WorldWideScience

Sample records for prepared monodispersed cells

  1. Progress in Preparation of Monodisperse Polymer Microspheres

    Science.gov (United States)

    Zhang, Hongyan

    2017-12-01

    The monodisperse crosslinked polymer microspheres have attracted much attention because of their superior thermal and solvent resistance, mechanical strength, surface activity and adsorption properties. They are of wide prospects for using in many fields such as biomedicine, electronic science, information technology, analytical chemistry, standard measurement and environment protection etc. Functional polymer microspheres prepared by different methods have the outstanding surface property, quantum size effect and good potential future in applications with its designable structure, controlled size and large ratio of surface to volume. Scholars of all over the world have focused on this hot topic. The preparation method and research progress in functional polymer microspheres are addressed in the paper.

  2. Optimization of a simple technique for preparation of monodisperse poly(lactide-co-glycolide) nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Fuminori, E-mail: fuminoito@spice.ocn.ne.jp [Tokyo Metropolitan University, Department of Applied Chemistry, Graduate School of Urban Environmental Sciences (Japan)

    2016-09-15

    In this study, we report the optimization of a solvent evaporation technique for preparing monodisperse poly-(lactide-co-glycolide) (PLGA) nanospheres, from a mixture of solvents composed of ethanol and PVA solution. Various experimental conditions were investigated in order to control the particle size and size distribution of the nanospheres. In addition, nanospheres containing rifampicin (RFP, an antituberculosis drug), were prepared using PLGA of various molecular weights, to study the effects of RFP as a model hydrophobic drug. The results showed that a higher micro-homogenizer stirring rate facilitated the preparation of monodisperse PLGA nanospheres with a low coefficient of variation (~20 %), with sizes below 200 nm. Increasing the PLGA concentration from 0.1 to 0.5 g resulted in an increase in the size of the obtained nanospheres from 130 to 174 nm. The molecular weight of PLGA had little effect on the particle sizes and particle size distributions of the nanospheres. However, the drug loading efficiencies of the obtained RFP/PLGA nanospheres decreased when the molecular weight of PLGA was increased. Based on these experiments, an optimized technique was established for the preparation of monodisperse PLGA nanospheres, using the method developed by the authors.Graphical Abstract.

  3. An alternative route towards monodisperse CdS quantum dots for hybrid solar cells

    International Nuclear Information System (INIS)

    Cao, Fengfeng; Wang, Hao; Xia, Zhouhui; Dai, Xiao; Cong, Shan; Dong, Chao; Sun, Baoquan; Lou, Yanhui; Sun, Yinghui; Zhao, Jie; Zou, Guifu

    2015-01-01

    Monodisperse CdS quantum dots (QDs) are synthesized by thermal decomposition of organic complexes in the system of the cost-effective commercial 0 # diesel at 200 °C. The prepared CdS QDs have a good dispersion and high crystallization. When the CdS QDs are doped into the blends of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6)C61 (PCBM) for hybrid solar cells (HSCs), the HSCs achieve about 25% increase of power conversion efficiency in comparison to the reference device without the CdS QDs. The improvement of the cell performance mainly attributes to the increased short-circuit current density arising from the absorption enhancement in the wavelength range of 350–550 nm by introducing the synthesized CdS QDs into the P3HT: PCBM active layer. - Highlights: • Monodisperse CdS quantum dots. • A cost-effective route to synthesize crystalline CdS quantum dots. • CdS quantum dots based hybrid solar cells with power conversion efficiency enhancement

  4. An alternative route towards monodisperse CdS quantum dots for hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Fengfeng; Wang, Hao [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Xia, Zhouhui [Institute of Functional Nano and Soft Materials, Soochow University, Suzhou 215123 (China); Dai, Xiao; Cong, Shan [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Dong, Chao [Department of Chemistry and Biology, University of New Mexico, ABQ 87120 (United States); Sun, Baoquan [Institute of Functional Nano and Soft Materials, Soochow University, Suzhou 215123 (China); Lou, Yanhui, E-mail: yhlou@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Sun, Yinghui; Zhao, Jie [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Zou, Guifu, E-mail: zouguifu@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China)

    2015-01-15

    Monodisperse CdS quantum dots (QDs) are synthesized by thermal decomposition of organic complexes in the system of the cost-effective commercial 0{sup #} diesel at 200 °C. The prepared CdS QDs have a good dispersion and high crystallization. When the CdS QDs are doped into the blends of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6)C61 (PCBM) for hybrid solar cells (HSCs), the HSCs achieve about 25% increase of power conversion efficiency in comparison to the reference device without the CdS QDs. The improvement of the cell performance mainly attributes to the increased short-circuit current density arising from the absorption enhancement in the wavelength range of 350–550 nm by introducing the synthesized CdS QDs into the P3HT: PCBM active layer. - Highlights: • Monodisperse CdS quantum dots. • A cost-effective route to synthesize crystalline CdS quantum dots. • CdS quantum dots based hybrid solar cells with power conversion efficiency enhancement.

  5. Microwave Synthesis of Nearly Monodisperse Core/Multishell Quantum Dots with Cell Imaging Applications

    Directory of Open Access Journals (Sweden)

    Xu Hengyi

    2010-01-01

    Full Text Available Abstract We report in this article the microwave synthesis of relatively monodisperse, highly crystalline CdSe quantum dots (QDs overcoated with Cd0.5Zn0.5S/ZnS multishells. The as-prepared QDs exhibited narrow photoluminescence bandwidth as the consequence of homogeneous size distribution and uniform crystallinity, which was confirmed by transmission electron microscopy. A high photoluminescence quantum yield up to 80% was measured for the core/multishell nanocrystals. Finally, the resulting CdSe/Cd0.5Zn0.5S/ZnS core/multishell QDs have been successfully applied to the labeling and imaging of breast cancer cells (SK-BR3.

  6. Facile preparation and visible light photocatalytic activity of CdIn2S4 monodispersed spherical particles

    International Nuclear Information System (INIS)

    Mu Jin; Wei Qinglian; Yao Pingping; Zhao Xueling; Kang Shizhao; Li Xiangqing

    2012-01-01

    Highlights: ► CdIn 2 S 4 monodispersed spherical particles were prepared by a soft solution method. ► Mercaptoacetic acid was used as capping agent to hinder the fast crystal growth. ► Thioacetamide as sulfur source resulted in the slow growth of particles. ► CdIn 2 S 4 spheres showed high visible light photocatalytic activity. - Abstract: We developed a facile method to prepare CdIn 2 S 4 monodispersed spherical particles by using mercaptoacetic acid as capping agent and thioacetamide as sulfur source. The results indicated that the size and morphology of CdIn 2 S 4 particles were related to reaction time. The CdIn 2 S 4 spherical particles with an average size of about 236 nm and a narrow size distribution were formed after reacting for 7 h. The photocatalytic activity of as-synthesized CdIn 2 S 4 spherical particles was evaluated by the photocatalytic degradation of methyl orange under visible light illumination. The results showed that the photocatalytic activity increased with prolonging reaction time in the preparation of CdIn 2 S 4 spherical particles. The CdIn 2 S 4 spherical particles prepared after reacting for 7 h exhibited a 98% degradation efficiency of methyl orange after 15 min visible light irradiation.

  7. Monodisperse, submicrometer-scale platinum colloidal spheres with high electrocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lixue; Wang, Liang; Guo, Shaojun; Zhai, Junfeng; Dong, Shaojun; Wang, Erkang [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 130022 Jilin, Changchun (China)

    2009-02-15

    Monodisperse, submicrometer-scale platinum (Pt) colloidal spheres were prepared through a simple direct chemical reduction of p-phenylenediamine (PPD)-chloroplatinic acid (H{sub 2}PtCl{sub 6}) coordination polymer colloids. It was found that the prepared Pt colloids had the similar size and morphology with their coordination polymer precursors, and the prepared Pt colloids with rough surfaces were three-dimensional (3D) structured assemblies of high-density small Pt nanoparticles. The electrochemical experiments confirmed that the prepared Pt colloids possessed a high electrocatalytic activity towards mainly four-electron reduction of dioxygen to water, making the prepared Pt colloids potential candidates for the efficient cathode material in fuel cells. (author)

  8. Preparation of monodisperse curcumin-imprinted polymer by precipitation polymerization and its application for the extraction of curcuminoids from Curcuma longa L.

    Science.gov (United States)

    Kitabatake, Tomoko; Tabo, Hiromi; Matsunaga, Hisami; Haginaka, Jun

    2013-08-01

    A monodisperse molecularly imprinted polymer (MIP) for curcumin was first prepared by precipitation polymerization using methacrylamide (MAM) and 4-vinylpyridine as functional co-monomers, divinylbenzene as a crosslinker, and a mixture of acetonitrile and toluene as a porogen. The use of MAM as the co-monomer resulted in the formation of a monodisperse MIP and non-imprinted polymer (NIP). MIP and NIP, respectively, were monodispersed with a narrow particle size distribution (3.3 ± 0.09 and 3.5 ± 0.10 μm). In addition to shape recognition, hydrophobic and hydrogen-bonding interactions affected the retention and molecular-recognition of curcumin on the MIP. The MIP for curcumin could extract curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) in Curcuma longa L.

  9. Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer

    International Nuclear Information System (INIS)

    Yu, William W; Chang, Emmanuel; Sayes, Christie M; Drezek, Rebekah; Colvin, Vicki L

    2006-01-01

    A facile method was developed for completely transferring high quality monodisperse iron oxide nanocrystals from organic solvents to water. The as-prepared aqueous dispersions of iron oxide nanocrystals were extremely stable and could be functionalized for bioconjugation with biomolecules. These iron oxide nanocrystals showed negligible cytotoxicity to human breast cancer cells (SK-BR-3) and human dermal fibroblast cells. This method is general and versatile for many organic solvent-synthesized nanoparticles, including fluorescent semiconductor nanocrystals

  10. Preparation and characterization of monodisperse microcapsules with alginate and bentonite via external gelation technique encapsulating Pseudomonas putida Rs-198.

    Science.gov (United States)

    Li, Xuan; Wu, Zhansheng; He, Yanhui; Ye, Bang-Ce; Wang, Jun

    2017-10-01

    This paper evaluated the external gelation technique for preparing microcapsules. The microcapsules were consisted of Pseudomonas putida Rs-198 (Rs-198) core and sodium alginate (NaAlg)-bentonite (Bent) shell. Different emulsification rotation speeds and core/shell ratios were used to prepare the microcapsules of each formulation. The near-spherical microcapsules were monodisperse with a mean diameter of 25-100 μm and wrinkled surfaces. Fourier transform infrared spectrophotometry (FTIR) and thermogravimetric analysis (TGA) revealed the physical mixture of the wall material and the superior thermal stability of the microcapsules. Percentage yield, water content, and encapsulation efficiency were evaluated and correlated with the changes in emulsification rotation speed and core/shell ratio. In vitro release experiments demonstrated that 60% of the bacteria were released from the NaAlg-Bent microcapsules within three days. Considerably better survival was observed for encapsulated cells compared to free cells, especially in pH 4.0 and 10.0. In summary, the desired properties of microcapsules can be obtained by external gelation technique and the microcapsules on the bacteria had a good protective effect.

  11. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.

    Science.gov (United States)

    Hughes, Eric; Maan, Abid Aslam; Acquistapace, Simone; Burbidge, Adam; Johns, Michael L; Gunes, Deniz Z; Clausen, Pascal; Syrbe, Axel; Hugo, Julien; Schroen, Karin; Miralles, Vincent; Atkins, Tim; Gray, Richard; Homewood, Philip; Zick, Klaus

    2013-01-01

    Monodisperse water-in-oil-in-water (WOW) double emulsions have been prepared using microfluidic glass devices designed and built primarily from off the shelf components. The systems were easy to assemble and use. They were capable of producing double emulsions with an outer droplet size from 100 to 40 μm. Depending on how the devices were operated, double emulsions containing either single or multiple water droplets could be produced. Pulsed-field gradient self-diffusion NMR experiments have been performed on the monodisperse water-in-oil-in-water double emulsions to obtain information on the inner water droplet diameter and the distribution of the water in the different phases of the double emulsion. This has been achieved by applying regularization methods to the self-diffusion data. Using these methods the stability of the double emulsions to osmotic pressure imbalance has been followed by observing the change in the size of the inner water droplets over time. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. A novel approach for preparation of micrometer-sized, monodisperse dimple and hemispherical polystyrene particles.

    Science.gov (United States)

    Tanaka, Takuya; Komatsu, Yoshifumi; Fujibayashi, Teruhisa; Minami, Hideto; Okubo, Masayoshi

    2010-03-16

    Micrometer-sized, monodisperse dimple and hemispherical polystyrene (PS) particles were successfully prepared by heating (55-70 degrees C) of spherical PS particles dispersed in methanol/water media (40/60 to 80/20, w/w) in the presence of decane droplets, and subsequent cooling down to room temperature. Decane was absorbed by the PS particles during the heating process. Decane-absorbed PS particles phase-separated into PS and decane phases in the inside during the cooling process, and eventually dimple and/or hemispherical particles were formed by removal of the decane phase from phase-separated PS/decane particles by evaporation. The size of the dimple, which is determined by the volume of decane phase-separated from decane-absorbed PS particles during the cooling process, increased with increases in the heating temperature and the methanol content.

  13. Synthesis of Monodisperse Iron Oxide Nanoparticles without Surfactants

    Directory of Open Access Journals (Sweden)

    Xiao-Chen Yang

    2014-01-01

    Full Text Available Monodisperse iron oxide nanoparticles could be successfully synthesized with two kinds of precipitants through a precipitation method. As-prepared nanoparticles in the size around 10 nm with regular spherical-like shape were achieved by adjusting pH values. NaOH and NH3·H2O were used as two precipitants for comparison. The average size of nanoparticles with NH3·H2O precipitant got smaller and represented better dispersibility, while nanoparticles with NaOH precipitant represented better magnetic property. This work provided a simple method without using any organic solvents, organic metal salts, or surfactants which could easily obtain monodisperse nanoparticles with tunable morphology.

  14. Preparation and magnetic properties of magnetic photonic crystal by using monodisperse polystyrene covered Fe3O4 nanoparticles onto glass substrate

    Science.gov (United States)

    Azizi, Zahra Sadat; Tehranchi, Mohammad Mehdi; Vakili, Seyed Hamed; Pourmahdian, Saeed

    2018-05-01

    Engineering approach towards combined photonic band gap properties and magnetic/polymer composite particles, attract considerable attention of researchers due to their unique properties. In this research, two different magnetic particles were prepared by nearly monodisperse polystyrene spheres as bead with two concentrations of Fe3O4 nanoparticles to prepare magnetic photonic crystals (MPCs). The crystal surfaces and particles morphology were investigated employing scanning electron microscopy and transmission electron microscopy. The volume fraction of magnetic material embedded into colloidal spheres and their morphology was found to be a key parameter in the optical and magneto-optical properties of transparent MPC.

  15. Organic inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica)

    Science.gov (United States)

    Rubio, E.; Almaral, J.; Ramírez-Bon, R.; Castaño, V.; Rodríguez, V.

    2005-04-01

    Polymethylmethacrylate-silica hybrid coatings were prepared from methyl methacrylate and monodisperse colloidal silica prepared by the Stöber method. The surfaces of the spheres were successfully modified by chemical reaction with 3-(trimethoxysilyl) propyl methacrylate (TMSPM) to compatibilise the organic and inorganic components of the precursor solution mixture. The coatings were deposited by dip-coating on glass substrates. They result with good properties of homogeneity, optical transparence, hardness and adhesion.

  16. Application of monodisperse fibers and discs to evaluation of the aerodynamic particle sizer

    International Nuclear Information System (INIS)

    Hoover, M.D.; Lipowicz, P.J.; Hanson, R.W.; Yeh, H.C.; Casalnuovo, S.A.

    1988-01-01

    Monodisperse fibers, μm in width and lengths of 5, 10, 20, and 40 μm, as well as monodisperse discs, 2 4 8, or 12 μm in diameter, were prepared using an integrated circuit microchip fabrication technique. Particles were silicon dioxide with thickness of 1 μm. Examination of the particles using a scanning electron microscope showed that they were uniform in shape, with well-defined edges. The particles were suspended in distilled water and aerosolized with a Lovelace nebullizer. The monodisperse particles were used to evaluate the TSI Aerodynamic Particle Sizer (APS). Carbon fibers that were monodisperse in diameter (count median diameter 3.42 μm, geometric standard deviation 1.06) and polydisperse in length (count median length = 28 μm, geometric standard deviation 2.2) were also used. The APS was found to be insensitive to fiber length and only weakly sensitive to disc diameter. (author)

  17. Preparation of spherical silver particles for solar cell electronic paste with gelatin protection

    International Nuclear Information System (INIS)

    Ao Yiwei; Yang Yunxia; Yuan Shuanglong; Ding Lihua; Chen Guorong

    2007-01-01

    Spherical silver particles used in electronic paste for solar cell were prepared using the chemical reduction method with ammonia as a complex agent, hydrazine hydrate as a reducing agent, and gelatin as a protective agent. The gelatin protective mechanism in the preparing process of spherical silver particles was studied. Observations of SEM and results of laser particle size analysis and ultraviolet absorption spectra demonstrate the formation of the coordinative complex of silver ions with gelatin in aqueous solution which accelerated the reduction of silver ions. Moreover, gelatin can promote the nucleation of the metallic silver particles, thus beneficiating availability of the monodisperse spherical silver particles

  18. Microwave Synthesized Monodisperse CdS Spheres of Different Size and Color for Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Carlos A. Rodríguez-Castañeda

    2015-01-01

    Full Text Available Monodisperse CdS spheres of size of 40 to 140 nm were obtained by microwave heating from basic solutions. It is observed that larger CdS spheres were formed at lower solution pH (8.4–8.8 and smaller ones at higher solution pH (10.8–11.3. The color of CdS products changed with solution pH and reaction temperature; those synthesized at lower pH and temperature were of green-yellow color, whereas those formed at higher pH and temperature were of orange-yellow color. A good photovoltage was observed in CdS:poly(3-hexylthiophene solar cells with spherical CdS particles. This is due to the good dispersion of CdS nanoparticles in P3HT solution that led to a large interface area between the organic and inorganic semiconductors. Higher photocurrent density was obtained in green-yellow CdS particles of lower defect density. The efficient microwave chemistry accelerated the hydrolysis of thiourea in pH lower than 9 and produced monodisperse spherical CdS nanoparticles suitable for solar cell applications.

  19. Preparation of size-tunable, highly monodisperse PVP-protected Pt-nanoparticles by seed-mediated growth

    International Nuclear Information System (INIS)

    Koebel, Matthias M.; Jones, Louis C.; Somorjai, Gabor A.

    2008-01-01

    We demonstrate a preparative method which produces highly monodisperse Pt-nanoparticles of tunable size without the external addition of seed particles. Hexachloroplatinic acid is dosed slowly to an ethylene glycol solution at 120 o C and reduced in the presence of a stabilizing polymer poly-N-vinylpyrrolidone (PVP). Slow addition of the Pt-salt will first lead to the formation of nuclei (seeds) which then grow further to produce larger particles of any desired size between 3 and 8 nm. The amount of added hexachloroplatinic acid precursor controls the size of the final nanoparticle product. TEM was used to determine size and morphology and to confirm the crystalline nature of the nanoparticles. Good reproducibility of the technique was demonstrated. Above 7 nm, the particle shape and morphology changes suddenly indicating a change in the deposition selectivity of the Pt-precursor from (100) towards (111) crystal faces and breaking up of larger particles into smaller entities.

  20. Synthesis of Monodispersed Spherical Single Crystalline Silver Particles by Wet Chemical Process; Shisshiki kagakuho ni yoru tanbunsankyujo tankesshoginryushi no gose

    Energy Technology Data Exchange (ETDEWEB)

    Ueyama, Ryousuke.; Harada, Masahiro.; Ueyama, Tamotsu.; Harada, Akio. [Daiken Chemistry Industry Corporation, Osaka (Japan); Yamamoto, Takashi. [National Defence Academy, Kanagawa (Japan). Dept. of Electrical Engineering; Shiosaki, Tadashi. [Nara Institute of Science and Technology, Nara (Japan). Graduate School of Materials Science; Kuribayashi, Kiyoshi. [Teikyo University of Science and Technology, Yamanashi (Japan). Dept. of Materials

    1999-01-01

    Ultrafine silver monodispersed particle were prepared by wet chemical process. To decrease the reduction speed, an important factor in generating monodispersed particles is to control the following three factors: synthesis temperature, concentration of aggregation-relaxing agent added, and concentration of silver nitrate solution. Synthesis of monodispersed spherical Ag particles, used as metal powders for electrode, became possible using the nucleus grouwth reaction method. This process also allowed the control of the diameter of the powder particles. The silver particles were distributed in ta narrow particle diameter range with on average of 0.5 {mu}m. Transmission electron microscopy (TEM) revealed that single-crystalline silver particles were prepared by the present method. (author)

  1. Aerosol fabrication methods for monodisperse nanoparticles

    Science.gov (United States)

    Jiang, Xingmao; Brinker, C Jeffrey

    2014-10-21

    Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

  2. Generation of monodisperse cell-sized microdroplets using a centrifuge-based axisymmetric co-flowing microfluidic device.

    Science.gov (United States)

    Yamashita, Hitoyoshi; Morita, Masamune; Sugiura, Haruka; Fujiwara, Kei; Onoe, Hiroaki; Takinoue, Masahiro

    2015-04-01

    We report an easy-to-use generation method of biologically compatible monodisperse water-in-oil microdroplets using a glass-capillary-based microfluidic device in a tabletop mini-centrifuge. This device does not require complicated microfabrication; furthermore, only a small sample volume is required in experiments. Therefore, we believe that this method will assist biochemical and cell-biological experiments. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Preparing Monodisperse Macromolecular Samples for Successful Biological Small-Angle X-ray and Neutron Scattering Experiments

    Science.gov (United States)

    Jeffries, Cy M.; Graewert, Melissa A.; Blanchet, Clément E.; Langley, David B.; Whitten, Andrew E.; Svergun, Dmitri I

    2017-01-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume including the solvent and buffer components as well as the macromolecules of interest. In order to obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis so it is essential that the samples are pure and monodisperse for the duration of the experiment. This Protocol outlines the basic physics of SAXS and SANS and reveals how the underlying conceptual principles of the techniques ultimately ‘translate’ into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size exclusion chromatography and light scattering. Also included are procedures specific to X-rays (in-line size exclusion chromatography SAXS) and neutrons, specifically preparing samples for contrast matching/variation experiments and deuterium labeling of proteins. PMID:27711050

  4. Synthesis and characterization of monodispersed silver nanoparticles

    Science.gov (United States)

    Jegatha Christy, A.; Umadevi, M.

    2012-09-01

    Synthesis of silver nanoparticles (NPs) has become a fascinating and important field of applied chemical research. In this paper silver NPs were prepared using silver nitrate (AgNO3), gelatin, and cetyl trimethyl ammonium bromide (CTAB). The prepared silver NPs were exposed under the laser ablation. In our photochemical procedure, gelatin acts as a biopolymer and CTAB acts as a reducing agent. The appearance of surface plasmon band around 410 nm indicates the formation of silver NPs. The nature of the prepared silver NPs in the face-centered cubic (fcc) structure are confirmed by the peaks in the x-ray diffraction (XRD) pattern corresponding to (111), (200), (220) and (311) planes. Monodispersed, stable, spherical silver NPs with diameter about 10 nm were obtained and confirmed by high-resolution transmission electron microscope (HRTEM).

  5. Synthesis and characterization of monodispersed silver nanoparticles

    International Nuclear Information System (INIS)

    Christy, A Jegatha; Umadevi, M

    2012-01-01

    Synthesis of silver nanoparticles (NPs) has become a fascinating and important field of applied chemical research. In this paper silver NPs were prepared using silver nitrate (AgNO 3 ), gelatin, and cetyl trimethyl ammonium bromide (CTAB). The prepared silver NPs were exposed under the laser ablation. In our photochemical procedure, gelatin acts as a biopolymer and CTAB acts as a reducing agent. The appearance of surface plasmon band around 410 nm indicates the formation of silver NPs. The nature of the prepared silver NPs in the face-centered cubic (fcc) structure are confirmed by the peaks in the x-ray diffraction (XRD) pattern corresponding to (111), (200), (220) and (311) planes. Monodispersed, stable, spherical silver NPs with diameter about 10 nm were obtained and confirmed by high-resolution transmission electron microscope (HRTEM). (paper)

  6. Synthesis and characterization of monodispersed orthorhombic manganese oxide nanoparticles produced by Bacillus sp. cells simultaneous to its bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Arvind [Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110 016 (India); Singh, Vidya Nand; Mehta, Bodh Raj [Thin Film Laboratory, Department of Physics, Indian Institute of Technology, Delhi Hauz Khas, New Delhi 110016 (India); Khare, Sunil Kumar, E-mail: skhare@rocketmail.com [Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110 016 (India)

    2011-08-30

    Highlights: {yields} An efficient process wherein remediated manganese is synthesized into nanoparticles. {yields} A microbial process for manganese nanoparticle synthesis from metal waste streams. {yields} Nanoparticles characterized as monodispersed, spherical and 4.62 {+-} 0.14 nm sized MnO{sub 2}. -- Abstract: A heavy metal resistant strain of Bacillus sp. (MTCC10650) is reported. The strain exhibited the property of bioaccumulating manganese, simultaneous to its remediation. The nanoparticles thus formed were characterized and identified using energy dispersive X-ray analysis (EDAX), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD) and atomic force microscopy (AFM). When the cells were challenged with manganese, the cells effectively synthesized nanoparticles of average size 4.62 {+-} 0.14 nm. These were mostly spherical and monodispersed. The ex situ enzymatically synthesized nanoparticles exhibited an absorbance maximum at 329 nm. These were more discrete, small and uniform, than the manganese oxide nanoparticles recovered after cell sonication. The use of Bacillus sp. cells seems promising and advantageous approach. Since, it serves dual purposes of (i) remediation and (ii) nanoparticle synthesis. Considering the increasing demand of developing environmental friendly and cost effective technologies for nanoparticle synthesis, these cells can be exploited for the remediation of manganese from the environment in conjunction with development of a greener process for the controlled synthesis of manganese oxide nanoparticles.

  7. Synthesis and characterization of monodispersed orthorhombic manganese oxide nanoparticles produced by Bacillus sp. cells simultaneous to its bioremediation

    International Nuclear Information System (INIS)

    Sinha, Arvind; Singh, Vidya Nand; Mehta, Bodh Raj; Khare, Sunil Kumar

    2011-01-01

    Highlights: → An efficient process wherein remediated manganese is synthesized into nanoparticles. → A microbial process for manganese nanoparticle synthesis from metal waste streams. → Nanoparticles characterized as monodispersed, spherical and 4.62 ± 0.14 nm sized MnO 2 . -- Abstract: A heavy metal resistant strain of Bacillus sp. (MTCC10650) is reported. The strain exhibited the property of bioaccumulating manganese, simultaneous to its remediation. The nanoparticles thus formed were characterized and identified using energy dispersive X-ray analysis (EDAX), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD) and atomic force microscopy (AFM). When the cells were challenged with manganese, the cells effectively synthesized nanoparticles of average size 4.62 ± 0.14 nm. These were mostly spherical and monodispersed. The ex situ enzymatically synthesized nanoparticles exhibited an absorbance maximum at 329 nm. These were more discrete, small and uniform, than the manganese oxide nanoparticles recovered after cell sonication. The use of Bacillus sp. cells seems promising and advantageous approach. Since, it serves dual purposes of (i) remediation and (ii) nanoparticle synthesis. Considering the increasing demand of developing environmental friendly and cost effective technologies for nanoparticle synthesis, these cells can be exploited for the remediation of manganese from the environment in conjunction with development of a greener process for the controlled synthesis of manganese oxide nanoparticles.

  8. Production of Monodisperse Nanoparticles and Application of Discrete-Monodisperse Model in Plasma Reactors

    International Nuclear Information System (INIS)

    Kim, Dong-Joo; Kim, Kyo-Seon; Zhao, Qian-Qiu

    2003-01-01

    The particle growth in plasma reactor were investigated by using the discrete-monodisperse (D-M) model for various process conditions. The monodisperse large sized particle distribution predicted by the D-M model are in good agreement with the large sized particles by the discrete-sectional model and also in the experiments by Shiratani et al. (1996). Some fractions of the small size particles are in a neutral state or even charged positively, but most of the large sized monodisperse particles are charged negatively. As the mass generation rate of monomers increases, the large sized particles grow more quickly and the production rate of nanoparticles of 100nm by plasma reactor increases. As the initial electron concentration or the monomer diameter increases, it takes longer time for the large sized particles to grow up to 100nm, but the large sized particle concentration of 100nm increases and the resulting production rate of large sized particles of 100nm increases. As the residence time increases, the time for the large sized particles to grow up to 100nm decreases and the large sized particle concentration of 100nm increases and, as a result, the production rate of large sized particles of 100nm increases. We propose that the plasma reactor can be a good candidate to produce monodisperse nanoparticles

  9. Fabrication of monodisperse magnetic nanoparticles released in solution using a block copolymer template

    Science.gov (United States)

    Morcrette, Mélissa; Ortiz, Guillermo; Tallegas, Salomé; Joisten, Hélène; Tiron, Raluca; Baron, Thierry; Hou, Yanxia; Lequien, Stéphane; Bsiesy, Ahmad; Dieny, Bernard

    2017-07-01

    This paper describes a fabrication process of monodisperse magnetic nanoparticles released in solution, based on combined ‘top-down’ and ‘bottom-up’ approaches. The process involves the use of a self-assembled PS-PMMA block copolymer formed on a sacrificial layer. Such an approach was so far mostly explored for the preparation of patterned magnetic media for ultrahigh density magnetic storage. It is here extended to the preparation of released monodisperse nanoparticles for biomedical applications. A special sacrificial layer had to be developed compatible with the copolymer self-organization. The resulting nanoparticles exhibit very narrow size dispersion (≈7%) and can be good candidates as contrast agents for medical imaging i.e. magnetic resonance imaging or magnetic particle imaging. The approach provides a great freedom in the choice of the particles shapes and compositions. In particular, they can be made of biocompatible magnetic material.

  10. Fabrication of monodisperse magnetic nanoparticles released in solution using a block copolymer template

    International Nuclear Information System (INIS)

    Morcrette, Mélissa; Ortiz, Guillermo; Joisten, Hélène; Dieny, Bernard; Tallegas, Salomé; Baron, Thierry; Bsiesy, Ahmad; Tiron, Raluca; Hou, Yanxia; Lequien, Stéphane

    2017-01-01

    This paper describes a fabrication process of monodisperse magnetic nanoparticles released in solution, based on combined ‘top-down’ and ‘bottom-up’ approaches. The process involves the use of a self-assembled PS-PMMA block copolymer formed on a sacrificial layer. Such an approach was so far mostly explored for the preparation of patterned magnetic media for ultrahigh density magnetic storage. It is here extended to the preparation of released monodisperse nanoparticles for biomedical applications. A special sacrificial layer had to be developed compatible with the copolymer self-organization. The resulting nanoparticles exhibit very narrow size dispersion (≈7%) and can be good candidates as contrast agents for medical imaging i.e. magnetic resonance imaging or magnetic particle imaging. The approach provides a great freedom in the choice of the particles shapes and compositions. In particular, they can be made of biocompatible magnetic material. (paper)

  11. Preparation and unique electrical behaviors of monodispersed hybrid nanorattles of metal nanocores with hairy electroactive polymer shells.

    Science.gov (United States)

    Cai, Tao; Zhang, Bin; Chen, Yu; Wang, Cheng; Zhu, Chun Xiang; Neoh, Koon-Gee; Kang, En-Tang

    2014-03-03

    A versatile template-assisted strategy for the preparation of monodispersed rattle-type hybrid nanospheres, encapsulating a movable Au nanocore in the hollow cavity of a hairy electroactive polymer shell (Au@air@PTEMA-g-P3HT hybrid nanorattles; PTEMA: poly(2-(thiophen-3-yl)ethyl methacrylate; P3HT: poly(3-hexylthiophene), was reported. The Au@silica core-shell nanoparticles, prepared by the modified Stöber sol-gel process on Au nanoparticle seeds, were used as templates for the synthesis of Au@silica@PTEMA core-double shell nanospheres. Subsequent oxidative graft polymerization of 3-hexylthiophene from the exterior surface of the Au@silica@PTEMA core-double shell nanospheres allowed the tailoring of surface functionality with electroactive P3HT brushes (Au@silica@PTEMA-g-P3HT nanospheres). The Au@air@ PTEMA-g-P3HT hybrid nanorattles were obtained after etching of the silica interlayer by HF. The as-prepared nanorattles were dispersed into an electrically insulating polystyrene matrix and for the first time used to fabricate nonvolatile memory devices. As a result, unique electrical behaviors, including insulator behavior, write-once-read-many-times and rewritable memory effects, and conductor behavior as well, were observed in the Al/Au@air@PTEMA-g-P3HT+PS/ITO (ITO: indium-tin oxide) sandwich thin-film devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Laboratory evaluation of a vibrating orifice monodisperse aerosol generator

    International Nuclear Information System (INIS)

    Everitt, N.M.; Snelling, K.W.

    1985-02-01

    The Berglund-Liu vibrating orifice aerosol generator is capable of producing monodisperse particles in the diameter range 5 to 50 μm. Experiments have been carried out to set up and evaluate such a generator for the preparation of standard liquid (olive oil) and solid (methylene blue) aerosols in the size range 8 to 13 μm. Modifications have been made to the apparatus to improve its performance and increase its particle output. (author)

  13. Synthesis of highly monodisperse particles composed of a magnetic core and fluorescent shell.

    Science.gov (United States)

    Nagao, Daisuke; Yokoyama, Mikio; Yamauchi, Noriko; Matsumoto, Hideki; Kobayashi, Yoshio; Konno, Mikio

    2008-09-02

    Highly monodisperse particles composed of a magnetic silica core and fluorescent polymer shell were synthesized with a combined technique of heterocoagulation and soap-free emulsion polymerization. Prior to heterocoagulation, monodisperse, submicrometer-sized silica particles were prepared with the Stober method, and magnetic nanoparticles were prepared with a modified Massart method in which a cationic silane coupling agent of N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride was added just after coprecipitation of Fe (2+) and Fe (3+). The silica particles with negative surface potential were heterocoagulated with the magnetic nanoparticles with positive surface potential. The magnetic silica particles obtained with the heterocoagulation were treated with sodium silicate to modify their surfaces with silica. In the formation of a fluorescent polymer shell onto the silica-coated magnetic silica cores, an amphoteric initiator of 2,2'-azobis[ N-(2-carboxyethyl)-2-2-methylpropionamidine] (VA-057) was used to control the colloidal stability of the magnetic cores during the polymer coating. The polymerization of St in the presence of a hydrophobic fluorophore of pyrene could coat the cores with fluorescent polymer shells, resulting in monodisperse particles with a magnetic silica core and fluorescent polymer shell. Measurements of zeta potential for the composite particles in different pH values indicated that the composite particles had an amphoteric property originating from VA-057 initiator.

  14. Simple and inexpensive microfluidic devices for the generation of monodisperse multiple emulsions

    KAUST Repository

    Li, Erqiang

    2013-12-16

    Droplet-based microfluidic devices have become a preferred versatile platform for various fields in physics, chemistry and biology. Polydimethylsiloxane soft lithography, the mainstay for fabricating microfluidic devices, usually requires the usage of expensive apparatus and a complex manufacturing procedure. Here, we report the design and fabrication of simple and inexpensive microfluidic devices based on microscope glass slides and pulled glass capillaries, for generating monodisperse multiple emulsions. The advantages of our method lie in a simple manufacturing procedure, inexpensive processing equipment and flexibility in the surface modification of the designed microfluidic devices. Different types of devices have been designed and tested and the experimental results demonstrated their robustness for preparing monodisperse single, double, triple and multi-component emulsions. © 2014 IOP Publishing Ltd.

  15. Inhibition of Neuroblastoma cancer cells viability by ferromagnetic Mn doped CeO_2 monodisperse nanoparticles mediated through reactive oxygen species

    International Nuclear Information System (INIS)

    Abbas, Fazal; Jan, Tariq; Iqbal, Javed; Haider Naqvi, M. Sajjad; Ahmad, Ishaq

    2016-01-01

    Here we report the Mn doping induced effects on structural, Raman, optical, magnetic and anticancer properties of CeO_2 nanoparticles prepared via soft chemical route. Structural and microstructural results infer that the synthesized nanoparticles have single phase cubic fluorite structure of CeO_2 and that Mn doping results in enhancement of the structural defects. Scanning electron microscopy results reveal the formation of monodisperse nanoparticles having average particle size ranging from 30 to 41 nm. The optical absorbance spectroscopy analysis discloses the band gap energy tailoring of CeO_2 nanoparticles via Mn doping. Room temperature ferromagnetism (RTFM) has been found in both as-prepared and Mn doped CeO_2 nanoparticles. This RTFM of the synthesized nanoparticles have been attributed to the Mn ions and surface defects such as oxygen vacancies. Finally, the influence of Mn dopant on the cell viability and reactive oxygen species (ROS) generation levels of CeO_2 nanoparticles in the presence of healthy and cancerous cells have been studied. It has been observed that the differential cytotoxicity of the synthesized nanoparticles is strongly correlated with level of ROS generation. - Highlights: • Mn doped CeO_2 nanoparticles with cubic fluorite structure were synthesized. • Mn dopant significantly tailored the band gap of CeO_2 nanoparticles. • The synthesized nanoparticles exhibited room temperature ferromagnetic behavior. • The cytotoxicity of these nanoparticles was reported for the first time. • The synthesized nanoparticles exhibited differential cytotoxicity.

  16. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhiliang; Zhang Xingye; Xin Zhiqing; Deng Mengmeng; Wen Yongqiang; Song Yanlin, E-mail: zhangxy@iccas.ac.cn, E-mail: ylsong@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Lab of Organic Solids, Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-10-21

    In this study, monodisperse silver nanoparticles were synthesized with a new reduction system consisting of adipoyl hydrazide and dextrose at ambient temperature. By this facile and rapid approach, high concentration monodisperse silver nanoparticles were obtained on a large scale at low protectant/AgNO{sub 3} mass ratio which was highly beneficial to low cost and high conductivity. Based on the synthesized monodisperse silver nanoparticles, conductive inks were prepared with water, ethanol and ethylene glycol as solvents, and were expected to be more environmentally friendly. A series of electrocircuits were fabricated by ink-jet printing silver nanoparticle ink on paper substrate with a commercial printer, and they had low resistivity in the range of 9.18 x 10{sup -8}-8.76 x 10{sup -8} {Omega} m after thermal treatment at 160 {sup 0}C for 30 min, which was about five times that of bulk silver (1.586 x 10{sup -8} {Omega} m). Moreover, a radio frequency identification (RFID) antenna was fabricated by ink-jet printing, and 6 m wireless identification was realized after an Alien higgs-3 chip was mounted on the printed antenna by the flip-chip method. These flexible electrocircuits produced by ink-jet printing would have enormous potential for low cost electrodes and sensor devices.

  17. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics

    International Nuclear Information System (INIS)

    Zhang Zhiliang; Zhang Xingye; Xin Zhiqing; Deng Mengmeng; Wen Yongqiang; Song Yanlin

    2011-01-01

    In this study, monodisperse silver nanoparticles were synthesized with a new reduction system consisting of adipoyl hydrazide and dextrose at ambient temperature. By this facile and rapid approach, high concentration monodisperse silver nanoparticles were obtained on a large scale at low protectant/AgNO 3 mass ratio which was highly beneficial to low cost and high conductivity. Based on the synthesized monodisperse silver nanoparticles, conductive inks were prepared with water, ethanol and ethylene glycol as solvents, and were expected to be more environmentally friendly. A series of electrocircuits were fabricated by ink-jet printing silver nanoparticle ink on paper substrate with a commercial printer, and they had low resistivity in the range of 9.18 x 10 -8 -8.76 x 10 -8 Ω m after thermal treatment at 160 0 C for 30 min, which was about five times that of bulk silver (1.586 x 10 -8 Ω m). Moreover, a radio frequency identification (RFID) antenna was fabricated by ink-jet printing, and 6 m wireless identification was realized after an Alien higgs-3 chip was mounted on the printed antenna by the flip-chip method. These flexible electrocircuits produced by ink-jet printing would have enormous potential for low cost electrodes and sensor devices.

  18. Preparation and thermodynamic stability of micron-sized, monodisperse composite polymer particles of disc-like shapes by seeded dispersion polymerization.

    Science.gov (United States)

    Fujibayashi, Teruhisa; Okubo, Masayoshi

    2007-07-17

    Micron-sized, monodisperse composite polymer particles having "disc-like" and "polyhedral" shapes were prepared by seeded dispersion polymerization of 2-ethylhexylmethacrylate (EHMA) with 2.67-mum-sized polystyrene (PS) seed particles in methanol/water media in the presence of droplets of various saturated hydrocarbons and evaporation of the hydrocarbon after the polymerization. Such nonspherical shapes were based on the volume reduction due to the evaporation. The primary factors influencing the particle shape seemed to be the absorption rate of the hydrocarbon into the resulting PS/poly(EHMA)/hydrocarbon composite particles during the polymerization, which affected the viscosities and the volumes of the PS and poly(EHMA) phases. It was found that the morphological development during the polymerization was retarded at "hamburger-like" morphology, which is a precursor of the disc-like particle, although this morphology is a thermodynamically metastable state.

  19. Preparation of monodisperse porous silica particles using poly(glycidyl methacrylate) microspheres as a template

    Czech Academy of Sciences Publication Activity Database

    Grama, Silvia; Horák, Daniel

    2015-01-01

    Roč. 64, Suppl. 1 (2015), S11-S17 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : microspheres * monodisperse * silica Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.643, year: 2015 http://www.biomed.cas.cz/physiolres/pdf/64%20Suppl%201/64_S11.pdf

  20. Monodispersed Zinc Oxide Nanoparticle-Dye Dyads and Triads

    Energy Technology Data Exchange (ETDEWEB)

    Gladfelter, Wayne L. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry; Blank, David A. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry; Mann, Kent R. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry

    2017-06-22

    The overall energy conversion efficiency of photovoltaic cells depends on the combined efficiencies of light absorption, charge separation and charge transport. Dye-sensitized solar cells are photovoltaic devices in which a molecular dye absorbs light and uses this energy to initiate charge separation. The most efficient dye-sensitized solar cells (DSSCs) use nanocrystal titanium dioxide films to which are attached ruthenium complexes. Numerous studies have provided valuable insight into the dynamics of these and analogous photosystems, but the lack of site homogeneity in binding dye molecules to metal oxide films and nanocrystals (NCs) is a significant impediment to extracting fundamental details about the electron transfer across the interface. Although zinc oxide is emerging as a potential semiconducting component in DSSCs, there is less known about the factors controlling charge separation across the dye/ZnO interface. Zinc oxide crystallizes in the wurtzite lattice and has a band gap of 3.37 eV. One of the features that makes ZnO especially attractive is the remarkable ability to control the morphology of the films. Using solution deposition processes, one can prepare NCs, nanorods and nanowires having a variety of shapes and dimensions. This project solved problems associated with film heterogeneity through the use of dispersible sensitizer/ZnO NC ensembles. The overarching goal of this research was to study the relationship between structure, energetics and dynamics in a set of synthetically controlled donor-acceptor dyads and triads. These studies provided access to unprecedented understanding of the light absorption and charge transfer steps that lie at the heart of DSSCs, thus enabling significant future advances in cell efficiencies. The approach began with the construction of well-defined dye-NC dyads that were sufficiently dispersible to allow the use of state of the art pulsed laser spectroscopic and kinetic methods to understand the charge transfer

  1. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen; Murray, Christopher Bruce

    2017-09-12

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.

  2. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The start-up and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 and 103 kg/mole, and for three bidisperse polystyrene melts. The monodisperse melts show a maximum in the steady elongational viscosity vs. the elongational...

  3. Inhibition of Neuroblastoma cancer cells viability by ferromagnetic Mn doped CeO{sub 2} monodisperse nanoparticles mediated through reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Fazal; Jan, Tariq [Laboratory of Nanoscience and Technology (LNT), Department of Physics, International Islamic University Islamabad (Pakistan); Iqbal, Javed, E-mail: javed.saggu@iiu.edu.pk [Laboratory of Nanoscience and Technology (LNT), Department of Physics, International Islamic University Islamabad (Pakistan); Haider Naqvi, M. Sajjad [Department of Biochemistry, University of Karachi, Karachi (Pakistan); Ahmad, Ishaq [Experimental Physics Labs, National Center for Physics, Islamabad (Pakistan)

    2016-04-15

    Here we report the Mn doping induced effects on structural, Raman, optical, magnetic and anticancer properties of CeO{sub 2} nanoparticles prepared via soft chemical route. Structural and microstructural results infer that the synthesized nanoparticles have single phase cubic fluorite structure of CeO{sub 2} and that Mn doping results in enhancement of the structural defects. Scanning electron microscopy results reveal the formation of monodisperse nanoparticles having average particle size ranging from 30 to 41 nm. The optical absorbance spectroscopy analysis discloses the band gap energy tailoring of CeO{sub 2} nanoparticles via Mn doping. Room temperature ferromagnetism (RTFM) has been found in both as-prepared and Mn doped CeO{sub 2} nanoparticles. This RTFM of the synthesized nanoparticles have been attributed to the Mn ions and surface defects such as oxygen vacancies. Finally, the influence of Mn dopant on the cell viability and reactive oxygen species (ROS) generation levels of CeO{sub 2} nanoparticles in the presence of healthy and cancerous cells have been studied. It has been observed that the differential cytotoxicity of the synthesized nanoparticles is strongly correlated with level of ROS generation. - Highlights: • Mn doped CeO{sub 2} nanoparticles with cubic fluorite structure were synthesized. • Mn dopant significantly tailored the band gap of CeO{sub 2} nanoparticles. • The synthesized nanoparticles exhibited room temperature ferromagnetic behavior. • The cytotoxicity of these nanoparticles was reported for the first time. • The synthesized nanoparticles exhibited differential cytotoxicity.

  4. Monodispersed macroporous architecture of nickel-oxide film as an anode material for thin-film lithium-ion batteries

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Lin, Ya-Ping

    2011-01-01

    A nickel-oxide film with monodispersed open macropores was prepared on a stainless-steel substrate by electrophoretic deposition of a polystyrene-sphere monolayer followed by anodic electrodeposition of nickel oxy-hydroxide. The deposited films convert to cubic nickel oxide after annealing at 400 o C for 1 h. Galvanostatic charge and discharge results indicate that the nickel-oxide film with monodispersed open macropores is capable of delivering a higher capacity than the bare nickel-oxide film, especially in high-rate charge and discharge processes. The lithiation capacity of macroporous nickel oxide reaches 1620 mA h g -1 at 1 C current discharge and decreases to 990 mA h g -1 at 15 C current discharge. The presence of monodispersed open macropores in the nickel-oxide film might facilitate the electrolyte penetration, diffusion, and migration. Electrochemical reactions between nickel oxide and lithium ions are therefore markedly improved by this tailored film architecture.

  5. Development of new ionic gelation strategy: Towards the preparation of new monodisperse and stable hyaluronic acid/β-cyclodextrin-grafted chitosan nanoparticles as drug delivery carriers for doxorubicin

    Science.gov (United States)

    Mihoub, Amina Ben; Saidat, Boubakeur; Bal, Youssef; Frochot, Céline; Vanderesse, Régis; Acherar, Samir

    2018-03-01

    In the present study, β-cyclodextrin-grafted chitosan nanoparticles (β-CD- g-CS NPs) were prepared using a new ionic gelation strategy involving a synergistic effect of NaCl (150 mmol/L), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, 10 mmol/L), and water bath sonication. This new strategy afforded smaller and more monodisperse β-CD- g-CS NPs vs. the classical ionic gelation method. New HA/β-CD- g-CS NPs were also prepared using the above-mentioned strategy by adding hyaluronic acid (HA) to the β-CD- g-CS copolymer at different weight ratios until the ZP values conversion. The best result was obtained with the weight ratio of w(HA): w(β-CD- g-CS) = 2:1 and furnished new spherical and smooth HA/β-CD- g-CS NPs. Furthermore, the stability of β- CD- g-CS NPs and HA/β-CD- g-CS NPs at 4°C in physiological medium (pH 7.4) was compared for 3 weeks period and showed that HA/β-CD- g-CS NPs were more stable all maintaining their monodispersity and high negative ZP values compared to β-CD- g-CS NPs. Finally, preliminary study of HA/β-CD- g-CS NPs as carrier for the controlled release of the anticancer drug doxorubicin was investigated. These new HA/β-CD- g-CS NPs can potentially be used as drug delivery and targeting systems for cancer treatment.

  6. Rapid Synthesis of Highly Monodisperse Au x Ag 1− x Alloy Nanoparticles via a Half-Seeding Approach

    KAUST Repository

    Chng, Ting Ting; Polavarapu, Lakshminarayana; Xu, Qing Hua; Ji, Wei; Zeng, Hua Chun

    2011-01-01

    Gold-silver alloy AuxAg1-x is an important class of functional materials promising new applications across a wide array of technological fields. In this paper, we report a fast and facile synthetic protocol for preparation of highly monodisperse Aux

  7. Optical properties of monodispersive FePt nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.; Lo, C.C.H. [Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Yu, A.C.C. [Sony Corporation, Sendai Technology Center, 3-4-1 Sakuragi, Miyagi 985-0842 (Japan); Fan, M. [Center for Sustainable Environmental Technologies, Iowa State University, Ames, IA 50011 (United States)

    2004-10-01

    The optical properties of monodispersive FePt nanoparticle films were investigated using spectroscopic ellipsometry in the energy range of 1.5 to 5.5 eV. The monodispersive FePt nanoparticle film was stabilized on a Si substrate by means of an organosilane coupling film, resulting in the formation of a (Si/SiO{sub 2}/APTS/FePt nanoparticles monolayer) structure. Multilayer optical models were employed to study the contribution of the FePt nanoparticles to the measured optical properties of the monodispersive FePt nanoparticle film, and to estimate the optical properties of the FePt nanoparticle layer. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Synthetic Polymers at Interfaces: Monodisperse Emulsions Multiple Emulsions and Liquid Marbles

    Science.gov (United States)

    Sun, Guanqing

    The adsorption of polymeric materials at interfaces is an energetically favorable process which is investigated in much diversified fields, such as emulsions, bubbles, foams, liquid marbles. Pickering emulsion, which is emulsion stabilized by solid particles has been investigated for over one century and preparation of Pickering emulsion with narrow size distribution is crucial for both the theoretical study of the stabilization mechanism and practical application, such as templated fabrication of colloidosomes. The precise control over the size and functionality of polymer latices allows the preparation of monodisperse Pickering emulsions with desired sizes through SPG membrane emulsification at rather rapid rate compared to microfludic production. Double or multiple emulsions have long been investigated but its rapid destabilization has always been a major obstacle in applying them into practical applications. The modern living polymerization techniques allow us to prepare polymers with designed structure of block copolymers which makes it possible to prepare ultra-stable multiple emulsions. The precise tuning of the ratio of hydrophobic part over the hydrophilic can unveil the stabilization mechanism. Liquid marble is a new type of materials of which liquid droplets are coated by dry particles. The coating of an outer layer of dry particles renders the liquid droplets non-sticky at solid surface which is useful in transportation of small amount of liquid without leakage at extreme low friction force. The property of liquid marbles relies largely on the stabilizers and the drying condition of polymeric latices is shown to have great influence on the property of liquid marbles. Firstly, an introduction to the interfacial and colloidal science with special attention to topics on emulsions, multiple emulsion and liquid marbles is given in Chapter 1. The unique features of an interface and a discussion on the definition of colloids are introduced prior to the

  9. The Generation And Properties Of Solid Monodisperse Aerosols Of ...

    African Journals Online (AJOL)

    A monodisperse aerosol generator (MAGE) was used to generate calibration or monodisperse aerosols containing stearic acid and carnauba wax. Some of the factors affecting the size of aerosol particles generated with the MAGE were determined. The factors include: temperature of operation of the MAGE, type and purity ...

  10. Plasma-assisted synthesis of monodispersed and robust Ruthenium ultrafine nanocatalysts for organosilane oxidation and oxygen evolution reactions

    NARCIS (Netherlands)

    Gnanakumar, E.S.; Ng, W.; Filiz, B.C.; Rothenberg, G.; Wang, S.; Xu, H.; Pastor-Pérez, L.; Pastor-Blas, M.M.; Sepúlveda-Escribano, A.; Yan, N.; Shiju, N.R.

    2017-01-01

    We report a facile and general approach for preparing ultrafine ruthenium nanocatalysts by using a plasma-assisted synthesis at <100 °C. The resulting Ru nanoparticles are monodispersed (typical size 2 nm) and remain that way upon loading onto carbon and TiO2 supports. This gives robust catalysts

  11. Monodispersed ZIF-8 particles with enhanced performance for CO2 adsorption and heterogeneous catalysis

    Science.gov (United States)

    Guan, Yebin; Shi, Juanjuan; Xia, Ming; Zhang, Jun; Pang, Zhenfeng; Marchetti, Alessandro; Wang, Xiaohong; Cai, Jingsong; Kong, Xueqian

    2017-11-01

    Monodispersed zeolitic imidazolate frameworks (ZIFs) were prepared with a simple method using dimethylsulfoxide (DMSO) as solvent. This method yields ZIF-8 nanoparticles with a narrow particle size distribution of 90-110 nm and the dispersion is highly stable against agglomeration. These particles have larger nanosized porosity and enhanced CO2 adsorption capability compared to ZIF-8 prepared with different solvents such as methanol or N, N-dimethyl formamide. Their uniform size and surface chemistry also lead to superior performance in the Knoevenagel condensation reactions. The ZIF-8 nanoparticles possess high thermal stability up to 550 °C and the preparation steps are easy for scaling up which are favorable for industrial applications.

  12. Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites.

    Science.gov (United States)

    Koskun, Yağmur; Şavk, Aysun; Şen, Betül; Şen, Fatih

    2018-06-20

    Glucose enzyme biosensors have been used for a variety of applications such as medical diagnosis, bioprocess engineering, beverage industry and environmental scanning etc. and there is still a growing interest in glucose sensors. For this purpose, addressed herein, as a novel glucose sensor, highly sensitive activated carbon (AC) decorated monodisperse nickel and palladium alloy nanocomposites modified glassy carbon electrode (Ni-Pd@AC/GCE NCs) have been synthesized by in-situ reduction technique. Raman Spectroscopy (RS), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), cyclic voltammetry (CV) and chronoamperometry (CA) were used for the characterization of the prepared non-enzymatic glucose sensor. The characteristic sensor properties of the Ni-Pd@AC/GCE electrode were compared with Ni-Pd NCs/GCE, Ni@AC/GCE and Pd@AC/GCE and the results demonstrate that the AC is very effective in the enhancement of the electrocatalytic properties of sensor. In addition, the Ni-Pd@AC/GCE nanocomposites showed a very low detection limit of 0.014 μM, a wide linear range of 0.01 mM-1 mM and a very high sensitivity of 90 mA mM -1  cm -2 . Furthermore, the recommended sensor offer the various advantageous such as facile preparation, fast response time, high selectivity and sensitivity. Lastly, monodisperse Ni-Pd@AC/GCE was utilized to detect glucose in real sample species. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Monodispersed porous flowerlike PtAu nanocrystals as effective electrocatalysts for ethanol oxidation

    Science.gov (United States)

    Li, Shumin; Xu, Hui; Xiong, Zhiping; Zhang, Ke; Wang, Caiqin; Yan, Bo; Guo, Jun; Du, Yukou

    2017-11-01

    Designing and tuning the bimetallic nanoparticles with desirable morphology and structure can embody them with greatly enhanced electrocatalytic activity and stability towards liquid fuel oxidation. We herein reported a facile one-pot method for the controlled synthesis of monodispersed binary PtAu nanoflowers with abundant exposed surface area. Owing to its fantastic structure, synergistic and electronic effect, such as-prepared PtAu nanoflowers exhibited outstandingly high electrocatalytic activity with the mass activity of 6482 mA mg-1 towards ethanol oxidation, which is 28.3 times higher than that of commercial Pt/C (227 mA mg-1). More interesting, the present PtAu nanoflower catalysts are more stable for the ethanol oxidation reaction in the alkaline with lower current density decay and retained a much higher current density after successive CVs of 500 cycles than that of commercial Pt/C. This work may open a new way for maximizing the catalytic performance of electrocatalysts towards ethanol oxidation by synthesizing shape-controlled alloy nanoparticles with more surface active sites to enhance the performances of direct fuel cells reaction, chemical conversion, and beyond.

  14. Metal Fe3+ ions assisted synthesis of highly monodisperse Ag/SiO2 nanohybrids and their antibacterial activity

    International Nuclear Information System (INIS)

    Zhang, Nianchun; Xue, Feng; Yu, Xiang; Zhou, Huihua; Ding, Enyong

    2013-01-01

    Graphical abstract: TEM images of the Ag/SiO 2 -2 nanohybrids. The homogeneous and more mono-disperse Ag nanoparticles deposit on SiO 2 spheres. Through this method, Ag nanoparticles are easily formed on the surface of SiO 2 compared to other methods. Highlights: ► We prepared homogeneous and mono-dispersed Ag/SiO 2 -2 nanohybrids by adding Fe 3+ ions. ► The Ag/SiO 2 -2 nanohybrids had core(SiO 2 )-shell(Ag) structure. ► The Ag/SiO 2 -2 nanohybrids exhibited excellent antibacterial activity against bacteria. ► The reaction temperature was lower and the yield of Ag/SiO 2 -2 nanohybrids were higher. - Abstract: Highly monodispersed Ag/SiO 2 nanohybrids with excellent antibacterial property were synthesized by using DMF as a reducing agent and employing an additional redox potential of metal Fe 3+ ion as a catalytic agent. The obtained Ag/SiO 2 -2 nanohybrids of about 240 nm were highly monodispersity and uniformity by adding trace Fe 3+ ions into the reaction which Ag + reacted with N,N-dimethyl formamide (DMF) at 70 °C. Compared to the conventional techniques, which need long time and high temperature for silica coating of Ag nanoparticles, this new method was capable of synthesizing monodispersed, uniform, high yield Ag/SiO 2 nanohybrids. The electron was transferred from the Fe 2+ ion to the Ag + ion to accelerate the nucleation of silver nanoparticles. The chemical structures, morphologies and properties of the Ag/SiO 2 nanohybrids were characterized by X-ray diffraction (XRD), (High-resolution, Scanning transmission) transmission electron microscopy (TEM, HRTEM and STEM), and X-ray photoelectron spectroscopy (XPS), and UV–vis spectroscopy (UV–vis) and test of antibacterial. The results demonstrated that the silver nanoparticles supported on the surface of SiO 2 spheres in Ag/SiO 2 -2 nanohybrids structure, the Ag nanoparticles were homogeneous and monodispersed. The results also indicated that the Ag/SiO 2 -2 nanohybrid had excellent antibacterial.

  15. Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Grass, M.E.; Kuhn, J.N.; Tao, F.; Habas, S.E.; Huang, W.; Yang, P.; Somorjai, G.A.

    2009-02-21

    Synthesis of monodisperse and shape-controlled colloidal inorganic nanocrystals (NCs) is of increasing scientific interest and technological significance. Recently, shape control of Pt, Pd, Ag, Au, and Rh NCs has been obtained by tuning growth kinetics in various solution-phase approaches, including modified polyol methods, seeded growth by polyol reduction, thermolysis of organometallics, and micelle techniques. Control of reduction kinetics of the noble metal precursors and regulation of the relative growth rates of low-index planes (i.e. {l_brace}100{r_brace} and {l_brace}111{r_brace}) via selective adsorption of selected chemical species are two keys for achieving shape modification of noble metal NCs. One application for noble metal NCs of well-defined shape is in understanding how NC faceting (determines which crystallographic planes are exposed) affects catalytic performance. Rh NCs are used in many catalytic reactions, including hydrogenation, hydroformylation, hydrocarbonylation, and combustion reactions. Shape manipulation of Rh NCs may be important in understanding how faceting on the nanoscale affects catalytic properties, but such control is challenging and there are fewer reports on the shape control of Rh NCs compared to other noble metals. Xia and coworkers obtained Rh multipods exhibiting interesting surface plasmonic properties by a polyol approach. The Somorjai and Tilley groups synthesized crystalline Rh multipods, cubes, horns and cuboctahedra, via polyol seeded growth. Son and colleagues prepared catalytically active monodisperse oleylamine-capped tetrahedral Rh NCs for the hydrogenation of arenes via an organometallic route. More recently, the Somorjai group synthesized sizetunable monodisperse Rh NCs using a one-step polyol technique. In this Communication, we report the highly selective synthesis of catalytically active, monodisperse Rh nanocubes of < 10 nm by a seedless polyol method. In this approach, Br{sup -} ions from trimethyl

  16. High lithium storage capacity achieved by regulating monodisperse C/In{sub 2}O{sub 3} nanosheet composite with double phases

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Lu; Pan, Xueqian; Chen, Shangqian; Song, Jialing; Liu, Cheng [Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, 224051 (China); Luo, Gaixia [Department of Physics, Yancheng Institute of Technology, Jiangsu, 224051 (China); Guan, Rongfeng [Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, 224051 (China); Zhang, Wenhui, E-mail: zwhuizi000@sina.com [Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, 224051 (China)

    2017-06-01

    Monodisperse C/In{sub 2}O{sub 3} nanosheet composites are prepared by D-fructose-assisted solvothermal approach. The effects of carbon content on the morphological evolution and electrochemical performance of C/In{sub 2}O{sub 3} nanosheet composites are investigated. The SEM and TEM are used to study the morphological evolution. C/In{sub 2}O{sub 3} nanosheet composite electrode with 17.3% carbon content exhibits the highest reversible capacity of 1639 mAh g{sup -1} over 100 cycles at a current density of 100 mA g{sup -1} and maintains the best discharge capacity of 782 mAh g{sup -1} over 400 cycles at a current density of 400 mA g{sup -1} for reported In{sub 2}O{sub 3} based anode materials to date. - Highlights: • Monodisperse carbon/In{sub 2}O{sub 3} nanosheet composites have been synthesized via D-fructose-assisted solvothermal approach. • The prepared electrode exhibited high reversible discharge capacity of 1639 mAh g{sup -1} over 100 cycles. • The prepared electrode maintained the discharge capacity of 782 mAh g{sup -1} over 400 cycles at 400 mA g{sup -1}.

  17. High Performance Affinity Chromatography of Antithrombin III Based on Monodisperse Poly (glycidyl methacrylate) Beads

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new approach for the separation of antithrombin III with high performance affinity chromatography (HPAC) was described. A novel monodisperse,non-porous,cross-linked poly (glycidyl methacrylate) beads (PGMA) were used as the affinity support. With the water-soluble carbodiimide,heparin was linked covalently to amino-PGMA-beads,which was prepared by amination of PGMA. The adsorbent obtained exhibits high binding activity to antithrombin III (ATIII),good resolution and excellent mechanical properties and can be used under high flow rate.

  18. The Synthesis, Characterization and Catalytic Reaction Studies of Monodisperse Platinum Nanoparticles in Mesoporous Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    A catalyst design program was implemented in which Pt nanoparticles, either of monodisperse size and/or shape were synthesized, characterized and studied in a number of hydrocarbon conversion reactions. The novel preparation of these materials enables exquisite control over their physical and chemical properties that could be controlled (and therefore rationally tuned) during synthesis. The ability to synthesize rather than prepare catalysts followed by thorough characterization enable accurate structure-function relationships to be elucidated. This thesis emphasizes all three aspects of catalyst design: synthesis, characterization and reactivity studies. The precise control of metal nanoparticle size, surface structure and composition may enable the development of highly active and selective heterogeneous catalysts.

  19. Undecylprodigiosin conjugated monodisperse gold nanoparticles efficiently cause apoptosis in colon cancer cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Nikodinovic-Runic, Jasmina; Mojic, Marija; Kang, Yijin; Maksimovic-Ivanic, Danijela; Mijatovic, Sanja; Vasiljevic, Branka; Stamenkovic, Vojislav R.; Senerovic, Lidija

    2014-01-01

    Bacterial pigment undecylprodigiosin (UP) was produced using Streptomyces sp. JS520 and conjugated to monodisperse gold nanoparticles (UP-Au). Both UP and UP-Au showed cytocidal activity towards melanoma (A375), lung carcinoma (A549), breast cancer (MCF-7) and colon cancer (HCT-116) cells, inducing apoptosis with IC50 values ranging from 0.4 to 4 mu g ml(-1). Unconjugated UP had a tendency to lose its activity over time and to change biophysical characteristics over pH. The loss of the pigment potency was overcome by conjugation with gold nanoparticles. UP-Au exhibited high stability over pH 3.8 to 7.4 and its activity remained unaffected in time. Nano-packing changed the mechanism of UP toxicity by converting the intracellular signals from a mitochondrial dependent to a mitochondrial independent apoptotic process. The availability of nonpyrogenic UP in high amounts, together with specific anticancer activity and improved stability in the complex with gold nanoparticles, presents a novel platform for further development of UP-Au complexes as an anticancer drug suitable for clinical applications.

  20. A new method for preparing mono-dispersed nanoparticles using magnetized water

    Science.gov (United States)

    Nakhaei Pour, Ali; Gholizadeh, Mostafa; Housaindokht, Mohammadreza; Moosavi, Fatemeh; Monhemi, Hasan

    2017-04-01

    We studied the use of magnetized water on the size of the nanoparticles. Magnetized water found to reduce the diameter of the nanoparticles during a homogeneous precipitation process, which is a combination of nucleation and nuclei growth processes. We found that the modified water, which demonstrated different physical properties especially on the surface tension and viscosity, significantly influenced the both processes. Therefore, the nucleation process was initially prolonged in the homogeneous precipitation process due to the lower critical size of nucleus and higher rate of nucleation, and consequently formed smaller particles and a larger number of particles. Furthermore, the growth rate of nanoparticles was hindered owing to the higher viscosity of the water and restriction in the mass transport process. As a result, the precipitated particles with the magnetized water were eventually structured smaller particle diameter compared to the bulk. The presented method in here indicated a low cost, straightforward, and feasible technique for industrial application. In addition, this method could open a new promising perspective on nanomaterial synthesis in order to facilitate the production of monodispersed nanoparticles. Molecular dynamic confirmed that surface tension decreased as the external magnetic field was applied. Moreover, the density profile illustrated that the average number of hydrogen atoms is greater than oxygen atoms.

  1. Design of monodisperse and well-defined polypeptide-based polyvalent inhibitors of anthrax toxin.

    Science.gov (United States)

    Patke, Sanket; Boggara, Mohan; Maheshwari, Ronak; Srivastava, Sunit K; Arha, Manish; Douaisi, Marc; Martin, Jacob T; Harvey, Ian B; Brier, Matthew; Rosen, Tania; Mogridge, Jeremy; Kane, Ravi S

    2014-07-28

    The design of polyvalent molecules, presenting multiple copies of a specific ligand, represents a promising strategy to inhibit pathogens and toxins. The ability to control independently the valency and the spacing between ligands would be valuable for elucidating structure-activity relationships and for designing potent polyvalent molecules. To that end, we designed monodisperse polypeptide-based polyvalent inhibitors of anthrax toxin in which multiple copies of an inhibitory toxin-binding peptide were separated by flexible peptide linkers. By tuning the valency and linker length, we designed polyvalent inhibitors that were over four orders of magnitude more potent than the corresponding monovalent ligands. This strategy for the rational design of monodisperse polyvalent molecules may not only be broadly applicable for the inhibition of toxins and pathogens, but also for controlling the nanoscale organization of cellular receptors to regulate signaling and the fate of stem cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity

    Science.gov (United States)

    Bindhu, M. R.; Umadevi, M.

    2013-01-01

    Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri.

  3. Microscopy evidence of the face-centered cubic arrangement of monodisperse polystyrene nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hui [School of Science, Beijing Jiaotong University, Beijing 100044 (China)]. E-mail: zhanghui14305@sohu.com; Duan Renguan [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li Fan [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Tang Qing [Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Li Wenchao [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)

    2007-07-01

    This paper reports a scanning electron microscopy (SEM) investigation of polystyrene artificial opal achieved through self-assembly of monodisperse polystyrene nanospheres with a diameter of 250 nm from colloidal suspension after being ambient dried. A detailed analysis of the SEM images verifies that the face-centered cubic (fcc) phase is the most stable one for the polystyrene opal prepared. This finding provides a strong support for, by using polystyrene opal as template, fabricating a photonic crystal with inverse fcc structure of full band gap if the refractive index contrast is higher than 2.8 and the filling fraction of the high index materials is between 0.2 and 0.3.

  4. Microscopy evidence of the face-centered cubic arrangement of monodisperse polystyrene nanospheres

    International Nuclear Information System (INIS)

    Zhang Hui; Duan Renguan; Li Fan; Tang Qing; Li Wenchao

    2007-01-01

    This paper reports a scanning electron microscopy (SEM) investigation of polystyrene artificial opal achieved through self-assembly of monodisperse polystyrene nanospheres with a diameter of 250 nm from colloidal suspension after being ambient dried. A detailed analysis of the SEM images verifies that the face-centered cubic (fcc) phase is the most stable one for the polystyrene opal prepared. This finding provides a strong support for, by using polystyrene opal as template, fabricating a photonic crystal with inverse fcc structure of full band gap if the refractive index contrast is higher than 2.8 and the filling fraction of the high index materials is between 0.2 and 0.3

  5. A co-flow-focusing monodisperse microbubble generator

    KAUST Repository

    Zhang, Jiaming; Li, Erqiang; Thoroddsen, Sigurdur T

    2014-01-01

    We use a simple and inexpensive microfluidic device, which is based on microscope glass slides and two tapered glass capillaries, to produce monodisperse microbubbles. The innermost capillary used for transporting the gas is inserted into the second capillary, with its 2 μm sharp tip aligned with the center of the converging-diverging throat of the second capillary. This configuration provides a small and smooth gas flow rate, and a high velocity gradient at the tube outlet. Highly monodisperse microbubbles with diameters ranging from 3.5 to 60 microns have been successfully produced at a rate of up to 40 kHz. A simple scaling law, which is based on the capillary number and liquid-to-gas flow rate ratio, successfully predicts the bubble size. © 2014 IOP Publishing Ltd.

  6. A co-flow-focusing monodisperse microbubble generator

    KAUST Repository

    Zhang, Jiaming

    2014-02-14

    We use a simple and inexpensive microfluidic device, which is based on microscope glass slides and two tapered glass capillaries, to produce monodisperse microbubbles. The innermost capillary used for transporting the gas is inserted into the second capillary, with its 2 μm sharp tip aligned with the center of the converging-diverging throat of the second capillary. This configuration provides a small and smooth gas flow rate, and a high velocity gradient at the tube outlet. Highly monodisperse microbubbles with diameters ranging from 3.5 to 60 microns have been successfully produced at a rate of up to 40 kHz. A simple scaling law, which is based on the capillary number and liquid-to-gas flow rate ratio, successfully predicts the bubble size. © 2014 IOP Publishing Ltd.

  7. Template synthesis of highly crystalline and monodisperse iron oxide pigments of nanosize

    International Nuclear Information System (INIS)

    Sreeram, Kalarical Janardhanan; Indumathy, Ramasamy; Rajaram, Ananthanarayanan; Nair, Balachandran Unni; Ramasami, Thirumalachari

    2006-01-01

    Synthesis of highly crystalline and monodisperse iron oxide nanoparticles is reported. The separation of Fe centers through site-specific binding to a polysaccharide-alginate matrix enables the generation of particles with a monodisperse or narrow size distribution character, resulting in transparent pigments. Site-specific interactions coupled with gel like character of alginate is proposed as the mechanism behind generation of lower particle sizes. Alginate-Fe complexes developed were subjected to heat treatment to provide for crystalline character and development of hematite (α-Fe 2 O 3 ). Conditions most ideal for achieving monodispersity and lower sizes have been optimized and confirmed through microscopic and photon correlation spectroscopic measurements

  8. Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts

    KAUST Repository

    Li, Cheng Chao; Dou, Jian; Chen, Luwei; Lin, Jianyi; Zeng, Hua Chun

    2012-01-01

    We have developed a low-cost reaction protocol to synthesize mesoporous Nb 2O 5-based solid acid catalysts with external shape control. In the synthesis, monodisperse glycolated niobium oxide spheres (GNOS) were prepared by means of a simple antisolvent precipitation approach and subsequently converted to mesoporous niobium oxide spheres (MNOS) with a large surface area of 312m 2g -1 by means of the hydrothermal treatment. The antisolvent acetone used to obtain GNOS was recovered through distillation at high purity. The obtained mesoporous MNOS were functionalized further with sulfate anions at different temperatures or incorporated with tungstophosphoric acid to obtain recyclable solid acid catalysts. These MNOS-based catalysts showed excellent performance in a wide range of acid-catalyzed reactions, such as Friedel-Crafts alkylation, esterification, and hydrolysis of acetates. As they are monodisperse spheres with diameters in the submicrometer range, the catalysts can be easily separated and reused. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts

    KAUST Repository

    Li, Cheng Chao

    2012-03-20

    We have developed a low-cost reaction protocol to synthesize mesoporous Nb 2O 5-based solid acid catalysts with external shape control. In the synthesis, monodisperse glycolated niobium oxide spheres (GNOS) were prepared by means of a simple antisolvent precipitation approach and subsequently converted to mesoporous niobium oxide spheres (MNOS) with a large surface area of 312m 2g -1 by means of the hydrothermal treatment. The antisolvent acetone used to obtain GNOS was recovered through distillation at high purity. The obtained mesoporous MNOS were functionalized further with sulfate anions at different temperatures or incorporated with tungstophosphoric acid to obtain recyclable solid acid catalysts. These MNOS-based catalysts showed excellent performance in a wide range of acid-catalyzed reactions, such as Friedel-Crafts alkylation, esterification, and hydrolysis of acetates. As they are monodisperse spheres with diameters in the submicrometer range, the catalysts can be easily separated and reused. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity.

    Science.gov (United States)

    Bindhu, M R; Umadevi, M

    2013-01-15

    Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Preparation and characterization of monodisperse large-porous silica microspheres as the matrix for protein separation.

    Science.gov (United States)

    Xia, Hongjun; Wan, Guangping; Zhao, Junlong; Liu, Jiawei; Bai, Quan

    2016-11-04

    High performance liquid chromatography (HPLC) is a kind of efficient separation technology and has been used widely in many fields. Micro-sized porous silica microspheres as the most popular matrix have been used for fast separation and analysis in HPLC. In this paper, the monodisperse large-porous silica microspheres with controllable size and structure were successfully synthesized with polymer microspheres as the templates and characterized. First, the poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate) microspheres (P GMA-EDMA ) were functionalized with tetraethylenepentamine (TEPA) to generate amino groups which act as a catalyst in hydrolysis of tetraethyl orthosilicate (TEOS) to form Si-containing low molecular weight species. Then the low molecular weight species diffused into the functionalized P GMA-EDMA microspheres by induction force of the amino groups to form polymer/silica hybrid microspheres. Finally, the organic polymer templates were removed by calcination, and the large-porous silica microspheres were obtained. The compositions, morphology, size distribution, specific surface area and pore size distribution of the porous silica microspheres were characterized by infrared analyzer, scanning-electron microscopy, dynamic laser scattering, the mercury intrusion method and thermal gravimetric analysis, respectively. The results show that the agglomeration of the hybrid microspheres can be overcome when the templates were functionalized with TEPA as amination reagent, and the yield of 95.7% of the monodisperse large-porous silica microspheres can be achieved with high concentration of polymer templates. The resulting large-porous silica microspheres were modified with octadecyltrichlorosilane (ODS) and the chromatographic evaluation was performed by separating the proteins and the digest of BSA. The baseline separation of seven kinds of protein standards was achieved, and the column delivered a better performance when separating BSA digests

  12. High-speed monodisperse droplet generation by ultrasonically controlled micro-jet breakup

    Science.gov (United States)

    Frommhold, Philipp Erhard; Lippert, Alexander; Holsteyns, Frank Ludwig; Mettin, Robert

    2014-04-01

    A liquid jet that is ejected from a nozzle into air will disintegrate into drops via the well-known Plateau-Rayleigh instability within a certain range of Ohnesorge and Reynolds numbers. With the focus on the micrometer scale, we investigate the control of this process by superimposing a suitable ultrasonic signal, which causes the jet to break up into a very precise train of monodisperse droplets. The jet leaves a pressurized container of liquid via a small orifice of about 20 μm diameter. The break-up process and the emerging droplets are recorded via high-speed imaging. An extended parameter study of exit speed and ultrasonic frequency is carried out for deionized water to evaluate the jet's state and the subsequent generation of monodisperse droplets. Maximum exit velocities obtained reach almost 120 m s-1, and frequencies have been applied up to 1.8 MHz. Functionality of the method is confirmed for five additional liquids for moderate jet velocities 38 m s-1. For the uncontrolled jet disintegration, the drop size spectra revealed broad distributions and downstream drop growth by collision, while the acoustic control generated monodisperse droplets with a standard deviation less than 0.5 %. By adjustment of the acoustic excitation frequency, drop diameters could be tuned continuously from about 30 to 50 μm for all exit speeds. Good agreement to former experiments and theoretical approaches is found for the relation of overpressure and jet exit speed, and for the observed stability regions of monodisperse droplet generation in the parameter plane of jet speed and acoustic excitation frequency. Fitting of two free parameters of the general theory to the liquids and nozzles used is found to yield an even higher precision. Furthermore, the high-velocity instability limit of regular jet breakup described by von Ohnesorge has been superseded by more than a factor of two without entering the wind-induced instability regime, and monodisperse droplet generation was

  13. One-pot template-free synthesis of monodisperse hollow hydrogel microspheres and their resulting properties.

    Science.gov (United States)

    Lim, Hyung-Seok; Kwon, Eunji; Lee, Moonjoo; Moo Lee, Young; Suh, Kyung-Do

    2013-08-01

    Monodisperse poly(methacrylic acid/ethyleneglycoldimethacrylate) (MAA/EGDMA) hollow microcapsules, which exhibit pH-responsive behavior, are prepared by diffusion of cationic surfactants and hydrophobic interaction. During the association of the negatively charged hydrogel microspheres and an oppositely charged surfactant (cetyltrimethylammonium bromide, CTA(+)B), the hydrophobic polymer-surfactant complexes that form are separated from the internal water; consequently, a hollow structure can be formed. Confocal laser scanning microscopy, UV spectro-scopy and zeta potential are employed to study the formation of the hollow structure during the diffusion of the cationic surfactant. The controlled release behavior of methylene blue as a model drug from the as-prepared poly(MAA/EGDMA) microcapsules with a hollow structure is investigated under different pH conditions. The hollow structure can be retained, even during repetitive pH changes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Facile Synthesis of Mono-Dispersed Polystyrene (PS/Ag Composite Microspheres via Modified Chemical Reduction

    Directory of Open Access Journals (Sweden)

    Wen Zhu

    2013-12-01

    Full Text Available A modified method based on in situ chemical reduction was developed to prepare mono-dispersed polystyrene/silver (PS/Ag composite microspheres. In this approach; mono-dispersed PS microspheres were synthesized through dispersion polymerization using poly-vinylpyrrolidone (PVP as a dispersant at first. Then, poly-dopamine (PDA was fabricated to functionally modify the surfaces of PS microspheres. With the addition of [Ag(NH32]+ to the PS dispersion, [Ag(NH32]+ complex ions were absorbed and reduced to silver nanoparticles on the surfaces of PS-PDA microspheres to form PS/Ag composite microspheres. PVP acted both as a solvent of the metallic precursor and as a reducing agent. PDA also acted both as a chemical protocol to immobilize the silver nanoparticles at the PS surface and as a reducing agent. Therefore, no additional reducing agents were needed. The resulting composite microspheres were characterized by TEM, field emission scanning electron microscopy (FESEM, energy-dispersive X-ray spectroscopy (EDS, XRD, UV-Vis and surface-enhanced Raman spectroscopy (SERS. The results showed that Ag nanoparticles (NPs were homogeneously immobilized onto the PS microspheres’ surface in the presence of PDA and PVP. PS/Ag composite microspheres were well formed with a uniform and compact shell layer and were adjustable in terms of their optical property.

  15. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route

    International Nuclear Information System (INIS)

    Wen Li; Lin Zhonghua; Gu Pingying; Zhou Jianzhang; Yao Bingxing; Chen Guoliang; Fu Jinkun

    2009-01-01

    Monodispersed gold nanoparticles capped with a self-assembled monolayer of dodecanethiol were biosynthesized extracellularly by an efficient, simple, and environmental friendly procedure, which involved the use of Bacillus megatherium D01 as the reducing agent and the use of dodecanethiol as the capping ligand at 26 o C. The kinetics of gold nanoparticle formation was followed by transmission electron microscope (TEM) and UV-vis spectroscopy. It was shown that reaction time was an important parameter in controlling the morphology of gold nanoparticles. The effect of thiol on the shape, size, and dispersity of gold nanoparticles was also studied. The results showed that the presence of thiol during the biosynthesis could induce the formation of small size gold nanoparticles (<2.5 nm), hold the shape of spherical nanoparticles, and promote the monodispersity of nanoparticles. Through the modulation of reaction time and the use of thiol, monodispersed spherical gold nanoparticles capped with thiol of 1.9 ± 0.8 nm size were formed by using Bacillus megatherium D01.

  16. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route

    Energy Technology Data Exchange (ETDEWEB)

    Wen Li [Xiamen University, Department of Chemistry, College of Chemistry and Chemical Engineering (China); Lin Zhonghua [Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces (China); Gu Pingying [Xiamen University, Department of Chemistry, College of Chemistry and Chemical Engineering (China); Zhou Jianzhang [Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces (China); Yao Bingxing [Xiamen University, School of Life Sciences (China); Chen Guoliang; Fu Jinkun, E-mail: wenli_1976@163.co [Xiamen University, Department of Chemistry, College of Chemistry and Chemical Engineering (China)

    2009-02-15

    Monodispersed gold nanoparticles capped with a self-assembled monolayer of dodecanethiol were biosynthesized extracellularly by an efficient, simple, and environmental friendly procedure, which involved the use of Bacillus megatherium D01 as the reducing agent and the use of dodecanethiol as the capping ligand at 26 {sup o}C. The kinetics of gold nanoparticle formation was followed by transmission electron microscope (TEM) and UV-vis spectroscopy. It was shown that reaction time was an important parameter in controlling the morphology of gold nanoparticles. The effect of thiol on the shape, size, and dispersity of gold nanoparticles was also studied. The results showed that the presence of thiol during the biosynthesis could induce the formation of small size gold nanoparticles (<2.5 nm), hold the shape of spherical nanoparticles, and promote the monodispersity of nanoparticles. Through the modulation of reaction time and the use of thiol, monodispersed spherical gold nanoparticles capped with thiol of 1.9 {+-} 0.8 nm size were formed by using Bacillus megatherium D01.

  17. Preparation and properties of hybrid monodispersed magnetic α-Fe2O3 based chitosan nanocomposite film for industrial and biomedical applications.

    Science.gov (United States)

    Singh, Jay; Srivastava, M; Dutta, Joydeep; Dutta, P K

    2011-01-01

    In this study, hydrothermally prepared magnetic α-Fe2O3 nanoparticles were dispersed in chitosan (CH) solution to fabricate nanocomposite film. X-ray diffraction (XRD) patterns indicated that the α-Fe2O3 nanoparticles were pure α-Fe2O3 with rhombohedral structures, and the fabrication of CH did not result in a phase change. The scanning electron microscopy (SEM) and transmission electron microscope (TEM) results showed that the hexagonal and spherical monodispersed α-Fe2O3 nanoparticles were encapsulated into the spherical dumb shaped CH-α-Fe2O3 nanocomposite film with a mean diameter of ∼87 and ∼110 nm respectively. The α-Fe2O3 nanoparticles and CH-α-Fe2O3 nanocomposite film were also characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM). Magnetic measurements revealed that the saturated magnetization (Ms) and remanent magnetization (Mr) of the pure α-Fe2O3 nanoparticles reached 0.573 emu/g and 0.100 emu/g respectively and the nanoparticles showed the characteristics of weak ferromagnetic before and after coating with CH. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    International Nuclear Information System (INIS)

    Cao Feng; Li Dongxu

    2010-01-01

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe 3+ , which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  19. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Cao Feng; Li Dongxu, E-mail: dongxuli@njut.edu.c [College of Materials Science and Engineering, Nanjing University of Technology, Jiangsu Nanjing 210009 (China)

    2010-03-15

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe{sup 3+}, which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  20. Rapid Synthesis of Highly Monodisperse Au x Ag 1− x Alloy Nanoparticles via a Half-Seeding Approach

    KAUST Repository

    Chng, Ting Ting

    2011-05-03

    Gold-silver alloy AuxAg1-x is an important class of functional materials promising new applications across a wide array of technological fields. In this paper, we report a fast and facile synthetic protocol for preparation of highly monodisperse AuxAg1-x alloy nanoparticles in the size range of 3-6 nm. The precursors employed in this work are M(I)-alkanethiolates (M = Au and Ag), which can be easily prepared by mixing common chemicals such as HAuCl4 or AgNO3 with alkanethiols at room temperature. In this half-seeding approach, one of the M(I)-alkanethiolates is first heated and reduced in oleylamine solvent, and freshly formed metal clusters will then act as premature seeds on which both the first and second metals (from M(I)-alkanethiolates, M = Au and Ag) can grow accordingly without additional nucleation and thus achieve high monodispersity for product alloy nanoparticles. Unlike in other prevailing methods, both Au and Ag elements present in these solid precursors are in the same monovalent state and have identical supramolecular structures, which may lead to a more homogeneous reduction and complete interdiffusion at elevated reaction temperatures. When the M(I)-alkanethiolates are reduced to metallic forms, the detached alkanethiolate ligands will serve as capping agent to control the growth. More importantly, composition, particle size, and optical properties of AuxAg1-x alloy nanoparticles can be conveniently tuned with this approach. The optical limiting properties of the prepared particles have also been investigated at 532 and 1064 nm using 7 ns laser pulses, which reveals that the as-prepared alloy nanoparticles exhibit outstanding broadband optical limiting properties with low thresholds. © 2011 American Chemical Society.

  1. Facile and Scalable Synthesis of Monodispersed Spherical Capsules with a Mesoporous Shell

    KAUST Repository

    Qi, Genggeng

    2010-05-11

    Monodispersed HMSs with tunable particle size and shell thickness were successfully synthesized using relatively concentrated polystyrene latex templates and a silica precursor in a weakly basic ethanol/water mixture. The particle size of the capsules can vary from 100 nm to micrometers. These highly engineered monodispersed capsules synthesized by a facile and scalable process may find applications in drug delivery, catalysis, separationm or as biological and chemical microreactors. © 2010 American Chemical Society.

  2. Syringe-vacuum microfluidics: A portable technique to create monodisperse emulsions.

    Science.gov (United States)

    Abate, Adam R; Weitz, David A

    2011-03-16

    We present a simple method for creating monodisperse emulsions with microfluidic devices. Unlike conventional approaches that require bulky pumps, control computers, and expertise with device physics to operate devices, our method requires only the microfluidic device and a hand-operated syringe. The fluids needed for the emulsion are loaded into the device inlets, while the syringe is used to create a vacuum at the device outlet; this sucks the fluids through the channels, generating the drops. By controlling the hydrodynamic resistances of the channels using hydrodynamic resistors and valves, we are able to control the properties of the drops. This provides a simple and highly portable method for creating monodisperse emulsions.

  3. Synthesis and characterization of titania-based monodisperse fluorescent europium nanoparticles for biolabeling

    International Nuclear Information System (INIS)

    Tan Mingqian; Wang Guilan; Ye Zhiqiang; Yuan Jingli

    2006-01-01

    Inorganic-organic hybrid titania-based nanoparticles covalently bound to a fluorescent Eu 3+ chelate of 4,4'-bis(1'',1'',1'',2'',2'',3'',3''-heptafluoro-4'',6''-hexanedion-6''-yl) chlorosulfo-o-terphenyl (BHHCT-Eu 3+ ) were synthesized by a sol-gel technique. A conjugate of BHHCT with 3-[2-(2-aminoethylamino) ethylamino]propyl-trimethoxysilane (APTS) was used as a precursor for the nanoparticle preparation and monodisperse nanoparticles consisting of titania network and silica sub-network covalently bound to the Eu 3+ chelate were prepared by the copolymerization of APTS-BHHCT conjugate, titanium tetraisopropoxide (TTIP) and free APTS in EuCl 3 water-alcohol solution. The effects of reaction conditions on size and fluorescence lifetime of the nanoparticles were investigated. The characterizations by transmission electron microscopy and fluorometric methods indicate that the nanoparticles are near spherical and strongly fluorescent having a fluorescence quantum yield of 11.6% and a long fluorescence lifetime of ∼0.4 ms. The direct-introduced amino groups on the nanoparticle's surface by using free APTS in nanoparticle preparation facilitated the biolabeling process of the nanoparticles. The nanoparticle-labeled streptavidin (SA) was prepared and used in a sandwich-type time-resolved fluoroimmunoassay (TR-FIA) of human prostate-specific antigen (PSA) by using a 96-well microtiter plate as the solid phase carrier. The method gives a detection limit of 66 pg/ml for the PSA assay

  4. Tribological characteristics of monodispersed cerium borate nanospheres in biodegradable rapeseed oil lubricant

    Energy Technology Data Exchange (ETDEWEB)

    Boshui, Chen, E-mail: boshuichen@163.com; Kecheng, Gu; Jianhua, Fang; Jiang, Wu; Jiu, Wang; Nan, Zhang

    2015-10-30

    Graphical abstract: - Highlights: • Monodispersed stearic acid-capped cerium borate composite nanoparticles were prepared by hydrothermal method. Their morphologies, element compositions, size distributions, crystal and chemical structures, hydrophobic characteristics were also characterized. • The surface-capped cerium borate nanoparticles exhibited excellent dispersing stability in rapeseed oil. As new lubricating additives, they were also outstanding in enhancing friction-reducing and anti-wear capacities of rapeseed oil in biodegradable rapeseed oil. The results presented in this paper would be of important significance for developing green lubricants and lubricant additives. • The prominent tribological performances of SA/CeBO{sub 3} in rapeseed oil were investigated and attributed to the formation of a composite boundary lubrication film mainly composed of lubricous tribochemical species on the tribo-surfaces. - Abstract: Stearic acid-capped cerium borate composite nanoparticles, abbreviated as SA/CeBO{sub 3}, were prepared by hydrothermal method. The morphologies, element compositions, size distributions, crystal and chemical structures, hydrophobic characteristics, of SA/CeBO{sub 3} were characterized by scanning electron microscope, energy dispersive X-ray spectrometer, dynamic laser particle size analyzer, X-ray diffraction, and Fourier transform infrared spectrometer, respectively. The friction and wear performances of SA/CeBO{sub 3} as a lubricating additive in a rapeseed oil were evaluated on a four-ball tribo-tester. The tribochemical characteristics of the worn surfaces were investigated by X-ray photoelectron spectroscopy. The results showed that the hydrophobic SA/CeBO{sub 3} were monodispersed nanospheres with an average diameter of 8 nm, and exhibited excellent dispersing stability in rapeseed oil. Meanwhile, SA/CeBO{sub 3} nanospheres were outstanding in enhancing friction-reducing and anti-wear capacities of rapeseed oil. The prominent

  5. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz; Hassager, Ole

    2005-01-01

    The startup and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 kg/mole (PS52K) and 103 kg/mole (PS103K), and for three bidisperse polystyrene melts. The bidisperse melts consist of PS103K or PS52K and a monodisperse...... (closed loop proportional regulator) using the laser in such a way that the stretch rate at the neck is kept constant. The rheometer has been described in more detail in (A. Bach, H.K. Rasmussen and O. Hassager, Journal of Rheology, 47 (2003) 429). PS390K show a decrease in the steady viscosity as a power......-law function of the elongational rate (A. Bach, K. Almdal, H.K. Rasmussen and O. Hassager, Macromolecules 36 (2003) 5174). PS52K and PS103K show that the steady viscosity has a maximum that is respectively 100% and 50% above 3 times the zero-shear-rate viscosity. The bidisperse melts show a significant...

  6. Preparation of anastrozole loaded PEG-PLA nanoparticles: evaluation of apoptotic response of breast cancer cell lines.

    Science.gov (United States)

    Alyafee, Yusra A; Alaamery, Manal; Bawazeer, Shahad; Almutairi, Mansour S; Alghamdi, Badr; Alomran, Nawaf; Sheereen, Atia; Daghestani, Maha; Massadeh, Salam

    2018-01-01

    Anastrozole (ANS) is an aromatase inhibitor that is widely used as a treatment for breast cancer in postmenopausal women. Despite the wide use of ANS, it is associated with serious side effects due to uncontrolled delivery. In addition, ANS exhibits low solubility and short plasma half-life. Nanotechnology-based drug delivery has the potential to enhance the efficacy of drugs and overcome undesirable side effects. In this study, we aimed to prepare novel ANS-loaded PLA-PEG-PLA nanoparticles (ANS-NPs) and to compare the apoptotic response of MCF-7 cell line to both ANS and ANS-loaded NPs. ANS-NPs were synthesized using double emulsion method and characterized using different methods. The apoptotic response was evaluated by assessing cell viability, morphology, and studying changes in the expression of MAPK3 , MCL1 , and c-MYC apoptotic genes in MCF-7 cell lines. ANS was successfully encapsulated within PLA-PEG-PLA, forming monodisperse therapeutic NPs with an encapsulation efficiency of 67%, particle size of 186±27.13, and a polydispersity index of 0.26±0.11 with a sustained release profile extended over 144 hours. In addition, results for cell viability and for gene expression represent a similar apoptotic response between the free ANS and ANS-NPs. The synthesized ANS-NPs showed a similar therapeutic effect as the free ANS, which provides a rationale to pursue pre-clinical evaluation of ANS-NPs on animal models.

  7. Nanostructural and magnetic studies of virtually monodispersed NiFe2O4 nanocrystals synthesized by a liquid–solid-solution assisted hydrothermal route

    International Nuclear Information System (INIS)

    Li Xinghua; Tan Guoguo; Chen Wei; Zhou Baofan; Xue Desheng; Peng Yong; Li, Fashen; Mellors, Nigel J.

    2012-01-01

    This study presents a comprehensively and systematically structural, chemical and magnetic characterization of ∼9.5 nm virtually monodispersed nickel ferrite (NiFe 2 O 4 ) nanoparticles prepared using a modified liquid–solid-solution (LSS) assisted hydrothermal method. Lattice-resolution scanning transmission electron microscope (STEM) and converged beam electron diffraction pattern (CBED) techniques are adapted to characterize the detailed spatial morphology and crystal structure of individual NiFe 2 O 4 particles at nano scale for the first time. It is found that each NiFe 2 O 4 nanoparticle is single crystal with an fcc structure. The morphology investigation reveals that the prepared NiFe 2 O 4 nanoparticles of which the surfaces are decorated by oleic acid are dispersed individually in hexane. The chemical composition of nickel ferrite nanoparticles is measured to be 1:2 atomic ratio of Ni:Fe, indicating a pure NiFe 2 O 4 composition. Magnetic measurements reveal that the as-synthesized nanocrystals displayed superparamagnetic behavior at room temperature and were ferromagnetic at 10 K. The nanoscale characterization and magnetic investigation of monodispersed NiFe 2 O 4 nanoparticles should be significant for its potential applications in the field of biomedicine and magnetic fluid using them as magnetic materials.

  8. Characterization of Monodispersed Iron Oxide Nanocrystals by XAS and MCD measurement

    International Nuclear Information System (INIS)

    Kim, J.-Y.; Noh, H.-J.; Park, B.-G.; Kim, T.-Y.; Park, J.-H.; Hyeon, T.; Park, J.; Kang, E.

    2004-01-01

    Full text: Nanoparticles have attracted so much attention because of their potential technological applications and abundance of scientifically interesting issues. In particular, magnetic nanoparticles are considered to be applicable to various magnetic devices such as terabit memory, ferrofluids, magnetocaloric refrigeration systems, blood cells, etc. With the development of nano-technology, variation of physical properties as a function of particle size is one of the most important issues, but has been rarely explored because of difficulty of the size control in synthesizing nanoparticles. Recently, some of us successfully synthesized high crystalline and monodisperse maghemite nanoparticles without a size selection process and research in this field seems to be promoted by one step. In this report, we present a systematic characterization of the monodispersed nanocrystalline γ - Fe 2 O 3 with the diameter of 13, 8 and 4 nm by measuring the x-ray absorption spectroscopy (XAS) and the x-ray magnetic circular dichroism(XMCD) spectra on Fe L edge. The spectra of the 4 nm nanoparticles are very similar to those of maghemite (γ - Fe 2 O 3 ). However, the spectra become close to those of magnetite (Fe 3 O 4 ) as the particle size becomes 8 and 13 nm. Considering that the maghemite and magnetite have the same spinel structure with different Fe vacancies, these results can be explained that the surface of nanoparticles has more vacancies than the core part, indicating that surface disorder increases as the particle size decreases

  9. Evaluation of {sup 211}At-labelled monodisperse polymer particles in vivo: comparison of different specific activities

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R.H.; Hoff, Per; Alstad, Jorolf [Oslo Univ., Chemistry Dept., Oslo (Norway); Varaas, Tone; De Vos, L.N.; Nustad, Kjell [Norwegian Radium Hospital, Central Lab., Oslo (Norway); Vergote, I.B. [Norwegian Radium Hospital, Gynecologic Oncology Dept., Oslo (Norway)

    1996-09-01

    The {alpha}-particle emitter {sup 211}At was covalently coupled to 1.8 {mu}m aminated monodisperse polymer particles (MDPP) and used to irradiate the intraperitoneal cavity in mice with disseminated tumour cells. Specific activity has previously been shown to influence the therapeutic efficacy of {alpha}-particle emitting compounds and the therapeutic efficacy of {sup 211}At-MDPP with various specific activity was therefore investigated. Groups of mice (10 animals per group) were treated with intraperitoneal injections of 100 kBq of {sup 211}At-MDPP with specific activities of 0.19, 0.55, 1.7, 5.0, 15, and 45 MBq/mg. A significantly prolonged survival was observed in the treated groups compared to the control group (from 19 to 26 days vs. 12 days, median). The difference in survival between the {sup 211}At-MDPP treated groups was not significant, but some animals with short survival were observed in the groups that had received the 0.19, 15 and 45 MBq/mg preparations. K13 monoclonal antibody values, which are an indicator of tumour growth, were high in some animals in the 15 and 45 MBq/mg groups (day 7 values). (author).

  10. Segmented block copolymers with monodisperse aramide end-segments

    NARCIS (Netherlands)

    Araichimani, A.; Gaymans, R.J.

    2008-01-01

    Segmented block copolymers were synthesized using monodisperse diaramide (TT) as hard segments and PTMO with a molecular weight of 2 900 g · mol-1 as soft segments. The aramide: PTMO segment ratio was increased from 1:1 to 2:1 thereby changing the structure from a high molecular weight multi-block

  11. Synthesis and Magnetic Properties of Nearly Monodisperse CoFe2O4Nanoparticles Through a Simple Hydrothermal Condition

    Directory of Open Access Journals (Sweden)

    Li Xing-Hua

    2010-01-01

    Full Text Available Abstract Nearly monodisperse cobalt ferrite (CoFe2O4 nanoparticles without any size-selection process have been prepared through an alluring method in an oleylamine/ethanol/water system. Well-defined nanospheres with an average size of 5.5 nm have been synthesized using metal chloride as the law materials and oleic amine as the capping agent, through a general liquid–solid-solution (LSS process. Magnetic measurement indicates that the particles exhibit a very high coercivity at 10 K and perform superparamagnetism at room temperature which is further illuminated by ZFC/FC curves. These superparamagnetic cobalt ferrite nanomaterials are considered to have potential application in the fields of biomedicine. The synthesis method is possible to be a general approach for the preparation of other pure binary and ternary compounds.

  12. Experimental mixture design as a tool for the synthesis of antimicrobial selective molecularly imprinted monodisperse microbeads.

    Science.gov (United States)

    Benito-Peña, Elena; Navarro-Villoslada, Fernando; Carrasco, Sergio; Jockusch, Steffen; Ottaviani, M Francesca; Moreno-Bondi, Maria C

    2015-05-27

    The effect of the cross-linker on the shape and size of molecular imprinted polymer (MIP) beads prepared by precipitation polymerization has been evaluated using a chemometric approach. Molecularly imprinted microspheres for the selective recognition of fluoroquinolone antimicrobials were prepared in a one-step precipitation polymerization procedure using enrofloxacin (ENR) as the template molecule, methacrylic acid as functional monomer, 2-hydroxyethyl methacrylate as hydrophilic comonomer, and acetonitrile as the porogen. The type and amount of cross-linker, namely ethylene glycol dimethacrylate, divinylbenzene or trimethylolpropane trimethacrylate, to obtain monodispersed MIP spherical beads in the micrometer range was optimized using a simplex lattice design. Particle size and morphology were assessed by scanning electron microscopy, dynamic light scattering, and nitrogen adsorption measurements. Electron paramagnetic resonance spectroscopy in conjunction with a nitroxide as spin probe revealed information about the microviscosity and polarity of the binding sites in imprinted and nonimprinted polymer beads.

  13. Carboxyl-Functionalized Polymeric Microspheres Prepared by One-Stage Photoinitiated RAFT Dispersion Polymerization

    Directory of Open Access Journals (Sweden)

    Jianbo Tan

    2017-12-01

    Full Text Available Herein, we report a photoinitiated reversible addition-fragmentation chain transfer (RAFT dispersion copolymerization of methyl methacrylate (MMA and methyl methacrylic (MAA for the preparation of highly monodisperse carboxyl-functionalized polymeric microspheres. High rates of polymerization were observed, with more than 90% particle yields being achieved within 3 h of UV irradiation. Effects of reaction parameters (e.g., MAA concentration, RAFT agent concentration, photoinitiator concentration, and solvent composition were studied in detail, and highly monodisperse polymeric microspheres were obtained in most cases. Finally, silver (Ag composite microspheres were prepared by in situ reduction of AgNO3 using the carboxyl-functionalized polymeric microspheres as the template. The obtained Ag composite microspheres were able to catalyze the reduction of methylene blue (MB with NaBH4 as a reductant.

  14. Preparation of monodisperse microbubbles using an integrated embedded capillary T-junction with electrohydrodynamic focusing.

    Science.gov (United States)

    Parhizkar, Maryam; Stride, Eleanor; Edirisinghe, Mohan

    2014-07-21

    This work investigates the generation of monodisperse microbubbles using a microfluidic setup combined with electrohydrodynamic processing. A basic T-junction microfluidic device was modified by applying an electrical potential difference across the outlet channel. A model glycerol air system was selected for the experiments. In order to investigate the influence of the electric field strength on bubble formation, the applied voltage was increased systematically up to 21 kV. The effect of solution viscosity and electrical conductivity was also investigated. It was found that with increasing electrical potential difference, the size of the microbubbles reduced to ~25% of the capillary diameter whilst their size distribution remained narrow (polydispersity index ~1%). A critical value of 12 kV was found above which no further significant reduction in the size of the microbubbles was observed. The findings suggest that the size of the bubbles formed in the T-junction (i.e. in the absence of the electric field) is strongly influenced by the viscosity of the solution. The eventual size of bubbles produced by the composite device, however, was only weakly dependent upon viscosity. Further experiments, in which the solution electrical conductivity was varied by the addition of a salt indicated that this had a much stronger influence upon bubble size.

  15. Controllable synthesis and upconversion emission of ultrasmall near-monodisperse lanthanide-doped Sr2LaF7 nanocrystals

    International Nuclear Information System (INIS)

    Mao, Yifu; Ma, Mo; Gong, Lunjun; Xu, Changfu; Ren, Guozhong; Yang, Qibin

    2014-01-01

    Highlights: • Apropos NaOH content facilitates the growth of pure phase Sr 2 LaF 7 NCs. • Yb 3+ doping is favorable to the formation of Sr 2 LaF 7 NCs with uniform size. • Ultrasmall near-monodispersed Sr 2 LaF 7 NCs(sub-10 nm) were synthesized for the first time. • Intense multicolor upconversion can be obtained by properly lanthanide doping. - Abstract: Fluorite phase Sr 2 LaF 7 nanocrystals (NCs) were synthesized via solvothermal method using oleic acid as capping ligands. The effects of preparing conditions on the phase structure, crystal size, morphology, and upconversion (UC) emission properties of the products were studied. The results reveal that just apropos NaOH content facilitates the growth of near-monodispersed pure phase Sr 2 LaF 7 NCs, and Yb 3+ doping is favorable to the formation of pure Sr 2 LaF 7 phase with more uniform size distribution. The average crystalline size of the products can be controlled less than 10 nm. Following appropriate lanthanide ions doping, the NCs show intense blue, yellow, and white-color UC emission under the excitation of a 980 nm laser. The energy transfer UC mechanisms for the fluorescent intensity were also investigated

  16. Can a droplet break up under flow without elongating? Fragmentation of smectic monodisperse droplets

    Science.gov (United States)

    Courbin, L.; Engl, W.; Panizza, P.

    2004-06-01

    We study the fragmentation under shear flow of smectic monodisperse droplets at high volume fraction. Using small angle light scattering and optical microscopy, we reveal the existence of a break-up mechanism for which the droplets burst into daughter droplets of the same size. Surprisingly, this fragmentation process, which is strain controlled and occurs homogeneously in the cell, does not require any transient elongation of the droplets. Systematic experiments as a function of the initial droplet size and the applied shear rate show that the rupture is triggered by an instability of the inner droplet structure.

  17. Straightforward and robust synthesis of monodisperse surface-functionalized gold nanoclusters

    Directory of Open Access Journals (Sweden)

    Silvia Varela-Aramburu

    2016-09-01

    Full Text Available Gold nanoclusters are small (1–3 nm nanoparticles with a high surface area that are useful for biomedical studies and drug delivery. The synthesis of small, surface-functionalized gold nanoclusters is greatly dependent on the reaction conditions. Here, we describe a straightforward, efficient and robust room temperature one-pot synthesis of 2 nm gold nanoclusters using thioglucose as a reducing and stabilizing agent, which was discovered by serendipity. The resultant monodisperse gold nanoclusters are more stable than those generated using some other common methods. The carboxylic acid contained in the stabilizing agent on the cluster surface serves as anchor for nanocluster functionalization. Alternatively, the addition of thiols serves to functionalize the nanoclusters. The resulting non-cytotoxic nanoclusters are taken up by cells and constitute a tuneable platform for biomedical applications including drug delivery.

  18. Characterization of a monodispersed aerosol exposure system for beagle dogs

    International Nuclear Information System (INIS)

    Cannon, W.C.; Herring, J.P.; Craig, D.K.

    1978-01-01

    A monodispersed aerosol exposure system for dogs is described and data are presented on aerosol depositions in the exposure system which could affect the aerosol presented to the animals by reducing the concentration and changing the particle size distribution

  19. A general approach for monodisperse colloidal perovskites, Chemistry of Materials

    NARCIS (Netherlands)

    Demirors, A.F.; Imhof, A.

    2009-01-01

    We describe a novel general method for synthesizing monodisperse colloidal perovskite particles at room temperature by postsynthesis addition of metal hydroxides to amorphous titania colloids. In previous work, we used titania particles to synthesize homogenously mixed silica-titania composite

  20. Synthesis of Monodisperse Walnut-Like SnO2 Spheres and Their Photocatalytic Performances

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2015-01-01

    Full Text Available Novel walnut-like SnO2 spheres have been synthesized using a one-step hydrothermal reaction with SnCl2·2H2O and KOH as raw materials. The morphology, microstructure, and optical properties of the products were characterized by X-ray powder diffraction (XRD, Raman spectrum, scanning electron microscopy (SEM, transmission electron microscopy (TEM, selected area electron diffraction (SAED, and ultraviolet-visible (UV-Vis absorption spectroscopy. The detailed studies revealed that these synthesized spheres are highly monodisperse and have a uniform size of approximately 250 nm. Photocatalytic activity of the prepared SnO2 spheres was evaluated by the degradation of methylene orange. The synthesized SnO2 spheres exhibited excellent photocatalytic degradation. In addition, a possible formation mechanism of the walnut-like nanostructures was proposed based on reaction time-dependent experiments.

  1. Room temperature vortex fluidic synthesis of monodispersed amorphous proto-vaterite.

    Science.gov (United States)

    Peng, Wenhong; Chen, Xianjue; Zhu, Shenmin; Guo, Cuiping; Raston, Colin L

    2014-10-11

    Monodispersed particles of amorphous calcium carbonate (ACC) 90 to 200 nm in diameter are accessible at room temperature in ethylene glycol and water using a vortex fluidic device (VFD). The ACC material is stable for at least two weeks under ambient conditions.

  2. High surface area monodispersed Fe3O4 nanoparticles alone and on physical exfoliated graphite for improved supercapacitors

    Science.gov (United States)

    Sarno, Maria; Ponticorvo, Eleonora; Cirillo, Claudia

    2016-12-01

    Highly conductive, unsophisticated and easy to be obtained physical exfoliated graphite (PHG) supporting well dispersed magnetite, Fe3O4/PHG nanocomposite, has been prepared by a one-step chemical strategy and physico-chemical characterized. The nanocomposite, favoured by the a-polar nanoparticles (NPs) capping, results in a self-assembled monolayer of monodispersed Fe3O4, covering perfectly the hydrophobic surfaces of PHG. The nanocomposite as an electrode material was fabricated into a supercapacitor and characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. It shows, after a suitable annealing, significant electrochemical properties (capacitance value of 787 F/g at 0.5 A g-1 and a Fe3O4/PHG weight ratio of 0.31) and good cycling stability (retention 91% after 30,000 cycles). Highly monodispersed very fine Fe3O4 NPs, covered by organic chains, have been also synthesized. The high surface area Fe3O4 NPs, after washing to leave a low content of organic chains able to avoid aggregation without excessively affecting the electrical properties of the material, exhibit remarkable pseudocapacitive activities, including the highest specific capacitance over reported for Fe3O4 (300 F/g at 0.5 A g-1).

  3. Ultrasound-driven Megahertz Faraday Waves for Generation of Monodisperse Micro Droplets and Applications

    Science.gov (United States)

    Tsai, Chen S.; Mao, Rong W.; Lin, Shih K.; Tsai, Shirley C.; Boss, Gerry; Brenner, Matt; Smaldone, Gerry; Mahon, Sari; Shahverdi, Kaveh; Zhu, Yun

    Our theoretical findings on instability of Faraday waves at megahertz (MHz) drive frequency and realization of silicon-based MHz multiple-Fourier horn ultrasonic nozzles (MFHUNs) together have enabled generation of mono-disperse droplets of controllable diameter (2.5-6.0 μm) at very low electrical drive power (generator has imminent application to pulmonary (inhalation) drug delivery and other potential applications. Here an update of advances on analysis and design of the MHz MFHUNs and the underlying physical mechanism for generation of mono-disperse micro droplets, and the nebulizer platform for application to detoxification of cyanide poisoning are presented.

  4. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter.

    Science.gov (United States)

    Burkert, Klaus; Neumann, Thomas; Wang, Jianjun; Jonas, Ulrich; Knoll, Wolfgang; Ottleben, Holger

    2007-03-13

    Photonic crystals and photonic band gap materials with periodic variation of the dielectric constant in the submicrometer range exhibit unique optical properties such as opalescence, optical stop bands, and photonic band gaps. As such, they represent attractive materials for the active elements in sensor arrays. Colloidal crystals, which are 3D gratings leading to Bragg diffraction, are one potential precursor of such optical materials. They have gained particular interest in many technological areas as a result of their specific properties and ease of fabrication. Although basic techniques for the preparation of regular patterns of colloidal crystals on structured substrates by self-assembly of mesoscopic particles are known, the efficient fabrication of colloidal crystal arrays by simple contact printing has not yet been reported. In this article, we present a spotting technique used to produce a microarray comprising up to 9600 single addressable sensor fields of colloidal crystal structures with dimensions down to 100 mum on a microfabricated substrate in different formats. Both monodisperse colloidal crystals and binary colloidal crystal systems were prepared by contact printing of polystyrene particles in aqueous suspension. The array morphology was characterized by optical light microscopy and scanning electron microscopy, which revealed regularly ordered crystalline structures for both systems. In the case of binary crystals, the influence of the concentration ratio of the large and small particles in the printing suspension on the obtained crystal structure was investigated. The optical properties of the colloidal crystal arrays were characterized by reflection spectroscopy. To examine the stop bands of the colloidal crystal arrays in a high-throughput fashion, an optical setup based on a CCD camera was realized that allowed the simultaneous readout of all of the reflection spectra of several thousand sensor fields per array in parallel. In agreement with

  5. Macrocyclic receptors immobilized to monodisperse porous polymer particles by chemical grafting and physical impregnation for strontium capture: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Du, Yi [Department of Chemical Engineering, Laboratory for Advanced Materials, Tsinghua University, Beijing (China); Lv, Dachao [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Ye, Gang, E-mail: yegang@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Wang, Jianchen [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China)

    2014-06-01

    Graphical abstract: Macrocyclic receptors grafted to monodisperse porous polymer particles for Sr(II) capture. - Highlights: • Synthesis of novel selective Sr adsorbent grafted with macrocyclic receptors. • New monodisperse porous polymer particles used to promote Sr adsorption. • Comparative study and discussion on adsorption behaviour and mechanism. • A chromatographic process proposed for Sr separation in simulated HLLW. - Abstract: Separation of strontium is of great significance for radioactive waste treatment and environmental remediation after nuclear accidents. In this work, a novel class of adsorbent (Crown-g-MPPPs) was synthesized by chemical grafting a macrocyclic ether receptor to monodisperse porous polymer particles (MPPPs) for strontium adsorption. Meanwhile, a counterpart material (Crown@MPPPs) with the receptor molecules immobilized to the MPPPs substrate by physical impregnation was prepared. To investigate how the immobilization manner and distribution of the receptors influence the adsorption ability, a comparative study on the adsorption behaviour of the two materials towards Sr(II) in HNO{sub 3} media was accomplished. Due to the shorter diffusion path and covalently-bonded structure, Crown-g-MPPPs showed faster adsorption kinetics and better stability for cycle use. While Crown@MPPPs had the advantages of facile synthesis and higher adsorption capacity, owing to the absence of conformational constraint to form complexation with Sr(II). Kinetic functions (Lagergren pseudo-first-order/pseudo-second-order functions) and adsorption isotherm models (Langmuir/Freundlich models) were used to fit the experimental data and examine the adsorption mechanism. On this basis, a chromatographic process was proposed by using Crown@MPPPs for an effective separation of Sr(II) (91%) in simulated high level liquid waste (HLLW)

  6. Nanogel-quantum dot hybrid nanoparticles for live cell imaging

    International Nuclear Information System (INIS)

    Hasegawa, Urara; Nomura, Shin-ichiro M.; Kaul, Sunil C.; Hirano, Takashi; Akiyoshi, Kazunari

    2005-01-01

    We report here a novel carrier of quantum dots (QDs) for intracellular labeling. Monodisperse hybrid nanoparticles (38 nm in diameter) of QDs were prepared by simple mixing with nanogels of cholesterol-bearing pullulan (CHP) modified with amino groups (CHPNH 2 ). The CHPNH 2 -QD nanoparticles were effectively internalized into the various human cells examined. The efficiency of cellular uptake was much higher than that of a conventional carrier, cationic liposome. These hybrid nanoparticles could be a promising fluorescent probe for bioimaging

  7. Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals.

    Science.gov (United States)

    Reese, Chad E; Asher, Sanford A

    2002-04-01

    We have developed emulsifier-free, emulsion polymerization recipes for the synthesis of highly charged, monodisperse latex particles of diameters between 500 and 1100 nm. These latexes consist of poly[styrene-(co-2-hydroxyethyl methacrylate)] spherical particles whose surfaces are functionalized with sulfate and carboxylic acid groups. These highly charged, monodisperse particles readily self-assemble into robust, three-dimensionally ordered crystalline colloidal array photonic crystals that Bragg diffract light in the near infrared spectral region. By altering the particle number density, the diffraction wavelength can be tuned from approximately 1000 to approximately 4000 nm.

  8. Preparation and characterization of poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) composite thin films highly loaded with platinum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chao-Ching, E-mail: ccchang@tku.edu.tw [Department of Chemical and Materials Engineering, Tamkang University, No. 151, Yingzhuan Rd., Danshui Dist., New Taipei City 25137, Taiwan (China); Energy and Opto-Electronic Materials Research Center, Tamkang University, No. 151, Yingzhuan Rd., Danshui Dist., New Taipei City 25137, Taiwan (China); Jiang, Ming-Tai [Department of Chemical and Materials Engineering, Tamkang University, No. 151, Yingzhuan Rd., Danshui Dist., New Taipei City 25137, Taiwan (China); Chang, Chen-Liang; Lin, Cheng-Lan [Department of Chemical and Materials Engineering, Tamkang University, No. 151, Yingzhuan Rd., Danshui Dist., New Taipei City 25137, Taiwan (China); Energy and Opto-Electronic Materials Research Center, Tamkang University, No. 151, Yingzhuan Rd., Danshui Dist., New Taipei City 25137, Taiwan (China)

    2011-06-15

    Research highlights: {yields} Nano-sized and mono-dispersed Pt nanoparticles were synthesized by a polyol method. {yields} A thin film of PEDOT:PSS loaded with high concentration of Pt nanoparticles has been prepared. {yields} The PEDOT:PSS-Pt modified electrode has good potential to serve as a counter electrode in DSSC. - Abstract: In this work, we propose a simple and efficient, low-temperature ({approx}120 deg. C) process to prepare transparent thin films of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) loaded with high concentration (up to 22.5 wt%) of platinum (Pt) nanoparticles. Firstly, an improved polyol method was modified to synthesize nano-sized ({approx}5 nm) and mono-dispersed Pt particles. These nanoparticles were incorporated into the matrix of PEDOT:PSS thin films via a spin coating/drying procedure. The electrochemical activities of the PEDOT:PSS thin film modified electrodes with respect to the I{sup -}/I{sub 3}{sup -} redox reactions were investigated. It was found that the modified electrode of PEDOT:PSS thin film containing 22.5 wt% Pt exhibited the electrochemical activity comparable to the conventional Pt thin film electrode, suggesting that this electrode has good potential to serve as a counter electrode in dye-sensitized solar cells.

  9. Synthesis of raspberry-like monodisperse magnetic hollow hybrid nanospheres by coating polystyrene template with Fe(3)O(4)@SiO(2) particles.

    Science.gov (United States)

    Wang, Chunlei; Yan, Juntao; Cui, Xuejun; Wang, Hongyan

    2011-02-01

    In this paper, we present a novel method for the preparation of raspberry-like monodisperse magnetic hollow hybrid nanospheres with γ-Fe(2)O(3)@SiO(2) particles as the outer shell. PS@Fe(3)O(4)@SiO(2) composite nanoparticles were successfully prepared on the principle of the electrostatic interaction between negatively charged silica and positively charged polystyrene, and then raspberry-like magnetic hollow hybrid nanospheres with large cavities were achieved by means of calcinations, simultaneously, the magnetite (Fe(3)O(4)) was transformed into maghemite (γ-Fe(2)O(3)). Transmission electron microscopy (TEM) demonstrated that the obtained magnetic hollow silica nanospheres with the perfect spherical profile were well monodisperse and uniform with the mean size of 253nm. The Fourier transform infrared (FTIR) spectrometry, energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) provided the sufficient evidences for the presence of Fe(3)O(4) in the silica shell. Moreover, the magnetic hollow silica nanospheres possessed a characteristic of superparamagnetic with saturation magnetization value of about 7.84emu/g by the magnetization curve measurement. In addition, the nitrogen adsorption-desorption measurement exhibited that the pore size, BET surface area, pore volume of magnetic hollow silica nanospheres were 3.5-5.5nm, 307m(2)g(-1) and 1.33cm(3)g(-1), respectively. Therefore, the magnetic hollow nanospheres possess a promising future in controlled drug delivery and targeted drug applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Preparation of submicrometer monodispersed magnetic silica particles using a novel water in oil microemulsion: properties and application for enzyme immobilization.

    Science.gov (United States)

    Tuttolomondo, Maria Victoria; Villanueva, Maria Emilia; Alvarez, Gisela Solange; Desimone, Martín Federico; Díaz, Luis Eduardo

    2013-10-01

    The synthesis of monodispersed magnetic silica nanoparticles (MSN) is described using a water-in-oil reverse microemulsion system that does not require the use of co-surfactants. Sodium silicate, Tween 20 as a neutral surfactant and 1-butanol as the organic phase were used. There are several advantages of the proposed method including a saturation magnetization value of 10 emu/g for the particles obtained, uniformity of size and that they are easily functionalized to bind urease covalently. Moreover, the intra-day, inter-day and long-term stability results confirm that the procedure was successful and the enzyme-linked MSNs were stable over repeated uses and storage retaining more than 75% activity after 4 months.

  11. The self-assembly of monodisperse nanospheres within microtubes

    International Nuclear Information System (INIS)

    Zheng Yuebing; Juluri, Bala Krishna; Huang, Tony Jun

    2007-01-01

    Self-assembled monodisperse nanospheres within microtubes have been fabricated and characterized. In comparison with colloidal crystals formed on planar substrates, colloidal nanocrystals self-assembled in microtubes demonstrate high spatial symmetry in their optical transmission and reflection properties. The dynamic self-assembly process inside microtubes is investigated by combining temporal- and spatial-spectrophotometric measurements. The understanding of this process is achieved through both experimentally recorded reflection spectra and finite difference time domain (FDTD)-based simulation results

  12. Monodisperse Magneto-Fluorescent Bifunctional Nanoprobes for Bioapplications

    Science.gov (United States)

    Zhang, Hongwang; Huang, Heng; Pralle, Arnd; Zeng, Hao

    2013-03-01

    We present the work on the synthesis of dye-doped monodisperse Fe/SiO2 core/shell nanoparticles as bifunctional probes for bioapplications. Magnetic nanoparticles (NP) have been widely studied as nano-probes for bio-imaging, sensing as well as for cancer therapy. Among all the NPs, Fe NPs have been the focus because they have very high magnetization. However, Fe NPs are usually not stable in ambient due to the fast surface oxidation of the NPs. On the other hand, dye molecules have long been used as probes for bio-imaging. But they are sensitive to environmental conditions. It requires passivation for both so that they can be stable for applications. In this work, monodisperse Fe NPs with sizes ranging from 13-20 nm have been synthesized through the chemical thermal-decomposition in a solution. Silica shells were then coated on the Fe NPs by a two-phase oil-in-water method. Dye molecules were first bonded to a silica precursor and then encapsulated into the silica shell during the coating process. The silica shells protect both the Fe NPs and dye molecules, which makes them as robust probes. The dye doped Fe/SiO2 core/shell NPs remain both highly magnetic and highly fluorescent. The stable dye doped Fe/SiO2NPs have been used as a dual functional probe for both magnetic heating and local nanoscale temperature sending, and their performance will be reported. Research supported by NSF DMR 0547036, DMR1104994.

  13. Synthesis and preparation of biocompatible and pH-responsive cyclodextrin-based nanoparticle

    International Nuclear Information System (INIS)

    Hu, Xiaohong; Chen, Shangneng; Gong, Xiao; Gao, Ziyu; Wang, Xin; Chen, Pin

    2017-01-01

    As a temporarily protective reaction for active hydrogen group, acetylation is reversible and responsive to low pH value. According to the reaction, pH-sensitive β-cyclodextrin (β-CD) was synthesized in the first step of our research. During the synthesis, the acetal groups including linear acetal (LA) groups and cyclic acetal (CA) groups were successfully modified onto β-CD. Particularly, the structural details of acetalated β-CD (Ac-β-CD) were greatly influenced by reaction time. Furthermore, in respect to water solubility, Ac-β-CDs exhibited different pH response properties due to their different structure. In the second step, Ac-β-CD1 nanoparticles were prepared by a single oil-in-water (O/W) emulsion technique using a biocompatible emulsifier, gelatin. Meanwhile, gelatin was absorbed onto the surface of nanoparticle, which was confirmed by FTIR spectra. The formed nanoparticles showed monodispersion and nearly spherical morphology. In order to obtain optimal preparing conditions, the effects of preparative parameters such as gelatin concentration, Ac-β-CD concentration, and water/oil ratio on properties including diameters and zeta potential as well as gelatin content were investigated. Moreover, the pH response properties of nanoparticle were characterized by transparency of nanoparticle solution. Finally, in vitro cell culture confirmed that Ac-β-CD nanoparticle could support cell survival and enhance cell viability.

  14. Synthesis and preparation of biocompatible and pH-responsive cyclodextrin-based nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaohong, E-mail: huxiaohong07@163.com; Chen, Shangneng [Jinling Institute of Technology, School of Material Engineering (China); Gong, Xiao [Wuhan University of Technology, State Key Laboratory of Silicate Materials for Architectures (China); Gao, Ziyu; Wang, Xin; Chen, Pin [Jinling Institute of Technology, School of Material Engineering (China)

    2017-03-15

    As a temporarily protective reaction for active hydrogen group, acetylation is reversible and responsive to low pH value. According to the reaction, pH-sensitive β-cyclodextrin (β-CD) was synthesized in the first step of our research. During the synthesis, the acetal groups including linear acetal (LA) groups and cyclic acetal (CA) groups were successfully modified onto β-CD. Particularly, the structural details of acetalated β-CD (Ac-β-CD) were greatly influenced by reaction time. Furthermore, in respect to water solubility, Ac-β-CDs exhibited different pH response properties due to their different structure. In the second step, Ac-β-CD1 nanoparticles were prepared by a single oil-in-water (O/W) emulsion technique using a biocompatible emulsifier, gelatin. Meanwhile, gelatin was absorbed onto the surface of nanoparticle, which was confirmed by FTIR spectra. The formed nanoparticles showed monodispersion and nearly spherical morphology. In order to obtain optimal preparing conditions, the effects of preparative parameters such as gelatin concentration, Ac-β-CD concentration, and water/oil ratio on properties including diameters and zeta potential as well as gelatin content were investigated. Moreover, the pH response properties of nanoparticle were characterized by transparency of nanoparticle solution. Finally, in vitro cell culture confirmed that Ac-β-CD nanoparticle could support cell survival and enhance cell viability.

  15. Sonochemical synthesis of (3-aminopropyl)triethoxysilane-modified monodispersed silica nanoparticles for protein immobilization

    International Nuclear Information System (INIS)

    Shen, Shou-Cang; Ng, Wai Kiong; Chia, Leonard; Dong, Yuan-Cai; Tan, Reginald B.H.

    2011-01-01

    Graphical abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by rapid sonochemical co-condensation to achieve high capability for protein immobilization. Highlights: → Amino-modified monodispersed silica nanoparticles were synthesized by rapid co-condensation. → Strong positive charge was created by aminopropyl-modification. → Capability for immobilization of negatively charged protein was enhanced. → Electrostatic interaction between proteins and surface contributed to the enhanced adsorption. -- Abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by a rapid sonochemical co-condensation synthesis procedure. The chemical nature of surface organic modifier on the obtained modified silica nanoparticle was characterized by 13 C and 29 Si MAS Nuclear Magnetic Resonance (NMR) spectroscopies, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)- differential scanning calorimetry (DSC). Due to the strengthened positive surface charge of the silica nanoparticles by the modification with aminopropyl groups, the capability for bovine serum albumin (BSA) adsorption was significantly increased as compared with bare silica nanoparticles. 80 mg/g BSA was adsorbed on modified silica nanoparticles, whereas only 20 mg/g BSA could be loaded on pure silica nanoparticles. The enhanced positive surface charge repelled proteins with net positive charge and the modified silica nanoparticles exhibited negligible adsorption of lysozyme, thus a selective adsorption of proteins could be achieved.

  16. Sonochemical synthesis of (3-aminopropyl)triethoxysilane-modified monodispersed silica nanoparticles for protein immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Shou-Cang, E-mail: shen_shoucang@ices.a-star.edu.sg [Institute of Chemical and Engineering Sciences, A-STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Ng, Wai Kiong; Chia, Leonard; Dong, Yuan-Cai [Institute of Chemical and Engineering Sciences, A-STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Tan, Reginald B.H., E-mail: reginald_tan@ices.a-star.edu.sg [Institute of Chemical and Engineering Sciences, A-STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Department of Chemical and Biomolecular Engineering, The National University of Singapore, 4 Engineering Drive 4, Singapore 117576 (Singapore)

    2011-10-15

    Graphical abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by rapid sonochemical co-condensation to achieve high capability for protein immobilization. Highlights: {yields} Amino-modified monodispersed silica nanoparticles were synthesized by rapid co-condensation. {yields} Strong positive charge was created by aminopropyl-modification. {yields} Capability for immobilization of negatively charged protein was enhanced. {yields} Electrostatic interaction between proteins and surface contributed to the enhanced adsorption. -- Abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by a rapid sonochemical co-condensation synthesis procedure. The chemical nature of surface organic modifier on the obtained modified silica nanoparticle was characterized by {sup 13}C and {sup 29}Si MAS Nuclear Magnetic Resonance (NMR) spectroscopies, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)- differential scanning calorimetry (DSC). Due to the strengthened positive surface charge of the silica nanoparticles by the modification with aminopropyl groups, the capability for bovine serum albumin (BSA) adsorption was significantly increased as compared with bare silica nanoparticles. 80 mg/g BSA was adsorbed on modified silica nanoparticles, whereas only 20 mg/g BSA could be loaded on pure silica nanoparticles. The enhanced positive surface charge repelled proteins with net positive charge and the modified silica nanoparticles exhibited negligible adsorption of lysozyme, thus a selective adsorption of proteins could be achieved.

  17. Simple and inexpensive microfluidic devices for the generation of monodisperse multiple emulsions

    KAUST Repository

    Li, Erqiang; Zhang, Jiaming; Thoroddsen, Sigurdur T

    2013-01-01

    of expensive apparatus and a complex manufacturing procedure. Here, we report the design and fabrication of simple and inexpensive microfluidic devices based on microscope glass slides and pulled glass capillaries, for generating monodisperse multiple emulsions

  18. Monodisperse selenium-substituted hydroxyapatite: Controllable synthesis and biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jianpeng [School of Civil Engineering, Xi' an University of Architecture and Technology, Shaanxi 710055 (China); Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi' an, 710069 (China); Zheng, Xiaoyan; Li, Hui; Fan, Daidi [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi' an, 710069 (China); Song, Zhanping [School of Civil Engineering, Xi' an University of Architecture and Technology, Shaanxi 710055 (China); Ma, Haixia [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi' an, 710069 (China); Hua, Xiufu, E-mail: hua_xiufu@163.com [Department of Scientific Research and Development, Tsinghua University, Beijing 100084 (China); Hui, Junfeng, E-mail: huijunfeng@126.com [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi' an, 710069 (China)

    2017-04-01

    Hydroxyapatite (HA) is the major inorganic component of natural bone tissue. As an essential trace element, selenium involves in antioxidation and anticancer of human body. So far, ion-doped hydroxyapatites (HAs) are widely investigated owing to their great applications in field of biomaterial, biological labeling. In this paper, series of monodisperse HA doped with SeO{sub 3}{sup 2−} (SeHA) was successfully synthesized based on the liquid–solid–solution (LSS) strategy. The obtained samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and energy-dispersive spectrometer (EDS). The results indicated that the SeO{sub 3}{sup 2−} doping level of the Se/(P + Se) molar ratio of 0– 0.4 can be requisitely controlled, and the morphology of SeHA nanoparticles varied from nanorods to nanoneedles with increasing Se/(P + Se) molar ratio. Significantly, the as-synthesized SeHA nanocrystals exhibit a low cytotoxicity for osteoblastic cells, showing exciting potentials for application in artificial scaffold materials inhibiting of tumor growth in bone. - Highlights: • Series of SeO{sub 3}{sup 2−} doped HA nanorods or/and nanoneedles were successfully synthesized. • The morphology of the HA nanocrystals can be easily controlled by changing the Se/(P + Se) molar ratio. • The as-synthesized SeHA nanocrystals exhibit a low cytotoxicity for osteoblastic cells. • Showing exciting potentials for application in artificial scaffold materials inhibiting of tumor growth in bone.

  19. Monodisperse selenium-substituted hydroxyapatite: Controllable synthesis and biocompatibility

    International Nuclear Information System (INIS)

    Sun, Jianpeng; Zheng, Xiaoyan; Li, Hui; Fan, Daidi; Song, Zhanping; Ma, Haixia; Hua, Xiufu; Hui, Junfeng

    2017-01-01

    Hydroxyapatite (HA) is the major inorganic component of natural bone tissue. As an essential trace element, selenium involves in antioxidation and anticancer of human body. So far, ion-doped hydroxyapatites (HAs) are widely investigated owing to their great applications in field of biomaterial, biological labeling. In this paper, series of monodisperse HA doped with SeO 3 2− (SeHA) was successfully synthesized based on the liquid–solid–solution (LSS) strategy. The obtained samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and energy-dispersive spectrometer (EDS). The results indicated that the SeO 3 2− doping level of the Se/(P + Se) molar ratio of 0– 0.4 can be requisitely controlled, and the morphology of SeHA nanoparticles varied from nanorods to nanoneedles with increasing Se/(P + Se) molar ratio. Significantly, the as-synthesized SeHA nanocrystals exhibit a low cytotoxicity for osteoblastic cells, showing exciting potentials for application in artificial scaffold materials inhibiting of tumor growth in bone. - Highlights: • Series of SeO 3 2− doped HA nanorods or/and nanoneedles were successfully synthesized. • The morphology of the HA nanocrystals can be easily controlled by changing the Se/(P + Se) molar ratio. • The as-synthesized SeHA nanocrystals exhibit a low cytotoxicity for osteoblastic cells. • Showing exciting potentials for application in artificial scaffold materials inhibiting of tumor growth in bone

  20. High performance of visible-NIR broad spectral photocurrent application of monodisperse PbSe nanocubes decorated on rGO sheets

    Science.gov (United States)

    Ghorban Shiravizadeh, A.; Elahi, S. M.; Sebt, S. A.; Yousefi, Ramin

    2018-02-01

    In this work, the photoresponse performance of monodisperse PbSe nanocubes in the range of visible and near-infrared (NIR) (400-1500 nm) regions was enhanced by reduced graphene oxide (rGO). A simple cost-effective method is presented to synthesize monodisperse PbSe nanocubes (NCs) that are decorated on the rGO sheets. By the addition of PbSe/rGO nanocomposites with different rGO concentrations, pristine PbSe NCs were synthesized with the same method. Microscopy images showed that the size of NCs was smaller than the exciton Bohr radius (46 nm) of PbSe bulk. Therefore, the UV-Vis-IR spectroscopy result revealed that the PbSe/rGO samples had absorption peaks in the NIR region around 1650 nm and showed a blue shift compared to the absorption peak of the PbSe bulk. J-V measurements of the samples indicated that monodisperse PbSe/rGO nanocomposites had a higher resistance than the other samples under dark condition. On the other hand, the resistance of the monodisperse PbSe/rGO nanocomposites decreased under different light source illuminations while the resistance of the other samples was increased under illumination. Photodetector measurements indicated that the monodisperse morphology of the PbSe NCs enhanced the photoresponse speed and photocurrent intensity. In addition, responsivity (R) and detectivity (D*) of the samples were higher in the NIR region.

  1. Hybrid thin films derived from UV-curable acrylate-modified waterborne polyurethane and monodispersed colloidal silica

    Directory of Open Access Journals (Sweden)

    C. H. Yang

    2012-01-01

    Full Text Available Hybrid thin films containing nano-sized inorganic domains were synthesized from UV-curable acrylate-modified waterborne polyurethane (WPU-AC and monodispersed colloidal silica with coupling agent. The coupling agent, 3-(trimethoxysilylpropyl methacrylate (MSMA, was bonded onto colloidal silica first, and then mixed with WPU-AC to form a precursor solution. This precursor was spin coated, dried and UV-cured to generate the hybrid films. The silica content in the hybrid thin films was varied from 0 to 30 wt%. Experimental results showed the aggregation of silica particles in the hybrid films. Thus, the silica domain in the hybrid films was varied from 30 to 50 nm by the different ratios of MSMAsilica to WPU-AC. The prepared hybrid films from the crosslinked WPU-AC/MSMA-silica showed much better thermal stability and mechanical properties than pure WPU-AC.

  2. Facile preparation of monodisperse, impurity-free, and antioxidation copper nanoparticles on a large scale for application in conductive ink.

    Science.gov (United States)

    Zhang, Yu; Zhu, Pengli; Li, Gang; Zhao, Tao; Fu, Xianzhu; Sun, Rong; Zhou, Feng; Wong, Ching-ping

    2014-01-08

    Monodisperse copper nanoparticles with high purity and antioxidation properties are synthesized quickly (only 5 min) on a large scale (multigram amounts) by a modified polyol process using slightly soluble Cu(OH)2 as the precursor, L-ascorbic acid as the reductant, and PEG-2000 as the protectant. The resulting copper nanoparticles have a size distribution of 135 ± 30 nm and do not suffer significant oxidation even after being stored for 30 days under ambient conditions. The copper nanoparticles can be well-dispersed in an oil-based ink, which can be silk-screen printed onto flexible substrates and then converted into conductive patterns after heat treatment. An optimal electrical resistivity of 15.8 μΩ cm is achieved, which is only 10 times larger than that of bulk copper. The synthesized copper nanoparticles could be considered as a cheap and effective material for printed electronics.

  3. Pt based PEMFC catalysts prepared from colloidal particle suspensions--a toolbox for model studies.

    Science.gov (United States)

    Speder, Jozsef; Altmann, Lena; Roefzaad, Melanie; Bäumer, Marcus; Kirkensgaard, Jacob J K; Mortensen, Kell; Arenz, Matthias

    2013-03-14

    A colloidal synthesis approach is presented that allows systematic studies of the properties of supported proton exchange membrane fuel cell (PEMFC) catalysts. The applied synthesis route is based on the preparation of monodisperse nanoparticles in the absence of strong binding organic stabilizing agents. No temperature post-treatment of the catalyst is required rendering the synthesis route ideally suitable for comparative studies. We report work concerning a series of catalysts based on the same colloidal Pt nanoparticle (NP) suspension, but with different high surface area (HSA) carbon supports. It is shown that for the prepared catalysts the carbon support has no catalytic co-function, but carbon pre-treatment leads to enhanced sticking of the Pt NPs on the support. An unwanted side effect, however, is NP agglomeration during synthesis. By contrast, enhanced NP sticking without agglomeration can be accomplished by the addition of an ionomer to the NP suspension. The catalytic activity of the prepared catalysts for the oxygen reduction reaction is comparable to industrial catalysts and no influence of the particle size is found in the range of 2-5 nm.

  4. Preparation of Single Cells for Imaging Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Berman, E S; Fortson, S L; Kulp, K S; Checchi, K D; Wu, L; Felton, J S; Wu, K J

    2007-10-24

    Characterizing chemical changes within single cells is important for determining fundamental mechanisms of biological processes that will lead to new biological insights and improved disease understanding. Imaging biological systems with mass spectrometry (MS) has gained popularity in recent years as a method for creating precise chemical maps of biological samples. In order to obtain high-quality mass spectral images that provide relevant molecular information about individual cells, samples must be prepared so that salts and other cell-culture components are removed from the cell surface and the cell contents are rendered accessible to the desorption beam. We have designed a cellular preparation protocol for imaging MS that preserves the cellular contents for investigation and removes the majority of the interfering species from the extracellular matrix. Using this method, we obtain excellent imaging results and reproducibility in three diverse cell types: MCF7 human breast cancer cells, Madin-Darby canine kidney (MDCK) cells, and NIH/3T3 mouse fibroblasts. This preparation technique allows routine imaging MS analysis of cultured cells, allowing for any number of experiments aimed at furthering scientific understanding of molecular processes within individual cells.

  5. Preparation and flow cytometry of uniform silica-fluorescent dye microspheres.

    Science.gov (United States)

    Bele, Marjan; Siiman, Olavi; Matijević, Egon

    2002-10-15

    Uniform fluorescent silica-dye microspheres have been prepared by coating preformed monodispersed silica particles with silica layers containing rhodamine 6G or acridine orange. The resulting dispersions exhibit intense fluorescent emission between 500 and 600 nm, over a broad excitation wavelength range of 460 to 550 nm, even with exceedingly small amounts of dyes incorporated into the silica particles (10-30 ppm, expressed as weight of dye relative to weight of dry particles). The fluorescent particles can be prepared in micrometer diameters suitable for analyses using flow cytometry with 488-nm laser excitation.

  6. Solvent-Mediated Eco-Friendly Synthesis and Characterization of Monodispersed Bimetallic Ag/Pd Nano composites for Sensing and Raman Scattering Applications

    International Nuclear Information System (INIS)

    Sathiyadevi, G.; Loganathan, B.; Karthikeyan, B.; Karthikeyan, B.

    2014-01-01

    The solvent-mediated eco-friendly monodispersed Ag/Pd bimetallic nano composites (BNCs) having thick core and thin shell have been prepared through novel green chemical solvent reduction method. Reducing solvent, dimethyl formamide (DMF) is employed for the controlled green synthesis. Characterization of the synthesized Ag/Pd BNCs has been done by x-ray diffraction (XRD) studies, high-resolution scanning electron microscopy (HR-SEM), energy-dispersive X-ray analysis (EDX), and high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) pattern. The nature of the interaction of L-cysteine with Ag/Pd BNCs has been studied by using surface plasmon spectroscopy, Fourier transform-infrared spectroscopy (FT-IR), cyclic voltammetry (CV), and theoretical methods.

  7. Self-diffusion in monodisperse three-dimensional magnetic fluids by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dobroserdova, A.B. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Kantorovich, S.S., E-mail: alla.dobroserdova@urfu.ru [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In the present work we study the self-diffusion behaviour in the three-dimensional monodisperse magnetic fluids using the Molecular Dynamics Simulation and Density Functional Theory. The peculiarity of computer simulation is to study two different systems: dipolar and soft sphere ones. In the theoretical method, it is important to choose the approximation for the main structures, which are chains. We compare the theoretical results and the computer simulation data for the self-diffusion coefficient as a function of the particle volume fraction and magnetic dipole-dipole interaction parameter and find the qualitative and quantitative agreement to be good. - Highlights: • The paper deals with the study of the self-diffusion in monodisperse three-dimensional magnetic fluids. • The theoretical approach contains the free energy density functional minimization. • Computer simulations are performed by the molecular dynamics method. • We have a good qualitative and quantitative agreement between the theoretical results and computer simulation data.

  8. Rapid synthesis of monodispersed highly porous spinel nickel cobaltite (NiCo{sub 2}O{sub 4}) electrode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Naveen, A. Nirmalesh, E-mail: nirmalesh.naveen@gmail.com; Selladurai, S. [Ionics Laboratory, Department of Physics, Anna University, Chennai-600025 (India)

    2015-06-24

    Monodispersed highly porous spinel nickel cobaltite electrode material was successfully synthesized in a short time using combustion technique. Single phase cubic nature of the spinel nickel cobaltite with average crystallite size of 24 nm was determined from X-ray diffraction study. Functional groups present in the compound were determined from FTIR study and it further confirms the spinel formation. FESEM images reveal the porous nature of the prepared material and uniform size distribution of the particles. Electrochemical evaluation was performed using Cyclic Voltammetry (CV) technique, Chronopotentiometry (CP) and Electrochemical Impedance Spectroscopy (EIS). Results reveal the typical pseudocapacitive behaviour of the material. Maximum capacitance of 754 F/g was calculated at the scan rate of 5 mV/s, high capacitance was due to the unique porous morphology of the electrode. Nyquist plot depicts the low resistance and good electrical conductivity of nickel cobaltite. It has been found that nickel cobaltite prepared by this typical method will be a potential electrode material for supercapcitor application.

  9. Monodisperse colloidal spheres for (Y,Eu2O3 red-emitting phosphors: establishment of processing window and size-dependent luminescence behavior

    Directory of Open Access Journals (Sweden)

    Qi Zhu, Ji-Guang Li, Xiaodong Li, Xudong Sun and Yoshio Sakka

    2011-01-01

    Full Text Available The urea-based homogeneous precipitation method was introduced in the preparation of monodisperse colloidal spheres for (Y0.95Eu0.052O3 red-emitting phosphors, and the processing window was defined. Particle size and shape are significantly affected by the ion concentration and the urea/RE3+ molar ratio R (RE3+=Y3++Eu3+. A low ion concentration is beneficial in forming monodisperse spheres and extending their formation domain. Increasing R results in a gradual change in the composition of spherical particles from the core-shell Eu(OHCO3@Y(OHCO3 structure to a homogeneous solid solution, thereby significantly lowering the calcination temperature at which precursors convert to oxides. Upon UV excitation into the charge-transfer band at 254 nm, the uniform phosphor spheres of (Y0.95Eu0.052O3 exhibit typical red emissions at 613 nm; the emission is stronger from larger particles mainly because of their smaller surface area. Both the luminescence intensity and quantum efficiency of the oxide phosphors increase with elevated calcination temperatures. The spherical shape and excellent dispersion of the precursor particles (~450 nm in diameter have been well retained after calcination at 1000 circleC for 4 h, and the resultant oxide phosphors exhibit external and internal quantum efficiencies of 50 and 82%, respectively.

  10. Preparation and in vitro evaluation of folate-receptor-targeted SPION–polymer micelle hybrids for MRI contrast enhancement in cancer imaging

    International Nuclear Information System (INIS)

    Mahajan, Shveta; Choudhary, Veena; Koul, Veena; Shishodia, Gauri; Bharti, Alok C

    2013-01-01

    Polymer–SPION hybrids were investigated for receptor-mediated localization in tumour tissue. Superparamagnetic iron oxide nanoparticles (SPIONs) prepared by high-temperature decomposition of iron acetylacetonate were monodisperse (9.27 ± 3.37 nm), with high saturation magnetization of 76.8 emu g −1 . Amphiphilic copolymers prepared from methyl methacrylate and PEG methacrylate by atom transfer radical polymerization were conjugated with folic acid (for folate-receptor specificity). The folate-conjugated polymer had a low critical micellar concentration (0.4 mg l −1 ), indicating stability of the micellar formulation. SPION–polymeric micelle clusters were prepared by desolvation of the SPION dispersion/polymer solution in water. Magnetic resonance imaging of the formulation revealed very good contrast enhancement, with transverse (T 2 ) relaxivity of 260.4 mM −1 s −1 . The biological evaluation of the SPION micelles included cellular viability assay (MTT) and uptake in HeLa cells. These studies demonstrated the potential use of these nanoplatforms for imaging and targeting. (paper)

  11. Preparation and in vitro evaluation of folate-receptor-targeted SPION-polymer micelle hybrids for MRI contrast enhancement in cancer imaging

    Science.gov (United States)

    Mahajan, Shveta; Koul, Veena; Choudhary, Veena; Shishodia, Gauri; Bharti, Alok C.

    2013-01-01

    Polymer-SPION hybrids were investigated for receptor-mediated localization in tumour tissue. Superparamagnetic iron oxide nanoparticles (SPIONs) prepared by high-temperature decomposition of iron acetylacetonate were monodisperse (9.27 ± 3.37 nm), with high saturation magnetization of 76.8 emu g-1. Amphiphilic copolymers prepared from methyl methacrylate and PEG methacrylate by atom transfer radical polymerization were conjugated with folic acid (for folate-receptor specificity). The folate-conjugated polymer had a low critical micellar concentration (0.4 mg l-1), indicating stability of the micellar formulation. SPION-polymeric micelle clusters were prepared by desolvation of the SPION dispersion/polymer solution in water. Magnetic resonance imaging of the formulation revealed very good contrast enhancement, with transverse (T2) relaxivity of 260.4 mM-1 s-1. The biological evaluation of the SPION micelles included cellular viability assay (MTT) and uptake in HeLa cells. These studies demonstrated the potential use of these nanoplatforms for imaging and targeting.

  12. Nonlinear Stress Relaxation of ``Quasi-monodisperse'' Miscible Blends of cis-Polyisoprene and Poly(ptert-butylstyrene)

    Science.gov (United States)

    Watanabe, Hiroshi; Matsumiya, Yumi

    Viscoelastic relaxation was examined for entangled miscible blends of cis-polyisoprene (PI) and poly(ptert-butylstyrene) (PtBS). The terminal relaxation times of PI and PtBS therein, τPI and τPtBS, changed with the composition wPI and the molecular weights MPI and MPtBS. This ratio became unity when the wPI, MPI, and MPtBS values were chosen adequately. For example, in a blend with wPI = 0.75, MPI = 321k, and MPtBS = 91k at T = 40ûC, τPI/τPtBS = 1 and M/Me = 55 and 8.3 for PI and PtBS. Under small strains, this blend exhibited sharp, single-step terminal relaxation as similar to monodisperse homopolymers, thereby behaving as a ``quasi-monodisperse'' material. Under large step strains, the blend exhibited moderate nonlinear damping known as the type-A damping for entangled monodisperse homopolymers. Nevertheless, PI had M/Me = 55 in that blend, and homopolymers having such a large M/Me ratio exhibit very strong type-C damping. Thus, as compared to homopolymers, the nonlinearity was suppressed in the PI/PtBS blend having the large M/Me ratio. This suppression is discussed in relation to the slow Rouse retraction of the coexisting PtBS chains (having M/Me = 8.3 in the blend).

  13. Hydrophilic segmented block copolymers based on poly(ethylene oxide) and monodisperse amide segments

    NARCIS (Netherlands)

    Husken, D.; Feijen, Jan; Gaymans, R.J.

    2007-01-01

    Segmented block copolymers based on poly(ethylene oxide) (PEO) flexible segments and monodisperse crystallizable bisester tetra-amide segments were made via a polycondensation reaction. The molecular weight of the PEO segments varied from 600 to 4600 g/mol and a bisester tetra-amide segment (T6T6T)

  14. Repetitive heterocoagulation of oppositely charged particles for enhancement of magnetic nanoparticle loading into monodisperse silica particles.

    Science.gov (United States)

    Matsumoto, Hideki; Nagao, Daisuke; Konno, Mikio

    2010-03-16

    Oppositely charged particles were repetitively heterocoagulated to fabricate highly monodisperse magnetic silica particles with high loading of magnetic nanoparticles. Positively charged magnetic nanoparticles prepared by surface modification with N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TSA) were used to heterocoagulate with silica particles under basic conditions to give rise to negative silica surface charge and prevent the oxidation of the magnetic nanoparticles. The resultant particles of silica core homogeneously coated with the magnetic nanoparticles were further coated with thin silica layer with sodium silicate in order to enhance colloidal stability and avoid desorption of the magnetic nanoparticles from the silica cores. Five repetitions of the heterocoagulation and the silica coating could increase saturation magnetization of the magnetic silica particles to 27.7 emu/g, keeping the coefficient of variation of particle sizes (C(V)) less than 6.5%. Highly homogeneous loading of the magnetic component was confirmed by measuring Fe-to-Si atomic ratios of individual particles with energy dispersive X-ray spectroscopy.

  15. Monodisperse microbeads of hypercrosslinked polystyrene for liquid and supercritical fluid chromatography

    Science.gov (United States)

    Tsyurupa, M. P.; Blinnikova, Z. K.; Il'in, M. M.; Davankov, V. A.; Parenago, O. O.; Pokrovskii, O. I.; Usovich, O. I.

    2015-11-01

    Monodisperse styrene-divinylbenzene (1 wt %) copolymer microbeads are obtained via the elaborate method of high-productivity precipitation polymerization. The crosslinking of this copolymer with chloromethyl methyl ether in the presence of Friedel-Crafts catalyst yields porous hypercrosslinked polymers with degrees of crosslinking that range from 200 to 500%. Microbead sorbents are shown to be suited for selective stationary phases for high-performance liquid chromatography and supercritical fluid chromatography.

  16. High Throughput Single-cell and Multiple-cell Micro-encapsulation

    OpenAIRE

    Lagus, Todd P.; Edd, Jon F.

    2012-01-01

    Microfluidic encapsulation methods have been previously utilized to capture cells in picoliter-scale aqueous, monodisperse drops, providing confinement from a bulk fluid environment with applications in high throughput screening, cytometry, and mass spectrometry. We describe a method to not only encapsulate single cells, but to repeatedly capture a set number of cells (here we demonstrate one- and two-cell encapsulation) to study both isolation and the interactions between cells in groups of ...

  17. Targeting and molecular imaging of HepG2 cells using surface-functionalized gold nanoparticles

    International Nuclear Information System (INIS)

    Rathinaraj, Pierson; Lee, Kyubae; Choi, Yuri; Park, Soo-Young; Kwon, Oh Hyeong; Kang, Inn-Kyu

    2015-01-01

    Mercaptosuccinic acid (M)-conjugated gold nanoparticles (GM) were prepared and characterized by transmission electron microscope and dynamic light scattering. M was used to improve the monodispersity and non-specific intracellular uptake of nanoparticles. Lactobionic acid (L) was subsequently conjugated to the GM to target preferentially HepG2 cells (liver cancer cells) that express asialoglycoprotein receptors (ASGPR) on their membrane surfaces and facilitate the transit of nanoparticles across the cell membrane. The mean size of lactobionic acid-conjugated gold nanoparticle (GL) was approximately 10 ± 0.2 nm. Finally, the Atto 680 dye (A6) was coupled to the nanoparticles to visualize their internalization into HepG2 cells. The interaction of surface-modified gold nanoparticles with HepG2 cells was studied after culturing cells in media containing the GM or L-conjugated GM (GL)

  18. Targeting and molecular imaging of HepG2 cells using surface-functionalized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rathinaraj, Pierson [Auckland University of Technology, Institute of Biomedical Technologies (New Zealand); Lee, Kyubae; Choi, Yuri; Park, Soo-Young [Kyungpook National University, School of Applied Chemical Engineering, Graduate School (Korea, Republic of); Kwon, Oh Hyeong [Kumoh National Institute of Technology, Department of Polymer Science and Engineering (Korea, Republic of); Kang, Inn-Kyu, E-mail: ikkang@knu.ac.kr [Kyungpook National University, School of Applied Chemical Engineering, Graduate School (Korea, Republic of)

    2015-07-15

    Mercaptosuccinic acid (M)-conjugated gold nanoparticles (GM) were prepared and characterized by transmission electron microscope and dynamic light scattering. M was used to improve the monodispersity and non-specific intracellular uptake of nanoparticles. Lactobionic acid (L) was subsequently conjugated to the GM to target preferentially HepG2 cells (liver cancer cells) that express asialoglycoprotein receptors (ASGPR) on their membrane surfaces and facilitate the transit of nanoparticles across the cell membrane. The mean size of lactobionic acid-conjugated gold nanoparticle (GL) was approximately 10 ± 0.2 nm. Finally, the Atto 680 dye (A6) was coupled to the nanoparticles to visualize their internalization into HepG2 cells. The interaction of surface-modified gold nanoparticles with HepG2 cells was studied after culturing cells in media containing the GM or L-conjugated GM (GL)

  19. Bulk synthesis of monodisperse magnetic FeNi3 nanopowders by flow levitation method.

    Science.gov (United States)

    Chen, Shanjun; Chen, Yan; Kang, Xiaoli; Li, Song; Tian, Yonghong; Wu, Weidong; Tang, Yongjian

    2013-10-01

    In this work, a novel bulk synthesis method for monodisperse FeNi3 nanoparticles was developed by flow levitation method (FL). The Fe and Ni vapours ascending from the high temperature levitated droplet was condensed by cryogenic Ar gas under atmospheric pressure. X-ray diffraction was used to identify and characterize the crystal phase of prepared powders exhibiting a FeNi3 phase. The morphology and size of nanopowders were observed by transmission electron microscopy (TEM). The chemical composition of the nanoparticles was determined with energy dispersive spectrometer (EDS). The results indicated that the FeNi3 permalloy powders are nearly spherical-shaped with diameter about 50-200 nm. Measurement of the magnetic property of nanopowders by a superconducting quantum interference device (SQUID, Quantum Design MPMS-7) showed a symmetric hysteresis loop of ferromagnetic behavior with coercivity of 220 Oe and saturation magnetization of 107.17 emu/g, at 293 K. At 5 K, the obtained saturation magnetization of the sample was 102.16 emu/g. The production rate of FeNi3 nanoparticles was estimated to be about 6 g/h. This method has great potential in mass production of FeNi3 nannoparticles.

  20. Assembly of Fe3O4 nanoparticles on SiO2 monodisperse spheres

    Indian Academy of Sciences (India)

    Assembly of Fe3O4 nanoparticles on SiO2 monodisperse spheres. K C BARICK and D BAHADUR*. Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay,. Mumbai 400 076, India. Abstract. The assembly of superparamagnetic Fe3O4 nanoparticles on submicroscopic SiO2 ...

  1. Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072 (China); Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China); Hou, Weiqiang; Wang, Jingtao; Xiao, Lulu; Jiang, Zhongyi [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072 (China)

    2010-07-01

    Organophosphorylated titania submicrospheres (OPTi) are prepared and incorporated into a chitosan (CS) matrix to fabricate hybrid membranes with enhanced methanol resistance and proton conductivity for application in direct methanol fuel cells (DMFC). The pristine monodispersed titania submicrospheres (TiO{sub 2}) of controllable particle size are synthesized through a modified sol-gel method and then phosphorylated by amino trimethylene phosphonic acid (ATMP) via chemical adsorption, which is confirmed by XPS, FTIR and TGA. The morphology and thermal property of the hybrid membranes are explored by SEM and TGA. The ionic cross-linking between the -PO{sub 3}H{sub 2} groups on OPTi and the -NH{sub 2} groups on CS lead to better compatibility between the inorganic fillers and the polymer matrix, as well as a decreased fractional free volume (FFV), which is verified by positron annihilation lifetime spectroscopy (PALS). The effects of particle size and content on the methanol permeability, proton conductivity, swelling and FFV of the membranes are investigated. Compared to pure CS membrane, the hybrid membranes exhibit an increased proton conductivity to an acceptable level of 0.01 S cm{sup -1} for DMFC application and a reduced methanol permeability of 5 x 10{sup -7} cm{sup 2} s{sup -1} at a 2 M methanol feed. (author)

  2. Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix

    Science.gov (United States)

    Wu, Hong; Hou, Weiqiang; Wang, Jingtao; Xiao, Lulu; Jiang, Zhongyi

    Organophosphorylated titania submicrospheres (OPTi) are prepared and incorporated into a chitosan (CS) matrix to fabricate hybrid membranes with enhanced methanol resistance and proton conductivity for application in direct methanol fuel cells (DMFC). The pristine monodispersed titania submicrospheres (TiO 2) of controllable particle size are synthesized through a modified sol-gel method and then phosphorylated by amino trimethylene phosphonic acid (ATMP) via chemical adsorption, which is confirmed by XPS, FTIR and TGA. The morphology and thermal property of the hybrid membranes are explored by SEM and TGA. The ionic cross-linking between the -PO 3H 2 groups on OPTi and the -NH 2 groups on CS lead to better compatibility between the inorganic fillers and the polymer matrix, as well as a decreased fractional free volume (FFV), which is verified by positron annihilation lifetime spectroscopy (PALS). The effects of particle size and content on the methanol permeability, proton conductivity, swelling and FFV of the membranes are investigated. Compared to pure CS membrane, the hybrid membranes exhibit an increased proton conductivity to an acceptable level of 0.01 S cm -1 for DMFC application and a reduced methanol permeability of 5 × 10 -7 cm 2 s -1 at a 2 M methanol feed.

  3. Preparation and Characterization of Fluorescent SiO2 Microspheres

    Science.gov (United States)

    Xu, Cui; Zhang, Hao; Guan, Ruifang

    2018-01-01

    Fluorescent compound without typical fluorophores was synthesized with citric acid (CA) and aminopropyltriethoxysilane (APTS) firstly, and then it was grafted to the surface of the prepared SiO2 microspheres by chemical reaction. The fluorescent SiO2 microspheres with good fluorescent properties were obtained by optimizing the reaction conditions. And the morphology and structure of the fluorescent SiO2 microspheres have been characterized by scanning electron microscopy (SEM) and fourier transform infrared (FTIR) spectroscopy. The results showed that the preparation of fluorescent SiO2 microspheres have good monodispersity and narrow particle size distribution. Moreover, the fluorescent SiO2 microspheres can be applied to detect Fe3+ in aqueous solution, prepare fluorescent SiO2 rubber, and have potential to be applied in the fluorescent labeling and fingerprint appearing technique fields.

  4. Tri-block copolymers with mono-disperse crystallizable diamide segments: synthesis, analysis and rheological properties

    NARCIS (Netherlands)

    Araichimani, A.; Gaymans, R.J.

    2008-01-01

    Tri-block copolymers with polyether mid-segments and mono-disperse amide end segments were synthesized, analyzed and some properties studied. The end segment was an aromatic diamide (diaramide, TΦB). The polyether mid-segment was a difunctional poly(tetramethylene oxide) (PTMO, 1000 and 2900 g/mol).

  5. Production of monodisperse respirable aerosols of 241AmO2 and evaluation of in vitro dissolution

    International Nuclear Information System (INIS)

    Boyd, H.A.; Raabe, O.G.; Peterson, P.K.

    1974-01-01

    A method is described for production of monodisperse (sigma//sub g/ less than 1.2) particles of 241 AmO 2 for use in inhalation experiments with dogs and rodents. The effects of physical and chemical factors on the production of polydisperse aerosols of 241 AmO 2 were studied and evaluated. The best aerosol was achieved when a suspension of americium hydroxide with 2.5 mg Am/ml at pH = 7.3 was aerosolized and passed through two heating columns in succession, the first at 300 0 C and the second at 1050 0 C. The particles were roughly spherical and had densities near 8 gm/cm 3 ; the aerosol AMAD and sigma/sub g/ were about 1.5 μm and 1.7, respectively. Monodisperse particles were separated and collected with the Lovelace Aerosol Particle Separator (LAPS) and subsequently suspended in deionized water with pH adjusted to 10.2 with NH 3 for nebulization to produce monodisperse aerosols for inhalation exposures. Particles collected on filters during inhalation experiments were used for evaluation of in vitro dissolution rates with two systems and various forms of a lung fluid simulant. The important role of phosphate ions in such dissolution systems was demonstrated, suggesting the potential for the equally important role of free phosphate in retarding dissolution of AmO 2 particles in the lung. (U.S.)

  6. Lock and Key Colloids through Polymerization-Induced Buckling of Monodispersed Silicon Oil Droplets

    Science.gov (United States)

    Sacanna, Stefano; Irvine, William T. M.; Chaikin, Paul M.; Pine, David J.

    2010-03-01

    Colloidal particles can spontaneously associate into larger structured aggregates when driven by selective and directional interactions. Colloidal organization can be programmed by engineering shapes and interactions of basic building blocks in a manner similar to molecular self-assembly. Examples of successful strategies that allow non-trivial assembly of particles include template-directed patterning, capillary forces and, most commonly, the functionalization of the particle surfaces with ``sticky patches'' of biological or synthetic molecules. The level of complexity of the realizable assemblies, increases when particles with well defined shape anisotropies are used. In particular depletion forces and specific surface treatments in combination with non spherical particles have proven to be powerful tools to self-assembly complex microstructures. We describe a simple, high yield, synthetic pathway to fabricate monodisperse hybrid silica spheres with well defined cavities. Because the particle morphologies are reproducible and tunable with precision, the resulting particles can be used as basic building blocks in the assembly of larger monodisperse clusters. This is demonstrated using depletion to drive the self-assembly.

  7. Facile Synthesis of Monodispersed Polysulfide Spheres for Building Structural Colors with High Color Visibility and Broad Viewing Angle.

    Science.gov (United States)

    Li, Feihu; Tang, Bingtao; Wu, Suli; Zhang, Shufen

    2017-01-01

    The synthesis and assembly of monodispersed colloidal spheres are currently the subject of extensive investigation to fabricate artificial structural color materials. However, artificial structural colors from general colloidal crystals still suffer from the low color visibility and strong viewing angle dependence which seriously hinder their practical application in paints, colorimetric sensors, and color displays. Herein, monodispersed polysulfide (PSF) spheres with intrinsic high refractive index (as high as 1.858) and light-absorbing characteristics are designed, synthesized through a facile polycondensation and crosslinking process between sodium disulfide and 1,2,3-trichloropropane. Owing to their high monodispersity, sufficient surface charge, and good dispersion stability, the PSF spheres can be assembled into large-scale and high-quality 3D photonic crystals. More importantly, high structural color visibility and broad viewing angle are easily achieved because the unique features of PSF can remarkably enhance the relative reflectivity and eliminate the disturbance of scattering and background light. The results of this study provide a simple and efficient strategy to create structural colors with high color visibility, which is very important for their practical application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Monodisperse, molecularly imprinted polymers for creatinine by modified precipitation polymerization and their applications to creatinine assays for human serum and urine.

    Science.gov (United States)

    Miura, Chitose; Funaya, Noriko; Matsunaga, Hisami; Haginaka, Jun

    2013-11-01

    Molecularly imprinted polymers (MIPs) for creatinine were prepared by modified precipitation polymerization using methacrylic acid as a functional monomer and divinylbenzene as a crosslinker. The prepared MIPs were monodispersed with a narrow particle size distribution. Binding experiments and Scatchard analyses revealed that two classes of binding sites, high- and low-affinity sites, were formed on the MIPs. The retention and molecular-recognition properties of the MIPs were evaluated by hydrophilic interaction chromatography using a mixture of ammonium acetate buffer and acetonitrile as a mobile phase. With an increase of acetonitrile content, the retention factor of creatinine was increased on the MIP. In addition to shape recognition, hydrophilic interactions seemed to enhance the recognition of creatinine on the MIP. The MIPs' molecular-recognition ability was specific for creatinine; the structurally related compounds such as hydantoin, 1-methylhydantoin, 2-pyrrolidone, N-hydroxysuccinimide and creatine were not recognized. Furthermore, the creatinine concentrations in human serum and urine were successfully determined by direct injection of the deproteinized serum and diluted urine samples onto the MIP. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Combined sonochemical/CVD method for preparation of nanostructured carbon-doped TiO{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Rasoulnezhad, Hossein [Semiconductor Department, Materials and Energy Research Center (MERC), Karaj (Iran, Islamic Republic of); Kavei, Ghassem, E-mail: kaveighassem@gmail.com [Semiconductor Department, Materials and Energy Research Center (MERC), Karaj (Iran, Islamic Republic of); Ahmadi, Kamran [Semiconductor Department, Materials and Energy Research Center (MERC), Karaj (Iran, Islamic Republic of); Rahimipour, Mohammad Reza [Ceramic Department, Materials and Energy Research Center (MERC), Karaj (Iran, Islamic Republic of)

    2017-06-30

    Highlights: • Combination of sonochemical and CVD methods for preparation of nanostructured carbon-doped TiO{sub 2} thin film on glass substrate, for the first time. • High transparency, monodispersity and homogeneity of the prepared thin films. • Preparation of the carbon-doped TiO{sub 2} thin films with nanorod and nanosphere morphologies. - Abstract: The present work reports the successful synthesis of the nanostructured carbon-doped TiO{sub 2} thin films on glass substrate by combination of chemical vapor deposition (CVD) and ultrasonic methods, for the first time. In this method the ultrasound waves act as nebulizer for converting of sonochemically prepared TiO{sub 2} sol to the mist particles. These mist particles were thermally decomposed in subsequent CVD chamber at 320 °C to produce the carbon-doped TiO{sub 2} thin films. The obtained thin films were characterized by means of X-ray Diffraction (XRD), Raman spectroscopy, diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) techniques. The results show that the prepared thin films have anatase crystal structure and nanorod morphology, which calcination of them at 800 °C results in the conversion of nanorods to nanoparticles. In addition, the prepared samples have high transparency, monodispersity and homogeneity. The presence of the carbon element in the structure of the thin films causes the narrowing of the band-gap energy of TiO{sub 2} to about 2.8 eV, which results in the improvement of visible light absorption capabilities of the thin film.

  10. Synthesis of Monodisperse CdSe QDs using Controlled Growth Temperatures

    International Nuclear Information System (INIS)

    Noor Razinah Rahmat; Akrajas Ali Umar; Muhammad Yahya; Muhamad Mat Salleh; Mohammad Hafizuddin Jumali

    2011-01-01

    The effect of growth temperatures on size of CdSe quantum dots (QDs) has been investigated. CdSe QDs were synthesized using thermolysis of organometallics precursor route using wet chemical method. The growth temperature was varied from 260-310 degree Celsius with growth period fixed at 60 s. As the growth temperature increased, the monodispersed CdSe QDs with diameter in the range 3-7 nm were obtained. Both absorption and PL spectra of the QDs revealed a strong red-shift supporting the increment size of QDs with the rise of growth temperature. (author)

  11. A novel monodisperse SiO2@C-dot for the rapid and facile identification of latent fingermarks using self-quenching resistant solid-state fluorescence.

    Science.gov (United States)

    Peng, Di; Liu, Xiang; Huang, Mengjun; Wang, Dan; Liu, Renlong

    2018-04-24

    Solid powder fluorescence shows great potential for application in medicine, biology, and engineering, especially in the identification of latent fingermarks in forensic science. However, conventional developing methods suffer from some drawbacks, such as low contrast, low sensitivity, low selectivity, and high toxicity. To conquer these challenges, novel SiO2@C-dot microspheres were prepared via a facile one-pot hydrothermal method by using citric acid as a carbon source and aminosilane as a nitrogen source. Interestingly, the results showed that the resultant powders possess good monodispersity, high fluorescence emission, and resistance to self-quenching. Additionally, the mechanism for the solid-state fluorescence of SiO2@C-dot compounds was also investigated. More importantly, the fingermarks on various surfaces, including transparent glasses, ceramic tiles, transparent plastics, aluminum alloys, plastic cards, painted woods, artificial leathers, and Chinese paper money, developed by the powders have indicated well-defined papillary ridges under a 365 nm UV lamp. The novel strategy of using monodisperse SiO2@C-dot microspheres as a fluorescent label for developing latent fingermarks showed greater advantages compared to conventional methods, which was also demonstrated using the automatic fingerprint identification system. It is simple, rapid, low-cost, nontoxic, and effective, and is expected to be a promising alternative for the development of latent fingerprints in forensic science.

  12. Quantitation of MRI sensitivity to quasi-monodisperse microbubble contrast agents for spatially resolved manometry.

    Science.gov (United States)

    Bencsik, Martin; Al-Rwaili, Amgad; Morris, Robert; Fairhurst, David J; Mundell, Victoria; Cave, Gareth; McKendry, Jonathan; Evans, Stephen

    2013-11-01

    The direct in-vivo measurement of fluid pressure cannot be achieved with MRI unless it is done with the contribution of a contrast agent. No such contrast agents are currently available commercially, whilst those demonstrated previously only produced qualitative results due to their broad size distribution. Our aim is to quantitate then model the MR sensitivity to the presence of quasi-monodisperse microbubble populations. Lipid stabilised microbubble populations with mean radius 1.2 ± 0.8 μm have been produced by mechanical agitation. Contrast agents with increasing volume fraction of bubbles up to 4% were formed and the contribution the bubbles bring to the relaxation rate was quantitated. A periodic pressure change was also continuously applied to the same contrast agent, until MR signal changes were only due to bubble radius change and not due to a change in bubble density. The MR data compared favourably with the prediction of an improved numerical simulation. An excellent MR sensitivity of 23 % bar(-1) has been demonstrated. This work opens up the possibility of generating microbubble preparations tailored to specific applications with optimised MR sensitivity, in particular MRI based in-vivo manometry. Copyright © 2012 Wiley Periodicals, Inc.

  13. In-site synthesis of monodisperse, oleylamine-capped Ag nanoparticles through microemulsion approach

    Science.gov (United States)

    Chen, Shun; Ju, Yanyun; Guo, Yi; Xiong, Chuanxi; Dong, Lijie

    2017-03-01

    Ag NPs were in-site synthesized through microemulsion method by reducing silver acetate with oleylamine-mediated at 70 °C with highly monodisperse and narrow size from 10 to 20 nm. The synthesis of Ag NPs was aided by oleylamine and the role of oleylamine was researched. This in-site synthesis approach to Ag NPs was reproducibility and high yield more than 80% with stable store about 6 months.

  14. Laser ablation synthesis of monodispersed magnetic alloy nanoparticles

    International Nuclear Information System (INIS)

    Seto, Takafumi; Koga, Kenji; Akinaga, Hiroyuki; Takano, Fumiyoshi; Orii, Takaaki; Hirasawa, Makoto

    2006-01-01

    Monodispersed CoPt alloy nanoparticles were synthesized by a pulsed laser ablation (PLA) technique coupled with a low-pressure operating differential mobility analyzer (LP-DMA). The CoPt alloy nanoparticles were generated by laser ablating a solid Co-Pt target. In CoPt alloy nanoparticles synthesized from a target with a Co composition of 75 at%, the nanoparticle surfaces were covered by an oxide layer and exhibited a core-shell structure. In contrast, no shell was observed in particles generated from a target with a Co:Pt ratio of 50:50 at%. According to an EDX analysis, the compositions of the individual nanoparticles were almost the same as that of the target material. Finally, the magnetic hysteresis loops of the CoPt alloy nanoparticles exhibited ferromagnetism

  15. Laser ablation synthesis of monodispersed magnetic alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seto, Takafumi, E-mail: t.seto@aist.go.jp; Koga, Kenji; Akinaga, Hiroyuki; Takano, Fumiyoshi; Orii, Takaaki; Hirasawa, Makoto [National Institute of Advanced Industrial Science and Technology (AIST), Research Consortium for Synthetic Nano-Function Materials Project (SYNAF) (Japan)

    2006-08-15

    Monodispersed CoPt alloy nanoparticles were synthesized by a pulsed laser ablation (PLA) technique coupled with a low-pressure operating differential mobility analyzer (LP-DMA). The CoPt alloy nanoparticles were generated by laser ablating a solid Co-Pt target. In CoPt alloy nanoparticles synthesized from a target with a Co composition of 75 at%, the nanoparticle surfaces were covered by an oxide layer and exhibited a core-shell structure. In contrast, no shell was observed in particles generated from a target with a Co:Pt ratio of 50:50 at%. According to an EDX analysis, the compositions of the individual nanoparticles were almost the same as that of the target material. Finally, the magnetic hysteresis loops of the CoPt alloy nanoparticles exhibited ferromagnetism.

  16. Synthesis and characterization of monodisperse, mesoporous, and magnetic sub-micron particles doped with a near-infrared fluorescent dye

    International Nuclear Information System (INIS)

    Le Guevel, Xavier; Nooney, Robert; McDonagh, Colette; MacCraith, Brian D.

    2011-01-01

    Recently, multifunctional silica nanoparticles have been investigated extensively for their potential use in biomedical applications. We have prepared sub-micron monodisperse and stable multifunctional mesoporous silica particles with a high level of magnetization and fluorescence in the near infrared region using an one-pot synthesis technique. Commercial magnetite nanocrystals and a conjugated-NIR-dye were incorporated inside the particles during the silica condensation reaction. The particles were then coated with polyethyleneglycol to stop aggregation. X-ray diffraction, N 2 adsorption analysis, TEM, fluorescence and absorbance measurements were used to structurally characterize the particles. These mesoporous silica spheres have a large surface area (1978 m 2 /g) with 3.40 nm pore diameter and a high fluorescence in the near infrared region at λ=700 nm. To explore the potential of these particles for drug delivery applications, the pore accessibility to hydrophobic drugs was simulated by successfully trapping a hydrophobic ruthenium dye complex inside the particle with an estimated concentration of 3 wt%. Fluorescence imaging confirmed the presence of both NIR dye and the post-grafted ruthenium dye complex inside the particles. These particles moved at approximately 150 μm/s under the influence of a magnetic field, hence demonstrating the multifunctionality and potential for biomedical applications in targeting and imaging. - Graphical Abstract: Hydrophobic fluorescent Ruthenium complex has been loaded into the mesopores as a surrogate drug to simulate drug delivery and to enhance the multifunctionality of the magnetic NIR emitting particles. Highlights: → Monodisperse magnetic mesoporous silica particles emitting in the near infrared region are obtained in one-pot synthesis. → We prove the capacity of such particles to uptake hydrophobic dye to mimic drug loading. → Loaded fluorescent particles can be moved under a magnetic field in a microfluidic

  17. Comparative DNA isolation behaviours of silica and polymer based sorbents in batch fashion: monodisperse silica microspheres with bimodal pore size distribution as a new sorbent for DNA isolation.

    Science.gov (United States)

    Günal, Gülçin; Kip, Çiğdem; Eda Öğüt, S; İlhan, Hasan; Kibar, Güneş; Tuncel, Ali

    2018-02-01

    Monodisperse silica microspheres with bimodal pore-size distribution were proposed as a high performance sorbent for DNA isolation in batch fashion under equilibrium conditions. The proposed sorbent including both macroporous and mesoporous compartments was synthesized 5.1 μm in-size, by a "staged shape templated hydrolysis and condensation method". Hydrophilic polymer based sorbents were also obtained in the form of monodisperse-macroporous microspheres ca 5.5 μm in size, with different functionalities, by a developed "multi-stage microsuspension copolymerization" technique. The batch DNA isolation performance of proposed material was comparatively investigated using polymer based sorbents with similar morphologies. Among all sorbents tried, the best DNA isolation performance was achieved with the monodisperse silica microspheres with bimodal pore size distribution. The collocation of interconnected mesoporous and macroporous compartments within the monodisperse silica microspheres provided a high surface area and reduced the intraparticular mass transfer resistance and made easier both the adsorption and desorption of DNA. Among the polymer based sorbents, higher DNA isolation yields were achieved with the monodisperse-macroporous polymer microspheres carrying trimethoxysilyl and quaternary ammonium functionalities. However, batch DNA isolation performances of polymer based sorbents were significantly lower with respect to the silica microspheres.

  18. Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles

    International Nuclear Information System (INIS)

    Liu, Y.; Wei, J.H.; Xiong, R.; Pan, C.X.; Shi, J.

    2011-01-01

    In order to get photocatalysts with desired morphologies and enhanced visible light responses, the Fe-doped TiO 2 nanorod clusters and monodispersed nanoparticles were prepared by modified hydrothermal and solvothermal method, respectively. The microstructures and morphologies of TiO 2 crystals can be controlled by restraining the hydrolytic reaction rates. The Fe-doped photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy (UV-vis), N 2 adsorption-desorption measurement (BET), and photoluminescence spectroscopy (PL). The refinements of the microstructures and morphologies result in the enhancement of the specific surface areas. The Fe 3+ -dopants in TiO 2 lattices not only lead to the significantly extending of the optical responses from UV to visible region but also diminish the recombination rates of the electrons and holes. The photocatalytic activities were evaluated by photocatalytic decomposition of formaldehyde in air under visible light illumination. Compared with P25 (TiO 2 ) and N-doped TiO 2 nanoparticles, the Fe-doped photocatalysts show high photocatalytic activities under visible light.

  19. Tailored synthesis of monodispersed nano/submicron porous silicon oxycarbide (SiOC) spheres with improved Li-storage performance as an anode material for Li-ion batteries

    Science.gov (United States)

    Shi, Huimin; Yuan, Anbao; Xu, Jiaqiang

    2017-10-01

    A spherical silicon oxycarbide (SiOC) material (monodispersed nano/submicron porous SiOC spheres) is successfully synthesized via a specially designed synthetic strategy involving pyrolysis of phenyltriethoxysilane derived pre-ceramic polymer spheres at 900 °C. In order to prevent sintering of the pre-ceramic polymer spheres upon heating, a given amount of hollow porous SiO2 nanobelts which are separately prepared from tetraethyl orthosilicate with CuO nanobelts as templates are introduced into the pre-ceramic polymer spheres before pyrolysis. This material is investigated as an anode for lithium-ion batteries in comparison with the large-size bulk SiOC material synthesized under the similar conditions but without hollow SiO2 nanobelts. The maximum reversible specific capacity of ca. 900 mAh g-1 is delivered at the current density of 100 mA g-1 and ca. 98% of the initial capacity is remained after 100 cycles at 100 mA g-1 for the SiOC spheres material, which are much superior to the bulk SiOC material. The improved lithium storage performance in terms of specific capacity and cyclability is attributed to its particular morphology of monodisperse nano/submicron porous spheres as well as its modified composition and microstructure. This SiOC material has higher Li-storage activity and better stability against volume expansion during repeated lithiation and delithiation cycling.

  20. In-site synthesis of monodisperse, oleylamine-capped Ag nanoparticles through microemulsion approach

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shun; Ju, Yanyun [Wuhan University of Technology, School of Materials Science and Engineering (China); Guo, Yi [Wuhan University of Technology, Center for Materials Research and Analysis (China); Xiong, Chuanxi; Dong, Lijie, E-mail: dong@whut.edu.cn [Wuhan University of Technology, School of Materials Science and Engineering (China)

    2017-03-15

    Ag NPs were in-site synthesized through microemulsion method by reducing silver acetate with oleylamine-mediated at 70 °C with highly monodisperse and narrow size from 10 to 20 nm. The synthesis of Ag NPs was aided by oleylamine and the role of oleylamine was researched. This in-site synthesis approach to Ag NPs was reproducibility and high yield more than 80% with stable store about 6 months.

  1. Atomically Monodisperse Nickel Nanoclusters as Highly Active Electrocatalysts for Water Oxidation

    KAUST Repository

    Joya, Khurram

    2016-04-08

    Achieving water splitting at low overpotential with high oxygen evolution efficiency and stability is important for realizing solar to chemical energy conversion devices. Herein we report the synthesis, characterization and electrochemical evaluation of highly active nickel nanoclusters (Ni NCs) for water oxidation at low overpotential. These atomically precise and monodisperse Ni NCs are characterized by using UV-visible absorption spectroscopy, single crystal X-ray diffraction and mass spectrometry. The molecular formulae of these Ni NCs are found to be Ni4(PET)8 and Ni6(PET)12 and are highly active electrocatalysts for oxygen evolution without any pre-conditioning. Ni4(PET)8 are slightly better catalysts than Ni6(PET)12 and initiate the oxygen evolution at an amazingly low overpotential of ~1.51 V (vs RHE; η ≈ 280 mV). The peak oxygen evolution current density (J) of ~150 mA cm–2 at 2.0 V (vs. RHE) with a Tafel slope of 38 mV dec–1 is observed using Ni4(PET)8. These results are comparable to the state-of-the art RuO2 electrocatalyst, which is highly expensive and rare compared to Ni-based materials. Sustained oxygen generation for several hours with an applied current density of 20 mA cm–2 demonstrates the long-term stability and activity of these Ni NCs towards electrocatalytic water oxidation. This unique approach provides a facile method to prepare cost-effective, nanoscale and highly efficient electrocatalysts for water oxidation.

  2. Dispersed-nanoparticle loading synthesis for monodisperse Au-titania composite particles and their crystallization for highly active UV and visible photocatalysts.

    Science.gov (United States)

    Sakamoto, Takeshi; Nagao, Daisuke; Noba, Masahiro; Ishii, Haruyuki; Konno, Mikio

    2014-06-24

    Submicrometer-sized amorphous titania spheres incorporating Au nanoparticles (NPs) were prepared in a one-pot synthesis consisting of a sol-gel reaction of titanium(IV) isopropoxide in the presence of chloroauric acid and a successive reduction with sodium borohydride in a mixed solvent of ethanol/acetonitrile. The synthesis was allowed to prepare monodisperse titania spheres that homogeneously incorporated Au NPs with sizes of ca. 7 nm. The Au NP-loaded titania spheres underwent different crystallization processes, including 500 °C calcination in air, high-temperature hydrothermal treatment (HHT), and/or low-temperature hydrothermal treatment (LHT). Photocatalytic experiments were conducted with the Au NP-loaded crystalline titania spheres under irradiation of UV and visible light. A combined process of LHT at 80 °C followed by calcination at 500 °C could effectively crystallize titania spheres maintaining the dispersion state of Au NPs, which led to photocatalytic activity higher than that of commercial P25 under UV irradiation. Under visible light irradiation, the Au NP-titania spheres prepared with a crystallization process of LHT at 80 °C for 6 h showed photocatalytic activity much higher than a commercial product of visible light photocatalyst. Structure analysis of the visible light photocatalysts indicates the importance of prevention of the Au NPs aggregation in the crystallization processes for enhancement of photocatalytic activity.

  3. Method of preparing an electrochemical cell in uncharged state

    Science.gov (United States)

    Shimotake, Hiroshi; Bartholme, Louis G.; Arntzen, John D.

    1977-02-01

    A secondary electrochemical cell is assembled in an uncharged state for the preparation of a lithium alloy-transition metal sulfide cell. The negative electrode includes a material such as aluminum or silicon for alloying with lithium as the cell is charged. The positive electrode is prepared by blending particulate lithium sulfide, transition metal powder and electrolytic salt in solid phase. The mixture is simultaneously heated to a temperature in excess of the melting point of the electrolyte and pressed onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within the cell. During the first charge cycle lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode.

  4. Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method

    International Nuclear Information System (INIS)

    Shao-Peng, Zhu; Shao-Chun, Tang; Xiang-Kang, Meng

    2009-01-01

    Silver nanoparticles with an average size of about 20 nm are synthesized in a colloidal solution with the aid of microwave irradiation. Neither additional reductant nor stabilizer is required in this microwave-assisted method. The color of the colloidal solution is found to be dark green, different from the characteristic yellow of silver colloidal solutions. The silver nanoparticles in the colloidal solution have a narrow size distribution and large yield quantity. UV-visible absorption spectroscopy analysis reveals that the as-synthesized monodisperse silver nanoparticles have exceptional optical properties. Raman spectroscopy measurements demonstrate that these silver nanoparticles exhibit a notable surface-enhanced Raman scattering ability. (cross-disciplinary physics and related areas of science and technology)

  5. Dynamics of polyelectrolyte adsorption and colloidal flocculation upon mixing studied using mono-dispersed polystyrene latex particles

    NARCIS (Netherlands)

    Feng, Lili; Cohen Stuart, Martien; Adachi, Yasuhisa

    2015-01-01

    The dynamic behavior of polyelectrolytes just after their encounter with the surface of bare colloidal particles is analyzed, using the flocculation properties of mono-dispersed polystyrene latex (PSL) particles. Applying a Standardized Colloid Mixing (SCM) approach, effects of ionic strength and

  6. Photoelectrochemical performance of DSSC with monodisperse and polydisperse ZnO SPs

    Energy Technology Data Exchange (ETDEWEB)

    Wahyuono, Ruri Agung, E-mail: r-agung-w@ep.its.ac.id; Risanti, Doty D., E-mail: r-agung-w@ep.its.ac.id [Department of Engineering Physics, Institut Teknologi Sepuluh Nopember (Indonesia); Shirosaki, Tomohiro; Nagaoka, Shoji [Kumamoto Industrial Research Institute (Japan); Takafuji, Makoto; Ihara, Hirotaka [Department of Applied Chemistry and Biochemistry, Kumamoto University (Japan)

    2014-02-24

    Zinc oxide, ZnO, is one of oxide semiconductors being used in DSSC. ZnO is promising material for having fairly higher energy band gap and much higher bulk electron mobility than that of anatase TiO{sub 2}, the most widely used semiconductor for DSSC photoelectrode. This study introduces the synthesis of ZnO by precipitation method. The synthesis involves ZnAc dihydrate and diethylene glycol (DEG) for the chemicals. Various size of ZnO spherical particles (SPs) are obtained in polydisperse and monodisperse particles. Monolayer and bilayer DSSCs are fabricated in sandwich structure and sensitized with N719 dye for 3 and 5 hours. Monolayer DSSC using monodisperse particles (422 nm) is able to generate highest conversion efficiency of 0.569% (V{sub oc} = 541.3 mV, J{sub sc} = 1.92 mA/cm{sup 2}, and fill factor of 54.78%). Bilayer DSSC, i.e. combined 422 - 185 nm ZnO layer, can optimize the photocurrent action spectra in UV regime leading to high conversion efficiency of 0.568 (V{sub oc} = 568.2 mV, J{sub sc} = 2.22 mA/cm{sup 2}, and fill factor of 47.25%). The longer sensitizing time does not always produce better conversion efficiency since it can induce the dissolution of Zn atoms and formation of Zn{sup 2+} - dye resisting the electron transport from dye to ZnO photoelectrode.

  7. Growth of monodisperse mesoscopic metal-oxide colloids under constant monomer supply

    Science.gov (United States)

    Nozawa, Koh; Delville, Marie-Hélène; Ushiki, Hideharu; Panizza, Pascal; Delville, Jean-Pierre

    2005-07-01

    In closed systems, control over the size of monodisperse metal-oxide colloids is generally limited to submicrometric dimensions. To overcome this difficulty, we explore the formation and growth of silica particles under constant monomer supply. The monomer source is externally driven by the progressive addition into the system of one of the precursors. Monodisperse spherical particles are produced up to a mesoscopic size. We analyze their growth versus the monomer addition rate at different temperatures. Our results show that in the presence of a continuous monomer addition, growth is limited by diffusion over the investigated temporal window. Using the temperature variation of the growth rate, we prove that rescaling leads to a data reduction onto a single master curve. Contrary to the growth process, the final particle’s size reached after the end of the reagent supply strongly depends on the addition rate. The variation of the final particle size versus addition rate can be deduced from an analogy with crystal formation in jet precipitation. Within this framework, and using the temperature dependences of both the particle growth law and the final size, we determine the value of the molecular heat of dissolution associated to the silica solubility. These observations support the fact that classical theories of phase-ordering dynamics can be extended to the synthesis of inorganic particles. The emergence of a master behavior in the presence of continuous monomer addition also suggests the extension of these theories to open systems.

  8. Insights into magnetic interactions in a monodisperse Gd{sub 12}Fe{sub 14} metal cluster

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiu-Ying; Zhang, Hui; Liu, Pengxin; Du, Ming-Hao; Han, Ying-Zi; Wei, Rong-Jia; Kong, Xiang-Jian; Long, La-Sheng; Zheng, Lan-Sun [Collaborative Innovation Center of Chemistry for Energy Materials, State Key Lab. of Physical Chemistry of Solid Surface and Dept. of Chemistry, College of Chemistry and Chemical Engineering, Xiamen Univ. (China); Wang, Zhenxing; Ouyang, Zhong-Wen [Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan (China); Zhuang, Gui-Lin [College of Chemcal Engineering, Zhejiang University of Technology, Hangzhou (China)

    2017-09-11

    The largest Ln-Fe metal cluster [Gd{sub 12}Fe{sub 14}(μ{sub 3}-OH){sub 12}(μ{sub 4}-OH){sub 6}(μ{sub 4}-O){sub 12}(TEOA){sub 6}(CH{sub 3}COO){sub 16}(H{sub 2} O){sub 8}].(CH{sub 3}COO){sub 2}(CH{sub 3}CN){sub 2}.(H{sub 2}O){sub 20} (1) and the core-shell monodisperse metal cluster of 1 a rate at SiO{sub 2} (1 a=[Gd{sub 12}Fe{sub 14}(μ{sub 3}-OH){sub 12}(μ{sub 4}-OH){sub 6}(μ{sub 4}-O){sub 12}(TEOA){sub 6}(CH{sub 3}COO){sub 16} (H{sub 2}O){sub 8}]{sup 2+}) were prepared. Experimental and theoretical studies on the magnetic properties of 1 and 1 a rate at SiO{sub 2} reveal that encapsulation of one cluster into one silica nanosphere not only effectively decreases intermolecular magnetic interactions but also significantly increases the zero-field splitting effect of the outer layer Fe{sup 3+} ions. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Preparation of labelled lipids by the use of plant cell cultures

    International Nuclear Information System (INIS)

    Mangold, H.K.

    1978-01-01

    The preparation of some radioacitvely labelled lipids by the use of plant cell cultures is discussed and further applications of the new method are suggested. Cell suspension cultures of rape (Brassica napus) and soya (Glycine max) have been used for the preparation of lipids labelled with radioisotopes. Radioactive acetic acid as well as various long-chain fatty acids are readily incorporated into the neutral and ionic lipids of plant cell cultures. In addition, 14 C-labelled glycerol, ethanolamine and choline are well utilized by the cells. Randomly labelled lipids have been obtained by incubating cell suspension cultures of rape and soya with [1- 14 C] acetic acid, and uniformly labelled lipids have been isolated from cultures that had been incubated with a mixture of [1- 14 C] acetic acid plus [2- 14 C] acetic acid. The use of techniques of plant cell cultures for the preparation of lipds labelled with stable or radioactive isotopesappears particularly rewarding because the uptake of precursors by the cells and their incorporation into various lipid compounds proceeds rapidly and often quanitatively.This new approach should be useful also for the biosynthesis of lipids whose acyl moieties contain a spn radical, a fluorescent group, or a light-sensitive label. Thus, plant cell cultures constitute valuable new tools for the biosynthetic preparation of a great variety of labelled lipids. (A.G.)

  10. Immunocapture of CD133-positive cells from human cancer cell lines by using monodisperse magnetic poly(glycidyl methacrylate) microspheres containing amino groups

    Energy Technology Data Exchange (ETDEWEB)

    Kuan, Wei-Chih [Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhisung 621, Taiwan (China); Horák, Daniel, E-mail: horak@imc.cas.cz [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Plichta, Zdeněk [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Lee, Wen-Chien [Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhisung 621, Taiwan (China)

    2014-01-01

    Magnetic poly(glycidyl methacrylate)-based macroporous microspheres with an average particle size of 4.2 μm were prepared using a modified multi-step swelling polymerization method and by introducing amino functionality on their surfaces. Antibody molecules were oxidized on their carbohydrate moieties and bound to the amino-containing magnetic microspheres via a site-directed procedure. CD133-positive cells could be effectively captured from human cancer cell lines (HepG2, HCT116, MCF7, and IMR-32) by using magnetic microspheres conjugated to an anti-human CD133 antibody. After further culture, the immunocaptured CD133-expressing cells from IMR-32 proliferated and gradually detached from the magnetic microspheres. Flow-cytometric analysis confirmed the enrichment of CD133-expressing cells by using the antibody-bound magnetic microspheres. Such microspheres suitable for immunocapture are very promising for cancer diagnosis because the CD133-expressing cells in cancer cell lines have been suggested to be cancer stem cells. - Highlights: • Multi-step swelling polymerization produced poly(glycidyl methacrylate) microspheres. • Anti-human CD133 antibodies were bound to the amino-containing magnetic microspheres. • CD133-positive cells were effectively captured from human cancer cell lines. • Immunocaptured CD133-expressing cells proliferated and were detached from microspheres. • Enrichment of CD133-expressing cells was confirmed by flow-cytometric analysis.

  11. Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: One-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air

    International Nuclear Information System (INIS)

    Dong, Fan; Lee, S.C.; Wu, Zhongbiao; Huang, Yu; Fu, Min; Ho, Wing-Kei; Zou, Shichun; Wang, Bo

    2011-01-01

    Graphical abstract: Rose-like monodisperse hierarchical nitrogen doped (BiO) 2 CO 3 hollow microspheres fabricated by a one-pot template-free method exhibit excellent visible light photocatalytic activity and photochemical stability in the removal of NO in indoor air. The special hierarchical microstructure, the high charge separation efficiency and two-band-gap structure in all contribute to the outstanding photocatalytic performance. Highlights: → Rose-like monodisperse hierarchical (BiO) 2 CO 3 hollow microspheres are fabricated. → The (BiO) 2 CO 3 microspheres are self-assembled of single-crystalline nanosheets. → Nitrogen is in situ doped into the lattice of hierarchical (BiO) 2 CO 3 microspheres. → The (BiO) 2 CO 3 microspheres exhibit outstanding visible light activity for NO removal. → The (BiO) 2 CO 3 microspheres also exhibit high photochemical stability. - Abstract: Rose-like monodisperse hierarchical (BiO) 2 CO 3 hollow microspheres are fabricated by a one-pot template-free method for the first time based on hydrothermal treatment of ammonia bismuth citrate and urea in water. The microstructure and band structure of the as-prepared (BiO) 2 CO 3 superstructure are characterized in detail by X-ray diffraction, Raman spectroscopy, Fourier transform-infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, N 2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The monodisperse hierarchical (BiO) 2 CO 3 microspheres are constructed by the self-assembly of single-crystalline nanosheets. The aggregation of nanosheets result in the formation of three dimensional hierarchical framework containing mesopores and macropores, which is favorable for efficient transport of reaction molecules and harvesting of photo-energy. The result reveals the existence of special two-band-gap structure (3.25 and 2.0 eV) for (BiO) 2 CO 3 . The band gap of 3.25 eV is intrinsic and the

  12. Logarithmic Exchange Kinetics in Monodisperse Copolymeric Micelles

    Science.gov (United States)

    García Daza, Fabián A.; Bonet Avalos, Josep; Mackie, Allan D.

    2017-06-01

    Experimental measurements of the relaxation kinetics of copolymeric surfactant exchange for micellar systems unexpectedly show a peculiar logarithmic decay. Several authors use polydispersity as an explanation for this behavior. However, in coarse-grained simulations that preserve microscopic details of the surfactants, we find evidence of the same logarithmic behavior. Since we use a strictly monodisperse distribution of chain lengths such a relaxation process cannot be attributed to polydispersity, but has to be caused by an inherent physical process characteristic of this type of system. This is supported by the fact that the decay is specifically logarithmic and not a power law with an exponent inherited from the particular polydispersity distribution of the sample. We suggest that the degeneracy of the energy states of the hydrophobic block in the core, which is broken on leaving the micelle, can qualitatively explain the broad distribution of energy barriers, which gives rise to the observed nonexponential relaxation.

  13. Controlled synthesis and magnetic properties of monodispersed ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Sumeet Kumar

    2015-02-01

    Full Text Available In the present study, monodispersed CeO2 nanoparticles (NPs of size 8.5 ± 1.0, 11.4 ± 1.0 and 15.4 ± 1.0 nm were synthesized using the sol-gel method. Size-dependent structural, optical and magnetic properties of as-prepared samples were investigated by X-ray diffraction (XRD, field emission scanning electron microscope (FE-SEM, high resolution transmission electron microscopy (HR-TEM, ultra-violet visible (UV-VIS spectroscopy, Raman spectroscopy and vibrating sample magnetometer (VSM measurements. The value of optical band gap is calculated for each particle size. The decrease in the value of optical band gap with increase of particle size may be attributed to the quantum confinement, which causes to produce localized states created by the oxygen vacancies due to the conversion of Ce4+ into Ce3+ at higher calcination temperature. The Raman spectra showed a peak at ∼461 cm-1 for the particle size 8.5 nm, which is attributed to the 1LO phonon mode. The shift in the Raman peak could be due to lattice strain developed due to variation in particle size. Weak ferromagnetism at room temperature is observed for each particle size. The values of saturation magnetization (Ms, coercivity (Hc and retentivity (Mr are increased with increase of particle size. The increase of Ms and Mr for larger particle size may be explained by increase of density of oxygen vacancies at higher calcination temperature. The latter causes high concentrations of Ce3+ ions activate more coupling between the individual magnetic moments of the Ce ions, leading to an increase of Ms value with the particle size. Moreover, the oxygen vacancies may also produce magnetic moment by polarizing spins of f electrons of cerium (Ce ions located around oxygen vacancies, which causes ferromagnetism in pure CeO2 samples.

  14. Self-charging of 198Au-labeled monodisperse gold aerosols studied with a miniature electrical mobility spectrometer

    International Nuclear Information System (INIS)

    Yeh, H.C.; Newton, G.J.; Raabe, O.G.; Boor, D.R.

    1976-01-01

    Knowledge of the electrostatic character of an aerosol may be essential in assessing its potential inhalation hazard. In inhalation studies with radioactive aerosols, the aerosol charge state may change in the course of transport due to the emission of α, β or γ radiations. This paper describes an experimental study of the self-charging of 198 Au-labeled aerosols of monodisperse gold spheres by β emission. A miniature aerosol electrical mobility spectrometer, suitable for use in inhalation studies with radioactive aerosols, was developed and used in this study. This device is relatively inexpensive, easy to manufacture and its contamination by radioactive material has been minimized. Using polystyrene latex spheres, ranging in diameter from 0.176 to 1.18 μm, the spectrometer was calibrated with flow rates ranging from 400 to 4800 ml/min. Experiments with two sizes of 198 Au-labeled monodisperse gold aerosols were performed. Results indicate that the radioactivity of an aerosol can cause self-charging and affect the charge distribution. (author)

  15. Dynamized Preparations in Cell Culture

    Directory of Open Access Journals (Sweden)

    Ellanzhiyil Surendran Sunila

    2009-01-01

    Full Text Available Although reports on the efficacy of homeopathic medicines in animal models are limited, there are even fewer reports on the in vitro action of these dynamized preparations. We have evaluated the cytotoxic activity of 30C and 200C potencies of ten dynamized medicines against Dalton's Lymphoma Ascites, Ehrlich's Ascites Carcinoma, lung fibroblast (L929 and Chinese Hamster Ovary (CHO cell lines and compared activity with their mother tinctures during short-term and long-term cell culture. The effect of dynamized medicines to induce apoptosis was also evaluated and we studied how dynamized medicines affected genes expressed during apoptosis. Mother tinctures as well as some dynamized medicines showed significant cytotoxicity to cells during short and long-term incubation. Potentiated alcohol control did not produce any cytotoxicity at concentrations studied. The dynamized medicines were found to inhibit CHO cell colony formation and thymidine uptake in L929 cells and those of Thuja, Hydrastis and Carcinosinum were found to induce apoptosis in DLA cells. Moreover, dynamized Carcinosinum was found to induce the expression of p53 while dynamized Thuja produced characteristic laddering pattern in agarose gel electrophoresis of DNA. These results indicate that dynamized medicines possess cytotoxic as well as apoptosis-inducing properties.

  16. Cellient™ automated cell block versus traditional cell block preparation: a comparison of morphologic features and immunohistochemical staining.

    Science.gov (United States)

    Wagner, David G; Russell, Donna K; Benson, Jenna M; Schneider, Ashley E; Hoda, Rana S; Bonfiglio, Thomas A

    2011-10-01

    Traditional cell block (TCB) sections serve as an important diagnostic adjunct to cytologic smears but are also used today as a reliable preparation for immunohistochemical (IHC) studies. There are many ways to prepare a cell block and the methods continue to be revised. In this study, we compare the TCB with the Cellient™ automated cell block system. Thirty-five cell blocks were obtained from 16 benign and 19 malignant nongynecologic cytology specimens at a large university teaching hospital and prepared according to TCB and Cellient protocols. Cell block sections from both methods were compared for possible differences in various morphologic features and immunohistochemical staining patterns. In the 16 benign cases, no significant morphologic differences were found between the TCB and Cellient cell block sections. For the 19 malignant cases, some noticeable differences in the nuclear chromatin and cellularity were identified, although statistical significance was not attained. Immunohistochemical or special stains were performed on 89% of the malignant cases (17/19). Inadequate cellularity precluded full evaluation in 23% of Cellient cell block IHC preparations (4/17). Of the malignant cases with adequate cellularity (13/17), the immunohistochemical staining patterns from the different methods were identical in 53% of cases. The traditional and Cellient cell block sections showed similar morphologic and immunohistochemical staining patterns. The only significant difference between the two methods concerned the lower overall cell block cellularity identified during immunohistochemical staining in the Cellient cell block sections. Copyright © 2010 Wiley-Liss, Inc.

  17. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape.

    Science.gov (United States)

    Lu, Lehui; Ai, Kelong; Ozaki, Yukihiro

    2008-02-05

    We report a facile and environmentally friendly strategy for high-yield synthesis of highly monodisperse gold nanoparticles with urchin-like shape. A simple protein, gelatin, was first used for the control over shape and orientation of the gold nanoparticles. These nanoparticles, ready to use for biological systems, are promising in the optical imaging-based disease diagnostics and therapy because of their tunable surface plasmon resonance (SPR) and excellent surface-enhanced Raman scattering (SERS) activity.

  18. Preparation of Graphene Quantum Dots and Their Application in Cell Imaging

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2016-01-01

    Full Text Available Objective. This study aims to increase the fluorescence quantum yield by improving the conditions of preparing graphene quantum dots (GQDs through the solvothermal route and observe the GQDs performance in imaging oral squamous cells. Methodology. The following experimental conditions of GQDs preparation through the solvothermal route were improved: graphene oxide (GO/N-N dimethyl formamide (DMF ratio, filling percentage, and reaction time. A fluorescence spectrophotometer was used to measure photoluminescence, and the peak values were compared. Methylthiazolyldiphenyl-tetrazolium (MTT bromide was used to detect the cytotoxicity of GQDs, which was compared with that of cadmium telluride quantum dots (CdTe QDs. GQDs were cultured with tongue cancer cells. After the coculture, a laser scanning confocal microscope (LSCM was used to observe cell imaging. Results. The optimal conditions of GQD preparation through the solvothermal route included the following: 10 mg/mL GO/DMF ratio, 80% filling percentage, 12 h reaction time, and 17.4% fluorescence quantum yield. As the cell concentration increased, the GQD and CdTe QD groups exhibited a decreasing cell survival rate, with the decrease in the CdTe QD group being more significant. The LSCM observations showed bright green fluorescence images. Conclusion. The improved experimental conditions increased the fluorescence quantum yield of GQDs. In this study, the prepared GQDs exhibited low cytotoxicity level and satisfactory cell imaging performance.

  19. T–CELL VACCINE PREPARATION FOR MULTIPLE SCLEROSIS TREATMENT

    Directory of Open Access Journals (Sweden)

    I. P. Ivanova

    2005-01-01

    Full Text Available Abstract. A two–stage technology of preparation of T–cell vaccine designated for multiple sclerosis treatment is described. At the first stage myelin–specific lymphocytes undergoe antigen–dependent cultural selection, whereas at the second stage they are grown by means of non–specific stimulation. The vaccine prepared in this way was found to induce specific anti–idiotypic immune response, directed against myelin–reactive T–lymphocytes. The results of 1–year follow–up of 18 vaccinated patients with a cerebral–spinal type of multiple sclerosis indicated the absence of side effects of T–cell vaccination, and suggest the possibility of effective application of this treatment within early stages of disease. (Med. Immunol., 2005, vol.7, № 1, pp 27532

  20. Self-Templated Stepwise Synthesis of Monodispersed Nanoscale Metalated Covalent Organic Polymers for In Vivo Bioimaging and Photothermal Therapy.

    Science.gov (United States)

    Shi, Yanshu; Deng, Xiaoran; Bao, Shouxin; Liu, Bei; Liu, Bin; Ma, Ping'an; Cheng, Ziyong; Pang, Maolin; Lin, Jun

    2017-09-05

    Size- and shape-controlled growth of nanoscale microporous organic polymers (MOPs) is a big challenge scientists are confronted with; meanwhile, rendering these materials for in vivo biomedical applications is still scarce. In this study, a monodispersed nanometalated covalent organic polymer (MCOP, M=Fe, Gd) with sizes around 120 nm was prepared by a self-templated two-step solution-phase synthesis method. The metal ions (Fe 3+ , Gd 3+ ) played important roles in generating a small particle size and in the functionalization of the products during the reaction with p-phenylenediamine (Pa). The resultant Fe-Pa complex was used as a template for the subsequent formation of MCOP following the Schiff base reaction with 1,3,5-triformylphloroglucinol (Tp). A high tumor suppression efficiency for this Pa-based COP is reported for the first time. This study demonstrates the potential use of MCOP as a photothermal agent for photothermal therapy (PTT) and also provides an alternative route to fabricate nano-sized MCOPs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nonthermal plasma synthesis of size-controlled, monodisperse, freestanding germanium nanocrystals

    International Nuclear Information System (INIS)

    Gresback, Ryan; Holman, Zachary; Kortshagen, Uwe

    2007-01-01

    Germanium nanocrystals may be of interest for a variety of electronic and optoelectronic applications including photovoltaics, primarily due to the tunability of their band gap from the infrared into the visible range of the spectrum. This letter discusses the synthesis of monodisperse germanium nanocrystals via a nonthermal plasma approach which allows for precise control of the nanocrystal size. Germanium crystals are synthesized from germanium tetrachloride and hydrogen entrained in an argon background gas. The crystal size can be varied between 4 and 50 nm by changing the residence times of crystals in the plasma between ∼30 and 440 ms. Adjusting the plasma power enables one to synthesize fully amorphous or fully crystalline particles with otherwise similar properties

  2. Generation and stabilization of whey-based monodisperse naoemulsions using ultra-high pressure homogenization and small amphipathic co-emulsifier combinations

    Science.gov (United States)

    Ultra-high-pressure homogenization (UHPH) was used to generate monodisperse stable peanut oil nanoemulsions within a desired nanosize range (whey protein concentrate (WPC), sodium dodecyl sulfate, Triton X-100 (X100), and zwitterionic sulfobetaine-base...

  3. Recombinant Production of Human Aquaporin-1 to an Exceptional High Membrane Density in Saccharomyces Cerevisiae

    DEFF Research Database (Denmark)

    Bomholt, Julie; Helix Nielsen, Claus; Scharff-Poulsen, Peter

    2014-01-01

    prevented Aquaporin1 mal-folding. Bioimaging of live yeast cells revealed that recombinant Aquaporin-1 accumulated in the yeast plasma membrane. A detergent screen for solubilization revealed that CYMAL-5 was superior in solubilizing recombinant Aquaporin-1 and generated a monodisperse protein preparation...

  4. Arginine vasopressin stimulates phosphoinositide turnover in an enriched rat Leydig cell preparation

    DEFF Research Database (Denmark)

    Nielsen, J.R.; Hansen, Harald S.; Jensen, B.

    1989-01-01

    An enriched rat Leydig cell preparation was preincubated with [C]arachidonic acid. Stimulation of the cells with arginine vasopressin (AVP) (1 µM) for 2 min caused a significant increase in labelled phosphatidic acid and a significant fall in radioactivity in phosphatidylinositol and phosphatidyl......An enriched rat Leydig cell preparation was preincubated with [C]arachidonic acid. Stimulation of the cells with arginine vasopressin (AVP) (1 µM) for 2 min caused a significant increase in labelled phosphatidic acid and a significant fall in radioactivity in phosphatidylinositol...

  5. Temperature dependence of exchange anisotropy in monodisperse cobalt nanoparticles with a cobalt oxide shell

    International Nuclear Information System (INIS)

    Spasova, M.; Wiedwald, U.; Farle, M.; Radetic, T.; Dahmen, U.; Hilgendorff, M.; Giersig, M.

    2004-01-01

    Exchange anisotropy was studied by SQUID magnetometry on an array of monodisperse colloidal nanoparticles consisting of a 7-8 nm diameter FCC Co core covered with a 2-2.5 nm thick FCC CoO shell. Temperature-dependent measurements of the exchange bias field show that the exchange anisotropy vanishes when a magnetic field was applied during cooling below 150 K. The suppression of exchange anisotropy is due to uncompensated interfacial antiferromagnetic spins

  6. Production and characterization of monodisperse uranium particles for nuclear safeguards applications

    International Nuclear Information System (INIS)

    Knott, Alexander

    2016-01-01

    Environmental sampling is a very effective measure to detect undeclared nuclear activities. Generally, samples are taken as swipe samples on cotton. These swipes contain minute quantities of particulates which have an inherent signature of their production and release scenario. These inspection samples are assessed for their morphology, elemental composition and their isotopic vectors. Mass spectrometry plays a crucial role in determining the isotopic ratios of uranium. Method validation and instrument calibration with well-characterized quality control (QC)-materials, reference materials (RMs) and certified reference materials (CRMs) ensures reliable data output. Currently, the availability of suitable well defined microparticles containing uranium and plutonium reference materials is very limited. Primarily, metals, oxides and various uranium and plutonium containing solutions are commercially available. Therefore, the IAEA's Safeguards Analytical Services (SGAS) cooperates with the Institute of Nuclear Waste Management and Reactor Safety (IEK-6) at the Forschungszentrum Juelich GmbH in a joint task entitled ''Production of Particle Reference Materials''. The work presented in this thesis has been partially funded by the IAEA, Forschungszentrum Juelich GmbH and the Federal Ministry of Economic Affairs and Energy (BMWi) through the ''Joint Program on the Technical Development and Further Improvement of IAEA Safeguards between the Government of the Federal Republic of Germany and the IAEA''. The first step towards monodisperse microparticles was the development of pure uranium oxide particles made from certified reference materials. The focus of the dissertation is (1) the implementation of a working setup to produce monodisperse uranium oxide particles and (2) the characterization of these particles towards the application as QC-material. Monodisperse uranium oxide particles were produced by spray pyrolysis. It was demonstrated that the particle size can be

  7. Production and characterization of monodisperse uranium particles for nuclear safeguards applications

    Energy Technology Data Exchange (ETDEWEB)

    Knott, Alexander

    2016-07-01

    Environmental sampling is a very effective measure to detect undeclared nuclear activities. Generally, samples are taken as swipe samples on cotton. These swipes contain minute quantities of particulates which have an inherent signature of their production and release scenario. These inspection samples are assessed for their morphology, elemental composition and their isotopic vectors. Mass spectrometry plays a crucial role in determining the isotopic ratios of uranium. Method validation and instrument calibration with well-characterized quality control (QC)-materials, reference materials (RMs) and certified reference materials (CRMs) ensures reliable data output. Currently, the availability of suitable well defined microparticles containing uranium and plutonium reference materials is very limited. Primarily, metals, oxides and various uranium and plutonium containing solutions are commercially available. Therefore, the IAEA's Safeguards Analytical Services (SGAS) cooperates with the Institute of Nuclear Waste Management and Reactor Safety (IEK-6) at the Forschungszentrum Juelich GmbH in a joint task entitled ''Production of Particle Reference Materials''. The work presented in this thesis has been partially funded by the IAEA, Forschungszentrum Juelich GmbH and the Federal Ministry of Economic Affairs and Energy (BMWi) through the ''Joint Program on the Technical Development and Further Improvement of IAEA Safeguards between the Government of the Federal Republic of Germany and the IAEA''. The first step towards monodisperse microparticles was the development of pure uranium oxide particles made from certified reference materials. The focus of the dissertation is (1) the implementation of a working setup to produce monodisperse uranium oxide particles and (2) the characterization of these particles towards the application as QC-material. Monodisperse uranium oxide particles were produced by spray pyrolysis. It was

  8. Flow and Failure in Extension of Monodisperse Polymer Melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.

    is commonly referred to be of either brittle (e.g. cohesive type) or of liquid (e.g. necking type) nature. Here the focus will be on monodisperse polymers, to study numerically the sample flow dynamics in dual wind-up extensional rheometers. The computations are within the ideas of the microstructural......It is well known that failure or rupture phenomenon appears in the extension of polymer melts. These appear not only as failure in extension rheometers, but also as sharkskin, developments of holes in thin polymeric films etc. Sometime these ruptures appear spontaneous as well. The rupture...... 'interchain pressure' theory based on the molecular stress function constitutive model for the polymer melt flow. The purpose is twofold. Primarily to present to what extend the experimentally observed failure, appearing during or after (e.g. as a spontaneous failure) extension, can be explained within...

  9. Preparation and immobilization of noble metal nanoparticles for plasmonic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruoli; Pitzer, Martin; Hu, DongZhi; Schaadt, Daniel M. [Institut fuer Angewandte Physik, Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); DFG Centrum fuer Funktionelle Nanostrukturen (CFN), KIT (Germany); Fruk, Ljiljana [DFG Centrum fuer Funktionelle Nanostrukturen (CFN), KIT (Germany)

    2011-07-01

    Thin-film solar cells are of high interest due to good electrical properties and low material consumption. Traditional thin-film cells, however, have considerable transmission losses because of the reduced absorption volume. A promising way to enhance absorption in the active layer is the light-trapping by plasmonic nanostructures. Metallic nanoparticles have in particular shown large enhancement of the photocurrent in thin-film devices. In this poster, we present preparation of Au,Ag and Pt nanoparticles by polyol method and seed mediated methods for use in plasmonic solar cells. Polyol method typically uses ethylene glycol as the solvent and reducing agent,and in seed-mediated synthesis small nanoparticle seeds are first prepared and then used to promote the growth of different shapes of nanoparticles. We particularly focus on the use of nanocubes and nanospheres for solar cell design. Following the nanoparticle preparation, a new method to immobilize particles on GaAs surfaces via covalent chemical bonds has been developed which prevents agglomerations and allows control of the surface density. Photocurrent spectra of GaAs pin solar cells with and without particles have been recorded. These measurements show the dependence of the photocurrent enhancement on particle material, shape and density.

  10. Preparation of gold nanoparticles for plasmonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Benkovicova, Monika, E-mail: monika.benkovicova@savba.sk [Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Polymer Institute SAS, Dubravska cesta 9, 845 41 Bratislava (Slovakia); Vegso, Karol; Siffalovic, Peter; Jergel, Matej; Luby, Stefan; Majkova, Eva [Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava (Slovakia)

    2013-09-30

    We present a simple hot injection method for the preparation of colloidal solutions of hydrophobic spherical gold nanoparticles with the diameter around 20 nm and size dispersion below 20%. Various surfactants with different lengths of hydrocarbon chains, such as oleylamine, 1-octadecanethiol, poly (N-vinylpyrrolidone), and AgNO{sub 3} in 1,5-pentanediol, were used for sterical stabilization in the colloidal solution. The hydrodynamic nanoparticle size and size dispersion were determined by the dynamic light scattering (DLS) while the small-angle X-ray scattering (SAXS) from the colloidal solution provided information on the size of the metallic nanoparticle core (without surfactant). Plasmon enhanced resonant absorption peaks between 500 nm and 600 nm were detected by the UV–VIS spectrophotometry. The nanoparticle arrays on silicon prepared by solvent evaporation or Langmuir-Schaefer method were inspected by high-resolution scanning electron microscopy and grazing-incidence SAXS (GISAXS). The presence of side maxima in the GISAXS pattern gives evidence of the nanoparticle ordering by self-assembly while very close values of the interparticle distance derived from GISAXS and the nanoparticle size derived from DLS indicate a close-packed order. - Highlights: ► Preparation of gold nanoparticles by use a various of surfactants ► Preparation of monodisperse nanoparticles ► Characterization of nanoparticles on a solid substrate.

  11. Toxicity of inhaled 238PuO2 in Beagle dogs: A. Monodisperse 1.5 μm AMAD particles. B. Monodisperse 3.0 μm particles. XV

    International Nuclear Information System (INIS)

    Mewhinney, J.A.; Gillett, N.A.; Muggenburg, B.A.; Hahn, F.F.; Diel, J.H.; Mauderly, J.L.; Boecker, B.B.; McClellan, R.O.

    1988-01-01

    Beagle dogs inhaled one of two sizes of monodisperse aerosols of 238 PuO 2 that resulted in graded levels of 238 Pu in the lung. All dogs are being studied for their life span. One hundred and thirty-seven dogs that had initial lung burdens ranging from 0.01 to 1.5 μCi 238 Pu/kg body weight (0.37 to 56 kBq/kg) have died, 8 with radiation pneumonitis and pulmonary fibrosis, 8 with lung tumors, 88 with bone tumors, 10 with liver tumors, and 25 of miscellaneous causes. Eighteen control dogs have died. Observations are being continued on 8 exposed and 6 control dogs alive at 4577-5274 days after exposure. (author)

  12. Single-cell and population NF-κB dynamic responses depend on lipopolysaccharide preparation.

    Directory of Open Access Journals (Sweden)

    Miriam V Gutschow

    Full Text Available Lipopolysaccharide (LPS, found in the outer membrane of gram-negative bacteria, elicits a strong response from the transcription factor family Nuclear factor (NF-κB via Toll-like receptor (TLR 4. The cellular response to lipopolysaccharide varies depending on the source and preparation of the ligand, however. Our goal was to compare single-cell NF-κB dynamics across multiple sources and concentrations of LPS.Using live-cell fluorescence microscopy, we determined the NF-κB activation dynamics of hundreds of single cells expressing a p65-dsRed fusion protein. We used computational image analysis to measure the nuclear localization of the fusion protein in the cells over time. The concentration range spanned up to nine orders of magnitude for three E. coli LPS preparations. We find that the LPS preparations induce markedly different responses, even accounting for potency differences. We also find that the ability of soluble TNF receptor to affect NF-κB dynamics varies strikingly across the three preparations.Our work strongly suggests that the cellular response to LPS is highly sensitive to the source and preparation of the ligand. We therefore caution that conclusions drawn from experiments using one preparation may not be applicable to LPS in general.

  13. Linear theory on temporal instability of megahertz faraday waves for monodisperse microdroplet ejection.

    Science.gov (United States)

    Tsai, Shirley C; Tsai, Chen S

    2013-08-01

    A linear theory on temporal instability of megahertz Faraday waves for monodisperse microdroplet ejection based on mass conservation and linearized Navier-Stokes equations is presented using the most recently observed micrometer- sized droplet ejection from a millimeter-sized spherical water ball as a specific example. The theory is verified in the experiments utilizing silicon-based multiple-Fourier horn ultrasonic nozzles at megahertz frequency to facilitate temporal instability of the Faraday waves. Specifically, the linear theory not only correctly predicted the Faraday wave frequency and onset threshold of Faraday instability, the effect of viscosity, the dynamics of droplet ejection, but also established the first theoretical formula for the size of the ejected droplets, namely, the droplet diameter equals four-tenths of the Faraday wavelength involved. The high rate of increase in Faraday wave amplitude at megahertz drive frequency subsequent to onset threshold, together with enhanced excitation displacement on the nozzle end face, facilitated by the megahertz multiple Fourier horns in resonance, led to high-rate ejection of micrometer- sized monodisperse droplets (>10(7) droplets/s) at low electrical drive power (<;1 W) with short initiation time (<;0.05 s). This is in stark contrast to the Rayleigh-Plateau instability of a liquid jet, which ejects one droplet at a time. The measured diameters of the droplets ranging from 2.2 to 4.6 μm at 2 to 1 MHz drive frequency fall within the optimum particle size range for pulmonary drug delivery.

  14. Considerations for Sample Preparation Using Size-Exclusion Chromatography for Home and Synchrotron Sources.

    Science.gov (United States)

    Rambo, Robert P

    2017-01-01

    The success of a SAXS experiment for structural investigations depends on two precise measurements, the sample and the buffer background. Buffer matching between the sample and background can be achieved using dialysis methods but in biological SAXS of monodisperse systems, sample preparation is routinely being performed with size exclusion chromatography (SEC). SEC is the most reliable method for SAXS sample preparation as the method not only purifies the sample for SAXS but also almost guarantees ideal buffer matching. Here, I will highlight the use of SEC for SAXS sample preparation and demonstrate using example proteins that SEC purification does not always provide for ideal samples. Scrutiny of the SEC elution peak using quasi-elastic and multi-angle light scattering techniques can reveal hidden features (heterogeneity) of the sample that should be considered during SAXS data analysis. In some cases, sample heterogeneity can be controlled using a small molecule additive and I outline a simple additive screening method for sample preparation.

  15. Preparation of uniform porous hydroxyapatite biomaterials by a new method

    International Nuclear Information System (INIS)

    Tang Yuejun; Tang Yuefeng; Lv Chuntang; Zhou Zhonghua

    2008-01-01

    In this paper, a new method of preparation of uniform porous hydroxyapatite biomaterials was reported. In order to obtain uniform porous biomaterials, disk samples were formed by the mixture of hydroxyapatite (HAP) powders and monodispersed polystyrene microspheres, and then HAP uniform porous materials with different diameter and different porosity (diameter: 436 ± 25 nm, 892 ± 20 nm and 1890 ± 20 nm, porosity: 46.5%, 41.3% and 34.7%, respectively) were prepared by sintering these disk samples at 1250 deg. C for 5 h. The pure phase of HAP powders fabricated by the hydrothermal technology was confirmed by X-ray diffraction (XRD). The surface and size distribution of pores in HAP biomaterials were observed by scanning electron microscopy (SEM), and the pore size distribution in porous HAP biomaterials was tested by mercury intrusion method

  16. Preparation and photonic bandgap properties of Na1/2Bi1/2TiO3 inverse opal photonic crystals

    International Nuclear Information System (INIS)

    Yang Zhengwen; Zhou Ji; Huang Xueguang; Xie Qin; Fu Ming; Li Bo; Li Longtu

    2009-01-01

    The Na 1/2 Bi 1/2 TiO 3 (NBT) inverse opal photonic crystals were prepared by the self-assembly technique in combination with a sol-gel method. In the preparation process, NBT precursors were filled into the interstices of the opal template assembled by monodispersive polystyrene microspheres. The polystyrene template was then removed by calcination at 800 deg. C for 5 h, meanwhile, a perovskite NBT inverse opal photonic crystal was formed. An optical micrograph shows that the NBT inverse opals reflect green-yellow light strongly. Moreover, a photonic band gap was observed by reflective spectra of NBT sample

  17. Controllable 5-sulfosalicylic acid assisted solvothermal synthesis of monodispersed superparamagnetic Fe{sub 3}O{sub 4} nanoclusters with tunable size

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wentao [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Tang, Bingtao, E-mail: tangbt@dlut.edu.cn [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Wu, Suli; Gao, Zhanming; Ju, Benzhi [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Teng, Xiaoxu [School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100 (China); Zhang, Shufen [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2017-02-01

    Monodispersed Fe{sub 3}O{sub 4} nanoclusters were synthesized in a one-pot solvothermal route with 5-sulfosalicylic acid (SSA) as the functional ligand in a mixed-solvent system of diethylene glycol/ethylene glycol (DEG/EG). Nucleation and aggregation growth model was responsible for the formation of secondary structure of the clusters. In the process, the size of the clusters can be effectively controlled by varying the amounts of SSA and the volume ratio of DEG/EG. The nanoclusters exhibited superparamagnetic properties with high saturation magnetization value of about 68.7 emu g{sup −1} at room temperature. The water-soluble small-molecule SSA grafted on the surface of Fe{sub 3}O{sub 4} nanocrystals rendered the superparamagnetic clusters dispersible in water, which is crucial for potential applications in biomedical fields. - Graphical abstract: 5-sulfosalicylic acid assisted solvothermal synthesis of monodispersed superparamagnetic Fe{sub 3}O{sub 4} nanoclusters with tunable size by a mixed-solvent system of DEG/EG. - Highlights: • Monodispersed Fe{sub 3}O{sub 4} nanoclusters were synthesized in a one-pot 5-sulfosalicylic acid assisted solvothermal route. • The size of the clusters are tunable by varying the amounts of 5-sulfosalicylic acid and the volume ratio of DEG/EG. • The nanoclusters exhibited superparamagnetic properties with high saturation magnetization value. • The 5-sulfosalicylic acid grafted Fe{sub 3}O{sub 4} nanoclusters can be dispersed in water.

  18. Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions.

    Science.gov (United States)

    Metin, Önder; Sun, Xiaolian; Sun, Shouheng

    2013-02-07

    Monodisperse 4 nm AuPd alloy nanoparticles with controlled composition were synthesized by co-reduction of hydrogen tetrachloroaurate(III) hydrate and palladium(II) acetylacetonate with a borane-morpholine complex in oleylamine. These NPs showed high activity (TOF = 230 h(-1)) and stability in catalyzing formic acid dehydrogenation and hydrogen production in water at 50 °C without any additives.

  19. Human proton coupled folic acid transporter is a monodisperse oligomer in the lauryl maltose neopentyl glycol solubilized state.

    Science.gov (United States)

    Aduri, Nanda G; Ernst, Heidi A; Prabhala, Bala K; Bhatt, Shweta; Boesen, Thomas; Gajhede, Michael; Mirza, Osman

    2018-01-08

    The human proton coupled folic acid transporter PCFT is the major import route for dietary folates. Mutations in the gene encoding PCFT cause hereditary folic acid malabsorption, which manifests itself by compromised folate absorption from the intestine and also in impaired folate transport into the central nervous system. Since its recent discovery, PCFT has been the subject of numerous biochemical studies aiming at understanding its structure and mechanism. One major focus has been its oligomeric state, with some reports supporting oligomers and others a monomer. Here, we report the overexpression and purification of recombinant PCFT. Following detergent screening, n-Dodecyl β-D-maltoside (DDM) and lauryl maltose neopentyl glycol (LMNG) were chosen for further work as they exhibited the most optimal solubilization. We found that purified detergent solubilized PCFT was able to bind folic acid, thus indicating a functionally active protein. Size exclusion chromatography showed that PCFT in DDM was polydisperse; the LMNG preparation was clearly monodisperse but with shorter retention time than the major DDM peak. To assess the oligomeric state negative stain electron microscopy was performed which showed a particle with the size of a PCFT dimer. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A reproducible and scalable procedure for preparing bacterial extracts for cell-free protein synthesis.

    Science.gov (United States)

    Katsura, Kazushige; Matsuda, Takayoshi; Tomabechi, Yuri; Yonemochi, Mayumi; Hanada, Kazuharu; Ohsawa, Noboru; Sakamoto, Kensaku; Takemoto, Chie; Shirouzu, Mikako

    2017-11-01

    Cell-free protein synthesis is a useful method for preparing proteins for functional or structural analyses. However, batch-to-batch variability with regard to protein synthesis activity remains a problem for large-scale production of cell extract in the laboratory. To address this issue, we have developed a novel procedure for large-scale preparation of bacterial cell extract with high protein synthesis activity. The developed procedure comprises cell cultivation using a fermentor, harvesting and washing of cells by tangential flow filtration, cell disruption with high-pressure homogenizer and continuous diafiltration. By optimizing and combining these methods, ∼100 ml of the cell extract was prepared from 150 g of Escherichia coli cells. The protein synthesis activities, defined as the yield of protein per unit of absorbance at 260 nm of the cell extract, were shown to be reproducible, and the average activity of several batches was twice that obtained using a previously reported method. In addition, combinatorial use of the high-pressure homogenizer and diafiltration increased the scalability, indicating that the cell concentration at disruption varies from 0.04 to 1 g/ml. Furthermore, addition of Gam protein and examinations of the N-terminal sequence rendered the extract prepared here useful for rapid screening with linear DNA templates. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  1. Evaluation of cell wall preparations for proteomics: a new procedure for purifying cell walls from Arabidopsis hypocotyls

    Directory of Open Access Journals (Sweden)

    Canut Hervé

    2006-05-01

    Full Text Available Abstract Background The ultimate goal of proteomic analysis of a cell compartment should be the exhaustive identification of resident proteins; excluding proteins from other cell compartments. Reaching such a goal closely depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific difficulties: (i the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP during the isolation procedure, (ii polysaccharide networks of cellulose, hemicelluloses and pectins form potential traps for contaminants such as intracellular proteins. Several reported procedures to isolate cell walls for proteomic analyses led to the isolation of a high proportion (more than 50% of predicted intracellular proteins. Since isolated cell walls should hold secreted proteins, one can imagine alternative procedures to prepare cell walls containing a lower proportion of contaminant proteins. Results The rationales of several published procedures to isolate cell walls for proteomics were analyzed, with regard to the bioinformatic-predicted subcellular localization of the identified proteins. Critical steps were revealed: (i homogenization in low ionic strength acid buffer to retain CWP, (ii purification through increasing density cushions, (iii extensive washes with a low ionic strength acid buffer to retain CWP while removing as many cytosolic proteins as possible, and (iv absence of detergents. A new procedure was developed to prepare cell walls from etiolated hypocotyls of Arabidopsis thaliana. After salt extraction, a high proportion of proteins predicted to be secreted was released (73%, belonging to the same functional classes as proteins identified using previously described protocols. Finally, removal of intracellular proteins was obtained using detergents, but their amount represented less than 3% in mass of the total protein extract, based on protein quantification. Conclusion The

  2. Preparation of Monodispersed Fe-Mo Nanoparticles as the Catalyst for CVD Synthesis of Carbon Nanotubes

    National Research Council Canada - National Science Library

    Li, Yan; Liu, Jie; Wang, Yongqian; Wang, Zhong L

    2001-01-01

    ...particles were systematically studied. The prepared nanoparticles were used as catalysts for single-walled carbon nanotube growth and the results indicate that there is an upper limit for the size of the catalyst particles to nucleate singlewalled carbon nanotubes.

  3. Experiences from Refurbishment of Metallography Hot Cells and Application of a New Preparation Concept for Materialography Samples

    International Nuclear Information System (INIS)

    Oberlander, B. C.; Espeland, M.; Solum, N. O.

    2001-01-01

    After more than 30 years of operation the lead shielded metallography hot cells needed a basic renewal and modernisation not least of the specimen preparation equipment. Preparation in hot cells of radioactive samples for metallography and ceramography is challenging and time consuming. It demands a special design and quality of all in-cell equipment and skill and patience from the operator. Essentials in the preparation process are: simplicity and reliability of the machines, and a good quality, reproducibility and efficiency in performance. Desirable is process automation, flexibility and an alara amounto of radioactive waste produced per sample prepared. State of the art preparation equipment for materialography seems to meet most of the demands, however, it cannot be used in hot cells without modifications. Therefore. IFE and Struers in Copenhagen modified a standard model of a Strues precision cutting machine and a microprocessor controlled grinding and polishing machine for Hot Cell application. Hot cell utilisation of the microcomputer controlled grinding and polishing machine and the existing automatic dosing equipment made the task of preparing radioactive samples more attractive. The new grinding and polishing system for hot cells provides good sample preparation quality and reproductibility at reduced preparation time and reduced amount of contaminated waste produced per sample prepared. the sample materials examined were irradiated cladding materials and fuels

  4. Force chains in monodisperse spherical particle assemblies: Three-dimensional measurements using neutrons

    Science.gov (United States)

    Wensrich, C. M.; Kisi, E. H.; Luzin, V.; Garbe, U.; Kirstein, O.; Smith, A. L.; Zhang, J. F.

    2014-10-01

    The full triaxial stress state within individual particles in a monodisperse spherical granular assembly has been measured. This was made possible by neutron imaging and computed tomography combined with neutron diffraction strain measurement techniques and associated stress reconstruction. The assembly in question consists of 549 precision steel ball bearings under an applied axial load of 85 MPa in a cylindrical die. Clear evidence of force chains was observed in terms of both the shape of the probability distribution function for normal stresses and the network formed by highly loaded particles. An extensive analysis of the source and magnitude of uncertainty in these measurements is also presented.

  5. Seedless Synthesis of Monodispersed Gold Nanorods with Remarkably High Yield: Synergistic Effect of Template Modification and Growth Kinetics Regulation.

    Science.gov (United States)

    Liu, Kang; Bu, Yanru; Zheng, Yuanhui; Jiang, Xuchuan; Yu, Aibing; Wang, Huanting

    2017-03-08

    Gold nanorods (AuNRs) are versatile materials due to their broadly tunable optical properties associated with their anisotropic feature. Conventional seed-mediated synthesis is, however, not only limited by the operational complexity and over-sensitivity towards subtle changes of experimental conditions but also suffers from low yield (≈15 %). A facile seedless method is reported to overcome these challenges. Monodispersed AuNRs with high yield (≈100 %) and highly adjustable longitudinal surface plasmon resonance (LSPR) are reproducibly synthesized. The parameters that influence the AuNRs growth were thoroughly investigated in terms of growth kinetics and soft-template regulation, offering a better understanding of the template-based mechanism. The facile synthesis, broad tunability of LSRP, high reproducibility, high yield, and ease of scale-up make this method promising for the future mass production of monodispersed AuNRs for applications in catalysis, sensing, and biomedicine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Different cell moieties and white blood cell (WBC) integrity in In-111 labeled WBC preparations

    International Nuclear Information System (INIS)

    Saha, G.B.; Feiglin, D.H.I.; McMahon, J.T.; Go, R.T.; O'Donnell, J.K.; MacIntyre, W.J.

    1985-01-01

    Indium-111 labeled white blood cells (WBC) have become very popular in detecting inflammatory diseases. The purpose of this paper is to determine the distribution of different types of cells in WBC preparation for In-111 oxine labeling, and also to assess the histological integrity of WBC's after labeling with In-111 oxine. Forty to fifty cc of blood was collected from each patient and WBC's were separated by sedimentation and centrifugation. After labeling with In-111 oxine, an aliquot of the WBC sample was used for cell counting and a second aliquot was used for electron microscopic (EM) examination. The different cell moieties were counted, and the mean and standard deviation of twelve determinations calculated. Cells were prepared by the standard technique for electron microscopic examination and images of the cells were obtained at different magnifications (X8,000-25,000). The EM images revealed that although minimal cytoplasmic vacuolization occurred in the WBC's due to the labeling process, the overall histological integrity of the cells remained intact. The relative labeling efficiency of WBC's is greater than those of RBC's and platelets (J Nuc) Med 25:p98, 1984) and, therefore, even a comparatively low population of WBC's gives optimal imaging due to their increased tracer uptake

  7. Study of SEM preparation artefacts with correlative microscopy: Cell shrinkage of adherent cells by HMDS-drying.

    Science.gov (United States)

    Katsen-Globa, Alisa; Puetz, Norbert; Gepp, Michael M; Neubauer, Julia C; Zimmermann, Heiko

    2016-11-01

    One of the often reported artefacts during cell preparation to scanning electron microscopy (SEM) is the shrinkage of cellular objects, that mostly occurs at a certain time-dependent stage of cell drying. Various methods of drying for SEM, such as critical point drying, freeze-drying, as well as hexamethyldisilazane (HMDS)-drying, were usually used. The latter becomes popular since it is a low cost and fast method. However, the correlation of drying duration and real shrinkage of objects was not investigated yet. In this paper, cell shrinkage at each stage of preparation for SEM was studied. We introduce a shrinkage coefficient using correlative light microscopy (LM) and SEM of the same human mesenchymal stem cells (hMSCs). The influence of HMDS-drying duration on the cell shrinkage is shown: the longer drying duration, the more shrinkage is observed. Furthermore, it was demonstrated that cell shrinkage is inversely proportional to cultivation time: the longer cultivation time, the more cell spreading area and the less cell shrinkage. Our results can be applicable for an exact SEM quantification of cell size and determination of cell spreading area in engineering of artificial cellular environments using biomaterials. SCANNING 38:625-633, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  8. XAFS studies of monodisperse Au nanoclusters formation in the etching process

    International Nuclear Information System (INIS)

    Yang, Lina; Huang, Ting; Liu, Wei; Bao, Jie; Huang, Yuanyuan; Cao, Yuanjie; Yao, Tao; Sun, Zhihu; Wei, Shiqiang

    2016-01-01

    Understanding the formation mechanism of gold nanoclusters is essential to the development of their synthetic chemistry. Here, by using x-ray absorption fine-structure (XAFS) spectroscopy, UV-Vis and MS spectra, the formation process of monodisperse Au 13 nanoclusters is investigated. We find that a critical step involving the formation of smaller Au 8 -Au 11 metastable intermediate clusters induced by the HCl + HSR etching of the polydisperse Au n precursor clusters occurs firstly. Then these intermediate species undergo a size-growth to Au 13 cores, followed by a slow structure rearrangement to reach the final stable structure. This work enriches the understanding of cluster formation chemistry and may guide the way towards the design and the controllable synthesis of nanoclusters. (paper)

  9. Design, preparation, and application of ordered porous polymer materials

    International Nuclear Information System (INIS)

    Liu, Qingquan; Tang, Zhe; Ou, Baoli; Liu, Lihua; Zhou, Zhihua; Shen, Shaohua; Duan, Yinxiang

    2014-01-01

    Ordered porous polymer (OPP) materials have extensively application prospects in the field of separation and purification, biomembrane, solid supports for sensors catalysts, scaffolds for tissue engineering, photonic band gap materials owing to ordered pore arrays, uniform and tunable pore size, high specific surface area, great adsorption capacity, and light weight. The present paper reviewed the preparation techniques of OPP materials like breath figures, hard template, and soft template. Finally, the applications of OPP materials in the field of separation, sensors, and biomedicine are introduced, respectively. - Highlights: • Breath figures involve polymer casting under moist ambience. • Hard template employs monodisperse colloidal spheres as a template. • Soft template utilizes the etched block in copolymers as template

  10. Preparation and Characterization of Highly Fluorescent, Glutathione-coated Near Infrared Quantum Dots for in Vivo Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Yoshichika Yoshioka

    2008-10-01

    Full Text Available Fluorescent probes that emit in the near-infrared (NIR, 700-1,300 nm region are suitable as optical contrast agents for in vivo fluorescence imaging because of low scattering and absorption of the NIR light in tissues. Recently, NIR quantum dots (QDs have become a new class of fluorescent materials that can be used for in vivo imaging. Compared with traditional organic fluorescent dyes, QDs have several unique advantages such as size- and composition-tunable emission, high brightness, narrow emission bands, large Stokes shifts, and high resistance to photobleaching. In this paper, we report a facile method for the preparation of highly fluorescent, water-soluble glutathione (GSH-coated NIR QDs for in vivo imaging. GSH-coated NIR QDs (GSH-QDs were prepared by surface modification of hydrophobic CdSeTe/CdS (core/shell QDs. The hydrophobic surface of the CdSeTe/CdS QDs was exchanged with GSH in tetrahydrofuran-water. The resulting GSH-QDs were monodisperse particles and stable in PBS (phosphate buffered saline, pH = 7.4. The GSH-QDs (800 nm emission were highly fluorescent in aqueous solutions (quantum yield = 22% in PBS buffer, and their hydrodynamic diameter was less than 10 nm, which is comparable to the size of proteins. The cellular uptake and viability for the GSH-QDs were examined using HeLa and HEK 293 cells. When the cells were incubated with aqueous solutions of the GSH-QDs (10 nM, the QDs were taken into the cells and distributed in the perinuclear region of both cells. After 12 hrs incubation of 4 nM of GSH-QDs, the viabilities of HeLa and HEK 293 cells were ca. 80 and 50%, respectively. As a biomedical utility of the GSH-QDs, in vivo NIRfluorescence imaging of a lymph node in a mouse is presented.

  11. Facile synthesis of monodisperse superparamagnetic Fe{sub 3}O{sub 4}/PMMA composite nanospheres with high magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Lan Fang; Liu Kexia; Jiang Wen; Zeng Xiaobo; Wu Yao; Gu Zhongwei, E-mail: Yaowu_amanda@126.com, E-mail: zwgu@scu.edu.cn [National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064 (China)

    2011-06-03

    Monodisperse superparamagnetic Fe{sub 3}O{sub 4}/polymethyl methacrylate (PMMA) composite nanospheres with high saturation magnetization were successfully prepared by a facile novel miniemulsion polymerization method. The ferrofluid, MMA monomer and surfactants were co-sonicated and emulsified to form stable miniemulsion for polymerization. The samples were characterized by DLS, TEM, FTIR, XRD, TGA and VSM. The diameter of the Fe{sub 3}O{sub 4}/PMMA composite nanospheres by DLS was close to 90 nm with corresponding polydispersity index (PDI) as small as 0.099, which indicated that the nanospheres have excellent homogeneity in aqueous medium. The TEM results implied that the Fe{sub 3}O{sub 4}/PMMA composite nanospheres had a perfect core-shell structure with about 3 nm thin PMMA shells, and the core was composed of many homogeneous and closely packed Fe{sub 3}O{sub 4} nanoparticles. VSM and TGA showed that the Fe{sub 3}O{sub 4}/PMMA composite nanospheres with at least 65% high magnetite content were superparamagnetic, and the saturation magnetization was as high as around 39 emu g{sup -1} (total mass), which was only decreased by 17% compared with the initial bare Fe{sub 3}O{sub 4} nanoparticles.

  12. Response of three instruments devoted to surface-area for monodisperse and polydisperse aerosols in molecular and transition regimes

    International Nuclear Information System (INIS)

    Bau, Sebastien; Witschger, Olivier; Gensdarmes, Francois; Thomas, Dominique

    2011-01-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment. Indeed, our understanding of the hazards, the actual exposures in the workplace and the limits of engineering controls and personal protective equipment with regard to NP are still under development. Several studies have already identified surface-area as an important determinant of low solubility nanoparticles toxicity. As a consequence, the concept that surface-area could be a relevant metric for characterizing exposure to low solubility airborne NP has been proposed [1]. To provide NP surface-area concentration, some direct-reading instruments have been designed, based on diffusion charging. The actual available instruments providing airborne NP surface-area concentration are studied in this work: LQ1-DC (Matter Engineering), AeroTrak T M 9000 (TSI) and NSAM (TSI model 3550). Their performances regarding monodisperse carbon NP have been investigated by Bau et al.. This work aims at completing the instruments characterization regarding monodisperse NP of other chemical composition (aluminium, copper, silver) and studying their performances against polydisperse aerosols of NP.

  13. Response of three instruments devoted to surface-area for monodisperse and polydisperse aerosols in molecular and transition regimes

    Energy Technology Data Exchange (ETDEWEB)

    Bau, Sebastien; Witschger, Olivier [Institut National de Recherche et de Securite (INRS), Laboratoire de Metrologie des Aerosols, Rue du Morvan, CS 60027, 54519 Vandoeuvre Cedex (France); Gensdarmes, Francois [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Physique et de Metrologie des Aerosols, BP 68, 91192 Gif-sur-Yvette (France); Thomas, Dominique, E-mail: sebastien.bau@inrs.fr [Laboratoire Reactions et Genie des Procedes (LRGP), groupe SAFE, 1 rue Grandville, BP 20041, 54001 Nancy Cedex (France)

    2011-07-06

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment. Indeed, our understanding of the hazards, the actual exposures in the workplace and the limits of engineering controls and personal protective equipment with regard to NP are still under development. Several studies have already identified surface-area as an important determinant of low solubility nanoparticles toxicity. As a consequence, the concept that surface-area could be a relevant metric for characterizing exposure to low solubility airborne NP has been proposed [1]. To provide NP surface-area concentration, some direct-reading instruments have been designed, based on diffusion charging. The actual available instruments providing airborne NP surface-area concentration are studied in this work: LQ1-DC (Matter Engineering), AeroTrak{sup TM} 9000 (TSI) and NSAM (TSI model 3550). Their performances regarding monodisperse carbon NP have been investigated by Bau et al.. This work aims at completing the instruments characterization regarding monodisperse NP of other chemical composition (aluminium, copper, silver) and studying their performances against polydisperse aerosols of NP.

  14. One-pot synthesis of fluorescent nitrogen-doped carbon dots with good biocompatibility for cell labeling.

    Science.gov (United States)

    Zhang, Zhengwei; Yan, Kun; Yang, Qiulian; Liu, Yanhua; Yan, Zhengyu; Chen, Jianqiu

    2017-12-01

    Here we report an easy and economical hydrothermal carbonization approach to synthesize the fluorescent nitrogen-doped carbon dots (N-CDs) that was developed using citric acid and triethanolamine as the precursors. The synthesis conditions were optimized to obtain the N-CDs with superior fluorescence performances. The as-prepared N-CDs are monodispersed sphere nanoparticles with good water solubility, and exhibited strong fluorescence, favourable photostability and excitation wavelength-dependent behavior. Furthermore, the in vitro cytotoxicity and cellular labeling of N-CDs were investigated using the rat glomerular mesangial cells. The results showed the N-CDs have more inconspicuous cytotoxicity and better biosafety in comparison with ZnSe quantum dots, although both targeted the cells successfully. Considering their admirable photostability, low toxicity and good compatibility, the as-obtained N-CDs could have potential applications in biosensors, cellular imaging, and other fields. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Preparation and regulating cell adhesion of anion-exchangeable layered double hydroxide micropatterned arrays.

    Science.gov (United States)

    Yao, Feng; Hu, Hao; Xu, Sailong; Huo, Ruijie; Zhao, Zhiping; Zhang, Fazhi; Xu, Fujian

    2015-02-25

    We describe a reliable preparation of MgAl-layered double hydroxide (MgAl-LDH) micropatterned arrays on gold substrate by combining SO3(-)-terminated self-assembly monolayer and photolithography. The synthesis route is readily extended to prepare LDH arrays on the SO3(-)-terminated polymer-bonded glass substrate amenable for cell imaging. The anion-exchangeable MgAl-LDH micropattern can act both as bioadhesive region for selective cell adhesion and as nanocarrier for drug molecules to regulate cell behaviors. Quantitative analysis of cell adhesion shows that selective HepG2 cell adhesion and spreading are promoted by the micropatterned MgAl-LDH, and also suppressed by methotrexate drug released from the LDH interlayer galleries.

  16. Large-scale synthesis of monodisperse SiC nanoparticles with adjustable size, stoichiometric ratio and properties by fluidized bed chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rongzheng; Liu, Malin, E-mail: liumalin@tsinghua.edu.cn; Chang, Jiaxing [Tsinghua University, Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology (China)

    2017-02-15

    A facile fluidized bed chemical vapor deposition method was proposed for the synthesis of monodisperse SiC nanoparticles by using the single precursor of hexamethyldisilane (HMDS). SiC nanoparticles with average particle size from 10 to 200 nm were obtained by controlling the temperature and the gas ratio. An experimental chemical vapor deposition phase diagram of SiC in the HMDS-Ar-H{sub 2} system was obtained and three regions of SiC-Si, SiC and SiC-C can be distinguished. The BET surface area and the photoluminescence properties of the SiC nanoparticles can be adjusted by changing the nanoparticle size. For the SiC nanospheres with free carbon, a novel hierarchical structure with 5 ~ 8 nm SiC nanoparticles embedded into the graphite matrix was obtained. The advantages of fluidized bed technology for the preparation of SiC nanoparticles were proposed based on the features of homogenous reaction zone, narrow temperature distribution, ultra-short reactant residence time and mass production.

  17. Large-scale synthesis of monodisperse SiC nanoparticles with adjustable size, stoichiometric ratio and properties by fluidized bed chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu, Rongzheng; Liu, Malin; Chang, Jiaxing

    2017-01-01

    A facile fluidized bed chemical vapor deposition method was proposed for the synthesis of monodisperse SiC nanoparticles by using the single precursor of hexamethyldisilane (HMDS). SiC nanoparticles with average particle size from 10 to 200 nm were obtained by controlling the temperature and the gas ratio. An experimental chemical vapor deposition phase diagram of SiC in the HMDS-Ar-H_2 system was obtained and three regions of SiC-Si, SiC and SiC-C can be distinguished. The BET surface area and the photoluminescence properties of the SiC nanoparticles can be adjusted by changing the nanoparticle size. For the SiC nanospheres with free carbon, a novel hierarchical structure with 5 ~ 8 nm SiC nanoparticles embedded into the graphite matrix was obtained. The advantages of fluidized bed technology for the preparation of SiC nanoparticles were proposed based on the features of homogenous reaction zone, narrow temperature distribution, ultra-short reactant residence time and mass production.

  18. Preparation of collagen peptide functionalized chitosan nanoparticles by ionic gelation method: An effective carrier system for encapsulation and release of doxorubicin for cancer drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S., E-mail: rsanandhakumar@gmail.com [SRM Research Institute, SRM University, Kattankulathur, Chennai 603203 (India); Krishnamoorthy, G.; Ramkumar, K.M. [SRM Research Institute, SRM University, Kattankulathur, Chennai 603203 (India); Raichur, A.M. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2017-01-01

    In recent years, nanoparticles (NPs) based on biopolymers or peptides are gaining popularity for the encapsulation and release of drug molecules, especially for cancer therapy, due to their ability for targeted and controlled release. The use of collagen peptide (CP) for the preparation of chitosan (CN) NPs is especially interesting as it results in NPs that are stable under physiological conditions. In this work, mono-dispersed pH responsive CPCN NPs of about 100 nm were prepared via ionic gelation method by simple and mild co-precipitation of CN and CP. Investigation of NPs with Fourier transform infra-red (FTIR) spectroscopy and dynamic light scattering (DLS) measurements reveals that hydrogen bonding and electrostatic interactions are believed to be major driving forces for NP formation and drug encapsulation, respectively. Scanning electron microscopic (SEM) investigations show that hard and fine CPCN NPs transform to soft and bigger gel like particles as a function of collagen concentration. The unique “polymeric gel” structure of NPs showed high encapsulation efficiency towards doxorubicin hydrochloride (DOX) as well as pH controlled release. Anti-proliferative and cell viability analysis revealed that DOX loaded NPs showed excellent anti-proliferative characteristics against HeLa cells with favorable biocompatibility against normal cells. Such NPs have high potential for use as smart drug delivery carriers in advanced cancer therapy. - Highlights: • Preparation of collagen peptide functionalized chitosan nanoparticles • Hydrogen bonding plays a key role in particle formation. • Electrostatic interaction plays a key role in drug encapsulation. • Functionalized chitosan particles are more stable than chitosan NPs.

  19. In vitro preparation of radionuclides labeled blood cells: Status and requirements

    International Nuclear Information System (INIS)

    Couret, I.; Desruet, M.D.; Bolot, C.; Chassel, M.L.; Pellegrin, M.

    2010-01-01

    Labelled blood cells permit nuclear medicine imaging using their physiological behaviours. The radiolabeling must be performed in vitro because of the lack of specific markers and requires several highly technical stages of preparation. Labelled blood cells have not the medication drug status, so that the nuclear physician conducting the nuclear test is fully liable. In most cases, the physician delegates the technical responsibility to radio-pharmacists. Although the status of radiolabelled autologous cells is not legally defined and in the absence of a specific repository, it is essential that their preparation is subject to the requirements of the rules of French Good Manufacturing Practice published by Agence francaise de securite sanitaire des produits de sante (Afssaps). It would be desirable to harmonize the practices of radiolabeling cellular blood components by editing a repository. (authors)

  20. Gold nanoparticles prepared by laser ablation in aqueous biocompatible solutions: assessment of safety and biological identity for nanomedicine applications

    Directory of Open Access Journals (Sweden)

    Correard F

    2014-11-01

    Full Text Available Florian Correard,1,2 Ksenia Maximova,3 Marie-Anne Estève,1,2 Claude Villard,1 Myriam Roy,4 Ahmed Al-Kattan,3 Marc Sentis,3 Marc Gingras,4 Andrei V Kabashin,3 Diane Braguer1,2 1Aix Marseille Université, INSERM, CR02 UMR_S911, Marseille, France; 2APHM, Hôpital Timone, Marseille, France; 3Aix Marseille Université, CNRS, LP3 UMR 7341, Marseille, France; 4Aix Marseille Université, CNRS, CINAM, UMR 7325 Marseille, France Abstract: Due to excellent biocompatibility, chemical stability, and promising optical properties, gold nanoparticles (Au-NPs are the focus of research and applications in nanomedicine. Au-NPs prepared by laser ablation in aqueous biocompatible solutions present an essentially novel object that is unique in avoiding any residual toxic contaminant. This paper is conceived as the next step in development of laser-ablated Au-NPs for future in vivo applications. The aim of the study was to assess the safety, uptake, and biological behavior of laser-synthesized Au-NPs prepared in water or polymer solutions in human cell lines. Our results showed that laser ablation allows the obtaining of stable and monodisperse Au-NPs in water, polyethylene glycol, and dextran solutions. The three types of Au-NPs were internalized in human cell lines, as shown by transmission electron microscopy. Biocompatibility and safety of Au-NPs were demonstrated by analyzing cell survival and cell morphology. Furthermore, incubation of the three Au-NPs in serum-containing culture medium modified their physicochemical characteristics, such as the size and the charge. The composition of the protein corona adsorbed on Au-NPs was investigated by mass spectrometry. Regarding composition of complement C3 proteins and apolipoproteins, Au-NPs prepared in dextran solution appeared as a promising drug carrier. Altogether, our results revealed the safety of laser-ablated Au-NPs in human cell lines and support their use for theranostic applications. Keywords: protein

  1. Multistaged Nanovaccines Based on Porous Silicon@Acetalated Dextran@Cancer Cell Membrane for Cancer Immunotherapy

    DEFF Research Database (Denmark)

    Fontana, Flavia; Shahbazi, Mohammad Ali; Liu, Dongfei

    2017-01-01

    nanoparticles presented high monodispersity due to the efficient mixing produced in the microfluidic device and were shown to be highly cytocompatible over two human immortalized cell lines, KG1 and BDCM. Moreover, the nanoparticles induced the expression of co-stimulatory signals both in the immortal cell...

  2. Evaluation of two different dendritic cell preparations with BCG reactivity

    Directory of Open Access Journals (Sweden)

    Fol Marek

    2016-01-01

    Full Text Available Dendritic cells (DCs play a key-role in the immune response against intracellular bacterial pathogens, including mycobacteria. Monocyte-derived dendritic cells (MoDCs are considered to behave as inflammatory cell populations. Different immunomagnetic methods (positive and negative can be used to purify monocytes before their in vitro differentiation and their culture behavior can be expected to be different. In this study we evaluated the reactivity of two dendritic cell populations towards the Bacillus Calmette-Guérin (BCG antigen. Monocytes were obtained from the blood of healthy donors, using positive and negative immunomagnetic separation methods. The expression of DC-SIGN, CD86, CD80, HLA-DR and CD40 on MoDCs was estimated by flow cytometry. The level of IL-12p70, IL-10 and TNF-α was measured by ELISA. Neither of the tested methods affected the surface marker expression of DCs. No significant alteration in immunological response, measured by cytokine production, was noted either. After BCG stimulation, the absence of IL-12, but the IL-23 production was observed in both cell preparations. Positive and negative magnetic separation methods are effective techniques to optimize the preparation of monocytes as the source of MoDCs for potential clinical application.

  3. Production of monodispersed Oil-in Water Emulsion Using Crossflow-Type Silicon Microchannel Plate

    Energy Technology Data Exchange (ETDEWEB)

    Kawakatsu, Takahiro.; Komori, Hideaki.; Yonemoto, Toshikuni. [Tohoku University, Miyagi (Japan). Chemical Engineering Department; Nakajima, Mitsutoshi.; Kikuchi, Yuji. [National Food Research Institute, Ibaraki (Japan)

    1999-04-01

    A novel method for continuous productin of monodispersed oil-in-water (O/W) emulsion is developed using acrossflow-type silicaon microchannel plate. On the single crystal silicon plate, a liquid flow path for continuous phase was made, and at each side of th wall of the path an array of regular-sized slits was precisely fabricated. A flat glass plate was tightly attached on the microchannel plate to cover the top of the slits to form the array of microchannels. Regular-sized oil (triolein) droplets were generated by squeezing the oil through the microchannels into the continuous-phase water (0.3 wt% sodium lauryl sulfate solutin) flowing in the liquid path. Oil droplet size is significantly dependent on the microchannel structure, which is identified with the microchannel width, height, and the length of the terrace (a flat area at the microchannel outlet). Three types of microchannel plates having different microchannel structures generate monodispersed emulsions of different average droplet sizes, 16,20, and 48 {mu}m at the watr flow rate of 1.4x10{sup -2}mL{center_dot}min{sup -1}. For the microchannel plate which generates large droplets of 48 {mu}m, increasing the flow rate causes decreasing droplet size. However, for the microchannel plate which generates small droplets of 16 or 20 {mu}m, the size is not affected by the flow rate within the range from 1.4x10{sup -2}to 2.4 mL{center_dot}min{sup -1}. In every case, the droplet size distribution is narrow, and the geometric standard deviation is 1.03 or less. (author)

  4. Preparation of S-sulfo albumin film and its cell adhesive property

    International Nuclear Information System (INIS)

    Yamazoe, Hironori; Yamauchi, Kiyoshi; Tanabe, Toshizumi

    2009-01-01

    Recently, large-scale production of the pharmaceutical grade recombinant human serum albumin was achieved, and several clinical trials have proved its safety and efficacy. Albumin is thought to be a candidate for a safe biopolymer sources for application to biomaterials. In this study, we treated albumin with sodium sulfite and sodium tetrathionate to give S-sulfo albumin, which was found to loose native albumin structure by CD spectra analysis and dye-binding assay. A water-insoluble S-sulfo albumin films were prepared by drying S-sulfo albumin solution and subsequent reformation of disulfide bonds by the oxidation with iodine. Ultimate strength, ultimate elongation and Young's modulus of S-sulfo albumin film prepared at room temperature were 3.3 ± 0.4 MPa, 30.8 ± 3.2% and 40.8 ± 3.3 MPa before oxidative treatment and changed to 13.8 ± 4.2 MPa, 5.6 ± 2.8% and 401.7 ± 15.3 MPa after oxidative treatment. When the film was prepared at 60 deg. C, similar tendency was observed. Thus, the disulfide bonds formation between albumin molecules by oxidative treatment converted the film stronger and stiffer. Cell adhesion and proliferation on the films were evaluated using mouse L929 fibroblast cells. Cell adhesion largely depended on the albumin structure; that is, cells did not attach to native albumin coated surfaces, while cell adhesion and proliferation occurred on the S-sulfo albumin films which lost their native albumin structure. Eighty percent of seeded cells were adhered on S-sulfo albumin films and proliferated well in a similar manner to those on the conventional culture dish. Our results indicate that S-sulfo albumin is a favorable cell culture substrate.

  5. Toxicity of inhaled {sup 238}PuO{sub 2} in Beagle dogs: A. Monodisperse 1.5 {mu}m AMAD particles. B. Monodisperse 3.0 {mu}m particles. XV

    Energy Technology Data Exchange (ETDEWEB)

    Mewhinney, J A; Gillett, N A; Muggenburg, B A; Hahn, F F; Diel, J H; Mauderly, J L; Boecker, B B; McClellan, R O

    1988-12-01

    Beagle dogs inhaled one of two sizes of monodisperse aerosols of {sup 238}PuO{sub 2} that resulted in graded levels of {sup 238}Pu in the lung. All dogs are being studied for their life span. One hundred and thirty-seven dogs that had initial lung burdens ranging from 0.01 to 1.5 {mu}Ci {sup 238}Pu/kg body weight (0.37 to 56 kBq/kg) have died, 8 with radiation pneumonitis and pulmonary fibrosis, 8 with lung tumors, 88 with bone tumors, 10 with liver tumors, and 25 of miscellaneous causes. Eighteen control dogs have died. Observations are being continued on 8 exposed and 6 control dogs alive at 4577-5274 days after exposure. (author)

  6. Synthesis of Monodisperse Nanocrystals via Microreaction: Open-to-Air Synthesis with Oleylamine as a Coligand

    Directory of Open Access Journals (Sweden)

    Yang Hongwei

    2009-01-01

    Full Text Available Abstract Microreaction provides a controllable tool to synthesize CdSe nanocrystals (NCs in an accelerated fashion. However, the surface traps created during the fast growth usually result in low photoluminescence (PL efficiency for the formed products. Herein, the reproducible synthesis of highly luminescent CdSe NCs directly in open air was reported, with a microreactor as the controllable reaction tool. Spectra investigation elucidated that applying OLA both in Se and Cd stock solutions could advantageously promote the diffusion between the two precursors, resulting in narrow full-width-at-half maximum (FWHM of PL (26 nm. Meanwhile, the addition of OLA in the source solution was demonstrated helpful to improve the reactivity of Cd monomer. In this case, the focus of size distribution was accomplished during the early reaction stage. Furthermore, if the volume percentage (vol.% of OLA in the precursors exceeded a threshold of 37.5%, the resulted CdSe NCs demonstrated long-term fixing of size distribution up to 300 s. The observed phenomena facilitated the preparation of a size series of monodisperse CdSe NCs merely by the variation of residence time. With the volume percentage of OLA as 37.5% in the source solution, a 78 nm tuning of PL spectra (from 507 to 585 was obtained through the variation of residence time from 2 s to 160 s, while maintaining narrow FMWH of PL (26–31 nm and high QY of PL (35–55%.

  7. Preparation of spherical particles by vibrating orifice technique

    Science.gov (United States)

    Shibata, Shuichi; Tomizawa, Atsushi; Yoshikawa, Hidemi; Yano, Tetsuji; Yamane, Masayuki

    2000-05-01

    Preparation of micrometer-sized spherical particles containing Rhodamine 6G (R6G) has been investigated for the spherical cavity micro-laser. Using phenyl triethoxy silane (PTES) as a starting material, R6G-doped monodisperse spherical particles were prepared by the vibrating orifice technique. Processing consists of two major processes: (1) Hydrolysis and polymerization of PTES and (2) Droplet formation from PTES oligomers by vibrating orifice technique. A cylindrical liquid jet passing through the orifice of 10 and 20 micrometers in diameter breaks up into equal- sized droplets by mechanical vibration. Alcohol solvent of these droplets was evaporated during flying with carrier gas and subsequently solidified in ammonium water trap. For making smooth surface and god shaped particles, control of molecular weight of PTES oligomer was essential. R6G-doped hybrid spherical particles of 4 to 10 micrometers size of cavity structure were successfully obtained. The spherical particles were pumped by a second harmonic pulse of Q- switched Nd:YAG laser and laser emission peaks were observed at wavelengths which correspond to the resonance modes.

  8. The study of preparation for immobilized cells membranes of E. Coli. by radiation technique

    International Nuclear Information System (INIS)

    Cao Jin; Chen Pin; Yu Yi

    1991-01-01

    The paper described the preparation of immobilized cells membranes with E. Coli by radiation technique. The nylon 6 was grafted with HEMA, which as a matrix to prepare immobilized cells membranes with E. Coli. by radiation entrapment at low temperature. The results showed that the retentive activity possessed a maximum value for membranes with E. Coli. when the irradiation dose was at 10-12 kGy, the entrapped cells has 2.3 g/ml at 50% HEMA concentration, the optimum pH and optimum temperature for membranes with E. Coli. are as same the original cells

  9. A fluorescence probe based on the nitrogen-doped carbon dots prepared from orange juice for detecting Hg2+ in water

    International Nuclear Information System (INIS)

    Li, Zhili; Zhang, Ying; Niu, Qianqian; Mou, Mingyao; Wu, Yi; Liu, Xiaoxuan; Yan, Zhengyu; Liao, Shenghua

    2017-01-01

    An excellent biocompatible nitrogen-doped carbon dots (N-CDs) was successfully synthesized from orange juice and ethylenediamine by hydrothermal decomposition method. The as-prepared N-CDs were mono-dispersed spherical nanoparticles with a narrow size distribution of 0.5–3.0 nm and showed a good dispersion and stability in aqueous solution with the pH value ranging from 3.0 to 13.0. Photoluminescence spectra of as-prepared N-CDs demonstrated that the fluorescence intensity of N-CDs was increased with the doped nitrogen atoms and the FL-QY (fluorescence quantum yield) of N-CDs was up to 31.7%. Compared with Gly-CQDs(CQDs synthesied by Gly), which were prepared from chemical carbon source via hydrothermal decomposition method, the as-prepared N-CDs showed much lower cytotoxicity for Human THP-1 macrophage cells. These results indicated N-CDs prepared by our proposed method have excellent compatibility and more suitable for the application in biolabeling and bioimage. Due to the fluorescence quenching of N-CDs by mercury (II) ion (Hg 2+ ), a sensitive and selective method was developed for detecting Hg 2+ . The results indicated that the fluorescence intensity ratio of N-CDs was proportional to the concentration of Hg 2+ in the range from 4.0 μg/mL to 32.0 μg/mL and the recovery of spiked samples was ranged from 102.0% to 103.0%, which hinted our proposed method has a good sensitivity and accuracy and was suitable for detecting Hg 2+ with satisfactory in tap water.

  10. Influence of the vibration source location on the modes of jet disintegration in the priller and on monodispersity of the finished product

    OpenAIRE

    Skydanenko, Maksym; Kononenko, Mykola; Kurdes, Yuliia

    2017-01-01

    Influence of the vibration source location on the modes of liquid jets disintegration and obtaining monodisperse droplets and granules of the finished product is theoretically grounded and experimentally confirmed. The experiment was conducted on an experimental stand of industrial granulation equipment.

  11. Evaluation of preparation methods for MS-based analysis of intestinal epithelial cell proteomes

    DEFF Research Database (Denmark)

    Hesselager, Marianne Overgaard; Codrea, Marius Cosmin; Bendixen, Emøke

    2015-01-01

    analyzed by LC and electrospray QTOF-MS. The methods were evaluated according to efficiency, purity, transmembrane protein recovery, as well as for suitability to large-scale preparations. Our data clearly demonstrate that mucosal shaving is by far the best-suited method for in-depth MS analysis in terms...... are low in abundance, and large amounts of sample is needed for their preparation and for undertaking MS-based analysis. The aim of this study was to evaluate three different methods for isolation and preparation of pig intestinal epithelial cells for MS-based analysis of the proteome. Samples were...... of ease and speed of sample preparation, as well as protein recovery. In comparison, more gentle methods where intestinal epithelial cells are harvested by shaking are more time consuming, result in lower protein yield, and are prone to increased technical variation due to multiple steps involved....

  12. Study on Soap-free P(MMA-EA-AA/MAA) Latex Particles With Narrow Size Distribution

    Institute of Scientific and Technical Information of China (English)

    K. Kang; C. Y. Kan; Y. Du; D. S. Liu

    2005-01-01

    @@ 1Introduction In the past decades, more and more studies have been focused on the synthesis of monodisperse particles with different diameter by special polymerization technique. In 1980' s, Ugelstad, et al[1] invented two-step swelling method to prepare monodisperse microsphere with large size more than 1 μm. In the following decade, Okubo and his coworkers[2] synthesized monodisperse crosslinked polymer particles above 3 μm using one-step dynamic swelling method. New method has been developed to produce particles more than 50 μm in diameter with a standard deviation of less than 2%[3]. Up to now, most of the monodisperse particles were usually prepared by polymerization of St in the presence of surfactants. In this presentation, sub-micro sized P (MMA-EA-AA/MAA) particles with narrow size distribution were prepared by seeded emulsion polymerization in the absence of any surfactant materials.

  13. Cell-compatible conducting polyaniline films prepared in colloidal dispersion mode.

    Science.gov (United States)

    Kašpárková, Věra; Humpolíček, Petr; Capáková, Zdenka; Bober, Patrycja; Stejskal, Jaroslav; Trchová, Miroslava; Rejmontová, Petra; Junkar, Ita; Lehocký, Marián; Mozetič, Miran

    2017-09-01

    Conducting polyaniline can be prepared and modified using several procedures, all of which can significantly influence its applicability in different fields of biomedicine or biotechnology. The modifications of surface properties are crucial with respect to the possible applications of this polymer in tissue engineering or as biosensors. Innovative technique for preparing polyaniline films via in-situ polymerization in colloidal dispersion mode using four stabilizers (poly-N-vinylpyrrolidone; sodium dodecylsulfate; Tween 20 and Pluronic F108) was developed. The surface energy, conductivity, spectroscopic features, and cell compatibility of thin polyaniline films were determined using contact-angle measurement, the van der Pauw method, Fourier-transform infrared spectroscopy, and assay conducted on mouse fibroblasts, respectively. The stabilizers significantly influenced not only the surface and electrical properties of the films but also their cell compatibility. Sodium dodecylsulfate seems preferentially to combine both the high conductivity and good cell compatibility. Moreover, the films with sodium dodecylsulfate were non-irritant for skin, which was confirmed by their in-vitro exposure to the 3D-reconstructed human tissue model. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route

    Science.gov (United States)

    Wen, Li; Lin, Zhonghua; Gu, Pingying; Zhou, Jianzhang; Yao, Bingxing; Chen, Guoliang; Fu, Jinkun

    2009-02-01

    Monodispersed gold nanoparticles capped with a self-assembled monolayer of dodecanethiol were biosynthesized extracellularly by an efficient, simple, and environmental friendly procedure, which involved the use of Bacillus megatherium D01 as the reducing agent and the use of dodecanethiol as the capping ligand at 26 °C. The kinetics of gold nanoparticle formation was followed by transmission electron microscope (TEM) and UV-vis spectroscopy. It was shown that reaction time was an important parameter in controlling the morphology of gold nanoparticles. The effect of thiol on the shape, size, and dispersity of gold nanoparticles was also studied. The results showed that the presence of thiol during the biosynthesis could induce the formation of small size gold nanoparticles (gold nanoparticles capped with thiol of 1.9 ± 0.8 nm size were formed by using Bacillus megatherium D01.

  15. On the cells of origin of radiogenic thyroid cancer

    International Nuclear Information System (INIS)

    Clifton, K.H.; Domann, F.E.; Groch, K.M.

    1991-01-01

    A major effort has been devoted to studies of the origins of radiogenic and hormonally-induced cancer at the cellular level in vivo. The studies has provided evidence that the functional thyroid follicules (follicular units, FU) which are formed in grafts of monodispersed rat thyroid cells, and hence the thyroid tumors which later develop in such grafts, are clonal in origin. Transplantation assays indicate that the clonogens comprise 1% of the cells in monodispersed suspensions of normal thyroid tissue. Carcinogenesis studies show that neoplastic initiation of thyroid clonogens by radiation is a commo event. Promotion-progression to cancer from radiation initiated clonogens has, however, been shown to be inversely related to the total grafted thyroid cell number. It is thus important to further define the physiology and population kinetics of the thyroid clonogens under different hormonal conditions both in situ and following transplantion. This report briefly summarizes recent data on (a) local cell-cell and remote hormonal feedback interactions during neoplastic promotion of initiated cells among the progeny of grafted clonogens in multicellular FU; (b) clonogenic cell population kinetics in situ during goitrogenesis and goiter involution; and (c) the reestablishment of the thyroid-hypothalamus-pituitary hormonal feedback system in thyroid cell-grafted thyroidectomized rats and its dependence on the formation of FU by the grafted clonogens. These results support the conclusion that the thyroid gland contains a small sub-population of clonogenic epithelial cells which posess many stem cell-like characteristics. (N.K.)

  16. Preparation, Properties, and Self-Assembly Behavior of PTFE-Based Core-Shell Nanospheres

    Directory of Open Access Journals (Sweden)

    Katia Sparnacci

    2012-01-01

    Full Text Available Nanosized PTFE-based core-shell particles can be prepared by emulsifier-free seed emulsion polymerization technique starting from spherical or rod-like PTFE seeds of different size. The shell can be constituted by the relatively high Tg polystyrene and polymethylmethacrylate as well as by low Tg polyacrylic copolymers. Peculiar thermal behavior of the PTFE component is observed due to the high degree of PTFE compartmentalization. A very precise control over the particle size can be exerted by properly adjusting the ratio between the monomers and the PTFE seed. In addition, the particle size distribution self-sharpens as the ratio monomer/PTFE increases. Samples with uniformity ratios suited to build 2D and 3D colloidal crystals are easily prepared. In particular, 2D colloidal crystal of spheres leads to very small 2D nanostructuration, useful for the preparation of masks with a combination of nanosphere lithography and reactive ion etching. 3D colloidal crystals were also obtained featuring excellent opal quality, which is a direct consequence of the monodispersity of colloids used for their growth.

  17. Preparation, Properties, and Self-Assembly Behavior of PTFE-Based Core-Shell Nanospheres

    International Nuclear Information System (INIS)

    Sparnacci, K.; Antonioli, D.; Deregibus, S.; Laus, M.; Zuccheri, G.; Boarino, L.; De Leo, N.; Comoretto, D.

    2012-01-01

    Nano sized PTFE-based core-shell particles can be prepared by emulsifier-free seed emulsion polymerization technique starting from spherical or rod-like PTFE seeds of different size. The shell can be constituted by the relatively high Tg polystyrene and polymethylmethacrylate as well as by low Tg polyacrylic copolymers. Peculiar thermal behavior of the PTFE component is observed due to the high degree of PTFE compartmentalization. A very precise control over the particle size can be exerted by properly adjusting the ratio between the monomers and the PTFE seed. In addition, the particle size distribution self-sharpens as the ratio monomer/PTFE increases. Samples with uniformity ratios suited to build 2D and 3D colloidal crystals are easily prepared. In particular, 2D colloidal crystal of spheres leads to very small 2D nanostructuration, useful for the preparation of masks with a combination of nanosphere lithography and reactive ion etching. 3D colloidal crystals were also obtained featuring excellent opal quality, which is a direct consequence of the monodispersity of colloids used for their growth.

  18. Toxicity of inhaled 239PuO2 in Beagle dogs. A. Monodisperse 0.75 μm AD particles. B. Monodisperse 1.5 μm AD particles. C. Monodisperse 3.0 μm AD particles. II

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Guilmette, R.A.; Hahn, F.F.; McClellan, R.O.; Mauderly, J.L.; Mewhinney, J.A.; Pickrell, J.A.; Boecker, B.B.

    1978-01-01

    Studies on the metabolism, dosimetry and biological effects of inhaled particles of 239 PuO 2 have been initiated in Beagle dogs. To obtain information on the relative importance of homogeneity of radiation doses to the lung, dogs have been exposed to particles of monodisperse aerosols (sigma/sub g/ 239 PuO 2 ; 40 dogs to the 0.75 μm AD particles, 72 dogs to the 1.5 μm AD particles and 60 dogs to the 3.0 μm AD particles. The exposures have resulted in graded ILB's, which range from 0.0002 to 2.6 μCi/kg body weight. Twenty-nine dogs were exposed to the aerosol diluent and serve as controls. Five dogs have died 336 to 561 days after exposure in the 1.5 μm AD study. Four dogs have died 116 to 589 days after exposure in the 3.0 μm AD study. These dogs had radiation pneumonitis and pulmonary fibrosis at death. The remaining dogs have survived up to 634 days after exposure. It is anticipated that the other dogs planned for these studies will be exposed over the next 12 months

  19. Toxicity of inhaled 239PuO2 in Beagle dogs. A. Monodisperse 0.75 μm AMAD particles. B. Monodisperse 1.5 μm AMAD particles. C. Monodisperse 3.0 μm AMAD particles. V

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Guilmette, R.A.; Hahn, F.F.; Boecker, B.B.; McClellan, R.O.; Mauderly, J.L.; Pickrell, J.A.

    1982-01-01

    Studies on the metabolism, dosimetry and biological effects of inhaled particles of 239 PuO 2 in Beagle dogs are in progress. To obtain information on the relative importance of homogeneity versus nonhomogeneity of radiation doses to the lung, dogs have been exposed to monodisperse aerosols of 239 PuO 2 of 0.75, 1.5 or 3.0 μm activity median aerodynamic diameter (AMAD). The exposures have resulted in graded initial lung burdens ranging from 0.0002 to 2.6 μCi 239 Pu per kilogram body weight. Other dogs were exposed to the aerosol diluent to serve as controls. Ten dogs have died in the study with 0.75 μm AMAD particles, 40 dogs have died in the study with 1.5 μm AMAD particles and 35 dogs have died in the study with 3.0 μm AMAD particles of 239 PuO 2 . Dogs have died with radiation pneumonitis and pulmonary fibrosis and carcinomas of the lung. The remaining dogs have survived up to 2100 days after inhalation exposure and are being observed for the remainder of their life span

  20. Toxicity of inhaled 239PuO2 in Beagle dogs: A. Monodisperse 0.75-μm AMAD particles. B. Monodisperse 1.5-μm AMAD particles. C. Monodisperse 3.0--μm AMAD particles. XI

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Guilmette, R.A.; Hahn, F.F.; Boecker, B.B.; McClellan, R.O.

    1988-01-01

    Beagle dogs were exposed to monodisperse aerosols of 239 PuO 2 of 0.75, 1.5, or 30 μm activity median aerodynamic diameter (AMAD) to obtain information on the relative importance of homogeneity of alpha irradiation doses to the lung in producing biological effects. The dogs' initial pulmonary burdens (IPB) ranged from 0.0002-2.0 μCi (0.0074 to 74 kBq) 239 Pu/kg of body mass. Thirty-six dogs were exposed to the aerosol diluent as controls. Forty-two of 48 dogs exposed to 0.75 μm AMAD particles have died; 67 of 96 have died in the study involving 1.5 μm AMAD particles; and 62 of 72 have died in the study involving the 3.0 μm AMAD particles. Seven of 36 control dogs have died. Most dogs exposed to 239 Pu that have failed to survive have died with radiation pneumonitis and fibrosis and/or lung cancer. Surviving dogs have lived up to 4300 days after exposure. The data obtained to date indicate that the degree of uniformity of dose to the lung does not significantly modify the risk of lung cancer. (author)

  1. Effect of the thickness of a fluoropolymer film on the radiotically prepared fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Beom Seok; Sohn, Joon Yong; Nho, Young Chang; Shin, Jun Hwa [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kim, Jong Il [Chonbuk National University, Jeonju (Korea, Republic of)

    2010-06-15

    To observe the effect of the thickness of a fluoropolymer film on the radiotically prepared fuel cell membranes, fuel cell membranes with various thickness were prepared by simultaneous radiation grafting of styrene into polyethylene-co-tetrafluoroethylene (ETFE) with various thicknesses (25, 50 and 100 {mu}m) and subsequent sulfonation. The physico-chemical properties of the prepared membranes such as ion exchange capacity, water uptake, distribution of sulfonic acid group were evaluated in the correlation with the thickness of ETFE film. In additions, proton conductivity and methanol permeability of the prepared membranes were also evaluated. The results revealed that the proton conductivity and methanol permeability of the prepared membranes were largely affected by the thickness of ETFE film utilized as a base film.

  2. Effect of the thickness of a fluoropolymer film on the radiotically prepared fuel cell membranes

    International Nuclear Information System (INIS)

    Ko, Beom Seok; Sohn, Joon Yong; Nho, Young Chang; Shin, Jun Hwa; Kim, Jong Il

    2010-01-01

    To observe the effect of the thickness of a fluoropolymer film on the radiotically prepared fuel cell membranes, fuel cell membranes with various thickness were prepared by simultaneous radiation grafting of styrene into polyethylene-co-tetrafluoroethylene (ETFE) with various thicknesses (25, 50 and 100 μm) and subsequent sulfonation. The physico-chemical properties of the prepared membranes such as ion exchange capacity, water uptake, distribution of sulfonic acid group were evaluated in the correlation with the thickness of ETFE film. In additions, proton conductivity and methanol permeability of the prepared membranes were also evaluated. The results revealed that the proton conductivity and methanol permeability of the prepared membranes were largely affected by the thickness of ETFE film utilized as a base film

  3. Effects of commercial pectolytic and cellulolytic enzyme preparations on the apple cell wall.

    Science.gov (United States)

    Dongowski, G; Sembries, S

    2001-09-01

    The action of three different commercial enzyme combinations on apple cell wall material has been examined in a model system under conditions of mash and pomace treatment by using an alcohol-insoluble substance prepared from apples. A part of the total dietary fiber, for example, galacturonan (pectin), appeared in the soluble fraction after enzymatic mash treatment. The soluble fraction increased intensely during pomace treatment. Furthermore, enzyme actions caused a change in the water-binding capacity of residues as well as changes in the monosaccharide composition and in the molecular weight distribution of saccharides in filtrates (soluble parts). The extent of decomposition of cell wall material and the increase of soluble oligomeric and/or polymeric dietary fiber components are caused by both the composition (pectinases, cellulases, and hemicellulases) and the activities of the enzyme preparations. The model experiments allow an insight into the reactions occurring during enzyme action on the plant cell wall, for example, during apple juice production using pectolytic and cellulolytic enzyme preparations.

  4. Mineralization by mesenchymal stromal cells is variously modulated depending on commercial platelet lysate preparations.

    Science.gov (United States)

    Boraldi, Federica; Burns, Jorge S; Bartolomeo, Angelica; Dominici, Massimo; Quaglino, Daniela

    2018-03-01

    Numerous cellular models have been developed to investigate calcification for regenerative medicine applications and for the identification of therapeutic targets in various complications associated with age-related diseases. However, results have often been contradictory due to specific culture conditions, cell type ontogeny and aging status. Human platelet lysate (hPL) has been recently investigated as valuable alternative to fetal bovine serum (FBS) in cell culture and bone regeneration. A parallel comparison of how all these multiple factors may converge to influence mineralization has yet to be reported. To compare mineralization of human mesenchymal cell types known to differ in extracellular matrix calcification potency, bone marrow-derived mesenchymal stromal cells and dermal fibroblasts from neonatal and adult donors, at both low and high passages, were investigated in an ex vivo experimental model by supplementing the osteogenic induction medium with FBS or with hPL. Four commercial hPL preparations were profiled by liquid chromatography/electrospray ionization quadrupole time-of-flight spectrometry, and mineralization was visualized by von Kossa staining and quantified by morphometric evaluations after 9, 14 and 21 days of culture. Data demonstrate that (i) commercial hPL preparations differ according to mass spectra profiles, (ii) hPL variously influences mineral deposition depending on cell line and possibly on platelet product preparation methods, (iii) donor age modifies mineral deposition in the presence of the same hPL and (iv) reduced in vitro proliferative capacity affects osteogenic induction and response to hPL. Despite the standardized procedures applied to obtain commercial hPL, this study highlights the divergent effects of different preparations and emphasizes the importance of cellular ontology, donor age and cell proliferative capacity to optimize the osteogenic induction capabilities of mesenchymal stromal cells and design more effective

  5. Synthesis of Monodispersed Gold Nanoparticles with Exceptional Colloidal Stability with Grafted Polyethylene Glycol-g-polyvinyl Alcohol

    Directory of Open Access Journals (Sweden)

    Alaaldin M. Alkilany

    2015-01-01

    Full Text Available Herein, we report the synthesis of spherical gold nanoparticles with tunable core size (23–79 nm in the presence of polyethylene glycol-g-polyvinyl alcohol (PEG-g-PVA grafted copolymer as a reducing, capping, and stabilizing agent in a one-step protocol. The resulted PEG-g-PVA-capped gold nanoparticles are monodispersed with an exceptional colloidal stability against salt addition, repeated centrifugation, and extensive dialysis. The effect of various synthesis parameters and the kinetic/mechanism of the nanoparticle formation are discussed.

  6. Optimization of specimen preparation of thin cell section for AFM observation

    Energy Technology Data Exchange (ETDEWEB)

    Li Xinhui [Nanobiology Laboratory, Bio-X Life Science Research Center, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240 (China); Ji Tong [Department of Oral and Maxillofacial Surgery, School of Stomatology, Affiliated Ninth People' s Hospital, Medical School, Shanghai Jiao Tong University, Shanghai 200011 (China); Hu Jun [Nanobiology Laboratory, Bio-X Life Science Research Center, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240 (China); Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Sun Jielin [Nanobiology Laboratory, Bio-X Life Science Research Center, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240 (China)], E-mail: jlsun@sjtu.edu.cn

    2008-08-15

    High resolution imaging of intracellular structures of ultrathin cell section samples is critical to the performance of precise manipulation by atomic force microscopy (AFM). Here, we test the effect of multiple factors during section sample preparation on the quality of the AFM image. These factors include the embedding materials, the annealing process of the specimen block, section thickness, and section side. We found that neither the embedding materials nor the temperature and speed of the annealing process has any effect on AFM image resolution. However, the section thickness and section side significantly affect the surface topography and AFM image resolution. By systematically testing the image quality of both sides of cell sections over a wide range of thickness (40-1000 nm), we found that the best resolution was obtained with upper-side sections approximately 50-100 nm thick. With these samples, we could observe precise structure details of the cell, including its membrane, nucleoli, and other organelles. Similar results were obtained for other cell types, including Tca8113, C6, and ECV-304. In brief, by optimizing the condition of ultrathin cell section preparation, we were able to obtain high resolution intracellular AFM images, which provide an essential basis for further AFM manipulation.

  7. Measurement and interpretation of growth and evaporation of monodispersed droplets in a shock tube

    Science.gov (United States)

    Peters, F.; Paikert, B.

    1994-01-01

    A special gasdynamic shock tube process in combination with a Mie light scattering method is used to study growth and subsequent evaporation of monodispersed droplets carried in argon or air. The droplets are generated by homogeneous nucleation and observed in the micrometer range (0.15-6 micrometer radius). Droplet concentrations range from 10-1000/cu mm. Four different substances, i.e. water, n-propanol, methanol and n-hexane are tested for a wide range of properties. A model covering the entire range between large (Kn much greater than 1) and small Knudsen numbers (K much less than 1) is applied to interpret the experimental data. Excellent agreement is found.

  8. Note: A simple vibrating orifice monodisperse droplet generator using a hard drive actuator arm

    Energy Technology Data Exchange (ETDEWEB)

    Kosch, Sebastian, E-mail: skosch@mie.utoronto.ca, E-mail: ashgriz@mie.utoronto.ca; Ashgriz, Nasser, E-mail: skosch@mie.utoronto.ca, E-mail: ashgriz@mie.utoronto.ca [Department of Industrial and Mechanical Engineering, University of Toronto, Toronto, Ontario M5S 3G8 (Canada)

    2015-04-15

    We propose that the rotary voice coil actuators found in magnetic hard drives are fit to supercede loudspeakers as expedient vibration sources in the laboratory setting. A specific use case is the excitation of a liquid jet to induce controlled breakup into monodisperse droplets. Like loudspeakers, which are typically used for prototyping such devices, hard drive actuators are cheap and ubiquitous, but they are less unwieldy and supply greater amplitudes without producing noise. Frequencies between 0 and 17 kHz, and likely beyond, can be reproduced reliably. No machining tools or amplifying electronics are needed for the construction and operation of the presented droplet generator.

  9. Identification of mast cells in buffy coat preparations from dogs with inflammatory skin diseases.

    Science.gov (United States)

    Cayatte, S M; McManus, P M; Miller, W H; Scott, D W

    1995-02-01

    In 100 dogs with 4 inflammatory dermatologic diseases, buffy coat preparations from EDTA-treated blood samples were examined cytologically. Fifty-four dogs had atopy, 26 had flea-bite hypersensitivity, 17 had sarcoptic mange, and 3 had food allergy. Twenty-eight dogs had 2 or more concurrent skin diseases; most of these had secondary pyoderma. Dogs did not have mast cell tumors. Thirteen samples contained 1 or more mast cells/4 slides reviewed. This study revealed that dogs with inflammatory skin diseases can have a few to many mast cells evident on cytologic examination of buffy coat preparations.

  10. Octanoate in Human Albumin Preparations Is Detrimental to Mesenchymal Stromal Cell Culture

    Directory of Open Access Journals (Sweden)

    Way-Wua Wong

    2015-01-01

    Full Text Available Cell therapies hold great promise as the next major advance in medical treatment. To enable safe, effective ex vivo culture whilst maintaining cell phenotype, growth media constituents must be carefully controlled. We have used a chemically defined mesenchymal stromal cell culture medium to investigate the influence of different preparations of human serum albumin. We examined two aspects of cell culture, growth rate as measured by population doubling time and colony forming ability which is a representative measure of the stemness of the cell population. Albumin preparations showed comparative differences in both of these criteria. Analysis of the albumin bound fatty acids also showed differences depending on the manufacturing procedure used. We demonstrated that octanoate, an additive used to stabilize albumin during pasteurization, slows growth and lowers colony forming ability during ex vivo culture. Further to this we also found the level of Na+/K+ ATPase, a membrane bound cation pump inhibited by octanoate, is increased in cells exposed to this compound. We conclude that the inclusion of human serum albumin in ex vivo growth media requires careful consideration of not only the source of albumin, but also the associated molecular cargo, for optimal cell growth and behavior.

  11. Growth of monodisperse nanocrystals of cerium oxide during synthesis and annealing

    International Nuclear Information System (INIS)

    Ghosh, Swapankumar; Divya, Damodaran; Remani, Kottayilpadi C.; Sreeremya, Thadathil S.

    2010-01-01

    Monodisperse cerium oxide nanocrystals have been successfully synthesised using simple ammonia precipitation technique from cerium(III) nitrate solution at different temperatures in the range 35-80 o C. The activation energy for growth of CeO 2 nanocrystals during the precipitation is calculated as 11.54 kJ/mol using Arrhenius plot. Average crystal diameter was obtained from XRD analysis, HR-TEM and light scattering (PCS). The analysis of size data from HR-TEM images and PCS clearly indicated the formation of highly crystalline CeO 2 particles in narrow size range. CeO 2 nanocrystals precipitated at 35 o C were further annealed at temperatures in the range 300-700 o C. The activation energy for crystal growth during annealing is also calculated and is close to the reported values. An effort is made to predict the mechanism of crystal growth during the precipitation and annealing.

  12. Preparation of strongly fluorescent silica nanoparticles of polyelectrolyte-protected cadmium telluride quantum dots and their application to cell toxicity and imaging

    International Nuclear Information System (INIS)

    Tang Jianhua; Xie Lian; Zhang Bin; Qiu Ting; Qi Bin; Xie Hongping

    2012-01-01

    Graphical abstract: The staining effect of the control group (a), QDs-SiO 2 (b) and QDs-PDADMAC-SiO 2 (c). Highlights: ► The fluorescence intensity of QDs-PDADMAC-SiO 2 is stronger than that of QDs-SiO 2 . ► The fluorescence stability of QDs-PDADMAC-SiO 2 is better than that of QDs-SiO 2 . ► The cytotoxicity of QDs-PDADMAC-SiO 2 was lower than that of QDs-SiO 2 ► The staining effect of QDs-PDADMAC-SiO 2 was much better than that of QDs-SiO 2 . - Abstract: Based on the polyelectrolyte-protected CdTe quantum dots (QDs), which were prepared by self-assembling of QDs and poly-diallyldimethylammonium chloride (PDADMAC) in the help of electrostatic attraction, the strong fluorescence silica nanoparticles (QDs-PDADMAC-SiO 2 ) have been prepared via a water-in-oil reverse microemulsion method. Transmission electron microscopy and Zeta potential analysis were used to characterize the as-prepared nanoparticles. All of the particles were almost spherical and there is a uniform distribution of the particle size with the average diameter about 25 nm. There is a large Zeta potential of −35.07 mV which is necessary for good monodispersity of nanoparticles solution. As compared with the QDs coated by SiO 2 (QDs-SiO 2 ), the QDs-PDADMAC-SiO 2 nanoparticles have much stronger fluorescence, and their fluorescence stability could be obviously improved. Moreover, QDs-PDADMAC-SiO 2 exhibits good biological compatibility which promotes their application in cellular imaging.

  13. Preparation and analysis of new proton conducting membranes for fuel cells

    DEFF Research Database (Denmark)

    Søgaard, Susanne Roslev; Huan, Qian; Lund, Peter Brilner

    2007-01-01

    A range of potential new fuel cell membranes were prepared by inserting zirconium phosphate (ZrP) into divinylbenzene (DVB) crosslinked, sulfonated, polystyrene grafted poly(ethylene-alt-tetrafluoroethylene) and poly(vinyl difluoride) membranes using an ion exchange procedure. In short, the prefo......A range of potential new fuel cell membranes were prepared by inserting zirconium phosphate (ZrP) into divinylbenzene (DVB) crosslinked, sulfonated, polystyrene grafted poly(ethylene-alt-tetrafluoroethylene) and poly(vinyl difluoride) membranes using an ion exchange procedure. In short....... Additional zirconium phosphate treatment resulted in composite ETFE samples containing up to 15 wt.% ZrP and composite PVdF samples containing up to 27 wt.%. TG analyses of the ETFE-g-PSSA and PVdF-g-PSSA composite membranes indicated no significant changes of the thermal stability in comparison...

  14. Facile Synthesis of Monodisperse Gold Nanocrystals Using Virola oleifera

    Science.gov (United States)

    Milaneze, Bárbara A.; Oliveira, Jairo P.; Augusto, Ingrid; Keijok, Wanderson J.; Côrrea, Andressa S.; Ferreira, Débora M.; Nunes, Otalíbio C.; Gonçalves, Rita de Cássia R.; Kitagawa, Rodrigo R.; Celante, Vinícius G.; da Silva, André Romero; Pereira, Ana Claudia H.; Endringer, Denise C.; Schuenck, Ricardo P.; Guimarães, Marco C. C.

    2016-10-01

    The development of new routes and strategies for nanotechnology applications that only employ green synthesis has inspired investigators to devise natural systems. Among these systems, the synthesis of gold nanoparticles using plant extracts has been actively developed as an alternative, efficient, cost-effective, and environmentally safe method for producing nanoparticles, and this approach is also suitable for large-scale synthesis. This study reports reproducible and completely natural gold nanocrystals that were synthesized using Virola oleifera extract. V. oleifera resin is rich in epicatechin, ferulic acid, gallic acid, and flavonoids (i.e., quercetin and eriodictyol). These gold nanoparticles play three roles. First, these nanoparticles exhibit remarkable stability based on their zeta potential. Second, these nanoparticles are functionalized with flavonoids, and third, an efficient, economical, and environmentally friendly mechanism can be employed to produce green nanoparticles with organic compounds on the surface. Our model is capable of reducing the resin of V. oleifera, which creates stability and opens a new avenue for biological applications. This method does not require painstaking conditions or hazardous agents and is a rapid, efficient, and green approach for the fabrication of monodisperse gold nanoparticles.

  15. Commonly used bowel preparations have significant and different effects upon cell proliferation in the colon: a pilot study

    Directory of Open Access Journals (Sweden)

    Riley Stuart A

    2008-11-01

    Full Text Available Abstract Background Markers of crypt cell proliferation are frequently employed in studies of the impact of genetic and exogenous factors on human colonic physiology. Human studies often rely on the assessment of tissue acquired at endoscopy. Modulation of cell proliferation by bowel preparation with oral laxatives may confound the findings of such studies, but there is little data on the impact of commonly used bowel preparations on markers of cell proliferation. Methods Crypt length, crypt cellularity and crypt cell proliferation were assessed in biopsies acquired after preparation with either Klean-Prep or Picolax. Crypt cell proliferation was assessed by whole-mount mitotic figure count, and by two different immunohistochemical (IHC labelling methods (Ki-67 and pHH3. Subsequent biopsies were obtained from the same patients without bowel preparation and similarly assessed. Parameters were compared between groups using analysis of variance and paired t-tests. Results There were significant differences in labelling indices (LI between biopsies taken after Klean-prep and those taken after Picolax preparation, for both Ki67 (p = 0.019 and pHH3 (p = 0.017. A similar trend was seen for whole-mount mitotic figure counts. Suppression or elevation of proliferation parameters by bowel preparation may mask any effect due to an intervention or disease. Conclusion Commonly used bowel preparations may have significant and different effects on crypt cell proliferation. This should be taken into account when designing studies and when considering the findings of existing studies.

  16. Platinum clusters with precise numbers of atoms for preparative-scale catalysis.

    Science.gov (United States)

    Imaoka, Takane; Akanuma, Yuki; Haruta, Naoki; Tsuchiya, Shogo; Ishihara, Kentaro; Okayasu, Takeshi; Chun, Wang-Jae; Takahashi, Masaki; Yamamoto, Kimihisa

    2017-09-25

    Subnanometer noble metal clusters have enormous potential, mainly for catalytic applications. Because a difference of only one atom may cause significant changes in their reactivity, a preparation method with atomic-level precision is essential. Although such a precision with enough scalability has been achieved by gas-phase synthesis, large-scale preparation is still at the frontier, hampering practical applications. We now show the atom-precise and fully scalable synthesis of platinum clusters on a milligram scale from tiara-like platinum complexes with various ring numbers (n = 5-13). Low-temperature calcination of the complexes on a carbon support under hydrogen stream affords monodispersed platinum clusters, whose atomicity is equivalent to that of the precursor complex. One of the clusters (Pt 10 ) exhibits high catalytic activity in the hydrogenation of styrene compared to that of the other clusters. This method opens an avenue for the application of these clusters to preparative-scale catalysis.The catalytic activity of a noble metal nanocluster is tied to its atomicity. Here, the authors report an atom-precise, fully scalable synthesis of platinum clusters from molecular ring precursors, and show that a variation of only one atom can dramatically change a cluster's reactivity.

  17. Microfluidic assembly of monodisperse multistage pH-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery.

    Science.gov (United States)

    Liu, Dongfei; Zhang, Hongbo; Herranz-Blanco, Bárbara; Mäkilä, Ermei; Lehto, Vesa-Pekka; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-05-28

    We report an advanced drug delivery platform for combination chemotherapy by concurrently incorporating two different drugs into microcompoistes with ratiometric control over the loading degree. Atorvastatin and celecoxib were selected as model drugs due to their different physicochemical properties and synergetic effect on colorectal cancer prevention and inhibition. To be effective in colorectal cancer prevention and inhibition, the produced microcomposite contained hypromellose acetate succinate, which is insoluble in acidic conditions but highly dissolving at neutral or alkaline pH conditions. Taking advantage of the large pore volume of porous silicon (PSi), atorvastatin was firstly loaded into the PSi matrix, and then encapsulated into the pH-responsive polymer microparticles containing celecoxib by microfluidics in order to obtain multi-drug loaded polymer/PSi microcomposites. The prepared microcomposites showed monodisperse size distribution, multistage pH-response, precise ratiometric controlled loading degree towards the simultaneously loaded drug molecules, and tailored release kinetics of the loaded cargos. This attractive microcomposite platform protects the payloads from being released at low pH-values, and enhances their release at higher pH-values, which can be further used for colon cancer prevention and treatment. Overall, the pH-responsive polymer/PSi-based microcomposite can be used as a universal platform for the delivery of different drug molecules for combination therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Micronucleus Assay in Exfoliated Buccal Epithelial Cells Using Liquid Based Cytology Preparations in Building Construction Workers.

    Science.gov (United States)

    Arul, P; Smitha, Shetty; Masilamani, Suresh; Akshatha, C

    2018-01-01

    Cytogenetic damage in exfoliated buccal epithelial cells due to environmental and occupational exposure is often monitored by micronucleus (MN) assay using liquid based cytology (LBC) preparations. This study was performed to evaluate MN in exfoliated buccal epithelial cells of building construction workers using LBC preparations. LBC preparations of exfoliated buccal epithelial cells from 100 subjects [50 building construction workers (cases) and 50 administrative staffs (controls)] was evaluated by May-Grunwald Giemsa, Hematoxylin and Eosin and Papanicolaou stains. Student's t test was used for statistical analysis and a P value of 5 years) and smokers and non-smokers of cases (P=0.001). However, there were meaningful differences regarding mean frequencies of MN between smokers, non-smokers, those with alcohol consumption or not in cases and controls using various stains (P=0.001). There was an increased risk of cytogenetic damage in building construction workers. However, evaluation of MN of exfoliated buccal epithelial cells in building construction workers serve as a minimally invasive biomarker for cytogenetic damage. LBC preparations can be applied for MN assay as it improves the quality of smears and cell morphology, decreases the confounding factors and reduces false positive results.

  19. Evaluation of the Efficiency of Different Disruption Methods on Yeast Cell Wall Preparation for β-Glucan Isolation

    Directory of Open Access Journals (Sweden)

    Anna Bzducha-Wróbel

    2014-12-01

    Full Text Available Selected methods for yeast cell disruption were evaluated to establish their suitability for cell wall preparation in the process of β-glucan isolation. The effect of different disruption methods on contents of total saccharides, β-glucans and proteins in the produced cell walls preparations was analyzed. The degree of cell wall purification from intracellular components was established on the basis of the ratio of solubilised material. The investigated methods included: cell exposure to hot water (autoclaving, thermally-induced autolysis, homogenization in a bead mill, sonication and their combinations. Experimental systems were prepared in water (pH 5.0 and pH 7.0 and Tris-HCl buffer (pH 8.0. The Saccharomyces cerevisiae yeast cell wall preparations with the highest degree of cytosol component release and purification of β-glucans were produced by 30 min of cell homogenization with zirconium-glass beads (0.5 mm in diameter. This was confirmed by the highest ratio of solubilised material (approx. 64%–67%. The thus-produced preparations contained ca. 60% of total saccharides, 13%–14% of β(1,3/(1,6-glucans, and approx. 35% of crude proteins. Similar results were obtained after autolysis coupled with bead milling as well as with sonication, but the time required for these processes was more than 24 h. Homogenization in a bead mill could be valuable for general isolation procedures because allows one to eliminate the different autolytic activity of various yeast strains.

  20. Macrocyclic receptors immobilized to monodisperse porous polymer particles by chemical grafting and physical impregnation for strontium capture: a comparative study.

    Science.gov (United States)

    Song, Yang; Du, Yi; Lv, Dachao; Ye, Gang; Wang, Jianchen

    2014-06-15

    Separation of strontium is of great significance for radioactive waste treatment and environmental remediation after nuclear accidents. In this work, a novel class of adsorbent (Crown-g-MPPPs) was synthesized by chemical grafting a macrocyclic ether receptor to monodisperse porous polymer particles (MPPPs) for strontium adsorption. Meanwhile, a counterpart material (Crown@MPPPs) with the receptor molecules immobilized to the MPPPs substrate by physical impregnation was prepared. To investigate how the immobilization manner and distribution of the receptors influence the adsorption ability, a comparative study on the adsorption behaviour of the two materials towards Sr(II) in HNO3 media was accomplished. Due to the shorter diffusion path and covalently-bonded structure, Crown-g-MPPPs showed faster adsorption kinetics and better stability for cycle use. While Crown@MPPPs had the advantages of facile synthesis and higher adsorption capacity, owing to the absence of conformational constraint to form complexation with Sr(II). Kinetic functions (Lagergren pseudo-first-order/pseudo-second-order functions) and adsorption isotherm models (Langmuir/Freundlich models) were used to fit the experimental data and examine the adsorption mechanism. On this basis, a chromatographic process was proposed by using Crown@MPPPs for an effective separation of Sr(II) (91%) in simulated high level liquid waste (HLLW). Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Preparing nuclei from cells in monolayer cultures suitable for counting and for following synchronized cells through the cell cycle.

    Science.gov (United States)

    Butler, W B

    1984-08-15

    A procedure is described for preparing nuclei from cells in monolayer culture so that they may be counted using an electronic particle counter. It takes only 10 to 15 min, and consists of swelling the cells in hypotonic buffer and then lysing them with the quaternary ammonium salt, ethylhexadecyldimethylammonium bromide. The cells are completely lysed, yielding a suspension of clean single nuclei which is stable, free of debris, and easily counted. The method was developed for a cell line of epithelial origin (MCF-7), which is often difficult to trypsinize to single cells. It works equally well at all cell densities up to and beyond confluence, and has been used with a variety of cells in culture, including 3T3 cells, bovine macrophages, rat mammary epithelial cells, mouse mammary tumor cell lines, and human fibroblasts. The size of the nuclei produced by this procedure is related to their DNA content, and the method is thus suitable for following cultures of synchronized cells through the cell cycle, and for performing differential counts of cells with substantial differences in DNA content.

  2. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  3. DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns

    Science.gov (United States)

    Trinh, Tuan; Liao, Chenyi; Toader, Violeta; Barłóg, Maciej; Bazzi, Hassan S.; Li, Jianing; Sleiman, Hanadi F.

    2018-02-01

    As colloidal self-assembly increasingly approaches the complexity of natural systems, an ongoing challenge is to generate non-centrosymmetric structures. For example, patchy, Janus or living crystallization particles have significantly advanced the area of polymer assembly. It has remained difficult, however, to devise polymer particles that associate in a directional manner, with controlled valency and recognition motifs. Here, we present a method to transfer DNA patterns from a DNA cage to a polymeric nanoparticle encapsulated inside the cage in three dimensions. The resulting DNA-imprinted particles (DIPs), which are 'moulded' on the inside of the DNA cage, consist of a monodisperse crosslinked polymer core with a predetermined pattern of different DNA strands covalently 'printed' on their exterior, and further assemble with programmability and directionality. The number, orientation and sequence of DNA strands grafted onto the polymeric core can be controlled during the process, and the strands are addressable independently of each other.

  4. Synthesis, characterization and magnetic properties of highly monodispersed PtNi nanoparticles

    International Nuclear Information System (INIS)

    Du, Juan-Juan; Yang, Yi; Zhang, Rong-Hua; Zhou, Xin-Wen

    2015-01-01

    In this paper, we report the controlled-synthesis of PtNi nanoparticles through galvanic displacement reaction and chemical reduction. The size, composition and morphology of the products are characterized by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), energy dispersed X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analyses. The structure and composition of the PtNi nanoparticles can be controlled by adjusting the synthetic conditions. The possible formation mechanism is obtained from the academic analysis and experimental studies. The results of the magnetic measurement illustrate that the PtNi nanoparticles show a superparamagnetic behavior with a blocking temperature (T B ) about 8.0 K. - Highlights: • Highly monodispersed PtNi nanoparticles were synthesized by galvanic displacement reaction. • The formation of Pt nanocrystals was the foremost step because of its self-catalysis effect. • The PtNi nanoparticles show a superparamagnetic behavior with a T B about 8.0 K

  5. Growth of monodisperse nanocrystals of cerium oxide during synthesis and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Swapankumar, E-mail: swapankumar.ghosh2@mail.dcu.ie; Divya, Damodaran [National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR) (India); Remani, Kottayilpadi C. [Sree Neelakanda Government Sanskrit College, Department of Chemistry (India); Sreeremya, Thadathil S. [National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR) (India)

    2010-06-15

    Monodisperse cerium oxide nanocrystals have been successfully synthesised using simple ammonia precipitation technique from cerium(III) nitrate solution at different temperatures in the range 35-80 {sup o}C. The activation energy for growth of CeO{sub 2} nanocrystals during the precipitation is calculated as 11.54 kJ/mol using Arrhenius plot. Average crystal diameter was obtained from XRD analysis, HR-TEM and light scattering (PCS). The analysis of size data from HR-TEM images and PCS clearly indicated the formation of highly crystalline CeO{sub 2} particles in narrow size range. CeO{sub 2} nanocrystals precipitated at 35 {sup o}C were further annealed at temperatures in the range 300-700 {sup o}C. The activation energy for crystal growth during annealing is also calculated and is close to the reported values. An effort is made to predict the mechanism of crystal growth during the precipitation and annealing.

  6. Effects of Ultrasound Irradiation on the Preparation of Ethyl Cellulose Nanocapsules Containing Spirooxazine Dye

    Directory of Open Access Journals (Sweden)

    Julija Volmajer Valh

    2017-01-01

    Full Text Available This article presents the influence of low frequency, high intensity ultrasonic irradiation on the characteristics (average size, polydispersity index of ethyl cellulose nanocapsules encapsulating a photochromic dye. Photochromic nanocapsules were prepared by the emulsion-solvent evaporation method. The acoustic densities entering the system were systematically studied with respect to their abilities to modify and reduce the average sizes and polydispersity indexes of the nanocapsules. Scanning electron microscope, confocal laser microscope, and dynamic light scattering were utilised to characterise the structure, shape, size, and polydispersity of ethyl cellulose photochromic nanocapsules. We were able to tailor the size of the photochromic nanocapsules simply by varying the acoustic densities entering the system. At an acoustic density of 1.5 W/mL and 60 s of continuous irradiation, we were able to prepare an almost monodispersed population of the nanocapsules with an average size of 193 nm.

  7. Efficiency enhancement of perovskite solar cells by fabricating as-prepared film before sequential spin-coating procedure

    International Nuclear Information System (INIS)

    Jiang, Jiajia; Tao, Hai jun; Chen, Shanlong; Tan, Bin; Zhou, Ning; Zhu, Lumin; Zhao, Yuan; Wang, Yuqiao; Tao, Jie

    2016-01-01

    Graphical abstract: Schematic illustration of modified two-step spin-coating procedure for MAPbI 3 perovskite thin films. - Highlights: • An as-prepared CH 3 NH 3 PbI 3 and PbI 2 film was introduced before the traditional two-step process. • Smooth morphology and trace amount of remaining PbI 2 benefit the performance of solar cell. • The optimal as-prepared film introduced improves the efficiency of CH 3 NH 3 PbI 3 solar cells from 9.11% to 11.16%. - Abstract: Sequential spin-coating procedure is a widely adopted strategy to prepare CH 3 NH 3 PbI 3 on mesostructured TiO 2 electrode for organolead halide perovskite-based solar cells. However, this method suffers from the rough surface and excessively residual PbI 2 in the resulting perovskite film, deteriorating the device performance seriously. Herein, a facial modified sequential solution deposition method, by introducing an as-prepared CH 3 NH 3 PbI 3 and PbI 2 film before the traditional two-step process, was proposed to fabricate the perovskite-based solar cell with smooth morphology and trace amount of remaining PbI 2 . The optimal as-prepared film introduced improves the efficiency of CH 3 NH 3 PbI 3 solar cells from 9.11% to 11.16%. The enhancement of device performance can be attributed to the increased light absorption ability and decreased recombination rate of carriers in CH 3 NH 3 PbI 3 absorber.

  8. Monodispersed Carbon-Coated Cubic NiP2 Nanoparticles Anchored on Carbon Nanotubes as Ultra-Long-Life Anodes for Reversible Lithium Storage.

    Science.gov (United States)

    Lou, Peili; Cui, Zhonghui; Jia, Zhiqing; Sun, Jiyang; Tan, Yingbin; Guo, Xiangxin

    2017-04-25

    In search of new electrode materials for lithium-ion batteries, metal phosphides that exhibit desirable properties such as high theoretical capacity, moderate discharge plateau, and relatively low polarization recently have attracted a great deal of attention as anode materials. However, the large volume changes and thus resulting collapse of electrode structure during long-term cycling are still challenges for metal-phosphide-based anodes. Here we report an electrode design strategy to solve these problems. The key to this strategy is to confine the electroactive nanoparticles into flexible conductive hosts (like carbon materials) and meanwhile maintain a monodispersed nature of the electroactive particles within the hosts. Monodispersed carbon-coated cubic NiP 2 nanoparticles anchored on carbon nanotubes (NiP 2 @C-CNTs) as a proof-of-concept were designed and synthesized. Excellent cyclability (more than 1000 cycles) and capacity retention (high capacities of 816 mAh g -1 after 1200 cycles at 1300 mA g -1 and 654.5 mAh g -1 after 1500 cycles at 5000 mA g -1 ) are characterized, which is among the best performance of the NiP 2 anodes and even most of the phosphide-based anodes reported so far. The impressive performance is attributed to the superior structure stability and the enhanced reaction kinetics incurred by our design. Furthermore, a full cell consisting of a NiP 2 @C-CNTs anode and a LiFePO 4 cathode is investigated. It delivers an average discharge capacity of 827 mAh g -1 based on the mass of the NiP 2 anode and exhibits a capacity retention of 80.7% over 200 cycles, with an average output of ∼2.32 V. As a proof-of-concept, these results demonstrate the effectiveness of our strategy on improving the electrode performance. We believe that this strategy for construction of high-performance anodes can be extended to other phase-transformation-type materials, which suffer a large volume change upon lithium insertion/extraction.

  9. Monodisperse Water-in-Oil-in-Water (W/O/W Double Emulsion Droplets as Uniform Compartments for High-Throughput Analysis via Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Jing Yan

    2013-12-01

    Full Text Available Here we report the application of monodisperse double emulsion droplets, produced in a single step within partially hydrophilic/partially hydrophobic microfluidic devices, as defined containers for quantitative flow cytometric analysis. Samples with varying fluorophore concentrations were generated, and a clear correlation between dye concentration and fluorescence signals was observed.

  10. Perovskite/polymer solar cells prepared using solution process

    International Nuclear Information System (INIS)

    Rosa, E. S.; Shobih; Nursam, N. M.; Saputri, D. G.

    2016-01-01

    We report a simple solution-based process to fabricate a perovskite/polymer tandem solar cell using inorganic CH 3 NH 3 PM 3 as an absorber and organic PCBM (6,6 phenyl C61- butyric acid methyl ester) as an electron transport layer. The absorber solution was prepared by mixing the CH 3 NH 3 I (methyl ammonium iodide) with PbI 2 (lead iodide) in DMF (N,N- dimethyl formamide) solvent. The absorber and electron transport layer were deposited by spin coating method. The electrical characteristics generated from the cell under 50 mW/cm 2 at 25 °C comprised of an open circuit voltage of 0. 3 1 V, a short circuit current density of 2.53 mA/cm 2 , and a power conversion efficiency of 0.42%. (paper)

  11. Artificial receptor-functionalized nanoshell: facile preparation, fast separation and specific protein recognition

    Science.gov (United States)

    Ouyang, Ruizhuo; Lei, Jianping; Ju, Huangxian

    2010-05-01

    This work combined molecular imprinting technology with superparamagnetic nanospheres as the core to prepare artificial receptor-functionalized magnetic nanoparticles for separation of homologous proteins. Using dopamine as a functional monomer, novel surface protein-imprinted superparamagnetic polydopamine (PDA) core-shell nanoparticles were successfully prepared in physiological conditions, which could maintain the natural structure of a protein template and achieved the development of molecularly imprinted polymers (MIPs) from one dimension to zero dimension for efficient recognition towards large biomolecules. The resultant nanoparticles could be used for convenient magnetic separation of homologous proteins with high specificity. The nanoparticles possessed good monodispersibility, uniform surface morphology and high saturation magnetization value. The bound amounts of template proteins measured by both indirect and direct methods were in good agreement. The maximum number of imprinted cavities on the surface of the bovine hemoglobin (Hb)-imprinted nanoshell was 2.21 × 1018 g - 1, which well matched their maximum binding capacity toward bovine Hb. Both the simple method for preparation of MIPs and the magnetic nanospheres showed good application potential in fast separation, effective concentration and selective biosensing of large protein molecules.

  12. Artificial receptor-functionalized nanoshell: facile preparation, fast separation and specific protein recognition

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Ruizhuo; Lei Jianping; Ju Huangxian, E-mail: jpl@nju.edu.cn, E-mail: hxju@nju.edu.cn [Key Laboratory of Analytical Chemistry for Life Science (Education Ministry of China), Department of Chemistry, Nanjing University, Nanjing 210093 (China)

    2010-05-07

    This work combined molecular imprinting technology with superparamagnetic nanospheres as the core to prepare artificial receptor-functionalized magnetic nanoparticles for separation of homologous proteins. Using dopamine as a functional monomer, novel surface protein-imprinted superparamagnetic polydopamine (PDA) core-shell nanoparticles were successfully prepared in physiological conditions, which could maintain the natural structure of a protein template and achieved the development of molecularly imprinted polymers (MIPs) from one dimension to zero dimension for efficient recognition towards large biomolecules. The resultant nanoparticles could be used for convenient magnetic separation of homologous proteins with high specificity. The nanoparticles possessed good monodispersibility, uniform surface morphology and high saturation magnetization value. The bound amounts of template proteins measured by both indirect and direct methods were in good agreement. The maximum number of imprinted cavities on the surface of the bovine hemoglobin (Hb)-imprinted nanoshell was 2.21 x 10{sup 18} g{sup -1}, which well matched their maximum binding capacity toward bovine Hb. Both the simple method for preparation of MIPs and the magnetic nanospheres showed good application potential in fast separation, effective concentration and selective biosensing of large protein molecules.

  13. A simple nanostructured polymer/ZnO hybrid solar cell - preparation and operation in air

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Thomann, Yi; Thomann, Ralf

    2008-01-01

    without notable loss in efficiency. The devices do not require any form of encapsulation to gain stability, while a barrier for mechanical protection may be useful. The devices are based on soluble zinc oxide nanoparticles mixed with the thermocleavable conjugated polymer poly-(3-(2-methylhexan-2-yl......A detailed description is given of the preparation of a polymer solar cell and its characterization. The solar cell can be prepared entirely in the ambient atmosphere by solution processing without the use of vacuum coating steps, and it can be operated in the ambient atmosphere with good...

  14. Synthesis of monodisperse silica microspheres and modification with diazoresin for mixed-mode ultra high performance liquid chromatography separations.

    Science.gov (United States)

    Cong, Hailin; Yu, Bing; Tian, Chao; Zhang, Shuai; Yuan, Hua

    2017-11-01

    Monodisperse silica particles with average diameters of 1.9-2.9 μm were synthesized by a modified Stöber method, in which tetraethyl orthosilicate was continuously supplied to the reaction mixture containing KCl electrolyte, water, ethanol, and ammonia. The obtained silica particles were modified by self-assembly with positively charged photosensitive diazoresin on the surface. After treatment with ultraviolet light, the ionic bonding between silica and diazoresin was converted into covalent bonding through a unique photochemistry reaction of diazoresin. Depending on the chemical structure of diazoresin and mobile phase composition, the diazoresin-modified silica stationary phase showed different separation mechanisms, including reversed phase and hydrophilic interactions. Therefore, a variety of baseline separation of benzene analogues and organic acids was achieved by using the diazoresin-modified silica particles as packing materials in ultra high performance liquid chromatography. According to the π-π interactional difference between carbon rings of fullerenes and benzene rings of diazoresin, C 60 and C 70 were also well separated by ultra-high performance liquid chromatography. Because it has a small size, the ∼2.5 μm monodisperse diazoresin-modified silica stationary phase shows ultra-high efficiency compared with the commercial C 18 -silica high-performance liquid chromatography stationary phase with average diameters of ∼5 μm. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Impact electrochemistry on screen-printed electrodes for the detection of monodispersed silver nanoparticles of sizes 10-107 nm.

    Science.gov (United States)

    Nasir, Muhammad Zafir Mohamad; Pumera, Martin

    2016-10-12

    Impact electrochemistry provides a useful alternative technique for the detection of silver nanoparticles in solutions. The combined use of impact electrochemistry on screen-printed electrodes (SPEs) for the successful detection of silver nanoparticles provides an avenue for future on-site, point-of-care detection devices to be made for environmental, medicinal and biological uses. Here we discuss the use of screen-printed electrodes for the detection of well-defined monodispersed silver nanoparticles of sizes 10, 20, 40, 80, and 107 nm.

  16. Antiproliferative effects of the readily extractable fractions prepared from various citrus juices on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M

    1999-07-01

    To eliminate the masking effect by flavonoid glycosides, which comprise approximately 70% of conventionally prepared sample, the readily extractable fraction from Citrus juice, which was prepared by adsorbing on HP-20 resin and eluting with ethanol and acetone from the resin, was subjected to antiproliferative tests against several cancer cell lines. Screening of 34 Citrus juices indicated that King (Citrus nobilis) strongly inhibited proliferation of all cancer cell lines examined. Sweet lime and Kabuchi inhibited three of the four cancer cell lines. In contrast, these samples were substantially less cytotoxic toward normal human cell lines.

  17. Imaging mammalian cells with soft x rays: The importance of specimen preparation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.T.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Studies of mammalian cell structure and spatial organization are a very prominent part of modern cell biology. The interest in them as well as their size make them very accommodating subject specimens for imaging with soft x-rays using the XM-1 transmission microscope built and operated by The Center for X-ray Optics on Beam Line 6.1 at the Advanced Light Source. The purpose of these experiments was to determine if the fixative protocols normally used in electron or visible light microscopy were adequate to allow imaging cells, either fibroblasts or neurons, with minimal visible radiation damage due to imaging with soft x-rays at 2.4 nm. Two cell types were selected. Fibroblasts are easily cultured but fragile cells which are commonly used as models for the detailed study of cell physiology. Neurons are complex and sensitive cells which are difficult to prepare and to culture for study in isolation from their connections with surrounding cells. These cell types pose problems in their preparation for any microscopy. To improve the contrast and to prevent postmortem alteration of the chemistry and hence the structure of cells extracted from culture or from living organisms, fixation and staining techniques are employed in electron and visible light microscopy. It has been accepted by biologists for years that these treatments create artifacts and false structure. The authors have begun to develop protocols for specimens of each of these two cell types for soft x-ray microscopy which will preserve them in as near normal state as possible using minimal fixation, and make it possible to image them in either a hydrated or dried state free of secondary addition of stains or other labels.

  18. Imaging mammalian cells with soft x rays: The importance of specimen preparation

    International Nuclear Information System (INIS)

    Brown, J.T.; Meyer-Ilse, W.

    1997-01-01

    Studies of mammalian cell structure and spatial organization are a very prominent part of modern cell biology. The interest in them as well as their size make them very accommodating subject specimens for imaging with soft x-rays using the XM-1 transmission microscope built and operated by The Center for X-ray Optics on Beam Line 6.1 at the Advanced Light Source. The purpose of these experiments was to determine if the fixative protocols normally used in electron or visible light microscopy were adequate to allow imaging cells, either fibroblasts or neurons, with minimal visible radiation damage due to imaging with soft x-rays at 2.4 nm. Two cell types were selected. Fibroblasts are easily cultured but fragile cells which are commonly used as models for the detailed study of cell physiology. Neurons are complex and sensitive cells which are difficult to prepare and to culture for study in isolation from their connections with surrounding cells. These cell types pose problems in their preparation for any microscopy. To improve the contrast and to prevent postmortem alteration of the chemistry and hence the structure of cells extracted from culture or from living organisms, fixation and staining techniques are employed in electron and visible light microscopy. It has been accepted by biologists for years that these treatments create artifacts and false structure. The authors have begun to develop protocols for specimens of each of these two cell types for soft x-ray microscopy which will preserve them in as near normal state as possible using minimal fixation, and make it possible to image them in either a hydrated or dried state free of secondary addition of stains or other labels

  19. Subcellular SIMS imaging of isotopically labeled amino acids in cryogenically prepared cells

    International Nuclear Information System (INIS)

    Chandra, Subhash

    2004-01-01

    Ion microscopy is a potentially powerful technique for localization of isotopically labeled molecules. In this study, L-arginine and phenylalanine amino acids labeled with stable isotopes 13 C and 15 N were localized in cultured cells with the ion microscope at 500 nm spatial resolution. Cells were exposed to the labeled amino acids and cryogenically prepared. SIMS analyses were made in fractured freeze-dried cells. A dynamic distribution was observed from labeled arginine-treated LLC-PK 1 kidney cells at mass 28 ( 13 C 15 N) in negative secondaries, revealing cell-to-cell heterogeneity and preferential accumulation of the amino acid (or its metabolite) in the nucleus and nucleolus of some cells. The smaller nucleolus inside the nucleus was clearly resolved in SIMS images and confirmed by correlative light microscopy. The distribution of labeled phenylalanine contrasted with arginine as it was rather homogeneously distributed in T98G human glioblastoma cells. Images of 39 K, 23 Na and 40 Ca were also recorded to confirm the reliability of sample preparation and authenticity of the observed amino acid distributions. These observations indicate that SIMS techniques can provide a valuable technology for subcellular localization of nitrogen-containing molecules in proteomics since nitrogen does not have a radionuclide tracer isotope. Amino acids labeled with stable isotopes can be used as tracers for studying their transport and metabolism in distinct subcellular compartments with SIMS. Further studies of phenylalanine uptake in human glioblastoma cells may have special significance in boron neutron capture therapy (BNCT) as a boron analogue of phenylalanine, boronophenylalanine is a clinically approved compound for the treatment of brain tumors

  20. Subcellular SIMS imaging of isotopically labeled amino acids in cryogenically prepared cells

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Subhash

    2004-06-15

    Ion microscopy is a potentially powerful technique for localization of isotopically labeled molecules. In this study, L-arginine and phenylalanine amino acids labeled with stable isotopes {sup 13}C and {sup 15}N were localized in cultured cells with the ion microscope at 500 nm spatial resolution. Cells were exposed to the labeled amino acids and cryogenically prepared. SIMS analyses were made in fractured freeze-dried cells. A dynamic distribution was observed from labeled arginine-treated LLC-PK{sub 1} kidney cells at mass 28 ({sup 13}C{sup 15}N) in negative secondaries, revealing cell-to-cell heterogeneity and preferential accumulation of the amino acid (or its metabolite) in the nucleus and nucleolus of some cells. The smaller nucleolus inside the nucleus was clearly resolved in SIMS images and confirmed by correlative light microscopy. The distribution of labeled phenylalanine contrasted with arginine as it was rather homogeneously distributed in T98G human glioblastoma cells. Images of {sup 39}K, {sup 23}Na and {sup 40}Ca were also recorded to confirm the reliability of sample preparation and authenticity of the observed amino acid distributions. These observations indicate that SIMS techniques can provide a valuable technology for subcellular localization of nitrogen-containing molecules in proteomics since nitrogen does not have a radionuclide tracer isotope. Amino acids labeled with stable isotopes can be used as tracers for studying their transport and metabolism in distinct subcellular compartments with SIMS. Further studies of phenylalanine uptake in human glioblastoma cells may have special significance in boron neutron capture therapy (BNCT) as a boron analogue of phenylalanine, boronophenylalanine is a clinically approved compound for the treatment of brain tumors.

  1. Antifungal activity of gold nanoparticles prepared by solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Manzoor, Nikhat; Ahmad, Aijaz [Department of Biosciences, Jamia Millia Islamia, New Delhi 110025 (India); Ahmed, Jahangeer [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Al-Shihri, Ayed S. [Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004 (Saudi Arabia)

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.

  2. Antifungal activity of gold nanoparticles prepared by solvothermal method

    International Nuclear Information System (INIS)

    Ahmad, Tokeer; Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna; Manzoor, Nikhat; Ahmad, Aijaz; Ahmed, Jahangeer; Al-Shihri, Ayed S.

    2013-01-01

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m 2 /g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m 2/ g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl 2 and NaBH 4 as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl 2 , however, NaBH 4 produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m 2 /g for 7 nm and 269 m 2 /g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H + efflux of the Candida species than 15 nm sized gold nanoparticles.

  3. A Simple and Efficient Method for Preparing Cell Slides and Staining without Using Cytocentrifuge and Cytoclips

    Directory of Open Access Journals (Sweden)

    Xiaotang Hu

    2015-01-01

    Full Text Available Cell staining is a necessary and useful technique for visualizing cell morphology and structure under a microscope. This technique has been used in many areas such as cytology, hematology, oncology, histology, virology, serology, microbiology, cell biology, and immunochemistry. One of the key pieces of equipment for preparing a slide for cell staining is cytology centrifuge (cytocentrifuge such as cytospin. However, many small labs do not have this expensive equipment and its accessory, cytoclips (also expensive relatively, which makes them difficult to study cell cytology. Here we present an alternative method for preparing a slide and cell staining in the absence of a cytocentrifuge (and cytoclips. This method is based on the principle that a regular cell centrifuge can be used to concentrate cells harvested from cell culture and then deposit the concentrated cell suspension to a slide evenly by using a cell spreader, followed by cell staining. The method presented is simple, rapid, economic, and efficient. This method may also avoid a possible change in cell morphology induced by cytocentrifuge.

  4. Toxicity of inhaled 238PuO2 in beagle dogs. A. Monodisperse 1.5 μm 238PuO2. B. Monodisperse 3.0 μm 238PuO2 particles. III

    International Nuclear Information System (INIS)

    Lustgarten, C.S.; Mewhinney, J.A.; Hobbs, C.H.; Halliwell, W.H.; Jones, R.K.; Mauderly, J.L.; McClellan, R.O.; Mo, T.; Pickrell, J.A.

    1976-01-01

    To obtain essential information on the importance of the homogeneity or non-homogeneity of the radiation dose to lung (the hot particle question), Beagle dogs have been exposed to monodisperse aerosols (sigma/sub g/ 238 PuO 2 of either 1.5 μm or 3.0 μm aerodynamic diameter (AD). By using monodisperse particles of these two sizes, the average dose to lung is held constant for a given initial lung burden, but the local alpha dose around the two sizes of particles varies by a factor of about ten. All exposures have been completed with 72 days exposed to each of the two particle sizes of 238 PuO 2 (total of 144 dogs) resulting in graded initial lung burdens which range from .005 to 2.2 μCi/kg of body weight. Twenty-four dogs exposed to the diluent aerosol are serving as controls. The animals will be studied over their total life span. Two exposed dogs have died from pulmonary injury: Dog 710C (with an initial lung burden of 2.0 μCi/kg) died at 631 days after inhalation of 3.0 μm AD aerosol. The cause of death was radiation pneumonitis and pulmonary fibrosis, Dog 746B (with an initial lung burden of 1.3 μCi/kg) died at 791 days after inhalation of 1.5 μm AD aerosol. Death was attributed to intrapulmonic hemorrhage resulting from a degenerative vasculitis. One control dog (721A) was euthanized at 820 days after exposure due to a meningitis and encephalomalacia that caused a severe central nervous system disorder that made the dog difficult to handle.A leukopenia in exposed dogs to date has occurred earlier and to a greater degree in dogs exposed to 3.0 μm AD particles than in dogs that recevied 1.5 μm AD particles. One hundred forty-two exposed and 23 control dogs are surviving at 175 to 1024 days after exposure

  5. Efficiency enhancement of perovskite solar cells by fabricating as-prepared film before sequential spin-coating procedure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiajia [Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of material science and technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China); Tao, Hai jun, E-mail: taohaijun@nuaa.edu.cn [Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of material science and technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China); Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); Chen, Shanlong; Tan, Bin [Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of material science and technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China); Zhou, Ning [Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhu, Lumin; Zhao, Yuan [Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of material science and technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China); Wang, Yuqiao [Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Tao, Jie [Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of material science and technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China)

    2016-05-15

    Graphical abstract: Schematic illustration of modified two-step spin-coating procedure for MAPbI{sub 3} perovskite thin films. - Highlights: • An as-prepared CH{sub 3}NH{sub 3}PbI{sub 3} and PbI{sub 2} film was introduced before the traditional two-step process. • Smooth morphology and trace amount of remaining PbI{sub 2} benefit the performance of solar cell. • The optimal as-prepared film introduced improves the efficiency of CH{sub 3}NH{sub 3}PbI{sub 3} solar cells from 9.11% to 11.16%. - Abstract: Sequential spin-coating procedure is a widely adopted strategy to prepare CH{sub 3}NH{sub 3}PbI{sub 3} on mesostructured TiO{sub 2} electrode for organolead halide perovskite-based solar cells. However, this method suffers from the rough surface and excessively residual PbI{sub 2} in the resulting perovskite film, deteriorating the device performance seriously. Herein, a facial modified sequential solution deposition method, by introducing an as-prepared CH{sub 3}NH{sub 3}PbI{sub 3} and PbI{sub 2} film before the traditional two-step process, was proposed to fabricate the perovskite-based solar cell with smooth morphology and trace amount of remaining PbI{sub 2}. The optimal as-prepared film introduced improves the efficiency of CH{sub 3}NH{sub 3}PbI{sub 3} solar cells from 9.11% to 11.16%. The enhancement of device performance can be attributed to the increased light absorption ability and decreased recombination rate of carriers in CH{sub 3}NH{sub 3}PbI{sub 3} absorber.

  6. Paper-based membraneless hydrogen peroxide fuel cell prepared by micro-fabrication

    Science.gov (United States)

    Mousavi Ehteshami, Seyyed Mohsen; Asadnia, Mohsen; Tan, Swee Ngin; Chan, Siew Hwa

    2016-01-01

    A paper-based membraneless single-compartment hydrogen peroxide power source prepared by micro-electromechanical systems (MEMS) technology is reported. The cell utilizes hydrogen peroxide as both fuel and oxidant in a low volume cell fabricated on paper. The fabrication method used is a simple method where precise, small-sized patterns are produced which include the hydrophilic paper bounded by hydrophobic resin. Open circuit potentials of 0.61 V and 0.32 V are achieved for the cells fabricated with Prussian Blue as the cathode and aluminium/nickel as the anode materials, respectively. The power produced by the cells is 0.81 mW cm-2 at 0.26 V and 0.38 mW cm-2 at 0.14 V, respectively, even after the cell is bent or distorted. Such a fuel cell provides an easily fabricated, environmentally friendly, flexible and cost saving power source. The cell may be integrated within a self-sustained diagnostic system to provide the on-demand power for future bio-sensing applications.

  7. Direct electron transfer of Cytochrome c at mono-dispersed and negatively charged perylene-graphene matrix.

    Science.gov (United States)

    Zhang, Nan; Lv, Xiangyu; Ma, Weiguang; Hu, Yuwei; Li, Fenghua; Han, Dongxue; Niu, Li

    2013-03-30

    Mono-dispersed 3,4,9,10-perylene tetracarboxylic acid (PTCA) functionalized graphene sheets (PTCA-graphene) were fabricated by a chemical route and dispersed well in aqueous solution. PTCA-graphene with plenty of -COOH groups as electrostatic absorbing sites were beneficial to the loading of Cytochrome c (Cyt c). Cyt c, which was tightly immobilized on the PTCA-graphene modified glassy carbon electrode, maintained its natural conformation. Direct electron transfer of Cyt c and the electro-catalytic activity towards the reduction of H2O2 were also achieved. It has been substantiated that PTCA-graphene is a preferable biocompatible matrix for Cyt c. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Silver Vanadium Phosphorous Oxide, Ag(2)VO(2)PO(4): Chimie Douce Preparation and Resulting Lithium Cell Electrochemistry.

    Science.gov (United States)

    Kim, Young Jin; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2011-08-15

    Recently, we have shown silver vanadium phosphorous oxide (Ag(2)VO(2)PO(4), SVPO) to be a promising cathode material for lithium based batteries. Whereas the first reported preparation of SVPO employed an elevated pressure, hydrothermal approach, we report herein a novel ambient pressure synthesis method to prepare SVPO, where our chimie douce preparation is readily scalable and provides material with a smaller, more consistent particle size and higher surface area relative to SVPO prepared via the hydrothermal method. Lithium electrochemical cells utilizing SVPO cathodes made by our new process show improved power capability under constant current and pulse conditions over cells containing cathode from SVPO prepared via the hydrothermal method.

  9. Magnetically Triggered Monodispersed Nanocomposite Fabricated by Microfluidic Approach for Drug Delivery

    KAUST Repository

    Yassine, Omar; Li, Erqiang; Alfadhel, Ahmed; Zaher, A.; Kavaldzhiev, Mincho; Thoroddsen, Sigurdur T; Kosel, Jü rgen

    2016-01-01

    Responsive microgel poly(N-isopropylacrylamide) or PNIPAM is a gel that can swell or shrink in response to external stimuli (temperature, pH, etc.). In this work, a nanocomposite gel is developed consisting of PNIPAM and magnetic iron oxide nanobeads for controlled release of liquids (like drugs) upon exposure to an alternating magnetic field. Microparticles of the nanocomposite are fabricated efficiently with a monodisperse size distribution and a diameter ranging from 20 to 500  µ m at a rate of up to 1 kHz using a simple and inexpensive microfluidic system. The nanocomposite is heated through magnetic losses, which is exploited for a remotely stimulated liquid release. The efficiency of the microparticles for controlled drug release applications is tested with a solution of Rhodamine B as a liquid drug model. In continuous and pulsatile mode, a release of 7% and 80% was achieved, respectively. Compared to external thermal actuation that heats the entire surrounding or embedded heaters that need complex fabrication steps, the magnetic actuation provides localized heating and is easy to implement with our microfluidic fabrication method.

  10. Magnetically Triggered Monodispersed Nanocomposite Fabricated by Microfluidic Approach for Drug Delivery

    Directory of Open Access Journals (Sweden)

    O. Yassine

    2016-01-01

    Full Text Available Responsive microgel poly(N-isopropylacrylamide or PNIPAM is a gel that can swell or shrink in response to external stimuli (temperature, pH, etc.. In this work, a nanocomposite gel is developed consisting of PNIPAM and magnetic iron oxide nanobeads for controlled release of liquids (like drugs upon exposure to an alternating magnetic field. Microparticles of the nanocomposite are fabricated efficiently with a monodisperse size distribution and a diameter ranging from 20 to 500 µm at a rate of up to 1 kHz using a simple and inexpensive microfluidic system. The nanocomposite is heated through magnetic losses, which is exploited for a remotely stimulated liquid release. The efficiency of the microparticles for controlled drug release applications is tested with a solution of Rhodamine B as a liquid drug model. In continuous and pulsatile mode, a release of 7% and 80% was achieved, respectively. Compared to external thermal actuation that heats the entire surrounding or embedded heaters that need complex fabrication steps, the magnetic actuation provides localized heating and is easy to implement with our microfluidic fabrication method.

  11. Magnetically Triggered Monodispersed Nanocomposite Fabricated by Microfluidic Approach for Drug Delivery

    KAUST Repository

    Yassine, Omar

    2016-01-01

    Responsive microgel poly(N-isopropylacrylamide) or PNIPAM is a gel that can swell or shrink in response to external stimuli (temperature, pH, etc.). In this work, a nanocomposite gel is developed consisting of PNIPAM and magnetic iron oxide nanobeads for controlled release of liquids (like drugs) upon exposure to an alternating magnetic field. Microparticles of the nanocomposite are fabricated efficiently with a monodisperse size distribution and a diameter ranging from 20 to 500  µ m at a rate of up to 1 kHz using a simple and inexpensive microfluidic system. The nanocomposite is heated through magnetic losses, which is exploited for a remotely stimulated liquid release. The efficiency of the microparticles for controlled drug release applications is tested with a solution of Rhodamine B as a liquid drug model. In continuous and pulsatile mode, a release of 7% and 80% was achieved, respectively. Compared to external thermal actuation that heats the entire surrounding or embedded heaters that need complex fabrication steps, the magnetic actuation provides localized heating and is easy to implement with our microfluidic fabrication method.

  12. Investigation of CPD and HMDS Sample Preparation Techniques for Cervical Cells in Developing Computer-Aided Screening System Based on FE-SEM/EDX

    Science.gov (United States)

    Ng, Siew Cheok; Abu Osman, Noor Azuan

    2014-01-01

    This paper investigated the effects of critical-point drying (CPD) and hexamethyldisilazane (HMDS) sample preparation techniques for cervical cells on field emission scanning electron microscopy and energy dispersive X-ray (FE-SEM/EDX). We investigated the visualization of cervical cell image and elemental distribution on the cervical cell for two techniques of sample preparation. Using FE-SEM/EDX, the cervical cell images are captured and the cell element compositions are extracted for both sample preparation techniques. Cervical cell image quality, elemental composition, and processing time are considered for comparison of performances. Qualitatively, FE-SEM image based on HMDS preparation technique has better image quality than CPD technique in terms of degree of spread cell on the specimen and morphologic signs of cell deteriorations (i.e., existence of plate and pellet drying artifacts and membrane blebs). Quantitatively, with mapping and line scanning EDX analysis, carbon and oxygen element compositions in HMDS technique were higher than the CPD technique in terms of weight percentages. The HMDS technique has shorter processing time than the CPD technique. The results indicate that FE-SEM imaging, elemental composition, and processing time for sample preparation with the HMDS technique were better than CPD technique for cervical cell preparation technique for developing computer-aided screening system. PMID:25610902

  13. Monodisperse porous LiFePO4/C microspheres derived by microwave-assisted hydrothermal process combined with carbothermal reduction for high power lithium-ion batteries

    Science.gov (United States)

    Chen, Rongrong; Wu, Yixiong; Kong, Xiang Yang

    2014-07-01

    A microwave-assisted hydrothermal approach combined with carbothermal reduction has been developed to synthesize monodisperse porous LiFePO4/C microspheres, which possess the diameter range of 1.0-1.5 μm, high tap density of ∼1.3 g cm-3, and mesoporous characteristic with Brunauer-Emmett-Teller (BET) surface area of 30.6 m2 g-1. The obtained microspheres show meatball-like morphology aggregated by the carbon-coated LiFePO4 nanoparticles. The electrochemical impedance spectra (EIS) results indicate that carbon coating can effectively enhance both of the electronic and ionic conductivities for LiFePO4/C microspheres. The Li-ion diffusion coefficient of the LiFePO4/C microspheres calculated from the cyclic voltammetry (CV) curves is ∼6.25 × 10-9 cm2 s-1. The electrochemical performance can achieve about 100 and 90 mAh g-1 at 5C and 10C charge/discharge rates, respectively. As cathode material, the as-prepared LiFePO4/C microspheres show excellent rate capability and cycle stability, promising for high power lithium-ion batteries.

  14. Protective action of DNA preparations on the survival of cells and yield of 8-azaguanine resistant mutations in X-irradiated cell culture of chinese hamsters

    International Nuclear Information System (INIS)

    Kuznetsova, N.N.; Feoktistova, T.P.

    1976-01-01

    A DNA preparation (molecular weight 19.6-21.0x1O 6 daltons) administered to cell culture of Chinese hamsters in concentrations of 100 to 122 μg/ml 60 minutes before and in the course of 3 days after X-irradiation (600 R) decreased the lethality of irradiated cells and reduced induction of 8-azaguanine resistant genic mutations. DNA preparations with the concentrations under study had no toxic action on cells and were not mutagenous

  15. Herbal preparation (HemoHIM) enhanced functional maturation of bone marrow-derived dendritic cells mediated toll-like receptor 4

    OpenAIRE

    Lee, Sung-Ju; Kim, Jong-Jin; Kang, Kyung-Yun; Hwang, Yun-Ho; Jeong, Gil-Yeon; Jo, Sung-kee; Jung, Uhee; Park, Hae-Ran; Yee, Sung-Tae

    2016-01-01

    Background HemoHIM, which is an herbal preparation of three edible herbs (Angelicam gigas Nakai, Cnidium offinale Makino, and Peaonia japonica Miyabe), is known to have various biological and immunological activities, but the modulatory effects of this preparation on dendritic cells (DCs)-mediated immune responses have not been examined previously. DCs are a unique group of white blood cells that initiate primary immune responses by capturing, processing, and presenting antigens to T cells. R...

  16. [Gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting promotes cell adhesion and proliferation of human dental pulp cells in vitro].

    Science.gov (United States)

    Yu, Hai-Yue; Ma, Dan-Dan; Wu, Bu-Ling

    2017-05-20

    To evaluate the cytotoxicity of gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting in human dental pulp cells (HDPCs) and compare the cell adhesion and proliferation of the cells seeded in the biomaterial using two different methods. HDPCs isolated by tissue block culture and enzyme digestion were cultured and passaged. Gelatin/alginate hydrogel scaffolds were printed using a bioplotter, and the cytotoxicity of the aqueous extracts of the scaffold material was tested in the third passage of HDPCs using cell counting kit-8. Scanning electron microscopy and trypan blue were used to assess the adhesion and proliferation of the cells seeded in the scaffold material at a low or high concentration. The aqueous extract of the scaffolds at different concentrations showed no obvious cytotoxicity and promoted the proliferation of HDPCs. The scaffolds had a good biocompatibility and HDPCs seeded in the scaffold showed good cell growth. Cell seeding at a high concentration in the scaffold better promoted the adhesion of HDPCs and resulted in a greater cell number on the scaffold surface compared with low-concentration cell seeding after a 5-day culture (Palginate hydrogel scaffolds prepared by 3D bioprinting has a good biocompatibility and promotes the proliferation of HDPCs, and can be used as a scaffold material for tooth regeneration. Cell seeding at a high concentration can better promote cell adhesion to the scaffold material.

  17. Preparation of anti-inflammatory mesenchymal stem/precursor cells (MSCs) through sphere formation using hanging-drop culture technique.

    Science.gov (United States)

    Bartosh, Thomas J; Ylostalo, Joni H

    2014-02-06

    Herein, we describe a protocol for preparation of pre-activated anti-inflammatory human mesenchymal stem/precursor cells (MSCs) in 3-D culture without addition of exogenous chemicals or gene-transfer approaches. MSCs are an easily procurable source of multipotent adult stem cells with therapeutic potential largely attributed to their paracrine regulation of inflammation and immunity. However, the culture conditions to prepare the ideal MSCs for cell therapy remain elusive. Furthermore, the reported lag time for activation in experimental models has prompted investigations on pre-activating the cells prior to their administration. In this protocol, standard 2-D culture-expanded MSCs are activated by aggregation into 3-D spheres using hanging-drop cultures. MSC activation is evaluated by real-time PCR and/or ELISA for anti-inflammatory factors (TSG-6, STC-1, PGE2), and by a functional assay using lipopolysaccharide-stimulated macrophage cultures. Further, we elucidate methods to prepare MSC-sphere conditioned medium, intact spheres, and suspension of single cells from spheres for experimental and clinical applications. Copyright © 2014 John Wiley & Sons, Inc.

  18. Preparation of anti-inflammatory mesenchymal stem/precursor cells (MSCs) through sphere formation using hanging drop culture technique

    Science.gov (United States)

    Bartosh, Thomas J.

    2014-01-01

    Herein, we describe a protocol for preparation of pre-activated anti-inflammatory human mesenchymal stem/precursor cells (MSCs) in 3D culture without addition of exogenous chemicals or gene transfer approaches. MSCs are an easily procurable source of multipotent adult stem cells with therapeutic potential largely attributed to their paracrine regulation of inflammation and immunity. However, the culture conditions to prepare the ideal MSCs for cell therapy remain elusive. Furthermore, reported lag time for activation in experimental models have prompted investigations to pre-activate the cells prior to their administration. In this protocol, standard 2D culture expanded MSCs are activated by aggregation into 3D spheres using hanging drop cultures. MSC activation is evaluated by real-time PCR and/or ELISA for anti-inflammatory factors (TSG-6, STC-1, PGE2), and by a functional assay using lipopolysaccharide-stimulated macrophage cultures. Furthermore, we elucidate methods to prepare MSC sphere conditioned medium, intact spheres, and suspension of single cells from spheres for experimental and clinical applications. PMID:24510769

  19. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites.

    Science.gov (United States)

    Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yan-yu [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Yang, Hui, E-mail: 549456369@qq.com [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Wang, Tao [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Wang, Chuang [Department of Highway & Bridge, Shaanxi Railway Institute, Weinan 714000 (China)

    2016-11-25

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag{sup +} (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO{sub 3}) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO{sub 3} concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV–vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10–16 nm. FTIR analysis revealed that biological macromolecules with groups of −NH{sub 2}, −OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications. - Highlights: • Monodisperse silver nanoparticles were first prepared by a green synthetical way through Ginkgo Biloba leaf extract. • The synthesized AgNPs is of high crystallinity, stable and good dispersion with smaller sizes between 10–16 nm. • The achieved AgNPs exhibits good antibacterial activities. • The biosynthesis method is advantageous for its cost effectiveness, availability, portability, nontoxic and environmentally benign.

  1. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    International Nuclear Information System (INIS)

    Ren, Yan-yu; Yang, Hui; Wang, Tao; Wang, Chuang

    2016-01-01

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag + (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO 3 ) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO 3 concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV–vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10–16 nm. FTIR analysis revealed that biological macromolecules with groups of −NH 2 , −OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications. - Highlights: • Monodisperse silver nanoparticles were first prepared by a green synthetical way through Ginkgo Biloba leaf extract. • The synthesized AgNPs is of high crystallinity, stable and good dispersion with smaller sizes between 10–16 nm. • The achieved AgNPs exhibits good antibacterial activities. • The biosynthesis method is advantageous for its cost effectiveness, availability, portability, nontoxic and environmentally benign.

  2. Highly luminescent nanostructures of CdS and ZnS prepared by microwaves heating: effect of sulphide concentration

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Samuel; Gomez, Idalia; Elizondo, Perla [Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n, C.P. 66450 San Nicolas de los Garza (Mexico); Cavazos, Jose [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n, C.P. 66450 San Nicolas de los Garza (Mexico)

    2010-11-15

    Nearly monodisperse and highly luminescent ZnS and CdS NPs were obtained by microwave irradiation. The ZnS and CdS NPs solutions were prepared by adding freshly prepared ZnSO{sub 4} or CdSO{sub 4} solution to a thioacetamide solution at pH 8 in the presence of sodium citrate in solution used as stabilizer. The precursors concentration were such that the sulphide ion concentrations were 3 x 10{sup -2} M, 6 x 10{sup -2} M and 8 x 10{sup -2} M, for each of these [S] concentrations the [Zn] or [Cd] content were fixed at 3 x 10{sup -2} M. NPs were prepared under microwave irradiation for 1 min at 905 W of power. The NPs samples were taken when the temperature descended to ambient temperature for further analysis. Effect of concentration of Cd and Zn ions were studied in the luminescence property. RXD, AFM, TEM and UV-Vis were used too as analytical equipment for characterization. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Controlled synthesis of monodisperse gold nanorods with different aspect ratios in the presence of aromatic additives

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yun; Wang, Feihu [Shanghai Jiao Tong University, School of Pharmacy (China); Guo, Yuan [University of Leeds, School of Chemistry and Astbury Centre for Structural Molecular Biology (United Kingdom); Chen, Rongjun, E-mail: rongjun.chen@imperial.ac.uk [Imperial College London, Department of Chemical Engineering (United Kingdom); Shen, Yuanyuan; Guo, Aijie; Liu, Jieying; Zhang, Xiao [Shanghai Jiao Tong University, School of Pharmacy (China); Zhou, Dejian, E-mail: d.zhou@leeds.ac.uk [University of Leeds, School of Chemistry and Astbury Centre for Structural Molecular Biology (United Kingdom); Guo, Shengrong, E-mail: srguo@sjtu.edu.cn [Shanghai Jiao Tong University, School of Pharmacy (China)

    2014-12-15

    This paper reports the synthesis of monodisperse gold nanorods (GNRs) via a simple seeded growth approach in the presence of different aromatic additives, such as 7-bromo-3-hydroxy-2-naphthoic acid (7-BrHNA), 3-hydroxy-2-naphthoic acid (HNA), 5-bromosalicylic acid (5-BrSA), salicylic acid (SA), or phenol (PhOH). Effects of the aromatic additives and hydrochloric acid (HCl) on the structure and optical properties of the synthesized GNRs were investigated. The longitudinal surface plasmon resonance (LSPR) peak wavelength of the resulting GNRs was found to be dependent on the aromatic additive in the following sequence: 5-BrSA (778 nm) > 7-BrHNA (706 nm) > SA (688 nm) > HNA (676 nm) > PhOH (638 nm) without the addition of HCl, but this was changed to 7-BrHNA (920 nm) > SA (890 nm) > HNA (872 nm) > PhOH (858 nm) > 5-BrSA (816 nm) or 7-BrHNA (1,005 nm) > PhOH (995 nm) > SA (990 nm) > HNA (980 nm) > 5-BrSA (815 nm) with the addition of HCl or HNO{sub 3}, respectively. The LSPR peak wavelength was increased with the increasing concentration of 7-BrHNA without HCl addition; however, there was a maximum LSPR peak wavelength when HCl was added. Interestingly, the LSPR peak wavelength was also increased with the amount of HCl added. The results presented here thus established a simple approach to synthesize monodisperse GNRs of different LSPR wavelengths.

  4. In vitro preparation of radionuclides labeled blood cells: Status and requirements; Preparation in vitro des cellules du sang marquees par des radionucleides: statut et recommandations

    Energy Technology Data Exchange (ETDEWEB)

    Couret, I. [Service de medecine nucleaire et radiopharmacie, hopital Lapeyronie, CHU de Montpellier, 34 - Montpellier (France); Desruet, M.D. [Service de medecine nucleaire et radiopharmacie, CHU de Grenoble, 38 - Grenoble (France); Bolot, C. [Service de pharmacie, hospices civils de Lyon, groupement hospitalier Est, 69 - Bron (France); Chassel, M.L. [Service de pharmacie et radiopharmacie, centre hospitalier de Chambery, 73 - Chambery (France); Pellegrin, M. [Inserm U896, CRLC Val-d' Aurelle-Paul-Lamarque, IRCM, universite Montpellier 1, 34 - Montpellier (France)

    2010-11-15

    Labelled blood cells permit nuclear medicine imaging using their physiological behaviours. The radiolabeling must be performed in vitro because of the lack of specific markers and requires several highly technical stages of preparation. Labelled blood cells have not the medication drug status, so that the nuclear physician conducting the nuclear test is fully liable. In most cases, the physician delegates the technical responsibility to radio-pharmacists. Although the status of radiolabelled autologous cells is not legally defined and in the absence of a specific repository, it is essential that their preparation is subject to the requirements of the rules of French Good Manufacturing Practice published by Agence francaise de securite sanitaire des produits de sante (Afssaps). It would be desirable to harmonize the practices of radiolabeling cellular blood components by editing a repository. (authors)

  5. Generation and manipulation of monodispersed ferrofluid emulsions: the effect of a uniform magnetic field in flow-focusing and T-junction configurations.

    Science.gov (United States)

    Tan, Say Hwa; Nguyen, Nam-Trung

    2011-09-01

    This paper demonstrates the use of magnetically controlled microfluidic devices to produce monodispersed ferrofluid emulsions. By applying a uniform magnetic field on flow-focusing and T-junction configurations, the size of the ferrofluid emulsions can be actively controlled. The influences of the flow rates, the orientation, and the polarity of the magnetic field on the size of ferrofluid emulsions produced in both flow-focusing and T-junction configurations are compared and discussed.

  6. Use of the radiometric method at creation cell test-systems for pre-screening of anticancer preparations

    International Nuclear Information System (INIS)

    Kuznetsova, N.N.; Khashimova, Z.S.; Sadikov, A.A.

    2004-01-01

    Full text: Development of cancer chemotherapy is tightly bound with investigation of biological activity of different compounds on in vitro test systems. Our research has been directed on definition of sensitivity of the cell line KML removed by us from passed of mice melanoma B-16. We had been investigated action of 18 clinical antineoplastic preparations of different classes: alkylating - sarcolysinum, thiophosphamide, dopan, fhthordopan; antimetabolites - cytararibinum, methotrexatum, 6-mercaptopurinum, 5-fhthorouracilum, fhthorafur; antineoplastic antibiotics- adriamycinum, neomycinum, rubomycinum, bruneomycinum, carminomycinum, olivomycinum; plant substances - vinblastinum, colchaminum (component of ointment which used at treatment of skin cancer) and other - carboplatin. Cytotoxic effect of preparations estimated two methods - radiometric on inclusion of 3H - timidine in cells and spectrophotometric by definition of total amount nucleic acids and protein. For this purpose KML cells passed in quantity of 120 thousand in 3 ml of nutrient medium RPMI 1640, 10 % calf embryo serum in bottles and after 24 hours entered substances in dozes from 0,01 up to 100 μg/ml. Contact of substances to cells was 24 hours, then 10 μ Ci 3 H - timidine was injected on bottles at 1 hour. Cells transferred on GFC-filters, washed from not connected label. Filters transferred in scintillation liquid and a level of a radio-activity determined on β-counter. All tested clinical preparations appeared active within the criteria of activity, thus the radiometric method was more sensitive, than spectrophotometric. Thus, testing results of model have shown that stable cell line KML was sensitive to action of 18 clinical preparations with various mechanisms of action by different estimations of damaging action. This model can be used for biological activity of new potential cancerolytics pre-screening. This work was supported by the Center of Science and Technology of the Republic of

  7. Supercritical synthesis and in situ deposition of PbS nanocrystals with oleic acid passivation for quantum dot solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, M.M. [Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of); Simchi, A., E-mail: simchi@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of); Aashuri, H. [Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of)

    2015-04-15

    Colloidal quantum dot solar cells have recently attracted significant attention due to their low-processing cost and surging photovoltaic performance. In this paper, a novel, reproducible, and simple solution-based process based on supercritical fluid toluene is presented for in situ growth and deposition PbS nanocrystals with oleic-acid passivation. A lead precursor containing sulfur was mixed with oleic acid in toluene and processed in a supercritical fluid condition at different temperatures of 140, 270 and 330 °C for 20 min. The quantum dots were deposited on a fluorine-doped tin oxide glass substrate inside the supercritical reactor. Transmission electron microscopy, X-ray diffraction, absorption and dynamic light scattering showed that the nanocrystals processed at the supercritical condition (330 °C) are fully crystalline with a narrow size distribution of ∼3 nm with an absorption wavelength of 915 nm (bandgap of 1.3 eV). Fourier transform infrared spectroscopy indicated that the PbS quantum dots are passivated by oleic acid molecules during the growth. Photovoltaic characteristics of Schottky junction solar cells showed an improvement over devices prepared by spin-coating. - Highlights: • Supercritical fluid processing and in situ deposition of PbS QDs are presented. • The prepared nanocrystals are mono-dispersed with an optical bandgap of 1.3 eV. • Photovoltaic performance of the in situ deposited nanocrystals is reported. • An improved PV performance compared to spin coated Schottky solar cells is shown.

  8. UV-visible light-activated Ag-decorated, monodisperse TiO2 aggregates for treatment of the pharmaceutical oxytetracycline.

    Science.gov (United States)

    Han, Changseok; Likodimos, Vlassis; Khan, Javed Ali; Nadagouda, Mallikarjuna N; Andersen, Joel; Falaras, Polycarpos; Rosales-Lombardi, Pablo; Dionysiou, Dionysios D

    2014-10-01

    Noble metal Ag-decorated, monodisperse TiO2 aggregates were successfully synthesized by an ionic strength-assisted, simple sol-gel method and were used for the photocatalytic degradation of the antibiotic oxytetracycline (OTC) under both UV and visible light (UV-visible light) irradiation. The synthesized samples were characterized by X-ray diffraction analysis (XRD); UV-vis diffuse reflectance spectroscopy; environmental scanning electron microscopy (ESEM); transmission electron microscopy (TEM); high-resolution TEM (HR-TEM); micro-Raman, energy-dispersive X-ray spectroscopy (EDS); and inductively coupled plasma optical emission spectrometry (ICP-OES). The results showed that the uniformity of TiO2 aggregates was finely tuned by the sol-gel method, and Ag was well decorated on the monodisperse TiO2 aggregates. The absorption of the samples in the visible light region increased with increasing Ag loading that was proportional to the amount of Ag precursor added in the solution over the tested concentration range. The Brunauer, Emmett, and Teller (The BET) surface area slightly decreased with increasing Ag loading on the TiO2 aggregates. Ag-decorated TiO2 samples demonstrated enhanced photocatalytic activity for the degradation of OTC under UV-visible light illumination compared to that of pure TiO2. The sample containing 1.9 wt% Ag showed the highest photocatalytic activity for the degradation of OTC under both UV-visible light and visible light illumination. During the experiments, the detected Ag leaching for the best TiO2-Ag photocatalyst was much lower than the National Secondary Drinking Water Regulation for Ag limit (0.1 mg L(-1)) issued by the US Environmental Protection Agency.

  9. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies.

    Science.gov (United States)

    Goehring, April; Lee, Chia-Hsueh; Wang, Kevin H; Michel, Jennifer Carlisle; Claxton, Derek P; Baconguis, Isabelle; Althoff, Thorsten; Fischer, Suzanne; Garcia, K Christopher; Gouaux, Eric

    2014-11-01

    Structural, biochemical and biophysical studies of eukaryotic membrane proteins are often hampered by difficulties in overexpression of the candidate molecule. Baculovirus transduction of mammalian cells (BacMam), although a powerful method to heterologously express membrane proteins, can be cumbersome for screening and expression of multiple constructs. We therefore developed plasmid Eric Gouaux (pEG) BacMam, a vector optimized for use in screening assays, as well as for efficient production of baculovirus and robust expression of the target protein. In this protocol, we show how to use small-scale transient transfection and fluorescence-detection size-exclusion chromatography (FSEC) experiments using a GFP-His8-tagged candidate protein to screen for monodispersity and expression level. Once promising candidates are identified, we describe how to generate baculovirus, transduce HEK293S GnTI(-) (N-acetylglucosaminyltransferase I-negative) cells in suspension culture and overexpress the candidate protein. We have used these methods to prepare pure samples of chicken acid-sensing ion channel 1a (cASIC1) and Caenorhabditis elegans glutamate-gated chloride channel (GluCl) for X-ray crystallography, demonstrating how to rapidly and efficiently screen hundreds of constructs and accomplish large-scale expression in 4-6 weeks.

  10. Preparation of a novel ferrofluidic photoresist for two-photon photopolymerization technique

    International Nuclear Information System (INIS)

    Tian Ye; Lu Dongxiao; Jiang Haobo; Lin Xiaomei

    2012-01-01

    We present a novel route for the preparation of ferrofluidic photoresist compatible with two-photon photopolymerization (TPP). To get a homogeneous ferrofluidic photoresit, the compatibility of photoresist and magnetic materials has been improved. Monodispersed Fe 3 O 4 nanoparticles synthesized via thermal decomposition of iron precursor were stabilized by 6-(methacryloyloxy) hexanoic acid (a kind of acrylate-based monomer). A ferrofluidic photoresist was prepared by doping the modified Fe 3 O 4 nanoparticles in acrylate-based resin. In this way, the dispersibility of nanoparticles in photoresist was enhanced significantly. As a representative example, a precise magnetic micron-sized spring was created. In the test of the magnetic response, the sensitivity of magnetic microspring was improved remarkably due to the optimization of the ferrofluidic photoresist. When the intensity of external magnetic field reached a value of 1500 Gs, the deformation rate of the microspring would get to 2.25, indicating the compatibility of the ferrofluidic photoresist in microfabrication. - Highlights: ► A novel ferrofluid photoresist was developed for TPP fabrication. ► A micrometer-sized magnetic spring was successfully created. ► Performance of microsprings was highly improved due to the optimization of nanoparticles.

  11. Single-step Preparation of Nano-homogeneous NiO/YSZ Comp osite Ano de for Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Jung-Hoon Song; Mi Young Park; Hye Won Park; Hyung-Tae Lim

    2013-01-01

    Homogeneous co-precipitation and hydrothermal treatment were used to prepare nano-and highly dispersed NiO/YSZ (yttria-stabilized zirconia) composite powders. Composite powders of size less than 100 nm were successfully prepared. This process did not require separate sintering of the YSZ and NiO to be used as the raw materials for solid oxide fuel cells. The performance of a cell fabricated using the new powders (max. power density∼0.87 W/cm2) was higher than that of a cell fabricated using conventional powders (max. power density∼0.73 W/cm2). Co-precipitation and hydrothermal treatment proved to be very effective processes for reducing cell production costs as well as improving cell performance.

  12. Enzyme production in immobilized Trichoderma reesei cells with hydrophobic polymers prepared by radiation polymerization method

    International Nuclear Information System (INIS)

    Luzhao Xin; Kumakura, Minoru; Kaetsu, Isao

    1993-01-01

    Trichoderma reesei cells were immobilized on paper covered with hydrophobic monomer, trimethylpropane triacrylate by radiation polymerization. The effect of immobilization condition on enzyme productivity was studied by measuring filter paper and cellobiose activity. The cells were adhered and grew on the surface of the carrier with the polymer giving high enzyme productivity in the immobilized cells in comparison with the free cells. Optimum concentration and volume of the coating monomer for the preparation of the immobilized cells were obtained. (author)

  13. Low-cost plasmonic solar cells prepared by chemical spray pyrolysis

    Directory of Open Access Journals (Sweden)

    Erki Kärber

    2014-12-01

    Full Text Available Solar cells consisting of an extremely thin In2S3/CuInS2 buffer/absorber layer uniformly covering planar ZnO were prepared entirely by chemical spray pyrolysis. Au nanoparticles (Au-NPs were formed via thermal decomposition of a gold(III chloride trihydrate (HAuCl4·3H2O precursor by spraying 2 mmol/L of the aqueous precursor solution onto a substrate held at 260 °C. Current–voltage scans and external quantum efficiency spectra were used to evaluate the solar cell performance. This work investigates the effect of the location of the Au-NP layer deposition (front side vs rear side in the solar cell and the effect of varying the volume (2.5–10 mL of the sprayed Au precursor solution. A 63% increase (from 4.6 to 7.5 mA/cm2 of the short-circuit current density was observed when 2.5 mL of the precursor solution was deposited onto the rear side of the solar cell.

  14. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis.

    Directory of Open Access Journals (Sweden)

    Nitzan Krinsky

    Full Text Available Cell-free protein synthesis (CFPS systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3 and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa. This system was able to produce 40-150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins.

  15. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis

    Science.gov (United States)

    Kaduri, Maya; Shainsky-Roitman, Janna; Goldfeder, Mor; Ivanir, Eran; Benhar, Itai; Shoham, Yuval; Schroeder, Avi

    2016-01-01

    Cell-free protein synthesis (CFPS) systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3) and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa). This system was able to produce 40–150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins. PMID:27768741

  16. Preparation of gold nanoparticles and determination of their particles size via different methods

    International Nuclear Information System (INIS)

    Iqbal, Muhammad; Usanase, Gisele; Oulmi, Kafia; Aberkane, Fairouz; Bendaikha, Tahar; Fessi, Hatem; Zine, Nadia; Agusti, Géraldine; Errachid, El-Salhi; Elaissari, Abdelhamid

    2016-01-01

    Graphical abstract: Preparation of gold nanoparticles via NaBH_4 reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH_4 reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be prepared in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH_4) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.

  17. Acidic preparations of lysed platelets upregulate proliferative pathways in osteoblast-like cells as demonstrated by genome-wide microarray analysis.

    Science.gov (United States)

    Wahlström, Ola; Linder, Cecilia Halling; Ansell, Anna; Kalén, Anders; Söderström, Mats; Magnusson, Per

    2011-01-01

    Platelets contain numerous growth factors essential for wound and fracture healing. We investigated the gene expression in human osteoblast-like cells stimulated with lysed platelets prepared in acidic, neutral, or alkaline buffers. Lysed platelets prepared in buffers at pH 5.4, 7.4, and 7.9, were added after neutralization to hFOB 1.19 cells. Genome-wide microarray analysis was performed using the Affymetrix GeneChip 7G Scanner. Biometric, cluster, and pathway analyses were performed with GeneSpring GX. Biometric analyses demonstrated that 53 genes were differentially regulated (p ≤ 0.005, ≥2-fold increase). Pathway analysis revealed 10 significant pathways of which eight are common ones regulating bone formation and cancer growth. Eleven genes were selected for quantitative real-time polymerase chain reaction (PCR) based on the microarray analysis of the lysed platelets prepared in the pH 5.4 experiments. In conclusion, acidic preparations of lysed platelet concentrates release factors essential for cell proliferation and particularly cell metabolism under hypoxic conditions. The genetic response from these factors was dominated by genes associated with the same pathways observed in bone formation and cancer growth. Activation of TGF-β in the acidic preparation could be a stimulatory key factor of cell proliferation. These results support the hypothesis that acidification of platelets modifies the stimulatory response of mesenchymal cells in vitro, which is analogous with the observed milieu of a low pH present in wound and fracture sites, as well as in growing tumors.

  18. Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Michael Edward [Univ. of California, Berkeley, CA (United States)

    2008-09-01

    Model heterogeneous catalysts have been synthesized and studied to better understand how the surface structure of noble metal nanoparticles affects catalytic performance. In this project, monodisperse rhodium and platinum nanoparticles of controlled size and shape have been synthesized by solution phase polyol reduction, stabilized by polyvinylpyrrolidone (PVP). Model catalysts have been developed using these nanoparticles by two methods: synthesis of mesoporous silica (SBA-15) in the presence of nanoparticles (nanoparticle encapsulation, NE) to form a composite of metal nanoparticles supported on SBA-15 and by deposition of the particles onto a silicon wafer using Langmuir-Blodgett (LB) monolayer deposition. The particle shapes were analyzed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM) and the sizes were determined by TEM, X-ray diffraction (XRD), and in the case of NE samples, room temperature H2 and CO adsorption isotherms. Catalytic studies were carried out in homebuilt gas-phase reactors. For the nanoparticles supported on SBA-15, the catalysts are in powder form and were studied using the homebuilt systems as plug-flow reactors. In the case of nanoparticles deposited on silicon wafers, the same systems were operated as batch reactors. This dissertation has focused on the synthesis, characterization, and reaction studies of model noble metal heterogeneous catalysts. Careful control of particle size and shape has been accomplished though solution phase synthesis of Pt and Rh nanoparticles in order to elucidate further structure-reactivity relationships in noble metal catalysis.

  19. Preparation of α-deuterated L-amino acids using E.coli cells containing tryptophanase

    International Nuclear Information System (INIS)

    Faleev, N.G.; Ruvinov, S.B.; Saporovskaya, M.B.; Belikov, V.M.; Zakomyrdina, L.N.; Sakharova, I.S.; Torchinskij, Yu.M.

    1989-01-01

    Method for preparation of a series of α-deuterated L-amino acids of high optical purity with quantitative chemica yield, suing stereospecific isotopic exchange in D 2 O under the effect of E.coli cells with high tryptophanase activity was developed

  20. Combustible and non-combustible tobacco product preparations differentially regulate human peripheral blood mononuclear cell functions.

    Science.gov (United States)

    Arimilli, Subhashini; Damratoski, Brad E; Prasad, G L

    2013-09-01

    Natural killer (NK) cells and T cells play essential roles in innate and adaptive immune responses in protecting against microbial infections and in tumor surveillance. Although evidence suggests that smoking causes immunosuppression, there is limited information whether the use of smokeless tobacco (ST) products affects immune responses. In this study, we assessed the effects of two preparations of cigarette smoke, ST extract and nicotine on T cell and NK cell responses using Toll-like receptor-ligand stimulated human peripheral blood mononuclear cells (PBMCs). The tobacco product preparations (TPPs) tested included whole smoke conditioned media (WS-CM), total particulate matter (TPM) and a ST product preparation in complete artificial saliva (ST/CAS). The PBMCs were stimulated with polyinosinic:polycytidylic acid (poly I:C) and lipopolysaccharide (LPS). A marked reduction of the expression of intracellular IFN-γ and TNF-α was evident in NK cells and T cells treated with WS-CM and TPM. Consistently, attenuation of ligand-induced secretion of cytokines (IL-1β, IL-10, IL-12 and TNF-α) from PBMCs treated with WS-CM and TPM were observed. While the treatment with TPPs did not alter the expression of the maturation marker CD69, WS-CM and TPM inhibited the cytolytic activity of human PBMCs. Suppression of perforin by WS-CM was also detected. Although interference from the vehicle confounded the interpretation of effects of ST/CAS, some effects were evident only at high concentrations. Nicotine treatment minimally impacted expression of cytokines and cytolytic activity. Data presented herein suggests that the function of NK cells and T cells is influenced by exposure to TPPs (based on equi-nicotine units) in the following order: WS-CM>TPM>ST/CAS. These findings are consistent with the hypothesis put forward by others that chronic smoking leads to immunosuppression, an effect that may contribute to increased microbial infections and cancer incidence among smokers

  1. Synthesis and Characterization of Quantum Dots: A Case Study Using PbS

    Science.gov (United States)

    Pan, Yi; Li, Yue Ru; Zhao, Yu; Akins, Daniel L.

    2015-01-01

    A research project for senior undergraduates of chemistry has been developed to introduce syntheses of a series of monodispersed semiconductor PbS quantum dots (QDs) and their characterization methodologies. In this paper, we report the preparation of monodispersed semiconductor PbS QDs with sizes smaller than the exciton Bohr radius using a…

  2. NOx formation from the combustion of monodisperse n-heptane sprays doped with fuel-nitrogen additives

    Science.gov (United States)

    Sarv, Hamid; Cernansky, Nicholas P.

    1989-01-01

    A series of experiments with simulated synthetic fuels were conducted in order to investigate the effect of droplet size on the conversion of fuel-nitrogen to NOx. Pyridine and pyrrole were added to n-heptane as nitrogen-containing additives and burned as monodisperse fuel droplets under various operating conditions in a spray combustion facility. The experimental results indicate that under stoichiometric and fuel-rich conditions, reducing the droplet size increases the efficiency of fuel-N conversion to NOx. This observation is associated with improved oxidation of the pyrolysis fragments of the additive by better oxygen penetration through the droplet flame zone. The dominant reactions by which fuel-N is transformed to NOx were also considered analytically by a premixed laminar flame code. The calculations are compared to the small droplet size results.

  3. Comparison of the phosphorylation events in membranes prepared from proliferating versus quiescent endothelial cells

    International Nuclear Information System (INIS)

    Kazlauskas, A.; DiColeto, P.E.

    1986-01-01

    Little is known of the intracellular events which regulate the proliferation of endothelial cells (EC). Triton-solubilized membranes from proliferating (sparse) and quiescent (confluent) EC were incubated at pH 6.5 in the presence of divalent cations and [ 32 P]ATP. Membrane proteins were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. The overall kinase activity per mg protein was slightly greater in membranes prepared from proliferating versus quiescent cells. They found four proteins labeled in sparse cells to a dramatically greater extent having the following approximate molecular masses: 180, 100, 97 and 55 kilodalton (kd). The first two phosphoproteins were phosphorylated on serine residues exclusively; the 97 kd phosphoprotein contained 39% phosphoserine (p-ser) and 61% phosphothreonine (p-thr); and the 55 kd phosphoprotein contained 62% p-ser, 16% p-thr, and 22% phosphotyrosine (p-tyr). The kinases acting on all four phosphoproteins were independent of Ca 2+ , cAMP, cGMP, or phorbol 12-myristate 13-acetate. The observed differences in phosphorylation events between sparse and confluent membranes occurred in membranes from two EC lines - pig aortic and bovine aortic - but were not apparent in membranes prepared from human foreskin fibroblasts or 3T3 cells. Sparse endothelial cells made quiescent by serum deprivation were found to resemble confluent cells in the kinase activity; therefore, the enhanced kinase activity in sparse membranes may be growth dependent

  4. The preparation of highly active antimicrobial silver nanoparticles by an organometallic approach

    International Nuclear Information System (INIS)

    Fernandez, Eduardo J; Garcia-Barrasa, Jorge; Lopez-de-Luzuriaga, Jose M; Monge, Miguel; Laguna, Antonio; Torres, Carmen

    2008-01-01

    Silver nanoparticles of small size with a high surface to volume ratio have been prepared using an organometallic approach. For this, the complex NBu 4 [Ag(C 6 F 5 ) 2 ] has been treated with AgClO 4 in a 1:1 molar ratio, giving rise to the nanoparticle precursor [Ag(C 6 F 5 )] in solution. Addition of one equivalent of hexadecylamine (HDA) and 5 h of reflux in toluene leads to a deep yellow solution containing monodisperse silver nanoparticles (Ag NPs) of ca. 10 nm. This approach leads to nanoparticles with almost uncontaminated surfaces which make them very reactive. Antimicrobial studies show that these nanoparticles are very active as antimicrobial agents. Very low concentrations between 12 and 25 μg ml -1 of Ag NPs are enough to produce bacteriostatic and bactericidal effectiveness

  5. Preparation of mono-dispersed silver nanoparticles assisted by chitosan-g-poly(ε-caprolactone) micelles and their antimicrobial application

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Chunhua [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhang, Huan [State Key Laboratory of Bioreactor Engineering, New World Biotechnology Institute, East China University of Science and Technology, Shanghai 200237 (China); Lang, Meidong, E-mail: mdlang@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2014-05-01

    Graphical abstract: - Highlights: • Chemical modification of chitosan were conducted after phthaloyl protection of amino groups. • Silver nanoparticles were prepared in the presence of chitosan-based copolymer micelles. • The optimal time scale and weight ratios of silver to micelles were monitored by UV–vis spectrometer. - Abstract: Amphiphilic chitosan-graft-poly(ε-caprolactone) (CS-g-PCLs) copolymers were synthesized by a homogeneous coupling method and characterized by {sup 1}H NMR, FTIR and ninhydrin assay. The graft copolymers were subsequently self-assembled into micelles, which were measured by DLS and TEM. The particle size of the micelles decreased as the segment grafting fraction was increased. Thereafter, silver nanoparticles were prepared in the presence of chitosan-based micelles under UV irradiation. The molar ratio and radiation time of silver to micelles were optimized with process monitored via UV–vis spectrophotometer. DLS and TEM were used to illustrate the particle structure and size while XRD patterns were applied to characterize the crystal structures of polymer-assisted silver nanoparticles. Films impregnated with silver nanoparticles were conducted with results of strong antimicrobial activities against Escherichia coli and Staphylococcus aureus as model Gram-negative and positive bacteria.

  6. Preparation of mono-dispersed silver nanoparticles assisted by chitosan-g-poly(ε-caprolactone) micelles and their antimicrobial application

    International Nuclear Information System (INIS)

    Gu, Chunhua; Zhang, Huan; Lang, Meidong

    2014-01-01

    Graphical abstract: - Highlights: • Chemical modification of chitosan were conducted after phthaloyl protection of amino groups. • Silver nanoparticles were prepared in the presence of chitosan-based copolymer micelles. • The optimal time scale and weight ratios of silver to micelles were monitored by UV–vis spectrometer. - Abstract: Amphiphilic chitosan-graft-poly(ε-caprolactone) (CS-g-PCLs) copolymers were synthesized by a homogeneous coupling method and characterized by 1 H NMR, FTIR and ninhydrin assay. The graft copolymers were subsequently self-assembled into micelles, which were measured by DLS and TEM. The particle size of the micelles decreased as the segment grafting fraction was increased. Thereafter, silver nanoparticles were prepared in the presence of chitosan-based micelles under UV irradiation. The molar ratio and radiation time of silver to micelles were optimized with process monitored via UV–vis spectrophotometer. DLS and TEM were used to illustrate the particle structure and size while XRD patterns were applied to characterize the crystal structures of polymer-assisted silver nanoparticles. Films impregnated with silver nanoparticles were conducted with results of strong antimicrobial activities against Escherichia coli and Staphylococcus aureus as model Gram-negative and positive bacteria

  7. High platinum utilization in ultra-low Pt loaded PEM fuel cell cathodes prepared by electrospraying

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S.; Garcia-Ybarra, P.L.; Castillo, J.L. [Dept. Fisica Matematica y de Fluidos, Facultad de Ciencias, UNED, Senda del Rey 9, 28040 Madrid (Spain)

    2010-10-15

    Cathode electrodes for proton exchange membrane fuel cells (PEMFCs) with ultra-low platinum loadings as low as 0.012 mg{sub Pt}cm{sup -2} have been prepared by the electrospray method. The electrosprayed layers have nanostructured fractal morphologies with dendrites formed by clusters (about 100 nm diameter) of a few single catalyst particles rendering a large exposure surface of the catalyst. Optimization of the control parameters affecting this morphology has allowed us to overcome the state of the art for efficient electrodes prepared by electrospraying. Thus, using these cathodes in membrane electrode assemblies (MEAs), a high platinum utilization in the range 8-10 kW g{sup -1} was obtained for the fuel cell operating at 40 C and atmospheric pressure. Moreover, a platinum utilization of 20 kW g{sup -1} was attained under more suitable operating conditions (70 C and 3.4 bar over-pressure). These results substantially improve the performances achieved previously with other low platinum loading electrodes prepared by electrospraying. (author)

  8. Parameterizing the competition between homogeneous and heterogeneous freezing in cirrus cloud formation – monodisperse ice nuclei

    Directory of Open Access Journals (Sweden)

    D. Barahona

    2009-01-01

    Full Text Available We present a parameterization of cirrus cloud formation that computes the ice crystal number and size distribution under the presence of homogeneous and heterogeneous freezing. The parameterization is very simple to apply and is derived from the analytical solution of the cloud parcel equations, assuming that the ice nuclei population is monodisperse and chemically homogeneous. In addition to the ice distribution, an analytical expression is provided for the limiting ice nuclei number concentration that suppresses ice formation from homogeneous freezing. The parameterization is evaluated against a detailed numerical parcel model, and reproduces numerical simulations over a wide range of conditions with an average error of 6±33%. The parameterization also compares favorably against other formulations that require some form of numerical integration.

  9. A Convenient and Templated Method for the Fabrication of Monodisperse Micrometer Hollow Titania Spheres

    Directory of Open Access Journals (Sweden)

    Haibo Yao

    2013-01-01

    Full Text Available A simple and widely applicable methodology was presented to synthesize monodisperse micrometer hollow titania spheres (HTS based on the templating method. It was performed by using the preformed poly(styrene-acrylic acid (PSA as template spheres which was mixed with tetrabutyltitanate (TBOT in an ethanol solvent under steam treatment. The HTS which were obtained by the calcination of PSA/TiO2 composite core-shell spheres had a narrow particle size distribution and commendable surface topography characterized by SEM. The calcined HTS at 500°C displayed crystalline reflection peaks that were characteristic to the anatase phase by XRD. Moreover, some key influencing factors including TBOT concentration and reaction time were analyzed. As expected, the diameter of HTS could be readily controlled by altering the size of PSA template spheres. In addition, the approach was also applied to fabricate hollow zirconia spheres and other inorganic spheres.

  10. Comparison of ultramicrotomy and focused-ion-beam for the preparation of TEM and STEM cross section of organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Corazza, Michael, E-mail: michael.corazza@gmail.com [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Simonsen, Søren B. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Gnaegi, Helmut [Diatome Ltd., Biel-Bienne (Switzerland); Thydén, Karl T.S.; Krebs, Frederik C.; Gevorgyan, Suren A. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark)

    2016-12-15

    Highlights: • Comparison of flexible solar cell sections prepared by ultramicrotomy and by FIB. • Energy filtered TEM analysis of phase separation in the P3HT:PCBM active layer. • Imaging of aging effects on solar cell cross section prepared by ultramicrotomy. • Ultramicrotomy provides great details while FIB better preserves the structure. - Abstract: The challenge of preparing cross sections of organic photovoltaics (OPV) suitable for transmission electron microscopy (TEM) and scanning TEM (STEM) is addressed. The samples were polymer solar cells fabricated using roll-to-roll (R2R) processing methods on a flexible polyethylene terephthalate (PET) substrate. Focused ion beam (FIB) and ultramicrotomy were used to prepare the cross sections. The differences between the samples prepared by ultramicrotomy and FIB are addressed, focusing on the advantages and disadvantages of each technique. The sample prepared by ultramicrotomy yielded good resolution, enabling further studies of phase separation of P3HT:PCBM by means of energy filtered TEM (EFTEM). The sample prepared by FIB shows good structure preservation, but reduced resolution due to non-optimal thicknesses achieved after treatment. Degradation studies of samples prepared by ultramicrotomy are further discussed, which reveal particular effects of the ISOS-L-3 aging test (85 °C, 50% R.H., 0.7 Sun) onto the sample, especially pronounced in the silver layer.

  11. Synthesis of highly uniform Cu2O spheres by a two-step approach and their assembly to form photonic crystals with a brilliant color.

    Science.gov (United States)

    Su, Xin; Chang, Jie; Wu, Suli; Tang, Bingtao; Zhang, Shufen

    2016-03-21

    Monodisperse semiconductor colloidal spheres with a high refractive index hold great potential for building photonic crystals with a strong band gap, but the difficulty in separating the nucleation and growth processes makes it challenging to prepare highly uniform semiconductor colloidal spheres. Herein, real monodisperse Cu2O spheres were prepared via a hot-injection & heating-up two-step method using diethylene glycol as a milder reducing agent. The diameter of the as prepared Cu2O spheres can be tuned from 90 nm to 190 nm precisely. The SEM images reveal that the obtained Cu2O spheres have a narrow size distribution, which permits their self-assembly to form photonic crystals. The effects of precursor concentration and heating rates on the size and morphology of the Cu2O spheres were investigated in detail. The results indicate that the key points of the method include the burst nucleation to form seeds at a high temperature followed by rapid cooling to prevent agglomeration, and appropriate precursor concentration as well as a moderate growth rate during the further growth process. Importantly, photonic crystal films exhibiting a brilliant structural color were fabricated with the obtained monodisperse Cu2O spheres as building blocks, proving the possibility of making photonic crystals with a strong band gap. The developed method was also successfully applied to prepare monodisperse CdS spheres with diameters in the range from 110 nm to 210 nm.

  12. The use of gamma-irradiation and ultraviolet-irradiation in the preparation of human melanoma cells for use in autologous whole-cell vaccines

    International Nuclear Information System (INIS)

    Deacon, Donna H; Slingluff, Craig L Jr; Hogan, Kevin T; Swanson, Erin M; Chianese-Bullock, Kimberly A; Denlinger, Chadrick E; Czarkowski, Andrea R; Schrecengost, Randy S; Patterson, James W; Teague, Mark W

    2008-01-01

    Human cancer vaccines incorporating autologous tumor cells carry a risk of implantation and subsequent metastasis of viable tumor cells into the patient who is being treated. Despite the fact that the melanoma cell preparations used in a recent vaccine trial (Mel37) were gamma-irradiated (200 Gy), approximately 25% of the preparations failed quality control release criteria which required that the irradiated cells incorporate 3 H-thymidine at no more than 5% the level seen in the non-irradiated cells. We have, therefore, investigated ultraviolet (UV)-irradiation as a possible adjunct to, or replacement for gamma-irradiation. Melanoma cells were gamma- and/or UV-irradiated. 3 H-thymidine uptake was used to assess proliferation of the treated and untreated cells. Caspase-3 activity and DNA fragmentation were measured as indicators of apoptosis. Immunohistochemistry and Western blot analysis was used to assess antigen expression. UV-irradiation, either alone or in combination with gamma-irradiation, proved to be extremely effective in controlling the proliferation of melanoma cells. In contrast to gamma-irradiation, UV-irradiation was also capable of inducing significant levels of apoptosis. UV-irradiation, but not gamma-irradiation, was associated with the loss of tyrosinase expression. Neither form of radiation affected the expression of gp100, MART-1/MelanA, or S100. These results indicate that UV-irradiation may increase the safety of autologous melanoma vaccines, although it may do so at the expense of altering the antigenic profile of the irradiated tumor cells

  13. Preparation of Chitosan-based Injectable Hydrogels and Its Application in 3D Cell Culture.

    Science.gov (United States)

    Li, Yongsan; Zhang, Yaling; Wei, Yen; Tao, Lei

    2017-09-29

    The protocol presents a facile, efficient, and versatile method to prepare chitosan-based hydrogels using dynamic imine chemistry. The hydrogel is prepared by mixing solutions of glycol chitosan with a synthesized benzaldehyde terminated polymer gelator, and hydrogels are efficiently obtained in several minutes at room temperature. By varying ratios between glycol chitosan, polymer gelator, and water contents, versatile hydrogels with different gelation times and stiffness are obtained. When damaged, the hydrogel can recover its appearances and modulus, due to the reversibility of the dynamic imine bonds as crosslinkages. This self-healable property enables the hydrogel to be injectable since it can be self-healed from squeezed pieces to an integral bulk hydrogel after the injection process. The hydrogel is also multi-responsive to many bio-active stimuli due to different equilibration statuses of the dynamic imine bonds. This hydrogel was confirmed as bio-compatible, and L929 mouse fibroblast cells were embedded following standard procedures and the cell proliferation was easily assessed by a 3D cell cultivation process. The hydrogel can offer an adjustable platform for different research where a physiological mimic of a 3D environment for cells is profited. Along with its multi-responsive, self-healable, and injectable properties, the hydrogels can potentially be applied as multiple carriers for drugs and cells in future bio-medical applications.

  14. Preparation of magnesium hydroxide nanoflowers from boron mud via anti-drop precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xi [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Blue Sky Technology Corporation, Beijing 100083 (China); Ma, Hongwen, E-mail: mahw@cugb.edu.cn [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Jiang, Xiaoqian [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Jiang, Zhouqing [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Blue Sky Technology Corporation, Beijing 100083 (China)

    2014-08-15

    Highlights: • We use the anti-drop precipitation method for synthesis of magnesium hydroxide. • Boron mud which is solid waste from a borax factory is used as the magnesium source. • The magnesium hydroxide nanoflowers are prepared in a short time. • The as-prepared magnesium hydroxide can be used as an effective flame retardant. - Abstract: Using boron mud as the starting material, the flower-like magnesium hydroxide (MH) has been successfully prepared via anti-drop precipitation method. The effect of NH{sub 3}·H{sub 2}O concentration, aging time, and surfactant on the morphology of MH was investigated. The optimum precipitation conditions are dropping MgSO{sub 4} solution in 5% NH{sub 3}·H{sub 2}O solution, with 3% polyethylene glycol as surfactant, aging for 30 min. XRD, SEM, FI-IR, and TG/DTA have been employed to characterize the as-prepared samples. XRD reveals that MH with high purity has the brucite structure. SEM images show that the flower-like MH exists in the form of mono-disperse well uniform spherical aggregation with diameter of 3–5 μm. TG/DTA shows a total percentage of weight loss 33.6% with a well-defined endothermic peak near 381.3 °C corresponding to the decomposition of MH. Furthermore, it reports that the extremely fast primary nucleation is of significance for crystal growth of MH.

  15. Evaluation of Fetal Intestinal Cell Growth and Antimicrobial Biofunctionalities of Donor Human Milk After Preparative Processes.

    Science.gov (United States)

    Kanaprach, Pasinee; Pongsakul, Nutkridta; Apiwattanakul, Nopporn; Muanprasat, Chatchai; Supapannachart, Sarayut; Nuntnarumit, Pracha; Chutipongtanate, Somchai

    2018-04-01

    Donor human milk is considered the next best nutrition following mother's own milk to prevent neonatal infection and necrotizing enterocolitis in preterm infants who are admitted at neonatal intensive care unit. However, donor milk biofunctionalities after preparative processes have rarely been documented. To evaluate biofunctionalities preserved in donor milk after preparative processes by cell-based assays. Ten pools of donor milk were produced from 40 independent specimens. After preparative processes, including bacterial elimination methods (holder pasteurization and cold-sterilization microfiltration) and storage conditions (-20°C freezing storage and lyophilization) with varied duration of storage (0, 3, and 6, months), donor milk biofunctionalities were examined by fetal intestinal cell growth and antimicrobial assays. At baseline, raw donor milk exhibited 193.1% ± 12.3% of fetal intestinal cell growth and 42.4% ± 11.8% of antimicrobial activities against Escherichia coli. After bacteria eliminating processes, growth promoting activity was better preserved in pasteurized donor milk than microfiltrated donor milk (169.5% ± 14.3% versus 146.0% ± 11.8%, respectively; p pasteurized donor milk was further examined for the effects of storage conditions at 3 and 6 months. Freezing storage, but not lyophilization, could preserve higher growth-promoting activity during 6 months of storage (163.0% ± 9.4% versus 72.8% ± 6.2%, respectively; p < 0.005). Nonetheless, antimicrobial activity was lost at 6 months, regardless of the storage methods. This study revealed that fetal intestinal cell growth and antimicrobial assays could be applied to measure donor milk biofunctionalities and support the utilization of donor milk within 3 months after preparative processes.

  16. Formation of monodisperse mesoporous silica microparticles via spray-drying.

    Science.gov (United States)

    Waldron, Kathryn; Wu, Winston Duo; Wu, Zhangxiong; Liu, Wenjie; Selomulya, Cordelia; Zhao, Dongyuan; Chen, Xiao Dong

    2014-03-15

    In this work, a protocol to synthesize monodisperse mesoporous silica microparticles via a unique microfluidic jet spray-drying route is reported for the first time. The microparticles demonstrated highly ordered hexagonal mesostructures with surface areas ranging from ~900 up to 1500 m(2)/g and pore volumes from ~0.6 to 0.8 cm(3)/g. The particle size could be easily controlled from ~50 to 100 μm from the same diameter nozzle via changing the initial solute content, or changing the drying temperature. The ratio of the surfactant (CTAB) and silica (TEOS), and the amount of water in the precursor were found to affect the degree of ordering of mesopores by promoting either the self-assembly of the surfactant-silica micelles or the condensation of the silica as two competing processes in evaporation induced self-assembly. The drying rate and the curvature of particles also affected the self-assembly of the mesostructure. The particle mesostructure is not influenced by the inlet drying temperature in the range of 92-160 °C, with even a relatively low temperature of 92 °C producing highly ordered mesoporous microparticles. The spray-drying derived mesoporous silica microparticles, while of larger sizes and more rapidly synthesized, showed a comparable performance with the conventional mesoporous silica MCM-41 in controlled release of a dye, Rhodamine B, indicating that these spray dried microparticles could be used for the immobilisation and controlled release of small molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Fabrication of Phase-Change Polymer Colloidal Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Tianyi Zhao

    2014-01-01

    Full Text Available This paper presents the preparation of phase-change polymer colloidal photonic crystals (PCs by assembling hollow latex spheres encapsulated with dodecanol for the first time. The monodispersed hollow latex spheres were obtained by phase reversion of monodispersed core-shell latex spheres in the n-hexane, which dissolves the PS core and retains the PMMA/PAA shell. The as-prepared phase-change colloidal PCs show stable phase-change behavior. This fabrication of phase-change colloidal PCs would be significant for PC’s applications in functional coatings and various optic devices.

  18. New methodology of preparation support for solid oxide fuel cells using different pore forming agent

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, Raigenis da P.; Guedes, Bruna C.F.; Silva, Marcos A. da; Carvalho, Luiz F.V. de; Boaventura, Jaime S. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica; Pontes, Luiz A.M. [Universidade Federal da Bahia (EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Programa de Pos-Graduacao em Engenharia Quimica

    2008-07-01

    The development of environment-friendly energy sources has been of the most important scientific and technological area. Solid oxide fuel cells (SOFC) are very promising alternative for their ability to handle renewable fuels with low emissions and high efficiency. However, this device requires massive improvement before commercial application. This work studies the pore formation in the cell anode and cathode with NaHCO{sub 3} or citric acid, comparing to graphite. The three agents make pore with similar features, but the use of NaHCO{sub 3} and citric acid considerably improves the adhesion of the electrode-electrolyte interface, critical characteristic for good cell efficiency. The prepared anode-electrolyte-cathode structure was studied by SEM technique. The SOFC prepared using citric acid was tested with gaseous ethanol, natural gas and hydrogen. For all these three fuels the SOFC shows virtually no overpotential, indicating the good ionic conductance of the electrodes-electrolyte interface.. (author)

  19. Preparation of rat islet B-cell-enriched fractions by light-scatter flow cytometry

    International Nuclear Information System (INIS)

    Rabinovitch, A.; Russell, T.; Shienvold, F.; Noel, J.; Files, N.; Patel, Y.; Ingram, M.

    1982-01-01

    Flow cytometry has been examined as a method to separate islet cells into homogeneous subpopulations. Collagenase-isolated rat islets were dissociated into single cells and these were analyzed and sorted according to their low forward angle light scattering properties by using automated flow cytometry. Light scatter histograms showed two peaks of viable cells. Radioimmunoassay of hormone content in cell fractions collected across the the two peaks showed that glucagon-containing cells were concentrated towards the left side of the left peak and somatostatin-containing cells were concentrated towards the right side of the left peak, whereas insulin-containing cells were clearly enriched in the right peak. The B-cell-enriched fraction (90% B cells, 3% A cells, 2% D cells) exhibited significant insulin secretory responses to glucose (16.7 mM), and 3-isobutyl-1-methylxanthine (0.1 mM), during a 24-h culture period, and these responses were slightly greater than those observed in the original mixed islet cell preparation (66% B cells, 14% A cells, and 4% D cells). These results indicate that flow cytometry can be applied to sort pancreatic islet cells into populations enriched in specific endocrine cell types for further study of the functions of individual cell types

  20. A novel method for the synthesis of monodisperse gold-coated silica nanoparticles

    International Nuclear Information System (INIS)

    English, Michael D.; Waclawik, Eric R.

    2012-01-01

    Monodisperse silica nanoparticles were synthesised by the well-known Stober protocol, then dispersed in acetonitrile (ACN) and subsequently added to a bisacetonitrile gold(I) coordination complex ([Au(MeCN) 2 ] + ) in ACN. The silica hydroxyl groups were deprotonated in the presence of ACN, generating a formal negative charge on the siloxy groups. This allowed the [Au(MeCN) 2 ] + complex to undergo ligand exchange with the silica nanoparticles and form a surface coordination complex with reduction to metallic gold (Au 0 ) proceeding by an inner sphere mechanism. The residual [Au(MeCN) 2 ] + complex was allowed to react with water, disproportionating into Au 0 and Au(III), respectively, with the Au 0 adding to the reduced gold already bound on the silica surface. The so-formed metallic gold seed surface was found to be suitable for the conventional reduction of Au(III) to Au 0 by ascorbic acid (ASC). This process generated a thin and uniform gold coating on the silica nanoparticles. The silica NPs batches synthesised were in a size range from 45 to 460 nm. Of these silica NP batches, the size range from 400 to 480 nm were used for the gold-coating experiments.

  1. Preparation and Characterization of Silver Liquid Thin Films for Magnetic Fluid Deformable Mirror

    Directory of Open Access Journals (Sweden)

    Lianchao Zhang

    2015-01-01

    Full Text Available Silver liquid thin film, formed by silver nanoparticles stacking and spreading on the surface of the liquid, is one of the important parts of magnetic fluid deformable mirror. First, silver nanoparticles were prepared by liquid phase chemical reduction method using sodium citrate as reducing agent and stabilizer and silver nitrate as precursor. Characterization of silver nanoparticles was studied using X-ray diffractometer, UV-vis spectrophotometer, and transmission electron microscope (TEM. The results showed that silver nanoparticles are spherical and have a good monodispersity. Additionally, the effect of the reaction conditions on the particle size of silver is obvious. And then silver liquid thin films were prepared by oil-water two-phase interface technology using as-synthesized silver nanoparticles. Properties of the film were investigated using different technology. The results showed that the film has good reflectivity and the particle size has a great influence on the reflectivity of the films. SEM photos showed that the liquid film is composed of multilayer silver nanoparticles. In addition, stability of the film was studied. The results showed that after being stored for 8 days under natural conditions, the gloss and reflectivity of the film start to decrease.

  2. Application of liquid-based cytology preparation in micronucleus assay of exfoliated buccal epithelial cells in road construction workers.

    Science.gov (United States)

    Arul, P

    2017-01-01

    Asphalts are bitumens that consist of complex of hydrocarbon mixtures and it is used mainly in road construction and maintenance. This study was undertaken to evaluate the micronucleus (MN) assay of exfoliated buccal epithelial cells in road construction workers using liquid-based cytology (LBC) preparation. Three different stains (May-Grunwald Giemsa, hematoxylin and eosin, and Papanicolaou) were used to evaluate the frequency of MN in exfoliated buccal epithelial of 100 participants (fifty road construction workers and fifty administrative staff) using LBC preparation. Statistical analysis was performed with Student's t-test, and Proad construction exhibit a higher frequency of MN in exfoliated buccal epithelial cells and they are under the significant risk of cytogenetic damage. LBC preparation has potential application for the evaluation of frequency of MN. This technique may be advocated in those who are occupationally exposed to potentially carcinogenic agents in view of improvement in the smear quality and visualization of cell morphology.

  3. The preparation of highly active antimicrobial silver nanoparticles by an organometallic approach

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Eduardo J; Garcia-Barrasa, Jorge; Lopez-de-Luzuriaga, Jose M; Monge, Miguel [Departamento de Quimica Grupo de SIntesis Quimica de La Rioja, UA-CSIC, Universidad de La Rioja, Complejo CientIfico-Tecnologico, E-26004 Logrono (Spain); Laguna, Antonio [Departamento de Quimica Inorganica, Instituto de Ciencia de Materiales de Aragon, Universidad de Zaragoza-CSIC, E-50009 Zaragoza (Spain); Torres, Carmen [Departamento de Agricultura y Alimentacion, Universidad de La Rioja, Complejo Cientifico-Tecnologico, E-26004 Logrono (Spain)], E-mail: eduardo.fernandez@unirioja.es

    2008-05-07

    Silver nanoparticles of small size with a high surface to volume ratio have been prepared using an organometallic approach. For this, the complex NBu{sub 4}[Ag(C{sub 6}F{sub 5}){sub 2}] has been treated with AgClO{sub 4} in a 1:1 molar ratio, giving rise to the nanoparticle precursor [Ag(C{sub 6}F{sub 5})] in solution. Addition of one equivalent of hexadecylamine (HDA) and 5 h of reflux in toluene leads to a deep yellow solution containing monodisperse silver nanoparticles (Ag NPs) of ca. 10 nm. This approach leads to nanoparticles with almost uncontaminated surfaces which make them very reactive. Antimicrobial studies show that these nanoparticles are very active as antimicrobial agents. Very low concentrations between 12 and 25 {mu}g ml{sup -1} of Ag NPs are enough to produce bacteriostatic and bactericidal effectiveness.

  4. Monodispersed MnO nanoparticles with epitaxial Mn{sub 3}O{sub 4} shells

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, A E; Rodriguez, G F [Department of Physics, University of California, San Diego La Jolla, CA 92093 (United States); Hong, J I; Fullerton, E E [Center for Magnetic Recording Research, University of California-San Diego La Jolla, CA 92093 (United States); An, K; Hyeon, T [National Creative Research Initiative Center for Oxide Nanocrystalline Materials, Seoul National University, Seoul 151-744 (Korea, Republic of); Agarwal, N; Smith, D J [School of Materials and Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2008-07-07

    We report the microstructural and magnetic properties of monodispersed nanoparticles (NPs) of antiferromagnetic MnO (T{sub N} = 118 K), with epitaxial ferrimagnetic Mn{sub 3}O{sub 4} (T{sub C} = 43 K) shells. Above T{sub C}, an unusually large magnetization is present, produced by the uncompensated spins (UCSs) on the surface of the MnO particles. These spins impart a net anisotropy to the MnO particles that is approximately three orders of magnitude larger than the bulk value. As a result, an anomalously high blocking temperature is exhibited by the MnO particles, and finite coercivity and exchange bias are present above T{sub C}. When field cooled below T{sub C}, a strong exchange bias was established in the Mn{sub 3}O{sub 4} shells as a result of high net anisotropy of the MnO particles. A large coercivity was also observed. Models of several aspects of the behaviour of this unusual system emphasized the essential role of the UCSs on the surfaces of the MnO NPs.

  5. Self-assembly of monodisperse starburst carbon spheres into hierarchically organized nanostructured supercapacitor electrodes.

    Science.gov (United States)

    Kim, Sung-Kon; Jung, Euiyeon; Goodman, Matthew D; Schweizer, Kenneth S; Tatsuda, Narihito; Yano, Kazuhisa; Braun, Paul V

    2015-05-06

    We report a three-dimensional (3D) porous carbon electrode containing both nanoscale and microscale porosity, which has been hierarchically organized to provide efficient ion and electron transport. The electrode organization is provided via the colloidal self-assembly of monodisperse starburst carbon spheres (MSCSs). The periodic close-packing of the MSCSs provides continuous pores inside the 3D structure that facilitate ion and electron transport (electrode electrical conductivity ∼0.35 S m(-1)), and the internal meso- and micropores of the MSCS provide a good specific capacitance. The capacitance of the 3D-ordered porous MSCS electrode is ∼58 F g(-1) at 0.58 A g(-1), 48% larger than that of disordered MSCS electrode at the same rate. At 1 A g(-1) the capacitance of the ordered electrode is 57 F g(-1) (95% of the 0.24 A g(-1) value), which is 64% greater than the capacitance of the disordered electrode at the same rate. The ordered electrode preserves 95% of its initial capacitance after 4000 charging/discharging cycles.

  6. Influence of interface preparation on minority carrier lifetime for low bandgap tandem solar cell materials

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, Nadine; Sagol, B. Erol; Seidel, Ulf; Schwarzburg, Klaus; Hannappel, Thomas [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany)

    2010-07-01

    III-V semiconductor compounds grown by MOVPE are implemented in todays state-of-the-art third generation multi-junction solar cells. The current record multi junction solar cell grown on germanium, having Ge, Ga(In)As and GaInP as subcells, reached a record efficiency of 41.6%. The efficiency of these multi junction solar cells could be significantly increased, if its low bandgap Ge subcell would be replaced by a more efficient tandem. For this purpose the low bandgap materials InGaAs and InGaAsP are suitable. The bandgap composition of these materials allows a better yield of the solar spectrum. Based on InGaAs/InGaAsP absorber materials we have developed a low bandgap tandem solar cell with optimized bandgaps. Results of time resolved photoluminescence (TRPL) for the IR-bandgap compounds InGaAsP (1.03 eV)/InGaAs (0.73 eV) are presented. The lifetime of minority carriers is one of the most important properties of solar cell absorber materials. We show on the example of the low band gap tandem cell how the choice of the materials, the quality of the bulk, the optimization of the band gap energies and the preparation of the critical interfaces are essential to build a high efficiency solar cell. The quality of the bulk and the preparation of the critical interfaces are essential for the growth of the double heterostructure (DHS).

  7. Preparation of gold nanoparticles and determination of their particles size via different methods

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad; Usanase, Gisele [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Oulmi, Kafia; Aberkane, Fairouz; Bendaikha, Tahar [Laboratory of Chemistry and Environmental Chemistry(LCCE), Faculty of Science, Material Science Department, University of Batna, 05000 (Algeria); Fessi, Hatem [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Zine, Nadia [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Agusti, Géraldine [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Errachid, El-Salhi [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Elaissari, Abdelhamid, E-mail: elaissari@lagep.univ-lyon1.fr [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France)

    2016-07-15

    Graphical abstract: Preparation of gold nanoparticles via NaBH{sub 4} reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH{sub 4} reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be prepared in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH{sub 4}) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.

  8. Preparation of pre-confluent retinal cells increases graft viability in vitro and in vivo: a mouse model.

    Directory of Open Access Journals (Sweden)

    Kevin P Kennelly

    Full Text Available PURPOSE: Graft failure remains an obstacle to experimental subretinal cell transplantation. A key step is preparing a viable graft, as high levels of necrosis and apoptosis increase the risk of graft failure. Retinal grafts are commonly harvested from cell cultures. We termed the graft preparation procedure "transplant conditions" (TC. We hypothesized that culture conditions influenced graft viability, and investigated whether viability decreased following TC using a mouse retinal pigment epithelial (RPE cell line, DH01. METHODS: Cell viability was assessed by trypan blue exclusion. Levels of apoptosis and necrosis in vitro were determined by flow cytometry for annexin V and propidium iodide and Western blot analysis for the pro- and cleaved forms of caspases 3 and 7. Graft viability in vivo was established by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL and cleaved caspase 3 immunolabeling of subretinal allografts. RESULTS: Pre-confluent cultures had significantly less nonviable cells than post-confluent cultures (6.6%±0.8% vs. 13.1%±0.9%, p<0.01. Cell viability in either group was not altered significantly following TC. Caspases 3 and 7 were not altered by levels of confluence or following TC. Pre-confluent cultures had low levels of apoptosis/necrosis (5.6%±1.1% that did not increase following TC (4.8%±0.5%. However, culturing beyond confluence led to progressively increasing levels of apoptosis and necrosis (up to 16.5%±0.9%. Allografts prepared from post-confluent cultures had significantly more TUNEL-positive cells 3 hours post-operatively than grafts of pre-confluent cells (12.7%±3.1% vs. 4.5%±1.4%, p<0.001. Subretinal grafts of post-confluent cells also had significantly higher rates of cleaved caspase 3 than pre-confluent grafts (20.2%±4.3% vs. 7.8%±1.8%, p<0.001. CONCLUSION: Pre-confluent cells should be used to maximize graft cell viability.

  9. Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Changcan; Yuan, Wenjie; Khan, Musammir; Li, Qian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300072 (China); Yao, Fanglian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Zhang, Wencheng, E-mail: wenchengzhang@yahoo.com [Department of Physiology and Pathophysiology, Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China)

    2015-05-01

    Gelatin contains many functional motifs which can modulate cell specific adhesion, so we modified polycarbonate urethane (PCU) scaffold surface by immobilization of gelatin. PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatins onto the surface of aminated PCU scaffolds. To increase the immobilization amount of gelatin, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto PCU scaffolds by surface initiated atom transfer radical polymerization. Then, following amination and immobilization, PCU-g-PEGMA-g-gelatin scaffolds were obtained. Both modified scaffolds were characterized by chemical and biological methods. After immobilization of gelatin, the microfiber surface became rough, but the original morphology of scaffolds was maintained successfully. PCU-g-PEGMA-g-gelatin scaffolds were more hydrophilic than PCU-g-gelatin scaffolds. Because hydrophilic PEGMA and gelatin were grafted and immobilized onto the surface, the PCU-g-PEGMA-g-gelatin scaffolds showed low platelet adhesion, perfect anti-hemolytic activity and excellent cell growth and proliferation capacity. It could be envisioned that PCU-g-PEGMA-g-gelatin scaffolds might have potential applications in tissue engineering artificial scaffolds. - Graphical abstract: PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatin onto the surface of aminated PCU scaffolds (method a). To increase the immobilization amount of gelatin, PEGMAs were grafted onto the scaffold surface by SI-ATRP. PCU-g-PEGMA-g-gelatin scaffolds were prepared by method b. The gelatin modified scaffolds exhibited high hydrophilicity, low platelet adhesion, perfect anti-hemolytic activity, and excellent cell adhesion and proliferation capacity. They might have potential applications as tissue engineering scaffolds for artificial blood vessels. - Highlights: • Hydrophilic scaffolds were prepared by grafting PEGMA and immobilization of gelatins. • Grafting PEGMA enhanced the immobilization amount of gelatin

  10. Indium tin oxide thin-films prepared by vapor phase pyrolysis for efficient silicon based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Simashkevich, Alexei, E-mail: alexeisimashkevich@hotmail.com [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Serban, Dormidont; Bruc, Leonid; Curmei, Nicolai [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Hinrichs, Volker [Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Rusu, Marin [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2016-07-01

    The vapor phase pyrolysis deposition method was developed for the preparation of indium tin oxide (ITO) thin films with thicknesses ranging between 300 and 400 nm with the sheet resistance of 10–15 Ω/sq. and the transparency in the visible region of the spectrum over 80%. The layers were deposited on the (100) surface of the n-type silicon wafers with the charge carriers concentration of ~ 10{sup 15} cm{sup −3}. The morphology of the ITO layers deposited on Si wafers with different surface morphologies, e.g., smooth (polished), rough (irregularly structured) and textured (by inversed pyramids) was investigated. The as-deposited ITO thin films consist of crystalline columns with the height of 300–400 nm and the width of 50–100 nm. Photovoltaic parameters of mono- and bifacial solar cells of Cu/ITO/SiO{sub 2}/n–n{sup +} Si/Cu prepared on Si (100) wafers with different surface structures were studied and compared. A maximum efficiency of 15.8% was achieved on monofacial solar cell devices with the textured Si surface. Bifacial photovoltaic devices from 100 μm thick Si wafers with the smooth surface have demonstrated efficiencies of 13.0% at frontal illumination and 10% at rear illumination. - Highlights: • ITO thin films prepared by vapor phase pyrolysis on Si (100) wafers with a smooth (polished), rough (irregularly structured) and textured (by inversed pyramids) surface. • Monofacial ITO/SiO2/n-n+Si solar cells with an efficiency of 15.8% prepared and bifacial PV devices with front- and rear-side efficiencies up to 13% demonstrated. • Comparative studies of photovoltaic properties of solar cells with different morphologies of the Si wafer surface presented.

  11. Preparation of porous titania film and its application in solar cells.

    Science.gov (United States)

    Zhang, Tianhui; Zhao, Suling; Piao, Lingyu; Xu, Zheng; Liu, Xiaodong; Kong, Chao; Xu, Xurong

    2011-11-01

    Polymer/nanocrystal bulk heterojunction photovoltaic cells have attracted substantial interest because the hybrid active layer combines the advantages of inorganic materials and polymers. In this work, a porous TiO2 was prepared via the sol-gel method with a polyethylene glycol 2000 (PEG2000) template. A kind of polymer/inorganic solar cell based on poly (3-hexylthiophene) (P3HT)/TiO2 was fabricated on the indium-tin-oxide (ITO) glass substrate and the structure of device was ITO/TiO2/P3HT/Au. The device showed the performance with a short circuit current (J(SC)) of 1.29 mA/cm2, an open circuit voltage (V(OC)) of 0.55 V and a fill factor (FF) of 28.7%.

  12. Gamma radiation grafting process for preparing separator membranes for electrochemical cells

    International Nuclear Information System (INIS)

    Agostino, V.F. D'; Lee, J.Y.

    1982-01-01

    An irradiation grafting process for preparing separator membranes for use in electrochemical cells, comprises contacting a polymeric base film with an aqueous solution of a hydrophilic monomer and a polymerization retardant; and irradiating said contacted film to form a graft membrane having low electrical resistivity and having monomer molecules uniformly grafted thereon. In the examples (meth) acrylic acid is grafted on to polyethylene, polypropylene and polytetrafluoroethylene in the presence of ferrous sulphate or cupric sulphate as polymerization retardants. (author)

  13. Preparation methods for monodispersed garlic oil microspheres in water using the microemulsion technique and their potential as antimicrobials.

    Science.gov (United States)

    Zheng, Hua Ming; Li, Hou Bin; Wang, Da Wei; Liu, Dun

    2013-08-01

    Garlic oil is considered as a natural broad-spectrum antibiotic because of its well-known antimicrobial activity. However, the characteristics of easy volatility and poor aqueous solubility limit the application of garlic oil in industry. The purpose of the present work is to develop and evaluate an oil-free microemulsion by loading garlic oil in microemulsion system. Microemulsions were prepared with ethoxylated hydrogenated castor (Cremophor RH40) as surfactant, n-butanol (or ethanol) as cosurfactant, oleic acid-containing garlic oil as oil phase, and ultrapure water as water phase. The effects of the ratio of surfactant to cosurfactant and different oil concentration on the area of oil-in-water (O/W) microemulsion region in pseudoternary phase diagrams were investigated. The particle size and garlic oil encapsulation efficiency of the formed microemulsions with different formulations were also investigated. In addition, the antimicrobial activity in vitro against Escherichia coli and Staphylococcus aureus was assessed. The experimental results show that a stable microemulsion region can be obtained when the mass ratio of surfactant to cosurfactant is, respectively, 1:1, 2:1, and 3:1. Especially, when the mixture surfactants of RH40/n-butanol 2/1 (w/w) is used in the microemulsion formulation, the area of O/W microemulsion region is 0.089 with the particle size 13.29 to 13.85 nm and garlic oil encapsulation efficiency 99.5%. The prepared microemulsion solution exhibits remarkable antibacterial activity against S. aureus. © 2013 Institute of Food Technologists®

  14. Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation.

    Science.gov (United States)

    Di Carlo, Dino; Jeong, Ki-Hun; Lee, Luke P

    2003-11-01

    A highly effective, reagentless, mechanical cell lysis device integrated in microfluidic channels is reported. Sample preparation, specifically cell lysis, is a critical element in 'lab-on-chip' applications. However, traditional methods of cell lysis require purification steps or complicated fabrication steps that a simple mechanical method of lysis may avoid. A simple and effective mechanical cell lysis system is designed, microfabricated, and characterized to quantify the efficiency of cell lysis and biomolecule accessibility. The device functionality is based on a microfluidic filter region with nanostructured barbs created using a modified deep reactive ion etching process. Mechanical lysis is characterized by using a membrane impermeable dye. Three main mechanisms of micro-mechanical lysis are described. Quantitative measurements of accessible protein as compared to a chemically lysed sample are acquired with optical absorption measurements at 280 and 414 nm. At a flow rate of 300 microL min(-1) within the filter region total protein and hemoglobin accessibilities of 4.8% and 7.5% are observed respectively as compared to 1.9% and 3.2% for a filter without nanostructured barbs.

  15. Synthesis and optoelectronic properties of a monodispersed macrocycle oligomer consisting of three triarylamine units

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Qinggang, E-mail: gangq0172@163.com [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, College of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Pukou District, Nanjing 210044 (China); Qian, Haiyan, E-mail: qianhaiy@163.com [College of Material Science and Technology, Nanjing University of Technology, 5 Xinmofan Road, Nanjing 210009 (China); Zhou, Yonghui; Li, Jun; Xiao, Huining [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, College of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Pukou District, Nanjing 210044 (China)

    2012-08-15

    A monodispersed macrocyclic oligomer constructed by three triarylmine units ((TPAT){sub 3}) was designed and readily synthesized from the monomer of 3-(4 Prime -(phenyl(4 Double-Prime -methylphenyl)amino)-phenyl)pentan-3-ol (TPAT) by means of a simple Friedel-Crafts alkylation reaction. The structure of the resultant macrocycle was examined using FT-IR, NMR and MALDI-TOF mass spectroscopy. Compared with 1,10-bis(di-4-tolylaminophenyl) cyclohexane (TAPC) and tri-p-tolylamine (TTA), (TPAT){sub 3} possesses the three-dimensional chair conformation and the higher T{sub g}. In the photoluminescence (PL) spectrum of (TPAT){sub 3} film, there are no excimer emission peaks in the range of 400-550 nm region as those of TAPC and TTA. Besides an EL peak at 386 nm, the single-layer device occured only the 438 nm excimer emission peak, whose intensity increased with the excitation voltage increase. Using 1,3,5-Tris(N-phenylbenzimidazol-2-yl)-benzene (TPBI) as the electron-transporting layer, the resulting double-layer device ITO/(TPAT){sub 3} (40 nm)/TPBI (40 nm)/Mg:Ag (10:1; 50 nm)/Ag (100 nm) only exhibited a 438 nm maximum symmetrical emission peak under an excitation voltage of 14 V. However, as the applied voltage was increased from 14 V to 19 V, the intensity of the symmetrical curve with a 468 nm peak from exciplex emission gets stronger and stronger. In fact, the resultant emission curve was asymmetrical, due to the overlap of two symmetrical curves with 438 nm and 468 nm peaks, respectively. The maximum luminance and luminous efficiency are 2240 cd m{sup -2} at 18.8 V and 1.73 cd A{sup -1} at 1878 cd m{sup -2} (13.9 V). Highlights: Black-Right-Pointing-Pointer The monodispersed macrocyclic oligomer constructed by three triarylamine units was synthesized and characterized. Black-Right-Pointing-Pointer The PL of (TPAT){sub 3} film does not emerge TAPC and TTA's emission peaks of over 400 nm region. Black-Right-Pointing-Pointer The 438 nm emission peak was found from

  16. Therapeutic Potential of Human Adipose-Derived Stem/Stromal Cell Microspheroids Prepared by Three-Dimensional Culture in Non-Cross-Linked Hyaluronic Acid Gel.

    Science.gov (United States)

    Mineda, Kazuhide; Feng, Jingwei; Ishimine, Hisako; Takada, Hitomi; Doi, Kentaro; Kuno, Shinichiro; Kinoshita, Kahori; Kanayama, Koji; Kato, Harunosuke; Mashiko, Takanobu; Hashimoto, Ichiro; Nakanishi, Hideki; Kurisaki, Akira; Yoshimura, Kotaro

    2015-12-01

    Three-dimensional culture of mesenchymal stem/stromal cells for spheroid formation is known to enhance their therapeutic potential for regenerative medicine. Spheroids were prepared by culturing human adipose-derived stem/stromal cells (hASCs) in a non-cross-linked hyaluronic acid (HA) gel and compared with dissociated hASCs and hASC spheroids prepared using a nonadherent dish. Preliminary experiments indicated that a 4% HA gel was the most appropriate for forming hASC spheroids with a relatively consistent size (20-50 µm) within 48 hours. Prepared spheroids were positive for pluripotency markers (NANOG, OCT3/4, and SOX-2), and 40% of the cells were SSEA-3-positive, a marker of the multilineage differentiating stress enduring or Muse cell. In contrast with dissociated ASCs, increased secretion of cytokines such as hepatocyte growth factor was detected in ASC spheroids cultured under hypoxia. On microarray ASC spheroids showed upregulation of some pluripotency markers and downregulation of genes related to the mitotic cell cycle. After ischemia-reperfusion injury to the fat pad in SCID mice, local injection of hASC spheroids promoted tissue repair and reduced the final atrophy (1.6%) compared with that of dissociated hASCs (14.3%) or phosphate-buffered saline (20.3%). Part of the administered hASCs differentiated into vascular endothelial cells. ASC spheroids prepared in a HA gel contain undifferentiated cells with therapeutic potential to promote angiogenesis and tissue regeneration after damage. This study shows the therapeutic value of human adipose-derived stem cell spheroids prepared in hyarulonic acid gel. The spheroids have various benefits as an injectable cellular product and show therapeutic potential to the stem cell-depleted conditions such as diabetic chronic skin ulcer. ©AlphaMed Press.

  17. Surface microstructure and cell biocompatibility of silicon-substituted hydroxyapatite coating on titanium substrate prepared by a biomimetic process

    International Nuclear Information System (INIS)

    Zhang Erlin; Zou Chunming; Yu Guoning

    2009-01-01

    Silicon-substituted hydroxyapatite (Si-HA) coatings with 0.14 to 1.14 at.% Si on pure titanium were prepared by a biomimetic process. The microstructure characterization and the cell compatibility of the Si-HA coatings were studied in comparison with that of hydroxyapatite (HA) coating prepared in the same way. The prepared Si-HA coatings and HA coating were only partially crystallized or in nano-scaled crystals. The introduction of Si element in HA significantly reduced P and Ca content, but densified the coating. The atom ratio of Ca to (P + Si) in the Si-HA coatings was in a range of 1.61-1.73, increasing slightly with an increase in the Si content. FTIR results displayed that Si entered HA in a form of SiO 4 unit by substituting for PO 4 unit. The cell attachment test showed that the HA and Si-HA coatings exhibited better cell response than the uncoated titanium, but no difference was observed in the cell response between the HA coating and the Si-HA coatings. Both the HA coating and the Si-HA coatings demonstrated a significantly higher cell growth rate than the uncoated pure titanium (p < 0.05) in all incubation periods while the Si-HA coating exhibited a significantly higher cell growth rate than the HA coating (p < 0.05). Si-HA with 0.42 at.% Si presented the best cell biocompatibility in all of the incubation periods. It was suggested that the synthesis mode of HA and Si-HA coatings in a simulated body environment in the biomimetic process contribute significantly to good cell biocompatibility

  18. Serial assessment of biochemical parameters of red cell preparations to evaluate safety for neonatal transfusions.

    Science.gov (United States)

    Mukherjee, Somnath; Marwaha, Neelam; Prasad, Rajendra; Sharma, Ratti Ram; Thakral, Beenu

    2010-12-01

    Neonatologists often prefer fresh blood (2,3 diphosphoglycerate (2,3 DPG) up to 21 days of storage. Within each group of RBC, rise in mean concentration of potassium, lactate and plasma haemoglobin from day 1 to 21 of storage was significant in CPDA-1 RBC having the highest levels at day 21. From day 3 to 21, SAGM RBC had higher mean pH value than CPDA-1 RBC though this difference was not statistically significant. SAGM RBC had highest mean glucose concentration during storage than other two types of red cell preparations (P2,3 DPG concentration from day 1 to 7 was significant (P<0.05). A positive correlation existed between mean plasma potassium and haemoglobin in all three types of red cells (r=0.726, 0.419, 0.605 for CPDA-1 RBC, SAGM RBC and whole blood respectively, P<0.005). All the three red cell preparations tested revealed biochemical changes within acceptable limits of safety till 21 days of storage. CPDA-1 RBCs had the highest degree of these changes.

  19. Al2 O3 Underlayer Prepared by Atomic Layer Deposition for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Zhang, Jinbao; Hultqvist, Adam; Zhang, Tian; Jiang, Liangcong; Ruan, Changqing; Yang, Li; Cheng, Yibing; Edoff, Marika; Johansson, Erik M J

    2017-10-09

    Perovskite solar cells, as an emergent technology for solar energy conversion, have attracted much attention in the solar cell community by demonstrating impressive enhancement in power conversion efficiencies. However, the high temperature and manually processed TiO 2 underlayer prepared by spray pyrolysis significantly limit the large-scale application and device reproducibility of perovskite solar cells. In this study, lowtemperature atomic layer deposition (ALD) is used to prepare a compact Al 2 O 3 underlayer for perovskite solar cells. The thickness of the Al 2 O 3 layer can be controlled well by adjusting the deposition cycles during the ALD process. An optimal Al 2 O 3 layer effectively blocks electron recombination at the perovskite/fluorine-doped tin oxide interface and sufficiently transports electrons through tunneling. Perovskite solar cells fabricated with an Al 2 O 3 layer demonstrated a highest efficiency of 16.2 % for the sample with 50 ALD cycles (ca. 5 nm), which is a significant improvement over underlayer-free PSCs, which have a maximum efficiency of 11.0 %. Detailed characterization confirms that the thickness of the Al 2 O 3 underlayer significantly influences the charge transfer resistance and electron recombination processes in the devices. Furthermore, this work shows the feasibility of using a high band-gap semiconductor such as Al 2 O 3 as the underlayer in perovskite solar cells and opens up pathways to use ALD Al 2 O 3 underlayers for flexible solar cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Detailed investigations of ZnO photoelectrodes preparation for dye sensitized solar cells.

    Science.gov (United States)

    Marczak, Renata; Werner, Fabian; Ahmad, Rameez; Lobaz, Volodymyr; Guldi, Dirk M; Peukert, Wolfgang

    2011-04-05

    Wurtzite ZnO hexagonal nanopyramids were successfully synthesized in the liquid phase from homogeneous methanolic solutions of zinc acetate and tetramethylammonium hydroxide at an excess of zinc ions. The formation and properties of the nanocrystals were examined as a function of synthesis conditions. No significant influence of the [Zn(2+)]/[OH(-)] ratio was noticed on the final particle size, in spite of increased amounts of OH(-) ions, which tend to accelerate the particle nucleation and growth. Nevertheless, the reactant concentration ratio influences the surface properties of the ZnO nanocrystals. Mesoporous ZnO films were prepared by doctor blading ethanolic pastes containing ZnO nanoparticles and ethyl cellulose onto FTO conductive glass substrate followed by calcination. Additionally, the influence of a plasticizer (triacetin)-used during the paste preparation-on the film quality was investigated. A higher content of ZnO nanoparticles and plasticizer in the pastes improved the film quality. Four different temperatures (i.e., 400, 425, 450, and 475 °C) were used for the film calcination and their influence on the structural properties of the films was characterized. In principle, increasing the calcination temperature goes hand in hand with an increase of particle size, as well as the pore diameter and reduction of the surface area. Suitable mesoporous films were employed as photoanodes in dye sensitized solar cells (DSSCs). In order to assess the effect of the varied parameters on complete DSSC devices-using cis-diisothiocyanato-bis(2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium(II)bis(tetrabutylammonium (N719) as a sensitizer-incident photon to current efficiency (IPCE) and current voltage measurements were carried out. The IPCE measurements confirmed photoinduced electron injection from the dye, reaching IPCE values up to 76%. Furthermore, current-voltage characteristics of complete cells emphasized the importance of the proper preparation methods and

  1. The promising application of graphene oxide as coating materials in orthopedic implants: preparation, characterization and cell behavior

    International Nuclear Information System (INIS)

    Zhao, Changhong; Lu, Xiuzhen; Liu, Johan; Zanden, Carl

    2015-01-01

    To investigate the potential application of graphene oxide (GO) in bone repair, this study is focused on the preparation, characterization and cell behavior of graphene oxide coatings on quartz substrata. GO coatings were prepared on the substrata using a modified dip-coating procedure. Atomic force microscopy (AFM), scanning electron microscopy (SEM) and Raman spectroscopy results demonstrated that the as-prepared coatings in this study were homogeneous and had an average thickness of ∼67 nm. The rapid formation of a hydroxyapatite (HA) layer in the simulated body fluid (SBF) on GO coated substrata at day 14, as proved by SEM and x-ray diffraction (XRD), strongly indicated the bioactivity of coated substrata. In addition, MC3T3-E1 cells were cultured on the coated substrata to evaluate cellular activities. Compared with the non-coated substrata and tissue culture plates, no significant difference was observed on the coated substrata in terms of cytotoxicity, viability, proliferation and apoptosis. However, interestingly, higher levels of alkaline phosphatase (ALP) activity and osteocalcin (OC) secretion were observed on the coated substrata, indicating that GO coatings enhanced cell differentiation compared with non-coated substrata and tissue culture plates. This study suggests that GO coatings had excellent biocompatibility and more importantly promoted MC3T3-E1 cell differentiation and might be a good candidate as a coating material for orthopedic implants. (paper)

  2. Purification of Drug Loaded PLGA Nanoparticles Prepared by Emulsification Solvent Evaporation Using Stirred Cell Ultrafiltration Technique.

    Science.gov (United States)

    Paswan, Suresh K; Saini, T R

    2017-12-01

    The emulsifiers in an exceedingly higher level are used in the preparation of drug loaded polymeric nanoparticles prepared by emulsification solvent evaporation method. This creates great problem to the formulator due to their serious toxicities when it is to be administered by parenteral route. The final product is therefore required to be freed from the used surfactants by the conventional purification techniques which is a cumbersome job. The solvent resistant stirred cell ultrafiltration unit (Millipore) was used in this study using polyethersulfone ultrafiltration membrane (Biomax®) having pore size of NMWL 300 KDa as the membrane filter. The purification efficiency of this technique was compared with the conventional centrifugation technique. The flow rate of ultrafiltration was optimized for removal of surfactant (polyvinyl alcohol) impurities to the acceptable levels in 1-3.5 h from the nanoparticle dispersion of tamoxifen prepared by emulsification solvent evaporation method. The present investigations demonstrate the application of solvent resistant stirred cell ultrafiltration technique for removal of toxic impurities of surfactant (PVA) from the polymeric drug nanoparticles (tamoxifen) prepared by emulsification solvent evaporation method. This technique offers added benefit of producing more concentrated nanoparticles dispersion without causing significant particle size growth which is observed in other purification techniques, e.g., centrifugation and ultracentrifugation.

  3. Preparation, Cell Compatibility and Degradability of Collagen-Modified Poly(lactic acid

    Directory of Open Access Journals (Sweden)

    Miaomiao Cui

    2015-01-01

    Full Text Available Poly(lactic acid (PLA was modified using collagen through a grafting method to improve its biocompatibility and degradability. The carboxylic group at the open end of PLA was transferred into the reactive acylchlorided group by a reaction with phosphorus pentachloride. Then, collagen-modified PLA (collagen-PLA was prepared by the reaction between the reactive acylchlorided group and amino/hydroxyl groups on collagen. Subsequently, the structure of collagen-PLA was confirmed by Fourier transform infrared spectroscopy, fluorescein isothiocyanate-labeled fluorescence spectroscopy, X-ray photoelectron spectroscopy, and DSC analyses. Finally, some properties of collagen-PLA, such as hydrophilicity, cell compatibility and degradability were characterized. Results showed that collagen had been grafted onto the PLA with 5% graft ratio. Water contact angle and water absorption behavior tests indicated that the hydrophilicity of collagen-PLA was significantly higher than that of PLA. The cell compatibility of collagen-PLA with mouse embryonic fibroblasts (3T3 was also significantly better than PLA in terms of cell morphology and cell proliferation, and the degradability of PLA was also improved after introducing collagen. Results suggested that collagen-PLA was a promising candidate for biomedical applications.

  4. Photoluminescence studies on Cd(1-x)Zn(x)S:Mn2+ nanocrystals.

    Science.gov (United States)

    Sethi, Ruchi; Kumar, Lokendra; Pandey, A C

    2009-09-01

    Highly monodispersed, undoped and doped with Mn2+, binary and ternary (CdS, ZnS, Cd(1-x)Zn(x)S) compound semiconductor nanocrystals have been synthesized by co-precipitation method using citric acid as a stabilizer. As prepared sample are characterized by X-ray diffraction, Small angle X-ray scattering, Transmission electron microscope, Optical absorption and Photoluminescence spectroscopy, for their optical and structural properties. X-ray diffraction, Small angle X-ray scattering and Transmission electron microscope results confirm the preparation of monodispersed nanocrystals. Photoluminescence studies show a significant blue shift in the wavelength with an increasing concentration of Zn in alloy nanocrystals.

  5. Preparation and Characterization of Estradiol-Loaded PLGA Nanoparticles Using Homogenization-Solvent Diffusion Method

    Directory of Open Access Journals (Sweden)

    R Dinarvand

    2008-09-01

    Full Text Available Background: The inherent shortcomings of conventional drug delivery systems containing estrogens and the potential of nanoparticles (NPs have offered tremendous scope for investigation. Although polymeric NPs have been used as drug carriers for many active agents, the use of appropriate polymer and method of NP preparation to overcome different challenges is very important. Materials and methods: Poly lactide-co-glycolide (PLGA NPs containing estradiol valerate were prepared by the modified spontaneous emulsification solvent diffusion method. Several parameters including the drug/polymer ratios in range of 2.5-10%, poly vinyl alcohol (PVA in concentration of 0-4% as stabilizer and internal phase volume and composition were examined to optimize formulation. The size distribution and morphology of the NPs, encapsulation efficacy and in vitro release profile in phosphate buffer medium (pH 7.4 during 12 hrs were then investigated. Results: The NPs prepared in this study were spherical with a relatively mono-dispersed size distribution. By adjustment of the process parameters, the size and the drug encapsulation efficacy as well as the drug release kinetics can be optimally controlled. The mean particle size of the best formula with encapsulation efficiency of 100% was 175 ± 19, in which release profile was best fitted to Higuchi's model of release which showed that release mechanism was mainly controlled by diffusion of the drug to the release medium. Conclusion: According to the size and surface properties of the prepared particles, it may be concluded that they are a good formulation for non-parenteral routes of administration.

  6. Effervescent Granules Prepared Using Eucommia ulmoides Oliv. and Moso Bamboo Leaves: Hypoglycemic Activity in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Xiang-Zhou Li

    2016-01-01

    Full Text Available Eucommia ulmoides Oliv. (E. ulmoides Oliv. and moso bamboo (Phyllostachys pubescens leaves are used as folk medicines in central-western China to treat diabetes. To investigate the hypoglycemic activity of the effervescent granules prepared using E. ulmoides Oliv. and moso bamboo leaves (EBEG in HepG2 cells, EBEG were prepared with 5% of each of polysaccharides and chlorogenic acids from moso bamboo and E. ulmoides Oliv. leaves, respectively. HepG2 cells cultured in a high-glucose medium were classified into different groups. The results displayed EBEG-treated cells showed better glucose utilization than the negative controls; thus, the hypoglycemic effect of EBEG was much greater than that of granules prepared using either component alone, thereby indicating that this effect was due to a synergistic action of the components. Further, glucose consumption levels in the cells treated with EBEG (156.35% at 200 μg/mL and the positive controls (metformin, 162.29%; insulin, 161.52% were similar. Thus, EBEG exhibited good potential for use as a natural antidiabetic agent. The hypoglycemic effect of EBEG could be due to the synergistic action of polysaccharides from the moso bamboo leaves and chlorogenic acids from E. ulmoides Oliv. leaves via the inhibition of alpha-glucosidase and glucose-6-phosphate displacement enzyme.

  7. GraDeR: Membrane Protein Complex Preparation for Single-Particle Cryo-EM.

    Science.gov (United States)

    Hauer, Florian; Gerle, Christoph; Fischer, Niels; Oshima, Atsunori; Shinzawa-Itoh, Kyoko; Shimada, Satoru; Yokoyama, Ken; Fujiyoshi, Yoshinori; Stark, Holger

    2015-09-01

    We developed a method, named GraDeR, which substantially improves the preparation of membrane protein complexes for structure determination by single-particle cryo-electron microscopy (cryo-EM). In GraDeR, glycerol gradient centrifugation is used for the mild removal of free detergent monomers and micelles from lauryl maltose-neopentyl glycol detergent stabilized membrane complexes, resulting in monodisperse and stable complexes to which standard processes for water-soluble complexes can be applied. We demonstrate the applicability of the method on three different membrane complexes, including the mammalian FoF1 ATP synthase. For this highly dynamic and fragile rotary motor, we show that GraDeR allows visualizing the asymmetry of the F1 domain, which matches the ground state structure of the isolated domain. Therefore, the present cryo-EM structure of FoF1 ATP synthase provides direct structural evidence for Boyer's binding change mechanism in the context of the intact enzyme. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Droplet size effects on NO/x/ formation in a one-dimensional monodisperse spray combustion system

    Science.gov (United States)

    Sarv, H.; Nizami, A. A.; Cernansky, N. P.

    1982-01-01

    A one-dimensional monodisperse aerosol spray combustion facility is described and experimental results of post flame NO/NO(x) emissions are presented. Four different hydrocarbon fuels were studied: isopropanol, methanol, n-heptane, and n-octane. The results indicate an optimum droplet size in the range of 48-58 microns for minimizing NO/NO(x) production for all of the test fuels. This NO(x) behavior is associated with droplet interactions and the transition from diffusive type of spray burning to that of a prevaporized and premixed case. Decreasing the droplet size results in a trend of increasing droplet interactions, which suppresses temperatures and reduces NO(x). This trend continues until prevaporization effects begin to dominate and the system tends towards the premixed limit. The occurrence of the minimum NO(x) point at different droplet diameters for the different fuels appears to be governed by the extent of prevaporization of the fuel in the spray, and is consistent with theoretical calculations based on each fuel's physical properties.

  9. Investigation of Monodisperse Dendrimeric Polysaccharide Nanoparticle Dispersions Using Small Angle Neutron Scattering

    Science.gov (United States)

    Atkinson, John; Nickels, Jonathan; Papp-Szabo, Erzsi; Katsaras, John; Dutcher, John

    2015-03-01

    Phytoglycogen is a highly branched polysaccharide that is very similar to the energy storage molecule glycogen. We have isolated monodisperse phytoglycogen nanoparticles from corn and these particles are attractive for applications in the cosmetic, food and beverage, and biomedical industries. Many of these promising applications are due to the special interaction between the nanoparticles and water, which results in: (1) high solubility; (2) low viscosity and high stability in aqueous dispersions; and (3) a remarkable capacity to sequester and retain water. Our rheology measurements indicate that the nanoparticles behave like hard spheres in water, with the viscosity diverging for concentrations >25% (w/w). Because of this, aqueous suspensions of phytoglycogen provide an ideal platform for detailed testing of theories of colloidal glasses and jamming. To further explore the interaction of the phytoglycogen particles and water, we have performed small angle neutron scattering (SANS) measurements on the Extended Q-Range SANS (EQ-SANS) diffractometer at the Spallation Neutron Source at Oak Ridge National Laboratory. Measurements performed on phytoglycogen dispersions in mixtures of hydrogenated and deuterated water have allowed us to determine the particle size and average particle spacing as a function of the phytoglycogen concentration in the limits of dilute and concentrated dispersions.

  10. Effect of surfactant amount on the morphology and magnetic properties of monodisperse ZnFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haitao, E-mail: zht95711lunwen@163.com; Liu, Ruiping; Zhang, Qiang; Wang, Qiao

    2016-03-15

    Graphical abstract: Polyol process to monodisperse ZnFe{sub 2}O{sub 4} nanoparticles. - Highlights: • An one-step, facile and inexpensive synthetic route to monodisperse ZnFe{sub 2}O{sub 4} nanoparticles is described. • The sodium citrate stabilized ZnFe{sub 2}O{sub 4} nanoparticles with a diameter in the 5–8 nm size range can be easily dispersed in water. • The synthesis is very robust in terms of variations of experimental parameters. • ZnFe{sub 2}O{sub 4} nanoparticles present ferrimagnetic behavior at room temperature with a small hysteresis. - Abstract: The spinel ZnFe{sub 2}O{sub 4} ferrites with sodium citrate as a surfactant were fabricated by polyol process. The effect of surfactant amount on the structure, morphology and magnetic properties of ZnFe{sub 2}O{sub 4} ferrites were investigated by X-ray diffraction(XRD), transmission electron microscope (TEM), thermogravimetric and differential scanning calorimetry (TG–DSC) and vibrating sample magnetometry (VSM), respectively. The results indicate that the structure of ZnFe{sub 2}O{sub 4} ferrites is a pure cubic spinel structure with a particle size of 5–8 nm. The dispersion of the synthesized ZnFe{sub 2}O{sub 4} is enhanced when the mole ratio of Fe(acac){sub 3} to sodium citrate decreases. The synthesized particles present ferrimagnetic behavior with a small hysteresis at room temperature. The increase of surfactant amount conversely leads to the decrease in the saturation magnetization value (Ms) especially when the mole ratio of Fe(acac){sub 3} to sodium citrate decreases to 8:3. Its Ms value is drastically reduced to 18.97 emu/g.

  11. Crystallisation and structural studies of monodisperse nylon oligomers and related polymers

    International Nuclear Information System (INIS)

    Sikorski, P.T.

    2001-11-01

    Using electron and X-ray diffraction data, together with computerised molecular modeling, the structures of monodisperse nylon oligomers and related polymers have been investigated. Structural changes on heating were also studied. The molecules were crystallised from solution and their morphologies examined using optical and transmission electron microscopy. Lath-like lamellar crystals of the polyester poly-β-propiolactone were crystallised isothermally. The interpretation of the diffraction data with the use of molecular modeling led to the discovery of the new crystalline structure, the γ-structure. In the γ-structure, the polyester chain is in an all-trans conformation and the structure consists of a two-chain, basal-faced, orthorhombic unit cell. The setting angles, with respect to the a axis, are ± 51.5 deg for the corner and centre chains, respectively. The lamellae are 5 nm in thickness and the chains run orthogonal to the lamellar surface. The general fold direction is along the a-axis (long axis of the crystal) and the chain folds successively in the [110] and [11-bar0] directions. Three different nylon 4 6 oligomers were crystallised from solution using a range of crystallisation methods. The 4- and 8-amide molecules were found to form three-dimensional crystals, in which the crystal thickness was much greater than the molecular length. The structure was found to be different from the nylon 4 6 polymer reported previously. It was found that the type of hydrogen-bonded sheet formed by these molecules can influence the way in which these sheets stack to form crystals. In addition, a study of the 9-amide molecule showed that a particular type of hydrogen-bonded sheet, a-sheet, is preferred for nylon 4 6. This discovery suggests that an amide unit is found in the fold in the chain-folded nylon 4 6 polymer crystals, to allow the a-sheets to be formed. It is not a consequence of a need to form a stress-free fold. In the regular adjacent re-entry chain

  12. Preparation of antisera specific for human B cells by immunization of rabbits with immune complexes

    International Nuclear Information System (INIS)

    Welsh, K.I.; Turner, M.J.

    1976-01-01

    Three rabbit antisera are described which are specific without absorption (titer 1:100) for separated human B cells, as measured by complement and non-complement fixing assays. The method of production of these sera involved injections of rabbits with precipitin lines formed between 10μ1 of three separate detergent solubilized membrane preparations and 4μ1 aliquots of rabbit antisera to human B cells. In addition to being B cell specific, the three sera block the MLC reaction, inhibit aggregated IgG binding to B cells, and show differential degrees of B cell lysis when tested on a panel of separated B and T cells. These and other properties suggest that the target specificities of the antibodies are the human equivalent of the murine Ia antigens. (author)

  13. Hair cell counts in a rat model of sound damage: Effects of tissue preparation & identification of regions of hair cell loss.

    Science.gov (United States)

    Neal, Christopher; Kennon-McGill, Stefanie; Freemyer, Andrea; Shum, Axel; Staecker, Hinrich; Durham, Dianne

    2015-10-01

    Exposure to intense sound can damage or kill cochlear hair cells (HC). This loss of input typically manifests as noise induced hearing loss, but it can also be involved in the initiation of other auditory disorders such as tinnitus or hyperacusis. In this study we quantify changes in HC number following exposure to one of four sound damage paradigms. We exposed adult, anesthetized Long-Evans rats to a unilateral 16 kHz pure tone that varied in intensity (114 dB or 118 dB) and duration (1, 2, or 4 h) and sacrificed animals 2-4 weeks later. We compared two different methods of tissue preparation, plastic embedding/sectioning and whole mount dissection, for quantifying hair cell loss as a function of frequency. We found that the two methods of tissue preparation produced largely comparable cochleograms, with whole mount dissections allowing a more rapid evaluation of hair cell number. Both inner and outer hair cell loss was observed throughout the length of the cochlea irrespective of sound damage paradigm. Inner HC loss was either equal to or greater than outer HC loss. Increasing the duration of sound exposures resulted in more severe HC loss, which included all HC lesions observed in an analogous shorter duration exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Effects of Homogenization Scheme of TiO2 Screen-Printing Paste for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2012-01-01

    Full Text Available TiO2 porous electrodes have been fabricated for photoelectrodes in dye-sensitized solar cells (DSCs using TiO2 screen-printing paste from nanocrystalline TiO2 powder dried from the synthesized sol. We prepared the TiO2 screen-printing paste by two different methods to disperse the nanocrystalline TiO2 powder: a “ball-milling route” and a “mortal-grinding route.” The TiO2 ball-milling (TiO2-BM route gave monodisperse TiO2 nanoparticles, resulting in high photocurrent density (14.2 mA cm−2 and high photoconversion efficiency (8.27%. On the other hand, the TiO2 mortal-grinding (TiO2-MG route gave large aggregate of TiO2 nanoparticles, resulting in low photocurrent density (11.5 mA cm−2 and low photoconversion efficiency (6.43%. To analyze the photovoltaic characteristics, we measured the incident photon-to-current efficiency, light absorption spectroscopy, and electrical impedance spectroscopy of DSCs.

  15. Preparation of Nanoporous TiO2 Electrodes for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Hsiue-Hsyan Wang

    2011-01-01

    Full Text Available Nano-porous TiO2 thin films have been widely used as the working electrodes in dye-sensitized solar cells (DSSCs. In this work, the phase-pure anatase TiO2 (a-TiO2 and rutile TiO2 (r-TiO2 have been prepared using hydrothermal processes. The investigation of photo-to-electron conversion efficiency of DSSCs fabricated from mixed-TiO2 with a-TiO2 and r-TiO2 ratio of 80 : 20 (A8R2 was performed and compared to that from commercial TiO2 (DP-25. The results showed higher efficiency of DSSC for A8R2 cells with same dependence of cell efficiency on the film thickness for both A8R2 and DP-25 cells. The best efficiency obtained in this work is 5.2% from A8R2 cell with TiO2 film thickness of 12.0 μm. The correlation between the TiO2 films thickness and photoelectron chemical properties of DSSCs fabricated from A8R2 and DP-25 was compared and discussed.

  16. Cultivation of corneal endothelial cells on a pericellular matrix prepared from human decidua-derived mesenchymal cells.

    Directory of Open Access Journals (Sweden)

    Ryohei Numata

    Full Text Available The barrier and pump functions of the corneal endothelium are essential for the maintenance of corneal transparency. Although corneal transplantation is the only current therapy for treating corneal endothelial dysfunction, the potential of tissue-engineering techniques to provide highly efficient and less invasive therapy in comparison to corneal transplantation has been highly anticipated. However, culturing human corneal endothelial cells (HCECs is technically difficult, and there is no established culture protocol. The aim of this study was to investigate the feasibility of using a pericellular matrix prepared from human decidua-derived mesenchymal cells (PCM-DM as an animal-free substrate for HCEC culture for future clinical applications. PCM-DM enhanced the adhesion of monkey CECs (MCECs via integrin, promoted cell proliferation, and suppressed apoptosis. The HCECs cultured on the PCM-DM showed a hexagonal morphology and a staining profile characteristic of Na⁺/K⁺-ATPase and ZO-1 at the plasma membrane in vivo, whereas the control HCECs showed a fibroblastic phenotype. The cell density of the cultured HCECs on the PCM-DM was significantly higher than that of the control cells. These results indicate that PCM-DM provides a feasible xeno-free matrix substrate and that it offers a viable in vitro expansion protocol for HCECs while maintaining cellular functions for use as a subsequent clinical intervention for tissue-engineered based therapy of corneal endothelial dysfunction.

  17. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Song, Cunfeng [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Chang, Ying; Cheng, Ling; Xu, Yiting [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Chen, Xiaoling, E-mail: tinachen0628@163.com [Department of Endodontics, Xiamen Stomatology Hospital, Teaching Hospital of Fujian Medical University, Xiamen 361003 (China); Zhang, Long; Zhong, Lina [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Dai, Lizong, E-mail: lzdai@xmu.edu.cn [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China)

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. - Highlights: • A new type of antibacterial agent (PSA/Ag-NPs nanocomposites) was synthesized. • The antibacterial activity against S. aureus and E. coli was studied. • Inhibition zone, MIC, MBC, and bactericidal kinetics were evaluated. • PSA/Ag-NPs nanocomposites showed excellent antibacterial activity.

  18. Cost comparison of methods for preparation of neonatal red cell aliquots.

    Science.gov (United States)

    Lechuga, Diana; Thompson, Christina

    2007-01-01

    The purpose of this study was to compare the preparation costs of two common methods used for neonatal red blood cell transfusion aliquots. Three months of data from a Level 2 and Level 3 neonatal intensive care unit (NICU) were used to determine the comparative cost for red cell aliquot transfusions using an eight bag aliquot/transfer system or the syringe set system. Using leuko-poor red blood cell blood collected in Adsol and containing approximately 320 ml of red blood cells and supernatant solution, the average cost of neonatal transfusion aliquots was determined using the Charter Medical syringe set and the Charter Medical eight bag aliquot/transfer system. A total of 126 red blood cell transfusion aliquots were used over the three month period. The amount transfused with each aliquot ranged from 5.0 ml - 55.0 ml with an average of 24.0 ml per aliquot. The cost per aliquot using the eight aliquot/transfer set was calculated as $36.25 and the cost per aliquot using the syringe set cost was calculated as $30.71. Additional benefits observed with the syringe set included decreased blood waste. When comparing Charter Medical multiple aliquot bag sets and the Charter Medical syringe aliquot system to provide neonatal transfusions, the use of the syringe system decreased blood waste and proved more cost effective.

  19. Method of preparing porous, rigid ceramic separators for an electrochemical cell. [Patent application

    Science.gov (United States)

    Bandyopadhyay, G.; Dusek, J.T.

    Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200/sup 0/C for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide, and magnesium-aluminium oxide have advantageously been used to form separators by this method.

  20. Microfluidic Sample Preparation for Diagnostic Cytopathology

    Science.gov (United States)

    Mach, Albert J.; Adeyiga, Oladunni B.; Di Carlo, Dino

    2014-01-01

    The cellular components of body fluids are routinely analyzed to identify disease and treatment approaches. While significant focus has been placed on developing cell analysis technologies, tools to automate the preparation of cellular specimens have been more limited, especially for body fluids beyond blood. Preparation steps include separating, concentrating, and exposing cells to reagents. Sample preparation continues to be routinely performed off-chip by technicians, preventing cell-based point-of-care diagnostics, increasing the cost of tests, and reducing the consistency of the final analysis following multiple manually-performed steps. Here, we review the assortment of biofluids for which suspended cells are analyzed, along with their characteristics and diagnostic value. We present an overview of the conventional sample preparation processes for cytological diagnosis. We finally discuss the challenges and opportunities in developing microfluidic devices for the purpose of automating or miniaturizing these processes, with particular emphases on preparing large or small volume samples, working with samples of high cellularity, automating multi-step processes, and obtaining high purity subpopulations of cells. We hope to convey the importance of and help identify new research directions addressing the vast biological and clinical applications in preparing and analyzing the array of available biological fluids. Successfully addressing the challenges described in this review can lead to inexpensive systems to improve diagnostic accuracy while simultaneously reducing overall systemic healthcare costs. PMID:23380972

  1. Serial assessment of biochemical parameters of red cell preparations to evaluate safety for neonatal transfusions

    Science.gov (United States)

    Mukherjee, Somnath; Marwaha, Neelam; Prasad, Rajendra; Sharma, Ratti Ram; Thakral, Beenu

    2010-01-01

    Background & Objectives: Neonatologists often prefer fresh blood (diphosphoglycerate (2,3 DPG) up to 21 days of storage. Results: Within each group of RBC, rise in mean concentration of potassium, lactate and plasma haemoglobin from day 1 to 21 of storage was significant in CPDA-1 RBC having the highest levels at day 21. From day 3 to 21, SAGM RBC had higher mean pH value than CPDA-1 RBC though this difference was not statistically significant. SAGM RBC had highest mean glucose concentration during storage than other two types of red cell preparations (P<0.005). Within each group, fall in mean 2,3 DPG concentration from day 1 to 7 was significant (P<0.05). A positive correlation existed between mean plasma potassium and haemoglobin in all three types of red cells (r=0.726, 0.419, 0.605 for CPDA-1 RBC, SAGM RBC and whole blood respectively, P<0.005). Interpretation & Conclusions: All the three red cell preparations tested revealed biochemical changes within acceptable limits of safety till 21 days of storage. CPDA-1 RBCs had the highest degree of these changes. PMID:21245620

  2. The hospital preparation of radiopharmaceuticals

    International Nuclear Information System (INIS)

    The subject is covered in sections: introduction; preparation ((general - sterilization), production areas (laboratories), working methods for injections, working methods for oral preparations and iodination procedures); analytical testing (general, standards common to injections and oral preparations, standards for injections, standards for oral preparations); reliable methods of preparing sup(99m)Tc-radiopharmaceuticals and 51 Cr-red cells; commercial radiopharmaceutical kits. (U.K.)

  3. Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Li Bo [National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610064 (China); Guo Bo [National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610064 (China); West China Eye Center of Huaxi Hospital, Sichuan University, Chengdu 610064 (China); Fan Hongsong [National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610064 (China)], E-mail: leewave@126.com; Zhang Xingdong [National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610064 (China)

    2008-11-15

    To investigate the effects of nano-hydroxyapatite (HA) particles with different morphology on highly malignant melanoma cells, three kinds of HA particles with different morphology were synthesized and co-cultured with highly malignant melanoma cells using phosphate-buffered saline (PBS) as control. A precipitation method with or without citric acid addition as surfactant was used to produce rod-like hydroxyapatite (HA) particles with nano- and micron size, respectively, and a novel oil-in-water emulsion method was employed to prepare ellipse-like nano-HA particles. Particle morphology and size distribution of the as prepared HA powders were characterized by transmission electron microscope (TEM) and dynamic light scattering technique. The nano- and micron HA particles with different morphology were co-cultured with highly malignant melanoma cells. Immunofluorescence analysis and MTT assay were employed to evaluate morphological change of nucleolus and proliferation of tumour cells, respectively. To compare the effects of HA particles on cell response, the PBS without HA particles was used as control. The experiment results indicated that particle nanoscale effect rather than particle morphology of HA was more effective for the inhibition on highly malignant melanoma cells proliferation.

  4. Appropriate materials and preparation techniques for polycrystalline-thin-film thermophotovoltaic cells

    Science.gov (United States)

    Dhere, Neelkanth G.

    1997-03-01

    Polycrystalline-thin-film thermophotovoltaic (TPV) cells have excellent potential for reducing the cost of TPV generators so as to address the hitherto inaccessible and highly competitive markets such as self-powered gas-fired residential warm air furnaces and energy-efficient electric cars, etc. Recent progress in polycrystalline-thin-film solar cells have made it possible to satisfy the diffusion length and intrinsic junction rectification criteria for TPV cells operating at high fluences. Continuous ranges of direct bandgaps of the ternary and pseudoternary compounds such as Hg1-xCdxTe, Pb1-xCdxTe, Hg1-xZnxTe, and Pb1-xZnxS cover the region of interest of 0.50-0.75 eV for efficient TPV conversion. Other ternary and pseudoternary compounds which show direct bandgaps in most of or all of the 0.50-0.75 eV range are Pb1-xZnxTe, Sn1-xCd2xTe2, Pb1-xCdxSe, Pb1-xZnxSe, and Pb1-xCdxS. Hg1-xCdxTe (with x~0.21) has been studied extensively for infrared detectors. PbTe and Pb1-xSnxTe have also been studied for infrared detectors. Not much work has been carried out on Hg1-xZnxTe thin films. Hg1-xCdxTe and Pb1-xCdxTe alloys cover a wide range of cut-off wavelengths from the far infrared to the near visible. Acceptors and donors are introduced in these materials by excess non-metal (Te) and excess metal (Hg and Pb) respectively. Extrinsic acceptor impurities are Cu, Au, and As while and In and Al are donor impurities. Hg1-xCdxTe thin films have been deposited by isothermal vapor-phase epitaxy (VPE), liquid phase epitaxy (LPE), hot-wall metalorganic chemical vapor deposition (MOCVD), electrodeposition, sputtering, molecular beam epitaxy (MBE), laser-assisted evaporation, and vacuum evaporation with or without hot-wall enclosure. The challenge in the preparation of Hg1-xCdxTe is to provide excess mercury incidence rate, to optimize the deposition parameters for enhanced mercury incorporation, and to achieve the requisite stoichiometry, grain size, and doping. MBE and MOCVD

  5. Synthesis and characterization of CoPt nanoparticles prepared by room temperature chemical reduction with PAMAM dendrimer as template.

    Science.gov (United States)

    Wan, Haiying; Shi, Shifan; Bai, Litao; Shamsuzzoha, Mohammad; Harrell, J W; Street, Shane C

    2010-08-01

    We describe an approach to synthesize monodisperse CoPt nanoparticles with dendrimer as template by a simple chemical reduction method in aqueous solution using NaBH4 as reducing agent at room temperature. The as-made CoPt nanoparticles buried in the dendrimer matrix have the chemically disordered fcc structure and can be transformed to the fct phase after annealing at 700 degrees C. This is the first report of dendrimer-mediated room temperature synthesis of monodisperse magnetic nanoparticles in aqueous solution.

  6. Sample Preparation Methodologies for In Situ Liquid and Gaseous Cell Analytical Transmission Electron Microscopy of Electropolished Specimens.

    Science.gov (United States)

    Zhong, Xiang Li; Schilling, Sibylle; Zaluzec, Nestor J; Burke, M Grace

    2016-12-01

    In recent years, an increasing number of studies utilizing in situ liquid and/or gaseous cell scanning/transmission electron microscopy (S/TEM) have been reported. Because of the difficulty in the preparation of suitable specimens, these environmental S/TEM studies have been generally limited to studies of nanoscale structured materials such as nanoparticles, nanowires, or sputtered thin films. In this paper, we present two methodologies which have been developed to facilitate the preparation of electron-transparent samples from conventional bulk metals and alloys for in situ liquid/gaseous cell S/TEM experiments. These methods take advantage of combining sequential electrochemical jet polishing followed by focused ion beam extraction techniques to create large electron-transparent areas for site-specific observation. As an example, we illustrate the application of this methodology for the preparation of in situ specimens from a cold-rolled Type 304 austenitic stainless steel sample, which was subsequently examined in both 1 atm of air as well as fully immersed in a H2O environment in the S/TEM followed by hyperspectral imaging. These preparation techniques can be successfully applied as a general procedure for a wide range of metals and alloys, and are suitable for a variety of in situ analytical S/TEM studies in both aqueous and gaseous environments.

  7. Changes in inorganic matrices of dye sensitized solar cells during preparation

    Energy Technology Data Exchange (ETDEWEB)

    Graaf, Harald; Baumgaertel, Thomas; Luettich, Franziska; Kehr, Mirko [Institute of Physics, University of Technology Chemnitz (Germany); Maedler, Carsten [Institute of Physics, University of Technology Chemnitz (Germany); Department of Physics, Boston University, Boston, MA (United States); Oekermann, Thorsten [Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover (Germany)

    2010-07-01

    Dye-sensitized solar cells (DSSC) containing zinc oxide (ZnO) as the inorganic semiconductor and organic dye molecules as the sensitizer are well known devices with high efficiency. Such DSSC are prepared by electrochemical deposition of an aqueous zinc salt solution including organic molecules as templates. The template is desorbed in a second step to obtain a porous ZnO network. As a final step the sensitizing organic molecules were re-adsorped from solution. Within these different processing steps the structure of the ZnO can be influenced. We will discuss the growth mechanism during film deposition e.g. due to different template molecules. Also the crystal structure changes accompanying the desorption process, which is performed in an alkaline aqueous solution. Different techniques as X-ray investigations, optical absorption and scanning probe methods are used to identify the variations in different cells and within the production process.

  8. TiO₂ Nanowire Networks Prepared by Titanium Corrosion and Their Application to Bendable Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Jin, Saera; Shin, Eunhye; Hong, Jongin

    2017-10-12

    TiO₂ nanowire networks were prepared, using the corrosion of Ti foils in alkaline (potassium hydroxide, KOH) solution at different temperatures, and then a further ion-exchange process. The prepared nanostructures were characterized by field emission scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The wet corroded foils were utilized as the photoanodes of bendable dye-sensitized solar cells (DSSCs), which exhibited a power conversion efficiency of 1.11% under back illumination.

  9. Preparation of UO_2 Fine Particle by Hydrolysis of Uranium(IV) Alkoxide

    OpenAIRE

    Satoh, Isamu; Takahashi, Mitsuyuki; Miura, Shigeyuki

    1997-01-01

    Fine particles of uranium(IV) dioxides were obtained by hydrolysis of uranium(IV) ethoxide which was synthesized by reacting uranium tetrachloride with sodium ethoxide. The monodispersed submicrometer particles were confirmed by SEM observation.

  10. Annealing effect on the structural and optical properties of Cr/α-Cr2O3 monodispersed particles based solar absorbers

    International Nuclear Information System (INIS)

    Khamlich, S.; McCrindle, R.; Nuru, Z.Y.; Cingo, N.; Maaza, M.

    2013-01-01

    Graphical abstract: A cost-effective and environmentally friendly green chemical method, the so-called aqueous chemical growth (ACG) method, was used to deposit chromium/alpha-chromium(III) oxide, Cr/α-Cr 2 O 3 , monodispersed particles, for solar absorbers applications. Highlights: ► Cr/α-Cr 2 O 3 have been deposited by the aqueous chemical growth (ACG) method. ► High temperature annealing affects the optical selectivity of the deposited particles. ► Oxygen diffusion to the interface at high temperature results in the oxidization of the substrate. - Abstract: A cost-effective and environmentally friendly green chemical method, the so-called aqueous chemical growth (ACG) method, was used to deposit chromium/alpha-chromium(III) oxide, Cr/α-Cr 2 O 3 , monodispersed particles, for solar absorbers applications. The deposited particles were annealed at various temperatures in a hydrogen atmosphere for 2 h to study the annealing temperature dependence of the structural, chemical and optical properties of the particles grown on tantalum substrates. The deposited Cr/α-Cr 2 O 3 was characterized by X-ray diffraction (XRD), attenuated total reflection (ATR), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and diffuse reflectance UV–vis–NIR spectroscopy. The XRD and ATR analysis indicated that by increasing annealing temperature, the particles crystallinity was improved and Ta 2 O 5 was formed around 600 °C, due to the fast oxygen diffusion from the deposited α-Cr 2 O 3 toward the tantalum substrate. The optical measurements show that samples annealed at 400 and 500 °C exhibit the targeted high absorbing optical characteristics of “Black chrome”, while those annealed below 400 °C and above 500 °C show a significant low absorptivity and high emissivity.

  11. All-In-One: Advanced preparation of Human Parenchymal and Non-Parenchymal Liver Cells.

    Directory of Open Access Journals (Sweden)

    Melanie Werner

    Full Text Available Liver cells are key players in innate immunity. Thus, studying primary isolated liver cells is necessary for determining their role in liver physiology and pathophysiology. In particular, the quantity and quality of isolated cells are crucial to their function. Our aim was to isolate a large quantity of high-quality human parenchymal and non-parenchymal cells from a single liver specimen.Hepatocytes, Kupffer cells, liver sinusoidal endothelial cells, and stellate cells were isolated from liver tissues by collagenase perfusion in combination with low-speed centrifugation, density gradient centrifugation, and magnetic-activated cell sorting. The purity and functionality of cultured cell populations were controlled by determining their morphology, discriminative cell marker expression, and functional activity.Cell preparation yielded the following cell counts per gram of liver tissue: 2.0 ± 0.4 × 10(7 hepatocytes, 1.8 ± 0.5 × 10(6 Kupffer cells, 4.3 ± 1.9 × 10(5 liver sinusoidal endothelial cells, and 3.2 ± 0.5 × 10(5 stellate cells. Hepatocytes were identified by albumin (95.5 ± 1.7% and exhibited time-dependent activity of cytochrome P450 enzymes. Kupffer cells expressed CD68 (94.5 ± 1.2% and exhibited phagocytic activity, as determined with 1 μm latex beads. Endothelial cells were CD146(+ (97.8 ± 1.1% and exhibited efficient uptake of acetylated low-density lipoprotein. Hepatic stellate cells were identified by the expression of α-smooth muscle actin (97.1 ± 1.5%. These cells further exhibited retinol (vitamin A-mediated autofluorescence.Our isolation procedure for primary parenchymal and non-parenchymal liver cells resulted in cell populations of high purity and quality, with retained physiological functionality in vitro. Thus, this system may provide a valuable tool for determining liver function and disease.

  12. A General Synthesis Strategy for Hierarchical Porous Metal Oxide Hollow Spheres

    Directory of Open Access Journals (Sweden)

    Huadong Fu

    2015-01-01

    Full Text Available The hierarchical porous TiO2 hollow spheres were successfully prepared by using the hydrothermally synthesized colloidal carbon spheres as templates and tetrabutyl titanate as inorganic precursors. The diameter and wall thickness of hollow TiO2 spheres were determined by the hard templates and concentration of tetrabutyl titanate. The particle size, dispersity, homogeneity, and surface state of the carbon spheres can be easily controlled by adjusting the hydrothermal conditions and adding certain amount of the surfactants. The prepared hollow spheres possessed the perfect spherical shape, monodispersity, and hierarchically pore structures, and the further experiment verified that the present approach can be used to prepare other metal oxide hollow spheres, which could be used as catalysis, fuel cells, lithium-air battery, gas sensor, and so on.

  13. Gel-aided sample preparation (GASP)--a simplified method for gel-assisted proteomic sample generation from protein extracts and intact cells.

    Science.gov (United States)

    Fischer, Roman; Kessler, Benedikt M

    2015-04-01

    We describe a "gel-assisted" proteomic sample preparation method for MS analysis. Solubilized protein extracts or intact cells are copolymerized with acrylamide, facilitating denaturation, reduction, quantitative cysteine alkylation, and matrix formation. Gel-aided sample preparation has been optimized to be highly flexible, scalable, and to allow reproducible sample generation from 50 cells to milligrams of protein extracts. This methodology is fast, sensitive, easy-to-use on a wide range of sample types, and accessible to nonspecialists. © 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Real-time assessment of corneal endothelial cell damage following graft preparation and donor insertion for DMEK.

    Directory of Open Access Journals (Sweden)

    Maninder Bhogal

    Full Text Available To establish a method for assessing graft viability, in-vivo, following corneal transplantation.Optimization of calcein AM fluorescence and toxicity assessment was performed in cultured human corneal endothelial cells and ex-vivo corneal tissue. Descemet membrane endothelial keratoplasty grafts were incubated with calcein AM and imaged pre and post preparation, and in-situ after insertion and unfolding in a pig eye model. Global, macroscopic images of the entire graft and individual cell resolution could be attained by altering the magnification of a clinical confocal scanning laser microscope. Patterns of cell loss observed in situ were compared to those seen using standard ex-vivo techniques.Calcein AM showed a positive dose-fluorescence relationship. A dose of 2.67μmol was sufficient to allow clear discrimination between viable and non-viable areas (sensitivity of 96.6% with a specificity of 96.1% and was not toxic to cultured endothelial cells or ex-vivo corneal tissue. Patterns of cell loss seen in-situ closely matched those seen on ex-vivo assessment with fluorescence viability imaging, trypan blue/alizarin red staining or scanning electron microscopy. Iatrogenic graft damage from preparation and insertion varied between 7-35% and incarceration of the graft tissue within surgical wounds was identified as a significant cause of endothelial damage.In-situ graft viability assessment using clinical imaging devices provides comparable information to ex-vivo methods. This method shows high sensitivity and specificity, is non-toxic and can be used to evaluate immediate cell viability in new grafting techniques in-vivo.

  15. Preparation of supported PtRu/C electrocatalyst for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Jiang Luhua; Sun Gongquan; Zhao Xinsheng; Zhou Zhenhua; Yan Shiyou; Tang Shuihua; Wang Guoxiong; Zhou Bing; Xin Qin

    2005-01-01

    In this work, high-surface supported PtRu/C were prepared with Ru(NO)(NO 3 ) 3 and [Pt(H 2 NCH 2 CH 2 NH 2 ) 2 ]Cl 2 as the precursors and hydrogen as a reducing agent. XRD and TEM analyses showed that the PtRu/C catalysts with different loadings possessed small and homogeneous metal particles. Even at high metal loading (40 wt.% Pt, 20 wt.% Ru) the mean metal particle size is less than 4 nm. Meanwhile, the calculated Pt crystalline lattice parameter and Pt (2 2 0) peak position indicated that the geometric structure of Pt was modified by Ru atoms. Among the prepared catalysts, the lattice parameter of 40-20 wt.% PtRu/C contract most. Cyclic voltammetry (CV), chronoamperometry (CA), CO stripping and single direct methanol fuel cell tests jointly suggested that the 40-20 wt.% PtRu/C catalyst has the highest electrochemical activity for methanol oxidation

  16. Preparation of cathode materials for Li-ion cells by acid dissolution

    International Nuclear Information System (INIS)

    Oh, Si Hyoung; Jeong, Woon Tae; Cho, Won Il; Cho, Byung Won; Woo, Kyoungja

    2005-01-01

    New synthesis route called acid dissolution method, preparing the high-performance cathode materials for the lithium-ion cells, was successfully developed. In this method, insoluble starting materials such as metal carbonates or metal hydroxides are dissolved in strong organic acidic solution which contains a chelating agent. And then, the solvent of the solution containing starting materials is eliminated to obtain the xerogel of the initial solution whose chemical form is expressed as Li[MA 3 ], where M is a transition metal atom and A is the anion of the organic acid. The xerogel is then calcined at the high temperature to obtain polycrystalline cathode materials. In this work, the applicability of this method was demonstrated synthesizing a polycrystalline single-phase LiCoO 2 using lithium carbonate, cobalt hydroxide as the insoluble starting materials and the acrylic acid as a chelating agent. The synthesized powders calcined at 800 deg. C showed a good electrochemical performance in the half-cell test

  17. Method of preparing Ru-immobilized polymer-supported catalyst for hydrogen generation from NaBH{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ching-Wen; Chen, Chuh-Yung; Huang, Yao-Hui [Department of Chemical Engineering, National Cheng Kung University, No.1, University Road, Tainan City 70101 (China)

    2009-03-15

    A method of preparing a polymer-supported catalyst for hydrogen generation is introduced in this article. This polymer-supported catalyst is the structure of ruthenium (Ru) nanoparticle immobilized on a monodisperse polystyrene (PSt) microsphere. The diameter of the Ru nanoparticle is around 16 nm, and the diameter of the PSt microsphere is 2.65 um. This preparation method is accomplished by two unique techniques: one is sodium lauryl sulfate/sodium formaldehyde sulfoxylate (SLS/SFS) interface-initiated system, the other is 2-methacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester (GMA-IDA) chelating monomer. By taking advantage of these two techniques, Ru{sup 3+} ion will be chelated and then reduced to Ru{sup (0)} nanoparticle over PSt surface predominantly. The hydrolysis of alkaline sodium borohydride (NaBH{sub 4}) solution catalyzed by this Ru-immobilized polymer-supported catalyst is also examined in this article. It reveals that the hydrogen generation rate is 215.9 ml/min g-cat. in a diluted solution containing 1 wt.% NaBH{sub 4} and 1 wt.% NaOH, and this Ru-immobilized polymer-supported catalyst could be recycled during the reaction. (author)

  18. Monodisperse Picoliter Droplets for Low-Bias and Contamination-Free Reactions in Single-Cell Whole Genome Amplification.

    Directory of Open Access Journals (Sweden)

    Yohei Nishikawa

    Full Text Available Whole genome amplification (WGA is essential for obtaining genome sequences from single bacterial cells because the quantity of template DNA contained in a single cell is very low. Multiple displacement amplification (MDA, using Phi29 DNA polymerase and random primers, is the most widely used method for single-cell WGA. However, single-cell MDA usually results in uneven genome coverage because of amplification bias, background amplification of contaminating DNA, and formation of chimeras by linking of non-contiguous chromosomal regions. Here, we present a novel MDA method, termed droplet MDA, that minimizes amplification bias and amplification of contaminants by using picoliter-sized droplets for compartmentalized WGA reactions. Extracted DNA fragments from a lysed cell in MDA mixture are divided into 105 droplets (67 pL within minutes via flow through simple microfluidic channels. Compartmentalized genome fragments can be individually amplified in these droplets without the risk of encounter with reagent-borne or environmental contaminants. Following quality assessment of WGA products from single Escherichia coli cells, we showed that droplet MDA minimized unexpected amplification and improved the percentage of genome recovery from 59% to 89%. Our results demonstrate that microfluidic-generated droplets show potential as an efficient tool for effective amplification of low-input DNA for single-cell genomics and greatly reduce the cost and labor investment required for determination of nearly complete genome sequences of uncultured bacteria from environmental samples.

  19. Microemulsion prepared Ni88Pt12 for methane cracking

    KAUST Repository

    Zhou, Lu

    2017-01-16

    Monodispersed NiPt nanoparticles of 10 nm were synthesized by water-in-oil microemulsion. The Ni-Pt alloy structure was stable during the thermal treatment between 330 and 1037 °C, whereas the relatively low temperature range of 600-700 °C was favorable for methane cracking to produce hydrogen and carbon nanotubes.

  20. Microemulsion prepared Ni88Pt12 for methane cracking

    KAUST Repository

    Zhou, Lu; Harb, Moussab; Hedhili, Mohamed N.; Mana, Noor Al; Basset, Jean-Marie

    2017-01-01

    Monodispersed NiPt nanoparticles of 10 nm were synthesized by water-in-oil microemulsion. The Ni-Pt alloy structure was stable during the thermal treatment between 330 and 1037 °C, whereas the relatively low temperature range of 600-700 °C was favorable for methane cracking to produce hydrogen and carbon nanotubes.

  1. Rapid preparation of a noncultured skin cell suspension that promotes wound healing.

    Science.gov (United States)

    Yoon, Cheonjae; Lee, Jungsuk; Jeong, Hyosun; Lee, Sungjun; Sohn, Taesik; Chung, Sungphil

    2017-06-01

    Autologous skin cell suspensions have been used for wound healing in patients with burns and against normal pigmentation in vitiligo. To separate cells and the extracellular matrix from skin tissue, most researchers use enzymatic digestion. Therefore, this process is difficult to perform during a routine surgical procedure. We aimed to prepare a suspension of noncultured autologous skin cells (NCSCs) using a tissue homogenizer as a new method instead of harsh biochemical reagents. The potential clinical applicability of NCSCs was analyzed using a nude-rat model of burn healing. After optimization of the homogenizer settings, cell viability ranged from 52 to 89%. Scanning electron microscopy showed evidence of keratinocyte-like cell morphology, and several growth factors, including epidermal growth factor and basic fibroblast growth factor, were present in the NCSCs. The rat model revealed that NCSCs accelerated skin regeneration. NCSCs could be generated using a tissue homogenizer for enhancement of wound healing in vivo. In the NCSC group of wounds, on day 7 of epithelialization, granulation was observed, whereas on day 14, there was a significant increase in skin adnexa regeneration as compared to the control group (PBS treatment; p study suggests that the proposed process is rapid and does not require the use of biochemical agents. Thus, we recommend a combination of surgical treatment with the new therapy for a burn as an effective method.

  2. Porous polybenzimidazole membranes doped with phosphoric acid: Preparation and application in high-temperature proton-exchange-membrane fuel cells

    International Nuclear Information System (INIS)

    Li, Jin; Li, Xiaojin; Yu, Shuchun; Hao, Jinkai; Lu, Wangting; Shao, Zhigang; Yi, Baolian

    2014-01-01

    Highlights: • Porous polybenzimidazole membrane was prepared with glucose as porogen. • Phosphoric acid content was as high as 15.7 mol H 3 PO 4 per PBI repeat unit. • 200 h Constant current density test was carried out at 150 °C. • Degradation was due to the gap between membrane and catalyst layer. - Abstract: In this paper, the preparation and characterization of porous polybenzimidazole membranes doped with phosphoric acid were reported. For the preparation of porous polybenzimidazole membranes, glucose and saccharose were selected as porogen and added into PBI resin solution before solvent casting. The prepared porous PBI membranes had high proton conductivity and high content of acid doping at room temperature with 15.7 mol H 3 PO 4 per PBI repeat unit, much higher than pure PBI membrane at the same condition. Further, the performance and stability of the porous PBI membrane in high-temperature proton-exchange-membrane fuel cells was tested. It was found that the cell performance remained stable during 200 h stability test under a constant current discharge of 0.5 A cm −2 except for the last fifty hours. The decay in the last fifty hours was ascribed to the delamination between the catalyst layer and membrane increasing the charge-transfer resistance

  3. Synthesis, characterization and magnetic properties of monodisperse Ni, Zn-ferrite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjeev, E-mail: sanjeevkumar.dubey2@gmail.com [University of Petroleum and Energy Studies, Dehradun, Uttarakhand (India); Kumar, Pankaj [University of Petroleum and Energy Studies, Dehradun, Uttarakhand (India); Singh, Vaishali [University School of Basic and Applied Science (India); Kumar Mandal, Uttam [University of Chemical Technology, GGS Indraprastha University, Sector 16, Dwarka, Delhi 110403 (India); Kumar Kotnala, Ravinder [National Physical laboratory, New Delhi 110012 (India)

    2015-04-01

    Synthesization of monodisperse Ni, Zn-ferrite (Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4}, x=1, 0.8, 0.6, 0.5, 0.4, 0.2, 0.0) nanocrystals has been achieved by the inverse microemulsion method using CTAB as surfactant and kerosene as an oil phase. The detailed characterization of the synthesized nanocrystals and measurement of the magnetic properties has been done by techniques like X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), Fourier transform infrared spectroscopy (FITR) and Vibrating Sample Magnetometer (VSM) respectively. The relationship between the structure and composition of the nanocrystals with magnetic properties has been investigated. The nanocrystals size is found to be in the range 1–5 nm. The effect of Zn substitution on size and magnetic properties has been studied. It has been observed that magnetism changed from ferromagnetic at X= 0 to super paramagnetic to paramagnetic at X=1 as Zn concentration increased. The Curie temperature is found to decrease with an increase in Zn concentration. - Highlights: • Reverse microemulsion route is very facile route for synthesis of Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} ferrite. • Presence of Zn changes the structural and magnetic properties of the Zn substituted NiFe{sub 2}O{sub 4.} • The lattice constant increases with the increase in Zn substitution. • The curie temperature decreases with Zn concentration appreciably. • Magnetic behavior varies from ferromagnetic at x=0 to superparamagnetic to paramagnetic at x=1.

  4. Synthesis of monodisperse MFe{sub 2}O{sub 4} (M = Fe and Zn) nanoparticles for polydiethylsiloxane-based ferrofluid with a solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei [State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Laboratory of Nanophotonic Functional Materials and Devices, Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631 (China); Zhuang, Lin, E-mail: stszhl@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Zhang, Yong [Laboratory of Nanophotonic Functional Materials and Devices, Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631 (China); Shen, Hui [State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2015-09-15

    Highlights: • MFe{sub 2}O{sub 4} nanoparticles were synthesized through a facile solvothermal method. • The relationship between viscosity and temperature of the polydiethylsiloxane-based ferrofluid is discussed. • Fe{sub 3}O{sub 4} nanoparticles have a saturation magnetization of 73.06 emu/g at room temperature. - Abstract: Monodisperse MFe{sub 2}O{sub 4} (M = Fe, Zn) nanoparticles were successfully synthesized for the application of polydiethylsiloxane-based (PDES) ferrofluids (FFs) via a novel solvothermal method, with which 1-octanol and 1-octanamine act as binary solvent, oleic acid (OA) as the surfactant and metal acetylacetonate [M(acac){sub 3}](M = Fe and Zn) as the metal source. X-ray diffractometer confirms that the resultant nanoparticles are pure MFe{sub 2}O{sub 4} with a spinel structure. Infrared spectroscopy indicates that oleic acid is bound to the surface of MFe{sub 2}O{sub 4} through a covalent bond between carboxylate (COO{sup −}) and metal cations. The ratio of 1-octanol and 1-octanamine plays a key role in the formation of the sphere-shaped morphology. Transmission electron microscopy (TEM) images confirm that the Fe{sub 3}O{sub 4} particles are of 4–11 nm with good monodispersity and a narrow size distribution. The saturation magnetization of Fe{sub 3}O{sub 4} nanoparticles with sizes of 7 nm can reach up to 73.06 emu/g. Polydiethylsiloxane-based (PDES) FFs show relatively smaller changes of the viscosity with low temperatures (from −7 to 20 °C) than the polydimethylsiloxane-based (PDMS) FFs. For FFs applications, the relationship between viscosity and temperature is also discussed.

  5. Synthesis of optimized indium phosphide/zinc sulfide core/shell nanocrystals and titanium dioxide nanotubes for quantum dot sensitized solar cells

    Science.gov (United States)

    Lee, Seungyong

    Synthesis of InP/ZnS core/shell nanocrystals and TiO 2 nanotubes and the optimization study to couple them together were explored for quantum dot sensitized solar cells. Its intrinsic nontoxicity makes the direct band gap InP/ZnS core/shell be one of the most promising semiconductor nanocrystals for optoelectric applications, with the advantage of tuning the optical absorption range in the desired solar spectrum region. Highly luminescent and monodisperse InP/ZnS nanocrystals were synthesized in a non-coordinating solvent. By varying the synthesis scheme, different size InP/ZnS nanocrystals with emission peaks ranging from 520 nm to 620 nm were grown. For the purpose of ensuring air stability, a ZnS shell was grown. The ZnS shell improves the chemical stability in terms of oxidation prevention. Transmission electron microscopy (TEM) image shows that the nanocrystals are highly crystalline and monodisperse. Free-standing TiO2 nanotubes were produced by an anodization method using ammonium fluoride. The free-standing nanotubes were formed under the condition that the chemical dissolution speed associated with fluoride concentration was faster than the speed of Ti oxidation. Highly ordered free-standing anatase form TiO2 nanotubes, which are transformed by annealing at the optimized temperature, are expected to be ideal for coupling with the prepared InP/ZnS nanocrystals. Electrophoretic deposition was carried out to couple the InP/ZnS nanocrystals with the TiO2 nanotubes. Under the adjusted applied voltage condition, the current during the electrophoretic deposition decreased continuously with time. The amount of the deposited nanocrystals was estimated by calculation and the evenly deposited nanocrystals on the TiO2 nanotubes were observed by TEM.

  6. Review of New Technology for Preparing Crystalline Silicon Solar Cell Materials by Metallurgical Method

    Science.gov (United States)

    Li, Man; Dai, Yongnian; Ma, Wenhui; Yang, Bin; Chu, Qingmei

    2017-11-01

    The goals of greatly reducing the photovoltaic power cost and making it less than that of thermal power to realize photovoltaic power grid parity without state subsidies are focused on in this paper. The research status, key technologies and development of the new technology for preparing crystalline silicon solar cell materials by metallurgical method at home and abroad are reviewed. The important effects of impurities and defects in crystalline silicon on its properties are analysed. The importance of new technology on reducing production costs and improving its quality to increase the cell conversion efficiency are emphasized. The previous research results show that the raw materials of crystalline silicon are extremely abundant. The product of crystalline silicon can meet the quality requirements of solar cell materials: Si ≥ 6 N, P 1 Ω cm, minority carrier life > 25 μs cell conversion efficiency of about 19.3%, the product costs energy consumption energy consumption, low carbon and sustainable development are prospected.

  7. Comparison of Different Sample Preparation Protocols Reveals Lysis Buffer-Specific Extraction Biases in Gram-Negative Bacteria and Human Cells.

    Science.gov (United States)

    Glatter, Timo; Ahrné, Erik; Schmidt, Alexander

    2015-11-06

    We evaluated different in-solution and FASP-based sample preparation strategies for absolute protein quantification. Label-free quantification (LFQ) was employed to compare different sample preparation strategies in the bacterium Pseudomonas aeruginosa and human embryonic kidney cells (HEK), and organismal-specific differences in general performance and enrichment of specific protein classes were noted. The original FASP protocol globally enriched for most proteins in the bacterial sample, whereas the sodium deoxycholate in-solution strategy was more efficient with HEK cells. Although detergents were found to be highly suited for global proteome analysis, higher intensities were obtained for high-abundant nucleic acid-associated protein complexes, like the ribosome and histone proteins, using guanidine hydrochloride. Importantly, we show for the first time that the observable total proteome mass of a sample strongly depends on the sample preparation protocol, with some protocols resulting in a significant underestimation of protein mass due to incomplete protein extraction of biased protein groups. Furthermore, we demonstrate that some of the observed abundance biases can be overcome by incorporating a nuclease treatment step or, alternatively, a correction factor for complementary sample preparation approaches.

  8. Interface studies on the tunneling contact of a MOCVD-prepared tandem solar cell; Grenzflaechenuntersuchungen am Tunnelkontakt einer MOCVD-praeparierten Tandemsolarzelle

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, U.

    2007-07-10

    In this thesis a tandem solar cell with a novel tunneling contact was developed. For the development of the monolithic preparation especailly critical hetero-interfaces were studied in the region of the tunneling contact with surface-sensitive measuring method. The tandem solar cell consisted of single solar cells with absorber layers of In{sub 0.53}Ga{sub 0.47}As (E{sub g}=0.73 eV) and In{sub 0.78}Ga{sub 0.22}As{sub 0.491}P{sub 0.51} (E{sub g}=1.03 eV), the serial switching of which was pursued with a tunneling contact (ESAKI diode, which consisted of a very thin n-doped InGaAs and a p-doped GaAsSb layer. The III-V semiconductor layers were prepared by metalorganic gas phase epitaxy (MOCVD) monocrystallinely on an InP(100) substrate lattice-matchedly. Especially the influence of the preparation of InGaAs surfaces on the sharpness of the InGaAs/GaAsSb interface was in-situ studied by reflection-anisotropy spectroscopy and after a contamination-free transfer into the ultrahigh vacuum with photoelectron spectroscopy and with low-energetic electron diffraction (LEED). Thereby for the first time three different reconstructions of the MOCVD-prepared InGaAs surfaces could be observed, which were dependent on the heating temperature under pure hydrogen. The arsenic-rich InGaAs surface was observed for temperatures less than 300 C and showed in the LEED picture a (4 x 3) reconstruction. In the temperature range from 300 C until about 500 C a (2 x 4) reconstruction was observed, above 500 C the InGaAs surface 94 x 2)/c(8 x 2) was reconstructed. Subsequently the study of the growth of thin GaAsSb layers on these three InGaAs surface reconstructions followed. XPS measurements showed that the Sb/As ratio in GaAsSb at the growth on the As-rich (4 x 3) reconstructed surface in the first monolayers was too low. The preparation of the GaAsSb on the two other InGaAs surfaces yielded however in both cases a distinctly higher Sb/As ratio. Finally tandem solar cells with differently

  9. Effect of Perovskite Film Preparation on Performance of Solar Cells

    Directory of Open Access Journals (Sweden)

    Yaxian Pei

    2016-01-01

    Full Text Available For the perovskite solar cells (PSCs, the performance of the PSCs has become the focus of the research by improving the crystallization and morphology of the perovskite absorption layer. In this thesis, based on the structure of mesoporous perovskite solar cells (MPSCs, we designed the experiments to improve the photovoltaic performance of the PSCs by improved processing technique, which mainly includes the following two aspects. Before spin-coating PbI2 solution, we control the substrate temperature to modify the crystal quality and morphology of perovskite films. On the other hand, before annealing, we keep PbI2 films for the different drying time at room temperature to optimize films morphology. In our trials, it was found that the substrate temperature is more important in determining the photovoltaic performance than drying time. These results indicate that the crystallization and morphology of perovskite films affect the absorption intensity and obviously influence the short circuit current density of MPSCs. Utilizing films prepared by mentioning two methods, MPSCs with maximum power conversion efficiency of over 4% were fabricated for the active area of 0.5 × 0.5 cm2.

  10. Dye-Sensitized Solar Cells with Anatase TiO2 Nanorods Prepared by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jeng

    2013-01-01

    Full Text Available The hydrothermal method provides an effective reaction environment for the synthesis of nanocrystalline materials with high purity and well-controlled crystallinity. In this work, we started with various sizes of commercial TiO2 powders and used the hydrothermal method to prepare TiO2 thin films. We found that the synthesized TiO2 nanorods were thin and long when smaller TiO2 particles were used, while larger TiO2 particles produced thicker and shorter nanorods. We also found that TiO2 films prepared by TiO2 nanorods exhibited larger surface roughness than those prepared by the commercial TiO2 particles. It was found that a pure anatase phase of TiO2 nanorods can be obtained from the hydrothermal method. The dye-sensitized solar cells fabricated with TiO2 nanorods exhibited a higher solar efficiency than those fabricated with commercial TiO2 nanoparticles directly. Further, triple-layer structures of TiO2 thin films with different particle sizes were investigated to improve the solar efficiency.

  11. Ambiguity assessment of small-angle scattering curves from monodisperse systems.

    Science.gov (United States)

    Petoukhov, Maxim V; Svergun, Dmitri I

    2015-05-01

    A novel approach is presented for an a priori assessment of the ambiguity associated with spherically averaged single-particle scattering. The approach is of broad interest to the structural biology community, allowing the rapid and model-independent assessment of the inherent non-uniqueness of three-dimensional shape reconstruction from scattering experiments on solutions of biological macromolecules. One-dimensional scattering curves recorded from monodisperse systems are nowadays routinely utilized to generate low-resolution particle shapes, but the potential ambiguity of such reconstructions remains a major issue. At present, the (non)uniqueness can only be assessed by a posteriori comparison and averaging of repetitive Monte Carlo-based shape-determination runs. The new a priori ambiguity measure is based on the number of distinct shape categories compatible with a given data set. For this purpose, a comprehensive library of over 14,000 shape topologies has been generated containing up to seven beads closely packed on a hexagonal grid. The computed scattering curves rescaled to keep only the shape topology rather than the overall size information provide a `scattering map' of this set of shapes. For a given scattering data set, one rapidly obtains the number of neighbours in the map and the associated shape topologies such that in addition to providing a quantitative ambiguity measure the algorithm may also serve as an alternative shape-analysis tool. The approach has been validated in model calculations on geometrical bodies and its usefulness is further demonstrated on a number of experimental X-ray scattering data sets from proteins in solution. A quantitative ambiguity score (a-score) is introduced to provide immediate and convenient guidance to the user on the uniqueness of the ab initio shape reconstruction from the given data set.

  12. Busulfan and total body irradiation as antihematopoietic stem cell agents in the preparation of patients with congenital bone marrow disorders for allogenic bone marrow transplantation

    International Nuclear Information System (INIS)

    Parkman, R.; Rappeport, J.M.; Hellman, S.; Lipton, J.; Smith, B.; Geha, R.; Nathan, D.G.

    1984-01-01

    The capacity of busulfan and total body irradiation to ablate hematopoietic stem cells as preparation for the allogeneic bone marrow transplantation of patients with congenital bone marrow disorders was studied. Fourteen patients received 18 transplants; busulfan was used in the preparatory regimen of eight transplants and total body irradiation in the regimens of six transplants. Sustained hematopoietic ablation was achieved in six of eight patients prepared with busulfan and in all six patients prepared with total body irradiation. Three patients prepared with total body irradiation died with idiopathic interstitial pneumonitis, whereas no patients receiving busulfan developed interstitial pneumonitis. The optimal antihematopoietic stem cell agent to be used for the preparation of patients with congenital bone marrow disorder for bone marrow transplantation is not certain

  13. Preparation of the proton exchange membranes for fuel cell under pre-irradiation induced grafting method

    International Nuclear Information System (INIS)

    Li Jingye; Muto, F.; Matsuura, A.; Kakiji, T.; Miura, T.; Oshima, A.; Washio, M.; Katsumura, Y.

    2006-01-01

    Proton exchange membranes (PEMs) were prepared via pre-irradiation induced grafting of styrene or styrene/divinylbenzene (S/DVB) into the crosslinked polytetrafluoroethylene (RX-PTFE) films with thickness around 10 m and then sulfonated by chlorosulfonic acid. The membrane electrode assembles (MEAs) based on these PEMs with ion exchange capacity (IEC) values around 2meq/g were prepared by hot-press with Nafion dispersion coated on the surfaces of the membranes and electrodes. And the MEA based on the Nafion 112 membrane was also prepared under same procedure as a comparison. The performances of the MEAs in single fuel cell were tested under different working temperatures and humidification conditions. The performance of the synthesized PEMs showed better results than that of Nafion 112 membrane under low humidification at 80 degree C. The electrochemical impedance spectra (EIS) were taken with the direct current density of 0.5A/cm 2 and the resulted curves in Nyqvist representation obeyed the half circle pattern. (authors)

  14. TiO2 Nanowire Networks Prepared by Titanium Corrosion and Their Application to Bendable Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Saera Jin

    2017-10-01

    Full Text Available TiO2 nanowire networks were prepared, using the corrosion of Ti foils in alkaline (potassium hydroxide, KOH solution at different temperatures, and then a further ion-exchange process. The prepared nanostructures were characterized by field emission scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The wet corroded foils were utilized as the photoanodes of bendable dye-sensitized solar cells (DSSCs, which exhibited a power conversion efficiency of 1.11% under back illumination.

  15. Preparation of conjugated polymer-based composite thin film for application in solar cell

    International Nuclear Information System (INIS)

    Yu, Yang-Yen; Chien, Wen-Chen; Ko, Yu-Hsin; Chen, Chih-Ping; Chang, Chao-Ching

    2015-01-01

    This paper reports on the enhanced cell efficiency of structures and properties of regioregular poly(3-hexylthiophene) (P3HT)/multiwalled carbon nanotube (MWNT) hybrid materials. The prepared hybrid materials were characterized using ultraviolet–visible absorption spectroscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Different concentrations of these MWNTs were suspended in polymer solutions and spin-cast onto indium tin oxide (ITO) glass. Solar cells with a device structure of ITO/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) /P3HT:MWNTs/aluminum were then produced using evaporated aluminum as the back contact. The results showed that the ratio of P3HT to MWNTs considerably influenced the performance of the fabricated solar cells. The efficiency of the solar cells increased with the ratio of carbon nanotubes. Monochromatic incident photon-to-electron conversion efficiency analysis was performed and the results indicated that at the optimal P3HT/MWNTs ratio (= 1/1), the solar cells demonstrated a high-quality conversion of 2.16% with a fill factor of 42.22%, an open circuit voltage of 0.56 V, and a short circuit current of 9.12 mA/cm 2 . - Highlights: • Solar cells ITO/PEDOT:PSS(DMSO)/P3HT:MWNT/Al were fabricated. • Optimal ratio of P3HT to MWNT was investigated. • Solar cell with 2.16% efficiency was obtained

  16. Preparation of conjugated polymer-based composite thin film for application in solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang-Yen, E-mail: yyyu@mail.mcut.edu.tw [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Center for Thin Film Technologies and Applications, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Chien, Wen-Chen [Department of Chemical Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Ko, Yu-Hsin [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Chen, Chih-Ping [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Chang, Chao-Ching [Department of Chemical and Materials Engineering, Tamkang University, 151, Yingzhuan Rd., Tamsui Dist., New Taipei City 25137, Taiwan (China)

    2015-06-01

    This paper reports on the enhanced cell efficiency of structures and properties of regioregular poly(3-hexylthiophene) (P3HT)/multiwalled carbon nanotube (MWNT) hybrid materials. The prepared hybrid materials were characterized using ultraviolet–visible absorption spectroscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Different concentrations of these MWNTs were suspended in polymer solutions and spin-cast onto indium tin oxide (ITO) glass. Solar cells with a device structure of ITO/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) /P3HT:MWNTs/aluminum were then produced using evaporated aluminum as the back contact. The results showed that the ratio of P3HT to MWNTs considerably influenced the performance of the fabricated solar cells. The efficiency of the solar cells increased with the ratio of carbon nanotubes. Monochromatic incident photon-to-electron conversion efficiency analysis was performed and the results indicated that at the optimal P3HT/MWNTs ratio (= 1/1), the solar cells demonstrated a high-quality conversion of 2.16% with a fill factor of 42.22%, an open circuit voltage of 0.56 V, and a short circuit current of 9.12 mA/cm{sup 2}. - Highlights: • Solar cells ITO/PEDOT:PSS(DMSO)/P3HT:MWNT/Al were fabricated. • Optimal ratio of P3HT to MWNT was investigated. • Solar cell with 2.16% efficiency was obtained.

  17. Porous PEOT/PBT scaffolds for bone tissue engineering: preparation, characterization, and in vitro bone marrow cell culturing

    NARCIS (Netherlands)

    Claase, M.B.; Grijpma, Dirk W.; Mendes, S.C.; Mendes, Sandra C.; de Bruijn, Joost Dick; Feijen, Jan

    2003-01-01

    The preparation, characterization, and in vitro bone marrow cell culturing on porous PEOT/PBT copolymer scaffolds are described. These scaffolds are meant for use in bone tissue engineering. Previous research has shown that PEOT/PBT copolymers showed in vivo degradation, calcification, and bone

  18. Comparison of ultramicrotomy and focused-ion-beam for the preparation of TEM and STEM cross section of organic solar cells

    DEFF Research Database (Denmark)

    Corazza, Michael; Simonsen, Søren Bredmose; Gnaegi, Helmut

    2016-01-01

    The challenge of preparing cross sections of organic photovoltaics (OPV) suitable for transmission electron microscopy (TEM) and scanning TEM (STEM) is addressed. The samples were polymer solar cells fabricated using roll-to-roll (R2R) processing methods on a flexible polyethylene terephthalate...... resolution, enabling further studies of phase separation of P3HT:PCBM by means of energy filtered TEM (EFTEM). The sample prepared by FIB shows good structure preservation, but reduced resolution due to non-optimal thicknesses achieved after treatment. Degradation studies of samples prepared...

  19. Final Report for Fractionation and Separation of Polydisperse Nanoparticles into Distinct Monodisperse Fractions Using CO2 Expanded Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Chistopher Roberts

    2007-08-31

    The overall objective of this project was to facilitate efficient fractionation and separation of polydisperse metal nanoparticle populations into distinct monodisperse fractions using the tunable solvent properties of gas expanded liquids. Specifically, the dispersibility of ligand-stabilized nanoparticles in an organic solution was controlled by altering the ligand-solvent interaction (solvation) by the addition of carbon dioxide (CO{sub 2}) gas as an antisolvent (thereby tailoring the bulk solvent strength) in a custom high pressure apparatus developed in our lab. This was accomplished by adjusting the CO{sub 2} pressure over the liquid dispersion, resulting in a simple means of tuning the nanoparticle precipitation by size. Overall, this work utilized the highly tunable solvent properties of organic/CO{sub 2} solvent mixtures to selectively size-separate dispersions of polydisperse nanoparticles (ranging from 1 to 20 nm in size) into monodisperse fractions ({+-}1nm). Specifically, three primary tasks were performed to meet the overall objective. Task 1 involved the investigation of the effects of various operating parameters (such as temperature, pressure, ligand length and ligand type) on the efficiency of separation and fractionation of Ag nanoparticles. In addition, a thermodynamic interaction energy model was developed to predict the dispersibility of different sized nanoparticles in the gas expanded liquids at various conditions. Task 2 involved the extension of the experimental procedures identified in task 1 to the separation of other metal particles used in catalysis such as Au as well as other materials such as semiconductor particles (e.g. CdSe). Task 3 involved using the optimal conditions identified in tasks 1 and 2 to scale up the process to handle sample sizes of greater than 1 g. An experimental system was designed to allow nanoparticles of increasingly smaller sizes to be precipitated sequentially in a vertical series of high pressure vessels by

  20. Fiscal 1998 achievement report on regional consortium research and development project. Venture business raising type regional consortium - Small business creation base type (Preparation of monodispersed spherical particles for solder materials for application to high density semiconductor packaging - 2nd year); 1998 nendo komitsudo handotai jisso no tame no tanbunsan kyukei handa ryushi no sakusei ni kansuru kenkyu seika hokokusho (dai 2 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Fine solder grains have been developed, spherical in shape, uniform in diameter, high in dimensional precision, and high in surface cleanliness, which are necessary for the establishment of next-generation technologies of flip chip bonding and ball grid array which are indispensable for high-density high-reliability packaging of electronic devices such as LSI (large scale integration). Results attained in fiscal 1998 are described. A pulse pressure aided orifice injection method was used. Monodispersed grains are prepared for the Pb-63Sn solder and Sn-3.5Ag lead-free solder. In the case of a 200{mu}m-large orifice, the grain diameter was controlled to fall in the range of 190-210{mu}m and the accuracy was not lower than {+-}6{mu}m. The main goal of this project has been accomplished now that these figures were attained without a sorting process and satisfy the most rigorous conditions currently proposed by the industrial circle involved. The flow of hot liquid out of the orifice and the splitting process of grains were clarified by thermal hydraulic analysis. It was found that grains split and fly not because of instability due to Rayleigh surface waves but because of their liberation from surface tension when equipped with critical kinetic energy. (NEDO)

  1. Effective delivery of sonication energy to fast settling and agglomerating nanomaterial suspensions for cellular studies: Implications for stability, particle kinetics, dosimetry and toxicity.

    Science.gov (United States)

    Cohen, Joel M; Beltran-Huarac, Juan; Pyrgiotakis, Georgios; Demokritou, Philip

    2018-04-01

    Typical in vitro assays used for high throughput toxicological screening and measuring nano-bio interactions are conducted by pipetting suspensions of engineered nanomaterials (ENMs) dispersed in nutrient-rich culture media directly onto cells. In order to achieve fairly monodisperse and stable suspensions of small agglomerates, ultrasonic energy is usually applied to break apart large agglomerates that can form upon suspension in liquid. Lack of standardized protocols and methods for delivering sonication energy can introduce variability in the ENM suspension properties ( e.g . agglomerate size, polydispersity, suspension stability over time), and holds significant implications for in vitro dosimetry, toxicity, and other nano-bio interactions. Careful assessment of particle transformations during dispersion preparation and sonication is therefore critical for accurate interpretation of in vitro toxicity studies. In this short communication, the difficulties of preparing stable suspensions of rapidly settling ENMs are presented. Furthermore, methods to optimize the delivery of the critical sonication energy required to break large agglomerates and prepare stable, fairly monodispersed suspensions of fast settling ENMs are presented. A methodology for the efficient delivery of sonication energy in a discrete manner is presented and validated using various rapidly agglomerating and settling ENMs. The implications of continuous vs. discrete sonication on average hydrodynamic diameter, and polydispersity was also assessed for both fast and slow settling ENMs. For the rapidly agglomerating and settling ENMs (Ag15%/SiO 2 , Ag and CeO 2 ), the proposed discrete sonication achieved a significant reduction in the agglomerate diameter and polydispersity. In contrast, the relatively slow agglomerating and settling Fe 2 O 3 suspension did not exhibit statistically significant differences in average hydrodynamic diameter or polydispersity between the continuous and discrete

  2. Facile Preparation of Phosphotungstic Acid-Impregnated Yeast Hybrid Microspheres and Their Photocatalytic Performance for Decolorization of Azo Dye

    Directory of Open Access Journals (Sweden)

    Lan Chen

    2013-01-01

    Full Text Available Phosphotungstic acid (HPW-impregnated yeast hybrid microspheres were prepared by impregnation-adsorption technique through tuning pH of the aqueous yeast suspensions. The obtained products were characterized by field emission scanning electron microscopy (FE-SEM, energy dispersive spectrometry (EDS, X-ray diffraction (XRD, thermogravimetry-differential scanning calorimetry (TG-DSC, and ultraviolet-visible spectrophotometry (UV-Vis, respectively. FE-SEM and EDS ascertain that the HPW has been effectively introduced onto the surface of yeast, and the resulting samples retain ellipsoid shape, with the uniform size (length 4.5 ± 0.2 μm, width 3.0 ± 0.3 μm and good monodispersion. XRD pattern indicates that the main crystal structure of as-synthesized HPW@yeast microsphere is Keggin structure. TG-DTA states that the HPW in composites has better thermal stability than pure HPW. Fourier transform infrared spectroscopy (FT-IR elucidates that the functional groups or chemical bonds inherited from the pristine yeast cell were critical to the assembling of the composites. UV-Vis shows that the obtained samples have a good responding to UV light. The settling ability indicates that the hybrid microspheres possess an excellent suspension performance. In the test of catalytic activity, the HPW@yeast microsphere exhibits a high photocatalytic activity for the decoloration of Methylene blue and Congo red dye aqueous solutions, and there are a few activity losses after four cycles of uses.

  3. Immunological quality and performance of tumor vessel-targeting CAR-T cells prepared by mRNA-EP for clinical research.

    Science.gov (United States)

    Inoo, Kanako; Inagaki, Ryo; Fujiwara, Kento; Sasawatari, Shigemi; Kamigaki, Takashi; Nakagawa, Shinsaku; Okada, Naoki

    2016-01-01

    We previously reported that tumor vessel-redirected T cells, which were genetically engineered with chimeric antigen receptor (CAR) specific for vascular endothelial growth factor receptor 2 (VEGFR2), demonstrated significant antitumor effects in various murine solid tumor models. In the present study, we prepared anti-VEGFR2 CAR-T cells by CAR-coding mRNA electroporation (mRNA-EP) and analyzed their immunological characteristics and functions for use in clinical research. The expression of anti-VEGFR2 CAR on murine and human T cells was detected with approximately 100% efficiency for a few days, after peaking 6-12 hours after mRNA-EP. Triple transfer of murine anti-VEGFR2 CAR-T cells into B16BL6 tumor-bearing mice demonstrated an antitumor effect comparable to that for the single transfer of CAR-T cells engineered with retroviral vector. The mRNA-EP did not cause any damage or defects to human T-cell characteristics, as determined by viability, growth, and phenotypic parameters. Additionally, two kinds of human anti-VEGFR2 CAR-T cells, which expressed different CAR construction, differentiated to effector phase with cytokine secretion and cytotoxic activity in antigen-specific manner. These results indicate that our anti-VEGFR2 CAR-T cells prepared by mRNA-EP have the potential in terms of quality and performance to offer the prospect of safety and efficacy in clinical research as cellular medicine.

  4. Immunological quality and performance of tumor vessel-targeting CAR-T cells prepared by mRNA-EP for clinical research

    Directory of Open Access Journals (Sweden)

    Kanako Inoo

    2016-01-01

    Full Text Available We previously reported that tumor vessel-redirected T cells, which were genetically engineered with chimeric antigen receptor (CAR specific for vascular endothelial growth factor receptor 2 (VEGFR2, demonstrated significant antitumor effects in various murine solid tumor models. In the present study, we prepared anti-VEGFR2 CAR-T cells by CAR-coding mRNA electroporation (mRNA-EP and analyzed their immunological characteristics and functions for use in clinical research. The expression of anti-VEGFR2 CAR on murine and human T cells was detected with approximately 100% efficiency for a few days, after peaking 6–12 hours after mRNA-EP. Triple transfer of murine anti-VEGFR2 CAR-T cells into B16BL6 tumor-bearing mice demonstrated an antitumor effect comparable to that for the single transfer of CAR-T cells engineered with retroviral vector. The mRNA-EP did not cause any damage or defects to human T-cell characteristics, as determined by viability, growth, and phenotypic parameters. Additionally, two kinds of human anti-VEGFR2 CAR-T cells, which expressed different CAR construction, differentiated to effector phase with cytokine secretion and cytotoxic activity in antigen-specific manner. These results indicate that our anti-VEGFR2 CAR-T cells prepared by mRNA-EP have the potential in terms of quality and performance to offer the prospect of safety and efficacy in clinical research as cellular medicine.

  5. Retention studies in rats exposed to monodisperse aerosols of /sup 198/Au labeled carnauba wax particles

    Energy Technology Data Exchange (ETDEWEB)

    Tarroni, G.; Bassi, P.; Belvisi, M.B.; Bianco, A.

    1981-01-01

    Rats were exposed to monodisperse carnauba wax aerosols labeled with colloidal /sup 198/Au and the retained activity was followed both in vivo and in the lungs of serially sacrified animals. In vitro and in vivo tests have shown low leaching rates of the label. The deposited activity could then be followed without correction for particle solubility. The activity in vivo shows a three-exponential decay, characterized by half-times of a few hours, one day, and one month corresponding to the clearance of the material deposited respectively in the extrathoracic airways, in the tracheo-bronchial, and in the alveolar regions. A correlation was found between long term cleared activity and particle size but no correlation was found between particle size and clearance half times in the size range investigated. Statistical evaluation of the activity vs time in vivo and in excised lungs has shown that the long term retained activity pertains to the alveolar region and, if a large number of animals is not used, more accurate data of pulmonary clearance can be obtained by in vivo measurements than by serial sacrifices.

  6. White blood cell fragments in platelet concentrates prepared by the platelet-rich plasma or buffy-coat methods

    NARCIS (Netherlands)

    Dijkstra-Tiekstra, M. J.; van der Schoot, C. E.; Pietersz, R. N. I.; Reesink, H. W.

    2005-01-01

    BACKGROUND AND OBJECTIVES: White blood cell (WBC) fragments in platelet concentrates (PCs) may induce allo-immunization in the recipient. MATERIALS AND METHODS: As the level of WBC fragments can differ between PCs produced using different methods, we compared PCs prepared by using the buffy-coat

  7. PREPARATION AND CHARACTERIZATION OF SOLID ELECTROLYTES: FUEL CELL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rambabu Bobba; Josef Hormes; T. Wang; Jaymes A. Baker; Donald G. Prier; Tommy Rockwood; Dinesha Hawkins; Saleem Hasan; V. Rayanki

    1997-12-31

    The intent of this project with Federal Energy Technology Center (FETC)/Morgantown Energy Technology Center (METC) is to develop research infrastructure conductive to Fuel Cell research at Southern University and A and M College, Baton Route. A state of the art research laboratory (James Hall No.123 and No.114) for energy conversion and storage devices was developed during this project duration. The Solid State Ionics laboratory is now fully equipped with materials research instruments: Arbin Battery Cycling and testing (8 channel) unit, Electrochemical Analyzer (EG and G PAR Model 273 and Solartron AC impedance analyzer), Fuel Cell test station (Globe Tech), Differential Scanning Calorimeter (DSC-10), Thermogravimetric Analyzer (TGA), Scanning Tunneling Microscope (STM), UV-VIS-NIR Absorption Spectrometer, Fluorescence Spectrometer, FT-IR Spectrometer, Extended X-ray Absorption Fine Structure (EXAFS) measurement capability at Center for Advanced Microstructure and Devices (CAMD- a multimillion dollar DOE facility), Glove Box, gas hood chamber, high temperature furnaces, hydraulic press and several high performance computers. IN particular, a high temperature furnace (Thermodyne 6000 furnace) and a high temperature oven were acquired through this project funds. The PI Dr. R Bobba has acquired additional funds from federal agencies include NSF-Academic Research Infrastructure program and other DOE sites. They have extensively used the multimillion dollar DOE facility ''Center'' for Advanced Microstructures and Devices (CAMD) for electrochemical research. The students were heavily involved in the experimental EXAFS measurements and made use of their DCM beamline for EXAFS research. The primary objective was to provide hands on experience to the selected African American undergraduate and graduate students in experimental energy research.The goal was to develop research skills and involve them in the Preparation and Characterization of Solid

  8. Herbal preparation (HemoHIM) enhanced functional maturation of bone marrow-derived dendritic cells mediated toll-like receptor 4.

    Science.gov (United States)

    Lee, Sung-Ju; Kim, Jong-Jin; Kang, Kyung-Yun; Hwang, Yun-Ho; Jeong, Gil-Yeon; Jo, Sung-kee; Jung, Uhee; Park, Hae-Ran; Yee, Sung-Tae

    2016-02-19

    HemoHIM, which is an herbal preparation of three edible herbs (Angelicam gigas Nakai, Cnidium offinale Makino, and Peaonia japonica Miyabe), is known to have various biological and immunological activities, but the modulatory effects of this preparation on dendritic cells (DCs)-mediated immune responses have not been examined previously. DCs are a unique group of white blood cells that initiate primary immune responses by capturing, processing, and presenting antigens to T cells. In the present study, we investigated the effect of HemoHIM on the functional and phenotypic maturation of murine bone marrow-derived dendritic cells (BMDCs) both in vitro and in vivo. The expression of co-stimulatory molecules (CD40, CD80, CD86, MHC I, and MHC II) and the production of cytokines (IL-1β, IL-6, IL-12p70, and TNF-α) were increased by HemoHIM in BMDCs. Furthermore, the antigen-uptake ability of BMDCs was decreased by HemoHIM, and the antigen-presenting ability of HemoHIM-treated mature BMDCs increased TLR4-dependent CD4(+) and CD8(+) T cell responses. Our findings demonstrated that HemoHIM induces TLR4-mediated BMDCs functional and phenotypic maturation through in vivo and in vitro. And our study showed the antigen-presenting ability that HemoHIM-treated mature BMDCs increase CD4(+) and CD8(+) T cell responses by in vitro. These results suggest that HemoHIM has the potential to mediate DC immune responses.

  9. A modified suspension spray combined with particle gradation method for preparation of protonic ceramic membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kui; Wang, Songlin; Chen, Xiaorui; Jiang, Tao; Lin, Bin; Wei, Ming; Liu, Xingqin; Meng, Guangyao [Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yan, Ruiqiang [Department of Materials Engineering, Taizhou University, Linhai, Zhejiang 317000 (China); Dong, Dehua [Department of Chemical Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2008-05-01

    In order to prepare a dense proton-conductive Ba(Zr{sub 0.1}Ce{sub 0.7})Y{sub 0.2}O{sub 3-{delta}} (BZCY7) electrolyte membrane, a proper anode composition with 65% Ni{sub 2}O{sub 3} in weight ratio was determined after investigating the effects of anode compositions on anode shrinkages for co-sintering. The thermal expansion margins between sintered anodes and electrolytes, which were less than 1% below 750 C, also showed good thermal expansion compatibility. A suspension spray combined with particle gradation method had been introduced to prepare dense electrolyte membrane on porous anode support. After a heat treatment at 1400 C for 5 h, a cell with La{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}} (LSCO) cathode was assembled and tested with hydrogen and ammonia as fuels. The outputs reached as high as 330 mW cm{sup -2} in hydrogen and 300 mW cm{sup -2} in ammonia at 700 C, respectively. Comparing with the interface of another cell prepared by dry-pressing method, this one also showed a good interface contact between electrodes and electrolyte. To sum up, this combined technique can be considered as commercial fabrication technology candidate. (author)

  10. Assessment of different sample preparation routes for mass spectrometric monitoring and imaging of lipids in bone cells via ToF-SIMS

    Science.gov (United States)

    Schaepe, Kaija; Kokesch-Himmelreich, Julia; Rohnke, Marcus; Wagner, Alena-Svenja; Schaaf, Thimo; Wenisch, Sabine; Janek, Jürgen

    2015-01-01

    In ToF-SIMS analysis, the experimental outcome from cell experiments is to a great extent influenced by the sample preparation routine. In order to better judge this critical influence in the case of lipid analysis, a detailed comparison of different sample preparation routines is performed—aiming at an optimized preparation routine for systematic lipid imaging of cell cultures. For this purpose, human mesenchymal stem cells were analyzed: (a) as chemically fixed, (b) freeze-dried, and (c) frozen-hydrated. For chemical fixation, different fixatives, i.e., glutaraldehyde, paraformaldehyde, and a mixture of both, were tested with different postfixative handling procedures like storage in phosphate buffered saline, water or critical point drying. Furthermore, secondary lipid fixation via osmium tetroxide was taken into account and the effect of an ascending alcohol series with and without this secondary lipid fixation was evaluated. Concerning freeze-drying, three different postprocessing possibilities were examined. One can be considered as a pure cryofixation technique while the other two routes were based on chemical fixation. Cryofixation methods known from literature, i.e., freeze-fracturing and simple frozen-hydrated preparation, were also evaluated to complete the comparison of sample preparation techniques. Subsequent data evaluation of SIMS spectra in both, positive and negative, ion mode was performed via principal component analysis by use of peak sets representative for lipids. For freeze-fracturing, these experiments revealed poor reproducibility making this preparation route unsuitable for systematic investigations and statistic data evaluation. Freeze-drying after cryofixation showed improved reproducibility and well preserved lipid contents while the other freeze-drying procedures showed drawbacks in one of these criteria. In comparison, chemical fixation techniques via glutar- and/or paraformaldehyde proved most suitable in terms of reproducibility

  11. Preparation of sol-gel TiO2/purified Na-bentonite composites and their photovoltaic application for natural dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Saelim, Ni-on; Magaraphan, Rathanawan; Sreethawong, Thammanoon

    2011-01-01

    Highlights: → Natural dye from red cabbage was successfully employed in DSSC. → A fast sol-gel method to produce TiO 2 /clay thin film was proposed. → The sol-gel-prepared TiO 2 /clay was applied as the scattering layer on top of TiO 2 electrode. → Thicker sol-gel-prepared TiO 2 /clay electrode showed higher DSSC efficiency. - Abstract: The sol-gel TiO 2 /purified natural clay electrodes having Ti:Si molar ratios of 95:5 and 90:10 were initially prepared, sensitized with natural red cabbage dye, and compared to the sol-gel TiO 2 electrode in terms of physicochemical characteristics and solar cell efficiency. The results showed that the increase in purified Na-bentonite content greatly increased the specific surface area and total pore volume of the prepared sol-gel TiO 2 /purified Na-bentonite composites because the clay platelets prevented TiO 2 particle agglomeration. The sol-gel TiO 2 /5 mol% Si purified Na-bentonite and sol-gel TiO 2 /10 mol% Si purified Na-bentonite composites could increase the film thickness of solar cells without cracking when they were coated as a scattering layer on the TiO 2 semiconductor-based film, leading to increasing the efficiency of the natural dye-sensitized solar cells in this work.

  12. A Comparative Study of Sample Preparation for Staining and Immunodetection of Plant Cell Walls by Light Microscopy

    Science.gov (United States)

    Verhertbruggen, Yves; Walker, Jesse L.; Guillon, Fabienne; Scheller, Henrik V.

    2017-01-01

    Staining and immunodetection by light microscopy are methods widely used to investigate plant cell walls. The two techniques have been crucial to study the cell wall architecture in planta, its deconstruction by chemicals or cell wall-degrading enzymes. They have been instrumental in detecting the presence of cell types, in deciphering plant cell wall evolution and in characterizing plant mutants and transformants. The success of immunolabeling relies on how plant materials are embedded and sectioned. Agarose coating, wax and resin embedding are, respectively, associated with vibratome, microtome and ultramicrotome sectioning. Here, we have systematically carried out a comparative analysis of these three methods of sample preparation when they are applied for cell wall staining and cell wall immunomicroscopy. In order to help the plant community in understanding and selecting adequate methods of embedding and sectioning for cell wall immunodetection, we review in this article the advantages and limitations of these three methods. Moreover, we offer detailed protocols of embedding for studying plant materials through microscopy. PMID:28900439

  13. Preparation of molecularly imprinted polymers for strychnine by precipitation polymerization and multistep swelling and polymerization and their application for the selective extraction of strychnine from nux-vomica extract powder.

    Science.gov (United States)

    Nakamura, Yukari; Matsunaga, Hisami; Haginaka, Jun

    2016-04-01

    Monodisperse molecularly imprinted polymers for strychnine were prepared by precipitation polymerization and multistep swelling and polymerization, respectively. In precipitation polymerization, methacrylic acid and divinylbenzene were used as a functional monomer and crosslinker, respectively, while in multistep swelling and polymerization, methacrylic acid and ethylene glycol dimethacrylate were used as a functional monomer and crosslinker, respectively. The retention and molecular recognition properties of the molecularly imprinted polymers prepared by both methods for strychnine were evaluated using a mixture of sodium phosphate buffer and acetonitrile as a mobile phase by liquid chromatography. In addition to shape recognition, ionic and hydrophobic interactions could affect the retention of strychnine in low acetonitrile content. Furthermore, molecularly imprinted polymers prepared by both methods could selectively recognize strychnine among solutes tested. The retention factors and imprinting factors of strychnine on the molecularly imprinted polymer prepared by precipitation polymerization were 220 and 58, respectively, using 20 mM sodium phosphate buffer (pH 6.0)/acetonitrile (50:50, v/v) as a mobile phase, and those on the molecularly imprinted polymer prepared by multistep swelling and polymerization were 73 and 4.5. These results indicate that precipitation polymerization is suitable for the preparation of a molecularly imprinted polymer for strychnine. Furthermore, the molecularly imprinted polymer could be successfully applied for selective extraction of strychnine in nux-vomica extract powder. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions.

    Science.gov (United States)

    Weber, Daniela; Davies, Michael J; Grune, Tilman

    2015-08-01

    Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples. © 2015 Published by Elsevier Ltd.

  15. Comparison of Thin-Prep and cell block preparation for the evaluation of Thyroid epithelial lesions on fine needle aspiration biopsy

    Directory of Open Access Journals (Sweden)

    Hammoud Jamal

    2008-01-01

    Full Text Available Abstract Background The objective of this study was to compare the utility of Thin-Prep (TP cytologic preparation with that of Cell Block (CB preparation in the diagnosis of thyroid lesions, mainly follicular epithelial lesions, by fine needle aspiration biopsy (FNAB. Feasibility of using the TP slides for immunocytochemical stains is also discussed. Methods A total of 126 consecutive cases of thyroid FNAB with TP slides and 128 consecutive cases of thyroid FNAB with CB slides were reviewed blindly by two cytopathologists. The presence of colloid, follicular cells, macrophages and lymphocytes/plasma cells were recorded and scored 0–4 on each case based on TP or CB slide review. The cytologic diagnoses were grouped as follows: cyst, colloid nodule, colloid nodule with cystic change, chronic thyroiditis, atypical/neoplastic and non-diagnostic. Results The TP slides had higher diagnostic rate than CB slides. The diagnostic yield was 68% of the TP slides whereas only 24% of the CB slides were diagnostic. Also, only 4 atypical/neoplastic lesions were diagnosed on the TP slides and the corresponding direct smears, while 5 cases of atypical/neoplastic lesions were diagnosed on the smears but could not be diagnosed on the corresponding CB slides. Additionally, the TP slides revealed cytologic features that were not observed on the direct traditional smears of the same case. Conclusion In thyroid FNAB cases, TP slide preparation is superior to CB slide preparation and is more likely to have greater cellularity for diagnosis and detect atypical/neoplastic thyroid lesions, particularly those of follicular cell origin. Furthermore, TP slides appear to detect helpful diagnostic cytologic features and should be considered complementary to, rather than replacing, direct smears.

  16. Characterization of silver/polystyrene nanocomposites prepared by in situ bulk radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Vukoje, Ivana D., E-mail: ivanav@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Vodnik, Vesna V., E-mail: vodves@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Džunuzović, Jasna V., E-mail: jasnav2002@googlemail.com [Institute of Chemistry, Technology and Metallurgy (ICTM)-Center of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Džunuzović, Enis S., E-mail: edzunuzovic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Marinović-Cincović, Milena T., E-mail: milena@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Jeremić, Katarina, E-mail: kjeremic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Nedeljković, Jovan M., E-mail: jovned@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia)

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis and characterization of polystyrene nanocomposites based on Ag nanoparticles. • The glass transition temperature decreased in nanocomposites with respect to the pure polymer. • Resistance of the polymer to thermal degradation enhanced with Ag nanoparticles content. - Abstract: Nanocomposites (NCs) with different content of silver nanoparticles (Ag NPs) embeded in polystyrene (PS) matrix were prepared by in situ bulk radical polymerization. The nearly monodisperse Ag NPs protected with oleylamine were synthesized via organic solvo-thermal method and further used as a filler. The as-prepared spherical Ag NPs with diameter of 7.0 ± 1.5 nm were well dispersed in the PS matrix. The structural properties of the resulting Ag/PS NCs were characterized by transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectroscopy, while optical properties were characterized using optical absorption measurements. The gel permeation chromatography (GPC) measurements showed that the presence of Ag NPs stabilized with oleylamine has no influence on the molecular weight and polydispersity of the PS matrix. The influence of silver content on the thermal properties of Ag/PS NCs was investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results indicated that resistance of PS to thermal degradation was improved upon incorporation of Ag NPs. The Ag/PS NCs have lower glass transition temperatures than neat PS because loosely packed oleylamine molecules at the interface caused the increase of free volume and chain segments mobility near the surface of Ag NPs.

  17. A green preparation method of battery grade α-PbO based on Pb-O2 fuel cell

    Science.gov (United States)

    Wang, Pingyuan; Pan, Junqing; Gong, Shumin; Sun, Yanzhi

    2017-08-01

    In order to solve the problem of high pollution and high energy consumption of the current lead oxide (PbO) preparation processes, a new clean and energy saving preparation method for high purity α-PbO via discharge of a Pb-O2 fuel cell is reported. The fuel cell with metallic lead anode, oxygen cathode, and 30% NaOH electrolyte can provide a discharge voltage of 0.66-0.38 V corresponding to discharge current range of 5-50 mA cm-2. PbO is precipitated from the NaHPbO2-containing electrolyte through a cooling crystallization process after discharge process, and the XRD patterns indicate the structure is pure α-PbO. The mother liquid after crystallization can be recycled for the next batch. The obtained PbO mixed with 60% Shimadzu PbO is superior to the pure Shimadzu PbO in discharge capacity and cycle ability.

  18. Influence of the Preparation Method on Planar Perovskite CH3NH3PbI3-xClx Solar Cell Performance and Hysteresis

    Science.gov (United States)

    Ivanova, A.; Tokmakov, A.; Lebedeva, K.; Roze, M.; Kaulachs, I.

    2017-08-01

    Organometal halide perovskites are promising materials for lowcost, high-efficiency solar cells. The method of perovskite layer deposition and the interfacial layers play an important role in determining the efficiency of perovskite solar cells (PSCs). In the paper, we demonstrate inverted planar perovskite solar cells where perovskite layers are deposited by two-step modified interdiffusion and one-step methods. We also demonstrate how PSC parameters change by doping of charge transport layers (CTL). We used dimethylsupoxide (DMSO) as dopant for the hole transport layer (PEDOT:PSS) but for the electron transport layer [6,6]-phenyl C61 butyric acid methyl ester (PCBM)) we used N,N-dimethyl-N-octadecyl(3-aminopropyl)trimethoxysilyl chloride (DMOAP). The highest main PSC parameters (PCE, EQE, VOC) were obtained for cells prepared by the one-step method with fast crystallization and doped CTLs but higher fill factor (FF) and shunt resistance (Rsh) values were obtained for cells prepared by the two-step method with undoped CTLs.

  19. Characterization and evaluation of poly(epsilon-caprolactone) nanoparticles containing 2-ethylhexyl-p-methoxycinnamate, octocrylene, and benzophenone-3 in anti-solar preparations.

    Science.gov (United States)

    do Nascimento, Débora Freitas; Silva, Anna Claudia; Mansur, Claudia Regina Elias; Presgrave, Rosaura de Faria; Alves, Eloisa Nunes; Silva, Ronald Santos; Ricci-Júnior, Eduardo; de Freitas, Zaida Maria Faria; dos Santos, Elisabete Pereira

    2012-09-01

    Ultraviolet radiation can bring both harm and benefits to human health. Among those harms are erythemas, photosensitivity, photoaging, and the most worrying, skin cancer. Nanoencapsulation of sunscreen agents (SA) by using a biocompatible and biodegradable polymer such as poly(epsilon-caprolactone) (PCL) is advantageous as it increases the retention of UV absorbers in the skin, avoids systemic absorption, and consequently, improves water resistance and stability of the preparation. The aim of this work is to develop, characterize, and study the encapsulation of 3 different SA: 2-ethylhexyl-p-methoxycinnamate, benzophenone-3, and octocrylene in PCL nanoparticles (Nps). Nps were prepared by the solvent emulsification and evaporation method. The process yield was calculated, and the Nps were characterized in terms of size, polydispersity index (PI), morphology, zeta potential (ZP), encapsulation efficiency (EE) (%), and sunscreen agent content (SAC). The final formulations were submitted to the hen's egg test-chorioallantoic membrane (HET-CAM), chorioallantoic membrane-trypan blue staining (CAM-TBS), red blood cell (RBC), Draize tests, in vitro release, in vitro sun protection factor (SPF), UVA protection factor (PF-UVA), and photostability. All the Nps were in the nanometric scale. PI showed monodisperse systems. ZP became more negative as the Np were lyophilized and were added to the formulations. EE varied from 84 to 90%. The SAC went from 44 to 65 microg of sunscreen agents by milligram of Np. The process yield went from 60 to 76%. Nps were predominantly spherical and elliptical forms. The addition of Np diminished the release of the SA. The SPF increased with Np presence and helped to maintain the PF-UVA after irradiation. The HET-CAM assay evaluated the formulation as slightly irritant, CAM-TBS and RBC tests as non irritant, and the Draize test as moderately irritant.

  20. Preparation of Crosslinked Amphiphilic Silver Nanogel as Thin Film Corrosion Protective Layer for Steel

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2014-07-01

    Full Text Available Monodisperse silver nanoparticles were synthesized by a new developed method via reaction of AgNO3 and oleic acid with the addition of a trace amount of Fe3+ ions. Emulsion polymerization at room temperature was employed to prepare a core-shell silver nanoparticle with controllable particle size. N,N'-methylenebisacrylamide (MBA and potassium peroxydisulfate (KPS were used as a crosslinker, and as redox initiator system, respectively for crosslinking polymerization. The structure and morphology of the silver nanogels were characterized by Fourier transform infrared spectroscopy (FTIR, transmission and scanning electron microscopy (TEM and SEM. The effectiveness of the synthesized compounds as corrosion inhibitors for steel in 1 M HCl was investigated by various electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS. Monolayers of silver nanoparticle were self-assembled on the fresh active surface of the steel electrode and have been tested as a corrosion inhibitor for steel in 1 M HCl solution. The results of polarization measurements showed that nanogel particles act as a mixed type inhibitor.

  1. Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids

    International Nuclear Information System (INIS)

    Mendes, Manuel J.; Mateus, Tiago; Lyubchyk, Andriy; Águas, Hugo; Ferreira, Isabel; Fortunato, Elvira; Martins, Rodrigo; Morawiec, Seweryn; Priolo, Francesco; Crupi, Isodiana

    2015-01-01

    The intense light scattered from metal nanoparticles sustaining surface plasmons makes them attractive for light trapping in photovoltaic applications. However, a strong resonant response from nanoparticle ensembles can only be obtained if the particles have monodisperse physical properties. Presently, the chemical synthesis of colloidal nanoparticles is the method that produces the highest monodispersion in geometry and material quality, with the added benefits of being low-temperature, low-cost, easily scalable and of allowing control of the surface coverage of the deposited particles. In this paper, novel plasmonic back-reflector structures were developed using spherical gold colloids with appropriate dimensions for pronounced far-field scattering. The plasmonic back reflectors are incorporated in the rear contact of thin film n-i-p nanocrystalline silicon solar cells to boost their photocurrent generation via optical path length enhancement inside the silicon layer. The quantum efficiency spectra of the devices revealed a remarkable broadband enhancement, resulting from both light scattering from the metal nanoparticles and improved light incoupling caused by the hemispherical corrugations at the cells’ front surface formed from the deposition of material over the spherically shaped colloids. (paper)

  2. The effects of red blood cell preparation method on in vitro markers of red blood cell aging and inflammatory response.

    Science.gov (United States)

    Radwanski, Katherine; Garraud, Olivier; Cognasse, Fabrice; Hamzeh-Cognasse, Hind; Payrat, Jean-Marc; Min, Kyungyoon

    2013-12-01

    Studies are currently under way examining whether the age of stored red blood cells (RBCs) affects clinical outcome in transfusion recipients. The effects of storage duration on the RBC storage lesion are well documented, while fewer studies are available regarding the effect of RBC production method. In this study, we compared in vitro RBC quality variables and markers of inflammatory response in apheresis and whole blood (WB)-derived RBCs, specifically those prepared after an overnight room temperature hold (RTH) of WB. SAGM RBCs, prepared from WB after overnight RTH (n = 10), were compared to SAGM RBCs prepared using an apheresis device (Alyx, n = 10). As a control, SAGM RBCs were also prepared within 2 hours of WB collection (2-hr WB, n = 10). All RBCs were stored at 4°C for 42 days with weekly assay of in vitro variables, cytokines and/or chemokines, and neutrophil activation after incubation with RBC supernatant. RTH WB RBCs exhibited decreased levels of 2,3-diphosphoglycerate acid (2.3 μmol/g hemoglobin [Hb] ± 2.1 vs. 13.7 ± 1.3 μmol/g Hb) and morphology (160 ± 10 vs. 192 ± 5) on Day 1 and increased hemolysis (0.45 ± 0.21% vs. 0.31 ± 0.09%) and microparticles (6.1 ± 2.8/10(3) RBCs vs. 3.9 ± 1.1/10(3) RBCs) on Day 42 compared to apheresis RBCs. Gro-α and ENA-78 cytokine levels were significantly higher in RTH WB than Alyx RBCs during storage. CD11b expression was highest in neutrophils exposed to supernatant from RTH WB RBCs (p < 0.05). RBC preparation method has a meaningful effect on the RBC storage lesion, which should be taken into account in addition to length of storage. © 2013 American Association of Blood Banks.

  3. CIGS thin film solar cell prepared by reactive co-sputtering

    Science.gov (United States)

    Kim, Jeha; Lee, Ho-Sub; Park, Nae-Man

    2013-09-01

    The reactive co-sputtering was developed as a new way of preparing high quality CuInGaSe2(CIGS) films from two sets of targets; Cu0.6Ga 0.4 and Cu0.4In0.6 alloy and Cu and (In0.7Ga0.3)2Se3 compound targets. During sputtering, Cu, In, Ga metallic elements as well as the compound materials were reacted to form CIGS simultaneously in highly reactive elemental Se atmosphere generated by a thermal cracker. CIGS layer had been grown on Mo/soda-lime glass(SLG) at 500°C. For both sets of targets, we controlled the composition of CIGS thin film by changing the RF power for target components. All the films showed a preferential (112) orientation as observed from X-ray diffraction analysis. The composition ratios of CIGS were easily set to 0.71-0.95, 0.10-0.30 for [Cu]/[III] and [Ga]/[III], respectively. The grain size and the surface roughness of a CIGS film increased as the [Cu]/[III] ratios increased. The solar cells were fabricated using a standard base line process in the device structure of grid/ITO/i-ZnO/CdS/CIGS/Mo/ SLG. The best performance was obtained the performance of Voc = 0.45 V, Jsc =35.6, FF = 0.535, η = 8.6% with a 0.9 μm-CIGS solar cell from alloy targets while Voc = 0.54 V, Jsc =30.8, FF = 0.509, η = 8.5% with a 0.8 μm-CIGS solar cell from Cu and (In0.7Ga0.3)2Se3.

  4. Cell Uptake and Validation of Novel PECs for Biomedical Applications.

    Science.gov (United States)

    Palamà, Ilaria E; Musarò, Mariarosaria; Coluccia, Addolorata M L; D'Amone, Stefania; Gigli, Giuseppe

    2011-01-01

    This pilot study provides the proof of principle for biomedical application of novel polyelectrolyte complexes (PECs) obtained via electrostatic interactions between dextran sulphate (DXS) and poly(allylamine hydrochloride) (PAH). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that DXS/PAH polyelectrolyte complexes were Monodispersed with regular rounded-shape features and average diameters of 250 nm at 2 : 1 weight ratios of DXS/PAH. Fluorescently labelled DXS and fluorescein-isothiocyanate- (FITC-)conjugate DXS were used to follow cell uptake efficiency of PECs and biodegradability of their enzymatically degradable DXS-layers by using confocal laser scanning microscopy (CLSM). Moreover, quantitative MTT and Trypan Blue assays were employed to validate PECs as feasible and safe nanoscaled carriers at single-cell level without adverse effects on metabolism and viability.

  5. Cell Uptake and Validation of Novel PECs for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Ilaria E. Palamà

    2011-01-01

    Full Text Available This pilot study provides the proof of principle for biomedical application of novel polyelectrolyte complexes (PECs obtained via electrostatic interactions between dextran sulphate (DXS and poly(allylamine hydrochloride (PAH. Scanning electron microscopy (SEM and atomic force microscopy (AFM showed that DXS/PAH polyelectrolyte complexes were Monodispersed with regular rounded-shape features and average diameters of 250 nm at 2 : 1 weight ratios of DXS/PAH. Fluorescently labelled DXS and fluorescein-isothiocyanate- (FITC-conjugate DXS were used to follow cell uptake efficiency of PECs and biodegradability of their enzymatically degradable DXS-layers by using confocal laser scanning microscopy (CLSM. Moreover, quantitative MTT and Trypan Blue assays were employed to validate PECs as feasible and safe nanoscaled carriers at single-cell level without adverse effects on metabolism and viability.

  6. Development of droplets‐based microfluidic systems for single­‐cell high‐throughput screening

    DEFF Research Database (Denmark)

    Chen, Jun; Jensen, Thomas Glasdam; Godina, Alexei

    2014-01-01

    High-throughput screening (HTS) plays an important role in the development of microbial cell factories. One of the most popular approaches is to use microplates combined with the application of robotics, liquid handling and sophisticated detection methods. However, these workstations require large...... investment, and a logarithmic increase to screen large combinatorial libraries over the decades also makes it gradually out of depth. Here, we are trying to develop a feasible high‐throughput system that uses microfluidics to compartmentalize a single cell for propagation and analysis in monodisperse...... picoliter aqueous droplets surround by an immiscible fluorinated oil phase. Our aim is to use this system to facilitate the screening process for both the biotechnology and food industry....

  7. A comparative study of the effects of Ag{sub 2}S films prepared by MPD and HRTD methods on the performance of polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yong; Li, Fumin; Ling, Lanyun [Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004 (China); School of Physics and Electronics, Henan University, Kaifeng, 475004 (China); Chen, Chong, E-mail: chongchen@henu.edu.cn [Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004 (China); School of Physics and Electronics, Henan University, Kaifeng, 475004 (China)

    2016-10-30

    Highlights: • Ag{sub 2}S nanocrystals are directly synthesized on ITO substrate by MPD and HRTD methods. • The Ag{sub 2}S films prepared by HRTD method have lower roughness and better uniformity. • The solar cells with the Ag{sub 2}S (HRTD, n) films show better device performance. - Abstract: In this work, the Ag{sub 2}S nanocrystalline thin films are deposited on ITO glass via molecular precursor decomposition (MPD) method and newly developed HRTD method for organic solar cells (ITO/Ag{sub 2}S/P3HT:PCBM/MoO{sub 3}/Au) as an electron selective layer and a light absorption material. The surface morphology, structure characterization, and optical property of the Ag{sub 2}S films prepared by these two methods were compared and the effect of the prepared Ag{sub 2}S film on the device performance is investigated. It is found that the Ag{sub 2}S films prepared by HRTD method have lower roughness and better uniformity than the corresponding films prepared by the MPD method. In addition, a more effective and rapid transporting ability for the electrons and holes in the ITO/Ag{sub 2}S(HRTD, n)/P3HT:PCBM/MoO{sub 3}/Au cells is found, which reduces the charge recombination, and thus, improves the device performance. The highest efficiency of 3.21% achieved for the ITO/Ag{sub 2}S(HRTD, 50)/P3HT:PCBM/MoO{sub 3}/Au cell is 93% higher than that of the ITO/Ag{sub 2}S(MPD, 2)/P3HT:PCBM/MoO{sub 3}/Au cell.

  8. A novel method for sample preparation of fresh lung cancer tissue for proteomics analysis by tumor cell enrichment and removal of blood contaminants

    Directory of Open Access Journals (Sweden)

    Orre Lotta

    2010-02-01

    Full Text Available Abstract Background In-depth proteomics analyses of tumors are frequently biased by the presence of blood components and stromal contamination, which leads to large experimental variation and decreases the proteome coverage. We have established a reproducible method to prepare freshly collected lung tumors for proteomics analysis, aiming at tumor cell enrichment and reduction of plasma protein contamination. We obtained enriched tumor-cell suspensions (ETS from six lung cancer cases (two adenocarcinomas, two squamous-cell carcinomas, two large-cell carcinomas and from two normal lung samples. The cell content of resulting ETS was evaluated with immunocytological stainings and compared with the histologic pattern of the original specimens. By means of a quantitative mass spectrometry-based method we evaluated the reproducibility of the sample preparation protocol and we assessed the proteome coverage by comparing lysates from ETS samples with the direct lysate of corresponding fresh-frozen samples. Results Cytological analyses on cytospin specimens showed that the percentage of tumoral cells in the ETS samples ranged from 20% to 70%. In the normal lung samples the percentage of epithelial cells was less then 10%. The reproducibility of the sample preparation protocol was very good, with coefficient of variation at the peptide level and at the protein level of 13% and 7%, respectively. Proteomics analysis led to the identification of a significantly higher number of proteins in the ETS samples than in the FF samples (244 vs 109, respectively. Albumin and hemoglobin were among the top 5 most abundant proteins identified in the FF samples, showing a high contamination with blood and plasma proteins, whereas ubiquitin and the mitochondrial ATP synthase 5A1 where among the top 5 most abundant proteins in the ETS samples. Conclusion The method is feasible and reproducible. We could obtain a fair enrichment of cells but the major benefit of the method

  9. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity.

    Science.gov (United States)

    Sawtarie, Nader; Cai, Yuhang; Lapitsky, Yakov

    2017-09-01

    Nanoparticles prepared through the ionotropic gelation of chitosan with tripolyphosphate (TPP) have been extensively studied as vehicles for drug and gene delivery. Though a number of these works have focused on preparing particles with narrow size distributions, the monodisperse particles produced by these methods have been limited to narrow size ranges (where the average particle size was not varied by more than twofold). Here we show how, by tuning the NaCl concentration in the parent chitosan and TPP solutions, low-polydispersity particles with z-average diameters ranging between roughly 100 and 900nm can be prepared. Further, we explore how the size of these particles depends on the method by which the TPP is mixed into the chitosan solution, specifically comparing: (1) single-shot mixing; (2) dropwise addition; and (3) a dilution technique, where chitosan and TPP are codissolved at a high (gelation-inhibiting) ionic strength and then diluted to lower ionic strengths to trigger gelation. Though the particle size increases sigmoidally with the NaCl concentration for all three mixing methods, the dilution method delivers the most uniform/gradual size increase - i.e., it provides the most precise control. Also investigated are the effects of mixture composition and mixing procedure on the particle yield. These reveal the particle yield to increase with the chitosan/TPP concentration, decrease with the NaCl concentration, and vary only weakly with the mixing protocol; thus, at elevated NaCl concentrations, it may be beneficial to increase chitosan and TPP concentrations to ensure high particle yields. Finally, possible pitfalls of the salt-assisted size control strategy (and their solutions) are discussed. Taken together, these findings provide a simple and reliable method for extensively tuning chitosan/TPP particle size while maintaining narrow size distributions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Antioxidant potential of selected Spirulina platensis preparations.

    Science.gov (United States)

    Dartsch, Peter C

    2008-05-01

    Recent studies suggest that Spirulina, a unicellular blue-green alga, may have a variety of health benefits and therapeutic properties and is also capable of acting as an antioxidant and antiinflammatory agent. In this study, a cell-free and a cell-based test assay were used to examine the antioxidant and antiinflammatory properties of four selected Spirulina platensis preparations: (1) Biospirulina, (2) SpiruComplex, a preparation with naturally bound selenium, chromium and zinc, (3) SpiruZink, a preparation with naturally bound zinc, (4) Zinkspirulina + Acerola, a preparation with naturally bound zinc and acerola powder. The cell-free test assay used potassium superoxide as a donor for superoxide radicals, whereas the cell-based test assay used the formation of intracellular superoxide radicals of functional neutrophils upon stimulation by phorbol-12-myristate-13-acetate as a model to investigate the potential of Spirulina preparations to inactivate superoxide radicals. In accordance with the recommended daily dosage, test concentrations ranging from 50 to 1000 microg/mL were chosen. The results showed a dose-dependent inactivation of free superoxide radicals (antioxidant effect) as well as an antiinflammatory effect characterized by a dose-dependent reduction of the metabolic activity of functional neutrophils and a dose-dependent inactivation of superoxide radicals generated during an oxidative burst. The results demonstrate that the tested Spirulina preparations have a high antioxidant and antiinflammatory potential. Especially SpiruZink and Zinkspirulina + Acerola might be useful as a supportive therapeutic approach for reducing oxidative stress and/or the generation of oxygen radicals in the course of inflammatory processes.

  11. Quick synthesis of 2-propanol derived fluorescent carbon dots for bioimaging applications

    Science.gov (United States)

    Angamuthu, Raja; Palanisamy, Priya; Vasudevan, Vasanthakumar; Nagarajan, Sedhu; Rajendran, Ramesh; Vairamuthu, Raj

    2018-04-01

    Herein, for the first time, we present a one-pot ingenious preparative method for fluorescent carbon dots from 2-propanol (2P-CDs) without external treatments. Structure, morphology, chemical composition and fluorescence properties of the 2P-CDs were examined. These results confirm that the as-synthesized 2P-CDs are amorphous, monodispersed, spherical and the average particle size is 2.5 ± 0.7 nm. Most importantly, excitation-dependent emission properties were observed, which suggest that these 2P-CDs may be used in multicolor bioimaging applications. When incubated with HeLa cells, the 2P-CDs exhibit low cytotoxicity, and positive biocompatibility. Confocal microscopy image shows the uptake of 2P-CDs by HeLa cells and the application of probable biomarker is demonstrated.

  12. Fabrication and characterisation of ligand-functionalised ultrapure monodispersed metal nanoparticle nanoassemblies employing advanced gas deposition technique

    Science.gov (United States)

    Geremariam Welearegay, Tesfalem; Cindemir, Umut; Österlund, Lars; Ionescu, Radu

    2018-02-01

    Here, we report for the first time the fabrication of ligand-functionalised ultrapure monodispersed metal nanoparticles (Au, Cu, and Pt) from their pure metal precursors using the advanced gas deposition technique. The experimental conditions during nanoparticle formation were adjusted in order to obtain ultrafine isolated nanoparticles on different substrates. The morphology and surface analysis of the as-deposited metal nanoparticles were investigated using scanning electron microscopy, x-ray diffraction and Fourier transform infra-red spectroscopy, which demonstrated the formation of highly ordered pure crystalline nanoparticles with a relatively uniform size distribution of ∼10 nm (Au), ∼4 nm (Cu) and ∼3 nm (Pt), respectively. A broad range of organic ligands containing thiol or amine functional groups were attached to the nanoparticles to form continuous networks of nanoparticle-ligand nanoassemblies, which were characterised by scanning electron microscopy and x-ray photoelectron spectroscopy. The electrical resistance of the functional nanoassemblies deposited in the gap spacing of two microfabricated parallel Au electrodes patterned on silicon substrates ranged between tens of kΩ and tens of MΩ, which is suitable for use in many applications including (bio)chemical sensors, surface-enhanced Raman spectroscopy and molecular electronic rectifiers.

  13. Morphology controlled synthesis of monodisperse cobalt hydroxide for supercapacitor with high performance and long cycle life

    Science.gov (United States)

    Tang, Yongfu; Liu, Yanyan; Yu, Shengxue; Mu, Shichun; Xiao, Shaohua; Zhao, Yufeng; Gao, Faming

    2014-06-01

    A facile hydrothermal process with hexadecyltrimethyl ammonium bromide (CTAB) as the soft template is proposed to tune the morphology and size of cobalt hydroxide (Co(OH)2). Monodisperse β-phase Co(OH)2 nanowires with uniform size are obtained by controlling the CTAB content and the reaction time. Due to the uniform well-defined morphology and stable structure, the Co(OH)2 nanowires material exhibits high capacitive performance and long cycle life. The specific capacitance of the Co(OH)2 nanowires electrode is 358 F g-1 at 0.5 A g-1, and even 325 F g-1 at 10 A g-1. The specific capacitance retention is 86.3% after 5000 charge-discharge cycles at 2 A g-1. Moreover, the asymmetric supercapacitor is assembled with Co(OH)2 nanowires and nitrite acid treated activated carbon (NTAC), which shows an energy density of 13.6 Wh kg-1 at the power density of 153 W kg-1 under a high voltage of 1.6 V, and 13.1 Wh kg-1 even at the power density of 1.88 kW kg-1.

  14. Saccharomyces cerevisiae–Based Platform for Rapid Production and Evaluation of Eukaryotic Nutrient Transporters and Transceptors for Biochemical Studies and Crystallography

    DEFF Research Database (Denmark)

    Scharff-Poulsen, Peter; Pedersen, Per Amstrup

    2013-01-01

    localization, quantification, quality control, and purification. Using this expression system we examined the production of a human glucose transceptor and 11 nutrient transporters and transceptors from S. cerevisiae that have not previously been overexpressed in S. cerevisiae and purified. Whole...... transporter pr. liter cell culture. A detergent screen showed that n-dodecyl-ß-D-maltopyranoside (DDM) is acceptable for solubilization of the membrane-integrated fusions. Extracts of solubilized membranes were prepared with this detergent and used for purifications by Ni-NTA affinity chromatography, which...... of the fusions solubilized in DDM in presence of cholesteryl hemisuccinate and specific substrates, yielded monodisperse preparations with only minor amounts of aggregated membrane proteins. In conclusion, we developed a new effective S. cerevisiae expression system that may be used for production of high...

  15. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus.

    Science.gov (United States)

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.

  16. Radiolytic Preparation of Electrocatalysts with Pt-Co and Pt-Sn Nanoparticles for a Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Sang Kyum Kim

    2014-01-01

    Full Text Available Nanosized Pt-Sn/VC and Pt-Co/VC electrocatalysts were prepared by a one-step radiation-induced reduction (30 kGy process using distilled water as the solvent and Vulcan XC72 as the supporting material. While the Pt-Co/VC electrodes were compared with Pt/VC (40 wt%, HiSpec 4000, in terms of their electrocatalytic activity towards the oxidation of H2, the Pt-Co/VC electrodes were evaluated in terms of their activity towards the hydrogen oxidation reaction (HOR and compared with Pt/VC (40 wt%, HiSpec 4000, Pt-Co/VC, and Pt-Sn/VC in a single cell. Additionally, the prepared electrocatalyst samples (Pt-Co/VC and Pt-Sn/VC were characterized by transmission electron microscopy (TEM, scanning electron microscope (SEM, thermogravimetric analysis (TGA, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, electrochemical surface area (ECSA, and fuel cell polarization performance.

  17. Preparation and characterization of CuInSe2 particles via the hydrothermal route for thin-film solar cells

    International Nuclear Information System (INIS)

    Wu, Chung-Hsien; Chen, Fu-Shan; Lin, Shin-Hom; Lu, Chung-Hsin

    2011-01-01

    Highlights: → A new hydrothermal process for preparing copper indium diselenide (CuInSe 2 ). → Well-crystallized CuInSe 2 particles are obtained at 180 deg. C for 1 h. → Densified CuInSe 2 thin films are prepared from ink printing. → Increasing temperatures result in an improvement of properties of CuInSe 2 films. - Abstract: CuInSe 2 powders with a chalcopyrite structure used in thin-film solar cells were successfully prepared via a hydrothermal method at low temperatures within short durations. Well-crystallized CuInSe 2 particles were formed via the hydrothermal reaction at 180 deg. C for 1 h. The concentrations of stabilizer, triethanolamine (TEA), significantly affected the purity, morphology and particle sizes of the prepared powders. Increasing the reaction duration and temperatures led to decrease the amount of second phase In(OH) 3 and resulted in the formation of pure CuInSe 2 . Densified CuInSe 2 thin films were prepared from ink printing with the addition of the flux. Increasing the selenization temperatures increased the grain size and improved the crystallinity of CuInSe 2 films.

  18. Development of a lung slice preparation for recording ion channel activity in alveolar epithelial type I cells

    Directory of Open Access Journals (Sweden)

    Crandall Edward D

    2005-04-01

    Full Text Available Abstract Background Lung fluid balance in the healthy lung is dependent upon finely regulated vectorial transport of ions across the alveolar epithelium. Classically, the cellular locus of the major ion transport processes has been widely accepted to be the alveolar type II cell. Although evidence is now emerging to suggest that the alveolar type I cell might significantly contribute to the overall ion and fluid homeostasis of the lung, direct assessment of functional ion channels in type I cells has remained elusive. Methods Here we describe a development of a lung slice preparation that has allowed positive identification of alveolar type I cells within an intact and viable alveolar epithelium using living cell immunohistochemistry. Results This technique has allowed, for the first time, single ion channels of identified alveolar type I cells to be recorded using the cell-attached configuration of the patch-clamp technique. Conclusion This exciting new development should facilitate the ascription of function to alveolar type I cells and allow us to integrate this cell type into the general model of alveolar ion and fluid balance in health and disease.

  19. Gold cleaning methods for preparation of cell culture surfaces for self-assembled monolayers of zwitterionic oligopeptides.

    Science.gov (United States)

    Enomoto, Junko; Kageyama, Tatsuto; Myasnikova, Dina; Onishi, Kisaki; Kobayashi, Yuka; Taruno, Yoko; Kanai, Takahiro; Fukuda, Junji

    2018-05-01

    Self-assembled monolayers (SAMs) have been used to elucidate interactions between cells and material surface chemistry. Gold surfaces modified with oligopeptide SAMs exhibit several unique characteristics, such as cell-repulsive surfaces, micropatterns of cell adhesion and non-adhesion regions for control over cell microenvironments, and dynamic release of cells upon external stimuli under culture conditions. However, basic procedures for the preparation of oligopeptide SAMs, including appropriate cleaning methods of the gold surface before modification, have not been fully established. Because gold surfaces are readily contaminated with organic compounds in the air, cleaning methods may be critical for SAM formation. In this study, we examined the effects of four gold cleaning methods: dilute aqua regia, an ozone water, atmospheric plasma, and UV irradiation. Among the methods, UV irradiation most significantly improved the formation of oligopeptide SAMs in terms of repulsion of cells on the surfaces. We fabricated an apparatus with a UV light source, a rotation table, and HEPA filter, to treat a number of gold substrates simultaneously. Furthermore, UV-cleaned gold substrates were capable of detaching cell sheets without serious cell injury. This may potentially provide a stable and robust approach to oligopeptide SAM-based experiments for biomedical studies. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Preparation and Loading Process of Single Crystalline Samples into a Gas Environmental Cell Holder for In Situ Atomic Resolution Scanning Transmission Electron Microscopic Observation.

    Science.gov (United States)

    Straubinger, Rainer; Beyer, Andreas; Volz, Kerstin

    2016-06-01

    A reproducible way to transfer a single crystalline sample into a gas environmental cell holder for in situ transmission electron microscopic (TEM) analysis is shown in this study. As in situ holders have only single-tilt capability, it is necessary to prepare the sample precisely along a specific zone axis. This can be achieved by a very accurate focused ion beam lift-out preparation. We show a step-by-step procedure to prepare the sample and transfer it into the gas environmental cell. The sample material is a GaP/Ga(NAsP)/GaP multi-quantum well structure on Si. Scanning TEM observations prove that it is possible to achieve atomic resolution at very high temperatures in a nitrogen environment of 100,000 Pa.

  1. Synthesis of Co3O4 nanocubes by hydrothermal route and their ...

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... Monodispersed Co3O4 nanocubes were prepared by a simple hydrothermal route with ... X-ray spectrometry, scanning electron microscopy and transmission electron ... spectrometry (EDS) of the product were obtained using.

  2. Preparation of thin films, with base to precursor materials of type Cu-In-Se elaborated by electrodeposition for the solar cells elaboration

    International Nuclear Information System (INIS)

    Fernandez, A.M.

    1999-01-01

    Thin films of chalcogenide compounds are promising because they have excellent optoelectronic characteristics to be applied in solar cells. In particular, CuInSe 2 and Cd Te thin films have shown high solar to electrical conversion efficiency. However, this efficiency is limited by the method of preparation, in this case, physical vapor deposition techniques are used. In order to increase the area of deposition t is necessary to use chemical methods, for example, electrodeposition technique. In this paper, the preparation of Cu-In-Se precursors thin films by electrochemical method is reported. These precursors were used to build solar cells with 7.9 % of efficiency. (Author)

  3. Application of green chemistry techniques to prepare electrocatalysts for direct methanol fuel cells.

    Science.gov (United States)

    Shimizu, Kenichi; Wang, Joanna S; Wai, Chien M

    2010-03-25

    A series of green techniques for synthesizing carbon nanotube-supported platinum nanoparticles and their high electrocatalytic activity toward methanol fuel cell applications are reported. The techniques utilize either the supercritical fluid carbon dioxide or water as a medium for depositing platinum nanoparticles on surfaces of multiwalled or single-walled carbon nanotubes. The catalytic properties of the carbon nanotubes-supported Pt nanoparticle catalysts prepared by four different techniques are compared for anodic oxidation of methanol and cathodic reduction of oxygen using cyclic voltammetry. One technique using galvanic exchange of Pt(2+) in water with zerovalent iron present on the surfaces of as-grown single-walled carbon nanotubes produces a Pt catalyst that shows an unusually high catalytic activity for reduction of oxygen but a negligible activity for oxidation of methanol. This fuel-selective catalyst may have a unique application as a cathode catalyst in methanol fuel cells to alleviate the problems caused by crossover of methanol through the polymer electrolyte membrane.

  4. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment.

    Science.gov (United States)

    Amir Afshar, Hamideh; Ghaee, Azadeh

    2016-10-20

    The chemical nature of biomaterials play important role in cell attachment, proliferation and migration in tissue engineering. Chitosan and alginate are biodegradable and biocompatible polymers used as scaffolds for various medical and clinical applications. Amine groups of chitosan scaffolds play an important role in cell attachment and water adsorption but also associate with alginate carboxyl groups via electrostatic interactions and hydrogen bonding, consequently the activity of amine groups in the scaffold decreases. In this study, chitosan/alginate/halloysite nanotube (HNTs) composite scaffolds were prepared using a freeze-drying method. Amine treatment on the scaffold occurred through chemical methods, which in turn caused the hydroxyl groups to be replaced with carboxyl groups in chitosan and alginate, after which a reaction between ethylenediamine, 1-ethyl-3,(3-dimethylaminopropyl) carbodiimide (EDC) and scaffold triggered the amine groups to connect to the carboxyl groups of chitosan and alginate. The chemical structure, morphology and mechanical properties of the composite scaffolds were investigated by FTIR, CHNS, SEM/EDS and compression tests. The electrostatic attraction and hydrogen bonding between chitosan, alginate and halloysite was confirmed by FTIR spectroscopy. Chitosan/alginate/halloysite scaffolds exhibit significant enhancement in compressive strength compared with chitosan/alginate scaffolds. CHNS and EDS perfectly illustrate that amine groups were effectively introduced in the aminated scaffold. The growth and cell attachment of L929 cells as well as the cytotoxicity of the scaffolds were investigated by SEM and Alamar Blue (AB). The results indicated that the aminated chitosan/alginate/halloysite scaffold has better cell growth and cell adherence in comparison to that of chitosan/alginate/halloysite samples. Aminated chitosan/alginate/halloysite composite scaffolds exhibit great potential for applications in tissue engineering, ideally in

  5. Nano-sized particles, processes of making, compositions and uses thereof

    Science.gov (United States)

    O'Brien, Stephen [New York, NY; Yin, Ming [Los Alamos, NM

    2012-05-22

    The present invention describes methods for preparing high quality nanoparticles, i.e., metal oxide based nanoparticles of uniform size and monodispersity. The nanoparticles advantageously comprise organic alkyl chain capping groups and are stable in air and in nonpolar solvents. The methods of the invention provide a simple and reproducible procedure for forming transition metal oxide nanocrystals, with yields over 80%. The highly crystalline and monodisperse nanocrystals are obtained directly without further size selection; particle size can be easily and fractionally increased by the methods. The resulting nanoparticles can exhibit magnetic and/or optical properties. These properties result from the methods used to prepare them. Also advantageously, the nanoparticles of this invention are well suited for use in a variety of industrial applications, including cosmetic and pharmaceutical formulations and compositions.

  6. A water soluble fraction capable of regulating the immunity reactions of a host against allogenic cells or tissues, the pharmaceutical preparations which contain this fraction and a procedure for the preparation of the latter

    International Nuclear Information System (INIS)

    1980-01-01

    The preparation is described of non-toxic bone marrow cell suspensions containing a marrow-regulating factor, which are suitable for intravenous injection in patients with serious hematopoietic disturbances or radiation syndrome. The marrow-regulating factor conditions the bone marrow in a manner which enhances the success of bone marrow transplantation in donor-incompatible or semicompatible hosts. The extensive testing of this pharmaceutical preparation in irradiated mice is described and a toxicity study reported. (Auth.)

  7. Anticancer effect of a Kampo preparation Daikenchuto.

    Science.gov (United States)

    Nagata, Takuya; Toume, Kazufumi; Long, Lv Xiao; Hirano, Katsuhisa; Watanabe, Toru; Sekine, Shinichi; Okumura, Tomoyuki; Komatsu, Katsuko; Tsukada, Kazuhiro

    2016-07-01

    No traditional Japanese and Chinese herbal preparations have been shown to be effective antitumor agents, and a Japanese herbal therapy (Kampo medicine) for cancer that causes fewer adverse drug reactions than orthodox pharmaceuticals is desired. Our present study demonstrated that a Kampo preparation Daikenchuto (DKT) exerts an antitumor effect against various cancer cells. We also discovered an antitumor factor in Japanese Zanthoxylum peel, which is an ingredient of DKT. Breast, esophageal, gastric, and colon cancer cell lines were individually incubated with DKT for 1-72 h, followed by assessment of tumor growth inhibition by MTT assay. The cancer cells were also analyzed for apoptotic changes after DKT treatment. Nude mice were used to establish a model of gastric cancer tumor growth and peritoneal disseminated metastasis, in which the number of peritoneal disseminations was evaluated after oral administration of DKT for 4 weeks. In addition, the antitumor effects of the individual DKT ingredients (viz., ginseng, Japanese Zanthoxylum peel, and processed ginger) and other Kampo preparations were also analyzed. The antitumor effect of DKT was demonstrated in gastric, breast, esophageal, and colon cancer cells. DKT treatment induced apoptosis in these cells. Oral administration of DKT had a tendency to reduce the growth and significantly reduced the peritoneal dissemination of gastric cancer in the nude mouse model compared with control. DKT exhibited a higher antitumor effect than other Kampo preparations. Furthermore, Japanese Zanthoxylum peel, an ingredient of DKT, showed a particularly potent antitumor effect. Our study indicated that DKT is useful as a Kampo preparation for cancer therapy. We also showed that Japanese Zanthoxylum peel, an ingredient of DKT, contains an antitumor factor.

  8. Antioxidant properties and cytotoxic effects on human cancer cell lines of aqueous fermented and lipophilic quince (Cydonia oblonga Mill.) preparations.

    Science.gov (United States)

    Pacifico, Severina; Gallicchio, Marialuisa; Fiorentino, Antonio; Fischer, Anna; Meyer, Ulrich; Stintzing, Florian Conrad

    2012-11-01

    In the course of a screening program on quince phytochemicals, two complex preparations were in the focus of the present study, i.e., a lipophilic quince wax extract (QWE) and an aqueous fermented one (QAFE). While the phytochemical composition has been described earlier, the intention of the current investigation was to complement these data with an extensive antioxidant screening of these preparations including their radical scavenging and reductive power as well as their antilipoperoxidative properties. The Quince Aqueous Fermented Extract (QAFE) effectively scavenged the radical target species exhibiting ID(50) values equal to 68.8 μg/mL towards DPPH· and 73.7 μg/mL towards the anion superoxide radical. Quince wax extract (QWE) was more effective at preventing the formation of thiobarbituric reactive species than QAFE exhibiting an ID(50) value equal to 48.9 μg/mL. Moreover the cytotoxic effects towards human HepG2, A549, and HeLa cell lines were evaluated. The two preparations exerted a different effect on the proliferation of the three tested cell lines. Noteworthy, QAFE was almost always more active than QWE but, sometimes, its effects seemed to be strongly dependent on exposure time. Data obtained demonstrate clearly that both hydrophilic and lipophilic quince preparations are non-toxic and exert health-promoting properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Crossflow type silicon microchannel substrate monodispersion oil-in-water emulsion manufacture; Kurosufuro gata shirikon maikuro chaneru kiban wo mochiita tanbunsan suchuyu emarushon no sakusei

    Energy Technology Data Exchange (ETDEWEB)

    Kawakatsu, Takahiro [Tohoku University, Miyagi (Japan). Graduate School; Komori, Hideai; Najima, Mitsutashi; Kikuchi, Yuji; Yonemoto, Toshikuni

    1999-05-05

    The new technique, which continuously produced the monodispersion oil-in-water (0/W) emulsion using the crossflow type silicon microchannel substrate, was developed. On the silicon monocrystal substrate, the watercourse as the liquid of the continuous phase flowed was produced, and the column of the equal slit of the size in both walls of the watercourse was precisely processed. By closing the upper part in the slit by the clamp of the flat glass board in the microchannel substrate, the microchannel column was formed. Through the microchannel, the oil droplet in which the size was even was formed by sending out the oil (triolein) in the water (0.3wt% sodium lauryl sulfate aqueous solution) of continuous phase which is flowing in respect of the watercourse. The size of the oil droplet is greatly dependent on the structure of the microchannel regulated by microchannel width, microchannel height and terrace length (the even part of which the microchannel exit was equipped). Monodispersion emulsion of 16,20 and 48 {mu}m at the average droplet diameter was formed by using microchannel substrate of the three types of which the structure differs. Droplet diameter decreased, when the substrate which formed large droplet of 48 {mu}m in which the water current quantity is 1.4x10{sup -2}mLmin{sup -1} was used, when the flow rate increased. However, there was no a flow rate at droplet diameter, even if it was made to change from 1.4x10{sup -2} to 2.4mLmin{sup -1}, 16 {mu}m 20 {mu}m small change. In all cases, the droplet size distribution was narrow, and the geometry standard deviation was under 1.03. (translated by NEDO)

  10. Preparation of ZnS microdisks using chemical bath deposition and ZnS/p-Si heterojunction solar cells

    Science.gov (United States)

    Hsiao, Y. J.; Meen, T. H.; Ji, L. W.; Tsai, J. K.; Wu, Y. S.; Huang, C. J.

    2013-10-01

    The synthesis and heterojunction solar cell properties of ZnS microdisks prepared by the chemical bath deposition method were investigated. The ZnS deposited on the p-Si blanket substrate exhibits good coverage. The lower reflectance spectra were found as the thickness of the ZnS film increased. The optical absorption spectra of the 80 °C ZnS microdisk exhibited a band-gap energy of 3.4 eV and the power conversion efficiency (PCE) of the AZO/ZnS/p-Si heterojunction solar cell with a 300 nm thick ZnS film was η=2.72%.

  11. Fabrication of monodispersed nickel flower-like architectures via a solvent-thermal process and analysis of their magnetic and electromagnetic properties

    International Nuclear Information System (INIS)

    Kong Jing; Liu Wei; Wang Fenglong; Wang Xinzhen; Luan Liqiang; Liu Jiurong; Wang Yuan; Zhang Zijun; Itoh, Masahiro; Machida, Ken-ichi

    2011-01-01

    Monodispersed Ni flower-like architectures with size of 1-2 μm were synthesized through a facile solvent-thermal process in 1,2-propanediol solution in the presence of polyethylene glycol (PEG) and sodium alkali for electromagnetic absorption application. The Ni architectures are composed of nanoflakes, which assemble to form three dimensional flower-like structure, and the thickness of nanoflakes is about 10-40 nm. A possible formation mechanism for Ni flower-like architectures was proposed and it was confirmed by the control experiments. The Ni architectures exhibited a saturation magnetization (M s ) of 47.7 emu/g and a large coercivity (H cj ) of 332.3 Oe. The epoxy resin composites with 20 vol% Ni sample provided good electromagnetic wave absorption performance (reflection loss cj ) of 332.3 Oe. → Efficient electromagnetic absorption (RL<-20 dB) was provided in 2.8-6.3 GHz.

  12. Role of Oxidative Stress in the Suppression of Immune Responses in Peripheral Blood Mononuclear Cells Exposed to Combustible Tobacco Product Preparation.

    Science.gov (United States)

    Arimilli, Subhashini; Schmidt, Eckhardt; Damratoski, Brad E; Prasad, G L

    2017-10-01

    Cigarette smoking is a major risk factor for several human diseases. Chronic inflammation, resulting from increased oxidative stress, has been suggested as a mechanism that contributes to the increased susceptibility of smokers to cancer and microbial infections. We have previously shown that whole-smoke conditioned medium (WS-CM) and total particulate matter (TPM) prepared from Kentucky 3R4F reference cigarettes [collectively called as combustible tobacco product preparations (TPPs)] potently suppressed agonist-stimulated cytokine secretion and target cell killing in peripheral blood mononuclear cells (PBMCs). Here we have investigated the role of oxidative stress from TPPs, which alters inflammatory responses in vitro. Particularly, we investigated the mechanisms of WS-CM-induced suppression of select cytokine secretions in Toll-like receptor (TLR) agonist-stimulated cells and target cell killing by effector cells in PBMCs. Pretreatment with N-acetyl cysteine (NAC), a precursor of reduced glutathione and an established anti-oxidant, protected against DNA damage and cytotoxicity caused by exposure to WS-CM. Similarly, secretion of tumor necrosis factor (TNF), interleukin (IL)-6, and IL-8 in response to TLR-4 stimulation was restored by pretreatment with NAC. Target cell killing, a functional measure of cytolytic cells in PBMCs, is suppressed by WS-CM. Pretreatment with NAC restored the target cell killing in WS-CM treated PBMCs. This was accompanied by higher perforin levels in the effector cell populations. Collectively, these data suggest that reducing oxidative stress caused by cigarette smoke components restores select immune responses in this ex vivo model.

  13. Surface modified alginate microcapsules for 3D cell culture

    Science.gov (United States)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  14. Enhanced bio-compatibility of ferrofluids of self-assembled superparamagnetic iron oxide-silica core-shell nanoparticles

    Digital Repository Service at National Institute of Oceanography (India)

    Narayanan, T.N.; Mary, A.P.R.; Swalih, P.K.A.; Kumar, D.S.; Makarov, D.; Albrecht, M.; Puthumana, J.; Anas, A.; Anantharaman, A.

    -interacting, monodispersed and hence the synthesis of such nanostructures has great relevance in the realm of nanoscience. Silica-coated superparamagnetic iron oxide nanoparticles based ferrofluids were prepared using polyethylene glycol as carrier fluid by employing a...

  15. Entrapment of dispersed pancreatic islet cells in CultiSpher-S macroporous gelatin microcarriers: Preparation, in vitro characterization, and microencapsulation.

    Science.gov (United States)

    Del Guerra, S; Bracci, C; Nilsson, K; Belcourt, A; Kessler, L; Lupi, R; Marselli, L; De Vos, P; Marchetti, P

    2001-12-20

    Immunoprotection of pancreatic islets for successful allo- or xenotransplantation without chronic immunosuppression is an attractive, but still elusive, approach for curing type 1 diabetes. It was recently shown that, even in the absence of fibrotic overgrowth, other factors, mainly insufficient nutrition to the core of the islets, represent a major barrier for long-term survival of intraperitoneal microencapsulated islet grafts. The use of dispersed cells might contribute to solve this problem due to the conceivably easier nutritional support to the cells. In the present study, purified bovine islets, prepared by collagenase digestion and density gradient purification, and dispersed bovine islet cells, obtained by trypsin and DNAsi (viability > 90%), were entrapped into either 2% (w/v) sodium alginate (commonly used for encapsulation purposes) or (dispersed islet cells only) macroporous gelatin microcarriers (CulthiSpher-S, commonly used for the production of biologicals by animal cells). Insulin release studies in response to glucose were performed within 1 week and after 1 month from preparation of the varying systems and showed no capability of dispersed bovine islet cells within sodium alginate microcapsules to sense glucose concentration changes. On the contrary, bovine islet cells entrapped in CulthiSpher-S microcarriers showed maintained capacity of increasing insulin secretion upon enhanced glucose concentration challenge. In this case, insulin release was approximately 60% of that from intact bovine islets within sodium alginate microcapsules. MTT and hematoxylineosin staining of islet cell-containing microcarriers showed the presence of viable and metabolically active cells throughout the study period. This encouraging functional data prompted us to test whether the microcarriers could be immunoisolated for potential use in transplantation. The microcarriers were embedded within 3% sodium alginate, which was then covered with a poly-L-lysine layer and a

  16. Fluorescein isothiocyanate labeled, magnetic nanoparticles conjugated D-penicillamine-anti-metadherin and in vitro evaluation on breast cancer cells

    International Nuclear Information System (INIS)

    Akca, Ozlet; Unak, Perihan; Medine, E. Ylker; Sakarya, Serhan; Ozdemir, Caglar; Timur, Suna

    2011-01-01

    Silane modified magnetic nanoparticles were prepared after capped with silica generated from the hydrolyzation of tetraethyl orthosilicate (TEOS). Amino silane (SG-Si900) was added to this solution for surface modification of silica coated magnetic particles. Finally, D-penicillamine (D-PA)-antimetadherin (anti-MTDH) was covalently linked to the amine group using glutaraldehyde as cross-linker. Magnetic nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and atomic force microscopy (AFM). AFM results showed that particles are nearly monodisperse, and the average size of particles was 40 to 50 nm. An amino acid derivative D-PA was conjugated anti-MTDH, which results the increase of uptaking potential of a conjugated agent, labelled fluorescein isothiocyanate (FITC) and then conjugated to the magnetic nanoparticles. In vitro evaluation of the conjugated D-PA-anti-MTDH-FITC to magnetic nanoparticle was studied on MCF-7 breast cancer cell lines. Fluorescence microscopy images of cells after incubation of the sample were obtained to monitor the interaction of the sample with the cancerous cells. Incorporation on cells of FITC labeled and magnetic nanoparticles conjugated D-PA-anti-MTDH was found higher than FITC labeled D-PA-anti-MTDH. The results show that magnetic properties and application of magnetic field increased incorporation rates. The obtained D-PA-anti-MTDH-magnetic nanoparticles-FITC complex has been used for in vitro imaging of breast cancer cells. FITC labeled and magnetic nanoparticles conjugated D-PA-anti-MTDH may be useful as a new class of scintigraphic agents. Results of this study are sufficiently encouraging to bring about further evaluation of this and related compounds for ultraviolet magnetic resonance (UV-MR) dual imaging. (author)

  17. Organic Photovoltaic Cells Based on PbPc Nanocolumns Prepared by Glancing Angle Deposition

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2013-01-01

    Full Text Available Organic small material lead phthalocyanine (PbPc nanocolumns were prepared via glancing angle deposition (GLAD on indium tin oxide (ITO coated glass substrates. Organic electron acceptor materials fullerene (C60 was evaporated onto the nanocolumn PbPc thin films to prepare heterojunction structure ITO/PbPc/C60/Bphen/Al organic photovoltaic cells (OPVs. It is worthwhile to mention that C60 molecules firstly fill the voids between PbPc nanocolumns and then form impact C60 layer. The interpenetrating electron donor/acceptor structure effectively enhances interface between electron donor and electron acceptor, which is beneficial to exciton dissociation. The short circuit current density (Jsc of organic photovoltaic devices (OPVs based on PbPc nanocolumn was increased from 1.19 mA/cm2 to 1.74 mA/cm2, which should be attributed to the increase of interface between donor and acceptor. The effect of illumination intensity on the performance of OPVs was investigated by controlling the distance between light source and sample, and the Jsc of two kind of OPVs was increased along with the increase of illumination intensity.

  18. Incorporation of [1-C14] Isopentenyl Pyrophosphate into Carotenoids and Homo carotenoids using a Cell-free Preparation of Micrococcus Luteus

    International Nuclear Information System (INIS)

    Al-Wandawi, H.

    1998-01-01

    The early steps up to the formation of acyclic unsaturated carotenes (e.g.,phytoene to lycopene) are presumed to be common to the biosynthesis of all carotenoids with 40 or more carbon atoms, nevertheless, no direct evidence so far available to confirm this for homo carotenoids (c 45 and c 50 carotenoids). In the present study, an active cell-free preparation was obtained from diphenylamine-inhibited cells of Micrococcus Iuteus and found to be capable to incorporate radioactivity from Isopentenyl pyrophosphate (labelled with C-14)into carotenoids and homo carotenoids, providing for the first time a direct evidence which suggests that both carotenoids and homo carotenoids are sharing the same biological origin. Furthermore, the technique developed in this study may be considered as a valuable method for preparation of biological-active labelled compounds which may have some advantages over conventional chemical syntheses methods

  19. Laboratory evaluation of commercial interferon preparations

    International Nuclear Information System (INIS)

    Schoub, B.D.; Lyons, S.F.; Crespi, M.; Chiu, M.-N.; Lomnitzer, R.

    1983-01-01

    The antiviral, antiproliferative and natural killer-cell (NKC) stimulatory activities of four commercial therapeutic interferon preparations were assayed in a laboratory. The antiviral and antiproliferative activities of each preparation were relatively similar, but an unexpectedly high NKC stimulatory activity was found in one of them. In-house determination of antiviral activity and evaluation of the antiproliferative and NKC stimulation potential of interferon preparations are essential before rational clinical trials of this agent are carried out

  20. DNA synthesis in vitro in human fibroblast preparations

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, W.K.

    1983-01-01

    When confluent cultures of human fibroblasts were ultraviolet irradiated and either permeabilized or lysed, three types of DNA synthesis were subsequently observed during incubation in vitro: (A) a low level of DNA replication, which ceased after 15-30 min incubation at 37/sup 0/C; (B) radiation-dependent reparative gap-filling, which also ceased after 15 min at 37/sup 0/C; and (C) radiation-independent DNA synthesis, which was not semiconservative and proceeded at a linear rate for 1 hr at 37/sup 0/C. Normal and xeroderma pigmentosum fibroblasts displayed different rates of radiation-dependent reparative gap-filling after lysis but similar rates of radiation-independent DNA synthesis. The rates of DNA replication and radiation-independent DNA synthesis were less in the permeable cell system than in the lysed cell system, whereas radiation-dependent reparative gap-filling was the same in both. Preparations of permeable and lysed cells activated radiation-dependent reparative gap-filling at about 15% of the rate estimated for intact cells. No radiation-dependent DNA strand breaks, as assayed by alkaline elution, were observed in the lysed cell preparation. Some radiation-dependent breaks were observed in the permeable cell preparation, but radiation-dependent DNA breakage was less than that seen in intact cells. This inability to incise DNA at damaged sites could account for the low rate of activation of reparative gap-filling in vitro. DNA strand breaks were produced in fibroblast preparations nonspecifically during lysis or permeabilization and incubation in vitro, and this breakage of DNA probably was responsible for the radiation-independent DNA synthesis.

  1. Preparation of novel biodegradable ropivacaine microspheres and evaluation of their efficacy in sciatic nerve block in mice

    Directory of Open Access Journals (Sweden)

    Ni Q

    2016-08-01

    Full Text Available Qiang Ni, Wurong Chen, Lei Tong, Jue Cao, Chao Ji Department of Anesthesiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China Abstract: In this study, ropivacaine chitosan-loaded microspheres for subcutaneous administration were developed. The systems were characterized in terms of surface morphology, particle size, encapsulation efficiency, and in vitro release behavior. Results showed that the microspheres had drug loading rate of 7.3% and encapsulation efficiency of 91.2%, and their average diameter was 2.62±0.76 µm. The morphology study revealed that the microspheres are uniform monodispersed spheres and did not form aggregates in aqueous solution. It was clearly observed that the release profile of ropivacaine microspheres exhibited a biphasic pattern: the initial burst release within the first 2 hours and a following slower and sustained release over a long time. In vivo, a greater area under the plasma concentration–time curve from 0 to t (AUC0–t was obtained from the microspheres (4.27-fold, than from the injection group, which indicated that there was a significantly improved systemic exposure to ropivacaine. Pharmacodynamics result showed that preparing ropivacaine as microsphere preparation could not only extend the drug effect time but also decrease the administration dosage. Keywords: ropivacaine, chitosan, microspheres, in vitro release, pharmacodynamics

  2. A new technique for reversible permeabilization of live cells for intracellular delivery of quantum dots

    International Nuclear Information System (INIS)

    Medepalli, Krishnakiran; Alphenaar, Bruce W; Keynton, Robert S; Sethu, Palaniappan

    2013-01-01

    A major challenge with the use of quantum dots (QDs) for cellular imaging and biomolecular delivery is the attainment of QDs freely dispersed inside the cells. Conventional methods such as endocytosis, lipids based delivery and electroporation are associated with delivery of QDs in vesicles and/or as aggregates that are not monodispersed. In this study, we demonstrate a new technique for reversible permeabilization of cells to enable the introduction of freely dispersed QDs within the cytoplasm. Our approach combines osmosis driven fluid transport into cells achieved by creating a hypotonic environment and reversible permeabilization using low concentrations of cell permeabilization agents like Saponin. Our results confirm that highly efficient endocytosis-free intracellular delivery of QDs can be accomplished using this method. The best results were obtained when the cells were treated with 50 μg ml −1 Saponin in a hypotonic buffer at a 3:2 physiological buffer:DI water ratio for 5 min at 4 ° C. (paper)

  3. A poly(ether-ester) copolymer for the preparation of nanocarriers with improved degradation and drug delivery kinetics

    International Nuclear Information System (INIS)

    Gagliardi, M.; Bertero, A.; Bardi, G.; Bifone, A.

    2016-01-01

    This paper reports the synthesis and the physicochemical, functional and biological characterisations of nanocarriers made of a novel di-block biodegradable poly(ether-ester) copolymer. This material presents tunable, fast biodegradation rates, but its products are less acidic than those of other biosorbable polymers like PLGA, thus presenting a better biocompatibility profile and the possibility to carry pH-sensitive payloads. A method for the production of monodisperse and spherical nanoparticles is proposed; drug delivery kinetics and blood protein adsorption were measured to evaluate the functional properties of these nanoparticles as drug carriers. The copolymer was labelled with a fluorescent dye for internalisation tests, and rhodamine B was used as a model cargo to study transport and release inside cultured cells. Biological tests demonstrated good cytocompatibility, significant cell internalisation and the possibility to vehiculate non-cell penetrating moieties into endothelial cells. Taken together, these results support the potential use of this nanoparticulate system for systemic administration of drugs. - Highlights: • We propose a novel biodegradable nanocarrier for intracellular drug delivery. • Biodegradation rates can be finely tuned by controlling copolymer composition. • Degradation products are less acidic, thus enabling delivery of pH-sensitive cargoes. • We demonstrate intracellular delivery of a non-cell-penetrating model drug. • No significant membrane damage by the polymer nanocarriers is observed.

  4. A poly(ether-ester) copolymer for the preparation of nanocarriers with improved degradation and drug delivery kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, M., E-mail: mariacristina.gagliardi@iit.it [Center for Micro Bio-Robotics @SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Italy); Bertero, A. [Department of Biology, Unit of Cellular and Developmental Biology, University of Pisa, S.S.12 Abetone e Brennero 4, 56127 Pisa (Italy); Center for Neuroscience and Cognitive Systems @UNITN, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto (Italy); Bardi, G. [Center for Bio-Molecular Nanotechnologies @UniLe, Istituto Italiano di Tecnologia, Via Barsanti, 73010 Arnesano (Italy); Bifone, A. [Center for Neuroscience and Cognitive Systems @UNITN, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto (Italy)

    2016-02-01

    This paper reports the synthesis and the physicochemical, functional and biological characterisations of nanocarriers made of a novel di-block biodegradable poly(ether-ester) copolymer. This material presents tunable, fast biodegradation rates, but its products are less acidic than those of other biosorbable polymers like PLGA, thus presenting a better biocompatibility profile and the possibility to carry pH-sensitive payloads. A method for the production of monodisperse and spherical nanoparticles is proposed; drug delivery kinetics and blood protein adsorption were measured to evaluate the functional properties of these nanoparticles as drug carriers. The copolymer was labelled with a fluorescent dye for internalisation tests, and rhodamine B was used as a model cargo to study transport and release inside cultured cells. Biological tests demonstrated good cytocompatibility, significant cell internalisation and the possibility to vehiculate non-cell penetrating moieties into endothelial cells. Taken together, these results support the potential use of this nanoparticulate system for systemic administration of drugs. - Highlights: • We propose a novel biodegradable nanocarrier for intracellular drug delivery. • Biodegradation rates can be finely tuned by controlling copolymer composition. • Degradation products are less acidic, thus enabling delivery of pH-sensitive cargoes. • We demonstrate intracellular delivery of a non-cell-penetrating model drug. • No significant membrane damage by the polymer nanocarriers is observed.

  5. Tobacco Mosaic Virus with Peroxidase-Like Activity for Cancer Cell Detection through Colorimetric Assay.

    Science.gov (United States)

    Guo, Jiawang; Zhao, Xia; Hu, Jun; Lin, Yuan; Wang, Qian

    2018-01-22

    Cell-based ELISA (CELLISA) has been widely used in disease diagnosis due to its simplicity and low cost. Recently, peroxidase-like nanomaterials have emerged as promising systems for CELLISA applications. In this work, tobacco mosaic virus (TMV) was simultaneously tailored with peroxidase-like inorganic nanoparticles (platinum nanoparticles) and cancer cell target groups (folic acid, FA) to obtain TMV-FA-Pt nanoparticles for cancer cell detection. Induced by the uniformly distributed reactive groups and well-defined structure of the TMV particle, platinum nanoparticles could be grown in situ on the exterior surface of TMV with excellent monodispersity and uniform spatial distribution. Meanwhile, FA with a PEG 1000 linker was successfully conjugated to the coat proteins of TMV through the Cu(I)-catalyzed alkyne-azide cycloaddition reaction, an efficient "click" chemistry. Our study demonstrated that the resultant TMV-FA-Pt had specific affinity to cancer cells and was successfully used to detect cancer cells through CELLISA. Less than 1.0 × 10 4 cells/mL of cancer cells could be readily detected.

  6. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus

    Directory of Open Access Journals (Sweden)

    Chang HB

    2015-08-01

    Full Text Available Hong-Bin Chang,1 Bing-Huei Chen1,21Department of Food Science, 2Graduate Institute of Medicine, Fu Jen Catholic University, Taipei, TaiwanAbstract: The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell was selected for comparison. A high-performance liquid chromatography (HPLC method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 µg/mL, demethoxycurcumin (1,147.4 µg/mL, and bisdemethoxycurcumin (190.2 µg/mL. A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 µg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.Keywords: curcuminoid extract, curcuminoid nanoemulsion, Curcuma longa Linnaeus, lung cancer cell, cell cycle, apoptosis mechanism

  7. Dosimetry of 239Pu in dogs that inhaled monodisperse aerosols of 239PuO2

    International Nuclear Information System (INIS)

    Guilmette, R.A.; Muggenburg, B.A.; Hahn, F.F.; Mewhinney, J.A.; Seiler, F.A.; Boecker, B.B.; McClellan, R.O.

    1987-01-01

    Existing data from human exposure cases and experimental animal studies on the fate and dosimetry of inhaled insoluble Pu particles are inadequate to provide a comprehensive description and evaluation of the tissues at risk from the alpha radiations of Pu. To improve our knowledge of the dosimetry of inhaled insoluble 239 PuO 2 , this paper describes the uptake and retention of 239 Pu in the tissues of dogs that received single inhalation exposures to monodisperse aerosols of 239 PuO 2 . These data include times through 3 years after exposure. Using analytical functions fitted to each tissue data set, 1100-day radiation doses were calculated for lung, liver, skeleton, kidney, spleen, and tracheobronchial, mediastinal, sternal, hepatic, mandibular, and retropharyngeal lymph nodes. The dosimetry results suggest that the lung and lymph nodes associated with lymphatic drainage of the respiratory tract are the principal sites of alpha irradiation. However, the doses for the different respiratory tract lymph nodes vary by a factor of 2000, suggesting that assuming equivalent doses to respiratory tract lymph nodes is not appropriate. Other tissues receive radiation doses also but at levels one to three orders of magnitude less than the lung. Particle size dependence on uptake and retention was noted for the skeleton, mediastinal lymph nodes, hepatic lymph nodes, retropharyngeal lymph nodes, and mandibular lymph nodes

  8. Series-Interconnected Plastic Dye-Sensitized Solar Cells Prepared by Low- Temperature Binder-Free Titania Paste

    Directory of Open Access Journals (Sweden)

    Erlyta Septa Rosa

    2014-10-01

    Full Text Available The aim of this research is to study dye-sensitized solar cells (DSSC. This was implemented on a flexible polyethylene terephthalate (PET substrate using a mixture of transparent and scattered mesoporous anatase-titania as the electron transport layer for the photoelectrode. This mixture of anatase titania performed a dual function of light scattering and efficient dye absorption. In this study, a porous nano-TiO2 film was prepared on indium tin oxide (ITO coated polyethylene terephthalate (PET by using a binder-free titania paste; on it, a DSSC was fabricated. The paste which contained a mixture of TiO2 nanoparticles, acid chloride, and ethanol was printed on two patterns of 1x6 cm2 active areas followed by sintered at 120 ºC to form TiO2 films. A commercial dye, N719, was adsorbed on the surface of TiO2 films and assembled to two platinized conductive plastic patterns to form a counter electrode and thus a sandwich-type dye cell. Finally, a solution of KI/I2 electrolytes was injected into the cell in which a couple of sandwich-type dye cells with an active area of 6 cm2 for each cell were series interconnected with a z-type interconnection between the photoelectrode of one cell and the counter electrode of another cell. The cell performance was characterized by employing simulated solar light at an intensity of 50 mW/cm2. The results showed interconnected cells generating a short-circuit photocurrent density of 2.34 mA/cm2, an open-circuit voltage of 1.10 volt, and overall 0.172% power conversion efficiency.

  9. Behavior of Electrochemically Prepared CuInSe2 as Photovoltaic Absorber in thin Film Solar Cells

    International Nuclear Information System (INIS)

    Guillen, C; Martinez, M.A.; Dona, J. M.; Herrero, J; Gutierrez, M. T.

    2000-01-01

    Two different objectives have been pursued in the present investigation: 1) optimization of the CuInSe, preparation parameters from electrodeposited precursors, and 2) evaluation of their photovoltaic behavior by preparing and enhancing Mo/CuInSe,/CdS/TCO devices. When Cu-In-Se precursors are directly electrodeposited, the applied potential fit is essential to improve the photovoltaic performance. Suitable absorbers have been also obtained by evaporating an In layer onto electrodeposited Cu-Se precursors. In this case, the substrate temperature during evaporation determines the CuInSe, quality. Similar results have been reached by substituting typical Mo-coated glass substrates by flexible Mo foils. Different TCO tested (ZnO and ITO) have been found equivalent as front electrical contact in the devices. Solar cell performance can be improved by annealing in air at 200 degree centigree. (Author) 46 refs

  10. Encapsulation of emulsion droplets by organo–silica shells

    NARCIS (Netherlands)

    Zoldesi, C.; Steegstra, Patrick; Imhof, Arnout

    2007-01-01

    Surfactant-stabilized emulsion droplets were used as templates for the synthesis of hollow colloidal particles. Monodisperse silicone oil droplets were prepared by hydrolysis and polymerization of dimethyldiethoxysiloxane monomer, in the presence of surfactant: sodium dodecyl sulphate (SDS, anionic)

  11. ShenFu Preparation Protects AML12 Cells Against Palmitic Acid-Induced Injury Through Inhibition of Both JNK/Nox4 and JNK/NFκB Pathways

    Directory of Open Access Journals (Sweden)

    Jia-Fu Ji

    2018-02-01

    Full Text Available Background/Aims: Nonalcoholic steatohepatitis includes steatosis along with liver inflammation, hepatocyte injury and fibrosis. In this study, we investigated the protective role and the potential mechanisms of a traditional Chinese medicine ShenFu (SF preparation in an in vitro hepatic steatosis model. Methods: In palmitic acid (PA-induced murine hepatic AML12 cell injury, effects of SF preparation on cellular apoptosis and intracellular triglyceride (iTG level were assessed using TUNEL and TG Colorimetric Assay. Reactive oxygen species (ROS and mitochondrial membrane potential (MMP levels were measured using DCF and JC-1 assay. Cytokine levels were evaluated using ELISA assay. Immunoblot was used to compare the activation level of c-Jun N terminal kinase (JNK, NADPH oxidase (Nox4, and NFκB pathways. Results: Addition of SF preparation prevented PA-mediated increase of apoptosis and iTG as well as IL-8 and IL-6. In PA-treated cell, SF preparation reduced the level of Nox4 and ROS, while increasing the level of MMP and the expression of manganese superoxide dismutase (MnSOD and catalase, indicating emendation of mitochondrial dysfunction. Nox4 inhibitor GKT137381 prevented PA-induced increase of ROS and apoptosis, while decreasing iTG slightly and not influencing the level of IL-8 and IL-6. SF preparation prevented PA-induced upregulation of phospho-JNK. JNK inhibitor SP600125 prevented PA-mediated increase of Nox4, IL-8, IL-6 and iTG. Nuclear translocation of NFκB/p65 was detected in PA-treated cells, which was prevented by SF preparation. An IκB degradation inhibitor, BAY11-7082, prevented PA-induced increase of IL-8 and IL-6 as well as iTG, whereas it only decreased ROS levels slightly and showed no influence on cellular apoptosis. Conclusion: SF preparation shows a beneficial role in prevention of hepatocyte injury by attenuating oxidative stress and cytokines production at least partially through inhibition of JNK/Nox4 and JNK

  12. Preparation and electrochemical properties of polyaniline nanofibers using ultrasonication

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, James [Department of Chemical and Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Kim, Miso [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Fapyane, Deby; Chang, In Seop [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan Gwagi-ro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical and Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of)

    2014-10-15

    Highlights: • Nanofibrous structured polyaniline (PANI) was prepared by simple ultrasonication. • PANI nanofibers prepared at 5 °C are uniform with an average diameter of 50 nm. • The conductivity is increased by 2 × 10{sup 8} times after doping with LiClO{sub 4}. • The cell with PANI-LiClO{sub 4} shows good cycle performance at high current densities. - Abstract: Polyaniline nanofibers have been successfully prepared by applying ultrasonic irradiation during oxidative polymerization of aniline in dilute hydrochloric acid and evaluated for suitability in lithium cells after doping with lithium perchlorate salt. Polyaniline nanofibers are confirmed by Fourier transform infrared spectroscopy, Fourier transform Raman spectroscopy, and transmission electron microscopy, and the efficiency of doping is confirmed by DC conductivity measurements at different temperatures. Electrochemical properties of nanofibers are evaluated, of which a remarkable increase in cycle stability is achieved when compared to polyaniline prepared by simple oxidative polymerization of aniline. The cell with nanofibrous polyaniline doped with LiClO{sub 4} delivers an initial discharge capacity value of 86 mA h g{sup −1} at 1 C-rate which is about 60% of theoretical capacity, and the capacity is slightly lowered during cycle and reaches 50% of theoretical capacity after 40 cycles. The cell delivers a stable and higher discharge capacity even at 2 C-rate compared to that of the cell prepared with bulk polyaniline doped with LiClO{sub 4}.

  13. Preparation and performance of intermediate-temperature fuel cells based on Gd-doped ceria electrolytes with different compositions

    International Nuclear Information System (INIS)

    Li, Zhimin; Mori, Toshiyuki; Yan, Pengfei; Wu, Yuanyuan; Li, ZhiPeng

    2012-01-01

    Highlights: ► Gd 0.1 Ce 0.9 O 1.95 electrolyte had less density of oxygen vacancies ordering. ► Gd 0.2 Ce 0.8 O 1.9 fuel cell showed better performance than Gd 0.1 Ce 0.9 O 1.95 . ► The relationship between microstructures and performance for cells were discussed. ► Gd 0.2 Ce 0.8 O 1.9 electrolyte with higher grain boundary conductivity was concluded. - Abstract: In this work, the effect of two frequently used Gd x Ce 1−x O 2−x/2 electrolytes (x = 0.1 and x = 0.2) on the performance of fuel cells operated at intermediate temperature was studied. The microstructures of ceria electrolytes responsible for the performance were discussed. Electrochemical measurements of as-prepared cells showed that the cell with Gd 0.2 Ce 0.8 O 1.9 electrolyte had a better performance than that of Gd 0.1 Ce 0.9 O 1.95 . It can be concluded that the increase of grain boundary conductivity of Gd 0.2 Ce 0.8 O 1.9 electrolyte contributes to its better cell performance.

  14. Screening of Chlamydomonas reinhardtii Populations with Single-Cell Resolution by Using a High-Throughput Microscale Sample Preparation for Matrix-Assisted Laser Desorption Ionization Mass Spectrometry.

    Science.gov (United States)

    Krismer, Jasmin; Sobek, Jens; Steinhoff, Robert F; Fagerer, Stephan R; Pabst, Martin; Zenobi, Renato

    2015-08-15

    The consequences of cellular heterogeneity, such as biocide persistence, can only be tackled by studying each individual in a cell population. Fluorescent tags provide tools for the high-throughput analysis of genomes, RNA transcripts, or proteins on the single-cell level. However, the analysis of lower-molecular-weight compounds that elude tagging is still a great challenge. Here, we describe a novel high-throughput microscale sample preparation technique for single cells that allows a mass spectrum to be obtained for each individual cell within a microbial population. The approach presented includes spotting Chlamydomonas reinhardtii cells, using a noncontact microarrayer, onto a specialized slide and controlled lysis of cells separated on the slide. Throughout the sample preparation, analytes were traced and individual steps optimized using autofluorescence detection of chlorophyll. The lysates of isolated cells are subjected to a direct, label-free analysis using matrix-assisted laser desorption ionization mass spectrometry. Thus, we were able to differentiate individual cells of two Chlamydomonas reinhardtii strains based on single-cell mass spectra. Furthermore, we showed that only population profiles with real single-cell resolution render a nondistorted picture of the phenotypes contained in a population. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. FISHprep: A Novel Integrated Device for Metaphase FISH Sample Preparation

    DEFF Research Database (Denmark)

    Shah, Pranjul Jaykumar; Vedarethinam, Indumathi; Kwasny, Dorota

    2011-01-01

    We present a novel integrated device for preparing metaphase chromosomes spread slides (FISHprep). The quality of cytogenetic analysis from patient samples greatly relies on the efficiency of sample pre-treatment and/or slide preparation. In cytogenetic slide preparation, cell cultures...... are routinely used to process samples (for culture, arrest and fixation of cells) and/or to expand limited amount of samples (in case of prenatal diagnostics). Arguably, this expansion and other sample pretreatments form the longest part of the entire diagnostic protocols spanning over 3–4 days. We present here...... with minimal handling for metaphase FISH slide preparation....

  16. Eco-friendly and simple radiation-based preparation of graphene and its application to organic solar cells

    International Nuclear Information System (INIS)

    Jung, Chan-Hee; Park, Yong-Woon; Hwang, In-Tae; Choi, Jae-Hak; Go, Yeong-Jin; Na, Seok-In; Shin, Kwanwoo; Lee, Jae-Suk

    2014-01-01

    We report the reduction of graphene oxide (GO) through an eco-friendly and simple radiation-based method and the practical application of the resulting radiation-reduced GO (RRGO) as a solution-processable hole-transporting layer (HTL) for organic solar cells. GO dispersed in N, N′-dimethylformamide (DMF) was irradiated by γ-rays at various absorbed doses. The analytical results revealed that GO in DMF was effectively reduced to RRGO by γ-ray irradiation-induced deoxygenation, and that the reduction degree was dependent on the absorbed dose. The electrical conductivity of RRGO increased up to 12.7 S cm −1 with an increase in the absorbed dose, whereas the work function decreased to 4.34 eV. An organic solar cell device with RRGO prepared at 50 kGy as an HTL exhibited the best performance, with a power conversion efficiency of 2.72%, which is a better cell efficiency than is possible in devices with conventional GO and solvothermally-reduced GO. (paper)

  17. Preparation of three-dimensional macroporous chitosan-gelatin B microspheres and HepG2-cell culture.

    Science.gov (United States)

    Huang, Fang; Cui, Long; Peng, Cheng-Hong; Wu, Xu-Bo; Han, Bao-San; Dong, Ya-Dong

    2016-12-01

    Chitosan-gelatin B microspheres with an open, interconnected, highly macroporous (100-200 µm) structure were prepared via a three-step protocol combining freeze-drying with an electrostatic and ionic cross-linking method. Saturated tripolyphosphate ethanol solution (85% ethanol) was chosen as the crosslinking agent to prevent destruction of the porous structure and to improve the biostability of the chitosan-gelatin B microspheres, with N-(3-dimethylaminopropyl)-N'-ethyl-carbodiimide/N-hydroxysuccinimide as a second crosslinking agent to react with gelatin A and fixed chitosan-gelatin B microspheres to attain improved biocompatibility. Water absorption of the three-dimensional macroporous chitosan-gelatin B microspheres (3D-P-CGMs) was 12.84, with a porosity of 85.45%. In vitro lysozyme degradation after 1, 3, 5, 7, 10, 14, and 21 days showed improved biodegradation in the 3D-P-CGMs. The morphology of human hepatoma cell lines (HepG2 cells) cultured on the 3D-P-CGMs was spherical, unlike that of cells cultured under traditional two-dimensional conditions. Scanning electron microscopy and paraffin sections were used to confirm the porous structure of the 3D-P-CGMs. HepG2 cells were able to migrate inside through the pore. Cell proliferation and levels of albumin and lactate dehydrogenase suggested that the 3D-P-CGMs could provide a larger specific surface area and an appropriate microenvironment for cell growth and survival. Hence, the 3D-P-CGMs are eminently suitable as macroporous scaffolds for cell cultures in tissue engineering and cell carrier studies. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  18. The binding parameters of radiolabelled monoclonal F (ab')2 and Fab' fragments relative to immunoglobulin G in reactions with surface-bound antigens

    International Nuclear Information System (INIS)

    Fjeld, J.G.; Nustad, K.; Michaelsen, T.E.

    1992-01-01

    The binding parameters of iodine-125-labelled intact monoclonal immunoglobulin G (IgG), F(ab') 2 and Fab' fragments were compared. The study was carried out with the two monoclonal antibodies (MoAbs) K13 and K16 specific for human Ig light chains κ and λ, respectively. When testing the 125 I-MoAbs against monodisperse polymer particles coated with the specific antigens, the K a for the F(ab') 2 fragments were similar to that for IgG, while the K a for the Fab' fragments were reduced to 10%-20% of that for IgG. The number N of effective target sites revealed with Fab' was higher than with F(ab') and IgG, presumably because less surface area is occupied by the small Fab' molecules. The immunoreactive fraction F ranged according to IgG>F(ab') 2 >Fab'. The explanation of the moderate difference between the K a of the monoclonal Fab' and the divalent IgG and F(ab') 2 was that the divalent molecules were not divalently attached to the particles. When testing the same antibody preparations against humanlymphoma cells producing Ig with light chains κ or λ, the binding results were less reliable than when particles were utilised, presumably due to antigen shedding. Different MoAbs vary in their loss of immunoreactivity due to enzymatic degradation and the radiolabelling procedure. The preparation of the radiolabelled fragments should therefore be optimized for each MoAb, and evaluation is necessary before injection. Artificial targets with a low leakage of antigen, like the monodisperse polymer particles here applied, are recommended for the in vitro evaluation of the immunoreactivity of labelled MoAb preparations. (orig.)

  19. Synthesis of circular and triangular gold nanorings with tunable optical properties

    KAUST Repository

    Lin, Xiaoying

    2017-08-24

    This communication describes a robust wet-chemical synthetic strategy for the preparation of monodispersed circular and triangular gold nanorings. The localized surface plasmon resonance of the nanorings can be tuned by controlling the outer diameter and ridge thickness of the nanorings.

  20. Synthesis of circular and triangular gold nanorings with tunable optical properties

    KAUST Repository

    Lin, Xiaoying; Liu, Yi; Lin, Meihua; Zhang, Qian; Nie, Zhihong

    2017-01-01

    This communication describes a robust wet-chemical synthetic strategy for the preparation of monodispersed circular and triangular gold nanorings. The localized surface plasmon resonance of the nanorings can be tuned by controlling the outer diameter and ridge thickness of the nanorings.