochko-np@mail.ru; Khrypunov, G. S.; Korsun, V. E.; Lyubov, V. M.; Kirichenko, M. V.; Kopach, A. V. [National Technical University “Kharkiv Polytechnic Institute” (Ukraine)

    2017-03-15

    We investigate the structure, surface morphology, and optical properties of nanostructured ZnO arrays fabricated by pulsed electrodeposition, Ag nanoparticles precipitated from colloidal solutions, and a ZnO/Ag nanocomposite based on them. The electronic and electrical parameters of the ZnO arrays and ZnO/Ag nanocomposites are analyzed by studying the I–V and C–V characteristics. Optimal modes for fabricating the ZnO/Ag heterostructures with the high stability and sensitivity to ultraviolet radiation as promising materials for use in photodetectors, gas sensors, and photocatalysts are determined.

  16. Multifunctional ZnO interfaces with hierarchical micro- and nanostructures: bio-inspiration from the compound eyes of butterflies

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Sha; Yang, Yefeng; Jin, Yizheng; Huang, Jingyun; Zhao, Binghui; Ye, Zhizhen [Zhejiang University, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Hangzhou (China)

    2010-07-15

    Multifunctional zinc oxide (ZnO) interfaces were fabricated by utilizing the technique of low-temperature metal-organic chemical vapor deposition (MOCVD). The ZnO interfacial material exhibit antiwetting, antireflectance, and photonic properties derived from the unique hierarchical micro- and nanostructures of the compound eye of the butterflies. We demonstrate that the fabrication of the multifunctional interfaces by using biotemplates can be applied to other materials, such as Pt. Our study provides an excellent example to obtain multifunctional interfaces by learning from nature. (orig.)

  17. Decoration of ZnO Nanorods with Coral Reefs like NiO Nanostructures by the Hydrothermal Growth Method and Their Luminescence Study

    Directory of Open Access Journals (Sweden)

    Mazhar Ali Abbasi

    2014-01-01

    Full Text Available Composite nanostructures of coral reefs like p-type NiO/n-type ZnO were synthesized on fluorine-doped tin oxide glass substrates by hydrothermal growth. Structural characterization was performed by field emission scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction techniques. This investigation shows that the adopted synthesis leads to high crystalline quality nanostructures. The morphological study shows that the coral reefs like nanostructures are densely packed on the ZnO nanorods. Cathodoluminescence (CL spectra for the synthesized composite nanostructures are dominated mainly by a broad interstitial defect related luminescence centered at ~630 nm. Spatially resolved CL images reveal that the luminescence of the decorated ZnO nanostructures is enhanced by the presence of the NiO.

  18. Magneto-optical properties of α-Fe2O3@ZnO nanocomposites prepared by the high energy ball-milling technique

    Science.gov (United States)

    Chaudhury, Chandana Roy; Roychowdhury, Anirban; Das, Anusree; Das, Dipankar

    2016-05-01

    Magnetic-fluorescent nanocomposites (NCs) with 10 wt% of α-Fe2O3 in ZnO have been prepared by the high energy ball-milling. The crystallite sizes of α-Fe2O3 and ZnO in the NCs are found to vary from 65 nm to 20 nm and 47 nm to 15 nm respectively as milling time is increased from 2 to 30 h. XRD analysis confirms presence of α-Fe2O3 and ZnO in pure form in all the NCs. UV-vis study of the NCs shows a continuous blue-shift of the absorption peak and a steady increase of band gap of ZnO with increasing milling duration that are assigned to decreasing particle size of ZnO in the NCs. Photoluminescence (PL) spectra of the NCs reveal three weak emission bands in the visible region at 421, 445 and 485 nm along with the strong near band edge emission at 391 nm. These weak emission bands are attributed to different defect - related energy levels e.g. Zn-vacancy, Zn interstitial and oxygen vacancy. Dc and ac magnetization measurements show presence of weakly interacting superparamagnetic (SPM) α-Fe2O3 particles in the NCs. 57Fe-Mössbauer study confirms presence of SPM hematite in the sample milled for 30 h. Positron annihilation lifetime measurements indicate presence of cation vacancies in ZnO nanostructures confirming results of PL studies.

  19. Probing defects in ZnO nanostructures by Photoluminescence and Positron Annihilation Spectroscopy

    Science.gov (United States)

    Ghosh, Manoranjan; Raychaudhuri, A. K.; Chaudhuri, S. K.; Das, Dipankar

    2008-03-01

    We have investigated defect related emission in the blue green region (2.2 eV -- 2.5 eV) of ZnO nanostructures having spherical (5 nm-15 nm) as well as those with hexagonal platelet and rod like morphologies (20nm-100 nm), synthesized by solvo-thermal route. This emission show anomalous size dependence. Emission energy near 2.2 eV, shifts to higher energy (2.5 eV) for increase in size beyond 20nm when shape of the nanostructures changes. This change in photoluminescence has a close correlation with the size (and shape) induced change in the positron trapping rate which is directly proportional to the defect concentration. The trapping rates show non-monotonous dependence on size. It increases initially as the size increases (5nm-15nm) and then decreases as the size increases beyond 20nm. While increase of the trapping rate on size reduction is expected due to accumulation of more defects at the surface, the initial dependence of the trapping rate on the size (below 20nm) is anomalous. The data are explained by the presence of defects like Zn vacancy and confinement due to size reduction.

  20. Uniform Fe3O4 coating on flower-like ZnO nanostructures by atomic layer deposition for electromagnetic wave absorption.

    Science.gov (United States)

    Wan, Gengping; Wang, Guizhen; Huang, Xianqin; Zhao, Haonan; Li, Xinyue; Wang, Kan; Yu, Lei; Peng, Xiange; Qin, Yong

    2015-11-21

    An elegant atomic layer deposition (ALD) method has been employed for controllable preparation of a uniform Fe3O4-coated ZnO (ZnO@Fe3O4) core-shell flower-like nanostructure. The Fe3O4 coating thickness of the ZnO@Fe3O4 nanostructure can be tuned by varying the cycle number of ALD Fe2O3. When serving as additives for microwave absorption, the ZnO@Fe3O4-paraffin composites exhibit a higher absorption capacity than the ZnO-paraffin composites. For ZnO@500-Fe3O4, the effective absorption bandwidth below -10 dB can reach 5.2 GHz and the RL values below -20 dB also cover a wide frequency range of 11.6-14.2 GHz when the coating thickness is 2.3 mm, suggesting its potential application in the treatment of the electromagnetic pollution problem. On the basis of experimental observations, a mechanism has been proposed to understand the enhanced microwave absorption properties of the ZnO@Fe3O4 composites.

  1. Snowflake-Shaped ZnO Nanostructures-Based Gas Sensor for Sensitive Detection of Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Tianli Han

    2017-01-01

    Full Text Available Volatile organic compounds (VOCs have been considered severe risks to human health. Gas sensors for the sensitive detection of VOCs are highly required. However, the preparation of gas-sensing materials with a high gas diffusion performance remains a great challenge. Here, through a simple hydrothermal method accompanied with a subsequent thermal treatment, a special porous snowflake-shaped ZnO nanostructure was presented for sensitive detection of VOCs including diethyl ether, methylbenzene, and ethanol. The fabricated gas sensors exhibit a good sensing performance including high responses to VOCs and a short response/recovery time. The responses of the ZnO-based gas sensor to 100 ppm ethanol, methylbenzene, and diethyl ether are about 27, 21, and 11, respectively, while the response times to diethyl ether and methylbenzene are less than 10 seconds. The gas adsorption-desorption kinetics is also investigated, which shows that the gas-sensing behaviors to different target gases are remarkably different, making it possible for target recognition in practical applications.

  2. Synthesis and Characterization of Nano-Structure Metal Oxides and Peroxides Prepared by Laser Ablation in Liquids

    Science.gov (United States)

    Drmosh, Qasem Ahmed Qasem

    Pulsed laser ablation technique was applied for synthesize of ZnO, ZnO 2 and SnO2 nanostructure using metallic target in different liquids. For this purpose, a laser emitting pulsed UV radiations generated by the third harmonic of Nd:YAG (λ= 355 nm) was applied. For the synthesis of ZnO nanoparticles (NPs), a high-purity metallic plate of Zn was fixed at the bottom of a glass cell in the presence of deionized water and was irradiated at different laser energies (80- 100- 120) mJ per pulse. The average sizes and lattice parameters of ZnO produced by this method were estimated by X-ray diffraction (XRD). ZnO nanoparticles were also produced by ablation of zinc target in the presence of deionized water mixed with two types of surfactants: cetyltrimethyl ammonium bromide (CTAB) and octaethylene glycol monododecyl (OGM). The results showed that the average grain sizes decreased from 38 nm in the case of deionized water to 27 nm and 19 nm in CTAB and OGM respectively. The PL emission in CTAB and OGM showed two peaks: the sharp UV emission at 380 nm and a broad visible peak ranging from 450 nm to 600 nm. Zinc peroxide (ZnO2) nanoparticles having grain size less than 5 nm were also synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3 % hydrogen peroxide H2O2 for the first time. The effect of surfactants on the optical and structure of ZnO2 was studied by applying different spectroscopic techniques. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7 nm, 3.7 nm, 3.3 nm and 2.8 nm in pure H2O2; and H2O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO2 nanoparticles prepared with and without surfactants showed characteristic peaks of ZnO2 absorption at 435-445 cm-1. FTIR spectrum also revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM

  3. Optical and Morphological Properties of ZnO- and TiO2-Derived Nanostructures Synthesized via a Microwave-Assisted Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Nosipho Moloto

    2012-01-01

    Full Text Available A microwave-assisted hydrothermal method was used to synthesize ZnO and TiO2 nanostructures. The experimental results show that the method resulted in crystalline monodispersed ZnO nanorods that have pointed tips with hexagonal crystal phase. TiO2 nanotubes were also formed with minimum bundles. The mechanism for the formation of the tubes was validated by HRTEM results. The optical properties of both ZnO and TiO2 nanostructures showed characteristics of strong quantum confinement regime. The photoluminescence spectrum of TiO2 nanotubes shows good improvement from previously reported data.

  4. A Resistive Humidity Sensor Based on Nanostructured WO3-ZnO Composites

    Directory of Open Access Journals (Sweden)

    Karunesh Tiwari

    2011-11-01

    Full Text Available Paper reports morphological and humidity sensing studies of WO3 and WO3-ZnO composite pellets prepared in the weight % ratio of 10:1, 4:1 and 2:1 by solid-state reaction route. The pellets have been annealed at temperatures of 300-500 °C. XRD pattern shows peaks of ZnWO4 formed due to solid state reaction between WO3 and ZnO. SEM micrographs show that the sensing elements manifest porous structure. Granulation and tendency to agglomerate seen in the SEM micrograph are due to the presence of zinc ions in ZnWO4. Nanoparticles are having their sizes in the range 37-182 nm. The average Kelvin radius at 20˚C room temperature is 27 Ả. Humidity sensing application of the pellets has been studied in a humidity control cabinet. It is observed that as relative humidity increases, there is decrease in the resistance of pellets in the range 10-85 % RH. Sensing element of WO3-ZnO in 2:1 weight % ratio shows best results in 10-85 % relative humidity range. The average sensitivity of this sample is 1.25 MΩ/%RH. This sensing element shows good reproducibility, low hysteresis and less effect of aging.

  5. Synthesis and Characterization of Nanoparticles and Nanocomposite of ZnO and MgO by Sonochemical Method and their Application for Zinc Polycarboxylate Dental Cement Preparation

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Karimi

    2011-01-01

    Full Text Available This paper discusses the synthesis of nanoparticles of ZnO and MgO and ZnO/MgO nanocomposite by the sonochemical method. At first, nanoparticles were synthesized by the reaction of Zn(CHCOO32 and Mg(CHCOO32 with tetramethylammonium hydroxide (TMAH in the presence of polyvinyl pyrrolidone (PVP and constant frequency ultrasonic waves (sonochemical method. Then, ZnO/MgO nanocomposite was prepared through reaction of magnesium acetate with TMAH in the presence of ZnO nanoparticles and PVP as structure director using ultrasonic assisted method. After filtration, the synthesized solution was obtained containing magnesium hydroxide in the presence of ZnO nanoparticles. It was calcinated at the temperature of 550 ºC, so that ZnO/MgO nanocomposite could be produced. The effects of different parameters on particle size and morphology of final ZnO and MgO powders and ZnO/MgO nanocomposite were optimized by ‘‘one at a time’’ method. Under optimum conditions, spongy shaped, uniformed and homogeneous nanostructured zinc oxide and magnesium oxide powders were obtained with particle sizes of 25–50 and 30-60 nm, respectively. ZnO/MgO nanocomposite was also obtained with more spongy morphology and particle size about 65 nm. Both synthesized ZnO and MgO nanoparticles and ZnO/MgO nanocomposite were successfully applied to the preparation of zinc polycarboxylate dental cement.

  6. Photoluminescence quenching, structures, and photovoltaic properties of ZnO nanostructures decorated plasma grown single walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Aïssa, Brahim, E-mail: brahim.aissa@mpbc.ca [University of Quebec, Centre Énergie, Matériaux et Télécommunications, INRS-EMT (Canada); Nedil, Mourad [Telebec Wireless Underground Communication Laboratory, UQAT (Canada); Belaidi, Abdelhak; Isaifan, Rima J. [Hamad Bin Khalifa University, Qatar Foundation, Qatar Environment and Energy Research Institute (Qatar); Bentouaf, Ali [University Hassiba Ben Bouali, Physics Department, Faculty of Science (Algeria); Fauteux, Christian; Therriault, Daniel [École Polytechnique de Montréal, Laboratory for Multiscale Mechanics (LM2), Mechanical Engineering Department (Canada)

    2017-05-15

    Zinc oxide (ZnO) nanostructures were successfully grown directly on single walled carbon nanotubes (SWCNT) template through the CO{sub 2} laser-induced chemical liquid deposition (LCLD) process. Photoluminescence (PL) of the deposited ZnO/SWCNT hybrid composites exhibits, at room temperature, a narrow near UV band located at 390 nm with no emission bands in the visible region, indicating a high degree of crystalline quality of the ZnO nanostructures. Moreover, when the relative SWCNT loads are varied within the composites, the PL intensity and the diffused optical reflectance diminish in comparison with those of ZnO alone, owing to the transfer of photo-excited electrons from ZnO to the SWCNT, and the enhancement of the optical absorbance, respectively. Finally, these ZnO/SWCNT hybrid composites are integrated into a heterojunction photovoltaic-based device, using PEDOT:PSS on ITO/glass substrate. The devices show an evident p–n junction behavior in the dark, and a clear I–V curve shift downward when illuminated with an open-circuit voltage of 1.1 V, a short circuit current density of 14.05 μA cm{sup −2}, and a fill factor of ∼35%. These results indicate that these composites fabricated via LCLD process could be promising for optoelectronic and energy-harvesting devices.

  7. Characteristics of ZnO nanostructures produced with [DMIm]BF{sub 4} using ultrasonic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, I. B. Abdul; Ayob, M. T. M.; Ishak, I. S.; Mohd Lawi, R. L.; Isahak, W. N. R. W.; Hamid, M. H. N. Abd; Othman, N. K.; Radiman, S. [School of Applied Physics, Faculty of Science and Technology (FST), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia); School of Chemistry and Food Technology, Faculty of Science and Technology (FST), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia); School of Applied Physics, Faculty of Science and Technology (FST), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2012-11-27

    Great interests in metallic oxides have emerged because of the promising properties of these materials for various applications such as solar cells and sensors. ZnO nanostructures with different morphologies were successfully synthesized from Zn(CH{sub 3}COO){sub 2} Bullet 2H{sub 2}O, NaOH and room temperature ionic liquid (RTIL) 1-decyl-3-methylimidazolium tetrafluoroborate, [DMIm][BF{sub 4}] with ultrasound irradiation. Parameters such as the effect of sonication time (30, 60 and 90 minutes) and Zn(Ac){sub 2} precursor to [DMIm][BF{sub 4}] ratios of 3:5, 5:5 and 5:3 were investigated. X-ray diffraction patterns revealed that the ZnO nanocrystals were hexagonal zincite crystalline in structure. The band gap energies (E{sub g}) were estimated to be 3.35-3.55 eV from the UV-Visible spectrum. The solution with the highest ratio of Zn was analysed with photoluminescence spectroscopy, which exhibited peaks at 362, 403, 468 and 539 nm, at room temperature. The micrographs of field emission scanning electron microscopy and transmission electron microscopy showed that the synthesis products were spherical (30-60 nm), spindle ({approx}10 Multiplication-Sign 70 nm for width Multiplication-Sign length) and whisker-like (100-200 nm), with their dimensions decreasing systematically with increased sonication time. Chemical compositions were approximated at 1:1 for Zn and O, estimated by electron dispersive x-ray spectrum.

  8. Piezoelectric nanogenerators based on ZnO and M13 Bacteriophage nanostructures (Conference Presentation)

    Science.gov (United States)

    Shin, Dong-Myeong; Kim, Kyujungg; Hong, Suck Won; Oh, Jin-Woo; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2016-09-01

    Recently, the portable and wearable electronic devices, operated in the power range of microwatt to miliwatt, become available thank to the nanotechnology development and become an essential element for a comfortable life. Our recent research interest mainly focuses on the fabrication of piezoelectric nanogenerators based on smart nanomaterials such as zinc oxide novel nanostructure, M13 bacteriophage. In this talk, we present a simple strategy for fabricating the freestanding ZnO nanorods/graphene/ZnO nanorods double sided heterostructures. The characterization of the double sided heterostructures by using SEM, and Raman scattering spectroscopy reveals the key process and working mechanism of a formation of the heterostructure. The mechanism is discussed in detail in term of the decomposed seed layer and the vacancy defect of graphene. The approach consists of a facile one-step fabrication process and could achieve ZnO coverage with a higher number density than that of the epitaxial single heterostructure. The resulting improvement in the number density of nanorods has a direct beneficial effect on the double side heterostructured nanogenerator performance. The total output voltage and current density are improved up to 2 times compared to those of a single heterostructure due to the coupling of the piezoelectric effects from both upward and downward grown nanorods. The facile one-step fabrication process suggests that double sided heterostructures would improve the performance of electrical and optoelectrical device, such as touch pad, pressure sensor, biosensor and dye-sensitized solar cells. Further, ioinspired nanogenerators based on vertically aligned phage nanopillars are inceptively demonstrated. Vertically aligned phage nanopillars enable not only a high piezoelectric response but also a tuneable piezoelectricity. Piezoelectricity is also modulated by tuning of the protein's dipoles in each phage. The sufficient electrical power from phage nanopillars thus

  9. Eosin Yellowish Dye-Sensitized ZnO Nanostructure-Based Solar Cells Employing Solid PEO Redox Couple Electrolyte

    Directory of Open Access Journals (Sweden)

    S. S. Kanmani

    2012-01-01

    Full Text Available ZnO nanostructures are synthesized by low-temperature methods, and they possess polycrystalline hexagonal wurtzite structure with preferential c-axial growth. Morphological study by SEM shows the presence of ~30 nm sized spherical-shaped ZnO nanoparticle, the branched flower-like ZnO composed of many nanorods (length: 1.2 to 4.2 μm and diameter: 0.3 to 0.4 μm, and ~50 nm diameter of individual ZnO nanorods. Reduction in photoemission intensity of nanorods infers the decrease in electron-hole recombination rate, which offers better photovoltaic performance. The dye-sensitized solar cell (DSSC based on ZnO nanorods sensitized with Eosin yellowish dye exhibits a maximum optimal energy conversion efficiency of 0.163% compared to that of nanoparticles and nanoflowers, due to better dye loading and direct conduction pathway for electron transport.

  10. Investigation of photocalalytic activity of ZnO prepared by spray pyrolis with various precursors

    International Nuclear Information System (INIS)

    Bourfaa, F; Lamri Zeggar, M; A, A; Aida, M S; Attaf, N

    2016-01-01

    Semiconductor photocatalysts such as ZnO has attracted much attention in recent years due to their various applications for the degradation of organic pollutants in water, air and in dye sensitized photovoltaic solar cell. In the present work, ZnO thin films were prepared by ultrasonic spray pyrolysis by using different precursors namely: acetate, chloride and zinc nitrate in order to investigate their influence on ZnO photocatalytic activity. The films crystalline structure was studied by mean of X- ray diffraction measurements (XRD) and the films surface morphology by Scanning Electron Microscopy (SEM). The films optical properties were studied by mean of UV-visible spectroscopy. The prepared films were tested for the degradation of the red reactive dye largely used in textile industry. As a result, we found that the zinc nitrate is the best precursor to prepare ZnO thin films suitable for a good photocatalytic activity. (paper)

  11. Water-repellent coatings prepared by modification of ZnO nanoparticles

    Science.gov (United States)

    Chakradhar, R. P. S.; Dinesh Kumar, V.

    Superhydrophobic coatings with a static water contact angle (WCA) > 150° were prepared by modifying ZnO nanoparticles with stearic acid (ZnO@SA). ZnO nanoparticles of size ˜14 nm were prepared by solution combustion method. X-ray diffraction (XRD) studies reveal that as prepared ZnO has hexagonal wurtzite structure whereas the modified coatings convert to zinc stearate. Field emission scanning electron micrographs (FE-SEM) show the dual morphology of the coatings exhibiting both particles and flakes. The flakes are highly fluffy in nature with voids and nanopores. Fourier transformed infrared (FTIR) spectrum shows the stearate ion co-ordinates with Zn2+ in the bidentate form. The surface properties such as surface free energy (γp) and work of adhesion (W) of the unmodified and modified ZnO coatings have been evaluated. The electron paramagnetic resonance (EPR) spectroscopy reveals that surface defects play a major role in the wetting behavior.

  12. UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method

    International Nuclear Information System (INIS)

    Fang, F; Futter, J; Markwitz, A; Kennedy, J

    2009-01-01

    The UV and humidity sensing properties of ZnO nanorods prepared by arc discharge have been studied. Scanning electron microscopy and photoluminescence spectroscopy were carried out to analyze the morphology and optical properties of the as-synthesized ZnO nanorods. Proton induced x-ray emission was used to probe the impurities in the ZnO nanorods. A large quantity of high purity ZnO nanorod structures were obtained with lengths of 0.5-1 μm. The diameters of the as-synthesized ZnO nanorods were found to be between 40 and 400 nm. The nanorods interlace with each other, forming 3D networks which make them suitable for sensing application. The addition of a polymeric film-forming agent (BASF LUVISKOL VA 64) improved the conductivity, as it facilitates the construction of conducting networks. Ultrasonication helped to separate the ZnO nanorods and disperse them evenly through the polymeric agent. Improved photoconductivity was measured for a ZnO nanorod sensor annealed in air at 200 deg. C for 30 min. The ZnO nanorod sensors showed a UV-sensitive photoconduction, where the photocurrent increased by nearly four orders of magnitude from 2.7 x 10 -10 to 1.0 x 10 -6 A at 18 V under 340 nm UV illumination. High humidity sensitivity and good stability were also measured. The resistance of the ZnO nanorod sensor decreased almost linearly with increasing relative humidity (RH). The resistance of the ZnO nanorods changed by approximately five orders of magnitude from 4.35 x 10 11 Ω in dry air (7% RH) to about 4.95 x 10 6 Ω in 95% RH air. It is experimentally demonstrated that ZnO nanorods obtained by the arc discharge method show excellent performance and promise for applications in both UV and humidity sensors.

  13. Effects of ZnO Seed Layers Prepared with Various Precursor Concentrations on Structural and Defect Emission Properties of ZnO Nanorods Grown by Hydrothermal Method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soaram; Nam, Giwoong; Leem, Jae-Young; Kim, Yangsoo [Inje University, Gimhae (Korea, Republic of); Kim, Ghun Sik; Yoon, Sung Pil [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2013-07-15

    ZnO nanorods were grown by a hydrothermal method on ZnO seed layers that had previously been prepared from solutions containing various precursor concentrations. The effects of the ZnO seed layers prepared with various precursor concentrations on the structural and defect emissions of the ZnO nanorods were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) spectroscopy. The surface morphology of the ZnO seed layers changed with an increasing precursor concentration, and the diameters and densities of the ZnO nanorods depended on the morphologies of the ZnO seed layers. The ZnO seed layers prepared with various precursor concentrations affected the residual stress in the nanorods grown on the seed layers, the intensity and full widths at half maximum of the 2-theta angle in the XRD spectra for the nanorods, and the intensity and position of the defect emission peak in deep-level emission (DLE) PL spectra for the ZnO nanorods.

  14. Realizing a facile and environmental-friendly fabrication of high-performance multi-crystalline silicon solar cells by employing ZnO nanostructures and an Al2O3 passivation layer

    Science.gov (United States)

    Chen, Hong-Yan; Lu, Hong-Liang; Sun, Long; Ren, Qing-Hua; Zhang, Hao; Ji, Xin-Ming; Liu, Wen-Jun; Ding, Shi-Jin; Yang, Xiao-Feng; Zhang, David Wei

    2016-01-01

    Nowadays, the multi-crystalline silicon (mc-Si) solar cells dominate the photovoltaic industry. However, the current acid etching method on mc-Si surface used by firms can hardly suppress the average reflectance value below 25% in the visible light spectrum. Meanwhile, the nitric acid and the hydrofluoric contained in the etching solution is both environmental unfriendly and highly toxic to human. Here, a mc-Si solar cell based on ZnO nanostructures and an Al2O3 spacer layer is demonstrated. The eco-friendly fabrication is realized by low temperature atomic layer deposition of Al2O3 layer as well as ZnO seed layer. Moreover, the ZnO nanostructures are prepared by nontoxic and low cost hydro-thermal growth process. Results show that the best passivation quality of the n+ -type mc-Si surface can be achieved by balancing the Si dangling bond saturation level and the negative charge concentration in the Al2O3 film. Moreover, the average reflectance on cell surface can be suppressed to 8.2% in 400–900 nm range by controlling the thickness of ZnO seed layer. With these two combined refinements, a maximum solar cell efficiency of 15.8% is obtained eventually. This work offer a facile way to realize the environmental friendly fabrication of high performance mc-Si solar cells. PMID:27924911

  15. Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method.

    Science.gov (United States)

    Khokhra, Richa; Bharti, Bandna; Lee, Heung-No; Kumar, Rajesh

    2017-11-08

    This study demonstrates significant visible light photo-detection capability of pristine ZnO nanostructure thin films possessing substantially high percentage of oxygen vacancies [Formula: see text] and zinc interstitials [Formula: see text], introduced by simple tuning of economical solution method. The demonstrated visible light photo-detection capability, in addition to the inherent UV light detection ability of ZnO, shows great dependency of [Formula: see text] and [Formula: see text] with the nanostructure morphology. The dependency was evaluated by analyzing the presence/percentage of [Formula: see text] and [Formula: see text] using photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS) measurements. Morphologies of ZnO viz. nanoparticles (NPs), nanosheets (NSs) and nanoflowers (NFs), as a result of tuning of synthesis method contended different concentrations of defects, demonstrated different photo-detection capabilities in the form of a thin film photodetector. The photo-detection capability was investigated under different light excitations (UV; 380~420 nm, white ; λ > 420 nm and green; 490~570 nm). The as fabricated NSs photodetector possessing comparatively intermediate percentage of [Formula: see text] ~ 47.7% and [Formula: see text] ~ 13.8% exhibited superior performance than that of NPs and NFs photodetectors, and ever reported photodetectors fabricated by using pristine ZnO nanostructures in thin film architecture. The adopted low cost and simplest approach makes the pristine ZnO-NSs applicable for wide-wavelength applications in optoelectronic devices.

  16. Microwave-assisted Facile and Ultrafast Growth of ZnO Nanostructures and Proposition of Alternative Microwave-assisted Methods to Address Growth Stoppage

    Science.gov (United States)

    Rana, Abu Ul Hassan Sarwar; Kang, Mingi; Kim, Hyun-Seok

    2016-04-01

    The time constraint in the growth of ZnO nanostructures when using a hydrothermal method is of paramount importance in contemporary research, where a long fabrication time rots the very essence of the research on ZnO nanostructures. In this study, we present the facile and ultrafast growth of ZnO nanostructures in a domestic microwave oven within a pressurized environment in just a few minutes. This method is preferred for the conventional solution-based method because of the ultrafast supersaturation of zinc salts and the fabrication of high-quality nanostructures. The study of the effect of seed layer density, growth time, and the solution’s molar concentration on the morphology, alignment, density, and aspect ratio of ZnO nanorods (ZNRs) is explored. It is found in a microwave-assisted direct growth method that ~5 mins is the optimum time beyond which homogeneous nucleation supersedes heterogeneous nucleation, which results in the growth stoppage of ZNRs. To deal with this issue, we propound different methods such as microwave-assisted solution-replacement, preheating, and PEI-based growth methods, where growth stoppage is addressed and ZNRs with a high aspect ratio can be grown. Furthermore, high-quality ZnO nanoflowers and ZnO nanowalls are fabricated via ammonium hydroxide treatment in a very short time.

  17. Facile solvothermal synthesis of abnormal growth of one-dimensional ZnO nanostructures by ring-opening reaction of polyvinylpyrrolidone

    Energy Technology Data Exchange (ETDEWEB)

    Xu, G., E-mail: gxu@alum.imr.ac.cn; Wang, X.L.; Liu, G.Z.

    2015-02-28

    Graphical abstract: - Highlights: • Facile solvothermal synthesis of ZnO nanostructures in super high alkaline alcoholic condition. • The exact role and chemical transformations of PVP in solvothermal synthesis of ZnO nanostructures was revealed. • Mechanism of abnormal growth of ZnO nanopyramids was proposed based on ring-opening reaction of PVP. - Abstract: Abnormal growth of one-dimensional (1-D) ZnO nanostructures (NSs) have been accomplished with the assistance of polyvinylpyrrolidone (PVP) under a super high alkaline alcoholic solvothermal condition. The products were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ({sup 1}H NMR) spectroscopy. The effect of synthetic conditions, such as reaction temperature and the addition of PVP, on the morphologies of ZnO products were investigated. The results show that PVP molecules had the significant role in the transformation of morphologies of ZnO NSs ranging from nanorods, nanoparticles to pyramids, as well as flower-like assembly features. The possible growth mechanism of ZnO pyramids was proposed based on ring-opening reaction of PVP.

  18. Blue-emitting photoluminescence of rod-like and needle-like ZnO nanostructures formed by hot-water treatment of sol–gel derived coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Wai Kian, E-mail: tanwaikian@cie.ignite.tut.ac.jp [Center for International Education, Toyohashi University of Technology, Aichi, Toyohashi 441-8580 (Japan); Kawamura, Go; Muto, Hiroyuki [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Aichi, Toyohashi 441-8580 (Japan); Abdul Razak, Khairunisak; Lockman, Zainovia [School of Materials and Mineral Resources, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Pulau Pinang 14300 Malaysia (Malaysia); Matsuda, Atsunori, E-mail: matsuda@tut.ee.ac.jp [Center for International Education, Toyohashi University of Technology, Aichi, Toyohashi 441-8580 (Japan); Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Aichi, Toyohashi 441-8580 (Japan)

    2015-02-15

    The morphological evolution of the zinc oxide (ZnO) nanostructures generated by hot-water treatment (HWT) of sol–gel derived coatings as a function of temperature from 30 to 90 °C was investigated. With increasing HWT temperature, the ZnO crystals evolved from nanoparticles to rod-like and needle-like nanostructures. High-resolution transmission electron microscope observations of rod-like and needle-like nanostructures generated at 60 and 90 °C indicated single crystal ZnO wurtzite structure was obtained. All the hot-water treated samples exhibited blue emission at approximately 440 nm in room temperature. The intensity of blue emission increased with higher HWT temperatures. The unique photoluminescence emission characteristic remained even after heat-treatment at 400 °C for 1 h. As the emission peak obtained in our work is approximately 440 nm (2.82 eV), the emission peak is corresponding to the electron transition from the interstitial Zn to the top of valence band. This facile formation of blue-emitting ZnO nanostructures at low-temperature can be utilized on substrate with low thermal stability for optoelectronic applications such as light emitting devices and biological fluorescence labeling. - Highlights: • Facile and novel formation of ZnO nanostructures by low temperature hot-water treatment. • No catalyst or inhibitor is used. • Evolution of ZnO nanostructures formation as a function of temperature is reported. • Dominant blue emissions are observed from the as-formed and annealed ZnO films. • Ultraviolet and visible emissions are observed for hot-water treated films.

  19. Preparation, structural and optical characterization of ZnO, ZnO: Al nanopowder

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, R. Raj [Department of ECE, Gojan School of Business and Technology, Chennai (India); Rajendran, K. [Department of Electronics, Government Arts College for Women, Ramanathapuram, TN (India); Sambath, K. [Department of ECS, Sri Krishna Arts and Science College, Coimbatore, TN (India)

    2014-01-28

    In this paper, ZnO and ZnO:Al nanopowders have been synthesized by low cost hydrothermal method. Zinc nitrate, hexamethylenetetramine (HMT) and aluminium nitrate are used as precursors for ZnO and AZO with different molar ratios. The structural and optical characterization of doped and un-doped ZnO powders have been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDAX), photoluminescence (PL) and ultra violet visible (UV-Vis) absorption studies. The SEM results show that the hydrothermal synthesis can be used to obtain nanoparticles with different morphology. It is observed that the grain size of the AZO nanoparticles increased with increasing of Al concentration. The PL measurement of AZO shows that broad range of green emission around 550nm with high intensity. The green emission resulted mainly because of intrinsic defects.

  20. A sol-gel method for preparing ZnO quantum dots with strong blue emission

    International Nuclear Information System (INIS)

    Chen Zhong; Li Xiaoxia; Du Guoping; Chen Nan; Suen, Andy Y.M.

    2011-01-01

    ZnO quantum dots (QDs) with strong blue emission have been successfully synthesized by sol-gel method, and their crystal structures, sizes, and photoluminescence properties were characterized by X-ray diffractometer, scanning electron microscope, and ultraviolet-visible spectroscopy. It has been found that ZnO QDs had a hexagonal wurtzite crystal structure, and their average diameter was about 16.0-32.2 nm. Both the reaction time and temperature were found to have a strong influence on the average size and photoluminescence properties of ZnO QDs. Longer reaction time and higher reaction temperature resulted in larger average size for ZnO QDs. It has been shown that at reaction temperature 60 deg. C the emission intensity for ZnO QDs increased first with reaction time before 7 h and then decreased after 7 h. For the same reaction time 7 h, ZnO QDs synthesized at 60 deg. C showed the strongest emission intensity. It was found that annealing in nitrogen, vacuum, and air all resulted in an increase of the size of ZnO QDs and a reduction in their photoluminescence. The dependence of the size and properties of ZnO QDs on the reaction parameters as well as the annealing conditions has been discussed. - Highlights: → ZnO quantum dots (QDs) with strong blue emission were prepared by sol-gel method. → ZnO QDs had a pure spectral blue with the chromaticity coordinates (0.166, 0.215). → Optimal reaction time and temperature were 7 h and 60 deg. C, respectively.

  1. Preparation of Porous Nanostructures Controlled by Electrospray

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dung The; Kim, Kyo-Seon [Kangwon National University, Chuncheon (Korea, Republic of); Nah, In Wook [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2015-10-15

    Various solid structures were prepared by electrospray technique. In this process, liquid flows out from a capillary nozzle under a high electrical potential and is subjected to an electric field, which causes elongation of the meniscus to form a jet. In our study, by controlling the amount of polyvinyl pyrrolydone in precursor solution, the jet either disrupted into droplets for the formation of spherical particles or was stretched in the electric field for the formation of fibers. During the electrospray process, the ethanol solvent was evaporated and induced the solidification of precursors, forming solid particles. The evaporation of ethanol solvent also enhanced the mass transport of solutes from the inner core to the solid shell, which facilitated fabrication of porous and hollow structure. The network structures were also prepared by heating the collector.

  2. Microwave absorption properties and mechanism of cagelike ZnO /SiO2 nanocomposites

    Science.gov (United States)

    Cao, Mao-Sheng; Shi, Xiao-Ling; Fang, Xiao-Yong; Jin, Hai-Bo; Hou, Zhi-Ling; Zhou, Wei; Chen, Yu-Jin

    2007-11-01

    In this paper, cagelike ZnO /SiO2 nanocomposites were prepared and their microwave absorption properties were investigated in detail. Dielectric constants and losses of the pure cagelike ZnO nanostructures were measured in a frequency range of 8.2-12.4GHz. The measured results indicate that the cagelike ZnO nanostructures are low-loss material for microwave absorption in X band. However, the cagelike ZnO /SiO2 nanocomposites exhibit a relatively strong attenuation to microwave in X band. Such strong absorption is related to the unique geometrical morphology of the cagelike ZnO nanostructures in the composites. The microcurrent network can be produced in the cagelike ZnO nanostructures, which contributes to the conductive loss.

  3. Cycling behaviour of sponge-like nanostructured ZnO as thin-film Li-ion battery anodes

    International Nuclear Information System (INIS)

    Garino, Nadia; Lamberti, Andrea; Gazia, Rossana; Chiodoni, Angelica; Gerbaldi, Claudio

    2014-01-01

    Highlights: • Zn is thermally oxidized in ambient air to obtain sponge-like ZnO film. • Polycrystalline, transparent, porous thin film is obtained. • Film exhibits stabile specific capacity (∼300 mAh g −1 ) after prolonged cycling. • Sponge-like ZnO film shows promising prospects as Li-ion battery anode. - Abstract: Single phase wurtzitic porous ZnO thin films are obtained by a simple two-step method, involving the sputtering deposition of a sponge-like metallic Zn layer, followed by a moderately low temperature treatment for the complete zinc oxidation. Thanks to its 3D nanostructuration, the superimposition of small branches able to grow in length almost isotropically and forming a complex topography, sponge-like ZnO can combine the fast transport properties of one dimensional material and the high surface area usually provided by nanocrystalline electrodes. When galvanostatically tested in lithium cell, after the initial decay, it can provide an almost stable specific capacity higher than 50 μAh cm −2 after prolonged cycling at estimated 0.7 C, with very high Coulombic efficiency

  4. Cycling behaviour of sponge-like nanostructured ZnO as thin-film Li-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Garino, Nadia, E-mail: nadia.garino@iit.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Lamberti, Andrea; Gazia, Rossana; Chiodoni, Angelica [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Gerbaldi, Claudio, E-mail: claudio.gerbaldi@polito.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); GAME Lab, Department of Applied Science and Technology – DISAT, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy)

    2014-12-05

    Highlights: • Zn is thermally oxidized in ambient air to obtain sponge-like ZnO film. • Polycrystalline, transparent, porous thin film is obtained. • Film exhibits stabile specific capacity (∼300 mAh g{sup −1}) after prolonged cycling. • Sponge-like ZnO film shows promising prospects as Li-ion battery anode. - Abstract: Single phase wurtzitic porous ZnO thin films are obtained by a simple two-step method, involving the sputtering deposition of a sponge-like metallic Zn layer, followed by a moderately low temperature treatment for the complete zinc oxidation. Thanks to its 3D nanostructuration, the superimposition of small branches able to grow in length almost isotropically and forming a complex topography, sponge-like ZnO can combine the fast transport properties of one dimensional material and the high surface area usually provided by nanocrystalline electrodes. When galvanostatically tested in lithium cell, after the initial decay, it can provide an almost stable specific capacity higher than 50 μAh cm{sup −2} after prolonged cycling at estimated 0.7 C, with very high Coulombic efficiency.

  5. Effective tuning of electron charge and spin distribution in a dot-ring nanostructure at the ZnO interface

    Science.gov (United States)

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk

    2018-05-01

    Electronic states and the Aharonov-Bohm effect in ZnO quantum dot-ring nanostructures containing few interacting electrons reveal several unique features. We have shown here that in contrast to the dot-rings made of conventional semiconductors, such as InAs or GaAs, the dot-rings in ZnO heterojunctions demonstrate several unique characteristics due to the unusual properties of quantum dots and rings in ZnO. In particular the energy spectra of the ZnO dot-ring and the Aharnov-Bohm oscillations are strongly dependant on the electron number in the dot or in the ring. Therefore even small changes of the confinement potential, sizes of the dot-ring or the magnetic field can drastically change the energy spectra and the behavior of Aharonov-Bohm oscillations in the system. Due to this interesting phenomena it is possible to effectively control with high accuracy the electron charge and spin distribution inside the dot-ring structure. This controlling can be achieved either by changing the magnetic field or the confinement potentials.

  6. Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yizhou; Liu, Xiangmei [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062 (China); Yeung, Kelvin W.K. [Division of Spine Surgery, Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong (China); Chu, Paul K. [Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wu, Shuilin, E-mail: shuilin.wu@gmail.com [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062 (China)

    2017-04-01

    Highlights: • Carbon naonotubes/chitosan/ZnO coating was first constructed on Ti implants. • This system endowed Ti implants with excellent self-antibacterial activity. • The amount of Zn could be precisely controlled by atom layer deposition. • This system could regulate cell behaviors on metallic implants. - Abstract: One-dimensional (1D) nanostructures of ZnO using atomic layer deposition (ALD) on chitosan (CS) modified carbon nanotubes (CNTs) were first introduced onto the surfaces of biomedical implants. When the content of ZnO is not sufficient, CNTs can strengthen the antibacterial activity against E. coli and S. aureus by 8% and 39%, respectively. CS can improve the cytocompatibility of CNTs and ZnO. The amount of Zn content can be controlled by changing the cycling numbers of ALD processes. This hybrid coating can not only endow medical implants with high self-antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) of over 73% and 98%, respectively, but also regulate the proliferation and osteogenic differentiation of osteoblasts by controlling the amount of ZnO.

  7. Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures

    International Nuclear Information System (INIS)

    Zhu, Yizhou; Liu, Xiangmei; Yeung, Kelvin W.K.; Chu, Paul K.; Wu, Shuilin

    2017-01-01

    Highlights: • Carbon naonotubes/chitosan/ZnO coating was first constructed on Ti implants. • This system endowed Ti implants with excellent self-antibacterial activity. • The amount of Zn could be precisely controlled by atom layer deposition. • This system could regulate cell behaviors on metallic implants. - Abstract: One-dimensional (1D) nanostructures of ZnO using atomic layer deposition (ALD) on chitosan (CS) modified carbon nanotubes (CNTs) were first introduced onto the surfaces of biomedical implants. When the content of ZnO is not sufficient, CNTs can strengthen the antibacterial activity against E. coli and S. aureus by 8% and 39%, respectively. CS can improve the cytocompatibility of CNTs and ZnO. The amount of Zn content can be controlled by changing the cycling numbers of ALD processes. This hybrid coating can not only endow medical implants with high self-antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) of over 73% and 98%, respectively, but also regulate the proliferation and osteogenic differentiation of osteoblasts by controlling the amount of ZnO.

  8. ALD grown nanostructured ZnO thin films: Effect of substrate temperature on thickness and energy band gap

    Directory of Open Access Journals (Sweden)

    Javed Iqbal

    2016-10-01

    Full Text Available Nanostructured ZnO thin films with high transparency have been grown on glass substrate by atomic layer deposition at various temperatures ranging from 100 °C to 300 °C. Efforts have been made to observe the effect of substrate temperature on the thickness of the deposited thin films and its consequences on the energy band gap. A remarkably high growth rate of 0.56 nm per cycle at a substrate temperature of 200 °C for ZnO thin films have been achieved. This is the maximum growth rate for ALD deposited ZnO thin films ever reported so far to the best of our knowledge. The studies of field emission scanning electron microscopy and X-ray diffractometry patterns confirm the deposition of uniform and high quality nanosturtured ZnO thin films which have a polycrystalline nature with preferential orientation along (100 plane. The thickness of the films deposited at different substrate temperatures was measured by ellipsometry and surface profiling system while the UV–visible and photoluminescence spectroscopy studies have been used to evaluate the optical properties of the respective thin films. It has been observed that the thickness of the thin film depends on the substrate temperatures which ultimately affect the optical and structural parameters of the thin films.

  9. Precursor-controlled synthesis of hierarchical ZnO nanostructures, using oligoaniline-coated Au nanoparticle seeds

    Science.gov (United States)

    Krishnan, Deepti; Pradeep, T.

    2009-07-01

    Shape-selected synthesis of a large number of zinc oxide (ZnO) nano- and microstructures was achieved by the seed-mediated growth of oligoaniline-coated gold nanoparticle precursors. Distinctive ZnO structures such as nanoplates, nanospheres, microstars, microflowers, microthorns and micromultipods were synthesized by this method. Slightly different shapes were obtained in the absence of the seed solution. This is a fast, low temperature (60 °C) and biomimetic route to make a wide variety of structures. The structure and morphology of the nanostructures were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) were utilized for the characterization of the nanostructures. A growth mechanism for these nanostructures was proposed based on these results. The concentrations of the reacting species were the main parameter causing the changes in the morphologies. The variation in morphologies of these structures is believed to be due to the ability of the seed solution as well as polyvinylpyrrolidone (PVP) to selectively suppress/depress the growth of certain planes, allowing growth to occur only in certain specific directions. Changes in the amount of growth nuclei with varying sodium hydroxide (NaOH) concentration is also seen to affect the morphology of these structures.

  10. Nano-structured polymer composites and process for preparing same

    Science.gov (United States)

    Hillmyer, Marc; Chen, Liang

    2013-04-16

    A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

  11. Femtosecond pulse laser-induced self-organized nanostructures on the surface of ZnO crystal

    International Nuclear Information System (INIS)

    Zhong Minjian; Guo Guanglei; Yang Junyi; Ma Ninghua; Ye Guo; Ma Hongliang; Guo Xiaodong; Li Ruxin

    2008-01-01

    This paper reports self-organized nanostructures observed on the surface of ZnO crystal after irradiation by a focused beam of a femtosecond Ti:sapphire laser with a repetition rate of 250 kHz. For a linearly polarized femtosecond laser, the periodic nanograting structure on the ablation crater surface was promoted. The period of self-organization structures is about 180 nm. The grating orientation is adjusted by the laser polarization direction. A long range Bragg-like grating is formed by moving the sample at a speed of 10 μm/s. For a circularly polarized laser beam, uniform spherical nanoparticles were formed as a result of Coulomb explosion during the interaction of near-infrared laser with ZnO crystal

  12. High Quality Zinc Oxide Thin films and Nanostructures Prepared by Pulsed Laser Deposition for Photodetectors

    KAUST Repository

    Flemban, Tahani H.

    2017-12-11

    Zinc oxide (ZnO) semiconductors have been utilized by many researchers, due to its unique properties beneficial for functional devices. In particular, gadolinium (Gd)–doped ZnO exhibits high ferromagnetic and electrical properties, which is attributed to defect/impurity bands mediated by Gd dopants. In this dissertation, I study the effects of Gd concentration, oxygen pressure using pulsed laser deposition (PLD), and thermal annealing on the optical and structural properties of undoped and Gd-doped ZnO films and nanostructures. Moreover, as the growth of practical ZnO nanostructures-based devices without catalyst, while presently challenging, is highly important for many applications. Thus, for the first time, a novel method is developed for growing well aligned ZnO nanorods (NRs) by optimizing PLD conditions using Gd-doped ZnO target without any catalyst in a single step. This study shows that, both the lattice orientation of the substrate and the Gd characteristics are significant in enhancing the NR growth. Our findings reveal that precise control of the NR density can be achieved by changing the oxygen partial pressure. Furthermore, due to the Gd incorporation, these NRs possess favorable electrical properties with a significant mobility of 177 cm2 (V.s)-1 compared to that reported in literature. Nonetheless significant challenges need to be overcome to achieve reproducible and stable p-type ZnO for commercial applications. Hence, several attempts based on n-type ZnO grown on foreign p-type substrates were made to achieve high-performance devices and overcome the issues arising when p-type doped ZnO is employed. Moreover, Growth of ZnO nanostructures on a foreign p-type substrates does not require a lattice-matched p-type substrate. Thus, for the first time, PLD conditions are improved to grow high quality ZnO nanotubes (NTs) with high optical, structural and electrical properties on a p-type Si (100) substrate without catalyst for high-performance devices. A

  13. Hybrid nanostructure heterojunction solar cells fabricated using vertically aligned ZnO nanotubes grown on reduced graphene oxide.

    Science.gov (United States)

    Yang, Kaikun; Xu, Congkang; Huang, Liwei; Zou, Lianfeng; Wang, Howard

    2011-10-07

    Using reduced graphene oxide (rGO) films as the transparent conductive coating, inorganic/organic hybrid nanostructure heterojunction photovoltaic devices have been fabricated through hydrothermal synthesis of vertically aligned ZnO nanorods (ZnO-NRs) and nanotubes (ZnO-NTs) on rGO films followed by the spin casting of a poly(3-hexylthiophene) (P3HT) film. The data show that larger interfacial area in ZnO-NT/P3HT composites improves the exciton dissociation and the higher electrode conductance of rGO films helps the power output. This study offers an alternative to manufacturing nanostructure heterojunction solar cells at low temperatures using potentially low cost materials.

  14. Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles

    Science.gov (United States)

    Isawi, Heba; El-Sayed, Magdi H.; Feng, Xianshe; Shawky, Hosam; Abdel Mottaleb, Mohamed S.

    2016-11-01

    A new approach for modification of polyamid thin film composite membrane PA(TFC) using synthesized ZnO nanoparticles (ZnO NPs) was shown to enhance the membrane performances for reverse osmosis water desalination. First, active layer of synthesis PA(TFC) membrane was activated with an aqueous solution of free radical graft polymerization of hydrophilic methacrylic acid (MAA) monomer onto the surface of the PA(TFC) membrane resulting PMAA-g-PA(TFC). Second, the PA(TFC) membrane has been developed by incorporation of ZnO NPs into the MAA grafting solution resulting the ZnO NPs modified PMAA-g-PA(TFC) membrane. The surface properties of the synthesized nanoparticles and prepared membranes were investigated using the FTIR, XRD and SEM. Morphology studies demonstrated that ZnO NPs have been successfully incorporated into the active grafting layer over PA(TFC) composite membranes. The zinc leaching from the ZnO NPs modified PMAA-g-PA(TFC) was minimal, as shown by batch tests that indicated stabilization of the ZnO NPs on the membrane surfaces. Compared with the a pure PA(TFC) and PMAA-g-PA(TFC) membranes, the ZnO NPs modified PMAA-g-PA(TFC) was more hydrophilic, with an improved water contact angle (∼50 ± 3°) over the PMAA-g-PA(TFC) (63 ± 2.5°). The ZnO NPs modified PMAA-g-PA(TFC) membrane showed salt rejection of 97% (of the total groundwater salinity), 99% of dissolved bivalent ions (Ca2+, SO42-and Mg2+), and 98% of mono valent ions constituents (Cl- and Na+). In addition, antifouling performance of the membranes was determined using E. coli as a potential foulant. This demonstrates that the ZnO NPs modified PMAA-g-PA(TFC) membrane can significantly improve the membrane performances and was favorable to enhance the selectivity, permeability, water flux, mechanical properties and the bio-antifouling properties of the membranes for water desalination.

  15. Annealing Heat Treatment of ZnO Nanoparticles Grown on Porous Si Substrate Using Spin-Coating Method

    Directory of Open Access Journals (Sweden)

    K. A. Eswar

    2014-01-01

    Full Text Available ZnO nanoparticles were successfully deposited on porous silicon (PSi substrate using spin-coating method. In order to prepare PSi, electrochemical etching was employed to modify the Si surface. Zinc acetate dihydrate was used as a starting material in ZnO sol-gel solution preparation. The postannealing treatments were investigated on morphologies and photoluminescence (PL properties of the ZnO thin films. Field emission scanning electron microscopy (FESEM results indicate that the thin films composed by ZnO nanoparticles were distributed uniformly on PSi. The average sizes of ZnO nanoparticle increase with increasing annealing temperature. Atomic force microscopic (AFM analysis reveals that ZnO thin films annealed at 500°C had the smoothest surface. PL spectra show two peaks that completely correspond to nanostructured ZnO and PSi. These findings indicate that the ZnO nanostructures grown on PSi are promising for application as light emitting devices.

  16. Eosin-Y sensitized core-shell TiO2-ZnO nano-structured photoanodes for dye-sensitized solar cell applications.

    Science.gov (United States)

    Manikandan, V S; Palai, Akshaya K; Mohanty, Smita; Nayak, Sanjay K

    2018-06-01

    In the current investigation, TiO 2 and TiO 2 -ZnO (core-shell) spherical nanoparticles were synthesized by simple combined hydrolysis and refluxing method. A TiO 2 core nanomaterial on the shell material of ZnO was synthesized by utilizing variable ratios of ZnO. The structural characterization of TiO 2 -ZnO core/shell nanoparticles were done by XRD analysis. The spherical structured morphology of the TiO 2 -ZnO has been confirmed through field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) studies. The UV-visible spectra of TiO 2 -ZnO nanostructures were also compared with the pristine TiO 2 to investigate the shift of wavelength. The TiO 2 -ZnO core/shell nanoparticles at the interface efficiently collect the photogenarated electrons from ZnO and also ZnO act a barrier for reduced charge recombination of electrolyte and dye-nanoparticles interface. This combination improved the light absorption which induced the charge transfer ability and dye loading capacity of core-shell nanoparticles. An enhancement in the short circuit current (J sc ) from 1.67 mA/cm 2 to 2.1 mA/cm 2 has been observed for TiO 2 -ZnObased photoanode (with platinum free counter electrode), promises an improvement in the energy conversion efficiency by 57% in comparison with that of the DSSCs based on the pristine TiO 2 . Henceforth, TiO 2 -ZnO photoelectrode in ZnO will effectively act as barrier at the interface of TiO 2 -ZnO and TiO 2 , ensuring the potential for DSSC application. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Structural and Optical Properties of Eu Doped ZnO Nanorods prepared by Pulsed Laser Deposition

    KAUST Repository

    Alarawi, Abeer

    2014-06-23

    Nano structured wide band gap semiconductors have attracted attention of many researchers due to their potential electronic and optoelectronic applications. In this thesis, we report successful synthesis of well aligned Eu doped ZnO nano-rods prepared, for the first time to our knowledge, by pulsed laser deposition (PLD) without any catalyst. X-ray diffraction (XRD) patterns shows that these Eu doped ZnO nanorods are grown along the c-axis of ZnO wurtzite structure. We have studied the effect of the PLD growth conditions on forming vertically aligned Eu doped ZnO nanorods. The structural properties of the material are investigated using a -scanning electron microscope (SEM). The PLD parameters must be carefully controlled in order to obtain c-axis oriented ZnO nanorods on sapphire substrates, without the use of any catalyst. The experiments conducted in order to identify the optimal growth conditions confirmed that, by adjusting the target-substrate distance, substrate temperature, laser energy and deposition duration, the nanorod size could be successfully controlled. Most importantly, the results indicated that the photoluminescence (PL) properties reflect the quality of the ZnO nanorods. These parameters can change the material’s structure from one-dimensional to two-dimensional however the laser energy and frequency affect the size and the height of the nanorods; the xygen pressure changes the density of the nanorods.

  18. Sims Characterisation of ZnO Layer Prepared By Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Andrej Vincze

    2005-01-01

    Full Text Available New material development requires new technologies to create and prepare basic material for semiconductor industry and device applications. Materials have given properties, which exhibit particulary small tolerances. One of the most important and promising material is recently ZnO. ZnO has specific properties for near UV emission and absorption optical devices. The pulsed laser deposition (PLD is one of the methods to prepare this type of material. The aim of this paper is to compare properties of ZnO layers deposited from pure Zn target in oxygen atmosphere and the analysis of their surface properties by secondary ion mass spectroscopy (SIMS, atomic force microscopy (AFM and scanning electron microscopy (SEM.

  19. Enhancing the numerical aperture of lenses using ZnO nanostructure-based turbid media

    International Nuclear Information System (INIS)

    Khokhra, Richa; Barman, Partha Bir; Kumar, Rajesh; Kumar, Manoj; Rawat, Nitin; Jang, Hwanchol; Lee, Heung-No

    2013-01-01

    Nanosheets, nanoparticles, and microstructures of ZnO were synthesized via a wet chemical method. ZnO films with a thickness of 44–46 μm were fabricated by spray coating, and these have been investigated for their potential use in turbid lens applications. A morphology-dependent comparative study of the transmittance of ZnO turbid films was conducted. Furthermore, these ZnO turbid films were used to enhance the numerical aperture (NA) of a Nikon objective lens. The variation in NA with different morphologies was explained using size-dependent scattering by the fabricated films. A maximum NA of around 1.971 of the objective lens with a turbid film of ZnO nanosheets was achieved. (paper)

  20. Electron transport properties in ZnO nanowires/poly(3-hexylthiophene) hybrid nanostructure

    International Nuclear Information System (INIS)

    Cheng Ke; Cheng Gang; Wang Shujie; Fu Dongwei; Zou Bingsuo; Du Zuliang

    2010-01-01

    The ZnO nanowires (NWs) array/poly(3-hexylthiophene) (P3HT) hybrid prototype device was fabricated. An ultraviolet (UV) light of λ = 350 nm is used to investigate the photo-electric properties of the ZnO NWs array and hybrid structure. In this way, we can avoid the excitation of P3HT, which can give us a real electron transport ability of ZnO NWs itself. Our results demonstrated a higher and faster photo-electric response of 3 s for the hybrid structure while 9 s for the ZnO NWs array. The surface states related slow photo-electric response was also observed for them. The charge transfer mechanism and the influence of surface states were discussed. The current work provides us profound understandings on the electron transport ability of ZnO NWs array in a working hybrid polymer solar cell, which is crucial for optimizing the device performance.

  1. Defect-induced room temperature ferromagnetic properties of the Al-doped and undoped ZnO rod-like nanostructure

    CSIR Research Space (South Africa)

    Jule, L

    2017-07-01

    Full Text Available : 151-155 Defect-induced room temperature ferromagnetic properties of the Al-doped and undoped ZnO rod-like nanostructure Jule L Dejene F Ali AG Roro KT Mwakikunga BW ABSTRACT: In this work, electron paramagnetic resonance (EPR...

  2. Preparation and electrochemical performance of bramble-like ZnO array as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yan, Junfeng; Wang, Gang; Wang, Hui; Zhang, Zhiyong; Ruan, Xiongfei; Zhao, Wu; Yun, Jiangni; Xu, Manzhang

    2015-01-01

    A bramble-like ZnO array with a special three-dimensional (3D) nanostructure was successfully fabricated on Zn foil through a facile two-step hydrothermal process. A possible growth mechanism of the bramble-like ZnO array was proposed. In the first step of hydrothermal process, the crystal nucleus of Zn(OH) 4 2− generated by the zinc atoms and OH − ions fold together preferentially along the positive polar (0001) to form the needle-like ZnO array. In the second step of hydrothermal process, the crystal nuclei of Zn(OH) 4 2− adjust their posture to keep their c-axes vertical to the perching sites due to the sufficient environmental force and further grow preferentially along the (0001) direction so as to form bramble-like ZnO array. The electrochemical properties of the needle- and bramble-like ZnO arrays as anode materials for lithium-ion batteries were investigated and compared. The results show that the bramble-like ZnO material exhibits much better lithium storage properties than the needle-like ZnO sample. Reasons for the enhanced electrochemical performance of the bramble-like ZnO material were investigated

  3. Enhanced room temperature ferromagnetism in electrodeposited Co-doped ZnO nanostructured thin films by controlling the oxygen vacancy defects

    Energy Technology Data Exchange (ETDEWEB)

    Simimol, A. [Nanomaterials Research Lab, Surface Engineering Division, CSIR-National Aerospace Laboratories, Post Bag No. 1779, Bangalore 560017 (India); Department of Physics, National Institute of Technology Calicut, Calicut 673601 (India); Anappara, Aji A. [Department of Physics, National Institute of Technology Calicut, Calicut 673601 (India); Greulich-Weber, S. [Department of Physics, Nanophotonic Materials, Faculty of Science, University of Paderborn, 33095 Paderborn (Germany); Chowdhury, Prasanta [Nanomaterials Research Lab, Surface Engineering Division, CSIR-National Aerospace Laboratories, Post Bag No. 1779, Bangalore 560017 (India); Barshilia, Harish C., E-mail: harish@nal.res.in

    2015-06-07

    We report the growth of un-doped and cobalt doped ZnO nanostructures fabricated on FTO coated glass substrates using electrodeposition method. A detailed study on the effects of dopant concentration on morphology, structural, optical, and magnetic properties of the ZnO nanostructures has been carried out systematically by varying the Co concentration (c.{sub Co}) from 0.01 to 1 mM. For c.{sub Co }≤ 0.2 mM, h-wurtzite phase with no secondary phases of Co were present in the ZnO nanostructures. For c.{sub Co} ≤ 0.2 mM, the photoluminescence spectra exhibited a decrease in the intensity of ultraviolet emission as well as band-gap narrowing with an increase in dopant concentration. All the doped samples displayed a broad emission in the visible range and its intensity increased with an increase in Co concentration. It was found that the defect centers such as oxygen vacancies and zinc interstitials were the source of the visible emission. The X-ray photoelectron spectroscopy studies revealed, Co was primarily in the divalent state, replacing the Zn ion inside the tetrahedral crystal site of ZnO without forming any cluster or secondary phases of Co. The un-doped ZnO nanorods exhibited diamagnetic behavior and it remained up to a c.{sub Co} of 0.05 mM, while for c.{sub Co }> 0.05 mM, the ZnO nanostructures exhibited ferromagnetic behavior at room temperature. The coercivity increased to 695 G for 0.2 mM Co-doped sample and then it decreased for c.{sub Co }> 0.2 mM. Our results illustrate that up to a threshold concentration of 0.2 mM, the strong ferromagnetism is due to the oxygen vacancy defects centers, which exist in the Co-doped ZnO nanostructures. The origin of strong ferromagnetism at room temperature in Co-doped ZnO nanostructures is attributed to the s-d exchange interaction between the localized spin moments resulting from the oxygen vacancies and d electrons of Co{sup 2+} ions. Our findings provide a new insight for tuning the

  4. Effects of stabilizer ratio on photoluminescence properties of sol-gel ZnO nano-structured thin films

    International Nuclear Information System (INIS)

    Boudjouan, F.; Chelouche, A.; Touam, T.; Djouadi, D.; Khodja, S.; Tazerout, M.; Ouerdane, Y.; Hadjoub, Z.

    2015-01-01

    Nanostructured ZnO thin films with different molar ratios of MEA to zinc acetate (0.5, 1.0, 1.5 and 2.0) have been deposited on glass substrates by a sol–gel dip coating technique. X-ray diffraction, Scanning Electron Microscopy, UV–visible spectrophotometry and photoluminescence spectroscopy have been employed to investigate the effect of MEA stabilizer ratio on structural, morphological, absorbance and emission properties of the ZnO thin films. Diffraction patterns have shown that all the films are polycrystalline and exhibit a wurtzite hexagonal structure. The c axis orientation has been enhanced with increasing stabilizer ratio. SEM micrographs have revealed that the morphology of the ZnO films depend on stabilizer ratio. The UV–visible absorption spectra have demonstrated that the optical absorption is affected by stabilizer ratio. The photoluminescence spectra have indicated one ultraviolet and two visible emission bands (green and red), while band intensities are found to be dependent on stabilizer ratio. ZnO thin films deposited at MEA ratio of 1.0 show the highest UV emission while the minimum UV emission intensity is observed in thin films deposited at ratio of 0.5 and the maximum green has been recorded for films deposited at MEA ratio of 2.0. - Highlight: • c axis orientation increases with increasing MEA ratio. • The increase of MEA ration from 0.5 to 1.0 enhances greatly the UV emission. • The larger I UV /I visible is obtained for the MEA to Zn ratio of 1:1. • The MEA ratio of 0.5 favors the formation of large density of V zn . • The MEA ratio of 2.0 increases the V o density

  5. Electrochemical preparation of hematite nanostructured films for solar hydrogen production

    Directory of Open Access Journals (Sweden)

    Ebadzadeh T.

    2012-10-01

    Full Text Available Photoelectrochemical water splitting is a clean and promising technique for using a renewable source of energy, i.e., solar energy, to produce hydrogen. In this work electrochemical formation of iron oxyhydroxide and its conversion to hematite (α- Fe2O3 through thermal treatment have been studied. Oxyhydroxide iron compounds have been prepared onto SnO2/F covered glass substrate by potential cycling with two different potential sweep rate values; then calcined at 520 °C in air to obtain α-Fe2O3 nanostrutured films for their implementation as photoanode in a photoelectrochemical cell. X-ray diffraction analysis allowed finding that iron oxides films have nanocrystalline character. Scanning electron microscopy revealed that films have nanostructured morphology. The obtained results are discussed considering the influence of potential sweep rate employed during the preparation of iron oxyhydroxide film on optical, structural and morphological properties of hematite nanostructured films. Results show that films have acceptable characteristics as photoanode in a photoelectrochemical cell for hydrogen generation from water.

  6. A Simple Method for the Preparation of ZnO Prickly Spheres

    Institute of Scientific and Technical Information of China (English)

    Da Zhi LI; Xin Yu SONG; Si Xiu SUN; Jin Xin GUO

    2004-01-01

    The synthesis of ZnO prickly spheres using precipitation followed by heating treatment was investigated. Zn(OH)2 precursor was prepared by precipitation process using Zn(CH3COO)2·2H2O in mixed 1-propanol-water solvent. Sodium dodecyl sulfate (SDS) as the anionic surfactant was added to control the morphology. The size and structure of ZnO prickly spheres were studied using XRD, TEM and SEM. The results showed that the morphologies and size of the spheres strongly depended on the volume ratio of 1-propanol /water and molar ratio of SDS/Zn2+. ZnO prickly spheres composed of nanorods could be obtained, when the volume ratio of 1-propanol/water = 2:3 and the molar ratio of Zn2+/SDS ≈ 450:1.

  7. Excimer laser processing of ZnO thin films prepared by the sol-gel process

    International Nuclear Information System (INIS)

    Winfield, R.J.; Koh, L.H.K.; O'Brien, Shane; Crean, Gabriel M.

    2007-01-01

    ZnO thin films were prepared on soda-lime glass from a single spin-coating deposition of a sol-gel prepared with anhydrous zinc acetate [Zn(C 2 H 3 O 2 ) 2 ], monoethanolamine [H 2 NC 2 H 4 OH] and isopropanol. The deposited films were dried at 50 and 300 deg. C. X-ray analysis showed that the films were amorphous. Laser annealing was performed using an excimer laser. The laser pulse repetition rate was 25 Hz with a pulse energy of 5.9 mJ, giving a fluence of 225 mJ cm -2 on the ZnO film. Typically, five laser pulses per unit area of the film were used. After laser processing, the hexagonal wurtzite phase of zinc oxide was observed from X-ray diffraction pattern analysis. The thin films had a transparency of greater than 70% in the visible region. The optical band-gap energy was 3.454 eV. Scanning electron microscopy and profilometry analysis highlighted the change in morphology that occurred as a result of laser processing. This comparative study shows that our sol-gel processing route differs significantly from ZnO sol-gel films prepared by conventional furnace annealing which requires temperatures above 450 deg. C for the formation of crystalline ZnO

  8. Low temperature preparation of Ag-doped ZnO nanowire arrays for sensor and light-emitting diode applications

    Science.gov (United States)

    Lupan, O.; Viana, B.; Cretu, V.; Postica, V.; Adelung, R.; Pauporté, T.

    2016-02-01

    Transition metal doped-oxide semiconductor nanostructures are important to achieve enhanced and new properties for advanced applications. We describe the low temperature preparation of ZnO:Ag nanowire/nanorod (NW/NR) arrays by electrodeposition at 90 °C. The NWs have been characterized by SEM, EDX, transmittance and photoluminescence (PL) measurements. The integration of Ag in the crystal is shown. Single nanowire/nanorod of ZnO:Ag was integrated in a nanosensor structure leading to new and enhanced properties. The ultraviolet (UV) response of the nanosensor was investigated at room temperature. Experimental results indicate that ZnO:Ag (0.75 μM) nanosensor possesses faster response/recovery time and better response to UV light than those reported in literature. The sensor structure has been also shown to give a fast response for the hydrogen detection with improved performances compared to pristine ZnO NWs. ZnO:Ag nanowire/nanorod arrays electrochemically grown on p-type GaN single crystal layer is also shown to act as light emitter in LED structures. The emission wavelength is red-shifted compared to pristine ZnO NW array. At low Ag concentration a single UV-blue emission is found whereas at higher concentration of dopant the emission is broadened and extends up to the red wavelength range. Our study indicates that high quality ZnO:Ag NW/NR prepared at low temperature by electrodeposition can serve as building nanomaterials for new sensors and light emitting diodes (LEDs) structures with low-power consumption.

  9. Nano-structural properties of ZnO films for Si based heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, T.H. [University of Oslo, Department of Physics, P.O. Box 1048, Blindern, NO-0316, Oslo (Norway)], E-mail: t.h.breivik@fys.uio.no; Diplas, S. [University of Oslo, Department of Physics, P.O. Box 1048, Blindern, NO-0316, Oslo (Norway); University of Oslo, Center for Material Science and Nanotechnology, P.O. Box 1126, Blindern, NO-0318 Oslo (Norway); Ulyashin, A.G. [Section for Renewable Energy, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway); Gunnaes, A.E. [University of Oslo, Department of Physics, P.O. Box 1048, Blindern, NO-0316, Oslo (Norway); Olaisen, B.R.; Wright, D.N.; Holt, A. [Section for Renewable Energy, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway); Olsen, A. [University of Oslo, Department of Physics, P.O. Box 1048, Blindern, NO-0316, Oslo (Norway)

    2007-10-15

    Properties and structure of ZnO and ZnO:Al films deposited on c-Si, a-Si:H/Si and glass substrates are studied by various methods. The transmittance of the ZnO:Al was found to be higher when compared to ZnO, and the refractive index lower. X-ray photoelectron spectroscopy (XPS) shows that the screening efficiency in the presence of core holes is enhanced in the Al doped ZnO. The roughness of the ZnO:Al surfaces is strongly substrate dependent. With transmission electron microscopy (TEM) a 2-3 nm thick amorphous interfacial layer was observed independently of substrate and doping. Deposition of ZnO on a-Si:H substrate results in crystallization of the a-Si:H layer independently of Al doping.

  10. Nano-structural properties of ZnO films for Si based heterojunction solar cells

    International Nuclear Information System (INIS)

    Breivik, T.H.; Diplas, S.; Ulyashin, A.G.; Gunnaes, A.E.; Olaisen, B.R.; Wright, D.N.; Holt, A.; Olsen, A.

    2007-01-01

    Properties and structure of ZnO and ZnO:Al films deposited on c-Si, a-Si:H/Si and glass substrates are studied by various methods. The transmittance of the ZnO:Al was found to be higher when compared to ZnO, and the refractive index lower. X-ray photoelectron spectroscopy (XPS) shows that the screening efficiency in the presence of core holes is enhanced in the Al doped ZnO. The roughness of the ZnO:Al surfaces is strongly substrate dependent. With transmission electron microscopy (TEM) a 2-3 nm thick amorphous interfacial layer was observed independently of substrate and doping. Deposition of ZnO on a-Si:H substrate results in crystallization of the a-Si:H layer independently of Al doping

  11. Structural, photoluminescence and XPS properties of Tm3þ ions in ZnO nanostructures

    CSIR Research Space (South Africa)

    Kabongo, GL

    2017-07-01

    Full Text Available of photoluminescence (PL) spectroscopy. Finally, Tm 4d core level was detected in ZnO: 0.5 mol% Tm(sup3+) sample from high resolution X-Ray Photoelectron Spectroscopy (XPS) scan....

  12. Bio-hydrogen production based on catalytic reforming of volatiles generated by cellulose pyrolysis: An integrated process for ZnO reduction and zinc nanostructures fabrication

    International Nuclear Information System (INIS)

    Maciel, Adriana Veloso; Job, Aldo Eloizo; Nova Mussel, Wagner da; Brito, Walter de; Duarte Pasa, Vanya Marcia

    2011-01-01

    The paper presents a process of cellulose thermal degradation with bio-hydrogen generation and zinc nanostructures synthesis. Production of zinc nanowires and zinc nanoflowers was performed by a novel processes based on cellulose pyrolysis, volatiles reforming and direct reduction of ZnO. The bio-hydrogen generated in situ promoted the ZnO reduction with Zn nanostructures formation by vapor-solid (VS) route. The cellulose and cellulose/ZnO samples were characterized by thermal analyses (TG/DTG/DTA) and the gases evolved were analyzed by FTIR spectroscopy (TG/FTIR). The hydrogen was detected by TPR (Temperature Programmed Reaction) tests. The results showed that in the presence of ZnO the cellulose thermal degradation produced larger amounts of H 2 when compared to pure cellulose. The process was also carried out in a tubular furnace with N 2 atmosphere, at temperatures up to 900 o C, and different heating rates. The nanostructures growth was catalyst-free, without pressure reduction, at temperatures lower than those required in the carbothermal reduction of ZnO with fossil carbon. The nanostructures were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The optical properties were investigated by photoluminescence (PL). One mechanism was presented in an attempt to explain the synthesis of zinc nanostructures that are crystalline, were obtained without significant re-oxidation and whose morphologies are dependent on the heating rates of the process. This route presents a potential use as an industrial process taking into account the simple operational conditions, the low costs of cellulose and the importance of bio-hydrogen and nanostructured zinc.

  13. Study of Growth Kinetics in One Dimensional and Two Dimensional ZnO Nanostructures

    Science.gov (United States)

    Yin, Xin

    Because of the merits arising from the unique geometry, nanostructure materials have been an essential class of materials, which have shown great potentials in the fields of electronics, photonics, and biology. With various nanostructures being intensively investigated and successfully complemented into device applications, there has been one increasing demand to the investigation of the growth mechanism devoted to the controlled nanostructure synthesis. Motivated by this situation, this thesis is focused on the fundamental understanding of the nanostructure growth. Specifically, by taking zinc oxide as an example material, through controlling the basic driving force, that is, the supersaturation, I have rationally designed and synthesized various of nanostructures, and further applied the classical layer-by-layer growth mechanism to the understanding on the formation of these nanostructures, they are, the convex-plate-capped nanowires, the concave-plate-capped nanowires, the facet evolution at the tip of the nanowires, and the ultrathin 2D nanosheets.

  14. (0 0 2-oriented growth and morphologies of ZnO thin films prepared by sol-gel method

    Directory of Open Access Journals (Sweden)

    Guo Dongyun

    2016-09-01

    Full Text Available Zinc acetate was used as a starting material to prepare Zn-solutions from solvents and ligands with different boiling temperature. The ZnO thin films were prepared on Si(1 0 0 substrates by spin-coating method. The effect of baking temperature and boiling temperature of the solvents and ligands on their morphologies and orientation was investigated. The solvents and ligands with high boiling temperature were favorable for relaxation of mechanical stress to form the smooth ZnO thin films. As the solvents and ligands with low boiling temperature were used to prepare Zn-solutions, the prepared ZnO thin films showed (0 0 2 preferred orientation. As n-propanol, 2-methoxyethanol, 2-(methylaminoethanol and monoethanolamine were used to prepare Zn-solutions, highly (0 0 2-oriented ZnO thin films were formed by adjusting the baking temperature.

  15. Hierarchical ZnO particles grafting by fluorocarbon polymer derivative: Preparation and superhydrophobic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dahai; Jia, Mengqiu, E-mail: jiamq@mail.buct.edu.cn

    2015-07-15

    Graphical abstract: - Highlights: • The hierarchical particles were prepared by a simple, mild hydrothermal process. • The obtained “chestnut” ZnO particles show dual-scale morphology with high roughness. • FEVE derivative was creatively imported to graft onto hierarchical particles. • Superhydrophobic surfaces were obtained, on which the contact angles surpass 150°. • A special model was proposed to explain the wetting state in this work. - Abstract: Superhydrophobic surfaces on the basis of hierarchical ZnO particles grafted by fluoroethylene-vinylether (FEVE) polymer derivative were prepared using a facile, mild and low-cost method. X-ray diffraction (XRD) and scanning electron microscope (SEM) revealed that the resulting ZnO particles via hydrothermal process exhibit micro–nano dual-scale morphology with high purity under a suitable surfactant amount and alkali concentration. The grafting of FEVE derivative was confirmed by Fourier transform infrared spectroscopy (FTIR) and energy-dispersive X-ray spectrometer (EDS), suggesting that hierarchical surface of ZnO particles was an imported monomolecular layer of fluorocarbon polymer. The obtained surface fabricated by drop-casting shows considerably high contact angle and good resistance to water immersion. The wetting behavior in this work was furthermore analyzed by theoretical wetting model. This work demonstrates that the sufficient low-wettable surface and high roughness both take a vital role in the superhydrophobic behavior.

  16. Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles.

    Science.gov (United States)

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-06-15

    This study was aimed to develop biopolymer based antimicrobial films for active food packaging and to reduce environmental pollution caused by accumulation of synthetic packaging. The ZnO NPs were incorporated as antimicrobials into different biopolymers such as agar, carrageenan and CMC. Solvent casting method was performed to prepare active nanocomposite films. Methods such as FE-SEM, FT-IR and XRD were used to characterize resulting films. Physical, mechanical, thermal and antimicrobial properties were also examined. Remarkable surface morphological differences were observed between control and nanocomposite films. The crystallinity of ZnO was confirmed by XRD analysis. The addition of ZnO NPs increased color, UV barrier, moisture content, hydrophobicity, elongation and thermal stability of the films, while decreased WVP, tensile strength and elastic modulus. ZnO NPs impregnated films inhibited growth of L. monocytogenes and E. coli. So these newly prepared nanocomposite films can be used as active packaging film to extend shelf-life of food. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Color-sensitive photoconductivity of nanostructured ZnO/dye hybrid films prepared by one-step electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Oekermann, T. [Gifu University, Graduate School of Engineering, Yanagido 1-1, Gifu 501-1193 (Japan) and University of Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstrasse 3-3A, 30167 Hannover (Germany)]. E-mail: torsten.oekermann@pci.uni-hannover.de; Yoshida, T. [Gifu University, Graduate School of Engineering, Yanagido 1-1, Gifu 501-1193 (Japan)]. E-mail: yoshida@apchem.gifu-u.ac.jp; Tada, H. [Institute for Molecular Science, Okazaki National Research Institutes, Myodaiji, Okazaki 444-8585 (Japan); Minoura, H. [Gifu University, Graduate School of Engineering, Yanagido 1-1, Gifu 501-1193 (Japan)

    2006-07-26

    Nanostructured ZnO/dye hybrid films prepared by one-step electrodeposition have been investigated in conductivity and photoconductivity measurements in view of applications in dye-sensitized solar cells (DSSC) and in optoelectronics. Highly porous ZnO/eosin Y films, which were obtained at potentials < - 0.9 V vs. SCE, were found to have a very high conductivity already in the dark, probably because of a higher n-doping, which is due to a higher concentration of Zn atoms in the film. On the other hand, less porous or non-porous films, which were obtained at more positive potentials and in which the dye molecules are located within the ZnO crystals, were found to show a much higher sensitivity to illumination with visible light in photoconductivity measurements due to a higher absolute photoconductivity and a lower conductivity in the dark.

  18. Color-sensitive photoconductivity of nanostructured ZnO/dye hybrid films prepared by one-step electrodeposition

    International Nuclear Information System (INIS)

    Oekermann, T.; Yoshida, T.; Tada, H.; Minoura, H.

    2006-01-01

    Nanostructured ZnO/dye hybrid films prepared by one-step electrodeposition have been investigated in conductivity and photoconductivity measurements in view of applications in dye-sensitized solar cells (DSSC) and in optoelectronics. Highly porous ZnO/eosin Y films, which were obtained at potentials < - 0.9 V vs. SCE, were found to have a very high conductivity already in the dark, probably because of a higher n-doping, which is due to a higher concentration of Zn atoms in the film. On the other hand, less porous or non-porous films, which were obtained at more positive potentials and in which the dye molecules are located within the ZnO crystals, were found to show a much higher sensitivity to illumination with visible light in photoconductivity measurements due to a higher absolute photoconductivity and a lower conductivity in the dark

  19. Photovoltaic properties of undoped ZnO thin films prepared by the spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Ikhmayies, S.J. [Applied Science Private Univ., Amman (Jordan). Dept. of Physics; Abu El-Haija, N.M.; Ahmad-Bitar, R.N. [Jordan Univ., Amman (Jordan). Dept. of Physics

    2009-07-01

    Zinc oxide (ZnO) can be used as a window material, transparent electrode and active layer in different types of solar cells, UV emitters, and UV sensors. In addition to being low cost, ZnO is more abundant than indium tin oxide. ZnO is non toxic and has a high chemical stability in reduction environments. When ZnO films are made without any intentional doping, they exhibit n-type conductivity. ZnO thin films can be prepared by reactive sputtering, laser ablation, chemical-vapour deposition, laser molecular-beam epitaxy, thermal evaporation, sol-gel, atomic layer deposition and spray pyrolysis, with the latter being simple, inexpensive and adaptable to large area depositions. In this work ZnCl{sub 2} was used as a source of Zn where it was dissolved in distilled water. The structural, electrical and optical properties of the films were investigated due to their important characteristic for solar cell applications. Polycrystalline ZnO thin films were deposited on glass substrate by spray pyrolysis using a home-made spraying system at substrate temperature of 450 degrees C. The films were characterized by recording and analyzing their I-V plots, their transmittance, X-ray diffraction and SEM micrographs. There resistivity was found to be about 200 ohms per cm and their bandgap energy about 3.27 eV. X-ray diffraction patterns revealed that the films have a hexagonal wurtzite structure and are highly ordered with a preferential orientation (002). SEM images revealed that the substrates are continuously covered and the surface of the film is uniform. 16 refs., 4 figs.

  20. Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, M. Shaheer; Khan, M. Alam; Yang, O-Bong [School of Semiconductor and Chemical Engineering, Center for Advanced Radiation Technology, Jeon-Ju (Korea); New and Renewable Energy Center, Chonbuk National University, Jeon-Ju (Korea); Jeon, Myung Seok [Photocatalysis and Photoelectrochemistry Research Center, Korea Institute of Energy Research (KIER), Daejon 305-343 (Korea)

    2008-11-15

    In this work, the morphology of ZnO materials could be controlled by changing the capping agent at constant alkali solution in hydrothermal process. ZnO nanomaterials with the structure of flowers, sheet-spheres and plates were obtained with the capping agent of ammonia, citric acid and oxalic acid, respectively. Thus prepared ZnO nanomaterials were characterized and applied as the photo-anode materials for dye-sensitized solar cell. All synthesized ZnO nanomaterials possessed high crystalline wurtzite structures grown in the (001) direction with the size of 2-4{mu}m, which consist of ZnO units around 20-400 nm. Among them, Sheet-sphere ZnO showed the highest crystallinity, surface area and uniform film morphology, resulting in the significantly improved PV performance with the overall conversion efficiency of 2.61% in dye-sensitized solar cell (DSSC) fabricated with sheet-sphere ZnO. It is notable that the ZnO materials with sphere structure may be the optimal photo-anode material among various ZnO nanomaterials for DSSC. (author)

  1. Performance and stability analysis of curcumin dye as a photo sensitizer used in nanostructured ZnO based DSSC

    Science.gov (United States)

    Sinha, D.; De, D.; Ayaz, A.

    2018-03-01

    Environmental friendly natural dye curcumin extracted from low-cost Curcumina longa stem is used as a photo-sensitizer for the fabrication of ZnO-based dye-sensitized solar cells (DSSC). Nanostructured ZnO is fabricated on a transparent conducting glass (TCO), using a cost-effective chemical bath deposition technique. Scanning electron microscopic images show hexagonal patterned ZnO nano-towers decorated with several nanosteps. The average length of ZnO nano-tower is 5 μm and diameter is 1.2 μm. The UV-Vis spectroscopic study of the curcumin dye is used to understand the light absorption behavior as well as band gap energy of the extracted natural dye. The dye shows wider absorption band-groups over 350-470 nm and 500-600 nm with two peaks positioned at 425 nm and 525 nm. The optical band gap energy and energy band position of the dye is derived which supports its stability and high electron affinity that makes it suitable for light harvesting and effortless electron transfer from dye to the semiconductor or interface between them. FTIR spectrum of curcumin dye-sensitized ZnO-based DSSC shows the presence of anchoring groups and colouring constitutes. The I-V and P-V curves of the fabricated DSSC are measured under simulated light (100 mW/cm2). The highest visible light to electric conversion efficiency of 0.266% (using ITO) and 0.33% (using FTO) is achieved from the curcumin dye-sensitized cell.

  2. Catalytic growth of ZnO nanostructures by r.f. magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Arroyo-Hernández María

    2011-01-01

    Full Text Available Abstract The catalytic effect of gold seed particles deposited on a substrate prior to zinc oxide (ZnO thin film growth by magnetron sputtering was investigated. For this purpose, selected ultra thin gold layers, with thicknesses close to the percolation threshold, are deposited by thermal evaporation in ultra high vacuum (UHV conditions and subsequently annealed to form gold nanodroplets. The ZnO structures are subsequently deposited by r.f. magnetron sputtering in a UHV chamber, and possible morphological differences between the ZnO grown on top of the substrate and on the gold are investigated. The results indicate a moderate catalytic effect for a deposited gold underlayer of 4 nm, quite close to the gold thin film percolation thickness.

  3. Growth of Comb-like ZnO Nanostructures for Dye-sensitized Solar Cells Applications

    Directory of Open Access Journals (Sweden)

    Umar Ahmad

    2009-01-01

    Full Text Available Abstract Dye-sensitized solar cells (DSSCs were fabricated by using well-crystallized ZnO nanocombs directly grown onto the fluorine-doped tin oxide (FTO via noncatalytic thermal evaporation process. The thin films of as-grown ZnO nanocombs were used as photoanode materials to fabricate the DSSCs, which exhibited an overall light to electricity conversion efficiency of 0.68% with a fill factor of 34%, short-circuit current of 3.14 mA/cm2, and open-circuit voltage of 0.671 V. To the best of our knowledge, this is first report in which thin film of ZnO nanocombs was used as photoanode materials to fabricate the DSSCs.

  4. Applying RF Magnetron sputtering to prepare ZnO thin films and their characterization

    International Nuclear Information System (INIS)

    Saad, M.; Kassis, A.

    2009-05-01

    ZnO thin films were prepared using Rf magnetron sputtering under several preparation conditions (different values of deposition pressure, Rf power, substrate temperature). The optical properties of these films were investigated by measuring their transmission in the spectral range (300-1000 nm), and the electrical properties were investigated by measuring their electrical resistance. Results have been discussed in terms of the modified Thornton model for sputtered thin metal oxide films. Preparation conditions for depositing the highly resistive transparent i-ZnO buffer layer and the highly conducting transparent n-ZnO window layer for solar cells were proposed. (author)

  5. Comparative study of ZnO thin films prepared by different sol-gel route

    Directory of Open Access Journals (Sweden)

    F Esmaieli Ghodsi

    2012-03-01

    Full Text Available   Retraction Notice    The paper "Comparative study of ZnO thin films prepared by different sol-gel route" by H. Absalan and F. E. Ghodsi, which appeared in Iranian Journal of Physics Research, Vol. 11, No. 4, 423-428 (in Farsi is translation of the paper "Comparative Study of ZnO Thin Films Prepared by Different Sol-Gel Route" by F. E. Ghodsi and H. Absalan, which appeared in ACTA PHYSICA POLONICA A, Vol 118 (2010 (in English and for this reason is retracted from this journal.The corresponding author  (and also the first author is the only responsible person for this action.   

  6. Detailed investigations of ZnO photoelectrodes preparation for dye sensitized solar cells.

    Science.gov (United States)

    Marczak, Renata; Werner, Fabian; Ahmad, Rameez; Lobaz, Volodymyr; Guldi, Dirk M; Peukert, Wolfgang

    2011-04-05

    Wurtzite ZnO hexagonal nanopyramids were successfully synthesized in the liquid phase from homogeneous methanolic solutions of zinc acetate and tetramethylammonium hydroxide at an excess of zinc ions. The formation and properties of the nanocrystals were examined as a function of synthesis conditions. No significant influence of the [Zn(2+)]/[OH(-)] ratio was noticed on the final particle size, in spite of increased amounts of OH(-) ions, which tend to accelerate the particle nucleation and growth. Nevertheless, the reactant concentration ratio influences the surface properties of the ZnO nanocrystals. Mesoporous ZnO films were prepared by doctor blading ethanolic pastes containing ZnO nanoparticles and ethyl cellulose onto FTO conductive glass substrate followed by calcination. Additionally, the influence of a plasticizer (triacetin)-used during the paste preparation-on the film quality was investigated. A higher content of ZnO nanoparticles and plasticizer in the pastes improved the film quality. Four different temperatures (i.e., 400, 425, 450, and 475 °C) were used for the film calcination and their influence on the structural properties of the films was characterized. In principle, increasing the calcination temperature goes hand in hand with an increase of particle size, as well as the pore diameter and reduction of the surface area. Suitable mesoporous films were employed as photoanodes in dye sensitized solar cells (DSSCs). In order to assess the effect of the varied parameters on complete DSSC devices-using cis-diisothiocyanato-bis(2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium(II)bis(tetrabutylammonium (N719) as a sensitizer-incident photon to current efficiency (IPCE) and current voltage measurements were carried out. The IPCE measurements confirmed photoinduced electron injection from the dye, reaching IPCE values up to 76%. Furthermore, current-voltage characteristics of complete cells emphasized the importance of the proper preparation methods and

  7. Temperature-dependence on the structural, optical, andparamagnetic properties of ZnO nanostructures

    CSIR Research Space (South Africa)

    Mhlongo, GH

    2014-02-01

    Full Text Available of the phonon peak at 580 cm(sup-1) was gradually enhanced with the increase of annealing temperature. X-ray diffraction and X-ray photoelectron spectroscopy (XPS) measurements showed that all ZnO samples possess a typical wurtzite structure with high...

  8. ZnO THIN FILMS PREPARED BY SPRAY-PYROLYSIS TECHNIQUE FROM ORGANO-METALLIC PRECURSOR

    Directory of Open Access Journals (Sweden)

    Martin Mikulics

    2012-07-01

    Full Text Available Presented experiments utilize methanolic solution of zinc acetyl-acetonate as a precursor and sapphire (001 as a substrate for deposition of thin films of ZnO. The X-ray diffraction analysis revealed polycrystalline character of prepared films with preferential growth orientation along c-axis. The roughness of prepared films was assessed by AFM microscopy and represented by roughness root mean square (RMS value in range of 1.8 - 433 nm. The surface morphology was mapped by scanning electron microscopy showing periodical structure with several local defects. The optical transmittance spectrum of ZnO films was measured in wavelength range of 200-1000 nm. Prepared films are transparent in visible range with sharp ultra-violet cut-off at approximately 370 nm. Raman spectroscopy confirmed wurtzite structure and the presence of compressive stress within its structure as well as the occurrence of oxygen vacancies. The four-point Van der Pauw method was used to study the transport prosperities. The resistivity of presented ZnO films was found 8 × 10–2 Ω cm with carrier density of 1.3 × 1018 cm–3 and electron mobility of 40 cm2 V–1 s–1.

  9. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Sarkar, D.K., E-mail: dsarkar@uqac.ca; Chen, X-Grant

    2015-02-01

    Graphical abstract: - Highlights: • Fabrication of superhydrophobic ZnO thin films surfaces by electrophoretic deposition process on aluminum substrates. • Effect of bath temperature on the physical and superhydrophobic properties of thin films. • The water contact angle of 155° ± 3 with roll off property has been observed on the film that was grown at bath temperatures of 50 °C. • The activation energy for electrophoretic deposition of SA-functionalized ZnO nanoparticle is calculated to be 0.50 eV. - Abstract: Superhydrophobic thin films have been fabricated on aluminum alloy substrates by electrophoretic deposition (EPD) process using stearic acid (SA) functionalized zinc oxide (ZnO) nanoparticles suspension in alcohols at varying bath temperatures. The deposited thin films have been characterized using both X-ray diffraction (XRD) and infrared (IR) spectroscopy and it is found that the films contain low surface energy zinc stearate and ZnO nanoparticles. It is also observed that the atomic percentage of Zn and O, roughness and water contact angle of the thin films increase with the increase of the deposited bath temperature. Furthermore, the thin film deposited at 50 °C, having a roughness of 4.54 ± 0.23 μm, shows superhydrophobic properties providing a water contact angle of 155 ± 3° with rolling off properties. Also, the activation energy of electrophoretic deposition of stearic-acid-functionalized ZnO nanoparticles is calculated to be 0.5 eV.

  10. Morphologies of Sol–Gel Derived Thin Films of ZnO Using Different Precursor Materials and their Nanostructures

    Directory of Open Access Journals (Sweden)

    Chandra Sudhir

    2007-01-01

    Full Text Available AbstractWe have shown that the morphological features of the sol–gel derived thin films of ZnO depend strongly on the choice of the precursor materials. In particular, we have used zinc nitrate and zinc acetate as the precursor materials. While the films using zinc acetate showed a smoother topography, those prepared by using zinc nitrate exhibited dendritic character. Both types of films were found to be crystalline in nature. The crystallite dimensions were confined to the nanoscale. The crystallite size of the nanograins in the zinc nitrate derived films has been found to be smaller than the films grown by using zinc acetate as the precursor material. Selected area electron diffraction patterns in the case of both the precursor material has shown the presence of different rings corresponding to different planes of hexagonal ZnO crystal structure. The results have been discussed in terms of the fundamental considerations and basic chemistry governing the growth kinetics of these sol–gel derived ZnO films with both the precursor materials.

  11. Pyrolysis and auto-gasification of black liquor in presence of ZnO: An integrated process for Zn/ZnO nanostructure production and bioenergy generation

    International Nuclear Information System (INIS)

    Maciel, A.V.; Job, A.E.; Mussel, W.N.; Pasa, V.M.D.

    2012-01-01

    This study presents a new process for valorisation of black liquor into gases that are used to reduce ZnO and promote zinc nanosheet synthesis, besides energy generation. During the black liquor pyrolysis and auto-gasification, gases evolve, especially carbon monoxide, and promote ZnO reduction with Zn (v) release. The metal is condensed yielding zinc nanosheets, with partial surface re-oxidation in presence of carbon dioxide. The process was investigated at the micro scale using thermal analyses (TG/DTG/DTA) and the gases evolved were analysed by FTIR spectroscopy (TG/FTIR). The process was also studied in laboratory scale using a tubular electric furnace. The black liquor/ZnO mixture was placed at the quartz tube and the sample was heated to 900 °C at 10 °C/min, and the temperature was held at 900 °C for 1 h. The nanostructures growth was catalyst-free, without pressure reduction or a template, at temperatures lower than those required in the classical carbothermal reduction of ZnO with fossil carbon. The nanostructures were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and infrared spectroscopy (FTIR). One mechanism was presented in an attempt to explain the synthesis of Zn/ZnO nanosheets that are crystalline. This green and innovative process has potential use at the industry due to its operational conditions, low costs and technological importance of Zn and ZnO nanostructures. -- Graphical abstract: Display Omitted Highlights: ► Black liquor and ZnO mixture were submitted to a heat treatment until 900 °C. ► The black liquor suffered pyrolysis and auto-gasification. ► ZnO is reduced by CO yielding Zn v , that is condensed generating Zn/ZnO nanosheets. ► The nanostructures are characterized and a mechanism of reactions is presented. ► The new process can produce energy and nanostructures in large scale.

  12. Recent improvements on TiO2 and ZnO nanostructure photoanode for dye sensitized solar cells: A brief review

    Directory of Open Access Journals (Sweden)

    Jamalullail Nurnaeimah

    2017-01-01

    Full Text Available Dye sensitized solar cell (DSSC is a promising candidate for a low cost solar harvesting technology as it promised a low manufacturing cost, ease of fabrication and reasonable conversion efficiency. Basic structure of DSSC consists of photoanode, dye, electrolyte and counter electrode. Photoanode plays an important role for a DSSC as it supports the dye molecules and helps in the electron transfer that will determine the energy conversion efficiency. This paper emphasizes the various improvements that had been done on the TiO2 and ZnO photoanode nanostructures synthesized through thermal method. For overall comparisons, ZnO nanoflowers photoanode had achieved the highest energy conversion efficiency of 4.7% due to its ability of internal light scattering that had increased the electron transportation rate. This has made ZnO as a potential candidate to replace TiO2 as a photoanode material in DSSC.

  13. Preparation and surface modification of hierarchical nanosheets-based ZnO microstructures for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Yongming; Lin, Yu, E-mail: linyuyrr@163.com; Lin, Yibing; Yang, Jiyuan

    2014-02-15

    This paper reports a simple one-step hydrothermal route for the preparation of hierarchical nanosheets-based ZnO microstructures and their application to dye-sensitized solar cells. The morphologies of the products were controlled by the dosage of the reactants. Their physical characteristics were detected by X-ray diffraction, a field-emission scanning electron microscope and a surface analyzer. It is proved that the sample of ZnO microspheres with larger surface area and stronger light-trapping capacity since the superiority of their entirely spherical structures exhibits better photoelectrochemical properties than the mixtures of ZnO microspheres and ZnO microflowers. A dye-sensitized solar cell assembled by the ZnO microspheres as photoanode shows an energy conversion efficiency of 2.94% after surface modification by tetrabutyl titanate solution at 90 {sup °}C. This result is over 1.6 times higher than the non-modified cell fabricated by the ZnO microspheres on the basis of the external improvement and the stability enhancement for the dye-sensitized ZnO photoanode. - Graphical abstract: Influences on energy conversion efficiency of the dye-sensitized solar cells assembled by decorating hierarchical nanosheets-based ZnO microstructures with tetrabutyl titanate solution at different temperatures. Display Omitted - Highlights: • Hierarchical nanosheets-based ZnO microstructures were controllably synthesized. • The ZnO microspheres show good optical and electrochemical properties. • The ZnO microspheres were modified by C{sub 16}H{sub 36}O{sub 4}Ti solution. • Remarkable increase of conversion efficiency is observed after surface modification.

  14. Preparation of Iron-nickel Alloy Nanostructures via Two Cationic Pyridinium Derivatives as Soft Templates

    Directory of Open Access Journals (Sweden)

    Jingxin Zhou

    2015-09-01

    Full Text Available In this paper, crystalline iron-nickel alloy nanostructures were successfully prepared from two cationic pyridinium derivatives as soft templates in solution. The crystal structure and micrograph of FeNi alloy nanostructures were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy, and the content was confirmed by energy-dispersive spectrometry. The results indicated that the as-prepared nanostructures showed slightly different diameter ranges with the change of cationic pyridinium derivatives on the surface. The experimental data indicated that the adsorption of cationic pyridinium compounds on the surface of particles reduces the surface charge, leading to an isotropic distribution of the residual surface charges. The magnetic behaviours of as-prepared FeNi alloy nanostructures exhibited disparate behaviours, which could be attributed to their grain sizes and distinctive structures. The present work may give some insight into the synthesis and character of new alloy nanomaterials with special nanostructures using new soft templates.

  15. UV Enhanced Oxygen Response Resistance Ratio of ZnO Prepared by Thermally Oxidized Zn on Sapphire Substrate

    Directory of Open Access Journals (Sweden)

    Cheng-Chang Yu

    2013-01-01

    Full Text Available ZnO thin film was fabricated by thermally oxidized Zn at 600°C for 1 h. A surface containing nanostructured dumbbell and lines was observed by scanning electron microscope (SEM. The ZnO resistor device was formed after the following Ti/Au metallization. The device resistance was characterized at different oxygen pressure environment in the dark and under ultraviolet (UV light illumination coming from the mercury lamp with a short pass filter. The resistance increases with the increase of oxygen pressure. The resistance decreases and response increases with the increase of light intensity. Models considering the barrier height variation caused by the adsorbed oxygen related species were used to explain these results. The UV light illumination technology shows an effective method to enhance the detection response for this ZnO resistor oxygen sensor.

  16. A study on the sensing of NO(sub2) and O(sub2) utilizing ZnO films grown by aerosol spray pyrolysis

    CSIR Research Space (South Africa)

    Mhlongo, GH

    2015-07-01

    Full Text Available The present paper addresses the preparation and characterization of ZnO nanostructured thin films obtained using aerosol spray pyrolysis method at different deposition periods. Aiming at understanding the chemical composition, structural...

  17. Efficiency enhancement of ZnO nanostructure assisted Si solar cell based on fill factor enlargement and UV-blue spectral down-shifting

    International Nuclear Information System (INIS)

    Gholizadeh, A; Reyhani, A; Mortazavi, S Z; Parvin, P

    2017-01-01

    ZnO nanostructures (including nano-plates and nano-rods (NRs)) are grown in various temperatures and Ar/O 2 flow rates using thermal chemical vapor deposition, which affect the structure, nano-plate/NR population, and the quality of ZnO nanostructures. X-ray diffraction (XRD) attests that the peak intensity of the crystallographic plane (1 0 0) is correlated to nano-plate abundance. Moreover, optical properties elucidate that the population of nano-plates in samples strongly affect the band gap, binding energy of the exciton, and UV–visible (UV–vis) absorption and spectral luminescence emissions. In fact, the exciton binding energy reduces from ∼100 to 80 meV when the population of nano-plates increases in samples. Photovoltaic characteristics based on the drop-casting on Si solar cells reveals three dominant factors, namely, the equivalent series resistance, decreasing reflectance, and down-shifting, in order to scale up the absolute efficiency by 3%. As a consequence, the oxygen vacancies in ZnO nanostructures give rise to the down-shifting and increase of free-carriers, leading to a reduction in the equivalent series resistance and an enlargement of fill factor. To obtain a larger I sc , reduction of spectral reflectance is essential; however, the down-shifting process is shown to be dominant by lessening the surface electron-hole recombination rate over the UV–blue spectral range. (paper)

  18. Efficiency enhancement of ZnO nanostructure assisted Si solar cell based on fill factor enlargement and UV-blue spectral down-shifting

    Science.gov (United States)

    Gholizadeh, A.; Reyhani, A.; Parvin, P.; Mortazavi, S. Z.

    2017-05-01

    ZnO nanostructures (including nano-plates and nano-rods (NRs)) are grown in various temperatures and Ar/O2 flow rates using thermal chemical vapor deposition, which affect the structure, nano-plate/NR population, and the quality of ZnO nanostructures. X-ray diffraction (XRD) attests that the peak intensity of the crystallographic plane (1 0 0) is correlated to nano-plate abundance. Moreover, optical properties elucidate that the population of nano-plates in samples strongly affect the band gap, binding energy of the exciton, and UV-visible (UV-vis) absorption and spectral luminescence emissions. In fact, the exciton binding energy reduces from ~100 to 80 meV when the population of nano-plates increases in samples. Photovoltaic characteristics based on the drop-casting on Si solar cells reveals three dominant factors, namely, the equivalent series resistance, decreasing reflectance, and down-shifting, in order to scale up the absolute efficiency by 3%. As a consequence, the oxygen vacancies in ZnO nanostructures give rise to the down-shifting and increase of free-carriers, leading to a reduction in the equivalent series resistance and an enlargement of fill factor. To obtain a larger I sc, reduction of spectral reflectance is essential; however, the down-shifting process is shown to be dominant by lessening the surface electron-hole recombination rate over the UV-blue spectral range.

  19. Methodology for sample preparation and size measurement of commercial ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    Pei-Jia Lu

    2018-04-01

    Full Text Available This study discusses the strategies on sample preparation to acquire images with sufficient quality for size characterization by scanning electron microscope (SEM using two commercial ZnO nanoparticles of different surface properties as a demonstration. The central idea is that micrometer sized aggregates of ZnO in powdered forms need to firstly be broken down to nanosized particles through an appropriate process to generate nanoparticle dispersion before being deposited on a flat surface for SEM observation. Analytical tools such as contact angle, dynamic light scattering and zeta potential have been utilized to optimize the procedure for sample preparation and to check the quality of the results. Meanwhile, measurements of zeta potential values on flat surfaces also provide critical information and save lots of time and efforts in selection of suitable substrate for particles of different properties to be attracted and kept on the surface without further aggregation. This simple, low-cost methodology can be generally applied on size characterization of commercial ZnO nanoparticles with limited information from vendors. Keywords: Zinc oxide, Nanoparticles, Methodology

  20. Aggregation and growth of ZnO quantum dots prepared from sol-gel chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Santilli, C.V.; Pulcinelli, S.H.; Caetano, B.L. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil); Briois, V.B [Synchrotron SOLEIL, Saint-Aubin (France)

    2016-07-01

    Full text: Herein we discuss in depth the mechanisms of growth control of ZnO quantum dots (Q-dot) prepared from the zinc oxy-acetate ethanolic solution by the addition of LiOH. Through in situ monitoring of Q-dot radii and of aggregation index calculated from UV-Vis absorption spectra and small-angle X-ray scattering (SAXS) the aggregation and growth of ZnO nanocrystal was well described from two kinetic models: during the first step (t< 50 min) the structural evolution is controlled by the coalescence caused by the oriented attachment between the nanocrystal aggregates while at the advanced time (t> 50 min) the Q-dot coarsening follows the Ostwald ripening (OR) mechanism. From the higher oriented attachment efficiency observed here as compared with early reported synthesis using NaOH and KOH, we propose an universal mechanism to control coalescence and coarsening of ZnO nanocrystal provided from the shield caused by the adsorption of the alkali cation. From X-ray diffraction and transmission electron microscopy results we demonstrate that this mechanism is also useful to prepare Q-dot powders with controlled size. (author)

  1. EDTA-assisted synthesis of rose-like ZnO architectures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen [Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 201800 (China); Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800 (China); Fang, Yaoguo [Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 201800 (China); Peng, Liwei; Wu, Minghong [Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800 (China); Pan, Dengyu

    2010-10-15

    Rose-like ZnO nanostructures were prepared by a low-temperature solution route with assistance of ethylenediaminetetraacetic acid disodium (EDTA-2Na). The morphology of ZnO nanostructures was found to change from nanowire arrays to rose- and tower-like architectures with increasing the molar ratio of EDTA-2Na/Zn{sup 2+}. Also, the shape evolution of ZnO nanostructures with time was observed from flat nanosheets to wrinkled nanosheets and to rose-like nanostructures. EDTA-2Na as a strong complexing agent was found to play a key role in the shape evolution. Photoluminescence spectra show that the rose-like ZnO architectures have more defects than the nanowire arrays. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Preparation and characterization of GA/RDX nanostructured ...

    Indian Academy of Sciences (India)

    Thenhexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was added and trapped in the nano-porous three-dimensional networks of GA to obtain a novel GA/RDX nanostructured energetic composite. The composition, morphology andstructure of the obtained GA/RDX nanostructured energetic composite were characterized by ...

  3. Preparation and Characterization of Minoxidil Loaded Nanostructured Lipid Carriers.

    Science.gov (United States)

    Wang, Wenxi; Chen, Lina; Huang, Xinyan; Shao, Anna

    2017-02-01

    Nanostructured lipid carriers (NLCs) are interesting delivery systems for enhancing the penetration of an active substance through the skin after topical administration. The present paper described the development of a novel NLCs for minoxidil (MXD) topical delivery. Stearic acid and oleic acid that showed the highest solubility for MXD were selected as solid lipid and liquid lipid, respectively, and the NLCs were prepared by hot high pressure homogenization method. The minoxidil loaded NLCs prepared accordingly to the optimal formulation exhibited spherical shape with a mean diameter of 281.4 ± 7.4 nm, polydispersity of 0.207 ± 0.009, zeta potential of -32.90 ± 1.23 mV, drug entrapment efficiency of 92.48 ± 0.31%, and drug loading of 13.85 ± 0.47%. Storage stability studies demonstrated that the particle size and entrapment efficiency of the MXD-NLCs were not changed during 3 months both at 4°C and room temperature. Moreover, the release of MXD from the NLCs was faster than drug release from SLNs. In vitro skin permeability test demonstrated that MXD-NLCs had a more pronounced permeation and retention profile than MXD-SLNs. Furthermore, no erythema was observed after administration of MXD-NLCs. All these results indicated that the developed MXD-NLCs could be a promising and effective nanocarrier for topical delivery of MXD.

  4. Photoelectrochemical properties of the TiO2-ZnO nanorod hierarchical structure prepared by hydrothermal process

    Directory of Open Access Journals (Sweden)

    Bao SUN

    2018-02-01

    Full Text Available In order to increase the transport channels of the photogenerated electrons and enhance the photosensitizer loading ability of the electrode, a new TiO2-ZnO nanorod hierarchical structure is prepared through two-step hydrothermal process. First, TiO2 nanorod array is grown on the FTO conductive glass substrate by hydrothermal proess. Then, ZnO sol is coated onto the TiO2 nanorods through dip-coating method and inverted to ZnO seed layer by sintering. Finally, the secondary ZnO nanorods are grown onto the TiO2 nanorods by the sencond hydrothermal method to form the designed TiO2-ZnO nanorod hierarchical structure. A spin-coating assisted successive ionic layer reaction method (SC-SILR is used to deposit the CdS nanocrystals into the TiO2 nanorod array and the TiO2-ZnO nanorod hierarchical structure is used to form the CdS/TiO2 and CdS/TiO2-ZnO nanocomposite films. Different methods, such as SEM, TEM, XRD, UV-Vis and transient photocurrent, are employed to characterize and measure the morphologies, structures, light absorption and photoelectric conversion performance of all the samples, respectively. The results indicate that, compared with the pure TiO2 nanorod array, the TiO2-ZnO nanorod hierarchical structure can load more CdS photosensitizer. The light absorption properties and transient photocurrent performance of the CdS/TiO2-ZnO nanorod hierarchical structure composite film are evidently superior to that of the CdS/TiO2 nanocomposite films. The excellent photoelctrochemical performance of theTiO2-ZnO hierarchical structure reveales its application prospect in photoanode material of the solar cells.

  5. ZnO and copper indium chalcogenide heterojunctions prepared by inexpensive methods

    International Nuclear Information System (INIS)

    Berruet, M.; Di Iorio, Y.; Troviano, M.; Vázquez, M.

    2014-01-01

    Solution-based techniques were used to prepare ZnO/CuIn(Se, S) 2 heterojunctions that serve as solar cell prototypes. A duplex layer of ZnO (compact + porous) was electrodeposited. Chalcogenide thin films were deposited using successive ionic layer adsorption and reaction method (SILAR). By subsequent thermal treatments in two different atmospheres, CuInSe 2 (CISe) and CuInSe 2−x S x (CISeS) were obtained. The composition and morphology of the annealed films were characterized by GXRD, micro-Raman spectroscopy and SEM. Devices prepared with CISe and CISeS show a clear photo-response. The introduction of a buffer layer of TiO 2 into the ZnO/chalcogenide interface was necessary to detect photocurrent. The presence of CISeS improves the response of the cell, with higher values of short circuit current density, open circuit potential and fill factor. These promising results show that it is possible to prepare photovoltaic heterojunctions by depositing chalcogenides onto porous ZnO substrates using low-cost solution-based techniques. - Highlights: • Heterojunctions that serve as solar cell prototypes were prepared using solution-based techniques. • The devices comprised a double layer of ZnO and CuInSe 2 or CuInSe 0.4 S 1.6 . • A TiO 2 buffer layer in the ZnO/chalcogenide interface is necessary to detect photocurrent. • The incorporation of S improved the response of the photovoltaic heterojunction

  6. ZnO and copper indium chalcogenide heterojunctions prepared by inexpensive methods

    Energy Technology Data Exchange (ETDEWEB)

    Berruet, M., E-mail: berruetm@gmail.com [División Electroquímica y Corrosión, Facultad de Ingeniería, INTEMA, CONICET, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Di Iorio, Y. [División Electroquímica y Corrosión, Facultad de Ingeniería, INTEMA, CONICET, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Troviano, M. [Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, CONICET-UNCo), Buenos Aires 1400, Q8300IBX Neuquén (Argentina); Vázquez, M. [División Electroquímica y Corrosión, Facultad de Ingeniería, INTEMA, CONICET, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina)

    2014-12-15

    Solution-based techniques were used to prepare ZnO/CuIn(Se, S){sub 2} heterojunctions that serve as solar cell prototypes. A duplex layer of ZnO (compact + porous) was electrodeposited. Chalcogenide thin films were deposited using successive ionic layer adsorption and reaction method (SILAR). By subsequent thermal treatments in two different atmospheres, CuInSe{sub 2} (CISe) and CuInSe{sub 2−x}S{sub x} (CISeS) were obtained. The composition and morphology of the annealed films were characterized by GXRD, micro-Raman spectroscopy and SEM. Devices prepared with CISe and CISeS show a clear photo-response. The introduction of a buffer layer of TiO{sub 2} into the ZnO/chalcogenide interface was necessary to detect photocurrent. The presence of CISeS improves the response of the cell, with higher values of short circuit current density, open circuit potential and fill factor. These promising results show that it is possible to prepare photovoltaic heterojunctions by depositing chalcogenides onto porous ZnO substrates using low-cost solution-based techniques. - Highlights: • Heterojunctions that serve as solar cell prototypes were prepared using solution-based techniques. • The devices comprised a double layer of ZnO and CuInSe{sub 2} or CuInSe{sub 0.4}S{sub 1.6}. • A TiO{sub 2} buffer layer in the ZnO/chalcogenide interface is necessary to detect photocurrent. • The incorporation of S improved the response of the photovoltaic heterojunction.

  7. Controlling of morphology and electrocatalytic properties of cobalt oxide nanostructures prepared by potentiodynamic deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Hallaj, Rahman [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Akhtari, Keivan [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O.Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah, E-mail: absalimi@uok.ac.ir [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O.Box 416, Sanandaj (Iran, Islamic Republic of); Soltanian, Saied [Department of Physics, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2013-07-01

    Electrodeposited cobalt oxide nanostructures were prepared by Repetitive Triangular Potential Scans (RTPS) as a simple, remarkably fast and scalable potentiodynamic method. Electrochemical deposition of cobalt oxide nanostructures onto GC electrode was performed from aqueous Co(NO{sub 3}){sub 2}, (pH 6) solution using cyclic voltammetry method. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the morphology of fabricated nanostructures. The evaluation of electrochemical properties of deposited films was performed using cyclic voltametry (CV) and impedance spectroscopy (IS) techniques. The analysis of the experimental data clearly showed that the variations of potential scanning ranges during deposition process have drastic effects on the geometry, chemical structure and particle size of cobalt oxide nanoparticles. In addition, the electrochemical and electrocatalytic properties of prepared nanostructures can be controlled through applying different potential windows in electrodeposition process. The imaging and voltammetric studies suggested to the existence of at least three different shapes of cobalt-oxide nanostructures in various potential windows applied for electrodeposition. With enlarging the applied potential window, the spherical-like cobalt oxide nanoparticles with particles sizes about 30–50 nm changed to the grain-like structures (30 nm × 80 nm) and then to the worm-like cobalt oxide nanostructures with 30 nm diameter and 200–400 nm in length. Furthermore, the roughness of the prepared nanostructures increased with increasing positive potential window. The GC electrodes modified with cobalt oxide nanostructures shows excellent electrocatalytic activity toward H{sub 2}O{sub 2} and As (III) oxidation. The electrocatalytic activity of cobalt oxide nanostructures prepared at more positive potential window toward hydrogen peroxide oxidation was increased, while for As(III) oxidation the electrocatalytic

  8. Controlling of morphology and electrocatalytic properties of cobalt oxide nanostructures prepared by potentiodynamic deposition method

    International Nuclear Information System (INIS)

    Hallaj, Rahman; Akhtari, Keivan; Salimi, Abdollah; Soltanian, Saied

    2013-01-01

    Electrodeposited cobalt oxide nanostructures were prepared by Repetitive Triangular Potential Scans (RTPS) as a simple, remarkably fast and scalable potentiodynamic method. Electrochemical deposition of cobalt oxide nanostructures onto GC electrode was performed from aqueous Co(NO 3 ) 2 , (pH 6) solution using cyclic voltammetry method. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the morphology of fabricated nanostructures. The evaluation of electrochemical properties of deposited films was performed using cyclic voltametry (CV) and impedance spectroscopy (IS) techniques. The analysis of the experimental data clearly showed that the variations of potential scanning ranges during deposition process have drastic effects on the geometry, chemical structure and particle size of cobalt oxide nanoparticles. In addition, the electrochemical and electrocatalytic properties of prepared nanostructures can be controlled through applying different potential windows in electrodeposition process. The imaging and voltammetric studies suggested to the existence of at least three different shapes of cobalt-oxide nanostructures in various potential windows applied for electrodeposition. With enlarging the applied potential window, the spherical-like cobalt oxide nanoparticles with particles sizes about 30–50 nm changed to the grain-like structures (30 nm × 80 nm) and then to the worm-like cobalt oxide nanostructures with 30 nm diameter and 200–400 nm in length. Furthermore, the roughness of the prepared nanostructures increased with increasing positive potential window. The GC electrodes modified with cobalt oxide nanostructures shows excellent electrocatalytic activity toward H 2 O 2 and As (III) oxidation. The electrocatalytic activity of cobalt oxide nanostructures prepared at more positive potential window toward hydrogen peroxide oxidation was increased, while for As(III) oxidation the electrocatalytic activity decreased

  9. Influence of the preparation method on the structure, optical and photocatalytic properties of nanosized ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Gancheva, M., E-mail: mancheva@svr.igic.bas.bg [Institute of General and Inorganic Chemistry, Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.11, 1113, Sofia (Bulgaria); Uzunov, I.; Iordanova, R. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.11, 1113, Sofia (Bulgaria); Papazova, K. [University of Sofia, Faculty of Chemistry and Pharmacy, James Bourchier 1 Blvd., 1164, Sofia (Bulgaria)

    2015-08-15

    Mechanochemical activation is the most commonly applied approach for improving the photocatalytic properties of commercial zinc oxide. Here we show that ZnO obtained by two-pathway decomposition of basic zinc carbonate also possesses a very good photocatalytic activity. Nanosized ZnO powders were successfully prepared by thermal and mechanochemical decomposition of Zn{sub 5}(CO{sub 3}){sub 2}(OH){sub 6}, precipitated under soft conditions. The precursor and final products were characterized by X-ray diffraction (XRD), thermal analysis (TG/DTA), infrared spectroscopy (IR) and B.E.T method. The morphology of the ZnO was observed by SEM analysis. The optical and photocatalytic properties of the prepared zinc oxides were also investigated and compared with commercial ZnO. The band gaps of the thermal and mechanochemical obtained ZnO nanopowders are 3.22 and 3.04 eV, respectively. The degree of decomposition of Malachite Green under UV and visible irradiations in the presence of ZnO prepared by both methods reached levels above 90%. Better catalytic activity was found for the visible region. It was established that the process follows second order kinetics. - Graphical abstract: Display Omitted - Highlights: • Synthesis of nanosized ZnO from hydrozincite by thermal and mechanochemical route. • ZnO powders possess high photocatalytic activity under UV and visible irradiation. • The degree of decomposition of Malachite Green is more than 90% for the both ZnO's. • The photodecomposition of MG under UV/Vis irradiation follows second order kinetics.

  10. Linear and nonlinear optics, dynamics, and lasing in ZnO bulk and nanostructures

    International Nuclear Information System (INIS)

    Klingshirn, C.; Fallert, J.; Gogolin, O.; Wissinger, M.; Hauschild, R.; Hauser, M.; Kalt, H.; Zhou, H.

    2008-01-01

    In linear optics, we report on measurements of the absolute external quantum efficiency of bulk ZnO and powders using an integrating sphere. At low temperature the near band edge emission efficiency can reach 0.15 in the best samples. For deep center luminescence this value may be even higher. When going to room temperature (RT) the quantum efficiency drops by about one order of magnitude. From time resolved luminescence measurements we deduce the lifetime of the free and bound excitons to be in the sub ns regime and find for the latter a systematic increase with increasing binding energy. Concerning lasing, we discuss the role of excitonic processes and the recombination in an inverted electron-hole plasma (EHP). While excitonic processes seem well justified at lower temperatures and densities, doubts arise concerning the concept of excitonic lasing at RT in ZnO. The densities at laser threshold at RT are frequently close to the Mott density or above but below the density at which population inversion in an EHP is reached. We suggest alternative processes which can explain stimulated emission in this density regime in an EHP at RT

  11. ZnO nanostructures as electron extraction layers for hybrid perovskite thin films

    Science.gov (United States)

    Nikolaidou, Katerina; Sarang, Som; Tung, Vincent; Lu, Jennifer; Ghosh, Sayantani

    Optimum interaction between light harvesting media and electron transport layers is critical for the efficient operation of photovoltaic devices. In this work, ZnO layers of different morphologies are implemented as electron extraction and transport layers for hybrid perovskite CH3NH3PbI3 thin films. These include nanowires, nanoparticles, and single crystalline film. Charge transfer at the ZnO/perovskite interface is investigated and compared through ultra-fast characterization techniques, including temperature and power dependent spectroscopy, and time-resolved photoluminescence. The nanowires cause an enhancement in perovskite emission, which may be attributed to increased scattering and grain boundary formation. However, the ZnO layers with decreasing surface roughness exhibit better electron extraction, as inferred from photoluminescence quenching, reduction in the number of bound excitons, and reduced exciton lifetime in CH3NH3PbI3 samples. This systematic study is expected to provide an understanding of the fundamental processes occurring at the ZnO-CH3NH3PbI3 interface and ultimately, provide guidelines for the ideal configuration of ZnO-based hybrid Perovskite devices. This research was supported by National Aeronautics and Space administration (NASA) Grant No: NNX15AQ01A.

  12. Synthesis of Cu Doped ZnO Nanostructures for Ultra Violet Sensing

    OpenAIRE

    Nazar Abbas SHAH; Muhammad ABID; Muhammad AMIN; Rahat AFRIN; Syed Zafar ILYAS

    2015-01-01

    This paper mainly focused on the synthesis of zinc oxide nanostructures, their characterization and their ultra violet light sensing response at room temperature. Nanowires, nanobelts and nanosheets were synthesized by varying doping material copper by using vapor transport technique governed by the vapor-liquid-solid or vapor-solid mechanisms. The structural, morphological and optical characterization was carried out using X-ray diffraction, scanning electron microscopy, energy dispersive X-...

  13. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Melikhova, O.; Čížek, J.; Lukáč, F.; Vlček, M.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.

    2013-01-01

    Highlights: ► Thin ZnO films and high quality ZnO crystal were electrochemically doped with hydrogen. ► Hydrogen absorbed in ZnO causes plastic deformation both in ZnO crystal and thin films. ► In ZnO crystal a sub-surface region with very high density of defects was formed. ► Moreover, plastic deformation causes specific surface modification of ZnO crystal. ► In ZnO films hydrogen-induced plastic deformation introduced defects in the whole film. -- Abstract: ZnO films with thickness of ∼80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects than the film deposited on amorphous FS substrate most probably due to a dense network of misfit dislocations. The ZnO films and the reference ZnO crystal were subsequently loaded with hydrogen by electrochemical cathodic charging. SPIS characterizations revealed that absorbed hydrogen introduces new defects into ZnO

  14. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Melikhova, O., E-mail: oksivmel@yahoo.com [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-180 00 Praha 8 (Czech Republic); Čížek, J.; Lukáč, F.; Vlček, M. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-180 00 Praha 8 (Czech Republic); Novotný, M.; Bulíř, J.; Lančok, J. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic); Anwand, W.; Brauer, G. [Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, PO Box 510 119, D-01314 Dresden (Germany); Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P. [National Centre for Plasma Science and Technology, School of Physical Sciences, Glasnevin, Dublin 9 (Ireland)

    2013-12-15

    Highlights: ► Thin ZnO films and high quality ZnO crystal were electrochemically doped with hydrogen. ► Hydrogen absorbed in ZnO causes plastic deformation both in ZnO crystal and thin films. ► In ZnO crystal a sub-surface region with very high density of defects was formed. ► Moreover, plastic deformation causes specific surface modification of ZnO crystal. ► In ZnO films hydrogen-induced plastic deformation introduced defects in the whole film. -- Abstract: ZnO films with thickness of ∼80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects than the film deposited on amorphous FS substrate most probably due to a dense network of misfit dislocations. The ZnO films and the reference ZnO crystal were subsequently loaded with hydrogen by electrochemical cathodic charging. SPIS characterizations revealed that absorbed hydrogen introduces new defects into ZnO.

  15. The Influence of Shape on the Output Potential of ZnO Nanostructures: Sensitivity to Parallel versus Perpendicular Forces

    Directory of Open Access Journals (Sweden)

    José Cardoso

    2018-05-01

    Full Text Available With the consistent shrinking of devices, micro-systems are, nowadays, widely used in areas such as biomedics, electronics, automobiles, and measurement devices. As devices shrunk, so too did their energy consumptions, opening the way for the use of nanogenerators (NGs as power sources. In particular, to harvest energy from an object’s motion (mechanical vibrations, torsional forces, or pressure, present NGs are mainly composed of piezoelectric materials in which, upon an applied compressive or strain force, an electrical field is produced that can be used to power a device. The focus of this work is to simulate the piezoelectric effect in different ZnO nanostructures to optimize the output potential generated by a nanodevice. In these simulations, cylindrical nanowires, nanomushrooms, and nanotrees were created, and the influence of the nanostructures’ shape on the output potential was studied as a function of applied parallel and perpendicular forces. The obtained results demonstrated that the output potential is linearly proportional to the applied force and that perpendicular forces are more efficient in all structures. However, nanotrees were found to have an increased sensitivity to parallel applied forces, which resulted in a large enhancement of the output efficiency. These results could then open a new path to increase the efficiency of piezoelectric nanogenerators.

  16. Preparation and characterization of CuO nanostructures on copper substrate as selective solar absorbers

    International Nuclear Information System (INIS)

    Karthick Kumar, S.; Murugesan, S.; Suresh, S.

    2014-01-01

    Selective solar absorber coatings of copper oxide (CuO) on copper substrates are prepared by room temperature oxidation of copper at different alkaline conditions. The surface morphology and structural analyses of the CuO coatings are carried out by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and Raman spectroscopy techniques. XRD and Raman studies indicated the single phase nature and high crystallinity of the prepared CuO nanostructures. Different CuO nanostructures, viz., nanoneedles, nanofibers and nanoparticles are formed at different alkaline conditions. The influence of reaction time on morphology of the CuO nanostructures is also studied. The thermal emittance values of these nanostructured CuO samples are found to be in the range of 6–7% and their solar absorptances are ranged between 84 and 90%. The observed high solar selectivity values (>12.7) suggest that these coatings can be used as selective absorbers in solar thermal gadgets. - Highlights: • Nanostructured CuO thin films on Cu substrate have been prepared by a facile method. • Morphology of the CuO nanostructures varies with reaction pH. • The thin films show high absorptance in the visible region and low thermal emittance. • Multiple absorption in the porous structure leads to high solar absorptance. • Nanostructures posses solar selectivity values >12

  17. Correlation of Defect-Related Optoelectronic Properties in Zn5(OH6(CO32/ZnO Nanostructures with Their Quasi-Fractal Dimensionality

    Directory of Open Access Journals (Sweden)

    J. Antonio Paramo

    2015-01-01

    Full Text Available Hydrozincite (Zn5(OH6(CO32 is, among others, a popular precursor used to synthesize nanoscale ZnO with complex morphologies. For many existing and potential applications utilizing nanostructures, performance is determined by the surface and subsurface properties. Current understanding of the relationship between the morphology and the defect properties of nanocrystalline ZnO and hydrozincite systems is still incomplete. Specifically, for the latter nanomaterial the structure-property correlations are largely unreported in the literature despite the extensive use of hydrozincite in the synthesis applications. In our work, we addressed this issue by studying precipitated nanostructures of Zn5(OH6(CO32 with varying quasi-fractal dimensionalities containing relatively small amounts of a ZnO phase. Crystal morphology of the samples was accurately controlled by the growth time. We observed a strong correlation between the morphology of the samples and their optoelectronic properties. Our results indicate that a substantial increase of the free surface in the nanocrystal samples generates higher relative concentration of defects, consistent with the model of defect-rich surface and subsurface layers.

  18. Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei, E-mail: ymgong@dlpu.edu.cn; Guo, Jing, E-mail: guojing8161@163.com

    2016-12-01

    Highlights: • Polymeric PET fibers were conductive modified by ITO and the subsequent Ag coating. The conductive PET-ITO-Ag fiber has the surface resistivity as low as 0.23 mΩ cm. The PET-ITO-Ag fiber was used as a basal material to plant vertical ZnO nanorods. - Abstract: We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol–gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl{sub 2}, a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.

  19. Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers

    International Nuclear Information System (INIS)

    Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei; Guo, Jing

    2016-01-01

    Highlights: • Polymeric PET fibers were conductive modified by ITO and the subsequent Ag coating. The conductive PET-ITO-Ag fiber has the surface resistivity as low as 0.23 mΩ cm. The PET-ITO-Ag fiber was used as a basal material to plant vertical ZnO nanorods. - Abstract: We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol–gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl 2 , a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.

  20. Microwave-assisted synthesis of C-doped TiO2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells

    Science.gov (United States)

    Rangel-Mendez, Jose R.; Matos, Juan; Cházaro-Ruiz, Luis F.; González-Castillo, Ana C.; Barrios-Yáñez, Guillermo

    2018-03-01

    The microwave-assisted solvothermal synthesis of C-doped TiO2 and ZnO hybrid materials was performed. Saccharose, titanium isopropoxide and zinc acetate were used as organic and inorganic sources for the synthesis. The influence of temperature and reaction time on the textural and optoelectronic properties of the hybrid materials was verified. Carbon quantum-dots of TiO2 and ZnO nanostructured spheres were obtained in a second pot by controlled calcination steps of the precursor hybrid materials. A carefully characterization by adsorption-desorption N2 isotherms, XRD, XPS, SEM, UV-vis/DR and electro- and photo-electrochemistry properties of the carbon quantum-dots TiO2 and ZnO spheres was performed. The photoelectrochemical activity of TiO2-C and ZnO-C films proved to be dependent on the conditions of synthesis. It was found a red-shift in the energy band gap of the semiconductors with values of 3.02 eV and 3.13 eV for the TiO2-C and ZnO-C, respectively, clearly lower than those on bare semiconductors, which is associated with the C-doping effect. From the photo-electrochemistry characterization of C-doped TiO2 and ZnO films can be concluded that the present materials have potential applications as photoelectrodes for quantum-dots sensitized solar cells.

  1. Homoepitaxial Nanostructures of Zinc Oxide

    Directory of Open Access Journals (Sweden)

    Tatiana V. Plakhova

    2015-01-01

    Full Text Available The homoepitaxial ZnO nanostructures (HENS were obtained on different substrates using various techniques. The first type of homoepitaxial ZnO nanorod arrays was grown on Si or ITO substrates by using two alternative sequences: (a seeding → growth from solution → growth from vapor and contrariwise (b seeding → growth from vapor → growth from solution. As follows from transport and cathode luminescence measurements homoepitaxial growth allows enhancing electrical or luminescence properties. The second type of HENS was prepared by growth of vertically or horizontally oriented ZnO nanorod arrays depending on monocrystalline ZnO wafers with [0001] and [10-10] orientation. In all cases the growth occurs along the c-axis of fast growth.

  2. Nanocystalline ZnO films prepared via polymeric precursor method (Pechini)

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, C.; Doria, J.; Paucar, C.; Hernandez, M. [Laboratorio de Materiales Ceramicos y Vitreos, Universidad Nacional de Colombia, Sede Medellin, A.A. 568, Medellin (Colombia); Mosquera, A.; Rodriguez, J.E. [Grupo CYTEMAC, Universidad del Cauca, Calle 5 No 4-70, Popayan (Colombia); Gomez, A. [Departamento de Ingenieria de Materiales, Universidad Nacional de Colombia, sede Medellin, A.A. 568, Medellin (Colombia); Baca, E. [Grupo de Ingenieria de Nuevos Materiales, Universidad del Valle, A.A. 25360 Cali (Colombia); Moran, O., E-mail: omoranc@unal.edu.c [Laboratorio de Materiales Ceramicos y Vitreos, Universidad Nacional de Colombia, Sede Medellin, A.A. 568, Medellin (Colombia)

    2010-09-01

    The polymeric precursor method (Pechini) was employed to prepare high-quality nanocrystalline zinc oxide (ZnO) films. Briefly, the process started off with the preparation of a coating solution by the Pechini process followed by a coating of the glass substrates by a dip-coating technique and subsequent heat-treatment of the as-deposited films up to 550 {sup o}C for 30 min. The Rietveld profile analysis of the X-ray diffraction (XRD) spectra revealed the wuerzite structure as expected for ZnO with a P6{sub 3}mc symmetry. No additional peaks were observed that would correspond to any secondary crystalline phase. The average crystallites size was 20 nm as calculated by Sherrer's equation. UV-vis spectroscopy showed sharp ultraviolet absorption edges at {approx}380 nm. The absorption edge analysis yielded optical band gap energy of 3.24 eV with electronic transition of the direct transition type. The Fourier transform infrared (FTIR) analysis showed asymmetric and symmetric stretching modes of the carboxyl group (C=O). Scanning electron microscope (SEM) analysis revealed a crack-free surface morphology indicating that coating of the amorphous glass substrates was homogeneous on large surface areas. The temperature dependent conductivity featured a typical semiconducting-like behavior with resistivity approaching 3x10{sup -1} {Omega} cm at 220 K.

  3. Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers

    Science.gov (United States)

    Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei; Guo, Jing

    2016-12-01

    We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol-gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl2, a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.

  4. Hydro- and solvothermally-prepared ZnO and its catalytic effect on photodegradation of reactive orange 16 dye

    Directory of Open Access Journals (Sweden)

    Simović Bojana

    2014-01-01

    Full Text Available In this work, zinc oxide powders were obtained by two different techniques: hydro- and solvothermal synthesis starting from Zn(NO32 and Zn(CH3COO2, respectively. The influence of synthetic procedure on the structural, microstructural, thermal and photocatalytic properties of the prepared ZnO powders was investigated. Both ZnO samples were further annealed at moderate conditions (300°C to avoid grain growth and to remove traces of impurities. In all four cases a single-phase hexagonal ZnO was confirmed by X-ray powder diffraction. The morphology of prepared ZnO powders was different and it varied from rounded nanograins to microrods. All prepared samples showed higher photocatalytic efficiency in degradation of textile azo-dye Reactive Orange 16(RO16 than the commercial ZnO. In addition, the non-annealed samples had better photocatalytic properties than the commercial Degussa P25 TiO2 powder. [Projekat Ministarstva nauke Republike Srbije, br. III45007, br. ON171032 i br. ON172013

  5. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    Science.gov (United States)

    Saito, Noriko; Haneda, Hajime

    2011-12-01

    We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.

  6. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    OpenAIRE

    Meilkhova, O.; Čížek, J.; Lukáč,, F.; Vlček, M.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.

    2013-01-01

    ZnO films with thickness of ~80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects...

  7. Facile preparation of branched hierarchical ZnO nanowire arrays with enhanced photocatalytic activity: A photodegradation kinetic model

    Science.gov (United States)

    Ebrahimi, M.; Yousefzadeh, S.; Samadi, M.; Dong, Chunyang; Zhang, Jinlong; Moshfegh, A. Z.

    2018-03-01

    Branched hierarchical zinc oxide nanowires (BH-ZnO NWs) were fabricated successfully by a facile and rapid synthesis using two-step growth process. Initially, ZnO NWs have been prepared by anodizing zinc foil at room temperature and followed by annealing treatment. Then, the BH- ZnO NWs were grown on the ZnO NWs by a solution based method at very low temperature (31 oC). The BH- ZnO NWs with different aspect ratio were obtained by varying reaction time (0.5, 2, 5, 10 h). Photocatalytic activity of the samples was studied under both UV and visible light. The results indicated that the optimized BH-ZnO NWs (5 h) as a photocatalyst exhibited the highest photoactivity with about 3 times higher than the ZnO NWs under UV light. In addition, it was also determined that photodegradation rate constant (k) for the BH- ZnO NWs surface obeys a linear function with the branch length (l) and their correlation was described by using a proposed kinetic model.

  8. Preparation, Characterization, and Photocatalytic Activity of TiO2/ZnO Nanocomposites

    Directory of Open Access Journals (Sweden)

    Liqin Wang

    2013-01-01

    Full Text Available Nanoparticles of the TiO2/ZnO composite photocatalysts were prepared via sol-gel process. The crystalline structure, morphology, thermal stability, and pore structure properties of the composite photocatalysts were characterized by XRD, FE-SEM, TG-DTA, and N2 physical adsorption measurements. The photocatalytic activity of the composite catalysts was evaluated by photocatalytic degradation reaction of methyl orange (MO in aqueous solution. The best preparation parameters for the composite photocatalysts were obtained through systematical experiments. Furthermore, the photocatalytic degradation reaction of aqueous MO solution followed the first-order reaction kinetics; the relative equation can be described as ln(C0/C=0.5689t, and the calculated correlation constant (R2 is 0.9937 for the calibration curve.

  9. ZnO nanostructures with tunable visible luminescence: Effects of kinetics of chemical reduction and annealing

    Directory of Open Access Journals (Sweden)

    R. Raji

    2017-03-01

    Full Text Available Highly crystalline ZnO nanoparticles were synthesized using a co-precipitation method. The morphology and optical properties of these nanoparticles are found to be highly sensitive to the growth parameters such as the concentration of reducing agent and annealing temperature. Indeed, the concentration of the reducing agent can alter the morphology of nanoparticles from quasi-spherical to rod-like and then to flower-like structures. Attempts were made to tune the emission wavelength over the visible region by varying the kinetics of chemical reduction and annealing. The possibility of tuning the emission in a visible range from orange to red and then to green by changing the nature of defects by annealing is also reported. Analysis of the Raman spectrum, with its intensity observed at 580 cm−1 corresponding to E1 (LO mode, revealed that the kinetics and thermodynamics of formation and growth of these nanoparticles determined the nature and density of the probable defects such as oxygen vacancies, interstitial zinc atoms and their complexes.

  10. ZnO nanowire/TiO2 nanoparticle photoanodes prepared by the ultrasonic irradiation assisted dip-coating method

    International Nuclear Information System (INIS)

    Gan Xiaoyan; Li Xiaomin; Gao Xiangdong; Zhuge Fuwei; Yu Weidong

    2010-01-01

    Hybrid ZnO/TiO 2 photoanodes for dye-sensitized solar cells were prepared by combining ZnO nanowire (NW) arrays and TiO 2 nanoparticles (NPs) with the assistance of the ultrasonic irradiation assisted dip-coating method. Results show that the ultrasonic irradiation was an efficient way to promote the gap filling of TiO 2 NPs in the interstices of ZnO NWs. Hybrid ZnO NW/TiO 2 NP electrodes prepared with ultrasonic treatment exhibited better gap filling efficiency and higher visible absorptance. The overall conversion efficiency of the hybrid electrode was 0.79%, representing 35% improvement compared with that of the traditional one (0.58%). The enlarged surface area and improved attachments of TiO 2 NPs onto the walls of ZnO NWs induced by the application of ultrasonic irradiation may be the underlying reason. Electrochemical impedance spectroscopy measurements indicated that hybrid electrodes combined the advantages of improved electron transport along the ZnO NWs and increased surface area provided by infiltrated TiO 2 NPs, both of which are responsible for the improved cell efficiency.

  11. Morphologically controlled ZnO nanostructures as electron transport materials in polymer-based organic solar cells

    International Nuclear Information System (INIS)

    Choi, Kyu-Chae; Lee, Eun-Jin; Baek, Youn-Kyoung; Lim, Dong-Chan; Kang, Yong-Cheol; Kim, Yang-Do; Kim, Ki Hyun; Kim, Jae Pil; Kim, Young-Kuk

    2015-01-01

    Highlights: • Enhanced efficiency of solar cells using ZnO nanocrystals for charge transport. • Morphology of the charge transport layer is controlled. • Mixture of nanoparticles and nanorods are advantageous for cell efficiency. - ABSTRACT: The morphology of ZnO electron transport layers based on ZnO nanoparticles were modified with incorporation of ZnO nanorods via their co-deposition from mixed colloidal solution of nanoparticles and nanorods. In particular, the short circuit current density and the fill factor of the constructed photovoltaic device were simultaneously improved by applying mixture of ZnO nanoparticles and nanorods. As a result, a large improvement of power conversion efficiency up to 9% for the inverted organic solar cells having a blend of low band gap polymers and fullerene derivative as an active layer was demonstrated with the morphologically controlled ZnO electron transport layer.

  12. Emission properties of Mn doped ZnO nanoparticles prepared by mechanochemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, Nurul Syahidah; Yahya, Ahmad Kamal [Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450 (Malaysia); Talari, Mahesh Kumar, E-mail: talari@gmail.com [Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450 (Malaysia)

    2012-07-15

    Mechanochemical processing was reported to introduce lot of crystal defects which can significantly influence emission properties. Nevertheless, to the best of our knowledge, there are no reports on effect of mechanochemical processing on emission properties of transition metal ion doped ZnO. In this study, Zn{sub 1-x}Mn{sub x}O nanoparticles with different Mn content (x=0, 0.02, 0.04, 0.06, 0.08, and 0.1) were prepared by mechanochemical processing to study the effect of Mn doping and processing on emission properties. Confirmation of nanoparticles size and nanocrystalline nature of hexagonal wurtzite ZnO structure is carried out using transmission electron microscopy (TEM) and selected area electron diffraction (SAED), respectively. The samples were also characterized using Fluorescence Spectroscope before and after heat-treatment. The emission studies revealed that blue emission intensity is stronger compared to UV and green emission in contrast to the earlier reports, where other synthesis routes were employed for the ZnO nanoparticles' preparation. The blue emission originates from the zinc interstitial (Zn{sub i}) and oxygen interstitial (O{sub i}) defects, which indicate that the mechanochemical route resulted in more interstitial defects compared to oxygen substitution (O{sub Zn}) and oxygen vacancy (V{sub o}) defects which otherwise would give green emission. Mn doping resulted in shifting of near-band-edge (NBE) emission and the reduction in the intensities of NBE, blue and green emissions. The initial red shift at lower Mn content could be due to s-d and p-d exchange interactions as well as band tailing effect where as the blue shift at higher Mn content can be attributed to the Burstein-Moss shift. The reduction in emission intensity could be due to non-radiative recombination processes promoted by Mn ions with increasing Mn content. - Highlights: Black-Right-Pointing-Pointer Zn{sub 1-x}Mn{sub x}O nanoparticles were prepared by mechanochemical

  13. Correlation between reflectance and photoluminescent properties of al-rich ZnO nano-structures

    Science.gov (United States)

    Khan, Firoz; Baek, Seong-Ho; Ahmad, Nafis; Lee, Gun Hee; Seo, Tae Hoon; Suh, Eun-kyung; Kim, Jae Hyun

    2015-05-01

    Al rich zinc oxide nano-structured films were synthesized using spin coating sol-gel technique. The films were annealed in oxygen ambient in the temperature range of 200-700 °C. The structural, optical, and photoluminescence (PL) properties of the films were studied at various annealing temperatures using X-ray diffraction spectroscopy, field emission scanning electron microscopy, photoluminescence emission spectra measurement, and Raman and UV-Vis spectroscopy. The optical band gap was found to decrease with the increase of the annealing temperature following the Gauss Amp function due to the confinement of the exciton. The PL peak intensity in the near band region (INBE) was found to increase with the increase of the annealing temperature up to 600 °C, then to decrease fast to a lower value for the annealing temperature of 700 °C due to crystalline quality. The Raman peak of E2 (low) was red shifted from 118 cm-1 to 126 cm-1 with the increase of the annealing temperature. The intensity of the second order phonon (TA+LO) at 674 cm-1 was found to decrease with the increase of the annealing temperature. The normalized values of the reflectance and the PL intensity in the NBE region were highest for the annealing temperature of 600 °C. A special correlation was found between the reflectance at λ = 1000 nm and the normalized PL intensity in the green region due to scattering due to presence of grains.

  14. Preparation and self-assembly of nanostructured BaCrO4 from CTAB reverse microemulsions

    International Nuclear Information System (INIS)

    Li Zhonghao; Zhang Jianling; Du Jimin; Han Buxing; Mu Tiancheng; Gao Yanan; Liu Zhimin

    2005-01-01

    Well-defined superstructures of rectangular-shaped BaCrO 4 and extensive network of BaCrO 4 nanoparticles constructed by self-assembly were prepared in cetyltrimethylammonium bromide (CTAB) reverse microemulsions. The effects of aging time and reactant concentrations on the morphology and the self-assemble pattern of the nanostructured BaCrO 4 were investigated. TEM combined with the electron diffraction was used to characterize the morphology and the crystal structure of the prepared nanostructured BaCrO 4 at different conditions

  15. Crystalline nanostructured Cu doped ZnO thin films grown at room temperature by pulsed laser deposition technique and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Drmosh, Qasem A. [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Rao, Saleem G.; Yamani, Zain H. [Laser Research Group, Department of Physics, Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gondal, Mohammed A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Department of Physics, Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2013-04-01

    We report structural and optical properties of Cu doped ZnO (ZnO:Cu) thin films deposited on glass substrate at room temperature by pulsed laser deposition (PLD) method without pre and post annealing contrary to all previous reports. For preparation of (ZnO:Cu) composites pure Zn and Cu targets in special geometrical arrangements were exposed to 248 nm radiations generated by KrF exciter laser. The laser energy was 200 mJ with 10 Hz frequency and 20 ns pulse width. The effect of Cu concentration on crystal structure, morphology, and optical properties were investigated by XRD, FESEM and photoluminescence spectrometer respectively. A systematic shift in ZnO (0 0 2) peak with Cu concentration observed in XRD spectra demonstrated that Cu ion has been incorporated in ZnO lattice. Uniform film with narrow size range grains were observed in FESEM images. The photoluminescence (PL) spectra measured at room temperature revealed a systematic red shift in ZnO emission peak and decrease in the band gap with the increase in Cu concentration. These results entail that PLD technique can be realized to deposit high quality crystalline ZnO and ZnO:Cu thin films without pre and post heat treatment which is normally practiced worldwide for such structures.

  16. Phosphorus acceptor doped ZnO nanowires prepared by pulsed-laser deposition

    International Nuclear Information System (INIS)

    Cao, B Q; Lorenz, M; Rahm, A; Wenckstern, H von; Czekalla, C; Lenzner, J; Benndorf, G; Grundmann, M

    2007-01-01

    Phosphorus-doped ZnO (ZnO:P) nanowires were successfully prepared by a novel high-pressure pulsed-laser deposition process using phosphorus pentoxide as the dopant source. Detailed cathodoluminescence studies of single ZnO:P nanowires revealed characteristic phosphorus acceptor-related peaks: neutral acceptor-bound exciton emission (A 0 , X, 3.356 eV), free-to-neutral-acceptor emission (e, A 0 , 3.314 eV), and donor-to-acceptor pair emission (DAP, ∼3.24 and ∼3.04 eV). This means that stable acceptor levels with a binding energy of about 122 meV have been induced in the nanowires by phosphorus doping. Moreover, the induced acceptors are distributed homogeneously along the doped nanowires

  17. Morphology-controllable of Sn doped ZnO nanorods prepared by spray pyrolysis for transparent electrode application

    Science.gov (United States)

    Hameed, M. Shahul; Princice, J. Joseph; Babu, N. Ramesh; Zahirullah, S. Syed; Deshmukh, Sampat G.; Arunachalam, A.

    2018-05-01

    Transparent conductive Sn doped ZnO nanorods have been deposited at various doping level by spray pyrolysis technique on glass substrate. The structural, surface morphological and optical properties of these films have been investigated with the help of X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM) and UV-Vis spectrophotometer respectively. XRD patterns revealed a successful high quality growth of single crystal ZnO nanorods with hexagonal wurtzite structure having (002) preferred orientation. The scanning electron microscope (SEM) image of the prepared films exposed the uniform distribution of Sn doped ZnO nanorod shaped grains. All these films were highly transparent in the visible region with average transmittance of 90%.

  18. Identification and origin of visible transitions in one dimensional (1D) ZnO nanostructures: Excitation wavelength and morphology dependence study

    Energy Technology Data Exchange (ETDEWEB)

    Baral, Arpit [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India); Khanuja, Manika, E-mail: manikakhanuja@gmail.com [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India); Islam, S.S. [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India); Sharma, Rishabh; Mehta, B.R. [Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2017-03-15

    In this present work, one dimensional (1D) ZnO nanostructures were synthesized by mechanical assisted thermal decomposition process. The samples were characterized by transmission electron microscopy (TEM) for morphology, high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) for structural characterization. Photoluminescence (PL) and Photoluminescence spectra evolution was studied as a function of (i) excitation wavelength (λ{sub Ex:} 310–370 nm) and (ii) morphology (nanoneedles and nanorods). PL spectra were observed to be highly asymmetric with strong dependence on excitation wavelength (λ{sub Ex}). PL spectra categorized into two types as a function of excitation wavelength (λ{sub Ex}): I. λ{sub Ex}≤345 nm and II. λ{sub Ex}≥350 nm. The PL spectra were deconvoluted into multiple Gaussian components for each excitation wavelength. The position of each component is a signature of its origin and corresponds to specific visible transition. The transition involving origin from conduction band (CB) are absent for excitation wavelength λ{sub Ex}≥350 nm. The tunable photoresponse is achieved in 1D ZnO nanostructures by varying (i) excitation wavelength and (ii) morphology: nanoneedles to nanorods. PL intensity increases as aspect ratio decrease from nanoneedles to nanorods morphology. This is attributed to non-radiative quenching by near surface defects.

  19. Hexagonal ZnO porous plates prepared from microwave synthesized layered zinc hydroxide sulphate via thermal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Machovsky, Michal, E-mail: machovsky@ft.utb.cz [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, Nam. T.G. Masaryka 275, 762 72 Zlin (Czech Republic); Kuritka, Ivo, E-mail: ivo@kuritka.net [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, Nam. T.G. Masaryka 275, 762 72 Zlin (Czech Republic); Sedlak, Jakub, E-mail: j1sedlak@ft.utb.cz [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, Nam. T.G. Masaryka 275, 762 72 Zlin (Czech Republic); Pastorek, Miroslav, E-mail: pastorek@ft.utb.cz [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nam. T.G. Masaryka 275, 762 72 Zlin (Czech Republic)

    2013-10-15

    Graphical abstract: - Highlights: • Zinc hydroxy sulphate was synthesized in 3 min via microwave hydrothermal route. • Zinc hydroxy sulphate was converted into mesh like porous ZnO by calcining at 900°. • The process of transformation is topotactic. - Abstract: Layered zinc hydroxide sulphate (ZHS) was prepared by microwave-assisted hydrothermal precipitation of zinc sulphate monohydrate with hexamethylenetetramine. Under ambient conditions, the structure of ZHS determined by X-ray diffraction (XRD) was found to be a mixture of zinc hydroxide sulphate pentahydrate Zn{sub 4}SO{sub 4}(OH){sub 6}·5H{sub 2}O and tetrahydrate Zn{sub 4}SO{sub 4}(OH){sub 6}·4H{sub 2}O. Fourier transform infrared (FTIR) spectroscopy was used for characterization of the prepared materials. Based on the interpretation of ZHS's thermal decomposition profile obtained by thermogravimetric analysis, ZnO of high purity was prepared by calcination at 900 °C for 2 h. The structure of the resulting ZnO was confirmed by the XRD. The morphology examination by scanning electron microscopy revealed a porous mesh-like ZnO structure developed from the ZHS precursor at the expense of mass removal due to the release of water and sulphate during the calcination.

  20. Preparation and Study the Electrical, Structural and Gas Sensing Properties of ZnO Thick Film Resistor

    Directory of Open Access Journals (Sweden)

    M. K. DEORE

    2010-08-01

    Full Text Available Thick films of AR grade ZnO were prepared on glass substrate by screen-printing technique. These films were dried and fired at different temperatures between 550 oC, 600 oC and 650 oC for one hour in air atmosphere. The gas sensing performance of thick films was tested for various gases. ZnO films showed larger response (sensitivity to H2S gas (100 ppm at 250 oC for firing temperature 650 oC. The Morphological, Compositional and Structural properties of the ZnO thick films were performed by Scanning electron microscopy (SEM, Energy dispersive spectroscopy (EDX and XRD technique respectively. Chemical composition of ZnO film samples changes with firing temperature showing non-stoichiometric behaviours. XRD study indicated the formation of polycrystalline ZnO films with hexagonal wurtzite structure. The gas response (sensitivity, selectivity, response and recovery time of the sensor were measured and presented.

  1. Preparation, structural and luminescent properties of nanocrystalline ZnO films doped Ag by close space sublimation method

    Science.gov (United States)

    Khomchenko, Viktoriya; Mazin, Mikhail; Sopinskyy, Mykola; Lytvyn, Oksana; Dan'ko, Viktor; Piryatinskii, Yurii; Demydiuk, Pavlo

    2018-05-01

    The simple way for silver doping of ZnO films is presented. The ZnO films were prepared by reactive rf-magnetron sputtering on silicon and sapphire substrates. Ag doping is carried out by sublimation of the Ag source located at close space at atmospheric pressure in air. Then the ZnO and ZnO-Ag films were annealed in wet media. The microstructure and optical properties of the films were compared and studied by atomic force microscopy (AFM), X-ray diffraction (XRD), photoluminescence (PL) and cathodoluminescence (CL). XRD results indicated that all the ZnO films have a polycrystalline hexagonal structure and a preferred orientation with the c-axis perpendicular to the substrate. The annealing and Ag doping promote increasing grain's sizes and modification of grain size distribution. The effect of substrate temperature, substrate type, Ag doping and post-growth annealing of the films was studied by PL spectroscopy. The effect of Ag doping was obvious and identical for all the films, namely the wide visible bands of PL spectra are suppressed by Ag doping. The intensity of ultraviolet band increased 15 times as compared to their reference films on sapphire substrate. The ultraviolet/visible emission ratio was 20. The full width at half maximum (FWHM) for a 380 nm band was 14 nm, which is comparable with that of epitaxial ZnO. The data implies the high quality of ZnO-Ag films. Possible mechanisms to enhance UV emission are discussed.

  2. Aqueous chemical growth of free standing vertical ZnO nanoprisms, nanorods and nanodiskettes with improved texture co-efficient and tunable size uniformity

    Energy Technology Data Exchange (ETDEWEB)

    Ram, S.D.G. [Bharath Niketan Engineering College, Department of Physics, Aundipatti (India); Ravi, G.; Mahalingam, T. [Alagappa University, Department of Physics, Karaikudi (India); Athimoolam, A. [Fatima Michael College of Engineering and Technology, Department of Physics, Madurai (India); Kulandainathan, M.A. [Central Electro Chemical Research Institute, Karaikudi (India)

    2011-12-15

    Tuning the morphology, size and aspect ratio of free standing ZnO nanostructured arrays by a simple hydrothermal method is reported. Pre-coated ZnO seed layers of two different thicknesses ({approx}350 nm or 550 nm) were used as substrates to grow ZnO nanostructures for the study. Various parameters such as chemical ambience, pH of the solution, strength of the Zn{sup 2+} atoms and thickness of seed bed are varied to analyze their effects on the resultant ZnO nanostructures. Vertically oriented hexagonal nanorods, multi-angular nanorods, hexagonal diskette and popcorn-like nanostructures are obtained by altering the experimental parameters. All the produced nanostructures were analysed by X-ray powder diffraction analysis and found to be grown in the (002) orientation of wurtzite ZnO. The texture co-efficient of ZnO layer was improved by combining a thick seed layer with higher cationic strength. Surface morphological studies reveal various nanostructures such as nanorods, diskettes and popcorn-like structures based on various preparation conditions. The optical property of the closest packed nanorods array was recorded by UV-VIS spectrometry, and the band gap value simulated from the results reflect the near characteristic band gap of ZnO. The surface roughness profile taken from the Atomic Force Microscopy reveals a roughness of less than 320 nm. (orig.)

  3. Preparation and characterization of rare-earth bulks with controllable nanostructures

    International Nuclear Information System (INIS)

    Song Xiaoyan; Zhang Jiuxing; Li Erdong; Lu Nianduan; Yin Fuxing

    2006-01-01

    The preparation and characterization of pure rare-earth-metal bulks with controllable nanostructures are reported in this paper. A novel 'oxygen-free' in situ synthesis technique that combines inert-gas condensation with spark plasma sintering (SPS) technology is proposed. Taking into account the special mechanisms of SPS consolidation and the scale effects of nanoparticles, we introduced practical procedures for preparing rare-earth bulks of amorphous, mixed amorphous and nanocrystals, and nanocrystalline microstructures, respectively. Compared with the conventional polycrystalline bulk, these nanostructured bulks exhibit substantially improved physical and mechanical properties. This technique enables comprehensive studies on the microstructures and properties of a large variety of nanostructured metallic materials that are highly reactive in the air

  4. MOVPE gallium-nitride nanostructures fabricated on ZnO nanorod templates grown from aqueous chemical solution

    Energy Technology Data Exchange (ETDEWEB)

    Fuendling, Soenke; Li Shunfeng; Postels, Bianca; Al-Suleiman, Mohamed; Wehmann, Hergo-Heinrich; Bakin, Andrey; Waag, Andreas, E-mail: s.fuendling@tu-bs.de [Institut fuer Halbleitertechnik, Technische Universitaet Braunschweig, 38096 Braunschweig (Germany)

    2009-11-15

    Concerning optoelectronic devices fabricated by epitaxial methods, the combination of ZnO and GaN has promising aspects regarding their good optical properties and a relatively good lattice matching between both as compared to other foreign substrates like sapphire or silicon. Moreover ZnO nanopillar arrays may serve as a template for GaN nanopillar fabrication or for high quality GaN layers by lateral overgrowth of the ZnO nanopillars. In this work, we investigate the combination of two very different growth methods - aqueous chemical low temperature growth (ACG) for the ZnO nanopillar templates on silicon substrates and metalorganic vapor phase epitaxy (MOVPE) for the GaN overgrowth - in order to show to which extent the very cost efficient ZnO templates suit the high demands of GaN MOVPE. By a combination of annealing and photoluminescence experiments we show that the properties of the heterostructures change significantly with temperature.

  5. Synthesis and properties of ZnO nanorods as ethanol gas sensors

    International Nuclear Information System (INIS)

    Mirabbaszadeh, K; Mehrabian, M

    2012-01-01

    Uniform ZnO nanorods were synthesized via the sol-gel process under mild conditions in which different ZnO nanostructures have been prepared by changing the pH of growth solution. It was seen that the optimum nanorods were grown at pH 11.33. The prepared ZnO nanostructures and morphologies were characterized by x-ray diffraction and scanning electron microscopy measurements. The ZnO one-dimensional nanostructures were found to have a wurtzite hexagonal crystalline structure and grow along the [001] direction. The optimum nanorods were about 1 μm in length and less than 100 nm in diameter. The ZnO nanostructures have been tested for different concentrations and different operating temperatures for ethanol vapor in air and the surface resistance of the sensors has been evaluated as a function of different parameters. The gas sensor fabricated from ZnO nanorods grown in solution with a special pH exhibited good performance. The sensor response to 5000 ppm ethanol was up to about 2.5 at the operating temperature of 300 °C. The differences in gas-sensing performance between the sensors were analyzed based on the defects created in the nanorods during their fast growth. The correlations between material structures and the properties of the gas sensors are discussed.

  6. Preparation of polymer composites using nanostructured carbon produced at large scale by catalytic decomposition of methane

    International Nuclear Information System (INIS)

    Suelves, I.; Utrilla, R.; Torres, D.; Llobet, S. de; Pinilla, J.L.; Lázaro, M.J.; Moliner, R.

    2013-01-01

    Polymer-based composites were prepared using different concentrations of nanostructured carbons (NCs), produced by catalytic decomposition of methane (CDM). Four carbonaceous nanostructures were produced using different catalysts (with Ni and Fe as active phases) in a rotary bed reactor capable of producing up to 20 g of carbon per hour. The effect of nanostructured carbon on the thermal and electrical behaviour of epoxy-based composites is studied. An increase in the thermal stability and the decrease of electrical resistivity were observed for the composites at carbon contents as low as 1 wt%. The highest reduction of the electrical resistivity was obtained using multi-walled carbon nanotubes obtained with the Fe based catalysts. This effect could be related to the high degree of structural order of these materials. The results were compared with those obtained using a commercial carbon nanofibre, showing that the use of carbon nanostructures from CDM can be a valid alternative to the commercial nanofibres. -- Highlights: ► Preparation of polymer nanocomposites with enhanced thermal and electrical properties. ► Formation of nanostructured carbon materials with different textural and structural properties at large scale. ► Catalytic decomposition of methane to simultaneously produce hydrogen and carbon materials.

  7. Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors.

    Science.gov (United States)

    Zhu, Jixin; Shi, Wenhui; Xiao, Ni; Rui, Xianhong; Tan, Huiteng; Lu, Xuehong; Hng, Huey Hoon; Ma, Jan; Yan, Qingyu

    2012-05-01

    1D hierarchical tubular MnO(2) nanostructures have been prepared through a facile hydrothermal method using carbon nanofibres (CNFs) as sacrificial template. The morphology of MnO(2) nanostructures can be adjusted by changing the reaction time or annealing process. Polycrystalline MnO(2) nanotubes are formed with a short reaction time (e.g., 10 min) while hierarchical tubular MnO(2) nanostructures composed of assembled nanosheets are obtained at longer reaction times (>45 min). The polycrystalline MnO(2) nanotubes can be further converted to porous nanobelts and sponge-like nanowires by annealing in air. Among all the types of MnO(2) nanostructures prepared, tubular MnO(2) nanostructures composed of assembled nanosheets show optimized charge storage performance when tested as supercapacitor electrodes, for example, delivering an power density of 13.33 kW·kg(-1) and a energy density of 21.1 Wh·kg(-1) with a long cycling life over 3000 cycles, which is mainly related to their features of large specific surface area and optimized charge transfer pathway.

  8. Effect of different coating layer on the topography and optical properties of ZnO nanostructured

    Science.gov (United States)

    Mohamed, R.; Mamat, M. H.; Malek, M. F.; Ismail, A. S.; Yusoff, M. M.; Asiah, M. N.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    Magnesium (Mg) and aluminum (Al) co-doped zinc oxide (MAZO) thin films were synthesized on glass substrate by sol-gel spin coating method. MAZO thin films were prepared at different coating layers range from 1 to 9. Atomic Force Microscopy (AFM) was used to investigate the topography of the thin films. According to the AFM results, Root Means Square (RMS) of MAZO thin films was increased from 0.747 to 6.545 nm, with increase of number coating layer from 1 to 9, respectively. The results shown the variation on structural and topography properties of MAZO seed film when it's deposited at different coating layers on glass substrate. The optical properties was analyzed using UV-Vis spectroscopy. The obtained results show that the transmittance spectra was increased as thin films coating layer increases.

  9. Plasmonic Nanostructures Prepared by Soft UV Nanoimprint Lithography and Their Application in Biological Sensing

    Directory of Open Access Journals (Sweden)

    Grégory Barbillon

    2012-01-01

    Full Text Available We prepared high-density plasmonic nanostructures on a glass substrate. By using soft UV nanoimprint lithography, gold nanodisks with a diameter of 65 nm were obtained on an area of 1 mm2. We tested these gold nanosensors in the biotin/streptavidin system to study their selectivity and sensitivity of detection. The prepared gold nanodisks could detect streptavidin at 10 pM.

  10. Effects of Cr-doping on the photoluminescence and ferromagnetism at room temperature in ZnO nanomaterials prepared by soft chemistry route

    International Nuclear Information System (INIS)

    Wang Baiqi; Iqbal, Javed; Shan Xudong; Huang Guowei; Fu Honggang; Yu Ronghai; Yu Dapeng

    2009-01-01

    The pure and Cr-doped ZnO nanomaterials were prepared by soft chemistry route. The crystallinity and morphology of as-prepared ZnO nanomaterials were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), which show that Cr-doping could influence crystal and improve the oriented growth of ZnO nanomaterials. The amount of contents and valence state of Cr ions were investigated by energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), which demonstrate that the Cr ions are uniformly doped about 2 atm% in each nanowire and are in +3 valence state in doped ZnO nanomaterials. The effect of Cr-doping on the photoluminescence (PL) and magnetic properties of as-prepared ZnO nanomaterials were principally investigated at room temperature. The Cr-doping can adjust the energy level of ZnO nanocrystal and increase the amount of defects and oxygen vacancies, which lead to shift in the emission peak position in ultraviolet (UV) region and enhance the PL performance in visible light (VL) region of ZnO nanomaterials. In addition, the presence of Cr dopant in ZnO structures establishes the room-temperature ferromagnetism, which is possibly related to the existence of defects and oxygen vacancies as well as due to exchange interaction between Cr 3d and O 2p spin moments

  11. Preparation of hierarchical β-Ni(OH)2 nanostructures and adsorption characterization of methyl orange dye

    Science.gov (United States)

    Jiao, Shujie; Jin, Yimin; Du, Qian; Zhu, Chunguang; Gao, Shiyong; Wang, Dongbo; Wang, Jinzhong

    2018-05-01

    The β-Ni(OH)2 nanostructures have been prepared by hydrothermal with ammonia as alkali source. The morphology of β-Ni(OH)2 evolves from hexagon sheets to flower-like hierarchical structure built up from the nanosheets as increasing the amount of ammonia. Hierarchical β-Ni(OH)2 nanostructures have strong adsorption effect on methyl orange dyes. The adsorption mechanism of β-Ni(OH)2 has been investigated, which could be expressed by pseudo-second order kinetic model with best match.

  12. Electrically conductive nanostructured silver doped zinc oxide (Ag:ZnO) prepared by solution-immersion technique

    International Nuclear Information System (INIS)

    Afaah, A. N.; Asib, N. A. M.; Aadila, A.; Khusaimi, Z.; Mohamed, R.; Rusop, M.

    2016-01-01

    p-type ZnO films have been fabricated on ZnO-seeded glass substrate, using AgNO_3 as a source of silver dopant by facile solution-immersion. Cleaned glass substrate were seeded with ZnO by mist-atomisation, and next the seeded substrates were immersed in Ag:ZnO solution. The effects of Ag doping concentration on the Ag-doped ZnO have been investigated. The substrates were immersed in different concentrations of Ag dopant with variation of 0, 1, 3, 5 and 7 at. %. The surface morphology of the films was characterized by field emission scanning electron microscope (FESEM). In order to investigate the electrical properties, the films were characterized by Current-Voltage (I-V) measurement. FESEM micrographs showed uniform distribution of nanostructured ZnO and Ag:ZnO. Besides, the electrical properties of Ag-doped ZnO were also dependent on the doping concentration. The I-V measurement result indicated the electrical properties of 1 at. % Ag:ZnO thin film owned highest electrical conductivity.

  13. The preparation of ZnO based gas-sensing thin films by ink-jet printing method

    International Nuclear Information System (INIS)

    Shen Wenfeng; Zhao Yan; Zhang Caibei

    2005-01-01

    An ink-jet printing technique was applied to prepare ZnO based gas-sensing thin films. ZnO inks with appropriate viscosity and surface tension were prepared by sol-gel techniques, and printed onto substrates using a commercial printer. After the drying and heating treatment processes, continuous ZnO films were formed and studied by scanning electron microscopy, X-ray diffraction and by a home-made gas sensitivity measuring system. It was found that the morphology and electrical properties of the films changed significantly with the thickness of the films, which can be adjusted simply by printing on the film with increasing frequency. Highest resistance and sensitivity to acetone vapor were obtained when the film was prepared by printing only once on it. Different dopants with certain concentrations could be added into the films by printing with different dopant inks and printing frequency. All Pd, Ag, and ZrO 2 dopants increased both the resistivity and the sensitivity of the films (180 ppm acetone). This work showed that the ink-jet printing technique was a convenient and low cost method to prepare films with controlled film thickness and dopant concentration

  14. A facile and fast route to prepare antimony (Sb) nanostructures without additives

    KAUST Repository

    Shah, M.A.

    2011-12-01

    Herein, we report a safe, low cost and reproducible approach for the synthesis of antimony (Sb) nanostructures with most of them having prism like morphology and having well defined faces in the range of ∼70210 nm. The organics free approach is based on a reaction of antimony powder and pure water at ∼210 °C without using any harmful additives and amines. The XRD pattern confirmed the composition and crystallinity of the grown nanostructures. The reported method besides being organics free is economical, fast and free of pollution, which will make it suitable for large scale production. Furthermore, it is well expected that such a technique could be extended to prepare many other important metal and metal oxide nanostructures. The prospects of the process are bright and promising. © 2012 Sharif University of Technology. Production and hosting by Elsevier B.V. All rights reserved.

  15. Preparation and characterization of GA/RDX nanostructured ...

    Indian Academy of Sciences (India)

    2Department of Fire Protection Engineering, The Armed Police Forces Academy, Langfang 065000, China .... 2.2 Preparation of graphene oxide and graphene hydrogels ... coating with gold, were observed with a HITACHI S-4800.

  16. Preparation and characterization of electrodeposited ZnO and ZnO:Co nanorod films for heterojunction diode applications

    Energy Technology Data Exchange (ETDEWEB)

    Caglar, Yasemin, E-mail: yasemincaglar@anadolu.edu.tr [Anadolu University, Science Faculty, Physics Department, Eskisehir (Turkey); Arslan, Andaç [Eskisehir Osmangazi University, Art and Science Faculty, Chemistry Department, Eskisehir (Turkey); Ilican, Saliha [Anadolu University, Science Faculty, Physics Department, Eskisehir (Turkey); Hür, Evrim [Eskisehir Osmangazi University, Art and Science Faculty, Chemistry Department, Eskisehir (Turkey); Aksoy, Seval; Caglar, Mujdat [Anadolu University, Science Faculty, Physics Department, Eskisehir (Turkey)

    2013-10-15

    Highlights: •Undoped and Co-doped ZnO films were deposited on p-Si by electrodeposition method. •The effects of Co doping on some properties of ZnO films were investigated. •ZnO morphology was converted uniform multi-oriented rods with incorporation of Co. •Co-doped ZnO nanorod films showed a multi-oriented spear-like structure. -- Abstract: Well-aligned undoped and Co-doped nanorod ZnO films were grown by electrochemical deposition onto p-Si substrates from an aqueous route. Aqueous solution of Zn(NO{sub 3}){sub 2}⋅6H{sub 2}O and hexamethylenetetramine (HMT) were prepared using triple distilled water. Two different atomic ratios of Co(NO{sub 3}){sub 2}⋅6H{sub 2}O were used as a dopant element. Electrodepositions were carried out in a conventional three electrode cell for the working electrode (p-Si), reference electrode (Ag/AgCl, sat.) and counter electrode (platin wire). The effects of Co doping on the structural, morphological and electrical properties of ZnO films were investigated. X-ray diffraction (XRD) measurement showed that the undoped ZnO nanorod film was crystallized in the hexagonal wurtzite phase and presented a preferential orientation along the c-axis. Only one peak, corresponding to the (0 0 2) phase, appeared on the diffractograms. The lattice parameters and texture coefficient values were calculated. The nanorods were confirmed by the field emission scanning electron microscopy (FE-SEM) measurements. The FE-SEM image showed that the ZnO nanorods grow uniformly on the substrates, providing a surface with fairly homogeneous roughness. The surface morphology was transformed into uniform multi-oriented rods with incorporation of Co. Co-doped ZnO nanorod films showed a multi-oriented spear-like structure. The diffuse reflectance spectra of the films were measured and the optical band gap values were determined using Kubelka–Munk theory. The van der Pauw method was used to measure the sheet resistance of the films. The sheet resistance

  17. Substrate Temperature Effect on Charge Transport Performance of ZnO Electron Transport Layer Prepared by a Facile Ultrasonic Spray Pyrolysis in Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Jiang Cheng

    2015-01-01

    Full Text Available A novel ultrasonic spray pyrolysis for high-quality ZnO films based on zinc-ammonia solution was achieved in air. To investigate the structural and optical properties as well as the performance of polymer solar cells (PSCs, ZnO films at different substrate temperatures and thicknesses were prepared. The performance of poly(3-hexylthiophene:[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM based PSC was found to be improved due to the ZnO films. The crystal structure and roughness of the ZnO films fabricated at different temperatures were found to affect the performance of PSCs. The optimized power conversion efficiency was found to be maximum for PSCs with ZnO films prepared at 200°C. The growth process of these ZnO films is very simple, cost-effective, and compatible for larger-scale PSC preparation. The precursor used for spray pyrolysis is environmentally friendly and helps to achieve ZnO film preparation at a relative low temperature.

  18. Fabrication and thermal oxidation of ZnO nano fibers prepared via electro spinning technique

    International Nuclear Information System (INIS)

    Baek, Jeongha; Park, Juyun; Kim, Don; Kang, Yongcheol; Koh, Sungwi; Kang, Jisoo

    2012-01-01

    Materials on the scale of nano scale have widely been used as research topics because of their interesting characteristics and aspects they bring into the field. Out of the many metal oxides, zinc oxide (ZnO) was chosen to be fabricated as nano fibers using the electro spinning method for potential uses of solar cells and sensors. After ZnO nano fibers were obtained, calcination temperature effects on the ZnO nano fibers were studied and reported here. The results of scanning electron microscopy (SEM) revealed that the aggregation of the ZnO nano fibers progressed by calcination. X-ray diffraction (XRD) study showed the hcp ZnO structure was enhanced by calcination at 873 and 1173 K. Transmission electron microscopy (TEM) confirmed the crystallinity of the calcined ZnO nano fibers. X-ray photoelectron spectroscopy (XPS) verified the thermal oxidation of Zn species by calcination in the nano fibers. These techniques have helped US deduce the facts that the diameter of ZnO increases as the calcination temperature was raised; the process of calcination affects the crystallinity of ZnO nano fibers, and the thermal oxidation of Zn species was observed as the calcination temperature was raised

  19. Preparation, optical properties of ZnO, ZnO:Al nanorods and Y(OH)3:Eu nanotube

    International Nuclear Information System (INIS)

    Tran Kim Anh; Dinh Xuan Loc; Lam thi Kieu Giang; Le Quoc Minh; Strek, Wieslaw

    2009-01-01

    ZnO, ZnO:Al nanorods and Y(OH) 3 nanotubes have been prepared by the chemical vapor deposition and liquid phase synthesis. ZnO nanorods with diameter of 50 - 100 nm and length of 5 μm have been obtained by the CVD method. ZnO:Al nanorods were synthesized by the hydrothermal method from ZnSO 4. and Al 2 (SO 4 ) 3 . Nanorods and nanotubes of Y(OH) 3 with diameter of 200 nm and length of several micrometers were prepared by the soft template method. The crystal structure and morphology of rods and tubes were analyzed by the X-Ray diffraction and FE-SEM. The influence of fabrication conditions and Al, Eu concentration have been discussed.

  20. Preparation, optical properties of ZnO, ZnO:Al nanorods and Y(OH){sub 3}:Eu nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Tran Kim Anh; Dinh Xuan Loc; Lam thi Kieu Giang; Le Quoc Minh [Institute of Materials Science, Vietnamese Academy of Science and Technology 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi (Viet Nam); Strek, Wieslaw [Institute of Low Temperature and Structure Research, PAN, 2 Okolna, Wroclaw (Poland)], E-mail: kimanh1949@gmail.com

    2009-01-01

    ZnO, ZnO:Al nanorods and Y(OH){sub 3} nanotubes have been prepared by the chemical vapor deposition and liquid phase synthesis. ZnO nanorods with diameter of 50 - 100 nm and length of 5 {mu}m have been obtained by the CVD method. ZnO:Al nanorods were synthesized by the hydrothermal method from ZnSO{sub 4.} and Al{sub 2}(SO{sub 4}){sub 3}. Nanorods and nanotubes of Y(OH){sub 3} with diameter of 200 nm and length of several micrometers were prepared by the soft template method. The crystal structure and morphology of rods and tubes were analyzed by the X-Ray diffraction and FE-SEM. The influence of fabrication conditions and Al, Eu concentration have been discussed.

  1. Designing deoxidation inhibiting encapsulation of metal oxide nanostructures for fluidic and biological applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Moumita, E-mail: ghoshiisc@gmail.com [Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India); Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012 (India); IV. Institute of Physics, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Ghosh, Siddharth [III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Seibt, Michael [IV. Institute of Physics, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Schaap, Iwan A.T. [III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Schmidt, Christoph F. [III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Mohan Rao, G. [Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)

    2016-12-30

    Graphical abstract: To retain atomic structure and morphology of ZnO nanostructures (caused by deoxidation of ZnO) in water/bio-fluids, we propose and demonstrate a robust and inexpensive encapsulation technique using bio-compatible non-ionic surfactant. - Highlights: • Aqueous solutions of ZnO nanorods with and without surfactant are prepared. • With time ZnO nanorods show structural deterioration in different aqueous solutions. • Crystallinity of ZnO nanorods in absence of aqueous solution remain unaffected. • Encapsulation of bio-compatible surfactant in alchohol avoid ZnO deoxidation. • Crystallinity and structure of ZnO nanorods after encapsulation remain unaffected. - Abstract: Due to their photoluminescence, metal oxide nanostructures such as ZnO nanostructures are promising candidates in biomedical imaging, drug delivery and bio-sensing. To apply them as label for bio-imaging, it is important to study their structural stability in a bio-fluidic environment. We have explored the effect of water, the main constituent of biological solutions, on ZnO nanostructures with scanning electron microscopy (SEM) and photoluminescence (PL) studies which show ZnO nanorod degeneration in water. In addition, we propose and investigate a robust and inexpensive method to encapsulate these nanostructures (without structural degradation) using bio-compatible non-ionic surfactant in non-aqueous medium, which was not reported earlier. This new finding is an immediate interest to the broad audience of researchers working in biophysics, sensing and actuation, drug delivery, food and cosmetics technology, etc.

  2. Preparation of TiO2 Nanocrystallite Powders Coated with 9 mol% ZnO for Cosmetic Applications in Sunscreens

    Directory of Open Access Journals (Sweden)

    Moo-Chin Wang

    2012-02-01

    Full Text Available The preparation of TiO2 nanocrystallite powders coated with and without 9 mol% ZnO has been studied for cosmetic applications in sunscreens by a co-precipitation process using TiCl4 and Zn(NO32·6H2O as starting materials. XRD results show that the phases of anatase TiO2 and rutile TiO2 coexist for precursor powders without added ZnO (T-0Z and calcined at 523 to 973 K for 2 h. When the T-0Z precursor powders are calcined at 1273 K for 2 h, only the rutile TiO2 appears. In addition, when the TiO2 precursor powders contain 9 mol% ZnO (T-9Z are calcined at 873 to 973 K for 2 h, the crystallized samples are composed of the major phase of rutile TiO2 and the minor phases of anatase TiO2 and Zn2Ti3O8. The analyses of UV/VIS/NIR spectra reveal that the absorption of the T-9Z precursor powders after being calcined has a red-shift effect in the UV range with increasing calcination temperature. Therefore, the TiO2 nanocrystallite powders coated with 9 mol% ZnO can be used as the attenuate agent in the UV-A region for cosmetic applications in sunscreens.

  3. Effect of doping on structural, optical and electrical properties of nanostructure ZnO films deposited onto a-Si:H/Si heterojunction

    Science.gov (United States)

    Sali, S.; Boumaour, M.; Kermadi, S.; Keffous, A.; Kechouane, M.

    2012-09-01

    We investigated the structural; optical and electrical properties of ZnO thin films as the n-type semiconductor for silicon a-Si:H/Si heterojunction photodiodes. The ZnO film forms the front contact of the super-strata solar cell and has to exhibit good electrical (high conductivity) and optical (high transmittance) properties. In this paper we focused our attention on the influence of doping on device performance. The results show that the X-ray diffraction (XRD) spectra revealed a preferred orientation of the crystallites along c-axis. SEM images show that all films display a granular, polycrystalline morphology and the ZnO:Al exhibits a better grain uniformity. The transmittance of the doped films was found to be higher when compared to undoped ZnO. A low resistivity of the order of 2.8 × 10-4 Ω cm is obtained for ZnO:Al using 0.4 M concentration of zinc acetate. The photoluminescence (PL) spectra exhibit a blue band with two peaks centered at 442 nm (2.80 eV) and 490 nm (2.53 eV). It is noted that after doping the ZnO films a shift of the band by 22 nm (0.15 eV) is recorded and a high luminescence occurs when using Al as a dopant. Dark I-V curves of ZnO/a-Si:H/Si structure showed large difference, which means there is a kind of barrier to current flow between ZnO and a-Si:H layer. Doping films was applied and the turn-on voltages are around 0.6 V. Under reverse bias, the current of the ZnO/a-Si:H/Si heterojunction is larger than that of ZnO:Al/a-Si:H/Si. The improvement with ZnO:Al is attributed to a higher number of generated carriers in the nanostructure (due to the higher transmittance and a higher luminescence) that increases the probability of collisions.

  4. PLD prepared nanostructured Pt-CeO{sub 2} thin films containing ionic platinum

    Energy Technology Data Exchange (ETDEWEB)

    Vorokhta, M., E-mail: vorohtam@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague 8 (Czech Republic); Khalakhan, I.; Matolínová, I.; Nováková, J.; Haviar, S. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague 8 (Czech Republic); Lančok, J.; Novotný, M. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague, Czhech Republic (Czech Republic); Yoshikawa, H. [National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Matolín, V. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague 8 (Czech Republic)

    2017-02-28

    Highlights: • Nanostructured Pt-CeO{sub 2} thin catalyst films were grown on plasma etched and non-etched carbon substrates by pulsed laser deposition. • The surface composition of the nanostructured Pt-CeO{sub 2} films was investigated by surface analysis techniques. • The effect of film roughening was separated from the effect of platinum-ceria atomic interactions. - Abstract: The composition of nanostructured Pt-CeO{sub 2} films on graphite substrates prepared by pulsed laser deposition has been investigated by means of hard X-ray photoelectron spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy, and atomic force microscopy. The influence of morphology of the graphite substrates was investigated with respect to the relative concentrations of ionic and metallic Pt species in the films. It was found that the degree of Pt{sup 2+} enrichment is directly related to the surface morphology of graphite substrates. In particular, the deposition of Pt-CeO{sub 2} films on rough graphite substrate etched in oxygen plasma yielded nanostructured Pt-CeO{sub 2} catalyst films with high surface area and high Pt{sup 2+}/Pt{sup 0} ratio. The presented results demonstrate that PLD is a suitable method for the preparation of thin Pt-CeO{sub 2} catalyst films for fuel cell applications.

  5. Structural and Morphological Properties of Nanostructured ZnO Particles Grown by Ultrasonic Spray Pyrolysis Method with Horizontal Furnace

    Directory of Open Access Journals (Sweden)

    G. Flores-Carrasco

    2014-01-01

    Full Text Available ZnO nanoparticles were synthesized in a horizontal furnace at 500°C using different zinc nitrate hexahydrate concentrations (0.01 and 0.1 M as reactive solution by ultrasonic spray pyrolysis method. The physical-chemical properties of synthesized ZnO nanoparticles have been characterized by thermogravimetric analysis (TGA, X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS, and high resolution transmission electron microscopy (HRTEM. With the TGA is has optimized the temperature at which the initial reactive (Zn(NO32·6H2O, is decomposed completely to give way to its corresponding oxide, ZnO. SEM revealed secondary particles with a quasispherical shape that do not change significantly with the increasing of precursor solution concentration as well as some content of the broken spheres. Increasing the precursor solution concentration leads to the increase in the average size of ZnO secondary particles from 248±73 to 470±160 nm; XRD reveals the similar tendency for the crystallite size which changes from 23±4 to 45±4 nm. HRTEM implies that the secondary particles are with hierarchical structure composed of primary nanosized subunits. These results showed that the precursor concentration plays an important role in the evolution on the size, stoichiometry, and morphology of ZnO nanoparticles.

  6. Piezoelectric Response Evaluation of ZnO Thin Film Prepared by RF Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Cheng Da-Long

    2017-01-01

    Full Text Available The most important parameter of piezoelectric materials is piezoelectric coefficient (d33. In this study, the piezoelectric ZnO thin films were deposited on the SiNx/Si substrate. The 4 inches substrate is diced into 8 cm× 8 cm piece. During the deposition process, a zinc target (99.999 wt% of 2 inches diameter was used. The vertical distance between the target and the substrate holder was fixed at 5 cm. The piezoelectric response of zinc oxide (ZnO thin films were obtained by using a direct measurement system. The system adopts a mini impact tip to generate an impulsive force and read out the piezoelectric signals immediately. Experimentally, a servo motor is used to produce a fixed quantity of force, for giving an impact against to the piezoelectric film. The ZnO thin films were deposited using the reactive radio frequency (RF magnetron sputtering method. The electric charges should be generated because of the material’s extrusion. This phenomenon was investigated through the oscilloscope by one shot trigger. It was apparent that all ZnO films exhibit piezoelectric responses evaluated by our measurement system, however, its exhibit a significant discrepancy. The piezoelectric responses of ZnO thin film at various deposition positions were measured and the crystal structures of the sputtering pressure were also discussed. The crystalline characteristics of ZnO thin films are investigated through the XRD and SEM. The results show the ZnO thin film exhibits good crystalline pattern and surface morphology with controlled sputtering condition. The ZnO thin films sputtered using 2 inches target present various piezoelectric responses. With the exactly related position, a best piezoelectric response of ZnO thin film can be achieved.

  7. Removal of Heavy Metals from Drinking Water by Magnetic Carbon Nanostructures Prepared from Biomass

    OpenAIRE

    Muneeb Ur Rahman Khattak, Muhammad; Zahoor, Muhammad; Muhammad, Bakhtiar; Khan, Farhat Ali; Ullah, Riaz; AbdEI-Salam, Naser M.

    2017-01-01

    Heavy metals contamination of drinking water has significant adverse effects on human health due to their toxic nature. In this study a new adsorbent, magnetic graphitic nanostructures were prepared from watermelon waste. The adsorbent was characterized by different instrumental techniques (surface area analyzer, FTIR, XRD, EDX, SEM, and TG/DTA) and was used for the removal of heavy metals (As, Cr, Cu, Pb, and Zn) from water. The adsorption parameters were determined for heavy metals adsorpti...

  8. ZnO nanorod arrays prepared by chemical bath deposition combined with rapid thermal annealing: structural, photoluminescence and field emission characteristics

    International Nuclear Information System (INIS)

    Chen, Hung-Wei; He, Hsin-Min; Lee, Yi-Mu; Yang, Hsi-Wen

    2016-01-01

    ZnO nanorod arrays were prepared by low temperature chemical bath deposition (CBD) combined with rapid thermal annealing (RTA) under different ambient conditions. The structure and morphology of the synthesized ZnO have been characterized by field-emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). The obtained ZnO samples are highly crystalline with a hexagonal wurtzite phase and also display well-aligned array structure. A pronounced effect on increased nanorod length was found for the RTA-treated ZnO as compared to the as-grown ZnO. Analysis of XRD indicates that the (0 0 2) feature peak of the as-grown ZnO was shifted towards a lower angle as compared to the peaks of RTA-treated ZnO samples due to the reduction of tensile strain along the c-axis by RTA. Photoluminescence (PL) studies reveal that the ZnO nanorod arrays receiving RTA in an O 2 environment have the sharpest UV emission band and greatest intensity ratio of near band-edge emission (NBE) to deep level emission (DLE). Additionally, the effects of RTA on the field emission properties were evaluated. The results demonstrate that RTA an O 2 environment can lower the turn-on field and improve the field enhancement factor. The stability of the field emission current was also tested for 4 h. (paper)

  9. Effect of surface microstructure and wettability on plasma protein adsorption to ZnO thin films prepared at different RF powers

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zhanyun; Chen Min; Chen Dihu [State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275 (China); Pan Shirong, E-mail: stscdh@mail.sysu.edu.c [Artificial Heart Lab, the 1st Affiliate Hospital of Sun Yat-Sen University, Guangzhou 510080 (China)

    2010-10-01

    In this paper, the adsorption behavior of plasma proteins on the surface of ZnO thin films prepared by radio frequency (RF) sputtering under different sputtering powers was studied. The microstructures and surface properties of the ZnO thin films were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible optical absorption spectroscopy and contact angle techniques. The results show that the ZnO thin films have better orientation of the (0 0 2) peak with increasing RF power, especially at around 160 W, and the optical band gap of the ZnO films varies from 3.2 to 3.4 eV. The contact angle test carried out by the sessile drop technique denoted a hydrophobic surface of the ZnO films, and the surface energy and adhesive work of the ZnO thin films decreased with increasing sputtering power. The amounts of human fibrinogen (HFG) and human serum albumin (HSA) adsorbing on the ZnO films and reference samples were determined by using enzyme-linked immunosorbent assay (ELISA). The results show that fewer plasma proteins and a smaller HFG/HSA ratio adsorb on the ZnO thin films' surface.

  10. Structural and Optical Properties of Eu Doped ZnO Nanorods prepared by Pulsed Laser Deposition

    KAUST Repository

    Alarawi, Abeer

    2014-01-01

    Nano structured wide band gap semiconductors have attracted attention of many researchers due to their potential electronic and optoelectronic applications. In this thesis, we report successful synthesis of well aligned Eu doped ZnO nano

  11. Investigation on structural and optical properties of ZnO film prepared by simple wet chemical method

    Science.gov (United States)

    Sholehah, Amalia; Mulyadi, Rendi; Haryono, Didied; Muttakin, Imamul; Rusbana, Tb Bahtiar; Mardiyanto

    2018-04-01

    ZnO thin layer has a broad potential application in electronic and optoelectronic devices. In this study, vertically align ZnO layers were deposited on ITO glass using wet chemistry method. The seed layers were prepared using electrodeposition technique at 3°C. The growing process was carried out using chemical bath deposition at 90°C. To improve the structural properties, two different hydrothermal treatment variations were applied separately. From the experiment, it is shown that the hydrothermal process using N2 gas has given the best result, with average diameter, crystallite size, and band-gap energy of 68.83 nm; 56.37 nm; and 3.16 eV, respectively.

  12. Characterization of gadolinia doped ceria prepared with nanostructured powders

    International Nuclear Information System (INIS)

    Batista, R.M.; Muccillo, E.N.S.

    2012-01-01

    Gadolinia doped ceria is a potential material for application as solid electrolyte in solid oxide fuel cells that operate at intermediate temperatures. The performance of this kind of device is strongly influenced by the properties of the solid electrolyte, and then, by its microstructure. In this work the microstructure evolution of materials with surface area between 7 and 200 m 2 /g was investigated in detail. Cylindrical pellets were prepared by isostatic compaction and sintered in the 700 deg C to 1400 deg C temperature range. X-ray diffraction experiments were conducted to follow the crystallite growth. The microstructure evolution was accompanied by scanning electron microscopy. The densification was estimated by the geometric parameters of the samples and by dilatometry. The results revealed a fast sintering kinetics for materials with finer particle size, as expected. Different behaviors for crystallite growth were verified. (author)

  13. Effect of the pillar ligand on preventing agglomeration of ZnO nanoparticles prepared from Zn(II metal-organic frameworks

    Directory of Open Access Journals (Sweden)

    Maryam Moeinian

    2016-01-01

    Full Text Available Metal-Organic Frameworks (MOFs represent a new class of highly porous materials. On this regard,  two nano porous metal-organic frameworks of [Zn2(1,4-bdc2(H2O2∙(DMF2]n (1 and [Zn2(1,4-bdc2(dabco]·4DMF·1⁄2H2O (2, (1,4-bdc = benzene-1,4-dicarboxylate, dabco = 1,4-diazabicyclo[2.2.2]octane and DMF = N,N-dimethylformamide were synthesized and characterized. They were used for preparation of ZnO nanomaterials. With calcination of 1, agglomerated ZnO nanoparticles could be fabricated, but by the same process on 2, the tendency of ZnO nanoparticles to agglomeration was decreased. In addition, the ZnO nanoparticles prepared from compound 2 had smaller diameter than those obtained from compound 1. In fact, the role of organic dabco ligands in 2 is similar to the role of polymeric stabilizers in formation of nanoparticles. Finally, considering the various applications of ZnO nanomaterials such as light-emitting diodes, photodetectors, photodiodes, gas sensors and dye-sensitized solar cells (DSSCs, it seems that preparation of ZnO nanomaterials from their MOFs could be one of the simple and effective methods which may be applied for preparation of them.

  14. Covalent functionalization of metal oxide and carbon nanostructures with polyoctasilsesquioxane (POSS) and their incorporation in polymer composites

    International Nuclear Information System (INIS)

    Gomathi, A.; Gopalakrishnan, K.; Rao, C.N.R.

    2010-01-01

    Polyoctasilsesquioxane (POSS) has been employed to covalently functionalize nanostructures of TiO 2 , ZnO and Fe 2 O 3 as well as carbon nanotubes, nanodiamond and graphene to enable their dispersion in polar solvents. Covalent functionalization of these nanostructures with POSS has been established by electron microscopy, EDAX analysis and infrared spectroscopy. On heating the POSS-functionalized nanostructures, silica-coated nanostructures are obtained. POSS-functionalized nanoparticles of TiO 2 , Fe 2 O 3 and graphite were utilized to prepare polymer-nanostructure composites based on PVA and nylon-6,6.

  15. Electrodeposition of ZnO nano-wires lattices with a controlled morphology; Electrodepot de reseaux de nanofils de ZnO a morphologie controlee

    Energy Technology Data Exchange (ETDEWEB)

    Elias, J.; Tena-Zaera, R.; Katty, A.; Levy-Clement, C. [Centre National de la Recherche Scientifique (CNRS), Lab. de Chimie Metallurgique des Terres Rares, UPR 209, 94 - Thiais (France)

    2006-07-01

    In this work, it is shown that the electrodeposition is a changeable low cost method which allows, according to the synthesis conditions, to obtain not only plane thin layers of ZnO but different nano-structures too. In a first part, are presented the formation conditions of a compact thin layer of nanocrystalline ZnO electrodeposited on a conducing glass substrate. This layer plays a buffer layer role for the deposition of a lattice of ZnO nano-wires. The step of nano-wires nucleation is not only determined by the electrochemical parameters but by the properties of the buffer layer too as the grain sizes and its thickness. In this context, the use of an electrodeposition method in two steps allows to control the nano-wires length and diameter and their density. The morphology and the structural and optical properties of these nano-structures have been analyzed by different techniques as the scanning and transmission electron microscopy, the X-ray diffraction and the optical spectroscopy. These studies show that ZnO nano-structures are formed of monocrystalline ZnO nano-wires, presenting a great developed surface and a great optical transparency in the visible. These properties make ZnO a good material for the development of nano-structured photovoltaic cells as the extremely thin absorber cells (PV ETA) or those with dye (DSSC) which are generally prepared with porous polycrystalline TiO{sub 2}. Its replacement by a lattice of monocrystalline ZnO nano-wires allows to reduce considerably the number of grain boundaries and in consequence to improve the transport of the electrons. The results are then promising for the PV ETA cells with ZnO nano-wires. (O.M.)

  16. ZnO nanostructures directly grown on paper and bacterial cellulose substrates without any surface modification layer.

    Science.gov (United States)

    Costa, Saionara V; Gonçalves, Agnaldo S; Zaguete, Maria A; Mazon, Talita; Nogueira, Ana F

    2013-09-21

    In this report, hierarchical ZnO nano- and microstructures were directly grown for the first time on a bacterial cellulose substrate and on two additional different papers by hydrothermal synthesis without any surface modification layer. Compactness and smoothness of the substrates are two important parameters that allow the growth of oriented structures.

  17. Preparation and characterization of nanostructured ZnO thin films for ...

    Indian Academy of Sciences (India)

    Administrator

    find applications in chemical sensors and solar cells. (Musat et ... PEC cells convert solar energy into storable chemical ... Films were used as working electrodes (WE) in PEC cells. .... size, only suggests a random nucleation mechanism, and.

  18. Controlled synthesis of ZnO hollow microspheres via precursor-template method and its gas sensing property

    International Nuclear Information System (INIS)

    Tian, Yu; Li, Jinchai; Xiong, Hui; Dai, Jiangnan

    2012-01-01

    Highlights: ► Zn powder as precursor template for synthesis ZnO hollow spheres. ► Different precursor templates result in different ZnO nanostructures. ► Different experimental conditions enable growth of different surface morphologies of ZnO sphere. ► ZnO hollow sphere materials have good gas sensing performance for detecting ethanol gas. - Abstract: Using Zn powder as precursor templates, ZnO hollow microspheres were successfully prepared by thermal evaporation method and characterized by X-ray diffraction analysis, scanning electron microscope and transmission electron microscope. It was found that different size and shape of precursor resulted in different ZnO nanostructures. When varying experimental conditions, such as air flow rate and working pressure, ZnO hollow spheres with different surface morphologies could be obtained. The advantages of the present synthetic technology are simple, relatively low cost, and high reproducibility. A gas sensor was fabricated from the as-prepared ZnO hollow microspheres and tested to the ethanol gas at different operating temperatures.

  19. Simple Preparation of ZnO Nano-layer by Sol-Gel Method as Active Electrode in P3HT/ZnO Heterojunction Solar Cell

    Science.gov (United States)

    Aprilia, Annisa; Herman, Hidayat, Rahmat

    2010-10-01

    Highly transparent undoped ZnO thin films have been prepared on glass and indium tin oxide substrates with simple process by sol-gel route and dip-coating deposition. Gel precursor of ZnO was prepared from zinc acetat dehydrate solution in methanol with the addition of trietylamine as stabilizing agent. Thin layer of gel precursor was prepared by dip coating and then followed by calcination at 400° C for 5 minute in air atmosphere. The thickness of the resulted ZnO thin film produced by ten times coating is about 150 nm. The films shows high transmittance larger than 98% in the visible region (400-800 nm). Absorption is observed in the UV region with absorption onset at about 390 nm indicating varying band gap between 3.18 eV until 3.23 eV depending on the number of coating layer. The AFM image shows that the films seems to be constructed from random stacking of nano-sized ZnO particle in the order of 50 nm. Among the prepared samples, the lowest resistivity is about 1.8×107 Ωm observed in the five-layer coating film. In order to fabricate solar cell structure, P3HT was deposited onto the ZnO thin film layer by spin casting technique and then followed by metal (Au) layer deposition by thermal evaporation. The formed solar cell has the inverted type solar cell with ITO/ZnO/P3HT/Au configuration. By the insertion ZnO layer, the photocurrent was improved by more than ten orders of magnitude in comparison to that of without ZnO layer. The measured photocurrent decreases at large number of coating layer which is supposed to be related with the current limitation by the effective carrier path length in ZnO layer.

  20. Synthesis and characterization of nanocomposites based on PANI and carbon nanostructures prepared by electropolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Petrovski, Aleksandar; Paunović, Perica [Faculty of Technology and Metallurgy, SS Cyril and Methodius University, Rudjer Bošković, 16, 1000, Skopje (Macedonia, The Former Yugoslav Republic of); Avolio, Roberto; Errico, Maria E.; Cocca, Mariacristina; Gentile, Gennaro [Institute for Polymers, Composites and Biomaterials, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli (Italy); Grozdanov, Anita, E-mail: anita.grozdanov@yahoo.com [Faculty of Technology and Metallurgy, SS Cyril and Methodius University, Rudjer Bošković, 16, 1000, Skopje (Macedonia, The Former Yugoslav Republic of); Avella, Maurizio [Institute for Polymers, Composites and Biomaterials, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli (Italy); Barton, John [Tyndall National Institute, University College Cork, Dyke Parade, T12 R5CP, Cork (Ireland); Dimitrov, Aleksandar [Faculty of Technology and Metallurgy, SS Cyril and Methodius University, Rudjer Bošković, 16, 1000, Skopje (Macedonia, The Former Yugoslav Republic of)

    2017-01-01

    Nanocomposites based on polyaniline (PANI) and carbon nanostructures (CNSs) (graphene (G) and multiwall carbon nanotubes (MWCNTs)) were prepared by in situ electrochemical polymerization. CNSs were inserted into the PANI matrix by dispersing them into the electrolyte before the electropolymerization. Electrochemical characterization by means of cyclic voltammetry and steady state polarization were performed in order to determine conditions for electro-polymerization. Electro-polymerization of the PANI based nanocomposites was carried out at 0.75 V vs. saturated calomel electrode (SCE) for 40 and 60 min. The morphology and structural characteristics of the obtained nanocomposites were studied by scanning electron microscopy (SEM) and Raman spectroscopy, while thermal stability was determined using thermal gravimetric analysis (TGA). According to the morphological and structural study, fibrous and porous structure of PANI based nanocomposites was detected well embedding both G and MWCNTs. Also, strong interaction between quinoidal structure of PANI with carbon nanostructures via π–π stacking was detected by Raman spectroscopy. TGA showed the increased thermal stability of composites reinforced with CNSs, especially those reinforced with graphene. - Highlights: • Nanocomposites of PANI with carbon nanostructures were prepared for sensing application. • By cyclic voltammetry, conductive form of PANI (green colored emeraldine phase) is obtained 0.75 V • Using 4 Probe method, nanocomposite PANI/CNS tablet was tested for sensing application. • Micro-structural properties of nanocomposites were studied by SEM, TGA and Raman analysis.

  1. Superhydrophobic and anti-reflective ZnO nanorod-coated FTO transparent conductive thin films prepared by a three-step method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bao-jia, E-mail: li_bjia@126.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, 212013 (China); Huang, Li-jing; Ren, Nai-fei [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Kong, Xia; Cai, Yun-long; Zhang, Jie-lu [Jiangsu Tailong Reduction Box Co. Ltd., Taixing, 225400 (China)

    2016-07-25

    A ZnO nanorod-coated FTO film was prepared by sputtering an AZO layer on FTO glass, thermal annealing of the AZO/FTO film, and hydrothermal growth of ZnO nanorods at 70 °C on the annealed AZO/FTO film using zinc foils as zinc source. Two other ZnO nanorod-coated FTO films were also prepared by hydrothermal growths of ZnO nanorods on the FTO glass and the unannealed AZO/FTO film respectively for comparison purpose. The results were observed in detail using X-ray diffraction, scanning electron microscopy, water contact/sliding angle measurement, spectrophotometry and four-point probe measurement. The ZnO nanorods on the annealed AZO/FTO film were found to exhibit denser distribution and better orientation than those on the FTO glass and the unannealed AZO/FTO film. As a result, the ZnO nanorod-coated annealed AZO/FTO film demonstrated superhydrophobicity, high transparency and low reflectance in the visible range. Also this film had the lowest sheet resistance of 4.0 Ω/sq, implying its good electrical conductivity. This investigation provides a valuable reference for developing multifunctional transparent conductive films. - Highlights: • ZnO nanorod-coated annealed AZO/FTO film was obtained by a three-step method. • FTO and unannealed AZO/FTO films were also used as substrates for comparison. • ZnO nanorods on the annealed AZO/FTO film were denser and more vertically-oriented. • The ZnO nanorod-coated annealed AZO/FTO film (Z/TA-FTO) had superhydrophobicity. • The Z/TA-FTO exhibited high transparency, low reflectance and good conductivity.

  2. Optical and electrical properties of transparent conducting B-doped ZnO thin films prepared by various deposition methods

    Energy Technology Data Exchange (ETDEWEB)

    Nomoto, Jun-ichi; Miyata, Toshihiro; Minami, Tadatsugu [Optoelectronic Device System R and D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501 (Japan)

    2011-07-15

    B-doped ZnO (BZO) thin films were prepared with various thicknesses up to about 500 nm on glass substrates at 200 deg. C by dc or rf magnetron sputtering deposition, pulsed laser deposition (PLD), and vacuum arc plasma evaporation (VAPE) methods. Resistivities of 4-6 x 10{sup -4}{Omega} cm were obtained in BZO thin films prepared with a B content [B/(B + Zn) atomic ratio] around 1 at. % by PLD and VAPE methods: Hall mobilities above 40 cm{sup 2}/Vs and carrier concentrations on the order of 10{sup 20} cm{sup -3}. All 500-nm-thick-BZO thin films prepared with a resistivity on the order of 10{sup -3}-10{sup -4}{Omega} cm exhibited an averaged transmittance above 80% in the wavelength range of 400-1100 nm. The resistivity in BZO thin films prepared with a thickness below about 500 nm was found to increase over time with exposure to various high humidity environments. In heat-resistance tests, the resistivity stability of BZO thin films was found to be nearly equal to that of Ga-doped ZnO thin films, so these films were judged suitable for use as a transparent electrode for thin-film solar cells.

  3. Optical and electrical properties of transparent conducting B-doped ZnO thin films prepared by various deposition methods

    International Nuclear Information System (INIS)

    Nomoto, Jun-ichi; Miyata, Toshihiro; Minami, Tadatsugu

    2011-01-01

    B-doped ZnO (BZO) thin films were prepared with various thicknesses up to about 500 nm on glass substrates at 200 deg. C by dc or rf magnetron sputtering deposition, pulsed laser deposition (PLD), and vacuum arc plasma evaporation (VAPE) methods. Resistivities of 4-6 x 10 -4 Ω cm were obtained in BZO thin films prepared with a B content [B/(B + Zn) atomic ratio] around 1 at. % by PLD and VAPE methods: Hall mobilities above 40 cm 2 /Vs and carrier concentrations on the order of 10 20 cm -3 . All 500-nm-thick-BZO thin films prepared with a resistivity on the order of 10 -3 -10 -4 Ω cm exhibited an averaged transmittance above 80% in the wavelength range of 400-1100 nm. The resistivity in BZO thin films prepared with a thickness below about 500 nm was found to increase over time with exposure to various high humidity environments. In heat-resistance tests, the resistivity stability of BZO thin films was found to be nearly equal to that of Ga-doped ZnO thin films, so these films were judged suitable for use as a transparent electrode for thin-film solar cells.

  4. Preparing patterned carbonaceous nanostructures directly by overexposure of PMMA using electron-beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Duan Huigao; Zhao Jianguo; Zhang Yongzhe; Xie Erqing [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Han Li [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China)], E-mail: duanhg@gmail.com, E-mail: xieeq@lzu.edu.cn

    2009-04-01

    The overexposure process of poly(methyl methacrylate) (PMMA) was studied in detail using electron-beam lithography. It was found that PMMA films could be directly patterned without development due to the electron-beam-induced collapse of PMMA macromolecular chains. By analyzing the evolution of surface morphologies and compositions of the overexposed PMMA films, it was also found that the transformation of PMMA from positive to negative resist was a carbonization process, so patterned carbonaceous nanostructures could be prepared directly by overexposure of PMMA using electron-beam lithography. This simple one-step process for directly obtaining patterned carbonaceous nanostructures has promising potential application as a tool to make masks and templates, nanoelectrodes, and building blocks for MEMS and nanophotonic devices.

  5. Structural Characterization and Magnetic Properties of Undoped and Ti-Doped ZnO Nanoparticles Prepared by Modified Oxalate Route

    Directory of Open Access Journals (Sweden)

    Ekane Peter Etape

    2018-01-01

    Full Text Available Ti-doped zinc oxide and pure zinc oxide nanoparticles were synthesized by a modified oxalate route using Averrhoa carambola fruit juice as a natural source of oxalate. The characteristics of the precursors have been investigated by FTIR, TGA, and XRD. The results from the investigation revealed that the precursors are zinc oxalate and Ti-doped zinc oxalate which readily decompose at 450°C. The as-prepared precursors were calcined at 450°C for 4 hours, and the decomposition products have been characterized by XRD, SEM, EDX, and VSM. XRD results revealed crystallinity with hexagonal wurtzite structure, while the average grain size was found to be 26 nm for Ti-doped ZnO and 29 nm for ZnO, using calculations based on Debye-Scherrer equation. Furthermore, the morphological studies by SEM showed particle agglomeration, while the presence of Ti3+ in the zinc oxide lattice is indicated by EDS analysis. Finally the hysteresis loop from VSM results shows that Ti-doped ZnO exhibits ferromagnetism.

  6. Preparation and characterization of ZnO transparent semiconductor thin films by sol-gel method

    International Nuclear Information System (INIS)

    Tsay, Chien-Yie; Fan, Kai-Shiung; Chen, Sih-Han; Tsai, Chia-Hao

    2010-01-01

    Transparent semiconductor thin films of zinc oxide (ZnO) were deposited onto alkali-free glass substrates by the sol-gel method and spin-coating technique. In this study, authors investigate the influence of the heating rate of the preheating process (4 or 10 o C/min) on the crystallization, surface morphology, and optical properties of sol-gel derived ZnO thin films. The ZnO sol was synthesized by dissolving zinc acetate dehydrate in ethanol, and then adding monoethanolamine. The as-coated films were preheated at 300 o C for 10 min and annealed at 500 o C for 1 h in air ambiance. Experimental results indicate that the heating rate of the preheating process strongly affected the surface morphology and transparency of ZnO thin film. Specifically, a heating rate of 10 o C/min for the preheating process produces a preferred orientation along the (0 0 2) plane and a high transmittance of 92% at a wavelength of 550 nm. Furthermore, this study reports the fabrication of thin-film transistors (TFTs) with a transparent ZnO active channel layer and evaluates their electrical performance.

  7. A third kind growth model of tetrapod: Rod-based single crystal ZnO tetrapod nanostructure

    International Nuclear Information System (INIS)

    Gong, J.F.; Huang, H.B.; Wang, Z.Q.; Zhao, X.N.; Yang, S.G.; Yu Zhongzhen

    2008-01-01

    In this paper, rod-based ZnO tetrapods were successfully synthesized by burning Zn particles in air covered with two firebricks. The products show hexagonal wurtzite phase. The microstructures of the tetrapod were studied carefully by scanning electron microscope (SEM), transmission electron microscope (TEM), SAED and HRTEM. The results show that tetrapod has single crystalline phase with one broader nanorod growing along [0 0 0 1] direction, three triangular nanosheets, growing out of the three trisection planes along [101-bar0] direction, and three epitaxial nanowires, growing from each tip of the triangular nanosheets. Based on the experimental results, a rod-based growth model was proposed to interpret its growth mechanism. Room temperature photoluminescence spectrum reveals that the ZnO tetrapods have ultra violet (UV) emission band (389 nm) and a green emission band (517 nm)

  8. Preparation and characterisation of magnetic nanostructured samples for inelastic neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzpaintner, Wolfgang

    2010-06-22

    Recent advances in thin-film structuring techniques have generated significant interest in the dynamics of spin waves in magnetic nanostructures and the possible use of inelastic neutron scattering (INS) for their investigation. This thesis describes the design and implementation, at GKSS Research Centre, of equipment for preparation of large and laterally submicron and nanometre structured magnetic samples for such future INS experiments. After a brief resume on spin waves in nanostructures, the development work on new purpose-designed equipment, including high vacuum (HV) argon ion beam milling and ultra high vacuum (UHV) e-beam evaporation setups, is described. Ni nanodot as well as Ni and novel Gd nanowire samples were prepared using combinations of sputter deposition, laser interference lithography, argon ion beam milling, e-beam evaporation and self organisation techniques. With reference to sample preparation, epitaxial growth studies for Ni on Si(100) substrate were performed, resulting in the development of a new deposition process, which by thermal tuning allows for the direct epitaxial growth of Ni on Si with unprecedented crystalline quality. The results of various characterisation experiments on the prepared nanostructured samples, including Scanning Electron Microscopy (SEM), microprobe analysis, Atomic and Magnetic Force Microscopy (AFM/MFM), Vibrating Sample Magnetometry (VSM), X-ray Diffraction (XRD) and Reflectivity (XRR), unpolarised and Polarised Neutron Scattering (PNR) and off-specular scattering by X-rays and neutrons using rocking scans and Time-Of-Flight Grazing Incidence Small Angle Neutron Scattering (TOF-GISANS), together with various analysis procedures such as Distorted-Wave Born Approximation (DWBA), are reported. The analysis of a Gd nanowire sample by TOF-GISANS led to a novel evaluation technique which in comparison with single wavelength methods allows portions of reciprocal space to be scanned without changing the angle of

  9. Preparation and characterisation of magnetic nanostructured samples for inelastic neutron scattering experiments

    International Nuclear Information System (INIS)

    Kreuzpaintner, Wolfgang

    2010-01-01

    Recent advances in thin-film structuring techniques have generated significant interest in the dynamics of spin waves in magnetic nanostructures and the possible use of inelastic neutron scattering (INS) for their investigation. This thesis describes the design and implementation, at GKSS Research Centre, of equipment for preparation of large and laterally submicron and nanometre structured magnetic samples for such future INS experiments. After a brief resume on spin waves in nanostructures, the development work on new purpose-designed equipment, including high vacuum (HV) argon ion beam milling and ultra high vacuum (UHV) e-beam evaporation setups, is described. Ni nanodot as well as Ni and novel Gd nanowire samples were prepared using combinations of sputter deposition, laser interference lithography, argon ion beam milling, e-beam evaporation and self organisation techniques. With reference to sample preparation, epitaxial growth studies for Ni on Si(100) substrate were performed, resulting in the development of a new deposition process, which by thermal tuning allows for the direct epitaxial growth of Ni on Si with unprecedented crystalline quality. The results of various characterisation experiments on the prepared nanostructured samples, including Scanning Electron Microscopy (SEM), microprobe analysis, Atomic and Magnetic Force Microscopy (AFM/MFM), Vibrating Sample Magnetometry (VSM), X-ray Diffraction (XRD) and Reflectivity (XRR), unpolarised and Polarised Neutron Scattering (PNR) and off-specular scattering by X-rays and neutrons using rocking scans and Time-Of-Flight Grazing Incidence Small Angle Neutron Scattering (TOF-GISANS), together with various analysis procedures such as Distorted-Wave Born Approximation (DWBA), are reported. The analysis of a Gd nanowire sample by TOF-GISANS led to a novel evaluation technique which in comparison with single wavelength methods allows portions of reciprocal space to be scanned without changing the angle of

  10. Preparation, characterization of Sb-doped ZnO nanocrystals and their excellent solar light driven photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Nasser, Ramzi; Othmen, Walid Ben Haj [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia); Département de Physique, Faculté des Sciences de Tunis, University of Tunis El Manar 2092 (Tunisia); Elhouichet, Habib, E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia); Département de Physique, Faculté des Sciences de Tunis, University of Tunis El Manar 2092 (Tunisia); Férid, Mokhtar [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia)

    2017-01-30

    Highlights: • Sb-ZnO was obtained by modified sol-gel method using citric acid as stabilizing agent. • Sb incorporated both in lattice and interstitial sites. • The formation of (Sb{sub Zn}–2 V{sub Zn}) acceptor level was revealed by photoluminescence studies. • Optimum Sb content to show higher photocatalytic activity was found to be 3%. - Abstract: In the present study, undoped and antimony (Sb) doped ZnO nanocrystals (NCs) were prepared by a simple and economical sol-gel method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed the purity of the obtained phase and its high crystallinity. Raman analysis confirms the hexagonal Wurtzite ZnO structure. According to the diffuse reflectance results, the band gap was found to decrease up to 3% of Sb doping (ZSb3 sample). The results of X-ray photoelectron spectroscopy (XPS) measurements reveal that Sb ions occupied both Zn and interstitials sites. The successful substitution of antimony in ZnO lattice suggests the formation of the complex (Sb{sub Zn}–2 V{sub Zn}) acceptor level above the valence band. Particularly for ZSb3 sample, the UV photoluminescence (PL) band presents an obvious red-shift attributed to the formation of this complex. Rhodamine B (RhB) was used to evaluate the photocatalytic activity of Sb-doped ZnO NCs under sunlight irradiation. It was found that oxygen vacancies play a major role in the photocatalytic process by trapping the excited electrons and inhibiting the radiative recombination. During the photocatalytic mechanism, the Sb doping, expressed through the apparition of the (Sb{sub Zn}–2 V{sub Zn}) correspondent acceptor level, enhances the sunlight absorption within the ZnO band gap, which stimulates the generation of hydroxyl radicals and promotes the photocatalytics reaction rates. Such important contribution of the hydroxyl radicals was confirmed experimentally when using ethanol as scavenger in the photocatalytic reaction. The photodegradation

  11. Defect studies of thin ZnO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Vlček, M; Čížek, J; Procházka, I; Novotný, M; Bulíř, J; Lančok, J; Anwand, W; Brauer, G; Mosnier, J-P

    2014-01-01

    Thin ZnO films were grown by pulsed laser deposition on four different substrates: sapphire (0 0 0 1), MgO (1 0 0), fused silica and nanocrystalline synthetic diamond. Defect studies by slow positron implantation spectroscopy (SPIS) revealed significantly higher concentration of defects in the studied films when compared to a bulk ZnO single crystal. The concentration of defects in the films deposited on single crystal sapphire and MgO substrates is higher than in the films deposited on amorphous fused silica substrate and nanocrystalline synthetic diamond. Furthermore, the effect of deposition temperature on film quality was investigated in ZnO films deposited on synthetic diamond substrates. Defect studies performed by SPIS revealed that the concentration of defects firstly decreases with increasing deposition temperature, but at too high deposition temperatures it increases again. The lowest concentration of defects was found in the film deposited at 450° C.

  12. Preparation of poly(N-vinylpyrrolidone-stabilized ZnO colloid nanoparticles

    Directory of Open Access Journals (Sweden)

    Tatyana Gutul

    2014-04-01

    Full Text Available We propose a method for the synthesis of a colloidal ZnO solution with poly(N-vinylpyrrolidone (PVP as stabilizer. Stable colloidal solutions with good luminescence properties are obtained by using PVP as stabilizer in the synthesis of ZnO nanoparticles by a sol–gel method assisted by ultrasound. Nanoparticles with sizes of 30–40 nm in a PVP matrix are produced as a solid product. The colloidal ZnO/PVP/methanol solution, apart from the most intense PL band at 356 nm coming from the PVP, exhibits a strong PL band at 376 nm (3.30 eV which corresponds to the emission of the free exciton recombination in ZnO nanoparticles.

  13. Composites of Laminar Nanostructured ZnO and VOx-Nanotubes Hybrid as Visible Light Active Photocatalysts

    Directory of Open Access Journals (Sweden)

    Eglantina Benavente

    2018-02-01

    Full Text Available A series of hybrid heterostructured nanocomposites of ZnO with V2O5 nanotubes (VOx-NTs in different mixing ratios were synthesized, with the aim of reducing the recombination of photoinduced charge carriers and to optimize the absorption of visible light. The study was focused on the use of heterostructured semiconductors that can extend light absorption to the visible range and enhance the photocatalytic performance of ZnO in the degradation of methylene blue as a model pollutant. The addition of VOx-NTs in the synthesis mixture led to a remarkable performance in the degradation of the model dye, with hybrid ZnO (stearic acid/VOx-NTs at a ratio of 1:0.06 possessing the highest photocatalytic activity, about seven times faster than pristine zinc oxide. Diffuse reflectance spectroscopic measurements and experiments in the presence of different trapping elements allowed us to draw conclusions regarding the band positions and photocatalytic degradation mechanism. The photocatalytic activity measured in three subsequent cycles showed good reusability as no significant loss in efficiency of dye degradation was observed.

  14. Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Boyadjiev, S.I., E-mail: boiajiev@gmail.com [MTA-BME Technical Analytical Chemistry Research Group, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Georgieva, V. [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Yordanov, R. [Department of Microelectronics, Technical University of Sofia, 8 Kliment Ohridski Blvd., 1756 Sofia (Bulgaria); Raicheva, Z. [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Szilágyi, I.M. [MTA-BME Technical Analytical Chemistry Research Group, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, Szent Gellért tér 4, Budapest, H-1111 (Hungary)

    2016-11-30

    Highlights: • For the first time the gas sensing towards NO{sub 2} of very thin ALD ZnO films is studied. • The very thin ALD ZnO films showed excellent sensitivity to NO{sub 2} at room temperature. • These very thin film ZnO-based QCM sensors very well register even low concentrations. • The sensors have fully reversible sorption and are able to be recovered in short time. • Described fast and cost-effective ALD deposition of ZnO thin films for QCM gas sensor. - Abstract: Applying atomic layer deposition (ALD), very thin zinc oxide (ZnO) films were deposited on quartz resonators, and their gas sensing properties were studied using the quartz crystal microbalance (QCM) method. The gas sensing of the ZnO films to NO{sub 2} was tested in the concentration interval between 10 and 5000 ppm. On the basis of registered frequency change of the QCM, for each concentration the sorbed mass was calculated. Further characterization of the films was carried out by various techniques, i.e. by SEM-EDS, XRD, ellipsometry, and FTIR spectroscopy. Although being very thin, the films were gas sensitive to NO{sub 2} already at room temperature and could register very well as low concentrations as 100 ppm, while the sorption was fully reversible. Our results for very thin ALD ZnO films show that the described fast, simple and cost-effective technology could be implemented for producing gas sensors working at room temperature and being capable to detect in real time low concentrations of NO{sub 2}.

  15. Electrodeposition of ZnO nano-wires lattices with a controlled morphology

    International Nuclear Information System (INIS)

    Elias, J.; Tena-Zaera, R.; Katty, A.; Levy-Clement, C.

    2006-01-01

    In this work, it is shown that the electrodeposition is a changeable low cost method which allows, according to the synthesis conditions, to obtain not only plane thin layers of ZnO but different nano-structures too. In a first part, are presented the formation conditions of a compact thin layer of nanocrystalline ZnO electrodeposited on a conducing glass substrate. This layer plays a buffer layer role for the deposition of a lattice of ZnO nano-wires. The step of nano-wires nucleation is not only determined by the electrochemical parameters but by the properties of the buffer layer too as the grain sizes and its thickness. In this context, the use of an electrodeposition method in two steps allows to control the nano-wires length and diameter and their density. The morphology and the structural and optical properties of these nano-structures have been analyzed by different techniques as the scanning and transmission electron microscopy, the X-ray diffraction and the optical spectroscopy. These studies show that ZnO nano-structures are formed of monocrystalline ZnO nano-wires, presenting a great developed surface and a great optical transparency in the visible. These properties make ZnO a good material for the development of nano-structured photovoltaic cells as the extremely thin absorber cells (PV ETA) or those with dye (DSSC) which are generally prepared with porous polycrystalline TiO 2 . Its replacement by a lattice of monocrystalline ZnO nano-wires allows to reduce considerably the number of grain boundaries and in consequence to improve the transport of the electrons. The results are then promising for the PV ETA cells with ZnO nano-wires. (O.M.)

  16. Preparation of a Non-Polar ZnO Film on a Single-Crystal NdGaO3 Substrate by the RF Sputtering Method

    Science.gov (United States)

    Kashiwaba, Y.; Tanaka, Y.; Sakuma, M.; Abe, T.; Imai, Y.; Kawasaki, K.; Nakagawa, A.; Niikura, I.; Kashiwaba, Y.; Osada, H.

    2018-04-01

    Preparation of non-polar ZnO ( 11\\overline{2} 0 ) films on single-crystal NdGaO3 (NGO) (001) substrates was successfully achieved by the radio frequency (RF) sputtering method. Orientation, deposition rate, and surface roughness of ZnO films strongly depend on the working pressure. Characteristics of ZnO films deposited on single-crystal NGO (001) substrates were compared with those of ZnO films deposited on single-crystal sapphire ( 01\\overline{1} 2 ) substrates. An x-ray diffraction peak of the ZnO ( 11\\overline{2} 0 ) plane was observed on ZnO films deposited on single-crystal NGO (001) substrates under working pressure of less than 0.5 Pa. On the other hand, uniaxially oriented ZnO ( 11\\overline{2} 0 ) films on single-crystal sapphire ( 01\\overline{1} 2 ) substrates were observed under working pressure of 0.1 Pa. The mechanism by which the diffraction angle of the ZnO ( 11\\overline{2} 0 ) plane on single-crystal NGO (001) substrates was shifted is discussed on the basis of anisotropic stress of lattice mismatch. The deposition rate of ZnO films decreased with an increase in working pressure, and the deposition rate on single-crystal NGO (001) substrates was larger than that on single-crystal sapphire ( 01\\overline{1} 2 ) substrates. Root mean square (RMS) roughness of ZnO films increased with an increase in working pressure, and RMS roughness of ZnO films on single-crystal NGO (001) substrates was smaller than that of ZnO films on single-crystal sapphire ( 01\\overline{1} 2 ) substrates even though the film thickness on single-crystal NGO (001) substrates was greater than that on sapphire substrates. It is thought that a single-crystal NGO (001) substrate is useful for deposition of non-polar ZnO ( 11\\overline{2} 0 ) films.

  17. Structural, optical and magnetic properties of Mn doped ZnO thin films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Aravind, Arun, E-mail: aruncusat@gmail.com [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Jayaraj, M.K., E-mail: mkj@cusat.ac.in [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Kumar, Mukesh; Chandra, Ramesh [Nano Science Laboratory, Institute Instrumentation Centre, IIT Roorkee, Roorkee 247 667, Uttarakhand (India)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Defect induced Raman active modes in Mn doped ZnO thin films. Black-Right-Pointing-Pointer Room temperature ferromagnetism. Black-Right-Pointing-Pointer Morphological variations of ZnO thin films with Mn doping. Black-Right-Pointing-Pointer Variation of refractive index of ZnO thin films with Mn doping. - Abstract: Zn{sub 1-x}Mn{sub x}O thin films were grown by pulsed laser deposition. The phase purity and the structure were confirmed by X-ray diffraction studies. The films have a transmittance more than 80% in the visible region. The refractive index of Zn{sub 0.90}Mn{sub 0.10}O films is found to be 1.77 at 550 nm. The presence of non-polar E{sub 2}{sup high} and E{sub 2}{sup low} Raman modes in thin films indicates that 'Mn' doping does not change the wurtzite structure of ZnO. Apart from the normal modes of ZnO the Zn{sub 1-x}Mn{sub x}O ceramic targets show two additional modes at 332 cm{sup -1} (I{sub 1}) and 524 cm{sup -1} (I{sub 2}). The broad Raman peaks (340-600 cm{sup -1}) observed Zn{sub 0.90}Mn{sub 0.10}O thin films can be deconvoluted into five peaks, denoted as P{sub 1}-P{sub 5}. The possible origins of Raman peaks in Zn{sub 1-x}Mn{sub x}O films are the structural disorder and morphological change caused by the Mn dopant. The B{sub 1}{sup low}, {sup 2}B{sub 1}{sup low}, B{sub 1}{sup high} and A{sub 1}{sup LO} modes as well as the surface phonon mode have been observed in heavily Mn-doped ZnO films. Zn{sub 0.98}Mn{sub 0.02}O thin film shows room temperature ferromagnetism. The saturation magnetic moment of the Zn{sub 0.98}Mn{sub 0.02}O thin film is 0.42{mu}{sub B}/Mn atom. The undoped ZnO film prepared under the same condition shows diamagnetic nature. At higher doping concentrations the formation of Mn clusters suppress the room temperature ferromagnetism in Zn{sub 1-x}Mn{sub x}O thin films and shows paramagnetism. XPS confirms the incorporation of Mn{sup 2+} into the ZnO lattice.

  18. Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method

    Energy Technology Data Exchange (ETDEWEB)

    Tran Thi, Viet Ha; Lee, Byeong-Kyu, E-mail: bklee@ulsan.ac.kr

    2017-02-15

    Highlights: • ZnO rod-ACF was prepared by a method involving a microwave within only 3 min. • ZnO rods (average diameter of 0.3–0.5 μm, length of 1.0–1.5 μm) were grown on ACF. • 99% of tetracycline was degraded and 90.7% TOC was removed within 1 h under UV light. • ZnO rod-ACF achieved high performances even after three cycles of uses. - Abstract: New composite materials of activated carbon fiber (ACF) coated with zinc oxide (ZnO) were obtained by applying a green, cost-effective and rapid synthetic route using a commercial microwave oven. ZnO rods with a uniform and stable structure and an average diameter of 0.3–0.5 μm and length of 1.0–1.5 μm were achieved after only 3-min microwave treatment. The properties of ZnO were efficiently transferred to ACF, such that the resulting material, termed ZnO rod-ACF, demonstrated a promising potential as an efficient photocatalyst and simultaneously as an adsorbent. Pharmaceutical tetracycline at a concentration of 40 mg/L was used to evaluate the organic pollutant removal capacity of the synthesized materials. At pH 8, ZnO rod-ACF exhibited excellent removal capacity (over 99%) and mineralization (90.7%) of tetracycline in aqueous solution within 1 h under UV irradiation. The stability of ZnO rod-ACF was maintained and the mineralization of tetracycline was also maintained at 81.35% after multiple usage cycles. The photodegradation pathways of tetracycline were proposed based on the identified reaction intermediates.

  19. Synthesis and photocatalytic application of α-Fe2O3/ZnO fine particles prepared by two-step chemical method

    Directory of Open Access Journals (Sweden)

    Patij Shah

    2013-06-01

    Full Text Available Composite iron oxide-Zinc oxide (α-Fe2O3/ZnO was synthesized by two-step method: in the first one step uniform α-Fe2O3 particles were prepared through a hydrolysis process of ferric chloride at 80 °C. In the second step, the ZnO particles were included in the α-Fe2O3 particles by a zinc acetate [Zn(Ac2·2H2O] assisted hydrothermal method at low temperature (90°C±C. The α-Fe2O3 and ZnO phases were identified by XRD, energy dispersive X-ray analysis (EDX. The photoreactivities of α-Fe2O3/ZnO nanoparticles under UV irradiation were quantified by the degradation of formaldehyde.

  20. Effect of {alpha}-Fe{sub 2}O{sub 3} addition on the morphological, optical and decolorization properties of ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah Mirzaie, Rasol, E-mail: mirzai_r@yahoo.com [Dep. of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, P.O. Box 167855-163, Tehran (Iran, Islamic Republic of); Kamrani, Firouzeh [Masters Student in Physical Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, P.O. Box 167855-163, Tehran (Iran, Islamic Republic of); Anaraki Firooz, Azam [Dep. of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, P.O. Box 167855-163, Tehran (Iran, Islamic Republic of); Khodadadi, Abbas Ali [Oil and Gas Processing Center of Excellence, School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Different morphologies of Fe{sub 2}O{sub 3}/ZnO nanocomposites synthesized via simple solid state reaction method. Black-Right-Pointing-Pointer Various Fe{sup 3+}/Zn{sup 2+} ratios affected on morphology, size and optical absorption. Black-Right-Pointing-Pointer addition of Fe{sub 2}O{sub 3} shifted the absorption edge to the visible region. Black-Right-Pointing-Pointer Amount of added Fe{sub 2}O{sub 3} strongly affected the decolorization of azo dye under visible light. - Abstract: Visible light sensitive photocatalysts of Fe{sub 2}O{sub 3}/ZnO nanocomposites were prepared by a simple solid-state reaction method, using zinc acetate, {alpha}-Fe{sub 2}O{sub 3} and sodium hydroxide at room temperature. The products were characterized by scanning electron microscopy, powder X-ray diffraction, N{sub 2} adsorption-desorption measurement, UV-vis absorption, and photoluminescence spectroscopy and used for photodecolorization of Congo red. The characterization results showed that the morphology, crystallite size, BET surface area and optical absorption of the samples varied significantly with the Fe{sup 3+} to Zn{sup 2+} ratios. The nanocomposites show two absorption edges at ultraviolet and visible region. The optical band gap values of these nanocomposites were calculated to be about 3.98-3.81 eV and 2.88-2.98 eV, which show a red shift from that of pure ZnO. These red shifts are related to the formation of Fe s-levels below the conductive band edge of ZnO and effectively extend the absorption edge into the visible region. The growth mechanisms of the samples are proposed. These nanocomposites showed high decolorization ability in visible light with wavelength up to about 400 nm. Among the samples, Fe{sub 2}O{sub 3}/ZnO nanoflower (molar ratio of Fe{sup 3+} to Zn{sup 2+} is 1:100) exhibited higher decolorization efficiency than the other nanocomposites. It could be considered as a promising photocatalyst for dyes treatment.

  1. Organometallic synthesis of ZnO nanoparticles for gas sensing: towards selectivity through nanoparticles morphology

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhikov, Andrey; Jońca, Justyna; Kahn, Myrtil; Fajerwerg, Katia [Laboratoire de Chimie de Coordination (LCC), CNRS (France); Chaudret, Bruno [Laboratoire de Physique et de Chimie de Nano-objets (LPCNO), INSA, UPS, CNRS (France); Chapelle, Audrey [Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS), CNRS (France); Ménini, Philippe [Université Toulouse III, Paul Sabatier (France); Shim, Chang Hyun [Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS), CNRS (France); Gaudon, Alain [Alpha M.O.S. SA (France); Fau, Pierre, E-mail: pierre.fau@lcc-toulouse.fr [Laboratoire de Chimie de Coordination (LCC), CNRS (France)

    2015-07-15

    ZnO nanoparticles (NP) with different morphologies such as nanorods (NR), isotropic NP, and cloud-like (CL) structures have been synthesized by an organometallic route. The prepared ZnO nanostructures have been deposited on miniaturized silicon gas sensor substrates by an inkjet method, and their responses to CO, C{sub 3}H{sub 8}, and NH{sub 3} gases have been studied at different operating temperatures (340–500 °C) and relative humidity of 50 %. It is noteworthy that the morphology of the nanostructure of the sensitive layer is maintained after thermal treatment. The morphology of ZnO NP significantly influences the sensor response level and their selectivity properties to reducing gases. Among the three different ZnO types, sensors prepared with NR show the highest response to both CO and C{sub 3}H{sub 8}. Sensors made of isotropic NP and CL structures show a lower but similar response to CO. From all investigated nanostructures, sensors made of CL structures show the weakest response to C{sub 3}H{sub 8}. With NH{sub 3} gas, no effect of the morphology of the ZnO sensitive layer has been evidenced. These different responses highlight the important role of the nanostructure of the ZnO sensitive layer and the nature of the target gas on the detection properties of the sensors. Graphical Abstract: Three different ZnO nanoparticles morphologies (cloud-like, dots, rods) have been employed as sensitive layers in chemoresistive sensors for the selective detection of CO, C{sub 3}H{sub 8} and NH{sub 3}.

  2. Structural, optical and electrical properties of ZnO thin films prepared ...

    Indian Academy of Sciences (India)

    Administrator

    of zinc acetate on glass substrates at 450 °C. Effect of precursor concentration on structural and optical pro- perties has ... dependence of photoresponse properties of sprayed ZnO thin films on ... randomly oriented flake-like grains. The grains ...

  3. Heavy lithium-doped ZnO thin films prepared by spray pyrolysis ...

    Indian Academy of Sciences (India)

    Administrator

    1. Introduction. Zinc oxide (ZnO) is a semiconductor with a wide and .... tal structure with preferred orientation along (0 0 2). ... This shift to higher angles could be attributed to residual ... segregated at the grain boundaries and they suppress the.

  4. Growth and characterization of ZnO thin films prepared by electrodeposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Fahoume, M.; Maghfoul, O.; Aggour, M. [L.P.M.C., Faculte des Sciences, Universite Ibn Tofail, BP. 133-14000 Kenitra (Morocco); Hartiti, B. [L.P.M.A.E.R., Faculte des Sciences et Techniques, B.P. 146 Mohammedia (Morocco); Chraibi, F.; Ennaoui, A. [L.P.M., Faculte des Sciences, Universite Mohammed V, BP.1014 Rabat (Morocco)

    2006-06-15

    ZnO thin films were deposited on either indium tin oxide-coated glass or copper substrate by the electrodeposition process, using zinc chloride and flowing air as precursors. The effect of pH on the structural and morphological ZnO films was studied and the optimum deposition conditions have been outlined. The kinetics of the growth of the films have been investigated. We note that the rate of deposition of ZnO in an acidic solution was larger than in a basic solution. The structure of the films was studied using X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The surface morphology and thickness of the films were determined using scanning electron microscopy. The X-ray diffraction analysis shows that the films are polycrystalline with hexagonal crystal structure (zincite) at pH 4. The optical transmittance of ZnO decreases with varying film thickness. The optical energy bandgap was found to be 3.26eV. (author)

  5. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Melikhova, O.; Čížek, J.; Lukáč, F.; Vlček, M.; Novotný, Michal; Bulíř, Jiří; Lančok, Ján; Anwand, W.; Brauer, G.; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.

    2013-01-01

    Roč. 580, suppl. 1 (2013), S40-S43 ISSN 0925-8388 R&D Projects: GA ČR(CZ) GAP108/11/0958 Institutional support: RVO:68378271 Keywords : defects * hydrogen * positron annihilation * thin films * ZnO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.726, year: 2013

  6. Preparation of cadmium-doped ZnO thin films by SILAR and their ...

    Indian Academy of Sciences (India)

    Cadmium-doped zinc oxide (Cd : ZnO) thin films were deposited from sodium zincate bath .... of complex ion on the substrate followed by reaction of the .... Intensity (a.u.). 0. 500 .... trum confirmed the presence of Zn, O and Cd elements in the.

  7. Preparation and gas-sensing property of parallel-aligned ZnO ...

    Indian Academy of Sciences (India)

    binding energy (60 meV) and a large bandgap (3·37 eV) energy, has many ... Con- siderable efforts have been made to fabricate ZnO nanowires, nanobelts .... In such a case, the data could be fitted to a straight line .... The re-oxidation pro-.

  8. Nanostructured gold microelectrodes for SERS and EIS measurements by incorporating ZnO nanorod growth with electroplating

    Science.gov (United States)

    Zong, Xianli; Zhu, Rong; Guo, Xiaoliang

    2015-01-01

    In this paper, a fine gold nanostructure synthesized on selective planar microelectrodes in micro-chip is realized by using an advanced hybrid fabrication approach incorporating growth of nanorods (NRs) with gold electroplating. By this developed nanostructure, integration of in-situ surface-enhanced Raman spectroscopy (SERS) detection with electrochemical impedance spectroscopy (EIS) measurement for label-free, nondestructive, real-time and rapid monitoring on a single cell has been achieved. Moreover, parameters of Au nanostructures such as size of nanoholes/nanogaps can be controllably adjusted in the fabrication. We have demonstrated a SERS enhancement factor of up to ~2.24 × 106 and double-layer impedance decrease ratio of 90% ~ 95% at low frequency range below 200 kHz by using nanostructured microelectrodes. SERS detection and in-situ EIS measurement of a trapped single cell by using planar microelectrodes are realized to demonstrate the compatibility, multi-functions, high-sensitivity and simplicity of the micro-chip system. This dual function platform integrating SERS and EIS is of great significance in biological, biochemical and biomedical applications. PMID:26558325

  9. Preparation and properties of novel magnetic composite nanostructures: Arrays of nanowires in porous membranes

    International Nuclear Information System (INIS)

    Vazquez, M.; Hernandez-Velez, M.; Asenjo, A.; Navas, D.; Pirota, K.; Prida, V.; Sanchez, O.; Baldonedo, J.L.

    2006-01-01

    In the present work, we introduce our latest achievements in the development of novel highly ordered composite magnetic nanostructures employing anodized nanoporous membranes as precursor templates where long-range hexagonal symmetry is induced by self-assembling during anodization process. Subsequent processing as electroplating, sputtering or pressing are employed to prepare arrays of metallic, semiconductor or polymeric nanowires embedded in oxide or metallic membranes. Particular attention is paid to recent results on controlling the magnetic anisotropy in arrays of metallic nanowires, particularly Co, and nanohole arrays in Ni membranes

  10. Microstructural and magnetic behavior of nanostructured soft alloys prepared by mechanical grinding and gas atomization

    International Nuclear Information System (INIS)

    Marin, P.; Lopez, M.; Garcia-Escorial, A.; Lieblich, M.

    2007-01-01

    Nanocrystalline powder of Fe-Si-B-Cu-Nb has been obtained by means of mechanical milling of the corresponding nanocrystalline ribbons. Gas atomization technique has been used to minimize the magnetic hardening due to stress effects observed in ball-milled samples. Fe-Si-B-Cu-Nb and Fe-Si nanocrystalline samples have been prepared by gas atomization. The aim of our work is to analyse the particle size dependence of coercivity in this nanostructured alloys and to show the analogies and differences between ball-milled and gas atomized samples

  11. Nanostructured Al–Zn–Mg–Cu–Zr alloy prepared by mechanical alloying followed by hot pressing

    International Nuclear Information System (INIS)

    Azimi, Amin; Shokuhfar, Ali; Zolriasatein, Ashkan

    2014-01-01

    Nanostructured Al–7.8 wt% Zn–2.6 wt% Mg–2 wt% Cu–0.1 wt% Zr alloy was mechanically alloyed (MA) from elemental powders and consolidated by hot press technique. The effect of the milling time and hot pressing process on microstructure was investigated by means of X-ray diffraction measurements (XRD) and analytical and scanning electron microscopy (SEM). Furthermore mechanical properties of samples with different MA time as well as pure aluminum were investigated by microhardness and compression tests. The results show that an Al–Zn–Mg–Cu–Zr homogenous supersaturated solid solution with a crystallite size of 27 nm was obtained after 40 h of milling time. Microstructure refinement and morphological changes of powders from flake to spherical shape were observed by increasing milling time. Phase and microstructural characterization of high density bulk nanostructured samples revealed that increasing milling time up to 40 h leads to formation of MgZn 2 precipitation in the alloy matrix. With increasing milling time, density of the samples and crystalline size decrease. Significant enhancement of hardness and compressive strength is observed in the aluminum alloy by increasing milling time up to 40 h which is much higher than pure aluminum. Crystallite size refinement in pure aluminum samples from micro- to nanoscales resulted in 107% and 100% improvement in compressive strength and hardness, respectively. Furthermore the compressive strength and hardness of Al–Zn–Mg–Cu–Zr alloy nanostructured samples increased to 179% and 172%, respectively, compared to nanostructured pure Al, which was produced as reference specimen. 40 h of MA was the optimum case for preparing such an Al alloy and more milling up to 50 h led to deterioration of mechanical properties

  12. Preparation of Carbon-Encapsulated ZnO Tetrahedron as an Anode Material for Ultralong Cycle Life Performance Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Ren, Zhimin; Wang, Zhiyu; Chen, Chao; Wang, Jia; Fu, Xinxin; Fan, Chenyao; Qian, Guodong

    2014-01-01

    Highlights: • A novel architecture of 3D carbon framework to encapsulate ZnO nanocrystals was prepared. • The ZnO@C exhibits ultralong cycle life and high specific capacity when was used as anode. • The in situ carbonization leads to a strong connection between the carbon and ZnO. - ABSTRACT: In this paper we report a novel architecture of three-dimension (3D) carbon framework to encapsulate tetrahedron ZnO nanocrystals that serves as an anode material for lithium-ion batteries (LIBs). The ZnO@C composites are prepared via a simple internal-reflux method combined with subsequent calcination in argon. The amorphous carbon is formed on the surface of the ZnO crystals by in situ carbonization of the surfactant, which leads to a strong connection between the carbon framework and the active materials and guarantees faster charge transfer on the electrode. The ZnO crystal calcined at 500°C (ZnO@C-5) possesses regular tetrahedron shape with a side length of 150-200 nm and all of them are uniformly anchored among the network of amorphous carbon. The developed ZnO@C structures not only improve the electronic conductivity of the electrode, but they also offer a larger volume expansion of ZnO during cycling. As a result, the ZnO@C-5 demonstrates a higher reversible capacity, ultralong cycle life and better rate capability than that of the ZnO@C-7 and pure ZnO crystals. After 300 cycles, the ZnO@C-5 demonstrates a high capacity of 518 mAhg −1 at a current density of 110.7 mAg −1 . Moreover, this simple approach prepared the 3D composites architecture could shed light on the design and synthesis of other transition metal oxides for energy storage

  13. Characterization of Urea Versus hmta in the Preparation of Zinc Oxide NANOSTRUCTURES by Catalytic Immersion Method Grown on Gold-seeded Silicon Substrate

    International Nuclear Information System (INIS)

    Azlinda Abdul Aziz; Khusaimi, Z.; Rusop, M.

    2011-01-01

    Zinc oxide (ZnO) nano structured prepared by immersed method were successfully grown on gold-seeded silicon substrate using Zinc nitrate hexahydrate (Zn(NO 3 ) 2 .6H 2 O) as a precursor was stabilized by a non-toxic urea (CH 4 N 2 O) in a ratio of 1:2 and 1:1 ratio of hexamethylene tetraamine (HMTA). The effect of changing the stabilizer of ZnO solution on the crystal structure, morphology and photoluminescence properties of the resultant ZnO is investigated. X-ray diffraction of the synthesized ZnO shows hexagonal zincite structure. The morphology of the ZnO was characterizing using Field Emission Scanning Electron Microscope (FESEM). The growth of ZnO using urea as stabilizer shows the clusters of ZnO nano flower with serrated broad petals and sharp tips of approximately 25 nm were interestingly formed. ZnO in HMTA showed growth of nano rods. The structures has high surface area, is a potential metal oxide nano structures to be develop for optoelectronic devices and chemical sensors. The formation of ZnO nano structures is found to be significantly affected by the stabilizer. (author)

  14. Phase diagram of interfacial growth modes by vapor deposition and its application for ZnO nanostructures

    Science.gov (United States)

    Shu, Da-Jun; Xiong, Xiang; Liu, Ming; Wang, Mu

    2017-09-01

    Interfacial growth from vapor has been extensively studied. However, a straightforward picture of the growth mode under different growth conditions is still lacking. In this paper, we develop a comprehensive interfacial growth theory based on the stochastic approach. Using a critical interisland separation, we construct a general phase diagram of the growth modes. It has been revealed that if the Ehrlich-Schwoebel barrier EES is smaller than a critical value, the interfacial growth proceeds in a layer-by-layer (LBL) mode at any deposition rate. However, if EES is larger than the critical value, LBL growth occurs only at very small or very large deposition rates relative to the intralayer hopping rate, and multilayer (ML) growth occurs at a moderate deposition rate. Experiments with zinc oxide growth by chemical vapor deposition have been designed to qualitatively demonstrate the theoretical model. By changing the flux of the carrier gas (nitrogen gas) in chemical vapor deposition, we realize LBL, ML, and then reentrance of LBL homoepitaxial growth of ZnO successively. Moreover, we find that surface kinetics of ZnO is suppressed by decreasing oxygen partial pressure by comparing the experimental observations and theoretical models, which is supported by our recent first-principles calculations. Since the influence of the substrate and the growth species on growth can approximately be represented by binding energy and surface kinetics, we suggest that the phase diagram is essential for interfacial growth of different materials by vapor deposition.

  15. Microstructure and characterization of Al-doped ZnO films prepared by RF power sputtering on Al and ZnO targets

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Chun-An [Department of Mechanical Engineering, National Central University, Taiwan (China); Lin, Jing-Chie, E-mail: jclincom@cc.ncu.edu.tw [Department of Mechanical Engineering, National Central University, Taiwan (China); Institute of Material Science and Engineering, National Central University, Taiwan (China); Chang, Yu-Fong [Department of Mechanical Engineering, National Central University, Taiwan (China); Chyou, San-Der [Power Research Institute, Taiwan Power Company, Taiwan (China); Peng, Kun-Cheng [Department of Materials Science and Engineering, Mingchi University of Technology, Taiwan (China)

    2012-06-01

    Al-doped zinc oxide (AZO) transparent conductive films were prepared on a glass substrate using a magnetron sputtering system with a pure zinc oxide (ZnO) target and a pure Al target sputtered using radio frequency (RF) power. The RF power was set at 100 W for the ZnO target and varied from 20 to 150 W for the Al target. The morphology of the thin films was examined by field-emission scanning electron microscope (FE-SEM), and their composition was analyzed by the equipped energy-dispersive X-ray spectroscopy (EDS). The cross section of the films determined through FE-SEM indicated that their thickness was around 650 nm. EDS analysis revealed that the Al-dopant concentration of the AZO films increased in the following order: 0.85 at.% (20 W) < 1.60 at.% (40 W) < 3.52 at.% (100 W) < 4.34 at.% (150 W). Analysis of the films using X-ray diffractometer (XRD) indicated that all films had a wurtzite structure with a texture of (0 0 2). High-resolution transmission electron microscopy (HRTEM) revealed a number of defects in the films, such as stacking faults and dislocations. Ultraviolet photoelectron spectroscopy (UPS) was used to estimate the optical energy gap (E{sub g}) for the AZO thin films. The energy gap increases from 3.39 to 3.58 eV as the RF power applied to the Al target increase. The electrical resistivity of the films decreased from 3.43 Multiplication-Sign 10{sup -2} {Omega} cm to 3.29 Multiplication-Sign 10{sup -3} {Omega} cm as the RF power increased from 20 to 150 W when a four-point probe was used to investigate. Atomic force microscope (AFM) revealed that the surface roughness of the films increased with increasing RF power. The average optical transmittance of the films was determined by UV-visible spectrometer. The films are suitable for use as transparent conductive oxide films in the optoelectronic industry. A decrease in the electrical resistivity of the film with increasing Al-dopant concentration was ascribed to an increase in the carrier

  16. Nanostructure of PDMS–TEOS–PrZr hybrids prepared by direct deposition of gamma radiation energy

    International Nuclear Information System (INIS)

    Lancastre, Joana J.H.; Falcão, António N.; Margaça, Fernanda M.A.; Ferreira, Luís M.; Miranda Salvado, Isabel M.; Almásy, László; Casimiro, Maria H.; Meiszterics, Anikó

    2015-01-01

    Highlights: • Hybrid materials were prepared by direct energy deposition. • The influence of the catalyst content (PrZr) was investigated. • The developed oxide network was found to be strongly dependent on the PrZr content. • A model is proposed for the development of the oxide network in these materials. - Abstract: Organic–inorganic materials have been the object of intense research due to their wide range of properties and therefore innumerous applications. We prepared organic–inorganic hybrid materials by direct energy deposition on a mixture of polydimethylsiloxane silanol terminated (33 wt% fixed content), tetraethylorthosilicate and a minor content of zirconium propoxide that varied from 1 to 5 wt% using gamma radiation from a Co-60 source. The samples, dried in air at room temperature, are bulk, flexible and transparent. Their nanostructure was investigated by small angle neutron scattering. It was found that the inorganic oxide network has fractal structure, which becomes denser as the zirconium propoxide content decreases. The results suggest that oxide nanosized regions grow from the OH terminal group of PDMS which are the condensation seeds. Their number and position remains unaltered with the variation of zirconium propoxide content that only affects their microstructure. A model is proposed for the nanostructure of the oxide network that develops in the irradiation processed hybrid materials.

  17. Nanostructure of PDMS–TEOS–PrZr hybrids prepared by direct deposition of gamma radiation energy

    Energy Technology Data Exchange (ETDEWEB)

    Lancastre, Joana J.H., E-mail: jlancastre@ctn.ist.utl.pt [C2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela, LRS (Portugal); Falcão, António N. [C2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela, LRS (Portugal); Margaça, Fernanda M.A., E-mail: fmargaca@ctn.ist.utl.pt [C2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela, LRS (Portugal); Ferreira, Luís M. [C2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela, LRS (Portugal); Miranda Salvado, Isabel M. [CICECO & Departamento de Engenharia de Materiais e Cerâmica, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Almásy, László [Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, PO Box 49, 1525 Budapest (Hungary); Casimiro, Maria H. [REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Meiszterics, Anikó [Gedeon Richter Ltd., PO Box 27, H-1475 Budapest (Hungary)

    2015-10-15

    Highlights: • Hybrid materials were prepared by direct energy deposition. • The influence of the catalyst content (PrZr) was investigated. • The developed oxide network was found to be strongly dependent on the PrZr content. • A model is proposed for the development of the oxide network in these materials. - Abstract: Organic–inorganic materials have been the object of intense research due to their wide range of properties and therefore innumerous applications. We prepared organic–inorganic hybrid materials by direct energy deposition on a mixture of polydimethylsiloxane silanol terminated (33 wt% fixed content), tetraethylorthosilicate and a minor content of zirconium propoxide that varied from 1 to 5 wt% using gamma radiation from a Co-60 source. The samples, dried in air at room temperature, are bulk, flexible and transparent. Their nanostructure was investigated by small angle neutron scattering. It was found that the inorganic oxide network has fractal structure, which becomes denser as the zirconium propoxide content decreases. The results suggest that oxide nanosized regions grow from the OH terminal group of PDMS which are the condensation seeds. Their number and position remains unaltered with the variation of zirconium propoxide content that only affects their microstructure. A model is proposed for the nanostructure of the oxide network that develops in the irradiation processed hybrid materials.

  18. Preparation and photocatalytic properties of hybrid core-shell reusable CoFe{sub 2}O{sub 4}-ZnO nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A. [Department of Physics, University of Memphis, Memphis, TN 38152 (United States); Mishra, S.R., E-mail: srmishra@memphis.edu [Department of Physics, University of Memphis, Memphis, TN 38152 (United States); Gupta, R.; Ghosh, K. [Department of Physics, Materials Science, and Astronomy, Missouri State University, Springfield, MO (United States)

    2012-08-15

    Magnetically separable and reusable core-shell CoFe{sub 2}O{sub 4}-ZnO photocatalyst nanospheres were prepared by the hydrothermal synthesis technique using glucose derived carbon nanospheres as the template. The morphology and the phase of core-shell hybrid structure of CoFe{sub 2}O{sub 4}-ZnO were assessed via TEM, SEM and XRD. The magnetic composite showed high UV photocatalytic activity for the degradation of methylene blue in water. The photocatalytic activity was found to be ZnO shell thickness dependent. Thicker ZnO shells lead to higher rate of photocatalytic activity. Hybrid nanospheres recovered using an external magnetic field demonstrated good repeatability of photocatalytic activity. These results promise the reusability of the hybrid nanospheres for photocatalytic activity. - Highlights: Black-Right-Pointing-Pointer Synthesis of novel hybrid magnetic-ZnO core-shell composite nanospheres. Black-Right-Pointing-Pointer High photocatalytic activity of hybrid nanospheres was noted as compared to that of pure ZnO nanoparticles. Black-Right-Pointing-Pointer The hybrid nanospheres could be easily retrieved using an external magnet for repeated use. Black-Right-Pointing-Pointer Repeated use of hybrid nanospheres did not show any degradation in the photocatalytic activity. Black-Right-Pointing-Pointer The photocatalysis rate was observed to be ZnO shell thickness dependent.

  19. Preparation and characterization of carnauba wax nanostructured lipid carriers containing benzophenone-3.

    Science.gov (United States)

    Lacerda, S P; Cerize, N N P; Ré, M I

    2011-08-01

    Nanostructured lipid carriers (NLCs) are potential active delivery systems based on mixtures of solid lipids and liquid oil. In this paper, aqueous dispersions of NLCs were prepared by a hot high-pressure homogenization technique using carnauba wax as the solid lipid and isodecyl oleate as the liquid oil. The preparation and stability parameters of benzophenone-3-loaded NLCs have been investigated concerning particle size, zeta potential and loading capacity to encapsulate benzophenone-3, a molecular sunscreen. The current investigation illustrates the effect of the composition of the lipid mixture on the entrapment efficiency, in vitro release and stability of benzophenone-3-loaded in these NLCs. A loading capacity of approximately 5% of benzophenone-3 (m(BZ-3) /m(lipids) ) was characteristic of these systems. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  20. Crystal nuclei templated nanostructured membranes prepared by solvent crystallization and polymer migration

    Science.gov (United States)

    Wang, Bo; Ji, Jing; Li, Kang

    2016-09-01

    Currently, production of porous polymeric membranes for filtration is predominated by the phase-separation process. However, this method has reached its technological limit, and there have been no significant breakthrough over the last decade. Here we show, using polyvinylidene fluoride as a sample polymer, a new concept of membrane manufacturing by combining oriented green solvent crystallization and polymer migration is able to obtain high performance membranes with pure water permeation flux substantially higher than those with similar pore size prepared by conventional phase-separation processes. The new manufacturing procedure is governed by fewer operating parameters and is, thus, easier to control with reproducible results. Apart from the high water permeation flux, the prepared membranes also show excellent stable flux after fouling and superior mechanical properties of high pressure load and better abrasion resistance. These findings demonstrate the promise of a new concept for green manufacturing nanostructured polymeric membranes with high performances.

  1. Improvement in Performance of ZnO based DSC Prepared by Spraying Method

    Directory of Open Access Journals (Sweden)

    Rangga Winantyo

    2013-09-01

    Full Text Available This paper reports the effect of TiCl4 on the performance of ZnO based DSC. ZnO was used due to its stability against photo-corrosion  and  photochemical  properties  similar  to  TiO2.  Thin  films  of  nanocrystalline  ZnO  were  deposited  on transparent conducting oxide glass using spray  method. The ZnO  films  were treated using TiCl4. The cell’s efficiency was found to be 2.5% with TiCl4 post-treatment and 1.9% without TiCl4 post-treatment.

  2. Defect studies of ZnO films prepared by pulsed laser deposition on various substrates

    International Nuclear Information System (INIS)

    Melikhova, O; Čížek, J; Procházka, I; Kužel, R; Novotný, M; Bulír, J; Lancok, J; Anwand, W; Brauer, G; Connolly, J; McCarthy, E; Krishnamurthy, S; Mosnier, J-P

    2013-01-01

    ZnO thin films deposited on various substrates were characterized by slow positron implantation spectroscopy (SPIS) combined with X-ray diffraction (XRD). All films studied exhibit wurtzite structure and crystallite size 20–100 nm. The mosaic spread of crystallites is relatively small for the films grown on single crystalline substrates while it is substantial for the film grown on amorphous substrate. SPIS investigations revealed that ZnO films deposited on single crystalline substrates exhibit significantly higher density of defects than the film deposited on amorphous substrate. This is most probably due to a higher density of misfit dislocations, which compensate for the lattice mismatch between the film and the substrate.

  3. Thermally Stable Bulk Heterojunction Prepared by Sequential Deposition of Nanostructured Polymer and Fullerene

    Directory of Open Access Journals (Sweden)

    Heewon Hwang

    2017-09-01

    Full Text Available A morphologically-stable polymer/fullerene heterojunction has been prepared by minimizing the intermixing between polymer and fullerene via sequential deposition (SqD of a polymer and a fullerene solution. A low crystalline conjugated polymer of PCPDTBT (poly[2,6-(4,4-bis-(2-ethylhexyl-4H-cyclopenta [2,1-b;3,4-b′]dithiophene-alt-4,7(2,1,3-benzothiadiazole] has been utilized for the polymer layer and PC71BM (phenyl-C71-butyric-acid-methyl ester for the fullerene layer, respectively. Firstly, a nanostructured PCPDTBT bottom layer was developed by utilizing various additives to increase the surface area of the polymer film. The PC71BM solution was prepared by dissolving it in the 1,2-dichloroethane (DCE, exhibiting a lower vapor pressure and slower diffusion into the polymer layer. The deposition of the PC71BM solution on the nanostructured PCPDTBT layer forms an inter-digitated bulk heterojunction (ID-BHJ with minimized intermixing. The organic photovoltaic (OPV device utilizing the ID-BHJ photoactive layer exhibits a highly reproducible solar cell performance. In spite of restricted intermixing between the PC71BM and the PCPDTBT, the efficiency of ID-BHJ OPVs (3.36% is comparable to that of OPVs (3.87% prepared by the conventional method (deposition of a blended solution of polymer:fullerene. The thermal stability of the ID-BHJ is superior to the bulk heterojunction (BHJ prepared by the conventional method. The ID-BHJ OPV maintains 70% of its initial efficiency after thermal stress application for twelve days at 80 °C, whereas the conventional BHJ OPV maintains only 40% of its initial efficiency.

  4. Optimization of processing parameters on the controlled growth of c-axis oriented ZnO nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Malek, M. F., E-mail: mfmalek07@gmail.com; Rusop, M., E-mail: rusop@salam.uitm.my [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia); Mamat, M. H., E-mail: hafiz-030@yahoo.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Musa, M. Z., E-mail: musa948@gmail.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM) Pulau Pinang, Jalan Permatang Pauh, 13500 Permatang Pauh, Pulau Pinang (Malaysia); Saurdi, I., E-mail: saurdy788@gmail.com; Ishak, A., E-mail: ishak@sarawak.uitm.edu.my [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM) Sarawak, Kampus Kota Samarahan, Jalan Meranek, 94300 Kota Samarahan, Sarawak (Malaysia); Alrokayan, Salman A. H., E-mail: dr.salman@alrokayan.com; Khan, Haseeb A., E-mail: khan-haseeb@yahoo.com [Chair of Targeting and Treatment of Cancer Using Nanoparticles, Deanship of Scientific Research, King Saud University (KSU), Riyadh 11451 (Saudi Arabia)

    2016-07-06

    Optimization of the growth time parameter was conducted to synthesize high-quality c-axis ZnO nanorod arrays. The effects of the parameter on the crystal growth and properties were systematically investigated. Our studies confirmed that the growth time influence the properties of ZnO nanorods where the crystallite size of the structures was increased at higher deposition time. Field emission scanning electron microsope analysis confirmed the morphologies structure of the ZnO nanorods. The ZnO nanostructures prepared under the optimized growth conditions showed an intense XRD peak which reveal a higher c-axis oriented ZnO nanorod arrays thus demonstrating the formation of defect free structure.

  5. Rapid visualization of fingerprints on various surfaces using ZnO superstructures prepared via simple combustion route

    Directory of Open Access Journals (Sweden)

    N.H. Deepthi

    2018-03-01

    Full Text Available A simple solution combustion route has been used to prepare ZnO nanopowders (NPs using different barbiturates (Barbituric acid, 1, 3-dimethyl barbiturates and 2-thiobarbiturates as fuels. The obtained product was well characterized by powder X-ray diffraction (PXRD, scanning electron microscope (SEM, ultraviolet-visible Spectroscope (UV-Vis and Photoluminescence (PL. The PXRD results confirm the hexagonal phase of the material. The detailed structural analysis is performed by Rietveld refinement method. The energy band gap of NPs is found to be in the range of 3.31 - 3.49 eV. The growth mechanism for the formation of 3D micro-architectures is discussed in detail. The PL emission spectrum shows a broad emission peak at 502 nm upon an 406 nm excitation wavelength. The ZnO NPs can be used for the visualization of latent finger prints (LFPs under normal light on various porous and non-porous surfaces. In this case, the visualized LFPs are found to be excellent compared to the commercially available powders. Keywords: Zinc oxide, Barbiturates, Photoluminescence, Latent fingerprint

  6. Aqueous chemical growth and application of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Postels, Bianca; Kasprzak, Anna; Mofor, Augustine C.; Wehmann, Hergo-Heinrich; Bakin, Andrey; Waag, Andreas [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig (Germany)

    2007-07-01

    A very promising fabrication process for ZnO nanostructures is the aqueous chemical growth (ACG), since it is a cost efficient and low temperature approach. Using this growth technique we generated wafer-scale ZnO nanorod arrays on Si, sapphire, ITO coated glass and even on flexible polymer substrates. ACG is found to be only weakly influenced by the substrate material and we are also able to control the dimensions of the ZnO nanorods. Another benefit of ACG is the ability to fabricate patterned arrays of ZnO nanorods by a selective growth process on structured metallised surfaces. Results of structural analysis with SEM and XRD are reported. Additionally, optical properties were investigated by PL measurements. First attempts on the preparation of dye sensitised solar cells (DSSCs) are also reported. Here, the traditional sintered TiO{sub 2} nanoparticles are replaced by a densely packed and vertically aligned array of ACG ZnO nanorods. The size and morphology of the ZnO nanorods can be controlled. The influence of the length of the nanorods on the cell properties is investigated. A vapour phase transport technique was also used as alternative growth method.

  7. Preparation of the Nanostructured Radioisotope Metallic Oxide by Neutron Irradiation for Use as Radiotracers

    Directory of Open Access Journals (Sweden)

    Sang-Ei Seo

    2017-10-01

    Full Text Available Metallic oxides manganese dioxide (MnO2, samarium oxide (Sm2O3, and dysprosium oxide (Dy2O3 with nanorod-like structures were synthesized by the hydrothermal synthesis method, respectively. Subsequently, the nanostructured radioisotopes MnO2 with Mn-56, Sm2O3 with Sm-153, and Dy2O3 with Dy-165 were prepared by neutron irradiation from the HANARO research reactor, respectively. The three different elements, Mn, Sm, and Dy, were selected as radiotracers because these elements can be easily gamma-activated from neutrons (activation limits: 1 picogram (Dy, 1–10 picogram (Mn, 10–100 picogram (Sm. Furthermore, the synthesized radioisotopes can be used as radiotracers in Prompt Gamma Neutron Activation Analysis as the rare earth metals Dy and Sm were not present in the Korean environment. The successful synthesis of the radioisotope metallic oxides was confirmed by Transmission Electron Microscopy (TEM, Energy Dispersive X-ray Spectrometry (EDS, X-ray Diffraction (XRD analysis, and gamma spectroscopy analysis. The synthesized nanostructured radioisotope metallic oxides may be used as radiotracers in scientific, environmental, engineering, and industrial fields.

  8. Preparation and study of nanostructured TiAlSiN thin films

    Directory of Open Access Journals (Sweden)

    Jakab-Farkas L.

    2011-12-01

    Full Text Available TiAlSiN thin film coatings were deposited by DC reactive magnetron sputtering of TiAlSi target with 40 at.% Ti, 40 at.% Al and 20 at.% Si, performed in N2-Ar gas mixture. The sputtering power used in these experiments was controlled for 400 W. The bias voltage of the substrates was kept at -20 V DC and the temperature at 500 0C. All the samples were prepared with a constant flow rate of Ar and different nitrogen flow rates, which were selected from 1.25 sccm to 4.0 sccm. Nanostructured TiAlSiN coatings were developed on Si(100 and HSS substrates. Microstructure investigation of the coatings was performed by transmission electron microscopy investigation, structure investigation was performed by XRD analysis, and the mechanical properties of the coatings have been tested by ball-on-disk tribological investigation and micro-Vickers hardness measurements. In this paper will be shown that for optimized nitrogen concentration the microstructure of TiAlSiN coating evolve from a competitive columnar growth to a dendritic growth one with very fine nano-lamellae like morphology. The developed nanostructured TiAlSiN coatingshave hardness HV exceeding 40 GPa and show an increased abrasive wear resistance

  9. Nanostructured Carbon Materials as Supports in the Preparation of Direct Methanol Fuel Cell Electrocatalysts

    Directory of Open Access Journals (Sweden)

    María Jesús Lázaro

    2013-08-01

    Full Text Available Different advanced nanostructured carbon materials, such as carbon nanocoils, carbon nanofibers, graphitized ordered mesoporous carbons and carbon xerogels, presenting interesting features such as high electrical conductivity and extensively developed porous structure were synthesized and used as supports in the preparation of electrocatalysts for direct methanol fuel cells (DMFCs. The main advantage of these supports is that their physical properties and surface chemistry can be tailored to adapt the carbonaceous material to the catalytic requirements. Moreover, all of them present a highly mesoporous structure, diminishing diffusion problems, and both graphitic character and surface area can be conveniently modified. In the present work, the influence of the particular features of each material on the catalytic activity and stability was analyzed. Results have been compared with those obtained for commercial catalysts supported on Vulcan XC-72R, Pt/C and PtRu/C (ETEK. Both a highly ordered graphitic and mesopore-enriched structure of these advanced nanostructured materials resulted in an improved electrochemical performance in comparison to the commercial catalysts assayed, both towards CO and alcohol oxidation.

  10. Preparation and In Vitro Evaluation of Glycyrrhetinic Acid-Modified Curcumin-Loaded Nanostructured Lipid Carriers

    Directory of Open Access Journals (Sweden)

    Yang Chu

    2014-02-01

    Full Text Available Curcumin, a phenolic antioxidant compound derived from the rhizome of the turmeric plant Curcuma longa, has proven to be a modulator of intracellular signaling pathways that control cancer cell growth, inflammation, invasion and apoptosis, revealing its anticancer potential. In this study, a Glycyrrhetinic Acid-Modified Curcumin-Loaded Nanostructured Lipid Carrier (Cur-GA-PEG-NLC was prepared by the film ultrasound method to improve the tumor-targeting ability. The drug content was detected by an UV spectrophotometry method. The encapsulation efficiency of curcumin in the nanostructured lipid carriers (NLCs was determined using a mini-column centrifugation method. The encapsulation efficiency for various Cur-GA-PEG-NLC was within the range of 90.06%–95.31% and particle size was between 123.1 nm and 132.7 nm. An in vitro MTT assay showed that Cur-GA10%-PEG-NLC had significantly high cellular uptake and cytotoxicity against HepG2 cells compared with other groups.

  11. Nanostructured zirconium titanate fibers prepared by particulate sol–gel and cellulose templating techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, P. [Helmerich Advanced Technology Research Center, School of Electrical and Computer Engineering, Oklahoma State University, OK 74106 (United States); Salahinejad, E. [Helmerich Advanced Technology Research Center, School of Material Science and Engineering, Oklahoma State University, OK 74106 (United States); Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Blvd., 7134851154 Shiraz (Iran, Islamic Republic of); Kaul, R. [Department of Biochemistry and Microbiology, Center for Health Sciences, Oklahoma State University, OK 74107 (United States); Vashaee, D. [Helmerich Advanced Technology Research Center, School of Electrical and Computer Engineering, Oklahoma State University, OK 74106 (United States); Tayebi, L., E-mail: lobat.tayebi@okstate.edu [Helmerich Advanced Technology Research Center, School of Material Science and Engineering, Oklahoma State University, OK 74106 (United States); School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States)

    2013-08-15

    Highlights: •A method to produce zirconium titanate fibers was introduced. •The resultant structure and photocatalytic activity of the fiber were investigated. •The fiber exhibited higher photocatalytic characteristics, compared with the powders. -- Abstract: In this paper, a method for cost-effective production of nanostructured zirconium titanate (ZrTiO{sub 4}) fibers is introduced. In this method, ZrTiO{sub 4} fibers were synthesized by a sol–gel technique using cellulose fibers as the template. The resultant structures were studied by transmission electron microscopy, X-ray diffraction, scanning electron microscopy, and Brunauer–Emmett–Teller (BET) analyses. The photocatalytic activity of the fiber was compared to that of ZrTiO{sub 4} powders prepared by the same sol–gel method, in dark and under UVA and UVC radiations. According to the results, after calcination accompanied by the template removal, the ZrTiO{sub 4} fiber consists of uniformly-deposited, crystalline nanoparticles. This nanostructured fiber exhibited a higher surface area and a higher porosity compared with the ZrTiO{sub 4} powders, resulting in considerably higher photocatalytic characteristics, as confirmed by the experiment. The large surface area and the enhanced photocatalytic activity of the ZrTiO{sub 4} fibers also offer applications in sensors and bioactive films.

  12. Defects in ZnO nanorods prepared by a hydrothermal method.

    Science.gov (United States)

    Tam, K H; Cheung, C K; Leung, Y H; Djurisić, A B; Ling, C C; Beling, C D; Fung, S; Kwok, W M; Chan, W K; Phillips, D L; Ding, L; Ge, W K

    2006-10-26

    ZnO nanorod arrays were fabricated using a hydrothermal method. The nanorods were studied by scanning electron microscopy, photoluminescence (PL), time-resolved PL, X-ray photoelectron spectroscopy, and positron annihilation spectroscopy before and after annealing in different environments and at different temperatures. Annealing atmosphere and temperature had significant effects on the PL spectrum, while in all cases the positron diffusion length and PL decay times were increased. We found that, while the defect emission can be significantly reduced by annealing at 200 degrees C, the rods still have large defect concentrations as confirmed by their low positron diffusion length and short PL decay time constants.

  13. Synthesis and Characterization of Nanoparticles and Nanocomposite of ZnO and MgO by Sonochemical Method and their Application for Zinc Polycarboxylate Dental Cement Preparation

    OpenAIRE

    Mohammad Ali Karimi; Saeed Haghdar Roozbahani; Reza Asadiniya; Abdolhamid Hatefi-Mehrjardi; Mohammad Hossein Mashhadizadeh; Reza Behjatmanesh-Ardakani; Mohammad Mazloum-Ardakani; Hadi Kargar; Seyed Mojtaba Zebarjad

    2011-01-01

    This paper discusses the synthesis of nanoparticles of ZnO and MgO and ZnO/MgO nanocomposite by the sonochemical method. At first, nanoparticles were synthesized by the reaction of Zn(CHCOO3)2 and Mg(CHCOO3)2 with tetramethylammonium hydroxide (TMAH) in the presence of polyvinyl pyrrolidone (PVP) and constant frequency ultrasonic waves (sonochemical method). Then, ZnO/MgO nanocomposite was prepared through reaction of magnesium acetate with TMAH in the presence of ZnO nanoparticles and PVP as...

  14. Optical and structural properties of carbon dots/TiO2 nanostructures prepared via DC arc discharge in liquid

    Science.gov (United States)

    Biazar, Nooshin; Poursalehi, Reza; Delavari, Hamid

    2018-01-01

    Synthesis and development of visible active catalysts is an important issue in photocatalytic applications of nanomaterials. TiO2 nanostructures coupled with carbon dots demonstrate a considerable photocatalytic activity in visible wavelengths. Extending optical absorption of a wide band gap semiconductor such as TiO2 with carbon dots is the origin of the visible activity of carbon dots modified semiconductor nanostructures. In addition, carbon dots exhibit high photostability, appropriate electron transport and chemical stability without considerable toxicity or environmental footprints. In this study, optical and structural properties of carbon dots/TiO2 nanostructures prepared via (direct current) DC arc discharge in liquid were investigated. Crystal structure, morphology and optical properties of the samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-visible spectroscopy respectively. SEM images show formation of spherical nanoparticles with an average size of 27 nm. In comparison with pristine TiO2, optical transmission spectrum of carbon dots/TiO2 nanostructures demonstrates an absorption edge at longer wavelengths as well a high optical absorption in visible wavelengths which is significant for visible activity of nanostructures as a photocatalyst. Finally, these results can provide a flexible and versatile pathway for synthesis of carbon dots/oxide semiconductor nanostructures with an appropriate activity under visible light.

  15. Preparation and characterization of antimicrobial Ce-doped ZnO nanoparticles for photocatalytic detoxification of cyanide

    International Nuclear Information System (INIS)

    Karunakaran, Chockalingam; Gomathisankar, Paramasivan; Manikandan, Govindasamy

    2010-01-01

    2% Ce-doped ZnO, prepared by sonochemical wet impregnation method and calcined at 500 deg. C, was characterized by XRD, EDS, XPS, SEM, FT-IR, UV-visible DRS, PL, EIS, and N 2 -adsorption and desorption isotherms. Doping reduces the intragranular resistance and recombination of the photogenerated electron-hole pairs. It also shifts the optical absorption edge to visible region. Under UV-A light or natural sunlight (950 ± 25 W m -2 ), the doped oxide effectively catalyzes the oxidation of cyanide and subsequently the cyanate also. The catalysis follows Langmuir-Hinshelwood kinetics. The solar photocatalysis depends on the area of catalyst bed and the UV photocatalysis enhances with the photon flux. The doped oxide is also an antibacterial agent and its bactericidal efficiency, tested with Escherichia coli in absence of any illumination, is larger than those of undoped oxides.

  16. Structural and magnetic properties in Mn-doped ZnO films prepared by pulsed-laser deposition

    International Nuclear Information System (INIS)

    Li, Qiang; Wang, Yuyin; Liu, Jiandang; Kong, Wei; Ye, Bangjiao

    2014-01-01

    We investigated the structural and magnetic properties of Zn 0.95 Mn 0.05 O films prepared on sapphire substrates by pulsed-laser deposition. Only low temperature ferromagnetism (Curie temperature lower than 50 K) was observed in Mn-doped samples, while pure ZnO film shows a typical paramagnetic behavior. Structural analyses indicate that the substitutional Mn 2+ ions play a significant role for the low temperature ferromagnetism. Lattice defects such as V O and V Zn were not proven to be effective factors for the origin of ferromagnetism in the films. The low temperature ferromagnetism might be interpreted as p–d hybridization from indirect coupling of Mn ions (Mn–O–Mn).

  17. Spherical nanostructured Si/C composite prepared by spray drying technique for lithium ion batteries anode

    International Nuclear Information System (INIS)

    Chen Libao; Xie Xiaohua; Wang Baofeng; Wang Ke; Xie Jingying

    2006-01-01

    Spherical nanostructured Si/C composite was prepared by spray drying technique, followed by heat treatment, in which nanosized silicon and fine graphite particles were homogeneously embedded in carbon matrix pyrolyzed by phenol formaldehyde resin. Cyclic voltammetry tests showed two pairs of redox peaks corresponding to lithiation and delithiation of Si/C composite. The Si/C composite exhibited a reversible capacity of 635 mAh g -1 and good cycle performance used in lithium ion batteries. To improve cycle performance of this Si/C composite further, the carbon-coated Si/C composite was synthesized by the second spray drying and heat treatment processing. The cycle performance of carbon-coated Si/C composite was improved significantly, which was attributed to the formation of stable SEI passivation layers on the outer surface of carbon shell which protected the bared silicon from exposing to electrolyte directly

  18. Spherical nanostructured Si/C composite prepared by spray drying technique for lithium ion batteries anode

    Energy Technology Data Exchange (ETDEWEB)

    Chen Libao [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Xie Xiaohua [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Wang Baofeng [Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang Ke [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Xie Jingying [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China) and Graduate School of Chinese Academy of Sciences, Beijing 100049 (China)]. E-mail: jyxie@mail.sim.ac.cn

    2006-07-15

    Spherical nanostructured Si/C composite was prepared by spray drying technique, followed by heat treatment, in which nanosized silicon and fine graphite particles were homogeneously embedded in carbon matrix pyrolyzed by phenol formaldehyde resin. Cyclic voltammetry tests showed two pairs of redox peaks corresponding to lithiation and delithiation of Si/C composite. The Si/C composite exhibited a reversible capacity of 635 mAh g{sup -1} and good cycle performance used in lithium ion batteries. To improve cycle performance of this Si/C composite further, the carbon-coated Si/C composite was synthesized by the second spray drying and heat treatment processing. The cycle performance of carbon-coated Si/C composite was improved significantly, which was attributed to the formation of stable SEI passivation layers on the outer surface of carbon shell which protected the bared silicon from exposing to electrolyte directly.

  19. Preparation and characterization of CBN ternary compounds with nano-structure

    International Nuclear Information System (INIS)

    Xiong, Y.H.; Yang, S.; Xiong, C.S.; Pi, H.L.; Zhang, J.; Ren, Z.M.; Mai, Y.T.; Xu, W.; Dai, G.H.; Song, S.J.; Xiong, J.; Zhang, L.; Xia, Z.C.; Yuan, S.L.

    2006-01-01

    CBN ternary compounds with nano-structure have been prepared directly by a mechanical alloying technique at room temperature. The characteristic and formation mechanism of CBN are discussed. The nano-sheets and nano-layered rods of CBN are observed according to the morphology of scanning electron microscopy. It is substantiated that the microstructure of CBN was closely related to the ball milling time and the ball milling condition according to the results of X-ray diffraction of CBN with different ball milling time. After ball milling for 60 and 90 h, some new diffraction peaks are observed, which implies that some unknown microstructure and phase separation are induced in the reactive ball milling of CBN. The results of XRD are in accordance with that of X-ray photoelectron spectroscopy of CBN before ball milling and after ball milling for 90 h

  20. Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications.

    Science.gov (United States)

    Yuvakkumar, R; Suresh, J; Nathanael, A Joseph; Sundrarajan, M; Hong, S I

    2014-08-01

    In the present investigation, we report a sustainable novel green synthetic strategy to synthesis zinc oxide nanocrystals. This is the first report on sustainable biosynthesis of zinc oxide nanocrystals employing Nephelium lappaceum L., peel extract as a natural ligation agent. Green synthesis of zinc oxide nanocrystals was carried out via zinc-ellagate complex formation using rambutan peel wastes. The successful formation of zinc oxide nanocrystals was confirmed employing standard characterisation studies. A possible mechanism for the formation of ZnO nanocrystals with rambutan peel extract was also proposed. The prepared ZnO nanocrystals were coated on the cotton fabric and their antibacterial activity were analyzed. ZnO nanocrystals coated cotton showed good antibacterial activity towards Escherichia coli (E. coli), gram negative bacteria and Staphylococcus aureus (S. aureus), gram positive bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Influence of nanostructure Fe-doped ZnO interlayer on the electrical properties of Au/n-type InP Schottky structure

    Energy Technology Data Exchange (ETDEWEB)

    Padma, R.; Balaram, N.; Reddy, I. Neelakanta; Reddy, V. Rajagopal, E-mail: reddy_vrg@rediffmail.com

    2016-07-01

    The Au/Fe-doped ZnO/n-InP metal/interlayer/semiconductor (MIS) Schottky structure is fabricated with Fe-doped ZnO nanostructure (NS) as an interlayer. The field emission scanning electron microscopy and atomic force microscopy results demonstrated that the surface morphology of the Fe−ZnO NS on n-InP is fairly smooth. The x-ray diffraction results reveal that the average grain size of the Fe−ZnO film is 12.35 nm. The electrical properties of the Au/n-InP metal-semiconductor (MS) and Au/Fe−ZnO NS/n-InP MIS Schottky structures are investigated by current-voltage and capacitance-voltage measurements at room temperature. The Au/Fe−ZnO NS/n-InP MIS Schottky structure has good rectifying ratio with low-leakage current compared to the Au/n-InP MS structure. The barrier height obtained for the MIS structure is higher than those of MS Schottky structure because of the modification of the effective barrier height by the Fe−ZnO NS interlayer. Further, the barrier height, ideality factor and series resistance are determined for the MS and MIS Schottky structures using Norde and Cheung's functions and compared to each other. The estimated interface state density of MIS Schottky structure is lower than that of MS Schottky structure. Experimental results revealed that the Poole-Frenkel emission is the dominant conduction mechanism in the lower bias region whereas Schottky emission is the dominant in the higher bias region for both the Au/n-InP MS and Au/Fe−ZnO NS/n-InP MIS Schottky structures. - Highlights: • Barrier height of Au/n-InP Schottky diode was modified by Fe−ZnO nanostructure interlayer. • MIS structure has a good rectification ratio compared to the MS structure. • The interface state density of MIS structure is lower than that of MS structure. • Poole-Frenkel mechanism is found to dominate in both MS and MIS structure.

  2. Preparation and Study of NH3 Gas Sensing Behavior of Fe2O3 Doped ZnO Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    D. R. Patil

    2006-08-01

    Full Text Available The preparation, characterization and gas sensing properties of pure and Fe2O3-ZnO mixed oxide semiconductors have been investigated. The mixed oxides were obtained by mixing ZnO and Fe2O3 in the proportion 1:1, 1:0.5 and 0.5:1. Pure ZnO was observed to be insensitive to NH3 gas. However, mixed oxides (with ZnO: Fe2O3 =1:0.5 were observed to be highly sensitive to ammonia gas. Upon exposure to NH3 gas, the barrier height of Fe2O3-ZnO intergranular regions decreases markedly due to the chemical transformation of Fe2O3 into well conducting ferric ammonium hydroxide leading to a drastic decrease in resistance. The crucial gas response was found to NH3 gas at 3500C and no cross response was observed to other hazardous and polluting gases. The effects of microstructure and doping concentration on the gas response, selectivity, response and recovery of the sensor in the presence of NH3 gas were studied and discussed.

  3. Zno Micro/Nanostructures Grown on Sapphire Substrates Using Low-Temperature Vapor-Trapped Thermal Chemical Vapor Deposition: Structural and Optical Properties

    Directory of Open Access Journals (Sweden)

    Po-Sheng Hu

    2017-12-01

    Full Text Available In this research, the Zn(C5H7O22·xH2O-based growth of ZnO micro/nanostructures in a low temperature, vapor-trapped chemical vapor deposition system was attempted to optimize structural and optical properties for potential biomedical applications. By trapping in-flow gas molecules and Zinc vapor inside a chamber tube by partially obstructing a chamber outlet, a high pressure condition can be achieved, and this experimental setup has the advantages of ease of synthesis, being a low temperature process, and cost effectiveness. Empirically, the growth process proceeded under a chamber condition of an atmospheric pressure of 730 torr, a controlled volume flow rate of input gas, N2/O2, of 500/500 Standard Cubic Centimeters per Minute (SCCM, and a designated oven temperature of 500 °C. Specifically, the dependence of structural and optical properties of the structures on growth duration and spatially dependent temperature were investigated utilizing scanning electron microscopy, X-ray diffraction (XRD, photoluminescence (PL, and ultraviolet-visible transmission spectroscopy. The experimental results indicate that the grown thin film observed with hexagonal structures and higher structural uniformity enables more prominent structural and optical signatures. XRD spectra present the dominant peaks along crystal planes of (002 and (101 as the main direction of crystallization. In addition, while the structures excited with laser wavelength of 325 nm emit a signature radiation around 380 nm, an ultraviolet lamp with a wavelength of 254 nm revealed distinctive photoluminescence peaks at 363.96 nm and 403.52 nm, elucidating different degrees of structural correlation as functions of growth duration and the spatial gradient of temperature. Transmittance spectra of the structures illustrate typical variation in the wavelength range of 200 nm to 400 nm, and its structural correlation is less significant when compared with PL.

  4. Preparation and characterization of novel polyimide/functionalized ZnO bionanocomposite for gas separation and study of their antibacterial activity

    Science.gov (United States)

    Esmaielzadeh, Sheida; Ahmadizadegan, Hashem

    2018-04-01

    In the present investigation novel Polyimide/functionalized ZnO (PI/ZnO) bionanocomposites containing amino acid (Methionine) and benzimidazole pendent groups with different amounts of modified ZnO nanoparticles (ZnO NPs) were successfully prepared through ultrasonic irradiation technique. Due to the high surface energy and tendency for agglomeration, the surface ZnO NPs was modified by a coupling agent as 3- methacryloxypropyl-trimethoxysilane (MPS) to form MPS-ZnO nanoparticles. The ultrasonic irradiation effectively changes the rheology and the glass transition temperature and the crystallinity of the composite polymer. PI/ZnO nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). TEM analysis showed that the modified ZnO nanoparticles were homogeneously dispersed in polymer matrix. The TGA results of PI/ZnO nanocomposites showed that the thermal stability is obviously improved the presence of MPS-ZnO NPs in comparison with the pure PI and that this increase is higher when the NP content increases. The permeabilities of pure H2, CH4, O2, and N2 gases through prepared membranes were determined at room temperature (25 °C) and 20 bar feed pressure. The membranes having 20% ZnO showed higher values of H2 permeability, and H2/CH4 and H2/N2 ideal selectivities (the ratio of pair gas permeabilities) compared with other membranes. The antibacterial activity of bionanocomposite films was tested against gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Further, it was observed that antibacterial activity of the resulting hybrid biofilms showed somewhat higher for gram-positive bacteria compared to gram-negative bacteria.

  5. Preparation and characterization of Co-doped ZnO nanomaterials

    International Nuclear Information System (INIS)

    Yang Huaming; Nie Sha

    2009-01-01

    Freeze-drying is a convenient cryochemical powder processing method. In this paper, Co-doped ZnO nanomaterials (CZN) with Co content from 2 mol% to 10 mol% have been successfully synthesized via a novel freeze-drying route. X-ray diffraction (XRD), transmission electronic microscopy (TEM) and high-resolution TEM (HRTEM) were used to characterize the structure and morphology of the as-synthesized samples. All samples have a similar hexagonal wurtzite phase without metal cobalt, cobalt oxides or composites in the samples with Co concentration below 6 mol%. TEM image shows that CZN (4 mol% Co) is nanometer scale with average crystal size of 40 nm. Samples have a spherical morphology with moderate aggregation. The band gap energy of CZN from ultraviolet-visible (UV-vis) spectroscopy decreases with increasing the Co doping concentration

  6. Synthesis and optical properties of Co2+-doped ZnO Network prepared by new precursors

    Science.gov (United States)

    Akhtari, Fereshteh; Zorriasatein, Suzan; Farahmandjou, Majid; Elahi, Seyed Mohammad

    2018-06-01

    Pure ZnO nanoparticles (NPs) and Co/ZnO alloy NPs were synthesized with different percentages of cobalt impurity (1%, 3%, 5%, and 25%) with new precursors through the coprecipitation method. The structural results of the XRD analysis indicated that the pure and impure samples have a wurtzite hexagonal structure such that with an elevation of Co impurity up to 1%, the size of the nanocrystals declines by up to 30 nm. Furthermore, the FESEM analysis results suggest the homogeneity of the NPs such that with increased cobalt impurity, its level declines. The TEM analysis results revealed that the NPs with 5% impurity have a mean size of 32 nm in spherical form. The FTIR optical analysis results suggest a very sharp absorption peak within the wavelength ranges of 434–448 cm‑1, belonging to the Zn-O vibration bond. In addition, the absorption peak developed at the wavelength of 3428 cm‑1 is related to the activation of the OH radicals, whose absorption value grows with the addition of an impurity, thereby, causing enhanced photocatalytic activity. The UV-DRS optical analysis indicated that the absorption wavelength grows with increased impurity, causing the development of redshift and a reduction of the energy band gap. In this regard, for the pure sample, the band gap value was 3.18 eV, while for the sample with 5% impurity, the band gap was obtained as 2.68 eV. The VSM magnetic analysis suggests ferromagnetic development in the impure sample, with a saturation magnetism of 16 memu g‑1 and a coercivity field of 342 G.

  7. Electrodeposition of hierarchical ZnO nanorod arrays on flexible stainless steel mesh for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hui; Zhai, Xiangyang; Liu, Wenwu; Zhang, Mei; Guo, Min, E-mail: guomin@ustb.edu.cn

    2015-07-01

    Hierarchical ZnO nanorod arrays (ZNRAs) were synthesized on flexible stainless steel mesh (SSM) in large scale by a two-step facile electrodeposition method. The structure and morphology of the as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The growth mechanism of the ZnO hierarchical nanostructures was also discussed. Moreover, the effect of ZnO morphology on the photovoltaic performance of the flexible DSSCs based on SSM supported ZnO nanostructures was investigated in detail. It is shown that the flexible DSSCs exhibited a relatively higher power conversion efficiency of 1.11% compared with that based on primary ZNRAs. - Highlights: • Hierarchical ZnO nanorod arrays (ZNRAs) were prepared by electrodeposition method. • Flexible stainless steel mesh (SSM) supported with hierarchical ZNRAs was first used for DSSCs. • The effect of ZnO morphology on the photovoltaic performance of flexible DSSCs was investigated. • The DSSC based on 3-Hierarchical ZNRAs/ZNPs showed a relatively efficiency of 1.11%.

  8. Thermoelectric properties and nanostructures of materials prepared from rice husk ash

    Energy Technology Data Exchange (ETDEWEB)

    Pukird, S.; Tipparach, U.; Kasian, P. [Ubon Ratchathani Univ., Ubon Ratchathani (Thailand). Dept. of Physics; Limsuwan, P. [King Mongkut' s Univ. of Technology Thonburi, Bangkok (Thailand). Dept. of Physics

    2009-07-01

    Thailand produces large amounts of agricultural residues such as rice husk and coconut shells. Rice husk is considered to be a potential source for solar grade silicon. Studies have shown that reasonably pure polycrystalline silicon can be prepared from rice husk white ash by a metallothermic reduction process. This paper reported on a study that investigated the thermoelectric properties of ceramic material prepared by mixing silica from rice husk ash and carbon obtained from coconut shell charcoal. The thermoelectric properties of the materials were examined along with their microstructures. The materials were made from burning rice husk ash and coconut shell at different temperatures and then doped with metal oxides. Pellets were heated at temperature of 700 degrees C for 1-3 hours. The voltage on both sides of the pellets was observed. The electromotive force was found when different temperatures were applied on both sides of the pellet specimens. The Seebeck coefficient was then calculated. The results showed that these materials can be used as thermoelectric devices. Scanning electron microscope (SEM) and energy dispersive X-rays (EDX) were used to investigate the source of materials and the products on the substrates. The images of SEM and EDX showed nanostructures of materials such as nanowires, nanorods and nanoparticles of the products and sources. 22 refs., 2 tabs., 9 figs.

  9. Removal of Heavy Metals from Drinking Water by Magnetic Carbon Nanostructures Prepared from Biomass

    Directory of Open Access Journals (Sweden)

    Muhammad Muneeb Ur Rahman Khattak

    2017-01-01

    Full Text Available Heavy metals contamination of drinking water has significant adverse effects on human health due to their toxic nature. In this study a new adsorbent, magnetic graphitic nanostructures were prepared from watermelon waste. The adsorbent was characterized by different instrumental techniques (surface area analyzer, FTIR, XRD, EDX, SEM, and TG/DTA and was used for the removal of heavy metals (As, Cr, Cu, Pb, and Zn from water. The adsorption parameters were determined for heavy metals adsorption using Freundlich and Langmuir isotherms. The adsorption kinetics and effect of time, pH, and temperature on heavy metal ions were also determined. The best fits were obtained for Freundlich isotherm. The percent adsorption showed a decline at high pH. Best fit was obtained with second-order kinetics model for the kinetics experiments. The values of ΔH° and ΔG° were negative while that of ΔS° was positive. The prepared adsorbent has high adsorption capacities and can be efficiently used for the removal of heavy metals from water.

  10. Electrical stability of Al-doped ZnO transparent electrode prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Tabassum, Samia, E-mail: shawon14@gmail.com; Yamasue, Eiji; Okumura, Hideyuki; Ishihara, Keiichi N.

    2016-07-30

    Highlights: • Al-doped ZnO thin film was deposited by sol-gel method in different annealing temperature and duration. • We examined the environmental stability in ambient and damp heat condition. • We investigated chemical state of thin film. • Better stability was observed in the film annealed at high temperature (600 °C) along with longer duration (120 min). • An ultrathin aluminum oxide layer formation was predicted by XPS measurement which protects further oxidation and improves stability. - Abstract: Al-doped zinc oxide (AZO) thin films have been considered as a promising alternative to tin doped indium oxide (ITO), which is currently used in various optoelectronic applications. However, the environmental stability of AZO film is not satisfactory, in that the resistivity is significantly increases in air. Here, we investigate the resistivity stability of AZO thin films prepared by sol-gel method using various annealing temperatures and durations. The degradation of resistivity property was observed for AZO films stored in ambient or damp heat environment, where the degradation rate was influenced by annealing temperature. A significant improvement of electrical stability was attained in AZO films that were prepared at high annealing temperature. The films, which showed the highest and the lowest increasing rate of resistivity, were further characterized in detail to shed light on the possible mechanisms explaining the improved stability through crystallinity, surface morphology and elemental state of the thin film.

  11. Electrical stability of Al-doped ZnO transparent electrode prepared by sol-gel method

    International Nuclear Information System (INIS)

    Tabassum, Samia; Yamasue, Eiji; Okumura, Hideyuki; Ishihara, Keiichi N.

    2016-01-01

    Highlights: • Al-doped ZnO thin film was deposited by sol-gel method in different annealing temperature and duration. • We examined the environmental stability in ambient and damp heat condition. • We investigated chemical state of thin film. • Better stability was observed in the film annealed at high temperature (600 °C) along with longer duration (120 min). • An ultrathin aluminum oxide layer formation was predicted by XPS measurement which protects further oxidation and improves stability. - Abstract: Al-doped zinc oxide (AZO) thin films have been considered as a promising alternative to tin doped indium oxide (ITO), which is currently used in various optoelectronic applications. However, the environmental stability of AZO film is not satisfactory, in that the resistivity is significantly increases in air. Here, we investigate the resistivity stability of AZO thin films prepared by sol-gel method using various annealing temperatures and durations. The degradation of resistivity property was observed for AZO films stored in ambient or damp heat environment, where the degradation rate was influenced by annealing temperature. A significant improvement of electrical stability was attained in AZO films that were prepared at high annealing temperature. The films, which showed the highest and the lowest increasing rate of resistivity, were further characterized in detail to shed light on the possible mechanisms explaining the improved stability through crystallinity, surface morphology and elemental state of the thin film.

  12. Studies on acetone sensing characteristics of ZnO thin film prepared by sol–gel dip coating

    Energy Technology Data Exchange (ETDEWEB)

    Muthukrishnan, Karthika; Vanaraja, Manoj [School of Electrical & Electronics Engineering, SASTRA University, Thanjavur, 613401 (India); Boomadevi, Shanmugam [Department of Physics, National Institute of Technology, Tiruchirappalli, 620015 (India); Karn, Rakesh Kumar [School of Electrical & Electronics Engineering, SASTRA University, Thanjavur, 613401 (India); Singh, Vijay [Department of Chemical Engineering, Konkuk University, Seoul, 143-701 (Korea, Republic of); Singh, Pramod K. [Solar Energy Institute, Ege University, Bornova, 35100, Izmir (Turkey); Material Research Laboratory, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, U. P. (India); Pandiyan, Krishnamoorthy, E-mail: krishpandiyan@ece.sastra.edu [School of Electrical & Electronics Engineering, SASTRA University, Thanjavur, 613401 (India)

    2016-07-15

    Acetone sensing characteristics of Zinc Oxide thin films prepared by dip coating method are discussed in this paper. The sol for dip coating was synthesized using Zinc nitrate hexahydrate (Zn (NO{sub 3}){sub 2}. 6H{sub 2}O) and organic polymer sodium carboxy methyl cellulose (Na-CMC) as a starting material. Crystallinity and crystallite size of the prepared thin film was characterised by X-ray diffraction (XRD). Morphology was studied using field emission scanning electron microscopy (FESEM). The gas sensing characteristics was studied using chemiresistive method, by exposing the film to various concentrations of acetone at room temperature. Further, for comparative study ethanol and acetaldehyde has also been tested. Gas sensing parameters such us response, selectivity, lowest detection limit, response/recovery time of the thin film towards acetone were also reported. - Highlights: • ZnO has successfully synthesized using cheap and ease method. • Detail characterization have carried out and explained. • Sensing behaviour has been studied. • Acetone sensor has been fabricated.

  13. Facile synthesis of ZnO nanobullets/nanoflakes and their applications to dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mou Jixia [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zhang Weiguang, E-mail: wgzhang@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Fan Jun; Deng Hong [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Chen Wei [Wuhan National Laboratory for Optoelectronics and College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-01-21

    Research highlights: >Although there are many available methods to fabricate ZnO nanostructures, we report here a simple and generalized method to prepare ZnO nanocrystallites from zinc acetates by tuning the volume ratio between water and ethylene glycol. In comparison, this synthetic method is of relatively low cost and is able to readily scaled-up for industrial production. In particular, the ZnO nanostructures were used as active photoanodes after incorporation in sandwich-type dye-sensitized solar cells (DSSCs). The overall solar-to-electric energy conversion efficiencies obtained under air mass (AM) 1.5 conditions, were 1.93% using ZnO nanobullets, while the efficiency was raised up to 3.64% using ZnO nanoflakes. - Abstract: In this paper we reported a successful synthesis of ZnO nanobullets/nanoflakes by a simple hydro/solvothermal method employing a mixture of water/ethylene glycol as the solvent, and zinc acetate as the zinc source. The final products were characterized by powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Raman scattering and photofluorescence spectra of the products were also investigated. ZnO with both nanobullets and nanoflakes nanostructures had been comparably studied as active photoanodes in dye-sensitized solar cell (DSSC) system, and the overall light-to-energy conversion efficiency of 1.93% has been achieved for nanobullets based DSSC, while that for ZnO nanoflakes based DSSC has been raised up to 3.64%.

  14. The electrical, elemental, optical, and surface properties of Si-doped ZnO thin films prepared by thermionic vacuum arc

    Science.gov (United States)

    Mohammadigharehbagh, Reza; Özen, Soner; Yudar, Hafizittin Hakan; Pat, Suat; Korkmaz, Şadan

    2017-09-01

    The purpose of this work is to study the properties of Si-doped ZnO (SZO) thin films, which were prepared using the non-reactive thermionic vacuum arc technique. The analysis of the elemental, optical, and surface properties of ZnO:Si thin films was carried out using energy dispersive x-ray spectroscopy, UV-VIS spectrophotometry, atomic force microscopy, and scanning electron microscopy, respectively. The current-voltage measurement was employed in order to study the electrical properties of the films. The effect of Si doping on the physical properties of ZnO films was investigated. The film thicknesses were measured as 55 and 35 nm for glass and PET substrates, respectively. It was clearly observed from the x-ray diffraction results that the Si and ZnO peaks were present in the coated SZO films for all samples. The morphological studies showed that the deposited surfaces are homogenous, dense, and have a uniform surface, with the existence of some cracks only on the glass substrate. The elemental composition has confirmed the existence of Zn, Si, and O elements within the prepared films. Using a UV-VIS spectrophotometer, the optical parameters such as transmittance, absorbance, refractive index, and reflectance were calculated. It should be noted that the transparency and refractive indices obtained from the measurements decrease with increasing Si concentration. The obtained optical bandgap values using transmittance spectra were determined to be 3.74 and 3.84 eV for the glass and PET substrates, respectively. An increase in the bandgap results demonstrates that the Si doping concentration is comparable to the pure ZnO thin films. The current versus voltage curves revealed the ohmic nature of the films. Subsequently, the development and fabrication of excellent transparent conducting electrodes enabled the appropriate use of Si-doped ZnO thin films.

  15. Effect of Er3+ doping on structural, morphological and photocatalytical properties of ZnO thin films

    Science.gov (United States)

    Bouhouche, S.; Bensouici, F.; Toubane, M.; Azizi, A.; Otmani, A.; Chebout, K.; Kezzoula, F.; Tala-Ighil, R.; Bououdina, M.

    2018-05-01

    In this research work, structure, microstructure, optical and photocatalytic properties of undoped and Erbium doped nanostructured ZnO thin films prepared by sol-gel dip-coating are investigated. X-ray diffraction (XRD) analysis indicates that the deposited films crystallize within the hexagonal wurtzite-type structure with a preferential growth orientation along (002) plane. Morphological observations using scanning electron microscopy (SEM) reveal important influence of Er concentration; displaying homogeneous and dense aspect for undoped to 0.3% then grid-like morphology for 0.4 and 0.5%. UV/vis/NIR transmittance spectroscopy spectra display a transmittance over 70%, and small variation in the energy gap energy 3.263–3.278 eV. Wettability test of ZnO thin films surface ranges from hydrophilic aspect for pure ZnO to hydrophobic one for Er doped ZnO, and the contact angle is found to increase from 58.7° for pure ZnO up to 98.4° for 0.4% Er doped ZnO. The photocatalytic activity measurements evaluated using the degradation of methylene blue (MB) under UV light irradiation demonstrate that undoped ZnO film shows higher photocatalytic activity compared to Er doped ZnO films, which may be attributed to the deterioration of films’crystallinity resulting in lower transmittance.

  16. Effect of High Temperature Annealing on Conduction-Type ZnO Films Prepared by Direct-Current Magnetron Sputtering

    International Nuclear Information System (INIS)

    Sun Li-Jie; He Dong-Kai; Xu Xiao-Qiu; Zhong Ze; Wu Xiao-Peng; Lin Bi-Xia; Fu Zhu-Xi

    2010-01-01

    We experimentally find that the ZnO thin films deposited by dc-magnetron sputtering have different conduction types after annealing at high temperature in different ambient. Hall measurements show that ZnO films annealed at 1100°C in N 2 and in O 2 ambient become n-type and p-type, respectively. This is due to the generation of different intrinsic defects by annealing in different ambient. X-ray photoelectron spectroscopy and photolumi-nescence measurements indicate that zinc interstitial becomes a main defects after annealing at 1100°C in N 2 ambient, and these defects play an important role for n-type conductivity of ZnO. While the ZnO films annealed at 1100°C in O 2 ambient, the oxygen antisite contributes ZnO films to p-type. (condensed matter: structure, mechanical and thermal properties)

  17. Structural and optical properties of Co-doped ZnO nanocrystallites prepared by a one-step solution route

    International Nuclear Information System (INIS)

    Li Ping; Wang Sha; Li Jibiao; Wei Yu

    2012-01-01

    Zinc oxide (ZnO) nanocrystallites with different Co-doping levels were successfully synthesized by a simple one-step solution route at low temperature (95 deg. C) in this study. The structure and morphology of the samples thus obtained were characterized by XRD, EDS, XPS and FESEM. Results show that cobalt ions, in the oxidation state of Co 2+ , replace Zn 2+ ions in the ZnO lattice without changing its wurtzite structure. The dopant content varies from 0.59% to 5.39%, based on Co-doping levels. The pure ZnO particles exhibit well-defined 3D flower-like morphology with an average size of 550 nm, while the particles obtained after Co-doping are mostly cauliflower-like nanoclusters with an average size of 120 nm. Both the flower-like pure ZnO and the cauliflower-like Co:ZnO nanoclusters are composed of densely arrayed nanorods. The optical properties of the ZnO nanocrystallites following Co-doping were also investigated by UV-Visible absorption and Photoluminescence spectra. Our results indicate that Co-doping can change the energy-band structure and effectively adjust the luminescence properties of ZnO nanocrystallites. - Highlights: → Co-doped ZnO nanocrystallites were synthesized via a simple one-step solution route. → Co 2+ ions incorporated into the ZnO lattice without changing its wurtzite structure. → Co-doping changed the energy band structure of ZnO. → Co-doping effectively adjusted the luminescence properties of ZnO nanocrystallites.

  18. Structural and optical properties of Co-doped ZnO nanocrystallites prepared by a one-step solution route

    Energy Technology Data Exchange (ETDEWEB)

    Li Ping, E-mail: lipingchina@yahoo.com.cn [Provincial Key Laboratory of Inorganic Nanomaterials, School of Chemistry and Materials Science, Hebei Normal University, 113 Yuhua Road, Shijiazhuang 050016, Hebei (China); Wang Sha; Li Jibiao; Wei Yu [Provincial Key Laboratory of Inorganic Nanomaterials, School of Chemistry and Materials Science, Hebei Normal University, 113 Yuhua Road, Shijiazhuang 050016, Hebei (China)

    2012-01-15

    Zinc oxide (ZnO) nanocrystallites with different Co-doping levels were successfully synthesized by a simple one-step solution route at low temperature (95 deg. C) in this study. The structure and morphology of the samples thus obtained were characterized by XRD, EDS, XPS and FESEM. Results show that cobalt ions, in the oxidation state of Co{sup 2+}, replace Zn{sup 2+} ions in the ZnO lattice without changing its wurtzite structure. The dopant content varies from 0.59% to 5.39%, based on Co-doping levels. The pure ZnO particles exhibit well-defined 3D flower-like morphology with an average size of 550 nm, while the particles obtained after Co-doping are mostly cauliflower-like nanoclusters with an average size of 120 nm. Both the flower-like pure ZnO and the cauliflower-like Co:ZnO nanoclusters are composed of densely arrayed nanorods. The optical properties of the ZnO nanocrystallites following Co-doping were also investigated by UV-Visible absorption and Photoluminescence spectra. Our results indicate that Co-doping can change the energy-band structure and effectively adjust the luminescence properties of ZnO nanocrystallites. - Highlights: > Co-doped ZnO nanocrystallites were synthesized via a simple one-step solution route. > Co{sup 2+} ions incorporated into the ZnO lattice without changing its wurtzite structure. > Co-doping changed the energy band structure of ZnO. > Co-doping effectively adjusted the luminescence properties of ZnO nanocrystallites.

  19. Comparison of the Nanostructure and Mechanical Performance of Highly Exfoliated Epoxy-Clay Nanocomposites Prepared by Three Different Protocols.

    Science.gov (United States)

    Shiravand, Fatemeh; Hutchinson, John M; Calventus, Yolanda; Ferrando, Francesc

    2014-05-30

    Three different protocols for the preparation of polymer layered silicate nanocomposites based upon a tri-functional epoxy resin, triglycidyl para -amino phenol (TGAP), have been compared in respect of the cure kinetics, the nanostructure and their mechanical properties. The three preparation procedures involve 2 wt% and 5 wt% of organically modified montmorillonite (MMT), and are: isothermal cure at selected temperatures; pre-conditioning of the resin-clay mixture before isothermal cure; incorporation of an initiator of cationic homopolymerisation, a boron tri-fluoride methyl amine complex, BF₃·MEA, within the clay galleries. It was found that features of the cure kinetics and of the nanostructure correlate with the measured impact strength of the cured nanocomposites, which increases as the degree of exfoliation of the MMT is improved. The best protocol for toughening the TGAP/MMT nanocomposites is by the incorporation of 1 wt% BF₃·MEA into the clay galleries of nanocomposites containing 2 wt% MMT.

  20. Highly porous CeO2 nanostructures prepared via combustion synthesis for supercapacitor applications

    DEFF Research Database (Denmark)

    Kadirvelayutham, Prasanna; Santhoshkumar, P.; Jo, Yong Nam

    2017-01-01

    We report highly porous CeO2 nanostructures (CeO2 NSs) suitable for supercapacitor applications, synthesized using a fast and cost effective combustion approach. Due to its prominent valence states of Ce3+/Ce4+, CeO2 has emerged as a promising pseudocapacitive material. The drawback of using CeO2...... as a supercapacitor electrode is its poor electrical conductivity. We overcame this drawback of CeO2 by creating oxygen vacancies on its surface, which act to enhance its electrical conductivity. The physical interpretation of the as-synthesized CeO2 NSs shows that they have dense active sites and diffusion pathways...... that enhance the performance of the electrode in a supercapacitor. Electrodes prepared using the synthesized CeO2 NSs exhibited the initial specific capacitance of 134.6 F g-1 and superior cycling stability of 92.5% after 1000 cycles at a constant current density of 1 A g-1, indicating their potential...

  1. Preparation and characterization of nanostructured ZrO2 coatings on dense and porous substrates

    International Nuclear Information System (INIS)

    Shi Jingyu; Verweij, Henk

    2008-01-01

    Nanostructured ZrO 2 coatings are prepared on both dense and porous substrates by wet-chemical deposition of non-agglomerated 5 nm precursor particle dispersions, followed by thermal processing. The precursor particle dispersions are made by modified emulsion precipitation and a purification treatment to remove reaction products and additives. The coatings are formed by depositing the precursor nanoparticle dispersion directly onto the substrate, followed by drying and heating at 600 deg. C. Scanning electron microscopy and cross-sectional transmission electron microscopy observations of the heat-treated coatings indicate that the ZrO 2 coating on dense Si wafer substrate has a homogeneous, dense particle packing structure with shallow meniscus-shaped depressions in the surface, and microcracks below the meniscus surface. On the other hand, coatings formed on a meso-porous γ-alumina membrane substrate are free of defects, but with a lower packing density. The mechanism of the substrate effect on the particle packing behavior and defect formation during coating deposition is discussed. It is expected that by using a thin porous substrate with reduced capillary force, a defect-free, homogenously dense-packed coating structure can be achieved

  2. Doping effect on SILAR synthesized crystalline nanostructured Cu-doped ZnO thin films grown on indium tin oxide (ITO) coated glass substrates and its characterization

    Science.gov (United States)

    Dhaygude, H. D.; Shinde, S. K.; Velhal, Ninad B.; Takale, M. V.; Fulari, V. J.

    2016-08-01

    In the present study, a novel chemical route is used to synthesize the undoped and Cu-doped ZnO thin films in aqueous solution by successive ionic layer adsorption and reaction (SILAR) method. The synthesized thin films are characterized by x-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive x-ray analysis (EDAX), contact angle goniometer and UV-Vis spectroscopic techniques. XRD study shows that the prepared films are polycrystalline in nature with hexagonal crystal structure. The change in morphology for different doping is observed in the studies of FE-SEM. EDAX spectrum shows that the thin films consist of zinc, copper and oxygen elements. Contact angle goniometer is used to measure the contact angle between a liquid and a solid interface and after detection, the nature of the films is initiated from hydrophobic to hydrophilic. The optical band gap energy for direct allowed transition ranging between 1.60-2.91 eV is observed.

  3. Fe-tannic acid complex dye as photo sensitizer for different morphological ZnO based DSSCs

    Science.gov (United States)

    Çakar, Soner; Özacar, Mahmut

    2016-06-01

    In this paper we have synthesized different morphological ZnO nanostructures via microwave hydrothermal methods at low temperature within a short time. We described different morphologies of ZnO at different Zn(NO3)2/KOH mole ratio. The ZnO nanostructures were characterized via X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and UV-vis spectrophotometry. All ZnO structures have hexagonal wurtzite type structures. The FESEM images showed various morphologies of ZnO such as plate, rod and nanoparticles. Dye sensitized solar cells have been assembled by these different morphological structures photo electrode and tannic acid or Fe-tannic acid complex dye as sensitizer. We have achieved at maximum efficiencies of photovoltaic cells prepared with ZnO plate in all dye systems. The conversion efficiencies of dye sensitized solar cells are 0.37% and 1.00% with tannic acid and Fe-tannic acid complex dye, respectively.

  4. Probing the doping mechanisms and electrical properties of Al, Ga and In doped ZnO prepared by spray pyrolysis

    KAUST Repository

    Maller, Robert

    2016-05-24

    The measured structural, optical and electrical properties of Al, Ga and In doped ZnO films deposited using spray pyrolysis are reported over the doping range 0.1 - 3 atomic percent (at. %). Over the entire doping series highly transparent, polycrystalline thin films are prepared. Using the AC Hall effect we probe the electronic properties of our doped films separating the impact of doping on the measured charge carrier concentrations and Hall mobility, with an emphasis on the low doping, < 1 at. %, range. In this doping range highly resistive films are formed and we highlight AC Hall as a reliable and highly reproducible technique for analysing the doping mechanism. The implementation of a simple, post-deposition heat treatment of our AZO films creates typical films with charge carrier concentrations exceeding > 1019 cm-3 and electron mobilities over 10 cm2/Vs. We describe in detail the nature of the defect chemistry and the role of intrinsic defects, particularly traps, and show that despite significant variations in dopant species and grain boundary concentrations that the defect chemistry dominates the electrical characteristics.

  5. Probing the doping mechanisms and electrical properties of Al, Ga and In doped ZnO prepared by spray pyrolysis

    KAUST Repository

    Maller, Robert; Porte, Yoann; Alshareef, Husam N.; McLachlan, Martyn

    2016-01-01

    The measured structural, optical and electrical properties of Al, Ga and In doped ZnO films deposited using spray pyrolysis are reported over the doping range 0.1 - 3 atomic percent (at. %). Over the entire doping series highly transparent, polycrystalline thin films are prepared. Using the AC Hall effect we probe the electronic properties of our doped films separating the impact of doping on the measured charge carrier concentrations and Hall mobility, with an emphasis on the low doping, < 1 at. %, range. In this doping range highly resistive films are formed and we highlight AC Hall as a reliable and highly reproducible technique for analysing the doping mechanism. The implementation of a simple, post-deposition heat treatment of our AZO films creates typical films with charge carrier concentrations exceeding > 1019 cm-3 and electron mobilities over 10 cm2/Vs. We describe in detail the nature of the defect chemistry and the role of intrinsic defects, particularly traps, and show that despite significant variations in dopant species and grain boundary concentrations that the defect chemistry dominates the electrical characteristics.

  6. Characterization of Al-Doped ZnO Transparent Conducting Thin Film Prepared by Off-Axis Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Sin-Liang Ou

    2016-01-01

    Full Text Available The off-axis sputtering technique was used to deposit Al-doped ZnO (AZO films on glass substrates at room temperature. For the illustration of the sample position in the sputtering chamber, the value of R/r is introduced. Here, r is the radius of AZO target and R is the distance between the sample and the center of substrate holder. A systematic study for the effect of deposition parameters on structural, optical, and electrical properties of AZO films has been investigated in detail. As the sample position of R/r is fixed at 1.8, it is found that the as-deposited AZO film has relatively low resistivity of 2.67 × 10−3 Ω-cm and high transmittance above 80% in the visible region. Additionally, after rapid thermal annealing (RTA at 600°C with N2 atmosphere, the resistivity of this AZO film can be further reduced to 1.19 × 10−3 Ω-cm. This indicates the AZO films prepared by off-axis magnetron sputtering and treated via the appropriate RTA process have great potential in optoelectronic applications.

  7. Synthesis and self-assembly of dumbbell shaped ZnO sub-micron structures using low temperature chemical bath deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Borade, P. [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098 (India); Joshi, K.U. [Anton-Paar India Pvt. Ltd., Thane (W), 400607 (India); Gokarna, A.; Lerondel, G. [Laboratoire de Nanotechnologie et D' Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6281, Université de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes (France); Walke, P. [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098 (India); Late, D. [National Chemical Laboratory (NCL), Pune 400027 (India); Jejurikar, S.M., E-mail: jejusuhas@gmail.com [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098 (India)

    2016-02-01

    We report well dispersed horizontal growth of ZnO sub-micron structures using simplest technique ever known i.e. chemical bath deposition (CBD). A set of samples were prepared under two different cases A) dumbbell shaped ZnO grown in CBD bath and B) tubular ZnO structures evolved from dumbbell shaped structures by dissolution mechanism. Single phase wurtzite ZnO formation is confirmed using X-ray diffraction (XRD) technique in both cases. From the morphological investigations performed using scanning electron microscopy (SEM), sample prepared under case A indicate formation of hex bit tool (HBT) shaped ZnO crystals, which observed to self-organize to form dumbbell structures. Further these microstructures are then converted into tubular structures as a fragment of post CBD process. The possible mechanism responsible for the self-assembly of HBT units to form dumbbell structures is discussed. Observed free excitonic peak located at 370 nm in photoluminescence (PL) spectra recorded at 18 K indicate that the micro/nanostructures synthesized using CBD are of high optical quality. - Highlights: • Controlled growth of Dumbbell shaped ZnO using Chemical Bath Deposition (CBD). • Growth mechanism of dumbbell shaped ZnO by self-assembling was discussed. • Quick Transformation of ZnO dumbbell structures in to tubular structures by dissolution. • Sharp UV Emission at 370 nm from both dumbbell and tubular structures.

  8. Effect of indium on photovoltaic property of n-ZnO/p-Si heterojunction device prepared using solution-synthesized ZnO nanowire film

    Science.gov (United States)

    Kathalingam, Adaikalam; Kim, Hyun-Seok; Park, Hyung-Moo; Valanarasu, Santiyagu; Mahalingam, Thaiyan

    2015-01-01

    Preparation of n-ZnO/p-Si heterostructures using solution-synthesized ZnO nanowire films and their photovoltaic characterization is reported. The solution-grown ZnO nanowire film is characterized using scanning electron microscope, electron dispersive x-ray, and optical absorption studies. Electrical and photovoltaic properties of the fabricated heterostructures are studied using e-beam-evaporated aluminum as metal contacts. In order to use transparent contact and to simultaneously collect the photogenerated carriers, sandwich-type solar cells were fabricated using ZnO nanorod films grown on p-silicon and indium tin oxide (ITO) coated glass as ITO/n-ZnO NR/p-Si. The electrical properties of these structures are analyzed from current-voltage (I-V) characteristics. ZnO nanowire film thickness-dependent photovoltaic properties are also studied. Indium metal was also deposited over the ZnO nanowires and its effects on the photovoltaic response of the devices were studied. The results demonstrated that all the samples exhibit a strong rectifying behavior indicating the diode nature of the devices. The sandwich-type ITO/n-ZnO NR/p-Si solar cells exhibit improved photovoltaic performance over the Al-metal-coated n-ZnO/p-Si structures. The indium deposition is found to show enhancement in photovoltaic behavior with a maximum open-circuit voltage (Voc) of 0.3 V and short-circuit current (Isc) of 70×10-6 A under ultraviolet light excitation.

  9. Canted antiferromagnetic and optical properties of nanostructures of Mn2O3 prepared by hydrothermal synthesis

    International Nuclear Information System (INIS)

    Javed, Qurat-ul-ain; Feng-Ping Wang; Rafique, M. Yasir; Toufiq, Arbab Mohammad; Iqbal, M. Zubair

    2012-01-01

    We have reported new magnetic and optical properties of Mn 2 O 3 nanostructures. The nanostructures have been synthesized by the hydrothermal method combined with the adjustment of pH values in the reaction system. The particular characteristics of the nanostructures have been analyzed by employing X-Ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS), UV—visible spectroscopy, and the vibrating sample magnetometer (VSM). Structural investigation manifests that the synthesized Mn 2 O 3 nanostructures are orthorhombic crystal. Magnetic investigation indicates that the Mn 2 O 3 nanostructures are antiferromagnetic and the antiferromagnetic transition temperature is at T N = 83 K. Furthermore, the Mn 2 O 3 nanostructures possess canted antiferromagnetic order below the Neel temperature due to spin frustration, resulting in hysteresis with large coercivity (1580 Oe) and remnant magnetization (1.52 emu/g). The UV—visible spectrophotometry was used to determine the transmittance behaviour of Mn 2 O 3 nanostructures. A direct optical band gap of 1.2 eV was acquired by using the Davis—Mott model. The UV—visible spectrum indicates that the absorption is prominent in the visible region, and transparency is more than 80% in the UV region

  10. Comparative evaluation of different nanostructured metal oxides for preparation of clinically useful 99Mo/99mTc generators

    International Nuclear Information System (INIS)

    Ram, Ramu; Chakravarty, Rubel; Dash, Ashutosh

    2015-01-01

    The potential of nanostructured metal oxides such as nanotitania, nanozirconia, nanoalumina and mesoporous alumina, as new generation sorbent materials for preparation of 99 Mo/ 99m Tc generator has recently been demonstrated. A comparative assessment of such materials is essential for determination of their suitability for preparation of clinically useful generators using (n,γ) 99 Mo. Characteristics which were compared included the sorption capacity, shelf-life of the generator, radioactive concentration and purity of 99m Tc for radiopharmaceutical applications. Mesoporous alumina was identified as the most suitable sorbent for ensuring sustainable production of clinical grade 99 Mo/ 99m Tc generators using low specific activity 99 Mo. (author)

  11. Ag nanodots decorated SiO2 coated ZnO core-shell nanostructure with enhanced luminescence property as potential imaging agent

    Science.gov (United States)

    Gupta, Jagriti; Barick, K. C.; Hassan, P. A.; Bahadur, Dhirendra

    2018-04-01

    Ag decorated silica coated ZnO nanocomposite (Ag@SiO2@ZnO NCs) has been synthesized by soft chemical approach. The physico-chemical properties of Ag@SiO2@ZnO NCs are investigated by various sophisticated characterization techniques such as X-ray diffraction, Transmission electron microscopy, X-ray photoelectron spectroscopy, UV-visible absorption and photoluminescent spectroscopy. X-ray diffraction confirms the phase formation of ZnO and Ag in nanocomposite. TEM micrograph clearly shows that Ag nanodots are well decorated over silica coated ZnO NCs. The photoluminescent study reveals the enhancement in the photoluminance property when the Ag nanodots are decorated over silica coated ZnO nanocomposite due to an electromagnetic coupling between excitons and plasmons. Furthermore, the photoluminescent property is an important tool for bio-imaging application, reveal that NCs give green and red emission after excitation with 488 and 535 nm. Therefore, low cytotoxicity and excellent fluorescence stability in vitro makes it a more suitable material for both cellular imaging and therapy for biomedical applications.

  12. ZnO nanocrystals and allied materials

    CERN Document Server

    Okada, Tatsuo

    2014-01-01

    ZnO has been the central theme of research in the past decade due to its various applications in band gap engineering, and textile and biomedical industries. In nanostructured form, it offers ample opportunities to realize tunable optical and optoelectronic properties and it was also termed as a potential material to realize room temperature ferromagnetism. This book presents 17 high-quality contributory chapters on ZnO related systems written by experts in this field. These chapters will help researchers to understand and explore the varied physical properties to envisage device applications of ZnO in thin film, heterostructure and nanostructure forms.

  13. ZnO nanoparticles obtained by pulsed laser ablation and their composite with cotton fabric: Preparation and study of antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Svetlichnyi, Valery; Shabalina, Anastasiia, E-mail: shabalinaav@gmail.com; Lapin, Ivan; Goncharova, Daria; Nemoykina, Anna

    2016-05-30

    Highlights: • ZnO nanoparticles obtained by pulsed laser ablation exhibit antibacterial activity. • H{sub 2}O{sub 2} and Zn{sup 2+} are not responsible for antibacterial activity of obtained zinc oxide. • Nano-ZnO/cotton fabric composite is a promising material for antibacterial bandage. - Abstract: A simple deposition method was used to prepare a ZnO/cotton fabric composite from water and ethanol dispersions of ZnO nanoparticles obtained by the pulsed laser ablation method. The structure and composition of the nanoparticles from dispersions and as-prepared composites were studied using electron microscopy, X-ray diffraction, and spectroscopy. The nanoparticles and composite obtained exhibited antibacterial activity to three different pathogenic microorganisms—Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. An attempt to understand a mechanism of bactericidal effect of ZnO nanoparticles was made. It was shown that zinc ions and hydrogen peroxide were not responsible for antibacterial activity of the particles and the composite, and surface properties of nanoparticles played an important role in antibacterial activity of zinc oxide. The proposed composite is a promising material for use as an antibacterial bandage.

  14. Characteristic structures and properties of nanostructured metals prepared by plastic deformation

    DEFF Research Database (Denmark)

    Huang, Xiaoxu

    2011-01-01

    This chapter focuses on describing the characteristic microstructures of nanostructured metals produced by plastic deformation to ultrahigh strains and their correlation with hardening by annealing and softening by deformation. The results suggest that optimising microstructure and the mechanical...

  15. Antitubercular activity of ZnO nanoparticles prepared by solution combustion synthesis using lemon juice as bio-fuel.

    Science.gov (United States)

    Gopala Krishna, Prashanth; Paduvarahalli Ananthaswamy, Prashanth; Trivedi, Priyanka; Chaturvedi, Vinita; Bhangi Mutta, Nagabhushana; Sannaiah, Ananda; Erra, Amani; Yadavalli, Tejabhiram

    2017-06-01

    In this study, we report the synthesis, structural and morphological characteristics of zinc oxide (ZnO) nanoparticles using solution combustion synthesis method where lemon juice was used as the fuel. In vitro anti-tubercular activity of the synthesized ZnO nanoparticles and their biocompatibility studies, both in vitro and in vivo were carried out. The synthesized nanoparticles showed inhibition of Mycobacterium tuberculosis H37Ra strain at concentrations as low as 12.5μg/mL. In vitro cytotoxicity study performed with normal mammalian cells (L929, 3T3-L1) showed that ZnO nanoparticles are non-toxic with a Selectivity Index (SI) >10. Cytotoxicity performed on two human cancer cell lines DU-145 and Calu-6 indicated the anti-cancer activity of ZnO nanoparticles at varied concentrations. Results of blood hemolysis indicated the biocompatibility of ZnO nanoparticles. Furthermore, in vivo toxicity studies of ZnO nanoparticles conducted on Swiss albino mice (for 14days as per the OECD 423 guidelines) showed no evident toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Fabrication and characterization of nanostructured anatase TiO{sub 2} films prepared by electrochemical anodization and their photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yurddaskal, Metin [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Buca 35390, Izmir (Turkey); Dokuz Eylul University, Center for Fabrication and Applications of Electronic Materials (EMUM), Buca, 35390, Izmir (Turkey); Dikici, Tuncay, E-mail: tuncay.dikici@ikc.edu.tr [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Buca 35390, Izmir (Turkey); Izmir Katip Celebi University, Department of Materials Science and Engineering, Cigli 35620, Izmir (Turkey); Yildirim, Serdar [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Buca 35390, Izmir (Turkey); Dokuz Eylul University, Center for Fabrication and Applications of Electronic Materials (EMUM), Buca, 35390, Izmir (Turkey); Yurddaskal, Melis [Celal Bayar University, Department of Mechanical Engineering, Muradiye, 45140 Manisa (Turkey); Toparli, Mustafa; Celik, Erdal [Dokuz Eylul University, Center for Fabrication and Applications of Electronic Materials (EMUM), Buca, 35390, Izmir (Turkey); Dokuz Eylul University, Department of Metallurgical and Materials Engineering, Buca 35390, Izmir (Turkey)

    2015-12-05

    In this study, nanostructured anatase titanium dioxide (TiO{sub 2}) films were fabricated by electrochemical anodization of titanium first, and then annealed at 500 °C for 2 h. Effect of electrolyte concentration, anodization time and electrolyte temperature on the surface morphology of the resulting TiO{sub 2} thin films were investigated. The phase structures, surface morphology and chemical composition were analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity tests of the samples were evaluated by the degradation of aqueous methylene blue (MB) solutions under UV light illumination for different periods of time. The results showed that the structure of nanostructured TiO{sub 2} films depended strongly on the anodization parameters. It was found that there were micro-scale pores (<10 μm) and nano-scale pores (diameter in the range from 40 to 70 nm) on the anodized titanium surfaces. This study indicated that structures, surface morphology, and surface area of the nanostructured anatase TiO{sub 2} films played an important role on their photocatalytic performance. The results clearly proved that nanostructured anatase TiO{sub 2} film prepared with optimum process parameters resulted in enhancement of the photocatalytic activity. - Highlights: • TiO{sub 2} thin films were prepared on titanium substrates by electrochemical anodization at 30 V. • Effect of various anodization parameters on the photocatalytic activity of titanium was investigated. • Micro- and nanoscale TiO{sub 2} pores formed on the titanium by anodizing. • Surface morphology of the TiO{sub 2} films plays an important role on the photocatalytic performance. • The sample anodized for 240 min showed the highest photocatalytic activity.

  17. Studies of optical emission in the high intensity pumping regime of top-down ZnO nanostructures and thin films grown on c-sapphire substrates by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Divay, L.; Kostcheev, S.; McMurtry, S.; Lerondel, G. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, ICD CNRS (FRE2848), Universite de Technologie de Troyes, Troyes (France); Rogers, D.J.; Teherani, F.H. [Nanovation SARL, Versailles, 91400 Orsay (France); Lusson, A. [GEMaC, CNRS - Universite de Versailles Saint-Quentin en Yvelines,Meudon (France)

    2008-07-01

    We report on the emission of Zinc Oxide (ZnO) thin films obtained by Pulsed Laser Deposition (PLD) under high intensity excitation. In order to clarify the origin of the emission bands, we compared results for high quality thin films (75 nm) before and after 'top-down' nanopatterning. A nanopattering technique was developed for this purpose. The technique combined Electron Beam Lithography (EBL) and lift-off techniques and Inductively Coupled Plasma Reactive Ion Etching (ICP RIE). The emission spectra of the two types of samples were found to have a difference in their fine structure that was attributed, in part, to the existence of guided emission in the thin films and exciton weak confinement effects in the nanostructures. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Effects of annealing temperature on the physicochemical, optical and photoelectrochemical properties of nanostructured hematite thin films prepared via electrodeposition method

    International Nuclear Information System (INIS)

    Phuan, Yi Wen; Chong, Meng Nan; Zhu, Tao; Yong, Siek-Ting; Chan, Eng Seng

    2015-01-01

    Highlights: • Nanostructured hematite thin films were synthesized via electrodeposition method. • Effects of annealing on size, grain boundary and PEC properties were examined. • Photocurrents generation was enhanced when the thin films were annealed at 600 °C. • The highest photocurrent density of 1.6 mA/cm 2 at 0.6 V vs Ag/AgCl was achieved. - Abstract: Hematite (α-Fe 2 O 3 ) is a promising photoanode material for hydrogen production from photoelectrochemical (PEC) water splitting due to its wide abundance, narrow band-gap energy, efficient light absorption and high chemical stability under aqueous environment. The key challenge to the wider utilisation of nanostructured hematite-based photoanode in PEC water splitting, however, is limited by its low photo-assisted water oxidation caused by large overpotential in the nominal range of 0.5–0.6 V. The main aim of this study was to enhance the performance of hematite for photo-assisted water oxidation by optimising the annealing temperature used during the synthesis of nanostructured hematite thin films on fluorine-doped tin oxide (FTO)-based photoanodes prepared via the cathodic electrodeposition method. The resultant nanostructured hematite thin films were characterised using field emission-scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV-visible spectroscopy and Fourier transform infrared spectroscopy (FTIR) for their elemental composition, average nanocrystallites size and morphology; phase and crystallinity; UV-absorptivity and band gap energy; and the functional groups, respectively. Results showed that the nanostructured hematite thin films possess good ordered nanocrystallites array and high crystallinity after annealing treatment at 400–600 °C. FE-SEM images illustrated an increase in the average hematite nanocrystallites size from 65 nm to 95 nm when the annealing temperature was varied from 400 °C to 600 °C. As the

  19. Effects of annealing temperature on the physicochemical, optical and photoelectrochemical properties of nanostructured hematite thin films prepared via electrodeposition method

    Energy Technology Data Exchange (ETDEWEB)

    Phuan, Yi Wen [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 46150 Selangor DE (Malaysia); Chong, Meng Nan, E-mail: Chong.Meng.Nan@monash.edu [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 46150 Selangor DE (Malaysia); Sustainable Water Alliance, Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 46150 Selangor DE (Malaysia); Zhu, Tao; Yong, Siek-Ting [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 46150 Selangor DE (Malaysia); Chan, Eng Seng [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 46150 Selangor DE (Malaysia); Sustainable Water Alliance, Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 46150 Selangor DE (Malaysia)

    2015-09-15

    Highlights: • Nanostructured hematite thin films were synthesized via electrodeposition method. • Effects of annealing on size, grain boundary and PEC properties were examined. • Photocurrents generation was enhanced when the thin films were annealed at 600 °C. • The highest photocurrent density of 1.6 mA/cm{sup 2} at 0.6 V vs Ag/AgCl was achieved. - Abstract: Hematite (α-Fe{sub 2}O{sub 3}) is a promising photoanode material for hydrogen production from photoelectrochemical (PEC) water splitting due to its wide abundance, narrow band-gap energy, efficient light absorption and high chemical stability under aqueous environment. The key challenge to the wider utilisation of nanostructured hematite-based photoanode in PEC water splitting, however, is limited by its low photo-assisted water oxidation caused by large overpotential in the nominal range of 0.5–0.6 V. The main aim of this study was to enhance the performance of hematite for photo-assisted water oxidation by optimising the annealing temperature used during the synthesis of nanostructured hematite thin films on fluorine-doped tin oxide (FTO)-based photoanodes prepared via the cathodic electrodeposition method. The resultant nanostructured hematite thin films were characterised using field emission-scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV-visible spectroscopy and Fourier transform infrared spectroscopy (FTIR) for their elemental composition, average nanocrystallites size and morphology; phase and crystallinity; UV-absorptivity and band gap energy; and the functional groups, respectively. Results showed that the nanostructured hematite thin films possess good ordered nanocrystallites array and high crystallinity after annealing treatment at 400–600 °C. FE-SEM images illustrated an increase in the average hematite nanocrystallites size from 65 nm to 95 nm when the annealing temperature was varied from 400 °C to 600

  20. Ultrasound assisted synthesis of morphology tunable rGO:ZnO hybrid nanostructures and their optical and UV-A light driven photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Thangaraj, Pandiyarajan, E-mail: rtpandiyarajan@gmail.com [Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, University of Concepcion (Chile); Ramalinga Viswanathan, Mangalaraja, E-mail: mangal@udec.cl [Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, University of Concepcion (Chile); Balasubramanian, Karthikeyan [Department of Physics, National Institute of Technology, Tiruchirappalli 620015 (India); Mansilla, Héctor D. [Departament of Organic Chemistry, Faculty of Chemical Sciences, University of Concepcion (Chile); Contreras, David [Departament of Analytical and Inorganic Chemistry, Faculty of Chemical Sciences, Center for Biotechnology, University of Concepcion (Chile); Sepulveda-Guzman, Selene [Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Mecánica y Eléctrica, FIME, Ave. Pedro de Alba s/n, Ciudad Universitaria, C.P.66455 San Nicolás de los Garza, N.L. (Mexico); Gracia-Pinilla, M.A. [Universidad Autónoma de Nuevo León, Facultad de Ciencias Físico-Matemáticas, Av. Universidad, Cd. Universitaria, San Nicolás de los Garza, NL (Mexico); Centro de Investigación en Innovación y Desarrollo en Ingeniería y Tecnología, Universidad Autónoma de Nuevo León, PIIT, Apodaca, Nuevo León 66600 (Mexico)

    2017-06-15

    Controlling size and shape of hybrid nanostructures is technologically important because of the strong effect of nanostructure dimension and morphology on optoelectronic, biosensors and catalytic properties. Here, we have demonstrated a simple strategy for simultaneous control of morphology, defect engineering and photocatalytic activities of reduced graphene oxide:zinc oxide (rGO:ZnO) hybrid nanostructures which were prepared by using low frequency (42 kHz) ultrasound. By varying the solvents, the morphology of ZnO gradually evolved from spherical shape to a star like nature and the ZnO nanoparticles decorated on reduced graphene oxide were clearly observed in the TEM analysis. Absorption, photoluminescence, Raman and FTIR spectra clearly indicated the formation of rGO:ZnO hybrid nanostructures. Thermal analysis revealed that the hybrid nanostructures exhibited a good thermal stability. The synergistic integration of the unique morphology and size imparts the rGO:ZnO hybrid nanostructures with remarkably enhanced photocatalytic efficiency when compared with bare ZnO. The enhanced photocatalytic behaviour of the rGO:ZnO composite has been discussed in details herein. Simple and facile synthesis route demonstrated the potential for the utilization of rGO:ZnO hybrid nanostructures with unique properties for environmental engineering applications.

  1. Preparation and characterization of ZnO films by modified SILAR method

    International Nuclear Information System (INIS)

    Zhang Ling; Liu Jie; Hou Mingdong; Sun Youmei; Duan Jinlai; Yao Huijun; Mo Dan; Chen Yanfeng

    2009-01-01

    A modified solution method, successive ionic layer adsorption and reaction(SILAR), was applied to prepare transparent zinc oxide(ZnO) film on glass substrate at (125±5) degree C in mixed ion precursor solution. The surface morphology and crystallization of films were analyzed by field emission scanning microscopy (FESEM) and X-ray diffraction(XRD), respectively. The optical properties of the films were studied by ultraviolet visible(UV-Vis)spectroscopy. The results show that the obtained samples are polycrystalline films of hexagonal wurtzite structure, with the preference of [002] orientation. The as-deposited films exhibit uniform and compact surface morphology, with the film thickness of 550 nm, and have high transmittance in the visible band(>80%). (authors)

  2. Synthesis and characterization of ZnO thin film by low cost modified SILAR technique

    Directory of Open Access Journals (Sweden)

    Haridas D. Dhaygude

    2016-03-01

    Full Text Available The ZnO thin film is prepared on Fluorine Tin Oxide (FTO coated glass substrate by using SILAR deposition technique containing ZnSO4.7H2O and NaOH as precursor solution with 150 deeping cycles at 70 °C temperature. Nanocrystalline diamond like ZnO thin film is characterized by different characterization techniques such as X-ray diffraction (XRD, Fourier transform (FT Raman spectrometer, Field Emission Scanning Electron Microscopy (FE-SEM with Energy dispersive X-Ray Analysis (EDAX, optical absorption, surface wettability and photoelectrochemical cell performance measurement. The X-ray diffraction analysis shows that the ZnO thin film is polycrystalline in nature having hexagonal crystal structure. The FT-Raman scattering exhibits a sharp and strong mode at 383 cm−1 which confirms hexagonal ZnO nanostructure. The surface morphology study reveals that deposited ZnO film consists of nanocrystalline diamond like morphology all over the substrate. The synthesized thin film exhibited absorption wavelength around 309 nm. Optical study predicted the direct band gap and band gap energy of this film is found to be 3.66 eV. The photoelectrochemical cell (PEC parameter measurement study shows that ZnO sample confirmed the highest values of, short circuit current (Isc - 629 mAcm−2, open circuit voltage (Voc - 878 mV, fill factor (FF - 0.48, and maximum efficiency (η - 0.89%, respectively.

  3. Highly mesoporous α-Fe2O3 nanostructures: preparation, characterization and improved photocatalytic performance towards Rhodamine B (RhB)

    International Nuclear Information System (INIS)

    Bharathi, S; Nataraj, D; Mangalaraj, D; Masuda, Y; Senthil, K; Yong, K

    2010-01-01

    Single-crystalline porous hematite nanorods and spindle-like nanostructures were successfully synthesized by a low temperature reflux condensation method. Two different iron sources, namely, FeCl 3 ·6H 2 O and Fe(NO 3 ) 3 ·9H 2 O, were hydrolyzed in the presence of urea to selectively prepare nanorods and spindle-like nanostructures. Initially, the akagenite phase was obtained by refluxing the precursor for 12 h and then the as-prepared akagenite nanostructures were transformed to porous hematite nanostructures upon calcination at 300 0 C for 1 h. The shape and the aspect ratio of the 12 h refluxed sample was retained even after calcination and this shows the topotactic transformation of the nanostructure. TEM and HRTEM investigations have shown the porous nature of the prepared sample. Brunauer-Emmett-Teller and Barret-Joyner-Halenda measurements have shown a large surface area and distribution of mesopores in the nanorods sample. The photocatalytic activity of the prepared nanostructures towards RhB has reflected this variation in the pore size distribution and specific surface area, by showing a higher activity for the nanorods sample. Magnetic studies by VSM have shown a weak ferromagnetic behaviour in both the samples due to shape anisotropy.

  4. Highly mesoporous {alpha}-Fe{sub 2}O{sub 3} nanostructures: preparation, characterization and improved photocatalytic performance towards Rhodamine B (RhB)

    Energy Technology Data Exchange (ETDEWEB)

    Bharathi, S; Nataraj, D [Thin Films and Nanomaterials Lab, Department of Physics, Bharathiar University, Coimbatore 641046 (India); Mangalaraj, D [DRDO-BU Centre for Life Sciences, Bharathiar University, Coimbatore 641046 (India); Masuda, Y [National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan); Senthil, K [Centre for Information Materials, Pohang University of Science and Technology, Pohang (Korea, Republic of); Yong, K, E-mail: de.natraj@gmail.co [Department of Chemical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2010-01-13

    Single-crystalline porous hematite nanorods and spindle-like nanostructures were successfully synthesized by a low temperature reflux condensation method. Two different iron sources, namely, FeCl{sub 3{center_dot}}6H{sub 2}O and Fe(NO{sub 3}){sub 3{center_dot}}9H{sub 2}O, were hydrolyzed in the presence of urea to selectively prepare nanorods and spindle-like nanostructures. Initially, the akagenite phase was obtained by refluxing the precursor for 12 h and then the as-prepared akagenite nanostructures were transformed to porous hematite nanostructures upon calcination at 300 {sup 0}C for 1 h. The shape and the aspect ratio of the 12 h refluxed sample was retained even after calcination and this shows the topotactic transformation of the nanostructure. TEM and HRTEM investigations have shown the porous nature of the prepared sample. Brunauer-Emmett-Teller and Barret-Joyner-Halenda measurements have shown a large surface area and distribution of mesopores in the nanorods sample. The photocatalytic activity of the prepared nanostructures towards RhB has reflected this variation in the pore size distribution and specific surface area, by showing a higher activity for the nanorods sample. Magnetic studies by VSM have shown a weak ferromagnetic behaviour in both the samples due to shape anisotropy.

  5. Room temperature inorganic polycondensation of oxide (Cu2O and ZnO) nanoparticles and thin films preparation by the dip-coating technique

    International Nuclear Information System (INIS)

    Salek, G.; Tenailleau, C.; Dufour, P.; Guillemet-Fritsch, S.

    2015-01-01

    Oxide thin solid films were prepared by dip-coating into colloidal dispersions of oxide nanoparticles stabilized at room temperature without the use of chelating or complex organic dispersing agents. Crystalline oxide nanoparticles were obtained by inorganic polycondensation and characterized by X-ray diffraction and field emission gun scanning electron microscopy. Water and ethanol synthesis and solution stabilization of oxide nanoparticle method was optimized to prepare two different structural and compositional materials, namely Cu 2 O and ZnO. The influence of hydrodynamic parameters over the particle shape and size is discussed. Spherical and rod shape nanoparticles were formed for Cu 2 O and ZnO, respectively. Isoelectric point values of 7.5 and 8.2 were determined for cuprous and zinc oxides, respectively, after zeta potential measurements. A shear thinning and thixotropic behavior was observed in both colloidal sols after peptization at pH ~ 6 with dilute nitric acid. Every colloidal dispersion stabilized in a low cost and environmentally friendly azeotrope solution composed of 96 vol.% of ethanol with water was used for the thin film preparation by the dip-coating technique. Optical properties of the light absorber cuprous oxide and transparent zinc oxide thin solid films were characterized by means of transmittance and reflectance measurements (300–1100 nm). - Highlights: • Room temperature inorganic polycondensation of crystalline oxides • Water and ethanol synthesis and solution stabilization of oxide nanoparticles • Low cost method for thin solid film preparation

  6. Room temperature inorganic polycondensation of oxide (Cu{sub 2}O and ZnO) nanoparticles and thin films preparation by the dip-coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Salek, G.; Tenailleau, C., E-mail: tenailleau@chimie.ups-tlse.fr; Dufour, P.; Guillemet-Fritsch, S.

    2015-08-31

    Oxide thin solid films were prepared by dip-coating into colloidal dispersions of oxide nanoparticles stabilized at room temperature without the use of chelating or complex organic dispersing agents. Crystalline oxide nanoparticles were obtained by inorganic polycondensation and characterized by X-ray diffraction and field emission gun scanning electron microscopy. Water and ethanol synthesis and solution stabilization of oxide nanoparticle method was optimized to prepare two different structural and compositional materials, namely Cu{sub 2}O and ZnO. The influence of hydrodynamic parameters over the particle shape and size is discussed. Spherical and rod shape nanoparticles were formed for Cu{sub 2}O and ZnO, respectively. Isoelectric point values of 7.5 and 8.2 were determined for cuprous and zinc oxides, respectively, after zeta potential measurements. A shear thinning and thixotropic behavior was observed in both colloidal sols after peptization at pH ~ 6 with dilute nitric acid. Every colloidal dispersion stabilized in a low cost and environmentally friendly azeotrope solution composed of 96 vol.% of ethanol with water was used for the thin film preparation by the dip-coating technique. Optical properties of the light absorber cuprous oxide and transparent zinc oxide thin solid films were characterized by means of transmittance and reflectance measurements (300–1100 nm). - Highlights: • Room temperature inorganic polycondensation of crystalline oxides • Water and ethanol synthesis and solution stabilization of oxide nanoparticles • Low cost method for thin solid film preparation.

  7. Preparation of ZnO film on p-Si and I-V characteristics of p-Si/n-ZnO

    Directory of Open Access Journals (Sweden)

    Shampa Mondal

    2012-01-01

    Full Text Available Zinc oxide (ZnO thin films were deposited on p-silicon (Si substrate from ammonium zincate bath following a chemical dipping technique called SILAR. Films in the thickness range 0.5-4.5 µm could be prepared by varying the number of dipping for a fixed concentration (0.125 M of zincate bath and fixed pH (11.00-11.10. Higher values of dipping produced nonadherent and poor quality films. Structural characterization by X-ray diffraction (XRD indicates the formation of polycrystalline single phase ZnO with strong c-axis orientation. The structural characteristics of the films were found to be a sensitive function of film thickness. The degree of orientation was found to be a function of film thickness and a maximum was found at around 2.2 µm. Scanning electron microscopy (SEM reveals the formation of sub-micrometer crystallites on silicon substrate. The coverage of crystallites (grains on substrate surface increases with number of dipping. Dense film containing grains distributed throughout the surface is obtained at large thicknesses. The ohmic nature of silver (Ag on ZnO and Aluminum (Al on p-Si was confirmed by I-V measurements. I-V characteristic of the p-Si/n-ZnO heterojunction was studied and rectification was observed. The maximum value of forward to reverse current ratio was ~15 at 3.0 V.

  8. Preparation of ZnO film on p-Si and I-V characteristics of p-Si/n-ZnO

    Directory of Open Access Journals (Sweden)

    Shampa Mondal

    2013-02-01

    Full Text Available Zinc oxide (ZnO thin films were deposited on p-silicon (Si substrate from ammonium zincate bath following a chemical dipping technique called SILAR. Films in the thickness range 0.5-4.5 µm could be prepared by varying the number of dipping for a fixed concentration (0.125 M of zincate bath and fixed pH (11.00-11.10. Higher values of dipping produced nonadherent and poor quality films. Structural characterization by X-ray diffraction (XRD indicates the formation of polycrystalline single phase ZnO with strong c-axis orientation. The structural characteristics of the films were found to be a sensitive function of film thickness. The degree of orientation was found to be a function of film thickness and a maximum was found at around 2.2 µm. Scanning electron microscopy (SEM reveals the formation of sub-micrometer crystallites on silicon substrate. The coverage of crystallites (grains on substrate surface increases with number of dipping. Dense film containing grains distributed throughout the surface is obtained at large thicknesses. The ohmic nature of silver (Ag on ZnO and Aluminum (Al on p-Si was confirmed by I-V measurements. I-V characteristic of the p-Si/n-ZnO heterojunction was studied and rectification was observed. The maximum value of forward to reverse current ratio was ~15 at 3.0 V.

  9. Annealing effect on the photoluminescence properties of ZnO nanorod array prepared by a PLD-assistant wet chemical method

    International Nuclear Information System (INIS)

    Wei Sufeng; Lian Jianshe; Wu Hua

    2010-01-01

    Well-aligned ZnO nanorod arrays were synthesized by a wet chemical method on the glass substrate with ZnO thin film as seed layer prepared by pulsed laser deposition. The effect of annealing temperature on the luminescence characteristics was investigated. As the annealing temperature increased, the photoluminescence properties show a general enhancing tendency. The nanorod array with high ultraviolet emission and negligible visible light emission (designated by the photoluminescence intensity ratio of ultraviolet to visible emission of 66.4) is obtained by annealing the sample at 700 deg. C for 1 h. Based on the results of X-ray photoelectron spectroscopy and photoluminescence spectra, the mechanisms of visible emission were discussed. - Research Highlights: → ZnO nanorod array with good crystallography, low defects concentration and good optical property was obtained after annealed at 700 deg. C for 1 h. → The transition from the conduction band to the O i level may be responsible for the yellow-green emission. → The yellow emission may originate from the presence of Zn(OH) 2 on the surface or the band transition from conduction band to V o Zn i level. → The transition from the Zn i level to the level should produce an orange emission or an orange-red emission.

  10. The Effect of Solvents, Acetone, Water, and Ethanol, on the Morphological and Optical Properties of ZnO Nanoparticles Prepared by Microwave

    Directory of Open Access Journals (Sweden)

    Phindile B. Khoza

    2012-01-01

    Full Text Available HDA-capped ZnO nanoparticles were prepared by solvothermal method using solvents of different polarities. A number of parameters were kept constant such as temperature, pressure, time, and pH while solvents were varied, that is, water, ethanol, and acetone. The TEM was used for the structural properties and morphologies such as spheres, mixture of rods, and spheres and stars were obtained in ethanol, acetone, and water, respectively, in a given reaction time of 15 minutes. Both ethanol and acetone gave rods with high aspect ratio primarily because of the lengths of the rods. Water and ethanol have the hydroxyl groups which interact with nanoparticles from nucleation, growth, and termination giving rise to nonspherical shapes. The hydroxyl group promotes growth in a nonuniform way resulting in stars and rods. The optical features were typical of ZnO nanoparticles with excitonic peaks in the range 368 to 374 nm from their absorption spectra. The XRD patterns of the particles gave the most stable form of ZnO which is the hexagonal phase, with high degree of crystallinity and with the 101 plane predominant in all solvents.

  11. Substrate type < 111 >-Cu{sub 2}O/<0001 >-ZnO photovoltaic device prepared by photo-assisted electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Zamzuri, Mohd, E-mail: zamzuri@tf.me.tut.ac.jp [Department of Mechanical Eng., Toyohashi University of Technology, 1-1 Hibari Gaoka, Tempaku, Toyohashi, Aichi 441-8580 (Japan); School of Manufacturing Eng., Universiti Malaysia Perlis, Kampus Tetap Pauh Putra, Jln Arau-Changlun, 02600 Arau, Perlis (Malaysia); Sasano, Junji [Department of Mechanical Eng., Toyohashi University of Technology, 1-1 Hibari Gaoka, Tempaku, Toyohashi, Aichi 441-8580 (Japan); Mohamad, Fariza Binti [Faculty of Electrical & Electronic Eng., University Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor (Malaysia); Izaki, Masanobu [Department of Mechanical Eng., Toyohashi University of Technology, 1-1 Hibari Gaoka, Tempaku, Toyohashi, Aichi 441-8580 (Japan)

    2015-11-30

    The substrate-type < 0001 > ZnO/<111 > Cu{sub 2}O photovoltaic (PV) device has been constructed by electrodeposition of a < 111 >-p-Cu{sub 2}O layer on an Au(111)/Si wafer substrate followed by stacking the n-ZnO layer by electrodeposition during light irradiation in aqueous solutions. The PV device was fabricated by stacking the Al:ZnO-window by sputtering and the top Al electrode by vacuum evaporation. The < 0001 >-ZnO layer was composed of aggregates of hexagonal columnar grains grown in the direction normal to the surface, and pores could be observed between the ZnO grains at the deposition time last 1800 s. The < 0001 >-ZnO/<111 >-Cu{sub 2}O PV device showed a photovoltaic performance under AM1.5 illumination, and showed the improved short-circuit current density of 5.87 mA cm{sup −2} by stacking the AZO-TCO due to the increase in the diffusion length of the carrier. - Highlights: • Substrate type ZnO/Cu{sub 2}O photovoltaic devices only by electrodeposition • ZnO layer was stacked on the Cu{sub 2}O layer by photo-assisted electrodeposition. • AZO/ZnO/Cu{sub 2}O photovoltaic devices with a short-circuit current density of 5.87 mA cm{sup −2}.

  12. Effect of precursor concentration on the structural and optical properties of ZnO nanorods prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Lestari, Amie; Iwan, S.; Djuhana, Dede; Imawan, Cuk; Harmoko, Adhi; Fauzia, Vivi

    2016-01-01

    Zinc oxide (ZnO) nanorods has attractive properties for nanoscale optoelectronic applications, such as optical sensors, ultraviolet laser diodes, and photodetectors. ZnO nanorods, can be fabricated by simple and low cost chemical approach, such as hydrothermal method. In this method, the morphology, microstructure, optical and electrical properties of ZnO nanorods are highly determined by process parameters such as solvent, deposition time, deposition temperature as well as annealing condition. In this paper we report the fabrication of ZnO nanorods that were grown on transparent conducting indium tin oxide coated glass substrates. Initially, ZnO seed layers were deposited on heated substrates with temperature of 450 °C using ultrasonic spray pyrolysis method with frequency of 1.7 MHz and then grown by hydrothermal method with three different precursor concentrations, namely 0.02 M, 0.06 M, and 0.1 M. The surface morphology and structure were investigated by field emission scanning electron microscope (FESEM) and x-ray diffraction (XRD), while the optical properties were observed by photoluminescence (PL) and and UV VIS reflectance spectroscopy.

  13. Passivation properties of alumina for multicrystalline silicon nanostructure prepared by spin-coating method

    Science.gov (United States)

    Jiang, Ye; Shen, Honglie; Yang, Wangyang; Zheng, Chaofan; Tang, Quntao; Yao, Hanyu; Raza, Adil; Li, Yufang; Huang, Chunlai

    2018-02-01

    In this paper, we report passivation properties of inverted pyramidal nanostructure based multi-crystalline silicon (mc-Si) by Al2O3 films with spin-coating method. Precursors AlCl3 and Al(acac)3 for Al2O3 films were chosen for comparison. Al2O3/SiO x stacks were found to be able to passivate the nanostructured surface well. With the number of spin-coating up to five, the Al2O3 films could conformally attach the nanostructure. The weighted average reflectance values (ranging from 400-900 nm) of the passivated silicon surface could be reduced to 10.74% (AlCl3) and 11.12% (Al(acac)3), and the effective carrier lifetime could reach 7.84 and 16.98 μs, respectively. This work presented a potential process to fabricate low cost high efficiency mc-Si solar cells.

  14. Synthesis and characterization of WO3 nanostructures prepared by an aged-hydrothermal method

    International Nuclear Information System (INIS)

    Huirache-Acuna, R.; Paraguay-Delgado, F.; Albiter, M.A.; Lara-Romero, J.; Martinez-Sanchez, R.

    2009-01-01

    Nanostructures of tungsten trioxide (WO 3 ) have been successfully synthesized by using an aged route at low temperature (60 deg. C) followed by a hydrothermal method at 200 deg. C for 48 h under well controlled conditions. The material was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Specific Surface Area (S BET ) were measured by using the BET method. The lengths of the WO 3 nanostructures obtained are between 30 and 200 nm and their diameters are from 20 to 70 nm. The growth direction of the tungsten oxide nanostructures was determined along [010] axis with an inter-planar distance of 0.38 nm.

  15. A simple route to vertical array of quasi-1D ZnO nanofilms on FTO surfaces: 1D-crystal growth of nanoseeds under ammonia-assisted hydrolysis process

    Directory of Open Access Journals (Sweden)

    Abd Rahman Mohd Yusri

    2011-01-01

    Full Text Available Abstract A simple method for the synthesis of ZnO nanofilms composed of vertical array of quasi-1D ZnO nanostructures (quasi-NRs on the surface was demonstrated via a 1D crystal growth of the attached nanoseeds under a rapid hydrolysis process of zinc salts in the presence of ammonia at room temperature. In a typical procedure, by simply controlling the concentration of zinc acetate and ammonia in the reaction, a high density of vertically oriented nanorod-like morphology could be successfully obtained in a relatively short growth period (approximately 4 to 5 min and at a room-temperature process. The average diameter and the length of the nanostructures are approximately 30 and 110 nm, respectively. The as-prepared quasi-NRs products were pure ZnO phase in nature without the presence of any zinc complexes as confirmed by the XRD characterisation. Room-temperature optical absorption spectroscopy exhibits the presence of two separate excitonic characters inferring that the as-prepared ZnO quasi-NRs are high-crystallinity properties in nature. The mechanism of growth for the ZnO quasi-NRs will be proposed. Due to their simplicity, the method should become a potential alternative for a rapid and cost-effective preparation of high-quality ZnO quasi-NRs nanofilms for use in photovoltaic or photocatalytics applications. PACS: 81.07.Bc; 81.16.-c; 81.07.Gf.

  16. Combined sonochemical/CVD method for preparation of nanostructured carbon-doped TiO{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Rasoulnezhad, Hossein [Semiconductor Department, Materials and Energy Research Center (MERC), Karaj (Iran, Islamic Republic of); Kavei, Ghassem, E-mail: kaveighassem@gmail.com [Semiconductor Department, Materials and Energy Research Center (MERC), Karaj (Iran, Islamic Republic of); Ahmadi, Kamran [Semiconductor Department, Materials and Energy Research Center (MERC), Karaj (Iran, Islamic Republic of); Rahimipour, Mohammad Reza [Ceramic Department, Materials and Energy Research Center (MERC), Karaj (Iran, Islamic Republic of)

    2017-06-30

    Highlights: • Combination of sonochemical and CVD methods for preparation of nanostructured carbon-doped TiO{sub 2} thin film on glass substrate, for the first time. • High transparency, monodispersity and homogeneity of the prepared thin films. • Preparation of the carbon-doped TiO{sub 2} thin films with nanorod and nanosphere morphologies. - Abstract: The present work reports the successful synthesis of the nanostructured carbon-doped TiO{sub 2} thin films on glass substrate by combination of chemical vapor deposition (CVD) and ultrasonic methods, for the first time. In this method the ultrasound waves act as nebulizer for converting of sonochemically prepared TiO{sub 2} sol to the mist particles. These mist particles were thermally decomposed in subsequent CVD chamber at 320 °C to produce the carbon-doped TiO{sub 2} thin films. The obtained thin films were characterized by means of X-ray Diffraction (XRD), Raman spectroscopy, diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) techniques. The results show that the prepared thin films have anatase crystal structure and nanorod morphology, which calcination of them at 800 °C results in the conversion of nanorods to nanoparticles. In addition, the prepared samples have high transparency, monodispersity and homogeneity. The presence of the carbon element in the structure of the thin films causes the narrowing of the band-gap energy of TiO{sub 2} to about 2.8 eV, which results in the improvement of visible light absorption capabilities of the thin film.

  17. Preparation of Aligned ZnO Nanorod Arrays on Sn-Doped ZnO Thin Films by Sonicated Sol-Gel Immersion Fabricated for Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    I. Saurdi

    2014-01-01

    Full Text Available Aligned ZnO Nanorod arrays are deposited on the Sn-doped ZnO thin film via sonicated sol-gel immersion method. The structural, optical, and electrical properties of the Sn-doped ZnO thin films were investigated. Results show that the Sn-doped ZnO thin films with small grain size (~20 nm, high average transmittance (96% in visible region, and good resistivity 7.7 × 102 Ω·cm are obtained for 2 at.% Sn doping concentration. The aligned ZnO nanorod arrays with large surface area were also obtained for 2 at.% Sn-doped ZnO thin film. They were grown on sol-gel derived Sn-doped ZnO thin film, which acts as a seed layer, via sonicated sol-gel immersion method. The grown aligned ZnO nanorod arrays show high transmittance at visible region. The fabricated dye-sensitised solar cell based on the 2.0 at.% Sn-doped ZnO thin film with aligned ZnO nanorod arrays exhibits improved current density, open-circuit voltage, fill factor, and conversion efficiency compared with the undoped ZnO and 1 at.% Sn-doped ZnO thin films.

  18. Preparation of nanostructured ZrO2 thin films by using spray pyrolysis technique for gas sensing application

    International Nuclear Information System (INIS)

    Deshmukh, S.B.; Bari, R.H.; Jain, G.H.

    2013-01-01

    In present work the nano-structured pure ZrO 2 thin films were prepared using spray pyrolysis techniques. The aqueous solution of ZrCl 4 , was used as a precursor with flow rate controlled 5 mI/min. The films were synthesized on glass substrate between temperature 250-400℃ and subjected to different analytical characterization like SEM, XRD, TEM, FTIR, UV, TGA-DTA/DSC. The gas sensing performances of various gases were tested in different operating temperature range. The sensitivity, selectivity, response and recovery time for H 2 S gas was discussed. Also nano structured grain size discussed. (author)

  19. Preparation of ZnO film on p-Si and I-V characteristics of p-Si/n-ZnO

    OpenAIRE

    Mondal, Shampa; Kanta, Kalyani Prasad; Mitra, Partha

    2012-01-01

    Zinc oxide (ZnO) thin films were deposited on p-silicon (Si) substrate from ammonium zincate bath following a chemical dipping technique called SILAR. Films in the thickness range 0.5-4.5 µm could be prepared by varying the number of dipping for a fixed concentration (0.125 M) of zincate bath and fixed pH (11.00-11.10). Higher values of dipping produced nonadherent and poor quality films. Structural characterization by X-ray diffraction (XRD) indicates the formation of polycrystalline single ...

  20. A facile and fast route to prepare antimony (Sb) nanostructures without additives

    KAUST Repository

    Shah, M.A.

    2011-01-01

    is based on a reaction of antimony powder and pure water at ∼210 °C without using any harmful additives and amines. The XRD pattern confirmed the composition and crystallinity of the grown nanostructures. The reported method besides being organics free

  1. Microleakage and antibacterial properties of ZnO and ZnO:Ag nanopowders prepared via a sol-gel method for endodontic sealer application

    Energy Technology Data Exchange (ETDEWEB)

    Shayani Rad, M.; Kompany, A. [Ferdowsi University of Mashhad, Materials and Electroceramics Laboratory, Department of Physics, Faculty of Sciences (Iran, Islamic Republic of); Khorsand Zak, A., E-mail: alikhorsandzak@gmail.com [Esfarayen University, Nanotechnology Laboratory (Iran, Islamic Republic of); Javidi, M.; Mortazavi, S. M. [Mashhad University of Medical Sciences, Dental Material Research Centre, Department of Endodontics, Faculty of Dentistry (Iran, Islamic Republic of)

    2013-09-15

    One of the most important problems in dentistry is the microleakage, whether apical or coronal, which may cause failure of root canal therapy. The aim of this study is to prepare suitable sealer to decrease the microleakage of the root canals as well as having good antibacterial property. Pure ZnO and ZnO:Ag nanopowders were synthesized via sol gel method using gelatin as polymerization agent calcined at different temperatures of 500, 600, and 700 Degree-Sign C for 8 h. The prepared samples were characterized using X-ray diffraction and transition electron microscopy. The microleakage and antibacterial properties of the prepared samples were investigated and compared with zinc oxide eugenol (ZOE) and epoxy resin sealer (AH26), which are commonly used in dentistry as sealers. The results showed that the synthesized pure ZnO and ZnO:Ag nanopowders exhibit better microleakage and antibacterial properties in comparison with ZOE and AH26 sealers, and therefore are more suitable filling materials to be used as sealer in root canal treatment.

  2. Microleakage and antibacterial properties of ZnO and ZnO:Ag nanopowders prepared via a sol–gel method for endodontic sealer application

    International Nuclear Information System (INIS)

    Shayani Rad, M.; Kompany, A.; Khorsand Zak, A.; Javidi, M.; Mortazavi, S. M.

    2013-01-01

    One of the most important problems in dentistry is the microleakage, whether apical or coronal, which may cause failure of root canal therapy. The aim of this study is to prepare suitable sealer to decrease the microleakage of the root canals as well as having good antibacterial property. Pure ZnO and ZnO:Ag nanopowders were synthesized via sol gel method using gelatin as polymerization agent calcined at different temperatures of 500, 600, and 700 °C for 8 h. The prepared samples were characterized using X-ray diffraction and transition electron microscopy. The microleakage and antibacterial properties of the prepared samples were investigated and compared with zinc oxide eugenol (ZOE) and epoxy resin sealer (AH26), which are commonly used in dentistry as sealers. The results showed that the synthesized pure ZnO and ZnO:Ag nanopowders exhibit better microleakage and antibacterial properties in comparison with ZOE and AH26 sealers, and therefore are more suitable filling materials to be used as sealer in root canal treatment

  3. Characterization of nanostructures of ZnO and ZnMnO films deposited by successive ionic layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Jimenez-Garcia, F.N.; Espinosa-Arbelaez, D.G.; Vargas-Hernandez, C.; Real, A. del; Rodriguez-Garcia, M.E.

    2011-01-01

    ZnO and ZnMnO thin films were obtained by the successive ionic layer adsorption and reaction (SILAR) method. All thin films were deposited on glass microscope slide. A precursor solution of 0.1 M of ZnCl 2 complexed with ammonium hydroxide and water close to boiling point (92 deg. C) as a second solution was used for the ZnO films. An uncomplexed bath comprised of 0.1 M ZnCl 2 , 0.1 M MnCl 2, and a second solution of 0.1 ml of NH 4 OH with water close to boiling point was used for the ZnMnO films. The film samples were deposited by the SILAR method and annealed at 200 deg. C for 15 min. These samples were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive Spectroscopy (EDS), and Atomic Force Microscope. Atomic absorption was used to determine quantitatively the amount of Mn incorporated into the films. According to the XRD patterns these films were polycrystalline with wurtzite hexagonal structure. The morphology of the ZnO films constituted by rice-like and flower-like structures changed significantly to nanosheet structures with the Mn incorporation. The Mn inclusion in a ZnO structure was less than 4% according to the results from EDS, XRD, and atomic absorption.

  4. Characterization of nanostructures of ZnO and ZnMnO films deposited by successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Garcia, F.N. [Departamento de Fisica y Matematicas, Universidad Autonoma de Manizales, Antigua Estacion del Ferrocarril, Manizales, Caldas (Colombia); Departamento de Fisica y Quimica, Universidad Nacional de Colombia, Sede Manizales, Campus la Nubia, Manizales, Caldas (Colombia); Espinosa-Arbelaez, D.G. [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Blv. Juriquilla 3001, Juriquilla, Queretaro, C.P. 76230 (Mexico); Posgrado en Ciencia e Ingenieria Materiales, Instituto de Investigacion en Materiales, Universidad Nacional Autonoma de Mexico, Mexico DF (Mexico); Vargas-Hernandez, C. [Departamento de Fisica y Quimica, Universidad Nacional de Colombia, Sede Manizales, Campus la Nubia, Manizales, Caldas (Colombia); Real, A. del [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Blv. Juriquilla 3001, Juriquilla, Queretaro, C.P. 76230 (Mexico); Rodriguez-Garcia, M.E., E-mail: marioga@fata.unam.mx [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de