WorldWideScience

Sample records for prepared bimno3 nanoparticles

  1. Multiferroic BiFeO3-BiMnO3 Nanocheckerboard From First Principles

    OpenAIRE

    Palova, L.; Chandra, P.; Rabe, K. M.

    2010-01-01

    We present a first principles study of an unusual heterostructure, an atomic-scale checkerboard of BiFeO3-BiMnO3, and compare its properties to the two bulk constituent materials, BiFeO3 and BiMnO3. The "nanocheckerboard" is found to have a multiferroic ground state with the desired properties of each constituent: polar and ferrimagnetic due to BiFeO3 and BiMnO3, respectively. The effect of B-site cation ordering on magnetic ordering in the BiFeO3-BiMnO3 system is studied. The checkerboard ge...

  2. Adsorption-controlled growth of BiMnO3 films by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Lee, J. H.; Ke, X.; Misra, R.; Schiffer, P.; Ihlefeld, J. F.; Mei, Z. G.; Liu, Z. K.; Xu, X. S.; Musfeldt, J. L.; Heeg, T.; Schlom, D. G.; Roeckerath, M.; Schubert, J.

    2010-01-01

    We have developed the means to grow BiMnO 3 thin films with unparalleled structural perfection by reactive molecular-beam epitaxy and determined its band gap. Film growth occurs in an adsorption-controlled growth regime. Within this growth window bounded by oxygen pressure and substrate temperature at a fixed bismuth overpressure, single-phase films of the metastable perovskite BiMnO 3 may be grown by epitaxial stabilization. X-ray diffraction reveals phase-pure and epitaxial films with ω rocking curve full width at half maximum values as narrow as 11 arc sec (0.003 deg. ). Optical absorption measurements reveal that BiMnO 3 has a direct band gap of 1.1±0.1 eV.

  3. Analysis of multiferroic properties in BiMnO3 thin films

    International Nuclear Information System (INIS)

    Grizalez, M; Mendoza, G A; Prieto, P

    2009-01-01

    Textured BiMnO 3 [111] thin films on SrTiO 3 (100) and Pt/TiO 2 /SiO 2 substrates were grown via r.f. magnetron sputtering (13.56 MHz). The XRD spectra confirmed a monoclinic structure and high-quality textured films for the BiMnO 3 films. The films grown on SrTiO 3 (100) showed higher crystalline quality than those developed on Pt/TiO 2 /SiO 2 . Through optimized oxygen pressure of 5x10 -2 mbar during the r.f. sputtering deposition, the crystalline orientation of the BiMnO 3 film was improved with respect to the previously reported value of 2x10 -1 mbar. The values of spontaneous polarization (P s ), remnant polarization (P r ), and coercive field (F c ) from ferroelectric hysteresis loops (P-E) at different temperatures were also obtained. Samples with higher crystalline order revealed better dielectric properties (high P s and P r values and a low F c ). For films on both types of substrates, the ferroelectric behavior was found to persist up to 400K. Measurements at higher temperatures were difficult to obtain given the increased conductivity of the films. Magnetic hysteresis loops from 5K to 120K were obtained for BiMnO 3 films grown on SrTiO 3 and Pt/TiO 2 /SiO 2 substrates. The results suggested that the coexistence of the magnetic and electric phases persists up to 120K.

  4. First-principles study of structural and elastic properties of monoclinic and orthorhombic BiMnO3

    International Nuclear Information System (INIS)

    Mei Zhigang; Shang Shunli; Wang Yi; Liu Zikui

    2010-01-01

    The structural and elastic properties of BiMnO 3 with monoclinic (C 2/c) and orthorhombic (Pnma) ferromagnetic (FM) structures have been studied by first-principles calculations within LDA + U and GGA + U approaches. The equilibrium volumes and bulk moduli of BiMnO 3 phases are evaluated by equation of state (EOS) fittings, and the bulk properties predicted by LDA + U calculations are in better agreement with experiment. The orthorhombic phase is found to be more stable than the monoclinic phase at ambient pressure. A monoclinic to monoclinic phase transition is predicted to occur at a pressure of about 10 GPa, which is ascribed to magnetism versus volume instability of monoclinic BiMnO 3 . The single-crystal elastic stiffness constants c ij s of the monoclinic and orthorhombic phases are investigated using the stress-strain method. The c 46 of the monoclinic phase is predicted to be negative. In addition, the polycrystalline elastic properties including bulk modulus, shear modulus, Young's modulus, bulk modulus-shear modulus ratio, Poisson's ratio, and elastic anisotropy ratio are determined based on the calculated elastic constants. The presently predicted phase transition and elastic properties open new directions for investigation of the phase transitions in BiMnO 3 , and provide helpful guidance for the future elastic constant measurements.

  5. Structural defects in multiferroic BiMnO3 studied by transmission electron microscopy and electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Yang, H.; Chi, Z. H.; Yao, L. D.; Zhang, W.; Li, F. Y.; Jin, C. Q.; Yu, R. C.

    2006-01-01

    The multiferroic material BiMnO 3 synthesized under high pressure has been systematically studied by transmission electron microscopy and electron energy-loss spectroscopy, and some important structural defects are revealed in this multiferroic material. The frequently observed defects are characterized to be Σ3(111) twin boundaries, Ruddlesden-Popper [Acta Crystallogr. 11, 54 (1958)] antiphase boundaries, and a p p superdislocations connected with a small segment of Ruddlesden-Popper defect. These defects are present initially in the as-synthesized sample. In addition, we find that ordered voids (oxygen vacancies) are easily introduced into the multiferroic BiMnO 3 by electron-beam irradiation

  6. Phase separation in Sr doped BiMnO3

    International Nuclear Information System (INIS)

    Li Guan-Nan; Gao Qing-Qing; Luo Jun; Liu Guang-Yao; Liang Jing-Kui; Rao Guang-Hui; Huang Qing-Zhen; Li Jing-Bo

    2014-01-01

    Phase separation in Sr doped BiMnO 3 (Bi 1−x Sr x MnO 3 , x = 0.4−0.6) was studied by means of temperature-dependent high-resolution neutron powder diffraction (NPD), high resolution X-ray powder diffraction (XRD), and physical property measurements. All the experiments indicate that a phase separation occurs at the temperature coinciding with the reported charge ordering temperature (T CO ) in the literature. Below the reported T CO , both the phases resulting from the phase separation crystallize in the orthorhombically distorted perovskite structure with space group Imma. At lower temperature, these two phases order in the CE-type antiferromagnetic structure and the A-type antiferromagnetic structure, respectively. However, a scrutiny of the high-resolution NPD and XRD data at different temperatures and the electron diffraction experiment at 300 K did not manifest any evidence of a long-range charge ordering (CO) in our investigated samples, suggesting that the anomalies of physical properties such as magnetization, electric transport, and lattice parameters at the T CO might be caused by the phase separation rather than by a CO transition

  7. Preparation and properties of bio-compatible magnetic Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Chan, H.T.; Do, Y.Y.; Huang, P.L.; Chien, P.L.; Chan, T.S.; Liu, R.S.; Huang, C.Y.; Yang, S.Y.; Horng, H.E.

    2006-01-01

    In this work, we study the preparation and properties of bio-compatible magnetic nanoparticles for immunoassay and DNA detection. The magnetite (Fe 3 O 4 ) nanoparticles were prepared by a chemical co-precipitation method and dextran was selected as the surfactant to suspend the nanoparticles. Suspended particles associated with avidin followed by biotin were qualitatively analyzed by enzyme-linked immunosorbent assay (ELISA) method. We found further the ethylenediamine blocked activated residual groups efficiently, hence enhancing the attachment of biotin for probing the avidin

  8. Preparation and characterization of PVPI-coated Fe3O4 nanoparticles as an MRI contrast agent

    International Nuclear Information System (INIS)

    Wang, Guangshuo; Chang, Ying; Wang, Ling; Wei, Zhiyong; Kang, Jianyun; Sang, Lin; Dong, Xufeng; Chen, Guangyi; Wang, Hong; Qi, Min

    2013-01-01

    Polyvinylpyrrolidone-iodine (PVPI)-coated Fe 3 O 4 nanoparticles were prepared by using inverse chemical co-precipitation method, in which the PVPI serves as a stabilizer and dispersant. The wide angle X-ray diffraction (WAXD) and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe 3 O 4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that the resulted Fe 3 O 4 nanoparticles were roughly spherical in shape with narrow size distribution and homogenous shape. Fourier transform infrared spectroscopy (FTIR) results suggested that PVPI interacted with Fe 3 O 4 via its carbonyl groups. Results of superconducting quantum interference device (SQUID) indicated prepared Fe 3 O 4 nanoparticles exhibited superparamagnetic behavior and high saturation magnetization. T 2 -weighted MRI images of PVPI-coated Fe 3 O 4 nanoparticles showed that the magnetic resonance signal was enhanced significantly with increasing nanoparticles concentration in water at room temperature. These results indicated that the PVPI-coated Fe 3 O 4 nanoparticles had great potential for application in MRI as a T 2 contrast agent. - Highlights: • PVPI-coated Fe 3 O 4 nanoparticles were prepared using inverse co-precipitation method. • Resulted Fe 3 O 4 nanoparticles were roughly spherical in shape with narrow size distribution and homogenous shape. • Prepared Fe 3 O 4 nanoparticles exhibited superparamagnetic behavior. • T 2 -weighted MRI images of PVPI-coated Fe 3 O 4 nanoparticles were obtained

  9. Au-coated 3-D nanoporous titania layer prepared using polystyrene-b-poly(2-vinylpyridine) block copolymer nanoparticles.

    Science.gov (United States)

    Shin, Won-Jeong; Basarir, Fevzihan; Yoon, Tae-Ho; Lee, Jae-Suk

    2009-04-09

    New nanoporous structures of Au-coated titania layers were prepared by using amphiphilic block copolymer nanoparticles as a template. A 3-D template composed of self-assembled quaternized polystyrene-b-poly(2-vinylpyridine) (Q-PS-b-P2VP) block copolymer nanoparticles below 100 nm was prepared. The core-shell-type nanoparticles were well ordered three-dimensionally using the vertical immersion method on the substrate. The polar solvents were added to the polymer solution to prevent particle merging at 40 degrees C when considering the interaction between polymer nanoparticles and solvents. Furthermore, Au-coated PS-b-P2VP nanoparticles were prepared using thiol-capped Au nanoparticles (3 nm). The 3-D arrays with Au-coated PS-b-P2VP nanoparticles as a template contributed to the preparation of the nanoporous Au-coated titania layer. Therefore, the nanoporous Au-coated titania layer was fabricated by removing PS-b-P2VP block copolymer nanoparticles by oxygen plasma etching.

  10. Synthesis, Optical and Electrochemical Properties of Y2O3 Nanoparticles Prepared by Co-Precipitation Method.

    Science.gov (United States)

    Saravanan, Thulasingam; Raj, Srinivasan Gokul; Chandar, Nagamuthu Raja Krishna; Jayavel, Ramasamy

    2015-06-01

    Y2O3 nanoparticles were synthesized by co-precipitation route using yttrium nitrate hexahydrate and ammonium hydroxide as precursors. The prepared sample was calcined at 500 degrees C and subjected to various characterization studies like thermal analysis (TG/DTA), X-ray diffraction (XRD), transmission electron microscope (TEM), UV-visible (UV-Vis) and photoluminescence (PL) spectroscopy. The XRD pattern showed the cubic fluorite structure of Y2O3 without any impurity peaks, revealing high purity of the prepared sample. TEM images revealed that the calcined Y2O3 nanoparticles consist of spherical-like morphology with an average particle size of 12 nm. The absorption spectrum of calcined samples shows blue-shift compared to the as-prepared sample, which was further confirmed by PL studies. The possible formation mechanism of Y2O3 nanoparticles has been discussed based on the experimental results. Electrochemical behavior of Y2O3 nanoparticles was studied by cyclic voltammetry to assess their suitability for supercapacitor applications.

  11. Synthesis, spectroscopic, structural and optical studies of Ru2S3 nanoparticles prepared from single-source molecular precursors

    Science.gov (United States)

    Mbese, Johannes Z.; Ajibade, Peter A.

    2017-09-01

    Homonuclear tris-dithiocarbamato ruthenium(III) complexes, [Ru(S2CNR2)3] were prepared and characterized by spectroscopic techniques and thermogravimetric analyses. The thermogravimetric analyses (TGA) of the ruthenium complexes showed that the complexes decompose to ruthenium(III) sulfide nanoparticles. The ruthenium(III) complexes were dispersed in oleic acid and thermolysed in hexadecylamine to prepared oleic acid/hexadecylamine capped Ru2S3 nanoparticles. FTIR revealed that Ru2S3 nanoparticles are capped through the interaction of the -NH2 group of hexadecylamine HDA adsorbed on the surfaces of nanoparticles and it also showed that oleic acid (OA) is acting as both coordinating stabilizing surfactant and capping agent. EDS spectra revealed that the prepared nanoparticles are mainly composed of Ru and S, confirming the formation of Ru2S3 nanoparticles. Powder XRD confirms that the nanoparticles are in cubic phase. The inner morphology of nanoparticles obtained from transmission electron microscopy (TEM) showed nanoparticles with narrow particle size distributions characterized by an average diameter of 8.45 nm with a standard deviation of 1.6 nm. The optical band gap (Eg) determined from Tauc plot are in the range 3.44-4.18 eV.

  12. Preparation of nanoparticles with an environment-friendly approach.

    Science.gov (United States)

    Yao, Kefu; Peng, Zhen; Fan, Xiaolin

    2009-01-01

    Developing various approaches for preparing high performance materials has long been topics and tasks both for scientists and for engineers. Despite that many methods have been developed for preparing nanomaterials, developing simple and environment-friendly ways for preparing nanomaterials is very attractive. Here a simple approach of synthesizing Fe3O4 nanoparticles by arc-discharge submerging in water was reported. The results showed that by this method Fe3O4 nanoparticles can be synthesized at large scale. The as-prepared Fe3O4 nanoparticles exhibited uniform spherical shape and their diameters varied with arc-discharging parameters. The experimental results showed that the size of the synthesized Fe3O4 nanoparticles can be controlled through adjusting the processing parameters. Since no vacuum system has been used, the synthesizing process is greatly simplified. In addition, only cheap deionized water and industrial iron bar are used and no pollution or harmful byproducts are found in the synthesis process. It indicated that the present approach is a simple, low-cost and environment-friendly one for preparing nanoparticles.

  13. Optical properties of highly crystalline Y2O3:Er,Yb nanoparticles prepared by laser ablation in water

    International Nuclear Information System (INIS)

    Nunokawa, Takashi; Odawara, Osamu; Wada, Hiroyuki

    2014-01-01

    Y 2 O 3 :Er,Yb nanoparticles were prepared by laser ablation in water. We investigated crystallinity, distribution of dopant, and optical properties of the prepared nanoparticles. The full-width half-maximum (FWHD) of the crystalline peak of nanoparticles measured by an x-ray diffractometer (XRD) barely changed. Further, using scanning transmission electron microscopy–energy dispersive x-ray spectroscopy (STEM–EDX), we confirmed the peaks of Y, Er, Yb, and O. Moreover, on the basis of the optical properties of the nanoparticles, the emission of red ( 2 F 9/2  →  4 I 15/2 ) and green ( 2 H 11/2 , 4 S 3/2  →  4 I 15/2 ) was confirmed. We also investigated the emission intensity as a function of the excitation power of 980 nm LD in the prepared nanoparticles. The photon avalanche effect was observed at the excitation power of 100 mW. These results confirmed that uniformly Er-Yb-doped Y 2 O 3 nanoparticles were successfully prepared by laser ablation in water. (paper)

  14. Preparation of Gd2O3 Ultrafine Nanoparticles by Pulse Electrodeposition Followed by Heat-treatment Method

    Directory of Open Access Journals (Sweden)

    Mustafa Aghazadeh

    2016-12-01

    Full Text Available Gd2O3 nanoparticles were prepared by a two–step process; cathodic electrodeposition followed by heat-treatment method. First, Gd(OH3 nanoparticles was galvanostatically deposited from nitrate bath on the steel substrate by pulse current (PC mode. The deposition experiments was conducted at a typical on-time and off-time (ton=1ms and toff=1ms for 60 min. The electrodeposited precursor was then heat-treated at 600 oC for 3h to obtain oxide product (i.e. Gd2O3. The morphological and structural analyses confirmed that the gadolinium hydroxynitrate nanoparticles with composition of [Gd(OH2.5(NO30.5 yH2O] and uniform size about 10 nm have been prepared during pulse cathodic electrodeposition process. Furthermore, mechanism of the gadolinium hydroxynitrate nanoparticles was explained based on the base (OH– electrogeneration process on the cathode surface. The morphological observations by SEM and TEM, and structural analyses via XRD and FT-IR revealed that the oxide product is composed of well-dispersed Gd2O3 nanoparticles with pure cubic crystalline structure. It was observed that the calcination process has no effect on the morphology of the Gd2O3 nanoparticles. Mechanism of oxide formation during heat-treatment step was investigated by DSC-TG analysis and discussed in detail. The results of this work showed that pulse current deposition followed by heat–treatment can be recognized as an easy and facile method for preparation of the Gd2O3 fine nanoparticles.

  15. PREPARATION,COMPLEX MECHANISM AND STRUCTURE MODEL OF METALLOPHTHALOC- YANINE-Fe3O4 NANOPARTICLES COMPOSITE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    MPc-Fe3O4-nanoparticles composite(M=Co, Cu, Ni, Mn) have been prepared and the factors that influence their mean size have been studied. The mean size of the nanoparticles composite increase with the increase of complex temperature. The interaction of MPc with Fe3O4 nanoparticles has been studied. There are M-O covalent bonding and ionic bonding between MPc and Fe3O4 nanoparticles. The intensities of M-O bonding and ionic bonding are in vestigated .The complex mechanism of MPc with Fe3O4 nanoparticles have been studied. First, there are complex between MPc and all Fe3O4 nanoparticles. Then, Fe3O4 nanoparticles accumulate together to form the accumulators, MPc have the function of cohering Fe3O4 nanoparticles. A considerable number of MPc combine with Fe3O4 nanoparticles on the surface of the accumulators to form MPc-Fe3O4 nanoparticles composite. All the above proesses take place spontaneously. The structure model of MPc-Fe3O4 nanoparticles composite has also been investigated. Inside the MPc-Fe3O4 nanoparticles composite, Fe3O4 nanoparticles accumulate together without order, on the surface of the composite, MPc form molecular dispersion layer. The threshold of molecular dispersion layer are also investigated.

  16. Photocatalytic properties of h-WO{sub 3} nanoparticles obtained by annealing and h-WO{sub 3} nanorods prepared by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Boyadjiev, Stefan I., E-mail: boiajiev@gmail.com [MTA-BME Technical Analytical Chemistry Research Group, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Nagy-Kovács, Teodóra [Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Lukács, István [Hungarian Academy of Sciences, Research Centre for Energy, Institute of Technical Physics and Materials Science, H-1121 Budapest, Konkoly Thege M. út 29-33 (Hungary); Szilágyi, Imre M., E-mail: imre.szilagyi@mail.bme.hu [MTA-BME Technical Analytical Chemistry Research Group, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, Szent Gellért tér 4, Budapest, H-1111 (Hungary)

    2016-03-25

    In the present study, two different methods for preparing hexagonal WO{sub 3} (h-WO{sub 3}) photocatalysts were used - controlled thermal decomposition and hydrothermal synthesis. WO{sub 3} nanoparticles with hexagonal structure were obtained by annealing (NH{sub 4}){sub x}WO{sub 3-y} at 500 °C in air. WO{sub 3} nanorods were prepared by a hydrothermal method using sodium tungstate Na{sub 2}WO{sub 4}, HCl, (COOH){sub 2} and NaSO{sub 4} precursors at 200 °C. The formation, morphology, structure and composition of the as-prepared nanoparticles and nanorods were studied by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDX). The photocatalytic activity of the h-WO{sub 3} nanoparticles and nanorods was studied by decomposing methyl orange in aqueous solution under UV light irradiation.

  17. Preparation of gold nanoparticles for plasmonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Benkovicova, Monika, E-mail: monika.benkovicova@savba.sk [Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Polymer Institute SAS, Dubravska cesta 9, 845 41 Bratislava (Slovakia); Vegso, Karol; Siffalovic, Peter; Jergel, Matej; Luby, Stefan; Majkova, Eva [Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava (Slovakia)

    2013-09-30

    We present a simple hot injection method for the preparation of colloidal solutions of hydrophobic spherical gold nanoparticles with the diameter around 20 nm and size dispersion below 20%. Various surfactants with different lengths of hydrocarbon chains, such as oleylamine, 1-octadecanethiol, poly (N-vinylpyrrolidone), and AgNO{sub 3} in 1,5-pentanediol, were used for sterical stabilization in the colloidal solution. The hydrodynamic nanoparticle size and size dispersion were determined by the dynamic light scattering (DLS) while the small-angle X-ray scattering (SAXS) from the colloidal solution provided information on the size of the metallic nanoparticle core (without surfactant). Plasmon enhanced resonant absorption peaks between 500 nm and 600 nm were detected by the UV–VIS spectrophotometry. The nanoparticle arrays on silicon prepared by solvent evaporation or Langmuir-Schaefer method were inspected by high-resolution scanning electron microscopy and grazing-incidence SAXS (GISAXS). The presence of side maxima in the GISAXS pattern gives evidence of the nanoparticle ordering by self-assembly while very close values of the interparticle distance derived from GISAXS and the nanoparticle size derived from DLS indicate a close-packed order. - Highlights: ► Preparation of gold nanoparticles by use a various of surfactants ► Preparation of monodisperse nanoparticles ► Characterization of nanoparticles on a solid substrate.

  18. Preparation and characterization of zinc and copper co-doped WO3 nanoparticles: Application in photocatalysis and photobiology.

    Science.gov (United States)

    Mohammadi, Sanaz; Sohrabi, Maryam; Golikand, Ahmad Nozad; Fakhri, Ali

    2016-08-01

    In this study, pure, Zn, Cu, Zn,Cu co-doped WO3 nanoparticles samples were prepared by precipitation and co-precipitation methods. These nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDX), Dynamic light scattering (DLS), UV-visible and photoluminescence (PL) spectroscopy. The synthesized pure, Zn, Cu, Zn,Cu co-doped WO3 nanoparticles have smart optical properties and average sizes with 3.2, 3.12, 3.08 and 2.97eV of band-gap, 18.1, 23.2, 25.7 and 30.2nm, respectively. Photocatalytic activity of four nanoparticles was studying towards degradation of gentamicin antibiotic under ultraviolet and visible light irradiation. The result showed that Zn,Cu co-doped WO3 possessed high photocatalytic activity. The photocatalytic activity of WO3 nanoparticles could be remarkably increased by doping the Zn and Cu impurity. This can be attributed to the fact that the red shift of absorption edge and the trapping effect of the mono and co-doped WO3 nanoparticles. The research result presents a general and effective way to prepare different photocatalysts with enhanced visible and UV light-driven photocatalytic performance. Antibacterial activity of four different WO3 nanoparticles against Escherichia coli bacterium has been assessed by the agar disc method under light irradiation and dark medium. It is concluded from the present findings that WO3 nanoparticles can be used as an efficient antibacterial agent. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Single step thermal decomposition approach to prepare supported γ-Fe2O3 nanoparticles

    International Nuclear Information System (INIS)

    Sharma, Geetu; Jeevanandam, P.

    2012-01-01

    γ-Fe 2 O 3 nanoparticles supported on MgO (macro-crystalline and nanocrystalline) were prepared by an easy single step thermal decomposition method. Thermal decomposition of iron acetylacetonate in diphenyl ether, in the presence of the supports followed by calcination, leads to iron oxide nanoparticles supported on MgO. The X-ray diffraction results indicate the stability of γ-Fe 2 O 3 phase on MgO (macro-crystalline and nanocrystalline) up to 1150 °C. The scanning electron microscopy images show that the supported iron oxide nanoparticles are agglomerated while the energy dispersive X-ray analysis indicates the presence of iron, magnesium and oxygen in the samples. Transmission electron microscopy images indicate the presence of smaller γ-Fe 2 O 3 nanoparticles on nanocrystalline MgO. The magnetic properties of the supported magnetic nanoparticles at various calcination temperatures (350-1150 °C) were studied using a superconducting quantum interference device which indicates superparamagnetic behavior.

  20. Preparation and characterization of Fe{sub 3}O{sub 4}-Pt nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Ângela Leão, E-mail: angelala01@hotmail.com [Federal University of Ouro Preto (UFOP), Department of Chemistry, ICEB (Brazil); Cavalcante, Luis Carlos Duarte [Federal University of Piauí (UFPI), Center of Natural Sciences (Brazil); Fabris, José Domingos [Federal University of Minas Gerais (UFMG), Department of Chemistry, ICEx (Brazil); Pereira, Márcio César [Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Institute of Science, Engineering and Technology (Brazil); Ardisson, José Domingos [Center for the Development of the Nuclear Technology (CDTN), Laboratory of Applied Physics (Brazil); Domingues, Rosana Zacarias [Federal University of Minas Gerais (UFMG), Department of Chemistry, ICEx (Brazil)

    2017-11-15

    Pt and Pt-based nanomaterials are active anticancer drugs for their ability to inhibit the division of living cells. Nanoparticles of magnetite containing variable proportions of platinum were prepared in the laboratory. The magnetite nanoparticles with platinum (Pt-Fe{sub 3}O{sub 4}) were obtained by reducing the Fe{sup 3+} of the maghemite (γ Fe{sub 2}O{sub 3}) mixed with platinum (II) acetylacetonate and sucrose in two inversely coupled ceramic crucibles and heated in a furnace at 400 °C for 20 min. The formed carbon during this preparation acts to chemically reduce the ferric iron in maghemite. Moreover, its residual layer on the particle surface prevents the forming magnetite from oxidizing in air and helps retain the platinum in the solid mixture. The produced Pt-magnetite samples were characterized by {sup 57}Fe-Mössbauer spectroscopy, powder X-ray diffraction, scanning electron microscopy, and magnetization measurements. Measurements of AC magnetic-field-induced heating properties of the obtained nanocomposites, in aqueous solution, showed that they are suitable as a hyperthermia agent for biological applications.

  1. Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles

    International Nuclear Information System (INIS)

    Yamaura, M.; Camilo, R.L.; Sampaio, L.C.; Macedo, M.A.; Nakamura, M.; Toma, H.E.

    2004-01-01

    Magnetite nanoparticles coated with (3-aminopropyl)triethoxysilane, NH 2 (CH 2 ) 3 Si(OC 2 H 5 ) 3 , were prepared by silanization reaction and characterized by X-ray diffractometry, transmission electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy and magnetization measurements. Both uncoated and organosilane-coated magnetite exhibited superparamagnetic behavior and strong magnetization at room temperature. Basic groups anchored on the external surface of the coated magnetite were observed. The superparamagnetic particles of coated magnetite are able to bind to biological molecules, drugs and metals and in this way remove them from medium by magnetic separation procedures

  2. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery

    Science.gov (United States)

    Dorniani, Dena; Hussein, Mohd Zobir Bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2012-01-01

    Background and methods Magnetic iron oxide nanoparticles were prepared using a sonochemical method under atmospheric conditions at a Fe2+ to Fe3+ molar ratio of 1:2. The iron oxide nanoparticles were subsequently coated with chitosan and gallic acid to produce a core-shell structure. Results X-ray diffraction demonstrated that the magnetic nanoparticles were pure Fe3O4 with a cubic inverse spinel structure. Transmission electron microscopy showed that the Fe3O4 nanoparticles were of spherical shape with a mean diameter of 11 nm, compared with 13 nm for the iron oxide-chitosan-gallic acid (FCG) nanocarriers. Conclusion The magnetic nanocarrier enhanced the thermal stability of the drug, gallic acid. Release of the active drug from the FCG nanocarrier was found to occur in a controlled manner. The gallic acid and FCG nanoparticles were not toxic in a normal human fibroblast (3T3) line, and anticancer activity was higher in HT29 than MCF7 cell lines. PMID:23166439

  3. Characterization of binary gold/platinum nanoparticles prepared by sonochemistry technique

    International Nuclear Information System (INIS)

    Nakanishi, M.; Takatani, H.; Kobayashi, Y.; Hori, F.; Taniguchi, R.; Iwase, A.; Oshima, R.

    2005-01-01

    Aqueous solutions with Au 3+ and Pt 4+ ions and additives of surfactants (SDS or PEG-MS) were irradiated with an ultrasound at 200 kHz with an input power of 4.2 W/cm 2 , and colloidal nanoparticles were prepared. The prepared nanoparticles were characterized by XRD, TEM, HRTEM, EDX and 197 Au Moessbauer spectroscopy. It was found that the structures of nanoparticles were changed with the surfactants; Au and Pt nanoparticles were prepared individually by using SDS, and bimetallic Au/Pt alloy nanoparticles with a core-shell structure were produced in the presence of PEG-MS

  4. Preparation and characterization of magnetic nanoparticles (Fe_3O_4) coated with oleic acid at room temperature

    International Nuclear Information System (INIS)

    Souza, Marcio Nele de; Feuser, Paulo Emilio

    2010-01-01

    This work studied a method for preparation of Fe_3O_4 magnetic nanoparticles stabilized with acid oleic precipitating Fe"+"2 and Fe"+"3 (1:1) salts at room temperature. The method involved the coprecipitation of Fe_3O_4 in aqueous solution from FeCl_3·6H_2O and FeSO_4·7H_2O solutions using as NH_4OH (30%) precipitation agent. The final size of nanoparticles was 10nn with an initial pH of 0-1 and a final neutral pH, without addition of an acid and/ or hydroxide to adjust the pH of the material. The oleic acid coated nanoparticles were characterized by Ray-X of Diffraction (DRX), thermogravimetric analysis (TGA), scanning electron microscopy in field emission and dynamic light scattering (FEG-SEM). It is important to standardize the methods of preparation of Fe_3O_4 Magnetic Nanoparticles stabilized with oleic acid, to obtain a desired material for a given application it is in technology or Biomedical. (author)

  5. Antimicrobial active silver nanoparticles and silver/polystyrene core-shell nanoparticles prepared in room-temperature ionic liquid

    International Nuclear Information System (INIS)

    An Jing; Wang Desong; Luo Qingzhi; Yuan Xiaoyan

    2009-01-01

    Uniform silver nanoparticles and silver/polystyrene core-shell nanoparticles were successfully synthesized in a room temperature ionic liquid, 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM].BF 4 ). [BMIM].BF 4 plays a protective role to prevent the nanoparticles from aggregation during the preparation process. Transmission electron micrographs confirm that both silver nanoparticles and core-shell nanoparticles are regular spheres with the sizes in the range of 5-15 nm and 15-25 nm, respectively. The X-ray diffraction analysis reveals the face-centered cubic geometry of silver nanoparticles. The as-prepared nanoparticles were also characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. In addition, antimicrobial activities against E. coli and S. aureus were studied and the results show that both silver nanoparticles and core-shell nanoparticles possess excellent antimicrobial activities. The antimicrobial mechanism of the as-prepared nanoparticles was discussed.

  6. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum rind extract

    Directory of Open Access Journals (Sweden)

    Hui Yang

    Full Text Available Nano-silver and its composite materials are widely used in medicine, food and other industries due to their strong conductivity, size effect and other special performances. So far, more microbial researches have been applied, but a plant method is rarely reported. In order to open up a new way to prepare AgNP composites, pomegranate peel extract was used in this work to reduce Ag+ to prepare Ag/Ag+/Ag3+ nanoparticle composites. UV–Vis was employed to detect and track the reduction of Ag+ and the forming process of AgNPs. The composition, structure and size of the crystal were analyzed by XRD and TEM. Results showed that, under mild conditions, pomegranate peel extract reacted with dilute AgNO3 solution to produce Ag/Ag+/Ag3+ nanoparticle composites. At pH = 8 and 10 mmol/L of AgNO3 concentration, the size of the achieved composites ranged between 15 and 35 nm with spherical shapes and good crystallinity. The bactericidal experiment indicated that the prepared Ag/Ag+/Ag3+ nanoparticles had strong antibacterial activity against gram positive bacteria and gram negative bacteria. FTIR analysis revealed that biological macromolecules with groups of NH2, OH, and others were distributed on the surface of the newly synthesized Ag/Ag+/Ag3+ nanoparticles. This provided a useful clue to further study the AgNP biosynthesis mechanism. Keywords: Pomegranate rind, Biosynthesis, Ag/Ag+/Ag3+ nanoparticle composites, Antibacterial activity

  7. Optical characterization of infrared emitting Nd3+ doped hydroxyapatite nanoparticles prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Gayathri, K.; Kumar, G.A.; Manrique, Solange Ivette Rivera; Santhosh, C.; Sardar, Dhiraj K.

    2017-01-01

    Trivalent Nd doped hydroxyapatite (HAp) nanoparticles were prepared by a hydrothermal method using calcium nitrate and diammonium phosphate as precursors. Well crystallized nanoparticles of size less than 200 nm with hexagonal plate and rod morphologies were obtained at a reaction temperature of 180 °C. Under 808 nm excitation the nanoparticles exhibit strong near infrared emission at 1064 nm. All the emission spectral properties such as emission intensity and fluorescence decay time are found to decrease with Nd 3+ concentration. In Hap 0.5% Nd shows the highest decay time of 159 μs and highest emission at 1064 nm emission.

  8. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract

    Science.gov (United States)

    Yang, Hui; Ren, Yan-yu; Wang, Tao; Wang, Chuang

    Nano-silver and its composite materials are widely used in medicine, food and other industries due to their strong conductivity, size effect and other special performances. So far, more microbial researches have been applied, but a plant method is rarely reported. In order to open up a new way to prepare AgNP composites, pomegranate peel extract was used in this work to reduce Ag+ to prepare Ag/Ag+/Ag3+ nanoparticle composites. UV-Vis was employed to detect and track the reduction of Ag+ and the forming process of AgNPs. The composition, structure and size of the crystal were analyzed by XRD and TEM. Results showed that, under mild conditions, pomegranate peel extract reacted with dilute AgNO3 solution to produce Ag/Ag+/Ag3+ nanoparticle composites. At pH = 8 and 10 mmol/L of AgNO3 concentration, the size of the achieved composites ranged between 15 and 35 nm with spherical shapes and good crystallinity. The bactericidal experiment indicated that the prepared Ag/Ag+/Ag3+ nanoparticles had strong antibacterial activity against gram positive bacteria and gram negative bacteria. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the newly synthesized Ag/Ag+/Ag3+ nanoparticles. This provided a useful clue to further study the AgNP biosynthesis mechanism.

  9. Protein-Based Nanoparticle Preparation via Nanoprecipitation Method

    Directory of Open Access Journals (Sweden)

    Mohamad Tarhini

    2018-03-01

    Full Text Available Nanoparticles are nowadays largely investigated in the field of drug delivery. Among nanoparticles, protein-based particles are of paramount importance since they are natural, biodegradable, biocompatible, and nontoxic. There are several methods to prepare proteins containing nanoparticles, but only a few studies have been dedicated to the preparation of protein- based nanoparticles. Then, the aim of this work was to report on the preparation of bovine serum albumin (BSA-based nanoparticles using a well-defined nanoprecipitation process. Special attention has been dedicated to a systematic study in order to understand separately the effect of each operating parameter of the method (such as protein concentration, solvent/non-solvent volume ratio, non-solvent injection rate, ionic strength of the buffer solution, pH, and cross-linking on the colloidal properties of the obtained nanoparticles. In addition, the mixing processes (batch or drop-wise were also investigated. Using a well-defined formulation, submicron protein-based nanoparticles have been obtained. All prepared particles have been characterized in terms of size, size distribution, morphology, and electrokinetic properties. In addition, the stability of nanoparticles was investigated using Ultraviolet (UV scan and electrophoresis, and the optimal conditions for preparing BSA nanoparticles by the nanoprecipitation method were concluded.

  10. Optical characterization of infrared emitting Nd{sup 3+} doped hydroxyapatite nanoparticles prepared by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Gayathri, K. [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249 (United States); Kumar, G.A., E-mail: ajith@gakumar.net [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249 (United States); Department of Atomic and Molecular Spectroscopy, Manipal University, Manipal 576104 (India); Northwest Vista College, 3535 N Ellison Dr, San Antonio, TX 78251 (United States); Manrique, Solange Ivette Rivera [Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, C.P. 07738, Ciudad de México 2009-2010 (Mexico); Santhosh, C. [Department of Atomic and Molecular Spectroscopy, Manipal University, Manipal 576104 (India); Sardar, Dhiraj K. [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249 (United States)

    2017-05-15

    Trivalent Nd doped hydroxyapatite (HAp) nanoparticles were prepared by a hydrothermal method using calcium nitrate and diammonium phosphate as precursors. Well crystallized nanoparticles of size less than 200 nm with hexagonal plate and rod morphologies were obtained at a reaction temperature of 180 °C. Under 808 nm excitation the nanoparticles exhibit strong near infrared emission at 1064 nm. All the emission spectral properties such as emission intensity and fluorescence decay time are found to decrease with Nd{sup 3+} concentration. In Hap 0.5% Nd shows the highest decay time of 159 μs and highest emission at 1064 nm emission.

  11. Preparation and characterization of WO{sub 3} nanoparticles, WO{sub 3}/TiO{sub 2} core/shell nanocomposites and PEDOT:PSS/WO{sub 3} composite thin films for photocatalytic and electrochromic applications

    Energy Technology Data Exchange (ETDEWEB)

    Boyadjiev, Stefan I., E-mail: boiajiev@gmail.com [MTA-BME Technical Analytical Chemistry Research Group, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Santos, Gustavo dos Lopes; Szűcs, Júlia [Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Szilágyi, Imre M., E-mail: imre.szilagyi@mail.bme.hu [MTA-BME Technical Analytical Chemistry Research Group, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, Szent Gellért tér 4, Budapest, H-1111 (Hungary)

    2016-03-25

    In this study, monoclinic WO{sub 3} nanoparticles were obtained by thermal decomposition of (NH{sub 4}){sub x}WO{sub 3} in air at 600 °C. On them by atomic layer deposition (ALD) TiO{sub 2} films were deposited, and thus core/shell WO{sub 3}/TiO{sub 2} nanocomposites were prepared. We prepared composites of WO{sub 3} nanoparticles with conductive polymer as PEDOT:PSS, and deposited thin films of them on glass and ITO substrates by spin coating. The formation, morphology, composition and structure of the as-prepared pure and composite nanoparticles, as well thin films, were studied by TEM, SEM-EDX and XRD. The photocatalytic activity of both the WO{sub 3} and core/shell WO{sub 3}/TiO{sub 2} nanoparticles was studied by decomposing methyl orange in aqueous solution under UV light irradiation. Cyclic voltammetry measurements were performed on the composite PEDOT:PSS/WO{sub 3} thin films, and the coloring and bleaching states were studied.

  12. Preparation of Cr{sub 2}O{sub 3} nanoparticles for superthermites by the detonation of an explosive nanocomposite material

    Energy Technology Data Exchange (ETDEWEB)

    Comet, Marc, E-mail: marc.comet@isl.eu; Pichot, Vincent; Siegert, Benny; Fousson, Eric [NS3E, UMR 3208 ISL/CNRS, French-German Research Institute of Saint-Louis (ISL) (France); Mory, Julien; Moitrier, Florence [French-German Research Institute of Saint-Louis (ISL) (France); Spitzer, Denis [NS3E, UMR 3208 ISL/CNRS, French-German Research Institute of Saint-Louis (ISL) (France)

    2011-05-15

    This article reports on the preparation of chromium(III) oxide nanoparticles by detonation. For this purpose, a high explosive-hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-has been solidified from a solution infiltrated into the macro- and mesoporosity of Cr{sub 2}O{sub 3} powder obtained by the combustion of ammonium dichromate. The resulting Cr{sub 2}O{sub 3}/RDX nanocomposite material was embedded in a cylindrical charge of pure explosive and detonated in order to fragment the metallic oxide into nanoparticles. The resulting soot contains Cr{sub 2}O{sub 3} nanoparticles, nanodiamonds, amorphous carbon species and inorganic particles resulting from the erosion by the blast of the detonation tank wall. The purification process consists in (i) removing the carbonaceous species by an oxidative treatment at 500 Degree-Sign C and (ii) dissolving the mineral particles by a chemical treatment with hydrofluoric acid. Contrary to what could be expected, the Cr{sub 2}O{sub 3} particles formed during the detonation are twice larger than those of initial Cr{sub 2}O{sub 3}. The detonation causes the fragmentation of the porous oxide and the melting of resulting particles. Nanometric droplets of molten Cr{sub 2}O{sub 3} are ejected and quenched by the water in which the charge is fired. Despite their larger size, the Cr{sub 2}O{sub 3} nanoparticles prepared by detonation were found to be less aggregated than those of the initial oxide used as precursor. Finally, the Cr{sub 2}O{sub 3} synthesized by detonation was used to prepare a superthermite with aluminium nanoparticles. This material possesses a lower sensitivity and a more regular combustion compared to the one made of initial Cr{sub 2}O{sub 3}.

  13. GISAXS analysis of 3D nanoparticle assemblies—effect of vertical nanoparticle ordering

    International Nuclear Information System (INIS)

    Vegso, K; Siffalovic, P; Benkovicova, M; Jergel, M; Luby, S; Majkova, E; Capek, I; Kocsis, T; Perlich, J; Roth, S V

    2012-01-01

    We report on grazing-incidence small-angle x-ray scattering (GISAXS) study of 3D nanoparticle arrays prepared by two different methods from colloidal solutions—layer-by-layer Langmuir–Schaefer deposition and spontaneous self-assembling during the solvent evaporation. GISAXS results are evaluated within the distorted wave Born approximation (DWBA) considering the multiple scattering effects and employing a simplified multilayer model to reduce the computing time. In the model, particular layers are represented by nanoparticle chains where the positions of individual nanoparticles are generated following a model of cumulative disorder. The nanoparticle size dispersion is considered as well. Three model cases are distinguished—no shift between the neighboring chains (AA stacking), a shift equal to half of the mean interparticle distance (AB stacking) and random shift between the chains. The first two cases correspond to vertically correlated nanoparticle positions across different chains. A comparison of the experimental GISAXS patterns with the model cases enabled us to distinguish important differences between the 3D arrays prepared by the two methods. In particular, laterally ordered layers without vertical correlation of the nanoparticle positions were found in the nanoparticle multilayers prepared by the Langmuir–Schaefer method. On the other hand, the solvent evaporation under particular conditions produced highly ordered 3D nanoparticle assemblies where both laterally and vertically correlated nanoparticle positions were found. (paper)

  14. Preparation of nickel and Ni_3Sn nanoparticles via extension of conventional citric acid and ethylene diamine tetraacetic acid mediated sol–gel method

    International Nuclear Information System (INIS)

    Li, Pingyun; Deng, Guodong; Guo, Xiaode; Liu, Hongying; Jiang, Wei; Li, Fengsheng

    2016-01-01

    This work aims to extend the application field of sol–gel process from conventional oxides, carbides, sulfides to metallic nanocrystalline materials. Metallic ions were coordinated with chelating agents of citric acid (CA) and ethylene diamine tetraacetic acid (EDTA) in aqueous solution. Then the solutions were dried at 383 K, resulting in the formation of sol and gel. Heating treatments of dried gels were then carried out with protection of N_2 atmosphere. Ni and Ni_3Sn alloy nanoparticles were obtained by this sol–gel method in the range of 623–823 K. The as-prepared Ni and Ni_3Sn alloy nanoparticles have average grain sizes of 15 and 30 nm, and have face-centred-cubic (fcc) crystalline phase. Our results provide new insight into the application of conventional sol–gel method. - Graphical abstract: Sol–gel method is conventionally applied to prepare oxides, carbides, and sulfides. In this work, the application field of sol–gel method is extended to metallic nanoparticles. By using citric acid (CA) and ethylene diamine tetraacetic acid (EDTA) mediated sol–gel method, metallic Ni (a and c) and Ni_3Sn (b and d) alloy nanoparticles can be prepared when the heating treatments are performed under N_2 protecting atmosphere. The Ni and Ni_3Sn nanoparticles have face-centered-cubic (fcc) crystalline phase and ultrafine grain sizes. Diffraction peaks of (110) superstructure reflection plane of Ni_3Sn nanoparticles can also be observed in Figure b, which can be considered as direct evidence of formation of alloy crystalline phase by performing this sol–gel method. - Highlights: • Ni and Ni_3Sn alloy nanoparticles have been prepared by sol–gel processes. • Citric acid and ethylene diamine tetraacetic acid were applied as chelating agent. • Diffraction peak of superstructure reflection plane of Ni_3Sn was detected by XRD. • A novel strategy for preparation of alloy nanoparticles has been presented.

  15. Advances in preparation and characterization of chitosan nanoparticles for therapeutics.

    Science.gov (United States)

    Chandra Hembram, Krushna; Prabha, Shashi; Chandra, Ramesh; Ahmed, Bahar; Nimesh, Surendra

    2016-01-01

    Polymers have been largely explored for the preparation of nanoparticles due to ease of preparation and modification, large gene/drug loading capacity, and biocompatibility. Various methods have been adapted for the preparation and characterization of chitosan nanoparticles. Focus on the different methods of preparation and characterization of chitosan nanoparticles. Detailed literature survey has been done for the studies reporting various methods of preparation and characterization of chitosan nanoparticles. Published database suggests of several methods which have been developed for the preparation and characterization of chitosan nanoparticles as per the application.

  16. The Preparation of Glucan-Fe3O4 Magnetic Nanoparticles and Its In Vivo Distribution in Mice

    Directory of Open Access Journals (Sweden)

    Fengdan Jin

    2014-01-01

    Full Text Available The glucan-Fe3O4 magnetic nanoparticles were prepared by hydrothermal method. The mixture of FeCl2 and glucan was stirred vigorously for half an hour under low temperature (15°C. KOH of 1 mol/L was dropwise added, slowly, into the solution until the pH to 12. Immediately, KNO3 was added and the temperature was raised to 75°C for an hour. All the processes of Fe3O4 crystal particles generation were under nitrogen. An atomic absorption spectrometry quantitative analysis method was built to determine the in vivo distribution of the glucan-Fe3O4 magnetic nanoparticles in mice. The diameter of glucan-Fe3O4 magnetic nanoparticles was about 25 nm and they were up taken by the liver primarily after intravenous administration via the tail.

  17. Structure and magnetic properties of Cr nanoparticles and Cr2O3 nanoparticles

    International Nuclear Information System (INIS)

    Zhang, W.S.; Brueck, E.; Zhang, Z.D.; Tegus, O.; Li, W.F.; Si, P.Z.; Geng, D.Y.; Buschow, K.H.J.

    2005-01-01

    We have synthesized Cr nanoparticles by arc-discharge and Cr 2 O 3 nanoparticles by subsequent annealing the as-prepared Cr nanoparticles. The structure of these nanoparticles is studied by means of X-ray diffraction, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscope. Most of the particles show a good crystal habit of well-defined cubic or orthorhombic shape, while some small particles show spherical shape. The as-prepared Cr nanoparticles have a BCC Cr core coated with a thin Cr 2 O 3 layer. Cr in the core of the particles heated at 873 K for 4 h is changed to Cr 2 O 3 . The results of magnetic measurements show that the Cr nanoparticles exhibit mainly antiferromagnetic properties, in addition to a weak-ferromagnetic component at lower fields. The weak-ferromagnetic component may be ascribed to uncompensated surface spins. For the field-cooled Cr 2 O 3 nanoparticles, an exchange bias is observed in the hysteresis loops, which can be interpreted as the exchange coupling between the uncompensated spins at the surface and the spins in the core of the Cr 2 O 3 nanoparticles

  18. Preparation of Gold Nanoparticles for Biomedical Applications Using ...

    African Journals Online (AJOL)

    HP

    Tropical Journal of Pharmaceutical Research June 2013; 12 (3): 295-298 ... Applications Using Chemometric Technique. Soheila Honary. 1* ... approach for optimizing and testing the robustness of gold nanoparticle preparation method.

  19. Preparation and characterization of bifunctional dendrimer modified Fe{sub 3}O{sub 4}/CdTe nanoparticles with both luminescent and superparamagnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiuling, E-mail: wxling_self@163.com [Department of Chemical and Biological Engineering, Suzhou University of Science and Technology, Suzhou 215009 (China); Gu, Yinjun; Dong, Shuling [Department of Chemical and Biological Engineering, Suzhou University of Science and Technology, Suzhou 215009 (China); Zhao, Qin [School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019 (China); Liu, Yongjian [Department of Chemical and Biological Engineering, Suzhou University of Science and Technology, Suzhou 215009 (China)

    2015-10-15

    Highlights: • The fluorescent superparamagnetic dendrimeric Fe{sub 3}O{sub 4}/CdTe nanoparticles are synthesized in this paper. • The synthesized nanocomposites maintain excellent magnetic properties. • The synthesized nanocomposites maintain highly luminescent markers with narrow emission bands. - Abstract: Magnetic nanoparticles Fe{sub 3}O{sub 4} were prepared by hydrothermal coprecipitation of ferric and ferrous ions using NaOH. The surface modification of Fe{sub 3}O{sub 4} nanoparticle by dendrimers has rendered the nanoparticle surface with enriched amine groups which facilitated the adsorption and conjugation of thioglycolic acid (TGA) modified CdTe quantum dots to form a stable hybrid nanostructure. Three generations (first generation: G0F, second generation: G1F, third generation: G3F) of bifunctional dendrimeric Fe{sub 3}O{sub 4}/CdTe nanoparticles were successfully prepared using this technique and characterized by microscopy. The optical and magnetic properties of the dendrimeric Fe{sub 3}O{sub 4}/CdTe nanoparticle were also investigated. The microscopic study reveals 3 different sizes for 3 generations, 16 nm (G0F), 31 nm (G1F) and 47 nm (G3F). Among three generations of nanoparticles, the G1F has the best optical property with a luminescent quantum yield of 25.6% and the G0F has the best magnetic property with a saturation magnetization of 19.3 emμ/g.

  20. Photodynamic therapy using upconversion nanoparticles prepared by laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ikehata, Tomohiro; Onodera, Yuji; Nunokawa, Takashi [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Hirano, Tomohisa; Ogura, Shun-ichiro; Kamachi, Toshiaki [Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Odawara, Osamu [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Wada, Hiroyuki, E-mail: wada.h.ac@m.titech.ac.jp [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-09-01

    Highlights: • Highly crystalline upconversion nanoparticles were prepared by laser ablation in liquid. • Highly transparent near-IR irradiation generated singlet oxygen. • Viability of cancer cells was significantly decreased by near-IR irradiation. - Abstract: Upconversion nanoparticles were prepared by laser ablation in liquid, and the potential use of the nanoparticles for cancer treatment was investigated. A Nd:YAG/SHG laser (532 nm, 13 ns, 10 Hz) was used for ablation, and the cancer treatment studied was photodynamic therapy (PDT). Morphology and crystallinity of prepared nanoparticles were examined by transmission electron microscopy and X-ray diffraction. Red and green emissions resulting from near-infrared excitation were observed by a fluorescence spectrophotometer. Generation of singlet oxygen was confirmed by a photochemical method using 1,3-diphenylisobenzofuran (DPBF). In vitro experiments using cultivated cancer cells were conducted to investigate PDT effects. Uptake of the photosensitizer by cancer cells and cytotoxicities of cancer cells were also examined. We conclude that the combination of PDT and highly crystalline nanoparticles, which were prepared by laser ablation in liquid, is an effective cancer treatment.

  1. [Preparation of Oenothera biennis Oil Solid Lipid Nanoparticles Based on Microemulsion Technique].

    Science.gov (United States)

    Piao, Lin-mei; Jin, Yong; Cui, Yan-lin; Yin, Shou-yu

    2015-06-01

    To study the preparation of Oenothera biennis oil solid lipid nanoparticles and its quality evaluation. The solid lipid nanoparticles were prepared by microemulsion technique. The optimum condition was performed based on the orthogonal design to examine the entrapment efficiency, the mean diameter of the particles and so on. The optimal preparation of Oenothera biennis oil solid lipid nanoparticles was as follows: Oenothera biennis dosage 300 mg, glycerol monostearate-Oenothera biennis (2: 3), Oenothera biennis -RH/40/PEG-400 (1: 2), RH-40/PEG-400 (1: 2). The resulting nanoparticles average encapsulation efficiency was (89.89 ± 0.71)%, the average particle size was 44.43 ± 0.08 nm, and the Zeta potential was 64.72 ± 1.24 mV. The preparation process is simple, stable and feasible.

  2. Continuous preparation of Fe3O4 nanoparticles through Impinging Stream-Rotating Packed Bed reactor and their electrochemistry detection toward heavy metal ions

    International Nuclear Information System (INIS)

    Fan, Hong-Lei; Zhou, Shao-Feng; Gao, Jing; Liu, You-Zhi

    2016-01-01

    We reported the continuous preparation and electrochemical behavior toward heavy metal ions of the Fe 3 O 4 nanoparticles (Fe 3 O 4 NPs). This Fe 3 O 4 NPs were fabricated through a novel Impinging Stream-Rotating Packed Bed reactor with a high production rate of 2.23 kg/hour. The as-prepared Fe 3 O 4 NPs were quasi-spherical with a mean diameter of about 10 nm and shown the characteristics of superparamagnetism with the saturated magnetization of 60.5 emu/g. The electrochemical characterization of the as-prepared Fe 3 O 4 NPs toward heavy metal ions were evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The results indicated that the modified electrode could be used to individual detection of Pb(II), Cu(II), Hg(II) and Cd(II). In particular, the modified electrode exhibited the selective detection toward Pb(II) with higher sensitivity of 14.9 μA/μM, while the response to Cu(II), Hg(II) and Cd(II) were negligible. Besides, the modified electrode shown good stability and potential practical applicability in the electrochemical determination of Pb(II). This above results offered a simple method for continuous preparation sensing materials in the application field of electrochemical detection of toxic metal ions through the technology of process intensification. - Highlights: • Fe 3 O 4 nanoparticles were continuous prepared through IS-RPB reactor. • The Fe 3 O 4 nanoparticles showed selective detection of heavy metal ions. • It exhibited favorable sensitivity (14.9 μA μM −1 ) and LOD (0.119 μM) for Pb(II). • The as-prepared nanoparticles showed favorable potential application.

  3. Sonochemical preparation of magnetite nanoparticles by reverse precipitation method

    OpenAIRE

    Shuto, Tatsuya; Nakagoe, Osamu; Tanabe, Shuji

    2008-01-01

    Magnetic iron oxide nanoparticles were successfully prepared by reverse precipitation method with the assistance of ultrasound. Obtained nanoparticles were identified as magnetite (Fe_3O_4) by XRD measurement. It was found that obtained magnetite nanoparticles have small sizes (about 10.7 ±2.9 nm in diameter) and spherical shape by TEM observations. In reverse precipitation method, the dropping conditions of aqueous FeSO_4 solution affect on the sizes and uniformity of the products.

  4. Preparation of CNC-dispersed Fe3O4 nanoparticles and their application in conductive paper.

    Science.gov (United States)

    Liu, Kai; Nasrallah, Joseph; Chen, Lihui; Huang, Liulian; Ni, Yonghao

    2015-08-01

    Well-dispersed Fe3O4 nanoparticles (NPs) were synthesized by a co-precipitation method in the presence of cellulose nano-crystals (CNC) as the template. The thus prepared Fe3O4 NPs were then used as a coating agent for the preparation of conductive paper. Fourier transform infrared spectroscopy (FTIR) results revealed that the Fe3O4 NPs were immobilized on the CNC through interactions between the hydroxyl groups of CNC and Fe3O4. Scanning transmission electron microscopy (STEM) images showed that the Fe3O4 NPs prepared in the presence of CNC can be dispersed in the CNC network, while the Fe3O4 NPs prepared in the absence of CNC tended to aggregate in aqueous solutions. The conductivity of the Fe3O4 NPs coated paper can reach to 0.0269 S/m at the coating amount of 14.75 g/m(2) Fe3O4/CNC nanocomposites. Therefore, the thus obtained coated paper can be potentially used as anti-static packaging material in the packaging field. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Nanospheres of alginate prepared through w/o emulsification and internal gelation with nanoparticles of CaCO3

    NARCIS (Netherlands)

    Paques, J.P.; Sagis, L.M.C.; Rijn, van C.J.M.; Linden, van der E.

    2014-01-01

    Gelled nanospheres of alginate are prepared through a single step technique involving emulsification and gelation. CaCO3 nanoparticles, together with glucono delta-lactone (GDL), are dispersed in an alginate solution, which is subsequently dispersed in an oil phase and followed by gelation of the

  6. Preparation of AgBr Nanoparticles in Microemulsions Via Reaction of AgNO3 with CTAB Counterion

    International Nuclear Information System (INIS)

    Husein, Maen M.; Rodil, Eva; Vera, Juan H.

    2007-01-01

    Nanoparticles of AgBr were prepared by precipitating AgBr in the water pools of microemulsions consisting of CTAB, n-butanol, isooctane and water. An aqueous solution of AgNO 3 added to the microemulsion was the source of Ag + ions. The formation of AgBr nanoparticles in microemulsions through direct reaction with the surfactant counterion is a novel approach aimed at decreasing the role of intermicellar nucleation on nanoparticle formation for rapid reactions. The availability of the surfactant counterion in every reverse micelle and the rapidity of the reaction with the counterion trigger nucleation within individual reverse micelles. The effect of the following variables on the particle size and size distribution was investigated: the surfactant and cosurfactant concentrations, moles of AgNO 3 added, and water to surfactant mole ratio, R. High concentration of the surfactant or cosurfactant, or high water content of the microemulsion favored intermicellar nucleation and resulted in the formation of large particles with broad size distribution, while high amounts of AgNO 3 favored nucleation within individual micelles and resulted in small nanoparticles with narrow size distribution. A blue shift in the UV absorption threshold corresponding to a decrease in the particle size was generally observed. Notably, the variation of the absorption peak size with the nanoparticle size was opposite to those reported by us in previous studies using different surfactants

  7. Bulk tungsten with uniformly dispersed La2O3 nanoparticles sintered from co-precipitated La2O3/W nanoparticles

    International Nuclear Information System (INIS)

    Xia, Min; Yan, Qingzhi; Xu, Lei; Guo, Hongyan; Zhu, Lingxu; Ge, Changchun

    2013-01-01

    Graphical abstract: La 2 O 3 doped La 2 O 3 /W nanoparticles with high-purity and uniform diameters have been fabricated by a co-precipitation process. The as-prepared nanoparticles demonstrate the potential of this method for fabricating uniformly structured bulk tungsten materials. -- Abstract: We report the preparation of 1 wt% La 2 O 3 doped La 2 O 3 /W nanoparticles by a co-precipitation process, using ammonium metatungstate (AMT) and lanthanum nitrate as raw materials. The as-synthesized nanoparticles were characterized by X-ray diffraction, Filed-emission scanning electron microscopy, Transmission electron microscopy (TEM), energy dispersive spectroscopy. Our results reveal that the as-synthesized particles possess uniform diameters of about 70 nm, and are of high purity. The TEM and the corresponding fast Fourier transform images demonstrated that La 2 O 3 precipitates were homogeneously doped into the nano-sized tungsten particles. When the as-synthesized nanoparticles were sintered by spark plasma sintering, the electron backscatter diffraction images of the bulk material reveal that La 2 O 3 nanoparticles were homogenously distributed in both the tungsten grains and the grain boundaries, and the sample exhibit a narrow micro-hardness distribution

  8. Preparation and application of various nanoparticles in biology and medicine

    OpenAIRE

    Vardan Gasparyan

    2013-01-01

    The present paper considers prospects for application of various nanoparticles in biology and medicine. Here are presented data on preparation of gold and silver nanoparticles, and effects of shape of these nanoparticles on their optical properties. Application of these nanoparticles in diagnostics, for drug delivery and therapy, and preparation of magnetic nanoparticles from iron and cobalt salts are also discussed. Application of these nanoparticles as magnetic resonance imaging (MRI) contr...

  9. Hydrothermal synthesis and upconversion luminescent properties of YVO4:Yb3+,Er3+ nanoparticles

    International Nuclear Information System (INIS)

    Liang, Yanjie; Chui, Pengfei; Sun, Xiaoning; Zhao, Yan; Cheng, Fuming; Sun, Kangning

    2013-01-01

    Graphical abstract: YVO 4 :Yb 3+ ,Er 3+ nanoparticles have been successfully prepared via a facile hydrothermal technique in the presence of citric acid as a complexing agent followed by a subsequent heat treatment process. The PL intensity of the sample increases with the increase of annealing temperature and excitation power. Under the excitation of a 980 nm diode laser, the samples show bright green luminescence. Highlights: ► YVO 4 :Yb 3+ ,Er 3+ nanoparticles were prepared by a hydrothermal approach. ► Bright green luminescence is observed under the excitation of a 980 nm laser diode. ► The PL intensity increases with the increase of annealing temperature. ► Energy transfer properties between Yb 3+ ion and Er 3+ ion were analyzed. -- Abstract: In this paper, YVO 4 :Yb 3+ ,Er 3+ nanoparticles have been successfully prepared via a facile hydrothermal technique in the presence of citric acid as a complexing agent followed by a subsequent heat treatment process. The nanostructures, morphologies and upconversion luminescent properties of the as-prepared YVO 4 :Yb 3+ ,Er 3+ upconverting nanoparticles were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescent (PL) spectra. XRD results indicate that all the diffraction peaks of samples can be well indexed to the tetragonal phase of YVO 4 . TEM images demonstrate that the samples synthesized hydrothermally consist of granular-like nanoparticles ranging in size from about 30 to 50 nm. After being calcined at 500–800 °C for 2 h, the grain sizes of nanoparticles increase slightly. Additionally, the as-prepared nanoparticles show bright green luminescence corresponding to the 2 H 11/2 → 4 I 15/2 and 4 S 3/2 → 4 I 15/2 transitions of Er 3+ ions under the excitation of a 980 nm diode laser, which might find potential applications in fields such as phosphor powders, infrared detection and display devices

  10. Preparation and characterization of poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) composite thin films highly loaded with platinum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chao-Ching, E-mail: ccchang@tku.edu.tw [Department of Chemical and Materials Engineering, Tamkang University, No. 151, Yingzhuan Rd., Danshui Dist., New Taipei City 25137, Taiwan (China); Energy and Opto-Electronic Materials Research Center, Tamkang University, No. 151, Yingzhuan Rd., Danshui Dist., New Taipei City 25137, Taiwan (China); Jiang, Ming-Tai [Department of Chemical and Materials Engineering, Tamkang University, No. 151, Yingzhuan Rd., Danshui Dist., New Taipei City 25137, Taiwan (China); Chang, Chen-Liang; Lin, Cheng-Lan [Department of Chemical and Materials Engineering, Tamkang University, No. 151, Yingzhuan Rd., Danshui Dist., New Taipei City 25137, Taiwan (China); Energy and Opto-Electronic Materials Research Center, Tamkang University, No. 151, Yingzhuan Rd., Danshui Dist., New Taipei City 25137, Taiwan (China)

    2011-06-15

    Research highlights: {yields} Nano-sized and mono-dispersed Pt nanoparticles were synthesized by a polyol method. {yields} A thin film of PEDOT:PSS loaded with high concentration of Pt nanoparticles has been prepared. {yields} The PEDOT:PSS-Pt modified electrode has good potential to serve as a counter electrode in DSSC. - Abstract: In this work, we propose a simple and efficient, low-temperature ({approx}120 deg. C) process to prepare transparent thin films of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) loaded with high concentration (up to 22.5 wt%) of platinum (Pt) nanoparticles. Firstly, an improved polyol method was modified to synthesize nano-sized ({approx}5 nm) and mono-dispersed Pt particles. These nanoparticles were incorporated into the matrix of PEDOT:PSS thin films via a spin coating/drying procedure. The electrochemical activities of the PEDOT:PSS thin film modified electrodes with respect to the I{sup -}/I{sub 3}{sup -} redox reactions were investigated. It was found that the modified electrode of PEDOT:PSS thin film containing 22.5 wt% Pt exhibited the electrochemical activity comparable to the conventional Pt thin film electrode, suggesting that this electrode has good potential to serve as a counter electrode in dye-sensitized solar cells.

  11. Chitosan-poly (lactide-co-glycolide) (CS-PLGA) nanoparticles containing metformin HCl: preparation and in vitro evaluation.

    Science.gov (United States)

    Gundogdu, Nuran; Cetin, Meltem

    2014-11-01

    In this study, the preparation and in vitro characterisation of metformin HCl-loaded CS-PLGA nanoparticles (NPs) were aimed. The prepared nanoparticles (blank nanoparticles (C-1), 50 mg of metformin HCl loaded nanoparticles (C-2) and 75 mg of metformin HCl loaded nanoparticles (C-3) ranged in size from 506.67±13.61 to 516.33±16.85 nm and had surface charges of 22.57±1.21 to 32.37±0.57 mV. Low encapsulation efficiency was observed for both nanoparticle formulations due to the leakage of metformin HCl to the external medium during preparation of nanoparticles. Nanoparticle formulations showed highly reproducible drug release profiles. ~20% of metformin HCl was released within 30 minutes and approximately 98% of the loaded metformin HCl was released at 144 hours in a phosphate buffer (PB; pH 6.8). No statistically significant difference was noted between the in vitro release profiles of the nanoparticles (C-2 and C-3) containing metformin HCl. Also, nanoparticles were characterised using FT-IR and DSC.

  12. Radiation chemical route for preparation of metal nanoparticles

    International Nuclear Information System (INIS)

    Kapoor, S.; Mukherjee, T.

    2006-01-01

    Nanoparticles show properties that are neither seen in the bulk or at atomic level. The unusual properties are governed by quantum size effect. Due to this various methodologies have been endeavored to control the size of the particles. In the present work we show the use of two complimentary techniques (radiation and photo) to synthesize and control the size of the metal particles. In-situ synthesis of fine silver, thallium and cadmium particles has been carried out by gamma-irradiation and electron pulse irradiation at room temperature in the pre-organized gel of polyacrylamide or cyclodextrin cavity. The role of generation of nuclei in high concentrations in stabilization of metal nanoparticles in hydrophobic cavity is shown. Similarly the importance of entrapment of metal ions in the polymer matrix during its formation is highlighted. The work is further extended to exploit the microemulsion droplets for stabilization of Cd nanoparticles. Utility of pulse radiolysis in probing the mechanism of the formation of metal nanoparticles is also shown. Ultrafast laser pulses were employed to control the morphology of the pre-prepared Pt nanoparticles. The changes in reduction of shape and size are considered to occur through melting and vaporization of the nanoparticles. Pt nanoparticles were coated on the inner walls of the tubular pyrex reactor and tested for their catalytic activity for oxidation of CO. It was observed that Pt nanoparticles prepared in the presence of a stabilizer (gelatin) showed a higher tendency to adhere to the inner walls of the pyrex reactor as compared to that prepared in the presence of silica nanoparticles. The catalyst was found to be active at ≥150 degree C giving CO 2 . Chemically reduced Pt nanoparticles stabilized on silica nanoparticles gave ∼7% CO conversion per hr. However, radiolytically prepared Pt nanoaprticles stabilized by gelatin gave ∼10% conversion per hr. The data indicates that catalytic oxidation of CO takes place

  13. Mn3O4 nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors

    International Nuclear Information System (INIS)

    Wang Bei; Park, Jinsoo; Wang Chengyin; Ahn, Hyojun; Wang, Guoxiu

    2010-01-01

    Mn 3 O 4 /graphene nanocomposites were synthesized by mixing graphene suspension in ethylene glycol with MnO 2 organosol, followed by subsequent ultrasonication processing and heat treatment. The as-prepared product consists of nanosized Mn 3 O 4 particles homogeneously distributed on graphene nanosheets, which has been confirmed by field emission scanning electron microscopy and transmission electron microscopy analysis. Atomic force microscope analysis further identified the distribution of dense Mn 3 O 4 nanoparticles on graphene nanosheets. When used as electrode materials in supercapacitors, Mn 3 O 4 /graphene nanocomposites exhibited a high specific capacitance of 175 F g -1 in 1 M Na 2 SO 4 electrolyte and 256 F g -1 in 6 M KOH electrolyte, respectively. The enhanced supercapacitance of Mn 3 O 4 /graphene nanocomposites could be ascribed to both electrochemical contributions of Mn 3 O 4 nanoparticles, functional groups attached to graphene nanosheets, and significantly increased specific surface area.

  14. Preparation of silver chloride nanoparticles by a mechanical treatment of the system NH4Cl−AgNO3−NH4NO3

    Directory of Open Access Journals (Sweden)

    Farit Urakaev

    2014-08-01

    Full Text Available Silver chloride nanoparticles dispersed within ammonium nitrate matrix have been prepared though displacement mechanochemical reaction NH4Cl + AgNO3 + z NH4NO3 = (z+1 NH4 NO3 + AgCl at various z coefficients z1 = 7.22 and z2 = 3.64. The intermediate compound of NH4Ag(NO32 were recorded after mechanochemical processing of studied system. By using simultaneous TG and DSC measurements possibilities to prepare silver chloride in its free form have been discussed by using thermal treatment.

  15. The novel albumin-chitosan core-shell nanoparticles for gene delivery: preparation, optimization and cell uptake investigation

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Mahdi [Tarbiat Modares University, Department of Nanobiotechnology, Faculty of Biological Sciences (Iran, Islamic Republic of); Avci, Pinar [Massachusetts General Hospital, Wellman Center for Photomedicine (United States); Mobasseri, Rezvan [Tarbiat Modares University, Department of Nanobiotechnology, Faculty of Biological Sciences (Iran, Islamic Republic of); Hamblin, Michael R. [Massachusetts General Hospital, Wellman Center for Photomedicine (United States); Naderi-Manesh, Hossein, E-mail: naderman@modares.ac.ir [Tarbiat Modares University, Department of Nanobiotechnology, Faculty of Biological Sciences (Iran, Islamic Republic of)

    2013-05-15

    Natural polymers and proteins such as chitosan (CS) and albumin (Alb) have recently attracted much attention both in drug delivery and gene delivery. The underlying rationale is their unique properties such as biodegradability, biocompatibility and controlled release. This study aimed to prepare novel albumin-chitosan-DNA (Alb-CS-DNA) core-shell nanoparticles as a plasmid delivery system and find the best conditions for their preparation. Phase separation method and ionic interaction were used for preparation of Alb nanoparticles and Alb-CS-DNA core-shell nanoparticles, respectively. The effects of three important independent variables (1) CS/Alb mass ratio, (2) the ratios of moles of the amine groups of cationic polymers to those of the phosphate groups of DNA (N/P ratio), and (3) Alb concentration, on the nanoparticle size and loading efficiency of the plasmid were investigated and optimized through Box-Behnken design of response surface methodology (RSM). The optimum conditions were found to be CS/Alb mass ratio = 3, N/P ratio = 8.24 and Alb concentration = 0.1 mg/mL. The most critical factors for the size of nanoparticles and loading efficiency were Alb concentration and N/P ratio. The optimized nanoparticles had an average size of 176 {+-} 3.4 nm and loading efficiency of 80 {+-} 3.9 %. Cytotoxicity experiments demonstrated that the prepared nanoparticles were not toxic. The high cellular uptake of nanoparticles ({approx}85 %) was shown by flow cytometry and fluorescent microscopy.

  16. Er3+-Al2O3 nanoparticles doping of borosilicate glass

    International Nuclear Information System (INIS)

    Massera, Jonathan; Petit, Laeticia; Hupa, Leena; Hupa, Mikko; Koponen, Joona; Glorieux, Benoit

    2015-01-01

    Novel borosilicate glasses were developed by adding in the glass batch Er 3+ -Al 2 O 3 nanoparticles synthetized by using a soft chemical method. A similar nanoparticle doping with modified chemical vapour deposition (MCVD) process was developed to increase the efficiency of the amplifying silica fibre in comparison to using MCVD and solution doping. It was shown that with the melt quench technique, a Er 3+ -Al 2 O 3 nanoparticle doping neither leads to an increase in the Er 3+ luminescence properties nor allows one to control the rare-earth chemical environment in a borosilicate glass. The site of Er 3+ in the Er 3+ -Al 2 O 3 nanoparticle containing glass seems to be similar as in glasses with the same composition prepared using standard raw materials. We suspect the Er 3+ ions to diffuse from the nanoparticles into the glass matrix. There was no clear evidence of the presence of Al 2 O 3 nanoparticles in the glasses after melting. (author)

  17. Effect of polyethylene glycol in preparation of Eu3+ doped SnO2 nanoparticles using ethylene glycol and luminescence properties

    International Nuclear Information System (INIS)

    Singh, L.J.; Singh, R.K.H.; Ningthoujam, R.S.; Vatsa, R.K.

    2010-01-01

    Full text: Eu 3+ doped SnO 2 nanoparticles have been prepared by urea hydrolysis. The two different capping agents such as ethylene glycol (EG) and polyethylene glycol (PEG) are used. Particles prepared in EG shows the crystalline nature while in the presence of PEG, crystallinity decreases. In TEM study of 5 at.% Eu doped SnO 2 sample prepared in presence of EG and PEG, there is a particle size distribution from 2.5 to 5.5 nm and average particle size is found to be 4 nm. In order to see the particle morphology for small particles, HRTEM images are also recorded and average crystallite region is found to be 2.7 nm. From this, we can conclude that 4 nm smaller particle has crystallite region of 2.7 nm and surface region of 1.3 nm. Thus, with decrease of particle size, the contribution of surface to bulk increases. This reflects the broad peak in XRD pattern of samples prepared in EG-PEG. The excitation spectra of SnO 2 nanoparticles (prepared in EG-PEG) doped with 2, 5 and 10 at.% Eu 3+ monitoring emission at 614 nm is shown. The excitation peaks at 250, 325 and 395 nm are observed. The peak at 250 nm is due to Eu-O charge transfer. The broad peak centered at 325 nm is due to exciton formation from SnO 2 and the last peak at 395 nm due to Eu 3+ ( 7 F 0 → 5 L 6 ). The relative peak intensity of Eu 3+ (peak at 395 nm) with respect to SnO 2 (peak at 325 nm) decreases with increase of Eu 3+ content/dopant in SnO 2 . This suggests that energy transfer from SnO 2 to Eu 3+ increases with Eu 3+ content/dopant in SnO 2 . The emission spectra of SnO 2 nanoparticles doped with 5 at.% Eu 3+ (prepared in EG-PEG) after excitation at different wavelengths (250, 300, 320, 330, 340 and 395 nm) is also shown. The main emission peaks at 425 (broad), 578 (weak), 591 (sharp) and 614 nm (sharp) are observed

  18. Preparing Methods and Its Influencing Factors about Nanoparticles Based on Dendritic Polymer

    OpenAIRE

    Zhang Jianwei; Li Jeff

    2017-01-01

    Based on the properties, structure and application of dendritic polymer, this paper analysed the methods of the preparation of nanoparticles using dendritic polymer, detailed preparation process, technical parameters and application effect about a single metal nanoparticles, bimetallic nanoparticles, sulfide and halide nanoparticles. The influencing factors of the preparation about nanoparticles were discussed, including the molecular algebra, the molar ratio of the metal ions to the dendriti...

  19. Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Prabha, G., E-mail: gprabhagovinn@gmail.com; Raj, V., E-mail: alaguraj2@rediffmail.com

    2016-06-15

    In the present research work, the anticancer drug ‘curcumin’ is loaded with Chitosan (CS)-polyethylene glycol (PEG)-polyvinylpyrrolidone (PVP) (CS-PEG-PVP) polymer nanocomposites coated with superparamagnetic iron oxide (Fe{sub 3}O{sub 4}) nanoparticles. The system can be used for targeted and controlled drug delivery of anticancer drugs with reduced side effects and greater efficiency. The prepared nanoparticles were characterized by Fourier transmission infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Curcumin drug loaded Fe{sub 3}O{sub 4}-CS, Fe{sub 3}O{sub 4}-CS-PEG and Fe{sub 3}O{sub 4}-CS-PEG-PVP nanoparticles exhibited the mean particle size in the range of 183–390 nm with a zeta potential value of 26–41 mV as measured using Malvern Zetasizer. The encapsulation efficiency, loading capacity and in-vitro drug release behavior of curcumin drug loaded Fe{sub 3}O{sub 4}-CS, Fe{sub 3}O{sub 4}-CS-PEG and Fe{sub 3}O{sub 4}-CS-PEG-PVP nanoparticles were studied using UV spectrophotometer. Besides, the cytotoxicity of the prepared nanoparticles using MTT assay was also studied. The curcumin drug release was examined at different pH medium and it was proved that the drug release depends upon the pH medium in addition to the nature of matrix. - Highlights: • The considered drug carrier Fe{sub 3}O{sub 4}-CS-PEG-PVP nanoparticles were prepared and entrapping (Curcumin). • The amount of the drug had great effect on the drug LC and EE and zeta potential Nanocomposites. • The Curcumin- loaded Fe{sub 3}O{sub 4}-CS, Fe{sub 3}O{sub 4}-CS-PEG and Fe{sub 3}O{sub 4}-CS-PEG-PVP nanocomposites showed pH responsive drug release.

  20. Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications

    International Nuclear Information System (INIS)

    Prabha, G.; Raj, V.

    2016-01-01

    In the present research work, the anticancer drug ‘curcumin’ is loaded with Chitosan (CS)-polyethylene glycol (PEG)-polyvinylpyrrolidone (PVP) (CS-PEG-PVP) polymer nanocomposites coated with superparamagnetic iron oxide (Fe 3 O 4 ) nanoparticles. The system can be used for targeted and controlled drug delivery of anticancer drugs with reduced side effects and greater efficiency. The prepared nanoparticles were characterized by Fourier transmission infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Curcumin drug loaded Fe 3 O 4 -CS, Fe 3 O 4 -CS-PEG and Fe 3 O 4 -CS-PEG-PVP nanoparticles exhibited the mean particle size in the range of 183–390 nm with a zeta potential value of 26–41 mV as measured using Malvern Zetasizer. The encapsulation efficiency, loading capacity and in-vitro drug release behavior of curcumin drug loaded Fe 3 O 4 -CS, Fe 3 O 4 -CS-PEG and Fe 3 O 4 -CS-PEG-PVP nanoparticles were studied using UV spectrophotometer. Besides, the cytotoxicity of the prepared nanoparticles using MTT assay was also studied. The curcumin drug release was examined at different pH medium and it was proved that the drug release depends upon the pH medium in addition to the nature of matrix. - Highlights: • The considered drug carrier Fe 3 O 4 -CS-PEG-PVP nanoparticles were prepared and entrapping (Curcumin). • The amount of the drug had great effect on the drug LC and EE and zeta potential Nanocomposites. • The Curcumin- loaded Fe 3 O 4 -CS, Fe 3 O 4 -CS-PEG and Fe 3 O 4 -CS-PEG-PVP nanocomposites showed pH responsive drug release.

  1. Preparation and optical properties of Eu3+-doped tin oxide nanoparticles

    International Nuclear Information System (INIS)

    Wang, Guofeng; Yang, Yiping; Mu, Qiuying; Wang, Yude

    2010-01-01

    Eu 3+ -doped SnO 2 nanoparticles with high surface area were generated within the template of the cationic surfactant (cetyltrimethylammonium bromide, CTAB) micelle assembly by surfactant-mediated method from the hydrous tin chloride (SnCl 4 .5H 2 O) and europium chloride (EuCl 3 .6H 2 O). The as-synthesized product was amorphous and transformed into crystalline calcined at 500 o C for 2 h. DSC-TGA, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were used to examine the morphology and microstructure of the final products. The results showed that the Eu 3+ -doped SnO 2 nanoparticles with diameter of 3-7 nm were obtained. The influences of the molar ratios of Eu 3+ and CTAB on the room temperature photoluminescence (RTPL) properties of Eu 3+ -doped SnO 2 nanoparticles were investigated. The results showed that the contents of Eu 3+ and CTAB had a great influence on the crystallite sizes and RTPL properties of Eu 3+ :SnO 2 nanoparticles. The maximum of the RTPL intensity can be observed at the molar ratio 5.0% Eu 3+ and 10.0% CTAB.

  2. Continuous preparation of Fe{sub 3}O{sub 4} nanoparticles through Impinging Stream-Rotating Packed Bed reactor and their electrochemistry detection toward heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hong-Lei [Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan, 030051 (China); Zhou, Shao-Feng [Shanxi Province Key Laboratory of Functional Nanocomposites, North University of China, Taiyuan, 030051 (China); Gao, Jing [Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan, 030051 (China); Liu, You-Zhi, E-mail: lyzzhongxin@126.com [Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan, 030051 (China)

    2016-06-25

    We reported the continuous preparation and electrochemical behavior toward heavy metal ions of the Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4} NPs). This Fe{sub 3}O{sub 4} NPs were fabricated through a novel Impinging Stream-Rotating Packed Bed reactor with a high production rate of 2.23 kg/hour. The as-prepared Fe{sub 3}O{sub 4} NPs were quasi-spherical with a mean diameter of about 10 nm and shown the characteristics of superparamagnetism with the saturated magnetization of 60.5 emu/g. The electrochemical characterization of the as-prepared Fe{sub 3}O{sub 4} NPs toward heavy metal ions were evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The results indicated that the modified electrode could be used to individual detection of Pb(II), Cu(II), Hg(II) and Cd(II). In particular, the modified electrode exhibited the selective detection toward Pb(II) with higher sensitivity of 14.9 μA/μM, while the response to Cu(II), Hg(II) and Cd(II) were negligible. Besides, the modified electrode shown good stability and potential practical applicability in the electrochemical determination of Pb(II). This above results offered a simple method for continuous preparation sensing materials in the application field of electrochemical detection of toxic metal ions through the technology of process intensification. - Highlights: • Fe{sub 3}O{sub 4} nanoparticles were continuous prepared through IS-RPB reactor. • The Fe{sub 3}O{sub 4} nanoparticles showed selective detection of heavy metal ions. • It exhibited favorable sensitivity (14.9 μA μM{sup −1}) and LOD (0.119 μM) for Pb(II). • The as-prepared nanoparticles showed favorable potential application.

  3. Heteropolytungstate nanoparticles: Microemulsion-mediated preparation and investigation of their catalytic activity in the epoxidation of olefins

    Energy Technology Data Exchange (ETDEWEB)

    Masteri-Farahani, M., E-mail: mfarahany@yahoo.com; Ghorbani, M.

    2016-04-15

    Highlights: • Keggin type Q{sub 3}PW{sub 12}O{sub 40} nanoparticles were synthesized by using microemulsion system. • The nanoparticles have uniform size of about 25 nm and spherical morphologies. • The prepared nanoparticles act as reusable catalyst in the epoxidation of olefins with H{sub 2}O{sub 2}. - Abstract: Keggin type Q{sub 3}PW{sub 12}O{sub 40} nanoparticles (Q = cetyltrimethylammonium cation) were synthesized in water-in-oil (w/o) microemulsion consisted of water/cetyltrimethylammonium bromide/n-butanol/isooctane. Reaction of Na{sub 2}WO{sub 4}, Na{sub 2}HPO{sub 4} and hydrochloric acid within water containing nanoreactors of reverse micelles resulted in the preparation of Q{sub 3}PW{sub 12}O{sub 40} nanoparticles. The resultant nanoparticles were analyzed by physicochemical methods such as FT-IR spectroscopy, X-ray diffraction, energy-dispersive X-ray analysis, thermogravimetric analyses (TGA-DTA), scanning and transmission electron microscopy and atomic force microscopy which show nearly uniform spherical nanoparticles with size of about 15 nm. Finally, catalytic activity of the Q{sub 3}PW{sub 12}O{sub 40} nanoparticles was examined in the epoxidation of olefins with H{sub 2}O{sub 2}. The prepared nanoparticles acted as recoverable and reusable catalyst in the epoxidation of olefins with H{sub 2}O{sub 2}.

  4. Preparation and Characterization of Astaxanthin Nanoparticles by Solvent-Diffusion Technique

    International Nuclear Information System (INIS)

    Anarjan, N.; Tan, C.P.

    2011-01-01

    In this work, astaxanthin nanoparticles were prepared in aqueous media using solvent-diffusion technique. Sodium caseinate, gelatin, Polysorbate 20 and gum Arabic were selected as different food grade surface active molecules for the stabilization of the produced nanoparticles. Results showed that among produced astaxanthin nanoparticles, the Polysorbate 20-stabilized nanoparticles showed the smallest particle size; gum Arabic-stabilized nanoparticles had the smallest polydispersity index and highest physical stability in simulated gastric fluid (SGF); and those stabilized using gelatin had the highest zeta potential. Sodium caseinate stabilized nanoparticles had the highest astaxanthin content in fresh samples as compared to other prepared nano dispersions. (author)

  5. Application of Box-Behnken design to prepare gentamicin-loaded calcium carbonate nanoparticles.

    Science.gov (United States)

    Maleki Dizaj, Solmaz; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad-Hossein; Adibkia, Khosro

    2016-09-01

    The aim of this research was to prepare and optimize calcium carbonate (CaCO3) nanoparticles as carriers for gentamicin sulfate. A chemical precipitation method was used to prepare the gentamicin sulfate-loaded CaCO3 nanoparticles. A 3-factor, 3-level Box-Behnken design was used for the optimization procedure, with the molar ratio of CaCl2: Na2CO3 (X1), the concentration of drug (X2), and the speed of homogenization (X3) as the independent variables. The particle size and entrapment efficiency were considered as response variables. Mathematical equations and response surface plots were used, along with the counter plots, to relate the dependent and independent variables. The results indicated that the speed of homogenization was the main variable contributing to particle size and entrapment efficiency. The combined effect of all three independent variables was also evaluated. Using the response optimization design, the optimized Xl-X3 levels were predicted. An optimized formulation was then prepared according to these levels, resulting in a particle size of 80.23 nm and an entrapment efficiency of 30.80%. It was concluded that the chemical precipitation technique, together with the Box-Behnken experimental design methodology, could be successfully used to optimize the formulation of drug-incorporated calcium carbonate nanoparticles.

  6. Preparation and Characterization of Hybrid Nanocomposite of Polyacrylamide/Silica-Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmad Rabiee

    2013-01-01

    Full Text Available Polyacrylamides are water soluble macromolecules. These polymers are widely used for flocculation, separation and treatment of solid-liquid phase materials. In this research, organic-inorganic hybrid of polyacrylamide/silica nanoparticle is prepared via radical polymerization. First, the silica nanoparticle surfaces were modified by 3-methacryloxypropyltrimethoxysilane as coupling agent using a sol-gel technique in aqueous media in acidic condition. Afterwards, the modified nanoparticles are copolymerized by acrylamide monomer in presence of a peroxide initiator during a free radical polymerization. The chemical structure of the prepared modified nano-silica as well as polyacrylamide nanocomposite was studied and confirmed by FTIR spectroscopy technique. The morphology of nanocomposite was investigated by scanning electron microscopy. The SEM micrograph showed that the surface of the composite did not display any phase separation. Nanoparticles distribution was investigated by SEM-EDX technique. The results showed a uniform distribution of particles throughout the polymer bulk. TEM analysis showed the presence of silica nanoparticles in bulk of polymer which is an indicative of suitable dispersion of nanoparticles. The thermal stability of hybrid nanocomosite with that of polyacrylamide was compared by TGA technique. The higher thermal stability of hybrid nanocomposite with respect to homopolymer is indicative of a reaction between the modified nanoparticles and polyacrylamide chain. The presence of silica particles in copolymer was also confirmed with EDX analysis in ash content of hybrid nanocomposite.

  7. Primary investigation of the preparation of nanoparticles by precipitation.

    Science.gov (United States)

    Vaculikova, Eliska; Grunwaldova, Veronika; Kral, Vladimir; Dohnal, Jiri; Jampilek, Josef

    2012-09-13

    The absorption, distribution, biotransformation and excretion of a drug involve its transport across cell membranes. This process is essential and influenced by the characteristics of the drug, especially its molecular size and shape, solubility at the site of its absorption, relative lipid solubility, etc. One of the progressive ways for increasing bioavaibility is a nanoparticle preparation technique. Cholesterol, cholestenolone and pregnenolone acetate as model active pharmaceutical ingredients and some of the commonly used excipients as nanoparticle stabilizers were used in the investigated precipitation method that was modified and simplified and can be used as an effective and an affordable technique for the preparation of nanoparticles. All 120 prepared samples were analyzed by means of dynamic light scattering (Nanophox). The range of the particle size of the determined 100 nanoparticle samples was from 1 nm to 773 nm, whereas 82 samples contained nanoparticles of less than 200 nm. Relationships between solvents and used excipients and their amount are discussed.

  8. Primary Investigation of the Preparation of Nanoparticles by Precipitation

    Directory of Open Access Journals (Sweden)

    Josef Jampilek

    2012-09-01

    Full Text Available The absorption, distribution, biotransformation and excretion of a drug involve its transport across cell membranes. This process is essential and influenced by the characteristics of the drug, especially its molecular size and shape, solubility at the site of its absorption, relative lipid solubility, etc. One of the progressive ways for increasing bioavaibility is a nanoparticle preparation technique. Cholesterol, cholestenolone and pregnenolone acetate as model active pharmaceutical ingredients and some of the commonly used excipients as nanoparticle stabilizers were used in the investigated precipitation method that was modified and simplified and can be used as an effective and an affordable technique for the preparation of nanoparticles. All 120 prepared samples were analyzed by means of dynamic light scattering (Nanophox. The range of the particle size of the determined 100 nanoparticle samples was from 1 nm to 773 nm, whereas 82 samples contained nanoparticles of less than 200 nm. Relationships between solvents and used excipients and their amount are discussed.

  9. Preparation, characterization and utilization of starch nanoparticles.

    Science.gov (United States)

    Kim, Hee-Young; Park, Sung Soo; Lim, Seung-Taik

    2015-02-01

    Starch is one of the most abundant biopolymers in nature and is typically isolated from plants in the form of micro-scale granules. Recent studies reported that nano-scale starch particles could be readily prepared from starch granules, which have unique physical properties. Because starch is environmentally friendly, starch nanoparticles are suggested as one of the promising biomaterials for novel utilization in foods, cosmetics, medicines as well as various composites. An overview of the most up-to-date information regarding the starch nanoparticles including the preparation processes and physicochemical characterization will be presented in this review. Additionally, the prospects and outlooks for the industrial utilization of starch nanoparticles will be discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Preparation and characterization of Tribulus terrestris-loaded nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Khanavi*

    2017-11-01

    Full Text Available Background and objectives: Tribulus terrestris is a flowering herb (Zygophyllaceae with several properties in folk medicine such as diuretic, tonic, aphrodisiac, analgesic, astringent, and stomachic-lithotripter activities. Although, some extracts and phytochemicals represent excellent bio-activity in vitro, less or no in vivo activity is observed due to their improper molecular size. The intend of this research was investigation of the feasibility of encapsulating T. terrestris into [poly (lactic-co-glycolic acid] PLGA nanoparticles. Methods: Aerial parts of the plant were extracted with aqueous ethanol 85% by percolation apparatus. The nanoparticles of T. terrestris-loaded were prepared using a modified simultaneous double-emulsion solvent evaporation/diffusion method. Elucidations were made on the basis of scanning electron microscopy (SEM and differential scanning calorimetry (DSC. The content of nanoparticles was analyzed by HPLC with indirect method. Results: The results stated that increasing the portion of plant extract could cause bigger size with no considerable increase in polydispersity index (PDI. The encapsulation efficiency of T. terrestris-loaded nanoparticles was 40.3 to 78.5 and the drug loadings were 0.806 to 6.104, with different ratios of extract. The overall pattern of the release in SDS 1% in dialysis bag in all formulations showed similar and biphasic release kinetic, an initial burst release in the first day followed by constant release over 10 days. Conclusion: An effective approach for the preparation of T. terrestris-loaded PLGA nanoparticles was performed. The controlled release profile showed that these biodegradable PLGA nanoparticles had great potential and should be given particular consideration in further biological researches.

  11. Preparation of antimony sulfide semiconductor nanoparticles by pulsed laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ren-De, E-mail: son003@sekisui.com [Research & Development Institute, High Performance Plastics Company, Sekisui Chemical Co., Ltd. 2-1 Hyakuyama, Shimamoto-Cho, Mishima-Gun, Osaka, 618-0021 (Japan); Tsuji, Takeshi [Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu-Cho, Matsue, 690-8504 (Japan)

    2015-09-01

    Highlights: • Pulsed laser ablation in liquid (LAL) was applied to prepare antimony sulfide nanoparticles (Sb{sub 2}S{sub 3} NPs). • Sb{sub 2}S{sub 3} NPs with a stoichiometric composition were successfully prepared by LAL in water without using any surfactants or capping agents. • Thus-prepared Sb{sub 2}S{sub 3} NPs showed low-temperature crystallization and melting at a temperature low as 200 °C. • The NPs-coated Sb{sub 2}S{sub 3} thin film showed comparable semiconductor properties (carrier mobility and carrier density) to the vacuum deposited one. • Byproducts such as CS{sub 2}, CH{sub 4} and CO were detected by GC-MS analysis when LAL was performed in organic solvent. • The LAL-induced decomposition mechanism of Sb{sub 2}S{sub 3} and organic solvents was discussed based on the GC-MS results. - Abstract: In this paper, we report on the synthesis of antimony sulfide (Sb{sub 2}S{sub 3}) semiconductor nanoparticles by pulsed laser ablation in liquid without using any surfactants or capping agents. Different results were obtained in water and organic solvents. In the case of water, Sb{sub 2}S{sub 3} nanoparticles with chemical compositions of stoichiometry were successfully prepared when laser irradiation was performed under the condition with the dissolved oxygen removed by argon gas bubbling. It was shown that thus-obtained Sb{sub 2}S{sub 3} nanoparticles exhibit features of not only low-temperature crystallization but also low-temperature melting at a temperature as low as 200 °C. Nanoparticle-coated Sb{sub 2}S{sub 3} thin films were found to show good visible light absorption and satisfying semiconductor properties (i.e., carrier mobility and density), which are essential for photovoltaic application. On the other hand, in the case of organic solvents (e.g., acetone, ethanol), such unexpected byproducts as CS{sub 2}, CO and CH{sub 4} were detected from the reaction system by GC-MS analysis, which suggests that both Sb{sub 2}S{sub 3} and organic

  12. Green fabrication of agar-conjugated Fe{sub 3}O{sub 4} magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, S; Huang, B Y; Lin, P Y; Chang, C W [Department of Chemistry and Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Hsieh, S L [Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan (China); Wu, C C [Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan (China); Wu, C H [Department of Computer Science and Information Engineering, National University of Kaohsiung, Kaohsiung 80811, Taiwan (China); Huang, Y S, E-mail: shsieh@facmail.NSYSU.edu.tw [Department of Food Science and Technology, Tajen University, Pingtung 90741, Taiwan (China)

    2010-11-05

    Magnetic nanoparticles are of great interest both for fundamental research and emerging applications. In the biomedical field, magnetite (Fe{sub 3}O{sub 4}) has shown promise as a hyperthermia-based tumor therapeutic. However, preparing suitable solubilized magnetite nanoparticles is challenging, primarily due to aggregation and poor biocompatibility. Thus methods for coating Fe{sub 3}O{sub 4} NPs with biocompatible stabilizers are required. We report a new method for preparing Fe{sub 3}O{sub 4} nanoparticles by co-precipitation within the pores of agar gel samples. Permeated agar gels were then dried and ground into a powder, yielding agar-conjugated Fe{sub 3}O{sub 4} nanoparticles. Samples were characterized using XRD, FTIR, TGA, TEM and SQUID. This method for preparing agar-coated Fe{sub 3}O{sub 4} nanoparticles is environmentally friendly, inexpensive and scalable.

  13. Preparation of gold nanoparticles by γ-ray irradiation method using polyvinyl pyrrolidone (PVP) as stabilizer

    International Nuclear Information System (INIS)

    Nguyen Tan Man; Le Hai; Le Huu Tu; Tran Thu Hong; Tran Thi Tam; Pham Thi Le Ha; Pham Thi Sam

    2011-01-01

    Gold nanoparticles were prepared from (Au 3+ ) aqueous solution by the method of γ-ray irradiation using polyvinylpyrrolidone (PVP) as stabilizer. The saturated conversion dose (Au 3+ --> Au o ) determined by UV-Vis spectroscopy was found to be about 5 kGy. The UV-Vis spectrum showed that an absorption peak at λ max =524 nm due to surface plasmon resonance. The image of transmission electron microscopy (TEM) showed that the gold nanoparticles are mostly spherical in shape and have an average diameter of ≅20 nm. The prepared colloidal gold nanoparticles solution is good stability for 6 months of storage. (author)

  14. Microporous Ni@NiO nanoparticles prepared by chemically dealloying Al_3Ni_2@Al nanoparticles as a high microwave absorption material

    International Nuclear Information System (INIS)

    Pang, Yu; Xie, Xiubo; Li, Da; Chou, Wusheng; Liu, Tong

    2017-01-01

    The Al_3Ni_2@Al nanoparticles (NPs) were prepared from Ni_4_5Al_5_5 master alloy by hydrogen plasma-metal reaction method, and were subsequently dealloyed to produce porous Ni@NiO NPs of 36 nm. The pore size ranges from 0.7 to 1.6 nm, leading to large specific surface area of 69.5 m"2/g and big pore volume of 0.507 cc/g. The saturation magnetization (M_S) and coercivity (H_C) of the microporous Ni@NiO NPs are 11.5 emu/g and 5.2 Oe. They exhibit high microwave absorption performance with a minimum reflection coefficient (RC) of −86.9 dB and an absorption bandwidth of 2.6 GHz (RC≤−10 dB) at thickness of 4.5 mm. The enhanced microwave absorption properties are attributed to the synergistic effect of the magnetic Ni core and dielectric NiO shell, and the micropore architecture. The NPs with micropore morphology and core/shell structure open a new way to modify the microwave absorption performance. - Graphical abstract: The microporous Ni/NiO nanoparticles prepared by chemically dealloying Al_3Ni_2@Al NPs exhibit high microwave absorption intensity (−86.9 dB) and wide absorption bandwidth (2.6 GHz for RC≤−10 dB). - Highlights: • Microporous Ni/NiO nanoparticals were prepared by chemically dealloying method. • They possessed micropores of 0.7–1.6 nm with a surface area of 69.5 m"2/g. • They showed high microwave absorption intensity and wide absorption bandwidth. • Microwave absorption mechanism was explained by micropore and core/shell structures.

  15. Silicon nanoparticles: Preparation, properties, and applications

    International Nuclear Information System (INIS)

    Chang Huan; Sun Shu-Qing

    2014-01-01

    Silicon nanoparticles have attracted great attention in the past decades because of their intriguing physical properties, active surface state, distinctive photoluminescence and biocompatibility. In this review, we present some of the recent progress in preparation methodologies and surface functionalization approaches of silicon nanoparticles. Further, their promising applications in the fields of energy and electronic engineering are introduced. (invited review — international conference on nanoscience and technology, china 2013)

  16. Preparation of HZSM-5 membrane packed CuO–ZnO–Al{sub 2}O{sub 3} nanoparticles for catalysing carbon dioxide hydrogenation to dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rong; Tian, Haifeng; Yang, Aimei; Zha, Fei, E-mail: zhafei@nwnu.edu.cn; Ding, Jian; Chang, Yue

    2015-08-01

    Highlights: • CuO–ZnO–Al{sub 2}O{sub 3} composite nanoparticles were successfully prepared using carbon sphere as template. • HZSM-5@CuO–ZnO–Al{sub 2}O{sub 3} capsule catalyst was prepared hydrothermally. • Zeolite capsule catalysts exhibited an extremely good selectivity for DME compared with the conventional hybrid catalyst. - Abstract: Spherical carbons were prepared successfully from aqueous glucose using hydrothermal method. After covered with aqueous Cu{sup 2+}, Zn{sup 2+} and Al{sup 3+} ions during the co-precipitation treatment, carbons were removed via calcination to yield CuO–ZnO–Al{sub 2}O{sub 3} nanoparticles. HZSM-5 membrane, which was synthesized using tetrapropylammonium hydroxide as templating agent, was packed onto CuO–ZnO–Al{sub 2}O{sub 3} nanoparticles hydrothermally to form HZSM-5 packed CuO–ZnO–Al{sub 2}O{sub 3} nanoparticles. It was characterized by the method of X-ray powder diffraction (XRD), scanning electronic microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and nitrogen sorption measurement. HZSM-5 packed CuO–ZnO–Al{sub 2}O{sub 3} nanoparticles were used as catalysts for the CO{sub 2} hydrogenation to dimethyl ether. The catalyst activity was investigated in a fixed-bed reactor. Under the reaction conditions of pressure at 3.0 MPa, space velocity (SV) of 1800 mL g{sub cat}{sup −1} h{sup −1}, volume ratio of CO{sub 2}/H{sub 2} to 1:3 and temperature at 270 °C, the conversion of CO{sub 2} could reach to 48.3%, with a dimethyl ether yield and selectivity of 23.4% and 48.5%, respectively.

  17. Zero-valent iron nanoparticles preparation

    International Nuclear Information System (INIS)

    Oropeza, S.; Corea, M.; Gómez-Yáñez, C.; Cruz-Rivera, J.J.; Navarro-Clemente, M.E.

    2012-01-01

    Graphical abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH 3 ) 3 ) 2 ] 2 ] at room temperature and a pressure of 3 atm. The synthesized nanoparticles were spherical and had diameters less than 5 nm. Highlights: ► Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH 3 ) 3 ) 2 ] 2 ]. ► The conditions of reaction were at room temperature and a pressure of 3 atm. ► The synthesized nanoparticles were spherical and had diameters less than 5 nm. -- Abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH 3 ) 3 ) 2 ] 2 ] at room temperature and a pressure of 3 atm. To monitor the reaction, a stainless steel pressure reactor lined with PTFE and mechanically stirred was designed. This design allowed the extraction of samples at different times, minimizing the perturbation in the system. In this way, the shape and the diameter of the nanoparticles produced during the reaction were also monitored. The results showed the production of zero-valent iron nanoparticles that were approximately 5 nm in diameter arranged in agglomerates. The agglomerates grew to 900 nm when the reaction time increased up to 12 h; however, the diameter of the individual nanoparticles remained almost the same. During the reaction, some byproducts constituted by amino species acted as surfactants; therefore, no other surfactants were necessary.

  18. Preparation methods of alginate nanoparticles

    NARCIS (Netherlands)

    Paques, J.P.; Linden, van der E.; Rijn, van C.J.M.; Sagis, L.M.C.

    2014-01-01

    This article reviews available methods for the formation of alginate nano-aggregates, nanocapsules and nanospheres. Primarily, alginate nanoparticles are being prepared by two methods. In the “complexation method”, complex formation on the interface of an oil droplet is used to form alginate

  19. Inulin hydrolysis by inulinase immobilized covalently on magnetic nanoparticles prepared with wheat gluten hydrolysates

    OpenAIRE

    Homa Torabizadeh; Asieh Mahmoudi

    2018-01-01

    Inulinase can produce a high amount of fructose syrup from inulin in a one-step enzymatic process. Inulinase from Aspergillus niger was immobilized covalently on Fe3O4 magnetic nanoparticles functionalized with wheat gluten hydrolysates (WGHs). Wheat gluten was enzymatically hydrolyzed by two endopeptidases Alcalase and Neutrase and related nanoparticles were prepared by desolvation method. Magnetite nanoparticles were coated with WGHs nanoparticles and then inulinase was immobilized onto it ...

  20. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles

    International Nuclear Information System (INIS)

    Moreno-Alvarez, S. A.; Martinez-Castanon, G. A.; Nino-Martinez, N.; Reyes-Macias, J. F.; Patino-Marin, N.; Loyola-Rodriguez, J. P.; Ruiz, Facundo

    2010-01-01

    In this work, gold nanoparticles with three different sizes (13.7, 39.4, and 76.7 nm) were prepared using a simple aqueous method with gallic acid as the reducing and stabilizing agent, the different sizes were obtained varying some experimental parameters as the pH of the reaction and the amount of the gallic acid. The prepared nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy. Samples were identified as elemental gold and present spherical morphology, a narrow size distribution and good stabilization according to TEM and DLS results. The antibacterial activity of this gallic acid stabilized gold nanoparticles against S. mutans (the etiologic agent of dental caries) was assessed using a microdilution method obtaining a minimum inhibitory concentration of 12.31, 12.31, and 49.25 μg/mL for 13.7, 39.4, and 76.7 nm gold nanoparticles, respectively. The antibacterial assay showed that gold nanoparticles prepared in this work present a bactericide activity by a synergistic action with gallic acid. The MIC found for this nanoparticles are much lower than those reported for mixtures of gold nanoparticles and antibiotics.

  1. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Alvarez, S. A. [UASLP, Doctorado Institucional en Ingenieria y Ciencia de Materiales (Mexico); Martinez-Castanon, G. A., E-mail: mtzcastanon@fciencias.uaslp.m [UASLP, Maestria en Ciencias Odontologicas, Facultad de Estomatologia (Mexico); Nino-Martinez, N. [UASLP, Facultad de Ciencias (Mexico); Reyes-Macias, J. F.; Patino-Marin, N.; Loyola-Rodriguez, J. P. [UASLP, Maestria en Ciencias Odontologicas, Facultad de Estomatologia (Mexico); Ruiz, Facundo [UASLP, Facultad de Ciencias (Mexico)

    2010-10-15

    In this work, gold nanoparticles with three different sizes (13.7, 39.4, and 76.7 nm) were prepared using a simple aqueous method with gallic acid as the reducing and stabilizing agent, the different sizes were obtained varying some experimental parameters as the pH of the reaction and the amount of the gallic acid. The prepared nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy. Samples were identified as elemental gold and present spherical morphology, a narrow size distribution and good stabilization according to TEM and DLS results. The antibacterial activity of this gallic acid stabilized gold nanoparticles against S. mutans (the etiologic agent of dental caries) was assessed using a microdilution method obtaining a minimum inhibitory concentration of 12.31, 12.31, and 49.25 {mu}g/mL for 13.7, 39.4, and 76.7 nm gold nanoparticles, respectively. The antibacterial assay showed that gold nanoparticles prepared in this work present a bactericide activity by a synergistic action with gallic acid. The MIC found for this nanoparticles are much lower than those reported for mixtures of gold nanoparticles and antibiotics.

  2. Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties.

    Science.gov (United States)

    Wang, Xinge; Chen, Haiming; Luo, Zhigang; Fu, Xiong

    2016-03-15

    In this research, 1-hexadecyl-3-methylimidazolium bromide C16mimBr/butan-1-ol/cyclohexane/water ionic liquid microemulsion was prepared. The effects of n-alkyl alcohols, alkanes, water content and temperature on the properties of microemulsion were studied by dilution experiment. The microregion of microemulsion was identified by pseudo-ternary phase diagram and conductivity measurement. Then starch nanoparticles were prepared by water in oil (W/O) microemulsion-cross-linking methods with C16mimBr as surfactant. Starch nanoparticles with a mean diameter of 94.3nm and narrow size distribution (SD=3.3) were confirmed by dynamic light scattering (DLS). Scanning electron microscope (SEM) data revealed that starch nanoparticles were spherical granules with the size about 60nm. Moreover the results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) demonstrated the formation of cross-linking bonds in starch molecules. Finally, the drug loading and releasing properties of starch nanoparticles were investigated with methylene blue (MB) as drug model. This work may provide an efficient pathway to synthesis starch nanoparticles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Preparation of Sm3H7 nanoparticles and their application in ammonia synthesis

    International Nuclear Information System (INIS)

    Liu Tong; Zhang Yaohua; Li Xingguo

    2006-01-01

    Sm 3 H 7 nanoparticles have been successfully produced by hydrogen plasma-metal reaction (HPMR) method, and then used to synthesize ammonia at 298 K and 1 atm. The morphologies of the Sm 3 H 7 nanoparticles before and after reaction were investigated by transmission electron microscopy, and the crystal structures at different steps by X-ray diffraction. Nessler's test was adopted to detect ammonia. It was found that the passivated Sm 3 H 7 nanoparticles possess polyhedron shape and smooth surface, with the average size of about 50 nm and the specific surface area 11.2 m 2 g -1 . It was proposed that Sm 3 H 7 nanoparticles react with oxygen and nitrogen to form ammonia, but ammonia production is not observable in the case of coarse particles. After ammonia synthesis, the morphology of Sm 3 H 7 nanoparticles changes into spongy surface and the mean particle size and specific surface area increase to 100 nm and 28.6 m 2 g -1 , respectively, due to the release of hydrogen. The hydrogen conversion percentage from samarium hydride is estimated to be 1.5%. Without O 2 , Sm 3 H 7 nanoparticles cannot react with N 2 or N 2 + H 2 at 298 K and 1 atm

  4. Preparation of In2S3 nanopraricle by ultrasonic dispersion and its tribology property.

    Science.gov (United States)

    Li, Zhiwei; Tao, Xiaojun; Wu, Zhishen; Zhang, Pingyu; Zhang, Zhijun

    2009-02-01

    In this paper, we describe a facile and rapid method for preparing In2S3 nanoparticles via ultrasound dispersion. This method allows us to prepare In2S3 nanoparticles from bulk indium and sulfur with ease and without using expensive agents and in a short time. The possible growing mechanism of the In2S3 nanoparticles was presented. In addition, we provide detailed characterizations including TEM, XRD, TG-DTA, and XPS to study the shape, composition and structure of In2S3 nanoparticles. We also studied the tribology property of In2S3 nanoparticles made using this novel recipe.

  5. Zero-valent iron nanoparticles preparation

    Energy Technology Data Exchange (ETDEWEB)

    Oropeza, S. [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Corea, M., E-mail: mcoreat@yahoo.com.mx [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Gómez-Yáñez, C. [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Cruz-Rivera, J.J. [Universidad Autónoma de San Luis Potosí, Instituto de Metalurgia, Sierra Leona 550, San Luis Potosí, C.P. 78210 (Mexico); Navarro-Clemente, M.E., E-mail: mnavarroc@ipn.mx [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico)

    2012-06-15

    Graphical abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. The synthesized nanoparticles were spherical and had diameters less than 5 nm. Highlights: ► Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}]. ► The conditions of reaction were at room temperature and a pressure of 3 atm. ► The synthesized nanoparticles were spherical and had diameters less than 5 nm. -- Abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. To monitor the reaction, a stainless steel pressure reactor lined with PTFE and mechanically stirred was designed. This design allowed the extraction of samples at different times, minimizing the perturbation in the system. In this way, the shape and the diameter of the nanoparticles produced during the reaction were also monitored. The results showed the production of zero-valent iron nanoparticles that were approximately 5 nm in diameter arranged in agglomerates. The agglomerates grew to 900 nm when the reaction time increased up to 12 h; however, the diameter of the individual nanoparticles remained almost the same. During the reaction, some byproducts constituted by amino species acted as surfactants; therefore, no other surfactants were necessary.

  6. Preparation of Candesartan and Atorvastatin Nanoparticles by Solvent Evaporation

    Directory of Open Access Journals (Sweden)

    Josef Jampilek

    2012-11-01

    Full Text Available The solubility, absorption and distribution of a drug are involved in the basic aspects of oral bioavailability Solubility is an essential characteristic and influences the efficiency of the drug. Over the last ten years, the number of poorly soluble drugs has steadily increased. One of the progressive ways for increasing oral bioavaibility is the technique of nanoparticle preparation, which allows many drugs to thus reach the intended site of action. Candesartan cilexetil and atorvastatin, belonging to class II of the biopharmaceutical classification system, were chosen as model active pharmaceutical ingredients in this study. Forty samples were prepared either by antisolvent precipitation/solvent evaporation method or by the emulsion/solvent evaporation technique with various commonly used surface-active excipients as nanoparticle stabilizers. All samples were analyzed by means of dynamic light scattering. The particle size of the determined 36 nanoparticle samples was to 574 nm, whereas 32 samples contained nanoparticles of less than 200 nm. Relationships between solvents and excipients used and their amount are discussed. Based on the results the investigated solvent evaporation methods can be used as an effective and an affordable technique for the preparation of nanoparticles.

  7. Dipodal Silane-modified Nano Fe3O4/Polyurethane Magnetic Nanocomposites: Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    Mir Mohammad Alavi Nikje

    2016-01-01

    Full Text Available Magnetic nanocomposites were prepared by incorporation of pure Fe3O4 and surface-modified Fe3O4 nanoparticles (dipodal silane-modified Fe3O4 into a polyurethane elastomer matrix by in situ polymerization method. In preparation of these magnetic nanocomposites, polycaprolactone (PCL was used as a polyester polyol. Because of dipole-dipole interactions between nanoparticles and a large surface area to volume ratio, the magnetic iron oxide nanoparticles tended to agglomerate. Furthermore, the most important challenge was to coat the surface of magnetic Fe3O4 nanoparticles in order to prepare well dispersed and stabilized Fe3O4 magnetic nanoparticles. It was observed that surface modification of Fe3O4 nanoparticles enhanced the dispersion of the nanoparticles in polyurethane matrices and allowed magnetic nanocomposites to be prepared with better properties. Surface modification of Fe3O4 was performed by dipodal silane synthesized based on 3-aminopropyltriethoxysilane (APTS and γ-glycidoxypropyl trimethoxysilane (GPTS. Dipodal silane-coated magnetic nanoparticles (DScMNPs were synthesized and incorporated into the polyurethane elastomer matrix as reinforcing agents. The formation of dipodal silane was investigated by Fourier transform infrared spectroscopy (FTIR, proton nuclear magnetic resonance spectroscopy (1H NMR and transmission electron microscopy (TEM. Characterization and study on the magnetic polyurethane elastomer nanocomposites were performed by FTIR, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, vibrating sample magnetometry (VSM and dynamic mechanical thermal analysis (DMTA. The VSM results showed that the synthesized polyurethane elastomer nanocomposites had a superparamagnetic behavior. The TGA results showed that the thermal stability of dipodal silane-modified Fe3O4/PU nanocomposite was higher than that of Fe3O4/PU nanocomposite. This could be attributed to better dispersion and compatibility of dipodal silane

  8. Preparation and characterization of natural polymers as stabilizer for magnetic nanoparticles by gamma irradiation

    International Nuclear Information System (INIS)

    Eid, M.

    2012-01-01

    A Highly stable and uniformly distributed magnetic nanoparticles have been obtained onto hydroxyethyl methacrylate (HEMA)-Agar- Fe 3 O 4 (HAF), and HEMA-Gelatin- Fe 3 O 4 (HGF) networks via gamma irradiation and loading technique. The swelling property of the prepared hydrogels in bidistilled water and different ph's was studied and the results showed that, the swelling percent of the plain hydrogel was found to be higher for all different compositions. The morphology and structure of the prepared hydrogels and dispersion of the magnetite nanoparticles in the hydrogel network were examined by Scanning electron microscopy (SEM) and Infrared spectroscopy (FT-IR). The particle size of the formed magnetite nanoparticles has been confirmed by Dynamic light scattering (DLS) and Transmission electron microscope (TEM), and it was found to be smaller in loading technique than irradiation technique. The HEMA-Gelatin-Fe 3 O 4 has higher particle size than HEMA-Agar-Fe 3 O 4 (HAF). Finally, the drug loading capacities of the magnetite nanoparticles and their releasing dependence on different ph were investigated with doxorubicin hydrochloride (DOX) as an anticancer drug model.

  9. Preparation of Fe(3)O(4)@C@CNC multifunctional magnetic core/shell nanoparticles and their application in a signal-type flow-injection photoluminescence immunosensor.

    Science.gov (United States)

    Chu, Chengchao; Li, Meng; Li, Long; Ge, Shenguang; Ge, Lei; Yu, Jinghua; Yan, Mei; Song, Xianrang

    2013-11-01

    We describe here the preparation of carbon-coated Fe3O4 magnetic nanoparticles that were further fabricated into multifunctional core/shell nanoparticles (Fe3O4@C@CNCs) through a layer-by-layer self-assembly process of carbon nanocrystals (CNCs). The nanoparticles were applied in a photoluminescence (PL) immunosensor to detect the carcinoembryonic antigen (CEA), and CEA primary antibody was immobilized onto the surface of the nanoparticles. In addition, CEA secondary antibody and glucose oxidase were covalently bonded to silica nanoparticles. After stepwise immunoreactions, the immunoreagent was injected into the PL cell using a flow-injection PL system. When glucose was injected, hydrogen peroxide was obtained because of glucose oxidase catalysis and quenched the PL of the Fe3O4@C@CNC nanoparticles. The here proposed PL immunosensor allowed us to determine CEA concentrations in the 0.005–50 ng·mL-1 concentration range, with a detection limit of 1.8 pg·mL-1.

  10. Thermal decomposition of ammonium perchlorate in the presence of Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, WenJing [Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Ping, E-mail: lipinggnipil@home.ipe.ac.cn [Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Xu, HongBin; Sun, Randi; Qing, Penghui; Zhang, Yi [Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-03-01

    Highlights: • The amorphous Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles containing surface hydroxyls were prepared by a hydrolytic co-precipitation method. • The Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles show excellent catalytic ability for AP decomposition. • The surface hydroxyls and amorphous form of Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles promote ammonia oxidation of AP. - Abstract: An Al(OH){sub 3}·Cr(OH){sub 3} nanoparticle preparation procedure and its catalytic effect and mechanism on thermal decomposition of ammonium perchlorate (AP) were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis and differential scanning calorimetry (TG-DSC), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis and mass spectroscopy (TG-MS). In the preparation procedure, TEM, SAED, and FT-IR showed that the Al(OH){sub 3}·Cr(OH){sub 3} particles were amorphous particles with dimensions in the nanometer size regime containing a large amount of surface hydroxyl under the controllable preparation conditions. When the Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles were used as additives for the thermal decomposition of AP, the TG-DSC results showed that the addition of Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles to AP remarkably decreased the onset temperature of AP decomposition from approximately 450 °C to 245 °C. The FT-IR, RS and XPS results confirmed that the surface hydroxyl content of the Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles decreased from 67.94% to 63.65%, and Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles were limitedly transformed from amorphous to crystalline after used as additives for the thermal decomposition of AP. Such behavior of Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles promoted the oxidation of NH{sub 3} of AP to decompose to N{sub 2}O first, as indicated by the TG-MS results, accelerating the AP thermal decomposition.

  11. Magnetic lipid nanoparticles loading doxorubicin for intracellular delivery: Preparation and characteristics

    International Nuclear Information System (INIS)

    Ying Xiaoying; Du Yongzhong; Hong Linghong; Yuan Hong; Hu Fuqiang

    2011-01-01

    Tumor intracellular delivery is an effective route for targeting chemotherapy to enhance the curative effect and minimize the side effect of a drug. In this study, the magnetic lipid nanoparticles with an uptake ability by tumor cells were prepared dispersing ferroso-ferric oxide nanoparticles in aqueous phase using oleic acid (OA) as a dispersant, and following the solvent dispersion of lipid organic solution. The obtained nanoparticles with 200 nm volume average diameter and -30 mV surface zeta potential could be completely removed by external magnetic field from aqueous solution. Using doxorubicin (DOX) as a model drug, the drug-loaded magnetic lipid nanoparticles were investigated in detail, such as the effects of OA, drug and lipid content on volume average diameter, zeta potential, drug encapsulation efficiency, drug loading, and in vitro drug release. The drug loading capacity and encapsulation efficiency were enhanced with increasing drug or lipid content, reduced with increasing OA content. The in vitro drug release could be controlled by changing drug or lipid content. Cellular uptake by MCF-7 cells experiment presented the excellent internalization ability of the prepared magnetic lipid nanoparticles. These results evidenced that the present magnetic lipid nanoparticles have potential for targeting therapy of antitumor drugs. - Research highlights: → A simple solvent diffusion method was developed to prepare magnetic lipid nanoparticles. → The doxorubicin-loaded magnetic lipid nanoparticles could be controlled by preparation recipe. → Magnetic lipid nanoparticles had internalization ability into tumor cells.

  12. Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process

    Directory of Open Access Journals (Sweden)

    Kim MS

    2011-11-01

    Full Text Available Min-Soo Kim1, Jeong-Soo Kim1, Hee Jun Park1, Won Kyung Cho1,3, Kwang-Ho Cha1,3, Sung-Joo Hwang2,31College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea, 2College of Pharmacy, 3Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of KoreaBackground: The aim of this study was to improve the physicochemical properties and bioavailability of poorly water-soluble sirolimus via preparation of a solid dispersion of nanoparticles using a supercritical antisolvent (SAS process.Methods: First, excipients for enhancing the stability and solubility of sirolimus were screened. Second, using the SAS process, solid dispersions of sirolimus-polyvinylpyrrolidone (PVP K30 nanoparticles were prepared with or without surfactants such as sodium lauryl sulfate (SLS, tocopheryl propylene glycol succinate, Sucroester 15, Gelucire 50/13, and Myrj 52. A mean particle size of approximately 250 nm was obtained for PVP K30-sirolimus nanoparticles. Solid state characterization, kinetic solubility, powder dissolution, stability, and pharmacokinetics were analyzed in rats.Results: X-ray diffraction, differential scanning calorimetry, and high-pressure liquid chromatography indicated that sirolimus existed in an anhydrous amorphous form within a solid dispersion of nanoparticles and that no degradation occurred after SAS processing. The improved supersaturation and dissolution of sirolimus as a solid dispersion of nanoparticles appeared to be well correlated with enhanced bioavailability of oral sirolimus in rats. With oral administration of a solid dispersion of PVP K30-SLS-sirolimus nanoparticles, the peak concentration and AUC0→12h of sirolimus were increased by approximately 18.3-fold and 15.2-fold, respectively.Conclusion: The results of this study suggest that preparation of PVP K30-sirolimus-surfactant nanoparticles using the SAS process may be a promising approach for improving the bioavailability of sirolimus

  13. Preparation of stable magnetic nanofluids containing Fe3O4@PPy nanoparticles by a novel one-pot route

    Directory of Open Access Journals (Sweden)

    Zhao Baobao

    2011-01-01

    Full Text Available Abstract Stable magnetic nanofluids containing Fe3O4@Polypyrrole (PPy nanoparticles (NPs were prepared by using a facile and novel method, in which one-pot route was used. FeCl3·6H2O was applied as the iron source, and the oxidizing agent to produce PPy. Trisodium citrate (Na3cit was used as the reducing reagent to form Fe3O4 NPs. The as-prepared nanofluid can keep long-term stability. The Fe3O4@PPy NPs can still keep dispersing well after the nanofluid has been standing for 1 month and no sedimentation is found. The polymerization reaction of the pyrrole monomers took place with Fe3+ ions as the initiator, in which these Fe3+ ions remained in the solution adsorbed on the surface of the Fe3O4 NPs. Thus, the core-shell NPs of Fe3O4@PPy were obtained. The particle size of the as-prepared Fe3O4@PPy can be easily controlled from 7 to 30 nm by the polymerization reaction of the pyrrole monomers. The steric stabilization and weight of the NPs affect the stability of the nanofluids. The as-prepared Fe3O4@PPy NPs exhibit superparamagnetic behavior.

  14. Preparation and characterization of copper oxide nanoparticles decorated carbon nanoparticles using laser ablation in liquid

    Science.gov (United States)

    Khashan, K. S.; Jabir, M. S.; Abdulameer, F. A.

    2018-05-01

    Carbon nanoparticles CNPs ecorated by copper oxide nano-sized particles would be successfully equipped using technique named pulsed laser ablation in liquid. The XRD pattern proved the presence of phases assigned to carbon and different phases of copper oxide. The chemical structure of the as-prepared nanoparticles samples was decided by Energy Dispersive Spectrum (EDS) measurement. EDS analysis results show the contents of Carbon, Oxygen and Copper in the final product. These nanoparticles were spherical shaped with a size distribution 10 to 80 nm or carbon nanoparticles and 5 to 50 nm for carbon decorated copper oxide nanoparticles, according to Transmission Electron Microscopy (TEM) images and particle-size distribution histogram. It was found that after doping with copper oxide, nanoparticles become smaller and more regular in shape. Optical absorption spectra of prepared nanoparticles were measured using UV–VIS spectroscopy. The absorption spectrum of carbon nanoparticles without doping indicates absorption peak at about 228 nm. After doping with copper oxide, absorption shows appearance of new absorption peak at about (254-264) nm, which is referred to the movement of the charge between 2p and 4s band of Cu2+ ions.

  15. Resveratrol-loaded glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles: Preparation, characterization, and targeting effect on liver tumors.

    Science.gov (United States)

    Wu, Mingfang; Lian, Bolin; Deng, Yiping; Feng, Ziqi; Zhong, Chen; Wu, Weiwei; Huang, Yannian; Wang, Lingling; Zu, Chang; Zhao, Xiuhua

    2017-08-01

    In this study, glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles were prepared to establish a tumor targeting nano-sized drug delivery system. Glycyrrhizic acid was coupled to human serum albumin, and resveratrol was encapsulated in glycyrrhizic acid-conjugated human serum albumin by high-pressure homogenization emulsification. The average particle size of sample nanoparticles prepared under the optimal conditions was 108.1 ± 5.3 nm with a polydispersity index (PDI) of 0.001, and the amount of glycyrrhizic acid coupled with human serum albumin was 112.56 µg/mg. The drug encapsulation efficiency and drug loading efficiency were 83.6 and 11.5%, respectively. The glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles were characterized through laser light scattering, scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analyses, and gas chromatography. The characterization results showed that resveratrol in glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles existed in amorphous state and the residual amounts of chloroform and methanol in nanoparticles were separately less than the international conference on harmonization (ICH) limit. The in vitro drug-release study showed that the nanoparticles released the drug slowly and continuously. The inhibitory rate of glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide method. The IC50 values of glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles and resveratrol were 62.5 and 95.5 µg/ml, respectively. The target ability of glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles

  16. Preparation, characterization and SRXPS study of polyvinyl alcohol modified Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Li Ming; Wang Bing; Feng Weiyue; Liu Hui; Kang Yanjie; Kui Rexi

    2011-01-01

    In this study, Fe 3 O 4 nanoparticles were coated with PVA to synthesize PVA-Fe 3 O 4 complex, which were characterized by transmission electron microscopy(TEM),thermo gravimetric(TG) analysis, UV-vis spectra,zeta potentials and ICP-MS, in terms of the physicochemical properties, while surface constituents, structures and chemical bonds of the modified and unmodified nanoparticles were characterized with synchrotron radiation X-ray photoelectron spectroscopy(SRXPS), for exploring modification mechanism of the PVA-Fe 3 O 4 . The results indicate that after PVA modification, the suspension stability of Fe 3 O 4 nanoparticles in water and cellular uptake capability were significantly improved compared with unmodified Fe 3 O 4 . The SRXPS analysis reveals that the hydroxy groups on the surface of Fe 3 O 4 nanoparticles and PVA were combined by hydrogen bond to consist a stable system, which would be beneficial to the biomedical applications of Fe 3 O 4 nanoparticles. (authors)

  17. Preparation of sub 3 nm copper nanoparticles by microwave irradiation in the presence of triethylene tetramin

    Science.gov (United States)

    Tseng, Po-Hao; Wang, Yen-Zen; Hsieh, Tar-Hwa; Ho, Ko-Shan; Tsai, Cheng-Hsien; Chen, Kuan-Ting

    2018-02-01

    The preparation of sub 3 nm copper nanoparticles (CuNPs) in ethylene glycol (EG) using triethylene tetramine (TETA) as chelating and reducing agents via a rapid microwave (MW) irradiation is reported. The sub 3 nm CuNPs after MW irradiation are clearly seen from the electronic micrographs. The firm chelation of Cu2+ by TETA is illustrated by the dark blue color of Cu2+/TETA/EG solution and the redox reaction is confirmed by the appearance of red color of the mixtures. The optimal mole ratio of TETA/Cu 2+ is found to be 2.5/1 for preparing sub 3 nm CuNPs under the MW irradiation, operated at 800 W for 1 min. The plasmonic absorption λ max demonstrated in UV-vis spectra are found to close to 200 nm for sub 3 nm CuNPs, comparing to 500 ˜ 600 nm for regular, larger CuNPs. The extremely low Tm around 30 °C and the fusion/recrystallization sequence of sub 3 nm CuNPs can be directly measured by their differential scanning calorimetry thermograms.

  18. Simple ionic-liquid assisted method for preparation of Cd{sub 1-x} Zn{sub x}S nanoparticles with improved photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Naghiloo, Samira; Habibi-Yangjeh, Aziz [Mohaghegh Ardabili Univ. (Iran, Islamic Republic of). Dept. of Chemistry; Behboudnia, Mahdi [Urmia Univ. of Technolgy (Iran, Islamic Republic of). Dept. of Physics

    2012-12-15

    Nanoparticles of Cd{sub 1-x} Zn{sub x}S (x=0-0.8) were prepared in neat 1-ethyl-3-methylimidazolium ethyl sulfate, a halide-free and low-cost room-temperature ionic liquid (RTIL) via a simple heating method. The nanoparticles were investigated by means of powder X-ray diffraction, scanning electron microscopy, and UV-Vis diffuse reflectance spectroscopy techniques. The diffraction patterns demonstrate that the prepared nanoparticles in the RTIL have smaller size relative to the samples prepared in water. The photocatalytic activities of the nanoparticles towards photodegradation of methylene blue were evaluated under UV and visible irradiation. The results indicate that the nanoparticles prepared in the RTIL have greater photocatalytic activity relative to the samples prepared in water. The reaction rate constant under visible light irradiation on the nanoparticles prepared in the RTIL is at least six times greater than for the samples prepared in water. (orig.)

  19. Artesunate-loaded chitosan/lecithin nanoparticles: preparation, characterization, and in vivo studies.

    Science.gov (United States)

    Chadha, Renu; Gupta, Sushma; Pathak, Natasha

    2012-12-01

    Artesunate (AST), the most widely used artemisnin derivative, has poor aqueous solubility and suffers from low oral bioavailability (~40%). Under these conditions, nanoparticles with controlled and sustained released properties can be a suitable solution for improving its biopharmaceuticals properties. This work reports the preparation and characterization of auto-assembled chitosan/lecithin nanoparticles loaded with AST and AST complexed with β-cyclodextrin (β-CD) to boost its antimalarial activity. The nanoparticles prepared by direct injection of lecithin alcoholic solution into chitosan/water solution have shown the particle size distribution below 300 nm. Drug entrapment efficiency was found to be maximum (90%) for nanoparticles containing 100 mg of AST. Transmission electron microscopy images show spherical shape with contrasted corona (chitosan) surrounded by a lipidic core (lecithin + isopropyl myristate). Differential scanning calorimeter thermograms demonstrated the presence of drug in drug-loaded nanoparticles along with the disappearance of decomposition exotherm suggesting the increased physical stability of drug in prepared formulations. Negligible changes in the characteristic peaks of drug in Fourier-transform infrared spectra indicated the absence of any interaction among the various components entrapped in the nanoparticle formulation. In vitro drug release behavior was found to be influenced by pH value. Increased in vivo antimalarial activity in terms of less mean percent parasitemia was observed in infected Plasmodium berghei mice after the oral administration of all the prepared nanoparticle formulations.

  20. Dipodal Silane-modified Nano Fe3O4/Polyurethane Magnetic Nanocomposites: Preparation and Characterization

    OpenAIRE

    Mir Mohammad Alavi Nikje; Maryam Vakili; Reihaneh Farajollah; Raheleh Akbar; Moslem Haghshenas

    2016-01-01

    Magnetic nanocomposites were prepared by incorporation of pure Fe3O4 and surface-modified Fe3O4 nanoparticles (dipodal silane-modified Fe3O4) into a polyurethane elastomer matrix by in situ polymerization method. In preparation of these magnetic nanocomposites, polycaprolactone (PCL) was used as a polyester polyol. Because of dipole-dipole interactions between nanoparticles and a large surface area to volume ratio, the magnetic iron oxide nanoparticles tended to agglomerate. Furthermore, the ...

  1. Mn{sub 3}O{sub 4} nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang Bei [School of Mechanical, Materials and Mechatronic Engineering and Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia)] [Department of Chemistry and Forensic Science, University of Technology, Sydney, City Campus, Broadway, Sydney, NSW 2007 (Australia); Park, Jinsoo [School of Materials Science and Engineering, Gyeongsang National University, 900 Gazwa-dong, Jinju, Gyeongnam 660 -701 (Korea, Republic of); Wang Chengyin [Department of Chemistry and Forensic Science, University of Technology, Sydney, City Campus, Broadway, Sydney, NSW 2007 (Australia); Ahn, Hyojun [School of Materials Science and Engineering, Gyeongsang National University, 900 Gazwa-dong, Jinju, Gyeongnam 660 -701 (Korea, Republic of); Wang, Guoxiu, E-mail: Guoxiu.Wang@uts.edu.a [School of Mechanical, Materials and Mechatronic Engineering and Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia)] [Department of Chemistry and Forensic Science, University of Technology, Sydney, City Campus, Broadway, Sydney, NSW 2007 (Australia)

    2010-09-01

    Mn{sub 3}O{sub 4}/graphene nanocomposites were synthesized by mixing graphene suspension in ethylene glycol with MnO{sub 2} organosol, followed by subsequent ultrasonication processing and heat treatment. The as-prepared product consists of nanosized Mn{sub 3}O{sub 4} particles homogeneously distributed on graphene nanosheets, which has been confirmed by field emission scanning electron microscopy and transmission electron microscopy analysis. Atomic force microscope analysis further identified the distribution of dense Mn{sub 3}O{sub 4} nanoparticles on graphene nanosheets. When used as electrode materials in supercapacitors, Mn{sub 3}O{sub 4}/graphene nanocomposites exhibited a high specific capacitance of 175 F g{sup -1} in 1 M Na{sub 2}SO{sub 4} electrolyte and 256 F g{sup -1} in 6 M KOH electrolyte, respectively. The enhanced supercapacitance of Mn{sub 3}O{sub 4}/graphene nanocomposites could be ascribed to both electrochemical contributions of Mn{sub 3}O{sub 4} nanoparticles, functional groups attached to graphene nanosheets, and significantly increased specific surface area.

  2. Preparation of antimony-doped nanoparticles by hydrothermal method

    Institute of Scientific and Technical Information of China (English)

    JIANG Ming-xi; YANG Tian-zu; GU Ying-ying; DU Zuo-juan; LIU Jian-ling

    2005-01-01

    Antimony-doped tin oxide(ATO) nanoparticles were prepared by the mild hydrothermal method at 200 ℃ using sodium stannate, antimony oxide, sodium hydroxide and sulfuric acid as the starting materials. The doped powders were examined by differential thermal analysis(DTA), X-ray diffractometry(XRD) and transmission electron microscopy(TEM). The doping levels of antimony were determined by volumetric method and iodimetry.The results show that antimony is incorporated into the crystal lattice of tin oxide and the doping levels of antimony in the resulting powders are 2.4%, 4.3 % and 5.1 % (molar fraction). The mean particle size of ATO nanoparticles is in the range of 25 - 30 nm. The effects of antimony doping level on the crystalline size and crystallinity were also discussed.

  3. Prednisolone multicomponent nanoparticle preparation by aerosol solvent extraction system.

    Science.gov (United States)

    Moribe, Kunikazu; Fukino, Mika; Tozuka, Yuichi; Higashi, Kenjirou; Yamamoto, Keiji

    2009-10-01

    Prednisolone nanoparticles were prepared in the presence of a hydrophilic polymer and a surfactant by the aerosol solvent extraction system (ASES). A ternary mixture of prednisolone, polyethylene glycol (PEG), and sodium dodecyl sulfate (SDS) dissolved in methanol was sprayed through a nozzle into the reaction vessel filled with supercritical carbon dioxide. After the ASES process was repeated, precipitates of the ternary components were obtained by depressurizing the reaction vessel. When a methanolic solution of prednisolone/PEG 4000/SDS at a weight ratio of 1:6:2 was sprayed under the optimized ASES conditions, the mean particle size of prednisolone obtained after dispersing the precipitates in water was observed to be ca. 230 nm. Prednisolone nanoparticles were not obtained by the binary ASES process for prednisolone, in the presence of either PEG or SDS. Furthermore, ternary cryogenic cogrinding, as well as solvent evaporation, was not effective for the preparation of prednisolone nanoparticles. As the ASES process can be conducted under moderate temperature conditions, the ASES process that was applied to the ternary system appeared to be one of the most promising methods for the preparation of drug nanoparticles using the multicomponent system.

  4. Preparation and luminescence properties of LaPO{sub 4}:Er,Yb nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ha-Kyun [Advanced Materials Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of)]. E-mail: hakyun@krict.re.kr; Oh, Jae-Suk [Advanced Materials Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of); Seok, Sang-Il [Advanced Materials Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of); Lee, Tack-Hyuck [Department of Chemistry, Paichai University, Daejeon 302-735 (Korea, Republic of)

    2005-09-15

    For possible applications as optical amplification materials in telecommunications, LaPO{sub 4}:Er,Yb nanoparticles were synthesized in a solution system and their properties were investigated by various spectroscopic techniques. The prepared nanoparticles are single-phased and present the monazite structure, the particle size being about 5 nm with a narrow size distribution. Also, it was confirmed by EA and FT-IR analyses that the surface of nanoparticles is coated with the solvent molecules used in the synthesis reaction, which possibly prevents them from agglomerating. In the NIR region, the emission of the LaPO{sub 4}:Er particles is very weak due to an efficient quenching of the {sup 4}I{sub 13/2}{yields}{sup 4}I{sub 15/2} emission by the hydroxyl groups adsorbed on the surface of the nanoparticles. On the other hand, the co-doping of Yb{sup 3+} as a sensitizer in the nanoparticles resulted in the increase of the emission intensity at 1539 nm due to the effective energy transfer from Yb{sup 3+} to Er{sup 3+}. In addition, the synthesized nanoparticles have exhibited good dispersibility into a polymer matrix and effective luminescence in the NIR region.

  5. Structural and luminescent properties of Fe3+ doped PVA capped CdTe nanoparticles

    Directory of Open Access Journals (Sweden)

    Ravindranadh K.

    2017-07-01

    Full Text Available During recent decades, magnetic and semiconductor nanoparticles have attracted significant attention of scientists in various fields of engineering, physics, chemistry, biology and medicine. Fe3+ doped PVA capped CdTe nanoparticles were prepared by co-precipitation method and characterized by powder X-ray diffraction, SEM, TEM, FT-IR, optical, EPR and PL techniques to collect the information about the crystal structure, coordination/local site symmetry of doped Fe3+ ions in the host lattice and the luminescent properties of prepared sample. Powder XRD data revealed that the crystal structure belongs to a cubic system and its lattice cell parameters were evaluated. The average crystallite size was estimated to be 8 nm. The morphology of prepared samples was analyzed by using SEM and TEM investigations. Functional groups of the prepared sample were observed in FT-IR spectra. Optical absorption and EPR studies have shown that on doping, Fe3+ ions enter the host lattice in octahedral site symmetry. PL studies of Fe3+ doped PVA capped CdTe nanoparticles revealed UV and blue emission bands. CIE chromaticity coordinates were also calculated from the emission spectrum of Fe3+ doped PVA capped CdTe nanoparticles.

  6. Cobalt surface modification during γ-Fe2O3 nanoparticle synthesis by chemical-induced transition

    International Nuclear Information System (INIS)

    Li, Junming; Li, Jian; Chen, Longlong; Lin, Yueqiang; Liu, Xiaodong; Gong, Xiaomin; Li, Decai

    2015-01-01

    In the chemical-induced transition of FeCl 2 solution, the FeOOH/Mg(OH) 2 precursor was transformed into spinel structured γ-Fe 2 O 3 crystallites, coated with a FeCl 3 ·6H 2 O layer. CoCl 2 surface modified γ-Fe 2 O 3 nanoparticles were prepared by adding Co(NO 3 ) 2 during the synthesis. CoFe 2 O 4 modified γ-Fe 2 O 3 nanoparticles were prepared by adding NaOH during the surface modification with Co(NO 3 ) 2 . The CoFe 2 O 4 layer grew epitaxially on the γ-Fe 2 O 3 crystallite to form a composite crystallite, which was coated by CoCl 2 ·6H 2 O. The composite could not be distinguished using X-ray diffraction or transmission electron microscopy, since CoFe 2 O 4 and γ-Fe 2 O 3 possess similar spinel structures and lattice constants. X-ray photoelectron spectroscopy was used to distinguish them. The saturation magnetization and coercivity of the spinel structured γ-Fe 2 O 3 -based nanoparticles were related to the grain size. - Highlights: • γ-Fe 2 O 3 nanoparticles were synthesized by chemical induced transition. • CoCl 2 modified nanoparticles were prepared by additional Co(NO 3 ) 2 during synthesization. • CoFe 2 O 4 modified nanoparticles were prepared by additional Co(NO 3 ) 2 and NaOH. • The magnetism of the nanoparticles is related to the grain size

  7. A novel electrochemical preparation of PbS nanoparticles

    International Nuclear Information System (INIS)

    Yang Yujun

    2006-01-01

    A simple one-step anodic sonoelectrochemical method to synthesize PbS nanoparticles has been developed. With the lead foil as the sacrificing anode, Pb(II) was anodically dissolved from the lead electrode into the aqueous solution of sodium sulfide, supporting electrolyte (potassium nitrate) and capping agent (PVA) at a constant potential, and then the produced Pb(II) reacted with the sulfide anion to form PbS nanoparticles under ultrasonic irradiation. The effects of the applied potential, capping agent and ultrasound in the formation of PbS nanoparticles are discussed, and the results suggest that the anodic sonoelectrochemical method may be a general and convenient way to prepare metal sulfide nanoparticles

  8. Paraquat-loaded alginate/chitosan nanoparticles: Preparation, characterization and soil sorption studies

    Energy Technology Data Exchange (ETDEWEB)

    Santos Silva, Mariana dos; Sgarbi Cocenza, Daniela [Department of Environmental Engineering, Sao Paulo State University - UNESP, Avenida Tres de Marco, No. 511, CEP 18087-180, Sorocaba, SP (Brazil); Grillo, Renato; Silva de Melo, Nathalie Ferreira [Department of Environmental Engineering, Sao Paulo State University - UNESP, Avenida Tres de Marco, No. 511, CEP 18087-180, Sorocaba, SP (Brazil); Department of Biochemistry, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP (Brazil); Tonello, Paulo Sergio [Department of Environmental Engineering, Sao Paulo State University - UNESP, Avenida Tres de Marco, No. 511, CEP 18087-180, Sorocaba, SP (Brazil); Camargo de Oliveira, Luciana [Department of Chemistry, UFSCAr, Campus Sorocaba, SP (Brazil); Lopes Cassimiro, Douglas [Institute of Chemistry, Sao Paulo State University - UNESP, Araraquara, SP (Brazil); Rosa, Andre Henrique [Department of Environmental Engineering, Sao Paulo State University - UNESP, Avenida Tres de Marco, No. 511, CEP 18087-180, Sorocaba, SP (Brazil); Fernandes Fraceto, Leonardo, E-mail: leonardo@sorocaba.unesp.br [Department of Environmental Engineering, Sao Paulo State University - UNESP, Avenida Tres de Marco, No. 511, CEP 18087-180, Sorocaba, SP (Brazil); Department of Biochemistry, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP (Brazil)

    2011-06-15

    Agrochemicals are amongst the contaminants most widely encountered in surface and subterranean hydrological systems. They comprise a variety of molecules, with properties that confer differing degrees of persistence and mobility in the environment, as well as different toxic, carcinogenic, mutagenic and teratogenic potentials, which can affect non-target organisms including man. In this work, alginate/chitosan nanoparticles were prepared as a carrier system for the herbicide paraquat. The preparation and physico-chemical characterization of the nanoparticles was followed by evaluation of zeta potential, pH, size and polydispersion. The techniques employed included transmission electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. The formulation presented a size distribution of 635 {+-} 12 nm, polydispersion of 0.518, zeta potential of -22.8 {+-} 2.3 mV and association efficiency of 74.2%. There were significant differences between the release profiles of free paraquat and the herbicide associated with the alginate/chitosan nanoparticles. Tests showed that soil sorption of paraquat, either free or associated with the nanoparticles, was dependent on the quantity of organic matter present. The results presented in this work show that association of paraquat with alginate/chitosan nanoparticles alters the release profile of the herbicide, as well as its interaction with the soil, indicating that this system could be an effective means of reducing negative impacts caused by paraquat.

  9. Preparation of alpha-elastin nanoparticles by gamma irradiation

    International Nuclear Information System (INIS)

    Fujimoto, Mari; Okamoto, Kouji; Furuta, Masakazu

    2009-01-01

    Nanoparticles were prepared by utilizing the thermosensitive aggregation of alpha-elastin and gamma ray crosslinking. Three different heating process, 'Slow heating', 'Fast heating', and 'Heat shock', were applied for the aggregation of the alpha-elastin and examined to yield nanoparticles by gamma rays crosslinking. As a result, only 'Slow heating' process yielded nanoparticles with diameters of about ca. 300 nm above cloud point (CP) and about ca. 100 nm below CP, and a narrow size distribution above 1.0 mg/ml concentration (exclude 1.0 mg/ml).

  10. Cellular Interaction and Tumoral Penetration Properties of Cyclodextrin Nanoparticles on 3D Breast Tumor Model

    Directory of Open Access Journals (Sweden)

    Gamze Varan

    2018-01-01

    Full Text Available Amphiphilic cyclodextrins are biocompatible oligosaccharides that can be used for drug delivery especially for the delivery of drugs with solubility problems thanks to their unique molecular structures. In this paper, Paclitaxel was used as a model anticancer drug to determine the inclusion complex properties of amphiphilic cyclodextrins with different surface charge. Paclitaxel-loaded cyclodextrin nanoparticles were characterized in terms of mean particle diameter, zeta potential, encapsulation efficacy, drug release profile and cell culture studies. It was determined that the nanoparticles prepared from the inclusion complex according to characterization studies have a longer release profile than the conventionally prepared nanoparticles. In order to mimic the tumor microenvironment, breast cancer cells and healthy fibroblast cells were used in 3-dimensional (3D cell culture studies. It was determined that the activities of nanoparticles prepared by conventional methods behave differently in 2-dimensional (2D and 3D cell cultures. In addition, it was observed that the nanoparticles prepared from the inclusion complex have a stronger anti-tumoral activity in the 3D multicellular tumor model than the drug solution. Furthermore, polycationic amphiphilic cyclodextrin nanoparticles can diffuse and penetrate through multilayer cells in a 3D tumor model, which is crucial for an eventual antitumor effect.

  11. Composite Materials with Magnetically Aligned Carbon Nanoparticles and Methods of Preparation

    Science.gov (United States)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2018-01-01

    The present invention relates to magnetically aligned carbon nanoparticle composites and methods of preparing the same. The composites comprise carbon nanoparticles, host material, magnetically sensitive nanoparticles and surfactant. The composites may have enhanced mechanical, thermal, and/or electrical properties.

  12. Optical properties of tin oxide nanoparticles prepared by laser ablation in water: Influence of laser ablation time duration and laser fluence

    International Nuclear Information System (INIS)

    Desarkar, Himadri Sankar; Kumbhakar, P.; Mitra, A.K.

    2012-01-01

    Colloidal tin oxide nanoparticles are prepared by laser (having a wavelength of 1064 nm) ablation of tin metallic target immersed in pure deionized water. The influences of laser ablation time and laser fluence on the size and optical properties of the synthesized nanoparticles are studied. Prepared tin oxide nanoparticles are characterized by transmission electron microscope, selected area electron diffraction and UV–Visible absorption spectroscopy. The morphology of prepared tin oxide nanoparticles is found to be mostly spherical and with sizes in the nanometric range (mean radius of 3.2 to 7.3 nm). The measured UV–Visible absorption spectra show the presence of absorption peaks in the ultraviolet region. The band gap energy of samples prepared with different laser ablation time duration is calculated and is found to be increased with decrease in size (radius) of the prepared nanoparticles. Photoluminescence emission measurements at room temperature show that all the samples exhibit photoluminescence in the visible region. The peak photoluminescence emission intensity in the sample prepared with 50 min of laser ablation time is 3.5 times larger than that obtained in the sample prepared with 10 min of laser ablation time. - Highlights: ► SnO 2 nanoparticles (6.4–14.6 nm) are prepared by laser ablation in liquid technique. ► The influences of laser ablation time and laser fluence are studied. ► Samples are characterized by TEM and UV–Visible absorption spectroscopy. ► UV–Visible absorption spectra exhibit quantum confinement effect. ► Samples exhibit enhanced photoluminescence emissions in the visible region.

  13. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    Science.gov (United States)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  14. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-01-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al 2 O 3 and Fe 3 O 4 , on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  15. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An, E-mail: lian2010@lut.cn

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  16. Microporous Ni@NiO nanoparticles prepared by chemically dealloying Al{sub 3}Ni{sub 2}@Al nanoparticles as a high microwave absorption material

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Yu; Xie, Xiubo; Li, Da [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191 (China); Chou, Wusheng [School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Liu, Tong, E-mail: tongliu@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191 (China)

    2017-03-15

    The Al{sub 3}Ni{sub 2}@Al nanoparticles (NPs) were prepared from Ni{sub 45}Al{sub 55} master alloy by hydrogen plasma-metal reaction method, and were subsequently dealloyed to produce porous Ni@NiO NPs of 36 nm. The pore size ranges from 0.7 to 1.6 nm, leading to large specific surface area of 69.5 m{sup 2}/g and big pore volume of 0.507 cc/g. The saturation magnetization (M{sub S}) and coercivity (H{sub C}) of the microporous Ni@NiO NPs are 11.5 emu/g and 5.2 Oe. They exhibit high microwave absorption performance with a minimum reflection coefficient (RC) of −86.9 dB and an absorption bandwidth of 2.6 GHz (RC≤−10 dB) at thickness of 4.5 mm. The enhanced microwave absorption properties are attributed to the synergistic effect of the magnetic Ni core and dielectric NiO shell, and the micropore architecture. The NPs with micropore morphology and core/shell structure open a new way to modify the microwave absorption performance. - Graphical abstract: The microporous Ni/NiO nanoparticles prepared by chemically dealloying Al{sub 3}Ni{sub 2}@Al NPs exhibit high microwave absorption intensity (−86.9 dB) and wide absorption bandwidth (2.6 GHz for RC≤−10 dB). - Highlights: • Microporous Ni/NiO nanoparticals were prepared by chemically dealloying method. • They possessed micropores of 0.7–1.6 nm with a surface area of 69.5 m{sup 2}/g. • They showed high microwave absorption intensity and wide absorption bandwidth. • Microwave absorption mechanism was explained by micropore and core/shell structures.

  17. Coupling of Ag Nanoparticle with Inverse Opal Photonic Crystals as a Novel Strategy for Upconversion Emission Enhancement of NaYF4: Yb(3+), Er(3+) Nanoparticles.

    Science.gov (United States)

    Shao, Bo; Yang, Zhengwen; Wang, Yida; Li, Jun; Yang, Jianzhi; Qiu, Jianbei; Song, Zhiguo

    2015-11-18

    Rare-earth-ion-doped upconversion (UC) nanoparticles have generated considerable interest because of their potential application in solar cells, biological labeling, therapeutics, and imaging. However, the applications of UC nanoparticles were still limited because of their low emission efficiency. Photonic crystals and noble metal nanoparticles are applied extensively to enhance the UC emission of rare earth ions. In the present work, a novel substrate consisting of inverse opal photonic crystals and Ag nanoparticles was prepared by the template-assisted method, which was used to enhance the UC emission of NaYF4: Yb(3+), Er(3+) nanoparticles. The red or green UC emissions of NaYF4: Yb(3+), Er(3+) nanoparticles were selectively enhanced on the inverse opal substrates because of the Bragg reflection of the photonic band gap. Additionally, the UC emission enhancement of NaYF4: Yb(3+), Er(3+) nanoparticles induced by the coupling of metal nanoparticle plasmons and photonic crystal effects was realized on the Ag nanoparticles included in the inverse opal substrate. The present results demonstrated that coupling of Ag nanoparticle with inverse opal photonic crystals provides a useful strategy to enhance UC emission of rare-earth-ion-doped nanoparticles.

  18. Preparation of alpha-elastin nanoparticles by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Mari [Department of Biological Science, Graduate school of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570 (Japan); Okamoto, Kouji [Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502 (Japan); Furuta, Masakazu [Department of Biological Science, Graduate school of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570 (Japan)], E-mail: mfuruta@b.s.osakafu-u.ac.jp

    2009-12-15

    Nanoparticles were prepared by utilizing the thermosensitive aggregation of alpha-elastin and gamma ray crosslinking. Three different heating process, 'Slow heating', 'Fast heating', and 'Heat shock', were applied for the aggregation of the alpha-elastin and examined to yield nanoparticles by gamma rays crosslinking. As a result, only 'Slow heating' process yielded nanoparticles with diameters of about ca. 300 nm above cloud point (CP) and about ca. 100 nm below CP, and a narrow size distribution above 1.0 mg/ml concentration (exclude 1.0 mg/ml)

  19. Synthesis, characterization, photocatalytic activity and ethanol-sensing properties of In{sub 2}O{sub 3} and Eu{sup 3+}:In{sub 2}O{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Kanica; Thangaraj, R., E-mail: rthangaraj@rediffmail.com [Semiconductors Laboratory, Department of Physics, GND University, Amritsar (India); Kumar, Praveen [Department of Physics, DAV University, Jalandhar (India); Kaur, Jasmeet; Singh, R. C. [Laboratory for sensors and physical education, Department of Physics, GND University, Amritsar (India)

    2015-05-15

    In the present endeavor, Indium oxide (In{sub 2}O{sub 3}) and Europium doped In{sub 2}O{sub 3} (In{sub 2}O{sub 3}:0.5%Eu{sup 3+} and In{sub 2}O{sub 3}:5%Eu{sup 3+}) nanoparticles were prepared by co-precipitation method. Synthesized nanoparticles were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and UV-Visible spectrophotometry (UV-vis). XRD revealed that nanoparticles were of pure bixbyite-type cubic phase and the crystallite size decreased with the Eu{sup 3+} doping. SEM micrographs showed that particles were spherical in shape. Synthesized nanoparticles were used for photo degradation of methylene blue (MB) dye under sunlight and the results clearly showed that In{sub 2}O{sub 3}:5%Eu{sup 3+} nanoparticles exhibited higher activity than pure In{sub 2}O{sub 3} nanoparticles. For gas sensing characteristics, the nanoparticles were applied as thick film onto alumina substrate and tested at different operating temperatures. The results showed that the optimum operating temperature of the gas sensors prepared from synthesized nanoparticles is 300°C. The investigations revealed that the addition of Eu{sup 3+} as a dopant enhanced the sensing response of In{sub 2}O{sub 3} nanoparticles appreciably.

  20. Preparation and characterization of Ce-doped HfO2 nanoparticles

    International Nuclear Information System (INIS)

    Gálvez-Barboza, S.; González, L.A.; Puente-Urbina, B.A.; Saucedo-Salazar, E.M.; García-Cerda, L.A.

    2015-01-01

    Highlights: • Ce-doped HfO 2 nanoparticles were prepared by a modified solgel method. • Ce-doped HfO 2 nanoparticles have a semispherical shape with sizes between 6 and 11.5 nm. • The samples doped with 10% in weight of Ce directly crystallized in a cubic structure. • A quick, straightforward and effective route for the preparation of Ce-doped nanoparticles. - Abstract: A modified solgel method to synthesize Ce-doped HfO 2 nanoparticles was carried out using a precursor material prepared with cerium nitrate, hafnium chloride, citric acid and ethylene glycol. The obtained precursor material was calcined at 500 and 700 °C for 2 h in air. The influence of the concentration of Ce and the calcination temperature was studied to observe the structural and morphological changes of the obtained materials. For the characterization, X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman scattering (RS) were employed. The XRD patterns shown that the Ce-doped HfO 2 undergoes a structural transformation from monoclinic to cubic phase, which is significantly dependent on the Ce content and calcination temperature. TEM images have also confirmed the existence of semispherical nanoparticles with sizes between 6 and 11.5 nm

  1. Formation of nanoparticles and defects in YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} prepared by the metal organic deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, R. [Naval Research Laboratory, Washington, DC 20375 (United States); SAIC, Washington, DC 20003 (United States)], E-mail: goswami@anvil.nrl.navy.mil; Holtz, R.L. [Naval Research Laboratory, Washington, DC 20375 (United States); Rupich, M.W. [American Superconductors Inc., Westborough, MA 01581 (United States); Spanos, G. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2007-11-15

    Nanoparticles and defects have been investigated using transmission electron microscopy in fully reacted YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO), prepared by the metal-organic deposition (MOD) process. Two types of particles, Y{sub 2}O{sub 3} and CuY{sub 2}O{sub 5}, ranging from 10 to 100 nm, have been observed in the YBCO matrix. The YBCO contains a large number of planar defects and a considerable number of (1 1 0) rotational twins. Details of the nanoparticles and defects in the MOD-processed YBCO films are presented in this paper.

  2. Preparation of Risedronate Nanoparticles by Solvent Evaporation Technique

    Directory of Open Access Journals (Sweden)

    Eliska Vaculikova

    2014-11-01

    Full Text Available One approach for the enhancement of oral drug bioavailability is the technique of nanoparticle preparation. Risedronate sodium (Biopharmaceutical Classification System Class III was chosen as a model compound with high water solubility and low intestinal permeability. Eighteen samples of risedronate sodium were prepared by the solvent evaporation technique with sodium dodecyl sulfate, polysorbate, macrogol, sodium carboxymethyl cellulose and sodium carboxymethyl dextran as nanoparticle stabilizers applied in three concentrations. The prepared samples were characterized by dynamic light scattering and scanning electron microscopy. Fourier transform mid-infrared spectroscopy was used for verification of the composition of the samples. The particle size of sixteen samples was less than 200 nm. Polysorbate, sodium carboxymethyl dextran and macrogol were determined as the most favourable excipients; the particle size of the samples of risedronate with these excipients ranged from 2.8 to 10.5 nm.

  3. Preparation of curcumin nanoparticle by using reinforcement ionic gelation technique

    Science.gov (United States)

    Suryani, Halid, Nur Hatidjah Awaliyah; Akib, Nur Illiyyin; Rahmanpiu, Mutmainnah, Nina

    2017-05-01

    Curcumin, a polyphenolic compound present in curcuma longa has a wide range of activities including anti-inflammatory properties. The potency of curcumin is limited by its poor oral bioavailability because of its poor solubility in aqueous. Various methods have been tried to solve the problem including its encapsulation into nanoparticle. The aim of this study is to develop curcumin nanoparticle by using reinforcement ionic gelation technique and to evaluate the stability of curcumin nanoparticles in gastrointestinal fluid. Curcumin nanoparticles were prepared by using reinforcement ionic gelation technique with different concentrations of chitosan, trypolyphosphate, natrium alginate and calcium chloride. Curcumin nanoparticles were then characterized including particle size and zeta potential by using particle size analyzer and morphology using a transmission electron microscope, entrapment efficiency using UV-Vis Spectrophotometer and chemical structure analysis by Infra Red Spectrophotometer (FTIR). Furthermore, the stability of curcumin nanoparticles were evaluated on artificial gastric fluid and artificial intestinal fluids by measuring the amount of curcumin released in the medium at a time interval. The result revealed that curcumin nanoparticles can be prepared by reinforcement ionic gelation technique, the entrapment efficiency of curcumin nanoparticles were from 86.08 to 91.41%. The average of particle size was 272.9 nm and zeta potential was 12.05 mV. The morphology examination showed that the curcumin nanoparticles have spherical shape. The stability evaluation of curcumin nanoparticles showed that the nanoparticles were stable on artificial gastric fluid and artificial intestinal fluid. This result indicates that curcumin nanoparticles have the potential to be developed for oral delivery.

  4. Preparation and thermoelectric properties of sulfur doped Ag2Te nanoparticles via solvothermal methods.

    Science.gov (United States)

    Zhou, Wenwen; Zhao, Weiyun; Lu, Ziyang; Zhu, Jixin; Fan, Shufen; Ma, Jan; Hng, Huey Hoon; Yan, Qingyu

    2012-07-07

    In this work, n-type Ag(2)Te nanoparticles are prepared by a solvothermal approach with uniform and controllable sizes, e.g. 5-15 nm. The usage of dodecanethiol during the synthesis effectively introduces sulfur doping into the sample, which optimizes the charge carrier concentration of the nanoparticles to >1 × 10(20) cm(-3). This allows us to achieve the desired electrical resistivities of nanoparticles with effective sulphur doping show a maximum ZT value of ~0.62 at 550 K.

  5. Composite nanoparticles containing rare earth metal and methods of preparation thereof

    Science.gov (United States)

    Kandapallil, Binil Itty Ipe; Krishnan, Lakshmi; Johnson, Francis

    2018-04-10

    The present invention is directed to composite nanoparticles comprising a metal, a rare earth element, and, optionally, a complexing ligand. The invention is also directed to composite nanoparticles having a core-shell structure and to processes for preparation of composite nanoparticles of the invention.

  6. Microstructure, dielectric and piezoelectric properties of lead-free ...

    Indian Academy of Sciences (India)

    and limit the popularization of the materials in becoming a commercial product. ∗ ... yBiMnO3 (abbreviated as (1 − x − y)BNT–xBKT–yBM), was prepared by a ..... appearance of oxygen vacancies caused by adding BiMnO3 could dynamically ...

  7. Effect of tween 80 on nanoparticle preparation of modified chitosan for targeted delivery of combination doxorubicin and curcumin analogue

    Science.gov (United States)

    Sukmawati, Anita; Utami, Wahyu; Yuliani, Ratna; Da'i, Muhammad; Nafarin, Akhmad

    2018-02-01

    Delivery of anticancer is facing several problems including unspecific delivery of active substance to the targeted cell. The conjugation between chitosan and folate (chitosan-FA) was used for nanoparticle preparation containing combination of doxorubicin (DOX) and curcumin analogue, 2,5-bis-(4-hydroxi,3,5-dimethyl)-benzylidincylopentanone, as active substances. The purpose of this research is investigating formulation aspect for chitosan-FA nanoparticle by addition various tween 80 to achieve desired nano-size particle. The ionic gelation method was used for nanoparticle preparation using 0.05% w/v chitosan-FA with addition of 0.1 and 0.5% v/v of tween 80. The result showed that the high concentration of tween 80 during nanoparticle preparation lead to formation of smaller size particle. The 111.8 ±4.11 nm particle size was revealed by addition of 0.5% v/v tween 80 during chitosan-FA nanoparticle preparation loaded with active substances.

  8. Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system.

    Science.gov (United States)

    Dorniani, Dena; Hussein, Mohd Zobir Bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2013-01-01

    Iron oxide nanoparticles are of considerable interest because of their use in magnetic recording tape, ferrofluid, magnetic resonance imaging, drug delivery, and treatment of cancer. The specific morphology of nanoparticles confers an ability to load, carry, and release different types of drugs. We synthesized superparamagnetic nanoparticles containing pure iron oxide with a cubic inverse spinal structure. Fourier transform infrared spectra confirmed that these Fe3O4 nanoparticles could be successfully coated with active drug, and thermogravimetric and differential thermogravimetric analyses showed that the thermal stability of iron oxide nanoparticles coated with chitosan and 6-mercaptopurine (FCMP) was markedly enhanced. The synthesized Fe3O4 nanoparticles and the FCMP nanocomposite were generally spherical, with an average diameter of 9 nm and 19 nm, respectively. The release of 6-mercaptopurine from the FCMP nanocomposite was found to be sustained and governed by pseudo-second order kinetics. In order to improve drug loading and release behavior, we prepared a novel nanocomposite (FCMP-D), ie, Fe3O4 nanoparticles containing the same amounts of chitosan and 6-mercaptopurine but using a different solvent for the drug. The results for FCMP-D did not demonstrate "burst release" and the maximum percentage release of 6-mercaptopurine from the FCMP-D nanocomposite reached about 97.7% and 55.4% within approximately 2,500 and 6,300 minutes when exposed to pH 4.8 and pH 7.4 solutions, respectively. By MTT assay, the FCMP nanocomposite was shown not to be toxic to a normal mouse fibroblast cell line. Iron oxide coated with chitosan containing 6-mercaptopurine prepared using a coprecipitation method has the potential to be used as a controlled-release formulation. These nanoparticles may serve as an alternative drug delivery system for the treatment of cancer, with the added advantage of sparing healthy surrounding cells and tissue.

  9. Preparation, structural, optical, electrical, and magnetic characterisation of orthorhombic GdCr{sub 0.3}Mn{sub 0.7}O{sub 3} multiferroic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Deepa; Bamzai, K.K. [Jammu Univ. (India). Crystal Growth and Materials Research Laboratory

    2017-04-01

    In this article, chromium-doped gadolinium manganate (GdCr{sub 0.3}Mn{sub 0.7}O{sub 3}) nanoparticles has been prepared by wet-chemical route in order to investigate their structural, optical, electrical, and room temperature magnetic properties. Microstructural and compositional analyses have been carried out by X-ray diffraction and scanning electron microscopy (SEM). Synthesised material is found to be in orthorhombic crystal structure with Pbnm space group. The spherical morphology of the nanoparticles has been examined from the SEM images. Functional groups have been identified using Fourier transform infrared spectroscopy. Dielectric constant, dielectric loss, AC conductivity (σ{sub ac}), and activation energy in the range of 1 kHz-1 MHz from room temperature to high temperature (400 C) have been investigated. The frequency dependence of AC conductivity obeys the universal power law. The value of activation energy depends on increase in frequency. Room temperature magnetic behaviour suggests the material to be paramagnetic in nature.

  10. Structural and magnetic properties of Mn nanoparticles prepared by arc-discharge

    International Nuclear Information System (INIS)

    Si, P.Z.; Brueck, E.; Zhang, Z.D.; Tegus, O.; Zhang, W.S.; Buschow, K.H.J.; KlAsse, J.C.P.

    2005-01-01

    Mn nanoparticles are prepared by arc discharge technique. MnO, α-Mn, β-Mn, and γ-Mn are detected by X-ray diffraction, while the presence of Mn 3 O 4 and MnO 2 is revealed by X-ray photoelectron spectroscopy. Transmission electron microscopy observations show that most of the Mn nanoparticles have irregular shapes, rough surfaces and a shell/core structure, with sizes ranging from several nanometers to 80 nm. The magnetic properties of the Mn nanoparticles are investigated between 2 and 350 K at magnetic fields up to 5 T. A magnetic transition occurring near 43 K is attributed to the formation of the ferrimagnetic Mn 3 O 4 . The coercivity of the Mn nanoparticles, arising mainly from Mn 3 O 4 , decreases linearly with increasing temperature below 40 K. Below the blocking temperature T B ∼ 34 K, the hysteresis loops exhibit large coercivity (up to 500 kA/m), owing to finite size effects, and irreversibility in the loops is found up to 4 T, and magnetization is not saturated up to 5 T. The relationship between structure and the magnetic properties are discussed

  11. Preparation, Physicochemical Characterization and Performance Evaluation of Gold Nanoparticles in Radiotherapy

    Directory of Open Access Journals (Sweden)

    Ali Kamiar

    2013-08-01

    Full Text Available Purpose: The aim of the present study was preparation, physicochemical characterization and performance evaluation of gold nanoparticles (GNPs in radiotherapy. Another objective was the investigation of anti-bacterial efficacy of gold nanoparticle against E. coli clinical strains. Methods: Gold nanoparticles prepared by controlled reduction of an aqueous HAuCl4 solution using Tri sodium citrate. Particle size analysis and Transmission electron microscopy were used for physicochemical characterization. Polymer gel dosimetry was used for evaluation of the enhancement of absorbed dose. Diffusion method in agar media was used for investigation of anti-bacterial effect. Results: Gold nanoparticles synthesized in size range from 57 nm to 346 nm by planning different formulation. Gold nanoparticle in 57 nm size increased radiation dose effectiveness with the magnitude of about 21 %. At the concentration of 400 ppm, Nano gold exhibited significant anti-bacterial effect against E. coli clinical strains. Conclusion: It is concluded that gold nanoparticles can be applied as dose enhancer in radiotherapy. The Investigation of anti-bacterial efficacy showed that gold nanoparticle had significant effect against E. coli clinical strains.

  12. Progress in the preparation of magnetic nanoparticles for applications in biomedicine

    Energy Technology Data Exchange (ETDEWEB)

    Roca, A G; Costo, R; Rebolledo, A F; Veintemillas-Verdaguer, S; Tartaj, P; Gonzalez-Carreno, T; Morales, M P; Serna, C J, E-mail: puerto@icmm.csic.e [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain)

    2009-11-21

    This review summarizes recent advances in synthesis routes for quickly and reliably making and functionalizing magnetic nanoparticles for applications in biomedicine. We put special emphasis on describing synthetic strategies that result in the production of nanosized materials with well-defined physical and crystallochemical characteristics as well as colloidal and magnetic properties. Rather than grouping the information according to the synthetic route, we have described methods to prepare water-dispersible equiaxial magnetic nanoparticles with sizes below about 10 nm, sizes between 10 and 30 nm and sizes around the monodomain-multidomain magnetic transition. We have also described some recent examples reporting the preparation of anisometric nanoparticles as well as methods to prepare magnetic nanosized materials other than iron oxide ferrites, for example Co and Mn ferrite, FePt and manganites. Finally, we have described examples of the preparation of multicomponent systems with purely inorganic or organic-inorganic characteristics. (topical review)

  13. Preparation of gold nanoparticles by arc discharge in water

    International Nuclear Information System (INIS)

    Lung, Jen-Kuang; Huang, Jen-Chuen; Tien, Der-Chi; Liao, Chih-Yu; Tseng, Kuo-Hsiung; Tsung, Tsing-Tshin; Kao, Wen-Shiow; Tsai, Teh-Hua; Jwo, Ching-Song; Lin, Hong-Ming; Stobinski, Leszek

    2007-01-01

    Gold nanoparticles have been attracting attention due to their extensive application in chemistry, physics, material science, electronics, catalysis and bionanotechnology. Synthesis of gold nanoparticles often involves toxic and expensive physical-chemistry methods. Preparation of gold nanoparticles by arc discharge in water is proposed for the first time. Fabrication of gold nanostructures in deionized water has been successfully established. The evidence of gold particles' light absorbance reveals a unique surface plasmon resonance for Au nanoparticles suspended in deionized water. Gold nanostructures uniformly dispersed in water, their UV-Vis absorption and crystalline size are shown. Our experimental results demonstrate that fabrication of gold nanoparticles by arc discharge in water is an alternative, cheap, effective and environmentally friendly method

  14. Characteristics of Barium Hexaferrite Nanoparticles Prepared by Temperature-Controlled Chemical Coprecipitation

    International Nuclear Information System (INIS)

    Kwak, Jun Young; Lee, Choong Sub; Kim, Don; Kim, Yeong Il

    2012-01-01

    Ba-ferrite (BaFe 12 O 19 ) nanoparticles were synthesized by chemical coprecipitation method in an aqueous solution. The particle size and the crystallization temperature of the Ba-ferrite nanoparticles were controlled varying the precipitation temperature. The precipitate that was prepared at 0 .deg. C showed the crystal structure of Ba-ferrite in X-ray diffraction when it was calcined at the temperature above 580 .deg. C, whereas what was prepared at 50 .deg. C showed the crystallinity when it was calcined at the temperature higher than about 700 .deg. C. The particle sizes of the synthesized Ba-ferrite were in a range of about 20-30 nm when it was prepared by being precipitated at 0 .deg. C and calcined at 650 .deg. C. When the precipitation temperature increased, the particle size also increased even at the same calcination temperature. The magnetic properties of the Ba-ferrite nanoparticles were also controlled by the synthetic condition of precipitation and calcination temperature. The coercive force could be appreciably lowered without a loss of saturation magnetization when the Ba-ferrite nanoparticles were prepared by precipitation and calcination both at low temperatures

  15. Gold-coated iron nanoparticles in transparent Si3N4 matrix thin films

    Science.gov (United States)

    Sánchez-Marcos, J.; Céspedes, E.; Jiménez-Villacorta, F.; Muñoz-Martín, A.; Prieto, C.

    2013-06-01

    A new method to prepare thin films containing gold-coated iron nanoparticles is presented. The ternary Fe-Au-Si3N4 system prepared by sequential sputtering has revealed a progressive variation of microstructures from Au/Fe/Au/Si3N4 multilayers to iron nanoparticles. Microstructural characterization by transmission electron microscopy, analysis of the magnetic properties and probing of the iron short-range order by X-ray absorption spectroscopy confirm the existence of a gold-coated iron nanoparticles of 1-2 nm typical size for a specific range of iron and gold contents per layer in the transparent silicon nitride ceramic matrix.

  16. Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method

    OpenAIRE

    Gavrilović, Tamara V.; Jovanović, Dragana J.; Lojpur, Vesna; Dramićanin, Miroslav D.

    2014-01-01

    Synthesis of Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles in reverse micelles and their multifunctional luminescence properties are presented. Using cyclohexane, Triton X-100, and n-pentanol as the oil, surfactant, and co-surfactant, respectively, crystalline nanoparticles with ~4 nm diameter are prepared at low temperatures. The particle size assessed using transmission electron microscopy is similar to the crystallite size obtained from X-ray diffraction measurements, suggesting that each ...

  17. Preparation and properties of PMMA nanoparticles as 3 dimensional photonic crystals and its thin film via surfactant-free emulsion polymerization

    Science.gov (United States)

    Tahrin, Rabiatul Addawiyah Azwa; Azma, Nur Syafiqa; Kassim, Syara; Harun, Noor Aniza

    2017-09-01

    3-dimensional (3D) photonic crystals have been extended use in wide research and application from material to sensor. Nanoparticles of poly (methyl methacrylate) (PMMA) latex beads have been successfully prepared by green-chemistry approach where no surfactant, linking agent and solvent were involved. Regardless of the effect of initiator in polymerization reaction, this study presents the effect of temperature, monomer concentration, stirring speed and reaction period in order to tune the particle size. Its morphology of uniformity sized-tuned was confirming by using particle size analyzer (PSA) and scanning electron microscopy (SEM). The fabrication of 3D photonic crystals film by using self-assembly method to pattern the desired PMMA layers which is the most feasible, low cost method are also presented. The detailed properties of PMMA nanoparticles from this experimental study will be discussed and its potential used in photonic application will be explained.

  18. Solid-state thermal decomposition of the [Co(NH3)5CO3]NO3·0.5H2O complex: A simple, rapid and low-temperature synthetic route to Co3O4 nanoparticles

    International Nuclear Information System (INIS)

    Farhadi, Saeid; Safabakhsh, Jalil

    2012-01-01

    Highlights: ► [Co(NH 3 ) 5 CO 3 ]NO 3 ·0.5H 2 O complex was used for preparing pure Co 3 O 4 nanoparticles. ► Co 3 O 4 nanoparticles were prepared at low temperature of 175 °C. ► Co 3 O 4 nanoparticles show a weak ferromagnetic behaviour at room temperature. ► The method is simple, low-cost and suitable for the production of Co 3 O 4 . - Abstract: Co 3 O 4 nanoparticles were easily prepared via the decomposition of the pentammine(carbonato)cobalt(III) nitrate precursor complex [Co(NH 3 ) 5 CO 3 ]NO 3 ·0.5H 2 O at low temperature (175 °C). The product was characterized by thermal analysis, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV–visible spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, Brunauer–Emmett–Teller (BET) specific surface area measurements and magnetic measurements. The FT-IR, XRD, Raman and EDX results indicated that the synthesized Co 3 O 4 nanoparticles are highly pure and have a single phase. The TEM analysis revealed nearly uniform and quasi-spherical Co 3 O 4 nanoparticles with an average particle size of approximately 10 nm. The optical absorption spectrum of the Co 3 O 4 nanoparticles showed two direct band gaps of 2.18 and 3.52 eV with a red shift in comparison with previous reported values. The prepared Co 3 O 4 nanoparticles showed a weak ferromagnetic behaviour that could be attributed to uncompensated surface spins and/or finite-size effects. Using the present method, Co 3 O 4 nanoparticles can be produced without expensive organic solvents and complicated equipment. This simple, rapid, safe and low-cost synthetic route can be extended to the synthesis of other transition-metal oxides.

  19. Preparation and immobilization of noble metal nanoparticles for plasmonic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruoli; Pitzer, Martin; Hu, DongZhi; Schaadt, Daniel M. [Institut fuer Angewandte Physik, Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); DFG Centrum fuer Funktionelle Nanostrukturen (CFN), KIT (Germany); Fruk, Ljiljana [DFG Centrum fuer Funktionelle Nanostrukturen (CFN), KIT (Germany)

    2011-07-01

    Thin-film solar cells are of high interest due to good electrical properties and low material consumption. Traditional thin-film cells, however, have considerable transmission losses because of the reduced absorption volume. A promising way to enhance absorption in the active layer is the light-trapping by plasmonic nanostructures. Metallic nanoparticles have in particular shown large enhancement of the photocurrent in thin-film devices. In this poster, we present preparation of Au,Ag and Pt nanoparticles by polyol method and seed mediated methods for use in plasmonic solar cells. Polyol method typically uses ethylene glycol as the solvent and reducing agent,and in seed-mediated synthesis small nanoparticle seeds are first prepared and then used to promote the growth of different shapes of nanoparticles. We particularly focus on the use of nanocubes and nanospheres for solar cell design. Following the nanoparticle preparation, a new method to immobilize particles on GaAs surfaces via covalent chemical bonds has been developed which prevents agglomerations and allows control of the surface density. Photocurrent spectra of GaAs pin solar cells with and without particles have been recorded. These measurements show the dependence of the photocurrent enhancement on particle material, shape and density.

  20. Study on fluorouracil–chitosan nanoparticle preparation and its antitumor effect

    Directory of Open Access Journals (Sweden)

    Gaimin Chen

    2016-05-01

    Full Text Available To successfully prepare fluorouracil–chitosan nanoparticles, and further analyze its anti-tumor activity mechanism, this paper makes a comprehensive study of existing preparation prescription and makes a detailed analysis of fluorouracil–chitosan in vitro release and pharmacodynamic behavior of animals. Two-step synthesis method is adopted to prepare 5-FU–CS–mPEG prodrugs, and infrared, 1H NMR and differential thermal analysis are adopted to analyze characterization synthetic products of prepared drugs. To ensure clinical efficacy of prepared drugs, UV spectrophotometry is adopted for determination of drug loading capacity of prepared drugs, transmission electron microscopy is adopted to observe the appearance, dynamic dialysis method is used to observe in vitro drug release of prepared drugs and fitting of various release models is done. Anti-tumor effect is studied via level of animal pharmacodynamics. After the end of the experiment, tumor inhibition rate, spleen index and thymus index of drugs are calculated. Experimental results show that the prepared drugs are qualified in terms of regular shape, dispersion, drug content, etc. Animal pharmacodynamics experiments have shown that concentration level of drug loading capacity of prepared drugs has a direct impact on anti-tumor rate. The higher the concentration, the higher the anti-tumor rate. Results of pathological tissue sections of mice show that the prepared drugs cause varying degrees of damage to receptor cells, resulting in cell necrosis or apoptosis problem. It can thus be concluded that ion gel method is an effective method to prepare drug-loading nanoparticles, with prepared nanoparticles evenly distributed in regular shape which demonstrate good slow-release characteristics in receptor vitro and vivo. At the same time, after completion of drug preparation, relatively strong anti-tumor activity can be generated for the receptor, so this mode of preparation enjoys broad

  1. Preparation of extra-small nisin nanoparticles for enhanced antibacterial activity after autoclave treatment.

    Science.gov (United States)

    Chang, Ranran; Lu, Hao; Li, Man; Zhang, Shuangling; Xiong, Liu; Sun, Qingjie

    2018-04-15

    Nisin is applied broadly in the food industry as an antimicrobial peptide. The objective of this study is to prepare nisin nanoparticles using free nisin by a facile nanoprecipitation technique and to investigate their antimicrobial activity after high-temperature processing. Transmission electron microscopic images showed that the size of extra-small nisin nanoparticles with different initial concentrations of nisin (0.1%, 0.3% and 0.5%) was 5, 10 and 15 nm, respectively. The nisin nanoparticles were stable at pH 5.0 with the smallest size. Moreover, nisin nanoparticles exhibited a higher antimicrobial activity than free nisin at a concentration below 2.0 mg/ml after autoclave treatment. These results suggested that nisin nanoparticles could serve as a potential food preservative. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Electrophoretic preparation and characterization of porous electrodes from diamond nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Riveros, Lyda La Torre; Soto, Keyla; Tryk, Donald A; Cabrera, Carlos R [Department of Chemistry and Center of Nanoscale Materials, University of Puerto Rico, Rio Piedras, PO Box 23346 San Juan, PR 00931-3346 (Puerto Rico)

    2007-04-15

    We carried out chemical purification of commercially available diamond nanoparticles by refluxing in aqueous HNO{sub 3} and characterized the samples by spectroscopic and surface techniques before and after purification. As a first step in the preparation of electrodes for electrochemistry, we have electrophoretically deposited thin, highly uniform films of controlled thickness (1-8 {mu}m) on silicon substrates using the purified diamond nanoparticles. These have been characterized by scanning electron microscopy (SEM). All films obtained were homogeneous in thickness and without macroscopic holes or cracks. Such structures could also be used in many other applications such as fuel cells or lithium batteries. We have performed cyclic voltammetry experiments with these electrodes. The voltammograms of diamond nanoparticles electrophoretically deposited on silicon indicate hydrogen evolution. This demonstrates that the material is useful as electrocatalitic support. This conclusion is supported by the cyclic voltammograms obtained using ferrycyanide (III) chloride and hexaamineruthenium (III) chloride complexes as redox probes. However, these redox probes showed very small peak currents. This behavior could be improved by doping the diamond nanoparticles with an impurity such as boron.

  3. Electrophoretic preparation and characterization of porous electrodes from diamond nanoparticles

    International Nuclear Information System (INIS)

    Riveros, Lyda La Torre; Soto, Keyla; Tryk, Donald A; Cabrera, Carlos R

    2007-01-01

    We carried out chemical purification of commercially available diamond nanoparticles by refluxing in aqueous HNO 3 and characterized the samples by spectroscopic and surface techniques before and after purification. As a first step in the preparation of electrodes for electrochemistry, we have electrophoretically deposited thin, highly uniform films of controlled thickness (1-8 μm) on silicon substrates using the purified diamond nanoparticles. These have been characterized by scanning electron microscopy (SEM). All films obtained were homogeneous in thickness and without macroscopic holes or cracks. Such structures could also be used in many other applications such as fuel cells or lithium batteries. We have performed cyclic voltammetry experiments with these electrodes. The voltammograms of diamond nanoparticles electrophoretically deposited on silicon indicate hydrogen evolution. This demonstrates that the material is useful as electrocatalitic support. This conclusion is supported by the cyclic voltammograms obtained using ferrycyanide (III) chloride and hexaamineruthenium (III) chloride complexes as redox probes. However, these redox probes showed very small peak currents. This behavior could be improved by doping the diamond nanoparticles with an impurity such as boron

  4. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study

    Science.gov (United States)

    Bohrey, Sarvesh; Chourasiya, Vibha; Pandey, Archna

    2016-03-01

    Nanoparticles formulated from biodegradable polymers like poly(lactic-co-glycolic acid) (PLGA) are being extensively investigated as drug delivery systems due to their two important properties such as biocompatibility and controlled drug release characteristics. The aim of this work to formulated diazepam loaded PLGA nanoparticles by using emulsion solvent evaporation technique. Polyvinyl alcohol (PVA) is used as stabilizing agent. Diazepam is a benzodiazepine derivative drug, and widely used as an anticonvulsant in the treatment of various types of epilepsy, insomnia and anxiety. This work investigates the effects of some preparation variables on the size and shape of nanoparticles prepared by emulsion solvent evaporation method. These nanoparticles were characterized by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM). Zeta potential study was also performed to understand the surface charge of nanoparticles. The drug release from drug loaded nanoparticles was studied by dialysis bag method and the in vitro drug release data was also studied by various kinetic models. The results show that sonication time, polymer content, surfactant concentration, ratio of organic to aqueous phase volume, and the amount of drug have an important effect on the size of nanoparticles. Hopefully we produced spherical shape Diazepam loaded PLGA nanoparticles with a size range under 250 nm with zeta potential -23.3 mV. The in vitro drug release analysis shows sustained release of drug from nanoparticles and follow Korsmeyer-Peppas model.

  5. Preparation of size-controlled (30-100 nm) magnetite nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Nishio, K.; Ikeda, M.; Gokon, N.; Tsubouchi, S.; Narimatsu, H.; Mochizuki, Y.; Sakamoto, S.; Sandhu, A.; Abe, M.; Handa, H.

    2007-01-01

    Size-controlled magnetite nanoparticles (MNPs) with several dozen nanometers (nm) were synthesized for biomedical applications. Nanoparticles of single-phase magnetite, as revealed by X-ray analyses and magnetic measurements, were prepared by oxidizing ferrous hydroxide (Fe(OH) 2 ) with a weak oxidant NaNO 3 in an N 2 -deaerated aqueous NaOH solution (pH=12-13) at various temperatures below 37 deg. C. As the synthesis temperature increases from 4 to 37 deg. C, the MNPs are decreased in size (d) from 102±5.6 to 31.7±4.9 nm and widened in size distribution, Δd/d increases from 5.5% to 15%. Prepared without using any surfactant, the MNPs are advantageous for immobilizing functional molecules stably on the surfaces for biomedical applications

  6. Synthesis, characterization and photocatalytic activity of LaMnO3 nanoparticles

    International Nuclear Information System (INIS)

    Shaterian, Maryam; Enhessari, Morteza; Rabbani, Davarkhah; Asghari, Morteza; Salavati-Niasari, Masoud

    2014-01-01

    Highlights: • Visible-light sensitive LaMnO3 nanoparticles were synthesized via sol–gel process. • Structural and optical properties of photocatalysts have been investigated. • The photocatalytic activity was evaluated by the degradation of methyl orange as a model of pollutant. • The prepared nanocrystals showed good visible-light photocatalytic activity for the degradation of methyl orange. - Abstract: Visible-light sensitive LaMnO 3 nanoparticles were synthesized via sol–gel process using stearic acid as complexing reagent. Characterizations of the resulting powders were carried out by means of X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS). Further, the photocatalytic activity of LaMnO 3 was evaluated by degradation of methyl orange in aqueous solution under visible-light irradiation. The prepared nanoparticles showed excellent visible-light photocatalytic ability for the degradation of methyl orange so that, 60 ppm of nanoparticles can decolorizes the methyl orange solution (6 ppm) up to 98% in 90 min

  7. Preparation and Optimization OF Palm-Based Lipid Nanoparticles Loaded with Griseofulvin.

    Science.gov (United States)

    Huei Lim, Wen; Jean Tan, Yann; Sin Lee, Choy; Meng Er, Hui; Fung Wong, Shew

    2017-01-01

    Palm-based lipid nanoparticle formulation loaded with griseofulvin was prepared by solvent-free hot homogenization method. The griseofulvin loaded lipid nanoparticles were prepared via stages of optimisation, by altering the high pressure homogenisation (HPH) parameters, screening on palm-based lipids and Tween series surfactants and selection of lipid to surfactant ratios. A HPLC method has been validated for the drug loading capacity study. The optimum HPH parameter was determined to be 1500 bar with 5 cycles and among the palm-based lipid materials; Lipid C (triglycerides) was selected for the preparation of lipid nanoparticles. Tween 80 was chosen from the Tween series surfactants for its highest saturated solubility of griseofulvin at 53.1 ± 2.16 µg/mL. The optimum formulation of the griseofulvin loaded lipid nanoparticles demonstrated nano-range of particle size (179.8 nm) with intermediate distribution index (PDI) of 0.306, zeta potential of -27.9 mV and drug loading of 0.77%. The formulation was stable upon storage for 1 month at room temperature (25 ° C) and 45 ° C with consistent drug loading capacity.

  8. A convenient method to prepare emulsified polyacrylate nanoparticles from powders [corrected] for drug delivery applications.

    Science.gov (United States)

    Garay-Jimenez, Julio C; Turos, Edward

    2011-08-01

    We describe a method to obtain purified, polyacrylate nanoparticles in a homogeneous powdered form that can be readily reconstituted in aqueous media for in vivo applications. Polyacrylate-based nanoparticles can be easily prepared by emulsion polymerization using a 7:3 mixture of butyl acrylate and styrene in water containing sodium dodecyl sulfate as a surfactant and potassium persulfate as a water-soluble radical initiator. The resulting emulsions contain nanoparticles measuring 40-50 nm in diameter with uniform morphology, and can be purified by centrifugation and dialysis to remove larger coagulants as well as residual surfactant and monomers associated with toxicity. These purified emulsions can be lyophilized in the presence of maltose (a non-toxic cryoprotectant) to provide a homogeneous dried powder, which can be reconstituted as an emulsion by addition of an aqueous diluent. Dynamic light scattering and microbiological experiments were carried out on the reconstituted nanoparticles. This procedure allows for ready preparation of nanoparticle emulsions for drug delivery applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Chemical modification of magnetite nanoparticles and preparation of acrylic-base magnetic nanocomposite particles via miniemulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Mahdieh, Athar; Mahdavian, Ali Reza, E-mail: a.mahdavian@ippi.ac.ir; Salehi-Mobarakeh, Hamid

    2017-03-15

    Nowadays, magnetic nanocomposite particles have attracted many interests because of their versatile applications. A new method for chemical modification of Fe{sub 3}O{sub 4} nanoparticles with polymerizable groups is presented here. After synthesis of Fe{sub 3}O{sub 4} nanoparticles by co-precipitation method, they were modified sequentially with 3-aminopropyl triethoxysilane (APTES), acryloyl chloride (AC) and benzoyl chloride (BC) and all were characterized by FTIR, XRD, SEM and TGA analyses. Then the modified magnetite nanoparticles with unsaturated acrylic groups were copolymerized with methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA) through miniemulsion polymerization. Although several reports exist on preparation of magnetite-base polymer particles, but the efficiency of magnetite encapsulationwith reasonable content and obtaining final stable latexes with limited aggregation ofFe{sub 3}O{sub 4} are still important issues. These were considered here by controlling reaction parameters. Hence, a seriesofmagneticnanocomposites latex particlescontaining different amounts of Fe{sub 3}O{sub 4} nanoparticles (0–10 wt%) were prepared with core-shell morphology and diameter below 200 nm and were characterized by FT-IR, DSC and TGA analyses. Their morphology and size distribution were studied by SEM, TEM and DLS analyses too. Magnetic properties of all products were also measuredby VSM analysis and the results revealed almost superparamagnetic properties for the obtained nanocomposite particles. - Highlights: • Chemical modification of magnetite nanoparticles. • Encapsulation of modified magnetite with acrylic copolymer. • Superparamagnetic Fe3O4/polyacrylic nanocomposite particles.

  10. Optical investigations on indium oxide nano-particles prepared through precipitation method

    International Nuclear Information System (INIS)

    Seetha, M.; Bharathi, S.; Dhayal Raj, A.; Mangalaraj, D.; Nataraj, D.

    2009-01-01

    Visible light emitting indium oxide nanoparticles were synthesized by precipitation method. Sodium hydroxide dissolved in ethanol was used as a precipitating agent to obtain indium hydroxide precipitates. Precipitates, thus formed were calcined at 600 deg. C for 1 h to obtain indium oxide nanoparticles. The structure of the particles as determined from the X-Ray diffraction pattern was found to be body centered cubic. The phase transformation of the prepared nanoparticles was analyzed using thermogravimetry. Surface morphology of the prepared nanoparticles was analyzed using high resolution-scanning electron microscopy and transmission electron microscopy. The results of the analysis show cube-like aggregates of size around 50 nm. It was found that the nanoparticles have a strong emission at 427 nm and a weak emission at 530 nm. These emissions were due to the presence of singly ionized oxygen vacancies and the nature of the defect was confirmed through Electron paramagnetic resonance analysis.

  11. Polymeric nanoparticles: A study on the preparation variables and characterization methods.

    Science.gov (United States)

    Crucho, Carina I C; Barros, Maria Teresa

    2017-11-01

    Since the emergence of Nanotechnology in the past decades, the development and design of nanomaterials has become an important field of research. An emerging component in this field is nanomedicine, wherein nanoscale materials are being developed for use as imaging agents or for drug delivery applications. Much work is currently focused in the preparation of well-defined nanomaterials in terms of size and shape. These factors play a significantly role in the nanomaterial behavior in vivo. In this context, this review focuses on the toolbox of available methods for the preparation of polymeric nanoparticles. We highlight some recent examples from the literature that demonstrate the influence of the preparation method on the physicochemical characteristics of the nanoparticles. Additionally, in the second part, the characterization methods for this type of nanoparticles are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Simple preparation of fluorescent composite films based on cerium and europium doped LaF3 nanoparticles

    Science.gov (United States)

    Secco, Henrique de L.; Ferreira, Fabio F.; Péres, Laura O.

    2018-03-01

    The combination of materials to form hybrids with unique properties, different from those of the isolated components, is a strategy used to prepare functional materials with improved properties aiming to allow their application in specific fields. The doping of lanthanum fluoride with other rare earth elements is used to obtain luminescent particles, which may be useful to the manufacturing of electronic devices' displays and biological markers, for instance. The application of the powder of nanoparticles has limitations in some fields; to overcome this, the powder may be incorporated in a suitable polymeric matrix. In this work, lanthanum fluoride nanoparticles, undoped and doped with cerium and europium, were synthesized through the co-precipitation method in aqueous solution. Aiming the formation of solid state films, composites of nanoparticles in an elastomeric matrix, the nitrile rubber (NBR), were prepared. The flexibility and the transparency of the matrix in the regions of interest are advantages for the application of the luminescent composites. The composites were applied as films using the casting and the spin coating techniques and luminescent materials were obtained in the samples doped with europium and cerium. Scanning electron microscopy images showed an adequate dispersion of the particles in the matrix in both film formation techniques. Aggregates of the particles were detected in the samples which may affect the uniformity of the emission of the composites.

  13. Preparation and characterization of Ce-doped HfO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gálvez-Barboza, S. [Centro de Investigación en Química Aplicada, Departamento de Materiales Avanzados, Blvd. Enrique Reyna Hermosillo #140, C.P. 25294 Saltillo, Coahuila (Mexico); Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Industria Metalúrgica # 1062 Parque Industrial, C.P. 25900 Ramos Arizpe, Coahuila (Mexico); González, L.A. [Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Industria Metalúrgica # 1062 Parque Industrial, C.P. 25900 Ramos Arizpe, Coahuila (Mexico); Puente-Urbina, B.A.; Saucedo-Salazar, E.M. [Centro de Investigación en Química Aplicada, Departamento de Materiales Avanzados, Blvd. Enrique Reyna Hermosillo #140, C.P. 25294 Saltillo, Coahuila (Mexico); García-Cerda, L.A., E-mail: luis.garcia@ciqa.edu.mx [Centro de Investigación en Química Aplicada, Departamento de Materiales Avanzados, Blvd. Enrique Reyna Hermosillo #140, C.P. 25294 Saltillo, Coahuila (Mexico)

    2015-09-15

    Highlights: • Ce-doped HfO{sub 2} nanoparticles were prepared by a modified solgel method. • Ce-doped HfO{sub 2} nanoparticles have a semispherical shape with sizes between 6 and 11.5 nm. • The samples doped with 10% in weight of Ce directly crystallized in a cubic structure. • A quick, straightforward and effective route for the preparation of Ce-doped nanoparticles. - Abstract: A modified solgel method to synthesize Ce-doped HfO{sub 2} nanoparticles was carried out using a precursor material prepared with cerium nitrate, hafnium chloride, citric acid and ethylene glycol. The obtained precursor material was calcined at 500 and 700 °C for 2 h in air. The influence of the concentration of Ce and the calcination temperature was studied to observe the structural and morphological changes of the obtained materials. For the characterization, X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman scattering (RS) were employed. The XRD patterns shown that the Ce-doped HfO{sub 2} undergoes a structural transformation from monoclinic to cubic phase, which is significantly dependent on the Ce content and calcination temperature. TEM images have also confirmed the existence of semispherical nanoparticles with sizes between 6 and 11.5 nm.

  14. Optical properties of silica-coated Y2O3:Er,Yb nanoparticles in the presence of polyvinylpyrrolidone

    International Nuclear Information System (INIS)

    Fujii, Kunio; Kitamoto, Yoshitaka; Hara, Masahiko; Odawara, Osamu; Wada, Hiroyuki

    2014-01-01

    The optical properties of polyvinylpyrrolidone (PVP)-adsorbed and silica-coated Y 2 O 3 :Er,Yb nanoparticles produced by using PVP were studied for potential bio-applications of upconversion nanoparticles. We utilized PVP to better disperse Y 2 O 3 :Er,Yb nanoparticles in solution and to prepare silica-coated Y 2 O 3 :Er,Yb nanoparticles. The fluorescent intensity of PVP-adsorbed Y 2 O 3 :Er,Yb nanoparticles was 1.25 times higher than non-adsorbed Y 2 O 3 :Er,Yb nanoparticles, which was probably due to surface defects in Y 2 O 3 :Er,Yb nanoparticles being covered by the PVP. However, the fluorescent intensity of silica-coated Y 2 O 3 :Er,Yb nanoparticles decreased as silica layer thickness increased. This could be ascribed to the higher vibrational energy of PVP than that of the silica structure. Therefore, the optimum silica layer thickness is important in bio-applications to avoid deterioration of the optical properties of Y 2 O 3 :Er,Yb nanoparticles. - Highlights: • We prepared the silica-coated upconversion nanoparticles by using PVP. • We showed that PVP played an important role in coating nanoparticles. • PL intensity of silica-coated nanoparticles decreased as silica layer thickness increased

  15. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    Directory of Open Access Journals (Sweden)

    Venkatesan K

    2015-10-01

    Full Text Available Kaliyamoorthy Venkatesan,1 Dhanakotti Rajan Babu,1 Mane Prabhu Kavya Bai,2 Ravi Supriya,2 Radhakrishnan Vidya,2 Saminathan Madeswaran,1 Pandurangan Anandan,3 Mukannan Arivanandhan,3 Yasuhiro Hayakawa3 1School of Advanced Sciences, 2School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India; 3Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan Abstract: Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4 magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311 of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. Keywords: cytotoxicity, HR-TEM, magnetic nanoparticles, VSM 

  16. Peptide-Loaded Solid Lipid Nanoparticles Prepared through Coacervation Technique

    Directory of Open Access Journals (Sweden)

    Marina Gallarate

    2011-01-01

    Full Text Available Stearic acid solid lipid nanoparticles were prepared according to a new technique, called coacervation. The main goal of this experimental work was the entrapment of peptide drugs into SLN, which is a difficult task, since their chemical characteristics (molecular weight, hydrophilicity, and stability hamper peptide-containing formulations. Insulin and leuprolide, chosen as model peptide drugs, were encapsulated within nanoparticles after hydrophobic ion pairing with anionic surfactants. Peptide integrity was maintained after encapsulation, and nanoparticles can act in vitro as a sustained release system for peptide.

  17. The preparation of magnetic nanoparticles for applications in biomedicine

    International Nuclear Information System (INIS)

    Tartaj, Pedro; Morales, Maria del Puerto; Veintemillas-Verdaguer, Sabino; Gonzalez-Carreno, Teresita; Serna, Carlos J

    2003-01-01

    This review is focused on describing state-of-the-art synthetic routes for the preparation of magnetic nanoparticles useful for biomedical applications. In addition to this topic, we have also described in some detail some of the possible applications of magnetic nanoparticles in the field of biomedicine with special emphasis on showing the benefits of using nanoparticles. Finally, we have addressed some relevant findings on the importance of having well-defined synthetic routes to produce materials not only with similar physical features but also with similar crystallochemical characteristics. (topical review)

  18. Preparation and characterization of chondroitin‐sulfate‐A‐coated magnetite nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Tóth, Ildikó Y.; Illés, Erzsébet; Szekeres, Márta; Tombácz, Etelka

    2015-01-01

    Polysaccharides are promising candidates for manufacturing biocompatible core–shell nanoparticles with potential in vivo use. Superparamagnetic magnetite nanoparticles (MNPs) have prospective application in both diagnosis and therapy, and so developing a novel polysaccharide shell on MNP core is of great challenge. MNPs were prepared by co-precipitation, then the surface of purified MNPs was coated with chondroitin-sulfate-A (CSA) to obtain core–shell structured magnetite nanoparticles (CSA@MNP). The effect of the added amount of CSA on the surface charging and the aggregation state of MNPs at various pHs and 10 mM NaCl was measured by electrophoresis and dynamic light scattering. The amphoteric behavior of MNPs was fundamentally modified by adsorption of CSA polyanions. A very low CSA-loading induces the aggregation of MNPs, while four times more stabilizes the dispersions over the whole pH-range studied. The coagulation kinetics experiments measured at pH=6.3±0.3 showed that salt tolerance of CSA@MNPs rises up to ~150 mM NaCl. - Highlights: • Novel CSA-coated core–shell magnetite nanoparticles were prepared successfully. • The aggregation range of MNPs was shifted gradually to the lower pHs by CSA-loading. • CSA stabilizes electrosterically the MNPs over wide pH-range relevant to biosystems. • The salt tolerance of CSA@MNP enables them to use under physiological condition

  19. Preparation and characterization of chondroitin‐sulfate‐A‐coated magnetite nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Tóth, Ildikó Y., E-mail: Ildiko.Toth@chem.u-szeged.hu; Illés, Erzsébet; Szekeres, Márta; Tombácz, Etelka, E-mail: tombacz@chem.u-szeged.hu

    2015-04-15

    Polysaccharides are promising candidates for manufacturing biocompatible core–shell nanoparticles with potential in vivo use. Superparamagnetic magnetite nanoparticles (MNPs) have prospective application in both diagnosis and therapy, and so developing a novel polysaccharide shell on MNP core is of great challenge. MNPs were prepared by co-precipitation, then the surface of purified MNPs was coated with chondroitin-sulfate-A (CSA) to obtain core–shell structured magnetite nanoparticles (CSA@MNP). The effect of the added amount of CSA on the surface charging and the aggregation state of MNPs at various pHs and 10 mM NaCl was measured by electrophoresis and dynamic light scattering. The amphoteric behavior of MNPs was fundamentally modified by adsorption of CSA polyanions. A very low CSA-loading induces the aggregation of MNPs, while four times more stabilizes the dispersions over the whole pH-range studied. The coagulation kinetics experiments measured at pH=6.3±0.3 showed that salt tolerance of CSA@MNPs rises up to ~150 mM NaCl. - Highlights: • Novel CSA-coated core–shell magnetite nanoparticles were prepared successfully. • The aggregation range of MNPs was shifted gradually to the lower pHs by CSA-loading. • CSA stabilizes electrosterically the MNPs over wide pH-range relevant to biosystems. • The salt tolerance of CSA@MNP enables them to use under physiological condition.

  20. Preparation and characterization of iron oxide (Fe{sub 3}O{sub 4}) nanoparticles coated with polyvinylpyrrolidone/polyethylenimine through a facile one-pot deposition route

    Energy Technology Data Exchange (ETDEWEB)

    Karimzadeh, Isa [Shefa Neuroscience Research Center, Khatam ol Anbia Specialty and Subspecialty Hospital, Tehran (Iran, Islamic Republic of); Department of Physics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Aghazadeh, Mustafa, E-mail: maghazadeh@aeoi.org.ir [NFCRS, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box 14395-834, Tehran (Iran, Islamic Republic of); Ganjali, Mohammad Reza [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Doroudi, Taher; Kolivand, Peir Hossein [Shefa Neuroscience Research Center, Khatam ol Anbia Specialty and Subspecialty Hospital, Tehran (Iran, Islamic Republic of)

    2017-07-01

    Highlights: • MNPs were prepared by cathodic electrodeposition. • In situ double polymer coating was achieved during electrodeposition. • The prepared MNPs have proper size and properties for biomedical applications. - Abstract: In this article, we report the electrochemical synthesis and simultaneous in situ coating of magnetic iron oxide nanoparticles (MNPs) with polyvinylpyrrolidone (PVP) and polyethylenimine (PEI). The cathodic deposition was carried out through electro-generation of OH{sup −} on the surface of cathode. An aqueous solution of Fe(NO{sub 3}){sub 3}·9H{sub 2}O (3.4 g/L) and FeCl{sub 2}·4H{sub 2}O (1.6 g/L) was used as the deposition bath. The electrochemical precipitation experiments were performed in the direct current mode under a 10 mA cm{sup −2} current density for 30 min. Polymer coating was performed in an identical deposition bath containing of 0.5 g PVP and 0.5 g PEI. The deposited uncoated and PVP-PEI coated MNPs were characterized through powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), vibrating sample magnetometer (VSM), and field-emission scanning and transmission electron microscopies (FE-SEM and TEM). Structural XRD and IR analyses revealed both samples to be composed of pure crystalline magnetite (Fe{sub 3}O{sub 4}). Morphological observations through FE-SEM and TEM proved the product to be spherical nanoparticles in the range of 10–15 nm. The presence of two coating polymers (i.e. PVP and PEI) on the surface of the electro-synthesized MNPs was proved by FTIR and DLS results. The percentage of the polymer coating (31.8%) on the MNPs surface was also determined based on DSC-TGA data. The high magnetization value, coercivity and remanence values measured by VSM indicated the superparamagnetic nature of both prepared MNPs. The obtained results confirmed that the prepared Fe{sub 3}O{sub 4} nanoparticles had suitable physico

  1. Preparation of gold nanoparticles in the presence of citric acid-based dendrimers containing periphery hydroxyl groups

    International Nuclear Information System (INIS)

    Namazi, Hassan; Fard, Ahmad Mohammad Pour

    2011-01-01

    Highlights: → The most advantage of citric acid-based dendrimers is their novelty from monomeric point of view and their simple preparation method. → The size and also size distribution of Au nanoparticles can be controlled through the choice of the dendrimer generation. → Here, we report the preparation of the stable, isolated and uniform Au nanoparticles with using a simple method in water media.→ It was observed that the size of Au nanoparticles is increased with increasing the generation of dendrimer. - Abstract: In this work, Au nanoparticles were produced with reduction of HAuCl 4 using NaBH 4 in the presence of different generations of citric acid-based dendrimers. The greater water solubility of the newly prepared dendrimers motivated us for the preparation of Au nanoparticles in water media. Therefore, the stable, isolated and uniform type Au nanoparticles were prepared through simple process in water. UV-Vis absorption, high-resolution transmission electronic microscopy (HRTEM), electron diffraction (ED) and energy dispersive X-ray (EDX) methods were used to investigate the morphology and structure determination of the obtained gold nanoparticles.

  2. Preparation and antibacterial properties of hybrid-zirconia films with silver nanoparticles

    International Nuclear Information System (INIS)

    Azócar, Ignacio; Vargas, Esteban; Duran, Nicole; Arrieta, Abel; González, Evelyn

    2012-01-01

    The antimicrobial effect of incorporating silver nanoparticles (AgNps) into zirconia matrix–polyether glycol was studied. AgNps of 4–6 nm in size were synthesized using the inverse micelles method, and different doses of metallic nanoparticles were incorporated into zirconia–polyether glycol mixtures during the ageing procedure. Atomic force microscopy (AFM) of the modified hybrid film showed a homogenous distribution of 20–80 nm diameter AgNps, indicating agglomeration of these structures during film modification; such agglomerations were greater when increasing the dosage of the colloidal system. The AgNps-hybrid films showed higher antimicrobial activity against Gram-positive bacteria than for Gram-negative bacteria. Hybrid films prepared with dioctyl sodium sulfosuccinate (AOT) stabilized AgNps presented enhanced antibacterial activity compared to that obtained through the addition of a high AgNO 3 concentration (0.3 wt%). -- Graphical abstract: Atomic Force Micrographs, top and cross section view, showing silver nanoparticles embedded in a zirconia–polyether glycol hybrid film. Highlights: ► Antibacterial activity of films (zirconia–polyether glycol) modified with silver nanoparticles. ► Biofilm formation is prevented. ► High sensibility against gram positive bacteria.

  3. Preparation and antibacterial properties of hybrid-zirconia films with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Azocar, Ignacio, E-mail: manuel.azocar@usach.cl [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Vargas, Esteban [Facultad de Ingenieria, Departamento de Metalurgia, Universidad de Santiago de Chile, USACH (Chile); Duran, Nicole [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Arrieta, Abel [Departamento de Biologia, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH (Chile); Gonzalez, Evelyn [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Facultad de Ingenieria, Departamento de Metalurgia, Universidad de Santiago de Chile, USACH (Chile); Departamento de Biologia, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH (Chile); Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Quimicas, Universidad de Chile, Sergio Livingstone Polhammer 1007, Santiago (Chile); and others

    2012-11-15

    The antimicrobial effect of incorporating silver nanoparticles (AgNps) into zirconia matrix-polyether glycol was studied. AgNps of 4-6 nm in size were synthesized using the inverse micelles method, and different doses of metallic nanoparticles were incorporated into zirconia-polyether glycol mixtures during the ageing procedure. Atomic force microscopy (AFM) of the modified hybrid film showed a homogenous distribution of 20-80 nm diameter AgNps, indicating agglomeration of these structures during film modification; such agglomerations were greater when increasing the dosage of the colloidal system. The AgNps-hybrid films showed higher antimicrobial activity against Gram-positive bacteria than for Gram-negative bacteria. Hybrid films prepared with dioctyl sodium sulfosuccinate (AOT) stabilized AgNps presented enhanced antibacterial activity compared to that obtained through the addition of a high AgNO{sub 3} concentration (0.3 wt%). -- Graphical abstract: Atomic Force Micrographs, top and cross section view, showing silver nanoparticles embedded in a zirconia-polyether glycol hybrid film. Highlights: Black-Right-Pointing-Pointer Antibacterial activity of films (zirconia-polyether glycol) modified with silver nanoparticles. Black-Right-Pointing-Pointer Biofilm formation is prevented. Black-Right-Pointing-Pointer High sensibility against gram positive bacteria.

  4. Electrochemical sensing behaviour of Ni doped Fe{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, R.; Giribabu, K.; Manigandan, R.; Narayanan, V., E-mail: vnnara@yahoo.co.in [Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600 025 (India); Vijayalakshmi, L. [Annai Veilankanni' s College for Women (Arts and Science), Saidapet, Chennai 600015 (India); Stephen, A. [Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2014-01-28

    Ni doped Fe{sub 3}O{sub 4} nanoparticles were synthesized by simple hydrothermal method. The prepared nanomaterials were characterized by X-ray diffraction analysis, DRS-UV-Visible spectroscopy and field emission scanning electron microscopy. The XRD confirms the phase purity of the synthesized Ni doped Fe{sub 3}O{sub 4} nanoparticles. The optical property of Ni doped Fe{sub 3}O{sub 4} nanoparticles were studied by DRS UV-Visible analysis. The electrochemical sensing property of pure and Ni doped Fe{sub 3}O{sub 4} nanoparticles were examined using uric acid as an analyte. The obtained results indicated that the Ni doped Fe{sub 3}O{sub 4} nanoparticles exhibited higher electrocatalytic activity towards uric acid.

  5. Properties of Ag nanoparticles prepared by modified Tollens' process with the use of different saccharide types

    Science.gov (United States)

    Michalcová, Alena; Machado, Larissa; Marek, Ivo; Martinec, Marek; Sluková, Marcela; Vojtěch, Dalibor

    2018-02-01

    Silver nanoparticles are well known for their catalytic and antimicrobial properties. In their production, the modified Tollens' process using saccharides as reduction agents is very popular. In this paper, the possibility of silver nanoparticles reduction by fructose, glucose, galactose, mannose, maltose, lactose and saccharose is shown. The size of successfully prepared nanoparticles was 16-70 nm depending on the saccharide type. The influence of NaOH and NH3 presence in reaction mixture on size of nanoparticles was described. Surprisingly good results were obtained using saccharose that is, however, known as non-reducing disaccharide.

  6. Development of Nano-Particles Within Polymeric Materials Prepared by Gamma Radiation and their Possible Practical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hegazy, E. S.A.; Ali, A. E.; AbdEl-Rehim, H.; Mohammady, M.; Abdel Aal, A. S. [National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    2009-07-01

    Nanoparticles can be used in biomedical applications, where they facilitate laboratory diagnostics, or in medical drug targeting nanoparticles based on a core consisting of iron oxides that can be targeted through external magnets. Polyvinyl alcohol/Polyacrylic acid nanoparticles were prepared using gamma rays. The prepared PVA/AAc nano copolymers were treated with Fe{sup 2+}/ Fe{sup 3+} solution followed by ammonia solution to obtain PVA/AAc-Fe{sub 3}O{sub 4} nanoparticle ferrogel. Characterization of the PVA/AAc-Fe{sub 3}O{sub 4} nanoparticle ferrogel was carried out using XRD, TGA, DSc , TEM and AFM. The use of magnetic field sensitive nano-ferrogels as a drug carrier was investigated. It was found that the release of drug in absence of the effect of magnetic field is mostly slow than that under the influence of magnetic field. On the other hand, development of nanoparticles within radiation grafted polymeric surfaces using electroless plating technique was investigated. Surface modification of polypropylene films (PP) was carried out via radiation induced graft copolymerization of 4-vinyl pyridine (4VP) and acrylamide (AAm) to enhance the adhesion ability of the PP surface for electroless deposition of copper. The produced grafted films were characterized by studying their FTIR and thermal stability. The prepared grafted films were copper-plated by electroless deposition using the Pd as a catalyst to initiate the redox reaction. The influences of catalytic activation method parameters on the plating rate have been studied. The electrical characteristics of the copper plated films in comparison with grafted films were studied. The results showed the high adhesion of the deposited copper film to the grafted PP film as well as high electrical conductivity. (author)

  7. Polymeric Nanoparticles of Brazilian Red Propolis Extract: Preparation, Characterization, Antioxidant and Leishmanicidal Activity

    Science.gov (United States)

    do Nascimento, Ticiano Gomes; da Silva, Priscilla Fonseca; Azevedo, Lais Farias; da Rocha, Louisianny Guerra; de Moraes Porto, Isabel Cristina Celerino; Lima e Moura, Túlio Flávio Accioly; Basílio-Júnior, Irinaldo Diniz; Grillo, Luciano Aparecido Meireles; Dornelas, Camila Braga; Fonseca, Eduardo Jorge da Silva; de Jesus Oliveira, Eduardo; Zhang, Alex Tong; Watson, David G.

    2016-06-01

    g/mL and 31.3 μg/mL, 47.2 μg/mL, 154.2μg/mL and 193.2 μg/mL for NRPE A1, NRPE A2, NRPE A3 and NRPE A4, respectively. Nanoparticles loaded with red propolis extract in co-delivery system and EEP presented cytotoxic activity on Leishmania (V.) braziliensis. Red propolis extract loaded in nanoparticles has shown to be potential candidates as intermediate products for preparation of various pharmaceutical dosage forms containing red propolis extract in the therapy against negligible diseases such as leishmaniasis.

  8. Preparation of metallic nanoparticles by irradiation in starch aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Nemţanu, Monica R., E-mail: monica.nemtanu@inflpr.ro; Braşoveanu, Mirela, E-mail: monica.nemtanu@inflpr.ro; Iacob, Nicuşor, E-mail: monica.nemtanu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Electron Accelerators Laboratory, 409 Atomiştilor St., PO Box MG-36, 077125, Bucharest-Măgurele (Romania)

    2014-11-24

    Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔE{sub ab} (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle h{sup o} was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.

  9. Preparation and magnetic properties of magnetic photonic crystal by using monodisperse polystyrene covered Fe3O4 nanoparticles onto glass substrate

    Science.gov (United States)

    Azizi, Zahra Sadat; Tehranchi, Mohammad Mehdi; Vakili, Seyed Hamed; Pourmahdian, Saeed

    2018-05-01

    Engineering approach towards combined photonic band gap properties and magnetic/polymer composite particles, attract considerable attention of researchers due to their unique properties. In this research, two different magnetic particles were prepared by nearly monodisperse polystyrene spheres as bead with two concentrations of Fe3O4 nanoparticles to prepare magnetic photonic crystals (MPCs). The crystal surfaces and particles morphology were investigated employing scanning electron microscopy and transmission electron microscopy. The volume fraction of magnetic material embedded into colloidal spheres and their morphology was found to be a key parameter in the optical and magneto-optical properties of transparent MPC.

  10. Selection of a suitable method for the preparation of polymeric nanoparticles: multi-criteria decision making approach.

    Science.gov (United States)

    Krishnamoorthy, Kannan; Mahalingam, Manikandan

    2015-03-01

    The present study is aimed to select the suitable method for preparation of camptothecin loaded polymeric nanoparticles by utilizing the multi-criteria decision making method. Novel approaches of drug delivery by formulation using nanotechnology are revolutionizing the future of medicine. Recent years have witnessed unprecedented growth of research and application in the area of nanotechnology. Nanoparticles have become an important area of research in the field of drug delivery because they have the ability to deliver a wide range of drug to varying areas of body. Despite of extensive research and development, polymeric nanoparticles are frequently used to improve the therapeutic effect of drugs. A number of techniques are available for the preparation of polymeric nanoparticles. The Analytical Hierarchy Process (AHP) is a method for decision making, which are derived from individual judgements for qualitative factors, using the pair-wise comparison matrix. In AHP, a decision hierarchy is constructed with a goal, criteria and alternatives. The model uses three main criteria 1) Instrument, 2) Process and Output and 3) Cost. In addition, there are eight sub-criteria's as well as eight alternatives. Pair-wise comparison matrixes are used to obtain the overall priority weight and ranking for the selection of suitable method. Nanoprecipitation technique is the most suitable method for the preparation of camptothecin loaded polymeric nanoparticles with the highest overall priority weight of 0.297 CONCLUSION: In particular, the result indicates that the priority weights obtained from AHP could be defined as a multiple output for finding out the most suitable method for preparation of camptothecin loaded polymeric nanoparticles.

  11. High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles.

    Science.gov (United States)

    Pawar, Amol A; Saada, Gabriel; Cooperstein, Ido; Larush, Liraz; Jackman, Joshua A; Tabaei, Seyed R; Cho, Nam-Joon; Magdassi, Shlomo

    2016-04-01

    In the absence of water-soluble photoinitiators with high absorbance in the ultraviolet (UV)-visible range, rapid three-dimensional (3D) printing of hydrogels for tissue engineering is challenging. A new approach enabling rapid 3D printing of hydrogels in aqueous solutions is presented on the basis of UV-curable inks containing nanoparticles of highly efficient but water-insoluble photoinitiators. The extinction coefficient of the new water-dispersible nanoparticles of 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO) is more than 300 times larger than the best and most used commercially available water-soluble photoinitiator. The TPO nanoparticles absorb significantly in the range from 385 to 420 nm, making them suitable for use in commercially available, low-cost, light-emitting diode-based 3D printers using digital light processing. The polymerization rate at this range is very fast and enables 3D printing that otherwise is impossible to perform without adding solvents. The TPO nanoparticles were prepared by rapid conversion of volatile microemulsions into water-dispersible powder, a process that can be used for a variety of photoinitiators. Such water-dispersible photoinitiator nanoparticles open many opportunities to enable rapid 3D printing of structures prepared in aqueous solutions while bringing environmental advantages by using low-energy curing systems and avoiding the need for solvents.

  12. Preparation of manganese-based perovskite nanoparticles using a ...

    Indian Academy of Sciences (India)

    Preparation of manganese-based perovskite nanoparticles using a reverse microemulsion method: ... ted much attention in various fields of medicine and pharma- cology such as .... In addition, the SAR value of sample was calculated through ...

  13. Studying Of Preparation Silver Nano-Particles Using Spinning Disc Reactor

    International Nuclear Information System (INIS)

    Hoang Van Duc; Nguyen Thanh Chung; Tran Ngoc Ha; Ho Minh Quang; Nguyen Thi Thuc Phuong

    2014-01-01

    Preparation of silver nano-particles using spinning disc reactor has been investigated. The effects of technological factors and experimental conditions such as: concentrations of AgNO 3 , glucose, PVP, spinning speed, ect. on quality of nano-silver particles have been studied. With experimental conditions: rotation speed of 2000 rpm, weight rate of m PVP :m AgNO 3 = 1, AgNO 3 concentration of 0.01 M, glucose concentration of 0.02 M, silver particles of about 12 nm were obtained and the nano-silver solution were stable for more than 40 days. (author)

  14. Optimization of Preparation Techniques for Poly(Lactic Acid-Co-Glycolic Acid) Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Birnbaum, Duane T.; Kosmala, Jacqueline D.; Brannon-Peppas, Lisa [Biogel Technology, Inc. (United States)], E-mail: lisabp@biogeltech.com

    2000-06-15

    Microparticles and nanoparticles of poly(lactic acid-co-glycolic acid) (PLAGA) are excellent candidates for the controlled release of many pharmaceutical compounds because of their biodegradable nature. The preparation of submicron PLAGA particles poses serious challenges that are not necessarily present when preparing microparticles. We have evaluated several combinations of organic solvents and surfactants used in the formulation of PLAGA nanoparticles. Critical factors such as the ability to separate the nanoparticles from the surfactant, the ability to re-suspend the nanoparticles after freeze-drying, formulation yield and nanoparticle size were studied. The smallest particles were obtained using the surfactant/solvent combination of sodium dodecyl sulfate and ethyl acetate (65 nm) and the largest particles were obtained using poly(vinyl alcohol) and dichloromethane (466 nm). However, the optimal nanoparticles were produced using either acetone or ethyl acetate as the organic solvent and poly(vinyl alcohol) or human serum albumin as the surfactant. This is because the most critical measure of performance of these nanoparticles proved to be their ability to re-suspend after freeze-drying.

  15. Optimization of Preparation Techniques for Poly(Lactic Acid-Co-Glycolic Acid) Nanoparticles

    International Nuclear Information System (INIS)

    Birnbaum, Duane T.; Kosmala, Jacqueline D.; Brannon-Peppas, Lisa

    2000-01-01

    Microparticles and nanoparticles of poly(lactic acid-co-glycolic acid) (PLAGA) are excellent candidates for the controlled release of many pharmaceutical compounds because of their biodegradable nature. The preparation of submicron PLAGA particles poses serious challenges that are not necessarily present when preparing microparticles. We have evaluated several combinations of organic solvents and surfactants used in the formulation of PLAGA nanoparticles. Critical factors such as the ability to separate the nanoparticles from the surfactant, the ability to re-suspend the nanoparticles after freeze-drying, formulation yield and nanoparticle size were studied. The smallest particles were obtained using the surfactant/solvent combination of sodium dodecyl sulfate and ethyl acetate (65 nm) and the largest particles were obtained using poly(vinyl alcohol) and dichloromethane (466 nm). However, the optimal nanoparticles were produced using either acetone or ethyl acetate as the organic solvent and poly(vinyl alcohol) or human serum albumin as the surfactant. This is because the most critical measure of performance of these nanoparticles proved to be their ability to re-suspend after freeze-drying

  16. Optimization of Preparation Techniques for Poly(Lactic Acid-Co-Glycolic Acid) Nanoparticles

    Science.gov (United States)

    Birnbaum, Duane T.; Kosmala, Jacqueline D.; Brannon-Peppas, Lisa

    2000-06-01

    Microparticles and nanoparticles of poly(lactic acid-co-glycolic acid) (PLAGA) are excellent candidates for the controlled release of many pharmaceutical compounds because of their biodegradable nature. The preparation of submicron PLAGA particles poses serious challenges that are not necessarily present when preparing microparticles. We have evaluated several combinations of organic solvents and surfactants used in the formulation of PLAGA nanoparticles. Critical factors such as the ability to separate the nanoparticles from the surfactant, the ability to re-suspend the nanoparticles after freeze-drying, formulation yield and nanoparticle size were studied. The smallest particles were obtained using the surfactant/solvent combination of sodium dodecyl sulfate and ethyl acetate (65 nm) and the largest particles were obtained using poly(vinyl alcohol) and dichloromethane (466 nm). However, the optimal nanoparticles were produced using either acetone or ethyl acetate as the organic solvent and poly(vinyl alcohol) or human serum albumin as the surfactant. This is because the most critical measure of performance of these nanoparticles proved to be their ability to re-suspend after freeze-drying.

  17. Preparation of lanthanum sulfide nanoparticles by thermal decomposition of lanthanum complex

    Institute of Scientific and Technical Information of China (English)

    LI Peisen; LI Huanyong; JIE Wanqi

    2011-01-01

    γ-La2S3 nanoparticles were successfully prepared by thermal decomposition of lanthanum complex La(Et2S2CN)3·phen at low temperature. The obtained sample was characterized by the X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and element analysis. The decomposition mechanism of lanthanum complex was studied by thermogravimetric analyses (TGA). The results showed that the obtained samples were cubic phase particles with uniform sizes among 10-30 nm and γ-La2S3 was prepared by decomposition of La(Et2S2CN)3 phen via La4(Et2S2CN)3 as an intermediate product. The band gap of γ-La2S3 was 2.97 eV, which was bigger than bulk crystal because of pronounced quantum confinement effect.

  18. Template preparation of twisted nanoparticles of mesoporous silica

    Institute of Scientific and Technical Information of China (English)

    Kui Niu; Zhongbin Ni; Chengwu Fu; Tatsuo Kaneko; Mingqing Chen

    2011-01-01

    Optical isomers of N-lauroyl-L-(or-D-) alanine sodium salt {C12-L-(or-D-)AlaS} surfactants were used for the preparation of mesoporous silica nanoparticles with a twisted hexagonal rod-like morphology. Thermogravimetric analysis (TGA) was used to determine the temperature for template removal. Circular dichroism (CD) spectra of the surfactant solution with various compositions illustrated the formation and supramolecular assembly of protein-like molecular architecture leading to formation of twisted nanoparticles. Scanning electron microscopy (SEM),high-resolution transmission electron microscopy (HRTEM)and X-ray powder diffraction (XRD) patterns of these as-synthesized mesoporous silica confirmed that the twisted morphology of these nanoparticles was closely related to the supramolecular-assembled complex of amino acid surfactants.

  19. Purification of Drug Loaded PLGA Nanoparticles Prepared by Emulsification Solvent Evaporation Using Stirred Cell Ultrafiltration Technique.

    Science.gov (United States)

    Paswan, Suresh K; Saini, T R

    2017-12-01

    The emulsifiers in an exceedingly higher level are used in the preparation of drug loaded polymeric nanoparticles prepared by emulsification solvent evaporation method. This creates great problem to the formulator due to their serious toxicities when it is to be administered by parenteral route. The final product is therefore required to be freed from the used surfactants by the conventional purification techniques which is a cumbersome job. The solvent resistant stirred cell ultrafiltration unit (Millipore) was used in this study using polyethersulfone ultrafiltration membrane (Biomax®) having pore size of NMWL 300 KDa as the membrane filter. The purification efficiency of this technique was compared with the conventional centrifugation technique. The flow rate of ultrafiltration was optimized for removal of surfactant (polyvinyl alcohol) impurities to the acceptable levels in 1-3.5 h from the nanoparticle dispersion of tamoxifen prepared by emulsification solvent evaporation method. The present investigations demonstrate the application of solvent resistant stirred cell ultrafiltration technique for removal of toxic impurities of surfactant (PVA) from the polymeric drug nanoparticles (tamoxifen) prepared by emulsification solvent evaporation method. This technique offers added benefit of producing more concentrated nanoparticles dispersion without causing significant particle size growth which is observed in other purification techniques, e.g., centrifugation and ultracentrifugation.

  20. Magnetic properties of iron nanoparticles prepared by exploding wire technique

    OpenAIRE

    Alqudami, Abdullah; Annapoorni, S.; Lamba, Subhalakshmi; Kothari, P C; Kotnala, R K

    2006-01-01

    Nanoparticles of iron were prepared in distilled water using very thin iron wires and sheets, by the electro-exploding wire technique. Transmission electron microscopy reveals the size of the nanoparticles to be in the range 10 to 50 nm. However, particles of different sizes can be segregated by using ultrahigh centrifuge. X-ray diffraction studies confirm the presence of the cubic phase of iron. These iron nanoparticles were found to exhibit fluorescence in the visible region in contrast to ...

  1. Synthesis, characterization, and comparative gas-sensing properties of Fe{sub 2}O{sub 3} prepared from Fe{sub 3}O{sub 4} and Fe{sub 3}O{sub 4}-chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Cuong, Nguyen Duc [Faculty of Hospitality and Tourism, Hue University, 22 Lam Hoang, Vy Da Ward, Hue City (Viet Nam); College of Sciences, Hue University, 77 Nguyen Hue, Phu Nhuan Ward, Hue City (Viet Nam); International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), Hanoi (Viet Nam); Hoa, Tran Thai; Khieu, Dinh Quang [College of Sciences, Hue University, 77 Nguyen Hue, Phu Nhuan Ward, Hue City (Viet Nam); Lam, Tran Dai [Institute of Materials Science, Vietnamese Academy of Science and Technology, Hanoi (Viet Nam); Hoa, Nguyen Duc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), Hanoi (Viet Nam); Van Hieu, Nguyen, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), Hanoi (Viet Nam)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer We have demonstrated a facile method to prepare Fe{sub 3}O{sub 4} nanoparticles and chitosan-coated Fe{sub 3}O{sub 4} nanoparticles. Black-Right-Pointing-Pointer {alpha}-Fe{sub 2}O{sub 3} sensors prepared from those Fe{sub 3}O{sub 4} materials have been investigated and compared. Black-Right-Pointing-Pointer The results show potential application of {alpha}-Fe{sub 2}O{sub 3} for CO sensors in environmental monitoring. - Abstract: In this paper, Fe{sub 3}O{sub 4} and chitosan (CS)-coated Fe{sub 3}O{sub 4} nanoparticles were synthesized via co-precipitation method and subsequent covalent binding of CS onto the surface for functionalization, respectively. Characterization of the crystal structures and morphologies of as-synthesized nanoparticles by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy demonstrated that Fe{sub 3}O{sub 4} had a cubic spinal structure with irregular shapes and average diameters of 10-20 nm. The surface states and magnetic properties of Fe{sub 3}O{sub 4}-CS nanoparticles were characterized by Fourier transform infrared spectra and vibrating sample magnetometry. Results showed that Fe{sub 3}O{sub 4}-CS nanoparticles possessed super-paramagnetic properties, with saturated magnetization up to 60 emu/g. In addition, Fe{sub 3}O{sub 4} and CS-coated Fe{sub 3}O{sub 4} nanoparticles were used in the fabrication of {alpha}-Fe{sub 2}O{sub 3} based gas sensors. Gas sensing measurements revealed that the {alpha}-Fe{sub 2}O{sub 3} gas sensor prepared from Fe{sub 3}O{sub 4}-CS had a better response to H{sub 2}, CO, C{sub 2}H{sub 5}OH, and NH{sub 3} compared with the device prepared from pristine Fe{sub 3}O{sub 4}. Furthermore, the {alpha}-Fe{sub 2}O{sub 3} sensor prepared from Fe{sub 3}O{sub 4}-CS nanoparticles exhibited the highest response to CO among the test gases, suggesting that it has great potential for practical applications in environmental monitoring.

  2. Biocompatible branched copolymer nanoparticles prepared by RAFT polymerization as MRI/PET bimodal tracers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chang-Tong [Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Tao, He; Jackson, Alexander W [Institute of Chemical and Engineering Sciences, Agency for Science Technology and Research (Singapore); Chandrasekharan, Prashant [Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (Singapore); Padmanabhan, Parasuraman [Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Gulyás, Balázs; Halldin, Christer [Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Karolinska Institutet, Department of Clinical Neuroscience, Stockholm (Sweden)

    2015-05-18

    Stable branched copolymer nanoparticles of varying size (Dh = 20 – 35 nm) have been developed and employed as MRI nano-sized contrast agents. RAFT polymerization has been employed to prepare these novel nanoparticles possessing DO3A macrocycles within their cores and succinimidyl ester benzoate functionalities within their coronas. It has been demonstrated that these nanoparticles can chelate gadolinium and in vitro cytotoxicity studies using HK-2 cells established their negligible toxicity profile. In vivo MRI experiments showed that these nanoparticles have a high relaxivity and a long blood retention time. Xenograft experiments further illustrated the ability of these nanoparticles to perfuse and passively accumulate in tumor cells, presumably through the enhanced EPR effect. The presence of the succinimidyl ester benzoate functionalities within the nanoparticle coronas will permit future surface modification with fluorophores or targeting moieties to generate nanoparticles to study opportunities for bimodal imaging nano-probes or active cell targeting contrast agents. The chelation with PET radioisotopes (68Ga(III) or 64Cu(II)) can afford various PET tracers.

  3. Biocompatible branched copolymer nanoparticles prepared by RAFT polymerization as MRI/PET bimodal tracers

    International Nuclear Information System (INIS)

    Yang, Chang-Tong; Tao, He; Jackson, Alexander W; Chandrasekharan, Prashant; Padmanabhan, Parasuraman; Gulyás, Balázs; Halldin, Christer

    2015-01-01

    Stable branched copolymer nanoparticles of varying size (Dh = 20 – 35 nm) have been developed and employed as MRI nano-sized contrast agents. RAFT polymerization has been employed to prepare these novel nanoparticles possessing DO3A macrocycles within their cores and succinimidyl ester benzoate functionalities within their coronas. It has been demonstrated that these nanoparticles can chelate gadolinium and in vitro cytotoxicity studies using HK-2 cells established their negligible toxicity profile. In vivo MRI experiments showed that these nanoparticles have a high relaxivity and a long blood retention time. Xenograft experiments further illustrated the ability of these nanoparticles to perfuse and passively accumulate in tumor cells, presumably through the enhanced EPR effect. The presence of the succinimidyl ester benzoate functionalities within the nanoparticle coronas will permit future surface modification with fluorophores or targeting moieties to generate nanoparticles to study opportunities for bimodal imaging nano-probes or active cell targeting contrast agents. The chelation with PET radioisotopes (68Ga(III) or 64Cu(II)) can afford various PET tracers.

  4. Preparation of PbSe nanoparticles by electron beam irradiation

    Indian Academy of Sciences (India)

    A novel method has been developed by electron beam irradiation to prepare PbSe nanoparticles. 2 MeV 10mA GJ-2-II electronic accelerator was used as radiation source. Nanocrystalline PbSe was prepared rapidly at room temperature under atmospheric pressure without any kind of toxic reagents. The structure and ...

  5. Studies on Preparation of Photosensitizer Loaded Magnetic Silica Nanoparticles and Their Anti-Tumor Effects for Targeting Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Chen Zhi-Long

    2009-01-01

    Full Text Available Abstract As a fast developing alternative of traditional therapeutics, photodynamic therapy (PDT is an effective, noninvasive, nontoxic therapeutics for cancer, senile macular degeneration, and so on. But the efficacy of PDT was compromised by insufficient selectivity and low solubility. In this study, novel multifunctional silica-based magnetic nanoparticles (SMNPs were strategically designed and prepared as targeting drug delivery system to achieve higher specificity and better solubility. 2,7,12,18-Tetramethyl-3,8-di-(1-propoxyethyl-13,17-bis-(3-hydroxypropyl porphyrin, shorted as PHPP, was used as photosensitizer, which was first synthesized by our lab with good PDT effects. Magnetite nanoparticles (Fe3O4 and PHPP were incorporated into silica nanoparticles by microemulsion and sol–gel methods. The prepared nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and fluorescence spectroscopy. The nanoparticles were approximately spherical with 20–30 nm diameter. Intense fluorescence of PHPP was monitored in the cytoplasm of SW480 cells. The nanoparticles possessed good biocompatibility and could generate singlet oxygen to cause remarkable photodynamic anti-tumor effects. These suggested that PHPP-SMNPs had great potential as effective drug delivery system in targeting photodynamic therapy, diagnostic magnetic resonance imaging and magnetic hyperthermia therapy.

  6. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices

    Science.gov (United States)

    Udayabhaskararao, Thumu; Altantzis, Thomas; Houben, Lothar; Coronado-Puchau, Marc; Langer, Judith; Popovitz-Biro, Ronit; Liz-Marzán, Luis M.; Vuković, Lela; Král, Petr; Bals, Sara; Klajn, Rafal

    2017-10-01

    Self-assembly of inorganic nanoparticles has been used to prepare hundreds of different colloidal crystals, but almost invariably with the restriction that the particles must be densely packed. Here, we show that non-close-packed nanoparticle arrays can be fabricated through the selective removal of one of two components comprising binary nanoparticle superlattices. First, a variety of binary nanoparticle superlattices were prepared at the liquid-air interface, including several arrangements that were previously unknown. Molecular dynamics simulations revealed the particular role of the liquid in templating the formation of superlattices not achievable through self-assembly in bulk solution. Second, upon stabilization, all of these binary superlattices could be transformed into distinct “nanoallotropes”—nanoporous materials having the same chemical composition but differing in their nanoscale architectures.

  7. Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system

    Directory of Open Access Journals (Sweden)

    Dorniani D

    2013-09-01

    Full Text Available Dena Dorniani,1 Mohd Zobir bin Hussein,1 Aminu Umar Kura,2 Sharida Fakurazi,2 Abdul Halim Shaari,3 Zalinah Ahmad4 1Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, 2Vaccines and Immunotherapeutics Laboratory, 3Physics Department, Faculty of Science, 4Chemical Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia Background: Iron oxide nanoparticles are of considerable interest because of their use in magnetic recording tape, ferrofluid, magnetic resonance imaging, drug delivery, and treatment of cancer. The specific morphology of nanoparticles confers an ability to load, carry, and release different types of drugs. Methods and results: We synthesized superparamagnetic nanoparticles containing pure iron oxide with a cubic inverse spinal structure. Fourier transform infrared spectra confirmed that these Fe3O4 nanoparticles could be successfully coated with active drug, and thermogravimetric and differential thermogravimetric analyses showed that the thermal stability of iron oxide nanoparticles coated with chitosan and 6-mercaptopurine (FCMP was markedly enhanced. The synthesized Fe3O4 nanoparticles and the FCMP nanocomposite were generally spherical, with an average diameter of 9 nm and 19 nm, respectively. The release of 6-mercaptopurine from the FCMP nanocomposite was found to be sustained and governed by pseudo-second order kinetics. In order to improve drug loading and release behavior, we prepared a novel nanocomposite (FCMP-D, ie, Fe3O4 nanoparticles containing the same amounts of chitosan and 6-mercaptopurine but using a different solvent for the drug. The results for FCMP-D did not demonstrate “burst release” and the maximum percentage release of 6-mercaptopurine from the FCMP-D nanocomposite reached about 97.7% and 55.4% within approximately 2,500 and 6,300 minutes when exposed to pH 4.8 and pH 7.4 solutions, respectively

  8. Gold core@silver semishell Janus nanoparticles prepared by interfacial etching

    Science.gov (United States)

    Chen, Limei; Deming, Christopher P.; Peng, Yi; Hu, Peiguang; Stofan, Jake; Chen, Shaowei

    2016-07-01

    Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface.Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold

  9. Preparation and characterization of biocompatible silver nanoparticles using pomegranate peel extract.

    Science.gov (United States)

    Nasiriboroumand, Majid; Montazer, Majid; Barani, Hossein

    2018-02-01

    The potential application of any nanoparticles, including silver nanoparticles (AgNPs), strongly depends on their stability against aggregation. In the current study, an aqueous extract of pomegranate peel was used as a stabilizer during synthesis of AgNPs. Nanoparticles have been prepared by the chemical reduction method from an aqueous solution of silver nitrate in the presence of sodium borohydride as a reducing agent. The AgNPs were characterized by dynamic light scattering (DLS), zeta-potential measurements, UV-Vis spectroscopy and transmission electron microscopy (TEM). The antibacterial efficiency of AgNPs against Escherichia coli was investigated. The size, polydispersity index, FWHM, and colloidal stability of nanoparticles in dispersion depends on the extract concentrations. In the presence of pomegranate peel extract, the nanoparticles suspension shows colloidal stability at least for a week. Our studies show that synthesized AgNPs with the above described procedure were stable at pH = 3-12 and in the temperature range of 25-85 °C. Additionally, AgNPs exhibit antibacterial properties, especially at the lowest amount of extract to silver ratio (K Extract/Ag ). Copyright © 2018. Published by Elsevier B.V.

  10. Size-driven magnetic transitions in La1/3Ca2/3MnO3 nanoparticles

    Science.gov (United States)

    Markovich, V.; Fita, I.; Wisniewski, A.; Mogilyansky, D.; Puzniak, R.; Titelman, L.; Gorodetsky, G.

    2010-09-01

    Magnetic properties of electron-doped La1/3Ca2/3MnO3 manganite nanoparticles with average particle size ranging from 12 to 42 nm, prepared by the glycine-nitrate method, have been investigated in temperature range 5-300 K and in magnetic fields up to 90 kOe. Reduction in the particle size suppresses antiferromagnetism and decreases the Néel temperature. In contrast to bulk crystals, the charge ordering does not occur in all studied nanoparticles, while a weak ferromagnetism appears above 200 K. Low temperature magnetic hysteresis loops indicate upon exchange bias effect displayed by horizontal and vertical shifts in field cooled processes. The spontaneous and remanent magnetization at low temperature shows a relatively complex variation with particle size. The size-induced structural/magnetic disorder drives the La1/3Ca2/3MnO3 nanoparticles to a pronounced glassy behavior for the smallest 12 nm particles, as evidenced by large difference between zero field cooled and field cooled magnetization, frequency dependent ac-susceptibility, as well as characteristic slowing down in the spin dynamics. Time evolution of magnetization recorded in magnetic fields after field cooling to low temperatures exhibits pronounced relaxation and a very noisy behavior that may be caused by formation of some collective states. Magnetic properties of the nanoparticle samples are compared with those of La0.2Ca0.8MnO3 nanoparticles. These results shed some light on the coupling between charges and spin degrees of freedom in antiferromagnetic manganite nanoparticles.

  11. Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles.

    Science.gov (United States)

    Okoli, Chuka; Sanchez-Dominguez, Margarita; Boutonnet, Magali; Järås, Sven; Civera, Concepción; Solans, Conxita; Kuttuva, Gunaratna Rajarao

    2012-06-05

    Magnetic iron oxide nanoparticles (MION) for protein binding and separation were obtained from water-in-oil (w/o) and oil-in-water (o/w) microemulsions. Characterization of the prepared nanoparticles have been performed by TEM, XRD, SQUID magnetometry, and BET. Microemulsion-prepared magnetic iron oxide nanoparticles (ME-MION) with sizes ranging from 2 to 10 nm were obtained. Study on the magnetic properties at 300 K shows a large increase of the magnetization ~35 emu/g for w/o-ME-MION with superparamagnetic behavior and nanoscale dimensions in comparison with o/w-ME-MION (10 emu/g) due to larger particle size and anisotropic property. Moringa oleifera coagulation protein (MOCP) bound w/o- and o/w-ME-MION showed an enhanced performance in terms of coagulation activity. A significant interaction between the magnetic nanoparticles and the protein can be described by changes in fluorescence emission spectra. Adsorbed protein from MOCP is still retaining its functionality even after binding to the nanoparticles, thus implying the extension of this technique for various applications.

  12. Nanoparticle-assisted laser desorption/ionization mass spectrometry: Novel sample preparation methods and nanoparticle screening for plant metabolite imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yagnik, Gargey B. [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    The main goal of the presented research is development of nanoparticle based matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS). This dissertation includes the application of previously developed data acquisition methods, development of novel sample preparation methods, application and comparison of novel nanoparticle matrices, and comparison of two nanoparticle matrix application methods for MALDI-MS and MALDI-MS imaging.

  13. Preparation and catalytic activities for H{sub 2}O{sub 2} decomposition of Rh/Au bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haijun, E-mail: zhanghaijun@wust.edu.cn [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); The State Key Laboratory of Refractory and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Deng, Xiangong; Jiao, Chengpeng; Lu, Lilin; Zhang, Shaowei [The State Key Laboratory of Refractory and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China)

    2016-07-15

    Graphical abstract: PVP-protected Rh/Au bimetallic nanoparticles (BNPs) were prepared by using hydrogen sacrificial reduction method, the activity of Rh80Au20 BNPs were about 3.6 times higher than that of Rh NPs. - Highlights: • Rh/Au bimetallic nanoparticles (BNPs) of 3∼5 nm in diameter were prepared. • Activity for H{sub 2}O{sub 2} decomposition of BNPs is 3.6 times higher than that of Rh NPs. • The high activity of BNPs was caused by the existence of charged Rh atoms. • The apparent activation energy for H{sub 2}O{sub 2} decomposition over the BNPs was calculated. - Abstract: PVP-protected Rh/Au bimetallic nanoparticles (BNPs) were prepared by using hydrogen sacrificial reduction method and characterized by UV–vis, XRD, FT-IR, XPS, TEM, HR-TEM and DF-STEM, the effects of composition on their particle sizes and catalytic activities for H{sub 2}O{sub 2} decomposition were also studied. The as-prepared Rh/Au BNPs possessed a high catalytic activity for the H{sub 2}O{sub 2} decomposition, and the activity of the Rh{sub 80}Au{sub 20} BNPs with average size of 2.7 nm were about 3.6 times higher than that of Rh monometallic nanoparticles (MNPs) even the Rh MNPs possess a smaller particle size of 1.7 nm. In contrast, Au MNPs with size of 2.7 nm show no any activity. Density functional theory (DFT) calculation as well as XPS results showed that charged Rh and Au atoms formed via electronic charge transfer effects could be responsible for the high catalytic activity of the BNPs.

  14. Preparation and characterization of highly water-soluble magnetic Fe3O4 nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate

    International Nuclear Information System (INIS)

    Li, Honghong; Qin, Li; Feng, Ying; Hu, Lihua; Zhou, Chunhua

    2015-01-01

    A kind of double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe 3 O 4 magnetic nanoparticles (Fe 3 O 4 -AOS-MN) with highly water-solubility was prepared by a wet co-precipitation method with a pH of 4.8. The resulting Fe 3 O 4 -AOS-MN could be dispersed into water to form stable magnetic fluid without other treatments. The result of X-ray diffraction (XRD) indicated that the Fe 3 O 4 -AOS-MN maintained original crystalline structure and exhibited a diameter of about 7.5 nm. The iron oxide phase of nanoparticles determined by Raman spectroscopy is Fe 3 O 4 . Transmission electron microscopy (TEM) analysis confirmed that the Fe 3 O 4 -AOS-MN with spherical morphology were uniformly dispersed in water. FT-IR spectroscopy (FT-IR) and thermo-gravimetric analysis (TGA) verified the successful preparation of Fe 3 O 4 -AOS-MN capped with double-layered self-assembled AOS. The corresponding capacities of monolayer chemical absorption and the second-layer self-assembly absorption were respectively 4.07 and 14.71 wt% of Fe 3 O 4 -MN, which were much lower than those of other surfactants. Vibrating sample magnetometer (VSM) test result showed Fe 3 O 4 -AOS-MN possessed superparamagnetic behavior with the saturation magnetization value of about 44.45 emu/g. The blocking temperature T B of Fe 3 O 4 -AOS-MN capped with double-layered AOS is 170 K. - Highlights: • Double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe 3 O 4 magnetic nanoparticles are prepared by a wet co-precipitation method. • Double-layered Fe 3 O 4 -AOS-MN exhibits highly water-solubility. • The iron oxide phase is determined by Raman spectroscopy. • Fe 3 O 4 -AOS-MN capped with double-layered AOS possesses super-paramagnetic behavior. • The blocking temperature T B of Fe 3 O 4 -AOS-MN capped with double-layered AOS is 170 K

  15. Synthesis, characterization and photocatalytic activity of LaMnO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shaterian, Maryam, E-mail: shaterian@znu.ac.ir [Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran (Iran, Islamic Republic of); Enhessari, Morteza [Department of Chemistry, Islamic Azad University, Naragh Branch, Naragh, Islamic Republic of Iran (Iran, Islamic Republic of); Rabbani, Davarkhah [Department of Environmental Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of); Asghari, Morteza [Separation Processes Research Group (SPRG), Department of Engineering, University of Kashan, Kashan, PO Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Salavati-Niasari, Masoud [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, PO Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of)

    2014-11-01

    Highlights: • Visible-light sensitive LaMnO3 nanoparticles were synthesized via sol–gel process. • Structural and optical properties of photocatalysts have been investigated. • The photocatalytic activity was evaluated by the degradation of methyl orange as a model of pollutant. • The prepared nanocrystals showed good visible-light photocatalytic activity for the degradation of methyl orange. - Abstract: Visible-light sensitive LaMnO{sub 3} nanoparticles were synthesized via sol–gel process using stearic acid as complexing reagent. Characterizations of the resulting powders were carried out by means of X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS). Further, the photocatalytic activity of LaMnO{sub 3} was evaluated by degradation of methyl orange in aqueous solution under visible-light irradiation. The prepared nanoparticles showed excellent visible-light photocatalytic ability for the degradation of methyl orange so that, 60 ppm of nanoparticles can decolorizes the methyl orange solution (6 ppm) up to 98% in 90 min.

  16. Synthesis and preparation of biocompatible and pH-responsive cyclodextrin-based nanoparticle

    International Nuclear Information System (INIS)

    Hu, Xiaohong; Chen, Shangneng; Gong, Xiao; Gao, Ziyu; Wang, Xin; Chen, Pin

    2017-01-01

    As a temporarily protective reaction for active hydrogen group, acetylation is reversible and responsive to low pH value. According to the reaction, pH-sensitive β-cyclodextrin (β-CD) was synthesized in the first step of our research. During the synthesis, the acetal groups including linear acetal (LA) groups and cyclic acetal (CA) groups were successfully modified onto β-CD. Particularly, the structural details of acetalated β-CD (Ac-β-CD) were greatly influenced by reaction time. Furthermore, in respect to water solubility, Ac-β-CDs exhibited different pH response properties due to their different structure. In the second step, Ac-β-CD1 nanoparticles were prepared by a single oil-in-water (O/W) emulsion technique using a biocompatible emulsifier, gelatin. Meanwhile, gelatin was absorbed onto the surface of nanoparticle, which was confirmed by FTIR spectra. The formed nanoparticles showed monodispersion and nearly spherical morphology. In order to obtain optimal preparing conditions, the effects of preparative parameters such as gelatin concentration, Ac-β-CD concentration, and water/oil ratio on properties including diameters and zeta potential as well as gelatin content were investigated. Moreover, the pH response properties of nanoparticle were characterized by transparency of nanoparticle solution. Finally, in vitro cell culture confirmed that Ac-β-CD nanoparticle could support cell survival and enhance cell viability.

  17. Synthesis and preparation of biocompatible and pH-responsive cyclodextrin-based nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaohong, E-mail: huxiaohong07@163.com; Chen, Shangneng [Jinling Institute of Technology, School of Material Engineering (China); Gong, Xiao [Wuhan University of Technology, State Key Laboratory of Silicate Materials for Architectures (China); Gao, Ziyu; Wang, Xin; Chen, Pin [Jinling Institute of Technology, School of Material Engineering (China)

    2017-03-15

    As a temporarily protective reaction for active hydrogen group, acetylation is reversible and responsive to low pH value. According to the reaction, pH-sensitive β-cyclodextrin (β-CD) was synthesized in the first step of our research. During the synthesis, the acetal groups including linear acetal (LA) groups and cyclic acetal (CA) groups were successfully modified onto β-CD. Particularly, the structural details of acetalated β-CD (Ac-β-CD) were greatly influenced by reaction time. Furthermore, in respect to water solubility, Ac-β-CDs exhibited different pH response properties due to their different structure. In the second step, Ac-β-CD1 nanoparticles were prepared by a single oil-in-water (O/W) emulsion technique using a biocompatible emulsifier, gelatin. Meanwhile, gelatin was absorbed onto the surface of nanoparticle, which was confirmed by FTIR spectra. The formed nanoparticles showed monodispersion and nearly spherical morphology. In order to obtain optimal preparing conditions, the effects of preparative parameters such as gelatin concentration, Ac-β-CD concentration, and water/oil ratio on properties including diameters and zeta potential as well as gelatin content were investigated. Moreover, the pH response properties of nanoparticle were characterized by transparency of nanoparticle solution. Finally, in vitro cell culture confirmed that Ac-β-CD nanoparticle could support cell survival and enhance cell viability.

  18. Controllable synthesis and characterization of Fe3O4/Au composite nanoparticles

    International Nuclear Information System (INIS)

    Xing, Yan; Jin, Yan-Yan; Si, Jian-Chao; Peng, Ming-Li; Wang, Xiao-Fang; Chen, Chao; Cui, Ya-Li

    2015-01-01

    Fe 3 O 4 /Au composite nanoparticles (GoldMag NPs) have received considerable attention because of their advantageous properties arisen from both individual Au and Fe 3 O 4 nanoparticles. Many efforts have been devoted to the synthesis of these composite nanoparticles. Herein, GoldMag NPs were reported to be synthesized by two-step method. Fe 3 O 4 nanoparticles were prepared by co-precipitation and modified by the citric acid, and then citric acid-coated Fe 3 O 4 nanoparticles were used as seeds in sodium citrate solution to reduce the HAuCl 4 . The size of obtained nanoparticles was geared from 25 to 300 nm by controlling the concentration of reactants. The GoldMag NPs were characterized by UV–vis spectrometer, dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The GoldMag NPs showed good superparamagnetism at room temperature and were well dispersed in water with surface plasmon resonance absorption peak varied from 538 nm to 570 nm. - Highlights: • A low cost, simple manipulation and nontoxic approach was designed for preparation of magnetic Fe 3 O 4 /Au (GoldMag NPs) nanocomposites. • The size of GoldMag NPs could be controlled from 25 to 300 nm by varying the concentration of reactants. • GoldMag NPs possessed good magnetic response, high dispersion, and good stability

  19. A novel approach in preparing polymer/nano-CaCO3 composites

    Institute of Scientific and Technical Information of China (English)

    Zhengying LIU; Runze YU; Mingbo YANG; Jianmin FENG; Wei YANG; Bo YIN

    2008-01-01

    An novel compounding process using nano-CaCO3 aqueous suspension for preparing polymer/ nano-CaCO3 composites with nanoparticles dispersed at the nanoscale is reported. The process is called the mild mixing method. In this method, the pre-dispersed nano-particle suspensions are blended with melting polymers in a weak shearing field using an extruder, followed by removing the water from the vent. The four typical poly-meric nanocomposites were prepared by mild mixing method. The dispersion of nano-CaCO3 in the matrix of the polymer at the nanoscale was confirmed by scanning electron microscopy (SEM). The molecular weights of polycarbonate (PC) and its nanocomposite showed that the degradation had not occurred during the mild mixing processing. The mechanical properties of the composite with 1.5 wt-% nano-CaCO3 improve slightly. It proved that this approach is suitable for the preparation of nano-composites based on both polar and non-polar polymers.

  20. Cobalt surface modification during γ-Fe{sub 2}O{sub 3} nanoparticle synthesis by chemical-induced transition

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junming [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Li, Jian, E-mail: aizhong@swu.edu.cn [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Chen, Longlong; Lin, Yueqiang; Liu, Xiaodong; Gong, Xiaomin [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Li, Decai [School of Mechanical and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2015-02-01

    In the chemical-induced transition of FeCl{sub 2} solution, the FeOOH/Mg(OH){sub 2} precursor was transformed into spinel structured γ-Fe{sub 2}O{sub 3} crystallites, coated with a FeCl{sub 3}·6H{sub 2}O layer. CoCl{sub 2} surface modified γ-Fe{sub 2}O{sub 3} nanoparticles were prepared by adding Co(NO{sub 3}){sub 2} during the synthesis. CoFe{sub 2}O{sub 4} modified γ-Fe{sub 2}O{sub 3} nanoparticles were prepared by adding NaOH during the surface modification with Co(NO{sub 3}){sub 2}. The CoFe{sub 2}O{sub 4} layer grew epitaxially on the γ-Fe{sub 2}O{sub 3} crystallite to form a composite crystallite, which was coated by CoCl{sub 2}·6H{sub 2}O. The composite could not be distinguished using X-ray diffraction or transmission electron microscopy, since CoFe{sub 2}O{sub 4} and γ-Fe{sub 2}O{sub 3} possess similar spinel structures and lattice constants. X-ray photoelectron spectroscopy was used to distinguish them. The saturation magnetization and coercivity of the spinel structured γ-Fe{sub 2}O{sub 3}-based nanoparticles were related to the grain size. - Highlights: • γ-Fe{sub 2}O{sub 3} nanoparticles were synthesized by chemical induced transition. • CoCl{sub 2} modified nanoparticles were prepared by additional Co(NO{sub 3}){sub 2} during synthesization. • CoFe{sub 2}O{sub 4} modified nanoparticles were prepared by additional Co(NO{sub 3}){sub 2} and NaOH. • The magnetism of the nanoparticles is related to the grain size.

  1. Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method

    Science.gov (United States)

    Kashi, Tahereh Sadat Jafarzadeh; Eskandarion, Solmaz; Esfandyari-Manesh, Mehdi; Marashi, Seyyed Mahmoud Amin; Samadi, Nasrin; Fatemi, Seyyed Mostafa; Atyabi, Fatemeh; Eshraghi, Saeed; Dinarvand, Rassoul

    2012-01-01

    Background Low drug entrapment efficiency of hydrophilic drugs into poly(lactic-co-glycolic acid) (PLGA) nanoparticles is a major drawback. The objective of this work was to investigate different methods of producing PLGA nanoparticles containing minocycline, a drug suitable for periodontal infections. Methods Different methods, such as single and double solvent evaporation emulsion, ion pairing, and nanoprecipitation were used to prepare both PLGA and PEGylated PLGA nanoparticles. The resulting nanoparticles were analyzed for their morphology, particle size and size distribution, drug loading and entrapment efficiency, thermal properties, and antibacterial activity. Results The nanoparticles prepared in this study were spherical, with an average particle size of 85–424 nm. The entrapment efficiency of the nanoparticles prepared using different methods was as follows: solid/oil/water ion pairing (29.9%) > oil/oil (5.5%) > water/oil/water (4.7%) > modified oil/water (4.1%) > nano precipitation (0.8%). Addition of dextran sulfate as an ion pairing agent, acting as an ionic spacer between PEGylated PLGA and minocycline, decreased the water solubility of minocycline, hence increasing the drug entrapment efficiency. Entrapment efficiency was also increased when low molecular weight PLGA and high molecular weight dextran sulfate was used. Drug release studies performed in phosphate buffer at pH 7.4 indicated slow release of minocycline from 3 days to several weeks. On antibacterial analysis, the minimum inhibitory concentration and minimum bactericidal concentration of nanoparticles was at least two times lower than that of the free drug. Conclusion Novel minocycline-PEGylated PLGA nanoparticles prepared by the ion pairing method had the best drug loading and entrapment efficiency compared with other prepared nanoparticles. They also showed higher in vitro antibacterial activity than the free drug. PMID:22275837

  2. Preparation and characterization of iron oxide (Fe3O4) nanoparticles coated with polyvinylpyrrolidone/polyethylenimine through a facile one-pot deposition route

    Science.gov (United States)

    Karimzadeh, Isa; Aghazadeh, Mustafa; Ganjali, Mohammad Reza; Doroudi, Taher; Kolivand, Peir Hossein

    2017-07-01

    In this article, we report the electrochemical synthesis and simultaneous in situ coating of magnetic iron oxide nanoparticles (MNPs) with polyvinylpyrrolidone (PVP) and polyethylenimine (PEI). The cathodic deposition was carried out through electro-generation of OH- on the surface of cathode. An aqueous solution of Fe(NO3)3·9H2O (3.4 g/L) and FeCl2·4H2O (1.6 g/L) was used as the deposition bath. The electrochemical precipitation experiments were performed in the direct current mode under a 10 mA cm-2 current density for 30 min. Polymer coating was performed in an identical deposition bath containing of 0.5 g PVP and 0.5 g PEI. The deposited uncoated and PVP-PEI coated MNPs were characterized through powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), vibrating sample magnetometer (VSM), and field-emission scanning and transmission electron microscopies (FE-SEM and TEM). Structural XRD and IR analyses revealed both samples to be composed of pure crystalline magnetite (Fe3O4). Morphological observations through FE-SEM and TEM proved the product to be spherical nanoparticles in the range of 10-15 nm. The presence of two coating polymers (i.e. PVP and PEI) on the surface of the electro-synthesized MNPs was proved by FTIR and DLS results. The percentage of the polymer coating (31.8%) on the MNPs surface was also determined based on DSC-TGA data. The high magnetization value, coercivity and remanence values measured by VSM indicated the superparamagnetic nature of both prepared MNPs. The obtained results confirmed that the prepared Fe3O4 nanoparticles had suitable physico-chemical and magnetic properties for biomedical applications.

  3. Graphene nanosheets preparation using magnetic nanoparticle assisted liquid phase exfoliation of graphite: The coupled effect of ultrasound and wedging nanoparticles.

    Science.gov (United States)

    Hadi, Alireza; Zahirifar, Jafar; Karimi-Sabet, Javad; Dastbaz, Abolfazl

    2018-06-01

    This study aims to investigate a novel technique to improve the yield of liquid phase exfoliation of graphite to graphene sheets. The method is based on the utilization of magnetic Fe 3 O 4 nanoparticles as "particle wedge" to facilitate delamination of graphitic layers. Strong shear forces resulted from the collision of Fe 3 O 4 particles with graphite particles, and intense ultrasonic waves lead to enhanced exfoliation of graphite. High quality of graphene sheets along with the ease of Fe 3 O 4 particle separation from graphene solution which arises from the magnetic nature of Fe 3 O 4 nanoparticles are the unique features of this approach. Initial graphite flakes and produced graphene sheets were characterized by various methods including field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Raman spectroscopy, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Zeta potential analysis. Moreover, the effect of process factors comprising initial graphite concentration, Fe 3 O 4 nanoparticles concentration, sonication time, and sonication power were investigated. Results revealed that graphene preparation yield and the number of layers could be manipulated by the presence of magnetic nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Synthesis of molybdenum oxide (MoO3) nanoparticles by hydrolysis method

    International Nuclear Information System (INIS)

    Alfons, M.; Manoj, V.; Karthika, M.; Karn, R.K.; John Bosco Balaguru, R.; Jeyadheepan, K.; Pandiyan, S.K.; Boomadevi, S.

    2013-01-01

    A pure crystalline MoO 3 nanoparticles were synthesized using Ammonium molybdate (NH 4 ) 6 Mo 7 O 24. 4H 2 O precursor and sodium carboxymethyl cellulose (CMC) capping agent. Various reaction parameters such as the additive/Mo molar ratio and temperature of the synthesis media were optimized to analyze the morphology and size of the nanoparticles. The prepared nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Scanning Electron Microscopy (FESEM). (author)

  5. O3 Nanoparticles

    KAUST Repository

    Wang, Juan

    2016-11-16

    Ti2O3 nanoparticles with high performance of photothermal conversion are demonstrated for the first time. Benefiting from the nanosize and narrow-bandgap features, the Ti2O3 nanoparticles possess strong light absorption and nearly 100% internal solar–thermal conversion efficiency. Furthermore, Ti2O3 nanoparticle-based thin film shows potential use in seawater desalination and purification.

  6. Photoluminescent properties of ZnS nanoparticles prepared by electro-explosion of Zn wires

    International Nuclear Information System (INIS)

    Goswami, Navendu; Sen, P.

    2007-01-01

    We study the photoluminescent properties of ZnS nanoparticles without the influence of dopants or magnetic impurities. The ZnS nanoparticles reported in this case were synthesized by a novel method of electro-explosion of wire (EEW). The nanoparticles were prepared employing electro-explosion of pure zinc wires in a cell filled with sulfide ions to produce a free-standing compound ZnS semiconductor. To investigate the structural and optical properties, these nanoparticles were characterized by X-ray powder diffraction (XRD), atomic force microscopy (AFM), UV-visible and photoluminescence (PL) spectroscopy. Consistent with the enhancement of the PL intensity of the 443 nm peak due to deep blue emission of ZnS particles, the XRD of the nanoparticles reveals a hexagonal phase of ZnS nanocrystallites prepared by our novel synthesis technique

  7. Preparation of poly (alkylcyanoacrylate) nanoparticles by polymerization of water-free microemulsions

    DEFF Research Database (Denmark)

    Krauel, Karen; Graf, Anja; Hook, Sarah M

    2006-01-01

    designated as droplet, bicontinuous or solution type microemulsions using conductivity, viscosity and self-diffusion NMR. Nanoparticles were prepared by polymerization of selected microemulsions with ethyl-2-cyanoacrylate and the morphology of the particles was investigated. Addition of monomer to all types...... that polymerization is expected to occur at a water-oil interface by base-catalysed polymerization. It would appear that propylene glycol is sufficiently nucleophilic to initiate the polymerization. The use of water-free microemulsions as templates for the preparation of poly (alkylcyanoacrylate) nanoparticles opens...

  8. Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides

    International Nuclear Information System (INIS)

    Silva, V.A.J.; Andrade, P.L.; Silva, M.P.C.; Bustamante D, A.; De Los Santos Valladares, Luis; Albino Aguiar, J.

    2013-01-01

    In this work we report the preparation of fucan-coated magnetite (Fe 3 O 4 ) nanoparticles by the co-precipitation method. These nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Mössbauer spectroscopy and magnetic measurements. The nanoparticles showed quasi-spherical morphology with mean sizes around 10 nm. XRD and FT-IR confirmed the functionalization of the Fe 3 O 4 nanoparticles with the fucan polysaccharide. Room temperature magnetization measurements and Mössbauer spectroscopy showed that the nanoparticles exhibited superparamagnetic behavior at 300 K and the magnetic properties of the Fe 3 O 4 are partly screened by the coating preventing aggregation. - Highlights: • Syntheses of fucan-coated Fe 3 O 4 nanoparticles were made by co-precipitation method. • The efficiency of polysaccharide coated was analyzed by XRD and FT-IR. • The magnetic nanoparticles mean size was 10–20 nm. • The fucan-coated magnetite nanoparticles showed superparamagnetic behavior

  9. Preparation and characterization of Ag-doped In2O3 nanoparticles gas sensor

    Science.gov (United States)

    Anand, Kanica; Kaur, Jasmeet; Singh, Ravi Chand; Thangaraj, Rengasamy

    2017-08-01

    Pure and Ag-doped In2O3 nanoparticles are synthesized by the co-precipitation method and are characterized by X-ray diffraction, transmission electron microscopy and photoluminescence spectroscopy. Gas sensing properties of the sensors has been investigated towards methanol, ethanol, acetone and LPG at different operating temperatures. It is found that the sensor response magnitude of the 3% Ag-doped In2O3 nanoparticles sensors is higher to 50 ppm of ethanol at 300 °C, to acetone at 350 °C and to LPG at 400 °C. This is mainly attributed to the large number of oxygen vacancies and defects in doped sensors as corroborated by the photoluminescence studies.

  10. Preparation and characterization of polymeric and lipid nanoparticles of pilocarpine HCl for ocular application.

    Science.gov (United States)

    Lütfi, Genç; Müzeyyen, Demirel

    2013-01-01

    Pilocarpine is used topically in the treatment of glaucoma. Various studies were performed to improve the bioavailability and prolong the residence time of drugs in ocular drug delivery. Drug loaded polymeric and lipid nanoparticles offer several favourable biological properties, such as biodegradability, nontoxicity, biocompatibility and mucoadhesiveness. Therefore, preparing positively-charged pilocarpine HCl-loaded polymeric and lipid nanoparticles was the purpose of this study. Nanoparticles were prepared by quasi-emulsion solvent evaporation technique. The non-biodegradable positively-charged polymer Eudragit(®) RS 100 and semi-solid lipid excipient Gelucire(®) 44/14 were used as a vehicle, the cationic lipid octadecylamine was used as a cationic agent. The formulations were evaluated in terms of particle size, size distribution, zeta potential measurement, thermal behavior (Differential Scanning Calorimetry DSC), entrapment efficacy and pH. Characterizations of nanoparticles were analyzed during the storage period of 6 months for stability tests. Polymeric and lipid nanoparticles could be prepared successfully promising their use for ophthalmic delivery.

  11. Facile pyrolysis preparation of rosin-derived biochar for supporting silver nanoparticles with antibacterial activity

    DEFF Research Database (Denmark)

    Huang, Jian Fei; Shi, Qing Shan; Feng, Jin

    2017-01-01

    -step preparation process and a low loading capacity of nanoparticles. A facile preparation route for the preparation of antibacterial metallic nanocomposites would be especially beneficial for industrial fabrication. In this study, we provided a facile strategy for the preparation of a rosin-derived biochar matrix...... loaded with silver nanoparticles (Ag NPs) as the fillers. The results demonstrated that the preparation of these rosin-derived biochar silver nanocomposites (Rc/Ag nanocomposites) was achieved by a rapid pyrolysis process and a large amount of Ag NPs were in-situ obtained and homogeneously dispersed...

  12. Adsorption of Reactive Red 2 from aqueous solutions using Fe{sub 3}O{sub 4} nanoparticles prepared by co-precipitation in a rotating packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chia-Chang, E-mail: higee@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Taiwan, ROC (China); Lin, Yu-Shung [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Taiwan, ROC (China); Ho, Jui-Min [Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan, ROC (China)

    2016-05-05

    A rotating packed bed (RPB) that was operated at a rotating speed of 1800 rpm with liquid flow rates of 0.5 L/min was used to prepare Fe{sub 3}O{sub 4} nanoparticles (RPB-Fe{sub 3}O{sub 4}). The RPB-Fe{sub 3}O{sub 4} had a smaller average size and a narrower size distribution than the Fe{sub 3}O{sub 4} that was obtained from Aldrich, and so had a greater capacity to adsorb RR2. The effects of pH, Fe{sub 3}O{sub 4} dosage, initial RR2 concentration, and temperature on the adsorption of RR2 were examined experimentally using RPB-Fe{sub 3}O{sub 4}. A thermodynamic study revealed that the adsorption process was spontaneous and exothermic. The adsorption behavior was more consistent with the Langmuir model than with the Freundlich model, and the maximum adsorption capacity was 97.8 mg/g. At pH 3, 25 °C, an Fe{sub 3}O{sub 4} dosage of 0.30 g/L, and an initial RR2 concentration of 10 mg/L, RPB-Fe{sub 3}O{sub 4} effectively adsorbed RR2 with a removal efficiency of approximately 95% in 10 min. These promising results clearly reveal the potential of RPB-Fe{sub 3}O{sub 4} for use in the effective removal of dyes from aqueous solutions. - Highlights: • A novel magnetic adsorbent (Fe{sub 3}O{sub 4} nanoparticles) was prepared in RPB. • 95% removal of RR2 was achieved in 10 min using Fe{sub 3}O{sub 4} nanoparticles. • This investigation provides a novel treatment of dye-contaminated wastewater.

  13. Immobilized WO3 nanoparticles on graphene oxide as a photo-induced antibacterial agent against UV-resistant Bacillus pumilus

    Science.gov (United States)

    Hosseini, Farshad; Rasuli, Reza; Jafarian, Vahab

    2018-04-01

    We present the antibacterial and photo-catalytic activity of immobilized WO3 nanoparticles on graphene oxide sheets. WO3 nanoparticles were immobilized on graphene oxide using the arc discharge method in arc currents of 5, 20, 40 and 60 A. Tauc plots of the UV-visible spectra show that the band gap of the prepared samples decreases (to ~2.7 eV) with respect to the WO3 nanoparticles. Photo-catalytic activity was examined by the degradation of rhodamine B under ultra-violet irradiation and the results show that the photo-catalytic activity of WO3 nanoparticles is increased by immobilizing them on graphene oxide sheets. In addition, the photo-degradation yield of the samples prepared by the 5 A arc current is 84% in 120 min, which is more than that of the other samples. The antibacterial activity of the prepared samples was studied against Bacillus pumilus (B. pumilus) bacteria, showing high resistance to ultra-violet exposure. Our results show that the bare and immobilized WO3 nanoparticles become more active under UV irradiation and their antibacterial properties are comparable with Ag nanoparticles. Besides this, the results show that although the photo-catalytic activity of the post-annealed samples at 500 °C is less than the as-prepared samples, it is, however, more active against B. pumilus bacteria under UV irradiation.

  14. Structural, Optical, Morphological and Microbial Studies on SnO₂ Nanoparticles Prepared by Co-Precipitation Method.

    Science.gov (United States)

    Arularasu, M V; Anbarasu, M; Poovaragan, S; Sundaram, R; Kanimozhi, K; Magdalane, C Maria; Kaviyarasu, K; Thema, F T; Letsholathebe, D; Mola, Genene T; Maaza, M

    2018-05-01

    Nanoparticles of tin oxide (SnO2) powders were prepared by co-precipitation method at 500 °C, 700 °C and 900 °C temperature. The sintered SnO2 nanoparticles, structural, optical, magnetic, morphological properties and microbial activity have been studied. XRD studies reveals that sintered powder which exhibits tetragonal crystal structure and both crystallinity as well as crystal size increase with increase in temperature. The morphological studies reveal randomly arranged grains with compact nature grain size increases with sintering temperature. The compositional analyses of SnO2 nanoparticles have been studied using X-ray photoelectron spectroscopy analysis. The optical band gap values of SnO2 nanoparticles were calculated to be about 4.3 eV in the temperature 500 °C, comparing with that of the bulk SnO2 3.78 eV, by optical absorption measurement. Room temperature M-H curve for pure SnO2 nanoparticles exhibits ferromagnetic behaviour. The tin oxide nanoparticles are acted as potential candidate material for bacterial and fungal activity.

  15. Preparation of gold nanoparticles and determination of their particles size via different methods

    International Nuclear Information System (INIS)

    Iqbal, Muhammad; Usanase, Gisele; Oulmi, Kafia; Aberkane, Fairouz; Bendaikha, Tahar; Fessi, Hatem; Zine, Nadia; Agusti, Géraldine; Errachid, El-Salhi; Elaissari, Abdelhamid

    2016-01-01

    Graphical abstract: Preparation of gold nanoparticles via NaBH_4 reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH_4 reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be prepared in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH_4) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.

  16. Preparation of Calcium Phosphate/pDNA Nanoparticles for Exogenous Gene Delivery by Co-Precipitation Method: Optimization of Formulation Variables Using Box-Behnken Design.

    Science.gov (United States)

    Li, Wenpan; Zhang, Xirui; Jing, Shasha; Xin, Xiu; Chen, Kang; Chen, Dawei; Hu, Haiyang

    2017-08-01

    This research focused on optimizing the preparations of pDNA-loaded calcium phosphate (CaP) nanoparticles by employing a 3-factor, 3-level Box-Behnken design. Results indicated that a Ca/P ratio of 189.56, pH of 7.82, and a stirring speed of 528.83 rpm were the optimum conditions for preparation of the nanoparticles. The size of the optimized CaP/pDNA nanoparticles was 61.3 ± 3.64 nm, with a polydispersity index of 0.341 and an encapsulation efficiency of up to 92.11%. The optimized CaP/pDNA nanoparticles had high transfection efficiency and demonstrated good biocompatibility in vitro. Therefore, the Box-Behnken design method was successful in providing desirable CaP nanoparticle pDNA delivery systems by optimizing the experimental factors. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Inulin hydrolysis by inulinase immobilized covalently on magnetic nanoparticles prepared with wheat gluten hydrolysates.

    Science.gov (United States)

    Torabizadeh, Homa; Mahmoudi, Asieh

    2018-03-01

    Inulinase can produce a high amount of fructose syrup from inulin in a one-step enzymatic process. Inulinase from Aspergillus niger was immobilized covalently on Fe 3 O 4 magnetic nanoparticles functionalized with wheat gluten hydrolysates (WGHs). Wheat gluten was enzymatically hydrolyzed by two endopeptidases Alcalase and Neutrase and related nanoparticles were prepared by desolvation method. Magnetite nanoparticles were coated with WGHs nanoparticles and then inulinase was immobilized onto it using glutaraldehyde as crosslinking agent. Parallel studies employing differential scanning calorimetry and field emmision scanning electron microscopy were carried out to observe functional and structural variations in free inulinase during immobilization. Optimum temperature of immobilized inulinase was increased, while, pH and K m values were decreased compared to free enzyme. Overall, a 12.3 folds rise was detected in enzyme half-life value after Immobilization at 75 °C and enzyme preserved 70% of its initial activity after 12 cycles of hydrolysis with 75% of enzyme loading.

  18. Re-dispersible Li+ and Eu3+ co-doped CdS nanoparticles ...

    Indian Academy of Sciences (India)

    Also, it can be used as sensor for drug delivery in our body [12,13]. In the present work, we prepare re-dispersible CdS, Li+- and Eu3+-doped CdS nanoparticles in organic solvent by urea hydrolysis at 170◦C and their lumines- cence properties are studied. We propose the mechanism of re-dispersion of CdS nanoparticles ...

  19. Bioinspired preparation of alginate nanoparticles using microbubble bursting.

    Science.gov (United States)

    Elsayed, Mohamed; Huang, Jie; Edirisinghe, Mohan

    2015-01-01

    Nanoparticles are considered to be one of the most advanced tools for drug delivery applications. In this research, alginate (a model hydrophilic polymer) nanoparticles 80 to 200 nm in diameter were obtained using microbubble bursting. The natural process of bubble bursting occurs through a number of stages, which consequently produce nano- and microsized droplets via two main production mechanisms, bubble shell disintegration and a jetting process. In this study, nano-sized droplets/particles were obtained by promoting the disintegrating mechanism and suppressing (limiting) the formation of larger microparticles resulting from the jetting mechanism. A T-junction microfluidic device was used to prepare alginate microbubbles with different sizes in a well-controlled manner. The size of the bubbles was varied by controlling two processing parameters, the solution flow rate and the bubbling pressure. Crucially, the bubble size was found to be the determining factor for inducing (or limiting) the bubble shell disintegration mechanism and the size needed to promote this process was influenced by the properties of the solution used for preparing the bubbles, particularly the viscosity. The size of alginate nanoparticles produced via the disintegration mechanism was found to be directly proportional to the viscosity of the alginate solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Investigation of optical, electrical and magnetic properties of hexagonal NiTiO3 nanoparticles prepared via ultrasonic dispersion techniques for high power applications

    Science.gov (United States)

    Karmakar, Subrata; Manna, Ashis Kumar; Varma, Shikha; Behera, Dhrubananda

    2018-05-01

    Nickel titanate (NiTiO3) nanoparticles were synthesized by ultrasonic dispersion techniques using ethylene glycol monoetheline ether as a solvent. The x-ray diffraction (XRD), Raman, transmission electron micrographs (TEM) exhibit pure phase formation, fine hexagonal nanostructure, agglomerated and inhomogeneous grain growth in nm range (26.5 nm) of as-prepared NiTiO3 nanoparticles. Raman studies on NiTiO3 nanoparticles exposed almost all the active vibrational modes (5Ag + 5Eg) of its crystalline structure. A wide optical band gap (3.02 eV) was observed from UV-DRS spectra which arises from the hybridized Ni- 3d and O- 2p orbitals to the Ti -3d orbitals. The characteristics vibration bands of M-O (Ni–O, and Ti–O) were also analyzed using Fourier Transform Infrared spectrum. The antiferromagnetic (AFM) properties were examined from M-H loop with coercive field 75.02 ± 0.05 Oe and saturation magnetization 0.418 ± 0.05 emu gm‑1. respectively. The dielectrics constant and loss decays with high frequency evaluation and Maxwell–Wagner type of polarization were responsible for its dielectric behavior. The total conductivity was explained using NNH and VRH hopping relaxation model and dc activation energy (0.81 eV) were calculated from Arrhenius plot.

  1. Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration

    International Nuclear Information System (INIS)

    Sun, Yanjuan; Xiong, Ting; Ni, Zilin; Liu, Jie; Dong, Fan; Zhang, Wei; Ho, Wing-Kei

    2015-01-01

    Graphical abstract: Ag/g-C 3 N 4 nanocomposites were prepared via a facile method for enhanced photocatalytic NO x removal due to surface plasmon resonance of Ag. - Highlights: • The Ag/g-C 3 N 4 nanocomposites were prepared using urea as the precursor. • The Ag/g-C 3 N 4 nanocomposites were applied in removal of NO x in air. • The Ag nanoparticles enhanced the photocatalytic activity of g-C 3 N 4 . • The surface plasmon resonance of Ag played a key role in photocatalysis. - Abstract: In order to overcome the intrinsic drawback of pristine g-C 3 N 4 , we prepared g-C 3 N 4 nanosheets with enhanced photocatalytic performance by Ag nanoparticles decoration using urea as the precursor. It was revealed that the monodispersed Ag nanoparticles were deposited on the surface of g-C 3 N 4 nanosheets. The Ag/g-C 3 N 4 nanocomposites were applied in removal of NO x in air under visible light irradiation. The results showed that the decoration of Ag nanoparticles not only enhanced the photocatalytic activity of g-C 3 N 4 nanosheets, but also benefited the oxidation of NO to final products. The increased visible light absorption arising from the surface plasmon resonance of Ag and improved separation and transfer of photoinduced carriers over Ag/g-C 3 N 4 composites were demonstrated by the UV–vis diffuse reflectance spectra and photoluminescence spectra, respectively. It was therefore proposed that the enhanced photocatalytic activity of Ag/g-C 3 N 4 composites could be attributed to the extended light response range and enhanced charge separation due to the introduction of Ag nanoparticles.

  2. Poly(vinylpyrrolidone)/silver nanoparticles: preparation and characterization; Nanoparticulas de prata/poli(vinilpirrolidona): obtencao e caracterizacao

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, P.F.; Goncalves, M.C. [Instituto de Quimica - UNICAMP, Campinas, SP (Brazil)], e-mail: patandrade@iqm.unicamp.br

    2010-07-01

    In this work silver nanoparticles were prepared by chemical reduction method using PVP as dispersant agent. The formation of silver nanoparticles was investigated by UV-vis optical spectroscopy and X-ray diffraction. FT-IR spectroscopy confirmed the formation of Ag/PVP complex. The transmission electron microscopy images indicated that the concentration of Ag{sup +} precursor influenced the nanoparticles dispersion and size distribution significantly. The results indicated that dispersed nanoparticles with uniform size distribution can be prepared by this methodology to obtain polymeric nano composites. (author)

  3. Preparation of manganese-based perovskite nanoparticles using a ...

    Indian Academy of Sciences (India)

    In addition, the heating ability of the LSMTO nanoparticles was evaluated under a safe alternating magnetic field used in magnetic hyperthermia therapy. The results showed the fast magneto-temperature response of the prepared samplewith sufficient heat loss at the therapeutic temperature range, indicating the LSMTO ...

  4. Antifungal activity of gold nanoparticles prepared by solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Manzoor, Nikhat; Ahmad, Aijaz [Department of Biosciences, Jamia Millia Islamia, New Delhi 110025 (India); Ahmed, Jahangeer [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Al-Shihri, Ayed S. [Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004 (Saudi Arabia)

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.

  5. Antifungal activity of gold nanoparticles prepared by solvothermal method

    International Nuclear Information System (INIS)

    Ahmad, Tokeer; Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna; Manzoor, Nikhat; Ahmad, Aijaz; Ahmed, Jahangeer; Al-Shihri, Ayed S.

    2013-01-01

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m 2 /g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m 2/ g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl 2 and NaBH 4 as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl 2 , however, NaBH 4 produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m 2 /g for 7 nm and 269 m 2 /g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H + efflux of the Candida species than 15 nm sized gold nanoparticles.

  6. Gold-coated iron nanoparticles in transparent Si{sub 3}N{sub 4} matrix thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Marcos, J. [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Madrid (Spain); Cespedes, E. [Keele University, Institute for Science and Technology in Medicine, Guy Hilton Research Centre (United Kingdom); Jimenez-Villacorta, F. [Northeastern University, Department of Chemical Engineering (United States); Munoz-Martin, A. [Universidad Autonoma de Madrid, Centro de Microanalisis de Materiales (Spain); Prieto, C., E-mail: cprieto@icmm.csic.es [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Madrid (Spain)

    2013-06-15

    A new method to prepare thin films containing gold-coated iron nanoparticles is presented. The ternary Fe-Au-Si{sub 3}N{sub 4} system prepared by sequential sputtering has revealed a progressive variation of microstructures from Au/Fe/Au/Si{sub 3}N{sub 4} multilayers to iron nanoparticles. Microstructural characterization by transmission electron microscopy, analysis of the magnetic properties and probing of the iron short-range order by X-ray absorption spectroscopy confirm the existence of a gold-coated iron nanoparticles of 1-2 nm typical size for a specific range of iron and gold contents per layer in the transparent silicon nitride ceramic matrix.

  7. The preparation, physicochemical properties, and the cohesive energy of liquid sodium containing titanium nanoparticles

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Itami, Toshio; Ara, Kuniaki

    2012-01-01

    Liquid sodium containing titanium nanoparticles (LSnanop) of 10-nm diameter was prepared by dispersing titanium nanoparticles (2 at.% Ti) into liquid sodium with the addition of stirring and ultrasonic sound wave. The titanium nanoparticles themselves were prepared by the vapor deposition method. This new liquid metal, LSnanop, shows a remarkable stability due to the Brownian motion of nanoparticles in liquid sodium medium. In addition, the difference of measured heat of reaction to water between this LSnanop and liquid sodium indicates the existence of cohesive energy between the liquid sodium medium and dispersed titanium nanoparticles. The origin of the cohesive energy, which serves to stabilize this new liquid metal, was explained by the model of screened nanoparticles in liquid sodium. In this model, negatively charged nanoparticles with transferred electrons from liquid sodium are surrounded by the positively charged screening shell, which may inhibit the gathering of nanoparticles by the “Coulombic repulsion coating.” The atomic volume of LSnanop shows the shrinkage from the linear law, which also suggests the existence of cohesive energy. The viscosity of LSnanop is almost the same as that of liquid sodium. This behavior was explained by the Einstein equation. The surface tension of LSnanop is 17 % larger than that of liquid sodium. The cohesive energy and the negative adsorption may be responsible to this increase. Titanium nanoparticles in liquid sodium seem to be free from the Coulomb fission. This new liquid metal containing nanoparticles suggests the possibility to prepare various stable suspensions with new properties.

  8. Magnetic properties of La0.7Ca0.3MnO3 nanoparticles prepared by reactive milling

    International Nuclear Information System (INIS)

    Do Hung Manh; Nguyen Chi Thuan; Pham Thanh Phong; Le Van Hong; Nguyen Xuan Phuc

    2009-01-01

    La 0.7 Ca 0.3 MnO 3 (LCMO) nanoparticles were synthesized by reactive milling in ambient conditions. Magnetic properties of LCMO single-phase nanocrystalline particles were studied. LCMO nanoparticles exhibit superparamagnetism with blocking temperature that decreases in the logarithmic function as increasing applied magnetic field. Besides, the blocking temperature decreases as increasing milling time from 8 h to 16 h. The temperature dependence of the saturation magnetization shows a strong collective excitation due to the spin wave that depends on temperature in form T α with α = 1.7, which slightly deviates from the Bloch law.

  9. Preparation of EuSe nanoparticles from Eu(III) complex containing selenides

    International Nuclear Information System (INIS)

    Adachi, Taka-aki; Tanaka, Atsushi; Hasegawa, Yasuchika; Kawai, Tsuyoshi

    2008-01-01

    The EuSe nanoparticles were prepared by the thermal reduction of Europium nitrate with new organic selenium compound, tetraphenylphosphonium diphenylphosphinediselenide (PPh 4 )(Se 2 P(C 6 H 5 ) 2 ), for the first time. EuSe nanoparticles were identified by the X-ray diffraction (XRD), the transmission electron microscope (TEM) and the energy dispersive X-ray spectroscopy (EDX) measurements. The average size of the EuSe nanoparticles was found to be 19 nm. The energy gap in EuSe nanoparticles of 19 nm was estimated by edge of absorption band, giving the energy gap of 1.86 eV

  10. Preparation of β-cyclodextrin-gold nanoparticles modified open tubular column for capillary electrochromatographic separation of chiral drugs.

    Science.gov (United States)

    Zhou, Li; Jiang, Shenmeng; Zhang, Xue; Fang, Linlin; Guo, Xingjie

    2018-04-01

    In this paper, β-cyclodextrin (β-CD) modified gold nanoparticles (AuNPs) coated open tubular column (OT column) was prepared for capillary electrochromatography. The open tubular column was constructed through self-assembly of gold nanoparticles on 3-mercaptopropyl-trimethoxysilane (MPTMS) prederivatized capillary and subsequent modification of thiols β-cyclodextrin (SH-β-CD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet visible spectroscopy were carried out to characterize the prepared open tubular column and synthesized gold nanoparticles. By comparing different coating times of gold nanoparticles and thiols β-cyclodextrin, we got the optimal conditions for preparing the open tubular column. Also, the separation parameters were optimized including buffer pH, buffer concentration and applied voltage. Separation effectiveness of open tubular column was verified by the separation of four pairs of drug enantiomers including bifonazole, fexofenadine, omeprazole and lansoprazole, and satisfactory separation results were achieved for these analytes studied. In addition, the column showed good stability and repeatability. The relative standard deviation values less than 5% were obtained through intra-day, inter-day, and column-to-column investigations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sustainable preparation of supported metal nanoparticles and their applications in catalysis.

    Science.gov (United States)

    Campelo, Juan M; Luna, Diego; Luque, Rafael; Marinas, José M; Romero, Antonio A

    2009-01-01

    Metal nanoparticles have attracted much attention over the last decade owing to their unique properties as compared to their bulk metal equivalents, including a large surface-to-volume ratio and tunable shapes. To control the properties of nanoparticles with particular respect to shape, size and dispersity is imperative, as these will determine the activity in the desired application. Supported metal nanoparticles are widely employed in catalysis. Recent advances in controlling the shape and size of nanoparticles have opened the possibility to optimise the particle geometry for enhanced catalytic activity, providing the optimum size and surface properties for specific applications. This Review describes the state of the art with respect to the preparation and use of supported metal nanoparticles in catalysis. The main groups of such nanoparticles (noble and transition metal nanoparticles) are highlighted and future prospects are discussed.

  12. Colloidally stable surface-modified iron oxide nanoparticles: Preparation, characterization and anti-tumor activity

    Energy Technology Data Exchange (ETDEWEB)

    Macková, Hana [Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Horák, Daniel, E-mail: horak@imc.cas.cz [Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Donchenko, Georgiy Viktorovich; Andriyaka, Vadim Ivanovich; Palyvoda, Olga Mikhailovna; Chernishov, Vladimir Ivanovich [Palladin Institute of Biochemistry, NASU, 9 Leontovich St., 01601 Kiev (Ukraine); Chekhun, Vasyl Fedorovich; Todor, Igor Nikolaevich [R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, 45 Vasylkivska St., 03022 Kiev (Ukraine); Kuzmenko, Oleksandr Ivanovich [Palladin Institute of Biochemistry, NASU, 9 Leontovich St., 01601 Kiev (Ukraine)

    2015-04-15

    Maghemite (γ-Fe{sub 2}O{sub 3}) nanoparticles were obtained by co-precipitation of Fe(II) and Fe(III) chlorides and subsequent oxidation with sodium hypochlorite and coated with poly(N,N-dimethylacrylamide-co-acrylic acid) [P(DMAAm-AA)]. They were characterized by a range of methods including transmission electron microscopy (TEM), elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The effect of superparamagnetic P(DMAAm-AA)-γ-Fe{sub 2}O{sub 3} nanoparticles on oxidation of blood lipids, glutathione and proteins in blood serum was detected using 2-thiobarbituric acid and the ThioGlo fluorophore. Finally, mice received magnetic nanoparticles administered per os and the antitumor activity of the particles was tested on Lewis lung carcinoma (LLC) in male mice line C57BL/6 as an experimental in vivo metastatic tumor model; the tumor size was measured and the number of metastases in lungs was determined. Surface-modified γ-Fe{sub 2}O{sub 3} nanoparticles showed higher antitumor and antimetastatic activities than commercial CuFe{sub 2}O{sub 4} particles and the conventional antitumor agent cisplatin. - Highlights: • Maghemite nanoparticles were prepared and characterized. • Poly(N,N-dimethylacrylamide-co-acrylic acid) coating was synthetized. • Blood lipid, glutathione and protein peroxidation/oxidation was determined. • Antitumor effect of coated particles on Lewis lung carcinoma in mice was observed.

  13. Influence of Al sub 2 O sub 3 nanoparticles on the thermal stability of ultra-fine grained copper prepared by high pressure torsion

    CERN Document Server

    Cizek, J; Kuzel, R; Islamgaliev, R K

    2002-01-01

    Ultra-fine grained (UFG) Cu (grain size 80 nm) containing 0.5 wt.% Al sub 2 O sub 3 nanoparticles (size 20 nm) was prepared by high pressure torsion (HPT). Positron lifetime spectroscopy was employed to characterize the microstructure of this material, especially with respect to types and concentration of lattice defects. The evolution of microstructure with increasing temperature was studied by positron lifetime spectroscopy and x-ray diffraction measurements. The thermal stability of the Cu + 0.5 wt.% Al sub 2 O sub 3 nanocomposite was compared with that of pure UFG Cu prepared by the same technique. The processes taking place during thermal recovery of the initial nanoscale structure in both studied materials are described. (author)

  14. Effect of pH on particles size and gas sensing properties of In_2O_3 nanoparticles

    International Nuclear Information System (INIS)

    Anand, Kanica; Thangaraj, Rengasamy; Singh, Ravi Chand

    2016-01-01

    In this work, indium oxide (In_2O_3) nanoparticles have been synthesized by co-precipitation method and the effect of pH on the structural and sensor response values of In_2O_3 nanoparticles has been reported. X-ray diffraction pattern (XRD) revealed the formation of cubic phase In_2O_3 nanoparticles. FESEM results indicate the formation of nearly spherical shape In_2O_3 nanoparticles. The band gap energy value changed with change in pH value and found to have highest value at pH 9. Indium oxide nanoparticles thus prepared were deposited as thick films on alumina substrates to act as gas sensors and their sensing response to ethanol vapors and LPG at 50 ppm was investigated at different operating temperatures. It has been observed that all sensors exhibited optimum response at 300°C towards ethanol and at 400°C towards LPG. In_2O_3 nanoparticles prepared at pH 9, being smallest in size as compared to other, exhibit highest sensor response (SR).

  15. Structural characterization and properties of YCrO3 nanoparticles ...

    Indian Academy of Sciences (India)

    2018-02-05

    Feb 5, 2018 ... C. As-prepared YCrO3 nanoparticles were characterized by various sophisticated techniques like. X-ray diffraction (XRD), transmission electron microscope, Brunauer–Emmett–Teller surface area analyzer, high frequency. LCR-meter, superconducting quantum interface device magnetometer and P–E loop ...

  16. FRET-mediated pH-responsive dual fluorescent nanoparticles prepared via click chemistry

    Science.gov (United States)

    Ouadahi, Karima; Sbargoud, Kamal; Allard, Emmanuel; Larpent, Chantal

    2012-01-01

    Herein, we report an easy preparation of azide-coated polystyrene-based nanoparticles (15 nm in diameter) and their surface functionalization via CuAAC with fluorophores in water. Resultant dual fluorescent nanoparticles coated with dansyl and pH-sensitive fluorescein moieties as the donor/acceptor FRET pair show a ratiometric response to pH upon excitation at a single wavelength.Herein, we report an easy preparation of azide-coated polystyrene-based nanoparticles (15 nm in diameter) and their surface functionalization via CuAAC with fluorophores in water. Resultant dual fluorescent nanoparticles coated with dansyl and pH-sensitive fluorescein moieties as the donor/acceptor FRET pair show a ratiometric response to pH upon excitation at a single wavelength. Electronic supplementary information (ESI) available: Experimental details and figures S1-S16 as mentioned in the text. See DOI: 10.1039/c2nr11413e

  17. Preparation of gold nanoparticles and determination of their particles size via different methods

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad; Usanase, Gisele [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Oulmi, Kafia; Aberkane, Fairouz; Bendaikha, Tahar [Laboratory of Chemistry and Environmental Chemistry(LCCE), Faculty of Science, Material Science Department, University of Batna, 05000 (Algeria); Fessi, Hatem [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Zine, Nadia [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Agusti, Géraldine [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Errachid, El-Salhi [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Elaissari, Abdelhamid, E-mail: elaissari@lagep.univ-lyon1.fr [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France)

    2016-07-15

    Graphical abstract: Preparation of gold nanoparticles via NaBH{sub 4} reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH{sub 4} reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be prepared in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH{sub 4}) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.

  18. Electrocatalytic glucose oxidation at gold and gold-carbon nanoparticulate film prepared from oppositely charged nanoparticles

    International Nuclear Information System (INIS)

    Karczmarczyk, Aleksandra; Celebanska, Anna; Nogala, Wojciech; Sashuk, Volodymyr; Chernyaeva, Olga; Opallo, Marcin

    2014-01-01

    Graphical abstract: - Highlights: • Gold nanoparticulate film electrodes were prepared by layer-by-layer method from oppositely charged nanoparticles. • Positively charged nanoparticles play dominant role in glucose oxidation in alkaline solution. • Gold and gold-carbon nanoparticulate film electrodes exhibit similar glucose oxidation current and onset potential. - Abstract: Electrocatalytic oxidation of glucose was studied at nanoparticulate gold and gold-carbon film electrodes. These electrodes were prepared by a layer-by-layer method without application of any linker molecules. Gold nanoparticles were stabilized by undecane thiols functionalized by trimethyl ammonium or carboxylate groups, whereas the carbon nanoparticles were covered by phenylsulfonate functionalities. The gold nanoparticulate electrodes were characterized by UV-vis and XPS spectroscopy, atomic force microscopy and voltammetry, before and after heat-treatment. Heat-treatment facilitates the aggregation of the nanoparticles and affects the structure of the film. The comparison of the results obtained with film electrodes prepared from gold nanoparticles with the same charge and with gold-carbon nanoparticulate electrodes, proved that positively charged nanoparticles are responsible for the high electrocatalytic activity, whereas negatively charged ones act rather as a linker of the film

  19. Melting of iron nanoparticles embedded in silica prepared by mechanical milling

    International Nuclear Information System (INIS)

    Ding, Peng; Ma, Ji; Cao, Hui; Liu, Yi; Wang, Lianwen; Li, Jiangong

    2013-01-01

    Highlights: • Melting of metallic nanoparticles was studied for some eight elements. • This slim range of materials is successfully expanded to iron. • A mechanical-milled iron–silica composite is employed. • For iron particles of 15 nm in diameter, the melting point depression is 30 K. • The measured data is in agreement with our theoretical calculations. -- Abstract: For decades, experimental studies on the size-dependent melting of metals are regretfully limited to some eight archetypal examples. In this work, to expand this slim range of materials, the melting behavior of Fe nanoparticles embedded in SiO 2 prepared by using mechanical milling are investigated. Effects of factors in sample preparation on the size, isolation and thermal stability of Fe nanoparticles are systematically studied. On this basis, the size-dependent melting of Fe is successfully traced: for Fe nanoparticles with a diameter of about 15 nm, the melting point depression is 30 °C in comparison with bulk Fe, in accordance with our recent theoretical prediction

  20. Facile synthesis of well-dispersed Bi_2S_3 nanoparticles on reduced graphene oxide and enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Chen, Yajie; Tian, Guohui; Mao, Guijie; Li, Rong; Xiao, Yuting; Han, Taoran

    2016-01-01

    Highlights: • Well-dispersed Bi_2S_3 nanoparticles on reduced graphene oxide were prepared. • Poly(sodium-p-styrenesul-fonate) can maintain Bi_2S_3 small particle size. • The prepared composites inhibit the recombination of photogenerated charges. • The prepared composites exhibited better visible light photoactivity. - Abstract: Here we present a facile method for the synthesis of highly dispersed Bi_2S_3 nanoparticles (Bi_2S_3 NPs) with an average diameter of ca. 25 ± 3 nm on the surface of reduced graphene oxide (RGO) via a poly(sodium-p-styrenesul-fonate) (PSS) asisted hydrothermal process. Such synthetic strategy can avoid excess aggregates of Bi_2S_3 nanoparticles, meanwhile from effective interfacial contact between Bi_2S_3 nanoparticles and RGO nanosheets, and inhibit the recombination of photogenerated charges. The enhanced charge transfer properties were proved by photoluminescence (PL) measurement. The obtained Bi_2S_3 NPs/RGO composites showed more significant visible light photoactivity for the degradation of 2,4-dichlorophenol and Rhodamine B than that pure Bi_2S_3 and the control sample prepared in the absence of PSS. The enhanced photocatalytic performance could be attributed to the synergistic effect of efficient separation of photogenerated electron-hole pairs, increased catalytic active sites and visible light utilization.

  1. Preparing and Characterizing Chitosan Nanoparticles Containing Hemiscorpius lepturus Scorpion Venom as an Antigen Delivery System

    Directory of Open Access Journals (Sweden)

    Mohammadpour Dounighi, N.

    2012-11-01

    Full Text Available In recent years, chitosan nanoparticles have been studied widely for protein delivery. In this study, Hemiscorpius lepturus (HL venom was encapsulated in chitosan nanoparticles. The aim of the present work was to carry out a systematic study for preparing biocompatible and biodegradable nanoparticles for loading HL scorpion venom and to evaluate their potential as an antigen delivery system. In this study, HL venom loaded chitosan nanoparticles fabricated by ionic gelation of chitosan and tripolyphosphate and the factors which may be influenced in the preparation of nanoparticles were analyzed. Also, their physicochemical properties and in vitro release behavior were studied. The optimum encapsulation efficiency and capacity were observed when the chitosan concentration and HL venom were 2mg/ml and 500µg/ml, respectively. The HL venom loaded nanoparticles were in the size range of 130-160nm (polydispersity index values of 0.423 and exhibited the positive zeta potential. Transmission electron microscope imaging showed spherical and smooth surface of nanoparticles. The profiles of the release exhibited a burst releases about 50% in the first 4 hr and then slowed down at a constant rate. The obtained results suggested that the chitosan nanoparticles prepared in this work had the potential for antigen delivery.

  2. In situ reduction of as-prepared γ-Iron Oxide Nanoparticles

    DEFF Research Database (Denmark)

    Garbus, Pelle Gorm; Ahlburg, Jakob; Christensen, Mogens

    -ray diffraction measurement. The as-prepared maghemite nanoparticles were synthesized by the continuous decomposition of solutes in supercritical hydrothermal flow synthesis [3, 4]. The reagent used was ferric ammonium citrate (C6H8O7•xFe(III)•yNH3) that under hydrothermal flow synthesis decomposes into the γ......-iron oxide Fe2O3. The reduction of maghemite to body centered cubic (BCC) iron does not go through a detectable intermediate state.1.Jensen, K.M., et al., Mechanisms for iron oxide formation under hydrothermal conditions: an in situ total scattering study. ACS nano, 2014. 8(10): p. 10704-10714.2.Andersen, H...

  3. Polycaprolactone Based Nanoparticles Loaded with Indomethacin for Anti-Inflammatory Therapy: From Preparation to Ex Vivo Study.

    Science.gov (United States)

    Badri, Waisudin; Miladi, Karim; Robin, Sophie; Viennet, Céline; Nazari, Qand Agha; Agusti, Géraldine; Fessi, Hatem; Elaissari, Abdelhamid

    2017-09-01

    This work focused on the preparation of polycaprolactone based nanoparticles containing indomethacin to provide topical analgesic and anti-inflammatory effect for symptomatic treatment of inflammatory diseases. Indomethacin loaded nanoparticles are prepared for topical application to decrease indomethacin side effects and administration frequency. Oppositely to already reported works, in this research non-invasive method has been used for the enhancement of indomethacin dermal drug penetration. Ex-vivo skin penetration study was carried out on fresh human skin. Nanoprecipitation was used to prepare nanoparticles. Nanoparticles were characterized using numerous techniques; dynamic light scattering, SEM, TEM, DSC and FTIR. Regarding ex-vivo skin penetration of nanoparticles, confocal laser scanning microscopy has been used. The results showed that NPs hydrodynamic size was between 220 to 245 nm and the zeta potential value ranges from -19 to -13 mV at pH 5 and 1 mM NaCl. The encapsulation efficiency was around 70% and the drug loading was about 14 to 17%. SEM and TEM images confirmed that the obtained nanoparticles were spherical with smooth surface. The prepared nanoparticles dispersions were stable for a period of 30 days under three temperatures of 4°C, 25°C and 40°C. In addition, CLSM images proved that obtained NPs can penetrate the skin as well. The prepared nanoparticles are submicron in nature, with good colloidal stability and penetrate the stratum corneum layer of the skin. This formulation potentiates IND skin penetration and as a promising strategy would be able to decline the side effects of IND.

  4. Simple and environmentally friendly preparation and size control of silver nanoparticles using an inhomogeneous system with silver-containing glass powder

    International Nuclear Information System (INIS)

    Mori, Yasutaka; Tagawa, Toshio; Fujita, Masanori; Kuno, Toyohiko; Suzuki, Satoshi; Matsui, Takemi; Ishihara, Masayuki

    2011-01-01

    A simple, environmentally friendly method for preparing highly size-controlled spherical silver nanoparticles was developed that involved heating a mixture of silver-containing glass powder and an aqueous solution of glucose. The stabilizing agent for silver nanoparticles was found to be caramel, which was generated from glucose when preparing the nanoparticles. The particle size was independent of the reaction time, but it increased proportionally with the square root of the glucose concentration in the range 0.25–8.0 wt% (corresponding to particle sizes of 3.48 ± 1.83 to 20.0 ± 2.76 nm). Difference of the generation mechanism of silver nanoparticles between this inhomogeneous system and a system in which Ag + was homogeneously dispersed was discussed.

  5. Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method.

    Science.gov (United States)

    Gavrilović, Tamara V; Jovanović, Dragana J; Lojpur, Vesna; Dramićanin, Miroslav D

    2014-02-27

    Synthesis of Eu(3+)- and Er(3+)/Yb(3+)-doped GdVO4 nanoparticles in reverse micelles and their multifunctional luminescence properties are presented. Using cyclohexane, Triton X-100, and n-pentanol as the oil, surfactant, and co-surfactant, respectively, crystalline nanoparticles with ~4 nm diameter are prepared at low temperatures. The particle size assessed using transmission electron microscopy is similar to the crystallite size obtained from X-ray diffraction measurements, suggesting that each particle comprises a single crystallite. Eu(3+)-doped GdVO4 nanoparticles emit red light through downconversion upon UV excitation. Er(3+)/Yb(3+)-doped GdVO4 nanoparticles exhibit several functions; apart from the downconversion of UV radiation into visible green light, they act as upconvertors, transforming near-infrared excitation (980 nm) into visible green light. The ratio of green emissions from (2)H11/2 → (2)I15/2 and (4)S3/2 → (4)I15/2 transitions is temperature dependent and can be used for nanoscale temperature sensing with near-infrared excitation. The relative sensor sensitivity is 1.11%K(-1), which is among the highest sensitivities recorded for upconversion-luminescence-based thermometers.

  6. Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method

    Science.gov (United States)

    Gavrilović, Tamara V.; Jovanović, Dragana J.; Lojpur, Vesna; Dramićanin, Miroslav D.

    2014-02-01

    Synthesis of Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles in reverse micelles and their multifunctional luminescence properties are presented. Using cyclohexane, Triton X-100, and n-pentanol as the oil, surfactant, and co-surfactant, respectively, crystalline nanoparticles with ~4 nm diameter are prepared at low temperatures. The particle size assessed using transmission electron microscopy is similar to the crystallite size obtained from X-ray diffraction measurements, suggesting that each particle comprises a single crystallite. Eu3+-doped GdVO4 nanoparticles emit red light through downconversion upon UV excitation. Er3+/Yb3+-doped GdVO4 nanoparticles exhibit several functions; apart from the downconversion of UV radiation into visible green light, they act as upconvertors, transforming near-infrared excitation (980 nm) into visible green light. The ratio of green emissions from 2H11/2 --> 2I15/2 and 4S3/2 --> 4I15/2 transitions is temperature dependent and can be used for nanoscale temperature sensing with near-infrared excitation. The relative sensor sensitivity is 1.11%K-1, which is among the highest sensitivities recorded for upconversion-luminescence-based thermometers.

  7. Design and preparation of bi-functionalized short-chain modified zwitterionic nanoparticles.

    Science.gov (United States)

    Hu, Fenglin; Chen, Kaimin; Xu, Hong; Gu, Hongchen

    2018-05-01

    An ideal nanomaterial for use in the bio-medical field should have a distinctive surface capable of effectively preventing nonspecific protein adsorption and identifying target bio-molecules. Recently, the short-chain zwitterion strategy has been suggested as a simple and novel approach to create outstanding anti-fouling surfaces. In this paper, the carboxyl end group of short-chain zwitterion-coated silica nanoparticles (SiO 2 -ZWS) was found to be difficult to functionalize via a conventional EDC/NHS strategy due to its rapid hydrolysis side-reactions. Hence, a series of bi-functionalized silica nanoparticles (SiO 2 -ZWS/COOH) were designed and prepared by controlling the molar ratio of 3-aminopropyltriethoxysilane (APTES) to short-chain zwitterionic organosiloxane (ZWS) in order to achieve above goal. The synthesized SiO 2 -ZWS/COOH had similar excellent anti-fouling properties compared with SiO 2 -ZWS, even in 50% fetal bovine serum characterized by DLS and turbidimetric titration. Subsequently, SiO 2 -ZWS/COOH 5/1 was chosen as a representative and then demonstrated higher detection signal intensity and more superior signal-to-noise ratios compare with the pure SiO 2 -COOH when they were used as a bio-carrier for chemiluminescence enzyme immunoassay (CLEIA). These unique bi-functionalized silica nanoparticles have many potential applications in the diagnostic and therapeutic fields. Reducing nonspecific protein adsorption and enhancing the immobilized efficiency of specific bio-probes are two of the most important issues for bio-carriers, particularly for a nanoparticle based bio-carrier. Herein, we designed and prepared a bi-functional nanoparticle with anti-fouling property and bio conjugation capacity for further bioassay by improving the short-chain zwitterionic modification strategy we have proposed previously. The heterogeneous surface of this nanoparticle showed effective anti-fouling properties both in model protein solutions and fetal bovine serum

  8. Facile preparation of squarylium dye sensitized TiO{sub 2} nanoparticles and their enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhongyu, E-mail: zhongyuli@mail.tsinghua.edu.cn [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Changzhou Expansion New Stuff Technology Limited Company, Changzhou 213122 (China); Fang, Yongling [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Zhan, Xueqiu [Department of Basic Courses, Wuxi Institute of Technology, Wuxi 214121 (China); Xu, Song [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China)

    2013-07-05

    Highlights: •ISQ dye sensitized TiO{sub 2} nanoparticles were prepared via a facile solution method. •ISQ/TiO{sub 2} nanoparticles exhibited significantly enhanced visible light activity. •ISQ/TiO{sub 2} showed high visible light photocatalytic activity over MB decomposition. •ISQ/TiO{sub 2} nanoparticles exhibited good photocatalytic stability. -- Abstract: A squarylium dye, 1,3-bis[(3,3-dimethylindolin-2-ylidene)methyl]squaraine (ISQ) sensitized TiO{sub 2} nanoparticles photocatalysts with different mass ratio of ISQ to TiO{sub 2} were facilely prepared by blending ISQ and TiO{sub 2} in ethanol solution. The resulting composite photocatalysts were characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectra (FT-IR) and UV–vis diffuse reflectance spectroscope (DRS). The visible light photocatalytic activities of ISQ sensitized TiO{sub 2} nanoparticles were evaluated using the degradation of methylene blue (MB) as a photodegradation target. The results showed that photo-response of the ISQ sensitized TiO{sub 2} nanoparticles were remarkably extended to visible-light region, and the ISQ dye sensitized TiO{sub 2} exhibited significantly enhanced photocatalytic activity under visible light irradiation. The maximum photocatalytic activity of the ISQ sensitized TiO{sub 2} was found at a composite photocatalyst (mass ratio of ISQ to TiO{sub 2} was 1:3), and its degradation efficiency of MB reached approximately 98% in 2 h under visible light irradiation. Furthermore, a possible mechanism for the photocatalytic oxidative degradation was also proposed.

  9. Biodegradable nanoparticles for improved kidney bioavailability of rhein: preparation, characterization, plasma, and kidney pharmacokinetics.

    Science.gov (United States)

    Wei, Yinghui; Luo, Xiaoting; Guan, Jiani; Ma, Jianping; Zhong, Yicong; Luo, Jingwen; Li, Fanzhu

    2017-11-01

    The aim of this work is to develop biodegradable nanoparticles for improved kidney bioavailability of rhein (RH). RH-loaded nanoparticles were prepared using an emulsification solvent evaporation method and fully characterized by several techniques. Kidney pharmacokinetics was assessed by implanting a microdialysis probe in rat's kidney cortex. Blood samples were simultaneously collected (via femoral artery) for assessing plasma pharmacokinetics. Optimized nanoparticles were small, with a mean particle size of 132.6 ± 5.95 nm, and homogeneously dispersed. The charge on the particles was nearly zero, the encapsulation efficiency was 62.71 ± 3.02%, and the drug loading was 1.56 ± 0.15%. In vitro release of RH from the nanoparticles showed an initial burst release followed by a sustained release. Plasma and kidney pharmacokinetics showed that encapsulation of RH into nanoparticles significantly increased its kidney bioavailability (AUC kidney /AUC plasma  = 0.586 ± 0.072), clearly indicating that nanoparticles are a promising strategy for kidney drug delivery.

  10. A simple route to prepare stable hydroxyapatite nanoparticles suspension

    International Nuclear Information System (INIS)

    Han Yingchao; Wang Xinyu; Li Shipu

    2009-01-01

    A simple ultrasound assisted precipitation method with addition of glycosaminoglycans (GAGs) is proposed to prepare stable hydroxyapatite (HAP) nanoparticles suspension from the mixture of Ca(H 2 PO 4 ) 2 solution and Ca(OH) 2 solution. The product was characterized by XRD, FT-IR, TEM, HRTEM and particle size, and zeta potential analyzer. TEM observation shows that the suspension is composed of 10-20 nm x 20-50 nm short rod-like and 10-30 nm similar spherical HAP nanoparticles. The number-averaged particle size of stable suspension is about 30 nm between 11.6 and 110.5 nm and the zeta potential is -60.9 mV. The increase of stability of HAP nanoparticles suspension mainly depends on the electrostatic effect and steric effect of GAGs. The HAP nanoparticles can be easily transported into the cancer cells and exhibit good potential as gene or drug carrier system.

  11. Magnetic and dielectric properties of alkaline earth Ca2+ and Ba2+ ions co-doped BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Yang, C.; Liu, C.Z.; Wang, C.M.; Zhang, W.G.; Jiang, J.S.

    2012-01-01

    Ca 2+ and Ba 2+ ions co-doped BiFeO 3 nanoparticles, Bi 0.8 Ca 0.2−x Ba x FeO 3 (x=0–0.20), were prepared by a sol–gel method. The phase structure, grain size, dielectric and magnetic properties of the prepared samples were investigated. The results showed that the lattice structure of the nanoparticles transformed from rhombohedral (x=0) to orthorhombic (x=0.07–0.19) and then to tetragonal (x=0.20) with x increased. The dielectric properties of the nanoparticles were affected by the properties of the substitutional ions as well as the crystalline structure of the samples. The magnetic properties of the nanoparticles were greatly improved and the T N of the nanoparticles was obviously increased. All the Ca 2+ and Ba 2+ ions co-doped BiFeO 3 nanoparticles presented the high ratio of M r /M from 0.527 to 0.571 and large coercivity from 4.335 to 5.163 KOe. - Highlights: ► Ca 2+ and Ba 2+ ions co-doped BiFeO 3 nanoparticles were prepared using a sol–gel method. ► The magnetic properties of the nanoparticles are greatly improved. ► The Neel temperature (T N ) of the nanoparticles is greatly increased. ► Doped ions and crystal structure affect the dielectric properties of the nanoparticles.

  12. Influence of PVP in magnetic properties of NiSn nanoparticles prepared by polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Bobadilla, L.F., E-mail: lbobadilla@iciq.es [Departamento de Quimica Inorganica e Instituto de Ciencia de Materiales, Centro mixto Universidad de Sevilla-CSIC, Av. Americo Vespucio, 41092 Sevilla (Spain); Garcia, C. [Physics Department, Bogazici University, North Campus KB 331-O, Bebek/Istambul (Turkey); Delgado, J.J. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, E-11510 Puerto Real, Cadiz (Spain); Sanz, O. [Grupo de Ingenieria Quimica, Departamento de Quimica Aplicada, Facultad de Ciencias Quimicas, UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 San Sebastian (Spain); Romero-Sarria, F.; Centeno, M.A.; Odriozola, J.A. [Departamento de Quimica Inorganica e Instituto de Ciencia de Materiales, Centro mixto Universidad de Sevilla-CSIC, Av. Americo Vespucio, 41092 Sevilla (Spain)

    2012-11-15

    The influence of PVP on the magnetic properties of NiSn nanoparticles prepared by polyol method has been studied. NiSn nanoparticles exhibit superparamagnetic behavior although there is a ferromagnetic contribution due to particles agglomerated below the blocking temperature. The particle size is controlled by the addiction of PVP in varying amounts. The addition of PVP also favours the particles isolation, narrow the particle size distribution and decrease the interparticle interaction strength increasing the superparamagnetic contribution. - Highlights: Black-Right-Pointing-Pointer Ni{sub x}Sn{sub y} alloys nanoparticles have been prepared by polyol method. Black-Right-Pointing-Pointer NiSn nanoparticles exhibit superparamagnetic behavior. Black-Right-Pointing-Pointer The PVP addition favours the particles isolation.

  13. Preparation of novel magnetic polyurethane foam nanocomposites by using core-shell nanoparticles

    OpenAIRE

    Nikje,Mir Mohammad Alavi; Moghaddam,Sahebeh Tamaddoni; Noruzian,Maede

    2016-01-01

    Abstract Iron oxide magnetic nanoparticles (NP's) converted to the core- shell structres by reacting with by n-(2-aminoethyl)-3-aminopropyl trimethoxysilane (AEAP) incorporated in polyurethane flexible (PUF) foam formulations. Fourier transform spectra, thermal gravimetric analysis, scanning electron images, thermo-mechanical analysis and magnetic properties of the prepared nanocomposites were studied. Obtained data shown that by the increasing of the amine modified magnetic iron oxide NP's u...

  14. Sample preparation and EFTEM of Meat Samples for Nanoparticle Analysis in Food

    International Nuclear Information System (INIS)

    Lari, L; Dudkiewicz, A

    2014-01-01

    Nanoparticles are used in industry for personal care products and the preparation of food. In the latter application, their functions include the prevention of microbes' growth, increase of the foods nutritional value and sensory quality. EU regulations require a risk assessment of the nanoparticles used in foods and food contact materials before the products can reach the market. However, availability of validated analytical methodologies for detection and characterisation of the nanoparticles in food hampers appropriate risk assessment. As part of a research on the evaluation of the methods for screening and quantification of Ag nanoparticles in meat we have tested a new TEM sample preparation alternative to resin embedding and cryo-sectioning. Energy filtered TEM analysis was applied to evaluate thickness and the uniformity of thin meat layers acquired at increasing input of the sample demonstrating that the protocols used ensured good stability under the electron beam, reliable sample concentration and reproducibility

  15. Sample preparation and EFTEM of Meat Samples for Nanoparticle Analysis in Food

    Science.gov (United States)

    Lari, L.; Dudkiewicz, A.

    2014-06-01

    Nanoparticles are used in industry for personal care products and the preparation of food. In the latter application, their functions include the prevention of microbes' growth, increase of the foods nutritional value and sensory quality. EU regulations require a risk assessment of the nanoparticles used in foods and food contact materials before the products can reach the market. However, availability of validated analytical methodologies for detection and characterisation of the nanoparticles in food hampers appropriate risk assessment. As part of a research on the evaluation of the methods for screening and quantification of Ag nanoparticles in meat we have tested a new TEM sample preparation alternative to resin embedding and cryo-sectioning. Energy filtered TEM analysis was applied to evaluate thickness and the uniformity of thin meat layers acquired at increasing input of the sample demonstrating that the protocols used ensured good stability under the electron beam, reliable sample concentration and reproducibility.

  16. Synchrotron radiation photoelectron spectroscopy study of dextran-coated Fe3O4 magnetic nanoparticles

    International Nuclear Information System (INIS)

    Li Shaoxia; Meng Qiang; Wang Bing; Feng Weiyue; Wang Zhuo; Kui Rexi; Qian Haijie; Wang Jia'o

    2009-01-01

    Dextran-coated Fe 3 O 4 nanoparticles were prepared by untrasonification of Fe 3 O 4 nanoparticles with dextran at 85 degree C in sodium citrate medium. The surface chemical component, structure and bond of uncoated and dextran-coated nanoparticles were measured by synchrotron radiation XPS(X-ray photoelectron spectroscopy). Qualitative and quantitative analysis of C1s and O1s of Fe 3 O 4 and dextran-Fe 3 O 4 showed that the Fe 3 O 4 nanoparticles were successively coated by sodium citrate via Fe-O-C bond, and dextrans, which can be linked with their carboxylate moiety via hydrogen bond. Sodium citrate could enhance the disperse stability of reaction system and hydrophilicity of dextran-Fe 3 O 4 . (authors)

  17. Low temperature synthesis, characterization and tunable optical properties of Eu3+, Tb3+ doped CaMoO4 nanoparticles

    International Nuclear Information System (INIS)

    Sharma, K. Gayatri; Singh, Th. Prasanta; Singh, N. Rajmuhon

    2014-01-01

    Highlights: • Red and green nanophosphors of CaMoO 4 :Eu 3+ and Tb 3+ were synthesized via an ethylene glycol route at very low temperature. • The prepared nanoparticles have tetragonal structure. • The luminescence properties of the nanoparticles are also studied extensively. • CIE chromaticity coordinates of the phosphors are also studied. • The blue-green emission of host could be easily tuned to red or green by varying the dopant ion used in the host. - Abstract: CaMoO 4 doped with Eu 3+ and Tb 3+ nanoparticles are obtained using ethylene glycol as the solvent. The synthesis has been carried out at 130 °C temperature. The XRD patterns reveal that all the doped samples are well assigned to the scheelite structure of the CaMoO 4 phase. Upon excitation by ultraviolet radiation, the CaMoO 4 :Eu 3+ , Tb 3+ phosphors show the characteristic emission lines of Eu 3+ and Tb 3+ . For Eu 3+ doped samples, red emission dominates over other transitions and for Tb 3+ doped, green emission is the predominant one. The blue-green emission of the host could be easily tuned to red and green by doping with activator ions. The emission intensity is also dependent on the concentration of the dopant ions. The prepared nanoparticles could find applications in LEDs and other optical devices

  18. Preparation of Mg2FeH6 Nanoparticles for Hydrogen Storage Properties

    Directory of Open Access Journals (Sweden)

    N. A. Niaz

    2013-01-01

    Full Text Available Magnesium (Mg and iron (Fe nanoparticles are prepared by thermal decomposition of bipyridyl complexes of metals. These prepared Mg-Fe (2 : 1 nanoparticles are hydrogenated under 4 MPa hydrogen pressure and 673 K for 48 hours to achieve Mg2FeH6. Their structural analysis was assessed by applying manifold techniques. The hydrogen storage properties of prepared compound were measured by Sieverts type apparatus. The desorption kinetics were measured by high pressure thermal desorption spectrometer (HP-TDS. More than 5 wt% hydrogen released was obtained by the Mg2FeH6 within 5 min, and during rehydrogenation very effective hydrogen absorption rate was observed by the compound.

  19. O3 Nanoparticles

    KAUST Repository

    Wang, Juan; Li, Yangyang; Deng, Lin; Wei, Nini; Weng, Yakui; Dong, Shuai; Qi, Dianpeng; Qiu, Jun; Chen, Xiaodong; Wu, Tao

    2016-01-01

    Ti2O3 nanoparticles with high performance of photothermal conversion are demonstrated for the first time. Benefiting from the nanosize and narrow-bandgap features, the Ti2O3 nanoparticles possess strong light absorption and nearly 100% internal

  20. Dehydration of glucose to 5-hydroxymethylfurfural by a core-shell Fe3O4@SiO2-SO3H magnetic nanoparticle catalyst

    Science.gov (United States)

    This paper discusses the potential use of (Fe3O4@SiO2-SO3H) nanoparticle catalyst for the dehydration of glucose into 5-hydroxymethylfurfural (HMF). A magnetically recoverable (Fe3O4@SiO2-SO3H) nanoparticle catalyst was successfully prepared by supporting sulfonic acid groups (SO3H) on the surface o...

  1. Preparation and characterization of the nanoparticle and nanocomposite by gamma irradiation

    International Nuclear Information System (INIS)

    Lee, K.P.; Choi, S.H.

    2002-01-01

    Complete text of publication follows. Nanometer metal particle-organic polymer composites have attracted considerable interests in recent years. These composites not only combine the advantageous properties of metals and polymers but also exhibit many new characters that single-phase materials do not have. They have a wide range of applications including electromagnetic inferences shielding, heat conduction, discharge static electricity, conversion of mechanical to electrical signals, and like. In order to obtain nanocomposite, silver nanoparticle was prepared by γ-irradiation. The obtained Ag nanoparticle was characterized by UV, FT-IR, XRD, SEM, TEM, and etc. The ethylacetate-Ag nanocomposite was prepared by emulsion polymerization. The obtained nanocomposites were characterized by SEM, XRD, and thermal (TGA/DSC) analysis. Furthermore, the CdS nanocomposite was prepared using CdSO 4 and Na 2 SO 4 by γ-irradiation method. The ethylacetate-CdS nanocomposite was also prepared by emulsion polymerization, and characterized by SEM, XRD, and thermal (TGA/DSC) analysis. The application of such prepared metal particle-organic polymer composites in the field of anti-bacterial film, semiconductor film, and fluorescence film may be of interest

  2. Water-repellent coatings prepared by modification of ZnO nanoparticles

    Science.gov (United States)

    Chakradhar, R. P. S.; Dinesh Kumar, V.

    Superhydrophobic coatings with a static water contact angle (WCA) > 150° were prepared by modifying ZnO nanoparticles with stearic acid (ZnO@SA). ZnO nanoparticles of size ˜14 nm were prepared by solution combustion method. X-ray diffraction (XRD) studies reveal that as prepared ZnO has hexagonal wurtzite structure whereas the modified coatings convert to zinc stearate. Field emission scanning electron micrographs (FE-SEM) show the dual morphology of the coatings exhibiting both particles and flakes. The flakes are highly fluffy in nature with voids and nanopores. Fourier transformed infrared (FTIR) spectrum shows the stearate ion co-ordinates with Zn2+ in the bidentate form. The surface properties such as surface free energy (γp) and work of adhesion (W) of the unmodified and modified ZnO coatings have been evaluated. The electron paramagnetic resonance (EPR) spectroscopy reveals that surface defects play a major role in the wetting behavior.

  3. Analysis of suspension and heat transfer characteristics of Al2O3 nanofluids prepared through ultrasonic vibration

    International Nuclear Information System (INIS)

    Lin, Cherng-Yuan; Wang, Jung-Chang; Chen, Teng-Chieh

    2011-01-01

    Highlights: → The Al 2 O 3 nanofluid prepared with a surfactant with an HLB value = 12 had the lowest nanoparticle precipitation rate. → The nanofluids prepared with both a dispersant and surfactant had the lowest thermal conductivity . → The thermal conductivity decreased with storage time for all of the Al 2 O 3 nanofluids. → An increase in operating temperature leads to an increase in the thermal conductivity of Al 2 O 3 nanofluids. -- Abstract: Nanofluids that contain nanoparticles with excellent heat transfer characteristics dispersed in a continuous liquid phase are expected to exhibit superior thermal and fluid characteristics to those in a single liquid phase primarily because of their much greater collision frequency and larger contact surface between solid nanoparticles and the liquid phase. One of the major challenges in the use of nanofluids to dissipate the heat generated in electronic equipment such as LEDs is nanoparticles' precipitation due to their poor suspension in the fluid after periods of storage or operation, thereby leading to deterioration in the nanofluids' heat transfer rate. In this study, ultrasonic vibration was employed to prepare Al 2 O 3 nanofluids with a surfactant, a dispersant, and a combination of the two to evaluate their suspension and heat transfer characteristics. The experimental results show the Al 2 O 3 nanofluid prepared with a non-ionic surfactant with a hydrophile lipophile balance (HLB) value of 12 to have the lowest nanoparticle precipitation rate and, accordingly, the highest degree of emulsification stability. Moreover, the nanofluids prepared with both the dispersant and surfactant had the greatest dynamic viscosity and lowest degree of thermal conductivity. Both the precipitation rate and dynamic viscosity of the nanoparticles increased, and their thermal conductivity coefficient decreased, the longer they remained in the Al 2 O 3 nanofluids. Further, an increase in operating temperature caused an

  4. Upconversion Properties of the Er-Doped Y2O3, Bi2O3 and Sb2O3 Nanoparticles Fabricated by Pulsed Laser Ablation in Liquid Media

    International Nuclear Information System (INIS)

    Zamiri Reza; Bahari-Poor Hamid-Reza; Zakaria Azmi; Jorfi Raheleh; Zamiri Golnoush; Rebelo Avito; Omar Akrajas Ali

    2013-01-01

    Er-doped Y 2 O 3 , Bi 2 O 3 and Sb 2 O 3 nanoparticles are synthesized using pulsed laser ablation in a liquid. Ceramic targets of Y 2 O 3 :Er 3+ , Bi 2 O 3 :Er 3+ and Sb 2 O 3 :Er 3+ for ablation process are prepared by standard solid-state reaction technique and ablation is carried out in 5-ml distilled water using nanosecond Q-switched Nd:YAG laser. The morphology and size of the fabricated nanoparticles are evaluated by transmission electron microscopy and the luminescence emission properties of the prepared samples are investigated under different excitation wavelengths

  5. Gold nanoparticles prepared by electro-exploding wire technique in aqueous solutions

    Science.gov (United States)

    Kumar, Lalit; Kapoor, Akanksha; Meghwal, Mayank; Annapoorni, S.

    2016-05-01

    This article presents an effective approach for the synthesis of Au nanoparticles via an environmentally benevolent electro-exploding wire (EEW) technique. In this process, Au nanoparticles evolve through the plasma generated from the parent Au metal. Compared to other typical chemical methods, electro-exploding wire technique is a simple and economical technique which normally operates in water or organic liquids under ambient conditions. Efficient size control was achieved using different aqueous medium like (1mM) NaCl, deionized water and aqueous solution of sodium hydroxide (NaOH, pH 9.5) using identical electro-exploding conditions. The gold nanoparticles exhibited the UV-vis absorption spectrum with a maximum absorption band at 530 nm, similar to that of gold nanoparticles chemically prepared in a solution. The mechanism of size variation of Au nanoparticles is also proposed. The results obtained help to develop methodologies for the control of EEW based nanoparticle growth and the functionalization of nanoparticle surfaces by specific interactions.

  6. Preparation of Rhodamine B Fluorescent Poly(methacrylic acid Coated Gelatin Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhenhai Gan

    2011-01-01

    Full Text Available Poly(methacrylic acid (PMAA-coated gelatin nanoparticles encapsulated with fluorescent dye rhodamine B were prepared by the coacervation method with the aim to retard the release of rhodamine B from the gelatin matrix. With sodium sulfate as coacervation reagent for gelatin, a kind of biopolymer with excellent biocompatibility, the formed gelatin nanoparticles were cross-linked by formaldehyde followed by the polymerization of methacrylic acid coating. The fluorescent poly(methacrylic acid coated gelatin (FPMAAG nanoparticles had a uniform spherical shape and a size distribution of 60±5 nm. Infrared spectral analysis confirmed the formation of PMAA coating on the gelatin nanoparticles. Based on UV-Vis spectra, the loading efficiency of rhodamine B for the FPMAAG nanoparticles was 0.26 μg per mg nanoparticles. The encapsulated rhodamine B could sustain for two weeks. Favorable fluorescence property and fluorescence imaging of cells confirmed that the FPMAAG nanoparticles have promising biochemical, bioanalytical, and biomedical applications.

  7. Preparation and characterization of ketoprofen loaded eudragit RS polymeric nanoparticles for controlled release

    International Nuclear Information System (INIS)

    Tuan Anh, Nguyen; Tuyen Dao, T P; Nhan Le, N T; Mau Chien, Dang; To Hoai, Nguyen; T Chi, Nguyen; Tran, T Khai

    2012-01-01

    Nanospheres containing ketoprofen (Keto) and polymer eudragit RS were prepared using an emulsion solvent evaporation method. The ultrasonic probe (VCX500, vibracell) was used as a tool to disperse oil phase into aqueous phase leading to water/oil emulsion. Nanoparticles were successfully prepared and their morphologies and diameters were confirmed by transmission electron microscope (TEM) and dynamic light scattering (DLS), respectively. The result showed that particles were spherical with submicron size. The particle size was dependent on the RS concentration, emulsification tools and the types of organic solvents. For the encapsulation ability, Keto-loaded RS nanoparticle showed 9.8% of Keto in nanoparticle, which was evaluated by high-performance liquid chromatography (HPLC). Moreover, the drug release behavior of Keto-loaded eudragit RS nanoparticle was also investigated in vitro at pH 7.4 and compared to referential profenid. (paper)

  8. Copper nanoparticles functionalized PE: Preparation, characterization and magnetic properties

    International Nuclear Information System (INIS)

    Reznickova, A.; Orendac, M.; Kolska, Z.; Cizmar, E.; Dendisova, M.; Svorcik, V.

    2016-01-01

    Highlights: • Polyethylene (PE) surface was activated by argon plasma discharge. • Copper nanoparticles were coated on polyethylene via dithiol interlayer. • Prepared samples exhibit excellent structural and magnetic properties. • Studied properties may be utilized in design and fabrication of electronic devices. - Abstract: We report grafting of copper nanoparticles (CuNP) on plasma activated high density polyethylene (HDPE) via dithiol interlayer pointing out to the structural and magnetic properties of those composites. The as-synthesized Cu nanoparticles have been characterized by high-resolution transmission electron microscopy (HRTEM/TEM) and UV–vis spectroscopy. Properties of pristine PE and their plasma treated counterparts were studied by different experimental techniques: X-ray photoelectron spectroscopy (XPS), UV–vis spectroscopy, energy dispersive X-ray spectroscopy (EDS), zeta potential, electron spin resonance (ESR) and SQUID magnetometry. From TEM and HRTEM analyses, it is found that the size of high purity Cu nanoparticles is (12.2 ± 5.2) nm. It was determined that in the CuNPs, the copper atoms are arranged mostly in the (111) and (200) planes. Absorption in UV–vis region by these nanoparticles is ranging from 570 to 670 nm. EDS revealed that after 1 h of grafting are Cu nanoparticles homogeneously distributed over the whole surface and after 24 h of grafting Cu nanoparticles tend to aggregate slightly. The combined investigation of magnetic properties using ESR spectrometry and SQUID magnetometry confirmed the presence of copper nanoparticles anchored on PE substrate and indicated ferromagnetic interactions.

  9. Copper nanoparticles functionalized PE: Preparation, characterization and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Reznickova, A., E-mail: alena.reznickova@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic); Orendac, M., E-mail: martin.orendac@upjs.sk [Faculty of Science, P.J. Safarik University, Park Angelinum 9, 04013 Kosice (Slovakia); Kolska, Z., E-mail: zdenka.kolska@seznam.cz [Faculty of Science, J.E. Purkyne University, 400 96 Usti nad Labem (Czech Republic); Cizmar, E., E-mail: erik.cizmar@upjs.sk [Faculty of Science, P.J. Safarik University, Park Angelinum 9, 04013 Kosice (Slovakia); Dendisova, M., E-mail: vyskovsm@vscht.cz [Department of Physical Chemistry, University of Chemistry and Technology Prague, 166 28 Prague 6 (Czech Republic); Svorcik, V., E-mail: vaclav.svorcik@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic)

    2016-12-30

    Highlights: • Polyethylene (PE) surface was activated by argon plasma discharge. • Copper nanoparticles were coated on polyethylene via dithiol interlayer. • Prepared samples exhibit excellent structural and magnetic properties. • Studied properties may be utilized in design and fabrication of electronic devices. - Abstract: We report grafting of copper nanoparticles (CuNP) on plasma activated high density polyethylene (HDPE) via dithiol interlayer pointing out to the structural and magnetic properties of those composites. The as-synthesized Cu nanoparticles have been characterized by high-resolution transmission electron microscopy (HRTEM/TEM) and UV–vis spectroscopy. Properties of pristine PE and their plasma treated counterparts were studied by different experimental techniques: X-ray photoelectron spectroscopy (XPS), UV–vis spectroscopy, energy dispersive X-ray spectroscopy (EDS), zeta potential, electron spin resonance (ESR) and SQUID magnetometry. From TEM and HRTEM analyses, it is found that the size of high purity Cu nanoparticles is (12.2 ± 5.2) nm. It was determined that in the CuNPs, the copper atoms are arranged mostly in the (111) and (200) planes. Absorption in UV–vis region by these nanoparticles is ranging from 570 to 670 nm. EDS revealed that after 1 h of grafting are Cu nanoparticles homogeneously distributed over the whole surface and after 24 h of grafting Cu nanoparticles tend to aggregate slightly. The combined investigation of magnetic properties using ESR spectrometry and SQUID magnetometry confirmed the presence of copper nanoparticles anchored on PE substrate and indicated ferromagnetic interactions.

  10. The Luminescence of CH3 NH3 PbBr3 Perovskite Nanoparticles Crests the Summit and Their Photostability under Wet Conditions is Enhanced.

    Science.gov (United States)

    Gonzalez-Carrero, Soranyel; Francés-Soriano, Laura; González-Béjar, María; Agouram, Saïd; Galian, Raquel E; Pérez-Prieto, Julia

    2016-10-01

    CH 3 NH 3 PbBr 3 perovskite nanoparticles (P AD ) are prepared with a photoluminescence quantum yield of ≈100% in air atmosphere by using the quasi-spherical shaped 2-adamantylammonium bromide (ADBr) as the only capping ligand. The photostability under wet conditions of this kind of nanoparticles is enhanced by using cucurbit[7]uril-adamantylammonium (AD@CB) host-guest complexes as the capping ligand. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of hydrophobic coating on the magnetic anisotropy and radiofrequency heating of γ-Fe2O3 nanoparticles

    International Nuclear Information System (INIS)

    Singh, Mandeep; Ulbrich, Pavel; Prokopec, Vadym; Svoboda, Pavel; Šantavá, Eva; Štěpánek, František

    2013-01-01

    The effect of a hydrophobic (oleic acid) coating on the magnetic properties of maghemite (γ-Fe 2 O 3 ) nanoparticles was investigated. The nanoparticles were prepared by a novel bi-phasic co-precipitation route and their properties compared with uncoated nanoparticles and nanoparticles prepared by a standard single-phase process. The oleic acid coated nanoparticles had a mean diameter of 6 nm when the two-phase precipitation procedure was used compared to 12 nm for nanoparticles prepared in a single phase under otherwise identical conditions. Super Quantum Interference Device measurements show superparamagnetism of the nanoparticles, with a saturation magnetization at 4 K to be 66.4 emu/g and 89.0 emu/g for the coated nanoparticles obtained by two- and single-phase procedure, respectively. Zero-field-cooled and field-cooled curves reveal a dramatic shift in the blocking temperature of the coated nanoparticles, and a significant change in their anisotropy. The hydrophobic nanoparticles were able to form stable ferrofluids in a range of organic solvents and show good heating rates in a 400 kHz alternating magnetic field. - Highlights: ► Hydrophobic iron oxide nanoparticles synthesized by a new microemulsion approach. ► Strong influence of oleic acid coating on blocking temperature observed. ► Stable non-aqueous ferrofluids prepared. ► Favorable heating rates under alternating magnetic field

  12. Preparation of mixed matrix PES-based nanofiltration membrane filled with PANI-co-MWCNT composite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bagheripour, Ehsan; Moghadassi, Abdolreza; Hosseini, Sayed Mohsen [Faculty of Engineering, Arak University, Arak (Iran, Islamic Republic of)

    2016-04-15

    Mixed matrix polyethersulfone/PANI-co-MWCNTs composite nanoparticle nanofiltration membrane was prepared by casting solution technique. Polyvinylpyrrolidone was also used as membrane pore former in membrane fabrication. The effect of polyaniline-co-multi walled carbon nanotubes composite nanoparticle concentration in the casting solution on membrane structure and performance was investigated. Scanning optical microscopy and scanning electron microscopy, FTIR analysis, porosity, mean pore size, contact angle, water content, NaCl/Na2SO4 rejection, water flux, tensile strength measurements and 3D surface image were also carried out in membrane characterization. SOM images showed nanoparticle agglomeration at high additive loading ratio. SEM images showed the membrane sub-layer porosity and thickness were changed by use of nanoparticles in membrane matrix. The membrane water content, porosity and pore size were increased by increase of nanoparticle concentration, except for 1%wt. Use of PANI-co- MWCNT nanoparticles in the membrane matrix caused a decrease of membrane contact angle from 63.43 to 46.76o. Salt rejection and water flux were improved initially by increase of nanoparticle concentration up to 0.1%wt and then decreased by more additive concentration. In addition, the membranes tensile strength was reduced by increase of PANI-co-MWCNTs composite nanoparticle concentration. 3D surface images showed a smoother surface for mixed matrix membrane filled with 0.1wt% PANI-co-MWCNTs. Modified membrane containing 0.1wt% composite nanoparticles showed better performance compared to others.

  13. Preparation of mixed matrix PES-based nanofiltration membrane filled with PANI-co-MWCNT composite nanoparticles

    International Nuclear Information System (INIS)

    Bagheripour, Ehsan; Moghadassi, Abdolreza; Hosseini, Sayed Mohsen

    2016-01-01

    Mixed matrix polyethersulfone/PANI-co-MWCNTs composite nanoparticle nanofiltration membrane was prepared by casting solution technique. Polyvinylpyrrolidone was also used as membrane pore former in membrane fabrication. The effect of polyaniline-co-multi walled carbon nanotubes composite nanoparticle concentration in the casting solution on membrane structure and performance was investigated. Scanning optical microscopy and scanning electron microscopy, FTIR analysis, porosity, mean pore size, contact angle, water content, NaCl/Na2SO4 rejection, water flux, tensile strength measurements and 3D surface image were also carried out in membrane characterization. SOM images showed nanoparticle agglomeration at high additive loading ratio. SEM images showed the membrane sub-layer porosity and thickness were changed by use of nanoparticles in membrane matrix. The membrane water content, porosity and pore size were increased by increase of nanoparticle concentration, except for 1%wt. Use of PANI-co- MWCNT nanoparticles in the membrane matrix caused a decrease of membrane contact angle from 63.43 to 46.76o. Salt rejection and water flux were improved initially by increase of nanoparticle concentration up to 0.1%wt and then decreased by more additive concentration. In addition, the membranes tensile strength was reduced by increase of PANI-co-MWCNTs composite nanoparticle concentration. 3D surface images showed a smoother surface for mixed matrix membrane filled with 0.1wt% PANI-co-MWCNTs. Modified membrane containing 0.1wt% composite nanoparticles showed better performance compared to others.

  14. Preparation of nanoparticles from acrylated palm oil microemulsion using radiation technique

    International Nuclear Information System (INIS)

    Rida Tajau; Wan Mohd Zin Wan Yunus; Khairul Zaman Mohd Dahlan; Mohd Hilmi Mahmood; Kamaruddin Hashim; Mohd Yusof Hamzah

    2011-01-01

    The use of microemulsion in the development of nanoparticle based on acrylated palm oil product is demonstrated. Acrylated palm oil microemulsions were prepared using ionic surfactant. Combination methods of emulsion polymerization and radiation crosslinking were applied to the microemulsion system for synthesizing nanoparticle. The ionizing radiation technique was introduced to generate a crosslinking reaction in the development of nanoparticle. The nanoparticle was evaluated in terms of particle diameter, surface charge, pH and conductance. Their image was captured using Transmission electron microscopy (TEM). Results show that the size, charge and shape of the particles are influenced by concentration of surfactants, monomer concentration, radiation dose and time of storage. The study showed a promising method to produced nanoparticle. This nano-sized product has the potential to be utilized as controlled-drug-release-carrier. (Author)

  15. One-Step Method for Preparation of Magnetic Nanoparticles Coated with Chitosan

    Directory of Open Access Journals (Sweden)

    Karla M. Gregorio-Jauregui

    2012-01-01

    Full Text Available Preparation of magnetic nanoparticles coated with chitosan in one step by the coprecipitation method in the presence of different chitosan concentrations is reported here. Obtaining of magnetic superparamagnetic nanoparticles was confirmed by X-ray diffraction and magnetic measurements. Scanning transmission electron microscopy allowed to identify spheroidal nanoparticles with around 10-11 nm in average diameter. Characterization of the products by Fourier transform infrared spectroscopy demonstrated that composite chitosan-magnetic nanoparticles were obtained. Chitosan content in obtained nanocomposites was estimated by thermogravimetric analysis. The nanocomposites were tested in Pb2+ removal from a PbCl2 aqueous solution, showing a removal efficacy up to 53.6%. This work provides a simple method for chitosan-coated nanoparticles obtaining, which could be useful for heavy metal ions removal from water.

  16. Preparation of Metal Nanoparticles via Sonochemical Reduction

    OpenAIRE

    Saura Puig, Oriol

    2011-01-01

    Pure nickel, copper and zinc nanoparticles were prepared from chlorides of these elements using ultrasound with three different reducing agents (zinc, aluminum and magnesium). In the second part, syntheses of nickel-copper alloy and nickel-zinc using ultrasound were investigated. The products were characterized by powder X-ray diffraction. The reaction parameters, such as sonification time, the amount of reagents and reaction conditions were modified to observe variations in...

  17. An Insight into the Interactions between a-Tocopherol and Chitosan in Ultrasound-Prepared Nanoparticles

    International Nuclear Information System (INIS)

    Naghibzadeh, M.; Amani, A.; Esmaeilzadeh, E.; Amini, M.; Mottaghi-Dastjerdi, N.; Faramarzi, M.A.; Faramarzi, M.A.

    2010-01-01

    The aim of this study was to investigate the interactions between a-tocopherol and chitosan molecules prepared subsequent to preparation of a-tocopherol-loaded chitosan nanoparticles using ultrasonication. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) analyses showed semi spherical particles with an average size of approximately 350 nm. Also from reconstitution test, a-tocopherol was suggested as stabilizing agent during lyophilization/reconstitution process. The zeta potentials of chitosan and a-tocopherol nanoparticles were larger than ±30 mV, representing suitable stability. Data obtained from FTIR showed possibility of chemical interaction between chitosan and a-tocopherol. Furthermore, the results from FTIR, NMR, and XRD spectroscopy confirmed electrostatic interactions between the two molecules. Overall, this procedure could be considered as a facile method to prepare a-tocopherol-loaded nanoparticles.

  18. Preparation and Optimization of Labeled Chitosan Nanoparticles and Evaluation of their Release from Transdermal Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Mohsen Sadeghi

    2015-09-01

    Full Text Available Biocompatible nanoparticles are widely used in biomedical engineering. In this study, chitosan nanoparticles were prepared using ionic gelation method in view of two determining factors namely method of adding chitosan into the tripolyphosphate (TPP solution and thermal shock application. With regard to the concentration of chitosan and TPP solutions as two variables, the mean particle size of chitosan nanoparticles and their preparation yield were optimized using response surface method. According to previous studies and some preliminary experiments, the chitosan and TPP solution concentration ranges were determined to be 0.5-2.5 mg/mL and 0.25-1.25 mg/mL, respectively. The optimum values of 1.25 mg/mL and 0.6 mg/mL were obtained for chitosan and TPP solution concentrations in the order given. The optimized response value for the chitosan nanoparticles size was found to be 54 nm and preparation yield was 62%. The Zeta potential of resulting spherical nanoparticles was around 31 mV. Chitosan-fluorescein isothiocyanate (FITC polymer was prepared based on the reaction between isothiocyanate functional group of FITC and primary amine functional group of chitosan. FTIR analysis was performed to demonstrate the presence of new bond formation. Labeled chitosan nanoparticles were prepared in the optimized condition using chitosan-FITC polymer. The release behavior of the labeled chitosan nanoparticles from transdermal patches was evaluated. The mean size of chitosan-FITC nanoparticles was determined to be 70 nm. Finally, it was shown that the chitosan nanoparticles were not able to release from acrylic adhesive film without using a method to speed up their diffusion.

  19. Synthesis and characterization of Er3+ doped CaF2 nanoparticles

    International Nuclear Information System (INIS)

    Zhi Guanglin; Song Jinghong; Mei Bingchu; Zhou Weibing

    2011-01-01

    Highlights: → Er 3+ :CaF 2 nanoparticles were synthesized by co-precipitation method with particle size of 8-36 nm. → Increasing dopant concentration increases lattice constants and decreases grain size. → Annealing treatment has a remarkable effect on luminescence properties. → Luminescence intensity decrease with the increasing of the dopant concentration. - Abstract: Er 3+ doped CaF 2 nanoparticles were synthesized by a chemical co-precipitation method. Effect of the dopant concentrations on the structure and optical properties of the CaF 2 nanoparticles was investigated. The X-ray powder diffraction and transmission electron microscopy analysis was used to characterize the structure and morphology of the nanoparticles. The nanoparticles with different dopant concentration exhibited a sphere-like morphology with diameters of about 8-36 nm. The incorporation of Er 3+ ions into CaF 2 resulted in the decrease in grain size and deterioration of crystallinity, but enlarged the lattice constants of CaF 2 . Additional annealing treatment at 400 deg. C to the prepared CaF 2 removed the NO 3 - and OH - groups adsorbed on the particles' surfaces, and improved the optical properties of the nanoparticles. The fluorescence intensity, with a maximum at approximately 0.4 mol%, decreased with the increase in doping concentration because of concentration quenching.

  20. Preparation of Photoresponsive Functionalized Acrylic Nanoparticles Cantaining Carbazole Groups for Smart Cellulosic Papers

    Directory of Open Access Journals (Sweden)

    Jaber Keyvan Rad

    2017-11-01

    Full Text Available Photoresponsive functionalized polymer nanoparticles were prepared as useful materials for preparation of smart papers. Such polymer nanoparticles have wide applications in several fields including papers, sensors, bioimaging and biomedicine. First, carbazole as a photosensitive compound was modified with 2-bromoethanol through substitution nucleation reaction to its hydroxyl derivative (N-(2-hydroxyethyl carbazole, CzEtOH. The synthesis of 2-N-carbazolylethyl acrylate (CzEtA monomer was carried out by modification reaction of CzEtOH with acryloyl chloride and the chemical structures of the products were characterized. Next, CzEtA, methyl methacrylate (MMA and butyl acrylate were copolymerized to prepare photoresponsive functionalized polymer nanoparticles through mini-emulsion polymerization in order to form a hydrophobic core. This was followed by copolymerization of MMA and glycidyl methacrylate by seeded emulsion polymerization to give a functionalized outer layer on the latex particles. Absorption characteristics, size, size distribution (narrow size distribution and morphology of the nanoparticles were studied by ultraviolet-visible (UV-Vis spectroscopy, dynamic laser light scattering (DLS analysis and scanning electron microscopy (SEM micrographs, respectively. Finally, due to the importance of photoresponsive smart papers and their wide applications, cellulosic fibers were reacted with the prepared functionalized latex particles for preparation of smart papers. Morphology of the fibers was investigated with respect to the surface-immobilized polymers on the cellulosic paper and their smart behavior was evaluated by UV irradiation at 254 nm. The results revealed fast color changes and the obtained cellulosic papers became violet upon irradiation. This work shows some promising feature of these materials for preparation of anti-counterfeiting papers, where the safety becomes a major concern.

  1. Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles

    International Nuclear Information System (INIS)

    Wu Wei; He Quanguo; Chen Hong; Tang Jianxin; Nie Libo

    2007-01-01

    Air-stable nanoparticles of Fe 3 O 4 /Au were prepared via sonolysis of a solution mixture of hydrogen tetrachloroaureate(III) trihydrate (HAuCl 4 ) and (3-aminopropyl)triethoxysilane (APTES)-coated Fe 3 O 4 nanoparticles with further drop-addition of sodium citrate. The Fe 3 O 4 /Au nanoparticles were characterized by x-ray powder diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS) and superconducting quantum interference device (SQUID) magnetometry. Nanoparticles of Fe 3 O 4 /Au obtained under appropriate conditions possess a very high saturation magnetization of about 63 emu g -1 and their average diameter is about 30 nm

  2. Preparation and Characterization of Rare Earth Doped Fluoride Nanoparticles

    Directory of Open Access Journals (Sweden)

    Timothy A. DeVol

    2010-03-01

    Full Text Available This paper reviews the synthesis, structure and applications of metal fluoride nanoparticles, with particular focus on rare earth (RE doped fluoride nanoparticles obtained by our research group. Nanoparticles were produced by precipitation methods using the ligand ammonium di-n-octadecyldithiophosphate (ADDP that allows the growth of shells around a core particle while simultaneously avoiding particle aggregation. Nanoparticles were characterized on their structure, morphology, and luminescent properties. We discuss the synthesis, properties, and application of heavy metal fluorides; specifically LaF3:RE and PbF2, and group IIA fluorides. Particular attention is given to the synthesis of core/shell nanoparticles, including selectively RE-doped LaF3/LaF3, and CaF2/CaF2 core/(multi-shell nanoparticles, and the CaF2-LaF3 system.

  3. Preparation and characterization of betulin nanoparticles for oral hypoglycemic drug by antisolvent precipitation.

    Science.gov (United States)

    Zhao, Xiuhua; Wang, Weiguo; Zu, Yuangang; Zhang, Ying; Li, Yong; Sun, Wei; Shan, Chang; Ge, Yunlong

    2014-09-01

    Abstract Betulin, a kind of small molecular compound, was reported that has hypoglycemic effect. Due to its low aqueous solubility and high permeability, betulin has low and variable oral bioavailability. In this work, betulin nanoparticles were thus prepared by antisolvent precipitation for accelerating dissolution of this kind of poorly water-soluble drugs. Ethanol was used as solvent and deionized water was used as antisolvent. The effects of various experimental parameters on the mean particle size (MPS) of nanocrystallization betulin were investigated. The MPS of betulin nanoparticles suspension basically remain unchanged when precipitation time was within 60 min and then increased from 304 nm to 505 nm later. However, the MPS of betulin nanoparticles suspension decreased with increased betulin solution concentration. On the contrary, the MPS of betulin nanoparticles suspension decreased along with the increase of temperature. Stirring intensity and the speed ratio of solvent adding into antisolvent had no significant influences on the MPS of betulin nanoparticles suspension. Betulin nanoparticles suspension with a MPS of approximately 110 nm was achieved under the optimal precipitation conditions. FTIR, Liquid chromatography coupled with tandem mass spectrometry (LC-MS), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to analyze the characteristic of betulin nanoparticles powder. These results show that betulin nanoparticles powder has the same chemical structure as raw drug, but a smaller size and lower crystallinity. The dissolution rate and solubility of betulin nanoparticles powder were separately 3.12 and 1.54 times of raw drug. The bioavailability of betulin nanoparticles powder increased 1.21 times compared with raw betulin. The result of in vivo evaluation on diabetic animals demonstrates that the betulin nanoparticles powder show an excellent hypoglycemic effect compared with raw

  4. Micro poly(3-sulfopropyl methacrylate) hydrogel synthesis for in situ metal nanoparticle preparation and hydrogen generation from hydrolysis of NaBH4

    International Nuclear Information System (INIS)

    Turhan, Tugce; Güvenilir, Yuksel Avcıbası; Sahiner, Nurettin

    2013-01-01

    Polymeric hydrogels derived from SPM (3-sulfopropyl methacrylate) of micrometer size were used in the preparation of a composite-catalyst system for hydrogen generation from hydrolysis of NaBH 4 . In situ Co and Ni nanoparticles were prepared by chemical reduction of absorbed Co (II) and Ni (II) ions inside the hydrogel networks, and the whole composite was used as a catalyst system. The catalytic activity of the metal nanoparticles within the p(SPM) hydrogel matrix was better and faster using Co than with Ni. Additionally, other parameters that affect the hydrogen generation rate, such as temperature, metal reloading, the catalyst amounts as well as reusability, were also investigated. It was found that p(SPM)–Co micro hydrogels were even effective for hydrogen generation at 0 °C with a hydrogen generation rate of 966 (mL H 2 ) (min) −1 (g of Co) −1 . The activation energy, activation enthalpy, and activation entropy for the hydrolysis reaction of NaBH 4 with micro p(SPM)–Co catalyst system were calculated as 44.3 kJ/mol, 43.26 kJ/mol K, and −150.93 J/mol K, respectively. - Highlights: ► Microgel embedding metal catalyst for H 2 production. ► Advanced materials for green energy. ► Soft microgel reactors for H 2 production from NaBH 4 hydrolysis

  5. Preparation of starch nanoparticles in a water-in-ionic liquid microemulsion system and their drug loading and releasing properties.

    Science.gov (United States)

    Zhou, Gang; Luo, Zhigang; Fu, Xiong

    2014-08-13

    An ionic liquid microemulsion consisting of 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF₆), surfactant TX-100, 1-butanol, and water was prepared. The water-in-[Bmim]PF₆ (W/IL), bicontinuous, and [Bmim]PF₆-in-water (IL/W) microregions of the microemulsion were identified by conductivity measurements. Starch nanoparticles with a mean diameter of 91.4 nm were synthesized with epichlorohydrin as cross-linker through W/IL microemulsion cross-linking reaction at 50 °C for 4 h. Fourier transform infrared spectroscopy (FTIR) data demonstrated the formation of cross-linking bonds in starch molecules. Scanning electron microscopy (SEM) revealed that starch nanoparticles were spherical and that some particles showed aggregation formation. Furthermore, drug loading and releasing properties of starch nanoparticles were investigated with mitoxantrone hydrochloride as a drug model. This work provides an efficient and environmentally friendly approach for the preparation of starch nanoparticles, which is beneficial to their further application.

  6. Preparation of magnetic composite based on zinc oxide nanoparticles and chitosan as a photocatalyst for removal of reactive blue 198

    International Nuclear Information System (INIS)

    Nguyen, Van Cuong; Nguyen, Ngoc Lam Giang; Hue Pho, Quoc

    2015-01-01

    In this study a novel magnetic composite used as a photocatalyst with combination of zinc oxide nanoparticles and chitosan (ZnO/Fe 3 O 4 /CS) was synthesized by a simple co-precipitation method. The role of the prepared magnetic nanocomposite is to improve the removal efficiency of textile dye due to the photocatalytic activity of zinc oxide nanoparticles and reusable capacity of Fe 3 O 4 magnetic nanoparticles. Constituents and structure properties of ZnO/Fe 3 O 4 /CS were investigated by scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Magnetic property of the prepared composite was determined by vibrating sample magnetometer (VSM). The results demonstrated that ZnO/Fe 3 O 4 /CS nanocomposite dramatically improved the removal efficiency of reactive blue 198 dye (RB198) with high photocatalytic activity and easy separation by a permanent magnet. In addition, the photocatalytic activity of the prepared composite was also performed under different parameters such as contact time, initial pH, the amount of composite and initial concentration of RB198. Interestingly, ZnO/Fe 3 O 4 /CS nanocomposite still showed high removal efficiency after recycling three times and performed in a real textile dyeing wastewater. (paper)

  7. Cobalt-phthalocyanine-derived ultrafine Co{sub 3}O{sub 4} nanoparticles as high-performance anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Heng-guo, E-mail: wanghengguo@cust.edu.cn; Zhu, Yanjie; Yuan, Chenpei; Li, Yanhui; Duan, Qian, E-mail: duanqian88@hotmail.com

    2017-08-31

    Highlights: • Transition-metal oxides nanoparticles are prepared by deriving from metal-phthalocyanine. • Co{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}, and CuO nanoparticles can be prepared due to the adjustability of central metals. • This present strategy is simple, general, effective yet mass-production. • The Co{sub 3}O{sub 4} nanoparticles exhibit good lithium storage performances. - Abstract: In this work, we present a simple, general, effective yet mass-production strategy to prepare transition-metal oxides (TMOs) nanoparticles using the metal-phthalocyanine as both the precursor and the starting self-sacrificial template. As the central metals of metal-phthalocyanine are easily tunable, various TMOs nanoparticles including Co{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}, and CuO have been successfully prepared by deriving from the corresponding metal-phthalocyanine. As a proof-of-concept demonstration of the application of such nanostructured TMOs, Co{sub 3}O{sub 4} nanoparticles were evaluated as anode materials for LIBs, which show high initial capacity (1132.9 mAh g{sup −1} at 0.05 A g{sup −1}), improved cycling stability (585.6 mAh g{sup −1} after 200 cycles at 0.05 A g{sup −1}), and good rate capability (238.1 mAh g{sup −1} at 2 A g{sup −1}) due to the unique properties of the ultrafine Co{sub 3}O{sub 4} nanoparticles. This present strategy might open new avenues for the design of a series of transition metal oxides using organometallic compounds for a range of applications.

  8. Preparation of ordered silver angular nanoparticles array in block copolymer film for surface-enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Svanda, J. [University of Chemistry and Technology, Department of Solid State Engineering (Czech Republic); Gromov, M. V. [University of Minnesota Duluth, Department of Chemistry and Biochemistry (United States); Kalachyova, Y. [University of Chemistry and Technology, Department of Solid State Engineering (Czech Republic); Postnikov, P. S. [Tomsk Polytechnic University, Department of Technology of Organic Substances and Polymer Materials (Russian Federation); Svorcik, V.; Lyutakov, O., E-mail: lyutakoo@vscht.cz [University of Chemistry and Technology, Department of Solid State Engineering (Czech Republic)

    2016-10-15

    We report a single-step method of preparation of ordered silver nanoparticles array through template-assisted nanoparticles synthesis in the semidried block copolymer film. Ordered nanoparticles were prepared on different substrates by the proper choice of solvents combination and preparation procedure. In particular, block copolymer and silver nitrate were dissolved in the mix of tetrahydrofuran, toluene, and n-methylpyrolidone. During short spin-coating procedure ordering of block copolymer, evaporation of toluene and preferential silver redistribution into poly(4-vinylpyridine) block occurred. Rapid heating of semidry film initiated silver reduction, removing of residual solvent and creation of ordered silver array. After polymer removing silver nanoparticles array was tested as a suitable candidate for subdiffraction plasmonic application–surface-enhanced Raman scattering. Enhancement factor was calculated and compared with the literature data.

  9. Morphology and luminescence characteristics of combustion synthesized Y{sub 2}O{sub 3}: (Eu, Dy, Tb) nanoparticles with various amino-acid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S.; Sudarsan, V. [Chemistry Division Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Sastry, P.U.; Patra, A.K. [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Tyagi, A.K., E-mail: aktyagi@barc.gov.in [Chemistry Division Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2014-01-15

    Y{sub 2}O{sub 3} nanoparticles doped with Dy{sup 3+}, Eu{sup 3+} and Tb{sup 3+} together were prepared by the gel combustion method using a variety of amino acids namely, glycine, phenyl alanine, arginine, glutamic and aspartic acids. Number of carboxylate groups present in the amino acids used for combustion reaction was found to have strong influence on powder characteristics as well as luminescence from the samples. Based on small angle X-ray scattering studies, it is inferred that the nanoparticles prepared by using glycine and arginine as the fuels have smooth surface compared to those prepared using other amino acids. For the nanoparticles prepared using glutamic and aspartic acids, there exist a diffused pore-grain interface due to the lesser extent of heat generated in the reaction which leads to smaller particle size, poor crystallinity and improper burning of the organic materials. Lower surface area and smooth surface of the nanoparticles prepared using glycine leads to their improved luminescence properties. -- Highlights: • Surface smoothness of Y{sub 2}O{sub 3} (Dy, Eu, Tb) nanoparticles vary with amino acids. • Optimum luminescence intensity is observed when glycine is used as the fuel. • Diffused pore grain interface when glutamic and aspartic acids are used as fuels.

  10. Preparation and characterization of cuprous iodide nanoparticles

    International Nuclear Information System (INIS)

    Hong Tao Li; Li Xia Gu

    2007-01-01

    A new technique for the preparation of CuI nanoparticles from CuSO 4 and KI ethanol solutions has been developed. Preparation conditions were optimized through a series of experiments. Under these conditions, the yield of CuI reached 95.39%. The product was characterized and the reaction kinetics was studied. The results show that the product takes a roughly spherical shape with an average particle size of less then 50 nm. The activation energy of the formation of CuI is found to be E a = 0.58 x 10 2 kJ/mol, and the preexponential factor in the Arrhenius equation is k 0 = 7.43 x 10 16 mol/(l s) [ru

  11. Preparation and characterization of layer-by-layer self-assembled polyelectrolyte multilayer films doped with surface-capped SiO2 nanoparticles.

    Science.gov (United States)

    Yang, Guangbin; Ma, Hongxia; Yu, Laigui; Zhang, Pingyu

    2009-05-15

    SiO(2) nanoparticles capped with gamma-aminopropyltrimethoxysilane were doped into polyelectrolyte (poly(allylamine hydrochloride), PAH, and poly(acrylic acid), PAA) multilayer films via spin-assisted layer-by-layer self-assembly. The resulting as-prepared multilayer films were heated at a proper temperature to generate cross-linked composite films with increased adhesion to substrates. The tribological behavior of the multilayer films was evaluated on a microtribometer. It was found that SiO(2)-doped composite films had better wear resistance than pure polyelectrolyte multilayers, possibly because doped SiO(2) nanoparticles were capable of enhancing load-carrying capacity and had "miniature ball bearings" effect. Moreover, heat-treatment had significant effect on the morphology of the composite films. Namely, heat-treated (SiO(2)/PAA)(9) film had a larger roughness than the as-prepared one, due to heat-treatment-induced agglomeration of SiO(2) nanoparticles and initiation of defects. However, heat-treated (PAH/PAA)(3)/(SiO(2)/PAA)(3)(PAH/PAA)(3) film had greatly reduced roughness than the as-prepared one, and it showed considerably improved wear resistance as well. This could be closely related to the "sandwich-like" structure of the composite multilayer film. Namely, the outermost strata of composite multilayer film were able to eliminate defects associated with the middle strata, allowing nanoparticles therein to maintain strength and robustness while keeping soft and fluid-like exposed surface. And the inner strata were well anchored to substrate and acted as an initial "bed" for SiO(2) nanoparticles to be inhabited, resulting in good antiwear ability.

  12. Methodology for sample preparation and size measurement of commercial ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    Pei-Jia Lu

    2018-04-01

    Full Text Available This study discusses the strategies on sample preparation to acquire images with sufficient quality for size characterization by scanning electron microscope (SEM using two commercial ZnO nanoparticles of different surface properties as a demonstration. The central idea is that micrometer sized aggregates of ZnO in powdered forms need to firstly be broken down to nanosized particles through an appropriate process to generate nanoparticle dispersion before being deposited on a flat surface for SEM observation. Analytical tools such as contact angle, dynamic light scattering and zeta potential have been utilized to optimize the procedure for sample preparation and to check the quality of the results. Meanwhile, measurements of zeta potential values on flat surfaces also provide critical information and save lots of time and efforts in selection of suitable substrate for particles of different properties to be attracted and kept on the surface without further aggregation. This simple, low-cost methodology can be generally applied on size characterization of commercial ZnO nanoparticles with limited information from vendors. Keywords: Zinc oxide, Nanoparticles, Methodology

  13. Preparation of amorphous cefuroxime axetil nanoparticles by sonoprecipitation for enhancement of bioavailability.

    Science.gov (United States)

    Dhumal, Ravindra S; Biradar, Shailesh V; Yamamura, Shigeo; Paradkar, Anant R; York, Peter

    2008-09-01

    The aim of the present work was to prepare amorphous discreet nanoparticles by sonoprecipitation method for enhancing oral bioavailability of cefuroxime axetil (CA), a poorly water-soluble drug. CA nanoparticles (SONO-CA) were prepared by sonoprecipitation and compared with particles obtained by precipitation without sonication (PPT-CA) and amorphous CA obtained by spray drying. Spray drying present broad particle size distribution (PSD) with mean particle size of 10 microm and low percent yield, whereas, precipitation without sonication resulted in large amorphous aggregates with broad PSD. During sonoprecipitation, particle size and yield improve with an increase in the amplitude of sonication and lowering the operation temperature due to instantaneous supersaturation and nucleation. The overall symmetry and purity of CA molecule was maintained as confirmed by FTIR and HPLC, respectively. All the three methods resulted in the formation of amorphous CA with only sonoprecipitation resulting in uniform sized nanoparticles. Sonoprecipitated CA nanoparticles showed enhanced dissolution rate and oral bioavailability in Wistar rat due to an increased solubility attributed to combination of effects like amorphization and nanonization with increased surface area and reduced diffusion pathway.

  14. A novel sol–gel process to facilely synthesize Ni{sub 3}Fe nanoalloy nanoparticles supported with carbon and silica

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.Q. [Institute of Materials Engineering, Nanjing National Laboratory of Microstructures, Jiangsu Provincial Laboratory for Nanotechnology and School of Physics, Nanjing University, Nanjing 210093 (China); School of Physics and Information Technology, Ningxia Teachers University, Guyuan, Ningxia 756000 (China); Chen, L.Y.; Huang, H.F.; Xie, R.; Xia, W.B.; Wei, J.; Zhong, W. [Institute of Materials Engineering, Nanjing National Laboratory of Microstructures, Jiangsu Provincial Laboratory for Nanotechnology and School of Physics, Nanjing University, Nanjing 210093 (China); Tang, S.L., E-mail: tangsl@nju.edu.cn [Institute of Materials Engineering, Nanjing National Laboratory of Microstructures, Jiangsu Provincial Laboratory for Nanotechnology and School of Physics, Nanjing University, Nanjing 210093 (China); Du, Y.W. [Institute of Materials Engineering, Nanjing National Laboratory of Microstructures, Jiangsu Provincial Laboratory for Nanotechnology and School of Physics, Nanjing University, Nanjing 210093 (China)

    2014-04-01

    Graphical abstract: The TEM and HRTEM images and the magnetization curves taken in both zero-field-cooled (ZFC) and field-cooled (FC) modes of Ni{sub 3}Fe nanoparticles calcined at 300 °C for 2 h under Ar flowing. Display Omitted - Highlights: • Ultrafine Ni{sub 3}Fe nanoalloy nanoparticles were synthesized via a modified novel sol–gel process. • The prepared Ni{sub 3}Fe nanoalloy nanoparticles have a narrow size distribution. • The Ni{sub 3}Fe nanoparticles exhibit superparamagnetic behaviors at room temperature. - Abstract: In this paper, we present a modified novel silica sol–gel process and explored the possibility, for the first time, to synthesize binary nanoalloy nanoparticles. We successfully prepared ultrafine Ni{sub 3}Fe nanoparticles supported with carbon and silica via this simple one-pot reaction without H{sub 2} reduction. X-ray diffraction (XRD) and selected area electron diffraction (SAED) investigations of the Ni{sub 3}Fe nanoparticles show that the nanoparticles have a face-centered-cubic (fcc) crystal structure. The TEM images show that grain sizes of Ni{sub 3}Fe nanoparticles have a narrow size distribution. Moreover, the grain size of the nanoparticles is not very sensitive to the elevated annealing temperature. The Ni{sub 3}Fe nanoparticles exhibit typical superparamagnetic behavior at room temperature, and the blocking temperatures (T{sub B}) are determined by the temperature-dependent magnetization (M–T curves) measurements. This novel silica sol–gel method is expected to have broad applications in synthesizing nanoalloy nanoparticles.

  15. Preparation of 5-fluorouracil nanoparticles by supercritical antisolvents for pulmonary delivery

    Directory of Open Access Journals (Sweden)

    Pardis Kalantarian

    2010-09-01

    Full Text Available Pardis Kalantarian1,2, Abdolhosein Rouholamini Najafabadi1, Ismaeil Haririan2, Alireza Vatanara1, Yadollah Yamini3, Majid Darabi1, Kambiz Gilani11Aerosol Research Laboratory and 2Pharmaceutical Laboratory, School of Pharmacy, Tehran University of Medical Sciences, 3Department of Chemistry, Tarbiat Modarres University, Tehran, IranAbstract: This study concerns the supercritical antisolvent process which allows single-step production of 5-fluorouracil (5-FU nanoparticles. This process enhances the physical characteristics of 5-FU in order to deliver it directly to the respiratory tract. Several mixtures of methanol with dichloromethane, acetone, or ethanol were used for particle preparation, and their effects on the physical characteristics of the final products were studied. The conditions of the experiment included pressures of 100 and 150 bar, temperature of 40°C, and a flow rate of 1 mL/min. The particles were characterized physicochemically before and after the process for their morphology and crystallinity. In spite of differences in size, the particles were not very different regarding their morphology. The resulting particles were of a regular shape, partly spherical, and appeared to have a smooth surface, whereas the mechanically milled particles showed less uniformity, had surface irregularities and a high particle size distribution, and seemed aggregated. Particles of 5-FU precipitated from methanol-dichloromethane 50:50 had a mean particle size of 248 nm. In order to evaluate the aerodynamic behavior of the nanoparticles, six 5-FU dry powder formulations containing mixtures of coarse and fine lactose of different percentages were prepared. Deposition of 5-FU was measured using a twin-stage liquid impinger and analyzed using a validated high pressure liquid chromatography method. Addition of fine lactose improved the aerodynamic performance of the drug, as determined by the fine particle fraction.Keywords: supercritical antisolvent, 5

  16. Preparation of DNA/Gold Nanoparticle Encapsulated in Calcium Phosphate

    Directory of Open Access Journals (Sweden)

    Tomoko Ito

    2011-01-01

    Full Text Available Biocompatible DNA/gold nanoparticle complex with a protective calcium phosphate (CaP coating was prepared by incubating DNA/gold nanoparticle complex coated by hyaluronic acid in SBF (simulated body fluid with a Ca concentration above 2 mM. The CaP-coated DNA complex was revealed to have high compatibility with cells and resistance against enzymatic degradation. By immersion in acetate buffer (pH 4.5, the CaP capsule released the contained DNA complex. This CaP capsule including a DNA complex is promising as a sustained-release system of DNA complexes for gene therapy.

  17. Multidomain iron nanoparticles for the preparation of polyacrylamide ferrogels

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, Ajay, E-mail: ashankar@urfu.ru [Ural Federal University, 19 Mira Str., 620002 Yekaterinburg (Russian Federation); Safronov, Alexander P. [Ural Federal University, 19 Mira Str., 620002 Yekaterinburg (Russian Federation); Institute of Electrophysics UB RAS, 106 Amundsen Str., 620016 Yekaterinburg (Russian Federation); Mikhnevich, Ekaterina A. [Ural Federal University, 19 Mira Str., 620002 Yekaterinburg (Russian Federation); Beketov, Igor V. [Ural Federal University, 19 Mira Str., 620002 Yekaterinburg (Russian Federation); Institute of Electrophysics UB RAS, 106 Amundsen Str., 620016 Yekaterinburg (Russian Federation)

    2017-06-01

    Ferrogels (FG) based on poly(acrylamide) (PAAm) with embedded multidomain iron magnetic nanoparticles (MNPs) were synthesized by radical polymerization in water. Iron MNPs prepared by the electrical explosion of wire were spherical in shape and have an average diameter around 100 nm. MNPs were modified by a surfactant – oleic acid to improve their dispersion in water. DLVO theoretical consideration was done to understand the stability of dispersions. By microcalorimetry it was shown that the oleic layer on the surface of MNPs prevents their interaction with PAAm network of FG. Mechanical testing of the compression modulus and the deformation of FGs in magnetic field show up their prospectiveness as a material for magnetically sensitive MEMS and actuators. - Highlights: • Ferrogels were synthesized by radical polymerization in water. • DLVO theoretical consideration was done to understand the stability of dispersions. • Surfactant blocks the interfacial interaction of PAAm chains with particles. • Ferrogels show magnetodeformation when placed in magnetic field. • Grinding approach can also be used for other nanoparticles viz., Ni, Al, Al{sub 2}O{sub 3} etc.

  18. Preparation and characterization of chondroitin-sulfate-A-coated magnetite nanoparticles for biomedical applications

    Science.gov (United States)

    Tóth, Ildikó Y.; Illés, Erzsébet; Szekeres, Márta; Tombácz, Etelka

    2015-04-01

    Polysaccharides are promising candidates for manufacturing biocompatible core-shell nanoparticles with potential in vivo use. Superparamagnetic magnetite nanoparticles (MNPs) have prospective application in both diagnosis and therapy, and so developing a novel polysaccharide shell on MNP core is of great challenge. MNPs were prepared by co-precipitation, then the surface of purified MNPs was coated with chondroitin-sulfate-A (CSA) to obtain core-shell structured magnetite nanoparticles (CSA@MNP). The effect of the added amount of CSA on the surface charging and the aggregation state of MNPs at various pHs and 10 mM NaCl was measured by electrophoresis and dynamic light scattering. The amphoteric behavior of MNPs was fundamentally modified by adsorption of CSA polyanions. A very low CSA-loading induces the aggregation of MNPs, while four times more stabilizes the dispersions over the whole pH-range studied. The coagulation kinetics experiments measured at pH=6.3±0.3 showed that salt tolerance of CSA@MNPs rises up to ~150 mM NaCl.

  19. Fungus mediated biosynthesis of WO3 nanoparticles using Fusarium solani extract

    Science.gov (United States)

    Kavitha, N. S.; Venkatesh, K. S.; Palani, N. S.; Ilangovan, R.

    2017-05-01

    Currently nanoparticles were synthesized by emphasis bioremediation process due to less hazardous, eco-friendly and imperative applications on biogenic process. Fungus mediated biosynthesis strategy has been developed to prepare tungsten oxide nanoflakes (WO3, NFs) using the plant pathogenic fungus F.solani. The powder XRD pattern revealed the monoclinic crystal structure with improved crystalline nature of the synthesized WO3 nanoparticles. FESEM images showed the flake-like morphology of WO3, with average thickness and length around 40 nm and 300 nm respectively. The Raman spectrum of WO3 NFs showed their characteristic vibration modes that revealed the defect free nature of the WO3 NFs. Further, the elemental analysis indicated the stoichiometric composition of WO3 phase.

  20. Electrochemical Preparation of Platinum Nanoparticles from Bis(acetylacetonato)platinum(II) in Some Aprotic Amide-type Ionic Liquids

    International Nuclear Information System (INIS)

    Sultana, Sharmin; Tachikawa, Naoki; Yoshii, Kazuki; Toshima, Kazunobu; Magagnin, Luca; Katayama, Yasushi

    2017-01-01

    Electrode reaction of bis(acetylacetonato)platinum(II), Pt(acac) 2 , and preparation of platinum (Pt) nanoparticles have been studied in 1-R-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (R = butyl, hexyl and decyl, which are abbreviated as BMPTFSA, HMPTFSA and DMPTFSA, respectively) ionic liquids by means of cyclic voltammetry and rotating disk electrode (RDE) method. Pt(acac) 2 was suggested to be reduced to Pt via a two-electron transfer process at a glassy carbon electrode. The diffusion coefficient of Pt(acac) 2 at 50 °C was estimated to be 1.3 × 10 −7 cm 2 s −1 in BMPTFSA, by RDE measurements. It has been demonstrated that Pt nanoparticles were able to be prepared at the glassy carbon RDE by potentiostatic electrolysis at −1.8 and −2.5 V in the ionic liquids containing Pt(acac) 2 . The prepared nanoparticles were characterized by transmission electron microscopy, energy dispersive X-ray spectroscopy and electron diffraction. No pronounced variation in the average particle sizes of Pt was observed with the rotation rates at the RDE, indicating that the average particle size was independent of the rotation rate or current density. Pt nanoparticles of average sizes of 2.1 ± 0.8, 2.8 ± 0.8 and 3.0 ± 0.8 nm were obtained after electrolysis at −1.8 V with a rotation rate of 1000 rpm in BMPTFSA, HMPTFSA and DMPTFSA, respectively, suggested that the average particle size may depend on the kind of the ionic liquid.

  1. Biomimetic Silica Nanoparticles Prepared by a Combination of Solid-Phase Imprinting and Ostwald Ripening.

    Science.gov (United States)

    Piletska, Elena; Yawer, Heersh; Canfarotta, Francesco; Moczko, Ewa; Smolinska-Kempisty, Katarzyna; Piletsky, Stanislav S; Guerreiro, Antonio; Whitcombe, Michael J; Piletsky, Sergey A

    2017-09-14

    Herein we describe the preparation of molecularly imprinted silica nanoparticles by Ostwald ripening in the presence of molecular templates immobilised on glass beads (the solid-phase). To achieve this, a seed material (12 nm diameter silica nanoparticles) was incubated in phosphate buffer in the presence of the solid-phase. Phosphate ions act as a catalyst in the ripening process which is driven by differences in surface energy between particles of different size, leading to the preferential growth of larger particles. Material deposited in the vicinity of template molecules results in the formation of sol-gel molecular imprints after around 2 hours. Selective washing and elution allows the higher affinity nanoparticles to be isolated. Unlike other strategies commonly used to prepare imprinted silica nanoparticles this approach is extremely simple in nature and can be performed under physiological conditions, making it suitable for imprinting whole proteins and other biomacromolecules in their native conformations. We have demonstrated the generic nature of this method by preparing imprinted silica nanoparticles against targets of varying molecular mass (melamine, vancomycin and trypsin). Binding to the imprinted particles was demonstrated in an immunoassay (ELISA) format in buffer and complex media (milk or blood plasma) with sub-nM detection ability.

  2. Preparation of Rhodamine B Fluorescent Poly(methacrylic acid) Coated Gelatin Nanoparticles

    OpenAIRE

    Gan, Zhenhai; Ju, Jianhui; Zhang, Ting; Wu, Daocheng

    2011-01-01

    Poly(methacrylic acid) (PMAA)-coated gelatin nanoparticles encapsulated with fluorescent dye rhodamine B were prepared by the coacervation method with the aim to retard the release of rhodamine B from the gelatin matrix. With sodium sulfate as coacervation reagent for gelatin, a kind of biopolymer with excellent biocompatibility, the formed gelatin nanoparticles were cross-linked by formaldehyde followed by the polymerization of methacrylic acid coating. The fluorescent poly(methacrylic acid)...

  3. Magnetite nanoparticles prepared by co-precipitation method in different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aphesteguy, J.C., E-mail: caphestegu@fi.uba.ar [LAFMACEL-INTECIN, Facultad de Ingeniería, UBA, Paseo Colón 850, C1063EHA Buenos Aires (Argentina); Kurlyandskaya, G.V. [Universidad del País Vasco UPV-EHU, Dept. Electricidad y Electronica, 48940 Leioa (Spain); Ural Federal University, Dept. Magnetism and Magnetic Nanomaterials, 620000 Ekaterinburg (Russian Federation); Celis, J.P. de [National Technology University (UTN), Facultad Regional Avellaneda, Department of Chemistry (Argentina); Safronov, A.P. [Ural Federal University, Dept. Magnetism and Magnetic Nanomaterials, 620000 Ekaterinburg (Russian Federation); Institute of Electrophysics UD RAS, Ekaterinburg 620016 (Russian Federation); Schegoleva, N.N. [Institute of Metal Physics UD RAS, Ekaterinburg 620044 (Russian Federation)

    2015-07-01

    Magnetic nanoparticles (MNPs) of pure magnetite (Fe{sub 3}O{sub 4}) were prepared in an aqueous solution (sample M−I) and in a water-ethyl alcohol mixture (sample M−II) by the co-precipitation method. The structure and magnetic properties of both samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), magnetic (M−H) and microwave measurements (FMR). The mean average particle diameter and particle size distribution was evaluated by the Dynamic Light Scattering (DLS) and Brunauer- Emmett-Teller techniques (BET). The Quantitative chemical analysis of iron was performed by Inductively Coupled Plasma (ICP)- Atomic Emission Spectroscopy (AES) technique. The MNPs prepared in aqueous solution show a higher grain than those prepared in the water-ethyl alcohol mixture. The type of phase structure in both cases can be defined as “defective spinel”. The shape of the majority of M−I MNPs is octahedral. The shape of the majority of M−II MNPs is cubic. The specific surface area of MNPs was as high as 14.4 m{sup 2}/g for M−I sample and 77.8 m{sup 2}/g for sample M–II. The obtained saturation magnetization values of 75 emu/g (M−I) and 68 emu/g (M−II) are consistent with expected values for magnetite MNPs of observed sizes. Ferromagnetic resonance (FMR) measurements confirmed that MNPs of both types are magnetically homogeneous materials. FMR lines' position and line widths can be understood by invoking the local dipolar fields, deviations from sphericity, magnetocrystalline anisotropy and stresses. M−I sample shows sizeable zero field microwave absorption which is absent in the M−II case. The differences in microwave behaviour of M−I and M−II MNPs can be used in the design of microwave radiation absorbing multilayers. - Highlights: • Magnetite nanoparticles were prepared in two different conditions. • Specific surface area of sample prepared in water- ethanol mix is

  4. Microwave-assisted synthesis and photovoltaic measurements of CuInS2 nanoparticles prepared by using metal–organic precursors

    International Nuclear Information System (INIS)

    Hosseinpour-Mashkani, S. Mostafa; Mohandes, Fatemeh; Salavati-Niasari, Masoud; Venkateswara-Rao, K.

    2012-01-01

    Highlights: ► CuInS 2 nanoparticles were prepared using complexes via a microwave-assisted method. ► The effect of preparation parameters on the morphology of CuInS 2 was investigated. ► The as-deposited CdS/CuInS 2 films were used for the photovoltaic measurements. -- Abstract: In this work, CuInS 2 (CIS) nanoparticles have been synthesized with the aid of (1,8-diamino-3,6-dioxaoctan)copper(II) sulfate ([Cu(DADO)]SO 4 ) and bis(propylenediamine)copper(II) sulfate ([Cu(pn) 2 ]SO 4 ) complexes as copper precursor in the presence of microwave irradiation. Besides, L-cystine, InCl 3 , and sodium dodecyl sulfate (SDS) were applied as sulfur source, indium precursor, and capping agent, respectively. To investigate the effect of preparation parameters like microwave power and irradiation time on the morphology and particle size of CuInS 2 , the experiment was carried out at different conditions. The as-synthesized CuInS 2 nanoparticles were characterized by XRD, FT-IR, PL, SEM, TEM, and EDS. The XRD results showed that pure tetragonal CuInS 2 could be only obtained after annealing at 400 °C for 2 h. The SEM images indicated that with decreasing the microwave power and irradiation time, particle size of CuInS 2 nanoparticles decreased. To fabricate a solar cell, CdS film was directly deposited on top of the CIS film prepared by Doctor's blade method through chemical bath deposition. The as-deposited CdS/CuInS 2 films were used for the photovoltaic measurements.

  5. Bulk Synthesis and Characterization of Ti3Al Nanoparticles by Flow-Levitation Method

    Directory of Open Access Journals (Sweden)

    Shanjun Chen

    2013-01-01

    Full Text Available A novel bulk synthesis method for preparing high pure Ti3Al nanoparticles was developed by flow-levitation method (FL. The Ti and Al vapours ascending from the high temperature levitated droplet were condensed by cryogenic Ar gas under atmospheric pressure. The morphology, crystalline structure, and chemical composition of Ti3Al nanoparticles were, respectively, investigated by transmission electron microscopy, X-ray diffraction, and inductively coupled plasma atomic emission spectrometry. The results indicated that the Ti3Al powders are nearly spherical-shaped, and the particle size ranges from several nanometers to 100 nm in diameter. Measurements of the d-spacing from X-ray (XRD and electron diffraction studies confirmed that the Ti3Al nanoparticles have a hexagonal structure. A thin oxidation coating of 2-3 nm in thickness was formed around the particles after exposure to air. Based on the XPS measurements, the surface coating of the Ti3Al nanoparticles is a mixture of Al2O3 and TiO2. The production rate of Ti3Al nanoparticles was estimated to be about 3 g/h. This method has a great potential in mass production of Ti3Al nanoparticles.

  6. Co-Pt nanoparticles encapsulated in carbon cages prepared by sonoelectrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Luong, Nguyen Hoang; Hai, Nguyen Hoang; Phu, Nguyen Dang [Center for Materials Science, Faculty of Physics, Hanoi University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi (Viet Nam); MacLaren, D A, E-mail: luongnh@vnu.edu.vn [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

    2011-07-15

    Co-Pt nanoparticles encapsulated in carbon cages have been prepared by sonoelectrodeposition followed by annealing in a CO atmosphere. Sonoelectrodeposition is a useful technique to make metallic nanoparticles, using ultrasound during electrodeposition to remove nanoparticles as they grow on the cathode surface. We used an electrolyte containing chloroplatinic acid and cobalt chloride and found that the atomic ratio of Co:Pt in the as-formed materials varied from 0.2 to 0.8 as the deposition current density was changed from 15 to 35 mA cm{sup -2}. However, the as-deposited materials were inhomogeneous, comprising a mixture of Pt-rich and Co-rich nanoparticles. X-ray diffraction indicated that subsequent heat treatment (700 deg. C for 1 h) under CO gas created an ordered CoPt alloy phase that exhibited hard magnetic properties. Transmission electron microscopy showed many of the resulting nanoparticles to be encapsulated in carbon cages, which we ascribe to Co-catalyzed decomposition of CO during annealing. The thickness of the carbon cages was about ten layers, which may have helped reduce sintering during annealing. The size of the resultant nanoparticles was about 100 nm diameter, larger than the typical 5-10 nm diameter of as-deposited nanoparticles.

  7. TiO2 nanoparticles prepared without harmful organics: A biosafe and economical approach

    KAUST Repository

    Shah, M.A.

    2011-06-01

    Growth of titanium oxide (TiO2) nanoparticles of varying size, ranging from 20-60 nms through a versatile and an economic route, is being reported. The approach is based on a simple reaction of titanium powder and De-Ionized (DI) water at ∼180 °C, without use of any harmful additives. Field Emission Scanning Electron Microscopy (FESEM) reveals the well defined morphology of nanoparticles, whereas X-ray Diffraction (XRD) studies reveal that the, as prepared, nanoparticles are in a mixed phase, with a dominance of a stable rutile phase. Since only water, which is regarded as a benign solvent, is used during the preparation of nanoparticles, we believe that the products so produced are biocompatible and bio-safe and can be readily used for medical applications. The biocompatibility tests are yet to be carried out and shall be reported in forthcoming publications. © 2011 Sharif University of Technology. Production and hosting by Elsevier B.V. All rights reserved.

  8. Preparation and functional studies of hydroxyethyl chitosan nanoparticles loaded with anti-human death receptor 5 single-chain antibody

    Directory of Open Access Journals (Sweden)

    Yang J

    2014-05-01

    Full Text Available Jingjing Yang,1,3,* Xiaoping Huang,1,3,* Fanghong Luo,1 Xiaofeng Cheng,3 Lianna Cheng,3 Bin Liu,4 Lihong Chen,2 Ruyi Hu,1,3 Chunyan Shi,1,3 Guohong Zhuang,1,3 Ping Yin2 1Anti-Cancer Research Center, Medical College, Xiamen University, Fujian, People's Republic of China, 2The Department of Pathology, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China, 3Organ transplantation institution, Xiamen University, Xiamen, People's Republic of China, 4Jilin Vocational College of Industry and Technology, Jilin, People's Republic of China  *These authors contributed equally to this work Objective: To prepare hydroxyethyl chitosan nanoparticles loaded with anti-human death receptor 5 single-chain antibody, and study their characteristics, functions, and mechanisms of action. Materials and methods: The anti-human death receptor 5 single-chain antibody was constructed and expressed. Protein-loaded hydroxyethyl chitosan nanoparticles were prepared, and their size, morphology, particle-size distribution and surface zeta potential were measured by scanning electron microscopy and laser particle-size analysis. Mouse H22 hepatocellular carcinoma cells were cultured, and growth inhibition was examined using the CellTiter-Blue cell-viability assay. Flow cytometry and Hoechst 33342 were employed to measure cell apoptosis. Kunming mice with H22 tumor models were treated with protein-loaded hydroxyethyl chitosan nanoparticles, and their body weight and tumor size were measured, while hematoxylin and eosin staining was used to detect antitumor effects in vivo and side effects from tumors. Results: The protein-loaded hydroxyethyl chitosan nanoparticles had good stability; the zeta potential was -24.2±0.205, and the dispersion index was 0.203. The inhibition of the protein-loaded hydroxyethyl chitosan nanoparticles on H22 growth was both time- and dose-dependent. Increased expressions of active caspase 8, active caspase 3, and BAX were detected

  9. Solid-state thermal decomposition of the [Co(NH{sub 3}){sub 5}CO{sub 3}]NO{sub 3}{center_dot}0.5H{sub 2}O complex: A simple, rapid and low-temperature synthetic route to Co{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Farhadi, Saeid, E-mail: sfarhad2001@yahoo.com [Department of Chemistry, Lorestan University, Khorramabad 68135-465 (Iran, Islamic Republic of); Safabakhsh, Jalil [Department of Chemistry, Lorestan University, Khorramabad 68135-465 (Iran, Islamic Republic of)

    2012-02-25

    Highlights: Black-Right-Pointing-Pointer [Co(NH{sub 3}){sub 5}CO{sub 3}]NO{sub 3}{center_dot}0.5H{sub 2}O complex was used for preparing pure Co{sub 3}O{sub 4} nanoparticles. Black-Right-Pointing-Pointer Co{sub 3}O{sub 4} nanoparticles were prepared at low temperature of 175 Degree-Sign C. Black-Right-Pointing-Pointer Co{sub 3}O{sub 4} nanoparticles show a weak ferromagnetic behaviour at room temperature. Black-Right-Pointing-Pointer The method is simple, low-cost and suitable for the production of Co{sub 3}O{sub 4}. - Abstract: Co{sub 3}O{sub 4} nanoparticles were easily prepared via the decomposition of the pentammine(carbonato)cobalt(III) nitrate precursor complex [Co(NH{sub 3}){sub 5}CO{sub 3}]NO{sub 3}{center_dot}0.5H{sub 2}O at low temperature (175 Degree-Sign C). The product was characterized by thermal analysis, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV-visible spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, Brunauer-Emmett-Teller (BET) specific surface area measurements and magnetic measurements. The FT-IR, XRD, Raman and EDX results indicated that the synthesized Co{sub 3}O{sub 4} nanoparticles are highly pure and have a single phase. The TEM analysis revealed nearly uniform and quasi-spherical Co{sub 3}O{sub 4} nanoparticles with an average particle size of approximately 10 nm. The optical absorption spectrum of the Co{sub 3}O{sub 4} nanoparticles showed two direct band gaps of 2.18 and 3.52 eV with a red shift in comparison with previous reported values. The prepared Co{sub 3}O{sub 4} nanoparticles showed a weak ferromagnetic behaviour that could be attributed to uncompensated surface spins and/or finite-size effects. Using the present method, Co{sub 3}O{sub 4} nanoparticles can be produced without expensive organic solvents and complicated equipment. This simple, rapid, safe and low-cost synthetic route can be extended to the synthesis of other

  10. Ammonia Synthesis using Ti and Nb Nitride Nano-particles Prepared by Mesoporous Graphitic C3N4

    KAUST Repository

    Kumagai, Hiromu; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2015-01-01

    TiN and NbN nanoparticles were synthesized from mesoporous graphitic C3N4 (mpg-C3N4) as a reactive template and used as the catalyst for ammonia synthesis. The obtained TiN and NbN nanoparticles possess high surface areas of 299 and 275 m2 g-1

  11. Preparation and characterization of highly water-soluble magnetic Fe{sub 3}O{sub 4} nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Honghong; Qin, Li [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Feng, Ying [Department of Bridge Engineering, Shanxi Railway Institute, Weinan 714000 (China); Hu, Lihua [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Zhou, Chunhua, E-mail: chm_zhouch@ujn.edu.cn [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2015-06-15

    A kind of double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe{sub 3}O{sub 4} magnetic nanoparticles (Fe{sub 3}O{sub 4}-AOS-MN) with highly water-solubility was prepared by a wet co-precipitation method with a pH of 4.8. The resulting Fe{sub 3}O{sub 4}-AOS-MN could be dispersed into water to form stable magnetic fluid without other treatments. The result of X-ray diffraction (XRD) indicated that the Fe{sub 3}O{sub 4}-AOS-MN maintained original crystalline structure and exhibited a diameter of about 7.5 nm. The iron oxide phase of nanoparticles determined by Raman spectroscopy is Fe{sub 3}O{sub 4}. Transmission electron microscopy (TEM) analysis confirmed that the Fe{sub 3}O{sub 4}-AOS-MN with spherical morphology were uniformly dispersed in water. FT-IR spectroscopy (FT-IR) and thermo-gravimetric analysis (TGA) verified the successful preparation of Fe{sub 3}O{sub 4}-AOS-MN capped with double-layered self-assembled AOS. The corresponding capacities of monolayer chemical absorption and the second-layer self-assembly absorption were respectively 4.07 and 14.71 wt% of Fe{sub 3}O{sub 4}-MN, which were much lower than those of other surfactants. Vibrating sample magnetometer (VSM) test result showed Fe{sub 3}O{sub 4}-AOS-MN possessed superparamagnetic behavior with the saturation magnetization value of about 44.45 emu/g. The blocking temperature T{sub B} of Fe{sub 3}O{sub 4}-AOS-MN capped with double-layered AOS is 170 K. - Highlights: • Double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe{sub 3}O{sub 4} magnetic nanoparticles are prepared by a wet co-precipitation method. • Double-layered Fe{sub 3}O{sub 4}-AOS-MN exhibits highly water-solubility. • The iron oxide phase is determined by Raman spectroscopy. • Fe{sub 3}O{sub 4}-AOS-MN capped with double-layered AOS possesses super-paramagnetic behavior. • The blocking temperature T{sub B} of Fe{sub 3}O{sub 4}-AOS-MN capped with double-layered AOS is 170 K.

  12. Microbicidal Effect of Fe2O3 Nanoparticles in Antimicrobial Agent System

    Directory of Open Access Journals (Sweden)

    Saba Abdul Hadi Mahdy

    2016-10-01

    Full Text Available Microbial antibiotics resistance is considered a serious health issue in the Middle East and developing countries. In this study, the Fe2O3 nanoparticles was prepared chemically, and the particles size and shape were analyzed by using Scan electron microscope (SEM and X-Ray diffraction (XRD. Different concentration of Fe2O3 nanoparticles were used and examined on E.coli and S. aureus. Using liquid dilution and in vitro cytotoxicity assay by microplate toxicity test (MTT. The microbial cell metabolic activity was measured on gram-negative, gram-positive bacteria and fungi after treating with different concentrations of Fe2O3 nanoparticles. The results of liquid dilution method showed that the MIC of Fe2O3 nanoparticles are 30 μg/ml and 40 μg/ml on E.coli and S. aureus respectively. The results of MTT assay exhibited the ability of Fe2O3 nanoparticles to eliminate the gram negative bacteria (E.coli and K. pneumoniae at 20 µg/ml, while S. aureus, M. luteus, Candida albicans and Candida parapsilosis were totally eliminated at 30 µg/ml.

  13. Metal nanoparticles (other than gold or silver) prepared using plant extracts for medical applications

    Science.gov (United States)

    Pasca, Roxana-Diana; Santa, Szabolcs; Racz, Levente Zsolt; Racz, Csaba Pal

    2016-12-01

    There are many modalities to prepare metal nanoparticles, but the reducing of the metal ions with plant extracts is one of the most promising because it is considerate less toxic for the environment, suitable for the use of those nanoparticles in vivo and not very expensive. Various metal ions have been already studied such as: cobalt, copper, iron, platinum, palladium, zinc, indium, manganese and mercury and the number of plant extracts used is continuously increasing. The prepared systems were characterized afterwards with a great number of methods of investigation: both spectroscopic (especially UV-Vis spectroscopy) and microscopic (in principal, electron microscopy-TEM) methods. The applications of the metal nanoparticles obtained are diverse and not completely known, but the medical applications of such nanoparticles occupy a central place, due to their nontoxic components, but some diverse industrial applications do not have to be forgotten.

  14. Highly luminescent colloidal Eu(3)+-doped KZnF(3) nanoparticles for the selective and sensitive detection of Cu(II) ions.

    Science.gov (United States)

    Sarkar, Shyam; Chatti, Manjunath; Mahalingam, Venkataramanan

    2014-03-17

    This article describes a green synthetic approach to prepare water dispersible perovskite-type Eu3+-doped KZnF3 nanoparticles, carried out using environmentally friendly microwave irradiation at low temperature (85 8C) with water as a solvent. Incorporation of Eu3+ ions into the KZnF3 matrix is confirmed by strong red emission upon ultraviolet (UV) excitation of the nanoparticles. The nanoparticles are coated with poly(acrylic acid) (PAA), which enhances the dispersibility of the nanoparticles in hydrophilic solvents. The strong red emission from Eu3+ ions is selectively quenched upon addition of CuII ions, thus making the nanoparticles a potential CuII sensing material. This sensing ability is highly reversible by the addition of ethylenediaminetetraacetic acid (EDTA), with recovery of almost 90% of the luminescence. If the nanoparticles are strongly attached to a positively charged surface, dipping the surface in a CuII solution leads to the quenching of Eu3+ luminescence, which can be recovered after dipping in an EDTA solution. This process can be repeated for more than five cycles with only a slight decrease in the sensing ability. In addition to sensing, the strong luminescence from Eu3+-doped KZnF3 nanoparticles could be used as a tool for bioimaging.

  15. Synthesis and characterization of Fe{sub 3}O{sub 4} nanoparticles coated with fucan polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Silva, V.A.J.; Andrade, P.L. [Programa de Pós-Graduação em Ciências de Materiais, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, 50670-901 Recife-PE (Brazil); Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, 50670-901 Recife-PE (Brazil); Silva, M.P.C. [Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, 50670-901 Recife-PE (Brazil); Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-420 Recife-PE (Brazil); Bustamante D, A. [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149 Lima (Peru); De Los Santos Valladares, Luis [Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, 50670-901 Recife-PE (Brazil); Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Albino Aguiar, J., E-mail: albino@df.ufpe.br [Programa de Pós-Graduação em Ciências de Materiais, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, 50670-901 Recife-PE (Brazil); Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife-PE (Brazil)

    2013-10-15

    In this work we report the preparation of fucan-coated magnetite (Fe{sub 3}O{sub 4}) nanoparticles by the co-precipitation method. These nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Mössbauer spectroscopy and magnetic measurements. The nanoparticles showed quasi-spherical morphology with mean sizes around 10 nm. XRD and FT-IR confirmed the functionalization of the Fe{sub 3}O{sub 4} nanoparticles with the fucan polysaccharide. Room temperature magnetization measurements and Mössbauer spectroscopy showed that the nanoparticles exhibited superparamagnetic behavior at 300 K and the magnetic properties of the Fe{sub 3}O{sub 4} are partly screened by the coating preventing aggregation. - Highlights: • Syntheses of fucan-coated Fe{sub 3}O{sub 4} nanoparticles were made by co-precipitation method. • The efficiency of polysaccharide coated was analyzed by XRD and FT-IR. • The magnetic nanoparticles mean size was 10–20 nm. • The fucan-coated magnetite nanoparticles showed superparamagnetic behavior.

  16. Preparation of SnO2 Nanoparticles by Two Different Wet Chemistry Methods

    International Nuclear Information System (INIS)

    Ridha, N.J.; Akrajas Ali Umar; Muhammad Yahya; Muhammad Mat Salleh; Mohamad Hafizuddin Jumali

    2011-01-01

    The objective of this project is to prepare SnO 2 nanoparticles by two different wet chemistry methods namely sol gel and direct growth methods. The XRD results indicated that both samples are single phase SnO 2 . The FE-SEM micrographs displayed that SnO 2 nanoparticles prepared in first method exhibited a round shape with particle size around 15 nm while the second method produced SnO 2 nano rod with length and width of 570 nm and 55 nm respectively. Energy gap values for SnO 2 nanospheres and nano rods were 4.38 and 4.34 eV respectively. (author)

  17. Synthesis and characterization of rod-like ZnO decorated with γ-Fe{sub 2}O{sub 3} nanoparticles monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Balti, Imen, E-mail: imenbalti12@yahoo.fr [Unité de Recherche 99/UR12-30, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Jarzouna (Tunisia); Laboratoire des Sciences des Procédés et Matériaux, LSPM, CNRS, UPR 3407, Université Paris XIII, 99 Avenue J.B. Clément, 93430 Villetaneuse (France); Smiri, Laila Samia [Unité de Recherche 99/UR12-30, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Jarzouna (Tunisia); Rabu, Pierre [Département de Chimie des Matériaux Inorganiques, IPCMS, UMR 7504, CNRS–UDS, 23, rue du Loess, BP 43, Strasbourg Cedex 2 (France); Gautron, Eric [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Viana, Bruno [LCMCP, Chimie-Paristech, UPMC, Collège de France, UMR CNRS 7574, 11 rue Pierre et Marie Curie, 75005 Paris (France); Jouini, Noureddine [Laboratoire des Sciences des Procédés et Matériaux, LSPM, CNRS, UPR 3407, Université Paris XIII, 99 Avenue J.B. Clément, 93430 Villetaneuse (France)

    2014-02-15

    Highlights: ► Rod-like ZnO decorated with γ-Fe{sub 2}O{sub 3} nanoparticles have been prepared using forced hydrolysis in polyol medium. ► The system presents excellent UV photoluminescence properties along with superparamagnetic behavior. -- Abstract: Decorated rod-like ZnO particles with γ-Fe{sub 2}O{sub 3} nanoparticles monolayer (ZnO@γ-Fe{sub 2}O{sub 3}) were prepared via a simple route using forced hydrolysis of metal acetates in a polyol medium. The phases and purity of the as-prepared particles were established by powder X-ray diffraction (PXRD) and X-ray photo-electron spectroscopy (XPS) analyses. Transmission electron microscopy (TEM) showed that the ZnO particles present a typical rod-like morphology with ∼80 nm diameter and ∼200–400 nm length. These nanorods are decorated with well-organized γ-Fe{sub 2}O{sub 3} spherical nanoparticles showing a narrow size distribution around 5 nm. The photoluminescence (PL) spectra of the bare ZnO particles show predominant UV-excitonic and weak visible emission. The latter vanishes after covering the surface with the γ-Fe{sub 2}O{sub 3} nanoparticles suggesting an effect on the oxygen stoichiometry at the surface of the ZnO nanorods. The decorated nanoparticles exhibit magnetic response to an external magnetic field at room temperature and a superparamagnetic character with very low blocking temperature likely related to the organisation of γ-Fe{sub 2}O{sub 3} nanoparticles as monolayer.

  18. Enhanced visible light-responsive photocatalytic activity of LnFeO3 (Ln = La, Sm) nanoparticles by synergistic catalysis

    International Nuclear Information System (INIS)

    Li, Li; Wang, Xiong; Zhang, Yange

    2014-01-01

    Highlights: • LnFeO 3 (Ln = La, Sm) nanoparticles were prepared by a facile sol–gel method. • The samples exhibit superior visible-light-responsive photocatalytic activity. • Synergistic effect will enhance the photodegradation of RhB under visible light. - Abstract: LnFeO 3 (Ln = La, Sm) nanoparticles were prepared by a facile sol–gel method with assistance of glycol at different calcination temperatures. The as-synthesized LnFeO 3 was characterized by X-ray diffraction, transmission electron microscopy, differential scanning calorimeter and thermogravimetric analysis, and UV–vis absorption spectroscopy. The photocatalytic behaviors of LnFeO 3 nanoparticles were evaluated by photodegradation of rhodamine B under visible light irradiation. The results indicate that the visible light-responsive photocatalytic activity of LnFeO 3 nanoparticles was enhanced remarkably by the synergistic effect between the semiconductor photocatalysis and Fenton-like reaction. And a possible catalytic mechanism was also proposed based on the experimental results

  19. Application of Molecular Imprinted Magnetic Fe3O4@SiO2 Nanoparticles for Selective Immobilization of Cellulase.

    Science.gov (United States)

    Tao, Qing-Lan; Li, Yue; Shi, Ying; Liu, Rui-Jiang; Zhang, Ye-Wang; Guo, Jianyong

    2016-06-01

    Magnetic Fe3O4@SiO2 nanoparticles were prepared with molecular imprinting method using cellulase as the template. And the surface of the nanoparticles was chemically modified with arginine. The prepared nanoparticles were used as support for specific immobilization of cellulase. SDS-PAGE results indicated that the adsorption of cellulase onto the modified imprinted nanoparticles was selective. The immobilization yield and efficiency were obtained more than 70% after the optimization. Characterization of the immobilized cellulase revealed that the immobilization didn't change the optimal pH and temperature. The half-life of the immobilized cellulase was 2-fold higher than that of the free enzyme at 50 degrees C. After 7 cycles reusing, the immobilized enzyme still retained 77% of the original activity. These results suggest that the prepared imprinted nanoparticles have the potential industrial applications for the purification or immobilization of enzymes.

  20. Polypropylene fibers modified by plasma treatment for preparation of Ag nanoparticles.

    Science.gov (United States)

    Tseng, Chun-Hao; Wang, Cheng-Chien; Chen, Chuh-Yung

    2006-03-09

    A novel method for preparing poly(propylene-graft-2-methacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester)-silver fibers (PPG-IAg fibers) by plasma-induced grafting polymerization is presented in this study. The chelating groups, -N(CH2COO-)2 (GMA-IDA), on the surface of the PPG-I fibers are the coordination sites for chelating silver ions. At these sites, Ag nanoparticles were grown first by reduction with UV light with a wavelength of 366 nm, and second, through immersion in a 24% formaldehyde solution with pH values set variously at 2, 5, 8, and 11. The characteristics of the PPG-I fibers with differing durations of plasma treatment were monitored by using a Fourier transform infrared (FT-IR) spectroscope. Scanning electronic microscopy (SEM) and elemental analysis show that the percentage of GMA-IDA grafted onto PP fiber reaches a maximum when the plasma treatment time is 3 min. Plasma treatment time beyond a certain length of time results in an abundance of free radicals and causes considerable cross-linking on the fiber surface which thus decreases the extent of grafting. Moreover, the crystalline phase of Ag nanoparticles is identified by using X-ray diffraction (XRD). When the PPG-I fibers are reduced by the UV light method, SEM and TEM microscopes reveal that the size of the Ag nanoparticles on the fiber surface decreases significantly with the increase of pH values in aqueous solutions. Notably, in the reduction of formaldehyde solution, the particle size of Ag nanoparticles reaches a minimum at the lowest pH value. The TEM observations show that Ag nanoparticles are distributed both in the exterior and interior of the grafting layer. In addition, under high pH values the distribution of the Ag nanoparticles permeate more deeply in the GMA-IDA grafting layer due to the swelling effect of the GMA-IDA polymer.

  1. Preparation of poly-L-lysine functionalized magnetic nanoparticles and their influence on viability of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Khmara, I. [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice (Slovakia); Pavol Jozef Safarik University, Faculty of Science, Park Angelinum 9, Kosice (Slovakia); Koneracka, M.; Kubovcikova, M. [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice (Slovakia); Zavisova, V., E-mail: zavisova@saske.sk [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice (Slovakia); Antal, I.; Csach, K.; Kopcansky, P. [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice (Slovakia); Vidlickova, I.; Csaderova, L.; Pastorekova, S.; Zatovicova, M. [Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia)

    2017-04-01

    This study was aimed at development of biocompatible amino-functionalized magnetic nanoparticles as carriers of specific antibodies able to detect and/or target cancer cells. Poly-L-lysine (PLL)-modified magnetic nanoparticle samples with different PLL/Fe{sub 3}O{sub 4} content were prepared and tested to define the optimal PLL/Fe{sub 3}O{sub 4} weight ratio. The samples were characterized for particle size and morphology (SEM, TEM and DLS), and surface properties (zeta potential measurements). The optimal PLL/Fe{sub 3}O{sub 4} weight ratio of 1.0 based on both zeta potential and DLS measurements was in agreement with the UV/VIS measurements. Magnetic nanoparticles with the optimal PLL content were conjugated with antibody specific for the cancer biomarker carbonic anhydrase IX (CA IX), which is induced by hypoxia, a physiologic stress present in solid tumors and linked with aggressive tumor behavior. CA IX is localized on the cell surface with the antibody-binding epitope facing the extracellular space and is therefore suitable for antibody-based targeting of tumor cells. Here we showed that PLL/Fe{sub 3}O{sub 4} magnetic nanoparticles exhibit cytotoxic activities in a cell type-dependent manner and bind to cells expressing CA IX when conjugated with the CA IX-specific antibody. These data support further investigations of the CA IX antibody-conjugated, magnetic field-guided/activated nanoparticles as tools in anticancer strategies. - Highlights: • Antibody-coupled magnetic nanoparticles can serve for targeting of cancer cells. • Nanoparticle properties depend on poly-L-lysine loading that prevents aggregation. • Nanoparticles show time-, concentration-, and cell type-specific cytotoxicity. • M75 antibody detects the hypoxia-induced tumor biomarker CA IX. • M75-conjugated nanoparticles exhibit selective cell binding and internalization.

  2. Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao; Wang, Hongbo; Yang, Chunming; Du, Dan; Lin, Yuehe

    2013-03-15

    Novel Fe3O4 at TiO2 magnetic nanoparticles were prepared and developed for a new nanoparticle-based immunosensor for electrochemical quantification of organophosphorylated butyrylcholinesterase (BChE) in plasma, a specific biomarker of exposure to organophosphorus (OP) agents. The Fe3O4 at TiO2 nanoparticles were synthesized by hydrolysis of tetrabutyltitanate on the surface of Fe3O4 magnetic nanospheres, and characterized by attenuated total reflection Fourier-transform infrared spectra, transmission electron microscope and X-ray diffraction. The functional Fe3O4 at TiO2 nanoparticles were performed as capture antibody to selectively enrich phosphorylated moiety instead of phosphoserine antibody in the traditional sandwich immunoassays. The secondary recognition was served by quantum dots (QDs)-tagged anti-BChE antibody (QDs-anti-BChE). With the help of a magnet, the resulting sandwich-like complex, Fe3O4 at TiO2/OP-BChE/QDs-anti-BChE, was easily isolated from sample solutions and the released cadmium ions were detected on a disposable screen-printed electrode (SPE). The binding affinities were investigated by both surface plasmon resonance (SPR) and square wave voltammetry (SWV). This method not only avoids the drawback of unavailability of commercial OP-specific antibody but also amplifies detection signal by QDs-tags together with easy separation of samples by magnetic forces. The proposed immunosensor yields a linear response over a broad OP-BChE concentrations range from 0.02 to 10 nM, with detection limit of 0.01 nM. Moreover, the disposable nanoparticle-based immunosensor has been validated with human plasma samples. It offers a new method for rapid, sensitive, selective and inexpensive screening/evaluating exposure to OP pesticides.

  3. Preparation of new composite ceramics based on gadolinium-doped ceria and magnesia nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jingying; Schelter, Matthias; Zosel, Jens; Oelssner, Wolfram [Kurt-Schwabe-Institut fuer Mess- und Sensortechnik e.V. Meinsberg, Waldheim (Germany); Mertig, Michael [Kurt-Schwabe-Institut fuer Mess- und Sensortechnik e.V. Meinsberg, Waldheim (Germany); Physikalische Chemie, Mess- und Sensortechnik, Technische Universitaet Dresden (Germany)

    2017-09-15

    To achieve solid electrolyte materials for electrochemical energy storage devices with very high oxygen ion conductivity, composites of gadolinium-doped ceria (GDC) and magnesia (MgO) are developed in this study. Three different preparation methods are used to prepare nanoparticles from these two components. According to the characterization results, the self-propagating high-temperature synthesis is best suited for the preparation of both nanometer-sized GDC powder as solid electrolyte and MgO powder as insulator. The structures of the prepared nanometer-sized powders have been characterized by X-ray diffraction and transmission electron microscopy. They show narrow size distributions in the lower nanometer range. Then, dense composite ceramics are prepared from a MgO-GDC mixture by sintering. The size of the crystallite domains in the sintered ceramic is in the upper nanometer range. TEM and TEM-EDX images of a new composite ceramic based on gadolinium-doped ceria and magnesia nanoparticles. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Preparation of new composite ceramics based on gadolinium-doped ceria and magnesia nanoparticles

    International Nuclear Information System (INIS)

    Yao, Jingying; Schelter, Matthias; Zosel, Jens; Oelssner, Wolfram; Mertig, Michael

    2017-01-01

    To achieve solid electrolyte materials for electrochemical energy storage devices with very high oxygen ion conductivity, composites of gadolinium-doped ceria (GDC) and magnesia (MgO) are developed in this study. Three different preparation methods are used to prepare nanoparticles from these two components. According to the characterization results, the self-propagating high-temperature synthesis is best suited for the preparation of both nanometer-sized GDC powder as solid electrolyte and MgO powder as insulator. The structures of the prepared nanometer-sized powders have been characterized by X-ray diffraction and transmission electron microscopy. They show narrow size distributions in the lower nanometer range. Then, dense composite ceramics are prepared from a MgO-GDC mixture by sintering. The size of the crystallite domains in the sintered ceramic is in the upper nanometer range. TEM and TEM-EDX images of a new composite ceramic based on gadolinium-doped ceria and magnesia nanoparticles. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Preparation and characterization of oligochitosan-tragacanth nanoparticles as a novel gene carrier.

    Science.gov (United States)

    Fattahi, Ali; Sadrjavadi, Komail; Golozar, Mohammad Ali; Varshosaz, Jaleh; Fathi, Mohammad-Hossein; Mirmohammad-Sadeghi, Hamid

    2013-09-12

    The nanoparticles of oligochitosan-water soluble tragacanth (OCH-WST) as novel gene carriers have been prepared and their transfection efficiency has been investigated on Hela and HepG2 cell lines. Different OCH:WST weight ratios were prepared to obtain particles with low size distribution and high surface charge, and also in range of below 200 nm. Nanoparticles with 132.5 ± 6.77 nm size, polydispersity index 1.92 ± 0.061, surface charge 30.45 ± 1.84 and spherical morphology, have been chosen as gene carrier. Nanoparticle-DNA complexes (nanoplexes) showed better transfection efficiency in both Hela and HepG2 cells than chitosan polyplexes, with 1.26 × 10(6) versus 9.05 × 10(5) and 7.76 × 10(5) versus 2.16 × 10(5), respectively. Higher transfection efficiency of nanoplexes could be attributed to their weaker complexation. Decreasing of transfection in presence of galactose in HepG2 cells, indicated receptor mediated endocytosis of nanoplexes. These properties all together, make OCH-WST nanoparticles as potential gene carrier for active gene delivery into cells containing sugar receptors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Electrochemical preparation of iron cuboid nanoparticles and their catalytic properties for nitrite reduction

    International Nuclear Information System (INIS)

    Chen Yanxin; Chen Shengpei; Chen Qingsong; Zhou Zhiyou; Sun Shigang

    2008-01-01

    Iron cuboid nanoparticles supported on glassy carbon (denoted nm-Fe/GC) were prepared by electrochemical deposition under cyclic voltammetric (CV) conditions. The structure and composition of the Fe nanomaterials were characterized by scanning electron microscopy (SEM), selected area electron diffraction (SAED), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX). The results demonstrated that the Fe cuboid nanoparticles are dispersed discretely on GC substrate with an average size ca. 171 nm, and confirmed that the electrochemical synthesized nanocubes are single crystals of pure Fe. The catalytic properties of the Fe cuboid nanoparticles towards nitrite electroreduction were investigated, and enhanced electrocatalytic activity of the Fe nanocubes has been determined. In comparison with the data obtained on a bulk-Fe electrode, the onset potential of nitrite reduction on nm-Fe/GC is positively sifted by 100 mV, and the steady reduction current density is enhanced about 2.4-3.2 times

  7. Preparation, characterization and adsorption properties of chitosan nanoparticles for eosin Y as a model anionic dye

    International Nuclear Information System (INIS)

    Du Wenli; Xu Zirong; Han Xinyan; Xu Yinglei; Miao Zhiguo

    2008-01-01

    The present study dealt with the adsorption of eosin Y, as a model anionic dye, from aqueous solution using chitosan nanoparticles prepared by the ionic gelation between chitosan and tripolyphosphate. The nanoparticles were characterized by atomic force microscopy (AFM), size and zeta potential analysis. A batch system was applied to study the adsorption of eosin Y from aqueous solution by chitosan nanoparticles. The results showed that the adsorption of eosin Y on chitosan nanoparticles was affected by contact time, eosin Y concentration, pH and temperature. Experimental data followed Langmuir isotherm model and the adsorption capacity was found to be 3.333 g/g. The adsorption process was endothermic in nature with an enthalpy change (ΔH) of 16.7 kJ/mol at 20-50 deg. C. The optimum pH value for eosin Y removal was found to be 2-6. The dye was desorbed from the chitosan nanoparticles by increasing the pH of the solution

  8. Preparation, characterization and adsorption properties of chitosan nanoparticles for eosin Y as a model anionic dye

    Energy Technology Data Exchange (ETDEWEB)

    Du Wenli [Institute of Feed Science, College of Animal Science, Zhejiang University, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310029 (China)], E-mail: wenlidu@126.com; Xu Zirong; Han Xinyan; Xu Yinglei; Miao Zhiguo [Institute of Feed Science, College of Animal Science, Zhejiang University, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310029 (China)

    2008-05-01

    The present study dealt with the adsorption of eosin Y, as a model anionic dye, from aqueous solution using chitosan nanoparticles prepared by the ionic gelation between chitosan and tripolyphosphate. The nanoparticles were characterized by atomic force microscopy (AFM), size and zeta potential analysis. A batch system was applied to study the adsorption of eosin Y from aqueous solution by chitosan nanoparticles. The results showed that the adsorption of eosin Y on chitosan nanoparticles was affected by contact time, eosin Y concentration, pH and temperature. Experimental data followed Langmuir isotherm model and the adsorption capacity was found to be 3.333 g/g. The adsorption process was endothermic in nature with an enthalpy change ({delta}H) of 16.7 kJ/mol at 20-50 deg. C. The optimum pH value for eosin Y removal was found to be 2-6. The dye was desorbed from the chitosan nanoparticles by increasing the pH of the solution.

  9. Blue and green emission from Ce3+ and Tb3+ co-doped Y2O3 nanoparticles

    International Nuclear Information System (INIS)

    Loitongbam, Romeo Singh; Singh, W. Rameshwor; Phaomei, Ganngam; Singh, N. Shanta

    2013-01-01

    Tb 3+ doped Y 2 O 3 nanoparticles of 4–10 nm size were synthesized from nitrate precursors by the urea hydrolysis method in ethylene glycol medium at a low temperature of 140 °C. Characteristic green emission of Tb 3+ corresponding to 5 D 4 → 7 F J is observed to be very strong, which is further enhanced with heat treatment temperature. Characteristic blue color emission of Ce 3+ ion originating from 5d→ 2 F 7/2 (424 nm) and 2 F 5/2 (486 nm) transitions are found to be very strong in as-synthesized Ce 0.02 Tb 0.06 Y 1.92 O 3 nanoparticles. However, its luminescence intensity decreases with increase in heating temperature or increase in the particle size/crystallinity, whereas a weak emission peak of Tb 3+ ion at 545 nm is witnessed. The polycrystalline nature of the as-prepared sample changed to highly crystalline state when heated at an elevated temperature (1200 °C). -- Highlights: • Y 2 O 3 nanoparticles doped with Tb 3+ and Ce 3+ of 4–10 nm are synthesized. • Strong green emission of Tb 3+ from 5 D 4 → 7 F J transition is observed. • Strong blue emission of Ce 3+ from 5d→ 2 F 7/2 and 2 F 5/2 transitions is observed. • Ce 3+ emission decreases with annealing or increase in particle size. • Such nanoparticles can be used in LEDs and bio-labeling

  10. Preparation and characterization of β-cyclodextrin grafted N-maleoyl chitosan nanoparticles for drug delivery

    Directory of Open Access Journals (Sweden)

    Xinyu Hou

    2017-11-01

    Full Text Available β-cyclodextrin (CD grafted N-maleoyl chitosan (CD-g-NMCS with two different degrees of substitution (DS of N-maleoyl (DS = 21.2% and 30.5% were synthesized from maleic anhydride and chitosan bearing pendant cyclodextrin (CD-g-CS. CD-g-NMCS based nanoparticles were prepared via an ionic gelation method together with chitosan and CD-g-CS nanoparticles. The size and zeta potential of prepared CD-g-NMCS nanoparticles were 179.2~274.0 nm and 36.2~42.4 mV, respectively. In vitro stability test indicated that CD-g-NMCS nanoparticles were more stable in phosphate-buffered saline compared with chitosan nanoparticles. Moreover, a poorly water-soluble drug, ketoprofen (KTP, was selected as a model drug to study the obtained nanoparticle's potentials as drug delivery carriers. The drug loading efficiency of CD-g-NMCS20 nanoparticles were 14.8% for KTP. MTT assay showed that KTP loaded CD-g-NMCS nanoparticles were safe drug carriers. Notably, in vitro drug release studies showed that KTP was released in a sustained-release manner for the nanoparticles. The pharmacokinetic of drug loaded CD-g-NMCS20 nanoparticles were evaluated in rats after intravenous administration. The results of studies revealed that, compared with free KTP, KTP loaded CD-g-NMCS20 nanoparticles exhibited a significant increase in AUC0→24h and mean residence time by 6.6-fold and 2.9-fold, respectively. Therefore, CD-g-NMCS nanoparticles could be used as a novel promising nanoparticle-based drug delivery system for sustained release of poorly water-soluble drugs. The carboxylic acid groups of the CD-g-NMCS molecule provide convenient sites for further structural modifications including introduction of tissue- or disease- specific targeting groups.

  11. Effect of pH on particles size and gas sensing properties of In{sub 2}O{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Kanica, E-mail: kanica.anand@yahoo.com; Thangaraj, Rengasamy; Singh, Ravi Chand [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)

    2016-05-23

    In this work, indium oxide (In{sub 2}O{sub 3}) nanoparticles have been synthesized by co-precipitation method and the effect of pH on the structural and sensor response values of In{sub 2}O{sub 3} nanoparticles has been reported. X-ray diffraction pattern (XRD) revealed the formation of cubic phase In{sub 2}O{sub 3} nanoparticles. FESEM results indicate the formation of nearly spherical shape In{sub 2}O{sub 3} nanoparticles. The band gap energy value changed with change in pH value and found to have highest value at pH 9. Indium oxide nanoparticles thus prepared were deposited as thick films on alumina substrates to act as gas sensors and their sensing response to ethanol vapors and LPG at 50 ppm was investigated at different operating temperatures. It has been observed that all sensors exhibited optimum response at 300°C towards ethanol and at 400°C towards LPG. In{sub 2}O{sub 3} nanoparticles prepared at pH 9, being smallest in size as compared to other, exhibit highest sensor response (SR).

  12. Simple and convenient preparation of Au-Pt core-shell nanoparticles on surface via a seed growth method

    International Nuclear Information System (INIS)

    Qian Lei; Sha Yufang; Yang Xiurong

    2006-01-01

    Au-Pt core-shell nanoparticles were prepared on glass surface by a seed growth method. Gold nanoparticles were used as seeds and ascorbic acid-H 2 PtCl 6 solutions as growth solutions to deposit Pt shell on the surface of gold nanoparticles. These core-shell nanoparticles and their growth process were examined by UV-Vis spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and field-emission environmental scanning electron microscopy and the results indicated that the deposition speed was fast and nanoparticles with obvious core-shell structure could be obtained after 2 min. Moreover, this seed growth method for preparation of the core-shell nanoparticles is simple and convenient compared with other seed growth methods with NH 4 OH as a mild reductant. In addition, electrochemical experiments indicated that these Au-Pt core-shell nanoparticles had similar electrochemical properties to those of the bulk Pt electrode

  13. Photocatalytic activity of Ag3PO4 nanoparticle/TiO2 nanobelt heterostructures

    Science.gov (United States)

    Liu, Ruoyu; Hu, Peiguang; Chen, Shaowei

    2012-10-01

    Heterostructures based on Ag3PO4 nanoparticles and TiO2 nanobelts were prepared by a coprecipitation method. The crystalline structures were characterized by X-ray diffraction measurements. Electron microscopic studies showed that the Ag3PO4 nanoparticles and TiO2 nanobelts were in intimate contact which might be exploited to facilitate charge transfer between the two semiconductor materials. In fact, the heterostructures exhibited markedly enhanced photocatalytic activity as compared with unmodified TiO2 nanobelts or commercial TiO2 colloids in the photodegradation of methyl orange under UV irradiation. This was accounted for by the improved efficiency of interfacial charge separation thanks to the unique alignments of their band structures. Remarkably, whereas the photocatalytic activity of the heterostructure was comparable to that of Ag3PO4 nanoparticles alone, the heterostructures exhibited significantly better stability and reusability in repeated tests than the Ag3PO4 nanoparticles.

  14. Roles of ethylene glycol solvent and polymers in preparing uniformly distributed MgO nanoparticles

    Directory of Open Access Journals (Sweden)

    Chunxi Hai

    2017-06-01

    Full Text Available This study focus on specifying the roles of solvent ethylene glycol (EG and polymers for synthesis of uniformly distributed magnesium oxide (MgO nanoparticles with average crystallite size of around 50 nm through a modified polyol method. Based on different characterization results, it was concluded that, Mg2+ ions was precipitated by the −OH and CO32− ions decomposed from urea in ethylene glycol (EG medium (CO(NH22 → NH3 + HNCO, HNCO + H2O → NH3 + CO2, thus forming well crystallized Mg5(CO34(OH2 (H2O4 precursor which could be converted to MgO by calcination. Surface protectors PEG and PVP have no obvious influences on cyrtsal structure, morphology and size uniformity of as-prepared precursors and target MgO nanoparticles. In comparison with polymers PEG and PVP, solvent EG plays an important role in controlling the morphology and diameter uniformity of MgO nanoparticles.

  15. New method for preparation of polyoxometalate-capped gold nanoparticles, and their assembly on an indium-doped tin oxide electrode

    International Nuclear Information System (INIS)

    Cheng, Y.; Zheng, J.; Wang, Z.; Liu, L.; Wu, Y.; Yang, J.

    2011-01-01

    Functionalized gold nanoparticles capped with polyoxometalates were prepared by a simple photoreduction technique where phosphododecamolybdates serve as reducing reagents, photocatalysts, and as stabilizers. TEM images of the resulting gold nanoparticles show the particles to have a relative narrow size distribution. Monolayer and multilayer structures of the negatively charged capped gold nanoparticles were deposited on a poly(vinyl pyridine)-derivatized indium-doped tin oxide (ITO) electrode via the layer-by-layer technique. The surface plasmon resonance band of the gold nanoparticles displays a blue shift on the surface of the ITO electrode. This is due to the substrate-induced charge redistribution in the gold nanoparticles and a change in the electromagnetic coupling between the assembled nanoparticles. The modified electrode exhibits the characteristic electrochemical behavior of surface-confined phosphododecamolybdate and excellent electrocatalytic activity. The catalysis of the modified electrode towards the model compound iodate was systematically studied. The heterogeneous catalytic rate constant for the electrochemical reduction of iodate was determined by chronoamperometry to be ca. 1. 34 x 10 5 mol -1 .L.s -1 . The amperometric method gave a linear range from 2. 5 x 10 -6 to 1. 5 x 10 -3 M and a detection limit of 1. 0 x 10 -6 M. We believe that the functionalized gold nanoparticles prepared by this photoreduction technique are advantageous in terms of fabrication of sensitive and stable redox electrodes. (author)

  16. Ammonia Synthesis using Ti and Nb Nitride Nano-particles Prepared by Mesoporous Graphitic C3N4

    KAUST Repository

    Kumagai, Hiromu

    2015-01-22

    TiN and NbN nanoparticles were synthesized from mesoporous graphitic C3N4 (mpg-C3N4) as a reactive template and used as the catalyst for ammonia synthesis. The obtained TiN and NbN nanoparticles possess high surface areas of 299 and 275 m2 g-1, respectively, making them attractive in the use of catalysis and support. Although most of the TiN and NbN particles show no measurable activity for ammonia formation, the nanoparticles enabled an ammonia synthesis rate of 31 μmol h-1 g-cat-1 at 673 K and 0.1 MPa of synthesis gas (N2 + 3H2) for both TiN and NbN catalysts. It is evident that the formation of nanoparticles with high nitride surface area is essential for the materials to function as catalysts in ammonia synthesis. The addition of Fe to TiN enhanced the ammonia synthesis activity, whereas it had detrimental effects on the catalytic activity of NbN. The properties of these catalysts in ammonia synthesis are discussed.

  17. Effects of Fe3O4 Magnetic Nanoparticles on the Thermoelectric Properties of Heavy-Fermion YbAl3 Materials

    Science.gov (United States)

    He, Danqi; Mu, Xin; Zhou, Hongyu; Li, Cuncheng; Ma, Shifang; Ji, Pengxia; Hou, Weikang; Wei, Ping; Zhu, Wanting; Nie, Xiaolei; Zhao, Wenyu

    2018-06-01

    The magnetic nanocomposite thermoelectric materials xFe3O4/YbAl3 ( x = 0%, 0.3%, 0.6%, 1.0%, and 1.5%) have been prepared by the combination of ultrasonic dispersion and spark plasma sintering process. The nanocomposites retain good chemical stability in the presence of the second-phase Fe3O4. The second-phase Fe3O4 magnetic nanoparticles are distributed on the interfaces and boundaries of the matrix. The x dependences of thermoelectric properties indicate that Fe3O4 magnetic nanoparticles can significantly decrease the thermal conductivity and electrical conductivity. The magnetic nanoparticles embedded in YbAl3 matrix are not only the phonon scattering centers of nanostructures, but also the electron scattering centers due to the Kondo-like effect between the magnetic moment of Fe3O4 nanoparticles and the spin of electrons. The ZT values of the composites are first increased in the x range 0%-1.0% and then decreased when x > 1.0%. The highest ZT value reaches 0.3 at 300 K for the nanocomposite with x = 1.0%. Our work demonstrates that the Fe3O4 magnetic nanoparticles can greatly increase the thermoelectric performance of heavy-fermion YbAl3 thermoelectric materials through simultaneously scattering electrons and phonons.

  18. Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles

    Directory of Open Access Journals (Sweden)

    Omwoyo WN

    2014-08-01

    Full Text Available Wesley Nyaigoti Omwoyo,1,2 Bernhards Ogutu,3,4 Florence Oloo,3,5 Hulda Swai,6 Lonji Kalombo,6 Paula Melariri,6 Geoffrey Maroa Mahanga,2 Jeremiah Waweru Gathirwa3,4 1Department of Chemistry, Maasai Mara University, Narok, Kenya; 2Department of Chemistry, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya; 3Center for Research in Therapeutic Sciences, Strathmore University, Nairobi, Kenya; 4Kenya Medical Research Institute, Nairobi, Kenya; 5Department of Chemical Sciences and Technology, Technical University of Kenya, Nairobi, Kenya; 6Department of Polymers and Composites, Council for Scientific and Industrial Research, Pretoria, South Africa Abstract: Primaquine (PQ is one of the most widely used antimalarial drugs and is the only available drug that combats the relapsing form of malaria. PQ use in higher doses is limited by severe tissue toxicity including hematological- and gastrointestinal-related side effects. Nanoformulation of drugs in an appropriate drug carrier system has been extensively studied and shown to have the potential to improve bioavailability, thereby enhancing activity, reducing dose frequency, and subsequently reducing toxicity. The aim of this work was to design, synthesize, and characterize PQ-loaded solid lipid nanoparticles (SLNs (PQ-SLNs as a potential drug-delivery system. SLNs were prepared by a modified solvent emulsification evaporation method based on a water-in-oil-in-water (w/o/w double emulsion. The mean particle size, zeta potential, drug loading, and encapsulation efficiency of the PQ-SLNs were 236 nm, +23 mV, 14%, and 75%, respectively. The zeta potential of the SLNs changed dramatically, from -6.54 mV to +23.0 mV, by binding positively charged chitosan as surface modifier. A spherical morphology of PQ-SLNs was seen by scanning electron microscope. In vitro, release profile depicted a steady drug release over 72 hours. Differential scanning calorimeter thermograms demonstrated presence

  19. Nickel Oxide (NiO nanoparticles prepared by solid-state thermal decomposition of Nickel (II schiff base precursor

    Directory of Open Access Journals (Sweden)

    Aliakbar Dehno Khalaji

    2015-06-01

    Full Text Available In this paper, plate-like NiO nanoparticles were prepared by one-pot solid-state thermal decomposition of nickel (II Schiff base complex as new precursor. First, the nickel (II Schiff base precursor was prepared by solid-state grinding using nickel (II nitrate hexahydrate, Ni(NO32∙6H2O, and the Schiff base ligand N,N′-bis-(salicylidene benzene-1,4-diamine for 30 min without using any solvent, catalyst, template or surfactant. It was characterized by Fourier Transform Infrared spectroscopy (FT-IR and elemental analysis (CHN. The resultant solid was subsequently annealed in the electrical furnace at 450 °C for 3 h in air atmosphere. Nanoparticles of NiO were produced and characterized by X-ray powder diffraction (XRD at 2θ degree 0-140°, FT-IR spectroscopy, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The XRD and FT-IR results showed that the product is pure and has good crystallinity with cubic structure because no characteristic peaks of impurity were observed, while the SEM and TEM results showed that the obtained product is tiny, aggregated with plate-like shape, narrow size distribution with an average size between 10-40 nm. Results show that the solid state thermal decomposition method is simple, environmentally friendly, safe and suitable for preparation of NiO nanoparticles. This method can also be used to synthesize nanoparticles of other metal oxides.

  20. The preparation of highly active antimicrobial silver nanoparticles by an organometallic approach

    International Nuclear Information System (INIS)

    Fernandez, Eduardo J; Garcia-Barrasa, Jorge; Lopez-de-Luzuriaga, Jose M; Monge, Miguel; Laguna, Antonio; Torres, Carmen

    2008-01-01

    Silver nanoparticles of small size with a high surface to volume ratio have been prepared using an organometallic approach. For this, the complex NBu 4 [Ag(C 6 F 5 ) 2 ] has been treated with AgClO 4 in a 1:1 molar ratio, giving rise to the nanoparticle precursor [Ag(C 6 F 5 )] in solution. Addition of one equivalent of hexadecylamine (HDA) and 5 h of reflux in toluene leads to a deep yellow solution containing monodisperse silver nanoparticles (Ag NPs) of ca. 10 nm. This approach leads to nanoparticles with almost uncontaminated surfaces which make them very reactive. Antimicrobial studies show that these nanoparticles are very active as antimicrobial agents. Very low concentrations between 12 and 25 μg ml -1 of Ag NPs are enough to produce bacteriostatic and bactericidal effectiveness

  1. Structural and optical characterization of In_2O_3/PANI nanocomposite prepared by in-situ polymerization

    International Nuclear Information System (INIS)

    Janeoo, Shashi; Sharma, Mamta; Goswamy, J.; Singh, Gurinder

    2016-01-01

    Polyaniline-indium oxide (In_2O_3/PANI) nanocomposite have been prepared by in-situ polymerization of aniline and as-synthesized In_2O_3 nanoparticles. X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transformation infrared (FTIR) and UV/Vis spectroscopy techniques are used to investigate the structural and optical properties of In_2O_3/PANI nanocomposite. TEM analysis shows In_2O_3 nanoparticles are embedded in PANI nanofibers. FTIR spectra show the good interactions between PANI nanofibers and In_2O_3 nanoparticles. The band gap and electronic transitions in In_2O_3/PANI nanocomposite is determined by using UV/Vis spectra.

  2. Synthesis, characterization and magnetic property of maghemite (γ-Fe2O3) nanoparticles and their protective coating with pepsin for bio-functionalization

    International Nuclear Information System (INIS)

    Bandhu, A.; Sutradhar, S.; Mukherjee, S.; Greneche, J.M.; Chakrabarti, P.K.

    2015-01-01

    Highlights: • Maghemite nanoparticles were prepared by a modified co-precipitation method. • Nanoparticles were then successfully coated with pepsin for bio-functionlization. • XRD and Mössbauer spectra confirmed the maghemite phase of the nanoparticles. • Magnetic data were analysed to evaluate particle size, anisotropy etc. - Abstract: Maghemite nanoparticles (γ-Fe 2 O 3 ) are prepared by co-precipitation method. To obtain bio-functionalized magnetic nanoparticles for magnetically controlled drug delivery, the prepared nanoparticles are successfully coated with pepsin, a bio-compatible polymer and digestive enzyme. Crystallographic phase of the nanoparticles is confirmed by X-ray diffractograms (XRD), high resolution transmission electron microscopy (HRTEM) and 57 Fe Mössbauer spectrometry. The average size of nanoparticles/nanocrystallites is estimated from the (3 1 1) peak of the XRD pattern using Debye–Scherrer formula. Results of HRTEM of coated and bare samples are in good agreement with those extracted from the XRD analysis. The dynamic magnetic properties are observed and different quantities viz., coercive field, magnetization, remanence, hysteresis losses etc., are estimated, which confirmed the presence of superparamagnetic relaxation of nanoparticles. Mössbauer spectra of the samples recorded at both 300 and 77 K, confirmed that the majority of particles are maghemite together with a very small fraction of magnetite nanoparticles

  3. SYNTHESIS OF M–Nd DOPED Fe3O4 NANOPARTICLES (M = Co ...

    African Journals Online (AJOL)

    Preferred Customer

    nanoparticles were spherical shaped with inverse spinel structure. ... To obtain nano sized spinel ferrite particles, various preparation techniques have been ... SEM images of (a) Fe3O4, (b) Fe3O4 doped with Nd3+ and Co2+, (c) Fe3O4 doped with. Nd3+ .... Nayar, S.; Mir, A.; Ashok, A.; Sharma, A. J. Bionic Eng. 2010, 7, 29.

  4. Weak ferromagnetism in Re0.67Ca0.33FeO3 (Re=La, Sm, Gd) nanoparticles

    International Nuclear Information System (INIS)

    Li Jiangong; Kou Xinli; Qin Yong; He Haiying

    2003-01-01

    Perovskite-type complex ferrite Re 0.67 Ca 0.33 FeO 3 (Re=La, Sm, Gd) nanoparticles of nearly the same particle size were prepared using sol-gel method. The influence of rare-earth ions on weak ferromagnetism in the Re 0.67 Ca 0.33 FeO 3 nanoparticles has been studied. The spontaneous magnetization M s of the Sm 0.67 Ca 0.33 FeO 3 nanoparticles is greater than that of Gd 0.67 Ca 0.33 FeO 3 nanoparticles; and M s of Gd 0.67 Ca 0.33 FeO 3 nanoparticles is greater than that of La 0.67 Ca 0.33 FeO 3 nanoparticles. The ferromagnetic component arising from the Fe sublattice increases with the decreasing rare-earth ionic radii. The magnetization of the rare-earth ions in the Sm 0.67 Ca 0.33 FeO 3 nanoparticles is smaller than that in the Gd 0.67 Ca 0.33 FeO 3 nanoparticles. The influences of the geometric and intrinsic magnetic characters of rare-earth ions as well as the particle size of the nanoparticles on weak ferromagnetism are discussed

  5. Lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan as a new strategy for oral delivery of insulin: in vitro, ex vivo and in vivo characterizations.

    Science.gov (United States)

    Mahjub, Reza; Radmehr, Moojan; Dorkoosh, Farid Abedin; Ostad, Seyed Naser; Rafiee-Tehrani, Morteza

    2014-12-01

    The purpose of this research was the development, in vitro, ex vivo and in vivo characterization of lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan. Insulin nanoparticles were prepared from methylated N-(4-N,N-dimethylaminobenzyl), methylated N-(4 pyridinyl) and methylated N-(benzyl). Insulin nanoparticles containing non-modified chitosan and also trimethyl chiotsan (TMC) were also prepared as control. The effects of the freeze-drying process on physico-chemical properties of nanoparticles were investigated. The release of insulin from the nanoparticles was studied in vitro. The mechanism of the release of insulin from different types of nanoparticles was determined using curve fitting. The secondary structure of the insulin released from the nanoparticles was analyzed using circular dichroism and the cell cytotoxicity of nanoparticles on a Caco-2 cell line was determined. Ex vivo studies were performed on excised rat jejunum using Frantz diffusion cells. In vivo studies were performed on diabetic male Wistar rats and blood glucose level and insulin serum concentration were determined. Optimized nanoparticles with proper physico-chemical properties were obtained. The lyophilization process was found to cause a decrease in zeta potential and an increase in PdI as well as and a decrease in entrapment efficiency (EE%) and loading efficiency (LE%) but conservation in size of nanoparticles. Atomic force microscopy (AFM) images showed non-aggregated, stable and spherical to sub-spherical nanoparticles. The in vitro release study revealed higher release rates for lyophilized compared to non-lyophilized nanoparticles. Cytotoxicity studies on Caco-2 cells revealed no significant cytotoxicity for prepared nanoparticles after 3-h post-incubation but did show the concentration-dependent cytotoxicity after 24 h. The percentage of cumulative insulin determined from ex vivo studies was significantly higher in nanoparticles prepared

  6. CMC-coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Sitthichai, Sudarat; Pilapong, Chalermchai; Thongtem, Titipun; Thongtem, Somchai

    2015-01-01

    Highlights: • Fe 3 O 4 nanoparticles (NPs) are superparamagnetic. • CMC is water-soluble and nontoxic cellulose-derivative polymer. • CMC-coated Fe 3 O 4 NPs were successfully prepared by co-precipitation method. • The promising NPs that can be used for magnetic resonance imaging application. - Abstract: Pure Fe 3 O 4 nanoparticles and Fe 3 O 4 magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl 2 ·4H 2 O and FeCl 3 ·6H 2 O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe 3 O 4 MNPs consisting of Fe 2+ and Fe 3+ ions with 543.3-mM −1 s −1 high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.

  7. Preparation of CuS nanoparticles embedded in poly(vinyl alcohol ...

    Indian Academy of Sciences (India)

    WINTEC

    ray diffraction (XRD) analyses and electron diffraction pattern also revealed the forming of CuS crystal structure in the PVA fibres. Keywords. CuS nanoparticles; electrospinning; poly(vinyl alcohol). 1. Introduction. In the past decade, the preparation of low-dimensional semiconductor nanostructures has become a hotspot of.

  8. Preparation of Cefquinome Nanoparticles by Using the Supercritical Antisolvent Process

    Directory of Open Access Journals (Sweden)

    Xiao Kefeng

    2015-01-01

    Full Text Available The supercritical antisolvent process was used successfully to prepare nanoparticles of cefquinome. These particles were observed by scanning electron microscope (SEM and their average diameter was measured by laser particle size analyzer. In the experiments, dimethyl sulfoxide (DMSO was selected as solvent to dissolve cefquinome sulfate. It was confirmed by orthogonal experiments that the concentration of solution was the primary factor in this process followed by feeding speed of solution, precipitation pressure, and precipitation temperature. Moreover, the optimal conditions of preparing nanoparticles of cefquinome by supercritical antisolvent process were that solution concentration was 100 mg/mL, solution flow speed was 1.5 mL/min, operating pressure was 13 Mpa, and operating temperature was 33°C. Confirmatory experiment was conducted under this condition. It was found that the appearance of particles was flakes and the average diameter of particles was 0.71 microns. Finally, influence law of individual factor on particle size was investigated by univariate analysis.

  9. Hybrid chitosan–Pluronic F-127 films with BaTiO3:Co nanoparticles: Synthesis and properties

    International Nuclear Information System (INIS)

    Fuentes, S.; Dubo, J.; Barraza, N.; González, R.; Veloso, E.

    2015-01-01

    In this study, magnetic BaTiO 3 :Co (BT:Co) nanoparticles prepared using a combined sol–gel–hydrothermal technique were dispersed in a chitosan/Pluronic F-127 solution (QO/Pl) to obtain a nanocomposite hybrid films. Nanoparticles and hybrid films were characterized by X-ray powder diffraction, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and alternating gradient magnetometry (AGM). Experimental results indicated that the BT:Co nanoparticles were encapsulated in the QO/Pl hybrid films and that the magnetic properties of the QO/Pl/BT:Co nanocomposites are similar to the naked BT:Co nanoparticles. Results indicate that Co doping produces an enhancement in the ferromagnetic behavior of the BT nanoparticle. The coating restricts this enhancement only to low-fields, leaving the diamagnetic behavior of BT at high-fields. Magnetically stable sizes (PSD) were obtained at 3% Co doping for both naked nanoparticles and hybrid films. These show an increased magnetic memory capacity and a softer magnetic hardness with respect to non-doped BT nanoparticles. - Highlights: • We described the synthesis of magnetic BaTiO 3 :Co dispersed in chitosan (QO)/Pluronic F-127 (Pl) solution by sonication to obtain nanocomposite hybrid films. • We describe the physical and magnetic properties of BaTiO 3 :Co nanoparticles and QO/Pl/BT:Co hybrid films. • The magnetic properties are defines by the presence of magnetic domains. These magnetic domains are close related with the amount of Co in the host lattice. • The prepared phases could be considered as multifunctional materials, with magnetic and ferri-electrical properties, with potential uses in the design of devices

  10. Silver nanoparticles prepared by using poly(2-acrylamido-2-methylpropane sulphonic acid) as a surfactant

    NARCIS (Netherlands)

    Li, Y.; Li, Z.; Zheng, F.; Laven, J.

    2014-01-01

    Silver nanoparticles were synthesised successfully using poly(2-acrylamido-2-methylpropane sulphonic acid) (PAMPS) as a surfactant. Silver nanoparticles prepared through this approach possess high purity and narrow size distribution. The size distribution result shows that the diameters ranging from

  11. Ultrasonic-assisted in situ synthesis and characterization of superparamagnetic Fe{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jie [College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China); Mao Jian, E-mail: maojianemail@163.com [College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China); Wen Xiaogang; Tu Mingjing [College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China)

    2011-09-15

    Highlights: > Fe{sup 3+} as the only Fe source for preparing Fe{sub 3}O{sub 4} nanoparticles through in situ cover and sonication method. > Surface modification enables the reduction of the grain size of Fe{sub 3}O{sub 4}. > Increasing temperature reduces grain size of Fe{sub 3}O{sub 4} until it exceeds 80 deg. C. > Increasing pH values reduces grain size of Fe{sub 3}O{sub 4} until it exceeds 11. > Saturation magnetizations depend on the grain size of Fe{sub 3}O{sub 4} nanoparticles. - Abstract: Superparamagnetic Fe{sub 3}O{sub 4} nanoparticles were synthesized via a modified coprecipitation method, and were characterized with X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Zeta potential and FT-IR, respectively. The influences of different kinds of surfactants (sodium dodecyl benzene sulfonate, polyethyleneglycol, oleic acid and dextran), temperatures and pH values on the grain size and properties were also investigated. In this method, Fe{sup 3+} was used as the only Fe source and partially reduced to Fe{sup 2+} by the reducing agent with precise content. The following reaction between Fe{sup 3+}, Fe{sup 2+} and hydroxide radical brought pure Fe{sub 3}O{sub 4} nanoparticles. The tiny fresh nanoparticles were coated in situ with surfactant under the action of sonication. Comparing with uncoated sample, the mean grain size and saturation magnetization of coated Fe{sub 3}O{sub 4} nanoparticles decrease from 18.4 nm to 5.9-9.0 nm, and from 63.89 emu g{sup -1} to 52-58 emu g{sup -1} respectively. When oleic was used as the surfactant, the mean grain size of Fe{sub 3}O{sub 4} nanoparticles firstly decreases with the increase of reaction temperature, but when the temperature is exceed to 80 deg. C, the continuous increase of temperature resulted in larger nanoparticles. the grain size decreases gradually with the increasing of pH values, and it remains unchanged when the PH value is up to 11. The saturation magnetization of as-prepared Fe{sub 3}O{sub 4

  12. Preparation of a novel fluorescence probe of terbium-europium co-luminescence composite nanoparticles and its application in the determination of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Gao Feng [College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, Anhui Normal University, Wuhu 241000 (China)], E-mail: summit8848cn@hotmail.com; Luo Fabao; Tang Lijuan; Dai Lu [College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, Anhui Normal University, Wuhu 241000 (China); Wang Lun [College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, Anhui Normal University, Wuhu 241000 (China)], E-mail: wanglun@mail.ahnu.edu.cn

    2008-03-15

    Terbium-europium Tb-Eu/acetylacetone(acac)/poly(acrylamide) (PAM) co-luminescence composite nanoparticles were successfully prepared using the ultrasonic approach. The as-prepared composite nanoparticles show the characteristic emission spectra of Tb{sup 3+}, located at 496 and 549 nm. Furthermore, the nanoparticles are water soluble, stable and have extremely narrow emission bands and high internal fluorescence quantum yield due to the co-luminescence effect. Further studies indicate that proteins can interact with the nanoparticles and induce the fluorescence quenching of the nanoparticles. Based on the fluorescence quenching of nanopaticles in the presence of proteins, a novel method for the sensitive determination of trace amounts of proteins was proposed. Under the optimal experimental conditions, the linear ranges of calibration curves are 0-3.5 {mu}g mL{sup -1} for human serum albumin (HSA) and 0-4.0 {mu}g mL{sup -1} for {gamma}-globulin ({gamma}-IgG), respectively. The limits of detection are 7.1 for HSA and 6.7ng mL{sup -1} for {gamma}-IgG, respectively. The method was applied to the quantification of proteins in synthetic samples and actual human serum samples with satisfactory results. This proposed method is sensitive, simple and has potential application in the clinical assay of proteins.

  13. Magnetic behavior of nickel ferrite nanoparticles prepared by co-precipitation route

    International Nuclear Information System (INIS)

    Maaz, K.; Mashiatullah, A.; Javed, T.; Ali, G.; Karim, S.

    2008-01-01

    Magnetic nanoparticles of nickel ferrite (NiFe/sub 2/O/sub 4/) have been synthesized by co-precipitation route using stable ferric and nickel salts with sodium hydroxide as the precipitating agent and oleic acid as the surfactant. X-ray Diffraction (XRD) and Transmission Electron Microscope (TEM) analyses confirmed the formation of single phase nickel ferrite nanoparticles in the range 8-28 nm. The size of the particles was observed to be increasing linearly with increasing annealing temperature of the sample. Typical blocking effects were observed below -225 K for all the prepared samples. The superparamagnetic blocking temperature was found to be continuously increasing with increasing particle sizes that has been attributed to the increased effective anisotropy of the nanoparticles. The saturation moment of all the samples was found much below the bulk value of nickel ferrite that has been attributed to the disordered surface spins of these nanoparticles. (author)

  14. The preparation of highly active antimicrobial silver nanoparticles by an organometallic approach

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Eduardo J; Garcia-Barrasa, Jorge; Lopez-de-Luzuriaga, Jose M; Monge, Miguel [Departamento de Quimica Grupo de SIntesis Quimica de La Rioja, UA-CSIC, Universidad de La Rioja, Complejo CientIfico-Tecnologico, E-26004 Logrono (Spain); Laguna, Antonio [Departamento de Quimica Inorganica, Instituto de Ciencia de Materiales de Aragon, Universidad de Zaragoza-CSIC, E-50009 Zaragoza (Spain); Torres, Carmen [Departamento de Agricultura y Alimentacion, Universidad de La Rioja, Complejo Cientifico-Tecnologico, E-26004 Logrono (Spain)], E-mail: eduardo.fernandez@unirioja.es

    2008-05-07

    Silver nanoparticles of small size with a high surface to volume ratio have been prepared using an organometallic approach. For this, the complex NBu{sub 4}[Ag(C{sub 6}F{sub 5}){sub 2}] has been treated with AgClO{sub 4} in a 1:1 molar ratio, giving rise to the nanoparticle precursor [Ag(C{sub 6}F{sub 5})] in solution. Addition of one equivalent of hexadecylamine (HDA) and 5 h of reflux in toluene leads to a deep yellow solution containing monodisperse silver nanoparticles (Ag NPs) of ca. 10 nm. This approach leads to nanoparticles with almost uncontaminated surfaces which make them very reactive. Antimicrobial studies show that these nanoparticles are very active as antimicrobial agents. Very low concentrations between 12 and 25 {mu}g ml{sup -1} of Ag NPs are enough to produce bacteriostatic and bactericidal effectiveness.

  15. Cast Aluminum Alloys for High Temperature Applications Using Nanoparticles Al2O3 and Al3-X Compounds (X = Ti, V, Zr)

    Science.gov (United States)

    Lee, Jonathan A.

    2009-01-01

    In this paper, the effect of nanoparticles Al2O3 and Al3-X compounds (X = Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their low cost, chemical stability and low diffusions rates in aluminum at high temperatures. The strengthening mechanism at high temperature for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. For Al2O3 nanoparticles, the test samples were prepared from special Al2O3 preforms, which were produced using ceramic injection molding process and then pressure infiltrated by molten aluminum. In another method, Al2O3 nanoparticles can also be homogeneously mixed with fine aluminum powder and consolidated into test samples through hot pressing and sintering. With the Al3-X nanoparticles, the test samples are produced as precipitates from in-situ reactions with molten aluminum using conventional permanent mold or die casting techniques. It is found that cast aluminum alloy using nanoparticles Al3-X is the most cost effective method to produce high strength aluminum alloys for high temperature applications in comparison to nanoparticles Al2O3. Furthermore, significant mechanical properties retention in high temperature environment could be achieved with Al3-X nanoparticles, resulting in tensile strength of nearly 3 times higher than most 300- series conventional cast aluminum alloys tested at 600 F.

  16. Triton X-100 functionalized Fe3O4 nanoparticles for biomedical applications

    Science.gov (United States)

    Gawali, Santosh L.; Madan, Devendra P.; Barick, K. C.; Somani, R.; Hassan, P. A.

    2018-04-01

    We report the preparation of Triton X-100 functionalized Fe3O4 nanoparticles (TXMNPs) and investigated their potential application in hyperthermia therapy. The formation of highly crystalline, spinel-structured Fe3O4 nanoparticles of average size of about 10 nm was evident from X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), UV-visible spectroscopy and zeta-potential measurements suggest the successful functionalization of nanoparticles with TX-100. These TXMNPs exhibit good colloidal stabilization in aqueous medium and show protein resistance characteristic in physiological medium. They showed excellent heating efficacy under AC magnetic field (AMF) with specific absorption rate (SAR) values of 146 and 260 W/g of Fe for 1.25 and 0.625 mg/ml of Fe, respectively at an applied AMF of 507 Oe and frequency of 300 kHz. Thus, these nanoparticles can be used as effective thermoseed for hyperthermia treatment of cancer.

  17. Chitosan-coated magnetic nanoparticles prepared in one-step by precipitation in a high-aqueous phase content reverse microemulsion.

    Science.gov (United States)

    Pineda, María Guadalupe; Torres, Silvia; López, Luis Valencia; Enríquez-Medrano, Francisco Javier; de León, Ramón Díaz; Fernández, Salvador; Saade, Hened; López, Raúl Guillermo

    2014-07-02

    Chitosan-coated magnetic nanoparticles (CMNP) were prepared in one-step by precipitation in a high-aqueous phase content reverse microemulsion in the presence of chitosan. The high-aqueous phase concentration led to productivities close to 0.49 g CMNP/100 g microemulsion; much higher than those characteristic of precipitation in reverse microemulsions for preparing magnetic nanoparticles. The obtained nanoparticles present a narrow particle size distribution with an average diameter of 4.5 nm; appearing to be formed of a single crystallite; furthermore they present superparamagnetism and high magnetization values; close to 49 emu/g. Characterization of CMNP suggests that chitosan is present as a non-homogeneous very thin layer; which explains the slight reduction in the magnetization value of CMNP in comparison with that of uncoated magnetic nanoparticles. The prepared nanoparticles show high heavy ion removal capability; as demonstrated by their use in the treatment of Pb2+ aqueous solutions; from which lead ions were completely removed within 10 min.

  18. Chitosan-Coated Magnetic Nanoparticles Prepared in One-Step by Precipitation in a High-Aqueous Phase Content Reverse Microemulsion

    Directory of Open Access Journals (Sweden)

    María Guadalupe Pineda

    2014-07-01

    Full Text Available Chitosan-coated magnetic nanoparticles (CMNP were prepared in one-step by precipitation in a high-aqueous phase content reverse microemulsion in the presence of chitosan. The high-aqueous phase concentration led to productivities close to 0.49 g CMNP/100 g microemulsion; much higher than those characteristic of precipitation in reverse microemulsions for preparing magnetic nanoparticles. The obtained nanoparticles present a narrow particle size distribution with an average diameter of 4.5 nm; appearing to be formed of a single crystallite; furthermore they present superparamagnetism and high magnetization values; close to 49 emu/g. Characterization of CMNP suggests that chitosan is present as a non-homogeneous very thin layer; which explains the slight reduction in the magnetization value of CMNP in comparison with that of uncoated magnetic nanoparticles. The prepared nanoparticles show high heavy ion removal capability; as demonstrated by their use in the treatment of Pb2+ aqueous solutions; from which lead ions were completely removed within 10 min.

  19. Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication.

    Science.gov (United States)

    Kim, Hee-Young; Park, Dong June; Kim, Jong-Yea; Lim, Seung-Taik

    2013-10-15

    Waxy maize starch in an aqueous sulfuric acid solution (3.16 M, 14.7% solids) was hydrolyzed for 2-6 days, either isothermally at 40 °C or 4 °C, or at cycled temperatures of 4 and 40 °C (1 day each). The starch hydrolyzates were recovered as precipitates after centrifuging the dispersion (10,000 rpm, 10 min). The yield of starch hydrolyzates depended on the hydrolysis temperature and time, which varied from 6.8% to 78%. The starch hydrolyzed at 40 °C or 4/40 °C exhibited increased crystallinity determined by X-ray diffraction analysis, but melted in broader temperature range (from 60 °C to 110 °C). However, the starch hydrolyzed at 4 °C displayed the crystallinity and melting endotherm similar to those of native starch. The starch hydrolyzates recovered by centrifugation were re-dispersed in water (15% solids), and the dispersion was treated by an ultrasonic treatment (60% amplitude, 3min). The ultrasonication effectively fragmented the starch hydrolyzates to nanoparticles. The hydrolyzates obtained after 6 days of hydrolysis were more resistant to the ultrasonication than those after 2 or 4 days, regardless of hydrolysis temperatures. The starch nanoparticles could be prepared with high yield (78%) and crystallinity by 4 °C hydrolysis for 6 days followed by ultrasonication. Scanning electron microscopy revealed that the starch nanoparticles had globular shapes with diameters ranging from 50 to 90 nm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Chemical approach to solvent removal during nanoencapsulation: its application to preparation of PLGA nanoparticles with non-halogenated solvent

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngme [Ewha Womans University, College of Pharmacy (Korea, Republic of); Sah, Eric [University of Notre Dame, College of Science (United States); Sah, Hongkee, E-mail: hsah@ewha.ac.kr [Ewha Womans University, College of Pharmacy (Korea, Republic of)

    2015-11-15

    The objective of this study was to develop a new oil-in-water emulsion-based nanoencapsulation method for the preparation of PLGA nanoparticles using a non-halogenated solvent. PLGA (60–150 mg) was dissolved in 3 ml of methyl propionate, which was vortexed with 4 ml of a 0.5–4 % polyvinyl alcohol solution. This premix was sonicated for 2 min, added into 30 ml of the aqueous polyvinyl alcohol solution, and reacted with 3 ml of 10 N NaOH. Solvent removal was achieved by the alkaline hydrolysis of methyl propionate dissolved in an aqueous phase into water-soluble methanol and sodium propionate. It was a simple but effective technique to quickly harden nanoemulsion droplets into nanoparticles. The appearing PLGA nanoparticles were recovered by ultracentrifugation and/or dialysis, lyophilized with trehalose, and redispersed by water. This nanoencapsulation technique permitted a control of their mean diameters over 151.7 ± 3.8 to 440.2 ± 22.2 nm at mild processing conditions. When the aqueous polyvinyl alcohol concentration was set at ≥1 %, nanoparticles showed uniform distributions with polydispersity indices below 0.1. There were no significant changes in their mean diameters and size distribution patterns before and after lyophilization. When mestranol was encapsulated into nanoparticles, the drug was completely nanoencapsulated: depending on experimental conditions, their encapsulation efficiencies were determined to be 99.4 ± 7.2 to 105.8 ± 6.3 %. This simple, facile nanoencapsulation technique might have versatile applications for the preparation of polymeric nanoparticulate dosage forms.Graphical AbstractSchematic illustration of an innovative chemical approach to solvent removal during nanoencapsulation. Methyl propionate present in the aqueous continuous phase reacts with sodium hydroxide, thereby producing methanol and sodium propionate. Its alkaline hydrolysis allows the continuous extraction of the solvent out of nanoemulsion

  1. Chemical approach to solvent removal during nanoencapsulation: its application to preparation of PLGA nanoparticles with non-halogenated solvent

    International Nuclear Information System (INIS)

    Lee, Youngme; Sah, Eric; Sah, Hongkee

    2015-01-01

    The objective of this study was to develop a new oil-in-water emulsion-based nanoencapsulation method for the preparation of PLGA nanoparticles using a non-halogenated solvent. PLGA (60–150 mg) was dissolved in 3 ml of methyl propionate, which was vortexed with 4 ml of a 0.5–4 % polyvinyl alcohol solution. This premix was sonicated for 2 min, added into 30 ml of the aqueous polyvinyl alcohol solution, and reacted with 3 ml of 10 N NaOH. Solvent removal was achieved by the alkaline hydrolysis of methyl propionate dissolved in an aqueous phase into water-soluble methanol and sodium propionate. It was a simple but effective technique to quickly harden nanoemulsion droplets into nanoparticles. The appearing PLGA nanoparticles were recovered by ultracentrifugation and/or dialysis, lyophilized with trehalose, and redispersed by water. This nanoencapsulation technique permitted a control of their mean diameters over 151.7 ± 3.8 to 440.2 ± 22.2 nm at mild processing conditions. When the aqueous polyvinyl alcohol concentration was set at ≥1 %, nanoparticles showed uniform distributions with polydispersity indices below 0.1. There were no significant changes in their mean diameters and size distribution patterns before and after lyophilization. When mestranol was encapsulated into nanoparticles, the drug was completely nanoencapsulated: depending on experimental conditions, their encapsulation efficiencies were determined to be 99.4 ± 7.2 to 105.8 ± 6.3 %. This simple, facile nanoencapsulation technique might have versatile applications for the preparation of polymeric nanoparticulate dosage forms.Graphical AbstractSchematic illustration of an innovative chemical approach to solvent removal during nanoencapsulation. Methyl propionate present in the aqueous continuous phase reacts with sodium hydroxide, thereby producing methanol and sodium propionate. Its alkaline hydrolysis allows the continuous extraction of the solvent out of nanoemulsion

  2. A novel hydrothermal approach for synthesizing α-Fe2O3, γ-Fe2O3 and Fe3O4 mesoporous magnetic nanoparticles

    International Nuclear Information System (INIS)

    Jayanthi, S. Amala; Nathan, D. Muthu Gnana Theresa; Jayashainy, J.; Sagayaraj, P.

    2015-01-01

    A novel method to synthesize the three phases of iron oxide nanoparticles (hematite, maghemite and magnetite) using the same non-toxic inorganic precursors via a water–organic interface under the low temperature hydrothermal conditions is reported. The synthesized particles are characterized by Powder X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM). The Brunauer–Emmett–Teller (BET) results reveal the mesoporous nature of the particles. The magnetic properties of the nanoparticles are studied by Vibrating Sample Magnetometer (VSM) at various low temperatures and also at room temperature. The XRD peaks corresponding to each sample clearly depict the presence of the respective phase of the as-prepared magnetic nanoparticles. The nanoparticles of maghemite and magnetite have saturation magnetization of 58.56 and 40.30 emu/g respectively at room temperature, whereas the particles of hematite possess very low saturation magnetization value of 1.89 emu/g. Further, the magnetization is studied at four different temperatures and the zero field cooled (ZFC) and field cooled (FC) magnetization are reported. - Graphical abstract: Display Omitted - Highlights: • Hematite, maghemite and magnetite are obtained under hydrothermal synthesis. • α-Fe 2 O 3 , γ-Fe 2 O 3 and Fe 3 O 4 prepared are mesoporous and nearly monodisperse. • Near superparamagnetism is observed at room temperature for maghemite and magnetite

  3. Preparation and properties of visible light responsive Y3+ doped Bi5Nb3O15 photocatalysts for Ornidazole decomposition

    International Nuclear Information System (INIS)

    Zhao, Jie; Yao, Binghua; He, Qiang; Zhang, Ting

    2012-01-01

    Highlights: ► A novel Y 3+ -Bi 5 Nb 3 O 15 material was prepared. ► Y 3+ -Bi 5 Nb 3 O 15 is firstly used for the photocatalytic degradation of Ornidazole. ► Possible pathway of Ornidazole degradation in aqueous solution is proposed. - Abstract: Nanoparticle of Bi 5 Nb 3 O 15 doped with Y 3+ was prepared for the first time by the sol–gel method combined with impregnation. The degradation of Ornidazole reacting with Y 3+ -Bi 5 Nb 3 O 15 was investigated to explore the feasibility of using Y 3+ -Bi 5 Nb 3 O 15 to treat antibiotics in wastewater. The products were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, UV–vis diffuse reflectance spectrum and X-ray photoelectron spectroscopy. The results showed that the Y 3+ -Bi 5 Nb 3 O 15 exhibited single-crystalline orthorhombic structure with small particle size (20–100 nm); additionally, its UV–vis absorbance edges significantly shift to the visible-light region. The as-prepared nanoparticles exhibited a high photocatalytic activity in the decomposition of Ornidazole and several possible pathways of degradation of Ornidazole were proposed according to the results of ultra-performance liquid chromatography tandem mass spectrometry.

  4. Preparation of albumin based nanoparticles for delivery of fisetin and evaluation of its cytotoxic activity.

    Science.gov (United States)

    Ghosh, Pooja; Singha Roy, Atanu; Chaudhury, Susmitnarayan; Jana, Saikat Kumar; Chaudhury, Koel; Dasgupta, Swagata

    2016-05-01

    Fisetin is a well known flavonoid that shows several properties such as antioxidant, antiviral and anticancer activities. Its use in the pharmaceutical field is limited due to its poor aqueous solubility which results in poor bioavailability and poor permeability. The aim of our present study is to prepare fisetin loaded human serum albumin nanoparticles to improve its bioavailability. The nanoparticles were prepared by a desolvation method and characterized by spectroscopic and microscopic techniques. The particles were smooth and spherical in nature with an average size of 220 ± 8 nm. The encapsulation efficiency was found to be 84%. The in vitro release profile showed a biphasic pattern and the release rate increases with increase in ionic strength of solution. We have also confirmed the antioxidant activity of the prepared nanoparticles by a DPPH (2,2-diphenyl-1-picrylhydrazyl) assay. Further its anticancer activity was evaluated using MCF-7 breast cancer cell lines. Our findings suggest that fisetin loaded HSA nanoparticles could be used to transfer fisetin to target areas under specific conditions and thus may find use as a delivery vehicle for the flavonoid. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Design of epoxy-functionalized Fe3O4@MCM-41 core-shell nanoparticles for enzyme immobilization.

    Science.gov (United States)

    Ulu, Ahmet; Ozcan, Imren; Koytepe, Suleyman; Ates, Burhan

    2018-05-01

    The scope of our research was to prepare the organosilane-modified Fe 3 O 4 @MCM-41 core-shell magnetic nanoparticles, used for L-ASNase immobilization and explored screening of immobilization conditions such as pH, temperature, thermal stability, kinetic parameters, reusability and storage stability. In this content, Fe 3 O 4 core-shell magnetic nanoparticles were prepared via co-precipitation method and coated with MCM-41. Then, Fe 3 O 4 @MCM-41 magnetic nanoparticles were functionalized by (3-glycidyloxypropyl) trimethoxysilane (GPTMS) as an organosilane compound. Subsequently, L-ASNase was covalently immobilized on epoxy-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles. The immobilized L-ASNase had greater activity at high pH and temperature values. It also maintained >92% of the initial activity after incubation at 55 °C for 3 h. Regarding kinetic values, immobilized L-ASNase showed a higher Vmax and lower Km compared to native L-ASNase. In addition, it displayed excellent reusability for 12 successive cycles. After 30 days of storage at 4 °C and 25 °C, immobilized L-ASNase retained 54% and 26% of its initial activities while native L-ASNase lost about 68% and 84% of its initial activity, respectively. As a result, the immobilization of L-ASNase onto magnetic nanoparticles may provide an advantage in terms of removal of L-ASNase from reaction media. Copyright © 2018. Published by Elsevier B.V.

  6. Magnetic properties of La{sub 0.7}Ca{sub 0.3}MnO{sub 3} nanoparticles prepared by reactive milling

    Energy Technology Data Exchange (ETDEWEB)

    Do Hung Manh [Institute of Materials Science, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay Distr., Hanoi (Viet Nam)], E-mail: manhdh@ims.vast.ac.vn; Nguyen Chi Thuan [Institute of Materials Science, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay Distr., Hanoi (Viet Nam); Pham Thanh Phong [Nha Trang Pedagogic College, Khanh Hoa Province (Viet Nam); Le Van Hong; Nguyen Xuan Phuc [Institute of Materials Science, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay Distr., Hanoi (Viet Nam)

    2009-06-24

    La{sub 0.7}Ca{sub 0.3}MnO{sub 3} (LCMO) nanoparticles were synthesized by reactive milling in ambient conditions. Magnetic properties of LCMO single-phase nanocrystalline particles were studied. LCMO nanoparticles exhibit superparamagnetism with blocking temperature that decreases in the logarithmic function as increasing applied magnetic field. Besides, the blocking temperature decreases as increasing milling time from 8 h to 16 h. The temperature dependence of the saturation magnetization shows a strong collective excitation due to the spin wave that depends on temperature in form T{sup {alpha}} with {alpha} = 1.7, which slightly deviates from the Bloch law.

  7. Preparation of size-tunable, highly monodisperse PVP-protected Pt-nanoparticles by seed-mediated growth

    International Nuclear Information System (INIS)

    Koebel, Matthias M.; Jones, Louis C.; Somorjai, Gabor A.

    2008-01-01

    We demonstrate a preparative method which produces highly monodisperse Pt-nanoparticles of tunable size without the external addition of seed particles. Hexachloroplatinic acid is dosed slowly to an ethylene glycol solution at 120 o C and reduced in the presence of a stabilizing polymer poly-N-vinylpyrrolidone (PVP). Slow addition of the Pt-salt will first lead to the formation of nuclei (seeds) which then grow further to produce larger particles of any desired size between 3 and 8 nm. The amount of added hexachloroplatinic acid precursor controls the size of the final nanoparticle product. TEM was used to determine size and morphology and to confirm the crystalline nature of the nanoparticles. Good reproducibility of the technique was demonstrated. Above 7 nm, the particle shape and morphology changes suddenly indicating a change in the deposition selectivity of the Pt-precursor from (100) towards (111) crystal faces and breaking up of larger particles into smaller entities.

  8. Novel PVA-DNA nanoparticles prepared by ultra high pressure technology for gene delivery

    International Nuclear Information System (INIS)

    Kimura, Tsuyoshi; Okuno, Akira; Miyazaki, Kozo; Furuzono, Tsutomu; Ohya, Yuichi; Ouchi, Tatsuro; Mutsuo, Shingo; Yoshizawa, Hidekazu; Kitamura, Yoshiro; Fujisato, Toshiyta; Kishida, Akio

    2004-01-01

    Polyvinyl alcohol (PVA)-DNA nanoparticles have been developed by ultra high pressure (UHP) technology. Mixture solutions of DNA and PVA having various molecular weights (Mw) and degree of saponifications (DS) were treated under 10,000 atmospheres (981 MPa) condition at 40 deg. C for 10 min. Agarose gel electrophoresis and scanning electron microscope observation revealed that the PVA-DNA nanoparticles with average diameter of about 200 nm were formed. Using PVA of higher Mw and degree of saponifications, the amount of nanoparticles formed increased. The driving force of nanoparticle formation was the hydrogen bonding between DNA and PVA. In order to apply the PVA-DNA nanoparticles for gene delivery, the cytotoxicity and the cellular uptake of them were investigated using Raw264 cell lines. The cell viability was not influenced whether the presence of the PVA-DNA nanoparticles. Further, the nanoparticles internalized into cells were observed by fluorescent microscope. These results indicates that the PVA-DNA nanoparticles prepared by UHP technology showed be useful as drug carrier, especially for gene delivery

  9. Inverse supercritical fluid extraction as a sample preparation method for the analysis of the nanoparticle content in sunscreen agents.

    Science.gov (United States)

    Müller, David; Cattaneo, Stefano; Meier, Florian; Welz, Roland; de Vries, Tjerk; Portugal-Cohen, Meital; Antonio, Diana C; Cascio, Claudia; Calzolai, Luigi; Gilliland, Douglas; de Mello, Andrew

    2016-04-01

    We demonstrate the use of inverse supercritical carbon dioxide (scCO2) extraction as a novel method of sample preparation for the analysis of complex nanoparticle-containing samples, in our case a model sunscreen agent with titanium dioxide nanoparticles. The sample was prepared for analysis in a simplified process using a lab scale supercritical fluid extraction system. The residual material was easily dispersed in an aqueous solution and analyzed by Asymmetrical Flow Field-Flow Fractionation (AF4) hyphenated with UV- and Multi-Angle Light Scattering detection. The obtained results allowed an unambiguous determination of the presence of nanoparticles within the sample, with almost no background from the matrix itself, and showed that the size distribution of the nanoparticles is essentially maintained. These results are especially relevant in view of recently introduced regulatory requirements concerning the labeling of nanoparticle-containing products. The novel sample preparation method is potentially applicable to commercial sunscreens or other emulsion-based cosmetic products and has important ecological advantages over currently used sample preparation techniques involving organic solvents. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Thiolated chitosan nanoparticles for enhancing oral absorption of docetaxel: preparation, in vitro and ex vivo evaluation

    Science.gov (United States)

    Saremi, Shahrooz; Atyabi, Fatemeh; Akhlaghi, Seyedeh Parinaz; Ostad, Seyed Nasser; Dinarvand, Rassoul

    2011-01-01

    The aim of this study was to prepare and evaluate mucoadhesive core-shell nanoparticles based on copolymerization of thiolated chitosan coated on poly methyl methacrylate cores as a carrier for oral delivery of docetaxel. Docetaxel-loaded nanoparticles with various concentrations were prepared via a radical emulsion polymerization method using cerium ammonium nitrate as an initiator. The physicochemical properties of the obtained nanoparticles were characterized by: dynamic light-scattering analysis for their mean size, size distribution, and zeta potential; scanning electron microscopy and transmission electron microscopy for surface morphology; and differential scanning calorimetry analysis for confirmation of molecular dispersity of docetaxel in the nanoparticles. Nanoparticles were spherical with mean diameter below 200 nm, polydispersity of below 0.15, and positive zeta potential values. The entrapment efficiency of the nanoparticles was approximately 90%. In vitro release studies showed a sustained release characteristic for 10 days after a burst release at the beginning. Ex vivo studies showed a significant increase in the transportation of docetaxel from intestinal membrane of rat when formulated as nanoparticles. Cellular uptake of nanoparticles was investigated using fluoresceinamine-loaded nanoparticles. Docetaxel nanoparticles showed a high cytotoxicity effect in the Caco-2 and MCF-7 cell lines after 72 hours. It can be concluded that by combining the advantages of both thiolated polymers and colloidal particles, these nanoparticles can be proposed as a drug carrier system for mucosal delivery of hydrophobic drugs. PMID:21289989

  11. Thiolated chitosan nanoparticles for enhancing oral absorption of docetaxel: preparation, in vitro and ex vivo evaluation.

    Science.gov (United States)

    Saremi, Shahrooz; Atyabi, Fatemeh; Akhlaghi, Seyedeh Parinaz; Ostad, Seyed Nasser; Dinarvand, Rassoul

    2011-01-12

    The aim of this study was to prepare and evaluate mucoadhesive core-shell nanoparticles based on copolymerization of thiolated chitosan coated on poly methyl methacrylate cores as a carrier for oral delivery of docetaxel. Docetaxel-loaded nanoparticles with various concentrations were prepared via a radical emulsion polymerization method using cerium ammonium nitrate as an initiator. The physicochemical properties of the obtained nanoparticles were characterized by: dynamic light-scattering analysis for their mean size, size distribution, and zeta potential; scanning electron microscopy and transmission electron microscopy for surface morphology; and differential scanning calorimetry analysis for confirmation of molecular dispersity of docetaxel in the nanoparticles. Nanoparticles were spherical with mean diameter below 200 nm, polydispersity of below 0.15, and positive zeta potential values. The entrapment efficiency of the nanoparticles was approximately 90%. In vitro release studies showed a sustained release characteristic for 10 days after a burst release at the beginning. Ex vivo studies showed a significant increase in the transportation of docetaxel from intestinal membrane of rat when formulated as nanoparticles. Cellular uptake of nanoparticles was investigated using fluoresceinamine-loaded nanoparticles. Docetaxel nanoparticles showed a high cytotoxicity effect in the Caco-2 and MCF-7 cell lines after 72 hours. It can be concluded that by combining the advantages of both thiolated polymers and colloidal particles, these nanoparticles can be proposed as a drug carrier system for mucosal delivery of hydrophobic drugs.

  12. Phase study of titanium dioxide nanoparticle prepared via sol-gel process

    Science.gov (United States)

    Oladeji Araoyinbo, Alaba; Bakri Abdullah, Mohd Mustafa Al; Salleh, Mohd Arif Anuar Mohd; Aziz, Nurul Nadia Abdul; Iskandar Azmi, Azwan

    2018-03-01

    In this study, titanium dioxide nanoparticles have been prepared via sol-gel process using titanium tetraisopropoxide as a precursor with hydrochloric acid as a catalyst, and ethanol with deionized water as solvents. The value of pH used is set to 3, 7 and 8. The sols obtained were dried at 100 °C for 1 hr and calcined at 350, 550, and 750 °C for 3 hrs to observe the phase transformation of titanium dioxide nanoparticle. The samples were characterized by x-ray diffraction and field emission scanning electron microscope. The morphology analysis is obtained from field emission scanning electron microscope. The phase transformation was investigated by x-ray diffraction. It was found that the pH of the solution affect the agglomeration of titanium dioxide particle. The x-ray diffraction pattern of titanium dioxide shows the anatase phase most abundant at temperature of 350 °C. At temperature of 550 °C the anatase and rutile phase were present. At temperature of 750 °C the rutile phase was the most abundant for pH 3, 7 and 8. It was confirmed that at higher temperature the rutile phase which is the stable phase are mostly present.

  13. Biodegradable Starch/Copolyesters Film Reinforced with Silica Nanoparticles: Preparation and Characterization

    Science.gov (United States)

    Lima, Roberta A.; Oliveira, Rene R.; Wataya, Célio H.; Moura, Esperidiana A. B.

    Biodegradable starch/copolyesters/silica nanocomposite films were prepared by melt extrusion, using a twin screw extruder machine and blown extrusion process. The influence of the silica nanoparticle addition on mechanical and thermal properties of nanocomposite films was investigated by tensile tests; X-rays diffraction (XRD), differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM) analysis and the correlation between properties was discussed. The results showed that incorporation of 2 % (wt %) of SiO2 nanoparticle in the blend matrix of PBAT/Starch, resulted in a gain of mechanical properties of blend.

  14. Nonlinear optical effects from Au nanoparticles prepared by laser plasmas in water

    Energy Technology Data Exchange (ETDEWEB)

    Fazio, E., E-mail: enfazio@unime.it [Dipartimento di Fisica della Materia e Ingegneria Elettronica, Universitá di Messina, V.le F. Stagno d’Alcontres 31, I-98166, Messina (Italy); Neri, F. [Dipartimento di Fisica della Materia e Ingegneria Elettronica, Universitá di Messina, V.le F. Stagno d’Alcontres 31, I-98166, Messina (Italy)

    2013-05-01

    The optical limiting properties of Au nanoparticles prepared by laser generated plasmas in water were investigated. The ablation processes were carried out irradiating an Au target with the second harmonic (532 nm) output of a Nd:YAG laser, changing the water level above the target, the lens position and the laser pulse energy. Different surface morphologies, from isolated nearly spherical nanoparticles to elongated structures, were observed by TEM imaging. A significant nonlinear optical response was probed by the Z-scan technique. The efficiency and the nature of the nonlinear response are found to be strongly dependent on the morphological properties of the nanostructures. The third order optical susceptibility χ{sup (3)} assumes the values of 1.83 × 10{sup −6} esu and 6.34 × 10{sup −6} esu for the smaller nanoparticles size obtained at the lower ablation energies (10–20 mJ), 8.25 × 10{sup −6} esu and 2.13 × 10{sup −5} esu for the particles agglomerations obtained at the higher ablation energies (50–100 mJ). The high value of χ{sup (3)} and the possibility to tailor the nonlinear optical response by changing the morphological properties of the Au nanostructures make them interesting materials for potential applications in the nonlinear optics field.

  15. Recent Trends in Preparation of Poly(lactide-co-glycolide Nanoparticles by Mixing Polymeric Organic Solution with Antisolvent

    Directory of Open Access Journals (Sweden)

    Edel Sah

    2015-01-01

    Full Text Available In recent years, there have been a plethora of nanoengineering approaches for the development of poly(lactide-co-glycolide (PLGA nanoparticulate carrier systems. However, overlooking the multifaceted issues in the preparation and characterization of PLGA-based nanoparticles, many reports have been focused on their in vivo behaviors. It is imperative to fully assess technological aspects of a nanoencapsulation method of choice and to carefully evaluate the nanoparticle quality. The selection of a nanoencapsulation technique should consider drug property, nanoparticle quality, scale-up feasibility, manufacturing costs, personnel safety, environmental impact, waste disposal, and the like. Made in this review are the fundamentals of classical emulsion-templated nanoencapsulation methods used to prepare PLGA nanoparticles. More specifically, this review provides insight into emulsion solvent evaporation/extraction, salting-out, nanoprecipitation, membrane emulsification, microfluidic technology, and flow focusing. Innovative nanoencapsulation techniques are being developed to address many challenges existing in the production of PLGA-based nanoparticles. In addition, there are various out-of-the-box approaches for the development of novel PLGA hybrid systems that could deliver multiple drugs. Latest trends in these areas are also dealt with in this review. Relevant information might be helpful to those who prepare and develop PLGA-based nanoparticles that meet their specific demands.

  16. Diastereoselective synthesis of trans-2,3-dihydrofuro[3,2-c]coumarins by MgO nanoparticles under ultrasonic irradiation

    Directory of Open Access Journals (Sweden)

    Javad Safaei-Ghomi

    2017-12-01

    Full Text Available MgO nanoparticles have been used as an efficient catalyst for the diastereoselective preparation of trans-2-benzoyl-3-(aryl-2H-furo[3,2-c]chromen-4(3H-ones by the multi-component reaction of 2,4′-dibromoacetophenone, pyridine, benzaldehydes and 4-hydroxycoumarin under ultrasonic irradiation. This interesting result revealed that the pyridiniumylide assisted tandem three-component coupling reaction is highly diastereoselective. Atom economy, wide range of products, high catalytic activity, excellent yields in short reaction times, diastereoselective synthesis and environmental benignity are some of the important features of this protocol. Keywords: Furo[3,2-c]coumarins, Ultrasonic irradiation, MgO nanoparticles, Diastereoselective, One-pot syntheses

  17. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy.

    Science.gov (United States)

    Uzayisenga, Viviane; Lin, Xiao-Dong; Li, Li-Mei; Anema, Jason R; Yang, Zhi-Lin; Huang, Yi-Fan; Lin, Hai-Xin; Li, Song-Bo; Li, Jian-Feng; Tian, Zhong-Qun

    2012-06-19

    Au-seed Ag-growth nanoparticles of controllable diameter (50-100 nm), and having an ultrathin SiO(2) shell of controllable thickness (2-3 nm), were prepared for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Their morphological, optical, and material properties were characterized; and their potential for use as a versatile Raman signal amplifier was investigated experimentally using pyridine as a probe molecule and theoretically by the three-dimensional finite-difference time-domain (3D-FDTD) method. We show that a SiO(2) shell as thin as 2 nm can be synthesized pinhole-free on the Ag surface of a nanoparticle, which then becomes the core. The dielectric SiO(2) shell serves to isolate the Raman-signal enhancing core and prevent it from interfering with the system under study. The SiO(2) shell also hinders oxidation of the Ag surface and nanoparticle aggregation. It significantly improves the stability and reproducibility of surface-enhanced Raman scattering (SERS) signal intensity, which is essential for SERS applications. Our 3D-FDTD simulations show that Ag-core SHINERS nanoparticles yield at least 2 orders of magnitude greater enhancement than Au-core ones when excited with green light on a smooth Ag surface, and thus add to the versatility of our SHINERS method.

  18. Facile and Scalable Preparation of Solid Silver Nanoparticles (<10 nm) for Flexible Electronics

    KAUST Repository

    Tai, Yanlong; Yang, ZG

    2015-01-01

    Metal conductive ink for flexible electroncs has exhibited a promising future recently. Here, an innovative strategy was reported to synthesize silver nanocolloid (2.5 ± 0.5 nm) and separate solid silver nanoparticles (<10 nm) effectively. Specifically, silver nitrate (AgNO3) was used as silver precursor, sodium borohydride (NaBH4) as reducing agent, fatty acid (CnH2n+1COOH) as dispersant agent, ammonia (NH3•H2O) and hydrochloride (HCl) as pH regulator and complexing agent in aqueous. The main mechanism is the solubility changes of fatty acid salts (CnH2n+1 COO-NH4+) and fatty acid (CnH2n+1 COOH) coated on the synthesized silver nanoparticles (NPs) in aqueous. This change determinates the suspension and precipitation of silver NPs directly. The results show that when n in dispersant is 12, and molar ratio (C12H24O2/AgNO3) is 1.0, the separation yield of silver NPs is up to 94.8 %. After sintered at 125 ℃ for 20 minutes, the as-prepared conductive silver nanoink (20 wt. %) presents a satisfactory resistivity (as low as 6.6 μΩ.cm on polyester-PET substrate), about 4 times the bulk silver. In addition, the efficacy of the as-prepared conductive ink was verified with the construction of radio frequency antenna by inkjet printing and conductive character pattern (Fudan-Fudan) by direct wiring, showing with excellent electrical performance.

  19. Facile and Scalable Preparation of Solid Silver Nanoparticles (<10 nm) for Flexible Electronics

    KAUST Repository

    Tai, Yanlong

    2015-07-02

    Metal conductive ink for flexible electroncs has exhibited a promising future recently. Here, an innovative strategy was reported to synthesize silver nanocolloid (2.5 ± 0.5 nm) and separate solid silver nanoparticles (<10 nm) effectively. Specifically, silver nitrate (AgNO3) was used as silver precursor, sodium borohydride (NaBH4) as reducing agent, fatty acid (CnH2n+1COOH) as dispersant agent, ammonia (NH3•H2O) and hydrochloride (HCl) as pH regulator and complexing agent in aqueous. The main mechanism is the solubility changes of fatty acid salts (CnH2n+1 COO-NH4+) and fatty acid (CnH2n+1 COOH) coated on the synthesized silver nanoparticles (NPs) in aqueous. This change determinates the suspension and precipitation of silver NPs directly. The results show that when n in dispersant is 12, and molar ratio (C12H24O2/AgNO3) is 1.0, the separation yield of silver NPs is up to 94.8 %. After sintered at 125 ℃ for 20 minutes, the as-prepared conductive silver nanoink (20 wt. %) presents a satisfactory resistivity (as low as 6.6 μΩ.cm on polyester-PET substrate), about 4 times the bulk silver. In addition, the efficacy of the as-prepared conductive ink was verified with the construction of radio frequency antenna by inkjet printing and conductive character pattern (Fudan-Fudan) by direct wiring, showing with excellent electrical performance.

  20. Preparation and characterization of nanocomposites of natural rubber with polystyrene and styrene-methacrylic acid copolymer nanoparticles

    Directory of Open Access Journals (Sweden)

    T. Nuruk

    2012-06-01

    Full Text Available Composites of natural rubber (NR/vinyl polymer nanoparticles as polystyrene (PS and poly(styrenemethacrylic acid (P(S-MAA were prepared by heterocoagulation technique. The polymer nanoparticles were prepared by emulsifier-free emulsion polymerizations at 70°C using potassium persulfate as initiator. Under acidic condition where positive charge was present on the NR latex (NRL surface, the nanoparticles having negative charge mainly from sulfate group of initiator were able to adsorb on the NRL surface, the electrostatic interaction being the driving force. The scanning electron micrographs showed that the polymer nanoparticles are homogenously distributed throughout NR matrix as nanoclusters with an average size of about 500 and 200 nm for PS and P(S-MAA, respectively. The mechanical properties of NR/PS and NR/P(S-MAA composite films were compared with the NR host. The nanocomposites, particularly when the polymer nanoparticles are uniformly dispersed, possess significantly enhanced mechanical properties strongly depending on the morphology of the nanocomposites.

  1. Synthesis of Gold Nanoparticles Stabilized in Dextran Solution by Gamma Co-60 Ray Irradiation and Preparation of Gold Nanoparticles/Dextran Powder

    Directory of Open Access Journals (Sweden)

    Phan Ha Nu Diem

    2017-01-01

    Full Text Available Gold nanoparticles (AuNPs in spherical shape with diameter of 6–35 nm stabilized by dextran were synthesized by γ-irradiation method. The AuNPs were characterized by UV-Vis spectroscopy and transmission electron microscopy. The influence of pH, Au3+ concentration, and dextran concentration on the size of AuNPs was investigated. Results indicated that the smallest AuNPs size (6 nm and the largest AuNPs size (35 nm were obtained for pH of 1 mM Au3+/1% dextran solution of 5.5 and 7.5, respectively. The smaller Au3+ concentration favored smaller size and conversely the smaller dextran concentration favored bigger size of AuNPs. AuNPs powders were prepared by spay drying, coagulation, and centrifugation and their sizes were also evaluated. The purity of prepared AuNPs powders was also examined by energy dispersive X-ray (EDX analysis. Thus, the as-prepared AuNPs stabilized by biocompatible dextran in solution and/or in powder form can be potentially applied in biomedicine and pharmaceutics.

  2. Improving g-C{sub 3}N{sub 4} photocatalysis for NO{sub x} removal by Ag nanoparticles decoration

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yanjuan [Air Environmental Modelling and Pollution Controlling Key Laboratory of Sichuan Higher Education Institutes, College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225 (China); Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067 (China); Xiong, Ting; Ni, Zilin [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067 (China); Liu, Jie [Air Environmental Modelling and Pollution Controlling Key Laboratory of Sichuan Higher Education Institutes, College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225 (China); Dong, Fan, E-mail: dfctbu@126.com [Air Environmental Modelling and Pollution Controlling Key Laboratory of Sichuan Higher Education Institutes, College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225 (China); Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067 (China); Zhang, Wei, E-mail: andyzhangwei@163.com [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Ho, Wing-Kei [Department of Science and Environmental Studies, The Centre for Education in Environmental Sustainability, The Hong Kong Institute of Education, Hong Kong (China)

    2015-12-15

    Graphical abstract: Ag/g-C{sub 3}N{sub 4} nanocomposites were prepared via a facile method for enhanced photocatalytic NO{sub x} removal due to surface plasmon resonance of Ag. - Highlights: • The Ag/g-C{sub 3}N{sub 4} nanocomposites were prepared using urea as the precursor. • The Ag/g-C{sub 3}N{sub 4} nanocomposites were applied in removal of NO{sub x} in air. • The Ag nanoparticles enhanced the photocatalytic activity of g-C{sub 3}N{sub 4}. • The surface plasmon resonance of Ag played a key role in photocatalysis. - Abstract: In order to overcome the intrinsic drawback of pristine g-C{sub 3}N{sub 4}, we prepared g-C{sub 3}N{sub 4} nanosheets with enhanced photocatalytic performance by Ag nanoparticles decoration using urea as the precursor. It was revealed that the monodispersed Ag nanoparticles were deposited on the surface of g-C{sub 3}N{sub 4} nanosheets. The Ag/g-C{sub 3}N{sub 4} nanocomposites were applied in removal of NO{sub x} in air under visible light irradiation. The results showed that the decoration of Ag nanoparticles not only enhanced the photocatalytic activity of g-C{sub 3}N{sub 4} nanosheets, but also benefited the oxidation of NO to final products. The increased visible light absorption arising from the surface plasmon resonance of Ag and improved separation and transfer of photoinduced carriers over Ag/g-C{sub 3}N{sub 4} composites were demonstrated by the UV–vis diffuse reflectance spectra and photoluminescence spectra, respectively. It was therefore proposed that the enhanced photocatalytic activity of Ag/g-C{sub 3}N{sub 4} composites could be attributed to the extended light response range and enhanced charge separation due to the introduction of Ag nanoparticles.

  3. Enteric-coated sustained-release nanoparticles by coaxial electrospray: preparation, characterization, and in vitro evaluation

    Science.gov (United States)

    Hao, Shilei; Wang, Bochu; Wang, Yazhou; Xu, Yingqian

    2014-02-01

    Enteric-coated formulations can delay the release of drugs until they have passed through the stomach. However, high concentration of drugs caused by rapidly released in the small intestine leads to the intestinal damage, and frequent administration would increase the probability of missing medication and reduce the patient compliance. To solve the above-mentioned problems, aspirin-loaded enteric-coated sustained-release nanoparticles with core-shell structure were prepared via one-step method using coaxial electrospray in this study. Eudragit L100-55 as pH-sensitive polymer and Eudragit RS as sustained-release polymer were used for the outer coating and inner core of the nanoparticles, respectively. The maximum loading capacity of nanoparticles was 23.66 % by changing the flow rate ratio of outer/inner solutions, and the entrapment efficiency was nearly 100 %. Nanoparticles with core-shell structure were observed via fluorescence microscope and transmission electron microscope. And pH-sensitive and sustained drug release profiles were observed in the media with different pH values (1.2 and 6.8). In addition, mild cytotoxicity in vitro was detected, and the nanoparticles could be taken up by Caco-2 cells within 1.0 h in cellular uptake study. These results indicate that prepared enteric-coated sustained-release nanoparticles would be a more safety and effective carrier for oral drug delivery.

  4. Preparation and tribological behavior of Cu-nanoparticle polyelectrolyte multilayers obtained by spin-assisted layer-by-layer assembly

    International Nuclear Information System (INIS)

    Yang Guangbin; Geng Zhengang; Ma Hongxia; Wu Zhishen; Zhang Pingyu

    2009-01-01

    Polyelectrolyte multilayers (PEMs) fabricated by spin-assisted layer-by-layer assembly technique were used as nanoreactors for in-situ synthesis Cu nanoparticles. Chemical reaction within the PEMs was initiated by a reaction cycle in which Cu 2+ was absorbed into the polymer-coated substrate and then reduced in NaBH 4 solutions. Repeating the above process resulted in an increase in density of the nanoparticles and further growth in the dimension of the particles initially formed. So, different Cu-nanoparticle polyelectrolyte multilayers were formed in the process. The friction and wear properties of Cu-nanoparticle PEMs formed by different reaction cycles were investigated on a microtribometer against a stainless steel ball. The PEMs reinforced with Cu nanoparticles, prepared under the best preparation conditions, possess good tribological behavior, because of the weakened adhesion between the PEMs and the substrate and decreased mobility of the polymeric chains in the presence of excessive Cu nanoparticles generated at larger reaction cycles

  5. Structure, luminescence, and dynamics of Eu2O3 nanoparticles in MCM-41

    International Nuclear Information System (INIS)

    Chen, Wei; Joly, Alan G.; Kowalchuk, George A.; Malm, Jan-Olle; Huang, Yining; Bovin, Jan-Olov

    2001-01-01

    The structure, luminescence spectroscopy, and lifetime decay dynamics of Eu2O3 nanoparticles formed in MCM-41 have been investigated. Both X-ray diffraction and high resolution transmission electron microscope observations indicate that Eu2O3 nanoparticles of monoclinic structure are formed inside channels of MCM-41 by heating at 140 C. However, heat treatment at 600 and 700 C causes migration of Eu2O3 from the MCM-41 channels forming nanoparticles of cubic structure outside of the MCM-41 channels. The feature of the hypersensitive 5D0? 7F2 emission profile of Eu3+ is used to follow the structural changes. Photoluminescence lifetimes show the existence of short (< 1 microsecond) and long (microsecond to millisecond) components for each sample. The fast decay is attributed to quenching by surface states of the nanoparticles or energy transfer to the MCM-41 while the longer time decays show the effects of concentration quenching. The monoclinic sample prepared at 140 C shows a higher luminescence intensity than the cubic samples or the bulk powder

  6. Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold

    Science.gov (United States)

    Kumar, Sachin; Chatterjee, Kaushik

    2015-01-01

    The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(ε-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration.The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium

  7. Photoluminescence study of Sm{sup 3+}–Yb{sup 3+}co-doped tellurite glass embedding silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Reza Dousti, M., E-mail: mrdousti@ifsc.usp.br [Laboratório de Espectroscopia de Materiais Funcionais (LEMAF), Instituto de Fisica de São Carlos, Universidade de São Paulo, Av. Trabalhador So-carlense 400, São Carlos, SP 13566-590 (Brazil); Department of Physics, Tehran-North Branch, Islamic Azad University Tehran (Iran, Islamic Republic of); Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Amjad, R.J. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Hosseinian S, R.; Salehi, M.; Sahar, M.R. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia)

    2015-03-15

    We report on the upconversion emission of Sm{sup 3+} ions doped tellurite glass in the presence of Yb{sup 3+} ions and silver nanoparticles. The enhancement of infrared-to-visible upconversion emissions is achieved under 980 nm excitation wavelength and attributed to the high absorption cross section of Yb{sup 3+} ions and an efficient energy transfer to Sm{sup 3+} ions. Further enhancements are attributed to the plasmonic effect via metallic nanoparticles resulting in the large localized field around rare earth ions. However, under excitation at 406 nm, the addition of Yb{sup 3+} content and heat-treated silver nanoparticles quench the luminescence of Sm{sup 3+} ions likely due to quantum cutting and plasmonic diluent effects, respectively. - Highlights: • Sm{sup 3+} tellurite glasses co-doped with Yb{sup 3+} ions and tri-doped with Yb{sup 3+}:Ag NPs were prepared. • In first step, Yb{sup 3+} ions enhanced the upconversion emissions of Sm{sup 3+} doped samples. • In second step, Ag NPs further enhanced the upconversion emissions in tri-doped glasses. • Finally, the quench in luminescence under 406 nm excitation is observed and discussed.

  8. Well-defined mono(η3-allyl)nickel complex MONi(η3-C3H5) (M = Si or Al) grafted onto silica or alumina: A molecularly dispersed nickel precursor for syntheses of supported small size nickel nanoparticles

    KAUST Repository

    Li, Lidong; Abou-Hamad, Edy; Anjum, Dalaver H.; Zhou, Lu; Laveille, Paco; Emsley, Lyndon; Basset, Jean-Marie

    2014-01-01

    Preparing evenly-dispersed small size nickel nanoparticles over inert oxides remains a challenge today. In this context, a versatile method to prepare supported small size nickel nanoparticles (ca. 1-3 nm) with narrow size distribution via a surface organometallic chemistry (SOMC) route is described. The grafted mono(η3-allyl)nickel complexes MONi(η 3-C3H5) (M = Si or Al) as precursors are synthesized and fully characterized by elemental analysis, FTIR spectroscopy and paramagnetic solid-state NMR. © 2014 the Partner Organisations.

  9. Effect of structure, particle size and relative concentration of Eu3+ and Tb3+ ions on the luminescence properties of Eu3+ co-doped Y2O3:Tb nanoparticles

    International Nuclear Information System (INIS)

    Mukherjee, S; Sudarsan, V; Vatsa, R K; Tyagi, A K; Godbole, S V; Kadam, R M; Bhatta, U M

    2008-01-01

    Eu 3+ co-doped Y 2 O 3 :Tb nanoparticles were prepared by the combustion method and characterized for their structural and luminescence properties as a function of annealing temperatures and relative concentration of Eu 3+ and Tb 3+ ions. For Y 2 O 3 :Eu,Tb nanoparticles annealed at 600 and 1200 deg. C, variation in the relative intensity of excitation transitions between the 7 F 6 ground state and low spin and high spin 4f 7 5d 1 excited states of Tb 3+ is explained due to the combined effect of distortion around Y 3+ /Tb 3+ in YO 6 /TbO 6 polyhedra and the size of the nanoparticles. Increase in relative intensity of the 285 nm peak (spin-allowed transition denoted as peak B) with respect to the 310 nm peak (spin-forbidden transition denoted as peak A) with decrease of Tb 3+ concentration in the Y 2 O 3 :Eu,Tb nanoparticles heated at 1200 deg. C is explained based on two competing effects, namely energy transfer from Tb 3+ to Eu 3+ ions and quenching among the Tb 3+ ions. Back energy transfer from Tb 3+ to Eu 3+ in these nanoparticles is found to be very poor

  10. Hybrid chitosan–Pluronic F-127 films with BaTiO{sub 3}:Co nanoparticles: Synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, S., E-mail: sfuentes@ucn.cl [Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago (Chile); Dubo, J. [Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Barraza, N. [Departamento de Física, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); González, R. [Laboratorio de Magnetismo, Departamento de Ciencias Geológicas, Universidad Católica del Norte, Antofagasta (Chile); Veloso, E. [Dirección de Investigaciones Científicas y Tecnológicas, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago (Chile)

    2015-03-01

    In this study, magnetic BaTiO{sub 3}:Co (BT:Co) nanoparticles prepared using a combined sol–gel–hydrothermal technique were dispersed in a chitosan/Pluronic F-127 solution (QO/Pl) to obtain a nanocomposite hybrid films. Nanoparticles and hybrid films were characterized by X-ray powder diffraction, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and alternating gradient magnetometry (AGM). Experimental results indicated that the BT:Co nanoparticles were encapsulated in the QO/Pl hybrid films and that the magnetic properties of the QO/Pl/BT:Co nanocomposites are similar to the naked BT:Co nanoparticles. Results indicate that Co doping produces an enhancement in the ferromagnetic behavior of the BT nanoparticle. The coating restricts this enhancement only to low-fields, leaving the diamagnetic behavior of BT at high-fields. Magnetically stable sizes (PSD) were obtained at 3% Co doping for both naked nanoparticles and hybrid films. These show an increased magnetic memory capacity and a softer magnetic hardness with respect to non-doped BT nanoparticles. - Highlights: • We described the synthesis of magnetic BaTiO{sub 3}:Co dispersed in chitosan (QO)/Pluronic F-127 (Pl) solution by sonication to obtain nanocomposite hybrid films. • We describe the physical and magnetic properties of BaTiO{sub 3}:Co nanoparticles and QO/Pl/BT:Co hybrid films. • The magnetic properties are defines by the presence of magnetic domains. These magnetic domains are close related with the amount of Co in the host lattice. • The prepared phases could be considered as multifunctional materials, with magnetic and ferri-electrical properties, with potential uses in the design of devices.

  11. Luminescence study on Eu3+ doped Y2O3 nanoparticles: particle size, concentration and core-shell formation effects

    International Nuclear Information System (INIS)

    Singh, L Robindro; Ningthoujam, R S; Sudarsan, V; Srivastava, Iti; Singh, S Dorendrajit; Dey, G K; Kulshreshtha, S K

    2008-01-01

    Nanoparticles of Eu 3+ doped Y 2 O 3 (core) and Eu 3+ doped Y 2 O 3 covered with Y 2 O 3 shell (core-shell) are prepared by urea hydrolysis for 3 h in ethylene glycol medium at a relatively low temperature of 140 deg. C, followed by heating at 500 and 900 deg. C. Particle sizes determined from x-ray diffraction and transmission electron microscopic studies are 11 and 18 nm for 500 and 900 deg. C heated samples respectively. Based on the luminescence studies of 500 and 900 deg. C heated samples, it is confirmed that there is no particle size effect on the peak positions of Eu 3+ emission, and optimum luminescence intensity is observed from the nanoparticles with a Eu 3+ concentration of 4-5 at.%. A luminescence study establishes that the Eu 3+ environment in amorphous Y (OH) 3 is different from that in crystalline Y 2 O 3 . For a fixed concentration of Eu 3+ doping, there is a reduction in Eu 3+ emission intensity for core-shell nanoparticles compared to that of core nanoparticles, and this has been attributed to the concentration dilution effect. Energy transfer from the host to Eu 3+ increases with increase of crystallinity

  12. Structure and Magnetism of Mn5Ge3 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Onur Tosun

    2018-04-01

    Full Text Available In this work, we investigated the magnetic and structural properties of isolated Mn5Ge3 nanoparticles prepared by the cluster-beam deposition technique. Particles with sizes between 7.2 and 12.6 nm were produced by varying the argon pressure and power in the cluster gun. X-ray diffraction (XRDand selected area diffraction (SAD measurements show that the nanoparticles crystallize in the hexagonal Mn5Si3-type crystal structure, which is also the structure of bulk Mn5Ge3. The temperature dependence of the magnetization shows that the as-made particles are ferromagnetic at room temperature and have slightly different Curie temperatures. Hysteresis-loop measurements show that the saturation magnetization of the nanoparticles increases significantly with particle size, varying from 31 kA/m to 172 kA/m when the particle size increases from 7.2 to 12.6 nm. The magnetocrystalline anisotropy constant K at 50 K, determined by fitting the high-field magnetization data to the law of approach to saturation, also increases with particle size, from 0.4 × 105 J/m3 to 2.9 × 105 J/m3 for the respective sizes. This trend is mirrored by the coercivity at 50 K, which increases from 0.04 T to 0.13 T. A possible explanation for the magnetization trend is a radial Ge concentration gradient.

  13. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications.

    Science.gov (United States)

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed.

  14. Nanostructural Characters of β-SiC Nanoparticles Prepared from Indonesian Natural Resource using Sonochemical Method

    Science.gov (United States)

    Fuad, A.; Kultsum, U.; Taufiq, A.; Hartatiek; Latifah, E.

    2018-04-01

    Silicon carbide (SiC) nanoparticles become one of the interesting non-oxide ceramics due to their physical and chemical properties. For an extended period, SiC nanoparticles have been prepared by several methods that usually performed at high temperatures ranging from 1200 - 2000 °C from inexpensive commercial precursors. In this work, we prepared SiC nanoparticles from the low priced precursor of Indonesia natural resource using the sonochemical method at a temperature that is lower than 1000 °C. To produce samples with particular characters, we varied the sintering holding time (1, 10, and 20 hours) and the sintering temperatures (850, 950, and 1050 °C) during the synthesis. The samples were then characterized using XRD, SEM-EDX, TEM, and FTIR. The XRD data analysis showed that the samples have a dominant phase of SiC in the form of β-SiC with a 3C-SiC structure and SiO2 phase in a low composition within a good agreement with the EDX characterization. Interestingly, the sample prepared at the sintering temperature of 850 °C for 1 hour showed a non-crystallite phase. Using a Scherer’s equation, the particles of the samples sized from 13 to 18 nm, which were validated by SEM and TEM images. Furthermore, the FT-IR spectra presented several peaks, i.e., at wavenumbers of 482.2 and 1150 cm-1 representing Si-O-Si bonding and also at 798.5 cm-1 regarding with Si-C bonding.

  15. Photocatalytic activity of sonochemically prepared TiO_2 decorated with silver nanoparticles

    International Nuclear Information System (INIS)

    Michal, R.

    2017-01-01

    A novel way of titanium dioxide synthesis using non-water environment was investigated. In synthesis, water causes aggregation of particles of titania thus reducing active surface significantly. To avoid this, a non- water environment such as toluene was employed. Reaction between solid precursor and gaseous ammonia was conducted in this environment using dried reactants in tempered glass reactor and irradiated by ultrasonic horn. As prepared powders were then calcinated and decorated with Ag nanoparticles. Photocatalytic activity was determined by TOC method and compared to P25 standard TiO_2. Samples were analysed by XRD and Raman spectroscopy and surface morphology was investigated by SEM. Powders prepared by this method had comparable or higher photocatalytic activity than P25. Ag nanoparticles seem to have no significant impact on photocatalytic activity whatsoever. (authors)

  16. Lysozyme-loaded lipid-polymer hybrid nanoparticles: preparation, characterization and colloidal stability evaluation.

    Science.gov (United States)

    Devrim, Burcu; Kara, Aslı; Vural, İmran; Bozkır, Asuman

    2016-11-01

    Lipid-polymer hybrid nanoparticles (LPNPs) are polymeric nanoparticles enveloped by lipid layers, which have emerged as a potent therapeutic nanocarrier alternative to liposomes and polymeric nanoparticles. The aim of this work was to develop, characterize and evaluate LPNPs to deliver a model protein, lysozyme. Lysozyme-loaded LPNPs were prepared by using the modified w/o/w double-emulsion-solvent-evaporation method. Poly-ɛ-caprolactone (PCL) was used as polymeric core material and tripalmitin:lechitin mixture was used to form a lipid shell around the LPNPs. LPNPs were evaluated for particle size distribution, zeta potential, morphology, encapsulation efficiency, in vitro drug release, stability and cytotoxicity. The DLS measurement results showed that the particle size of LPNPs ranged from 58.04 ± 1.95 nm to 2009.00 ± 0.52 nm. The AFM and TEM images of LPNPs demonstrate that LPNPs are spherical in shape. The protein-loading capacity of LPNPs ranged from 5.81% to 60.32%, depending on the formulation parameters. LPNPs displayed a biphasic drug release pattern with a burst release within 1 h, followed by sustained release afterward. Colloidal stability results of LPNPs in different media showed that particle size and zeta potential values of particles did not change significantly in all media except of FBS 100% for 120 h. Finally, the results of a cellular uptake study showed that LPNPs were significantly taken up by 83.3% in L929 cells. We concluded that the LPNPs prepared with PCL as polymeric core material and tripalmitin:lechitin mixture as lipid shell should be a promising choice for protein delivery.

  17. Synthesis, characterization and magnetic property of maghemite (γ-Fe{sub 2}O{sub 3}) nanoparticles and their protective coating with pepsin for bio-functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Bandhu, A.; Sutradhar, S.; Mukherjee, S. [Solid State Research Laboratory, Department of Physics, Burdwan University, Burdwan 713104, West Bengal (India); Greneche, J.M. [Laboratoire de Physique de l’Etat Condensé – UMR CNRS 6087, Université du Maine, 72085, Le Mans Cedex 9 (France); Chakrabarti, P.K., E-mail: pabitra_c@hotmail.com [Solid State Research Laboratory, Department of Physics, Burdwan University, Burdwan 713104, West Bengal (India)

    2015-10-15

    Highlights: • Maghemite nanoparticles were prepared by a modified co-precipitation method. • Nanoparticles were then successfully coated with pepsin for bio-functionlization. • XRD and Mössbauer spectra confirmed the maghemite phase of the nanoparticles. • Magnetic data were analysed to evaluate particle size, anisotropy etc. - Abstract: Maghemite nanoparticles (γ-Fe{sub 2}O{sub 3}) are prepared by co-precipitation method. To obtain bio-functionalized magnetic nanoparticles for magnetically controlled drug delivery, the prepared nanoparticles are successfully coated with pepsin, a bio-compatible polymer and digestive enzyme. Crystallographic phase of the nanoparticles is confirmed by X-ray diffractograms (XRD), high resolution transmission electron microscopy (HRTEM) and {sup 57}Fe Mössbauer spectrometry. The average size of nanoparticles/nanocrystallites is estimated from the (3 1 1) peak of the XRD pattern using Debye–Scherrer formula. Results of HRTEM of coated and bare samples are in good agreement with those extracted from the XRD analysis. The dynamic magnetic properties are observed and different quantities viz., coercive field, magnetization, remanence, hysteresis losses etc., are estimated, which confirmed the presence of superparamagnetic relaxation of nanoparticles. Mössbauer spectra of the samples recorded at both 300 and 77 K, confirmed that the majority of particles are maghemite together with a very small fraction of magnetite nanoparticles.

  18. Preparation of gold nanoparticles-agarose gel composite and its application in SERS detection

    Science.gov (United States)

    Ma, Xiaoyuan; Xia, Yu; Ni, Lili; Song, Liangjing; Wang, Zhouping

    2014-03-01

    Agarose gel/gold nanoparticles hybrid was prepared by adding gold nanoparticles to preformed agarose gel. Nanocomposite structures and properties were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV-Vis-NIR absorption spectroscopy. Based on the swelling-contraction characteristics of agarose gel and the adjustable localized surface plasmon resonance (LSPR) of the gold nanoparticles, the nanocomposites were used as surface enhanced Raman scattering (SERS) substrate to detect the Raman signal molecules (NBA, MBA, 1NAT). Results revealed that the porous structure of the agarose gel provided a good carrier for the enrichment of the gold nanoparticles. The gold nanoparticles dynamic hot-spot effect arising from the agarose gel contraction loss of water in the air greatly enhanced the Raman signal. Furthermore, the gel could be cleaned with washing solution and recycling could be achieved for Raman detection.

  19. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization

    Science.gov (United States)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-01

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (106 ~ 109 Ω/◻).

  20. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization.

    Science.gov (United States)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-03

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (10(6)~ 10(9) Ω/◻).

  1. Recording-media-related morphology and magnetic properties of crystalline CoPt{sub 3} and CoPt{sub 3}-Au core-shell nanoparticles synthesized via reverse microemulsion

    Energy Technology Data Exchange (ETDEWEB)

    Bahmanrokh, Ghazaleh, E-mail: ghazalehbahmanrokh@yahoo.com; Hashim, Mansor; Matori, Khamirul Amin; Kanagesan, Samikannu; Sabbaghizadeh, Rahim; Ezzad Shafie, Mohd Shamsul [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Navasery, Manizheh; Soltani, Nayereh [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Vaziri, Parisa [Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-09-07

    A comparative experimental study of the magnetic properties of CoPt{sub 3} and CoPt{sub 3}/Au nanoparticles as well as a detailed study of the structural properties of the samples by X-ray diffraction, Transmission electron microscopy, and vibrating sample magnetometer is presented in this work. In addition, the effect of particle size on the structure and magnetic properties of nanoparticles prepared by microemulsion is studied. The correlation between particle size, crystallinity, and magnetization was studied as well. CoPt nanoparticles have been studied intensively over the last decade because of their increased magnetic anisotropy in the ordered phase that can be interesting for high density magnetic recording. A significant high coercivity for as-prepared CoPt{sub 3} and CoPt{sub 3}-Au nanoparticles was obtained at room temperature and enhanced after annealing. The focused aim of our study is to obtain high coercivity at room temperature that follows the Curie-Weiss law. This indicates an interacting system in which the nanoparticles behave like single domain ferromagnetic materials in the particle size range of 8 to 35 nm. In addition, the interaction increases by cooling the samples to low temperature around 15 K. Temperature dependence 1/M graph was obtained to investigate the behavior of nanoparticles at low temperature and shows the best fit with Curie-Weis mode.

  2. In situ prepared PET nanocomposites: Effect of organically modified montmorillonite and fumed silica nanoparticles on PET physical properties and thermal degradation kinetics

    International Nuclear Information System (INIS)

    Vassiliou, A.A.; Chrissafis, K.; Bikiaris, D.N.

    2010-01-01

    In the present study a series of PET nanocomposites were prepared by in situ polymerization using different amounts of organically modified montmorillonite (OMMT) with a triphenylphosphine compound and fumed silica nanoparticles (SiO 2 ). As verified by TEM micrographs, the dispersion of both nanoparticles into the PET matrix was homogeneous while montmorillonite was dispersed in the exfoliated form. The intrinsic viscosities of the prepared nanocomposites were affected by the addition of the nanoparticles and in both cases a slight increase was observed. Tensile strength was also increased by increasing nanoparticles content while both types of nanoparticles act as nucleating agents, enhancing the crystallization rates of PET. From the thermogravimetric curves it was concluded that PET and the samples with different nanoparticles presented good thermostability, since no remarkable mass loss occurred up to 320 o C ( 2 2 wt.% nanocomposites was almost identical (222.1 kJ/mol). However, PET/OMMT 2 wt.% nanocomposites exhibited a higher activation energy (228.3 kJ/mol), indicating that OMMT incurred a stabilizing effect upon the decomposition of the matrix. The form of the conversion function for all the studied samples obtained by fitting was the mechanism of n th -order auto-catalysis.

  3. Boronic Acid functionalized core-shell polymer nanoparticles prepared by distillation precipitation polymerization for glycopeptide enrichment.

    Science.gov (United States)

    Qu, Yanyan; Liu, Jianxi; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2012-07-16

    The boronic acid-functionalized core-shell polymer nanoparticles, poly(N,N-methylenebisacrylamide-co-methacrylic acid)@4-vinylphenylboronic acid (poly(MBA-co-MAA)@VPBA), were successfully synthesized for enriching glycosylated peptides. Such nanoparticles were composed of a hydrophilic polymer core prepared by distillation precipitation polymerization (DPP) and a boronic acid-functionalized shell designed for capturing glycopeptides. Owing to the relatively large amount of residual vinyl groups introduced by DPP on the core surface, the VPBA monomer was coated with high efficiency, working as the shell. Moreover, the overall polymerization route, especially the use of DPP, made the synthesis of nanoparticles facile and time-saving. With the poly(MBA-co-MAA)@VPBA nanoparticles, 18 glycopeptides from horseradish peroxidase (HRP) digest were captured and identified by MALDI-TOF mass spectrometric analysis, relative to eight glycopeptides enriched by using commercially available meta-aminophenylboronic acid agarose under the same conditions. When the concentration of the HRP digest was decreased to as low as 5 nmol, glycopeptides could still be selectively isolated by the prepared nanoparticles. Our results demonstrated that the synthetic poly(MBA-co-MAA)@VPBA nanoparticles might be a promising selective enrichment material for glycoproteome analysis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Microstructure and Magnetic Properties of Highly Ordered SBA-15 Nanocomposites Modified with Fe2O3 and Co3O4 Nanoparticles

    Directory of Open Access Journals (Sweden)

    P. F. Wang

    2012-01-01

    Full Text Available Owing to the unique order mesopores, mesoporous SBA-15 could be used as the carrier of the magnetic nanoparticles. The magnetic nanoparticles in the frame and the mesopores lead to the exchange-coupling interaction or other interactions, which could improve the magnetic properties of SBA-15 nanocomposites. Mesoporous Fe/SBA-15 had been prepared via in situ anchoring Fe2O3 into the frame and the micropores of SBA-15 using the sol-gel and hydrothermal processes. Co3O4 nanoparticles had been impregnated into the mesopores of Fe/SBA-15 to form mesoporous Fe/SBA-15-Co3O4 nanocomposites. XRD, HRTEM, VSM, and N2 physisorption isotherms were used to characterize the mesostructure and magnetic properties of the SBA-15 nanocomposites, and all results indicated that the Fe2O3 nanoparticles presented into the frame and micropores, while the Co3O4 nanoparticles existed inside the mesopores of Fe/SBA-15. Furthermore, the magnetic properties of SBA-15 could be conveniently adjusted by the Fe2O3 and Co3O4 magnetic nanoparticles. Fe/SBA-15 exhibited ferromagnetic properties, while the impregnation of Co3O4 nanoparticles greatly improved the coercivity with a value of 1424.6 Oe, which was much higher than that of Fe/SBA-15.

  5. One-step preparation of antimicrobial silver nanoparticles in polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: lyutakoo@vscht.cz; Kalachyova, Y. [Institute of Chemical Technology, Department of Solid State Engineering (Czech Republic); Solovyev, A. [Institute of Chemical Process Fundamentals of the ASCR (Czech Republic); Vytykacova, S. [Institute of Chemical Technology, Department of Glass and Ceramics (Czech Republic); Svanda, J.; Siegel, J. [Institute of Chemical Technology, Department of Solid State Engineering (Czech Republic); Ulbrich, P. [Institute of Chemical Technology, Department of Biochemistry and Microbiology (Czech Republic); Svorcik, V. [Institute of Chemical Technology, Department of Solid State Engineering (Czech Republic)

    2015-03-15

    Simple one-step procedure for in situ preparation of silver nanoparticles (AgNPs) in the polymer thin films is described. Nanoparticles (NPs) were prepared by reaction of N-methyl pyrrolidone with silver salt in semi-dry polymer film and characterized by transmission electron microscopy, XPS, and UV–Vis spectroscopy techniques. Direct synthesis of NPs in polymer has several advantages; even though it avoids time-consuming NPs mixing with polymer matrix, uniform silver distribution in polymethylmethacrylate (PMMA) films is achieved without necessity of additional stabilization. The influence of the silver concentration, reaction temperature and time on reaction conversion rate, and the size and size-distribution of the AgNPs was investigated. Polymer films doped with AgNPs were tested for their antibacterial activity on Gram-negative bacteria. Antimicrobial properties of AgNPs/PMMA films were found to be depended on NPs concentration, their size and distribution. Proposed one-step synthesis of functional polymer containing AgNPs is environmentally friendly, experimentally simple and extremely quick. It opens up new possibilities in development of antimicrobial coatings with medical and sanitation applications.

  6. Poly (acrylonitrile-co-methyl methacrylate nanoparticles: I. Preparation and characterization

    Directory of Open Access Journals (Sweden)

    M.S. Mohy Eldin

    2017-12-01

    Full Text Available This work concerns the preparation and characterization of poly (acrylonitrile-co-methyl methacrylate Copolymer, P(AN-co-MMA, nano-particles using precipitation polymerization technique. Potassium per-sulfate redox initiation system was used to perform polymerization process in an alcoholic aqueous system. The impact of different polymerization conditions such as comonomer concentration and ratio, polymerization time, polymerization temperatures, initiator concentration and co-solvent composition on the polymerization yield and particle size was studied. Maximum polymerization yield, 70%, was obtained with MMA:AN (90%:10% comonomer composition. Particle sizes ranging from 16 nm to 1483 nm were obtained and controlled by variation of polymerization conditions. The co-polymerization process was approved by FT-IR and TGA analysis. The copolymer composition was investigated by nitrogen content analysis. Copolymers with a progressive percentage of PAN show thermal stabilities close to PAN Homopolymer. SEM photographs prove spherical structure of the produced copolymers. The investigated system shows promising future in the preparation of nanoparticles from comonomers without using emulsifiers or dispersive agents.

  7. One-step preparation of antimicrobial silver nanoparticles in polymer matrix

    International Nuclear Information System (INIS)

    Lyutakov, O.; Kalachyova, Y.; Solovyev, A.; Vytykacova, S.; Svanda, J.; Siegel, J.; Ulbrich, P.; Svorcik, V.

    2015-01-01

    Simple one-step procedure for in situ preparation of silver nanoparticles (AgNPs) in the polymer thin films is described. Nanoparticles (NPs) were prepared by reaction of N-methyl pyrrolidone with silver salt in semi-dry polymer film and characterized by transmission electron microscopy, XPS, and UV–Vis spectroscopy techniques. Direct synthesis of NPs in polymer has several advantages; even though it avoids time-consuming NPs mixing with polymer matrix, uniform silver distribution in polymethylmethacrylate (PMMA) films is achieved without necessity of additional stabilization. The influence of the silver concentration, reaction temperature and time on reaction conversion rate, and the size and size-distribution of the AgNPs was investigated. Polymer films doped with AgNPs were tested for their antibacterial activity on Gram-negative bacteria. Antimicrobial properties of AgNPs/PMMA films were found to be depended on NPs concentration, their size and distribution. Proposed one-step synthesis of functional polymer containing AgNPs is environmentally friendly, experimentally simple and extremely quick. It opens up new possibilities in development of antimicrobial coatings with medical and sanitation applications

  8. IN SITU PREPARED TiO2 NANOPARTICLES CROSS-LINKED SULFONATED PVA MEMBRANES WITH HIGH PROTON CONDUCTIVITY FOR DMFC

    Directory of Open Access Journals (Sweden)

    Jignasa N. Solanki

    2016-07-01

    Full Text Available Organic/inorganic membranes based on sulfonated poly(vinyl alcohol (SPVA and in situ prepared TiO2 nanoparticles nanocomposite membranes with various compositions were prepared to use as proton exchange membranes in direct membrane fuel cells. Poly(vinyl alcohol (PVA was sulfonated and cross-linked separately by 4-formylbenzene-1,3-disulfonic acid disodium salt hydrate and glutaraldehyde. The ion exchange capacity and proton conductivity of the membranes increased with increasing amount of TiO2 nanoparticles. The composite membranes with 15 wt% TiO2 exhibited excellent proton conductivity of 0.0822 S cm-1, as well as remarkably low methanol permeability of 1.11×10-9 cm2 s-1. The thermal stability and durability were also superior and performance in methanol fuel cell was also reasonably good

  9. Excellent electrochemical performance of graphene-silver nanoparticle hybrids prepared using a microwave spark assistance process

    International Nuclear Information System (INIS)

    Shanmugharaj, A.M.; Ryu, Sung Hun

    2012-01-01

    Highlights: ► A simple synthesis route is explored in preparing graphene-metal nanoparticle hybrids using cost effective microwave radiation process. ► Electrochemical performance of the synthesized graphene-silver nanoparticle hybrids have been compared with graphite and silver nanoparticle based anode materials. ► Graphene-silver nanoparticle hybrid exhibits stable charge/discharge characteristics of 714 mAh g −1 and it is significantly higher compared to natural graphite and silver based electrodes. - Abstract: A simple method is described for the synthesis of graphene-silver nanoparticle hybrids from graphite and silver precursors using microwave spark ignition process. Adding ecofriendly free radical initiators, in the presence of hydrogen peroxide solution leads to the expansion of graphite to graphene nanosheets. Simultaneously, silver ions intercalated between the graphene layers are reduced to silver nanocrystals leading to the development of graphene-silver nanoparticle hybrids. Transmission electron microscopic (TEM) studies reveal the successful formation of graphene-silver nanoparticle hybrids. X-ray diffraction (XRD) shows that the silver nanoparticles formed on the graphene surfaces are face centered cubic crystals. The surface composition and functional groups present on the graphene-silver nanoparticle hybrids are corroborated using X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FT-IR). The lithium storage capacity of the synthesized material, when used as an anode material for rechargeable lithium secondary batteries is investigated. Its first specific discharge capacity is observed to be 580 mAh g −1 and this has been increased to 827 mAh g −1 , by incorporating the silver nanoparticles between the graphene platelets. The reversible capacity of the graphene-silver nanoparticle hybrids is observed to be 714 mAh g −1 , which is significantly higher compared to that of graphene (420 mAh g −1

  10. Optical and structural properties of colloidal zirconia nanoparticles prepared by arc discharge in liquid

    Science.gov (United States)

    Peymani forooshani, Reza; Poursalehi, Reza; Yourdkhani, Amin

    2018-01-01

    Zirconia is one of the important ceramic materials with unique properties such as high melting point, high ionic conductivity, high mechanical properties and low thermal conductivity. Therefore, zirconia is one of the useful materials in refractories, thermal barriers, cutting tools, oxygen sensors electrolytes, catalysis, catalyst supports and solid oxide fuel cells. Recently, direct current (DC) arc discharge is extensively employed to synthesis of metal oxide nanostructures in liquid environments. The aim of this work is the synthesis of colloidal zirconia nanoparticles by DC arc discharge method in water as a medium. Arc discharge was ignited between two pure zirconium electrodes in water. Optical and structural properties of prepared colloidal nanoparticles were investigated. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and UV-visible spectroscopy, were employed for characterization of particle size, morphology, crystal structure and optical properties, respectively. SEM images demonstrate that the nanoparticles are spherical in shape with an average size lower than 38 nm. The XRD patterns of the nanoparticles were consistent with tetragonal and monoclinic zirconia crystal structures. The optical transmission spectra of the colloidal solution show optical characteristic of zirconia nanoparticles as a wide band gap semiconductor with no absorption peak in visible wavelength with the considerable amount of oxygen deficiency. Oxidation of colloidal nanoparticles in water could be explained via reaction with either dissociated oxygen from water in hot plasma region or with dissolved oxygen in water. The results provide a simple and flexible method for preparation of zirconia nanoparticles with a capability of mass production without environmental footprints.

  11. Rare earth fluorescent nanoparticles for specific cancer cell targeting

    International Nuclear Information System (INIS)

    Stefanakis, Dimitrios; Ghanotakis, Demetrios F.

    2016-01-01

    Terbium layered hydroxide nanoparticles (Tb_2(OH)_5NO_3) were synthesized by a one-pot coprecipitation method. The characterization of this preparation revealed highly oriented fluorescent nanoparticles. An attempt to improve the properties of Tb_2(OH)_5NO_3 resulted in the preparation of two optimized nanoparticles. In particular, Tb_2(OH)_5NO_3:Eu and Tb_2(OH)_5NO_3-FA were prepared when Tb_2(OH)_5NO_3 was doped with Europium and when the surface was modified with folic acid (FA), respectively. The size of the above nanoparticles was below 100 nm, and thus they have the potential to be used for biomedical applications. The interaction of nanoparticles with human cells was studied using confocal microscopy. This study revealed that only the nanoparticles modified with folic acid have the ability to be targeted to HeLa cells. This specific identification of cancer cells, in combination with the fluorescent properties of Tb_2(OH)_5NO_3, could render these nanoparticles appropriate for biomedical applications.

  12. Synthesis and Characterization of Fe3O4 Magnetic Nanoparticles Coated with Carboxymethyl Chitosan Grafted Sodium Methacrylate

    Directory of Open Access Journals (Sweden)

    S. Asgari

    2014-01-01

    Full Text Available N-sodium acrylate-O-carboxymethyl chitosan [CMCH-g-PAA(Na] bound Fe3O4 nanoparticles were developed as a novel magnetic nanoparticles with an ionic structure that can be potentially used in many fields. CMCH-g-PAA (Na was obtained by grafting of sodium polyacrylate on O-carboxymethyl chitosan, which is an amphiphilic polyelectrolyte with the biocompatibility and biodegradability properties. According to the great interest for improving the stability of Fe3O4 nanoparticles, CMCH-g-PAA (Na was used as a stabilizer to prepare a well dispersed suspension of magnetic nanoparticle According to the results,the presence of CMCH-g-PAA(Na could eliminate agglomeration of magnetic nanoparticles without destroying the superparamagnetic  properties

  13. Preparation of Lignin/Sodium Dodecyl Sulfate Composite Nanoparticles and Their Application in Pickering Emulsion Template-Based Microencapsulation.

    Science.gov (United States)

    Pang, Yuxia; Wang, Shengwen; Qiu, Xueqing; Luo, Yanling; Lou, Hongming; Huang, Jinhao

    2017-12-20

    Lignin is a vastly underutilized biomass resource. The preparation of water-dispersed lignin nanoparticles is an effective way to realize the high-value utilization of lignin. However, the currently reported preparation methods of lignin nanoparticles still have some drawbacks, such as the requirement for toxic organic solvent or chemical modification, complicated operation process, and poor dispersibility. Here, lignin/sodium dodecyl sulfate (SDS) composite nanoparticles (LSNPs) with outstanding water dispersibility and a size range of 70-200 nm were facilely prepared via acidifying the mixed basic solution of alkaline lignin and SDS. No harsh chemical was needed. The formation mechanism was systematically studied. Results indicated that the LSNPs were obtained by acid precipitation of the mixed micelles formed by the self-assembly of lignin and SDS. In addition, on the basis of the LSNP-stabilized Pickering emulsions, lignin/polyurea composite microcapsules combining the excellent chemical stability of a synthetic polyurea shell with the fantastic antiphotolysis and antioxidant properties of lignin were successfully prepared.

  14. Carboxymethyl guar gum nanoparticles for drug delivery applications: Preparation and preliminary in-vitro investigations

    Energy Technology Data Exchange (ETDEWEB)

    Dodi, G., E-mail: gianina.dodi@yahoo.co.uk [“Gheorghe Asachi” Technical University of Iasi (Romania); SCIENT — Research Centre for Instrumental Analysis, Bucharest (Romania); Pala, A. [University of Sassari, Sassari (Italy); Barbu, E. [University of Portsmouth, Portsmouth (United Kingdom); Peptanariu, D. [“Petru Poni” Institute of Macromolecular Chemistry, Iasi (Romania); Hritcu, D.; Popa, M.I. [“Gheorghe Asachi” Technical University of Iasi (Romania); Tamba, B.I. [“Gr. T. Popa” University of Medicine and Pharmacy, Iasi (Romania)

    2016-06-01

    Carboxymethyl guar gum (CMGG) synthesized from commercially available polysaccharide was formulated into nanoparticles via ionic gelation using trisodium trimetaphosphate (STMP) as cross-linking agent. Characterisation using a range of analytical techniques (FTIR, NMR, GPC, TGA and DLS) confirmed the CMGG structure and revealed the effect of the CMGG and STMP concentration on the main characteristics of the obtained nanoformulations. The average nanoparticle diameter was found to be around 208 nm, as determined by dynamic light scattering (DLS) and confirmed by scanning electron microscopy (SEM) and nanoparticle tracking analysis (NTA). Experiments using simulated gastric and intestinal fluids evidenced significant pH-dependent drug release behaviour of the nanoformulations loaded with Rhodamine B (RhB) as a model drug (loading capacity in excess of 83%), as monitored by UV–Vis. While dose-dependent cytotoxicity was observed, the nanoformulations appeared completely non-toxic at concentrations below 0.3 mg/mL. Results obtained so far suggest that carboxymethylated guar gum nanoparticles formulated with STMP warrant further investigations as polysaccharide based biocompatible drug nanocarriers. - Highlights: • Carboxymethyl guar gum nanoparticles preparation by ionic gelation • The optimum synthesis system designed particles around 200 nm • The nanoformulations appeared completely non-toxic at specific concentrations • The loaded formulations evidenced significant pH-dependent drug release behaviour • The results encourage further investigations as polysaccharidic drug nanocarriers.

  15. Carboxymethyl guar gum nanoparticles for drug delivery applications: Preparation and preliminary in-vitro investigations

    International Nuclear Information System (INIS)

    Dodi, G.; Pala, A.; Barbu, E.; Peptanariu, D.; Hritcu, D.; Popa, M.I.; Tamba, B.I.

    2016-01-01

    Carboxymethyl guar gum (CMGG) synthesized from commercially available polysaccharide was formulated into nanoparticles via ionic gelation using trisodium trimetaphosphate (STMP) as cross-linking agent. Characterisation using a range of analytical techniques (FTIR, NMR, GPC, TGA and DLS) confirmed the CMGG structure and revealed the effect of the CMGG and STMP concentration on the main characteristics of the obtained nanoformulations. The average nanoparticle diameter was found to be around 208 nm, as determined by dynamic light scattering (DLS) and confirmed by scanning electron microscopy (SEM) and nanoparticle tracking analysis (NTA). Experiments using simulated gastric and intestinal fluids evidenced significant pH-dependent drug release behaviour of the nanoformulations loaded with Rhodamine B (RhB) as a model drug (loading capacity in excess of 83%), as monitored by UV–Vis. While dose-dependent cytotoxicity was observed, the nanoformulations appeared completely non-toxic at concentrations below 0.3 mg/mL. Results obtained so far suggest that carboxymethylated guar gum nanoparticles formulated with STMP warrant further investigations as polysaccharide based biocompatible drug nanocarriers. - Highlights: • Carboxymethyl guar gum nanoparticles preparation by ionic gelation • The optimum synthesis system designed particles around 200 nm • The nanoformulations appeared completely non-toxic at specific concentrations • The loaded formulations evidenced significant pH-dependent drug release behaviour • The results encourage further investigations as polysaccharidic drug nanocarriers

  16. Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations

    Directory of Open Access Journals (Sweden)

    Salvioni L

    2017-03-01

    Full Text Available Lucia Salvioni,1 Elisabetta Galbiati,1 Veronica Collico,1 Giulia Alessio,1 Svetlana Avvakumova,1 Fabio Corsi,2,3 Paolo Tortora,1 Davide Prosperi,1 Miriam Colombo1 1Nanobiolab, Department of Biotechnology and Bioscience, University of Milano-Bicocca, 2Biological and Clinical Science Department, University of Milan, Milano, 3Surgery Department, Breast Unit, IRCCS S Maugeri Foundation, Pavia, Italy Background: The discovery of new solutions with antibacterial activity as efficient and safe alternatives to common preservatives (such as parabens and to combat emerging infections and drug-resistant bacterial pathogens is highly expected in cosmetics and pharmaceutics. Colloidal silver nanoparticles (NPs are attracting interest as novel effective antimicrobial agents for the prevention of several infectious diseases.Methods: Water-soluble, negatively charged silver nanoparticles (AgNPs were synthesized by reduction with citric and tannic acid and characterized by transmission electron microscopy, dynamic light scattering, zeta potential, differential centrifuge sedimentation, and ultraviolet–visible spectroscopy. AgNPs were tested with model Gram-negative and Gram-positive bacteria in comparison to two different kinds of commercially available AgNPs.Results: In this work, AgNPs with higher antibacterial activity compared to the commercially available colloidal silver solutions were prepared and investigated. Bacteria were plated and the antibacterial activity was tested at the same concentration of silver ions in all samples. The AgNPs did not show any significant reduction in the antibacterial activity for an acceptable time period. In addition, AgNPs were transferred to organic phase and retained their antibacterial efficacy in both aqueous and nonaqueous media and exhibited no toxicity in eukaryotic cells.Conclusion: We developed AgNPs with a 20 nm diameter and negative zeta potential with powerful antibacterial activity and low toxicity compared

  17. Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid Nanoparticles

    Science.gov (United States)

    Hood, Matthew A.; Mari, Margherita; Muñoz-Espí, Rafael

    2014-01-01

    This article reviews the recent advances and challenges in the preparation of polymer/inorganic hybrid nanoparticles. We mainly focus on synthetic strategies, basing our classification on whether the inorganic and the polymer components have been formed in situ or ex situ, of the hybrid material. Accordingly, four types of strategies are identified and described, referring to recent examples: (i) ex situ formation of the components and subsequent attachment or integration, either by covalent or noncovalent bonding; (ii) in situ polymerization in the presence of ex situ formed inorganic nanoparticles; (iii) in situ precipitation of the inorganic components on or in polymer structures; and (iv) strategies in which both polymer and inorganic component are simultaneously formed in situ. PMID:28788665

  18. Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Morales, M.P. E-mail: puerto@icmm.csic.es; Bomati-Miguel, O.; Perez de Alejo, R.; Ruiz-Cabello, J.; Veintemillas-Verdaguer, S.; O' Grady, K

    2003-10-01

    Colloidal suspensions of magnetic particles with application as contrast agents in magnetic resonance imaging have been prepared by coating iron oxide nanoparticles with dextran. The particles were prepared by laser-induced pyrolysis of iron pentacarbonyl vapors. By adjusting the experimental conditions, the particle and crystal size of the iron oxide nanoparticles were varied in the range 2-7 nm with a very narrow size distribution. The suspensions consisted of dextran-coated nanoparticle aggregates with a hydrodynamic diameter of around 50 nm and unimodal size distributions. It was observed that an important enhancement of the magnetic properties of the nanoparticles and the suspensions (saturation magnetization and susceptibility values) takes place as the particle and the crystallite size increases. Consequently, the {sup 1}H NMR relaxation times of the suspensions, characterized by the longitudinal (R{sub 1}) and transversal (R{sub 2}) relaxation rates, also increase with the crystal order. This effect was more pronounced for the values of R{sub 2}. The mechanism of MRI enhancement appears to be related to water protons diffusing within the inhomogeneous magnetic field created by the magnetic clusters. The global structure of the cluster, the anisotropy and the magnetic field around it are important factors affecting the value of R{sub 2}.

  19. Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis

    International Nuclear Information System (INIS)

    Morales, M.P.; Bomati-Miguel, O.; Perez de Alejo, R.; Ruiz-Cabello, J.; Veintemillas-Verdaguer, S.; O'Grady, K.

    2003-01-01

    Colloidal suspensions of magnetic particles with application as contrast agents in magnetic resonance imaging have been prepared by coating iron oxide nanoparticles with dextran. The particles were prepared by laser-induced pyrolysis of iron pentacarbonyl vapors. By adjusting the experimental conditions, the particle and crystal size of the iron oxide nanoparticles were varied in the range 2-7 nm with a very narrow size distribution. The suspensions consisted of dextran-coated nanoparticle aggregates with a hydrodynamic diameter of around 50 nm and unimodal size distributions. It was observed that an important enhancement of the magnetic properties of the nanoparticles and the suspensions (saturation magnetization and susceptibility values) takes place as the particle and the crystallite size increases. Consequently, the 1 H NMR relaxation times of the suspensions, characterized by the longitudinal (R 1 ) and transversal (R 2 ) relaxation rates, also increase with the crystal order. This effect was more pronounced for the values of R 2 . The mechanism of MRI enhancement appears to be related to water protons diffusing within the inhomogeneous magnetic field created by the magnetic clusters. The global structure of the cluster, the anisotropy and the magnetic field around it are important factors affecting the value of R 2

  20. Development of a novel and customizable two-solution mixing type spray nozzle for one-step preparation of nanoparticle-containing microparticles.

    Science.gov (United States)

    Ozeki, Tetsuya; Akiyama, Yusuke; Takahashi, Norimitsu; Tagami, Tatsuaki; Tanaka, Toshiyuki; Fujii, Masashi; Okada, Hiroaki

    2012-01-01

    Production of drug nanoparticles is an effective strategy to enhance solubility and oral absorption of water-insoluble drugs. The handling of drug nanoparticles has been an important issue in drug formulation because nanoparticles easily aggregate each other and redispersion of these particles is very difficult. In the present study, we developed a unique two-solution mixing type spray nozzle that can prepare drug nanoparticles in microparticles in one step without any common solvent and surfactant, and then, the prepared formulation were evaluated. Ethylcellulose (EC) and mannitol (MAN) were used as a model polymer of water-insoluble compound and a water-soluble carrier, respectively. We characterized the EC/MAN microparticles produced by the novel spray nozzle when customizing the nozzle parts to mix EC and MAN solution. Relatively smaller EC nanoparticles (customizable parts in the nozzle. In addition, the core of EC nanoparticles (<50 nm) was also observed by atomic force microscopy. We also found that the mixing time in the nozzle parts affected the size and the standard deviation of EC nanoparticles. These results suggest that the size of EC nanoparticles in MAN microparticles is controllable by using this unique nozzle. After all, we could prepare MAN microparticles containing EC nanoparticles in one step by using the novel nozzle. The drug/MAN microparticles formulation produced by the nozzle may be useful for the handling of drug nanoparticles.

  1. Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles.

    Science.gov (United States)

    Mohammadi, Abbas; Daemi, Hamed; Barikani, Mehdi

    2014-08-01

    In this study, superparamagnetic sodium alginate-coated Fe3O4 nanoparticles (Alg-Fe3O4) as a novel magnetic adsorbent were prepared by in situ coprecipitation method, in which Fe3O4 nanoparticles were precipitated from FeCl3 and FeCl2 under alkaline medium in the presence of sodium alginate. The Alg-Fe3O4 nanoparticles were used for removal of malachite green (MG) from aqueous solutions using batch adsorption technique. The characterization of synthesized nanoparticles was performed using XRD, FTIR, TEM, TGA and vibrating sample magnetometer (VSM) techniques. FTIR analysis of synthesized nanoparticles provided the evidence that sodium alginate was successfully coated on the surface of Fe3O4 nanoparticles. The FT-IR and TGA characterization showed that the Alg-Fe3O4 nanoparticles contained about 14% (w/w) of sodium alginate. Moreover, TEM analysis indicated that the average diameter of the Alg-Fe3O4 nanoparticles was about 12nm. The effects of adsorbent dosage, pH and temperature were investigated on the adsorption properties of MG onto Alg-Fe3O4 nanoparticles. The equilibrium adsorption data were modeled using the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 47.84mg/g. The kinetics of adsorption of MG onto Alg-Fe3O4 nanoparticles were investigated using the pseudo-first-order and pseudo-second-order kinetic models. The results showed that the adsorption of MG onto nanoparticles followed pseudo-second-order kinetic model. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities

    Energy Technology Data Exchange (ETDEWEB)

    Basavegowda, Nagaraj; Idhayadhulla, Akber; Lee, Yong Rok, E-mail: yrlee@yu.ac.kr

    2014-10-01

    This work describes a plant-mediated approach to the preparation of metal nanoparticles using leaf extract of Artemisia annua (A. annua), an ethno-medicinal plant widely found in Asia, which was used as reducing and stabilizing agent. A. annua is used in traditional Chinese medicine to alleviate fever. Au and Ag nanoparticles were prepared using a one-step aqueous method at room temperature without any toxic chemicals. The formation of Au and Ag nanoparticles was monitored by UV–vis spectroscopy. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). TEM analysis of Au nanoparticles showed that they had triangular and spherical shapes with sizes ranging from 15 to 40 nm. The silver nanoparticles were predominantly spherical and uniformly sized (30–50 nm). The Au and Ag nanoparticles produced showed significant tyrosinase inhibitory and antibacterial effects. These results suggest that the synthesized nanoparticles provide good alternatives in varied medical and industrial applications. - Highlights: • Au and Ag nanoparticles were synthesized using Artemisia annua leaf aqueous extract. • Nanoparticles were characterized by UV–vis spectroscopy, FT-IR, TEM, EDX, XRD, and TGA. • Au and Ag nanoparticles were of size 25 and 30 nm respectively, in spherical forms. • Nanoparticles showed significant tyrosinase inhibitory and antibacterial activities.

  3. Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities

    International Nuclear Information System (INIS)

    Basavegowda, Nagaraj; Idhayadhulla, Akber; Lee, Yong Rok

    2014-01-01

    This work describes a plant-mediated approach to the preparation of metal nanoparticles using leaf extract of Artemisia annua (A. annua), an ethno-medicinal plant widely found in Asia, which was used as reducing and stabilizing agent. A. annua is used in traditional Chinese medicine to alleviate fever. Au and Ag nanoparticles were prepared using a one-step aqueous method at room temperature without any toxic chemicals. The formation of Au and Ag nanoparticles was monitored by UV–vis spectroscopy. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). TEM analysis of Au nanoparticles showed that they had triangular and spherical shapes with sizes ranging from 15 to 40 nm. The silver nanoparticles were predominantly spherical and uniformly sized (30–50 nm). The Au and Ag nanoparticles produced showed significant tyrosinase inhibitory and antibacterial effects. These results suggest that the synthesized nanoparticles provide good alternatives in varied medical and industrial applications. - Highlights: • Au and Ag nanoparticles were synthesized using Artemisia annua leaf aqueous extract. • Nanoparticles were characterized by UV–vis spectroscopy, FT-IR, TEM, EDX, XRD, and TGA. • Au and Ag nanoparticles were of size 25 and 30 nm respectively, in spherical forms. • Nanoparticles showed significant tyrosinase inhibitory and antibacterial activities

  4. Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water

    International Nuclear Information System (INIS)

    Ahmed, M.A.; Ali, S.M.; El-Dek, S.I.; Galal, A.

    2013-01-01

    Graphical abstract: The negatively charged cubic magnetite nanoparticles, prepared by the coprecipitation method in N 2 atmosphere, can adsorb up to 99% of the positively charged toxic heavy metal ions at a proper pH value. -- Highlights: • Mixed magnetite–hematite nanoparticles were synthesized via different routes. • Prepared samples were characterized by XRD, HRTEM, BET and magnetic hysteresis. • The material was employed as a sorbent for removal of some heavy metal ions from water. • The effects of pH and the contact time on the adsorption process were studied and optimized. -- Abstract: Mixed magnetite–hematite nanoparticles were synthesized via different routes such as, coprecipitation in air and N 2 atmosphere, citrate–nitrate, glycine–nitrate and microwave-assisted citrate methods. The prepared samples were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), BET measurements and magnetic hysteresis. XRD data showed the formation of magnetite–hematite mixture with different compositions according to the synthesis method. The particle size was in the range of 4–52 nm for all the prepared samples. From HRTEM micrographs, it was found that, the synthesis method affects the moropholgy of the prepared samples in terms of crystallinity and porosity. The magnetite–hematite mixture was employed as a sorbent material for removal of some heavy metal ions from water such as lead(II), cadmium(II) and chromium(III). The effects of pH value and the contact time on the adsorption process were studied and optimized in order to obtain the highest possible adsorption efficiency of the magnetite–hematite mixture. The effect of the synthesis method of the magnetite–hematite mixture on the adsorption process was also investigated. It was found that samples prepared by the coprecipitation method had better adsorption efficiency than those prepared by other combustion methods

  5. Synthesis and Characterization of Nanoparticles and Nanocomposite of ZnO and MgO by Sonochemical Method and their Application for Zinc Polycarboxylate Dental Cement Preparation

    OpenAIRE

    Mohammad Ali Karimi; Saeed Haghdar Roozbahani; Reza Asadiniya; Abdolhamid Hatefi-Mehrjardi; Mohammad Hossein Mashhadizadeh; Reza Behjatmanesh-Ardakani; Mohammad Mazloum-Ardakani; Hadi Kargar; Seyed Mojtaba Zebarjad

    2011-01-01

    This paper discusses the synthesis of nanoparticles of ZnO and MgO and ZnO/MgO nanocomposite by the sonochemical method. At first, nanoparticles were synthesized by the reaction of Zn(CHCOO3)2 and Mg(CHCOO3)2 with tetramethylammonium hydroxide (TMAH) in the presence of polyvinyl pyrrolidone (PVP) and constant frequency ultrasonic waves (sonochemical method). Then, ZnO/MgO nanocomposite was prepared through reaction of magnesium acetate with TMAH in the presence of ZnO nanoparticles and PVP as...

  6. Synthesis, structural and luminescence properties of Bi3+ co-doped Y2Sn2O7:Tb nanoparticles

    International Nuclear Information System (INIS)

    Nigam, S.; Sudarsan, V.; Vatsa, R.K.

    2010-01-01

    Full text: In recent years, advanced materials derived from Pyrochlore-type oxides (A 2 B 2 O 7 ) have been of extensive scientific and technological interest. Chemical substitution of A or B sites of pyrochlore oxide by rare earth ions is a widely used approach to prepare thermally stable, lanthanide ion doped luminescent materials. Due to the higher symmetry around the A and B sites in the lattice lanthanide ions like Eu 3+ and Tb 3+ when incorporated at the A or B sites give very poor luminescence. This problem can be avoided by incorporating other ions like Bi 3+ in the lattice so that the lattice gets distorted and luminescent intensity from the lanthanide ions increases. The present study deals with the synthesis and characterization of Bi 3+ co-doped Y 2 Sn 2 O 7 :Tb nanoparticles. For the preparation of Tb 3+ and Bi 3+ doped Y 2 Sn 2 O 7 nano-materials, Sn metal, Bi(NO 3 ) 3 , Tb 4 O 7 , Y 2 CO 3 , were used as starting materials. The solution containing Y 3+ , Sn 4+ ,and Bi 3+ -Tb 3+ in ethylene glycol medium was slowly heated up to 120 deg C and then subjected to urea hydrolysis. The obtained precipitate after washing was heated to 700 deg C. As prepared samples are amorphous in nature and 700 deg C heated sample showed well crystalline pyrochlore structure as revealed by the XRD studies. Average particles size is calculated from the width of the X-ray diffraction peaks and found to be ∼ 5 nm. TEM images of the nanoparticles obtained at 700 deg C shows very fine spherical particles having a diameter in the range of 2-5 nm. Luminescence measurements were carried out for as prepared and 700 deg C heated samples of 2.5%Tb doped Y 2 Sn 2 O 7 nanoparticles. Green emission characteristic 5 D 4 7 F 5 transition of Tb 3+ has been observed from as prepared sample but on heating to 700 deg C the emission characteristic of Tb 3+ ions got completely removed . However, there is a significant improvement in Tb 3+ emission from 2.5% Bi 3+ co-doped Y 2 Sn 2 O 7 :Tb 3

  7. Radiation induced synthesis of In{sub 2}O{sub 3} nanoparticles - Part II: Synthesis of In{sub 2}O{sub 3} nanoparticles by thermal decomposition of un-irradiated and γ-irradiated indium acetylacetonate

    Energy Technology Data Exchange (ETDEWEB)

    Al-Resheedi, Ajayb Saud; Alhokbany, Norah Saad [Department of Chemistry, College of Science, King Saud University, KSU, (Saudi Arabia); Mahfouz, Refaat Mohammed, E-mail: rmhfouz@science.au.edu.eg [Chemistry Department, Faculty of Science, Assiut University, AUN, (Egypt)

    2015-09-15

    Pure cubic phase, In{sub 2}O{sub 3} nanoparticles with porous structure were synthesized by solid state thermal oxidation of un-irradiated and γ-irradiated indium acetyl acetonate in presence and absence of sodium dodecyl sulphate as surfactant. The as- synthesized In{sub 2}O{sub 3} nanoparticles were characterized by X-ray diffraction (XRD), fourier transformation infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transition electron microscopy (TEM) and thermogravimetry (TG). The shapes and morphologies of as- synthesized In{sub 2}O{sub 3} nanoparticles were highly affected by γ-irradiation of indium acetyl acetonate precursor and by addition of sodium dodecyl sulphate as surfactant. Calcination of un-irradiated indium acetyl acetonate precursor to 4 hours of 600 °C leads to the formation of spherical- shaped accumulative and merged In{sub 2}O{sub 3} nanoparticles with porous structure, whereas irregular porous architectures composed of pure In{sub 2}O{sub 3} nanoparticles were obtained by using γ-irradiated indium acetylacetonate precursor. The as- prepared In{sub 2}O{sub 3} nano products exhibit photoluminescence emission (PL) property and display thermal stability in a wide range of temperature (25-800 °C) which suggest possible applications in nanoscale optoelectronic devices. (author)

  8. Preparation of novel magnetic polyurethane foam nanocomposites by using core-shell nanoparticles

    Directory of Open Access Journals (Sweden)

    Mir Mohammad Alavi Nikje

    Full Text Available Abstract Iron oxide magnetic nanoparticles (NP's converted to the core- shell structres by reacting with by n-(2-aminoethyl-3-aminopropyl trimethoxysilane (AEAP incorporated in polyurethane flexible (PUF foam formulations. Fourier transform spectra, thermal gravimetric analysis, scanning electron images, thermo-mechanical analysis and magnetic properties of the prepared nanocomposites were studied. Obtained data shown that by the increasing of the amine modified magnetic iron oxide NP's up to 3% in the polymer matrix, thermal and magnetic properties improved in comparison with pristine foams. In addition, due to the presence of functional groups on the magnetic NP's surface, hard phases formation decrease in the bulk polymer and cause decreasing of glass transition temperature.

  9. Core/shell structured ZnO/SiO2 nanoparticles: Preparation, characterization and photocatalytic property

    International Nuclear Information System (INIS)

    Zhai Jing; Tao Xia; Pu Yuan; Zeng Xiaofei; Chen Jianfeng

    2010-01-01

    ZnO nanoparticles were prepared by a simple chemical synthesis route. Subsequently, SiO 2 layers were successfully coated onto the surface of ZnO nanoparticles to modify the photocatalytic activity in acidic or alkaline solutions. The obtained particles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS) and zeta potential. It was found that ultrafine core/shell structured ZnO/SiO 2 nanoparticles were successfully obtained. The photocatalytic performance of ZnO/SiO 2 core/shell structured nanoparticles in Rhodamine B aqueous solution at varied pH value were also investigated. Compared with uncoated ZnO nanoparticles, core/shell structured ZnO/SiO 2 nanoparticles with thinner SiO 2 shell possess improved stability and relatively better photocatalytic activity in acidic or alkaline solutions, which would broaden its potential application in pollutant treatment.

  10. Pt-doped In{sub 2}O{sub 3} nanoparticles prepared by flame spray pyrolysis for NO{sub 2} sensing

    Energy Technology Data Exchange (ETDEWEB)

    Inyawilert, K. [Chiang Mai University, Department of Physics and Materials Science, Faculty of Science (Thailand); Channei, D. [Naresuan University, Department of Chemistry, Faculty of Science (Thailand); Tamaekong, N. [Maejo University, Program in Materials Science, Faculty of Science (Thailand); Liewhiran, C. [Chiang Mai University, Department of Physics and Materials Science, Faculty of Science (Thailand); Wisitsoraat, A.; Tuantranont, A. [National Electronics and Computer Technology Center (NECTEC), Nanoelectronics and MEMS Laboratory (Thailand); Phanichphant, S., E-mail: sphanichphant@gmail.com [Chiang Mai University, Faculty of Science, Materials Science Research Center (Thailand)

    2016-02-15

    Undoped In{sub 2}O{sub 3} and 0.25–1.00 wt% M (M=Pt, Nb, and Ru)-doped/loaded In{sub 2}O{sub 3} nanoparticles were successfully synthesized in a single-step flame spray pyrolysis technique using indium nitrate, platinum (II) acetylacetonate, niobium ethoxide, and ruthenium (III) acetylacetonate precursors. The undoped In{sub 2}O{sub 3} and M-doped In{sub 2}O{sub 3} nanoparticles were characterized by Brunauer–Emmett–Teller (BET) analysis, X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM & TEM). The BET average diameter of spherical nanoparticles was found to be in the range of 10.2–15.2 nm under 5/5 (precursor/oxygen) flame conditions. All XRD peaks were confirmed to correspond to the cubic structure of In{sub 2}O{sub 3}. TEM images showed that there is no Pt nanoparticle loaded on In{sub 2}O{sub 3} surface, suggesting that Pt should form solid solution with the In{sub 2}O{sub 3} lattice. Gas sensing studies showed that 0.5 wt% Pt doping in In{sub 2}O{sub 3} nanoparticles gave a significant enhancement of NO{sub 2} sensing performances in terms of sensor response and selectivity. 0.5 wt% Pt/In{sub 2}O{sub 3} exhibited a high NO{sub 2} response of ∼1904 to 5 ppm NO{sub 2} at 250 °C and good NO{sub 2} selectivity against NO, H{sub 2}S, H{sub 2}, and C{sub 2}H{sub 5}OH. In contrast, Nb and Ru loading resulted in deteriorated NO{sub 2} response. Therefore, Pt is demonstrated to be an effective additive to enhance NO{sub 2} sensing performances of In{sub 2}O{sub 3}-based sensors.

  11. Preliminary investigations on the preparation of gold nanoparticles intrinsically radiolabeled with 199Au

    International Nuclear Information System (INIS)

    Vimalnath, K.V.; Chakraborty, Sudipta; Dash, Ashutosh

    2016-01-01

    Radiolabeled nanoparticles are of great interest in the current perspective of the nuclear medicine. Water dispersible materials with nanoscale dimensions are finding role in biomedical application owing to their size. These particles can access otherwise unreachable regions in tumor mainly due to Enhanced Permeability and Retention (EPR) effect. Nanoparticles of gold (AuNPs) can bind to a wide range of biologically active molecules with functional groups that have high affinity for the gold surface. Sulfur containing compounds (e.g. thiols, disulfides), organic phosphates, amines, PEG, etc. are some of the well known surface modifiers. Functional thiolates, oligonucleotides, peptides and PEGs are introduced upon subsequent bimolecular substitution of a ligand by a functional thiol easily attached to AuNPs. Owing to its favourable decay characteristics 199 Au (T 1/2 = 3.15 d, E âmax = 474 keV, Eg 158.4 keV (36.9 %) and 208.2 keV (8.4 %)) is an attractive radionuclide for theragnostic applications. In the present work, we have carried out preliminary radiochemical investigations on the preparation of gold nanoparticles intrinsically radiolabeled with 199 Au for its potential utility as a theragnostic agent targeted delivery to the tumors

  12. Using glucosamine as a reductant to prepare reduced graphene oxide and its nanocomposites with metal nanoparticles

    International Nuclear Information System (INIS)

    Li Chuanbao; Wang Xingrui; Liu Yu; Wang Wei; Wynn, Jeanne; Gao Jianping

    2012-01-01

    A green and facile approach of producing reduced graphene oxide (RGO) by the reduction of graphene oxide (GO) with a monosaccharide medicine glucosamine (GL) was developed. The effect of several factors on the GO reduction, including pH, the weight ratio of GL/GO, and the reaction temperature was studied. The deoxygenation process was monitored with UV–Vis absorption spectroscopy, and the reducing degree of GO was determined with X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, thermo-gravimetric analysis, X-ray photoelectron spectroscopy, and transmission electron microscopy. Au nanoparticles (about 3.3–4.2 nm) (AuNPs)/RGO and Ag nanoparticles (about 6 nm) (AgNPs)/RGO materials were prepared in two different ways using the above reduction method. They were then used to catalyze the Suzuki–Miyaura coupling reaction of phenyl halide and phenylboronic acid to produce biphenyl, and the highest yield of biphenyl for AuNPs/RGO was 99 %. In addition, the AgNPs/RGO materials exhibited a surface-enhanced Raman scattering effect, and some RGO peaks were enhanced. This approach opens up a new, practical, and green reducing method to prepare RGO for large-scale practical application.

  13. Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application

    International Nuclear Information System (INIS)

    Gnana Sundara Raj, Balasubramaniam; Asiri, Abdullah M.; Wu, Jerry J.; Anandan, Sambandam

    2015-01-01

    Highlights: • Facile synthesis of Mn 3 O 4 nanoparticles at room temperature via simple chemical precipitation method. • Fabricated supercapacitor device shows maximum specific capacitance in 1 M Na 2 SO 4 . • 77% of specific capacitance is retained even after 1000 cycles. - Abstract: A simple chemical precipitation method has been used for the preparation of Mn 3 O 4 nanoparticles at room temperature. The crystal structure and morphology studies of the resulting Mn 3 O 4 nanoparticles were characterized by powder X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), N 2 adsorption and desorption and X-ray photoelectron spectroscopy (XPS). The electrochemical properties of the Mn 3 O 4 nanoparticles were then investigated using cyclic voltammetry (CV), galvanostatic charge–discharge and electrochemical impedance spectroscopy (EIS) analysis. The supercapacitive properties of Mn 3 O 4 nanoparticles in the presence of 1 M Na 2 SO 4 exhibited a high specific capacitance of 322 F g −1 at a current density of 0.5 mA cm −2 in the potential range from −0.1 to +0.9 V and about 77% of the initial capacitance was retained after 1000 cycles, indicating that the Mn 3 O 4 electrode owns a good electrochemical stability and capacitance retention capability. The results suggest that the obtained Mn 3 O 4 nanoparticles is a promising electrode material for supercapacitor applications

  14. Preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization for the selective recognition of tetracycline from aqueous medium

    International Nuclear Information System (INIS)

    Dai, Jiangdong; Pan, Jianming; Xu, Longcheng; Li, Xiuxiu; Zhou, Zhiping; Zhang, Rongxian; Yan, Yongsheng

    2012-01-01

    Highlights: ► Atom transfer radical emulsion polymerization is a “living” and green technique. ► Nanoparticles can overcome mass transfer limitations and improve accessibility. ► Molecular imprinted nanoparticles with magnetic property for fast separation. ► The performance of imprinted nanoparticles was investigated in detail. ► Nanoparticles were used to selective recognize Tetracycline from water medium. - Abstract: In the work, we reported an effective method for the preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization (ATREP), and then as-prepared magnetic molecularly imprinted nanoparticles (MMINs) were evaluated as adsorbents for selective recognition of tetracycline (TC) molecules from aqueous medium. The resulting nanoparticles were characterized by FT-IR, TGA, VSM, SEM and TEM. The results demonstrated MMINs with a narrow diameter distribution were cross-linked with modified Fe 3 O 4 particles, composed of imprinted layer and exhibited good magnetic sensitivity, magnetic and thermal stability. Batch rebinding studies were carried out to determine the specific adsorption equilibrium, kinetics, and selective recognition. The estimated adsorption capacity of MMINs towards TC by the Langmuir isotherm model was 12.10 mg g −1 at 298 K, which was 6.33 times higher than that of magnetic non-molecularly imprinted nanoparticles (MNINs). The kinetic property of MMINs was well-described by the pseudo-second-order rate equation. The results of selective recognition experiments demonstrated outstanding affinity and selectivity towards TC over competitive antibiotics. The reusability of MMINs showed no obviously deterioration at least five repeated cycles in performance. In addition, the MMINs prepared were successfully applied to the extraction of TC from the spiked pork sample.

  15. Tunable exchange bias effect in BiGdFeTiO3 mutlferroic nanoparticles

    DEFF Research Database (Denmark)

    Ngo, Duc-The; Abdul Basith, Mohammed; Hung, Tran Quang

    2014-01-01

    a revolution inenvironmental-friendly magnetic refrigeration technology by exploiting the electrical-field-assisted control of magnetism.3 We have prepared mutltiferroic nanoparticles of BiGdFeTiO3 by simply ultrasonicating the powder of bulkceramics in isopropanol.4 The obtained materials after sonication...

  16. Electrical and magnetic behavior of iron doped nickel titanate (Fe{sup 3+}/NiTiO{sub 3}) magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lenin, Nayagam; Karthik, Arumugam; Sridharpanday, Mathu; Selvam, Mohanraj; Srither, Saturappan Ravisekaran; Arunmetha, Sundarmoorthy; Paramasivam, Palanisamy; Rajendran, Venkatachalam, E-mail: veerajendran@gmail.com

    2016-01-01

    Iron doped nickel titanate (Fe{sup 3+}/NiTiO{sub 3}) ferromagnetic nanoparticles with different concentrations of Fe (0.2, 0.4, and 0.6 mol) were synthesized using precipitation route with precursor source such as nickel nitrate and iron nitrate solutions. The prepared magnetic nanopowders were investigated through X-ray diffraction (XRD), Fourier transform infrared, scanning electron microscope, X-ray fluorescence, Brunauer–Emmett–Teller, vibrating sample magnetometer, and electrochemical impedance spectroscopy to explore the structural, ferromagnetic, and dielectric properties. The obtained XRD pattern shows formation of iron doped nickel titanate in orthorhombic structure. The crystallite size ranges from 57 to 21 nm and specific surface area ranges from 11 to 137 m{sup 2} g{sup −1}. The hysteresis loops of nanomagnetic materials show ferromagnetic behavior with higher magnitude of coercivity (H{sub c}) 867–462 Oe. The impedance analysis of ferromagnetic materials explores the ferro-dielectric behavior with enhanced properties of Fe{sup 3+}/NiTiO{sub 3} nanoparticles at higher Fe content. - Highlights: • Iron doped nickel titanate magnetic nanoparticles. • Ferromagnetic magnetism behavior with higher magnitude of coercivity. • Dielectric behavior of ferromagnetic nanoparticles with increase of Fe content.

  17. Alginate Nanoparticles Containing Curcumin and Resveratrol: Preparation, Characterization, and In Vitro Evaluation Against DU145 Prostate Cancer Cell Line.

    Science.gov (United States)

    Saralkar, Pushkar; Dash, Alekha K

    2017-10-01

    Curcumin and resveratrol are naturally occurring polyphenolic compounds having anti-cancer potential. However, their poor aqueous solubility and bioavailability limit their clinical use. Entrapment of hydrophobic drugs into hydrophilic nanoparticles such as calcium alginate presents a means to deliver these drugs to their target site. Curcumin and resveratrol-loaded calcium alginate nanoparticles were prepared by emulsification and cross-linking process. The nanoparticles were characterized for particle size, zeta potential, moisture content, physical state of the drugs, physical stability, and entrapment efficiency. An UPLC method was developed and validated for the simultaneous analysis of curcumin and resveratrol. Alginate nanoformulation was tested for in vitro efficacy on DU145 prostate cancer cells. The particle size of the nanosuspension and freeze-dried nanoparticles was found to be 12.53 ± 1.06 and 60.23 ± 15 nm, respectively. Both DSC and powder XRD studies indicated that curcumin as well as resveratrol were present in a non-crystalline state, in the nanoparticles. The entrapment efficiency for curcumin and resveratrol was found to be 49.3 ± 4.3 and 70.99 ± 6.1%, respectively. Resveratrol showed a higher percentage of release than curcumin (87.6 ± 7.9 versus 16.3 ± 3.1%) in 24 h. Curcumin was found to be taken up by the cells from solution as well as the nanoparticles. Resveratrol had a poor cellular uptake. The drug-loaded nanoparticles exhibit cytotoxic effects on DU145 cells. At high concentration, drug solution exhibited greater toxicity than nanoparticles. The alginate nanoformulation was found to be safe for intravenous administration.

  18. Preparation of gold/carboxymethyl chitosan nanoparticles by radiation technique for application as an antioxidant

    International Nuclear Information System (INIS)

    Le Quang Luan; Nguyen Thanh Long; Nguyen Hai Nam; Do Thi Phuong Linh

    2015-01-01

    Gold nanoparticles (AuNPs) with the sizes of 5.2, 6.7 and 7.3 nm have been synthesised by γ-irradiation of Au 3+ solutions with the corresponding concentrations of 0.25, 0.5 and 1.0 mM using carboxylmethyl chitosan as stabiliser. The optical characteristics and particle sizes of AuNPs have been determined by UV-Vis spectra and TEM images respectively. The antioxidant activity of AuNPs has been investigated at the concentrations of 0.025 mM and 0.5 mM using ABTS scavenging activity. The results have shown that the higher concentration of AuNPs displays the stronger antioxidant activity and the faster reaction time. The highest antioxidant activity has been found at the concentration of 0.375 mM within 2-3 minutes. The antioxidant activity of AuNPs increases by the increase of reaction time and is higher than that of ascorbic acid. Thus, gold/carboxymethyl chitosan nanoparticles prepared by γ-irradiation method can be potentially utilised for the production of antioxidant products in pharmaceutics, functional foods and cosmetics. (author)

  19. Preparation and characterization of PVA/SSA membranes with Al{sub 2}O{sub 3} nanoparticles for fuel cell applications; Preparacao de caracterizacao de membranas de PVAL/SSA na presenca de nanoparticulas de Al{sub 2}O{sub 3} para aplicacao em celulas de combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Paula N.; Pires, Alfredo T.N. [Grupo de Estudo em Materiais Polimericos - POLIMAT - UFSC, Florianopolis, SC (Brazil); Catarino, Margarida; Brandao, Lucia; Tanaka, Alfredo; Mendes, Adelio [Faculdade de Engenharia da Universidade do Porto, Porto (Portugal)

    2011-07-01

    In the present study, PVA/SSA membranes were prepared with and without the addition of Al{sub 2}O{sub 3} nanoparticles. Sulfosuccinic acid (SSA) was used as the crosslinking agent. Membranes were prepared with different amounts of SSA (26, 43 and 55 wt.%) and with 5 and 10 wt.% of nanoparticles. Crosslinking was performed at 90 degree C during 1.5 h. Membranes were analyzed by infrared spectroscopy, thermal analysis, water absorption, ion exchange capacity (IEC) and proton conductivity. The results showed that control of the crosslinking conditions, IEC value, water absorption and polymer structure are of significant importance to obtain a set of properties suitable for application in proton exchange membrane fuel cells. (author)

  20. A General Strategy for the Preparation of Carbon Nanotubes and Graphene Oxide Decorated with PdO Nanoparticles in Water

    Directory of Open Access Journals (Sweden)

    Hongkun He

    2010-07-01

    Full Text Available The preparation of carbon nanotube (CNT/PdO nanoparticles and graphene oxide (GO/PdO nanoparticle hybrids via a general aqueous solution strategy is reported. The PdO nanoparticles are generated in situ on the CNTs and GO by a one-step “green” synthetic approach in aqueous Pd(NO32 solution under ambient conditions without adding any additional chemicals. The production of PdO is confirmed by energy dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and thermal gravimetric analysis. The morphologies of the resulting CNT/PdO and GO/PdO nanohybrids are characterized by transmission and/or scanning transmission electron microscopy. PdO nanoparticles with an average size of 2–3 nm in diameter are decorated evenly along the surfaces of CNTs and GO. This synthesis strategy is demonstrated to be compatible for 1 CNTs with different modifications, including pristine, oxidized, and polymer-functionalized CNTs; 2 different types of CNTs, including single-walled carbon nanotubes (SWCNTs, double-walled carbon nanotubes (DWCNTs, and multiwalled carbon nanotubes (MWCNTs; and 3 different shapes of carbon materials, including tubular CNTs and planar GO. The as-prepared CNT/PdO and GO/PdO nanohybrids can be transformed into CNT/Pd and GO/Pd nanohybrids by reduction with NaBH4, and can then be used as a heterogeneous catalyst in the catalytic reduction of 4-nitrophenol.

  1. Rare earth fluorescent nanoparticles for specific cancer cell targeting

    Energy Technology Data Exchange (ETDEWEB)

    Stefanakis, Dimitrios; Ghanotakis, Demetrios F., E-mail: ghanotakis@uoc.gr [University of Crete, Department of Chemistry (Greece)

    2016-07-15

    Terbium layered hydroxide nanoparticles (Tb{sub 2}(OH){sub 5}NO{sub 3}) were synthesized by a one-pot coprecipitation method. The characterization of this preparation revealed highly oriented fluorescent nanoparticles. An attempt to improve the properties of Tb{sub 2}(OH){sub 5}NO{sub 3} resulted in the preparation of two optimized nanoparticles. In particular, Tb{sub 2}(OH){sub 5}NO{sub 3}:Eu and Tb{sub 2}(OH){sub 5}NO{sub 3}-FA were prepared when Tb{sub 2}(OH){sub 5}NO{sub 3} was doped with Europium and when the surface was modified with folic acid (FA), respectively. The size of the above nanoparticles was below 100 nm, and thus they have the potential to be used for biomedical applications. The interaction of nanoparticles with human cells was studied using confocal microscopy. This study revealed that only the nanoparticles modified with folic acid have the ability to be targeted to HeLa cells. This specific identification of cancer cells, in combination with the fluorescent properties of Tb{sub 2}(OH){sub 5}NO{sub 3}, could render these nanoparticles appropriate for biomedical applications.

  2. Preparation and Characterization of Nanoparticles Made from Co-Incubation of SOD and Glucose

    Directory of Open Access Journals (Sweden)

    Liping Cai

    2017-12-01

    Full Text Available The attractive potential of natural superoxide dismutase (SOD in the fields of medicine and functional food is limited by its short half-life in circulation and poor permeability across the cell membrane. The nanoparticle form of SOD might overcome these limitations. However, most preparative methods have disadvantages, such as complicated operation, a variety of reagents—some of them even highly toxic—and low encapsulation efficiency or low release rate. The aim of this study is to present a simple and green approach for the preparation of SOD nanoparticles (NPs by means of co-incubation of Cu/Zn SOD with glucose. This method was designed to prepare nanoscale aggregates based on the possible inhibitory effect of Maillard reaction on heating-induced aggregation during the co-incubation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE results indicated that the Maillard reaction occurred during the co-incubation process. It was found that enzymatically active NPs of Cu/Zn SOD were simultaneously generated during the reaction, with an average particle size of 175.86 ± 0.71 nm, and a Zeta potential of −17.27 ± 0.59 mV, as established by the measurement of enzymatic activity, observations using field emission scanning electron microscope, and analysis of dynamic light scattering, respectively. The preparative conditions for the SOD NPs were optimized by response surface design to increase SOD activity 20.43 fold. These SOD NPs showed storage stability for 25 days and better cell uptake efficacy than natural SOD. Therefore, these NPs of SOD are expected to be a potential drug candidate or functional food factor. To our knowledge, this is the first report on the preparation of nanoparticles possessing the bioactivity of the graft component protein, using the simple and green approach of co-incubation with glucose, which occurs frequently in the food industry during thermal processing.

  3. Structural and optical studies of Mg doped nanoparticles of chromium oxide (Cr2O3) synthesized by co-precipitation method

    Science.gov (United States)

    Singh, Jarnail; Verma, Vikram; Kumar, Ravi

    2018-04-01

    We present here the synthesization, structural and optical studies of Mg doped nanoparticles of Chromium oxide (Cr2O3) prepared using co-precipitation method. These samples were characterized using powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Raman spectroscopy and UV-Vis spectroscopy techniques. We have demonstrated that there is negligible change in optical band gap with the Mg doping. The prepared Cr2O3 nanoparticles are spherical in shape, but they are transformed into platelets when doped with Mg. The XRD studies reveal that the Mg doping in Cr2O3 doesn't affect the structure of Chromium oxide (Cr2O3).

  4. Structural and optical characterization of In{sub 2}O{sub 3}/PANI nanocomposite prepared by in-situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Janeoo, Shashi; Sharma, Mamta, E-mail: mamta.phy85@gmail.com; Goswamy, J. [Department of Applied Sciences (Physics), UIET, Panjab University, Chandigarh-160 014 (India); Singh, Gurinder [Department of Applied Sciences (Physics), UIET, PUSSGSRC, Hoshiarpur (Punjab) (India)

    2016-05-23

    Polyaniline-indium oxide (In{sub 2}O{sub 3}/PANI) nanocomposite have been prepared by in-situ polymerization of aniline and as-synthesized In{sub 2}O{sub 3} nanoparticles. X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transformation infrared (FTIR) and UV/Vis spectroscopy techniques are used to investigate the structural and optical properties of In{sub 2}O{sub 3}/PANI nanocomposite. TEM analysis shows In{sub 2}O{sub 3} nanoparticles are embedded in PANI nanofibers. FTIR spectra show the good interactions between PANI nanofibers and In{sub 2}O{sub 3} nanoparticles. The band gap and electronic transitions in In{sub 2}O{sub 3}/PANI nanocomposite is determined by using UV/Vis spectra.

  5. CuO and Co3O4 Nanoparticles: Synthesis, Characterizations, and Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Rashad

    2013-01-01

    Full Text Available Copper oxide and cobalt oxide (CuO, Co3O4 nanocrystals (NCs have been successfully prepared in a short time using microwave irradiation without any postannealing treatment. Both kinds of nanocrystals (NCs have been prepared using copper nitrate and cobalt nitrate as the starting materials and distilled water as the solvent. The resulted powders of nanocrystals (NCs were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and atomic force microscopy (AFM measurements. The obtained results confirm the presence of the both of oxides nanopowders produced during chemical precipitation using microwave irradiation. A strong emission under UV excitation is obtained from the prepared CuO and Co3O4 nanoparticles. The results show that the nanoparticles have high dispersion and narrow size distribution. The line scans of atomic force microscopy (AFM images of the nanocrystals (NCs sprayed on GaAs substrates confirm the results of both X-ray diffraction and transmission electron microscopy. Furthermore, vibrational studies have been carried out using Raman spectroscopic technique. Specific Raman peaks have been observed in the CuO and Co3O4 nanostructures, and the full width at half maximum (FWHM of the peaks indicates a small particle size of the nanocrystals.

  6. Bi-functional properties of Fe3O4@YPO4:Eu hybrid nanoparticles: hyperthermia application.

    Science.gov (United States)

    Prasad, A I; Parchur, A K; Juluri, R R; Jadhav, N; Pandey, B N; Ningthoujam, R S; Vatsa, R K

    2013-04-14

    Magnetic nanoparticles based hyperthermia therapy is a possible low cost and effective technique for killing cancer tissues in the human body. Fe3O4 and Fe3O4@YPO4:5Eu hybrid magnetic nanoparticles are prepared by co-precipitation method and their average particle sizes are found to be ∼10 and 25 nm, respectively. The particles are spherical, non-agglomerated and highly dispersible in water. The crystallinity of as-prepared YPO4:5Eu sample is more than Fe3O4@YPO4:5Eu hybrid magnetic nanoparticles. The chemical bonds interaction between Fe3O4 and YPO4:5Eu is confirmed through FeO-P. The magnetization of hybrid nanocomposite shows magnetization Ms = 11.1 emu g(-1) with zero coercivity (measured at 2 × 10(-4) Oe) at room temperature indicating superparamagnetic behaviour. They attain hyperthermia temperature (~42 °C) under AC magnetic field showing characteristic induction heating of the prepared nanohybrid and they will be potential material for biological application. Samples produce the red emission peaks at 618 nm and 695 nm, which are in range of biological window. The quantum yield of YPO4:5Eu sample is found to be 12%. Eu(3+) present on surface and core could be distinguished from luminescence decay study. Very high specific absorption rate up to 100 W g(-1) could be achieved. The intracellular uptake of nanocomposites is found in mouse fibrosarcoma (Wehi 164) tumor cells by Prussian blue staining.

  7. Synthesis of ferrite nanoparticle by milling process for preparation of single domain magnet

    International Nuclear Information System (INIS)

    Suryadi; Hasbiyallah; Agus S W; Nurul TR; Budhy Kurniawan

    2009-01-01

    Study of ferrite nanoparticle synthesis for preparation of single domain magnet by milling of scrap magnet material have been done. Sample preparation were done using disk mill continued with high energy milling (HEM). Some powder were taken after 5, 10 dan 20 hours milling using HEM-E3D. The powder were then characterized using X-Ray Fluorescence (XRF), X-Ray Diffractometer (XRD) and Scanning Electron Microscope (SEM). XRF characterization result, confirmed by XRD analysis result, showed that the sample are of Strontium ferrite phase. Microstructure analysis result showed the occurrence of grain refining process of ferrite particle with increasing of milling time. Particle having size of nanometers successfully obtained, although in unhomogeneous distribution. Magnetic properties characterization result showed the increasing of hysteresis curve area of sample for longer milling time and sintering process. (author)

  8. Preparation and Comparison of Chitosan Nanoparticles with Different Degrees of Glutathione Thiolation

    Directory of Open Access Journals (Sweden)

    R Dinarvand

    2011-12-01

    Full Text Available Background: Chitosan has gained considerable attentions as a biocompatible carrier to improve delivery of active agents. Application of this vehicle in the form of nanoparticle could profit advantages of nanotechnology to increase efficacy of active agents. The purpose of this study was to provide detailed information about chitosan-glutathione (Cht-GSHnanoparticles which are gaining popularity because of their high mucoadhesive and extended drug release properties. Methods: Depolymerization of chitosan was carried out using sodium nitrite method.Glutathione was covalently attached to chitosan and the solubility of the resulting conjugates was evaluated. Nanoparticles were prepared by ionic gelation method and then the effect of glutathione immobilization on properties of nanoparticles was investigated. Results: Thiolation efficiency was higher in lower molecular weight chitosan polymers compared to unmodified chitosan nanoparticles. Cht-GSH conjugates of the same molecular weight but with different degrees of thiolation had the same hydrodynamic diameter (995± nm and surface charge (102± mV as unmodified chitosan, but comprised of a denser network structure and lower concentration. Cht-GSH nanoparticles also exhibited greater mucoadhesive strength which was less affected by ionic strength and pH of the environment. Conclusion:Thiolation improves the solubility of chitosan without any significant changes in size and charge of nanoparticles, but affects the nanogel structure.

  9. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles

    KAUST Repository

    Lv, Yongqin

    2012-10-01

    A new approach to the preparation of porous polymer monoliths with enhanced coverage of pore surface with gold nanoparticles has been developed. First, a generic poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith was reacted with cystamine followed by the cleavage of its disulfide bonds with tris(2-carboxylethyl)phosphine, which liberated the desired thiol groups. Dispersions of gold nanoparticles with sizes varying from 5 to 40. nm were then pumped through the functionalized monoliths. The materials were then analyzed using both energy dispersive X-ray spectroscopy and thermogravimetric analysis. We found that the quantity of attached gold was dependent on the size of nanoparticles, with the maximum attachment of more than 60. wt% being achieved with 40. nm nanoparticles. Scanning electron micrographs of the cross sections of all the monoliths revealed the formation of a non-aggregated, homogenous monolayer of nanoparticles. The surface of the bound gold was functionalized with 1-octanethiol and 1-octadecanethiol, and these monolithic columns were used successfully for the separations of proteins in reversed phase mode. The best separations were obtained using monoliths modified with 15, 20, and 30. nm nanoparticles since these sizes produced the most dense coverage of pore surface with gold. © 2012 Elsevier B.V.

  10. Characterization and magnetic properties of SrTi{sub 1−x}Ni{sub x}O{sub 3} nanoparticles prepared by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Karaphun, Attaphol [Integrated Nanotechnology Research Center, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Hunpratub, Sitchai; Phokha, Sumalin [Department of Physics, Faculty of Science, Rajabhat Udon Thani University, Udon Thani 41000 (Thailand); Putjuso, Thanin [Rajamangala University of Technology Rattanakosin Wang Klai Kangwon Campus, Prachuap Khiri Khan 77110 (Thailand); Swatsitang, Ekaphan, E-mail: ekaphan@kku.ac.th [Integrated Nanotechnology Research Center, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand)

    2017-01-01

    SrTi{sub 1−x}Ni{sub x}O{sub 3} (x=0, 0.05, 0.10 and 0.15) nanoparticles were prepared by the hydrothermal method. All as-prepared samples were annealed at 800 °C for 3 h in argon to study the annealing effect on their magnetic properties. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray absorption near edge spectroscopy (XANES), X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometry (VSM) were used to study the crystalline structure, morphology, oxidation state and magnetic properties of samples. XRD results indicate a cubic perovskite structure of all samples with the impurity phase of SrCO{sub 3} in all as-prepared samples and Ni metal in annealed samples of x=0.10 and 0.15. SEM and TEM images confirmed a cubic shape for all samples with decreasing average particle sizes from 136.8±4.7 to 126.2±6.9 nm for annealed samples upon Ni doping. XANES results revealed the existence of Ni metal in sample of x=0.05 with the oxidation state of +2 for Ni ion in a SrTi{sub 0.95}Ni{sub 0.05}O{sub 3} sample. XPS results indicated the promotion of oxygen vacancies. VSM results revealed a paramagnetic behavior at room temperature of all as-prepared samples. Ni-doped samples exhibited ferromagnetic behavior after annealing in argon with the Curie temperature (T{sub C}) above 380 K for a sample with x=0.05 as shown by field cooling (FC) and zero-field cooling (ZFC) measurements. The room temperature ferromagnetism (RT-FM) of ferromagnetic samples was suggested to be originated from Ni metal and F-center exchange (FCE) mechanism due to the promotion of oxygen vacancies in the perovskite structure.

  11. Preparation of silver nanoparticles from synthetic and natural sources: remediation model for PAHs

    International Nuclear Information System (INIS)

    Abbasi, M.; Saeed, F.; Rafique, U.

    2013-01-01

    The emergence of nanoscience and technology is gaining popularity with an increasing demand for metal nanoparticles applicability in various areas such as electronics, catalysis, chemistry, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this work, an attempt is made to compare the efficiency of two different synthesis methods and application of each for the remediation of poly aromatic hydrocarbons (PAHs). In this regard, silver nanoparticles are prepared by green and wet chemical method using plant extract of garlic (Allium sativum). The extract is known to reduce the metal during synthesis and acts as stabilizing ligand. These synthesized silver nanoparticles (Agp) and (AgW) were applied as adsorbents in synthetic batch mode experiments at varying parameters of pH and temperature. A concentration of 0.01mg/L of Phenanthrene, Anthracene, and Pyrene were induced at fixed dosage of 1mg/Kg of adsorbent. Residual concentration of each PAH was analyzed on UV-Visible spectrophotometer. The results indicated that both adsorbents follow the sequence of Phenanthrene>Pyrene>Anthracene with optimal removal of higher than 85 percentage in each case. A distinguishing privilege is attained by Agp adsorbent showing 3, 3 and 11 orders of magnitude higher efficiency than Agw. It may be attributed to more functional groups in the plant extract participating in binding of PAH to the surface. Each synthesized adsorbents was characterized by FTIR, SEM and EDX. The average particle size was determined to be of the order of 13-26 nm. The study concludes the use of alternate economical and green adsorbents for control of poly aromatic hydrocarbons (PAHs). (author)

  12. Preparation of Silver Nanoparticles from Synthetic and Natural Sources: Remediation Model for PAHs

    International Nuclear Information System (INIS)

    Abbasi, Maryam; Saeed, Fatima; Rafique, Uzaira

    2014-01-01

    The emergence of nanoscience and technology is gaining popularity with an increasing demand for metal nanoparticles applicability in various areas such as electronics, catalysis, chemistry, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this work, an attempt is made to compare the efficiency of two different synthesis methods and application of each for the remediation of poly aromatic hydrocarbons (PAHs). In this regard, silver nanoparticles are prepared by green and wet chemical method using plant extract of garlic (Allium sativum). The extract is known to reduce the metal during synthesis and acts as stabilizing ligand. These synthesized silver nanoparticles (Agp) and (AgW) were applied as adsorbents in synthetic batch mode experiments at varying parameters of pH and temperature. A concentration of 0.01mg/L of Phenanthrene, Anthracene, and Pyrene were induced at fixed dosage of 1mg/Kg of adsorbent. Residual concentration of each PAH was analyzed on UV-Visible spectrophotometer. The results indicated that both adsorbents follow the sequence of Phenanthrene>Pyrene>Anthracene with optimal removal of higher than 85% in each case. A distinguishing privilege is attained by Agp adsorbent showing 3, 3 and 11 orders of magnitude higher efficiency than Agw. It may be attributed to more functional groups in the plant extract participating in binding of PAH to the surface. Each synthesized adsorbents was characterized by FTIR, SEM and EDX. The average particle size was determined to be of the order of 13-26 nm. The study concludes the use of alternate economical and green adsorbents for control of poly aromatic hydrocarbons (PAHs)

  13. Preparation of Silver Nanoparticles from Synthetic and Natural Sources: Remediation Model for PAHs

    Science.gov (United States)

    Abbasi, Maryam; Saeed, Fatima; Rafique, Uzaira

    2014-06-01

    The emergence of nanoscience and technology is gaining popularity with an increasing demand for metal nanoparticles applicability in various areas such as electronics, catalysis, chemistry, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this work, an attempt is made to compare the efficiency of two different synthesis methods and application of each for the remediation of poly aromatic hydrocarbons (PAHs). In this regard, silver nanoparticles are prepared by green and wet chemical method using plant extract of garlic (Allium sativum). The extract is known to reduce the metal during synthesis and acts as stabilizing ligand. These synthesized silver nanoparticles (Agp) and (AgW) were applied as adsorbents in synthetic batch mode experiments at varying parameters of pH and temperature. A concentration of 0.01mg/L of Phenanthrene, Anthracene, and Pyrene were induced at fixed dosage of 1mg/Kg of adsorbent. Residual concentration of each PAH was analyzed on UV-Visible spectrophotometer. The results indicated that both adsorbents follow the sequence of Phenanthrene>Pyrene>Anthracene with optimal removal of higher than 85% in each case. A distinguishing privilege is attained by Agp adsorbent showing 3, 3 and 11 orders of magnitude higher efficiency than Agw. It may be attributed to more functional groups in the plant extract participating in binding of PAH to the surface. Each synthesized adsorbents was characterized by FTIR, SEM and EDX. The average particle size was determined to be of the order of 13-26 nm. The study concludes the use of alternate economical and green adsorbents for control of poly aromatic hydrocarbons (PAHs).

  14. Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles.

    Science.gov (United States)

    Arora, Priya; Fermah, Alisha; Rajput, Jaspreet Kaur; Singh, Harminder; Badhan, Jigyasa

    2017-08-01

    In this work, Cu-loaded Fe 3 O 4 @TiO 2 core shell nanoparticles were prepared in a single pot by coating of TiO 2 on Fe 3 O 4 nanoparticles followed by Cu loading. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), Brunauer-Emmett- Teller (BET), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), and valence band X-ray photoelectron spectroscopy (VB XPS) techniques were used for characterization of as prepared nanoparticles. Synergism between copper and titania was evaluated by studying the solar light-driven photodegradation of Congo red dye solution in the presence of Fe 3 O 4 @TiO 2 nanoparticles on one side and Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles on the other side. The latter performed better than the former catalyst, indicating the enhanced activity of copper-loaded catalyst. Further photodegradation was studied by three means, i.e., under ultraviolet (UV), refluxing, and solar radiations. Cu-loaded Fe 3 O 4 @TiO 2 enhanced the degradation efficiency of Congo red dye. Thus, Cu act possibly by reducing the band gap of TiO 2 and widening the optical response of semiconductor, as a result of which solar light could be used to carry out photocatalysis. Graphical abstract Photodegradation of congo red over Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles.

  15. Alpha chymotrypsin coated clusters of Fe3O4 nanoparticles for biocatalysis in low water media

    Directory of Open Access Journals (Sweden)

    Mukherjee Joyeeta

    2012-11-01

    Full Text Available Abstract Background Enzymes in low water containing non aqueous media are useful for organic synthesis. For example, hydrolases in such media can be used for synthetic purposes. Initial work in this area was carried out with lyophilized powders of enzymes. These were found to have poor activity. Drying (removing bulk water by precipitation turned out to be a better approach. As enzymes in such media are heterogeneous catalysts, spreading these precipitates over a large surface gave even better results. In this context, nanoparticles with their better surface to volume ratio provide obvious advantage. Magnetic nanoparticles have an added advantage of easy separation after the reaction. Keeping this in view, alpha chymotrypsin solution in water was precipitated over a stirred population of Fe3O4 nanoparticles in n-propanol. This led to alpha chymotrypsin activity coated over clusters of Fe3O4 nanoparticles. These preparations were found to have quite high transesterification activity in low water containing n-octane. Results Precipitation of alpha chymotrypsin over a stirred suspension of Fe3O4 nanoparticles (3.6 nm diameter led to the formation of enzyme coated clusters of nanoparticles (ECCNs. These clusters were also magnetic and their hydrodynamic diameter ranged from 1.2- 2.6 microns (as measured by dynamic light scattering. Transmission electron microscopy (TEM, showed that these clusters had highly irregular shapes. Transesterification assay of various clusters in anhydrous n-octane led to optimization of concentration of nanoparticles in suspension during precipitation. Optimized design of enzyme coated magnetic clusters of nanoparticles (ECCN 3 showed the highest initial rate of 465 nmol min-1 mg-1protein which was about 9 times higher as compared to the simple precipitates with an initial rate of 52 nmol min-1 mg-1 protein. Circular Dichroism (CD(with a spinning cell accessory showed that secondary structure content of the alpha

  16. Controlled synthesis of La1−xSrxCrO3 nanoparticles by hydrothermal method with nonionic surfactant and their ORR activity in alkaline medium

    International Nuclear Information System (INIS)

    Choi, Bo Hyun; Park, Shin-Ae; Park, Bong Kyu; Chun, Ho Hwan; Kim, Yong-Tae

    2013-01-01

    Graphical abstract: We demonstrate that Sr-doped LaCrO 3 nanoparticles were successfully prepared by the hydrothermal synthesis method using the nonionic surfactant Triton X-100 and the applicability of La 1−x Sr x CrO 3 to oxygen reduction reaction (ORR) electrocatalysis in an alkaline medium. Compared with the nanoparticles synthesized by the coprecipitation method, they showed enhanced ORR activity. - Highlights: • Sr-doped LaCrO 3 nanoparticles were successfully prepared by the hydrothermal method using the nonionic surfactant. • Homogeneously shaped and sized Sr-doped LaCrO 3 nanoparticles were readily obtained. • Compared with the nanoparticles synthesized by the coprecipitation method, they showed an enhanced ORR activity. • The main origin was revealed to be the decreased particle size due to the nonionic surfactant. - Abstract: Sr-doped LaCrO 3 nanoparticles were prepared by the hydrothermal method with the nonionic surfactant Triton X-100 followed by heat treatment at 1000 °C for 10 h. The obtained perovskite nanoparticles had smaller particle size (about 100 nm) and more uniform size distribution than those synthesized by the conventional coprecipitation method. On the other hand, it was identified with the material simulation that the electronic structure change by Sr doping was negligible, because the initially unfilled e g -band was not affected by the p-type doping. Finally, the perovskite nanoparticles synthesized by hydrothermal method showed much higher ORR activity by over 200% at 0.8 V vs. RHE than those by coprecipitation method

  17. Preparation and Biocompatible Surface Modification of Redox Altered Cerium Oxide Nanoparticle Promising for Nanobiology and Medicine

    KAUST Repository

    Nanda, Himansu Sekhar

    2016-11-03

    The biocompatible surface modification of metal oxide nanoparticles via surface functionalization technique has been used as an important tool in nanotechnology and medicine. In this report, we have prepared aqueous dispersible, trivalent metal ion (samarium)-doped cerium oxide nanoparticles (SmCNPs) as model redox altered CNPs of biological relevance. SmCNP surface modified with hydrophilic biocompatible (6-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-hexyl) triethoxysilane (MEEETES) were prepared using ammonia-induced ethylene glycol-assisted precipitation method and were characterized using a variety of complementary characterization techniques. The chemical interaction of functional moieties with the surface of doped nanoparticle was studied using powerful 13C cross polarization magic angle sample spinning nuclear magnetic resonance spectroscopy. The results demonstrated the production of the extremely small size MEEETES surface modified doped nanoparticles with significant reduction in aggregation compared to their unmodified state. Moreover, the functional moieties had strong chemical interaction with the surface of the doped nanoparticles. The biocompatible surface modification using MEEETES should also be extended to several other transition metal ion doped and co-doped CNPs for the production of aqueous dispersible redox altered CNPs that are promising for nanobiology and medicine.

  18. Preparation and Biocompatible Surface Modification of Redox Altered Cerium Oxide Nanoparticle Promising for Nanobiology and Medicine

    KAUST Repository

    Nanda, Himansu Sekhar

    2016-01-01

    The biocompatible surface modification of metal oxide nanoparticles via surface functionalization technique has been used as an important tool in nanotechnology and medicine. In this report, we have prepared aqueous dispersible, trivalent metal ion (samarium)-doped cerium oxide nanoparticles (SmCNPs) as model redox altered CNPs of biological relevance. SmCNP surface modified with hydrophilic biocompatible (6-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-hexyl) triethoxysilane (MEEETES) were prepared using ammonia-induced ethylene glycol-assisted precipitation method and were characterized using a variety of complementary characterization techniques. The chemical interaction of functional moieties with the surface of doped nanoparticle was studied using powerful 13C cross polarization magic angle sample spinning nuclear magnetic resonance spectroscopy. The results demonstrated the production of the extremely small size MEEETES surface modified doped nanoparticles with significant reduction in aggregation compared to their unmodified state. Moreover, the functional moieties had strong chemical interaction with the surface of the doped nanoparticles. The biocompatible surface modification using MEEETES should also be extended to several other transition metal ion doped and co-doped CNPs for the production of aqueous dispersible redox altered CNPs that are promising for nanobiology and medicine.

  19. Preparation and Biocompatible Surface Modification of Redox Altered Cerium Oxide Nanoparticle Promising for Nanobiology and Medicine

    Directory of Open Access Journals (Sweden)

    Himansu Sekhar Nanda

    2016-11-01

    Full Text Available The biocompatible surface modification of metal oxide nanoparticles via surface functionalization technique has been used as an important tool in nanotechnology and medicine. In this report, we have prepared aqueous dispersible, trivalent metal ion (samarium-doped cerium oxide nanoparticles (SmCNPs as model redox altered CNPs of biological relevance. SmCNP surface modified with hydrophilic biocompatible (6-{2-[2-(2-methoxy-ethoxy-ethoxy]-ethoxy}-hexyl triethoxysilane (MEEETES were prepared using ammonia-induced ethylene glycol-assisted precipitation method and were characterized using a variety of complementary characterization techniques. The chemical interaction of functional moieties with the surface of doped nanoparticle was studied using powerful 13C cross polarization magic angle sample spinning nuclear magnetic resonance spectroscopy. The results demonstrated the production of the extremely small size MEEETES surface modified doped nanoparticles with significant reduction in aggregation compared to their unmodified state. Moreover, the functional moieties had strong chemical interaction with the surface of the doped nanoparticles. The biocompatible surface modification using MEEETES should also be extended to several other transition metal ion doped and co-doped CNPs for the production of aqueous dispersible redox altered CNPs that are promising for nanobiology and medicine.

  20. Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique

    International Nuclear Information System (INIS)

    Raut, A.V.; Barkule, R.S.; Shengule, D.R.; Jadhav, K.M.

    2014-01-01

    Structural morphology and magnetic properties of the Co 1−x Zn x Fe 2 O 4 (0.0≤x≥1.0) spinel ferrite system synthesized by the sol–gel auto-combustion technique using nitrates of respective metal ions have been studied. The ratio of metal nitrates to citric acid was taken at 1:3. The as prepared powder of cobalt zinc ferrite was sintered at 600 °C for 12 h after TG/DTA thermal studies. Compositional stoichiometry was confirmed by energy dispersive analysis of the X-ray (EDAX) technique. Single phase cubic spinel structure of Co–Zn nanoparticles was confirmed by XRD data. The average crystallite size (t), lattice constant (a) and other structural parameters of zinc substituted cobalt ferrite nanoparticles were calculated from XRD followed by SEM and FTIR. It is observed that the sol–gel auto-combustion technique has many advantages for the synthesis of technologically applicable Co–Zn ferrite nanoparticles. The present investigation clearly shows the effect of the synthesis method and possible relation between magnetic properties and microstructure of the prepared samples. Increase in nonmagnetic Zn 2+ content in cobalt ferrite nanoparticles is followed by decrease in n B , M s and other magnetic parameters. Squareness ratio for the Co-ferrite was 1.096 at room temperature. - Highlights: • Co–Zn nanoparticles are prepared by sol–gel auto-combustion method. • Structural properties were characterized by XRD, SEM, and FTIR. • Compositional stoichiometry was confirmed by EDAX analysis. • Magnetic parameters were measured by the pulse field hysteresis loop technique

  1. Magnetic and Mössbauer studies of pure and Ti-doped YFeO _3 nanocrystalline particles prepared by mechanical milling and subsequent sintering

    International Nuclear Information System (INIS)

    Khalifa, N. O.; Widatallah, H. M.; Gismelseed, A. M.; Al-Mabsali, F. N.; Sofin, R. G. S.; Pekala, M.

    2016-01-01

    Single-phased nanocrystalline particles of pure and 10 % Ti "4"+-doped perovskite-related YFeO _3were prepared via mechanosynthesis at 450"∘C. This temperature is ∼150–350 "∘C lower than those at which the materials, in bulk form, are normally prepared. Rietveld refinements of the X-ray diffraction patterns reveal that the dopant Ti "4"+ ions prefer interstitial octahedral sites in the orthorhombic crystal lattice rather than those originally occupied by the expelled Fe "3"+ ions. Magnetic measurements show canted antiferromagnetism in both types of nanoparticles. Doping with Ti "4"+ lowers the Néel temperature of the YFeO _3 nanoparticles from ∼ 586 K to ∼ 521 K. The Ti "4"+-doped YFeO _3 nanoparticles exhibit enhanced magnetization and coercivity but less magnetic hyperfine fields relative to the un-doped nanoparticles. The "5"7Fe Mössbauer spectra show ∼ 15 % of the YFeO _3 nanoparticles and ∼22 of Ti "4"+-doped YFeO _3 ones to be superparamagnetic with blocking temperatures < 78 K. The broadened magnetic components in the "5"7Fe Mössbauer spectra suggest size-dependent hyperfine magnetic fields at the "5"7Fe nuclear sites and were associated with collective magnetic excitations. The "5"7Fe Mössbauer spectra show the local environments of the Fe "3"+ ions in the superparamagnetic nanoparticles to be more sensitive to the presence of the Ti "4"+ ions relative to those in the larger magnetic nanoparticles.

  2. Preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization for the selective recognition of tetracycline from aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jiangdong; Pan, Jianming; Xu, Longcheng; Li, Xiuxiu [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, Zhiping [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhang, Rongxian [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yan, Yongsheng, E-mail: djdxxx123@163.com [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191 (China)

    2012-02-29

    Highlights: Black-Right-Pointing-Pointer Atom transfer radical emulsion polymerization is a 'living' and green technique. Black-Right-Pointing-Pointer Nanoparticles can overcome mass transfer limitations and improve accessibility. Black-Right-Pointing-Pointer Molecular imprinted nanoparticles with magnetic property for fast separation. Black-Right-Pointing-Pointer The performance of imprinted nanoparticles was investigated in detail. Black-Right-Pointing-Pointer Nanoparticles were used to selective recognize Tetracycline from water medium. - Abstract: In the work, we reported an effective method for the preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization (ATREP), and then as-prepared magnetic molecularly imprinted nanoparticles (MMINs) were evaluated as adsorbents for selective recognition of tetracycline (TC) molecules from aqueous medium. The resulting nanoparticles were characterized by FT-IR, TGA, VSM, SEM and TEM. The results demonstrated MMINs with a narrow diameter distribution were cross-linked with modified Fe{sub 3}O{sub 4} particles, composed of imprinted layer and exhibited good magnetic sensitivity, magnetic and thermal stability. Batch rebinding studies were carried out to determine the specific adsorption equilibrium, kinetics, and selective recognition. The estimated adsorption capacity of MMINs towards TC by the Langmuir isotherm model was 12.10 mg g{sup -1} at 298 K, which was 6.33 times higher than that of magnetic non-molecularly imprinted nanoparticles (MNINs). The kinetic property of MMINs was well-described by the pseudo-second-order rate equation. The results of selective recognition experiments demonstrated outstanding affinity and selectivity towards TC over competitive antibiotics. The reusability of MMINs showed no obviously deterioration at least five repeated cycles in performance. In addition, the MMINs prepared were successfully

  3. PREPARATIONS AND APPLICATION OF METAL NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Adlim Adlim

    2010-06-01

    Full Text Available Terminology of metal nanoparticles, the uniqueness properties in terms of the surface atom, the quantum dot, and the magnetism are described. The further elaboration was on the synthesis of nanoparticles. Applications of metal nanoparticles in electronic, ceramic medical and catalysis were overviewed. The bibliography includes 81 references with 99% are journal articles.   Keywords: metal nanoparticles

  4. PREPARATIONS AND APPLICATION OF METAL NANOPARTICLES

    OpenAIRE

    Adlim, Adlim

    2010-01-01

    Terminology of metal nanoparticles, the uniqueness properties in terms of the surface atom, the quantum dot, and the magnetism are described. The further elaboration was on the synthesis of nanoparticles. Applications of metal nanoparticles in electronic, ceramic medical and catalysis were overviewed. The bibliography includes 81 references with 99% are journal articles.   Keywords: metal nanoparticles

  5. Diastereoselective synthesis of trans-2,3-dihydrofuro[3,2-c]coumarins by MgO nanoparticles under ultrasonic irradiation

    OpenAIRE

    Javad Safaei-Ghomi; Pouria Babaei; Hossein Shahbazi-Alavi; Safura Zahedi

    2017-01-01

    MgO nanoparticles have been used as an efficient catalyst for the diastereoselective preparation of trans-2-benzoyl-3-(aryl)-2H-furo[3,2-c]chromen-4(3H)-ones by the multi-component reaction of 2,4â²-dibromoacetophenone, pyridine, benzaldehydes and 4-hydroxycoumarin under ultrasonic irradiation. This interesting result revealed that the pyridiniumylide assisted tandem three-component coupling reaction is highly diastereoselective. Atom economy, wide range of products, high catalytic activity, ...

  6. Doxorubicin delivery to 3D multicellular spheroids and tumors based on boronic acid-rich chitosan nanoparticles.

    Science.gov (United States)

    Wang, Xin; Zhen, Xu; Wang, Jing; Zhang, Jialiang; Wu, Wei; Jiang, Xiqun

    2013-06-01

    Boronic acid-rich chitosan-poly(N-3-acrylamidophenylboronic acid) nanoparticles (CS-PAPBA NPs) with the tunable size were successfully prepared by polymerizing N-3-acrylamidophenylboronic acid in the presence of chitosan in an aqueous solution. The CS-PAPBA NPs were then functionalized by a tumor-penetrating peptide iRGD and loading doxorubicin (DOX). The interaction between boronic acid groups of hydrophobic PAPBA and the amino groups of hydrophilic chitosan inside the nanoparticles was examined by solid-state NMR measurement. The size and morphology of nanoparticles were characterized by dynamic light scattering and electron microscopy. The cellular uptake, tumor penetration, biodistribution and antitumor activity of the nanoparticles were evaluated by using three-dimensional (3-D) multicellular spheroids (MCs) as the in vitro model and H22 tumor-bearing mice as the in vivo model. It was found that the iRGD-conjugated nanoparticles significantly improved the efficiency of DOX penetration in MCs, compared with free DOX and non-conjugated nanoparticles, resulting in the efficient cell killing in the MCs. In vivo antitumor activity examination indicated that iRGD-conjugated CS-PAPBA nanoparticles promoted the accumulation of nanoparticles in tumor tissue and enhanced their penetration in tumor areas, both of which improved the efficiency of DOX-loaded nanoparticles in restraining tumor growth and prolonging the life time of H22 tumor-bearing mice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Synthesis and characterization of titania-based monodisperse fluorescent europium nanoparticles for biolabeling

    International Nuclear Information System (INIS)

    Tan Mingqian; Wang Guilan; Ye Zhiqiang; Yuan Jingli

    2006-01-01

    Inorganic-organic hybrid titania-based nanoparticles covalently bound to a fluorescent Eu 3+ chelate of 4,4'-bis(1'',1'',1'',2'',2'',3'',3''-heptafluoro-4'',6''-hexanedion-6''-yl) chlorosulfo-o-terphenyl (BHHCT-Eu 3+ ) were synthesized by a sol-gel technique. A conjugate of BHHCT with 3-[2-(2-aminoethylamino) ethylamino]propyl-trimethoxysilane (APTS) was used as a precursor for the nanoparticle preparation and monodisperse nanoparticles consisting of titania network and silica sub-network covalently bound to the Eu 3+ chelate were prepared by the copolymerization of APTS-BHHCT conjugate, titanium tetraisopropoxide (TTIP) and free APTS in EuCl 3 water-alcohol solution. The effects of reaction conditions on size and fluorescence lifetime of the nanoparticles were investigated. The characterizations by transmission electron microscopy and fluorometric methods indicate that the nanoparticles are near spherical and strongly fluorescent having a fluorescence quantum yield of 11.6% and a long fluorescence lifetime of ∼0.4 ms. The direct-introduced amino groups on the nanoparticle's surface by using free APTS in nanoparticle preparation facilitated the biolabeling process of the nanoparticles. The nanoparticle-labeled streptavidin (SA) was prepared and used in a sandwich-type time-resolved fluoroimmunoassay (TR-FIA) of human prostate-specific antigen (PSA) by using a 96-well microtiter plate as the solid phase carrier. The method gives a detection limit of 66 pg/ml for the PSA assay

  8. Enhanced electrochromic coloration in Ag nanoparticle decorated WO3 thin films

    International Nuclear Information System (INIS)

    Kharade, Rohini R.; Mali, Sawanta S.; Patil, Satish P.; Patil, Kashinath R.; Gang, Myong G.; Patil, Pramod S.; Kim, Jin H.; Bhosale, Popatrao N.

    2013-01-01

    Highlights: • Electrochromic WO 3 /Ag nanocomposites prepared by hybrid physico-chemical route. • XRD and XPS results confirm formation of Ag 8 W 4 O 16 phase. • WO 3 /Ag thin films showed good optical transmittance change and coloration efficiency. • SPR enhanced coloration and bleaching mechanism is well explained for electrochromism. • Color stimuli are quantified using CIE chromaticity principles. -- Abstract: WO 3 /Ag composite thin films were prepared by microwave assisted sol–gel synthesis (MW-SGS) of WO 3 followed by vacuum evaporation of Ag nanoparticles and their enhanced electrochromic coloration was investigated. The composition and morphology of WO 3 thin films with different thickness of Ag layer obtained by vacuum evaporation were investigated. Distinct plasmon absorption bands of Ag nanoparticle thin films were obtained. The optical band gap energy of WO 3 /Ag films decreased with increasing the Ag layer thickness. The surface of these films has been examined using X-ray photoelectron spectroscopy (XPS) to gain information about the chemical states of species present at surfaces. Experimental results indicated that the conductivity of the films increased after surface modification by Ag layer. To investigate the origin of enhanced electrochromic absorption in optical properties, working electrode consisting of WO 3 /Ag thin film was used and observed the optical properties during electrochemical reaction. It was found that composite electrode shows enhancement in electrochromic properties in terms of optical modulation (ΔOD) and coloration efficiency (η)

  9. CMC-coated Fe{sub 3}O{sub 4} nanoparticles as new MRI probes for hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Sitthichai, Sudarat [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Pilapong, Chalermchai, E-mail: chalermchai.pilapong@cmu.ac.th [Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai, E-mail: schthongtem@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-11-30

    Highlights: • Fe{sub 3}O{sub 4} nanoparticles (NPs) are superparamagnetic. • CMC is water-soluble and nontoxic cellulose-derivative polymer. • CMC-coated Fe{sub 3}O{sub 4} NPs were successfully prepared by co-precipitation method. • The promising NPs that can be used for magnetic resonance imaging application. - Abstract: Pure Fe{sub 3}O{sub 4} nanoparticles and Fe{sub 3}O{sub 4} magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl{sub 2}·4H{sub 2}O and FeCl{sub 3}·6H{sub 2}O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe{sub 3}O{sub 4} MNPs consisting of Fe{sup 2+} and Fe{sup 3+} ions with 543.3-mM{sup −1} s{sup −1} high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.

  10. Preparation of hydroxyapatite nanoparticles facilitated by the presence of {beta}-cyclodextrin

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Perez, Carlos A., E-mail: camartin@uacj.mx [Institute of Engineering and Technology, Autonomous University of Juarez, UACJ, Ave. del Charro 610 norte, C.P. 32320, Cd. Juarez, Chihuahua (Mexico); Garcia-Montelongo, Jorge; Garcia Casillas, Perla E.; Farias-Mancilla, Jose R. [Institute of Engineering and Technology, Autonomous University of Juarez, UACJ, Ave. del Charro 610 norte, C.P. 32320, Cd. Juarez, Chihuahua (Mexico); Monreal Romero, Humberto [School of Odontology, Autonomous University of Chihuahua, UACH, Ave. Universidad s/n Campus Universitario I, C.P. 31170, Chihuahua (Mexico)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer It was found that {beta}-cyclodextrin can control the particle size in the production of nanohydroxyapatite. Black-Right-Pointing-Pointer Particle size in the range of 30-50 nm was obtained. Black-Right-Pointing-Pointer A new simple methodology for the preparation of hydroxyapatite nanoparticles with a well controlled size and narrow particles size distribution was developed. - Abstract: Hydroxyapatite nanoparticles with uniform morphology have been successfully synthesized by a chemical coprecipitation method and facilitated by the presence of the {beta}-cyclodextrin. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM); and Fourier Transformed Infrared Spectroscopy (FT-IR) were used in order to characterize the hydroxyapatite samples. The experimental results indicate that the obtained HA is in the range of 20-50 nm. Also it was found that the content of {beta}-CD has an impact on the purity of the HA as well in the particle size of the hydroxyapatite nanoparticles.

  11. Preparation of hydroxyapatite nanoparticles facilitated by the presence of β-cyclodextrin

    International Nuclear Information System (INIS)

    Martínez-Pérez, Carlos A.; García-Montelongo, Jorge; Garcia Casillas, Perla E.; Farias-Mancilla, José R.; Monreal Romero, Humberto

    2012-01-01

    Highlights: ► It was found that β-cyclodextrin can control the particle size in the production of nanohydroxyapatite. ► Particle size in the range of 30–50 nm was obtained. ► A new simple methodology for the preparation of hydroxyapatite nanoparticles with a well controlled size and narrow particles size distribution was developed. - Abstract: Hydroxyapatite nanoparticles with uniform morphology have been successfully synthesized by a chemical coprecipitation method and facilitated by the presence of the β-cyclodextrin. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM); and Fourier Transformed Infrared Spectroscopy (FT-IR) were used in order to characterize the hydroxyapatite samples. The experimental results indicate that the obtained HA is in the range of 20–50 nm. Also it was found that the content of β-CD has an impact on the purity of the HA as well in the particle size of the hydroxyapatite nanoparticles.

  12. Flame spray synthesis under a non-oxidizing atmosphere: Preparation of metallic bismuth nanoparticles and nanocrystalline bulk bismuth metal

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Robert N.; Stark, Wendelin J. [Institute for Chemical and Bioengineering, ETH Zuerich (Switzerland)], E-mail: wendelin.stark@chem.ethz.ch

    2006-10-15

    Metallic bismuth nanoparticles of over 98% purity were prepared by a modified flame spray synthesis method in an inert atmosphere by oxygen-deficient combustion of a bismuth-carboxylate based precursor. The samples were characterized by X-ray diffraction, thermal analysis and scanning electron microscopy confirming the formation of pure, crystalline metallic bismuth nanoparticles. Compression of the as-prepared powder resulted in highly dense, nanocrystalline pills with strong electrical conductivity and bright metallic gloss.

  13. Core shell structured nanoparticles of Eu3+ doped SnO2 with SiO2 shell: luminescence studies

    International Nuclear Information System (INIS)

    Ningthoujam, R.S.; Sudarsan, V.; Kulshreshtha, S.K.

    2005-01-01

    Re dispersible SnO 2 nanoparticles with and without Eu 3+ doping nanoparticles were prepared at 185 deg C by the urea hydrolysis of Sn 4+ in ethylene glycol medium. X-ray diffraction and 119 Sn MAS NMR studies of these particles revealed that these nanoparticles are crystalline with Cassiterite structure having an average crystallite size of 7 nm. Undoped SnO 2 gave a emission peak centered around 470 nm characteristic of the traps present in the nanoparticles. For Eu 3+ doped samples, emission around 590 and 615 nm was observed on both direct excitation as well as indirect excitation through traps, indicating that there is an energy transfer between the traps present in the nanoparticles and Eu 3+ ions. The asymmetric ratio of luminescence (relative intensity ratio of 590 to 615 nm transitions) has been found to be 1.2. For SnO 2 :Eu(5%)-SiO 2 nanoparticles, the asymmetric ratio of luminescence change significantly indicating the formation of nanoparticles with SnO 2 :Eu(5%) core covered with SiO 2 shell. (author)

  14. The reactivity study of peptide A3-capped gold and silver nanoparticles with heavy metal ions

    International Nuclear Information System (INIS)

    Yang, Hongyu; Tang, Zhenghua; Wang, Likai; Zhou, Weijia; Li, Ligui; Zhang, Yongqing; Chen, Shaowei

    2016-01-01

    Highlights: • Apparent color change upon the addition of Hg"2"+ or As"3"+ ions into A3-AuNPs solution. • Distinct color change of A3-AgNPs solution only in the presence of Hg"2"+ ions. • The Hg"2"+ concentration limit of A3-AgNPs about 40 times lower than A3-AuNPs. • Based on the DLS, TEM and XPS results, two reaction mechanisms have been proposed. - Abstract: Peptide A3-capped gold and silver nanoparticles were prepared by chemical reduction of metal salt precursors. The nanoparticles exhibited apparent but distinctly different color changes upon the addition of selected heavy metal ions. For gold nanoparticles, the solution color was found to change from red to blue in the presence of Hg"2"+ or As"3"+ ions, accompanied with broadening and a red-shift of the surface plasmon resonance peak. In contrast, silver nanoparticles showed an apparent color change from yellow to colorless only in the presence of Hg"2"+, along with a blue-shift and diminishment of the surface plasmon resonance peak. The Hg"2"+ reaction concentration limit of silver nanoparticle was about 40 times lower than that of gold nanoparticle. Based on the dynamic light scattering, transmission electron microscopy and X-ray photoelectron spectroscopic results, the reaction mechanism has been proposed. Such a sensitive variation of the nanoparticle optical properties to selective ions might be exploited for ion detection for potential applications.

  15. Preparation, Optimization and Activity Evaluation of PLGA/Streptokinase Nanoparticles Using Electrospray

    Directory of Open Access Journals (Sweden)

    Nasrin Yaghoobi

    2017-04-01

    Full Text Available Purpose: PLGA nanoparticles (NPs have been extensively investigated as carriers of different drug molecules to enhance their therapeutic effects or preserve them from the aqueous environment. Streptokinase (SK is an important medicine for thrombotic diseases. Methods: In this study, we used electrospray to encapsulate SK in PLGA NPs and evaluate its activity. This is the first paper which investigates activity of an electrosprayed enzyme. Effect of three input parameters, namely, voltage, internal diameter of needle (nozzle and concentration ratio of polymer to protein on size and size distribution (SD of NPs was evaluated using artificial neural networks (ANNs. Optimizing the SD has been rarely reported so far in electrospray. Results: From the results, to obtain lowest size of nanoparticles, ratio of polymer/enzyme and needle internal diameter (ID should be low. Also, minimum SD was obtainable at high values of voltage. The optimum preparation had mean (SD size, encapsulation efficiency and loading capacity of 37 (12 nm, 90% and 8.2%, respectively. Nearly, 20% of SK was released in the first 30 minutes, followed by cumulative release of 41% during 72 h. Activity of the enzyme was also checked 30 min after preparation and 19.2% activity was shown. Conclusion: Our study showed that electrospraying could be an interesting approach to encapsulate proteins/enzymes in polymeric nanoparticles. However, further works are required to assure maintaining the activity of the enzyme/protein after electrospray.

  16. Nanoparticles of Conjugated Methotrexate-Human Serum Albumin: Preparation and Cytotoxicity Evaluations

    Directory of Open Access Journals (Sweden)

    Azade Taheri

    2011-01-01

    Full Text Available Methotrexate-human serum albumin conjugates were developed by a simple carbodiimide reaction. Methotrexate-human serum albumin conjugates were then crosslinked with 1-ethyl-3-(3-dimethylaminopropyl carbodiimide HCl (EDC to form nanoparticles. The size of nanoparticles determined by laser light scattering and TEM was between 90–150 nm. Nanoparticles were very stable at physiologic conditions (PBS pH 7.4, 37∘C and after incubation with serum. The effect of amount of EDC used for crosslinking on the particle size and free amino groups of nanoparticles was examined. The amount of crosslinker showed no significant effect on the size of nanoparticles but free amino groups of nanoparticles were decreased by increasing the crosslinker. The physicochemical interactions between methotrexate and human serum albumin were investigated by differential scanning calorimetry (DSC. Nanoparticles were more cytotoxic on T47D cells compared to free methotrexate. Moreover, methotrexate-human serum albumin nanoparticles decreased the IC50 value of methotrexate on T47D cells in comparison with free methotrexate.

  17. Nanoparticles of Conjugated Methotrexate-Human Serum Albumin: Preparation and Cytotoxicity Evaluations

    International Nuclear Information System (INIS)

    Taheri, A.; Atyabi, F.; Nouri, F.S.; Ahadi, F.; Derakhshan, M.A.; Dinarvand, R.; Atyabi, F.; Ghahremani, M.H.; Ostad, S.N.; Dinarvand, R.; Amini, M.; Ghahremani, M.H.; Ostad, S.N.; Mansoori, P.

    2011-01-01

    Methotrexate-human serum albumin conjugates were developed by a simple carbodiimide reaction. Methotrexate-human serum albumin conjugates were then crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl (EDC) to form nanoparticles. The size of nanoparticles determined by laser light scattering and TEM was between 90 150 nm. Nanoparticles were very stable at physiologic conditions (PBS pH 7.4, 37 degree C) and after incubation with serum. The effect of amount of EDC used for crosslinking on the particle size and free amino groups of nanoparticles was examined. The amount of cross linker showed no significant effect on the size of nanoparticles but free amino groups of nanoparticles were decreased by increasing the cross linker. The physicochemical interactions between methotrexate and human serum albumin were investigated by differential scanning calorimetry (DSC). Nanoparticles were more cytotoxic on T 47 D cells compared to free methotrexate. Moreover, methotrexate-human serum albumin nanoparticles decreased the C50 value of methotrexate on T 47 D cells in comparison with free methotrexate.

  18. Fabrication and Characterization of Zinc Sulfide Nanoparticles and Nanocomposites Prepared via a Simple Chemical Precipitation Method

    Directory of Open Access Journals (Sweden)

    Kambiz Hedayati

    2016-07-01

    Full Text Available In this research zinc sulfide (ZnS nanoparticles and nanocomposites powders were prepared by chemical precipitation method using zinc acetate and various sulfur sources. The ZnS nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible and fourier transform infra-red. The structure of nanoparticles was studied using X-ray diffraction pattern. The crystallite size of ZnS nanoparticles was calculated by Debye–Scherrer formula. Morphology of nano-crystals was observed and investigated using the scanning electron microscopy. The grain size of zinc sulfide nanoparticles were in suitable agreement with the crystalline size calculated by X-ray diffraction results. The optical properties of particles were studied with ultraviolet-visible absorption spectrum.

  19. Room temperature inorganic polycondensation of oxide (Cu2O and ZnO) nanoparticles and thin films preparation by the dip-coating technique

    OpenAIRE

    Salek, Guillaume; Tenailleau, Christophe; Dufour, Pascal; Guillemet-Fritsch, Sophie

    2015-01-01

    International audience; Oxide thin solid filmswere prepared by dip-coating into colloidal dispersions of oxide nanoparticles stabilized at room temperaturewithout the use of chelating or complex organic dispersing agents. Crystalline oxide nanoparticles were obtained by inorganic polycondensation and characterized by X-ray diffraction and field emission gun scanning electron microscopy. Water and ethanol synthesis and solution stabilization of oxide nanoparticle method was optimized to prepar...

  20. Low-Temperature Synthesis and Gas Sensitivity of Perovskite-Type LaCoO3 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lorenzo Gildo Ortiz

    2014-01-01

    Full Text Available LaCoO3 nanoparticles with perovskite-type structure were prepared by a microwave-assisted colloidal method. Lanthanum nitrate, cobalt nitrate, and ethylenediamine were used as precursors and ethyl alcohol as solvent. The thermal decomposition of the precursors leads to the formation of LaCoO3 from a temperature of 500°C. The structural, morphological, and compositional properties of LaCoO3 nanoparticles were studied in this work by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and atomic force microscopy (AFM. Pellets were manufactured in order to test the gas sensing properties of LaCoO3 powders in carbon monoxide (CO and propane (C3H8 atmospheres. Agglomerates of nanoparticles with high connectivity, forming a porous structure, were observed from SEM and TEM analysis. LaCoO3 pellets presented a high sensitivity in both CO and C3H8 at different concentrations and operating temperatures. As was expected, sensitivity increased with the gas concentration and operation temperature increase.

  1. Hydrothermal Synthesis of Fe3O4 Nanoparticles and Flame Resistance Magnetic Poly styrene Nanocomposite

    Directory of Open Access Journals (Sweden)

    Kambiz Hedayati

    2017-01-01

    Full Text Available Fe3O4 nanostructures were synthesized via a facile hydrothermal reaction. The effect of various surfactants such as cationic and anionic on the morphology of the product was investigated. Magnetic nanoparticles were added to poly styrene for preparation of magnetic nanocomposite. Nanostructures were then characterized using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The magnetic properties of the samples were also investigated using vibrating sample magnetometer. The magnesium ferrite nanoparticles exhibit super paramagnetic behaviour at room temperature, with a saturation magnetization of 66 emu/g and a coercivity less than 5 Oe. Distribution of the magnetic nanoparticles into poly styrene matrix increases the coercivity. Nanoparticles appropriately enhanced flame retardant property of the PS matrix. Nanoparticles act as barriers which decrease thermal transport and volatilization during decomposition of the polymer.

  2. Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil

    Directory of Open Access Journals (Sweden)

    Shi F

    2012-04-01

    Full Text Available Feng Shi, Ji-Hui Zhao, Ying Liu, Zhi Wang, Yong-Tai Zhang, Nian-Ping FengSchool of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of ChinaAbstract: The aim of the present study was to prepare solid lipid nanoparticles (SLNs for the oral delivery of frankincense and myrrh essential oils (FMO. Aqueous dispersions of SLNs were successfully prepared by a high-pressure homogenization method using Compritol 888 ATO as the solid lipid and soybean lecithin and Tween 80 as the surfactants. The properties of the SLNs such as particle size, zeta potential (ZP, and drug encapsulation efficiency (EE were investigated. The morphology of SLNs was observed by transmission electron microscopy (TEM. The crystallinity of the formulation was analyzed by differential scanning calorimetry (DSC and X-ray diffraction (XRD. In addition, drug evaporation release and antitumor activity were also studied. Round SLNs with a mean size of 113.3 ± 3.6 nm, a ZP of -16.8 ± 0.4 mV, and an EE of 80.60% ± 1.11% were obtained. DSC and XRD measurements revealed that less ordered structures were formed in the inner cores of the SLN particles. Evaporation loss of the active components in FMO could be reduced in the SLNs. Furthermore, the SLN formulation increased the antitumor efficacy of FMO in H22-bearing Kunming mice. Hence, the presented SLNs can be used as drug carriers for hydrophobic oil drugs extracted from traditional Chinese medicines.Keywords: solid lipid nanoparticles, frankincense oil, myrrh oil, evaporation release, antitumor activity, traditional Chinese medicine

  3. Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA

    Directory of Open Access Journals (Sweden)

    Zou Weiwei

    2009-01-01

    Full Text Available Abstract The purpose of the present work was to formulate and evaluate cationic poly(lactic acid-poly(ethylene glycol (PLA-PEG nanoparticles as novel non-viral gene delivery nano-device. Cationic PLA-PEG nanoparticles were prepared by nanoprecipitation method. The gene loaded nanoparticles were obtained by incubating the report gene pEGFP with cationic PLA-PEG nanoparticles. The physicochemical properties (e.g., morphology, particle size, surface charge, DNA binding efficiency and biological properties (e.g., integrity of the released DNA, protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in Hela cells of the gene loaded PLA-PEG nanoparticles were evaluated, respectively. The obtained cationic PLA-PEG nanoparticles and gene loaded nanoparticles were both spherical in shape with average particle size of 89.7 and 128.9 nm, polydispersity index of 0.185 and 0.161, zeta potentials of +28.9 and +16.8 mV, respectively. The obtained cationic PLA-PEG nanoparticles with high binding efficiency (>95% could protect the loaded DNA from the degradation by nuclease and plasma. The nanoparticles displayed sustained-release properties in vitro and the released DNA maintained its structural and functional integrity. It also showed lower cytotoxicity than Lipofectamine 2000 and could successfully transfect gene into Hela cells even in presence of serum. It could be concluded that the established gene loaded cationic PLA-PEG nanoparticles with excellent properties were promising non-viral nano-device, which had potential to make cancer gene therapy achievable.

  4. Role of electrolytes in the preparation of nanoparticles via the emulsion polymerization of vinyl pivalate.

    Science.gov (United States)

    Kikuchi, Kenji; Kitawaki, Mayuka; Suzuki, Atsushi; Oku, Takeo

    2009-10-15

    By controlling both the kind of ion and the ionic strength of electrolytes in an emulsion polymerization system of vinyl pivalate containing about 1% sodium lauryl sulfate as a surfactant, nanoparticles of polyvinylpivalate having a diameter of about 25 nm were successfully prepared. The use of high concentrations of lithium chloride and lithium sulfate (approximately 1.0 mol L(-1)) prevented the nanoparticles from aggregating and produced nanoparticles sizes of 25-50 nm. Ammonium acetate and sodium acetate, on the other hand, accelerated the aggregate of the nanoparticles. These phenomena were examined in detail and found to be similar to the Hofmeister phenomena and the combination rule proposed by Craig et al.

  5. Enhancing the Durability of Calcareous Stone Monuments of Ancient Egypt Using CaCO3 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohammad A. Aldoasri

    2017-08-01

    Full Text Available The unwanted changes in valuable historic calcareous stone monuments due to exposure to many physical and chemical effects may lead to its deterioration. The growing interest in the field of conservation of stone monuments encourages the development of consolidation and water-repellent materials. The aim of this study is to evaluate the effectiveness of CaCO3 nanoparticles as a consolidation and protection material for calcareous stone monuments, when those nanoparticles used are dispersed in acrylic copolymer; polyethylmethacrylate (EMA/methylacrylate (MA (70/30, respectively. Samples were subjected to artificial aging by relative humidity/temperature to show the optimum conditions of durability and the effectiveness of the nano-mixture in improving the physical and mechanical properties of the stone material. The synthesis process of CaCO3 nanoparticles/polymer nanocomposite has been prepared by in situ emulsion polymerization system. The prepared nanocomposites with 0.15 g CaCO3 nanoparticles showed obvious transparency features and represent nanocomposites coating technology with hydrophobic, consolidating and good protection properties. Some tests were performed in order to estimate the superficial consolidating and protective effect of the treatment. The obtained nanocomposites have been characterized by TEM, while the surface morphology before and after treatment and homogeneous distribution of used consolidation materials on stone surface were examined by SEM. Improvement of stone mechanical properties was evaluated by compressive strength tests. Change in water-interaction properties was evaluated by water absorption capillarity measurements, and colorimetric measurements were used to evaluate the optical appearance. Taken together, the results indicate that CaCO3/polymer nanocomposite is a completely compatible, efficient material for the consolidation of artistic and architectural limestone monuments capable of enhancing the

  6. Effects of alumina nanoparticles on the microstructure, strength and wear resistance of poly(methyl methacrylate)-based nanocomposites prepared by friction stir processing.

    Science.gov (United States)

    Aghajani Derazkola, Hamed; Simchi, Abdolreza

    2018-03-01

    In this study, alumina-reinforced poly(methyl methacrylate) nanocomposites (PMMA/Al 2 O 3 ) containing up to 20vol% nanoparticles with an average diameter of 50nm were prepared by friction stir processing. The effects of nanoparticle volume fraction on the microstructural features and mechanical properties of PMMA were studied. It is shown that by using a frustum pin tool and employing an appropriate processing condition, i.e. a rotational speed of 1600rpm/min and transverse velocity of 120mm/min, defect free nanocomposites at microscale with fine distribution of the nanoparticles can successfully been prepared. Mechanical evaluations including tensile, flexural, hardness and impact tests indicate that the strength and toughness of the material gradually increases with the nanoparticle concentration and reach to a flexural strength of 129MPa, hardness of 101 Shore D, and impact energy 2kJ/m 2 for the nanocomposite containing 20vol% alumina. These values are about 10% and 20% better than untreated and FSP-treated PMMA (without alumina addition). Fractographic studies indicate typical brittle features with crack deflection around the nanoparticles. More interestingly, the sliding wear rate in a pin-on-disk configuration and the friction coefficient are reduced up to 50% by addition of alumina nanoparticles. The worn surfaces exhibit typical sliding and ploughing features. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Alginate submicron beads prepared through w/o emulsification and gelation with CaCl2 nanoparticles

    NARCIS (Netherlands)

    Paques, J.P.; Linden, van der E.; Rijn, van C.J.M.; Sagis, L.M.C.

    2013-01-01

    A simple method for preparing gelled alginate beads with a diameter smaller than 5 µm is described. A 1% alginate solution and a medium chain triglyceride (MCT) oil are used to prepare a water-in-oil (w/o) emulsion, stabilized by polyglycerol polyricinoleate. CaCl2 nanoparticles with dimensions in

  8. Catalase-only nanoparticles prepared by shear alone: Characteristics, activity and stability evaluation.

    Science.gov (United States)

    Huang, Xiao-Nan; Du, Xin-Ying; Xing, Jin-Feng; Ge, Zhi-Qiang

    2016-09-01

    Catalase is a promising therapeutic enzyme; however, it carries risks of inactivation and rapid degradation when it is used in practical bioprocess, such as delivery in vivo. To overcome the issue, we made catalase-only nanoparticles using shear stress alone at a moderate shear rate of 217s(-1) in a coaxial cylinder flow cell. Properties of nanoparticles, including particle size, polydispersity index and zeta potential, were characterized. The conformational changes of pre- and post-sheared catalase were determined using spectroscopy techniques. The results indicated that the conformational changes of catalase and reduction in α-helical content caused by shear alone were less significant than that by desolvation method. Catalase-only nanoparticles prepared by single shear retained over 90% of its initial activity when compared with the native catalase. Catalase nanoparticles lost only 20% of the activity when stored in phosphate buffer solution for 72h at 4°C, whereas native catalase lost 53% under the same condition. Especially, the activity of nanogranulated catalase was decreased only slightly in the simulated intestinal fluid containing α-chymotrypsin during 4h incubation at 37°C, implying that the catalase nanoparticle was more resistant to the degradation of proteases than native catalase molecules. Overall, catalase-only nanoparticles offered a great potential to stabilize enzymes for various pharmaceutical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Interactive Relationship between Silver Ions and Silver Nanoparticles with PVA Prepared by the Submerged Arc Discharge Method

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiung Tseng

    2018-01-01

    Full Text Available This study uses the submerged arc discharge method (SADM and the concentrated energy of arc to melt silver metal in deionized water (DW so as to prepare metal fluid with nanoparticles and submicron particles. The process is free from any chemical agent; it is rapid and simple, and rapid and mass production is available (0.5 L/min. Aside from the silver nanoparticle (Ag0, silver ions (Ag+ exist in the colloidal Ag prepared by the system. In the preparation of colloidal Ag, polyvinyl alcohol (PVA is used as an additive so that the Ag0/Ag+ concentration, arcing rate, peak, and scanning electron microscopic (SEM images in the cases with and without PVA can be analyzed. The findings show that the Ag0/Ag+ concentration increases with the addition level of PVA, while the nano-Ag and Ag+ electrode arcing rate rises. The UV-Vis absorption peak increases Ag0 absorbance and shifts as the dispersity increases with PVA addition. Lastly, with PVA addition, the proposed method can prepare smaller and more amounts of Ag0 nanoparticles, distributed uniformly. PVA possesses many distinct features such as cladding, dispersion, and stability.

  10. Synthesis of MoO3 nanoparticles for azo dye degradation by catalytic ozonation

    International Nuclear Information System (INIS)

    Manivel, Arumugam; Lee, Gang-Juan; Chen, Chin-Yi; Chen, Jing-Heng; Ma, Shih-Hsin; Horng, Tzzy-Leng; Wu, Jerry J.

    2015-01-01

    Highlights: • Synthesis of one-dimensional MoO 3 nanostructures using hydrothermal, microwave, and sonochemical methods. • Sonochemical synthesized MoO 3 presents the best efficiency for the dye removal by catalytic ozonation. • Efficient environmental remediation process. - Abstract: One-dimensional molybdenum trioxide nanostructures were prepared in three different approaches, including thermal, microwave, and sonochemical methods. The physicochemical properties of the obtained MoO 3 nanoparticles were investigated by diffused reflectance spectroscopy, X-ray diffraction analysis, field emission scanning electron microscopy, high resolution transmission electron microscopy, and Brunauer–Emmett–Teller surface area analysis. Among the methods as investigated, sonochemical synthesis gave well-dispersed fine MoO 3 nanoparticles compared with the other approaches. All the synthesized MoO 3 nanostructures were examined for the catalytic ozonation to degrade azo dye in aqueous environment. Different performances were obtained for the catalyst prepared in different methods and the catalytic efficiencies were found to be the order of sonochemical, microwave, and then thermal methods. The sonochemical MoO 3 catalyst allowed the total dye removal within 20 min and its good performance was justified according to their higher surface area with higher number of active sites that provide effective dye interaction for better degradation

  11. Removal of heavy metal ions by magnetic chitosan nanoparticles prepared continuously via high-gravity reactive precipitation method.

    Science.gov (United States)

    Fan, Hong-Lei; Zhou, Shao-Feng; Jiao, Wei-Zhou; Qi, Gui-Sheng; Liu, You-Zhi

    2017-10-15

    This study aimed to provide a continuous method for the preparation of magnetic Fe 3 O 4 /Chitosan nanoparticles (Fe 3 O 4 /CS NPs) that can be applied to efficient removal of heavy metal ions from aqueous solution. Using a novel impinging stream-rotating packed bed, the continuous preparation of Fe 3 O 4 /CS NPs reached a theoretical production rate of 3.43kg/h. The as-prepared Fe 3 O 4 /CS NPs were quasi-spherical with average diameter of about 18nm and saturation magnetization of 33.5emu/g. Owing to the strong metal chelating ability of chitosan, the Fe 3 O 4 /CS NPs exhibited better adsorption capacity and faster adsorption rates for Pb(II) and Cd(II) than those of pure Fe 3 O 4 . The maximum adsorption capacities of Fe 3 O 4 /CS NPs for Pb(II) and Cd(II) were 79.24 and 36.42mgg -1 , respectively. In addition, the Fe 3 O 4 /CS NPs shown excellent reusability after five adsorption-desorption cycles. All the above results provided a potential method for continuously preparing recyclable adsorbent with a wide prospect of application in wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Polyelectrolyte-based electrochemiluminescence enhancement for Ru(bpy){sub 3}{sup 2+} loaded by SiO{sub 2} nanoparticle carrier and its high sensitive immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Zhi-Li; Song, Tian-Mei; Chen, Zhe [College of Pharmaceutical Science, Soochow University, Suzhou 215123 (China); Guo, Wu-Run [College of Pharmaceutical Science, Soochow University, Suzhou 215123 (China); College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002 (China); Xie, Hong-Ping, E-mail: hpxie@suda.edu.cn [College of Pharmaceutical Science, Soochow University, Suzhou 215123 (China); Xie, Lian, E-mail: xielian@suda.edu.cn [College of Pharmaceutical Science, Soochow University, Suzhou 215123 (China)

    2015-03-03

    Highlights: • Preparation of strong ECL nanoparticles PAA–Ru@SiO{sub 2}/[PAA⋯Ru&Nafion⋯Ru]. • Ion-pair macromolecule PAA–Ru formed to greatly increase the doping amount. • PAA&Nafion membrane increased the amount of ion-exchanged Ru(bpy){sub 3}{sup 2+}. • PAA&Nafion membrane enhanced the ability of electron transfer. • Realized antibody labeling and established a high-sensitive immunoassay. - Abstract: In this paper the strong electrochemiluminescence (ECL) nanoparticles have been prepared based on the anionic polyelectrolyte sodium polyacrylate (PAA)-ECL enhancement for Ru(bpy){sub 3}{sup 2+}, which were loaded by the carrier of SiO{sub 2} nanoparticle. There were two kinds of Ru(bpy){sub 3}{sup 2+} for the as-prepared nanoparticles, the doped one and the exchanged one. The former was loaded inside the ECL nanoparticles by doping, in a form of ion-pair macromolecules PAA–Ru(bpy){sub 3}{sup 2+}. The corresponding ECL was enhanced about 2 times owing to the doping increase of Ru(bpy){sub 3}{sup 2+}. The latter was loaded on the PAA-doped Nafion membrane by ion exchange. The corresponding ECL was enhanced about 3 times owing to the ion-exchanging increase of Ru(bpy){sub 3}{sup 2+}. At the same time, ECL intensity of the doped-inside Ru(bpy){sub 3}{sup 2+} was further enhanced 13 times because polyelectrolyte PAA in the doped membrane could obviously enhance electron transfer between the doped Ru(bpy){sub 3}{sup 2+} and the working electrode. Furthermore, based on hydrophobic regions of the doped membrane antibody labeling could be easily realized by the as-prepared nanoparticles and then a high sensitive ECL immunoassay for HBsAg was developed. The linear range was between 1.0 and 100 pg mL{sup −1} (R{sup 2} = 0.9912). The detection limit could be as low as 0.11 pg mL{sup −1} (signal-to-noise ratio = 3)

  13. Barium Titanate Nanoparticles for Biomarker Applications

    International Nuclear Information System (INIS)

    Matar, O; Hondow, N S; Brydson, R M D; Milne, S J; Brown, A P; Posada, O M; Wälti, C; Saunders, M; Murray, C A

    2015-01-01

    A tetragonal crystal structure is required for barium titanate nanoparticles to exhibit the nonlinear optical effect of second harmonic light generation (SHG) for use as a biomarker when illuminated by a near-infrared source. Here we use synchrotron XRD to elucidate the tetragonal phase of commercially purchased tetragonal, cubic and hydrothermally prepared barium titanate (BaTiO 3 ) nanoparticles by peak fitting with reference patterns. The local phase of individual nanoparticles is determined by STEM electron energy loss spectroscopy (EELS), measuring the core-loss O K-edge and the Ti L 3 -edge energy separation of the t 2g , e g peaks. The results show a change in energy separation between the t 2g and e g peak from the surface and core of the particles, suggesting an intraparticle phase mixture of the barium titanate nanoparticles. HAADF-STEM and bright field TEM-EDX show cellular uptake of the hydrothermally prepared BaTiO 3 nanoparticles, highlighting the potential for application as biomarkers. (paper)

  14. Strengthening Aluminum Alloys for High Temperature Applications Using Nanoparticles of Al203 and Al3-X Compounds (X= Ti, V, Zr)

    Science.gov (United States)

    Lee, Jonathan A.

    2007-01-01

    In this paper the effect of nanoparticles A12O3 and A13-X compounds (X= Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their chemical stability and low diffusions rates in aluminum matrix at high temperatures. The strengthening mechanism for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. Samples were prepared from A12O3 nanoparticle preforms, which were produced using ceramic injection molding process and pressure infiltrated by molten aluminum. A12O3 nanoparticles can also be homogeneously mixed with aluminum powder and consolidated into samples through hot pressing and sintering. On the other hand, the Al3-X nanoparticles are produced as precipitates via in situ reactions with molten aluminum alloys using conventional casting techniques. The degree of alloy strengthening using nanoparticles will depend on the materials, particle size, shape, volume fraction, and mean inter-particle spacing.

  15. Fabrication and Optical Characterization of Zinc Oxide Nanoparticles Prepared via a Simple Sol-gel Method

    Directory of Open Access Journals (Sweden)

    K. Hedayati

    2015-10-01

    Full Text Available In this research zinc oxide (ZnO nano-crystalline powders were prepared by sol-gel method using zinc acetate. The ZnO nanoparticles were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, ultraviolet-visible (UV-Vis, Fourier transform infra-red (FT-IR and energy dispersive X-ray (EDX spectroscopy. The structure of nanoparticles was studied using XRD pattern. The crystallite size of ZnO nanoparticles was calculated by Debye–Scherrer formula. Morphology of nano-crystals was observed and investigated using the SEM. The grain size of zinc oxide nanoparticles were in suitable agreement with the crystalline size calculated by XRD results. The optical properties of particles were studied with UV-Vis an FTIR absorption spectrum. The Raman spectrum measurements were carried out using a micro-laser Raman spectrometer forms the ZnO nanoparticles. At the end studied the effect of calcined temperature on the photoluminescence (PL emission of ZnO nanoparticles.

  16. Novel solid-state synthesis of α-Fe and Fe3O4 nanoparticles embedded in a MgO matrix

    Science.gov (United States)

    Schneeweiss, O.; Zboril, R.; Pizurova, N.; Mashlan, M.; Petrovsky, E.; Tucek, J.

    2006-01-01

    Thermally induced reduction of amorphous Fe2O3 nanopowder (2-3 nm) with nanocrystalline Mg (~20 nm) under a hydrogen atmosphere is presented as a novel route to obtain α-Fe and Fe3O4 magnetic nanoparticles dispersed in a MgO matrix. The phase composition, structural and magnetic properties, size and morphology of the nanoparticles were monitored by x-ray diffraction, 57Fe Mössbauer spectroscopy at temperatures of 24-300 K, transmission electron microscopy and magnetic measurements. Spherical magnetite nanoparticles prepared at a reaction temperature of 300 °C revealed a well-defined structure, with a ratio of tetrahedral to octahedral Fe sites of 1/2 being common for the bulk material. A narrow particle size distribution (20-30 nm) and high saturation magnetization (95 ± 5 A m2 kg-1) predispose the magnetite nanoparticles to various applications, including magnetic separation processes. The Verwey transition of Fe3O4 nanocrystals was found to be decreased to about 80 K. The deeper reduction of amorphous ferric oxide at 600 °C allows α-Fe (40-50 nm) nanoparticles to be synthesized with a coercive force of about 30 mT. They have a saturation magnetization 2.2 times higher than that of synthesized magnetite nanoparticles, which corresponds well with the ratio usually found for the pure bulk phases. The magnetic properties of α-Fe nanocrystals combined with the high chemical and thermal stability of the MgO matrix makes the prepared nanocomposite useful for various magnetic applications.

  17. Controlled synthesis of Fe3O4/ZIF-8 nanoparticles for magnetically separable nanocatalysts.

    Science.gov (United States)

    Pang, Fei; He, Mingyuan; Ge, Jianping

    2015-04-27

    Fe3O4/ZIF-8 nanoparticles were synthesized through a room-temperature reaction between 2-methylimidazolate and zinc nitrate in the presence of Fe3O4 nanocrystals. The particle size, surface charge, and magnetic loading can be conveniently controlled by the dosage of Zn(NO3)2 and Fe3O4 nanocrystals. The as-prepared particles show both good thermal stability (stable to 550 °C) and large surface area (1174 m(2) g(-1)). The nanoparticles also have a superparamagnetic response, so that they can strongly respond to an external field during magnetic separation and disperse back into the solution after withdrawal of the magnetic field. For the Knoevenagel reaction, which is catalyzed by alkaline active sites on external surface of catalyst, small Fe3O4/ZIF-8 nanoparticles show a higher catalytic activity. At the same time, the nanocatalysts can be continuously used in multiple catalytic reactions through magnetic separation, activation, and redispersion with little loss of activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis and characterization of bracelet-like magnetic nanorings consisting of Ag-Fe3O4 bi-component nanoparticles.

    Science.gov (United States)

    Zhou, Shuai; Chen, Qianwang

    2011-09-14

    Stable bracelet-like magnetic nanorings, formed by Ag-Fe(3)O(4) nanoparticles with an average size around 40 nm, have been successfully prepared in large scale by means of reducing Ag(+) and Fe(3+) simultaneously under mild conditions. In the reaction, tiny grains of silver are used as seeds to prompt small Fe(3)O(4) nanoparticles to grow larger, which is essential to enhance the magnetic dipole-dipole interactions, while only superparamagnetic Fe(3)O(4) nanoparticles (about 10 nm in size) can be obtained in the absence of Ag seeds. The XRD, TEM, SAED and the EDS line scan data reveal that these nanoparticles are in the core-shell structure. These magnetic Ag-Fe(3)O(4) nanoparticles assembled into nanorings by magnetic dipole-dipole interactions with a diameter of 100-200 nm. The saturation magnetization of the nanorings is 39.5 emu g(-1) at room temperature. The MRI images indicate that these kind of nanorings have the potential application in diagnostics as a T(2) MRI contrast agent. This journal is © The Royal Society of Chemistry 2011

  19. Colloidal silver nanoparticle gradient layer prepared by drying between two walls of different wettability

    International Nuclear Information System (INIS)

    Roth, S V; Kuhlmann, M; Walter, H; Snigirev, A; Snigireva, I; Burghammer, M; Riekel, C; Lengeler, B; Schroer, C G; Mueller-Buschbaum, P

    2009-01-01

    A one-dimensional silver (Ag) nanoparticle gradient layer is prepared from an aqueous colloidal solution upon a polystyrene (PS) coated silicon (Si) substrate. For preparation two walls of different wettability are used. The 40 nm PS-layer exhibits a locally constant film thickness due to the strong roughness correlation with the underlying Si-substrate and is less wettable as compared to the glass plate placed above. The Ag nanoparticles have a triangular prism-like shape. The structural characterization of the obtained complex gradient formed by drying is performed with microbeam grazing incidence small-angle x-ray scattering based on compound refractive lenses. Due to the adsorption from aqueous solution in the selective geometry a double gradient type structure defined by two areas with characteristic lateral lengths and a cross-over regime between both is observed.

  20. Effect of the pillar ligand on preventing agglomeration of ZnO nanoparticles prepared from Zn(II metal-organic frameworks

    Directory of Open Access Journals (Sweden)

    Maryam Moeinian

    2016-01-01

    Full Text Available Metal-Organic Frameworks (MOFs represent a new class of highly porous materials. On this regard,  two nano porous metal-organic frameworks of [Zn2(1,4-bdc2(H2O2∙(DMF2]n (1 and [Zn2(1,4-bdc2(dabco]·4DMF·1⁄2H2O (2, (1,4-bdc = benzene-1,4-dicarboxylate, dabco = 1,4-diazabicyclo[2.2.2]octane and DMF = N,N-dimethylformamide were synthesized and characterized. They were used for preparation of ZnO nanomaterials. With calcination of 1, agglomerated ZnO nanoparticles could be fabricated, but by the same process on 2, the tendency of ZnO nanoparticles to agglomeration was decreased. In addition, the ZnO nanoparticles prepared from compound 2 had smaller diameter than those obtained from compound 1. In fact, the role of organic dabco ligands in 2 is similar to the role of polymeric stabilizers in formation of nanoparticles. Finally, considering the various applications of ZnO nanomaterials such as light-emitting diodes, photodetectors, photodiodes, gas sensors and dye-sensitized solar cells (DSSCs, it seems that preparation of ZnO nanomaterials from their MOFs could be one of the simple and effective methods which may be applied for preparation of them.