WorldWideScience

Sample records for prepared amorphous forms

  1. New Polymorphic Forms of Pemetrexed Diacid and Their Use for the Preparation of Pharmaceutically Pure Amorphous and Hemipentahydrate Forms of Pemetrexed Disodium

    OpenAIRE

    Michalak, Olga; Łaszcz, Marta; Jatczak, Kamil; Witkowska, Anna; Bujak, Iwona; Groman, Aleksandra; Cybulski, Marcin

    2015-01-01

    The preparation of stable amorphous pemetrexed disodium of pharmaceutical purity as well as the process optimization for the preparation of the hemipentahydrate form of pemetrexed disodium are described. Analytical methods for the polymorphic and chemical purity studies of pemetrexed disodium and pemetrexed diacid forms were developed. The physicochemical properties of the amorphous and hydrate forms of pemetrexed disodium, as well as new forms of pemetrexed diacid (a key synthetic intermedia...

  2. New Polymorphic Forms of Pemetrexed Diacid and Their Use for the Preparation of Pharmaceutically Pure Amorphous and Hemipentahydrate Forms of Pemetrexed Disodium

    Directory of Open Access Journals (Sweden)

    Olga Michalak

    2015-07-01

    Full Text Available The preparation of stable amorphous pemetrexed disodium of pharmaceutical purity as well as the process optimization for the preparation of the hemipentahydrate form of pemetrexed disodium are described. Analytical methods for the polymorphic and chemical purity studies of pemetrexed disodium and pemetrexed diacid forms were developed. The physicochemical properties of the amorphous and hydrate forms of pemetrexed disodium, as well as new forms of pemetrexed diacid (a key synthetic intermediate were studied by thermal analysis and powder X-ray diffraction. High-performance liquid chromatography and gas chromatography methods were used for the chemical purity and residual solvents determination. In order to study the polymorphic and chemical stability of the amorphous and hemipentahydrate forms, a hygroscopicity test (25 °C, 80% RH was performed. Powder diffraction and high-performance liquid chromatography analyses revealed that the amorphous character and high chemical purity were preserved after the hygroscopicity test. The hemipentahydrate form transformed completely to the heptahydrate form of pemetrexed disodium. Both pemetrexed disodium forms were produced with high efficiency and pharmaceutical purity in a small commercial scale. Amorphous pemetrexed disodium was selected for further pharmaceutical development. Two new polymorphs (forms 1 and 2 of pemetrexed diacid were used for the preparation of high purity amorphous pemetrexed disodium.

  3. Amorphous drugs and dosage forms

    DEFF Research Database (Denmark)

    Grohganz, Holger; Löbmann, K.; Priemel, P.

    2013-01-01

    The transformation to an amorphous form is one of the most promising approaches to address the low solubility of drug compounds, the latter being an increasing challenge in the development of new drug candidates. However, amorphous forms are high energy solids and tend to recry stallize. New...... formulation principles are needed to ensure the stability of amorphous drug forms. The formation of solid dispersions is still the most investigated approach, but additional approaches are desirable to overcome the shortcomings of solid dispersions. Spatial separation by either coating or the use of micro-containers...... before single molecules are available for the formation of crystal nuclei, thus stabilizing the amorphous form....

  4. Amorphous Alloy: Promising Precursor to Form Nanoflowerpot

    Directory of Open Access Journals (Sweden)

    Guo Lan

    2014-01-01

    Full Text Available Nanoporous copper is fabricated by dealloying the amorphous Ti2Cu alloy in 0.03 M HF electrolyte. The pore and ligament sizes of the nanoporous copper can be readily tailored by controlling the dealloying time. The as-prepared nanoporous copper provides fine and uniform nanoflowerpots to grow highly dispersed Au nanoflowers. The blooming Au nanoflowers in the nanoporous copper flowerpots exhibit both high catalytic activity and stability towards the oxidation of glucose, indicating that the amorphous alloys are ideal precursors to form nanoflowerpot which can grow functional nanoflowers.

  5. Amorphous bimetallic alloys prepared by steam condensation

    International Nuclear Information System (INIS)

    Drago, V.

    1988-01-01

    Amorphous alloys of MnSn are prepared by steam condensation, in a substratum with a temperature near of the liquid helium. The magnetic and paramagnetic hyperfine spectrum and the ordination temperature by Moessbauer effect 119Sn are measured. A diagram of magnetic phase is proposed, basing on the measures of Moessbauer effect. (C.G.C.) [pt

  6. Amorphous calcium carbonate particles form coral skeletons

    Science.gov (United States)

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang-Yu; Stifler, Cayla A.; Frazier, Matthew J.; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V.; Marcus, Matthew A.; Gilbert, Pupa U. P. A.

    2017-09-01

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene-Eocene Thermal Maximum that occurred 56 Mya.

  7. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying

    Directory of Open Access Journals (Sweden)

    Goedele Craye

    2015-12-01

    Full Text Available In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS as a solubilizer, was explored as a production method for co-amorphous simvastatin–lysine (SVS-LYS at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD and differential scanning calorimetry (DSC showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a “spring and parachute” effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions was observed when SLS was spray-dried with SVS (and LYS. In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS.

  8. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying.

    Science.gov (United States)

    Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas; Laitinen, Riikka

    2015-12-03

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a "spring and parachute" effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions) was observed when SLS was spray-dried with SVS (and LYS). In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS.

  9. Study of structural relaxation in amorphous alloys prepared by sputtering

    International Nuclear Information System (INIS)

    Habibi, S.; Banaee, N.; Majidy, S.

    2004-01-01

    Full text: We have prepared amorphous alloy of Al x Cu 1-x (with X= 93, 90, 80, 70, 30) using sputtering system. The rate of growth was 0.7 nm/sec. X-ray diffractometer was used to conform the amorphous nature of the prepared specimens. High temperature annealing can change amorphous to crystalline structure, while low temperature annealing may transform amorphous state to a more stable amorphous state via structural relaxation of the specimen and enhancing the properties of the alloys, such as mechanical ductility etc. Here we have annealed the alloys at temperatures 100, 150, 200, 250, 300 and 350 C for 1 hour. We observed that microhardness of the specimen increases with annealing and gets maximum value at 300 C. Our XRD experiments and also earlier Moessbauer studies show that while the average interatomic distances reduces due to annealing, structure remains amorphous

  10. Thermal decomposition of silane to form hydrogenated amorphous Si

    Science.gov (United States)

    Strongin, M.; Ghosh, A.K.; Wiesmann, H.J.; Rock, E.B.; Lutz, H.A. III

    Hydrogenated amorphous silicon is produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, at elevated temperatures of about 1700 to 2300/sup 0/C, in a vacuum of about 10/sup -8/ to 10/sup -4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate to form hydrogenated amorphous silicon.

  11. Preparation and characterization of spray-dried co-amorphous drug-amino acid salts

    DEFF Research Database (Denmark)

    Jensen, Katrine Birgitte Tarp; Blaabjerg, Lasse Ingerslev; Lenz, Elisabeth

    2016-01-01

    scale. In this study, spray-drying was investigated as a scale up preparation method for co-amorphous indomethacin (IND)-amino acid mixtures. In addition, the physico-chemical properties of the different co-amorphous systems were investigated with respect to the amino acids' ability towards co...... dissolution behaviour, and physical stability at various storage conditions, were examined. KEY FINDINGS: Results showed that IND could be converted into an amorphous form in combination with the amino acids arginine (ARG), histidine (HIS) and lysine (LYS) by spray-drying. Solid state characterization...... mixtures were physically stable (>10 months) at room temperature and 40°C under dry conditions. Intrinsic dissolution of the co-amorphous mixtures showed an improved dissolution behaviour under intestinal pH conditions for IND-ARG compared with the crystalline and amorphous forms of the drug. On the other...

  12. Amorphous formulations of indomethacin and griseofulvin prepared by electrospinning.

    Science.gov (United States)

    Lopez, Felipe L; Shearman, Gemma C; Gaisford, Simon; Williams, Gareth R

    2014-12-01

    Following an array of optimization experiments, two series of electrospun polyvinylpyrrolidone (PVP) fibers were prepared. One set of fibers contained various loadings of indomethacin, known to form stable glasses, and the other griseofulvin (a poor glass former). Drug loadings of up to 33% w/w were achieved. Electron microscopy data showed the fibers largely to comprise smooth and uniform cylinders, with evidence for solvent droplets in some samples. In all cases, the drug was found to exist in the amorphous physical state in the fibers on the basis of X-ray diffraction and differential scanning calorimetry (DSC) measurements. Modulated temperature DSC showed that the relationship between a formulation's glass transition temperature (Tg) and the drug loading follows the Gordon-Taylor equation, but not the Fox equation. The results of Gordon-Taylor analysis indicated that the drug/polymer interactions were stronger with indomethacin. The interactions between drug and polymer were explored in more detail using molecular modeling simulations and again found to be stronger with indomethacin; the presence of significant intermolecular forces was further confirmed using IR spectroscopy. The amorphous form of both drugs was found to be stable after storage of the fibers for 8 months in a desiccator (relative humidity <25%). Finally, the functional performance of the fibers was studied; in all cases, the drug-loaded fibers released their drug cargo very rapidly, offering accelerated dissolution over the pure drug.

  13. Compaction of Chemically Prepared Amorphous Fe-B nanoparticles

    DEFF Research Database (Denmark)

    Hendriksen, P.V.; Bødker, Franz; Mørup, Steen

    1997-01-01

    We report on attempts to compact chemically prepared amorphous iron-boron particles. The praticles have a size of about 100 nm and are pyrophoric. We have made a special die for uniaxial pressing in which the compaction can be performed at elevated temperature without exposing the powder to air...

  14. Characterization of Two Distinct Amorphous Forms of Valsartan by Solid-State NMR.

    Science.gov (United States)

    Skotnicki, Marcin; Apperley, David C; Aguilar, Juan A; Milanowski, Bartłomiej; Pyda, Marek; Hodgkinson, Paul

    2016-01-04

    Valsartan (VAL) is an antihypertensive drug marketed in an amorphous form. Amorphous materials can have different physicochemical properties depending on preparation method, thermal history, etc., but the nature of such materials is difficult to study by diffraction techniques. This study characterizes two different amorphous forms of valsartan (AR and AM) using solid-state NMR (SSNMR) as a primary investigation tool, supported by solution-state NMR, FT-IR, TMDSC, and dissolution tests. The two forms are found to be clearly distinct, with a significantly higher level of structural arrangement in the AR form, as observed in (13)C, (15)N, and (1)H SSNMR. (13)C and (15)N NMR indicates that the fully amorphous material (AM) contains an approximately equal ratio of cis-trans conformers about the amide bond, whereas the AR form exists mainly as one conformer, with minor conformational "defects". (1)H ultrafast MAS NMR shows significant differences in the hydrogen bonding involving the tetrazole and acid hydrogens between the two materials, while (15)N NMR shows that both forms exist as a 1,2,3,4-tetrazole tautomer. NMR relaxation times show subtle differences in local and bulk molecular mobility, which can be connected with the glass transition, the stability of the glassy material, and its response to aging. Counterintuitively the fully amorphous material is found to have a significantly lower dissolution rate than the apparently more ordered AR material.

  15. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying

    DEFF Research Database (Denmark)

    Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger

    2015-01-01

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co...

  16. Clozapine-carboxylic acid plasticized co-amorphous dispersions: Preparation, characterization and solution stability evaluation

    Directory of Open Access Journals (Sweden)

    Ali Ahmed Mahmoud Abdelhaleem

    2015-06-01

    Full Text Available This study addressed the possibility of forming of co-amorphous systems between clozapine (CZ and various carboxylic acid plasticizers (CAPs. The aim was to improve the solubility and oral bioavailability of clozapine. Co-amorphous dispersions were prepared using modified solvent evaporation methodology at drug/plasticizer stoichiometric ratios of 1:1, 1:1.5 and 1:2. Solid state characterization was performed using differential scanning calorimetry, X-ray diffraction and infra red spectroscopy. Highly soluble homogeneous co-amorphous dispersions were formed between clozapine and CAPs via hydrogen bonding. The co-amorphous dispersions formed with tartaric acid (1:2 showed the highest dissolution percentage (> 95 % in 20 minutes compared to pure crystalline CZ (56 %. Highly stable solutions were obtained from co-amorphous CZ-citric and CZ-tartaric acid at 1:1.5 molar ratio. The prepared dispersions suggest the possibility of peroral or sublingual administration of highly soluble clozapine at a reduced dose with the great chance to bypass the first pass metabolism.

  17. The crystallization of amorphous Fe2MnGe powder prepared by ball milling

    International Nuclear Information System (INIS)

    Zhang, L.; Brueck, E.; Tegus, O.; Buschow, K.H.J.; Boer, F.R. de

    2003-01-01

    We synthesized for the first time the intermetallic compound Fe 2 MnGe. To avoid preferential evaporation of volatile components we exploited mechanical alloying. Amorphous Fe 2 MnGe alloy powder was prepared by planetary ball milling elemental starting materials. The amorphous-to-crystalline transition was studied by means of differential scanning calorimetry (DSC) and X-ray diffraction (XRD). A cubic D0 3 phase is formed at low temperature and transforms to a high-temperature hexagonal D0 19 phase. The apparent activation energy was determined by means of the Kissinger method

  18. Atomic pairwise distribution function analysis of the amorphous phase prepared by different manufacturing routes

    DEFF Research Database (Denmark)

    Boetker, Johan P.; Koradia, Vishal; Rades, Thomas

    2012-01-01

    was subjected to quench cooling thereby creating an amorphous form of the drug from both starting materials. The milled and quench cooled samples were, together with the crystalline starting materials, analyzed with X-ray powder diffraction (XRPD), Raman spectroscopy and atomic pair-wise distribution function...... (PDF) analysis of the XRPD pattern. When compared to XRPD and Raman spectroscopy, the PDF analysis was superior in displaying the difference between the amorphous samples prepared by milling and quench cooling approaches of the two starting materials....

  19. Pressure-jump induced rapid solidification of melt: a method of preparing amorphous materials

    Science.gov (United States)

    Liu, Xiuru; Jia, Ru; Zhang, Doudou; Yuan, Chaosheng; Shao, Chunguang; Hong, Shiming

    2018-04-01

    By using a self-designed pressure-jump apparatus, we investigated the melt solidification behavior in rapid compression process for several kinds of materials, such as elementary sulfur, polymer polyether-ether-ketone (PEEK) and poly-ethylene-terephthalate, alloy La68Al10Cu20Co2 and Nd60Cu20Ni10Al10. Experimental results clearly show that their melts could be solidified to be amorphous states through the rapid compression process. Bulk amorphous PEEK with 24 mm in diameter and 12 mm in height was prepared, which exceeds the size obtained by melt quenching method. The bulk amorphous sulfur thus obtained exhibited extraordinarily high thermal stability, and an abnormal exothermic transition to liquid sulfur was observed at around 396 K for the first time. Furthermore, it is suggested that the glass transition pressure and critical compression rate exist to form the amorphous phase. This approach of rapid compression is very attractive not only because it is a new technique of make bulk amorphous materials, but also because novel properties are expected in the amorphous materials solidified by the pressure-jump within milliseconds or microseconds.

  20. Preparation of an amorphous sodium furosemide salt improves solubility and dissolution rate and leads to a faster Tmax after oral dosing to rats

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Gordon, Sarah; Holm, René

    2013-01-01

    Amorphous forms of furosemide sodium salt and furosemide free acid were prepared by spray drying. For the preparation of the amorphous free acid, methanol was utilised as the solvent, whereas the amorphous sodium salt was formed from a sodium hydroxide-containing aqueous solvent in equimolar...... amounts of NaOH and furosemide. Information about the structural differences between the two amorphous forms was obtained by Fourier Transform Infrared Spectroscopy (FTIR), and glass transition temperature (Tg) was determined using Differential Scanning Calorimetry (DSC). The stability and devitrification...... tendency of the two amorphous forms were investigated by X-ray Powder Diffraction (XRPD). The apparent solubility of the two amorphous forms and the crystalline free acid form of furosemide in various gastric and intestinal stimulated media was determined. Moreover, the dissolution characteristics...

  1. Amorphous silicon prepared from silane-hydrogen mixture

    International Nuclear Information System (INIS)

    Pietruszko, S.M.

    1982-09-01

    Amorphous silicon films prepared from a d.c. discharge of 10% SiH 4 - 90% H 2 mixture are found to have properties similar to those made from 100% SiH 4 . These films are found to be quite stable against prolonged light exposure. The effect of nitrogen on the properties of these films was investigated. It was found that instead of behaving as a classical donor, nitrogen introduces deep levels in the material. Field effect experiments on a-Si:H films at the bottom (film-substrate interface) and the top (film-vacuum interface) of the film are also reported. (author)

  2. Physicochemical characterization of atorvastatin calcium/ezetimibe amorphous nano-solid dispersions prepared by electrospraying method.

    Science.gov (United States)

    Jahangiri, Azin; Barzegar-Jalali, Mohammad; Javadzadeh, Yousef; Hamishehkar, Hamed; Adibkia, Khosro

    2017-09-01

    In the present study, electrospraying was applied as a novel method for the fabrication of amorphous nano-solid dispersions (N-SDs) of atorvastatin calcium (ATV), ezetimibe (EZT), and ATV/EZT combination as poorly water-soluble drugs. N-SDs were prepared using polyvinylpyrrolidone K30 as an amorphous carrier in 1:1 and 1:5 drug to polymer ratios and the total solid (including drug and polymer) concentrations of 10 and 20% (w/v). The prepared formulations were further investigated for their morphological, physicochemical, and dissolution properties. Scanning electron microscopy studies indicated that the morphology and diameter of the electrosprayed samples (ESs) were influenced by the solution concentration and drug:polymer ratio, so that an increase in the solution concentration resulted in fiber formation while an increase in the polymer ratio led to enhancement of the particle diameter. Differential scanning calorimetry and X-ray powder diffraction studies together with in vitro dissolution test revealed that the ESs were present in an amorphous form with improved dissolution properties. Infrared spectroscopic studies showed hydrogen-bonding interaction between the drug and polymer in ESs. Since the electrospraying method benefits from the both amorphization and nanosizing effect, this novel approach seems to be an efficient method for the fabrication of N-SDs of poorly water-soluble drugs.

  3. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA; Wong, Frank M. G. [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Yang, Nancy [Lafayette, CA; Lavernia, Enrique J [Davis, CA; Blue, Craig A [Knoxville, TN; Graeve, Olivia A [Reno, NV; Bayles, Robert [Annandale, VA; Perepezko, John H [Madison, WI; Kaufman, Larry [Brookline, MA; Schoenung, Julie [Davis, CA; Ajdelsztajn, Leo [Walnut Creek, CA

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  4. Preparation and recrystallization behavior of spray-dried co-amorphous naproxen-indomethacin

    DEFF Research Database (Denmark)

    Beyer, Andreas; Radi, Lydia; Grohganz, Holger

    2016-01-01

    (2) factorial design and the obtained samples were analyzed with X-ray powder diffractometry and Fourier-transformed infrared spectroscopy. Evaluation of the data revealed that the preparation of fully amorphous samples could be achieved depending on the process conditions. The resulting recrystallization......To improve the dissolution properties and the physical stability of amorphous active pharmaceutical ingredients, small molecule stabilizing agents may be added to prepare co-amorphous systems. The objective of the study was to investigate if spray-drying allows the preparation of co-amorphous drug...

  5. Boron profiles in doped amorphous-silicon solar cells formed by plasma ion deposition

    International Nuclear Information System (INIS)

    Stoddart, C.T.H.; Hunt, C.P.; Coleman, J.H.

    1979-01-01

    Amorphous silicon p-n junction solar cells of large area (100 cm 2 ) and having a quantum efficiency approaching 100% in the blue region have been prepared by plasma ion-plating, the p layer being formed from diborane and silane gases in a cathode glow-discharge. Surface secondary ion mass spectrometry combined with ion beam etching was found to be a very sensitive method with high in-depth resolution for obtaining the initial boron-silicon profile of the solar cell p-n junction. (author)

  6. Effect of borohydride addition rate on chemically prepared amorphous Fe-B particles

    International Nuclear Information System (INIS)

    Koch, C.B.; Morup, S.; Linderoth, S.

    1991-01-01

    Amorphous Fe-B alloys can be prepared by reacting aqueous solutions of Fe salts and NaBH 4 . In this paper the effect of the addition rate of the NaBH 4 solution to the FeSO 4 solution on the precipitate is investigated. The chemical composition of the amorphous alloys formed varies between Fe 79 B 21 and Fe 68 B 32 . The hyperfine parameters of the alloys, derived from Mossbauer spectra, show a decrease from 29 to 25 T of the magnetic hyperfine field and an increase from 0.19 to 0.28 mms -1 of the isomer shift with increasing NaBH 4 addition rate. The results suggest that alloys with different structures but identical composition may be produced by chemical reduction

  7. Structure and giant magnetoresistance of carbon-based amorphous films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Ma, L.; He, M.F.; Liu, Z.W.; Zeng, D.C.; Gu, Z.F.; Cheng, G.

    2014-01-01

    Pure amorphous carbon (a-C) and Co-doped Co x C 1−x films were prepared on n-Si(100) substrates by dc magnetron sputtering. In Co–C films, the nano-sized amorphous Co particles were homogeneously dispersed in the amorphous cross-linked carbon matrix. The structures of a-C and Co x C 1−x films were investigated by X-ray photoelectron spectroscopy and Raman spectroscopy. The results showed that the a-C films were diamond-like carbon (DLC) films. After doping cobalt into DLC film, the sp 3 -hybridized carbon content in DLC composite films almost had no change. The as-deposited Co x C 1−x granular films had larger value of magnetoresistance (MR) than the amorphous carbon film. A very high positive MR, up to 15.5% at magnetic field B = 0.8 T and x = 2.5 at.% was observed in a Co x C 1−x granular film with thickness of 80 nm at room temperature when the external magnetic field was perpendicular to the electric current and the film surface. With increase of the film thickness and Co-doped content, the MR decreased gradually. It remains a challenge to well explain the observed MR effect in the Co x C 1−x granular films. - Highlights: • The amorphous carbon films were diamond-like carbon films. • No carbide appearing, the Co–C composite films form a good metal/insulator system. • A high positive magnetoresistance, up to 15.5% at B = 0.8 T was observed in Co–C films

  8. Amorphous and nanocrystalline materials preparation, properties, and applications

    CERN Document Server

    Inoue, A

    2001-01-01

    Amorphous and nanocrystalline materials are a class of their own. Their properties are quite different to those of the corresponding crystalline materials. This book gives systematic insight into their physical properties, structure, behaviour, and design for special advanced applications.

  9. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars

    Science.gov (United States)

    Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby

    2018-01-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca–, Na–, Mg– and Fe–chloride brines and multi-component (Fe2 (SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe–chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and

  10. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars

    Science.gov (United States)

    Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby

    2018-03-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multicomponent (Fe2(SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21 °C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation

  11. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars.

    Science.gov (United States)

    Sklute, Elizabeth C; Rogers, A Deanne; Gregerson, Jason C; Jensen, Heidi B; Reeder, Richard J; Dyar, M Darby

    2018-03-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multi-component (Fe 2 (SO 4 ) 3 ± Ca, Na, Mg, Fe, Cl, HCO 3 ) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation

  12. Miedema model based methodology to predict amorphous-forming-composition range in binary and ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Das, N., E-mail: nirupamd@barc.gov.in [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Mittra, J. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Murty, B.S. [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai 600 036 (India); Pabi, S.K. [Department of Metallurgical and Materials Engineering, IIT Kharagpur, Kharagpur 721 302 (India); Kulkarni, U.D.; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer A methodology was proposed to predict amorphous forming compositions (AFCs). Black-Right-Pointing-Pointer Chemical contribution to enthalpy of mixing {proportional_to} enthalpy of amorphous for AFCs. Black-Right-Pointing-Pointer Accuracy in the prediction of AFC-range was noticed in Al-Ni-Ti system. Black-Right-Pointing-Pointer Mechanical alloying (MA) results of Al-Ni-Ti followed the predicted AFC-range. Black-Right-Pointing-Pointer Earlier MA results of Al-Ni-Ti also conformed to the predicted AFC-range. - Abstract: From the earlier works on the prediction of amorphous forming composition range (AFCR) using Miedema based model and also, on mechanical alloying experiments it has been observed that all amorphous forming compositions of a given alloy system falls within a linear band when the chemical contribution to enthalpy of the solid solution ({Delta}H{sup ss}) is plotted against the enthalpy of mixing in the amorphous phase ({Delta}H{sup amor}). On the basis of this observation, a methodology has been proposed in this article to identify the AFCR of a ternary system that is likely to be more precise than what can be obtained using {Delta}H{sup amor} - {Delta}H{sup ss} < 0 criterion. MA experiments on various compositions of Al-Ni-Ti system, producing amorphous, crystalline, and mixture of amorphous plus crystalline phases have been carried out and the phases have been characterized using X-ray diffraction and transmission electron microscopy techniques. Data from the present MA experiments and, also, from the literature have been used to validate the proposed approach. Also, the proximity of compositions, producing a mixture of amorphous and crystalline phases to the boundary of AFCR in the Al-Ni-Ti ternary has been found useful to validate the effectiveness of the prediction.

  13. Influence of particle size and preparation methods on the physical and chemical stability of amorphous simvastatin

    DEFF Research Database (Denmark)

    Zhang, Fang; Aaltonen, Jaakko; Tian, Fang

    2009-01-01

    This study investigated the factors influencing the stability of amorphous simvastatin. Quench-cooled amorphous simvastatin in two particle size ranges, 150-180 microm (QC-big) and ... compared to the crystalline form. The rank of solubility was found to be QC-big=QC-small>CM>crystalline. For the physical stability, the highest crystallization rate was observed for CM, and the slowest rate was detected for QC-big, with an intermediate rate occurring for QC-small. QC exhibited lower...

  14. Preparation and Properties of Mg-Cu-Y-Al bulk Amorphous Alloys

    DEFF Research Database (Denmark)

    Pryds, Nini; Eldrup, Morten Mostgaard; Ohnuma, M.

    2000-01-01

    Bulk amorphous (Mg(1-gamma)Al(gamma))(60)CU(30)Y(10) alloys were prepared using a relatively simple technique of rapid cooling of the melt in a copper wedge mould. The temperature vs, time was recorded during the cooling and solidification process of the melt and compared with a spacial and tempo......Bulk amorphous (Mg(1-gamma)Al(gamma))(60)CU(30)Y(10) alloys were prepared using a relatively simple technique of rapid cooling of the melt in a copper wedge mould. The temperature vs, time was recorded during the cooling and solidification process of the melt and compared with a spacial...... temperatures in specimens containing a few percent Al. The alloy with no Al crystallises apparently without the formation of nanoparticles. The critical cooling rate for the formation of an amorphous Mg(60)CU(30)Y(10) specimen was determined experimentally by a combination of DSC data and temperature vs, time...

  15. Structure and properties of bulk amorphous magnetically soft coatings prepared by plasma spraying

    International Nuclear Information System (INIS)

    Kalita, V.I.; Kekalo, I.B.; Komlev, D.I.; Taranichev, V.E.

    1995-01-01

    Co-Ni-Fe-Si-B composition plasma coatings consisting of amorphous disk-shaped particles forming the bulk of a coating, of crystalline particles and of a threshold space, were studied. Iron and metalloid distribution heterogeneous by the thickness represents a peculiar feature for coating amorphous particles. Structure of coatings and their magnetic properties depend on some technological parameters. Conclusion is made that at annealing the variation of magnetic properties is determined by the processes of directed ordering and stratification of amorphous phase, while the low level of the initial magnetic properties of coatings is caused alongside with structure peculiarities, by occurrence of independent fine-dispersive domain structure in each disk-shaped amorphous phase. 14 refs., 8 figs., 6 tabs

  16. Preparation of amorphous cefuroxime axetil nanoparticles by sonoprecipitation for enhancement of bioavailability.

    Science.gov (United States)

    Dhumal, Ravindra S; Biradar, Shailesh V; Yamamura, Shigeo; Paradkar, Anant R; York, Peter

    2008-09-01

    The aim of the present work was to prepare amorphous discreet nanoparticles by sonoprecipitation method for enhancing oral bioavailability of cefuroxime axetil (CA), a poorly water-soluble drug. CA nanoparticles (SONO-CA) were prepared by sonoprecipitation and compared with particles obtained by precipitation without sonication (PPT-CA) and amorphous CA obtained by spray drying. Spray drying present broad particle size distribution (PSD) with mean particle size of 10 microm and low percent yield, whereas, precipitation without sonication resulted in large amorphous aggregates with broad PSD. During sonoprecipitation, particle size and yield improve with an increase in the amplitude of sonication and lowering the operation temperature due to instantaneous supersaturation and nucleation. The overall symmetry and purity of CA molecule was maintained as confirmed by FTIR and HPLC, respectively. All the three methods resulted in the formation of amorphous CA with only sonoprecipitation resulting in uniform sized nanoparticles. Sonoprecipitated CA nanoparticles showed enhanced dissolution rate and oral bioavailability in Wistar rat due to an increased solubility attributed to combination of effects like amorphization and nanonization with increased surface area and reduced diffusion pathway.

  17. Amorphous Ge quantum dots embedded in SiO2 formed by low energy ion implantation

    International Nuclear Information System (INIS)

    Zhao, J. P.; Huang, D. X.; Jacobson, A. J.; Chen, Z. Y.; Makarenkov, B.; Chu, W. K.; Bahrim, B.; Rabalais, J. W.

    2008-01-01

    Under ultrahigh vacuum conditions, extremely small Ge nanodots embedded in SiO 2 , i.e., Ge-SiO 2 quantum dot composites, have been formed by ion implantation of 74 Ge + isotope into (0001) Z-cut quartz at a low kinetic energy of 9 keV using varying implantation temperatures. Transmission electron microscopy (TEM) images and micro-Raman scattering show that amorphous Ge nanodots are formed at all temperatures. The formation of amorphous Ge nanodots is different from reported crystalline Ge nanodot formation by high energy ion implantation followed by a necessary high temperature annealing process. At room temperature, a confined spatial distribution of the amorphous Ge nanodots can be obtained. Ge inward diffusion was found to be significantly enhanced by a synergetic effect of high implantation temperature and preferential sputtering of surface oxygen, which induced a much wider and deeper Ge nanodot distribution at elevated implantation temperature. The bimodal size distribution that is often observed in high energy implantation was not observed in the present study. Cross-sectional TEM observation and the depth profile of Ge atoms in SiO 2 obtained from x-ray photoelectron spectra revealed a critical Ge concentration for observable amorphous nanodot formation. The mechanism of formation of amorphous Ge nanodots and the change in spatial distribution with implantation temperature are discussed

  18. Theory of amorphous ices.

    Science.gov (United States)

    Limmer, David T; Chandler, David

    2014-07-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens.

  19. Preparation and Characterisation of Amorphous-silicon Photovoltaic Devices Having Microcrystalline Emitters

    International Nuclear Information System (INIS)

    Gutierrez, M. T.; Gandia, J. J.; Carabe, J.

    1999-01-01

    The present work summarises the essential aspects of the research carried out so far at CIEMAT on amorphous-silicon solar cells. The experience accumulated on the preparation and characterisation of amorphous and microcrystalline silicon has allowed to start from intrinsic (absorbent) and p- and n-type (emitters) materials not only having excellent optoelectronic properties, but enjoying certain technological advantages with respect to those developed by other groups. Among these are absorbent-layer growth rates between 5 and 10 times as fast as conventional ones and microcrystalline emitters prepared without using hydrogen. The preparation of amorphous-silicon cells has required the solution of a number of problems, such as those related to pinholes, edge leak currents and diffusion of metals into the semiconductor. Once such constraints have been overcome, it has been demonstrated not only that the amorphous-silicon technology developed at CIEMAT is valid for making solar cells, but also that the quality of the semiconductor material is good for the application according to the partial results obtained. The development of thin-film laser-scribing technology is considered essential. Additionally it has been concluded that cross contamination, originated by the fact of using a single-chamber reactor, is the basic factor limiting the quality of the cells developed at CIEMAT. The present research activity is highly focused on the solution of this problem. (Author)23 refs

  20. In vitro characterization of a novel polymeric system for preparation of amorphous solid drug dispersions.

    Science.gov (United States)

    Mahmoudi, Zahra N; Upadhye, Sampada B; Ferrizzi, David; Rajabi-Siahboomi, Ali R

    2014-07-01

    Preparation of amorphous solid dispersions using polymers is a commonly used formulation strategy for enhancing the solubility of poorly water-soluble drugs. However, often a single polymer may not bring about a significant enhancement in solubility or amorphous stability of a poorly water-soluble drug. This study describes application of a unique and novel binary polymeric blend in preparation of solid dispersions. The objective of this study was to investigate amorphous solid dispersions of glipizide, a BCS class II model drug, in a binary polymeric system of polyvinyl acetate phthalate (PVAP) and hypromellose (hydroxypropyl methylcellulose, HPMC). The solid dispersions were prepared using two different solvent methods: rotary evaporation (rotavap) and fluid bed drug layering on sugar spheres. The performance and physical stability of the dispersions were evaluated with non-sink dissolution testing, powder X-ray diffraction (PXRD), and modulated differential scanning calorimetry (mDSC). PXRD analysis demonstrated an amorphous state for glipizide, and mDSC showed no evidence of phase separation. Non-sink dissolution testing in pH 7.5 phosphate buffer indicated more than twofold increase in apparent solubility of the drug with PVAP-HPMC system. The glipizide solid dispersions demonstrated a high glass transition temperature (Tg) and acceptable chemical and physical stability during the stability period irrespective of the manufacturing process. In conclusion, the polymeric blend of PVAP-HPMC offers a unique formulation approach for developing amorphous solid dispersions with the flexibility towards the use of these polymers in different ratios and combined quantities depending on drug properties.

  1. Characterization of degradation products of amorphous and polymorphic forms of clopidogrel bisulphate under solid state stress conditions

    DEFF Research Database (Denmark)

    Raijada, Dhara K; Prasad, Bhagwat; Paudel, Amrit

    2010-01-01

    The present study deals with the stress degradation studies on amorphous and polymorphic forms of clopidogrel bisulphate. The objective was to characterize the degradation products and postulate mechanism of decomposition of the drug under solid state stress conditions. For that, amorphous form, ...

  2. Glass Forming Ability of Amorphous Drugs Investigated by Continuous Cooling and Isothermal Transformation.

    Science.gov (United States)

    Blaabjerg, Lasse I; Lindenberg, Eleanor; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas

    2016-09-06

    The aim of this study was to investigate the glass forming ability of 12 different drugs by the determination of continuous cooling and isothermal transformation diagrams in order to elucidate if an inherent differentiation between the drugs with respect to their the glass forming ability can be made. Continuous-cooling-transformation (CCT) and time-temperature-transformation (TTT) diagrams of the drugs were developed in order to predict the critical cooling rate necessary to convert the drug from the melt into an amorphous form. While TTT diagrams overestimated the actual critical cooling rate, they allowed an inherent differentiation of glass forming ability for the investigated drugs into drugs that are extremely difficult to amorphize (>750 °C/min), drugs that require modest cooling rates (>10 °C/min), and drugs that can be made amorphous even at very slow cooling rates (>2 °C/min). Thus, the glass forming ability can be predicted by the use of TTT diagrams. In contrast to TTT diagrams, CCT diagrams may not be suitable for small organic molecules due to poor separation of exothermic events, which makes it difficult to determine the zone of recrystallization. In conclusion, this study shows that glass forming ability of drugs can be predicted by TTT diagrams.

  3. Preparation by a facile method and characterization of amorphous and crystalline nickel sulfide nanophases

    Energy Technology Data Exchange (ETDEWEB)

    Nagaveena, S., E-mail: nagaveena3@gmail.com; Mahadevan, C.K.

    2014-01-05

    Highlights: • Amorphous NiS, and crystalline NiS{sub 1.03}, β-NiS and α-NiS nanophases prepared. • Simple microwave assisted solvothermal method used. • Nanoparticles with low grain size, high phase purity and homogeneity obtained. • High coercivity observed indicates the applicability in data storage devices. -- Abstract: A simple solvothermal route using a domestic microwave oven has been developed to prepare the prominent nickel sulfide nanophases (amorphous NiS, and crystalline NiS{sub 1.03}, β-NiS and α-NiS). The prepared nanophases have been characterized chemically, structurally, optically, electrically, and magnetically by the available methods like thermogravimetric and differential thermal analyses, X-ray powder diffraction analysis, scanning electron microscopic, and transmission electron microscopic analyses, energy dispersive X-ray spectroscopic, Fourier transform-infrared spectral, UV–Vis spectral and photoluminescence spectral analyses, AC and DC electrical measurements at various temperatures in the range 40–150 °C, and vibrating sample magnetometric measurements. The average particle sizes obtained through transmission electron microscopic analysis are 15, 17, 18, 20 nm respectively for the amorphous NiS, NiS{sub 1.03}, β-NiS and α-NiS nanophases. Results obtained in the present study indicates that the method adopted is found to be an effective and economical one for preparing these nanophases with high purity, reduced size, homogeneity, and useful optical, electrical and magnetic properties.

  4. Deuterium permeation of amorphous alumina coating on 316L prepared by MOCVD

    Science.gov (United States)

    Li, Shuai; He, Di; Liu, Xiaopeng; Wang, Shumao; Jiang, Lijun

    2012-01-01

    The deuterium permeation behavior of the alumina coating on 316L stainless steel prepared by metal organic chemical vapor deposition (MOCVD) was investigated. The alumina coating was also characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). It was found that the as-prepared coating consisted of amorphous alumina. This alumina coating had a dense, crack-free and homogeneous morphology. Although the alumina coating was amorphous, effective suppression of deuterium permeation was demonstrated. The deuterium permeability of the alumina coating was 51-60 times less than that of the 316L stainless steel and 153-335 times less than that of the referred low activation martensitic steels at 860-960 K.

  5. Deuterium permeation of amorphous alumina coating on 316L prepared by MOCVD

    International Nuclear Information System (INIS)

    Li Shuai; He Di; Liu Xiaopeng; Wang Shumao; Jiang Lijun

    2012-01-01

    Highlights: ► Deuterium permeation behavior of alumina coating by MOCVD is investigated. ► The as-prepared alumina is amorphous. ► The alumina coating is dense and well adherent to substrate. ► Deuterium permeation rate of alumina coating is 2–3 orders of magnitude lower than martensitic steels. - Abstract: The deuterium permeation behavior of the alumina coating on 316L stainless steel prepared by metal organic chemical vapor deposition (MOCVD) was investigated. The alumina coating was also characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). It was found that the as-prepared coating consisted of amorphous alumina. This alumina coating had a dense, crack-free and homogeneous morphology. Although the alumina coating was amorphous, effective suppression of deuterium permeation was demonstrated. The deuterium permeability of the alumina coating was 51–60 times less than that of the 316L stainless steel and 153–335 times less than that of the referred low activation martensitic steels at 860–960 K.

  6. The Stabilization of Amorphous Zopiclone in an Amorphous Solid Dispersion.

    Science.gov (United States)

    Milne, Marnus; Liebenberg, Wilna; Aucamp, Marique

    2015-10-01

    Zopiclone is a poorly soluble psychotherapeutic agent. The aim of this study was to prepare and characterize an amorphous form of zopiclone as well as the characterization and performance of a stable amorphous solid dispersion. The amorphous form was prepared by the well-known method of quench-cooling of the melt. The solid dispersion was prepared by a solvent evaporation method of zopiclone, polyvinylpyrrolidone-25 (PVP-25), and methanol, followed by freeze-drying. The physico-chemical properties and stability of amorphous zopiclone and the solid dispersion was studied using differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), hot-stage microscopy (HSM), X-ray diffractometry (XRD), solubility, and dissolution studies. The zopiclone amorphous solid-state form was determined to be a fragile glass; it was concluded that the stability of the amorphous form is influenced by both temperature and water. Exposure of amorphous zopiclone to moisture results in rapid transformation of the amorphous form to the crystalline dihydrated form. In comparison, the amorphous solid dispersion proved to be more stable with increased aqueous solubility.

  7. Preparation techniques for ceramic waste form powder

    International Nuclear Information System (INIS)

    Hash, M.C.; Pereira, C.; Lewis, M.A.

    1997-01-01

    The electrometallurgical treatment of spent nuclear fuels result in a chloride waste salt requiring geologic disposal. Argonne National Laboratory (ANL) is developing ceramic waste forms which can incorporate this waste. Currently, zeolite- or sodalite-glass composites are produced by hot isostatic pressing (HIP) techniques. Powder preparations include dehydration of the raw zeolite powders, hot blending of these zeolite powders and secondary additives. Various approaches are being pursued to achieve adequate mixing, and the resulting powders have been HIPed and characterized for leach resistance, phase equilibria, and physical integrity

  8. Pharmaceutical solvates, hydrates and amorphous forms: A special emphasis on cocrystals.

    Science.gov (United States)

    Healy, Anne Marie; Worku, Zelalem Ayenew; Kumar, Dinesh; Madi, Atif M

    2017-08-01

    Active pharmaceutical ingredients (APIs) may exist in various solid forms, which can lead to differences in the intermolecular interactions, affecting the internal energy and enthalpy, and the degree of disorder, affecting the entropy. Differences in solid forms often lead to differences in thermodynamic parameters and physicochemical properties for example solubility, dissolution rate, stability and mechanical properties of APIs and excipients. Hence, solid forms of APIs play a vital role in drug discovery and development in the context of optimization of bioavailability, filing intellectual property rights and developing suitable manufacturing methods. In this review, the fundamental characteristics and trends observed for pharmaceutical hydrates, solvates and amorphous forms are presented, with special emphasis, due to their relative abundance, on pharmaceutical hydrates with single and two-component (i.e. cocrystal) host molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Amorphous is not always better—A dissolution study on solid state forms of carbamazepine

    DEFF Research Database (Denmark)

    Jensen, Linda G.; Skautrup, Frederik B.; Müllertz, Anette

    2017-01-01

    state forms of carbamazepine, crystalline or amorphous drug, with or without either polyvinylpyrrolidone (PVP) or hydroxypropylmethylcellulose (HPMC) and glass solutions of the drug with both polymers (2:1, 4:1 and 10:1 (w/w) drug-to-polymer ratio) were tested with respect to their dissolution behaviour...... in a biorelevant gastric medium (for 30 min) and subsequently in intestinal conditions (for 2 h). Carbamazepine form III in the absence of polymer dissolved to a drug concentration of 540 μg/ml, but the concentration decreased after around 70 min due to precipitation of the dihydrate form, and reached 436 μg....../ml after 2.5 h dissolution testing. The presence of PVP led to a similar dissolution profile with a slightly earlier onset of decrease in drug concentration, while in the presence of HPMC no decline in dissolved drug concentration was observed. Surprisingly, amorphous carbamazepine did not result in any...

  10. Self-selection in size and structure in argon clusters formed on amorphous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Krainyukova, Nina V.; Waal, Benjamin W. van de

    2004-07-01

    Argon clusters formed on an amorphous carbon substrate as deposited from the vapor phase were studied by means of transmission high energy electron diffraction using the liquid helium cryostat. Electron diffractograms were analysed on the basis of assumption that there exist a cluster size distribution in samples formed on substrate and multi-shell structures such as icosahedra, decahedra, fcc and hcp were probed for different sizes up to {approx}15 000 atoms. The experimental data were considered as a result of a superposition of diffracted intensities from clusters of different sizes and structures. The comparative analysis was based on the R-factor minimization that was found to be equal to 0.014 for the best fit between experiment and modelling. The total size and structure distribution function shows the presence of 'non-crystallographic' structures such as icosahedra and decahedra with five-fold symmetry that was found to prevail and a smaller amount of fcc and hcp structures. Possible growth mechanisms as well as observed general tendency to self-selection in sizes and structures are presumably governed by confined pore-like geometry in an amorphous carbon substrate.

  11. Possibility for hole doping into amorphous InGaZnO4 films prepared by RF sputtering

    International Nuclear Information System (INIS)

    Kobayashi, Kenkichiro; Kohno, Yoshiumi; Tomita, Yasumasa; Maeda, Yasuhisa; Matsushima, Shigenori

    2011-01-01

    Amorphous InGaZnO 4 (IGZO) films codoped with Al and N atoms were prepared by sputtering of targets consisting of IGZO and AlN powders in Ar + O 2 atmospheres. No hole-conductivity is seen in films deposited at 2 x 10 -3 Torr, whereas hole-conductivity is found in films deposited at 2 x 10 -2 Torr at radio frequency powers of 60-80 W in 0.3-0.6% O 2 atmospheres. The amorphous p-type IGZO film has the resistivity of 210 Wcm, hole-density of 7.5 x 10 17 cm -3 , and mobility of 0.4 cm 2 /Vs. The rectification characteristic is obtained for a device constructed from Au, amorphous p-type IGZO, and amorphous n-type IGZO. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Properties of p-type amorphous silicon carbide window layers prepared using boron trifluoride

    Energy Technology Data Exchange (ETDEWEB)

    Gandia, J J [Inst. de Energias Renovables, CIEMAT, Madrid (Spain); Gutierrez, M T [Inst. de Energias Renovables, CIEMAT, Madrid (Spain); Carabe, J [Inst. de Energias Renovables, CIEMAT, Madrid (Spain)

    1993-03-01

    One set (A) of undoped and three sets (B, C and D) of doped hydrogenated amorphous silicon carbide samples have been made in the framework of a research plan for obtaining high quality p-type window layers by radiofrequency glow discharge of silane-based gas mixtures. The samples of sets A and B were made using different RF-power-density to mass-flow ratios for various methane percentages in the gas mixture. The best carbon incorporation in the amorphous silicon lattice was obtained at the highest RF-power density. The properties of sets C and D, prepared using different RF-power densities and silane and methane proportions have been analysed as functions of the concentration of boron trifluoride with respect to silane. In both cases, the optical gap E[sub G], after a slight initial decrease, remains at a value of approximately 2.1 eV without quenching in the doping ranges covered. The best conductivity obtained is 2x10[sup -7] ([Omega] cm)[sup -1]. IR spectra allow to associate these features with the structural quality of the films. (orig.)

  13. Preparation and Characterization of Amorphous B Powders by Salt-Assisted SHS Technique

    Directory of Open Access Journals (Sweden)

    Yujing Ou

    2015-01-01

    Full Text Available To use the salt-assisted SHS technique to prepare B powders was proposed. Calculation results found that the adiabatic combustion temperature of the B2O3-Mg reaction system was 2604 K, higher than the 1800 K criterion of self-propagating temperature, which meant that the SHS application was feasible. When 0, 10%, 20%, 30%, 40%, 50%, and 60% NaCl content were added, the adiabatic combustion temperature of the reaction system decreased linearly. When 60% NaCl content was added, the adiabatic combustion temperature was 1799 K (lower than 1800 K, unsuitable for self-propagating reaction, which was consistent with the experimental results. Through scanning electron microscope (SEM, energy disperse spectroscopy (EDS, and particle size analysis, the influence of different addition of NaCl on the morphology, average particle size, and purity of prepared B powder was investigated. EDS and chemical analysis indicated that the purity of prepared B powder was over 96% and the average particle size was within the range of 0.4~0.8 μm when the content of NaCl was 50%. The analysis of X-ray diffraction (XRD and selected area electron diffraction (SAED proved that the prepared B powder was amorphous.

  14. Effect of preparation conditions on the properties of glow-discharge intrinsic amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, M T; Carabe, J; Gandia, J J [Inst. de Energias Renovables, CIEMAT, Madrid (Spain); Solonko, A [Inst. of High Temperatures of the USSR (IVTAN), Academy of Sciences, Moscow (USSR)

    1992-04-01

    The influence of the preparation conditions (process pressure, substrate temperature, RF-power density and deposition time/thickness) on the optical and electrical properties of intrinsic hydrogenated amorphous silicon (a-Si:H) has been investigated with the aim of optimising such films to be used as absorbent layers of a-Si:H-based p-i-n solar cells. Highly photosensitive films have been obtained at high growth rates (6.2 A s{sup -1}) in the depletion regime using a high process pressure (1000 mTorr), a moderate substrate temperature (250deg C) and a relatively high RF-power density (35.2 mW cm{sup -2}). These films have excellent properties for the application in question. (orig.).

  15. Preparation and Characterization of Hydrous Zirconium Oxide Formed by Homogeneous Precipitation

    Directory of Open Access Journals (Sweden)

    Silva G.L.J.P. da

    2002-01-01

    Full Text Available This paper reports on the preparation, characterization and study of the ion exchange behavior of hydrous zirconium oxides formed by homogeneous precipitation from zirconium oxychloride. The precipitants used were obtained by thermal decomposition of urea, sodium nitrite or ammonium carbonate. Seven compounds were prepared and characterized by thermal analysis, X-ray diffractometry and by surface area measurements. Amorphous forms were obtained in each case, a result that agrees with those obtained by conventional gel precipitation methodology. All these materials present surface area values of >148 m².g-1, determined after heat treatment at 50 °C. The ion exchange behavior of each hydrous zirconium oxide prepared was studied using K+ as the exchanged species and the results compared with those obtained for hydrous zirconium oxide originally precipitated by the sol gel method.

  16. Preparation and characterization of polymer-derived amorphous silicon carbide with silicon-rich stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takashi, E-mail: mtakashi@jaist.ac.jp [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Iwasaka, Akira [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Takagishi, Hideyuki [Faculty of Symbiotic System Science, Fukushima University, 1 Kanayagawa, Fukushima-shi, Fukushima 960-1296 (Japan); Shimoda, Tatsuya [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2016-08-01

    Polydihydrosilane with pendant hexyl groups was synthesized to obtain silicon-rich amorphous silicon carbide (a-SiC) films via the solution route. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross-linkage. Therefore, the polymer provides sufficient purity for the fabrication of semiconducting a-SiC. Here, we investigated the correlation of Si/C stoichiometry between the polymer and the resultant a-SiC film. The structural, optical, and electrical properties of the films with various carbon contents were also explored. Experimental results suggested that the excess carbon that did not participate in Si−C configurations was decomposed and was evaporated during polymer-to-SiC conversion. Consequently, the upper limit of the carbon in resultant a-SiC film was < 50 at.%; namely, the polymer provided silicon-rich a-SiC, whereas the conventionally used polycarbosilane inevitably provides carbon-rich one. These features of this unusual polymer open up a frontier of polymer-derived SiC and solution-processed SiC electronics. - Highlights: • Polymeric precursor solution for silicon carbide (SiC) is synthesized. • Semiconducting amorphous SiC is prepared via solution route. • The excess carbon is decomposed during cross-linking resulting in Si-rich SiC films. • The grown SiC films contain substantial amount of hydrogen atoms as SiH{sub n}/CH{sub n} entities. • Presence of CH{sub n} entities induces dangling bonds, causing poor electrical properties.

  17. Low-Temperature Preparation of Amorphous-Shell/Nanocrystalline-Core Nanostructured TiO2 Electrodes for Flexible Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Dongshe Zhang

    2008-01-01

    Full Text Available An amorphous shell/nanocrystalline core nanostructured TiO2 electrode was prepared at low temperature, in which the mixture of TiO2 powder and TiCl4 aqueous solution was used as the paste for coating a film and in this film amorphous TiO2 resulted from direct hydrolysis of TiCl4 at 100∘C sintering was produced to connect the particles forming a thick crack-free uniform nanostructured TiO2 film (12 μm, and on which a photoelectrochemical solar cell-based was fabricated, generating a short-circuit photocurrent density of 13.58 mA/cm2, an open-circuit voltage of 0.647 V, and an overall 4.48% light-to-electricity conversion efficiency under 1 sun illumination.

  18. Bulk amorphous alloys: Preparation and properties of (Mg0.98Al0.02)x(Cu0.75Y0.25)100

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Pedersen, Allan Schrøder; Ohnuma, M.

    2000-01-01

    New bulk amorphous quaternary alloys of the composition (Mg1-xAlx)(60)Cu30Y10 (x = 0 - 0.17) were recently reported by the authors and preliminary results of the influence of Al content on the ability to form a bulk amorphous phase were presented. In the present note we extend this work to look...... for the influence of the Mg-Al content on the glass forming ability by studying a range of compositions, (Mg0.98Al0.02)(x)(Cu0.75Y0.25)(100-x) for x = 60 - 80 at.%. As previously, the alloys were prepared by a relatively simple technique, i.e. rapid cooling of the melt in a wedge-shaped copper mould. This method...... provides a range of cooling rates within a single ingot during the solidification that link the slowly and rapidly cooled microstructure for each alloy composition. Hence, the maximum thickness of the amorphous part of the cast material will be a measure of the glass forming ability (GFA) of the particular...

  19. Preparation and Cycling Performance of Iron or Iron Oxide Containing Amorphous Al-Li Alloys as Electrodes

    Directory of Open Access Journals (Sweden)

    Franziska Thoss

    2014-12-01

    Full Text Available Crystalline phase transitions cause volume changes, which entails a fast destroying of the electrode. Non-crystalline states may avoid this circumstance. Herein we present structural and electrochemical investigations of pre-lithiated, amorphous Al39Li43Fe13Si5-powders, to be used as electrode material for Li-ion batteries. Powders of master alloys with the compositions Al39Li43Fe13Si5 and Al39Li43Fe13Si5 + 5 mass-% FeO were prepared via ball milling and achieved amorphous/nanocrystalline states after 56 and 21.6 h, respectively. In contrast to their Li-free amorphous pendant Al78Fe13Si9, both powders showed specific capacities of about 400 and 700 Ah/kgAl, respectively, after the third cycle.

  20. Amorphous carbon nitrogenated films prepared by plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Rangel, Elidiane C.; Durrant, Steven F.; Rangel, Rita C.C.; Kayama, Milton E.; Landers, Richard; Cruz, Nilson C. da

    2006-01-01

    In this work, an investigation was conducted on amorphous hydrogenated-nitrogenated carbon films prepared by plasma immersion ion implantation and deposition. Glow discharge was excited by radiofrequency power (13.56 MHz, 40 W) whereas the substrate-holder was biased with 25 kV negative pulses. The films were deposited from benzene, nitrogen and argon mixtures. The proportion of nitrogen in the chamber feed (R N ) was varied against that of argon, while keeping the total pressure constant (1.3 Pa). From infrared reflectance-absorbance spectroscopy it was observed that the molecular structure of the benzene is not preserved in the film. Nitrogen was incorporated from the plasma while oxygen arose as a contaminant. X-ray photoelectron spectroscopy revealed that N/C and O/C atomic ratios change slightly with R N . Water wettability decreased as the proportion of N in the gas phase increased while surface roughness underwent just small changes. Nanoindentation measurements showed that film deposition by means of ion bombardment was beneficial to the mechanical properties of the film-substrate interface. The intensity of the modifications correlates well with the degree of ion bombardment

  1. Characterization of BaBi2Ta2O9 prepared through amorphous precursor

    International Nuclear Information System (INIS)

    Maczka, M.; Kepinski, L.; Hermanowicz, K.; Dacko, S.; Czapla, Z.; Hanuza, J.

    2011-01-01

    Research highlights: → Formation of Bi-layered BaBi 2 Ta 2 O 9 proceeds via an intermediate fluorite phase. → Mechanochemical activation lowers the synthesis temperature by 150-200 deg. C. → The lateral size of the synthesized plate-like crystallites is about 100-200 nm. → Properties of the synthesized crystallites are different from the bulk material. - Abstract: Formation of ferroelectric BaBi 2 Ta 2 O 9 by annealing of an amorphous precursor prepared by high energy milling in ball mill has been studied by X-ray, scanning electron microscopy (SEM), Raman, infrared spectroscopy (IR), diffuse reflectivity and dielectric measurements. Our results show that formation of Bi-layered BaBi 2 Ta 2 O 9 proceeds via an intermediate fluorite phase. Mechanochemical activation allows obtaining BaBi 2 Ta 2 O 9 at short time and much lower temperatures than those required in a conventional solid state reaction. The lateral size of the plate-like crystallites is about 100-200 nm and properties of the synthesized particles are different compared to the bulk material.

  2. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers

    Directory of Open Access Journals (Sweden)

    Zhang Kui-Hua

    2011-01-01

    Full Text Available Abstract Calcium phosphate is the most important inorganic constituent of biological tissues, and synthetic calcium phosphate has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of amorphous calcium phosphate (ACP/polylactide-block-monomethoxy(polyethyleneglycol hybrid nanoparticles and ACP porous nanospheres. Europium-doping is performed to enable photoluminescence (PL function of ACP porous nanospheres. A high specific surface area of the europium-doped ACP (Eu3+:ACP porous nanospheres is achieved (126.7 m2/g. PL properties of Eu3+:ACP porous nanospheres are investigated, and the most intense peak at 612 nm is observed at 5 mol% Eu3+ doping. In vitro cytotoxicity experiments indicate that the as-prepared Eu3+:ACP porous nanospheres are biocompatible. In vitro drug release experiments indicate that the ibuprofen-loaded Eu3+:ACP porous nanospheres show a slow and sustained drug release in simulated body fluid. We have found that the cumulative amount of released drug has a linear relationship with the natural logarithm of release time (ln(t. The Eu3+:ACP porous nanospheres are bioactive, and can transform to hydroxyapatite during drug release. The PL properties of drug-loaded nanocarriers before and after drug release are also investigated.

  3. High Dehumidification Performance of Amorphous Cellulose Composite Membranes prepared from Trimethylsilyl Cellulose

    KAUST Repository

    Puspasari, Tiara

    2018-04-11

    Cellulose is widely regarded as an environmentally friendly, natural and low cost material which can significantly contribute the sustainable economic growth. In this study, cellulose composite membranes were prepared via regeneration of trimethylsilyl cellulose (TMSC), an easily synthesized cellulose derivative. The amorphous hydrophilic feature of the regenerated cellulose enabled fast permeation of water vapour. The pore-free cellulose layer thickness was adjustable by the initial TMSC concentration and acted as an efficient gas barrier. As a result, a 5,000 GPU water vapour transmission rate (WVTR) at the highest ideal selectivity of 1.1 x 106 was achieved by the membranes spin coated from a 7% (w/w) TMSC solution. The membranes maintained a 4,000 GPU WVTR with selectivity of 1.1 x 104 in the mixed-gas experiments, surpassing the performances of the previously reported composite membranes. This study provides a simple way to not only produce high performance membranes but also to advance cellulose as a low-cost and sustainable membrane material for dehumidification applications.

  4. Inhibition of Recrystallization of Amorphous Lactose in Nanocomposites Formed by Spray-Drying.

    Science.gov (United States)

    Hellrup, Joel; Alderborn, Göran; Mahlin, Denny

    2015-11-01

    This study aims at investigating the recrystallization of amorphous lactose in nanocomposites. In particular, the focus is on the influence of the nano- to micrometer length scale nanofiller arrangement on the amorphous to crystalline transition. Further, the relative significance of formulation composition and manufacturing process parameters for the properties of the nanocomposite was investigated. Nanocomposites of amorphous lactose and fumed silica were produced by co-spray-drying. Solid-state transformation of the lactose was studied at 43%, 84%, and 94% relative humidity using X-ray powder diffraction and microcalorimetry. Design of experiments was used to analyze spray-drying process parameters and nanocomposite composition as factors influencing the time to 50% recrystallization. The spray-drying process parameters showed no significant influence. However, the recrystallization of the lactose in the nanocomposites was affected by the composition (fraction silica). The recrystallization rate constant decreased as a function of silica content. The lowered recrystallization rate of the lactose in the nanocomposites could be explained by three mechanisms: (1) separation of the amorphous lactose into discrete compartments on a micrometer length scale (compartmentalization), (2) lowered molecular mobility caused by molecular interactions between the lactose molecules and the surface of the silica (rigidification), and/or (3) intraparticle confinement of the amorphous lactose. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Investigation of the intermediate- and high-density forms of amorphous ice by molecular dynamics calculations and diffraction experiments

    International Nuclear Information System (INIS)

    Tse, John S.; Klug, Dennis D.; Guthrie, Malcolm; Benmore, Chris J.; Urquidi, Jacob; Tulk, Chris A.

    2005-01-01

    The lack of an 'isosbestic' point in the oxygen-oxygen atom radial distribution functions (RDFs) for the HDA→LDA ice transformation at ambient pressure derived from molecular dynamics (MD) calculations show unequivocally that intermediate phases are not equilibrium mixtures of these two amorphous forms. This is supported by x-ray structure factor data, where it is found that linear combinations of the starting and end amorphous forms do not describe intermediate forms of amorphous ice formed during the transformation. This reflects the fact that the x-ray data are heavily weighted to O-O correlations and therefore sensitive to the basic structural changes that occur during the relaxation process. The ice Ih→HDA transformation is also reexamined using MD to identify its thermodynamic nature. This apparently first-order transition induced by a mechanical instability is investigated by compression followed by decompression to negative pressures. In this study we demonstrated that the full van der Waals loop for this transition can be identified

  6. Preparation and characterization of amorphous amphotericin B nanoparticles for oral administration through liquid antisolvent precipitation.

    Science.gov (United States)

    Zu, Yuangang; Sun, Wei; Zhao, Xiuhua; Wang, Weiguo; Li, Yong; Ge, Yunlong; Liu, Ying; Wang, Kunlun

    2014-03-12

    We prepared amphotericin B (AmB) nanoparticles through liquid antisolvent precipitation (LAP) and by freeze-drying to improve the solubility of AmB for oral administration. The LAP was optimized through a single-factor experiment. We determined the effects of surfactants and their concentration, the stirring time, the precipitation temperature, the stirring intensity, the drug concentration and the volume ratio of antisolvent to solvent on the mean particle size (MPS) of the AmB nanoparticles. Increased stirring intensity and precipitation time favored AmB nanoparticles with smaller MPS, but precipitation times exceeding 30 min did not further reduce the MPS. Increased Tween-80 concentration and the drug concentration decreased the MPS of the AmB nanoparticles. Increased precipitation temperature and antisolvent to solvent volume ratio initially decreased the MPS of the AmB nanoparticles, which increased thereafter. Optimum conditions produced AmB nanoparticles with an MPS of 135.1 nm. The AmB nanoparticles were characterized through scanning electron microscopy (SEM), mass spectrometry (MS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermal gravimetric analysis (TG), solvent residue, drug purity test, and dissolution testing. The analyses indicated that the chemical structure of AmB remained unchanged in the nanoparticles, but the structure was changed from crystalline to amorphous. The residual DMSO in the nanoparticles was 0.24% less than the standard set by the International Conference on Harmonization limit for class III solvents. The AmB nanoparticles exhibited 2.1 times faster dissolution rates and 13 times equilibrium solubility compared with the raw drug. The detection results indicate that the AmB nanoparticles potentially improved the oral absorption of AmB. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Emerging trends in the stabilization of amorphous drugs.

    Science.gov (United States)

    Laitinen, Riikka; Löbmann, Korbinian; Strachan, Clare J; Grohganz, Holger; Rades, Thomas

    2013-08-30

    The number of active pharmaceutical substances having high therapeutic potential but low water solubility is constantly increasing, making it difficult to formulate these compounds as oral dosage forms. The solubility and dissolution rate, and thus potentially the bioavailability, of these poorly water-soluble drugs can be increased by the formation of stabilized amorphous forms. Currently, formulation as solid polymer dispersions is the preferred method to enhance drug dissolution and to stabilize the amorphous form of a drug. The purpose of this review is to highlight emerging alternative methods to amorphous polymer dispersions for stabilizing the amorphous form of drugs. First, an overview of the properties and stabilization mechanisms of amorphous forms is provided. Subsequently, formulation approaches such as the preparation of co-amorphous small-molecule mixtures and the use of mesoporous silicon and silica-based carriers are presented as potential means to increase the stability of amorphous pharmaceuticals. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Vibrational spectra and boson-like excitations in different amorphous forms of ice

    International Nuclear Information System (INIS)

    Kolesnikov, A.I.; Li, J.C.; Uffindell, C.H.

    1999-01-01

    Complete text of publication follows. Glasses are very interesting objects in the physics of condensed matter, with many universal properties, such as low-energy excitations (LEE) coexisting with the sound waves and giving an excess of vibrational modes with respect to the crystalline spectrum (the so called 'boson' peak) in Raman and inelastic neutron scattering (INS). Recently it was discovered that films of hydrogenated amorphous silicon do not show such LEE, whereas films of amorphous silicon do [1]. Also, the resonant absorption by two-level systems was observed for the high-density amorphous (hda) ice but not for the low-density amorphous (lda) ice in the far infrared spectra [2]. Thus, the nature of these near universal LEE becomes rather puzzling. This report presents the results of INS studies for hda and lda ice produced by high-pressure treatment and for vapor-deposited lda ice. Clear LEE were observed in the spectra for hda and deposited lda ice unlike their crystalline analogues. (author)

  9. Effects of hydrogenation on thermal conductivity of ultrananocrystalline diamond/amorphous carbon composite films prepared via coaxial arc plasma deposition

    Science.gov (United States)

    Takeichi, Satoshi; Nishiyama, Takashi; Tabara, Mitsuru; Kawawaki, Shuichi; Kohno, Masamichi; Takahashi, Koji; Yoshitake, Tsuyoshi

    2018-06-01

    Ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite (UNCD/a-C:H) and UNCD/non-hydrogenated amorphous carbon (a-C) composite (UNCD/a-C) films were prepared via coaxial arc plasma deposition, and their thermal conductivity and interfacial conductance in grain boundaries were measured using a time-domain thermoreflectance method. The interfacial conductance was estimated to be 1,010 and 4,892 MW/(m2·K) for UNCD/a-C:H and UNCD/a-C films, respectively. The reasons for the hydrogenated film having lower interfacial conductance than the non-hydrogenated film are 1) the reduced number of carriers that contribute to heat transport and 2) the hydrogen atoms, which are preferentially located at the grain boundaries and enhance phonon scattering.

  10. A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability

    International Nuclear Information System (INIS)

    Huang, Y.J.; Shen, J.; Sun, J.F.; Yu, X.B.

    2007-01-01

    The effect of Sn substitution for Cu on the glass-forming ability was investigated in Ti 41.5 Zr 2.5 Hf 5 Cu 42.5-x Ni 7.5 Si 1 Sn x (x = 0, 1, 3, 5, 7) alloys by using differential scanning calorimetry (DSC) and X-ray diffractometry. The alloy containing 5% Sn shows the highest glass-forming ability (GFA) among the Ti-Zr-Hf-Cu-Ni-Si-Sn system. Fully amorphous rod sample with diameters up to 6 mm could be successfully fabricated by the copper mold casting Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 alloy. The activation energies for glass transition and crystallization for Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 amorphous alloy are both larger than those values for the Sn-free alloy. The enhancement in GFA and thermal stability after the partial replacement of Cu by Sn may be contributed to the strong atomic bonding nature between Ti and Sn and the increasing of atomic packing density. The amorphous Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 alloy also possesses superior mechanical properties

  11. Influence of microenvironment pH, humidity, and temperature on the stability of polymorphic and amorphous forms of clopidogrel bisulfate

    DEFF Research Database (Denmark)

    Raijada, Dhara K; Singh, Saranjit; Bansal, Arvind K

    2010-01-01

    The effect of microenvironment pH, humidity, and temperature was evaluated on the stability of polymorphic and amorphous forms of clopidogrel bisulfate, when present alone or in combinations. Oxalic acid and sodium carbonate were used as solid stressors to create acidic and alkaline p...... more degradation than the individual forms above critical relative humidity (85% RH). Similar higher degradation was observed between 75% RH and 85% RH in case of acid-stressed samples. In alkaline microenvironment, all the samples showed identical decomposition attributed to conversion of bisulfate...

  12. Preparation and leaching of radioactive INEL waste forms

    International Nuclear Information System (INIS)

    Schuman, R.P.; Welch, J.M.; Staples, B.A.

    1982-01-01

    The purpose of this study is to prepare and leach test ceramic and glass waste form specimens produced from actual transuranic waste sludges and high-level waste calcines, respectively. Description of wastes, specimen fabrication, leaching procedure, analysis of leachates and results are discussed. The conclusion is that radioactive waste stored at INEL can be readily incorporated in fused ceramic and glass forms. Initial leach testing results indicate that these forms show great promise for safe long-term containment of radioactive wastes

  13. Confinement of Amorphous Lactose in Pores Formed Upon Co-Spray Drying With Nanoparticles.

    Science.gov (United States)

    Hellrup, Joel; Mahlin, Denny

    2017-01-01

    This study aims at investigating factors influencing humidity-induced recrystallization of amorphous lactose, produced by co-spray drying with particles of cellulose nanocrystals or sodium montmorillonite. In particular, the focus is on how the nanoparticle shape and surface properties influence the nanometer to micrometer length scale nanofiller arrangement in the nanocomposites and how the arrangements influence the mechanisms involved in the inhibition of the amorphous to crystalline transition. The nanocomposites were produced by co-spray drying. Solid-state transformations were analyzed at 60%-94% relative humidity using X-ray powder diffraction, microcalorimetry, and light microscopy. The recrystallization rate constant for the lactose/cellulose nanocrystals and lactose/sodium montmorillonite nanocomposites was lowered at nanofiller contents higher than 60% and was stable for months at 80% nanofiller. The most likely explanation to these results is spontaneous formations of mesoporous particle networks that the lactose is confined upon co-spray drying at high filler content. Compartmentalization and rigidification of the amorphous lactose proved to be less important mechanisms involved in the stabilization of lactose in the nanocomposites. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Preparation and electrochemical performance of copper foam-supported amorphous silicon thin films for rechargeable lithium-ion batteries

    International Nuclear Information System (INIS)

    Li Haixia; Cheng Fangyi; Zhu Zhiqiang; Bai Hongmei; Tao Zhanliang; Chen Jun

    2011-01-01

    Research highlights: → Amorphous Si thin films have been deposited on copper foam substrate by radio-frequency (rf) magnetron sputtering. → The as-prepared Si/Cu films with interconnected 3-dimensional structure are employed as anode materials of rechargeable lithium-ion batteries, showing that the electrode properties are greatly affected by the deposition temperature. → The film electrode deposited at an optimum temperature of 300 deg. C delivers a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. → The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm 2 /s. → The combination of rf magnetron sputtering and cooper foam substrate is an efficient route to prepare amorphous Si films with high capacity and cyclability due to the efficient ionic diffusion and interface contact with a good conductive current collector. - Abstract: Amorphous Si thin films, which have been deposited on copper foam by radio-frequency (rf) magnetron sputtering, are employed as anode materials of rechargeable lithium-ion batteries. The morphologies and structures of the as-prepared Si thin films are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). Electrochemical performance of lithium-ion batteries with the as-prepared Si films as the anode materials is investigated by cyclic voltammetry and charge-discharge measurements. The results show that the electrode properties of the prepared amorphous Si films are greatly affected by the deposition temperature. The film electrode deposited at an optimum temperature of 300 deg. C can deliver a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm

  15. Study on glass-forming ability and hydrogen storage properties of amorphous Mg60Ni30La10−xCox (x = 0, 4) alloys

    International Nuclear Information System (INIS)

    Lv, Peng; Wang, Zhong-min; Zhang, Huai-gang; Balogun, Muhammad-Sadeeq; Ji, Zi-jun; Deng, Jian-qiu; Zhou, Huai-ying

    2013-01-01

    Mg 60 Ni 30 La 10−x Co x (x = 0, 4) amorphous alloys were prepared by rapid solidification, using a melt-spinning technique. X-ray diffraction and differential scanning calorimetry analysis were employed to measure their microstructure, thermal stability and glass-forming ability, and hydrogen storage properties were studied by means of PCTPro2000. Based on differential scanning calorimetry results, their glass-forming ability and thermal stability were investigated by Kissinger method, Lasocka curves and atomic cluster model, respectively. The results indicate that glass-forming ability, thermal properties and hydrogen storage properties in the Mg-rich corner of Mg–Ni–La–Co system alloys were enhanced by Co substitution for La. It can be found that the smaller activation energy (ΔΕ) and frequency factor (υ 0 ), the bigger value of B (glass transition point in Lasocka curves), and higher glass-forming ability of Mg–Ni–La–Co alloys would be followed. In addition, atomic structure parameter (λ), deduced from atomic cluster model is valuable in the design of Mg–Ni–La–Co system alloys with good glass-forming ability. With an increase of Co content from 0 to 4, the hydrogen desorption capacity within 4000 s rises from 2.25 to 2.85 wt.% at 573 K. - Highlights: • Amorphous Mg 60 Ni 30 La 10−x Co x (x = 0 and 4) alloys were produced by melt spinning. • The GFA and hydrogen storage properties were enhanced by Co substitution for La. • With an increase of Co content, the hydrogen desorption capacity rises at 573 K

  16. Nanostructured amorphous MnO{sub 2} prepared by reaction of KMnO{sub 4} with triethanolamine

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yanjing [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105 (China); Liu Enhui, E-mail: liuenhui99@sina.com.c [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105 (China); Li Limin; Huang Zhengzheng; Shen Haijie; Xiang Xiaoxia [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2010-09-03

    Amorphous manganese dioxide is prepared by reaction of potassium permanganate with an organic reductant triethanolamine. The effect of heat-treatment temperature is studied on the characteristics of the materials. Power X-ray diffraction (XRD), scanning electron microscope (SEM) and N{sub 2} adsorption and desorption measurements are employed to investigate crystalline structure, surface morphology, the specific surface area and the pore size distribution. It is found that when the annealing temperature reaches up to 400 {sup o}C, the crystalline convert to {alpha}-MnO{sub 2} from amorphous MnO{sub 2}. The electrochemical characteristics of the prepared MnO{sub 2} powder are characterized by means of cyclic voltammetry (CV), experiments in 1.0 mol L{sup -1} Na{sub 2}SO{sub 4} electrolyte. The specific capacitance (SC) value is 251 F g{sup -1} that is obtained from the product annealing at 350 {sup o}C at a CV scan rate of 2 mV s{sup -1}. And charging-discharging measurement reveals the good stability of the prepared material.

  17. Preparation and characterisation of Co–Fe–Ni–M-Si–B (M = Zr, Ti) amorphous powders by wet mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: Bogdan.Neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Chicinaş, H.F.; Marinca, T.F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Isnard, O. [Université Grenoble Alpes, Institut NEEL, F-38042, Grenoble (France); CNRS, Institut NEEL, 25 rue des martyrs, BP166, F-38042, Grenoble (France); Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania)

    2016-07-15

    Co-based amorphous alloys were prepared via wet mechanical alloying process starting from elemental powders. The reference alloy Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 9} (at. %) as well as the alloys derived from this composition by the substitution of 5 at.% of Zr or Ti for Si or B (Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 4}Zr{sub 5}, Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 4}Ti{sub 5}, Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 10}B{sub 9}Zr{sub 5} and Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 10}B{sub 9}Ti{sub 5}) are obtained in amorphous state, according to X-ray diffraction (XRD) investigation, after 40 h of milling. The calculated amount of amorphous fraction reaches 99% after 40 h of milling. The largest increase of the crystallisation temperature was induced by the substitution of Zr or Ti for Si while, regardless of the type of substitution, an important increase of the Curie temperature of the alloy was obtained. A Co-based solid solution, with Co{sub 2}Si and Co{sub 2}B phases, result after crystallisation of the amorphous alloys as proved by XRD investigations. Saturation magnetisation of the alloys decreases upon increasing milling time, however it remains larger than the saturation magnetisation of the reference alloy. This was discussed in correlation with the specificity of the wet mechanical alloying process and the influence of the chemical bonding between Co and metalloids atoms over the magnetic moment of Co. - Highlights: • Co–Fe–Ni–M-Si–B (M = Zr, Ti) amorphous powders were prepared by wet MA. • Amorphisation of the alloy is reached after 40 h of wet MA for any composition. • Magnetisation decrease upon increasing milling time. • Substituting 5% Zr/Ti for Si increases significantly the alloy's thermal stability. • Substitution of 5 at. % Zr/Ti for Si increases the saturation magnetisation by 20%.

  18. Thermal stability and glass-forming ability of amorphous Nd-Al-TM (TM=Fe, Co, Ni or Cu) alloys

    International Nuclear Information System (INIS)

    Inoue, A.; Zhang Tao

    1997-01-01

    Bulk amorphous alloys were prepared for Nd 70 Al 10 TM 20 and Nd 60 Al 10 TM 30 (TM=Fe or Co) alloys by copper mold casting. The maximum sample thickness for glass formation reaches 15 mm for the Nd-Al-Fe alloys and 5 mm for the Nd-Al-Co alloys. A significant difference in the phase transition upon heating is recognized between the Fe- and Co-containing alloys. No glass transition before crystallization is observed for the Nd-Al-Fe alloys, but the Nd-Al-Co alloys exhibit the glass transition. The ΔT x (=T x -T g ) and T g /T m are 40-55 K and 0.65-0.67, respectively, for the latter alloys. The absence of supercooled liquid for the former alloys is different from those for all bulk amorphous alloys reported up to date. The T x /T m and ΔT m (=T m -T x ) are 0.85-0.89 and 88-137 K, respectively, for the Nd-Al-Fe alloys and, hence, the large glass-forming ability is presumably due to the high T x /T m and small ΔT m values. (orig.)

  19. Effect of Mo-Fe substitution on glass forming ability, thermal stability, and hardness of Fe-C-B-Mo-Cr-W bulk amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, Hesham E.; Cheney, Justin L. [University of California, San Diego Materials Science and Engineering Program, 9500 Gilman Drive, La Jolla, CA 92093-0411 (United States); Vecchio, Kenneth S. [University of California, San Diego Department of NanoEngineering, 9500 Gilman Drive, La Jolla, CA 92093-0411 (United States)], E-mail: kvecchio@ucsd.edu

    2008-08-25

    Amorphous Fe{sub 67-x}C{sub 10}B{sub 9}Mo{sub 7+x}Cr{sub 4}W{sub 3} (x = 1-7 at.%) plates with 640 {mu}m thickness were prepared by copper mold casting. The thermal properties and microstructural development during heat treatments were investigated by a combination of differential scanning calorimetry (DSC), differential thermal analysis, and X-ray diffractometry (XRD). The glass forming ability (GFA) and activation energy for crystallization have a distinct dependence on Mo content. Fe{sub 62}C{sub 10}B{sub 9}Mo{sub 12}Cr{sub 4}W{sub 3} is the best glass former in this study, demonstrating a supercooled liquid region, {delta}T{sub x} = 51 K, and an activation energy for crystallization, Q = 453 kJ/mol. The GFA of alloys in this system was governed by elastic strain optimization resulting directly from the variation in Mo content. Heat treatments were performed to demonstrate resistance to crystallization under typical processing conditions. Alloys in this system exhibited a three-phase evolution during crystallization. A second set of heat treatments was performed to identify each phase. Hardness data was collected at each of the heat treatment conditions, and a bulk metallic glasses (BMG)-derived composite containing a Mo-rich phase exhibited Vickers Hardness in excess of 2000. The fully amorphous alloys had an average hardness approaching 1500.

  20. Amorphous metal composites

    International Nuclear Information System (INIS)

    Byrne, M.A.; Lupinski, J.H.

    1984-01-01

    This patent discloses an improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite

  1. Application of Vibrational Spectroscopy Supported by Theoretical Calculations in Identification of Amorphous and Crystalline Forms of Cefuroxime Axetil

    Directory of Open Access Journals (Sweden)

    Alicja Talaczyńska

    2015-01-01

    Full Text Available FT-IR and Raman scattering spectra of cefuroxime axetil were proposed for identification studies of its crystalline and amorphous forms. An analysis of experimental spectra was supported by quantum-chemical calculations performed with the use of B3LYP functional and 6-31G(d,p as a basis set. The geometric structure of a cefuroxime axetil molecule, HOMO and LUMO orbitals, and molecular electrostatic potential were also determined by using DFT (density functional theory. The benefits of applying FT-IR and Raman scattering spectroscopy for characterization of drug subjected to degradation were discussed.

  2. Preparation and characterization of Fe-based bulk metallic glasses in plate form

    International Nuclear Information System (INIS)

    Lavorato, G.C.; Fiore, G.; Castellero, A.; Baricco, M.; Moya, J.A.

    2012-01-01

    Amorphous alloys with composition (at%) Fe 48 Cr 15 Mo 14 C 15 B 6 Gd 2 (alloy A) and Fe 48 Cr 15 Mo 14 C 15 B 6 Y 2 (alloy B) were prepared either using pure elements (A and B1) and a commercial AISI430 steel as a base material (B2). When prepared from pure elements both alloys (A and B1) could be cast in plate form with a fixed thickness of 2 mm and variable lengths between 10 and 20 mm by means of copper-mold injection in air atmosphere. In the case of alloy B2, prepared using commercial grade raw materials, rods of 2 mm diameter were obtained. X-ray diffraction and scanning electron microscopy observations confirmed that an amorphous structure was obtained in all the as-cast samples. A minor fraction of crystalline phases (oxides and carbides) was detected on the as-cast surface. Differential scanning calorimetry measurements showed a glass transition temperature at 856 K for alloy A and 841 K for alloy B1, and an onset crystallization temperature of 887 K for alloy A and 885 K for alloy B1. In the case of alloy B2 a slightly different crystallization sequence was observed. Values of hardness (∼13 GPa) and the Young modulus (∼180 GPa) were measured by nanoindentation for both the alloys. The effects of adverse casting conditions (such as air atmosphere, non-conventional injection copper mold casting and partial replacement of pure elements with commercial grade raw materials) on the glass formation and properties of the alloy are discussed.

  3. Preparation and characterization of Fe-based bulk metallic glasses in plate form

    Energy Technology Data Exchange (ETDEWEB)

    Lavorato, G.C. [INTECIN (FIUBA-CONICET), Paseo Colon 850, Capital Federal (Argentina); Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Fiore, G.; Castellero, A.; Baricco, M. [Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Moya, J.A., E-mail: jmoya.fi.uba@gmail.com [IESIING, Facultad de Ingenieria e Informatica, UCASAL, Salta (Argentina); CONICET (Argentina)

    2012-08-15

    Amorphous alloys with composition (at%) Fe{sub 48}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Gd{sub 2} (alloy A) and Fe{sub 48}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Y{sub 2} (alloy B) were prepared either using pure elements (A and B1) and a commercial AISI430 steel as a base material (B2). When prepared from pure elements both alloys (A and B1) could be cast in plate form with a fixed thickness of 2 mm and variable lengths between 10 and 20 mm by means of copper-mold injection in air atmosphere. In the case of alloy B2, prepared using commercial grade raw materials, rods of 2 mm diameter were obtained. X-ray diffraction and scanning electron microscopy observations confirmed that an amorphous structure was obtained in all the as-cast samples. A minor fraction of crystalline phases (oxides and carbides) was detected on the as-cast surface. Differential scanning calorimetry measurements showed a glass transition temperature at 856 K for alloy A and 841 K for alloy B1, and an onset crystallization temperature of 887 K for alloy A and 885 K for alloy B1. In the case of alloy B2 a slightly different crystallization sequence was observed. Values of hardness ({approx}13 GPa) and the Young modulus ({approx}180 GPa) were measured by nanoindentation for both the alloys. The effects of adverse casting conditions (such as air atmosphere, non-conventional injection copper mold casting and partial replacement of pure elements with commercial grade raw materials) on the glass formation and properties of the alloy are discussed.

  4. A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Shen, J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: junshen@hit.edu.cn; Sun, J.F. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yu, X.B. [Lab of Energy Science and Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)]. E-mail: yuxuebin@hotmail.com

    2007-01-16

    The effect of Sn substitution for Cu on the glass-forming ability was investigated in Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 42.5-x}Ni{sub 7.5}Si{sub 1}Sn {sub x} (x = 0, 1, 3, 5, 7) alloys by using differential scanning calorimetry (DSC) and X-ray diffractometry. The alloy containing 5% Sn shows the highest glass-forming ability (GFA) among the Ti-Zr-Hf-Cu-Ni-Si-Sn system. Fully amorphous rod sample with diameters up to 6 mm could be successfully fabricated by the copper mold casting Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} alloy. The activation energies for glass transition and crystallization for Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} amorphous alloy are both larger than those values for the Sn-free alloy. The enhancement in GFA and thermal stability after the partial replacement of Cu by Sn may be contributed to the strong atomic bonding nature between Ti and Sn and the increasing of atomic packing density. The amorphous Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} alloy also possesses superior mechanical properties.

  5. EXPERIMENTAL INVESTIGATION OF THE ORTHO/PARA RATIO OF NEWLY FORMED MOLECULAR HYDROGEN ON AMORPHOUS SOLID WATER

    Energy Technology Data Exchange (ETDEWEB)

    Gavilan, L.; Lemaire, J. L.; Dulieu, F.; Congiu, E.; Chaabouni, H. [LERMA, UMR 8112 du CNRS, de l' Observatoire de Paris et de l' Universite de Cergy Pontoise, 5 mail Gay Lussac, F-95000 Cergy Pontoise Cedex (France); Vidali, G. [Visiting Professor. Permanent address: Physics Department, Syracuse University, Syracuse, NY 13244-1320 (United States); Chehrouri, M. [Permanent address: LEPC Universite de Saida, BP138, ENSAR, 20002 Saida (Algeria); Fillion, J.-H., E-mail: lisseth.gavilan@obspm.fr [Permanent address: LPMAA, UMR 7092, Universite Pierre et Marie Curie, F-75252 Paris Cedex 05 (France)

    2012-11-20

    Several astronomical observations have shown that the ortho/para ratio (OPR) of H{sub 2} can differ from the expected statistical value of 3 or the local thermodynamic equilibrium (LTE) value at the gas or dust temperature. It is thus important to know the OPR of H{sub 2} newly formed on dust grain surfaces, in order to clarify the dependence of the observed OPR in space on the formation process. Using an experimental setup designed to mimic interstellar medium environments, we measured the OPR of H{sub 2} and D{sub 2} formed on the surface of porous amorphous water ice held at 10 K. We report for the first time the OPR value for newly formed D{sub 2}, consistent with the expected LTE value at the high-temperature limit found by previous theoretical and experimental works on the determination of the OPR upon H{sub 2} formation on surfaces at low temperature.

  6. EXPERIMENTAL INVESTIGATION OF THE ORTHO/PARA RATIO OF NEWLY FORMED MOLECULAR HYDROGEN ON AMORPHOUS SOLID WATER

    International Nuclear Information System (INIS)

    Gavilan, L.; Lemaire, J. L.; Dulieu, F.; Congiu, E.; Chaabouni, H.; Vidali, G.; Chehrouri, M.; Fillion, J.-H.

    2012-01-01

    Several astronomical observations have shown that the ortho/para ratio (OPR) of H 2 can differ from the expected statistical value of 3 or the local thermodynamic equilibrium (LTE) value at the gas or dust temperature. It is thus important to know the OPR of H 2 newly formed on dust grain surfaces, in order to clarify the dependence of the observed OPR in space on the formation process. Using an experimental setup designed to mimic interstellar medium environments, we measured the OPR of H 2 and D 2 formed on the surface of porous amorphous water ice held at 10 K. We report for the first time the OPR value for newly formed D 2 , consistent with the expected LTE value at the high-temperature limit found by previous theoretical and experimental works on the determination of the OPR upon H 2 formation on surfaces at low temperature.

  7. Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique

    International Nuclear Information System (INIS)

    Abdel Rafea, M; Roushdy, N

    2009-01-01

    Amorphous copper oxide films were deposited using the SILAR technique. Both Cu 2 O and CuO crystallographic phases exist in deposited and annealed films. Crystallization and growth processes by annealing at temperatures up to 823 K form grains with nano- and micro-spherical shapes. The calculated crystallite size from the XRD measurement was found to be in the range 14-21 nm while nano-spheres in the diameter range 50-100 nm were observed by SEM micrographs. The band gap for amorphous film was found to be 2.3 eV which increased slowly to 2.4 eV by annealing the film at 373 K. This was explained by defect redistribution in amorphous films. Annealing in the temperature range 373-673 K decreased the band gap gradually to 1.85 eV. The decrease of the band gap with annealing temperature in the range 373-673 K agrees well with the Brus model of the energy gap confinement effect in nanostructured semiconducting materials. Annealing in the temperature range 673-823 K decreases the band gap slowly to 1.7 eV due to the smaller contribution of the confinement effect. Below 573 K, Cu 2 O is the most probable crystalline phase in the film, while Cu 2 O and CuO crystalline phases may coexist at annealing temperatures above 573 K due to further oxidation of Cu 2 O. A wider transmittance spectral window in the visible region was obtained by controlling the annealing conditions of the amorphous copper oxide film and its applicability to the window layer of solar cell was suggested.

  8. Preparation, mechanical strengths, and thermal stability of Ni-Si-B and Ni-P-B amorphous wires

    International Nuclear Information System (INIS)

    Inoue, A.; Furukawa, S.; Hagiwara, M.; Masumoto, T.

    1987-01-01

    Ni-based amorphous wires with good bending ductility have been prepared for Ni/sub 75/Si/sub 8/B/sub 17/ and Ni/sub 78/P/sub 12/B/sub 10/ alloys containing 1 to 2 at. pct Al or Zr by melt spinning in rotating water. The enhancement of the wire-formation tendency by the addition of Al has been clarified to be due to the increase in the stability of the melt jet through the formation of a thin Al/sub 2/O/sub 3/ film on the outer surface. The maximum wire diameter is about 190 to 200 μm for the Ni-Si (or P)-B-Al alloys and increases to about 250 μm for the Ni-Si-B-Al-Cr alloys containing 4 to 6 at. pct Cr. The tensile fracture strength and fracture elongation are 2730 MPa and 2.9 pct for (N/sub 0.75/Si/sub 0.08/B/sub 0.17/)/sub 99/Al/sub 1/ wire and 2170 MPa and 2.4 pct for (Ni/sub 0.78/P/sub 0.12/B/sub 0.1/)/sub 99/Al/sub 1/ wire. These wires exhibit a fatigue limit under dynamic bending strain in air with a relative humidity of 65 pct; this limit is 0.50 pct for a NiSi-B-Al wire, which is higher by 0.15 pct than that of a Fe/sub 75/Si/sub 10/B/sub 15/ amorphous wire. Furthermore, the Ni-base wires do not fracture during a 180-deg bending even for a sample annealed at temperatures just below the crystallization temperature, in sharp contrast to high embrittlement tendency for Fe-base amorphous alloys. Thus, the Ni-based amorphous wires have been shown to be an attractive material similar to Fe- and Co-based amorphous wires because of its high static and dynamic strength, high ductility, high stability to thermal embrittlement, and good corrosion resistance

  9. Preparation and utilization of amorphous siliceous materials from serpentine (Mg3Si2O5(OH)4) by acid treatment; Jamonseki no kofuka kachika ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-30

    Concerning the conversion of serpentine, not only its magnesium component but also silica component, into industrial materials, conditions suitable for the production of porous materials and amorphous silica by acid treatment were evaluated, and the properties of the products were evaluated. The silica resulting from the acid treatment of serpentine comes out in different forms, each reflecting the structure of the parent rock, that is, an amorphous mass of planar particles from antigorite and a fascicular mass of filaments from chrysotile. A microporic structure resulted when a small quantity of magnesium was allowed to remain in the skeleton structure and acid treatment conditions were properly adjusted. Several siliceous compounds were prepared for the purpose of finding use for silica from this rock, and then it was found that high-efficiency production of high-crystallinity compounds was possible and that they were furnished with properties fit for use as materials. Furthermore, study was made about the kaolinite reaction in which serpentine would be directly converted into useful materials. 105 refs., 55 figs., 6 tabs.

  10. Ion implantation into amorphous Si layers to form carrier-selective contacts for Si solar cells

    International Nuclear Information System (INIS)

    Feldmann, Frank; Mueller, Ralph; Reichel, Christian; Hermle, Martin

    2014-01-01

    This paper reports our findings on the boron and phosphorus doping of very thin amorphous silicon layers by low energy ion implantation. These doped layers are implemented into a so-called tunnel oxide passivated contact structure for Si solar cells. They act as carrier-selective contacts and, thereby, lead to a significant reduction of the cell's recombination current. In this paper we address the influence of ion energy and ion dose in conjunction with the obligatory high-temperature anneal needed for the realization of the passivation quality of the carrier-selective contacts. The good results on the phosphorus-doped (implied V oc = 725 mV) and boron-doped passivated contacts (iV oc = 694 mV) open a promising route to a simplified interdigitated back contact (IBC) solar cell featuring passivated contacts. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Mechanochemical treatment of amorphous carbon from brown sphagnum moss for the preparation of carbon nanotubes

    International Nuclear Information System (INIS)

    Onishchenko, D.V.

    2013-01-01

    Under consideration is the mechanism of multiwalled nanotubes formation during mechanical activation of amorphous carbon synthesized by pyrolysis of sphagnum moss. The formation of nanotubes has been shown to take place in the array of carbon particles. A complex study of the sorption characteristics of carbon nanotubes has been carried out. The dependence of the sorption capacity of carbon nanotubes on their storage time, as well as the effect of the process parameters of nanotubes formation on their ability for oxidative modification, is represented. (authors)

  12. Study of some structural properties of hydrogenated amorphous silicon thin films prepared by radiofrequency cathodic sputtering

    International Nuclear Information System (INIS)

    Mellassi, K.; Chafik El Idrissi, M.; Barhdadi, A.

    2001-08-01

    In this work, we have used the grazing X-rays reflectometry technique to characterise hydrogenated amorphous silicon thin films deposited by radio-frequency cathodic sputtering. Relfectometry measurements are taken immediately after films deposition as well as after having naturally oxidised their surfaces during a more or less prolonged stay in the ambient. For the films examined just after deposition, the role of hydrogen appears in the increase of their density. For those analysed after a short stay in the ambient, hydrogen plays a protective role against the oxidation of their surfaces. This role disappears when the stay in the ambient is so long. (author)

  13. Induced nano-scale self-formed metal-oxide interlayer in amorphous silicon tin oxide thin film transistors.

    Science.gov (United States)

    Liu, Xianzhe; Xu, Hua; Ning, Honglong; Lu, Kuankuan; Zhang, Hongke; Zhang, Xiaochen; Yao, Rihui; Fang, Zhiqiang; Lu, Xubing; Peng, Junbiao

    2018-03-07

    Amorphous Silicon-Tin-Oxide thin film transistors (a-STO TFTs) with Mo source/drain electrodes were fabricated. The introduction of a ~8 nm MoO x interlayer between Mo electrodes and a-STO improved the electron injection in a-STO TFT. Mo adjacent to the a-STO semiconductor mainly gets oxygen atoms from the oxygen-rich surface of a-STO film to form MoO x interlayer. The self-formed MoO x interlayer acting as an efficient interface modification layer could conduce to the stepwise internal transport barrier formation while blocking Mo atoms diffuse into a-STO layer, which would contribute to the formation of ohmic contact between Mo and a-STO film. It can effectively improve device performance, reduce cost and save energy for the realization of large-area display with high resolution in future.

  14. Nonculturable forms of bacteria in lyophilized probiotic preparations

    OpenAIRE

    Larisa Blinkova; Danik Martirosyan; Yury Pakhomov; Olga Dmitrieva; Rachel Vaughan; Michael Altshuler

    2014-01-01

    Background: Nonculturable cells are formed under stress. These viable but nonculturable (VBNC) cells retain the ability to revert to active growth and division when conditions become favorable, or after treatment with resuscitating factors. Information about the possible presence of VBNC in bacterial lyophilized probiotic preparations, foodstuffs, live vaccines, etc., indicates that human as well as animal intestines are a significant area for research. Methods: Samples were...

  15. EBSD analysis of polysilicon films formed by aluminium induced crystallization of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Tuezuen, O. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France)], E-mail: Ozge.Tuzun@iness.c-strasbourg.fr; Auger, J.M. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France); SMS Centre, UMR CNRS 5146, Ecole des Mines de Saint Etienne, 158 Cours Fauriel, 42023 Saint Etienne Cedex 2 (France); Gordon, I. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Focsa, A.; Montgomery, P.C. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France); Maurice, C. [SMS Centre, UMR CNRS 5146, Ecole des Mines de Saint Etienne, 158 Cours Fauriel, 42023 Saint Etienne Cedex 2 (France); Slaoui, A. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France); Beaucarne, G.; Poortmans, J. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2008-08-30

    Among the methods for enlarging the grain size of polycrystalline silicon (poly-Si) thin films, aluminium induced crystallization (AIC) of amorphous silicon is considered to be a very promising approach. In the AIC process, a thin a-Si layer on top of an aluminium layer crystallizes at temperatures well below the eutectic temperature of the Al/Si system (T{sub eu} = 577 deg. C). By means of electron backscattering diffraction (EBSD), we have mainly studied the effect of the aluminium layer quality varying the deposition system on the grain size, the defects and the preferential crystallographic orientation. We have found a strong correlation between the mean grain size and the size distribution with the Al deposition system and the surface quality. Furthermore, we show for the first time that more than 50% of the surface of the AIC films grown on alumina substrates are (103) preferentially oriented, instead of the commonly observed (100) preferential orientation. This may have important consequences for epitaxial thickening of the AIC layer into polysilicon absorber layers for solar cells.

  16. Structural morphology of amorphous conducting carbon film

    Indian Academy of Sciences (India)

    Unknown

    moves from low preparation temperature to high preparation temperature. The amorphous .... nm and the interac- tion between the pi-electron clouds of the two layers re- .... sp2 configuration forms to minimize stress and making. C900 films ...

  17. Preparation and characterization of amorphous manganese sulfide thin films by SILAR method

    International Nuclear Information System (INIS)

    Pathan, H.M.; Kale, S.S.; Lokhande, C.D.; Han, Sung-Hwan; Joo, Oh-Shim

    2007-01-01

    Manganese sulfide thin films were deposited by a simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method using manganese acetate as a manganese and sodium sulfide as sulfide ion sources, respectively. Manganese sulfide films were characterized for their structural, surface morphological and optical properties by means of X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and optical absorption measurement techniques. The as-deposited film on glass substrate was amorphous. The optical band gap of the film was found to be thickness dependent. As thickness increases optical band gap was found to be increase. The water angle contact was found to be 34 o , suggesting hydrophilic nature of manganese sulfide thin films. The presence of Mn and S in thin film was confirmed by energy dispersive X-ray analysis

  18. Amorphous ITO thin films prepared by DC sputtering for electrochromic applications

    International Nuclear Information System (INIS)

    Teixeira, V.; Cui, H.N.; Meng, L.J.; Fortunato, E.; Martins, R.

    2002-01-01

    Indium-Tin-Oxide (ITO) thin films were deposited on glass substrates using DC magnetron reactive sputtering at different bias voltages and substrate temperatures. Some improvements were obtained on film properties, microstructure and other physical characteristics for different conditions. Amorphous and polycrystalline films can be obtained for various deposition conditions. The transmission, absorption, spectral and diffuse reflection of ITO films were measured in some ranges of UV-Vis-NIR. The refractive index (n), Energy band gap E g and the surface roughness of the film were derived from the measured spectra data. The carrier density (n c ) and the carrier mobility (μ) of the film micro conductive properties were discussed. The films exhibited suitable optical transmittance and conductivity for electrochromic applications

  19. Lubricating coating prepared by PIIID on a forming tool

    International Nuclear Information System (INIS)

    Martinatti, J F; Durrant, S F; Cruz, N C; Rangel, E C; Santos, L V

    2012-01-01

    In this work, the performance of a-C:H films produced by the hybrid Plasma Immersion Ion Implantation and Deposition technique as lubricating layers for a steel forming tool has been investigated. Hardened steel (AISI M2, 64 HRC) plates coated with a commercial TiN layer were used as substrates and the films were deposited in a vacuum chamber fitted with two parallel-plate electrodes. The discharges were generated in atmospheres composed of 91% C 2 H 2 and 9% Ar by the application of radiofrequency power (13.56 MHz, 100 W) to the upper electrode while the lower one, also used as the sample holder, was biased with high voltage negative pulses (3.6 kV, 30 μs, 300 Hz). A deposition time of 840 s was used. The effects of the gas pressure, p, on thickness, molecular structure, wettability, surface morphology and topography, hardness and friction coefficient of the films were investigated. Film thickness increased from 0.3 to 0.5 μm when p was increased from 2.7 to 16.5 Pa. Generally, the films were slightly hydrophilic, with contact angles of around 84°, and the deposition decreased the roughness of the steel. A polymer-like structure was detected in high pressure depositions and an amorphous carbon structure derived from the low pressure procedures. Hardness decreased from 8.2 to 7.0 GPa with increasing p. Improvement in tribological performance was indicated by the fall in the friction coefficient from 0.5 to 0.2 as the deposition pressure was reduced. Operating at the latter value (of μ) would lead to a significant reduction in wear and hence to significant economy in diverse industrial applications.

  20. Nanofibrous solid dosage form of living bacteria prepared by electrospinning

    Directory of Open Access Journals (Sweden)

    I. Wagner

    2014-05-01

    Full Text Available The aim of this work was to investigate the suitability of electrospinning for biodrug delivery and to develop an electrospinning-based method to produce vaginal drug delivery systems. Lactobacillus acidophilus bacteria were encapsulated into nanofibers of three different polymers (polyvinyl alcohol and polyvinylpyrrolidone with two different molar masses. Shelf life of the bacteria could be enhanced by the exclusion of water and by preparing a solid dosage form, which is an advantageous and patient-friendly way of administration. The formulations were stored at –20, 7 and 25°C, respectively. Viability testing showed that the nanofibers can provide long term stability for huge amounts of living bacteria if they are kept at (or below 7°C. Furthermore, all kinds of nanowebs prepared in this work dissolved instantly when they got in contact with water, thus the developed biohybrid nanowebs can provide new potential ways for curing bacterial vaginosis.

  1. High Dehumidification Performance of Amorphous Cellulose Composite Membranes prepared from Trimethylsilyl Cellulose

    KAUST Repository

    Puspasari, Tiara; Akhtar, Faheem Hassan; Ogieglo, Wojciech; Alharbi, Ohoud; Peinemann, Klaus-Viktor

    2018-01-01

    Cellulose is widely regarded as an environmentally friendly, natural and low cost material which can significantly contribute the sustainable economic growth. In this study, cellulose composite membranes were prepared via regeneration

  2. Density and glass forming ability in amorphous atomic alloys: The role of the particle softness

    International Nuclear Information System (INIS)

    Douglass, Ian; Hudson, Toby; Harrowell, Peter

    2016-01-01

    A key property of glass forming alloys, the anomalously small volume difference with respect to the crystal, is shown to arise as a direct consequence of the soft repulsive potentials between metals. This feature of the inter-atomic potential is demonstrated to be responsible for a significant component of the glass forming ability of alloys due to the decrease in the enthalpy of fusion and the associated depression of the freezing point.

  3. Density and glass forming ability in amorphous atomic alloys: The role of the particle softness

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, Ian; Hudson, Toby; Harrowell, Peter [School of Chemistry, University of Sydney, Sydney, NSW (Australia)

    2016-04-14

    A key property of glass forming alloys, the anomalously small volume difference with respect to the crystal, is shown to arise as a direct consequence of the soft repulsive potentials between metals. This feature of the inter-atomic potential is demonstrated to be responsible for a significant component of the glass forming ability of alloys due to the decrease in the enthalpy of fusion and the associated depression of the freezing point.

  4. Resilient Amorphous Networks Prepared by Photo-Crosslinking High-Molecular-Weight D,L-Lactide and Trimethylene Carbonate Macromers: Mechanical Properties and Shape-Memory Behavior

    NARCIS (Netherlands)

    Sharifi, Shahriar; Grijpma, Dirk W.

    2012-01-01

    Tough networks are prepared by photo-crosslinking high-molecular-weight DLLA and TMC macromers. These amorphous networks exhibit tunable thermal and mechanical properties and have excellent shape-memory features. Variation of the monomer ratio allows adjustment of Tg between approximately −13 and

  5. One-step liquid phase chemical method to prepare carbon-based amorphous molybdenum sulfides: As the effective hydrogen evolution reaction catalysts

    International Nuclear Information System (INIS)

    Guo, Mengmeng; Wu, Qikang; Yu, Miaomiao; Wang, Yinling; Li, Maoguo

    2017-01-01

    Two different kinds of carbon-based amorphous molybdenum sulfide composite catalysts (activated carbon supported amorphous molybdenum sulfide and acetylene black supported amorphous molybdenum sulfide) had been prepared in a facile and scalable one-step liquid phase chemical method. The morphological and structural information of catalysts was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-Ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and it’s electro-catalytic HER activity were evaluated by linear sweep voltammetry(LSV), amperometric i-t technology and AC impedance technology. The as-prepared carbon-based amorphous molybdenum sulfides showed greatly enhanced electro-catalytic activity for HER compared with pure amorphous molybdenum sulfides. Especially, the nano-sized acetylene black supported molybdenum sulfide exhibited excellent electro-catalytic HER performances with a low onset potential of −116 mV versus reverse hydrogen electrode (RHE) and a small Tafel slope of 51 mV per decade.

  6. PREPARATION AND MAGNETIC-PROPERTIES OF AMORPHOUS FE1-XBX (15-LESS-THAN-OR-EQUAL-TO X LESS-THAN-40 ATMOSPHERIC PERCENT) ALLOY PARTICLES

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, S.

    1992-01-01

    Amorphous Fe1-xBx alloy particles have been prepared in aqueous solutions by reduction of Fe2+ ions to the metallic state by the use of NaBH4. It is demonstrated, that by changing the pH of the aqueous metal ion solution the amount of boron incorporated in the alloy particles can be varied between...... 15 and 28 at.%. Fe-57 Mossbauer spectra have been obtained at 10, 80 and 295 K. The hyperfine parameters for amorphous particles have been found to be similar to those found for ribbons and films prepared by the liquid-quench and sputtering techniques, respectively, though with a tendency...... for the magnetic hyperfine fields for the chemically prepared and sputter prepared alloys to deviate slightly from those for melt-spun samples. The magnetic hyperfine fields decrease linearly as a function of T3/2....

  7. TDP-43 inclusion bodies formed in bacteria are structurally amorphous, non-amyloid and inherently toxic to neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Claudia Capitini

    Full Text Available Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Such inclusions have variably been described as amorphous aggregates or more structured deposits having an amyloid structure. Following the observations that bacterial inclusion bodies generally consist of amyloid aggregates, we have overexpressed full-length TDP-43 and C-terminal TDP-43 in E. coli, purified the resulting full-length and C-terminal TDP-43 containing inclusion bodies (FL and Ct TDP-43 IBs and subjected them to biophysical analyses to assess their structure/morphology. We show that both FL and Ct TDP-43 aggregates contained in the bacterial IBs do not bind amyloid dyes such as thioflavin T and Congo red, possess a disordered secondary structure, as inferred using circular dichroism and infrared spectroscopies, and are susceptible to proteinase K digestion, thus possessing none of the hallmarks for amyloid. Moreover, atomic force microscopy revealed an irregular structure for both types of TDP-43 IBs and confirmed the absence of amyloid-like species after proteinase K treatment. Cell biology experiments showed that FL TDP-43 IBs were able to impair the viability of cultured neuroblastoma cells when added to their extracellular medium and, more markedly, when transfected into their cytosol, where they are at least in part ubiquitinated and phosphorylated. These data reveal an inherently high propensity of TDP-43 to form amorphous aggregates, which possess, however, an inherently high ability to cause cell dysfunction. This indicates that a gain of toxic function caused by TDP-43 deposits is effective in TDP-43 pathologies, in addition to possible loss of function mechanisms originating from the cellular mistrafficking of the protein.

  8. Preparation and characterization of Zr-based bulk metallic glasses in form of plate

    International Nuclear Information System (INIS)

    Pilarczyk, Wirginia

    2014-01-01

    Highlights: • Zr-based BMGs in form of plate was successful produced by die pressure casting method. • Many techniques have been used to characterize the structure of Zr 55 Cu 30 Ni 5 Al 10 alloy. • The calculated GFA parameters show that the alloy exhibits satisfactory GFA. • The studies reveal that tested as-cast Zr-based alloy is in amorphous state. - Abstract: Zr-based bulk metallic glasses present an interesting combination of physical, chemical and mechanical properties. During the last decade, intensive progress has been made and a number of applications have been suggested for these materials. In order to successfully apply these materials, it is necessary to accurately characterize their structure, thermal stability and other properties accurately. The aim of the presented work is the manufacturing, examination of the structure of selected Zr-based bulk metallic alloys and confirmation of an amorphous structure using X-ray analysis, microscopic observation and thermal analysis. In this work, the Zr-based bulk metallic glasses in form of plate was successful produced by die pressure casting method. Designed scientific station for casting zirconium based amorphous alloys in the form of plates and rods with selected dimensions is in our university a comprehensive method for achieving amorphous materials which enables us to maintain repeatability of as-cast samples with the amorphous structure and the assumed dimensions range. The diffraction pattern and exothermic reaction as well as the fracture surface morphology reveal that studied as-cast Zr-based alloy is in amorphous state. The calculated GFA parameters show that the alloy exhibits satisfactory glass-forming ability in form of studied plate. These obtained values can suggest that studied alloys are suitable materials for further planned practical application at welding process. The success of Zr-based bulk metallic glasses production in form of plate with obtained sizes is important for future

  9. Glass forming ability of amorphous drugs investigated by continuous cooling- and isothermal transformation

    DEFF Research Database (Denmark)

    Blaabjerg, Lasse Ingerslev; Lindenberg, Eleanor; Löbmann, Korbinian

    2016-01-01

    /min). Thus, the glass forming ability can be predicted by the use of TTT diagrams. In contrast to TTT diagrams, CCT diagrams may not be suitable for small organic molecules due to poor separation of exothermic events, which makes it difficult to determine the zone of recrystallization. In conclusion...

  10. Preparation, characterization, drug release and computational modelling studies of antibiotics loaded amorphous chitin nanoparticles.

    Science.gov (United States)

    Gayathri, N K; Aparna, V; Maya, S; Biswas, Raja; Jayakumar, R; Mohan, C Gopi

    2017-12-01

    We present a computational investigation of binding affinity of different types of drugs with chitin nanocarriers. Understanding the chitn polymer-drug interaction is important to design and optimize the chitin based drug delivery systems. The binding affinity of three different types of anti-bacterial drugs Ethionamide (ETA) Methacycline (MET) and Rifampicin (RIF) with amorphous chitin nanoparticles (AC-NPs) were studied by integrating computational and experimental techniques. The binding energies (BE) of hydrophobic ETA, hydrophilic MET and hydrophobic RIF were -7.3kcal/mol, -5.1kcal/mol and -8.1kcal/mol respectively, with respect to AC-NPs, using molecular docking studies. This theoretical result was in good correlation with the experimental studies of AC-drug loading and drug entrapment efficiencies of MET (3.5±0.1 and 25± 2%), ETA (5.6±0.02 and 45±4%) and RIF (8.9±0.20 and 53±5%) drugs respectively. Stability studies of the drug encapsulated nanoparticles showed stable values of size, zeta and polydispersity index at 6°C temperature. The correlation between computational BE and experimental drug entrapment efficiencies of RIF, ETA and MET drugs with four AC-NPs strands were 0.999 respectively, while that of the drug loading efficiencies were 0.854 respectively. Further, the molecular docking results predict the atomic level details derived from the electrostatic, hydrogen bonding and hydrophobic interactions of the drug and nanoparticle for its encapsulation and loading in the chitin-based host-guest nanosystems. The present results thus revealed the drug loading and drug delivery insights and has the potential of reducing the time and cost of processing new antibiotic drug delivery nanosystem optimization, development and discovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Poole-Frenkel behavior in amorphous oxide thin-film transistors prepared on SiOC

    International Nuclear Information System (INIS)

    Oh, Teresa

    2014-01-01

    The electron behavior in amorphous indium-gallium-zinc-oxide thin film transistors (a-IGZO TFTs) depends on the polar characteristics of SiOC, which is used as a gate dielectric. The properties of the interface between the semiconductor and SiOC were defined by using a Schottky contact with a low potential barrier and Poole-Frenkel contacts with a high potential barrier. The leakage current of SiOC, which was used as a gate insulator, decreased at the Poole-Frenkel contacts because of the high potential barrier. The ambipolar properties in the field effect transistor were observed to depend on the various characteristics of SiOC, which ranged from its behaving as an ideal insulator or as a material with a high dielectric constant. The resistance of the a-IGZO channel changed from positive to negative at SiOC, which had the lowest polarity. As to the conduction due to the diffusion current, the mobility increased with increasing carrier concentrations. However, the drift carrier conduction was related to the reduced mobility at higher carrier concentrations. The performance of the transistors was enhanced by the tunneling and the diffusion currents Rather than by the drift current caused by trapping. The Schottky contact and the Poole-Frenkel (PF) contacts at an interface between the IGZO channel and the SiOC were defined according to the heights of potential barriers caused by the depletion layer. The leakage current was very low about 10 -12 A at SiOC with PF contacts because of the height of potential barrier was double that with a Schottky contact because the tunneling conductance due to the diffusion current originated from the PF contacts of non-polar SiOC.

  12. Poole-Frenkel behavior in amorphous oxide thin-film transistors prepared on SiOC

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Teresa [Cheongju University, Cheongju (Korea, Republic of)

    2014-05-15

    The electron behavior in amorphous indium-gallium-zinc-oxide thin film transistors (a-IGZO TFTs) depends on the polar characteristics of SiOC, which is used as a gate dielectric. The properties of the interface between the semiconductor and SiOC were defined by using a Schottky contact with a low potential barrier and Poole-Frenkel contacts with a high potential barrier. The leakage current of SiOC, which was used as a gate insulator, decreased at the Poole-Frenkel contacts because of the high potential barrier. The ambipolar properties in the field effect transistor were observed to depend on the various characteristics of SiOC, which ranged from its behaving as an ideal insulator or as a material with a high dielectric constant. The resistance of the a-IGZO channel changed from positive to negative at SiOC, which had the lowest polarity. As to the conduction due to the diffusion current, the mobility increased with increasing carrier concentrations. However, the drift carrier conduction was related to the reduced mobility at higher carrier concentrations. The performance of the transistors was enhanced by the tunneling and the diffusion currents Rather than by the drift current caused by trapping. The Schottky contact and the Poole-Frenkel (PF) contacts at an interface between the IGZO channel and the SiOC were defined according to the heights of potential barriers caused by the depletion layer. The leakage current was very low about 10{sup -12} A at SiOC with PF contacts because of the height of potential barrier was double that with a Schottky contact because the tunneling conductance due to the diffusion current originated from the PF contacts of non-polar SiOC.

  13. Preparation of the electrochemically formed spinel-lithium manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Katakura, Katsumi; Wada, Kohei; Kajiki, Yoshiyuki; Yamamoto, Akiko [Department of Chemical Engineering, Nara National College of Technology, 22 Yata-cho Yamotokoriyama, Nara 639-1080 (Japan); Ogumi, Zempachi [Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2009-04-01

    Electrochemically formed spinel-lithium manganese oxides were synthesized from manganese hydroxides prepared by a cathodic electrochemical precipitation from various concentrations of manganese nitrate solutions. Two types of manganese hydroxides were formed from diluted and concentrated Mn(NO{sub 3}){sub 2} aqueous solutions. Uniform and equi-sized disk shaped Mn(OH){sub 2} crystals of 0.2-5 {mu}m in diameter were obtained on a Pt substrate after the electrochemical precipitation from lower concentration of ranging from 2 mmol dm{sup -3} to 2 mol dm{sup -3} Mn(NO{sub 3}){sub 2} aq., while the grass blade-like precipitate which is ascribed to manganese hydroxide with 20-80 {mu}m long and 1-5 {mu}m wide were formed from concentrated Mn(NO{sub 3}){sub 2} aq. Both manganese hydroxides gave the electrochemically formed spinel-LiMn{sub 2}O{sub 4} onto a Pt sheet, which is ready for electrochemical measurement, after calcination of the Li incorporated precipitate at 750 C without any additives. While the shape and size of the secondary particle frameworks (aggregates) of the electrochemically formed spinel-LiMn{sub 2}O{sub 4} can be controlled by the electrolysis conditions, the nanostructured primary crystals of 200 nm in diameter were obtained in all cases except that the fiber-like nanostructured spinel-LiMn{sub 2}O{sub 4} crystals with 200 nm in diameter were obtained from concentrated Mn(NO{sub 3}){sub 2} aq. Though these two types of electrochemically formed spinel-LiMn{sub 2}O{sub 4} showed well-shaped CVs even in higher scan rates, it would be suitable for high power density battery applications. These behaviors are assumed to be ascribed to the crystal size and shape of the processed spinel-LiMn{sub 2}O{sub 4}. (author)

  14. 19 CFR 143.24 - Preparation of Customs Form 7501 and Customs Form 368 or 368A (serially numbered).

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Preparation of Customs Form 7501 and Customs Form 368 or 368A (serially numbered). 143.24 Section 143.24 Customs Duties U.S. CUSTOMS AND BORDER... Informal Entry § 143.24 Preparation of Customs Form 7501 and Customs Form 368 or 368A (serially numbered...

  15. Nonculturable forms of bacteria in lyophilized probiotic preparations

    Directory of Open Access Journals (Sweden)

    Larisa Blinkova

    2014-02-01

    Full Text Available Background: Nonculturable cells are formed under stress. These viable but nonculturable (VBNC cells retain the ability to revert to active growth and division when conditions become favorable, or after treatment with resuscitating factors. Information about the possible presence of VBNC in bacterial lyophilized probiotic preparations, foodstuffs, live vaccines, etc., indicates that human as well as animal intestines are a significant area for research. Methods: Samples were stored for different periods of time (up to 30 years according to the manufacturers’ manuals. Total counts were conducted using the Goryaev-Thoma counting chamber and actual viability was assessed by luminescence microscopy after staining with Live/Dead® (Baclight™. CFU/ml counts were made using solid or semisolid media. Viable cells that lacked the ability to form colonies were considered VBNC. Results: We studied 11 batches of commercial probiotics (Russia from different sources, containing lyophilized E. coli, lactobacilli, or bifidobacteria, in ampoules or vials. In E. coli preparations, depending on storage periods, the amounts of VBNC varied from 4.1% (3 years to 99.7% (30 years and showed different total viability (52.2 – 91.3%, as well as the percentage of VBNC cells. A different sample that had been expired for 11 years was 79.5% NC. It is also noteworthy that the 5-dose vials, 4 years past expiration, from yet another source, showed a higher amount of VBNC cells (85.5%. Two different batches that had been expired for three years contained 4.1 and 21.3% VBNC cells. 4 of the 5-dose vials of lyophilized lactobacilli were not expired and contained 58.8 – 80.4% VBNC cells. Total viability varied from 92.9 to 100%, and there was an unmistakable positive correlation between total viability and culturability. The last batch, which had expired 6 years earlier, has 23.7% viable cells and about 98% VBNC. Nonexpired bifidobacterial samples contained 70.7 and 95.5% of

  16. Preparation of hydrogenated amorphous silicon and its characterization by transient photoconductivity

    International Nuclear Information System (INIS)

    Walker, C.M.

    1992-01-01

    Hydrogenated amorphous silicon (a-Si:H) is a semiconductor material that has generated recent widespread interest because of its low manufacturing and processing costs compared with other semiconducting materials. The performance of devices incorporating a-Si:H depends to a large extent on the photoresponse of the a-Si:H. The work in this thesis involves the construction of an a-Si:H plasma-enhanced chemical vapor deposition (PECVD) system, characterization of the quality of the a-Si:H produced by this system, and measurement of the transient photoconductivity n response to pulses of laser illumination with different durations. The relationship of the design of the PECVD system to the quality of the a-Si:H is treated, emphasizing the features included in the system to reduce the incorporation of defects in the a-Si:H layers. These features include an ultra-high-vacuum deposition chamber, a load-lock chamber enabling samples to be loaded under vacuum, and an electrode assembly designed to produce a uniform electric field for decomposing the reactant gases. The quality of the A-Si:H films is examined. The dark conductivity activation energy, optical absorption, and photoconductivity are measured to characterize intrinsic, p-doped, and n-doped a-Si:H layers. The current vs. voltage characteristics under illuminated and dark conditions, and the quantum efficiency are measured on a-Si:H p-i-n diodes made in our system, and the results show that these diodes compare favorably to similar high-quality p-i-n diodes produced at other laboratories. An investigation into the effect of the light-induced degradation associated with a-Si:H on the performance of OASLMs is also presented. Finally, the transient photoresponse to laser pulses ranging in duration from 1 μs to 1 s over a range of temperatures from 100 to 300 K is investigated. We have discovered that the response time of the initial photoconductivity decay increases as the excitation-pulse duration increases

  17. Glow discharge preparation and electrooptical characterisation of amorphous silicon alloys for solar cells. Preparacion por descarga luminiscente y caracterizacion electrooptica de aleaciones de silicio amorfo para celulas solares

    Energy Technology Data Exchange (ETDEWEB)

    Carabe, J

    1990-11-01

    A study is presented, focused on the preparation and characterisation of hydrogenated amorphous silicon alloy thin films for their application as p type window layers in pin silicon solar cells. The preparation technique used was radio frequency glow discharge. The samples were characterised optically (visible, near infrared and infrared absorption spectrophotometry) and electrically (dark and photoconductivities at ambient temperature and as functions of temperature). The influence of each of the preparation parameters on film properties has been systematically studied. The results have been analysed according to the existing models. Chapter 1 is an introduction to the material in question and its photovoltaic applications. Chapter 2 describes the experimental procedure used. Capter 3 shows and discusses the most relevant results obtained in the study of intrinsic amorphous silicon, p type amorphous silicon and p type amorphous silicon carbide window layers, with special emphasis on the influence of the use of an alternative dopant gas: boron trifluoride. Finally, chapter 4 summarises the most relevant conclusions drawn from this research work. (Author)

  18. Preparation and Characterisation of Amorphous-silicon Photovoltaic Devices Having Microcrystalline Emitters; Preparacion y Caracterizacion de Dispositivos Fotovoltaicos de Silicio Amorfo con Emisiones Microcristalinos

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, M. T.; Gandia, J. J.; Carabe, J. [CIEMAT. Madrid (Spain)

    1999-11-01

    The present work summarises the essential aspects of the research carried out so far at CIEMAT on amorphous-silicon solar cells. The experience accumulated on the preparation and characterisation of amorphous and microcrystalline silicon has allowed to start from intrinsic (absorbent) and p-and n-type (emitters) materials not only having excellent optoelectronic properties, but enjoying certain technological advantages with respect to those developed by other groups. Among these are absorbent-layer growth rates between 5 and 10 times as fast as conventional ones and microcrystalline emitters prepared without using hydrogen. The preparation of amorphous-silicon cells has required the solution of a number of problems, such as those related to pinholes, edge leak currents and diffusion of metals into the semiconductor. Once such constraints have been overcome, it has been demonstrated not only that the amorphous-silicon technology developed at CIEMAT is valid for making solar cells, but also that the quality of the semiconductor material is good for the application according to the partial results obtained. The development of thin-film laser-scribing technology is considered essential. Additionally it has been concluded that cross contamination, originated by the fact of using a single-chamber reactor, is the basic factor limiting the quality of the cells developed at CIEMAT. The present research activity is highly focused on the solution of this problem. (Author)

  19. Influence of sample preparation on the transformation of low-density to high-density amorphous ice: An explanation based on the potential energy landscape

    Science.gov (United States)

    Giovambattista, Nicolas; Starr, Francis W.; Poole, Peter H.

    2017-07-01

    Experiments and computer simulations of the transformations of amorphous ices display different behaviors depending on sample preparation methods and on the rates of change of temperature and pressure to which samples are subjected. In addition to these factors, simulation results also depend strongly on the chosen water model. Using computer simulations of the ST2 water model, we study how the sharpness of the compression-induced transition from low-density amorphous ice (LDA) to high-density amorphous ice (HDA) is influenced by the preparation of LDA. By studying LDA samples prepared using widely different procedures, we find that the sharpness of the LDA-to-HDA transformation is correlated with the depth of the initial LDA sample in the potential energy landscape (PEL), as characterized by the inherent structure energy. Our results show that the complex phenomenology of the amorphous ices reported in experiments and computer simulations can be understood and predicted in a unified way from knowledge of the PEL of the system.

  20. Design and fabrication of a mechanical alloying system for preparing intermetallic, nanocrystalline, amorphous and quasicrystalline compounds

    International Nuclear Information System (INIS)

    Bonifacio M, J.; Iturbe G, J.L.; Castaneda J, G.

    2002-01-01

    In this work a grinding system was designed and fabricated which allowed to improve the operation conditions in time, frequency, temperature and selection of the grinding media and that allow the contamination decrease of the compounds. By means of this method of mechanical alloying new metallic compounds can be produced, starting from elemental powders, with fine and controlled microstructures. These compounds prepared by this method are going to be used as materials for the hydrogen storage. (Author)

  1. Development and Characterization of an Amorphous Solid Dispersion of Furosemide in the Form of a Sublingual Bioadhesive Film to Enhance Bioavailability.

    Science.gov (United States)

    De Caro, Viviana; Ajovalasit, Alessia; Sutera, Flavia Maria; Murgia, Denise; Sabatino, Maria Antonietta; Dispenza, Clelia

    2017-06-24

    Administered by an oral route, Furosemide (FUR), a diuretic used in several edematous states and hypertension, presents bioavailability problems, reported as a consequence of an erratic gastrointestinal absorption due to various existing polymorphic forms and low and pH-dependent solubility. A mucoadhesive sublingual fast-dissolving FUR based film has been developed and evaluated in order to optimize the bioavailability of FUR by increasing solubility and guaranteeing a good dissolution reproducibility. The Differential Scanning Calorimetry (DSC) analyses confirmed that the film prepared using the solvent casting method entrapped FUR in the amorphous state. As a solid dispersion, FUR increases its solubility up to 28.36 mg/mL. Drug content, thickness, and weight uniformity of film were also evaluated. The measured Young's Modulus, yield strength, and relative elongation of break percentage (EB%) allowed for the classification of the drug-loaded film as an elastomer. Mucoadhesive strength tests showed that the force to detach film from mucosa grew exponentially with increasing contact time up to 7667 N/m². FUR was quickly discharged from the film following a trend well fitted with the Weibull kinetic model. When applied on sublingual mucosa, the new formulation produced a massive drug flux in the systemic compartment. Overall, the proposed sublingual film enhances drug solubility and absorption, allowing for the prediction of a rapid onset of action and reproducible bioavailability in its clinical application.

  2. Alumina ceramics prepared with new pore-forming agents

    Directory of Open Access Journals (Sweden)

    Zuzana Živcová

    2008-06-01

    Full Text Available Porous ceramics have a wide range of applications at all length scales, ranging from fi ltration membranes and catalyst supports to biomaterials (scaffolds for bone ingrowths and thermally or acoustically insulating bulk materials or coating layers. Organic pore-forming agents (PFAs of biological origin can be used to control porosity, pore size and pore shape. This work concerns the characterization and testing of several less common pore-forming agents (lycopodium, coffee, fl our and semolina, poppy seed, which are of potential interest from the viewpoint of size, shape or availability. The performance of these new PFAs is compared to that of starch, which has become a rather popular PFA for ceramics during the last decade. The PFAs investigated in this work are in the size range from 5 μm (rice starch to approximately 1 mm (poppy seed, all with more or less isometric shape. The burnout behavior of PFAs is studied by thermal analysis, i.e. thermogravimetry and differential thermal analysis. For the preparation of porous alumina ceramics from alumina suspensions containing PFAs traditional slip casting (into plaster molds and starch consolidation casting (using metal molds are used in this work. The resulting microstructures are investigated using optical microscopy, combined with image analysis, as well as other methods (Archimedes method of double-weighing in water, mercury intrusion porosimetry.

  3. A novel synthesis method for large area metallic amorphous/nanocrystal films by the glow-discharge plasma technique

    International Nuclear Information System (INIS)

    Xu Jiang; Xu Zhong; Tao Jie; Liu Zili; Chen Zheyuan; Zhu Wenhui

    2007-01-01

    Two large-area metallic amorphous/nanocrystal films were prepared on AZ31 magnesium alloy and pure iron substrates by the double glow-discharge plasma technique. The formation mechanism of the novel amorphous films did not follow the established empirical rules for large glass-forming ability. The amorphous films were composed of binary alloys with a difference in the atomic diameter of alloying constituents of less than 12%, and an amorphous film of pure iron was successfully obtained

  4. Rheology Guided Rational Selection of Processing Temperature To Prepare Copovidone-Nifedipine Amorphous Solid Dispersions via Hot Melt Extrusion (HME).

    Science.gov (United States)

    Yang, Fengyuan; Su, Yongchao; Zhang, Jingtao; DiNunzio, James; Leone, Anthony; Huang, Chengbin; Brown, Chad D

    2016-10-03

    The production of amorphous solid dispersions via hot melt extrusion (HME) relies on elevated temperature and prolonged residence time, which can result in potential degradation and decomposition of thermally sensitive components. Herein, the rheological properties of a physical mixture of polymer and an active pharmaceutical ingredient (API) were utilized to guide the selection of appropriate HME processing temperature. In the currently studied copovidone-nifedipine system, a critical temperature, which is substantially lower (∼13 °C) than the melting point of crystalline API, was captured during a temperature ramp examination and regarded as the critical point at which the API could molecularly dissolve into the polymer. Based on the identification of this critical point, various solid dispersions were prepared by HME processing below, at, and above the critical temperature (both below and above the melting temperature (T m ) of crystalline API). In addition, the resultant extrudates along with two control solid dispersions prepared by physical mixing and cryogenic milling were assessed by X-ray diffraction, differential scanning calorimetry, hot stage microscopy, rheology, and solid-state NMR. Physicochemical properties of resultant solid dispersions indicated that the identified critical temperature is sufficient for the polymer-API system to reach a molecular-level mixing, manifested by the transparent and smooth appearance of extrudates, the absence of API crystalline diffraction and melting peaks, dramatically decreased rheological properties, and significantly improved polymer-API miscibility. Once the critical temperature has been achieved, further raising the processing temperature only results in limited improvement of API dispersion, reflected by slightly reduced storage modulus and complex viscosity and limited improvement in miscibility.

  5. Solid phase epitaxy on N-type polysilicon films formed by aluminium induced crystallization of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Tuezuen, O., E-mail: Ozge.Tuzun@iness.c-strasbourg.f [InESS, UMR 7163 CNRS-UdS, 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France); Slaoui, A.; Roques, S.; Focsa, A. [InESS, UMR 7163 CNRS-UdS, 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France); Jomard, F.; Ballutaud, D. [GEMaC-UMR 8635 CNRS, 1 place Aristide Briand, F-92195 Meudon (France)

    2009-10-01

    In this work, undoped amorphous silicon layers were deposited on n-type AIC seed films and then annealed at different temperatures for epitaxial growth. The epitaxy was carried out using halogen lamps (rapid thermal process or RTP) or a tube conventional furnace (CTP). We investigated the morphology of the resulting 2 {mu}m thick epi-layers by means of optical microscopy. An average grain size of about 40 {mu}m is formed after 90 s annealing at 1000 {sup o}C in RTP. The stress and degree of crystallinity of the epi-layers were studied by micro-Raman Spectroscopy and UV-visible spectrometer as a function of annealing time. The presence of compressive stress is observed from the peak position which shifts from 520.0 cm{sup -1} to 521.0 cm{sup -1} and 522.3 cm{sup -1} after CTP annealing for 10 min and 90 min, respectively. It is shown that the full width at half maximum (FWHM) varies from 9.8 cm{sup -1} to 15.6 cm{sup -1}, and the magnitude of stress is changing from 325 MPa to 650 MPa. Finally, the highest crystallinity is achieved after annealing at 1000 {sup o}C for 90 min in a tube furnace exhibiting a crystalline fraction of 81.5%. X-ray diffraction technique was used to determine the preferential orientation of the poly-Si thin films formed by SPE technique on n{sup +} type AIC layer. The preferential orientation is <100> for all annealing times at 1000 {sup o}C.

  6. An investigation on hydrogen storage kinetics of nanocrystalline and amorphous Mg2Ni1-xCox (x = 0-0.4) alloy prepared by melt spinning

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Li Baowei; Ren Huipin; Ding Xiaoxia; Liu Xiaogang; Chen Lele

    2011-01-01

    Research highlights: → The investigation of the structures of the Mg 2 Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) alloys indicates that a nanocrystalline and amorphous structure can be obtained in the experiment alloys by melt spinning technology. The substitution of Co for Ni facilitates the glass formation in the Mg 2 Ni-type alloy. And the amorphization degree of the alloys visibly increases with increasing Co content. → Both the melt spinning and Co substitution significantly improve the hydrogen storage kinetics of the alloys. The hydrogen absorption saturation ratio (R t a ) and hydrogen desorption ratio (R t d ) as well as the high rate discharge ability (HRD) increase with rising spinning rate and Co content. The hydrogen diffusion coefficient (D), the Tafel polarization curves and the electrochemical impedance spectra (EIS) measurements show that the electrochemical kinetics notably increases with rising spinning rate and Co content. → Furthermore, all the as-spun alloys, when the spinning rate reaches to 30 m/s, have nearly same hydrogen absorption kinetics, indicating that the hydrogen absorption kinetics of the as-spun alloy is predominately controlled by diffusion ability of hydrogen atoms. - Abstract: In order to improve the hydrogen storage kinetics of the Mg 2 Ni-type alloys, Ni in the alloy was partially substituted by element Co, and melt-spinning technology was used for the preparation of the Mg 2 Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) hydrogen storage alloys. The structures of the as-cast and spun alloys are characterized by XRD, SEM and TEM. The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys is tested by an automatic galvanostatic system. The hydrogen diffusion coefficients in the alloys are calculated by virtue of potential-step method. The electrochemical impedance spectrums (EIS) and the Tafel

  7. Research on Zr50Al15-xNi10Cu25Yx amorphous alloys prepared by mechanical alloying with commercial pure element powders

    International Nuclear Information System (INIS)

    Long Woyun; Ouyang Xueqiong; Luo Zhiwei; Li Jing; Lu Anxian

    2011-01-01

    Amorphous Zr 50 Al 15-x Ni 10 Cu 25 Y x alloy powders were fabricated by mechanical alloying at low vacuum with commercial pure element powders. The effects on glass forming ability of Al partial substituted by Y in Zr 50 Al 15 Ni 10 Cu 25 and thermal stability of Si 3 N 4 powders addition were investigated. The as-milled powders were characterized by X-ray diffraction, scanning electron microscopy and differential scanning calorimeter. The results show that partial substitution of Al can improve the glass forming ability of Zr 50 Al 15 Ni 10 Cu 25 alloy. Minor Si 3 N 4 additions raise the crystallization activation energy of the amorphous phase and thus improve its thermal stability. -- Research Highlights: → ZrAlNiCu amorphous alloys can be synthesized by MA in low cost. → Appropriate amount of Al substituted by Y in ZrAlNiCu alloy can improve its glass forming ability. → A second phase particle addition helps to improve the thermal stability of the amorphous matrix.

  8. Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Xu, J.L.; Xiao, Q.F.; Mei, D.D.; Zhong, Z.C.; Tong, Y.X.; Zheng, Y.F.; Li, L.

    2017-01-01

    Amorphous SiO 2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the “coral reef” like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 µm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO 2 and a few amorphous Fe 2 O 3 and Nd 2 O 3 . The amorphous SiO 2 coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees. - Highlights: • Amorphous SiO 2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation. • The coatings presented excellent thermal shock resistance. • The corrosion resistance could be enhanced by one order of magnitude. • The MAO coatings slightly decreased the magnetic properties of the NdFeB samples.

  9. Preparation and characterization of amorphous SiO{sub 2} coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.L., E-mail: jlxu@nchu.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Xiao, Q.F.; Mei, D.D. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Zhong, Z.C., E-mail: zzhong2014@sina.com [The Institute for Rare Earth Magnetic Materials and Devices, Jiangxi University of Science and Technology, Ganzhou 341000 (China); Tong, Y.X. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Zheng, Y.F., E-mail: yfzheng@pku.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Li, L. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China)

    2017-03-15

    Amorphous SiO{sub 2} coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the “coral reef” like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 µm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO{sub 2} and a few amorphous Fe{sub 2}O{sub 3} and Nd{sub 2}O{sub 3}. The amorphous SiO{sub 2} coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees. - Highlights: • Amorphous SiO{sub 2} coatings were prepared on sintered NdFeB magnets by micro-arc oxidation. • The coatings presented excellent thermal shock resistance. • The corrosion resistance could be enhanced by one order of magnitude. • The MAO coatings slightly decreased the magnetic properties of the NdFeB samples.

  10. Preparation and Optimization of Amorphous Ursodeoxycholic Acid Nano-suspensions by Nanoprecipitation based on Acid-base Neutralization for Enhanced Dissolution.

    Science.gov (United States)

    Xie, Yike; Chen, Zhongjian; Su, Rui; Li, Ye; Qi, Jianping; Wu, Wei; Lu, Yi

    2017-01-01

    Ursodeoxycholic acid, usually used to dissolve cholesterol gallstones in clinic, is a typical hydrophobic drug with poor oral bioavailability due to dissolution rate-limited performance. The objective of this study was to increase the dissolution of ursodeoxycholic acid by amorphous nanosuspensions. Nanoprecipitation based on acid-base neutralization was used to prepare the nanosuspensions with central composite design to optimize the formula. The nanosuspensions were characterized by particle size, morphology, crystallology and dissolution. The ursodeoxycholic acid nanosuspensions showed mean particle size around 380 nm with polydispersion index value about 0.25. Scanning electron microscope observed high coverage of HPMC-E50 onto the surface of the nanosuspensions. Differential scanning calorimetry and powder X-ray diffractometry revealed amorphous structure of the ursodeoxycholic acid nanosuspensions. A significant increase of dissolution in acidic media was achieved by the amorphous nanosuspensions compared with the physical mixture. It can be predicted that the amorphous nanosuspensions show great potential in improving the oral bioavailability of ursodeoxycholic acid. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    Science.gov (United States)

    Xu, J. L.; Xiao, Q. F.; Mei, D. D.; Zhong, Z. C.; Tong, Y. X.; Zheng, Y. F.; Li, L.

    2017-03-01

    Amorphous SiO2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the "coral reef" like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 μm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO2 and a few amorphous Fe2O3 and Nd2O3. The amorphous SiO2 coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees.

  12. Preparation and characterization of Zr-based bulk metallic glasses in form of plate

    Energy Technology Data Exchange (ETDEWEB)

    Pilarczyk, Wirginia, E-mail: wirginia.pilarczyk@polsl.pl

    2014-12-05

    Highlights: • Zr-based BMGs in form of plate was successful produced by die pressure casting method. • Many techniques have been used to characterize the structure of Zr{sub 55}Cu{sub 30}Ni{sub 5}Al{sub 10} alloy. • The calculated GFA parameters show that the alloy exhibits satisfactory GFA. • The studies reveal that tested as-cast Zr-based alloy is in amorphous state. - Abstract: Zr-based bulk metallic glasses present an interesting combination of physical, chemical and mechanical properties. During the last decade, intensive progress has been made and a number of applications have been suggested for these materials. In order to successfully apply these materials, it is necessary to accurately characterize their structure, thermal stability and other properties accurately. The aim of the presented work is the manufacturing, examination of the structure of selected Zr-based bulk metallic alloys and confirmation of an amorphous structure using X-ray analysis, microscopic observation and thermal analysis. In this work, the Zr-based bulk metallic glasses in form of plate was successful produced by die pressure casting method. Designed scientific station for casting zirconium based amorphous alloys in the form of plates and rods with selected dimensions is in our university a comprehensive method for achieving amorphous materials which enables us to maintain repeatability of as-cast samples with the amorphous structure and the assumed dimensions range. The diffraction pattern and exothermic reaction as well as the fracture surface morphology reveal that studied as-cast Zr-based alloy is in amorphous state. The calculated GFA parameters show that the alloy exhibits satisfactory glass-forming ability in form of studied plate. These obtained values can suggest that studied alloys are suitable materials for further planned practical application at welding process. The success of Zr-based bulk metallic glasses production in form of plate with obtained sizes is

  13. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud

    2012-01-01

    Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  14. Amorphous Alloy Membranes Prepared by Melt-Spin methods for Long-Term use in Hydrogen Separation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Dhanesh; Kim, Sang-Mun; Adibhatla, Anasuya; Dolan, Michael; Paglieri, Steve; Flanagan, Ted; Chien, Wen-Ming; Talekar, Anjali; Wermer, Joseph

    2013-02-28

    Amorphous Ni-based alloy membranes show great promise as inexpensive, hydrogenselective membrane materials. In this study, we developed membranes based on nonprecious Ni-Nb-Zr alloys by adjusting the alloying content and using additives. Several studies on crystallization of the amorphous ribbons, in-situ x-ray diffraction, SEM and TEM, hydrogen permeation, hydrogen solubility, hydrogen deuterium exchange, and electrochemical studies were conducted. An important part of the study was to completely eliminate Palladium coatings of the NiNbZr alloys by hydrogen heattreatment. The amorphous alloy (Ni0.6Nb0.4)80Zr20 membrane appears to be the best with high hydrogen permeability and good thermal stability.

  15. Development of a screening method for co-amorphous formulations of drugs and amino acids

    DEFF Research Database (Denmark)

    Kasten, Georgia; Grohganz, Holger; Rades, Thomas

    2016-01-01

    Using amino acids (AA) as low molecular weight excipients in the preparation of co-amorphous blends with the aim to stabilize the drug in the amorphous form have been discussed in a range of studies. However, there is currently no theoretical consensus behind which AA would be a suitable co...

  16. Precision analysis in billet preparation for micro bulk metal forming

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans N.

    2015-01-01

    The purpose of this research is to fabricate billets for an automated transfer press for micro forming. High performance transfer presses are wellknown in conventional metal forming and distinguished from their automation and mass production. The press used in this research is a vertical mechanical...... press. When using a vertical mechanical press, the material is fed as billets into the forming zone. Therefore, a large number of highly uniform billets are required to run mass production in such a setup. Shearing technique was used for manufacturing the billets. The efficiency of the shearing tool...

  17. Photoemission studies of amorphous silicon induced by P + ion implantation

    Science.gov (United States)

    Petö, G.; Kanski, J.

    1995-12-01

    An amorphous Si layer was formed on a Si (1 0 0) surface by P + implantation at 80 keV. This layer was investigated by means of photoelectron spectroscopy. The resulting spectra are different from earlier spectra on amorphous Si prepared by e-gun evaporation or cathode sputtering. The differences consist of a decreased intensity in the spectral region corresponding to p-states, and appearace of new states at higher binding energy. Qualitativity similar results have been reported for Sb implanted amorphous Ge and the modification seems to be due to the changed short range order.

  18. Method of inactivating reproducible forms of mycoplasma in biological preparations

    International Nuclear Information System (INIS)

    Veber, P.; Jurmanova, K.; Lesko, J.; Hana, L.; Veber, V.

    1978-01-01

    Inactivation of mycoplasms in biological materials was achieved using gamma radiation with a dose rate of 1x10 4 to 5x10 6 rads/h for 1 to 250 hours. The technique is advantageous for allowing the inactivation of the final form of products (tablets, vaccines, etc.). (J.P.)

  19. Amorphization within the tablet

    DEFF Research Database (Denmark)

    Doreth, Maria; Hussein, Murtadha Abdul; Priemel, Petra A.

    2017-01-01

    , the feasibility of microwave irradiation to prepare amorphous solid dispersions (glass solutions) in situ was investigated. Indomethacin (IND) and polyvinylpyrrolidone K12 (PVP) were tableted at a 1:2 (w/w) ratio. In order to study the influence of moisture content and energy input on the degree of amorphization......, tablet formulations were stored at different relative humidity (32, 43 and 54% RH) and subsequently microwaved using nine different power-time combinations up to a maximum energy input of 90 kJ. XRPD results showed that up to 80% (w/w) of IND could be amorphized within the tablet. mDSC measurements...

  20. Ion implantation and amorphous metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Rauschenbach, B.

    1981-01-01

    This review deals with ion implantation of metals in the high concentration range for preparing amorphous layers (>= 10 at%, implantation doses > 10 16 ions/cm 2 ). Different models are described concerning formation of amorphous phases of metals by ion implantation and experimental results are given. The study of amorphous phases has been carried out by the aid of Rutherford backscattering combined with the channeling technique and using transmission electron microscopy. The structure of amorphous metals prepared by ion implantation has been discussed. It was concluded that amorphous metal-metalloid compounds can be described by a dense-random-packing structure with a great portion of metal atoms. Ion implantation has been compared with other techniques for preparing amorphous metals and the adventages have been outlined

  1. 32 CFR Appendix A to Part 1290 - Preparation Guide for DD Form 1805, Violation Notice

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Preparation Guide for DD Form 1805, Violation Notice A Appendix A to Part 1290 National Defense Other Regulations Relating to National Defense DEFENSE.... DISTRICT COURTS Pt. 1290, App. A Appendix A to Part 1290—Preparation Guide for DD Form 1805, Violation...

  2. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  3. Economic benefit of a polyacrylate-based hydrogel compared to an amorphous hydrogel in wound bed preparation of venous leg ulcers

    Directory of Open Access Journals (Sweden)

    Kaspar D

    2015-04-01

    Full Text Available Daniela Kaspar,1 Jörg Linder,1 Petra Zöllner,1 Ulrich Simon,2 Hans Smola1,31Medical Competence Centre, Paul Hartmann AG, Heidenheim, Germany; 2Scientific Computing Centre, Ulm University, Ulm, Germany; 3Department of Dermatology, University of Cologne, Cologne, GermanyObjective: To assess the cost-effectiveness of a polyacrylate (PA-based hydrogel compared to an amorphous hydrogel in wound bed preparation for venous leg ulcers.Method: A cost-effectiveness analysis was undertaken alongside a multicenter, randomized controlled trial performed in France. A total of 75 patients with venous leg ulcers extensively covered with fibrin and necrotic tissue were randomized to a PA-containing hydrogel or an amorphous hydrogel. Wounds were treated for 14 days and costs were estimated from the German payer's perspective. Medical costs included study treatment, wound treatment supply, and labor time. The clinical benefit was expressed as the number of patients with wounds >50% covered with granulation tissue within 14 days. The incremental cost-effectiveness ratio (ICER was expressed as the additional cost spent with >50% granulation tissue per day per patient within 14 days of leg ulcer care.Results: Because of individual pricing of wound dressings in hospitals, cost data were derived from the outpatient sector. A total of 33 patients were treated using the PA-based hydrogel and 37 patients using the amorphous hydrogel. The estimated total direct costs per patient and per 14 days of therapy were €306 for both treatment groups. However, with the PA-based hydrogel, 2.5 additional days with wounds covered >50% with granulation tissues were gained within 14 days of leg ulcer care compared to the comparator. The ICER was €0 per additional day spent with >50% granulation tissue.Conclusion: Although there were a greater number of dressing changes in the PA-based hydrogel treatment, the total treatment cost for 14 days of leg ulcer care was the same for both

  4. On the properties of nanocomposite amorphous carbon films prepared by off-plane double bend filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    Tay, B.K.; Zhang, P.

    2002-01-01

    It is known to deposit hard thin films, such as tetrahedral amorphous carbon (ta-C), using a filtered cathode vacuum arc (FCVA). These ta-C films have interesting and useful properties because of the high sp 3 fraction of carbon atoms (up to 87%) in the film. However, the high internal stress in the films can limit their applications as the film may flake away from the substrate. In order to reduce the internal stress of the ta-C films and in an attempt to improve adhesion of thick films of this type, growth modifications such as incorporating metal into the ta-C films have been carried out. Nanocomposite amorphous carbon films were deposited by FCVA technique using metal-carbon composite target. Atomic force microscopy, Raman, and X-ray photoelectron spectroscopy were used to characterize the morphology and structure of the films. Nanoindenter and surface profilometer were used to determine the hardness, Young's modulus, and internal stress. The same metal composition targets for different elements results in different metal composition in the corresponding nanocomposite amorphous carbon films. We attribute this observation to the dynamic balance deposition effect of the FCVA deposition process. The influence of the type of metallic elements and its composition in the films on the structural, mechanical properties, surface energy and field emission (FE) performance was studied. The incorporation of metal into the films results in the decrease of sp 3 fraction, internal stress in the films, but the hardness and Young's modulus remains at high level. The surface energy of the films increases with incorporating Ni atoms, but decreases after incorporating Fe and Al atoms into the films. After heat-treatment, the incorporation of metal into ta-C films can greatly improve the FE performance

  5. Preparation of nickel-based amorphous alloys with finely dispersed lead and lead-bismuth particles and their superconducting properties

    International Nuclear Information System (INIS)

    Inoue, A.; Oguchi, M.; Harakawa, Y.; Masumoto, T.; Matsuzaki, K.

    1986-01-01

    The application of the melt-quenching technique to Ni-Si-B-Pb, Ni-P-B-Pb, Ni-Si-B-Pb-Bi and Ni-P-B-Pb-Bi alloys containing immiscible elements such as lead and bismuth has been tried and it has been found to result in the formation of a new type of material consisting of fine fcc Pb or hcp epsilon(Pb-Bi) + bct X(Pb-Bi) particles dispersed uniformly in the nickel-based amorphous matrix. The particle size and interparticle distance were 1 to 3 and 1 to 4 μm, respectively, for the lead phase, and less than 0.2 to 0.5 μm and 0.2 to 1.0 μm for the Pb-Bi phase. The uniform dispersion of such fine particles into the amorphous matrix was achieved in the composition range below about 6 at% Pb and 7 at% (Pb+Bi). Additionally, these amorphous alloys have been found to exhibit a superconductivity by the proximity effect of fcc Pb or epsilon(Pb-Bi) superconducting particles. The transition temperature Tsub(c) was in the range 6.8 to 7.5 K for the Ni-Si (or P)-B-Pb alloys and 8.6 to 8.8 K for the Ni-Si (or P)-B-Pb-Bi alloys. The upper critical field Hsub(c2) and the critical current density Jsub(c) for (Nisub(0.8)Psub(0.1)Bsub(0.1)) 95 Pb 3 Bi 2 at 4.2 K were, respectively, about 1.6 T and of the order of 7 x 10 7 Am -2 at zero applied field. (author)

  6. Structural Analyses of Phase Stability in Amorphous and Partially Crystallized Ge-Rich GeTe Films Prepared by Atomic Layer Deposition.

    Science.gov (United States)

    Gwon, Taehong; Mohamed, Ahmed Yousef; Yoo, Chanyoung; Park, Eui-Sang; Kim, Sanggyun; Yoo, Sijung; Lee, Han-Koo; Cho, Deok-Yong; Hwang, Cheol Seong

    2017-11-29

    The local bonding structures of Ge x Te 1-x (x = 0.5, 0.6, and 0.7) films prepared through atomic layer deposition (ALD) with Ge(N(Si(CH 3 ) 3 ) 2 ) 2 and ((CH 3 ) 3 Si) 2 Te precursors were investigated using Ge K-edge X-ray absorption spectroscopy (XAS). The results of the X-ray absorption fine structure analyses show that for all of the compositions, the as-grown films were amorphous with a tetrahedral Ge coordination of a mixture of Ge-Te and Ge-Ge bonds but without any signature of Ge-GeTe decomposition. The compositional evolution in the valence band electronic structures probed through X-ray photoelectron spectroscopy suggests a substantial chemical influence of additional Ge on the nonstoichiometric GeTe. This implies that the ALD process can stabilize Ge-abundant bonding networks like -Te-Ge-Ge-Te- in amorphous GeTe. Meanwhile, the XAS results on the Ge-rich films that had undergone post-deposition annealing at 350 °C show that the parts of the crystalline Ge-rich GeTe became separated into Ge crystallites and rhombohedral GeTe in accordance with the bulk phase diagram, whereas the disordered GeTe domains still remained, consistent with the observations of transmission electron microscopy and Raman spectroscopy. Therefore, amorphousness in GeTe may be essential for the nonsegregated Ge-rich phases and the low growth temperature of the ALD enables the achievement of the structurally metastable phases.

  7. Lipid-Based Formulations Can Enable the Model Poorly Water-Soluble Weakly Basic Drug Cinnarizine to Precipitate in an Amorphous-Salt Form during in Vitro Digestion

    DEFF Research Database (Denmark)

    Khan, Jamal; Rades, Thomas; Boyd, Ben J

    2016-01-01

    The tendency for poorly water-soluble weakly basic drugs to precipitate in a noncrystalline form during the in vitro digestion of lipid-based formulations (LBFs) was linked to an ionic interaction between drug and fatty acid molecules produced upon lipid digestion. Cinnarizine was chosen as a model...... from the starting free base crystalline material to the hydrochloride salt, thus supporting the case that ionic interactions between weak bases and fatty acid molecules during digestion are responsible for producing amorphous-salts upon precipitation. The conclusion has wide implications...... weakly basic drug and was dissolved in a medium-chain (MC) LBF, which was subject to in vitro lipolysis experiments at various pH levels above and below the reported pKa value of cinnarizine (7.47). The solid-state form of the precipitated drug was analyzed using X-ray diffraction (XRD), Fourier...

  8. Preparation of Zr50Al15-xNi10Cu25Yx amorphous powders by mechanical alloying and thermodynamic calculation

    International Nuclear Information System (INIS)

    Long, Woyun; Li, Jing; Lu, Anxian

    2013-01-01

    Amorphous Zr 50 Al 15-x Ni 10 Cu 25 Y x powders were fabricated by mechanical alloying at a low rotation speed from commercial pure element powders. The beneficial effect of Al partially substituted by Y in Zr 50 Al 15 Ni 10 Cu 25 on glass-forming ability was investigated. The as-milled powders were characterized by X-ray diffraction and transmission electron microscopy. The results show that partial substitution of Al by Y can improve the glass-forming ability of Zr 50 Al 15 Ni 10 Cu 25 Y alloy. Thermodynamic calculation of equivalent free energy shows that Zr 50 Al 13.8 Ni 10 Cu 25 Y 1.2 alloy has the highest glass-forming ability, which is in good agreement with the report of orthogonal experiments. (author)

  9. Preparation of amorphous solid dispersions by rotary evaporation and KinetiSol Dispersing: approaches to enhance solubility of a poorly water-soluble gum extract.

    Science.gov (United States)

    Bennett, Ryan C; Brough, Chris; Miller, Dave A; O'Donnell, Kevin P; Keen, Justin M; Hughey, Justin R; Williams, Robert O; McGinity, James W

    2015-03-01

    Acetyl-11-keto-β-boswellic acid (AKBA), a gum resin extract, possesses poor water-solubility that limits bioavailability and a high melting point making it difficult to successfully process into solid dispersions by fusion methods. The purpose of this study was to investigate solvent and thermal processing techniques for the preparation of amorphous solid dispersions (ASDs) exhibiting enhanced solubility, dissolution rates and bioavailability. Solid dispersions were successfully produced by rotary evaporation (RE) and KinetiSol® Dispersing (KSD). Solid state and chemical characterization revealed that ASD with good potency and purity were produced by both RE and KSD. Results of the RE studies demonstrated that AQOAT®-LF, AQOAT®-MF, Eudragit® L100-55 and Soluplus with the incorporation of dioctyl sulfosuccinate sodium provided substantial solubility enhancement. Non-sink dissolution analysis showed enhanced dissolution properties for KSD-processed solid dispersions in comparison to RE-processed solid dispersions. Variances in release performance were identified when different particle size fractions of KSD samples were analyzed. Selected RE samples varying in particle surface morphologies were placed under storage and exhibited crystalline growth following solid-state stability analysis at 12 months in comparison to stored KSD samples confirming amorphous instability for RE products. In vivo analysis of KSD-processed solid dispersions revealed significantly enhanced AKBA absorption in comparison to the neat, active substance.

  10. The amorphous solid dispersion of the poorly soluble ABT-102 forms nano/microparticulate structures in aqueous medium: impact on solubility

    Directory of Open Access Journals (Sweden)

    Frank KJ

    2012-11-01

    Full Text Available Kerstin J Frank,1,3 Ulrich Westedt,2 Karin M Rosenblatt,2 Peter Hölig,2 Jörg Rosenberg,2 Markus Mägerlein,2 Gert Fricker,3 Martin Brandl11Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark; 2Abbott GmbH and Co. KG, Ludwigshafen, Germany; 3Department of Pharmaceutical Technology, University of Heidelberg, Heidelberg, GermanyAbstract: Amorphous solid dispersions (ASDs are a promising formulation approach for poorly soluble active pharmaceutical ingredients (APIs, because they ideally enhance both dissolution rate and solubility. However, the mechanism behind this is not understood in detail. In the present study, we investigated the supramolecular and the nano/microparticulate structures that emerge spontaneously upon dispersion of an ASD in aqueous medium and elucidated their influence on solubility. The ASD, prepared by hot melt extrusion, contained the poorly soluble ABT-102 (solubility in buffer, 0.05 µg/mL, a hydrophilic polymer, and three surfactants. The apparent solubility of ABT-102 from the ASD-formulation was enhanced up to 200 times in comparison to crystalline ABT-102. At the same time, the molecular solubility, as assessed by inverse equilibrium dialysis, was enhanced two times. Asymmetrical flow field-flow fractionation in combination with a multiangle light-scattering detector, an ultraviolet detector, and a refractometer enabled us to separate and identify the various supramolecular assemblies that were present in the aqueous dispersions of the API-free ASD (placebo and of binary/ternary blends of the ingredients. Thus, the supramolecular assemblies with a molar mass between 20,000 and 90,000 could be assigned to the polyvinylpyrrolidone/vinyl acetate 64, while two other kinds of assemblies were assigned to different surfactant assemblies (micelles. The amount of ABT-102 remaining associated with each of the assemblies upon fractionation was quantified offline with high

  11. Glass forming ability and mechanical properties of the NiZrTiSi amorphous alloys modified with Al, Cu and Nb additions

    International Nuclear Information System (INIS)

    Czeppe, Tomasz; Ochin, Patrick; Sypien, Anna

    2007-01-01

    The composition of the amorphous alloy Ni 59 Zr 20 Ti 16 Si 5 was modified with 2-9 at.% additions of Cu, Al and Nb. The ribbons and the bars 2.7 mm in diameter were prepared by melt spinning and injection casting from the alloys of the compositions: Ni 56 Zr 18 Ti 16 Si 5 Al 3 Cu 2 , Ni 56 Zr 18 Ti 13 Al 6 Si 5 Cu 2 , Ni 56 Zr 16 Ti 12 Nb 9 Al 3 Cu 2 Si 2 and Ni 56 Zr 16 Ti 12 Nb 6 Al 6 Cu 2 Si 2 . All ribbons were amorphous up to the resolution of the X-ray diffraction and conventional transmission electron microscopy, however rods were partially crystalline. Increase of Al content lowered and Nb content slightly increased crystallization start temperature T x and glass transition temperature T g . The influence of composition changes on the overcooled liquid range ΔT was more complicated. The increase of Nb and decrease of Ti and Zr content led to the remarkable increase of the liquidus temperature T l . As a result GFA calculated as T g /T l was lowered to the values about 0.63 for 6 and 9 at.% Nb addition. The activation energies for primary crystallization in alloy with 6 at.% Al and 6 at.% of Nb, were determined. The changes of tensile test strength and microhardness with Al and Nb additions showed hardening effect caused by Nb additions and increase in fracture strength with increasing Al content

  12. Low-power, high-uniform, and forming-free resistive memory based on Mg-deficient amorphous MgO film with rough surface

    Science.gov (United States)

    Guo, Jiajun; Ren, Shuxia; Wu, Liqian; Kang, Xin; Chen, Wei; Zhao, Xu

    2018-03-01

    Saving energy and reducing operation parameter fluctuations remain crucial for enabling resistive random access memory (RRAM) to emerge as a universal memory. In this work, we report a resistive memory device based on an amorphous MgO (a-MgO) film that not only exhibits ultralow programming voltage (just 0.22 V) and low power consumption (less than 176.7 μW) but also shows excellent operative uniformity (the coefficient of variation is only 1.7% and 2.2% for SET and RESET voltage, respectively). Moreover, it also shows a forming-free characteristic. Further analysis indicates that these distinctive properties can be attributed to the unstable local structures and the rough surface of the Mg-deficient a-MgO film. These findings show the potential of using a-MgO in high-performance nonvolatile memory applications.

  13. Cobalt-boron amorphous alloy prepared in water/cetyl-trimethyl-ammonium bromide/n-hexanol microemulsion as anode for alkaline secondary batteries

    International Nuclear Information System (INIS)

    Tong, D.G.; Wang, D.; Chu, W.; Sun, J.H.; Wu, P.

    2010-01-01

    Amorphous cobalt-boron (Co-B) with uniform nanoparticles was prepared for the first time via reduction of cobalt acetate by potassium borohydride in the water/cetyl-trimethyl-ammonium bromide/n-hexanol microemulsion system. The sample was characterized by X-ray diffraction, transmission electron microscopy, nitrogen adsorption-desorption, X-ray photoelectron spectroscopy, inductively coupled plasma, cyclic voltammetry, differential scanning calorimetry, temperature-programmed desorption, scanning electron microscopy, charge-discharge test and electrochemical impedance spectra. The results demonstrate that electrochemical activity of the as-synthesized Co-B was higher than that of the regular Co-B prepared in aqueous solution. It indicates that the homogeneous distribution and large specific surface area helped the electrochemical hydrogen storage of the as-synthesized Co-B. Furthermore, the as-synthesized Co-B even had 347 mAh g -1 after 50 cycles, while the regular Co-B prepared in aqueous solution only had 254 mAh g -1 after 30 cycles at a current of 100 mA g -1 . The better cycling performance can be ascribed to its smaller interfacial impedance between electrode and electrolyte.

  14. New metastable form of glibenclamide prepared by redispersion from ternary solid dispersions containing polyvinylpyrrolidone-K30 and sodium lauryl sulfate.

    Science.gov (United States)

    Thongnopkoon, Thanu; Puttipipatkhachorn, Satit

    2016-01-01

    Modification of polymorphic forms of poorly water-soluble drugs is one way to achieve the desirable properties. In this study, glibenclamide (GBM) particles with different polymorphic forms, including a new metastable form, were obtained from redispersion of ternary solid dispersion systems. The ternary solid dispersion systems, consisting of GBM, polyvinylpyrrolidone-K30 (PVP-K30) and sodium lauryl sulfate (SLS), were prepared by solvent evaporation method and subsequently redispersed in deionized water. The precipitated drug particles were then collected at a given time period. The drug particles with different polymorphic forms could be achieved depending on the polymer/surfactant ratio. Amorphous drug nanoparticles could be obtained by using a high polymer/surfactant ratio, whereas two different crystalline forms were obtained from the systems containing low polymer/surfactant ratios. Interestingly, a new metastable form IV of GBM with improved dissolution behavior could be obtained from the system of GBM:PVP-K30:SLS with the weight ratio of 2:2:4. This new polymorphic form IV of GBM was confirmed by differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffractometry (PXRD) and solid state 13 C nuclear magnetic resonance (NMR) spectroscopy. The molecular arrangement of the new polymorphic form IV of GBM was proposed. The GBM particles with polymorphic form IV also showed an improved dissolution behavior. In addition, it was found that the formation of the new polymorphic form IV of GBM by this process was reproducible.

  15. [Preparation and characterization of Forms A and B of benazepril hydrochloride].

    Science.gov (United States)

    Fang, Hong; Hu, Xiu-rong; Gu, Jian-ming; Chen, Guan-xi; Feng, Jian-yue; Tang, Gu-ping

    2012-11-01

    To prepare Form A and Form B of benazepril hydrochloride and to compare the differences in spectrums, thermodynamics and crystal structure between two polymorphic forms. Form A and Form B of benazepril hydrochloride were characterized by Fourier transform infrared spectroscopy (IR), thermal gravimetric analysis (TG), differential scanning calorimetry (DSC), powder x-ray diffraction (PXRD) and single crystal x-ray diffraction (SCXRD). Preparation method, crystal structure and polymorphic stability of Form A and Form B of benazepril hydrochloride were obtained. Based on the analysis of crystal structure of both polymorphs, Form A belonged to monoclone space group P2(1) with a=7.8655(4)Å, b= 11.7700(6)Å, c= 13.5560(7)Å, β= 102.9470(10)°, V=1223.07 (11)Å(3) and Z=2, while Form B belonged to orthorhombic space group P212121, with a=7.9353(8)Å, b=11.6654(11)Å, c=26.6453(16)Å, V=2466.5(4)Å(3) and Z=4. From the DSC and XRD results, Form B of benazepril hydrochloride could be transformed into Form A after heating treatment. Form A and Form B of benazepril hydrochloride are both anhydrous and displayed different polymorphs due to different molecular configuration. Furthermore, Form A exhibits more stable than Form B at high temperatures.

  16. Methods of amorphization and investigation of the amorphous state

    OpenAIRE

    EINFALT, TOMAŽ; PLANINŠEK, ODON; HROVAT, KLEMEN

    2013-01-01

    The amorphous form of pharmaceutical materials represents the most energetic solid state of a material. It provides advantages in terms of dissolution rate and bioavailability. This review presents the methods of solid-state amorphization described in literature (supercooling of liquids, milling, lyophilization, spray drying, dehydration of crystalline hydrates), with the emphasis on milling. Furthermore, we describe how amorphous state of pharmaceuticals differ depending on method of prepara...

  17. Amorphous silica from rice husk at various temperatures

    International Nuclear Information System (INIS)

    Javed, S.J.; Feroze, N.; Tajwar, S.

    2008-01-01

    Rice husk is being used as a source of energy in many heat generating system because of its high calorific value and its availability in many rice producing areas. Rice husk contains approximately 20% silica which is presented in hydrated form. This hydrated silica can be retrieved as amorphous silica under controlled thermal conditions. Uncontrolled burning of rice husk produces crystalline silica which is not reactive silica but can be used as filler in many applications. Amorphous silica is reactive silica which has better market value due to its reactive nature in process industry. The present study deals with the production of amorphous silica at various temperatures from rice husk. Various ashes were prepared in tube furnace by changing the burning temperatures for fixed time intervals and analyzed by XRD. It has been observed that for two hours calculation's of rice husk renders mostly amorphous silica at 650 degree C where as at higher temperatures crystalline silica was obtained. (author)

  18. Controlling the electrical and the optical properties of amorphous IGZO films prepared by using pulsed laser deposition

    International Nuclear Information System (INIS)

    Lee, Minseong; Dho, Joonghoe

    2011-01-01

    We have investigated the effects of substrate temperature and oxygen pressure on the electrical and the optical properties of amorphous InGaZnO4 (a-IGZO) films grown on glass substrates by using pulsed laser deposition. X-ray diffraction and scanning electron microscopy data suggest that the a-IGZO starts to crystallize around ∼600 .deg. C. The electrical resistivity and the carrier density of the a-IGZO film showed large variations with changes in the substrate temperature or the oxygen pressure. The resistivity of the a-IGZO film was minimized at ∼200 .deg. C and ∼10 mTorr. The energy gap estimated from the optical transmittance showed an increasing tendency with increasing of substrate temperature up to ∼200 .deg. C or with increasing of oxygen pressure up to 100 mTorr, and it was about ∼3.0 eV at 200 .deg. C and 10 mTorr. Remarkably, the optical transmittance for the a-IGZO film showed a clear variation in the violet color region with changing of the substrate temperature and oxygen pressure. Our results suggest that both the substrate temperature and the oxygen pressure can be exploited as key parameters to control the electrical and the optical properties of a-IGZO films.

  19. 48 CFR 1846.672 - Preparing DD Forms 250 and 250c.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Preparing DD Forms 250 and 250c. 1846.672 Section 1846.672 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... DD Forms 250 and 250c. ...

  20. Influence of Solvent Composition on the Performance of Spray-Dried Co-Amorphous Formulations

    Directory of Open Access Journals (Sweden)

    Jaya Mishra

    2018-04-01

    Full Text Available Ball-milling is usually used to prepare co-amorphous drug–amino acid (AA mixtures. In this study, co-amorphous drug–AA mixtures were produced using spray-drying, a scalable industrially preferred preparation method. The influence of the solvent type and solvent composition was investigated. Mixtures of indomethacin (IND and each of the three AAs arginine, histidine, and lysine were ball-milled and spray-dried at a 1:1 molar ratio, respectively. Spray-drying was performed at different solvent ratios in (a ethanol and water mixtures and (b acetone and water mixtures. Different ratios of these solvents were chosen to study the effect of solvent mixtures on co-amorphous formulation. Residual crystallinity, thermal properties, salt/partial salt formation, and powder dissolution profiles of the IND–AA mixtures were investigated and compared to pure crystalline and amorphous IND. It was found that using spray-drying as a preparation method, all IND–AA mixtures could be successfully converted into the respective co-amorphous forms, irrespective of the type of solvent used, but depending on the solvent mixture ratios. Both ball-milled and spray-dried co-amorphous samples showed an enhanced dissolution rate and maintained supersaturation compared to the crystalline and amorphous IND itself. The spray-dried samples resulting in co-amorphous samples were stable for at least seven months of storage.

  1. Amorphous nanophotonics

    CERN Document Server

    Scharf, Toralf

    2013-01-01

    This book represents the first comprehensive overview over amorphous nano-optical and nano-photonic systems. Nanophotonics is a burgeoning branch of optics that enables many applications by steering the mould of light on length scales smaller than the wavelength with devoted nanostructures. Amorphous nanophotonics exploits self-organization mechanisms based on bottom-up approaches to fabricate nanooptical systems. The resulting structures presented in the book are characterized by a deterministic unit cell with tailored geometries; but their spatial arrangement is not controlled. Instead of periodic, the structures appear either amorphous or random. The aim of this book is to discuss all aspects related to observable effects in amorphous nanophotonic material and aspects related to their design, fabrication, characterization and integration into applications. The book has an interdisciplinary nature with contributions from scientists in physics, chemistry and materials sciences and sheds light on the topic fr...

  2. Evaluation of resistance form of different preparation features on mandibular molars

    Directory of Open Access Journals (Sweden)

    Bajoghli Farshad

    2013-01-01

    Full Text Available Aims: Resistance form of full metal-ceramic crown is an important feature that determines longevity of these restorations. This study evaluated the resistance form of full metal-ceramic prepared with four different design features. Materials and Methods: An acrylic tooth was prepared with 20° total occlusal convergence (TOC angle, 2.5 mm of occlusocervical dimension and a shoulder finishing line. This design lacked resistance form. The crown preparation was subsequently modified by preparing Mesial Occlusal Distal isthmus, placing occlusal inclined plane, and reducing TOC. Four metal dies from these designs were constructed by lathe machine and then 10 metal copings were fabricated for each preparation. Metal coping were cemented on metal dies with temp-bond cement. Force was applied at 45° from lingual to buccal direction with universal testing machine. Statistical analysis used: The data were evaluated by Kruskal-Wallis and non-parametric Mann-Whitney test. Results: All features increased resistance form when compare to control group. However, reduce TOC group showed greatest value of resistance. Conclusion: Within the limitation of this study, reducing the tapering of occlusocervival dimension is the most effective way in increasing resistance form, although, other features were also effective.

  3. New forms of nurse teacher preparation 1989-1992 : Development and evaluation.

    OpenAIRE

    Race, Angela J.

    1995-01-01

    Radical reform of the arrangements for pre-registration nurse education and the recommendation that nurse teaching become a graduate profession prompted a reappraisal of the arrangements for nurse teacher preparation. This thesis reports an evaluation of a new form of preparation for nurse teaching. The new courses were intended to combine advanced study of nursing with educational theory and practice, and led to an honours degree and a teaching qualification recordable on the professional re...

  4. Influence of Solvent Composition on the Performance of Spray-Dried Co-Amorphous Formulations

    DEFF Research Database (Denmark)

    Mishra, Jaya; Rades, Thomas; Löbmann, Korbinian

    2018-01-01

    Ball-milling is usually used to prepare co-amorphous drug–amino acid (AA) mixtures. In this study, co-amorphous drug–AA mixtures were produced using spray-drying, a scalable industrially preferred preparation method. The influence of the solvent type and solvent composition was investigated....... Mixtures of indomethacin (IND) and each of the three AAs arginine, histidine, and lysine were ball-milled and spray-dried at a 1:1 molar ratio, respectively. Spray-drying was performed at different solvent ratios in (a) ethanol and water mixtures and (b) acetone and water mixtures. Different ratios...... that using spray-drying as a preparation method, all IND–AA mixtures could be successfully converted into the respective co-amorphous forms, irrespective of the type of solvent used, but depending on the solvent mixture ratios. Both ball-milled and spray-dried co-amorphous samples showed an enhanced...

  5. Shrinking of silicon nanocrystals embedded in an amorphous silicon oxide matrix during rapid thermal annealing in a forming gas atmosphere

    Science.gov (United States)

    van Sebille, M.; Fusi, A.; Xie, L.; Ali, H.; van Swaaij, R. A. C. M. M.; Leifer, K.; Zeman, M.

    2016-09-01

    We report the effect of hydrogen on the crystallization process of silicon nanocrystals embedded in a silicon oxide matrix. We show that hydrogen gas during annealing leads to a lower sub-band gap absorption, indicating passivation of defects created during annealing. Samples annealed in pure nitrogen show expected trends according to crystallization theory. Samples annealed in forming gas, however, deviate from this trend. Their crystallinity decreases for increased annealing time. Furthermore, we observe a decrease in the mean nanocrystal size and the size distribution broadens, indicating that hydrogen causes a size reduction of the silicon nanocrystals.

  6. Development of Tablet Formulation of Amorphous Solid Dispersions Prepared by Hot Melt Extrusion Using Quality by Design Approach.

    Science.gov (United States)

    Agrawal, Anjali; Dudhedia, Mayur; Deng, Weibin; Shepard, Kevin; Zhong, Li; Povilaitis, Edward; Zimny, Ewa

    2016-02-01

    The objective of the study was to identify the extragranular component requirements (level and type of excipients) to develop an immediate release tablet of solid dispersions prepared by hot melt extrusion (HME) process using commonly used HME polymers. Solid dispersions of compound X were prepared using polyvinyl pyrrolidone co-vinyl acetate 64 (PVP VA64), Soluplus, and hypromellose acetate succinate (HPMCAS-LF) polymers in 1:2 ratio by HME through 18 mm extruder. A mixture design was employed to study effect of type of polymer, filler (microcrystalline cellulose (MCC), lactose, and dicalcium phosphate anhydrous (DCPA)), and disintegrant (Crospovidone, croscarmellose sodium, and sodium starch glycolate (SSG)) as well as level of extrudates, filler, and disintegrant on tablet properties such as disintegration time (DT), tensile strength (TS), compactibility, and dissolution. Higher extrudate level resulted in longer DT and lower TS so 60-70% was the maximum amount of acceptable extrudate level in tablets. Fast disintegration was achieved with HPMCAS-containing tablets, whereas Soluplus- and PVP VA64-containing tablets had higher TS. Crospovidone and croscarmellose sodium were more suitable disintegrant than SSG to achieve short DT, and MCC was a suitable filler to prepare tablets with acceptable TS for each studied HME polymer. The influence of extragranular components on dissolution from tablets should be carefully evaluated while finalizing tablet composition, as it varies for each HME polymer. The developed statistical models identified suitable level of fillers and disintegrants for each studied HME polymer to achieve tablets with rapid DT (tablet porosity), and their predictivity was confirmed by conducting internal and external validation studies.

  7. 48 CFR 1845.7102 - Instructions for preparing DD Form 1419.

    Science.gov (United States)

    2010-10-01

    ... AND SPACE ADMINISTRATION CONTRACT MANAGEMENT GOVERNMENT PROPERTY Forms Preparation 1845.7102.... Enter the manufacturer's name and Federal Supply Code for manufacturer (Cataloging Handbook H4-1) of the... be installed to meet production requirements. From this date deduct the estimated number of days...

  8. The preparation method of solid boron solution in silicon carbide in the form of micro powder

    International Nuclear Information System (INIS)

    Pampuch, R.; Stobierski, L.; Lis, J.; Bialoskorski, J.; Ermer, E.

    1993-01-01

    The preparation method of solid boron solution in silicon carbide in the form of micro power has been worked out. The method consists in introducing mixture of boron, carbon and silicon and heating in the atmosphere of inert gas to the 1573 K

  9. 48 CFR 1845.7101 - Instructions for preparing NASA Form 1018.

    Science.gov (United States)

    2010-10-01

    ... Standards (SFFAS) to be used for property records are SFFAS No. 3 “Accounting for Inventory and Related Property”, SFFAS No. 6 “Accounting for Property, Plant and Equipment”, SFFAS No. 10 “Accounting for... AND SPACE ADMINISTRATION CONTRACT MANAGEMENT GOVERNMENT PROPERTY Forms Preparation 1845.7101...

  10. Improving co-amorphous drug formulations by the addition of the highly water soluble amino acid proline

    DEFF Research Database (Denmark)

    Jensen, Katrine Birgitte Tarp; Löbmann, Korbinian; Rades, Thomas

    2014-01-01

    Co-amorphous drug amino acid mixtures were previously shown to be a promising approach to create physically stable amorphous systems with the improved dissolution properties of poorly water-soluble drugs. The aim of this work was to expand the co-amorphous drug amino acid mixture approach...... by combining the model drug, naproxen (NAP), with an amino acid to physically stabilize the co-amorphous system (tryptophan, TRP, or arginine, ARG) and a second highly soluble amino acid (proline, PRO) for an additional improvement of the dissolution rate. Co-amorphous drug-amino acid blends were prepared...... the molecular interactions in the form of hydrogen bonds between all three components in the mixture. A salt formation between the acidic drug, NAP, and the basic amino acid, ARG, was found in co-amorphous NAP–ARG. In comparison to crystalline NAP, binary NAP–TRP and NAP–ARG, it could be shown that the highly...

  11. Physical stabilization of low-molecular-weight amorphous drugs in the solid state: a material science approach.

    Science.gov (United States)

    Qi, Sheng; McAuley, William J; Yang, Ziyi; Tipduangta, Pratchaya

    2014-07-01

    Use of the amorphous state is considered to be one of the most effective approaches for improving the dissolution and subsequent oral bioavailability of poorly water-soluble drugs. However as the amorphous state has much higher physical instability in comparison with its crystalline counterpart, stabilization of amorphous drugs in a solid-dosage form presents a major challenge to formulators. The currently used approaches for stabilizing amorphous drug are discussed in this article with respect to their preparation, mechanism of stabilization and limitations. In order to realize the potential of amorphous formulations, significant efforts are required to enable the prediction of formulation performance. This will facilitate the development of computational tools that can inform a rapid and rational formulation development process for amorphous drugs.

  12. Preparation of Zr50Al15− xNi10Cu25Yx amorphous powders by ...

    Indian Academy of Sciences (India)

    The as-milled powders were characterized by X-ray diffraction and transmission electron microscopy. The results show that partial substitution of Al by Y can improve the glass-forming ability of Zr50Al15Ni10Cu25 alloy. Thermodynamic calculation of equivalent free energy shows that Zr50Al13.8Ni10Cu25Y1.2 alloy has the ...

  13. Study of amorphous films of TiAlN prepared by reactive cathodic erosion by radiofrequencies; Estudio de peliculas amorfas de TiAlN preparadas por erosion catodica reactiva por radiofrecuencias

    Energy Technology Data Exchange (ETDEWEB)

    Garcia G, L. [Programa de Posgrado en Materiales del Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Queretaro (Mexico); Morales H, J. [Programa de Posgrado en Ingenieria de la Facultad de Ingenieria de la Universidad Autonoma de Queretaro, (Mexico); Bartolo P, J.P.; Ceh S, O. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Merida, Km. 6 Antigua Carretera a Progreso, A.P. 73 Cordemex 97310 Merida, Yucatan (Mexico); Munoz S, J.; Espinoza B, F.J. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Queretaro, (Mexico)

    2004-07-01

    Using the reactive magnetron r f sputtering technique, we prepared TiAlN films with amorphous structure on Corning glass and steel substrates in a reactive atmosphere of nitrogen and argon using a target of Ti-AI (40/60 wt. %). The average temperature of the substrates was about 25 C, with the purpose of obtaining amorphous films. The ratio of partial pressure of nitrogen to argon, PN/PAr was varied according to these values: 0.14, 0.28, and 0.43; fixing these values during whole the evaporation. Further on, films were prepared introducing nitrogen in periodic pulses with maximum values of PN/PAr 4.7 during 45 seconds, with fixed periods of 10, 15 and 20 minutes. In all cases amorphous films were obtained, according to X-ray Diffraction. The chemical composition of the samples was measured by electron dispersive spectroscopy, showing a clear dependence with the evaporation conditions. In spite of the amorphous structure of the material, atomic force microscopy measurements showed a surface morphology dependent on the nitrogen content. Additionally, measurements of electronic spectroscopy for chemical analysis and Raman scattering spectroscopy for identification of chemical bonds were carried out. Measurements of mechanical properties of the samples were carried out using nano indentation and micro-hardness Vickers's tests. (Author)

  14. Optical properties of p–i–n structures based on amorphous hydrogenated silicon with silicon nanocrystals formed via nanosecond laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Krivyakin, G. K.; Volodin, V. A., E-mail: volodin@isp.nsc.ru; Kochubei, S. A.; Kamaev, G. N. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Purkrt, A.; Remes, Z. [Institute of Physics ASCR (Czech Republic); Fajgar, R. [Institute of Chemical Process Fundamentals of the ASCR (Czech Republic); Stuchliková, T. H.; Stuchlik, J. [Institute of Physics ASCR (Czech Republic)

    2016-07-15

    Silicon nanocrystals are formed in the i layers of p–i–n structures based on a-Si:H using pulsed laser annealing. An excimer XeCl laser with a wavelength of 308 nm and a pulse duration of 15 ns is used. The laser fluence is varied from 100 (below the melting threshold) to 250 mJ/cm{sup 2} (above the threshold). The nanocrystal sizes are estimated by analyzing Raman spectra using the phonon confinement model. The average is from 2.5 to 3.5 nm, depending on the laser-annealing parameters. Current–voltage measurements show that the fabricated p–i–n structures possess diode characteristics. An electroluminescence signal in the infrared (IR) range is detected for the p–i–n structures with Si nanocrystals; the peak position (0.9–1 eV) varies with the laser-annealing parameters. Radiative transitions are presumably related to the nanocrystal–amorphous-matrix interface states. The proposed approach can be used to produce light-emitting diodes on non-refractory substrates.

  15. Micro-scale prediction method for API-solubility in polymeric matrices and process model for forming amorphous solid dispersion by hot-melt extrusion.

    Science.gov (United States)

    Bochmann, Esther S; Neumann, Dirk; Gryczke, Andreas; Wagner, Karl G

    2016-10-01

    A new predictive micro-scale solubility and process model for amorphous solid dispersions (ASDs) by hot-melt extrusion (HME) is presented. It is based on DSC measurements consisting of an annealing step and a subsequent analysis of the glass transition temperature (Tg). The application of a complex mathematical model (BCKV-equation) to describe the dependency of Tg on the active pharmaceutical ingredient (API)/polymer ratio, enables the prediction of API solubility at ambient conditions (25°C). Furthermore, estimation of the minimal processing temperature for forming ASDs during HME trials could be defined and was additionally confirmed by X-ray powder diffraction data. The suitability of the DSC method was confirmed with melt rheological trials (small amplitude oscillatory system). As an example, ball milled physical mixtures of dipyridamole, indomethacin, itraconazole and nifedipine in poly(vinylpyrrolidone-co-vinylacetate) (copovidone) and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®) were used. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Structural amorphous steels

    International Nuclear Information System (INIS)

    Lu, Z.P.; Liu, C.T.; Porter, W.D.; Thompson, J.R.

    2004-01-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist's dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed

  17. Multivariate Quantification of the Solid State Phase Composition of Co-Amorphous Naproxen-Indomethacin

    DEFF Research Database (Denmark)

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian

    2015-01-01

    To benefit from the optimized dissolution properties of active pharmaceutical ingredients in their amorphous forms, co-amorphisation as a viable tool to stabilize these amorphous phases is of both academic and industrial interest. Reports dealing with the physical stability and recrystallization...... components was prepared and analyzed by XRPD. In order to test the model performances, leave-one-out cross validation was performed and revealed root mean square errors of validation between 3.11% and 3.45% for the crystalline molar fractions and 5.57% for the co-amorphous molar fraction. In summary, even...

  18. Amorphous superconductors

    International Nuclear Information System (INIS)

    Missell, F.P.

    1985-01-01

    We describe briefly the strong coupling superconductivity observed in amorphous alloys based upon simple metals. For transition metal alloys we discuss the behavior of the superconducting transition temperature T c , the upper critical field H (sub)c2 and the critical current J c . A survey of current problems is presented. (author) [pt

  19. Preparation and evaluation of doxycycline hydrochloride and bromhexine hydrochloride dosage forms for pigeons / Marga le Roux

    OpenAIRE

    Le Roux, Marga

    2004-01-01

    Objective: To prepare and evaluate three different dosage forms, containing doxycycline hydrochloride (HCI) and bromhexine hydrochloride (HCI) respectively and in combination, for the treatment of respiratory diseases in pigeons. Background: Birds have held a place in man's affection since the ancient Egyptians and Romans kept birds. Europeans have successfully bred birds, especially smaller birds and pigeons, for centuries. Only in recent years, however, have science and me...

  20. Development of polymer film dosage forms of lidocaine for buccal administration: II. Comparison of preparation methods.

    Science.gov (United States)

    Okamoto, Hirokazu; Nakamori, Takahiko; Arakawa, Yotaro; Iida, Kotaro; Danjo, Kazumi

    2002-11-01

    In previous studies, we prepared film dosage forms of lidocaine (LC) with hydroxypropylcellulose (HPC) as a film base using the solvent evaporation (SE) method. However, from the viewpoint of environmental issues, a reduction in organic solvent use in pharmaceutical and other industries is required. In this study, we prepared the LC films by direct compression of the physical mixture (DCPM method) and direct compression of the spray dried powder (DCSD method). Magnesium stearate, which was required as a lubricant for direct compression, showed no effect on the LC release rate. The LC release rate (%/h) was independent of the compression pressure, but a higher pressure was preferable to easily remove the film from the punches. An increase in the film weight decreased the LC release rate expressed in %/h, whereas no significant effect of film weight was observed on the LC release rate from unit surface area expressed in mg/h/cm(2). The LC release rate (%/h) was independent of the LC content, suggesting that the LC release rate (mg/h) can be quantitatively controlled by changing the LC content in the formulation. The LC release rate and penetration rate were affected by the preparation method; that is, DCPM method dosage form. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:2424-2432, 2002

  1. Optical properties of p–i–n structures based on amorphous hydrogenated silicon with silicon nanocrystals formed via nanosecond laser annealing

    Czech Academy of Sciences Publication Activity Database

    Krivyakin, G.K.; Volodin, V.; Kochubei, S.A.; Kamaev, G.N.; Purkrt, Adam; Remeš, Zdeněk; Fajgar, Radek; Stuchlíková, The-Ha; Stuchlík, Jiří

    2016-01-01

    Roč. 50, č. 7 (2016), s. 935-940 ISSN 1063-7826 R&D Projects: GA MŠk LH12236 Institutional support: RVO:68378271 ; RVO:67985858 Keywords : hydrogenated amorphous silicon * nanocrystals * laser annealing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.602, year: 2016

  2. FORMING OF EMOTIONAL FIRMNESS OF FUTURE PILOTS BY FACILITIES OF PHYSICAL AND PSYCHOPHYZIOLOGICAL PREPARATION

    Directory of Open Access Journals (Sweden)

    Т. Плачинда

    2011-02-01

    Full Text Available The main approaches regarding formation of mental stability of a future pilot and development of their psychophysiological qualities are suggested. The emotional stability indicators and the means of forming emotional firmness in special cases have been described. The author has paid  attention to the importance of psychological state recovery after the flight and the positive role  of physical training and psychophysiological preparation in the formation of professional efficiency of flight crew and professional longevity

  3. New spectrofluorimetric method for the determination of nizatidine in bulk form and in pharmaceutical preparations

    Science.gov (United States)

    Karasakal, Ayça; Ulu, Sevgi Tatar

    2013-08-01

    A simple, accurate and highly sensitive spectrofluorimetric method has been developed for determination of nizatidine in pure form and in pharmaceutical dosage forms. The method is based on the reaction between nizatidine and 1-dimethylaminonaphthalene-5-sulphonyl chloride in carbonate buffer, pH 10.5, to yield a highly fluorescent derivative peaking at 513 nm after excitation at 367 nm. Various factors affecting the fluorescence intensity of nizatidin-dansyl derivative were studied and conditions were optimized. The method was validated as per ICH guidelines. The fluorescence concentration plot was rectilinear over the range of 25-300 ng/mL. Limit of detection and limit of quantification were calculated as 11.71 and 35.73 ng/mL, respectively. The proposed method was successfully applied to pharmaceutical preparations.

  4. Process description and plant design for preparing ceramic high-level waste forms

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKisson, R.L.; Guon, J.; Flintoff, J.F.; McKenzie, D.E.

    1983-01-01

    The ceramics process flow diagram has been simplified and upgraded to utilize only two major processing steps - fluid-bed calcination and hot isostatic press consolidating. Full-scale fluid-bed calcination has been used at INEL to calcine high-level waste for 18 y; and a second-generation calciner, a fully remotely operated and maintained calciner that meets ALARA guidelines, started calcining high-level waste in 1982. Full-scale hot isostatic consolidation has been used by DOE and commercial enterprises to consolidate radioactive components and to encapsulate spent fuel elements for several years. With further development aimed at process integration and parametric optimization, the operating knowledge of full-scale demonstration of the key process steps should be rapidly adaptable to scale-up of the ceramic process to full plant size. Process flowsheets used to prepare ceramic and glass waste forms from defense and commercial high-level liquid waste are described. Preliminary layouts of process flow diagrams in a high-level processing canyon were prepared and used to estimate the preliminary cost of the plant to fabricate both waste forms. The estimated costs for using both options were compared for total waste management costs of SRP high-level liquid waste. Using our design, for both the ceramic and glass plant, capital and operating costs are essentially the same for both defense and commercial wastes, but total waste management costs are calculated to be significantly less for defense wastes using the ceramic option. It is concluded from this and other studies that the ceramic form may offer important advantages over glass in leach resistance, waste loading, density, and process flexibility. Preliminary economic calculations indicate that ceramics must be considered a leading candidate for the form to immobilize high-level wastes

  5. Performance comparison between crystalline and co-amorphous salts of indomethacin-lysine

    DEFF Research Database (Denmark)

    Kasten, Georgia; Nouri, Khatera; Grohganz, Holger

    2017-01-01

    The introduction of a highly water soluble amino acid as co-amorphous co-former has previously been shown to significantly improve the dissolution rate of poorly water soluble drugs. In this work, dry ball milling (DBM) and liquid assisted grinding (LAG) were used to prepare different physical...... forms of salts of indomethacin (IND) with the amino acid lysine (LYS), allowing the direct comparison of their solid-state properties to their in vitro performance. X-ray powder diffraction and Fourier-transformed infrared spectroscopy showed that DBM experiments led to the formation of a fully co......-amorphous salt, while LAG resulted in a crystalline salt. Differential scanning calorimetry showed that the samples prepared by DBM had a single glass transition temperature (Tg) of approx. 100°C for the co-amorphous salt, while a new melting point (223°C) was obtained for the crystalline salt prepared by LAG...

  6. Radiation amorphization of materials

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Chernyaeva, T.P.

    1993-01-01

    The results of experimental and theoretical research on radiation amorphization are presented in this analytical review. Mechanism and driving forces of radiation amorphization are described, kinetic and thermodynamic conditions of amorphization are formulated. Compositional criteria of radiation amorphization are presented, that allow to predict irradiation behaviour of materials, their tendency to radiation amorphization. Mechanism of transition from crystalline state to amorphous state are considered depending on dose, temperature, structure of primary radiation damage and flux level. (author). 134 refs., 4 tab., 25 fig

  7. MC3T3-E1 cell response of amorphous phase/TiO{sub 2} nanocrystal composite coating prepared by microarc oxidation on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Rui [Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wei, Daqing, E-mail: daqingwei@hit.edu.cn [Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yang, Haoyue; Feng, Wei [Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Cheng, Su [Department of Mechanical Engineering, School of Architecture and Civil Engineering, Harbin University of Science and Technology, Harbin 150001 (China); Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu [Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2014-06-01

    Bioactive amorphous phase/TiO{sub 2} nanocrystal (APTN) composite coatings were fabricated by microarc oxidation (MAO) on Ti. The APTN coatings are composed of much amorphous phase with Si, Na, Ca, Ti and O elements and a few TiO{sub 2} nanocrystals. With increasing applied voltage, the micropore density of the APTN coating decreases and the micropore size of the APTN coating increases. The results indicate that less MC3T3-E1 cells attach on the APTN coatings as compared to Ti. However, the APTN coatings greatly enhance the cell proliferation ability and the activity of alkaline phosphatase. The amorphous phase and the concentrations of the released Ca and Si from the APTN coatings during cell culture have significant effects on the cell response. - Highlights: • Amorphous phase/TiO2 nanocrystal (APTN) composite coatings were fabricated. • The MC3T3-E1 cell response of the APTN coatings was evaluated. • The APTN coatings greatly enhanced the cell proliferation ability.

  8. Preparation and characterization of solid oral dosage forms containing soy isoflavones

    Directory of Open Access Journals (Sweden)

    Stela R. de Oliveira

    2013-02-01

    Full Text Available Soy isoflavones have been extensively used for menopausal symptoms and prevention of hormone-related cancer, osteoporosis and cardiovascular diseases. Commercially available forms of isoflavones include supplements, capsules and tablets. However, the non-standardization of soy isoflavones extracts and different dissolution profiles of these solid dosage forms highlight the need of additional studies on the development of well characterized pharmaceutical dosage forms of isoflavones. In this work, immediate release oral tablets of soy isoflavones were obtained and evaluated. Genistein and daidzein, were the main constituents of the dried soy extract. Preparation of the tables was accomplished in a rotary tableting machine following either a dry mixture for direct compression or wet granulation with different excipients. Powder, granules and tablets were evaluated for several parameters, including flow properties, Carr and Hausner indexes, hardness, friability, disintegration time and drug release profile. Also, a fast and validated HPLC analytical method for both genistein and daidzein was developed. Formulations containing sodium croscarmellose and sodium dodecyl sulfate resulted in better flowability as indicated by the flow rate and angle of repose, faster disintegration time and immediate release dissolution profile.

  9. Susceptibility screening of hyphae-forming fungi with a new, easy, and fast inoculum preparation method.

    Science.gov (United States)

    Schmalreck, Arno; Willinger, Birgit; Czaika, Viktor; Fegeler, Wolfgang; Becker, Karsten; Blum, Gerhard; Lass-Flörl, Cornelia

    2012-12-01

    In vitro susceptibility testing of clinically important fungi becomes more and more essential due to the rising number of fungal infections in patients with impaired immune system. Existing standardized microbroth dilution methods for in vitro testing of molds (CLSI, EUCAST) are not intended for routine testing. These methods are very time-consuming and dependent on sporulating of hyphomycetes. In this multicentre study, a new (independent of sporulation) inoculum preparation method (containing a mixture of vegetative cells, hyphae, and conidia) was evaluated. Minimal inhibitory concentrations (MIC) of amphotericin B, posaconazole, and voriconazole of 180 molds were determined with two different culture media (YST and RPMI 1640) according to the DIN (Deutsches Institut für Normung) microdilution assay. 24 and 48 h MIC of quality control strains, tested per each test run, prepared with the new inoculum method were in the range of DIN. YST and RPMI 1640 media showed similar MIC distributions for all molds tested. MIC readings at 48 versus 24 h yield 1 log(2) higher MIC values and more than 90 % of the MICs read at 24 and 48 h were within ± 2 log(2) dilution. MIC end point reading (log(2 MIC-RPMI 1640)-log(2 MIC-YST)) of both media demonstrated a tendency to slightly lower MICs with RPMI 1640 medium. This study reports the results of a new, time-saving, and easy-to-perform method for inoculum preparation for routine susceptibility testing that can be applied for all types of spore-/non-spore and hyphae-forming fungi.

  10. PAT: From Western solid dosage forms to Chinese materia medica preparations using NIR-CI.

    Science.gov (United States)

    Zhou, Luwei; Xu, Manfei; Wu, Zhisheng; Shi, Xinyuan; Qiao, Yanjiang

    2016-01-01

    Near-infrared chemical imaging (NIR-CI) is an emerging technology that combines traditional near-infrared spectroscopy with chemical imaging. Therefore, NIR-CI can extract spectral information from pharmaceutical products and simultaneously visualize the spatial distribution of chemical components. The rapid and non-destructive features of NIR-CI make it an attractive process analytical technology (PAT) for identifying and monitoring critical control parameters during the pharmaceutical manufacturing process. This review mainly focuses on the pharmaceutical applications of NIR-CI in each unit operation during the manufacturing processes, from the Western solid dosage forms to the Chinese materia medica preparations. Finally, future applications of chemical imaging in the pharmaceutical industry are discussed. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Total body irradiation as a form of preparation for bone marrow transplantation

    International Nuclear Information System (INIS)

    Inoue, Toshihiko

    1987-01-01

    The history of total body irradiation and bone marrow transplantation is surprisingly old. Following the success of Thomas et al. in the 1970s, bone marrow transplantation appeared to be the sole curative treatment modality for high-risk leukemia. A supralethal dose of total body irradiation was widely accepted as a form of preparation for bone marrow transplantation. In this paper, I described the present status of bone marrow transplantation for leukemia patients in Japan based on the IVth national survey. Since interstitial pneumonitis was one of the most life threatening complications after bone marrow transplantation, I mentioned the dose, dose-rate and fraction of total body irradiation in more detail. In addition, I dealt with some problems of the total body irradiation, such as dose prescription, compensating contour as well as inhomogeneity, and shielding for the highrisk organs. (author) 82 refs

  12. Preparation and Characterization of a Gastric Floating Dosage Form of Capecitabine

    Directory of Open Access Journals (Sweden)

    Ehsan Taghizadeh Davoudi

    2013-01-01

    Full Text Available Gastrointestinal disturbances, such as nausea and vomiting, are considered amongst the main adverse effects associated with oral anticancer drugs due to their fast release in the gastrointestinal tract (GIT. Sustained release formulations with proper release profiles can overcome some side effects of conventional formulations. The current study was designed to prepare sustained release tablets of Capecitabine, which is approved by the Food and Drug Administration (FDA for the treatment of advanced breast cancer, using hydroxypropyl methylcellulose (HPMC, carbomer934P, sodium alginate, and sodium bicarbonate. Tablets were prepared using the wet granulation method and characterized such that floating lag time, total floating time, hardness, friability, drug content, weight uniformity, and in vitro drug release were investigated. The sustained release tablets showed good hardness and passed the friability test. The tablets’ floating lag time was determined to be 30–200 seconds, and it floated more than 24 hours and released the drug for 24 hours. Then, the stability test was done and compared with the initial samples. In conclusion, by adjusting the right ratios of the excipients including release-retarding gel-forming polymers like HPMC K4M, Na alginate, carbomer934P, and sodium bicarbonate, sustained release Capecitabine floating tablet was formulated.

  13. Preparation and characterization of a gastric floating dosage form of capecitabine.

    Science.gov (United States)

    Taghizadeh Davoudi, Ehsan; Ibrahim Noordin, Mohamed; Kadivar, Ali; Kamalidehghan, Behnam; Farjam, Abdoreza Soleimani; Akbari Javar, Hamid

    2013-01-01

    Gastrointestinal disturbances, such as nausea and vomiting, are considered amongst the main adverse effects associated with oral anticancer drugs due to their fast release in the gastrointestinal tract (GIT). Sustained release formulations with proper release profiles can overcome some side effects of conventional formulations. The current study was designed to prepare sustained release tablets of Capecitabine, which is approved by the Food and Drug Administration (FDA) for the treatment of advanced breast cancer, using hydroxypropyl methylcellulose (HPMC), carbomer934P, sodium alginate, and sodium bicarbonate. Tablets were prepared using the wet granulation method and characterized such that floating lag time, total floating time, hardness, friability, drug content, weight uniformity, and in vitro drug release were investigated. The sustained release tablets showed good hardness and passed the friability test. The tablets' floating lag time was determined to be 30-200 seconds, and it floated more than 24 hours and released the drug for 24 hours. Then, the stability test was done and compared with the initial samples. In conclusion, by adjusting the right ratios of the excipients including release-retarding gel-forming polymers like HPMC K4M, Na alginate, carbomer934P, and sodium bicarbonate, sustained release Capecitabine floating tablet was formulated.

  14. Evaluation of the physical stability and local crystallization of amorphous terfenadine using XRD-DSC and micro-TA

    International Nuclear Information System (INIS)

    Yonemochi, Etsuo; Hoshino, Takafumi; Yoshihashi, Yasuo; Terada, Katsuhide

    2005-01-01

    It is very difficult to follow rapid changes in polymorphic transformation and crystallization and to estimate the species recrystallized from the amorphous form. The aim of this study was to clarify the structural changes of amorphous terfenadine and to evaluate the polymorphs crystallized from amorphous samples using XRD-DSC and an atomic force microscope with a thermal probe (micro-TA). Amorphous samples were prepared by grinding or rapid cooling of the melt. The rapid structural transitions of samples were followed by the XRD-DSC system. On the DSC trace of the quenched terfenadine, two exotherms were observed, while only one exothermic peak was observed in the DSC scan of a ground sample. From the in situ data obtained by the XRD-DSC system, the stable form of terfenadine was recrystallized during heating of the ground amorphous sample, whereas the metastable form was recrystallized from the quenched amorphous sample and the crystallized polymorph changed to the stable form. Obtained data suggested that recrystallized species could be related to the homogeneity of samples. When the stored sample surface was scanned by atomic force microscopy (AFM), heterogeneous crystallization was observed. By using micro-TA, melting temperatures at various points were measured, and polymorph forms I and II were crystallized in each region. The percentages of the crystallized form I stored at 120 and 135 deg C were 47 and 79%, respectively. This result suggested that increasing the storage temperature increased the crystallization of form I, the stable form, confirming the temperature dependency of the crystallized form. The crystallization behavior of amorphous drug was affected by the annealing temperature. Micro-TA would be useful for detecting the inhomogeneities in polymorphs crystallized from amorphous drug

  15. Preparation and characterization of a ferrimagnetic amorphous alloy of GdCo entering the design of magnetic tunnel junctions: ionizing radiations hardness of magnetic tunnel junctions; preparation et caracterisation d'un alliage amorphe ferrimagnetique de GdCo entrant dans la conception de jonctions tunnel magnetiques. Resistance des jonctions tunnel magnetiques aux rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Conraux, Y

    2005-10-15

    The magnetic random access memories (MRAM) are on the way to supplant the other forms of random access memories using the states of electric charge, and this thanks to their many technical advantages: not-volatility, speed, low consumption power, robustness. Also, the MRAM are alleged insensitive with the ionizing radiations, which was not checked in experiments until now. The current architecture of the MRAM is based on the use of magnetic tunnel junctions (MTJ). These MRAM can present an important disadvantage, because they are likely of present errors of addressing, in particular when integration (density of memory cells) is increasingly thorough. The work undertaken during this thesis relates to these two points: - to check the functional reliability of the MRAM containing JTM exposed to high energy ionizing radiations; - to study a ferrimagnetic amorphous alloy, GdCo, likely to enter the composition of JTM and allowing to free from the possible errors of addressing by a process of thermal inhibition of the memory cells. This work of thesis showed that the MRAM containing JTM preserve their functional properties fully when they are subjected to intense ionizing radiations, and that GdCo is a very interesting material from the point of view of the solid state physics and magnetism, that its physical properties are very promising as for its applications, and that its integration in a JTM still claims technological developments. (author)

  16. Preparation of amorphous-crystalline SiO{sub 2} composite by hot isostatic pressing (HIP). 2; HIP ho ni yoru SiO{sub 2} kei hishoshitsu-kesshoshitsu fukugo zairyo no sakusei. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S.; Nishii, J.; Fujii, T.; Akashi, K. [Science University of Tokyo, Tokyo (Japan). Faculty of Science and Tecnology

    2000-08-15

    The composites consisting of {alpha}-quartz crystallites and amorphous SiO{sub 2} were prepared by HIP technique, imitating the structure of natural agate. In the previous study, the K{sub IC} of the composite prepared from the mixed powder of crystallites and amorphous SiO{sub 2} was comparable to that of the natural agate (0.56MN/m{sup 1.5}). In this study, to increase the toughness of the composite, (1) the mixture of silica sol and {alpha}-quartz powder and (2) silica sol including nucleation promoter were examined as starting materials respectively. These starting materials were pressed into powder compacts with {phi} 10 multiplied 50mm in size. The Pyrex glass capsule containing the compact was hipped at 800-1,200 degrees C for 0-120 minutes under the pressure of 200 MPa. The K{sub IC} of the composite obtained from the mixture of silica sol and {alpha}-quartz powder was equivalent to that obtained in the previous study, while the maximum K{sub IC} (0.63 MN/m{sup 1.5}) was obtained when PbCl{sub 2} was used as a nucleation promoter. The nucleation promoter having low solubility in water was useful for the homogeneous generation of the crystallites. (author)

  17. Amorphization of ceramics by ion beams

    International Nuclear Information System (INIS)

    McHargue, C.J.; Farlow, G.C.; White, C.W.; Williams, J.M.; Appleton, B.R.; Naramoto, H.

    1984-01-01

    The influence of the implantation parameters fluence, substrate temperature, and chemical species on the formation of amorphous phases in Al 2 O 3 and α-SiC was studied. At 300 0 K, fluences in excess of 10 17 ions.cm -2 were generally required to amorphize Al 2 O 3 ; however, implantation of zirconium formed the amorphous phase at a fluence of 4 x 10 16 Zr.cm -2 . At 77 0 K, the threshold fluence was lowered to about 2 x 10 15 Cr.cm -2 . Single crystals of α-SiC were amorphized at 300 0 K by a fluence of 2 x 10 14 Cr.cm -2 or 1 x 10 15 N.cm -2 . Implantation at 1023 0 K did not produce the amorphous phase in SiC. The micro-indentation hardness of the amorphous material was about 60% of that of the crystalline counterpart

  18. Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability.

    Science.gov (United States)

    Aditya, N P; Yang, Hanjoo; Kim, Saehoon; Ko, Sanghoon

    2015-03-01

    Curcumin has low aqueous stability and solubility in its native form. It also has a low bioavailability which presents a major barrier to its use in fortifying food products. The aim of this work was to reduce the size of curcumin crystals to the nanoscale and subsequently stabilize them in an amorphous form. To this end, amorphous curcumin nanosuspensions were fabricated using the antisolvent precipitation method with β-lactoglobulin (β-lg) as a stabilizer. The resulting amorphous curcumin nanosuspensions were in the size range of 150-175 nm with unimodal size distribution. The curcumin particles were amorphous and were molecularly dispersed within the β-lg as confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies. The solubility of the amorphous curcumin nanosuspension was enhanced ∼35-fold due to the reduced size and lower crystallinity. Among the formulations, the amorphous curcumin nanosuspensions stabilized with β-lg and prepared at pH 3.4 (β-lg-cur 3.4), showed maximum aqueous stability which was >90% after 30 days. An in vitro study using Caco-2 cell lines showed a significant increase in curcumin bioavailability after stabilization with β-lg. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Crystalline-to-amorphous phase transformation in mechanically alloyed Fe50W50 powders

    International Nuclear Information System (INIS)

    Sherif El-Eskandarany, M.S.; Sumiyama, K.; Suzuki, K.

    1997-01-01

    A mechanical alloying process via a ball milling technique has been applied for preparing amorphous Fe 50 W 50 alloy powders. The results have shown that during the first and second stages of milling (0 to 360 ks) W atoms emigrate to Fe lattices to form nanocrystalline b.c.c. Fe-W solid solution, with a grain size of about 7 nm in diameter. After 720 ks of the milling time, this solid solution was transformed to an amorphous Fe-W alloy coexisting with the residual fraction of the unprocessed W powders. During the last stage of milling (720 to 1,440 ks) all of this residual W powder reacts with the amorphous phase to form a homogeneous Fe 50 W 50 amorphous alloy. The crystallization temperature and the enthalpy change of crystallization of amorphous Fe 50 W 50 powders milled for 1,440 ks were measured to be 860 K and -9kJ/mol, respectively. The amorphous Fe 50 W 50 powder produced is almost paramagnetic at room temperature. The powder comprises homogeneous and smooth spheres with an average size of about 0.5 microm in diameter

  20. Novel Amorphous Fe-Zr-Si(Cu) Boron-free Alloys

    Science.gov (United States)

    Kopcewicz, M.; Grabias, A.; Latuch, J.; Kowalczyk, M.

    2010-07-01

    Novel amorphous Fe80(ZrxSi20-x-y)Cuy boron-free alloys, in which boron was completely replaced by silicon as a glass forming element, have been prepared in the form of ribbons by a melt quenching technique. The X-ray diffraction and Mössbauer spectroscopy measurements revealed that the as-quenched ribbons with the composition of x = 6-10 at. % and y = 0, 1 at. % are predominantly amorphous. DSC measurements allowed the estimation of the crystallization temperatures of the amorphous alloys. The soft magnetic properties have been studied by the specialized rf-Mössbauer technique in which the spectra were recorded during an exposure of the samples to the rf field of 0 to 20 Oe at 61.8 MHz. Since the rf-collapse effect observed is very sensitive to the local anisotropy fields it was possible to evaluate the soft magnetic properties of amorphous alloys studied. The rf-Mössbauer studies were accompanied by the conventional measurements of the quasi-static hysteresis loops from which the magnetization and coercive fields were estimated. It was found that amorphous Fe-Zr-Si(Cu) alloys are magnetically very soft, comparable with those of the conventional amorphous B-containing Fe-based alloys.

  1. Preparation and isolation of dithiolene thiophosphoryl molecules as stable, protected forms of dithiolene ligands.

    Science.gov (United States)

    Arumugam, Kuppuswamy; Bollinger, James E; Fink, Mark; Donahue, James P

    2007-04-16

    The reaction of P4S10 with acyloins, RC(O)CH(OH)R, in refluxing dioxane, followed by the addition of alkylating agents, forms dithiolene thiophosphoryl thiolate compounds, (R2C2S2)P(S)(SR'), which are readily isolated and purified. The compounds that have been prepared and identified spectroscopically are those with R = p-anisyl, R' = Me (1); R = p-anisyl, R' = Bz (2); R = Ph, R' = Me (4); R = Et, R' = Bz (5). Compounds 1, 2, and 4 were structurally characterized by X-ray crystallography and found to possess a tetrahedral coordination geometry about the phosphorus atom, with overall Cs symmetry. In each case, the mirror plane bisects the dithiolene S-P-S chelate and contains the thiophosphoryl bond, which ranges in length from 1.9241(8) to 1.9361(7) A. The use of 2-(bromomethyl)naphthalene as organic electrophile in the P4S10/acyloin reaction produced bis(2-methylnaphthalenyl) disulfide as the only identifiable product. The substitution of Lawesson's reagent for P4S10 in reactions with acyloins produced deoxy acyloin rather than products resulting from chalcogen exchange. Compounds 1-2 and 4-5 are Group 5 analogues of 1,3-dithiol-2-ones, (R2C2S2)C=O, and undergo a similar hydrolysis in aqueous base to liberate ene-1,2-dithiolate dianions from which corresponding metal dithiolene complexes may be prepared. Deprotection of 1 in MeO-/MeOH, followed by the addition of NiCl2.6H2O and then I2, produces square planar [Ni(S2C2(C6H4-p-OCH3)2)2] (8) in 93% yield. A high-resolution structure of 8 (P) reveals dithiolene C-C and C-S bond lengths that are clearly indicative of the thionyl radical monoanionic nature of the ligand. The use of isolated (R2C2S2)P(S)(SR') compounds as a dithiolene ligand source for the preparation of metal dithiolene complexes offers the advantages of clean reactivity and high yield.

  2. Research and development of photovoltaic power system. Study on growth mechanism of a-Si:H and preparation of the stable, high quality films; Taiyoko hatsuden system no kenkyu kaihatsu. Amorphous silicon no seimaku kiko to kohinshitsuka

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, M [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1994-12-01

    This paper reports the result obtained during fiscal 1994 on research on a film forming mechanism for amorphous silicon for solar cells and its quality improvement. In in-situ observation on plasma CVD surface reaction by using the total reflection infrared absorbing spectroscopy, an observation on a real time basis was performed on the reaction process of an a-Si:H surface in contact with gas mixture plasma composed of SiH4 + CH4. In microscopic observation on initial processes of amorphous silicon growth, surface morphological change before and after a-Si:H deposition at 200{degree}C was observed by using an inter-atomic force microscope. The observation verified that a-Si:H has grown to an atomic layer. In research on defect density in a-Si:H fabricated under high-speed film forming conditions, analysis was made on correlation between the film forming speed at 250{degree}C and defect density in the film. Other research works include those on a high-quality a-SiGe:H film fabricated by using the nanometer film forming/hydrogen plasma annealing method, modulated doping into multi-layer films of a-Si:H/a-Ge:H, and thin film transistor using very thin multi layer films of a-Si:H/a-Ge:H. 5 refs., 12 figs.

  3. Calcium binding to beta-2-microglobulin at physiological pH drives the occurrence of conformational changes which cause the protein to precipitate into amorphous forms that subsequently transform into amyloid aggregates.

    Directory of Open Access Journals (Sweden)

    Sukhdeep Kumar

    Full Text Available Using spectroscopic, calorimetric and microscopic methods, we demonstrate that calcium binds to beta-2-microglobulin (β2m under physiological conditions of pH and ionic strength, in biological buffers, causing a conformational change associated with the binding of up to four calcium atoms per β2m molecule, with a marked transformation of some random coil structure into beta sheet structure, and culminating in the aggregation of the protein at physiological (serum concentrations of calcium and β2m. We draw attention to the fact that the sequence of β2m contains several potential calcium-binding motifs of the DXD and DXDXD (or DXEXD varieties. We establish (a that the microscopic aggregation seen at physiological concentrations of β2m and calcium turns into actual turbidity and visible precipitation at higher concentrations of protein and β2m, (b that this initial aggregation/precipitation leads to the formation of amorphous aggregates, (c that the formation of the amorphous aggregates can be partially reversed through the addition of the divalent ion chelating agent, EDTA, and (d that upon incubation for a few weeks, the amorphous aggregates appear to support the formation of amyloid aggregates that bind to the dye, thioflavin T (ThT, resulting in increase in the dye's fluorescence. We speculate that β2m exists in the form of microscopic aggregates in vivo and that these don't progress to form larger amyloid aggregates because protein concentrations remain low under normal conditions of kidney function and β2m degradation. However, when kidney function is compromised and especially when dialysis is performed, β2m concentrations probably transiently rise to yield large aggregates that deposit in bone joints and transform into amyloids during dialysis related amyloidosis.

  4. The Influence of Pressure on the Intrinsic Dissolution Rate of Amorphous Indomethacin

    Directory of Open Access Journals (Sweden)

    Korbinian Löbmann

    2014-08-01

    Full Text Available New drug candidates increasingly tend to be poorly water soluble. One approach to increase their solubility is to convert the crystalline form of a drug into the amorphous form. Intrinsic dissolution testing is an efficient standard method to determine the intrinsic dissolution rate (IDR of a drug and to test the potential dissolution advantage of the amorphous form. However, neither the United States Pharmacopeia (USP nor the European Pharmacopeia (Ph.Eur state specific limitations for the compression pressure in order to obtain compacts for the IDR determination. In this study, the influence of different compression pressures on the IDR was determined from powder compacts of amorphous (ball-milling indomethacin (IND, a glass solution of IND and poly(vinylpyrrolidone (PVP and crystalline IND. Solid state properties were analyzed with X-ray powder diffraction (XRPD and the final compacts were visually observed to study the effects of compaction pressure on their surface properties. It was found that there is no significant correlation between IDR and compression pressure for crystalline IND and IND–PVP. This was in line with the observation of similar surface properties of the compacts. However, compression pressure had an impact on the IDR of pure amorphous IND compacts. Above a critical compression pressure, amorphous particles sintered to form a single compact with dissolution properties similar to quench-cooled disc and crystalline IND compacts. In such a case, the apparent dissolution advantage of the amorphous form might be underestimated. It is thus suggested that for a reasonable interpretation of the IDR, surface properties of the different analyzed samples should be investigated and for amorphous samples the IDR should be measured also as a function of the compression pressure used to prepare the solid sample for IDR testing.

  5. Research Progress on Fe-based Amorphous Coatings

    Directory of Open Access Journals (Sweden)

    LIANG Xiu-bing

    2017-09-01

    Full Text Available The latest research progresses on Fe-based amorphous coatings were reviewed. The typical alloy system and the classification of Fe-based amorphous coatings were clarified. The status, progress and development of the Fe-based amorphous coatings prepared by thermal spray processing and laser cladding process were discussed. The main mechanical properties and potential applications of the Fe-based amorphous coatings were also described. Furthermore, based on the main problems mentioned above, the future development of the Fe-based amorphous coatings was discussed, including the exploitation preparation technologies of high amorphous content of the Fe-based coatings, the development of the low cost and high performance Fe-based coating alloys system, the broadening application of Fe-based amorphous coatings, and so on.

  6. Preparation of hydrogenated amorphous carbon films using a microsecond-pulsed DC capacitive-coupled plasma chemical vapor deposition system operated at high frequency up to 400 kHz

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-06-01

    Hydrogenated amorphous carbon (a-C:H) films are deposited on silicon (Si) substrates using a high-repetition microsecond-pulsed DC plasma chemical vapor deposition (CVD) system from acetylene (C2H2) at a gas pressure of 15 Pa inside a custom-made vacuum chamber. The plasma discharge characteristics, hydrocarbon species, and the microstructure of the resulting films are examined at various pulse repetition rates from 50 to 400 kHz and a fixed duty cycle of 50%. The optical emission spectra confirmed the increase in electron excitation energy from 1.09 to 1.82 eV and the decrease in the intensity ratio of CH/C2 from 1.04 to 0.75 with increasing pulse frequency, indicating the enhanced electron impact dissociation of C2H2 gas. With increasing pulse frequency, the deposition rate gradually increased, reaching a maximum rate of 60 nm/min at 200 kHz, after which a progressive decrease was noted, whereas the deposition area was almost uniform for all the prepared films. Clear trends of increasing sp3 content (amorphization) and decreasing hydrogen (H) content in the films were observed as the pulse repetition rate increased, while most of the hydrogen atoms bonded to carbon atoms by sp3 hybridization rather than by sp2 hybridization.

  7. Amorphization of metals by ion implantation and ion beam mixing

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Heera, V.

    1988-01-01

    Amorphous metallic systems can be formed either by high-fluence ion implantation of glassforming species or by irradiation of layered metal systems with inert gas ions. Both techniques and experimental examples are presented. Empirical rules are discussed which predict whether a given system can be transformed into an amorphous phase. Influence of temperature, implantation dose and pre-existing crystalline metal composition on amorphization is considered. Examples are given of the implantation induced amorphous structure, recrystallization and formation of quasicrystalline structures. (author)

  8. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    Energy Technology Data Exchange (ETDEWEB)

    Kalkan, B. [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 20015 (United States); Edwards, T. G.; Sen, S. [Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616 (United States); Raoux, S. [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2013-08-28

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ∼5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous →β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ∼2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

  9. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    Science.gov (United States)

    Kalkan, B.; Edwards, T. G.; Raoux, S.; Sen, S.

    2013-08-01

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ˜5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous → β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ˜2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

  10. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    International Nuclear Information System (INIS)

    Kalkan, B.; Edwards, T. G.; Sen, S.; Raoux, S.

    2013-01-01

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ∼5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous →β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ∼2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression

  11. Multivariate Quantification of the Solid State Phase Composition of Co-Amorphous Naproxen-Indomethacin

    Directory of Open Access Journals (Sweden)

    Andreas Beyer

    2015-10-01

    Full Text Available To benefit from the optimized dissolution properties of active pharmaceutical ingredients in their amorphous forms, co-amorphisation as a viable tool to stabilize these amorphous phases is of both academic and industrial interest. Reports dealing with the physical stability and recrystallization behavior of co-amorphous systems are however limited to qualitative evaluations based on the corresponding X-ray powder diffractograms. Therefore, the objective of the study was to develop a quantification model based on X-ray powder diffractometry (XRPD, followed by a multivariate partial least squares regression approach that enables the simultaneous determination of up to four solid state fractions: crystalline naproxen, γ-indomethacin, α-indomethacin as well as co-amorphous naproxen-indomethacin. For this purpose, a calibration set that covers the whole range of possible combinations of the four components was prepared and analyzed by XRPD. In order to test the model performances, leave-one-out cross validation was performed and revealed root mean square errors of validation between 3.11% and 3.45% for the crystalline molar fractions and 5.57% for the co-amorphous molar fraction. In summary, even four solid state phases, involving one co-amorphous phase, can be quantified with this XRPD data-based approach.

  12. Thin film transistor performance of amorphous indium–zinc oxide semiconductor thin film prepared by ultraviolet photoassisted sol–gel processing

    Science.gov (United States)

    Kodzasa, Takehito; Nobeshima, Taiki; Kuribara, Kazunori; Yoshida, Manabu

    2018-05-01

    We have fabricated an amorphous indium–zinc oxide (IZO, In/Zn = 3/1) semiconductor thin-film transistor (AOS-TFT) by the sol–gel technique using ultraviolet (UV) photoirradiation and post-treatment in high-pressure O2 at 200 °C. The obtained TFT showed a hole carrier mobility of 0.02 cm2 V‑1 s‑1 and an on/off current ratio of 106. UV photoirradiation leads to the decomposition of the organic agents and hydroxide group in the IZO gel film. Furthermore, the post-treatment annealing at a high O2 pressure of more than 0.6 MPa leads to the filling of the oxygen vacancies in a poor metal–oxygen network in the IZO film.

  13. Surface Passivation of CdSe Quantum Dots in All Inorganic Amorphous Solid by Forming Cd1-xZnxSe Shell.

    Science.gov (United States)

    Xia, Mengling; Liu, Chao; Zhao, Zhiyong; Wang, Jing; Lin, Changgui; Xu, Yinsheng; Heo, Jong; Dai, Shixun; Han, Jianjun; Zhao, Xiujian

    2017-02-07

    CdSe quantum dots (QDs) doped glasses have been widely investigated for optical filters, LED color converter and other optical emitters. Unlike CdSe QDs in solution, it is difficult to passivate the surface defects of CdSe QDs in glass matrix, which strongly suppress its intrinsic emission. In this study, surface passivation of CdSe quantum dots (QDs) by Cd 1-x Zn x Se shell in silicate glass was reported. An increase in the Se/Cd ratio can lead to the partial passivation of the surface states and appearance of the intrinsic emission of CdSe QDs. Optimizing the heat-treatment condition promotes the incorporation of Zn into CdSe QDs and results in the quenching of the defect emission. Formation of CdSe/Cd 1-x Zn x Se core/graded shell QDs is evidenced by the experimental results of TEM and Raman spectroscopy. Realization of the surface passivation and intrinsic emission of II-VI QDs may facilitate the wide applications of QDs doped all inorganic amorphous materials.

  14. High mobility amorphous InGaZnO{sub 4} thin film transistors formed by CO{sub 2} laser spike annealing

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chen-Yang; Zhu, Bin; Ast, Dieter G.; Thompson, Michael O. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Greene, Raymond G. [Corning Incorporated, Corning, New York 14831 (United States)

    2015-03-23

    Amorphous InGaZnO{sub 4} (a-IGZO) thin film transistors (TFTs) hold great potential for large area and flexible electronics with current research focused on improving the mobility and stability. In this work, we report on properties of IGZO TFTs fabricated using laser spike annealing (LSA) with a scanned continuous wave CO{sub 2} laser. For peak annealing temperatures near 430 °C and a 1 ms dwell, TFTs exhibit saturation field-effect mobilities above 70 cm{sup 2}/V-s (V{sub on} ∼ −3 V), a value over 4 times higher than furnace-annealed control samples (∼16 cm{sup 2}/V-s). A model linking oxygen deficient defect structures with limited structural relaxation after the LSA anneal is proposed to explain the observed high mobility. This mobility is also shown to be comparable to the estimated trap-free mobility in oxide semiconductors and suggests that shallow traps can be removed by transient thermal annealing under optimized conditions.

  15. Colors and the evolution of amorphous galaxies

    International Nuclear Information System (INIS)

    Gallagher, J.S. III; Hunter, D.A.

    1987-01-01

    UBVRI and H-alpha photometric observations are presented for 16 amorphous galaxies and a comparison sample of Magellanic irregular (Im) and Sc spiral galaxies. These data are analyzed in terms of star-formation rates and histories in amorphous galaxies. Amorphous galaxies have mean global colors and star-formation rates per unit area that are similar to those in giant Im systems, despite differences in spatial distributions of star-forming centers in these two galactic structural classes. Amorphous galaxies differ from giant Im systems in having somewhat wider scatter in relationships between B - V and U - B colors, and between U - B and L(H-alpha)/L(B). This scatter is interpreted as resulting from rapid variations in star-formation rates during the recent past, which could be a natural consequence of the concentration of star-forming activity into centrally located, supergiant young stellar complexes in many amorphous galaxies. While the unusual spatial distribution and intensity of star formation in some amorphous galaxies is due to interactions with other galaxies, several amorphous galaxies are relatively isolated and thus the processes must be internal. The ultimate evolutionary fate of rapidly evolving amorphous galaxies remains unknown. 77 references

  16. Effect of thermal spray processing techniques on the microstructure and properties of Ni-based amorphous coatings

    International Nuclear Information System (INIS)

    Lee, S.M.; Moon, B.M.; Fleury, E.; Ahn, H.S.; Kim, D.H.; Kim, W.T.; Sordelet, D.J.

    2005-01-01

    Metallic amorphous materials have been widely developed thanks to the outstanding properties including high chemical stability, mechanical strength, and magnetic properties. However, with the exception of a few compositions, the limiting factor is the critical cooling rate for the formation of the amorphous phase. For many applications, it is only the contact surface properties that are important, thus the use, of coating techniques such as thermal sprayings has several attractive features. In this paper, we present the microstructure of Ni-based amorphous coatings prepared by laser cladding and vacuum plasma spraying. The utilization of plasma spraying to deposit atomized powder enabled the formation of fully amorphous coating, laser cladding resulted in mostly crystallized structures. Glass forming ability and wear properties of the coatings were discussed as a function of the coating microstructure. (orig.)

  17. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review

    KAUST Repository

    Guillen, Gregory R.; Pan, Yinjin; Li, Minghua; Hoek, Eric M. V.

    2011-01-01

    . The body of knowledge has grown exponentially in the past fifty years, which suggests the need for a critical review of the literature. Here we present a review of nonsolvent induced phase separation membrane preparation and characterization for many

  18. Handling technique of spore-forming bacteria in radiation sterilization. 1. Preparation of spores

    International Nuclear Information System (INIS)

    Koshikawa, Tomihiko

    1994-01-01

    This paper deals with a handling technique of spore-forming bacteria in radiation sterilization. An explanation is given under three sections: (1) life cycle of spore-forming bacteria, medium to form bacterial spores, and colony and purification methods of bacterial spores; (2) methods for measuring the number of bacterial spores and resistance against gamma radiation (D values); and (3) a test method for identifying spore-forming bacteria and a simple identification method. (N.K.)

  19. M3FT-17OR0301070211 - Preparation of Hot Isostatically Pressed AgZ Waste Form Samples

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jordan, Jacob A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-01

    The production of radioactive iodine-bearing waste forms that exhibit long-term stability and are suitable for permanent geologic disposal has been the subject of substantial research interest. One potential method of iodine waste form production is hot isostatic pressing (HIP). Recent studies at Oak Ridge National Laboratory (ORNL) have investigated the conversion of iodine-loaded silver mordenite (I-AgZ) directly to a waste form by HIP. ORNL has performed HIP with a variety of sample compositions and pressing conditions. The base mineral has varied among AgZ (in pure and engineered forms), silver-exchanged faujasite, and silverexchanged zeolite A. Two iodine loading methods, occlusion and chemisorption, have been explored. Additionally, the effects of variations in temperature and pressure of the process have been examined, with temperature ranges of 525°C–1,100°C and pressure ranges of 100–300 MPa. All of these samples remain available to collaborators upon request. The sample preparation detailed in this document is an extension of that work. In addition to previously prepared samples, this report documents the preparation of additional samples to support stability testing. These samples include chemisorbed I-AgZ and pure AgI. Following sample preparation, each sample was processed by HIP by American Isostatic Presses Inc. and returned to ORNL for storage. ORNL will store the samples until they are requested by collaborators for durability testing. The sample set reported here will support waste form durability testing across the national laboratories and will provide insight into the effects of varied iodine content on iodine retention by the produced waste form and on potential improvements in waste form durability provided by the zeolite matrix.

  20. Tooth preparations for complete crowns: an art form based on scientific principles.

    Science.gov (United States)

    Goodacre, C J; Campagni, W V; Aquilino, S A

    2001-04-01

    No recent literature has reviewed the current scientific knowledge on complete coverage tooth preparations. This article traces the historic evolution of complete coverage tooth preparations and identifies guidelines for scientific tooth preparations. Literature covering 250 years of clinical practice was reviewed with emphasis on scientific data acquired during the last 50 years. Both a MEDLINE search and an extensive manual search were used to locate relevant articles written in English in the last 50 years. Teeth should be prepared so that they exhibit the following characteristics: 10 to 20 degrees of total occlusal convergence, a minimal occlusocervical dimension of 4 mm for molars and 3 mm for other teeth, and an occlusocervical-to-faciolingual dimension ratio of 0.4 or greater. Facioproximal and linguoproximal line angles should be preserved whenever possible. When the above features are missing, the teeth should be modified with auxiliary resistance features such as axial grooves or boxes, preferably on proximal surfaces. Finish line selection should be based on the type of crown/retainer, esthetic requirements, ease of formation, and personal experience. Expectations of enhanced marginal fit with certain finish lines could not be validated by recent research. Esthetic requirements and tooth conditions determine finish line locations relative to the gingiva, with a supragingival location being more acceptable. Line angles should be rounded, and a reasonable degree of surface smoothness is desired. Nine scientific principles have been developed that ensure mechanical, biologic, and esthetic success for tooth preparation of complete coverage restorations.

  1. How to teach the potassium hydroxide preparation: a disappearing clinical art form.

    Science.gov (United States)

    Wilkison, Bart D; Sperling, Leonard C; Spillane, Anne P; Meyerle, Jon H

    2015-08-01

    Using potassium hydroxide (KOH) preparations in the diagnosis of superficial fungal infections is a technique that has been handed down from teacher to apprentice for more than 100 years. The technique is simple, accurate, and inexpensive; however, there is reason to believe it is falling to the wayside in favor of empiric treatment, especially in primary care settings. To continue the use of this valuable diagnostic aid, a system of teaching the KOH preparation to the next generation of physicians (ie, medical students, residents) is proposed with emphasis on facilitating the process by storing viable skin samples infected with dermatophytes for long periods of time. This technique obviates the need to find suitably infected patients before each teaching laboratory. This technique also is appropriate to refresh the skills of practicing physicians as they prepare for point-of-care testing assessments.

  2. Highly uniform resistive switching properties of amorphous InGaZnO thin films prepared by a low temperature photochemical solution deposition method.

    Science.gov (United States)

    Hu, Wei; Zou, Lilan; Chen, Xinman; Qin, Ni; Li, Shuwei; Bao, Dinghua

    2014-04-09

    We report on highly uniform resistive switching properties of amorphous InGaZnO (a-IGZO) thin films. The thin films were fabricated by a low temperature photochemical solution deposition method, a simple process combining chemical solution deposition and ultraviolet (UV) irradiation treatment. The a-IGZO based resistive switching devices exhibit long retention, good endurance, uniform switching voltages, and stable distribution of low and high resistance states. Electrical conduction mechanisms were also discussed on the basis of the current-voltage characteristics and their temperature dependence. The excellent resistive switching properties can be attributed to the reduction of organic- and hydrogen-based elements and the formation of enhanced metal-oxide bonding and metal-hydroxide bonding networks by hydrogen bonding due to UV irradiation, based on Fourier-transform-infrared spectroscopy, X-ray photoelectron spectroscopy, and Field emission scanning electron microscopy analysis of the thin films. This study suggests that a-IGZO thin films have potential applications in resistive random access memory and the low temperature photochemical solution deposition method can find the opportunity for further achieving system on panel applications if the a-IGZO resistive switching cells were integrated with a-IGZO thin film transistors.

  3. Impact of hydrogen dilution on optical properties of intrinsic hydrogenated amorphous silicon films prepared by high density plasma chemical vapor deposition for solar cell applications

    Science.gov (United States)

    Chen, Huai-Yi; Lee, Yao-Jen; Chang, Chien-Pin; Koo, Horng-Show; Lai, Chiung-Hui

    2013-01-01

    P-i-n single-junction hydrogenated amorphous silicon (a-Si:H) thin film solar cells were successfully fabricated in this study on a glass substrate by high density plasma chemical vapor deposition (HDP-CVD) at low power of 50 W, low temperature of 200°C and various hydrogen dilution ratios (R). The open circuit voltage (Voc ), short circuit current density (Jsc ), fill factor (FF) and conversion efficiency (η) of the solar cell as well as the refractive index (n) and absorption coefficient (α) of the i-layer at 600 nm wavelength rise with increasing R until an abrupt drop at high hydrogen dilution, i.e. R > 0.95. However, the optical energy bandgap (Eg ) of the i-layer decreases with the R increase. Voc and α are inversely correlated with Eg . The hydrogen content affects the i-layer and p/i interface quality of the a-Si:H thin film solar cell with an optimal value of R = 0.95, which corresponds to solar cell conversion efficiency of 3.85%. The proposed a-Si:H thin film solar cell is expected to be improved in performance.

  4. Effect of the hydrogen flow rate on the structural and optical properties of hydrogenated amorphous silicon thin films prepared by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ben Amor, Sana; Dimassi, Wissem; Ali Tebai, Mohamed; Ezzaouia, Hatem [Photovoltaic Laboratory Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif (Tunisia)

    2012-10-15

    Hydrogenated amorphous silicon (a-Si:H) thin films were deposited from pure silane (SiH{sub 4}) and hydrogen (H{sub 2}) gas mixture by plasma enhanced chemical vapor deposition (PECVD) method at low temperature (400 C) using high rf power (60 W). The structural and optical properties of these films are systematically investigated as a function of the flow rate of hydrogen (F{sub H2}).The surface morphology is analyzed by atomic force microscopy (AFM). The characterization of these films with low angle X-ray diffraction revealed that the crystallite size in the films tends to decrease with increase in (F{sub H2}). The Fourier transform infrared (FTIR) spectroscopic analysis showed that at low values of (F{sub H2}),the hydrogen bonding in Si:H films shifts from di-hydrogen (Si-H{sub 2}) and (Si-H{sub 2})n complexes to the mono-hydrogen (Si-H) bonding configuration. Finally, for these optimized conditions, the deposition rate decreases with increasing (F{sub H2}). (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Electrochemically formed passive layers on titanium - preparation and biocompatibility assessment in Hank's balanced salt solution

    International Nuclear Information System (INIS)

    Zhao, B.; Jerkiewicz, G.

    2006-01-01

    Uniform and crack-free passive layers on Ti are prepared using AC voltage in 7.5 wt.% aq. NH 4 ·BF 4 at 25 o C. The passive layers possess coloration (wide spectrum of colors) that depends on the experimental conditions. The biocompatibility of such prepared passive layers is evaluated using corrosion science and analytical techniques. Their corrosion behavior, Ti-ion release, surface roughness, and wettability in Hank's Balanced Salt Solution (HBSS) at 37 o C are the main focus of this work. Open-circuit potential and polarization measurements demonstrate that the corrosion potential (E corr ) of the passive layers becomes more positive than that of the untreated Ti. The value of E corr increases as we increase the AC voltage (VAC). Their corrosion rate (CR) is lower than that of the untreated Ti, and they reduced the Ti-ion release level from 230 to 15 ppb. An increase in the AC voltage frequency (f) leads to a slightly higher level of the Ti-ion release (∼50 ppb). Surface profilometry, optical microscopy, and scanning electron microscopy (SEM) analyses show that prolonged exposure of the passive layers to HBSS results in changes to their surface topography. The passive layers prepared by the application of AC voltage are rougher and more hydrophilic than the untreated Ti. Our methodology of preparing biocompatible passive layers on Ti might be applied as a new surface treatment procedure for Ti implants. (author)

  6. Enhanced proton conductivity of niobium phosphates by interfacing crystal grains with an amorphous functional phase

    DEFF Research Database (Denmark)

    Huang, Yunjie; Yu, Lele; Li, Haiyan

    2016-01-01

    Niobium phosphate is an interesting proton conductor operational in the intermediate temperature range. In the present work two forms of phosphates were prepared: an amorphous one with high specific area and a crystalline one with low specific surface area. Both phosphates exhibited very low prot...... the high surface area amorphous phosphate was used as the precursor. At 250 °C thus obtained niobium phosphate showed a high and stable conductivity of 0.03 S cm−1 under dry atmosphere and of 0.06 S cm−1 at a water partial pressure of 0.12 atm....... conductivities. An activation process was developed to convert the phosphates into crystal grains with a phosphorus rich amorphous phase along the grain boundaries. As a result, the obtained niobium phosphates showed considerably enhanced and stable proton conductivities. The activation effect was prominent when...

  7. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Wu, Cheng-Yang; Hong, Shao-Chyang; Hwang, Fu-Tsai; Lai, Li-Wen; Lin, Tan-Wei; Liu, Day-Shan

    2011-01-01

    The effect of a nickel oxide (NiO x ) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO x ) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO x films, with and without a NiO x seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO x film, deposited on a NiO x seed layer, was found to be lower than that of a pure TiO x film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO x film deposited onto the NiO x seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO x /TiO x system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  8. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Yang; Hong, Shao-Chyang [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Hwang, Fu-Tsai [Department of Electro-Optical Engineering, National United University, Miao-Li, 36003, Taiwan (China); Lai, Li-Wen [ITRI South, Industrial Technology Research Institute, Liujia, Tainan, 73445, Taiwan (China); Lin, Tan-Wei [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Liu, Day-Shan, E-mail: dsliu@sunws.nfu.edu.tw [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China)

    2011-10-31

    The effect of a nickel oxide (NiO{sub x}) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO{sub x}) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO{sub x} films, with and without a NiO{sub x} seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO{sub x} film, deposited on a NiO{sub x} seed layer, was found to be lower than that of a pure TiO{sub x} film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO{sub x} film deposited onto the NiO{sub x} seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO{sub x}/TiO{sub x} system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  9. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  10. Langmuir-Blodgett films prepared from pre-formed cholestanic liquid-crystalline polymers

    Energy Technology Data Exchange (ETDEWEB)

    Tundo, P.; Hodge, P.; Valli, L.; Davis, F. (Venice Univ. (Italy). Dip. di Scienze Ambientali Lecce Univ. (Italy). Dip. di Scienza dei Materiali Manchester Univ. (United Kingdom). Dep. of Chemistry)

    1992-01-01

    A series of alternating copolymers of maleic anhydride and a-olefins functionalized through different alkyl chains with cholestanic groups were synthetised and derivatives prepared by reactions of the anhydride residues with methanol, water, dimethylamine and morpholine, respectively. The same starting functionalized a-olefins were used to prepare other suitable compounds in order to correlate the features of the liquid-crystalline behaviour of the mesogenic cholestanic group with the stability of the forthcoming polymeric or not polymeric Langmuir-Blodgett (LB) films. For some copolymers surface pressure against area per molecule isotherms are reported. In some multilayer (LB) films, the spacings between the layers were determined by the detection of BRAGG peaks by X-ray diffraction. The (LB) films of these polymers are closed packed, owing to either the polymeric skeleton or liquid-crystalline interaction.

  11. New methodology of preparation support for solid oxide fuel cells using different pore forming agent

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, Raigenis da P.; Guedes, Bruna C.F.; Silva, Marcos A. da; Carvalho, Luiz F.V. de; Boaventura, Jaime S. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica; Pontes, Luiz A.M. [Universidade Federal da Bahia (EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Programa de Pos-Graduacao em Engenharia Quimica

    2008-07-01

    The development of environment-friendly energy sources has been of the most important scientific and technological area. Solid oxide fuel cells (SOFC) are very promising alternative for their ability to handle renewable fuels with low emissions and high efficiency. However, this device requires massive improvement before commercial application. This work studies the pore formation in the cell anode and cathode with NaHCO{sub 3} or citric acid, comparing to graphite. The three agents make pore with similar features, but the use of NaHCO{sub 3} and citric acid considerably improves the adhesion of the electrode-electrolyte interface, critical characteristic for good cell efficiency. The prepared anode-electrolyte-cathode structure was studied by SEM technique. The SOFC prepared using citric acid was tested with gaseous ethanol, natural gas and hydrogen. For all these three fuels the SOFC shows virtually no overpotential, indicating the good ionic conductance of the electrodes-electrolyte interface.. (author)

  12. Preparation of new crystal forms via photochemical, mechanochemical and sol-gel methods

    OpenAIRE

    D’Agostino, Simone

    2012-01-01

    This work of thesis involves various aspects of crystal engineering. Chapter 1 focuses on crystals containing crown ether complexes. Aspects such as the possibility of preparing these materials by non-solution methods, i.e. by direct reaction of the solid components, thermal behavior and also isomorphism and interconversion between hydrates are taken into account. In chapter 2 a study is presented aimed to understanding the relationship between hydrogen bonding capability and shape of the...

  13. Magnetic Properties of Nanometer-sized Crystalline and Amorphous Particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Bødker, Franz; Hansen, Mikkel Fougt

    1997-01-01

    Amorphous transition metal-metalloid alloy particles can be prepared by chemical preparation techniques. We discuss the preparation of transition metal-boron and iron-carbon particles and their magnetic properties. Nanometer-sized particles of both crystalline and amorphous magnetic materials...... are superparamagnetic at finite temperatures. The temperature dependence of the superparamagnetic relaxation time and the influence of inter-particle interactions is discussed. Finally, some examples of studies of surface magnetization of alpha-Fe particles are presented....

  14. Indomethacin nanocrystals prepared by different laboratory scale methods: effect on crystalline form and dissolution behavior

    Energy Technology Data Exchange (ETDEWEB)

    Martena, Valentina; Censi, Roberta [University of Camerino, School of Pharmacy (Italy); Hoti, Ela; Malaj, Ledjan [University of Tirana, Department of Pharmacy (Albania); Di Martino, Piera, E-mail: piera.dimartino@unicam.it [University of Camerino, School of Pharmacy (Italy)

    2012-12-15

    The objective of this study is to select very simple and well-known laboratory scale methods able to reduce particle size of indomethacin until the nanometric scale. The effect on the crystalline form and the dissolution behavior of the different samples was deliberately evaluated in absence of any surfactants as stabilizers. Nanocrystals of indomethacin (native crystals are in the {gamma} form) (IDM) were obtained by three laboratory scale methods: A (Batch A: crystallization by solvent evaporation in a nano-spray dryer), B (Batch B-15 and B-30: wet milling and lyophilization), and C (Batch C-20-N and C-40-N: Cryo-milling in the presence of liquid nitrogen). Nanocrystals obtained by the method A (Batch A) crystallized into a mixture of {alpha} and {gamma} polymorphic forms. IDM obtained by the two other methods remained in the {gamma} form and a different attitude to the crystallinity decrease were observed, with a more considerable decrease in crystalline degree for IDM milled for 40 min in the presence of liquid nitrogen. The intrinsic dissolution rate (IDR) revealed a higher dissolution rate for Batches A and C-40-N, due to the higher IDR of {alpha} form than {gamma} form for the Batch A, and the lower crystallinity degree for both the Batches A and C-40-N. These factors, as well as the decrease in particle size, influenced the IDM dissolution rate from the particle samples. Modifications in the solid physical state that may occur using different particle size reduction treatments have to be taken into consideration during the scale up and industrial development of new solid dosage forms.

  15. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials

    International Nuclear Information System (INIS)

    Sun, Zhiming; Zhang, Yuzhong; Zheng, Shuilin; Park, Yuri; Frost, Ray L.

    2013-01-01

    Highlights: ► Composite phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite. ► The optimum mixed proportion was obtained through differential scanning calorimetry. ► Thermal energy storage properties of the composite PCMs were determined by DSC. ► Thermal cycling test showed that the prepared PCMs are thermally reliable and chemically stable. - Abstract: A composite paraffin-based phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite through the fusion adsorption method. In this study, raw diatomite was purified by thermal treatment in order to improve the adsorption capacity of diatomite, which acted as a carrier material to prepare shape-stabilized PCMs. Two forms of paraffin (paraffin waxes and liquid paraffin) with different melting points were blended together by the fusion method, and the optimum mixed proportion with a suitable phase-transition temperature was obtained through differential scanning calorimetry (DSC) analysis. Then the prepared composite paraffin was adsorbed in calcined diatomite. The prepared paraffin/calcined diatomite composites were characterized by the scanning electron microscope (SEM) and Fourier transformation infrared (FT-IR) analysis techniques. Thermal energy storage properties of the composite PCMs were determined by DSC method. DSC results showed that there was an optimum adsorption ratio between composite paraffin and calcined diatomite and the phase-transition temperature and the latent heat of the composite PCMs were 33.04 °C and 89.54 J/g, respectively. Thermal cycling test of composite PCMs showed that the prepared material is thermally reliable and chemically stable. The obtained paraffin/calcined diatomite composites have proper latent heat and melting temperatures, and show practical significance and good potential application value

  16. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhiming [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Zhang, Yuzhong [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Zheng, Shuilin, E-mail: shuilinzh@yahoo.com.cn [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Park, Yuri [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Frost, Ray L., E-mail: r.frost@qut.edu.au [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia)

    2013-04-20

    Highlights: ► Composite phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite. ► The optimum mixed proportion was obtained through differential scanning calorimetry. ► Thermal energy storage properties of the composite PCMs were determined by DSC. ► Thermal cycling test showed that the prepared PCMs are thermally reliable and chemically stable. - Abstract: A composite paraffin-based phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite through the fusion adsorption method. In this study, raw diatomite was purified by thermal treatment in order to improve the adsorption capacity of diatomite, which acted as a carrier material to prepare shape-stabilized PCMs. Two forms of paraffin (paraffin waxes and liquid paraffin) with different melting points were blended together by the fusion method, and the optimum mixed proportion with a suitable phase-transition temperature was obtained through differential scanning calorimetry (DSC) analysis. Then the prepared composite paraffin was adsorbed in calcined diatomite. The prepared paraffin/calcined diatomite composites were characterized by the scanning electron microscope (SEM) and Fourier transformation infrared (FT-IR) analysis techniques. Thermal energy storage properties of the composite PCMs were determined by DSC method. DSC results showed that there was an optimum adsorption ratio between composite paraffin and calcined diatomite and the phase-transition temperature and the latent heat of the composite PCMs were 33.04 °C and 89.54 J/g, respectively. Thermal cycling test of composite PCMs showed that the prepared material is thermally reliable and chemically stable. The obtained paraffin/calcined diatomite composites have proper latent heat and melting temperatures, and show practical significance and good potential application value.

  17. Preparation of plutonium waste forms with ICPP calcined high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Staples, B.A.; Knecht, D.A. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); O`Holleran, T.P. [Argonne National Lab.-West, Idaho Falls, ID (United States)] [and others

    1997-05-01

    Glass and glass-ceramic forms developed for the immobilization of calcined high-level wastes generated by Idaho Chemical Processing Plant (ICPP) fuel reprocessing activities have been investigated for ability to immobilize plutonium and to simultaneously incorporate calcined waste as an anti-proliferation barrier. Within the forms investigated, crystallization of host phases result in an increased loading of plutonium as well as its incorporation into potentially more durable phases than the glass. The host phases were initially formed and characterized with cerium (Ce{sup +4}) as a surrogate for plutonium (Pu{sup +4}) and samarium as a neutron absorber for criticality control. Verification of the surrogate testing results were then performed replacing cerium with plutonium. All testing was performed with surrogate calcined high-level waste. The results of these tests indicated that a potentially useful host phase, based on zirconia, can be formed either by devitrification or solid state reaction in the glass studied. This phase incorporates plutonium as well as samarium and the calcined waste becomes part of the matrix. Its ease of formation makes it potentially useful in excess plutonium dispositioning. Other durable host phases for plutonium and samarium, including zirconolite and zircon have been formed from zirconia or alumina calcine through cold press-sintering techniques and hot isostatic pressing. Host phase formation experiments conducted through vitrification or by cold press-sintering techniques are described and the results discussed. Recommendations are given for future work that extends the results of this study.

  18. Preparation of plutonium waste forms with ICPP calcined high-level waste

    International Nuclear Information System (INIS)

    Staples, B.A.; Knecht, D.A.; O'Holleran, T.P.

    1997-05-01

    Glass and glass-ceramic forms developed for the immobilization of calcined high-level wastes generated by Idaho Chemical Processing Plant (ICPP) fuel reprocessing activities have been investigated for ability to immobilize plutonium and to simultaneously incorporate calcined waste as an anti-proliferation barrier. Within the forms investigated, crystallization of host phases result in an increased loading of plutonium as well as its incorporation into potentially more durable phases than the glass. The host phases were initially formed and characterized with cerium (Ce +4 ) as a surrogate for plutonium (Pu +4 ) and samarium as a neutron absorber for criticality control. Verification of the surrogate testing results were then performed replacing cerium with plutonium. All testing was performed with surrogate calcined high-level waste. The results of these tests indicated that a potentially useful host phase, based on zirconia, can be formed either by devitrification or solid state reaction in the glass studied. This phase incorporates plutonium as well as samarium and the calcined waste becomes part of the matrix. Its ease of formation makes it potentially useful in excess plutonium dispositioning. Other durable host phases for plutonium and samarium, including zirconolite and zircon have been formed from zirconia or alumina calcine through cold press-sintering techniques and hot isostatic pressing. Host phase formation experiments conducted through vitrification or by cold press-sintering techniques are described and the results discussed. Recommendations are given for future work that extends the results of this study

  19. Using containerless methods to develop amorphous pharmaceuticals.

    Science.gov (United States)

    Weber, J K R; Benmore, C J; Suthar, K J; Tamalonis, A J; Alderman, O L G; Sendelbach, S; Kondev, V; Yarger, J; Rey, C A; Byrn, S R

    2017-01-01

    Many pipeline drugs have low solubility in their crystalline state and require compounding in special dosage forms to increase bioavailability for oral administration. The use of amorphous formulations increases solubility and uptake of active pharmaceutical ingredients. These forms are rapidly gaining commercial importance for both pre-clinical and clinical use. Synthesis of amorphous drugs was performed using an acoustic levitation containerless processing method and spray drying. The structure of the products was investigated using in-situ high energy X-ray diffraction. Selected solvents for processing drugs were investigated using acoustic levitation. The stability of amorphous samples was measured using X-ray diffraction. Samples processed using both spray drying and containerless synthesis were compared. We review methods for making amorphous pharmaceuticals and present data on materials made by containerless processing and spray drying. It was shown that containerless processing using acoustic levitation can be used to make phase-pure forms of drugs that are known to be difficult to amorphize. The stability and structure of the materials was investigated in the context of developing and making clinically useful formulations. Amorphous compounds are emerging as an important component of drug development and for the oral delivery of drugs with low solubility. Containerless techniques can be used to efficiently synthesize small quantities of pure amorphous forms that are potentially useful in pre-clinical trials and for use in the optimization of clinical products. Developing new pharmaceutical products is an essential enterprise to improve patient outcomes. The development and application of amorphous pharmaceuticals to increase absorption is rapidly gaining importance and it provides opportunities for breakthrough research on new drugs. There is an urgent need to solve problems associated with making formulations that are both stable and that provide high

  20. Investigation of physical properties and stability of indomethacin-cimetidine and naproxen-cimetidine co-amorphous systems prepared by quench cooling, coprecipitation and ball milling

    DEFF Research Database (Denmark)

    Lim, Ai Wei; Löbmann, Korbinian; Grohganz, Holger

    2016-01-01

    the samples. Structural relaxation (i.e. molecular mobility) behaviour was obtained from the Kohlrausch-Williams-Watts (KWW) relationship. KEY FINDINGS: A glass transition temperature (Tg ), on average 20 °C higher than the predicted Tg (calculated from the Fox equation), was observed in all samples....... The structural relaxation was dependent on the preparative methods. At a storage temperature of 40 °C, a comparatively higher molecular mobility was observed in indomethacin-cimetidine samples prepared by ball milling (ln τ(β) = 0.8), while similar molecular mobility was found for the same sample prepared...... by quench cooling (ln τ(β) = 2.4) and co-evaporation (ln τ(β) = 2.5). In contrast, molecular mobility of the naproxen-cimetidine samples followed the order co-evaporation (ln τ(β) = 0.8), quench cooling (ln τ(β) = 1.6) and ball milling (ln τ(β) = 1.8). CONCLUSION: The estimated relaxation times by the DSC...

  1. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review

    KAUST Repository

    Guillen, Gregory R.

    2011-04-06

    The methods and mechanisms of nonsolvent induced phase separation have been studied for more than fifty years. Today, phase inversion membranes are widely used in numerous chemical industries, biotechnology, and environmental separation processes. The body of knowledge has grown exponentially in the past fifty years, which suggests the need for a critical review of the literature. Here we present a review of nonsolvent induced phase separation membrane preparation and characterization for many commonly used membrane polymers. The key factors in membrane preparation discussed include the solvent type, polymer type and concentration, nonsolvent system type and composition, additives to the polymer solution, and film casting conditions. A brief introduction to membrane characterization is also given, which includes membrane porosity and pore size distribution characterization, membrane physical and chemical properties characterization, and thermodynamic and kinetic evaluation of the phase inversion process. One aim of this review is to lay out the basics for selecting polymer solvent nonsolvent systems with appropriate film casting conditions to produce membranes with the desired performance, morphology, and stability, and to choose the proper way to characterize these properties of nonsolvent induced phase inversion membranes. © 2011 American Chemical Society.

  2. Moessbauer study of corrosion products formed on Fe80B20 and Fe40Ni40 (MoB)20 amorphous alloys in an SO2-polluted atmosphere

    International Nuclear Information System (INIS)

    Davalos, J.; Marco, J.F.; Gracia, M.; Gancedo, J.R.; Greneche, J.M.

    1990-01-01

    ICEMS, XPS, XRD, and AES have been used to study the corrosion layers formed on two metallic glasses, Fe 80 B 20 and Fe 40 Ni 40 (MoB) 20 (2605 and 2826 MB, Allied Company), exposed to an SO 2 -polluted humid atmosphere. The iron-containing corrosion products are the same found for pure iron in the same environment, but different relative concentrations were clearly evidenced by ICEMS results. Elemental sulphur, Ni(OH) 2 , and B(OH) 3 , the latter enriched at the surface, were found by XPS, XRD and AES. (orig.)

  3. High-density amorphous ice: nucleation of nanosized low-density amorphous ice

    Science.gov (United States)

    Tonauer, Christina M.; Seidl-Nigsch, Markus; Loerting, Thomas

    2018-01-01

    The pressure dependence of the crystallization temperature of different forms of expanded high-density amorphous ice (eHDA) was scrutinized. Crystallization at pressures 0.05-0.30 GPa was followed using volumetry and powder x-ray diffraction. eHDA samples were prepared via isothermal decompression of very high-density amorphous ice at 140 K to different end pressures between 0.07-0.30 GPa (eHDA0.07-0.3). At 0.05-0.17 GPa the crystallization line T x (p) of all eHDA variants is the same. At pressures  >0.17 GPa, all eHDA samples decompressed to pressures  <0.20 GPa exhibit significantly lower T x values than eHDA0.2 and eHDA0.3. We rationalize our findings with the presence of nanoscaled low-density amorphous ice (LDA) seeds that nucleate in eHDA when it is decompressed to pressures  <0.20 GPa at 140 K. Below ~0.17 GPa, these nanosized LDA domains are latent within the HDA matrix, exhibiting no effect on T x of eHDA<0.2. Upon heating at pressures  ⩾0.17 GPa, these nanosized LDA nuclei transform to ice IX nuclei. They are favored sites for crystallization and, hence, lower T x . By comparing crystallization experiments of bulk LDA with the ones involving nanosized LDA we are able to estimate the Laplace pressure and radius of ~0.3-0.8 nm for the nanodomains of LDA. The nucleation of LDA in eHDA revealed here is evidence for the first-order-like nature of the HDA  →  LDA transition, supporting water’s liquid-liquid transition scenarios.

  4. 21. Colloquium on metallurgy. Amorphous alloys and materials

    International Nuclear Information System (INIS)

    1979-01-01

    Twenty-two papers were presented at the 21st colloquium on metallurgy of amorphous alloys and materials. They deal with the applications, the various types, the preparation methods, the structure, the magnetic and thermodynamic properties and the structure defects of the amorphous materials [fr

  5. Creep of FINEMET alloy at amorphous to nanocrystalline transition

    NARCIS (Netherlands)

    Csach, K.; Miškuf, J.; Juríková, A.; Ocelík, V.

    2009-01-01

    The application of FINEMET-type materials with specific magnetic properties prepared by the crystallization of amorphous alloys is often limited by their brittleness. The structure of these materials consists of nanosized Fe-based grains surrounded with amorphous phase. Then the final macroscopic

  6. Preparation of Si3N4 Form Diatomite via a Carbothermal Reduction-Nitridation Process

    Science.gov (United States)

    Ma, Bin; Huang, Zhaohui; Mei, Lefu; Fang, Minghao; Liu, Yangai; Wu, Xiaowen; Hu, Xiaozhi

    2016-05-01

    Si3N4 was produced using diatomite and sucrose as silicon and carbon sources, respectively. The effect of the C/SiO2 molar ratio, heating temperature and soaking time on the morphology and phase compositions of the final products was investigated by scanning electron microscopy, x-ray diffraction analysis and energy dispersive spectroscopy. The phase equilibrium relationships of the system at different heating temperatures were also investigated based on the thermodynamic analysis. The results indicate that the phase compositions depended on the C/SiO2 molar ratio, heating temperature and soaking time. Fabrication of Si3N4 from the precursor via carbothermal reduction nitridation was achieved at 1550°C for 1-8 h using a C/SiO2 molar ratio of 3.0. The as-prepared Si3N4 contained a low amount of Fe3Si (<1 wt.%).

  7. Enhanced Physical Stability of Amorphous Drug Formulations via Dry Polymer Coating.

    Science.gov (United States)

    Capece, Maxx; Davé, Rajesh

    2015-06-01

    Although amorphous solid drug formulations may be advantageous for enhancing the bioavailability of poorly soluble active pharmaceutical ingredients, they exhibit poor physical stability and undergo recrystallization. To address this limitation, this study investigates stability issues associated with amorphous solids through analysis of the crystallization behavior for acetaminophen (APAP), known as a fast crystallizer, using a modified form of the Avrami equation that kinetically models both surface and bulk crystallization. It is found that surface-enhanced crystallization, occurring faster at the free surface than in the bulk, is the major impediment to the stability of amorphous APAP. It is hypothesized that a novel use of a dry-polymer-coating process referred to as mechanical-dry-polymer-coating may be used to inhibit surface crystallization and enhance stability. The proposed process, which is examined, simultaneously mills and coats amorphous solids with polymer, while avoiding solvents or solutions, which may otherwise cause stability or crystallization issues during coating. It is shown that solid dispersions of APAP (64% loading) with a small particle size (28 μm) could be prepared and coated with the polymer, carnauba wax, in a vibratory ball mill. The resulting amorphous solid was found to have excellent stability as a result of inhibition of surface crystallization. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Synthesis of Fe-based amorphous composite coatings with low purity materials by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Qingjun [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)]. E-mail: sduzhu@yahoo.com.cn; Qu Shiyao [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Wang Xinhong [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Zou Zengda [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2007-06-30

    Amorphous composite coatings Fe{sub 38}Ni{sub 30-X}Si{sub 16}B{sub 14}V{sub 2}M {sub X} (X = 0, 1, 2) (M contains Al, Ti, Mo, and C) were prepared with low purity of raw materials by laser cladding. X-ray diffraction and transmission electron microscopy results show that the coating have an amorphous structure with a few crystalline phase on it. The amorphous phase is the primary phase. The glass forming ability as well as the microhardness of the Fe-based alloy made from low purity raw materials can be much enhanced by adding small amount of multi-components. However, the elements addition has its optimal quantity. When X is equal to 1, the microstructure of the coating contains 97.93% amorphous phase and 2.07% crystalline phase on it. As a result, the microhardness of the coating reaches maximum. With further increasing of the additions, the amorphous phase in the coating lessens instead of augment and the crystalline phase begins to accumulate, which result in the decrease of the microhardness.

  9. Preparation and thermal properties of form stable paraffin phase change material encapsulation

    International Nuclear Information System (INIS)

    Liu Xing; Liu Hongyan; Wang Shujun; Zhang Lu; Cheng Hua

    2006-01-01

    Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area to be used in energy storage. Form stable paraffin phase change materials (PCM) in which paraffin serves as a latent heat storage material and polyolefins act as a supporting material, because of paraffin leakage, are required to be improved. The form stable paraffin PCM in the present paper was encapsulated in an inorganic silica gel polymer successfully by in situ polymerization. The differential scanning calorimeter (DSC) was used to measure its thermal properties. At the same time, the Washburn equation, which measures the wetting properties of powder materials, was used to test the hydrophilic-lipophilic properties of the PCMs. The result indicated that the enthalpy of the microencapsulated PCMs was reduced little, while their hydrophilic properties were enhanced largely

  10. Textured surface structures formed using new techniques on transparent conducting Al-doped zinc oxide films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Miyata, Toshihiro; Uozaki, Ryousuke; Sai, Hitoshi; Koida, Takashi

    2016-01-01

    Surface-textured Al-doped ZnO (AZO) films formed using two new techniques based on magnetron sputtering deposition were developed by optimizing the light scattering properties to be suitable for transparent electrode applications in thin-film silicon solar cells. Scrambled egg-like surface-textured AZO films were prepared using a new texture formation technique that post-etched pyramidal surface-textured AZO films prepared under deposition conditions suppressing c-axis orientation. In addition, double surface-textured AZO films were prepared using another new texture formation technique that completely removed, by post-etching, the pyramidal surface-textured AZO films previously prepared onto the initially deposited low resistivity AZO films; simultaneously, the surface of the low resistivity films was slightly etched. However, the obtained very high haze value in the range from the near ultraviolet to visible light in the scrambled egg-like surface-textured AZO films did not contribute significantly to the obtainable photovoltaic properties in the solar cells fabricated using the films. Significant light scattering properties as well as a low sheet resistance could be achieved in the double surface-textured AZO films. In addition, a significant improvement of external quantum efficiency in the range from the near ultraviolet to visible light was achieved in superstrate-type n-i-p μc-Si:H solar cells fabricated using a double surface-textured AZO film prepared under optimized conditions as the transparent electrode. - Highlights: • Double surface-textured AZO films prepared using a new texture formation technique • Extensive light scattering properties with low sheet resistance achieved in the double surface-textured AZO films • Improved external quantum efficiency of μc-Si:H solar cells using a double surface-textured AZO film

  11. Textured surface structures formed using new techniques on transparent conducting Al-doped zinc oxide films prepared by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Tadatsugu [Optoelectronic Device System R& D Center, Kanazawa Institute of Technology, Nonoichi, Ishikawa 921-8501 (Japan); Miyata, Toshihiro, E-mail: tmiyata@neptune.kanazawa-it.ac.jp [Optoelectronic Device System R& D Center, Kanazawa Institute of Technology, Nonoichi, Ishikawa 921-8501 (Japan); Uozaki, Ryousuke [Optoelectronic Device System R& D Center, Kanazawa Institute of Technology, Nonoichi, Ishikawa 921-8501 (Japan); Sai, Hitoshi; Koida, Takashi [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)

    2016-09-01

    Surface-textured Al-doped ZnO (AZO) films formed using two new techniques based on magnetron sputtering deposition were developed by optimizing the light scattering properties to be suitable for transparent electrode applications in thin-film silicon solar cells. Scrambled egg-like surface-textured AZO films were prepared using a new texture formation technique that post-etched pyramidal surface-textured AZO films prepared under deposition conditions suppressing c-axis orientation. In addition, double surface-textured AZO films were prepared using another new texture formation technique that completely removed, by post-etching, the pyramidal surface-textured AZO films previously prepared onto the initially deposited low resistivity AZO films; simultaneously, the surface of the low resistivity films was slightly etched. However, the obtained very high haze value in the range from the near ultraviolet to visible light in the scrambled egg-like surface-textured AZO films did not contribute significantly to the obtainable photovoltaic properties in the solar cells fabricated using the films. Significant light scattering properties as well as a low sheet resistance could be achieved in the double surface-textured AZO films. In addition, a significant improvement of external quantum efficiency in the range from the near ultraviolet to visible light was achieved in superstrate-type n-i-p μc-Si:H solar cells fabricated using a double surface-textured AZO film prepared under optimized conditions as the transparent electrode. - Highlights: • Double surface-textured AZO films prepared using a new texture formation technique • Extensive light scattering properties with low sheet resistance achieved in the double surface-textured AZO films • Improved external quantum efficiency of μc-Si:H solar cells using a double surface-textured AZO film.

  12. Crystallization from microemulsions ? a novel method for the preparation of new crystal forms of aspartame

    Science.gov (United States)

    Füredi-Milhofer, Helga; Garti, N.; Kamyshny, A.

    1999-03-01

    Solubilization and crystallization of the artificial sweetener aspartame (APM), in water/isooctane microemulsions stabilized with sodium diisooctyl sulfosuccinate (AOT) has been investigated. The amount of aspartame that could be solubilized depended primarily on the amount of surfactant and on the temperature. The maximum AOT/aspartame molar ratio at the w/o interface is shown to be 6.2 at 25°C. It was concluded that the dipeptide is located at the w/o interface interspersed between surfactant molecules and that it acts as a cosurfactant. A new crystal form, APM III, was obtained by cooling of hot w/isooctane/AOT microemulsions containing solubilized aspartame. The new crystal form exhibits a distinct X-ray diffraction powder pattern, as well as changes in the FTIR spectra, thermogravimetric and DSC patterns. H-NMR spectra of APM III dissolved in D 2O were identical to the spectrum of commercial aspartame recorded under the same conditions. The new crystal form has greatly improved dissolution kinetics.

  13. Emission of blue light from hydrogenated amorphous silicon carbide

    Science.gov (United States)

    Nevin, W. A.; Yamagishi, H.; Yamaguchi, M.; Tawada, Y.

    1994-04-01

    THE development of new electroluminescent materials is of current technological interest for use in flat-screen full-colour displays1. For such applications, amorphous inorganic semiconductors appear particularly promising, in view of the ease with which uniform films with good mechanical and electronic properties can be deposited over large areas2. Luminescence has been reported1 in the red-green part of the spectrum from amorphous silicon carbide prepared from gas-phase mixtures of silane and a carbon-containing species (usually methane or ethylene). But it is not possible to achieve blue luminescence by this approach. Here we show that the use of an aromatic species-xylene-as the source of carbon during deposition results in a form of amorphous silicon carbide that exhibits strong blue luminescence. The underlying structure of this material seems to be an unusual combination of an inorganic silicon carbide lattice with a substantial 'organic' π-conjugated carbon system, the latter dominating the emission properties. Moreover, the material can be readily doped with an electron acceptor in a manner similar to organic semiconductors3, and might therefore find applications as a conductivity- or colour-based chemical sensor.

  14. Preparation of glass-forming materials from granulated blast furnace slag

    Science.gov (United States)

    Alonso, M.; Sáinz, E.; Lopez, F. A.

    1996-10-01

    Glass precursor materials, to be used for the vitrification of hazardous wastes, have been prepared from blast furnace slag powder through a sol-gel route. The slag is initially reacted with a mixture of alcohol (ethanol or methanol) and mineral acid (HNO3 or H2SO4) to give a sol principally consisting of Si, Ca, Al, and Mg alkoxides. Gelation is carried out with variable amounts of either ammonia or water. The gelation rate can be made as fast as desired by adding excess hydrolizing agent or else by distilling the excess alcohol out of the alkoxide solution. The resulting gel is first dried at low temperature and ground. The powder thus obtained is then heat treated at several temperatures. The intermediate and final materials are characterized by thermal analysis, infrared (IR) spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and chemical analysis. From the results, the operating conditions yielding a variety of glass precursors differing in their composition are established. The method, in comparison with direct vitrification of slag, presents a number of advantages: (1) the glass precursor obtained devitrifies at higher temperatures; (2) it enables the adjustment, to a certain extent, of the chemical composition of the glass precursor; and (3) it permits recovering marketable materials at different stages of the process.

  15. Radiochemical studies on amorphous zirconium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, A; Moores, G E [Salford Univ. (UK). Dept. of Chemistry and Applied Chemistry

    1981-01-01

    Amorphous zirconium phosphate (ZrP) is used in some hemodialysis machines for the regeneration of dialysate. Its function is to adsorb ammonium ions formed by the pretreatment of urea by urease. It also adsorbs Ca, Mg and K ions but leaches phosphate ions which are then removed (along with F/sup -/ ions) by a bed of hydrous zirconium oxide. The sodium form of ZrP is used although other forms have been suggested for use. The work reported here describes some preliminary radiochemical studies on the mechanism of release of phosphate ions and its possible relationship to sodium ion-exchange. /sup 32/P labelled material (HHZrP) was used for elution experiments with deionized water and buffer solutions having the pH's 4.2, 7.0 and 9.2. Buffer solutions used were as supplied by BDH. Elution was at four different temperatures in the range 293 to 363/sup 0/C. In the second series of experiments HHZrP was suspended in a NaCl solution labelled with /sup 22/Na. From this, /sup 22/Na labelled ZrP (NaHZrP) was prepared and eluted in the same way as the HHZrP. Results are given and discussed.

  16. Amorphization reaction in thin films of elemental Cu and Y

    Science.gov (United States)

    Johnson, R. W.; Ahn, C. C.; Ratner, E. R.

    1989-10-01

    Compositionally modulated thin films of Cu and Y were prepared in an ultrahigh-vacuum dc ion-beam deposition chamber. The amorphization reaction was monitored by in situ x-ray-diffraction measurements. Growth of amorphous Cu1-xYx is observed at room temperature with the initial formation of a Cu-rich amorphous phase. Further annealing in the presence of unreacted Y leads to Y enrichment of the amorphous phase. Growth of crystalline CuY is observed for T=469 K. Transmission-electron-microscopy measurements provide real-space imaging of the amorphous interlayer and growth morphology. Models are developed, incorporating metastable interfacial and bulk free-energy diagrams, for the early stage of the amorphization reaction.

  17. Characterization of film-forming solutions and films incorporating free and nanoencapsulated tea polyphenol prepared by gelatins with different Bloom values

    Science.gov (United States)

    Gelatin film-forming solutions and their films incorporating tea polyphenol (TP) and chitosan nanoparticles (CSNs) were prepared from gelatins with different Bloom values (100, 150 and 225). Blank gelatin film-forming solutions and films were prepared as controls. Gelatins with higher Bloom values h...

  18. Preparation and characterization of form-stable paraffin/polyurethane composites as phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Chen, Keping; Yu, Xuejiang; Tian, Chunrong; Wang, Jianhua

    2014-01-01

    Highlights: • Paraffin/polyurethane composite as form-stable phase change material was prepared by bulk polymerization. • Paraffin/polyurethane composite possesses typical character of dual phase transition. • Total latent heat of n-eicosane/PUPCM is as high as 141.2 J/g. • Maximum encapsulation ratio for n-octadecane/PUPCM composites is 25% w/w. - Abstract: Polyurethane phase change material (PUPCM) has been demonstrated to be effective solid–solid phase change material for thermal energy storage. However, the high cost and complex process on preparation of PUPCMs with high enthalpy and broad phase transition temperature range can prohibit industrial-scale applications. In this work, a series of novel form-stable paraffin/PUPCMs composites (n-octadecane/PUPCM, n-eicosane/PUPCM and paraffin wax/PUPCM) with high enthalpy and broad phase transition temperature range (20–65 °C) were directly synthesized via bulk polymerization. The composites were prepared at different mass fractions of n-octadecane (10, 20, 25, 30% w/w). The results indicated that the maximum encapsulation ratio for n-octadecane/PUPCM10000 composites was around 25% w/w. The chemical structure and crystalline properties of these composites were characterized by Fourier transform infrared spectroscopy (FT-IR), polarizing optical microscopy (POM), wide-angle X-ray diffraction (WAXD). Thermal properties and thermal reliability of the composites were determined using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). From DSC analysis, the composites showed a typical dual phase change temperature. The enthalpy for the composite with 25% w/w n-eicosane was as high as 141.2 J/g. TGA analysis indicated that the composites degraded at considerably high temperatures. The process of preparation of PUPCMs and their composites was very simple, inexpensive, environmental friendly and easy to process into desired shapes, which could find the promising applications in solar

  19. Stabilization of amorphous calcium carbonate by controlling its particle size

    NARCIS (Netherlands)

    Nudelman, F.; Sonmezler, E.; Bomans, P.H.H.; With, de G.; Sommerdijk, N.A.J.M.

    2010-01-01

    Amorphous calcium carbonate (ACC) nanoparticles of different size are prepared using a flow system. Post-synthesis stabilization with a layer of poly[(a,ß)-DL-aspartic acid] leads to stabilization of the ACC, but only for particles

  20. Preparation of novel film-forming armoured latexes using silica nanoparticles as a pickering emulsion stabiliser.

    Science.gov (United States)

    Shiraz, Hana; Peake, Simon J; Davey, Tim; Cameron, Neil R; Tabor, Rico F

    2018-05-15

    Film-forming polymer latex particles of diameter acrylate (BA) as co-monomers, potassium persulphate (KPS) as an initiator and a commercially available colloidal nano-silica (Ludox®-TM40). It was found that pH control before polymerisation using methacrylic acid (MAA) facilitated the formation of armoured latexes, and mechanistic features of this process are discussed. An alternative, more robust protocol was developed whereby addition of vinyltriethoxysilane (VTES) to control wettability resulted in latexes completely armoured in colloidal nano-silica. The latexes were characterised using SEM, cryo-TEM and AFM imaging techniques. The mechanism behind the adsorption was investigated through surface pressure and contact angle measurements to understand the factors that influence this irreversible adsorption. Results indicate that nanoparticle attachment (but intriguingly not latex size) is dependent on particle wettability, providing new insight into the formation of nanoparticle-armoured latexes, along with opportunities for further development of diversely functionalized inorganic/organic polymer composite particles. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Degradation of L-Ascorbic Acid in the Amorphous Solid State.

    Science.gov (United States)

    Sanchez, Juan O; Ismail, Yahya; Christina, Belinda; Mauer, Lisa J

    2018-03-01

    Ascorbic acid degradation in amorphous solid dispersions was compared to its degradation in the crystalline state. Physical blends and lyophiles of ascorbic acid and polymers (pectins and polyvinylpyrrolidone [PVP]) were prepared initially at 50:50 (w/w), with further studies using the polymer that best inhibited ascorbic acid crystallization in the lyophiles in 14 vitamin : PVP ratios. Samples were stored in controlled environments (25 to 60 °C, 0% to 23% RH) for 1 mo and analyzed periodically to track the physical appearance, change in moisture content, physical state (powder x-ray diffraction and polarized light microscopy), and vitamin loss (high performance liquid chromatography) over time. The glass transition temperatures of select samples were determined using differential scanning calorimetry, and moisture sorption profiles were generated. Ascorbic acid in the amorphous form, even in the glassy amorphous state, was more labile than in the crystalline form in some formulations at the highest storage temperature. Lyophiles stored at 25 and 40 °C and those in which ascorbic acid had crystallized at 60 °C (≥70% ascorbic acid : PVP) had no significant difference in vitamin loss (P > 0.05) relative to physical blend controls, and the length of storage had little effect. At 60 °C, amorphous ascorbic acid lyophiles (≤60% ascorbic acid : PVP) lost significantly more vitamin (P vitamin loss significantly increased over time. In these lyophiles, vitamin degradation also significantly increased (P vitamins are naturally present or added at low concentrations and production practices may promote amorphization of the vitamin. Vitamin C is one of the most unstable vitamins in foods. This study documents that amorphous ascorbic acid is less stable than crystalline ascorbic acid in some environments (for example, higher temperatures within 1 wk), especially when the vitamin is present at low concentrations in a product. These findings increase the understanding of

  2. Physics of amorphous metals

    CERN Document Server

    Kovalenko, Nikolai P; Krey, Uwe

    2008-01-01

    The discovery of bulk metallic glasses has led to a large increase in the industrial importance of amorphous metals, and this is expected to continue. This book is the first to describe the theoretical physics of amorphous metals, including the important theoretical development of the last 20 years.The renowned authors stress the universal aspects in their description of the phonon or magnon low-energy excitations in the amorphous metals, e.g. concerning the remarkable consequences of the properties of these excitations for the thermodynamics at low and intermediate temperatures. Tunneling

  3. Amorphous Ti-Zr

    International Nuclear Information System (INIS)

    Rabinkin, A.; Liebermann, H.; Pounds, S.; Taylor, T.

    1991-01-01

    This paper is the first report on processing, properties and potential application of amorphous titanium/zirconium-base alloys produced in the form of a good quality continuous and ductile ribbon having up to 12.5 mm width. To date, the majority of titanium brazing is accomplished using cooper and aluminum-base brazing filler metals. The brazements produced with these filler metals have rather low (∼300 degrees C) service temperature, thus impeding progress in aircraft and other technologies and industries. The attempt to develop a generation of high temperature brazing filler metals was made in the late sixties-early seventies studies in detail were a large number of Ti-, Zr-Ti-Zr, Ti-V and Zr-V-Ti based alloys. The majority of these alloys has copper and nickel as melting temperature depressants. The presence of nickel and copper converts them into eutectic alloys having [Ti(Zr)] [Cu(Ni)], intermetallic phases as major structural constituents. This, in turn, results in high alloy brittleness and poor, if any, processability by means of conventional, i.e. melting-ingot casting-deformation technology. In spite of good wettability and high joint strength achieved in dozens of promising alloys, only Ti-15Cu-15Ni is now widely used as a brazing filler metal for high service temperature. Up until now this material could not be produced as a homogeneous foil and is instead applied as a clad strip consisting of three separate metallic layers

  4. Preparation, Characterization and Thermal Properties of Paraffin Wax – Expanded Perlite Form-Stable Composites for Latent Heat Storage

    Directory of Open Access Journals (Sweden)

    Tugba GURMEN OZCELIK

    2017-02-01

    Full Text Available In this study, form-stable composite phase change materials (PCM for latent heat storage were prepared by impregnating paraffin wax into the pores of the expanded perlite (EP. The characterization of the composite PCMs was performed by FTIR, TGA, SEM and DSC analysis. The melting point and heat of fusion were determined for 25 % paraffin included composite, as 54.3 °C and 94.71 J/g and for 45 % paraffin included composite as 53.6 °C and 106.69 J/g, respectively. The FTIR results showed that there were no chemical reaction between the perlite and paraffin. TGA analysis indicated that both composite PCMs had good thermal stability. SEM images showed that the paraffin was dispersed uniformly into the pores and on the EP surface. There was no leakage and degradation at the composite PCMs after heating and cooling cycles. According to the results, both prepared composites showed good thermal energy storage properties, reliability and stability. All results suggested that the presented form- stable composite PCMs has great potential for thermal energy storage applications.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.13661

  5. Preparation of a high strength Al–Cu–Mg alloy by mechanical alloying and press-forming

    International Nuclear Information System (INIS)

    Tang Huaguo; Cheng Zhiqiang; Liu Jianwei; Ma Xianfeng

    2012-01-01

    Highlights: ► A high strength aluminum alloy of Al–2 wt.%Mg–2 wt.%Cu has been prepared by mechanical alloying and press-forming. ► The alloy only consists of solid solution α-Al. ► The grains size of α-Al was about 300 nm–5 μm. ► The solid solution strengthening and the grain refinement strengthening are the main reasons for such a high strength. - Abstract: A high strength aluminum alloy, with the ratio of 96 wt.%Al–2 wt.%Mg–2 wt.%Cu, has been prepared by mechanical alloying and press-forming. The alloy exhibited a high tensile strength of 780 MPa and a high microhardness of 180 HV. X-ray diffraction characterizations confirmed that the alloy only consists of a solid solution α-Al. Microstructure characterizations revealed that the grain size of α-Al was about 300 nm–5 μm. The solid solution strengthening and the grain refinement strengthening were considered to be the reason for such a high strength.

  6. Preparation of a high strength Al-Cu-Mg alloy by mechanical alloying and press-forming

    Energy Technology Data Exchange (ETDEWEB)

    Tang Huaguo [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Cheng Zhiqiang [College of Resources and Environment, Jilin Agricultural University, Changchun 130118 (China); Liu Jianwei [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Ma Xianfeng, E-mail: xfma@ciac.jl.cn [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer A high strength aluminum alloy of Al-2 wt.%Mg-2 wt.%Cu has been prepared by mechanical alloying and press-forming. Black-Right-Pointing-Pointer The alloy only consists of solid solution {alpha}-Al. Black-Right-Pointing-Pointer The grains size of {alpha}-Al was about 300 nm-5 {mu}m. Black-Right-Pointing-Pointer The solid solution strengthening and the grain refinement strengthening are the main reasons for such a high strength. - Abstract: A high strength aluminum alloy, with the ratio of 96 wt.%Al-2 wt.%Mg-2 wt.%Cu, has been prepared by mechanical alloying and press-forming. The alloy exhibited a high tensile strength of 780 MPa and a high microhardness of 180 HV. X-ray diffraction characterizations confirmed that the alloy only consists of a solid solution {alpha}-Al. Microstructure characterizations revealed that the grain size of {alpha}-Al was about 300 nm-5 {mu}m. The solid solution strengthening and the grain refinement strengthening were considered to be the reason for such a high strength.

  7. Thermal conductivity of sputtered amorphous Ge films

    International Nuclear Information System (INIS)

    Zhan, Tianzhuo; Xu, Yibin; Goto, Masahiro; Tanaka, Yoshihisa; Kato, Ryozo; Sasaki, Michiko; Kagawa, Yutaka

    2014-01-01

    We measured the thermal conductivity of amorphous Ge films prepared by magnetron sputtering. The thermal conductivity was significantly higher than the value predicted by the minimum thermal conductivity model and increased with deposition temperature. We found that variations in sound velocity and Ge film density were not the main factors in the high thermal conductivity. Fast Fourier transform patterns of transmission electron micrographs revealed that short-range order in the Ge films was responsible for their high thermal conductivity. The results provide experimental evidences to understand the underlying nature of the variation of phonon mean free path in amorphous solids

  8. Positrons in amorphous alloys

    International Nuclear Information System (INIS)

    Moser, Pierre.

    1981-07-01

    Positron annihilation techniques give interesting informations about ''empty spaces'' in amorphous alloys. The results of an extensive research work on the properties of either pre-existing or irradiation induced ''empty spaces'' in four amorphous alloys are presented. The pre-existing empty spaces appear to be small vacancy-like defects. The irradiation induced defects are ''close pairs'' with widely distributed configurations. There is a strong interaction between vacancy like and interstitial like components. A model is proposed, which explains the radiation resistance mechanism of the amorphous alloys. An extensive joint research work to study four amorphous alloys, Fe 80 B 20 ,Fe 40 Ni 40 P 14 B 6 , Cu 50 Ti 50 , Pd 80 Si 20 , is summarized

  9. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    Science.gov (United States)

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  10. Preparation and flammability of high density polyethylene/paraffin/organophilic montmorillonite hybrids as a form stable phase change material

    International Nuclear Information System (INIS)

    Cai, Yibing; Hu, Yuan; Song, Lei; Kong, Qinghong; Yang, Rui; Zhang, Yinping; Chen, Zuyao; Fan, Weicheng

    2007-01-01

    A kind of form stable phase change material (PCM) based on high density polyethylene (HDPE), paraffin, organophilic montmorillonite (OMT) and intumescent flame retardant (IFR) hybrids is prepared by using a twin screw extruder technique. This kind of form stable PCM is made of paraffin as a dispersed phase change material and HDPE as a supporting material. The structure of the montmorillonite (MMT) and OMT is characterized by X-ray diffraction (XRD) and high resolution electron microscopy (HREM). The analysis indicates that the MMT is a kind of lamellar structure, and the structure does not change after organic modification. However, the structure of the hybrid is evidenced by the XRD and scanning electronic microscope (SEM). Its thermal stability, latent heat and flame retardant properties are given by the Thermogravimetry analysis (TGA), differential scanning calorimeter (DSC) method and cone calorimeter, respectively. Synergy is observed between the OMT and IFR. The XRD result indicates that the paraffin intercalates into the silicate layers of the OMT, thus forming a typically intercalated hybrid. The SEM investigation and DSC result show that the additives of OMT and IFR have hardly any effect on the HDPE/paraffin three dimensional netted structure and the latent heat. In TGA curves, although the onset of weight loss of flame-retardant form stable PCMs occur at a lower temperature than that of form stable PCM, flame-retardant form stable PCMs produce a large amount of char residue at 700 o C. The synergy between OMT and IFR leads to the decrease of the heat release rate (HRR), contributing to improvement of the flammability performance

  11. Superplasticity of amorphous alloy

    International Nuclear Information System (INIS)

    Levin, Yu.B.; Likhachev, V.L.; Sen'kov, O.N.

    1988-01-01

    Results of mechanical tests of Co 57 Ni 10 Fe 5 Si 11 B 17 amorphous alloy are presented and the effect of crystallization, occurring during deformation process, on plastic low characteristics is investiagted. Superplasticity of amorphous tape is investigated. It is shown, that this effect occurs only when during deformation the crystallization takes place. Process model, based on the usage disclination concepts about glass nature, is suggested

  12. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  13. Superlattice doped layers for amorphous silicon photovoltaic cells

    Science.gov (United States)

    Arya, Rajeewa R.

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  14. Operating method of amorphous thin film semiconductor element

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Koshiro; Ono, Masaharu; Hanabusa, Akira; Osawa, Michio; Arita, Takashi

    1988-05-31

    The existing technologies concerning amorphous thin film semiconductor elements are the technologies concerning the formation of either a thin film transistor or an amorphous Si solar cell on a substrate. In order to drive a thin film transistor for electronic equipment control by the output power of an amorphous Si solar cell, it has been obliged to drive the transistor weth an amorphous solar cell which was formed on a substrate different from that for the transistor. Accordingly, the space for the amorphous solar cell, which was formed on the different substrate, was additionally needed on the substrate for the thin film transistor. In order to solve the above problem, this invention proposes an operating method of an amorphous thin film semiconductor element that after forming an amorphous Si solar cell through lamination on the insulation coating film which covers the thin film transistor formed on the substrate, the thin film transistor is driven by the output power of this solar cell. The invention eliminates the above superfluous space and reduces the size of the amorphous thin film semiconductor element including the electric source. (3 figs)

  15. Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy.

    Science.gov (United States)

    Von Euw, Stanislas; Ajili, Widad; Chan-Chang, Tsou-Hsi-Camille; Delices, Annette; Laurent, Guillaume; Babonneau, Florence; Nassif, Nadine; Azaïs, Thierry

    2017-09-01

    The presence of an amorphous surface layer that coats a crystalline core has been proposed for many biominerals, including bone mineral. In parallel, transient amorphous precursor phases have been proposed in various biomineralization processes, including bone biomineralization. Here we propose a methodology to investigate the origin of these amorphous environments taking the bone tissue as a key example. This study relies on the investigation of a bone tissue sample and its comparison with synthetic calcium phosphate samples, including a stoichiometric apatite, an amorphous calcium phosphate sample, and two different biomimetic apatites. To reveal if the amorphous environments in bone originate from an amorphous surface layer or a transient amorphous precursor phase, a combined solid-state nuclear magnetic resonance (NMR) experiment has been used. The latter consists of a double cross polarization 1 H→ 31 P→ 1 H pulse sequence followed by a 1 H magnetization exchange pulse sequence. The presence of an amorphous surface layer has been investigated through the study of the biomimetic apatites; while the presence of a transient amorphous precursor phase in the form of amorphous calcium phosphate particles has been mimicked with the help of a physical mixture of stoichiometric apatite and amorphous calcium phosphate. The NMR results show that the amorphous and the crystalline environments detected in our bone tissue sample belong to the same particle. The presence of an amorphous surface layer that coats the apatitic core of bone apatite particles has been unambiguously confirmed, and it is certain that this amorphous surface layer has strong implication on bone tissue biogenesis and regeneration. Questions still persist on the structural organization of bone and biomimetic apatites. The existing model proposes a core/shell structure, with an amorphous surface layer coating a crystalline bulk. The accuracy of this model is still debated because amorphous calcium

  16. Stabilized amorphous glibenclamide nanoparticles by high-gravity technique

    International Nuclear Information System (INIS)

    Yu Lei; Li Caixia; Le Yuan; Chen Jianfeng; Zou Haikui

    2011-01-01

    Highlights: · Amorphous glibenclamide nanoparticles of 220 nm are obtained using the high-gravity technique. · The dissolution rate of these nanoparticles achieves 85% in 5 min, while those of the raw glibenclamide and the commercial glibenclamide tablet only reach 35% and 55% respectively during the same period. · The morphology, particle size, crystalline form and dissolution rate of these nanoparticles almost remain constant after keeping more than 70 days. - Abstract: The stable amorphous glibenclamide nanoparticles was obtained via anti-solvent precipitation using the high-gravity technique in this study. The effects of operating variables on the particle size were investigated. The properties of glibenclamide nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) and dissolution test. The prepared glibenclamide nanoparticles had a mean size of 220 nm within a narrow distribution. The dissolution rate of glibenclamide nanoparticles was obviously faster than that of the raw glibenclamide or the commercial glibenclamide tablet. It achieved 85% in 5 min, while those of the raw glibenclamide and the commercial glibenclamide tablet achieved 35% and 55% respectively during the same period. The physical stability of the nanoparticles was tested after storing for more than 70 days at room conditions. Their morphology, particle size, crystalline form and dissolution rate almost remained constant during storage.

  17. Emerging trends in the stabilization of amorphous drugs

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Strachan, Clare J.

    2013-01-01

    The number of active pharmaceutical substances having high therapeutic potential but low water solubility is constantly increasing, making it difficult to formulate these compounds as oral dosage forms. The solubility and dissolution rate, and thus potentially the bioavailability, of these poorly...... water-soluble drugs can be increased by the formation of stabilized amorphous forms. Currently, formulation as solid polymer dispersions is the preferred method to enhance drug dissolution and to stabilize the amorphous form of a drug. The purpose of this review is to highlight emerging alternative...... of mesoporous silicon and silica-based carriers are presented as potential means to increase the stability of amorphous pharmaceuticals....

  18. Amorphization of C-implanted Fe(Cr) alloys

    International Nuclear Information System (INIS)

    Knapp, J.A.; Follstaedt, D.M.; Sorensen, N.R.; Pope, L.E.

    1991-01-01

    The amorphous phase formed by implanting C into Fe alloyed with Cr, which is a prototype for the amorphous phase formed by implanting C into stainless steels, is compared to that formed by implanting C and Ti into Fe and steels. The composition range of the phase has been examined; higher Cr and C concentrations are required than needed with Ti and C. The friction and wear benefits obtained by implanting stainless steels with C only do not persist for the long durations and high wear loads found with Ti and C. However, the amorphous Fe-Cr-C alloys exhibit good aqueous corrosion resistance. (orig.)

  19. Preparation and in vitro characterization of SN-38-loaded, self-forming polymeric depots as an injectable drug delivery system.

    Science.gov (United States)

    Manaspon, Chawan; Hongeng, Suradej; Boongird, Atthaporn; Nasongkla, Norased

    2012-10-01

    This work describes the preparation and characterization of anticancer-loaded injectable polymeric depots that consisted of D,L-lactide (LA), ε-caprolactone (CL), and poly(ethylene glycol) (PEG) or [poly(ε-caprolactone)-random-poly(D,L-lactide)]-block-poly(ethylene glycol)-block-[poly(ε-caprolactone)-random-poly(D,L-lactide)] (PLEC) copolymers for malignant gliomas treatment. PLECs were polymerized with different percentages of LA to deliver 7-ethyl-10-hydroxycamptothecin (SN-38), a highly potent anticancer drug. SN-38-loaded depots could form directly in phosphate buffer saline with more than 98% encapsulation efficiency. The release rate of SN-38 from depots was found to depend on the amount of LA in PLECs, loading content of SN-38 in the depots, and depot weight. Encapsulation of SN-38 inside depots could enhance the stability of SN-38 where all of SN-38 released after 60 days was in an active form. Depots without SN-38 were evaluated as noncytotoxic against U-87MG, whereas SN-38-loaded depots showed cytotoxic effect as a function of concentration. Copyright © 2012 Wiley Periodicals, Inc.

  20. Thermal Conductivity and Wear Behavior of HVOF-Sprayed Fe-Based Amorphous Coatings

    Directory of Open Access Journals (Sweden)

    Haihua Yao

    2017-10-01

    Full Text Available To protect aluminum parts in vehicle engines, metal-based thermal barrier coatings in the form of Fe59Cr12Nb5B20Si4 amorphous coatings were prepared by high velocity oxygen fuel (HVOF spraying under two different conditions. The microstructure, thermal transport behavior, and wear behavior of the coatings were characterized simultaneously. As a result, this alloy shows high process robustness during spraying. Both Fe-based coatings present dense, layered structure with porosities below 0.9%. Due to higher amorphous phase content, the coating H-1 exhibits a relatively low thermal conductivity, reaching 2.66 W/(m·K, two times lower than the reference stainless steel coating (5.85 W/(m·K, indicating a good thermal barrier property. Meanwhile, the thermal diffusivity of amorphous coatings display a limited increase with temperature up to 500 °C, which guarantees a steady and wide usage on aluminum alloy. Furthermore, the amorphous coating shows better wear resistance compared to high carbon martensitic GCr15 steel at different temperatures. The increased temperature accelerating the tribological reaction, leads to the friction coefficient and wear rate of coating increasing at 200 °C and decreasing at 400 °C.

  1. Properties of Amorphous Carbon Microspheres Synthesised by Palm Oil-CVD Method

    International Nuclear Information System (INIS)

    Zobir, S. A. M.; Zainal, Z.; Sarijo, S. H.; Rusop, M.

    2011-01-01

    Amorphous carbon microspheres were synthesized using a dual-furnace chemical vapour deposition method at 800-1000 deg. C. Palm oil-based cooking oil (PO) and zinc nitrate solution was used as a carbon source and catalyst precursor, respectively with PO to zinc nitrate ratio of 30:20 (v/v) and a silicon wafer as the sample target. Regular microsphere shape of the amorphous carbons was obtained and a uniform microsphere structure improved as the carbonization temperature increased from 800 to 1000 deg. C. At 800 deg. C, no regular microspheres were formed but more uniform structure is observed at 900 deg. C. Generally the microspheres size is uniform when the heating temperature was increased to 1000 deg. C, but the presence of mixed sizes can still be observed. X-ray diffraction patterns show the presence of oxide of carbon, ZnO phase together with Zn oxalate phase. Raman spectra show two broad peaks characteristic to amorphous carbon at 1344 and 1582 cm -1 for the D and G bands, respectively. These bands become more prominent as the preparation temperature increased from 800 to 1000 deg. C. This is in agreement with the formation of amorphous carbon microspheres as shown by the FESEM study and other Zn-based phases as a result of the oxidation process of the palm oil as the carbon source and the zinc nitrate as the catalyst precursor, respectively.

  2. Paramagnetic defects in hydrogenated amorphous carbon powders

    International Nuclear Information System (INIS)

    Keeble, D J; Robb, K M; Smith, G M; Mkami, H El; Rodil, S E; Robertson, J

    2003-01-01

    Hydrogenated amorphous carbon materials typically contain high concentrations of paramagnetic defects, the density of which can be quantified by electron paramagnetic resonance (EPR). In this work EPR measurements near 9.5, 94, and 189 GHz have been performed on polymeric and diamond-like hydrogenated amorphous carbon (a-C:H) powder samples. A similar single resonance line was observed at all frequencies for the two forms of a-C:H studied. No contributions to the spectrum from centres with resolved anisotropic g-values as reported earlier were detected. An increase in linewidth with microwave frequency was observed. Possible contributions to this frequency dependence are discussed

  3. Irradiation induced crystalline to amorphous transition

    International Nuclear Information System (INIS)

    Bourgoin, J.

    1980-01-01

    Irradiation of a crystalline solid with energetic heavy particles results in cascades of defects which, with increasing dose, overlap and form a continuous disordered layer. In semiconductors the physical properties of such disordered layers are found to be similar to those of amorphous layers produced by evaporation. It is shown in the case of silicon, that the transition from a disordered crystalline (X) layer to an amorphous (α) layer occurs when the Gibbs energy of the X phase and of the defects it contains becomes larger than the Gibbs energy of the α phase. (author)

  4. The Structure of Liquid and Amorphous Hafnia

    Directory of Open Access Journals (Sweden)

    Leighanne C. Gallington

    2017-11-01

    Full Text Available Understanding the atomic structure of amorphous solids is important in predicting and tuning their macroscopic behavior. Here, we use a combination of high-energy X-ray diffraction, neutron diffraction, and molecular dynamics simulations to benchmark the atomic interactions in the high temperature stable liquid and low-density amorphous solid states of hafnia. The diffraction results reveal an average Hf–O coordination number of ~7 exists in both the liquid and amorphous nanoparticle forms studied. The measured pair distribution functions are compared to those generated from several simulation models in the literature. We have also performed ab initio and classical molecular dynamics simulations that show density has a strong effect on the polyhedral connectivity. The liquid shows a broad distribution of Hf–Hf interactions, while the formation of low-density amorphous nanoclusters can reproduce the sharp split peak in the Hf–Hf partial pair distribution function observed in experiment. The agglomeration of amorphous nanoparticles condensed from the gas phase is associated with the formation of both edge-sharing and corner-sharing HfO6,7 polyhedra resembling that observed in the monoclinic phase.

  5. Structure of amorphous sulfur

    CSIR Research Space (South Africa)

    Eichinger, BE

    2001-06-01

    Full Text Available The lambda-transition of elemental sulfur occurring at about 159°C has long been associated with the conversion of cyclic S8 rings (c-S8) to amorphous polymer (a-S) via a ring opening polymerization. It is demonstrated, with the use of both density...

  6. Nanopillar arrays of amorphous carbon nitride

    Science.gov (United States)

    Sai Krishna, Katla; Pavan Kumar, B. V. V. S.; Eswaramoorthy, Muthusamy

    2011-07-01

    Nanopillar arrays of amorphous carbon nitride have been prepared using anodic aluminum oxide (AAO) membrane as a template. The amine groups present on the surface of these nanopillars were exploited for functionalization with oleic acid in order to stabilize the nanostructure at the aqueous-organic interface and also for the immobilization of metal nanoparticles and protein. These immobilised nanoparticles were found to have good catalytic activity.

  7. Utilization of a Green Brominating Agent for the Spectrophotometric Determination of Pipazethate HCl in Pure Form and Pharmaceutical Preparations

    Directory of Open Access Journals (Sweden)

    Ayman A. Gouda

    2013-01-01

    Full Text Available Five simple, accurate, and sensitive spectrophotometric methods (A–E have been described for the indirect assay of pipazethate HCl (PZT either in pure form or in pharmaceutical preparations. The proposed methods are based on the bromination of pipazethate HCl with a solution of excess bromate-bromide mixture in hydrochloric acid medium and subsequent estimation of the residual bromine by different reaction schemes. In the first three methods (A–C, the determination of the residual bromine is based on its ability to bleach the color of methyl orange, indigo carmine, or thymol blue dyes and measuring the absorbance at 520, 610, and 550 nm for methods A, B, and C, respectively. Methods D and E involves treating the unreacted bromine with a measured excess of iron(II, and the remaining iron(II is complexed with 1,10-phenanthroline, and the increase in absorbance is measured at 510 nm for method D and the resulting iron(III is complexed with thiocyanate and the absorbance is measured at 480 nm for method E. The different experimental parameters affecting the development and stability of the color are carefully studied and optimized. Regression analysis of the Beer-Lambert plots showed good correlation in the concentration ranges of 0.5–8.0 μg . The apparent molar absorptivity, Sandell's sensitivity, detection and quantitation limits were evaluated. The proposed methods have been applied and validated successfully for the analysis of the drug in its pure form and pharmaceutical formulations with mean recoveries of 99.94%–100.15% and relative standard deviation ≤1.53. No interference was observed from a common pharmaceutical adjuvant. Statistical comparison of the results with the reference method shows excellent agreement and indicates no significant difference in accuracy and precision.

  8. Characterization of amorphous silica obtained from KMnO/sub 4/ treated rice husk

    International Nuclear Information System (INIS)

    Javed, S.H.; Naveed, S.; Ramzan, N.

    2010-01-01

    Rice husk (RH) is available in large quantities in many rice producing areas of Pakistan. The use of rice husk as a fuel in heat generating systems adds to environmental pollution. Rice husk contains approximately 20 % silica which exists in hydrated form. This silica can be retrieved as amorphous silica under proper oxidizing conditions. In present study rice husk was treated with various dosages of potassium permanganate before subjecting to thermal treatment. Potassium permanganate acts as oxidizing agent during combustion process. Various ash samples were prepared by varying the potassium permanganate concentrations and the burning temperatures over long periods. Ash produced was characterized by XRD, FTIR and other analytical methods. It has been observed that low dosages of KMnO/sub 4/ favors the formation of amorphous silica along with low carbon contents. (author)

  9. THE SURFACE STRUCTURAL AND MECHANICAL PROPERTIES OF THE AMORPHOUS CO22Y54AL24 RIBBON

    Directory of Open Access Journals (Sweden)

    Anna Bukowska

    2013-09-01

    Full Text Available The aim of this study was to manufacture amorphous Co22Y54Al24 alloy in a form of thin ribbons and to investigate their properties. The investigated ribbons were prepared by rapid solidification of molten metal on a rotating copper cylinder (melt-spinning. In order to obtain the material with amorphous structure, the cooling rate of the liquid alloy should vary in a range from 104 to 106 K/s. The microstructure studies were performed using X-ray diffractometery. The mechanical properties were investigated by metallographic studies, micro-hardness and tribological resistance tests moreover the surface roughness profile were analyzed. All studies were performed for two sides of tapes, since the differences in ribbons surface, related with manufacturing process, are clearly visible. The surface from the bottom (drum side was glossy and from the top side it was shiny.

  10. Validation of a stability-indicating spectrometric method for the determination of sulfacetamide sodium in pure form and ophthalmic preparations

    Directory of Open Access Journals (Sweden)

    Sofia Ahmed

    2017-01-01

    Full Text Available Introduction: Sulfacetamide sodium is a widely used sulfonamide for ophthalmic infections. Objective: A number of analytical methods have been reported for the analysis of sulfacetamide but they lack the ability to determine both the active drug and its major degradation product, sulfanilamide, simultaneously in a sample. Materials and Methods: In the present study a simple, rapid and economical stability-indicating UV spectrometric method has been validated for the simultaneous assay of sulfacetamide sodium and sulfanilamide in pure form and in ophthalmic preparations. Results: The method has been found to be accurate (recovery 100.03 ±0.589% and precise (RSD 0.587% with detectable and quantifiable limits of 1.67×10–6 M (0.04 mg% and 5.07×10–6 M (0.13 mg%, respectively for the assay of pure sulfacetamide sodium. The method is also found to be accurate and precise to small changes in wavelength, pH and buffer concentration as well as to forced degradation. The study further includes the validation of the method for the assay of pure sulfanilamide in solution, which has been found to be accurate, precise and robust. Conclusion: The results indicate that the proposed two-component spectrometric method is stability-indicating and can be used for the simultaneous assay of both sulfacetamide sodium and sulfanilamide in synthetic mixtures and degraded solutions.

  11. Copper-chromium compounds formed in the preparation of a low-temperature water gas shift catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sharkina, V I; Salomatin, G I; Boevskaya, E A

    1978-12-01

    IR and X-ray phase analyses of commercial water gas shift catalyst samples prepared by mixing solid chromic anhydride, basic copper carbonate (malachite), aluminum hydroxide, and water at 70/sup 0/-100/sup 0/C and 0.35:1 to 1.2:1 ratio of water to solid components (R) showed the formation of a basic copper chromate (BCC) CuCrO/sub 4/-2CuO-2H/sub 2/O at 80/sup 0/C (any R) and at 100/sup 0/C and R Vertical Bar3: 1.2:1, but at 100/sup 0/C and lower R (especially at R 0.7:1), a different, unidentified phase was formed. The samples containing these two phases had different colors; the high-temperature, low-water phase showed lower thermal stability but higher catalytic activity than the BCC. The BCC catalyst samples contained less unreacted malachite and their IR spectra contained a 3100-3200/cm band characteristic of hydroxyls associated by hydrogen bonds, and more molecular water, suggesting the formation of a hydroxo-polymeric structured system.

  12. Superconducting and normal properties of metallic amorphous systems

    International Nuclear Information System (INIS)

    Esquinazi, P.D.

    1983-02-01

    The superconducting and transport properties (superconducing critical temperature, superconducting critical currents, electric resistivity and thermal conductivity) of the amorphous alloys La 70 Cu 30 and Zr 70 Cu 30 prepared by melt spinning have been investigated. The modification of these properties when, the initial amorphous metals relax to other metastable state under thermal treatment at below crystallization temperatures, have also been studied. (M.E.L.) [es

  13. Researches on the electrolysis of metal oxides dissolved in boric anhydride or in melt borates. New methods of preparation of amorphous boron, borides and some metals; Recherches sur l'electrolyse des oxydes metalliques dissous dans l'anhydride borique ou dans les borates fondus. Nouvelles methodes de preparation du bore amorphe, des borures et de quelques metaux

    Energy Technology Data Exchange (ETDEWEB)

    Andrieux, Lucien

    1929-06-15

    This research thesis reports the investigation of the electrolysis of alkaline borates, alkaline earth borates and magnesium borate, and the investigation of mixtures containing a metal oxide dissolved in a bath formed by a tetraborate and a fluoride. The author more particularly studies the chemical products separated at the cathode level, i.e. boron (more or less pure), borates and other metals (zinc, tungsten, molybdenum)

  14. Fluxing purification and its effect on magnetic properties of high-B{sub s} FeBPSiC amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Jing [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, Liaoning 110870 (China); Wang, Anding, E-mail: anding@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Yue, Shiqiang [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Kong, Fengyu [School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315016 (China); Qiu, Keqiang, E-mail: kqqiu@163.com [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, Liaoning 110870 (China); Chang, Chuntao; Wang, Xinmin [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Liu, Chain-Tsuan, E-mail: chainliu@cityu.edu.hk [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2017-07-01

    Highlights: • Surface crystallization in Fe{sub 83}B{sub 11}P{sub 3}Si{sub 2}C{sub 1} ribbon was inhibited by flux purification. • Amorphous Fe{sub 83}B{sub 11}P{sub 3}Si{sub 2}C{sub 1} ribbon was made with industrial process and materials. • The ribbons exhibit high B{sub s} of 1.65 T, low H{sub c} of 2 A/m, and high μ{sub e} of 9.7 × 10{sup 3}. • High melting point inclusions trigger the surface crystallization as nuclei. - Abstract: A high-B{sub s} amorphous alloy with the base composition Fe{sub 83}B{sub 11}P{sub 3}Si{sub 2}C{sub 1} was used to study the effects of fluxing purification on amorphous forming ability and magnetic properties of the alloy prepared with raw materials in industrialization. By using fluxing purification, the surface crystallization was suppressed and fully amorphous Fe{sub 83}B{sub 11}P{sub 3}Si{sub 2}C{sub 1} ribbons with a maximum thickness of 48 μm were successfully achieved by using an industrial process and materials. The amorphous ribbons made with industrial-purified alloys exhibit excellent magnetic properties, containing high-B{sub s} of 1.65 T, low H{sub c} of 2.0 A/m, and high μ{sub e} of 9.7 × 10{sup 3} at 1 kHz. Impurities in the melting alloys exist in three forms and have different effluences on magnetic properties. The surface crystallization was triggered by the impurities which exist as high melting point inclusions serving as nuclei. Thus, fluxing purification is a feasible way for industrialization of high-B{sub s} FeBPSiC amorphous alloys.

  15. THE EFFECT OF PREPARATION CONDITIONS OF RAPIDLY SOLIDIFIED IRON BASED GRANULES ON PROPERTIES OF COMPOSITE MATERIAL FORMED BY CASTING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2017-01-01

    Full Text Available The variety of requirements for friction pairs requires the development of different technologies for the production of tribological materials with reference to the operation modes. Composite materials obtained by the casting technology have been successfully applied for the normalization of the thermomechanical state of the steam turbines. These composites consist of the matrix based on copper alloys reinforced with cast iron granules. Because the structure and properties of cast iron are determined by the conditions of their production studies have been conducted on determination of preparation conditions on grain structure and properties of the synthesized composite material. Using an upgraded unit for production of granules technological regimes were determined providing narrow fractional composition. It has been found that granules formed are characterized with typical microstructure of white cast iron containing perlite and ledeburite. Microhardness of pilot cast iron granules is characterized by high values (from 7450 up to 9450 MPa and depends on the size of the fraction. Composite materials obtained using experimental granules had a microhardness of the reinforcing cast iron granules about 3500 MPa, and a bronze matrix – 1220 MPa, which is higher than the hardness of the composite material obtained by using the annealed DCL-1granules (2250 MPa. Metal base of experimental granules in the composite material has the structure of perlitic ductile iron with inclusions of ferrite not exceeding 10–15% and set around a flocculent graphite. As a result, the increase of physical-mechanical properties of finished products made of composite material is observed. 

  16. Hydrogel-forming microneedles prepared from "super swelling" polymers combined with lyophilised wafers for transdermal drug delivery.

    Directory of Open Access Journals (Sweden)

    Ryan F Donnelly

    Full Text Available We describe, for the first time, hydrogel-forming microneedle arrays prepared from "super swelling" polymeric compositions. We produced a microneedle formulation with enhanced swelling capabilities from aqueous blends containing 20% w/w Gantrez S-97, 7.5% w/w PEG 10,000 and 3% w/w Na2CO3 and utilised a drug reservoir of a lyophilised wafer-like design. These microneedle-lyophilised wafer compositions were robust and effectively penetrated skin, swelling extensively, but being removed intact. In in vitro delivery experiments across excised neonatal porcine skin, approximately 44 mg of the model high dose small molecule drug ibuprofen sodium was delivered in 24 h, equating to 37% of the loading in the lyophilised reservoir. The super swelling microneedles delivered approximately 1.24 mg of the model protein ovalbumin over 24 h, equivalent to a delivery efficiency of approximately 49%. The integrated microneedle-lyophilised wafer delivery system produced a progressive increase in plasma concentrations of ibuprofen sodium in rats over 6 h, with a maximal concentration of approximately 179 µg/ml achieved in this time. The plasma concentration had fallen to 71±6.7 µg/ml by 24 h. Ovalbumin levels peaked in rat plasma after only 1 hour at 42.36±17.01 ng/ml. Ovalbumin plasma levels then remained almost constant up to 6 h, dropping somewhat at 24 h, when 23.61±4.84 ng/ml was detected. This work represents a significant advancement on conventional microneedle systems, which are presently only suitable for bolus delivery of very potent drugs and vaccines. Once fully developed, such technology may greatly expand the range of drugs that can be delivered transdermally, to the benefit of patients and industry. Accordingly, we are currently progressing towards clinical evaluations with a range of candidate molecules.

  17. Amorphous silicon radiation detectors

    Science.gov (United States)

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  18. Elemental process of amorphization induced by electron irradiation in Si

    International Nuclear Information System (INIS)

    Yamasaki, Jun; Takeda, Seiji; Tsuda, Kenji

    2002-01-01

    We recently found that amorphization is induced in Si by electron irradiation. Examining the amorphization systematically, we have established the diagram of steady states under electron irradiation, either amorphous Si (a-Si) or crystalline Si (c-Si) as a function of incident electron energy, electron dose, and irradiation temperature. Utilizing transmission electron microscopy, electron energy filtered diffraction and electron energy-loss spectroscopy, we have characterized the atomic structure, the electronic structure, and the thermal stability of a-Si induced by electron irradiation. Based on the experimental data, we have also concluded that the amorphization is caused by the accumulation of not point defects but small cascade damages. Analyzing the change in the intensity of halo diffraction rings during amorphization, we have clarified that the smallest cascade damage that contributes to amorphization includes only about four Si atoms. This presumably supports the amorphization mechanism that four self-interstitial atoms form the quasistable structure I4 in c-Si and it becomes an amorphous embryo

  19. Miscibility of amorphous ZrO2-Al2O3 binary alloy

    Science.gov (United States)

    Zhao, C.; Richard, O.; Bender, H.; Caymax, M.; De Gendt, S.; Heyns, M.; Young, E.; Roebben, G.; Van Der Biest, O.; Haukka, S.

    2002-04-01

    Miscibility is a key factor for maintaining the homogeneity of the amorphous structure in a ZrO2-Al2O3 binary alloy high-k dielectric layer. In the present work, a ZrO2/Al2O3 laminate thin layer has been prepared by atomic layer chemical vapor deposition on a Si (100) wafer. This layer, with artificially induced inhomogeneity (lamination), enables one to study the change in homogeneity of the amorphous phase in the ZrO2/Al2O3 system during annealing. High temperature grazing incidence x-ray diffraction (HT-XRD) was used to investigate the change in intensity of the constructive interference peak of the x-ray beams which are reflected from the interfaces of ZrO2/Al2O3 laminae. The HT-XRD spectra show that the intensity of the peak decreases with an increase in the anneal temperature, and at 800 °C, the peak disappears. The same samples were annealed by a rapid thermal process (RTP) at temperatures between 700 and 1000 °C for 60 s. Room temperature XRD of the RTP annealed samples shows a similar decrease in peak intensity. Transmission electronic microscope images confirm that the laminate structure is destroyed by RTP anneals and, just below the crystallization onset temperature, a homogeneous amorphous ZrAlxOy phase forms. The results demonstrate that the two artificially separated phases, ZrO2 and Al2O3 laminae, tend to mix into a homogeneous amorphous phase before crystallization. This observation indicates that the thermal stability of ZrO2-Al2O3 amorphous phase is suitable for high-k applications.

  20. Amorphous solid dispersions of piroxicam and Soluplus(®): Qualitative and quantitative analysis of piroxicam recrystallization during storage.

    Science.gov (United States)

    Lust, Andres; Strachan, Clare J; Veski, Peep; Aaltonen, Jaakko; Heinämäki, Jyrki; Yliruusi, Jouko; Kogermann, Karin

    2015-01-01

    The conversion of active pharmaceutical ingredient (API) from amorphous to crystalline form is the primary stability issue in formulating amorphous solid dispersions (SDs). The aim of the present study was to carry out qualitative and quantitative analysis of the physical solid-state stability of the SDs of poorly water-soluble piroxicam (PRX) and polyvinyl caprolactam-polyvinyl acetate-polyethylene-glycol graft copolymer (Soluplus(®)). The SDs were prepared by a solvent evaporation method and stored for six months at 0% RH/6 °C, 0% RH/25 °C, 40% RH/25 °C and 75% RH/25 °C. Fourier transform infrared spectroscopy equipped with attenuated total reflection accessory (ATR-FTIR) and Raman spectroscopy were used for characterizing the physical solid-state changes and drug-polymer interactions. The principal component analysis (PCA) and multivariate curve resolution alternating least squares (MCR-ALS) were used for the qualitative and quantitative analysis of Raman spectra collected during storage. When stored at 0% RH/6 °C and at 0% RH/25 °C, PRX in SDs remained in an amorphous form since no recrystallization was observed by ATR-FTIR and Raman spectroscopy. Raman spectroscopy coupled with PCA and MCR-ALS and ATR-FTIR spectroscopy enabled to detect the recrystallization of amorphous PRX in the samples stored at higher humidity. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Influence of in situ synthesized TiC on thermal stability and corrosion behavior of Zr60Cu10Al15Ni15 amorphous composites

    International Nuclear Information System (INIS)

    Geng, Jiwei; Teng, Xinying; Zhou, Guorong; Leng, Jinfeng; Zhao, Degang

    2014-01-01

    In situ synthesized TiC particles were prepared by a thermal explosion method. Adding “in situ synthesized” TiC into Zr 60 Cu 10 Al 15 Ni 15 glass matrix to obtain amorphous matrix composites was achieved. The corrosion behavior of Zr 60 Cu 10 Al 15 Ni 15 amorphous composites was evaluated using potentiodynamic polarization measurements in 3.5 wt% NaCl solution at room temperature. The results show that the microhardness and thermal stability are improved apparently, while the TiC (≤0.6 wt%) does not significantly affect the supercooled liquid behavior. Moreover, the corrosion resistance is improved apparently because the nanocrystals accelerate the diffusion of passive elements for faster formation of the protective passive film at nanocrystals/amorphous interfaces. However, when the TiC content is more than 0.6 wt%, both glass forming ability and corrosion resistance are reduced significantly

  2. Solid state characterization of commercial crystalline and amorphous atorvastatin calcium samples.

    Science.gov (United States)

    Shete, Ganesh; Puri, Vibha; Kumar, Lokesh; Bansal, Arvind K

    2010-06-01

    Atorvastatin calcium (ATC), an anti-lipid BCS class II drug, is marketed in crystalline and amorphous solid forms. The objective of this study was to perform solid state characterization of commercial crystalline and amorphous ATC drug samples available in the Indian market. Six samples each of crystalline and amorphous ATC were characterized using X-ray powder diffractometry (XRPD), differential scanning calorimetry (DSC), thermogravimetric analysis, Karl Fisher titrimetry, microscopy (hot stage microscopy, scanning electron microscopy), contact angle, and intrinsic dissolution rate (IDR). All crystalline ATC samples were found to be stable form I, however one sample possessed polymorphic impurity, evidenced in XRPD and DSC analysis. Amongst the amorphous ATC samples, XRPD demonstrated five samples to be amorphous 'form 27', while, one matched amorphous 'form 23'. Thermal behavior of amorphous ATC samples was compared to amorphous ATC generated by melt quenching in DSC. ATC was found to be an excellent glass former with T(g)/T(m) of 0.95. Residual crystallinity was detected in two of the amorphous samples by complementary use of conventional and modulated DSC techniques. The wettability and IDR of all amorphous samples was found to be higher than the crystalline samples. In conclusion, commercial ATC samples exhibited diverse solid state behavior that can impact the performance and stability of the dosage forms.

  3. Preparation of superconductor precursor powders

    Science.gov (United States)

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  4. Effect of process control agent on the structural and magnetic properties of nano/amorphous Fe0.7Nb0.1Zr0.1Ti0.1 powders prepared by high energy ball milling

    Science.gov (United States)

    Khazaei Feizabad, Mohammad Hossein; Sharafi, Shahriar; Khayati, Gholam Reza; Ranjbar, Mohammad

    2018-03-01

    In this study, amorphous Fe0.7Nb0.1Zr0.1Ti0.1 alloy without metalloids was produced by mechanical alloying of pure mixture elements. Miedema's semi-empirical model was employed to predict the possibility of amorphous phase formation in proposed alloying system. The effect of Hexane as process control agent (PCA) on the structural, magnetic, morphological and thermal properties of the products was investigated. The results showed that the presence of PCA was necessary for the formation of amorphous phase as well as improved its soft magnetic properties. The PCA addition causes an increase of the saturation magnetization (about 43%) and decrease of the coercivity (about 50%). Moreover, the sample milled without PCA, showed a wide particle size distribution as well as relatively spherical geometry. While, in the presence of PCA the powders were aspherical and Polygon. In addition, the crystallization and Curie temperatures were found to be around 800 °C and 650 °C, respectively which are relatively high values for these kinds of alloys.

  5. Electron irradiation effects in amorphous antimony thin films obtained by cluster-beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, G.; Treilleux, M.; Santos Aires, F.; Cabaud, B.; Melinon, P.; Hoareau, A. (Lyon-1 Univ., 69 - Villeurbanne (France))

    1991-03-01

    In order to understand the differences existing between films obtained with a classical molecular beam deposition (MBD) and the new low-energy cluster beam deposition (LECBD), transmission electron microscopy has been used to characterize the first stages of antimony LECBD. Antimony deposits are discontinuous and amorphous up to 2 nm in thickness. They are formed with isolated amorphous antimony particles surrounded by an amorphous antimony oxide shell. Moreover, under electron beam exposure in the microscope, an amorphous-crystal transformation has been observed in the oxide shell. Electron irradiation induces the formation of a crystallized antimony oxide (Sb{sub 2}O{sub 3}) around the amorphous antimony core. (author).

  6. Anodic electrochemical treatment of amorphous alloys

    International Nuclear Information System (INIS)

    Isaev, N.I.; Yakovlev, V.B.; Osipov, Eh.K.; Isaev, A.V.; Trofimova, E.A.; Vasil'ev, V.Yu.

    1983-01-01

    The aim of the investigation is to reveal peculiarities of the process of anodic oxidation and properties of anode oxide films, formed on the surface of amorphous alloys. Amorphous alloys on the base of rectifying metals of Zr-Ni, Zr-Cu-Ni, Zr-Al-Ni, Zr-Cu-Sn, Zr-Al, Zr-Mo systems are studied. Electrolytes which do not dissolve or weakly dissolve oxide film, such as boric acid electrolyte (40-45 g/l H 3 BO 3 and 18 cm 3 /l of the 25% aqueous NH 4 OH solution) and 20% H 2 SO 4 solution, are used for oxidation. Results of investigations, carried out on amorphous alloys, contaning noticeable quantities of non-rectifying components - Cu, Ni, Sn, Fe, Mo etc - have shown that non-rectifying components harden a process of anodic oxidation and decrease the current efficiency. Amorphous alloys, containing only rectifying components are oxidated in anodic way, the regularities of film growth being similar to those obtained for crystalline materials

  7. Development of large area, high efficiency amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K.S.; Kim, S.; Kim, D.W. [Yu Kong Taedok Institute of Technology (Korea, Republic of)

    1996-02-01

    The objective of the research is to develop the mass-production technologies of high efficiency amorphous silicon solar cells in order to reduce the costs of solar cells and dissemination of solar cells. Amorphous silicon solar cell is the most promising option of thin film solar cells which are relatively easy to reduce the costs. The final goal of the research is to develop amorphous silicon solar cells having the efficiency of 10%, the ratio of light-induced degradation 15% in the area of 1200 cm{sup 2} and test the cells in the form of 2 Kw grid-connected photovoltaic system. (author) 35 refs., 8 tabs., 67 figs.

  8. Surface-Activated Amorphous Alloy Fuel Electrodes for Methanol Fuel Cell

    OpenAIRE

    Asahi, Kawashima; Koji, Hashimoto; The Research Institute for Iron, Steel and Other Metals; The Research Institute for Iron, Steel and Other Metals

    1983-01-01

    Amorphous alloy electrodes for electrochemical oxidation of methanol and its derivatives were obtained by the surface activation treatment consisting of electrodeposition of zinc on as-quenched amorphous alloy substrates, heating at 200-300℃ for 30 min, and subsequently leaching of zinc in an alkaline solution. The surface activation treatment provided a new method for the preparation of a large surface area on the amorphous alloys. The best result for oxidation of methanol, sodium formate an...

  9. Synthesis, characterization, and in-vitro cytocompatibility of amorphous β-tri-calcium magnesium phosphate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Satish S., E-mail: sss42@pitt.edu [Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Roy, Abhijit, E-mail: abr20@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Lee, Boeun, E-mail: bol11@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Banerjee, Ipsita [Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Mechanical Engineering and Materials Science, University of Pittsburgh, PA 15261 (United States)

    2016-10-01

    Biphasic mixtures of crystalline β-tricalcium magnesium phosphate (β-TCMP) and an amorphous calcium magnesium phosphate have been synthesized and reported to support enhanced hMSC differentiation in comparison to β-tricalcium phosphate (β-TCP) due to the release of increased amounts of bioactive ions. In the current study, completely amorphous β-TCMP has been synthesized which is capable of releasing increased amounts of Mg{sup 2+} and PO{sub 4}{sup 3−} ions, rather than a biphasic mixture as earlier reported. The amorphous phase formed was observed to crystallize between temperatures of 400–600 °C. The scaffolds prepared with amorphous β-TCMP were capable of supporting enhanced hMSC proliferation and differentiation in comparison to commercially available β-TCP. However, a similar gene expression of mature osteoblast markers, OCN and COL-1, in comparison to biphasic β-TCMP was observed. To further study the role of Mg{sup 2+} and PO{sub 4}{sup 3−} ions in regulating hMSC osteogenic differentiation, the capability of hMSCs to mineralize in growth media supplemented with Mg{sup 2+} and PO{sub 4}{sup 3−} ions was studied. Interestingly, 5 mM PO{sub 4}{sup 3−} supported mineralization while the addition of 5 mM Mg{sup 2+} to 5 mM PO{sub 4}{sup 3−} inhibited mineralization. It was therefore concluded that the release of Ca{sup 2+} ions from β-TCMP scaffolds also plays a role in regulating osteogenic differentiation on these scaffolds and it is noted that further work is required to more accurately determine the exact role of Mg{sup 2+} in regulating hMSC osteogenic differentiation. - Highlights: • Synthesis of amorphous Mg containing beta tricalcium phosphate ceramics • Amorphous beta TCMP supports enhanced hMSC proliferation and differentiation. • Amorphous beta TCMP shows comparable OCN and COL-1 expression to biphasic TCMP. • Presence of 5 mM Mg{sup 2+} and PO{sub 4}{sup 3−} ions in growth media inhibits hMSC mineralization.

  10. Wear Resistant Amorphous and Nanocomposite Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  11. Origins of amorphous interstellar grains

    International Nuclear Information System (INIS)

    Hasegawa, H.

    1984-01-01

    The existence of amorphous interstellar grains has been suggested from infrared observations. Some carbon stars show the far infrared emission with a lambda -1 wavelength dependence. Far infrared emission supposed to be due to silicate grains often show the lambda -1 wavelength dependence. Mid infrared spectra around 10 μm have broad structure. These may be due to the amorphous silicate grains. The condition that the condensed grains from the cosmic gas are amorphous is discussed. (author)

  12. Amorphous silicon based particle detectors

    OpenAIRE

    Wyrsch, N.; Franco, A.; Riesen, Y.; Despeisse, M.; Dunand, S.; Powolny, F.; Jarron, P.; Ballif, C.

    2012-01-01

    Radiation hard monolithic particle sensors can be fabricated by a vertical integration of amorphous silicon particle sensors on top of CMOS readout chip. Two types of such particle sensors are presented here using either thick diodes or microchannel plates. The first type based on amorphous silicon diodes exhibits high spatial resolution due to the short lateral carrier collection. Combination of an amorphous silicon thick diode with microstrip detector geometries permits to achieve micromete...

  13. Health hazards due to the inhalation of amorphous silica

    International Nuclear Information System (INIS)

    Merget, R.; Bruening, T.; Bauer, T.; Kuepper, H.U.; Breitstadt, R.; Philippou, S.; Bauer, H.D.

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no

  14. Moessbauer and EXAFS studies of amorphous iron produced by thermal decomposition of carbonyl iron in liquid phase

    International Nuclear Information System (INIS)

    Nomura, Kiyoshi; Tanaka, Junichi; Ujihira, Yusuke; Takahashi, Tamotu; Uchida, Yasuzo

    1990-01-01

    Decomposition of iron carbonyl Fe(CO) 5 and Fe 2 (CO) 9 in liquid phase gave amorphous and crystalline iron powders in the absence and presence of catalyst, respectively. The hyperfine fields were large in amorphous phases prepared from Fe(CO) 5 than from Fe 2 (CO) 9 . Crystalline iron, iron carbide and a trace amount of Fe 3 O 4 were detected in the decomposition products of the amorphous phase prepared from Fe(CO) 5 , and iron carbide was mainly included in the decomposition products of the amorphous phase prepared from Fe 2 (CO) 9 . (orig.)

  15. On the nature of amorphous polymorphism of water

    OpenAIRE

    Koza, Michael Marek; Geil, Burkhard; Winkel, Katrin; Koehler, Christian; Czeschka, Franz; Scheuermann, Marco; Schober, Helmut; Hansen, Thomas

    2005-01-01

    We report elastic and inelastic neutron scattering experiments on different amorphous ice modifications. It is shown that an amorphous structure (HDA') indiscernible from the high-density phase (HDA), obtained by compression of crystalline ice, can be formed from the very high-density phase (vHDA) as an intermediate stage of the transition of vHDA into its low-density modification (LDA'). Both, HDA and HDA' exhibit comparable small angle scattering signals characterizing them as structures he...

  16. ELABORATION OF AMORPHOUS METALS AND GLASS TRANSITIONFORMATION AND CHARACTERIZATION OF AMORPHOUS METALS

    OpenAIRE

    Giessen , B.; Whang , S.

    1980-01-01

    This review deals with the definition of amorphous and glassy metals ; the principal methods for their preparation by atom-by-atom deposition, rapid liquid quenching and particle bombardment ; criteria for their formation, especially ready glass formation (RGF) and its alloy chemical foundations ; and their classification. This is followed by a discussion of their elastic and plastic properties (Young's modulus and microhardness) and thermal stability (glass transition and crystallization tem...

  17. Amorphization of Molecular Liquids of Pharmaceutical Drugs by Acoustic Levitation

    Directory of Open Access Journals (Sweden)

    C. J. Benmore

    2011-08-01

    Full Text Available It is demonstrated that acoustic levitation is able to produce amorphous forms from a variety of organic molecular compounds with different glass forming abilities. This can lead to enhanced solubility for pharmaceutical applications. High-energy x-ray experiments show that several viscous gels form from saturated pharmaceutical drug solutions after 10–20 min of levitation at room temperature, most of which can be frozen in solid form. Laser heating of ultrasonically levitated drugs can also result in the vitrification of molecular liquids, which is not attainable using conventional amorphization methods.

  18. Formation of iron disilicide on amorphous silicon

    Science.gov (United States)

    Erlesand, U.; Östling, M.; Bodén, K.

    1991-11-01

    Thin films of iron disilicide, β-FeSi 2 were formed on both amorphous silicon and on crystalline silicon. The β-phase is reported to be semiconducting with a direct band-gap of about 0.85-0.89 eV. This phase is known to form via a nucleation-controlled growth process on crystalline silicon and as a consequence a rather rough silicon/silicide interface is usually formed. In order to improve the interface a bilayer structure of amorphous silicon and iron was sequentially deposited on Czochralski silicon in an e-gun evaporation system. Secondary ion mass spectrometry profiling (SIMS) and scanning electron micrographs revealed an improvement of the interface sharpness. Rutherford backscattering spectrometry (RBS) and X-ray diffractiometry showed β-FeSi 2 formation already at 525°C. It was also observed that the silicide growth was diffusion-controlled, similar to what has been reported for example in the formation of NiSi 2 for the reaction of nickel on amorphous silicon. The kinetics of the FeSi 2 formation in the temperature range 525-625°C was studied by RBS and the activation energy was found to be 1.5 ± 0.1 eV.

  19. Crystallization of biogenic hydrous amorphous silica

    Science.gov (United States)

    Kyono, A.; Yokooji, M.; Chiba, T.; Tamura, T.; Tuji, A.

    2017-12-01

    Diatom, Nitzschia cf. frustulum, collected from Lake Yogo, Siga prefecture, Japan was cultured in laboratory. Organic components of the diatom cell were removed by washing with acetone and sodium hypochlorite. The remaining frustules were studied by SEM-EDX, FTIR spectroscopy, and synchrotron X-ray diffraction. The results showed that the spindle-shaped morphology of diatom frustule was composed of hydrous amorphous silica. Pressure induced phase transformation of the diatom frustule was investigated by in situ Raman spectroscopic analysis. With exposure to 0.3 GPa at 100 oC, Raman band corresponding to quartz occurred at ν = 465 cm-1. In addition, Raman bands known as a characteristic Raman pattern of moganite was also observed at 501 cm-1. From the integral ratio of Raman bands, the moganite content in the probed area was estimated to be approximately 50 wt%. With the pressure and temperature effect, the initial morphology of diatom frustule was completely lost and totally changed to a characteristic spherical particle with a diameter of about 2 mm. With keeping the compression of 5.7 GPa at 100 oC, a Raman band assignable to coesite appeared at 538 cm-1. That is, with the compression and heating, the hydrous amorphous silica can be readily crystallized into quartz, moganite, and coesite. The first-principles calculations revealed that a disiloxane molecule stabilized in a trans configuration is twisted 60o and changed into the cis configuration with a close approach of water molecule. It is therefore a reasonable assumption that during crystallization of hydrous amorphous silica, the Si-O-Si bridging unit with the cis configuration would survive as a structural defect and then crystallized into moganite by keeping the geometry. This hypothesis is adaptable to the phase transformation from hydrous amorphous silica to coesite as well, because coesite has the four-membered rings and easily formed from the hydrous amorphous silica under high pressure and high

  20. Formation of nanocrystalline and amorphous phase of Al-Pb-Si-Sn-Cu powder during mechanical alloying

    International Nuclear Information System (INIS)

    Ran Guang; Zhou Jingen; Xi Shengqi; Li Pengliang

    2006-01-01

    Al-15%Pb-4%Si-1%Sn-1.5%Cu alloys (mass fraction, %) were prepared by mechanical alloying (MA). Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the nanocrystalline supersaturated solid solutions and amorphous phase in the powders are obtained during MA. The effect of ball milling is more evident to lead than to aluminum. During MA, the mixture powders are firstly fined, alloyed, nanocrystallized and then the nanocrystalline partly transforms to amorphous phase. A thermodynamic model is developed based on semi-experimental theory of Miedema to calculate the driving force for phase evolution. The thermodynamic analysis shows that there is no chemical driving force to form a crystalline solid solution from the elemental components. But for the amorphous phase, the Gibbs free energy is higher than 0 for the alloy with lead content in the ranges of 0-86.8 at.% and 98.4-100 at.% and lower than 0 in range of 86.8-98.4 at.%. For the Al-2.25 at.%Pb (Al-15%Pb, mass fraction, %), the driving force for formation of amorphization and nanocrystalline supersaturated solid solutions are provided not by the negative heat of mixing but by mechanical work

  1. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization

    Science.gov (United States)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-01

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (106 ~ 109 Ω/◻).

  2. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization.

    Science.gov (United States)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-03

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (10(6)~ 10(9) Ω/◻).

  3. Ceramic nuclear waste forms. II. A ceramic-waste composite prepared by hot pressing. Progress report and preprint

    International Nuclear Information System (INIS)

    McCarthy, G.J.

    1975-01-01

    A feasibility study was conducted to determine whether nuclear waste calcine and a crystalline ceramic matrix can be fabricated by hot pressing into a composite waste form with suitable leaching resistance and thermal stability. It was found that a hard, dense composite could be formed using the typical commercial waste formulation PW-4b and a matrix of α-quartz with a small amount of a lead borosilicate glass added as a consolidation aide. Its density, waste loading, and leaching resistance are comparable to the glasses currently being considered for fixation of nuclear wastes. The hot pressed composite offers a closer approach to thermodynamic stability and improved thermal stability (in monolithic form) compared to glass waste forms. Recommendations for further optimization of the hot pressed waste form are given. (U.S.)

  4. Amorphous silicon ionizing particle detectors

    Science.gov (United States)

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  5. Thermoluminescent dosimetry of beta radiations of 90 Sr/ 90 Y using amorphous ZrO2

    International Nuclear Information System (INIS)

    Rivera M, T.; Olvera T, L.; Azorin N, J.; Barrera R, M.; Soto E, A.M.

    2005-01-01

    In this work the results of studying the thermoluminescent properties (Tl) of the zirconium oxide in its amorphous state (ZrO 2 -a) before beta radiations of 90 Sr/ 90 Y are presented. The amorphous powders of the zirconium oxide were synthesized by means of the sol-gel technique. The sol-gel process using alkoxides like precursors, is an efficient method to prepare a matrix of zirconium oxide by hydrolysis - condensation of the precursor to form chains of Zr-H 3 and Zr-O 2 . One of the advantages of this technique is the obtention of gels at low temperatures with very high purity and homogeneity. The powders were characterized by means of thermal analysis and by X-ray diffraction. The powders of ZrO 2 -a, previously irradiated with beta particles of 90 Sr/ 90 Y, presented a thermoluminescent curve with two peaks at 150 and 257 C. The dissipation of the information of the one ZrO 2 -a was of 40% the first 2 hours remaining constant the information for the following 30 days. The reproducibility of the information was of ± 2.5% in standard deviation. The studied characteristics allow to propose to the amorphous zirconium oxide as thermoluminescent dosemeter for the detection of beta radiation. (Author)

  6. Estabilidad de la glucosa oxidasa en sistemas amorfos formados por los disacáridos sacarosa, maltosa y trehalosa Glucose oxidase stability in amorphous systems formed by saccharose, maltose and trehalose disaccharides

    Directory of Open Access Journals (Sweden)

    Hans L. D. Valenzuela

    2007-01-01

    Full Text Available Glucose-oxidase (GOD, suffers conformational change during freeze-drying. In order to determine the protection level granted by amorphous matrices (AM of saccharose, maltose, trehalose and their combinations, the thermal inactivation constants (K D of GOD trapped in these systems were determined. For its evaluation, GOD samples were balanced at different water activities and heated up to 30, 50 and 70 ºC. The best AM found for GOD stability was saccharose-trehalose (5/10% p/v. The K D values (K D.10-4 at a w = 0.0 were 3 at 30 ºC and 6 at 70 ºC. For non-protected GOD under the same conditions these values were 48 at 30 ºC and 257 at 70 ºC.

  7. Preparation, characterization and thermal properties of styrene maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials

    International Nuclear Information System (INIS)

    Sari, Ahmet; Alkan, Cemil; Karaipekli, Ali; Onal, Adem

    2008-01-01

    Fatty acids such as stearic acid (SA), palmitic acid (PA), myristic acid (MA) and lauric acid (LA) are promising phase change materials (PCMs) for latent heat thermal energy storage (LHTES) applications, but high cost is the major drawback of them, limiting their utility area in thermal energy storage. The use of fatty acids as form stable PCMs will increase their feasibilities in practical applications due to the reduced cost of the LHTES system. In this regard, a series of styrene maleic anhydride copolymer (SMA)/fatty acid composites, SMA/SA, SMA/PA, SMA/MA, and SMA/LA, were prepared as form stable PCMs by encapsulation of fatty acids into the SMA, which acts as a supporting material. The encapsulation ratio of fatty acids was as much as 85 wt.% and no leakage of fatty acid was observed even when the temperature of the form stable PCM was over the melting point of the fatty acid in the composite. The prepared form stable composite PCMs were characterized using optic microscopy (OM), viscosimetry and Fourier transform infrared (FT-IR) spectroscopy methods, and the results showed that the SMA was physically and chemically compatible with the fatty acids. In addition, the thermal characteristics such as melting and freezing temperatures and latent heats of the form stable composite PCMs were measured by using the differential scanning calorimetry (DSC) technique, which indicated they had good thermal properties. On the basis of all the results, it was concluded that form stable SMA/fatty acid composite PCMs had important potential for practical LHTES applications such as under floor space heating of buildings and passive solar space heating of buildings by using wallboard, plasterboard or floors impregnated with a form stable PCM due to their satisfying thermal properties, easy preparation in desired dimensions, direct usability without needing additional encapsulation thereby eliminating the thermal resistance caused by the shell and, thus, reducing the cost of

  8. Waste Material of Propolis as a Film Forming Agent Intended to Modify the Metronidazole Release: Preparation and Characterization.

    Science.gov (United States)

    de Toledo, Lucas de Alcântara Sica; Rosseto, Hélen Cássia; Ravani, Laura; Cortesi, Rita; Bruschi, Marcos Luciano

    2016-01-01

    Metronidazole is an antimicrobial agent utilized for the treatment of protozoa and anaerobic bacteria infections. Many times, it is necessary to modify the metronidazole release, and the development of modified release systems may be suggested. In this study, we are able to investigate the use of the residue normally thrown out from the preparation of propolis extracts (BP) as strategy to modify the metronidazole release. We prepared films containing polymeric adjuvant (gelatin or ethylcellulose) and metronidazole, by solvent casting method. Density, mechanical properties, water vapor permeability (WVP), moisture uptake capacity (MUC), thermogravimetry, differential scanning calorimetry, Fourier transform infrared spectroscopy (FT-IR), and in vitro metronidazole release were investigated. Thickness and density of the preparations indicated that the compounds were homogeneously dispersed throughout. Mechanical properties were influenced by film composition. Films containing gelatin showed higher resistance to stress while those containing ethylcellulose presented greater flexibility. The greater the adjuvant concentrations lower the resistance to rupture and the elasticity, but higher MUC and WVP of formulations. FT-IR tests suggested interactions between BP and the adjuvants. Films were capable to protect the metronidazole and changed its release profile. BP films are of great practical importance constituting a novel strategy to modify the metronidazole release.

  9. A study on the morphology of polystyrene-grafted poly(ethylene-alt-tetrafluoroethylene) (ETFE) films prepared using a simultaneous radiation grafting method

    International Nuclear Information System (INIS)

    Song, Ju-Myung; Ko, Beom-Seok; Sohn, Joon-Yong; Nho, Young Chang; Shin, Junhwa

    2014-01-01

    The morphology of polystyrene-grafted poly(ethylene-alt-tetrafluoroethylene) (ETFE) films prepared using a simultaneous radiation grafting method was investigated using DMA, DSC, XRD, and SAXS instruments. The DMA study indicates that the ETFE amorphous phase and PS amorphous phase are mixed well in the PS-grafted ETFE films while the ETFE crystalline phase and the PS amorphous phase are separated, suggesting that the PS chains are grafted mainly on the ETFE amorphous regions. The DSC and XRD data showed that the natural crystalline structures of ETFE in the grafted ETFE films are not affected by the degree of grafting. The SAXS profiles displayed that the inter-crystalline distance of the ETFE films increases with an increasing degree of grafting, which further implies that the PS graft chains formed by the simultaneous irradiation has a significant impact on the amorphous morphology of the resulting grafted ETFE film. Thus, these results indicate that the styrene monomers are mainly grafted on the ETFE amorphous regions during the simultaneous radiation grafting process. - Highlights: • PS-grafted ETFE films were prepared by a simultaneous radiation grafting method was investigated. • The natural crystalline structures of grafted ETFE films are not affect by the degree of grafting. • The inter-crystalline distance of the ETFE films increase with increasing degree of grafting. • The styrene monomers are mainly grafted on the ETFE amorphous regions during a simultaneous radiation grafting using gamma-ray

  10. Amorphous and Crystalline Particulates: Challenges and Perspectives in Drug Delivery.

    Science.gov (United States)

    Al-Obaidi, Hisham; Majumder, Mridul; Bari, Fiza

    2017-01-01

    Crystalline and amorphous dispersions have been the focus of academic and industrial research due to their potential role in formulating poorly water-soluble drugs. This review looks at the progress made starting with crystalline carriers in the form of eutectics moving towards more complex crystalline mixtures. It also covers using glassy polymers to maintain the drug as amorphous exhibiting higher energy and entropy. However, the amorphous form tends to recrystallize on storage, which limits the benefits of this approach. Specific interactions between the drug and the polymer may retard this spontaneous conversion of the amorphous drug. Some studies have shown that it is possible to maintain the drug in the amorphous form for extended periods of time. For the drug and the polymer to form a stable mixture they have to be miscible on a molecular basis. Another form of solid dispersions is pharmaceutical co-crystals, for which research has focused on understanding the chemistry, crystal engineering and physico-chemical properties. USFDA has issued a guidance in April 2013 suggesting that the co-crystals as a pharmaceutical product may be a reality; but just not yet! While some of the research is still oriented towards application of these carriers, understanding the mechanism by which drug-carrier miscibility occurs is also covered. Within this context is the use of thermodynamic models such as Flory-Huggins model with some examples of studies used to predict miscibility. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Nature of amorphous polymorphism of water

    International Nuclear Information System (INIS)

    Koza, M.M.; Schober, H.; Hansen, T.; Geil, B.; Winkel, K.; Koehler, C.; Scheuermann, M.; Czeschka, F.

    2005-01-01

    We report elastic and inelastic neutron scattering experiments on different amorphous ice modifications. It is shown that an amorphous structure (HDA ' ) indiscernible from the high-density phase (HDA), obtained by compression of crystalline ice, can be formed from the very high-density phase (vHDA) as an intermediate stage of the transition of vHDA into its low-density modification (LDA ' ). Both HDA and HDA ' exhibit comparable small-angle scattering signals characterizing them as structures heterogeneous on a length scale of a few nanometers. The homogeneous structures are the initial and final transition stages vHDA and LDA ' , respectively. Despite their apparent structural identity on a local scale, HDA and HDA ' differ in their transition kinetics explored by in situ experiments. The activation energy of the vHDA-to-LDA ' transition is at least 20 kJ/mol higher than the activation energy of the HDA-to-LDA transition

  12. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Herath, H.M.T.U. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Premachandra, T.N. [Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Ranasinghe, C.S.K. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.P.V.J. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.M.G., E-mail: rmgr@pdn.ac.lk [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Edirisinghe, Mohan; Mahalingam, S. [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Bandara, I.M.C.C.D. [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia); Singh, Sanjleena [Central Analytical Research Facility, Institute of Future Environments, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia)

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO{sub 2} thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO{sub 2} thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  13. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    International Nuclear Information System (INIS)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G.; Herath, H.M.T.U.; Premachandra, T.N.; Ranasinghe, C.S.K.; Rajapakse, R.P.V.J.; Rajapakse, R.M.G.; Edirisinghe, Mohan; Mahalingam, S.; Bandara, I.M.C.C.D.; Singh, Sanjleena

    2016-01-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO_2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO_2 thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  14. Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerization method

    International Nuclear Information System (INIS)

    Zhang, Lei; Zhu, Jiaoqun; Zhou, Weibin; Wang, Jun; Wang, Yan

    2011-01-01

    Highlights: → Form-stable PMMA/PEG/AlN PCMs were prepared by in situ polymerization method. → AlN additive effectively enhanced the heat transfer property of composite PCMs. → The composites exhibited desirable thermal performance and electric insulativity. → The composites were available for the thermal management of electronic device. - Abstract: This work was focused on the preparation and characterization of a new type of form-stable phase change material (PCM) employed in thermal management. Using the method of in situ polymerization, polyethylene glycol (PEG) acting as the PCM and aluminum nitride (AlN) serving as the thermal conductivity promoter were uniformly encapsulated and embedded inside the three-dimensional network structure of PMMA matrix. When the mass fraction of PEG was below 70%, the prepared composite PCMs remained solid without leakage above the melting point of the PEG. XRD and FT-IR results indicated that the PEG was physically combined with PMMA matrix and AlN additive and did not participate in the polymerization. Thermal analysis results showed that the prepared composite PCMs possess available latent heat capacity and thermal stability, and the AlN additive was able to effectively enhance the heat transfer property of organic PCM. Moreover, the volume resistivity of composite achieved (5.92 ± 0.16) x 10 10 Ω cm when the mass ratio of AlN was 30%. To sum up, the prepared form-stable PCMs were competent for the thermal management of electronic device due to their acceptable thermal performance and electric insulativity.

  15. Different crystal morphologies arising from different preparation methods of a same polymorphic form may result in different properties of the final materials: the case of diclofenac sodium trihydrate.

    Science.gov (United States)

    Rodomonte, Andrea; Antoniella, Eleonora; Bertocchi, Paola; Gaudiano, Maria Cristina; Manna, Livia; Bartolomei, Monica

    2008-09-29

    Diclofenac sodium is a nonsteroidal anti-inflammatory drug widely used in painful and inflammatory diseases. It can exist in different hydrate phases. Recently the physico-chemical and pharmaceutical properties of a trihydrate form, named DSH3 were reported by the same authors. This short communication discusses how samples of a same polymorphic form can display dissimilar analytical signatures when obtained by different routes. Data from hot-stage microscopy, FT-IR spectroscopy, X-ray powder diffraction (XRDP) and thermal analysis were used to characterise the DSH3 samples prepared by different methods. Through the case study of diclofenac sodium, this work highlights how the method used to prepare a specific crystal modification can generate samples with different morphologies and therefore different properties and physical stability.

  16. Preparation and characterization of Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3} composite oxide formed by cathodic electroplating and anodizing

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Joo-Hee; Kim, Tae-Yoo; Kim, Nam-Jeong; Lee, Chang-Hyoung; Park, Eun-Mi [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Park, Chan [Division of Materials Science and Engineering, Pukyong National University, Busan 608-739 (Korea, Republic of); Suh, Su-Jeong, E-mail: suhsj@skku.ac.kr [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Advanced Materials and Process Research Center for IT, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2011-11-15

    Highlights: > We fabricate Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3}/Al film for high performance thin film capacitor. > The optimum condition of electrolyte composition will coat NbO{sub x} on Al without corrosion of Al during the cathodic electroplating. > Increasing annealing temperature will form Nb{sub 2}O{sub 5} crystalline. > The Al{sub 2}O{sub 3} layer will form between Nb{sub 2}O{sub 5} layer and metal Al after anodizing and the thin film capacitor with Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3}/Al improve dielectric properties. - Abstract: Al foil was coated with niobium oxide by cathodic electroplating and anodized in a neutral boric acid solution to achieve high capacitance in a thin film capacitor. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) revealed the niobium oxide layer on Al to be a hydroxide-rich amorphous phase. The film was crystalline and had stoichiometric stability after annealing at temperatures up to 600 deg. C followed by anodizing at 500 V, and the specific capacitance of the Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3} composite oxide was approximately 27% higher than that of Al{sub 2}O{sub 3} without a Nb{sub 2}O{sub 5} layer. The capacitance was quite stable to the resonance frequency. Overall, the Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3} composite oxide film is a suitable material for thin film capacitors.

  17. Influence of variation in molar ratio on co-amorphous drug-amino acid systems

    DEFF Research Database (Denmark)

    Jensen, Katrine Birgitte Tarp; Larsen, Flemming Hofmann; Löbmann, Korbinian

    2016-01-01

    Molecular interactions were investigated within four different co-amorphous drug-amino acid systems, namely indomethacin-tryptophan (Ind-Trp), furosemide-tryptophan (Fur-Trp), indomethacin-arginine (Ind-Arg) and furosemide-arginine (Fur-Arg). The co-amorphous systems were prepared by ball milling...... observed in the 50mol% drug (1:1M ratio) mixtures, with the exception of co-amorphous Ind-Arg where the interactions within the 40mol% drug samples appear equally strong. A particularly large deviation between the theoretical and actual Tgs was observed within co-amorphous Ind-Arg and Fur-Arg systems......-amorphous mixture without additional interactions. The modified equation described the Tgs of the co-amorphous Ind-Arg with excess Arg less well indicating possible further interactions; however, the FTIR and ssNMR data did not support the presence of additional intermolecular drug-amino acid interactions....

  18. Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide

    International Nuclear Information System (INIS)

    Barranco, V.; Pico, F.; Ibanez, J.; Lillo-Rodenas, M.A.; Linares-Solano, A.; Kimura, M.; Oya, A.; Rojas, R.M.; Amarilla, J.M.; Rojo, J.M.

    2009-01-01

    Composites consisting of ruthenium oxide particles deposited on amorphous carbon nanofibres are prepared by a repetitive impregnation procedure. The choice of amorphous carbon nanofibres as support of amorphous ruthenium oxide leads to composites in which the deposited oxide consists of aggregates of extremely small primary particles (1-1.5 nm-size) and showing high porosity (specific surface area of 450 m 2 g -1 ). This special deposition of the oxide seems to favour: (i) high oxide capacitance (1000 Fg -1 ) at high oxide loadings (up to 20 wt%) and (ii) high capacitance retention (ca. 80% from the initial oxide capacitance) at high current densities (200 mA cm -2 ). Amorphous carbon nanofibres are suitable supports for amorphous ruthenium oxide and perhaps for other amorphous oxides acting as active electrode materials.

  19. Preparation of nucleoside-pyridine hybrids and pyridine attached acylureas from an unexpected uracil ring-opening and pyridine ring-forming sequence

    Institute of Scientific and Technical Information of China (English)

    Xue Sen Fan; Xia Wang; Xin Ying Zhang; Dong Feng; Ying Ying Qu

    2009-01-01

    Novel pyrimidine nucleoside-3,5-dicyanopyridine hybrids (4) or pyridine attached acylureas (5) were selectively and efficiently prepared from the reaction of 2'-deoxyuridin-5-yl-methylene malonortitrile (1), malononitrile (2) and thiophenol (3) or from an unexpected uracil ring-opening and pyridine ring-forming sequence via the reaction of 1 and 3. It is the first time such a sequence has ever been reported.

  20. Study on the substrate-induced crystallisation of amorphous SiC-precursor ceramics. TIB/A; Untersuchungen zur substratinduzierten Kristallisation amorpher SiC-Precursorkeramiken

    Energy Technology Data Exchange (ETDEWEB)

    Rau, C.

    2000-12-01

    In the present thesis the crystallization behaviour of amorphous silicon-carbon materials (SiC{sub x}) was studied. The main topic of the experimental studies formed thereby the epitactical crystallization of thin silicon carbide layers on monocrystalline substrates of silicon carbides or silicon. Furthermore by thermolysis of the polymer amorphous SiC{sub x}-powder was obtained.

  1. Processing and characterization of amorphous magnesium based alloy for application in biomedical implants

    Directory of Open Access Journals (Sweden)

    Telma Blanco Matias

    2014-07-01

    Full Text Available Magnesium-based bulk metallic glasses are attractive due to their single-phase, chemically homogeneous alloy system and the absence of second-phase, which could impair the mechanical properties and corrosion resistance. However, one of the unsolved problems for the manufacturability and the applications of bulk metallic glasses is that their glass-forming ability is very sensitive to the preparation techniques and impurity of components since oxygen in the environment would markedly deteriorate the glass-forming ability. Therefore, the aim of this study was to establish proper processing conditions to obtain a magnesium-based amorphous ternary alloy and its characterization. The final composition was prepared using two binary master alloys by melting in an induction furnace. Carbon steel crucible was used in argon atmosphere with and without addition of SF6 gas in order to minimize the oxygen contamination. The microstructure, amorphous nature, thermal properties and chemical analysis of samples were investigated by scanning electron microscopy (SEM, X-ray diffraction (XRD, differential scanning calorimetry (DSC and inductively coupled plasma emission spectrometry, respectively. The oxygen content of the as-cast samples was chemically analyzed by using carrier gas hot extraction (O/N Analyzer TC-436/LECO and was kept bellow 25 ppm (without SF6 and 10 ppm (with SF6. Bulk samples were produced by rapid cooling in a cooper mold until 1.5 mm thickness, with amorphous structures being observed up to 2.5 mm.

  2. Intrinsic charge trapping in amorphous oxide films: status and challenges

    Science.gov (United States)

    Strand, Jack; Kaviani, Moloud; Gao, David; El-Sayed, Al-Moatasem; Afanas’ev, Valeri V.; Shluger, Alexander L.

    2018-06-01

    We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states stemming from the disorder of amorphous metal oxide networks. We start from presenting the results for amorphous (a) HfO2, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy measurements and theoretical calculations using density functional theory shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO2. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modeling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO2 and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO2, a-Al2O3, a-TiO2. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO2 and a-SiO2 weakens Hf(Si)–O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O2‑ ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection

  3. Spectrophotometric Determination of Labetalol and Lercanidipine in Pure Form and in Pharmaceutical Preparations Using Ferric-1,10-Phenanthroline

    OpenAIRE

    Abu El-Enin, M. A.; El-Wasseef, D. R.; El-Sherbiny, D. T.; El-Ashry, S. M.

    2009-01-01

    A simple and sensitive spectrophotometric method was developed for the determination of labetalol HCl (LBT) and lercanidipine HCl (LER) in pure form and in dosage forms. The method was based upon oxidation of the LBT and LER with Fe+3 and the estimation of the produced Fe+2 with 1,10-phenanthroline. The absorbance of the tris(1,10-phenanthroline) Fe+2 complex was measured at 510 nm. Reaction conditions were optimized to obtain colored complex of higher sensitivity and longer stability. The ab...

  4. Preparation and characterization of novel nanocomposite films formed from silk fibroin and nano-TiO2.

    Science.gov (United States)

    Feng, Xin-Xing; Zhang, Li-Li; Chen, Jian-Yong; Guo, Yu-Hai; Zhang, Hua-Peng; Jia, Chang-Ian

    2007-01-30

    This paper describes the synthesis and characterization of new regenerated silk fibroin (SF)/nano-TiO(2) composite films. The preparation method, based on the sol-gel technique using butyl titanate as oxide precursor, could avoid reagglomeration of the prepared nanoparticles. Samples were characterized mainly by X-ray diffraction (XRD), ultra-violet (UV) spectroscopy, atomic force microscopy (AFM), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). The UV and AFM results indicated that TiO(2) nanoparticles could be well dispersed inside the SF film, and the size of TiO(2) was about 80nm. The XRD and FT-IR analysis implied that the formation of nano-TiO(2) particles may induce the conformational transition of silk fibroin to a typical Silk II structure partly with the increasing of crystallinity in the composite films. Compared to the pure SF films, the mechanical and thermal properties of composite films were improved, and the solubility in water was decreased due to the conformational transition of silk fibroin to Silk II structure.

  5. Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature.

    Science.gov (United States)

    Deng, Changjian; Lau, Miu Lun; Barkholtz, Heather M; Xu, Haiping; Parrish, Riley; Xu, Meiyue Olivia; Xu, Tao; Liu, Yuzi; Wang, Hao; Connell, Justin G; Smith, Kassiopeia A; Xiong, Hui

    2017-08-03

    We report an amorphous boron nanorod anode material for lithium-ion batteries prepared through smelting non-toxic boron oxide in liquid lithium. Boron in theory can provide capacity as high as 3099 mA h g -1 by alloying with Li to form B 4 Li 5 . However, experimental studies of the boron anode have been rarely reported for room temperature lithium-ion batteries. Among the reported studies the electrochemical activity and cycling performance of the bulk crystalline boron anode material are poor at room temperature. In this work, we utilized an amorphous nanostructured one-dimensional (1D) boron material aiming at improving the electrochemical reactivity between boron and lithium ions at room temperature. The amorphous boron nanorod anode exhibited, at room temperature, a reversible capacity of 170 mA h g -1 at a current rate of 10 mA g -1 between 0.01 and 2 V. The anode also demonstrated good rate capability and cycling stability. The lithium storage mechanism was investigated by both sweep voltammetry measurements and galvanostatic intermittent titration techniques (GITTs). The sweep voltammetric analysis suggested that the contributions from lithium ion diffusion into boron and the capacitive process to the overall lithium charge storage are 57% and 43%, respectively. The results from GITT indicated that the discharge capacity at higher potentials (>∼0.2 V vs. Li/Li + ) could be ascribed to a capacitive process and at lower potentials (ions and the amorphous boron nanorod. This work provides new insights into designing nanostructured boron materials for lithium-ion batteries.

  6. Crystallization inhibitors for amorphous oxides

    International Nuclear Information System (INIS)

    Reznitskij, L.A.; Filippova, S.E.

    1993-01-01

    Data for the last 10 years, in which experimental results of studying the temperature stabilization of x-ray amorphous oxides (including R 3 Fe 5 O 12 R-rare earths, ZrO 2 , In 2 O 3 , Sc 2 O 3 ) and their solid solution are presented, are generalized. Processes of amorphous oxide crystallization with the production of simple oxides, solid solutions and chemical compounds with different polyhedral structure, are investigated. Energy and crystallochemical criteria for selecting the doping inhibitor-components stabilizing the amorphous state are ascertained, temperatures and enthalpies of amorpous oxide crystallization are determined, examination of certain provisions of iso,orphous miscibility theory is conducted

  7. Preparation and characterization of a new hybrid material formed by reaction of cobalt (II) nitroprusside and octa(aminopropyl)silsesquioxane

    International Nuclear Information System (INIS)

    Magossi, Mariana de Souza; Carmo, Devaney Ribeiro do

    2016-01-01

    Full text: The term silsesquioxane etymologically refers to the nanostructured compounds that has structures that feature the empirical formula (RSiO 1,5 ) n , where R is a hydrogen atom or an organic group. Each silicon atom is connected on an average of 1.5 oxygen atoms and a group R (hydrocarbon, or an organic group) [1]. In this work, a new hybrid material (ACCoN) based on octa(aminopropyl)silsesquioxane (AC) and cobalt (II) nitroprusside have been prepared following a new synthesis route. Within this context, the objective of this work was to prepare and characterize this new material for electro analytical purposes. The ACCoN was characterized by several techniques such as: spectroscopy in the region of infrared (FTIR), Energy-Dispersive X-ray spectroscopy (EDS), Scanning Electron microscopy (SEM) and X-Ray Diffraction (XRD). The FTIR spectra showed absorption bands in 1106 cm -1 refer to the stretching vibration ν s (Si-O-Si) characteristics of the structure of silsesquioxane. An important vibration can be observed which is related to the stretching vibrations of the type νN-O which occurs near 1945 cm -1 , characteristic of the sodium nitroprusside, where in the ACCoN the νN-O is shifted for more high frequency (about 117 cm -1 ) relative to sodium nitroprusside. Additionally a drastic reduction of stretching vibrations intensity νC≡N was observed in the ACCoN. This fact is an indicative of the formation of the intervalence complex, where the CN- and metal centers are bound. Through SEM and EDS spectroscopies was observed clusters of cubic particles with an average size of 325 nm. The ACCoN presents the elements Si, O, N, Co and Fe in its structure. Therefore through the aforementioned spectroscopic analysis, we conclude that the preparation of ACCoN was successfully conducted. [1] Cordes, D. B.; Lickiss, P. D.; Rataboul, F. Chemical Reviews, vol. 110, p. 2081-2173 (2010). (author)

  8. Preparation and characterization of a new hybrid material formed by reaction of cobalt (II) nitroprusside and octa(aminopropyl)silsesquioxane

    Energy Technology Data Exchange (ETDEWEB)

    Magossi, Mariana de Souza; Carmo, Devaney Ribeiro do, E-mail: marymagossi@gmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Faculdade de Engenharia

    2016-07-01

    Full text: The term silsesquioxane etymologically refers to the nanostructured compounds that has structures that feature the empirical formula (RSiO{sub 1,5}){sub n}, where R is a hydrogen atom or an organic group. Each silicon atom is connected on an average of 1.5 oxygen atoms and a group R (hydrocarbon, or an organic group) [1]. In this work, a new hybrid material (ACCoN) based on octa(aminopropyl)silsesquioxane (AC) and cobalt (II) nitroprusside have been prepared following a new synthesis route. Within this context, the objective of this work was to prepare and characterize this new material for electro analytical purposes. The ACCoN was characterized by several techniques such as: spectroscopy in the region of infrared (FTIR), Energy-Dispersive X-ray spectroscopy (EDS), Scanning Electron microscopy (SEM) and X-Ray Diffraction (XRD). The FTIR spectra showed absorption bands in 1106 cm{sup -1} refer to the stretching vibration ν{sub s}(Si-O-Si) characteristics of the structure of silsesquioxane. An important vibration can be observed which is related to the stretching vibrations of the type νN-O which occurs near 1945 cm{sup -1}, characteristic of the sodium nitroprusside, where in the ACCoN the νN-O is shifted for more high frequency (about 117 cm{sup -1}) relative to sodium nitroprusside. Additionally a drastic reduction of stretching vibrations intensity νC≡N was observed in the ACCoN. This fact is an indicative of the formation of the intervalence complex, where the CN- and metal centers are bound. Through SEM and EDS spectroscopies was observed clusters of cubic particles with an average size of 325 nm. The ACCoN presents the elements Si, O, N, Co and Fe in its structure. Therefore through the aforementioned spectroscopic analysis, we conclude that the preparation of ACCoN was successfully conducted. [1] Cordes, D. B.; Lickiss, P. D.; Rataboul, F. Chemical Reviews, vol. 110, p. 2081-2173 (2010). (author)

  9. Stabilization of iron and molybdenum amorphous state with interstitials under high rates of cooling

    International Nuclear Information System (INIS)

    Barmin, Yu.V.; Vavilova, V.V.; Verevkin, A.G.; Gertsen, A.T.; Kovneristyj, Yu.K.; Kotyurgin, E.A.; Mirkin, B.V.; Palij, N.A.

    1993-01-01

    Amorphous solidification of iron and molybdenum is investigated in thin films and on surface laser irradiated on air at 10 12 and 10 8 /Ks cooling rates correspondingly. Amorphous solidification occurs during ion plasma spraying in thin films of 50 nm at saturation of carbon and oxygen atoms in the ratio of C:0=2.3, but amorphous state is absent at room temperature. Metastable fcc phase, among bcc, is formed by crystallization

  10. Solid State Characterization of Commercial Crystalline and Amorphous Atorvastatin Calcium Samples

    OpenAIRE

    Shete, Ganesh; Puri, Vibha; Kumar, Lokesh; Bansal, Arvind K.

    2010-01-01

    Atorvastatin calcium (ATC), an anti-lipid BCS class II drug, is marketed in crystalline and amorphous solid forms. The objective of this study was to perform solid state characterization of commercial crystalline and amorphous ATC drug samples available in the Indian market. Six samples each of crystalline and amorphous ATC were characterized using X-ray powder diffractometry (XRPD), differential scanning calorimetry (DSC), thermogravimetric analysis, Karl Fisher titrimetry, microscopy (hot s...

  11. Preparation and characterization of form-stable paraffin/polycaprolactone composites as phase change materials for thermal energy storage

    Directory of Open Access Journals (Sweden)

    Aludin M.S.

    2017-01-01

    Full Text Available Paraffin is Phase Change Materials (PCM that possesses desirable properties such as high thermal energy storage and thermal stability to make it suitable for thermal energy storage applications. However, paraffin has been reported to leak out during the melting process. In this study, composites were prepared by dissolving paraffin and polycaprolactone (PCL at varied mass percent compositions in chloroform and then purified through precipitation techniques. The leakage test was conducted by placing the composite samples on a set of four-layer filter papers and left in a furnace at 90°C for 1 hour. By incorporating PCL into paraffin phase, the leakage mass percentage was drastically reduced. The PCL polymer matrix in the composites may have trapped the paraffin molecules during melting process thus prevent it from leaking.

  12. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    Science.gov (United States)

    Lin, Chuanlong; Yong, Xue; Tse, John S.; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-01

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ˜1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  13. Crystallization characteristics of amorphous alloys of FeZr

    International Nuclear Information System (INIS)

    Rozhan, M. Idrus; Grundy, P.J.

    1993-01-01

    The crystallization characteristics of sputter-deposited amorphous alloys of Fe 100-x Zr x prepared at zirconium concentrations between 9 and 89 at.% was investigated. The transformation of the alloys from the amorphous to the crystalline state has been examined by thermal analysis, electrical resistance and X-ray diffraction. The crystallization temperatures were determined by differential scanning calorimetry (DSC) and electrical resistance as a function of temperature. The final phases were determined by X-ray diffraction. The activation energies were calculated from the Kissinger plots and the heats of crystallization were calculated and correlations between the thermal analysis and the resistance results are presented

  14. Amorphous graphene: a realization of Zachariasen’s glass

    International Nuclear Information System (INIS)

    Kumar, Avishek; Thorpe, M F; Wilson, Mark

    2012-01-01

    Amorphous graphene is a realization of a two-dimensional Zachariasen glass as first proposed 80 years ago. Planar continuous random networks of this archetypal two-dimensional network are generated by two complementary simulation methods. In the first, a Monte Carlo bond switching algorithm is employed to systematically amorphize a crystalline graphene sheet. In the second, molecular dynamics simulations are utilized to quench from the high temperature liquid state. The two approaches lead to similar results as detailed here, through the pair distribution function and the associated diffraction pattern. Details of the structure, including ring statistics and angular distortions, are shown to be sensitive to preparation conditions, and await experimental confirmation.

  15. Amorphous surface layers in Ti-implanted Fe

    International Nuclear Information System (INIS)

    Knapp, J.A.; Follstaedt, D.M.; Picraux, S.T.

    1979-01-01

    Implanting Ti into high-purity Fe results in an amorphous surface layer which is composed of not only Fe and Ti, but also C. Implantations were carried out at room temperature over the energy range 90 to 190 keV and fluence range 1 to 2 x 10 16 at/cm 2 . The Ti-implanted Fe system has been characterized using transmission electron microscopy (TEM), ion backscattering and channeling analysis, and (d,p) nuclear reaction analysis. The amorphous layer was observed to form at the surface and grow inward with increasing Ti fluence. For an implant of 1 x 10 17 Ti/cm 2 at 180 keV the layer thickness was 150 A, while the measured range of the implanted Ti was approx. 550 A. This difference is due to the incorporation of C into the amorphous alloy by C being deposited on the surface during implantation and subsequently diffusing into the solid. Our results indicate that C is an essential constituent of the amorphous phase for Ti concentrations less than or equal to 10 at. %. For the 1 x 10 17 Ti/cm 2 implant, the concentration of C in the amorphous phase was approx. 25 at. %, while that of Ti was only approx. 3 at. %. A higher fluence implant of 2 x 10 17 Ti/cm 2 produced an amorphous layer with a lower C concentration of approx. 10 at. % and a Ti concentration of approx. 20 at. %

  16. Nickel-induced crystallization of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J A; Arce, R D; Buitrago, R H [INTEC (CONICET-UNL), Gueemes 3450, S3000GLN Santa Fe (Argentina); Budini, N; Rinaldi, P, E-mail: jschmidt@intec.unl.edu.a [FIQ - UNL, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2009-05-01

    The nickel-induced crystallization of hydrogenated amorphous silicon (a-Si:H) is used to obtain large grained polycrystalline silicon thin films on glass substrates. a-Si:H is deposited by plasma enhanced chemical vapour deposition at 200 deg. C, preparing intrinsic and slightly p-doped samples. Each sample was divided in several pieces, over which increasing Ni concentrations were sputtered. Two crystallization methods are compared, conventional furnace annealing (CFA) and rapid thermal annealing (RTA). The crystallization was followed by optical microscopy and scanning electron microscopy observations, X-ray diffraction, and reflectance measurements in the UV region. The large grain sizes obtained - larger than 100{mu}m for the samples crystallized by CFA - are very encouraging for the preparation of low-cost thin film polycrystalline silicon solar cells.

  17. Anomalous magnetoresistance in amorphous metals

    International Nuclear Information System (INIS)

    Kuz'menko, V.M.; Vladychkin, A.N.; Mel'nikov, V.I.; Sudovtsev, A.I.

    1984-01-01

    The magnetoresistance of amorphous Bi, Ca, V and Yb films is investigated in fields up to 4 T at low temperatures. For all metals the magnetoresistance is positive, sharply decreases with growth of temperature and depends anomalously on the magnetic field strength. For amorphous superconductors the results agree satisfactorily with the theory of anomalous magnetoresistance in which allowance is made for scattering of electrons by the superconducting fluctuations

  18. Preparation and Wear Resistance of Aluminum Composites Reinforced with In Situ Formed TiO/Al2O3

    Science.gov (United States)

    Qin, Q. D.; Huang, B. W.; Li, W.; Zeng, Z. Y.

    2016-05-01

    An in situ TiO/Al2O3-reinforced Al composite is successfully prepared using a powder metallurgy route by the reaction of Ti2CO and Al powder. The Ti2CO powder is produced by carrying out a carbothermic reduction of titanium dioxide at 1000 °C. XRD results show that the final product is composed of Al, TiO, Al2O3, and Al3Ti. Morphology examination of the composite reveals the presence of bigger blocks of TiO and fine particles of Al2O3 and the volume fraction of reinforcement is found to range between 18 and 55%. As the volume fraction of the reinforced materials approaches 50%, the particles start to agglomerate. Dry sliding wear tests conducted using a conventional pin-on-disk testing machine show that the wear resistance of the composite is higher than that of the pure aluminum ingot. The wear rate of the composite increases almost linearly with the increase in the wear distance. The sliding wear test shows that as the volume fraction of the reinforced phase increases, the coefficient of friction decreases. The wear mechanism is also discussed.

  19. Deformation behavior of an electrodeposited nano-Ni/amorphous Fe78Si9B13 laminated composite sheet

    Directory of Open Access Journals (Sweden)

    Zhang Kaifeng

    2015-01-01

    Full Text Available A nano-Ni/amorphous Fe78Si9B13 composite sheet was prepared in the form of three-ply (Ni-Fe78Si9B13-Ni laminated structure by an electrodeposition method. The average grain size of Ni layers is about 50 nm. The interface of laminated composite was investigated with SEM equipped with energy dispersive scanning (EDS and line analysis technique. The laminated composite has a good interfacial bonding between amorphous layer and nano-Ni layers due to the mutual diffusion of atoms in Fe78Si9B13 and Ni layers during the process of electrodeposition. A maximum elongation of 115.5% was obtained when the volume fraction of nano-Ni layers (VNi was 0.77, which is greatly higher than that of monolithic amorphous Fe78Si9B13 ribbon (36.3% tested under the same conditions. Bulging tests were carried out to evaluate plastic forming properties of the Fe78Si9B13/Ni laminated composite. Under the condition of 450 °C, 4.0 MPa and 30 min, a good bulging part with the relative bulging height (RBH of 0.4 was obtained.

  20. Fe-based bulk amorphous alloys with iron contents as high as 82 at%

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jin-Feng; Liu, Xue; Zhao, Shao-Fan; Ding, Hong-Yu [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Yao, Ke-Fu, E-mail: kfyao@tsinghua.edu.cn [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2015-07-15

    Fe-based bulk amorphous alloys (BAAs) with high Fe contents are advantageous due to their high saturation magnetization and low cost. However, preparing Fe-based BAAs with Fe contents higher than 80 at% is difficult due to their poor glass forming abilities (GFA). In this study, an Fe{sub 81}P{sub 8.5}C{sub 5.5}B{sub 2}Si{sub 3} BAA with a diameter of 1 mm and a saturation magnetization of 1.56 T was successfully prepared using the fluxing and copper mold casting methods. In addition, by introducing a small amount of elemental Mo to the alloy, an Fe{sub 82}Mo{sub 1}P{sub 6.5}C{sub 5.5}B{sub 2}Si{sub 3} BAA rod with a diameter of 1 mm, a high saturation magnetization of 1.59 T, a high yield stress of 3265 MPa, and a clear plasticity of 1.3% was prepared in the same way. The cost effectiveness and good magnetic properties of these newly-developed Fe-based BAAs with Fe contents as high as 82 at% would be advantageous and promising for industrial applications. - Highlights: • Novel Fe-based BAA with no other metallic element except 81 at% Fe was prepared. • Fe-based bulk amorphous alloy (BAA) with the highest Fe content (82%) was prepared. • Very high saturation magnetization of 1.59 T has been achieved. • A new thought for designing Fe-based BAA with high Fe content was provided.

  1. Crystallization induced of amorphous silicon by nickel

    International Nuclear Information System (INIS)

    Schmidt, J.A; Rinaldi, P; Budini, N; Arce, R; Buitrago, R.H

    2008-01-01

    Polycrystalline silicon (pc-Si) deposited on glass substrates is a very promising material for the production of different electronic devices, like thin film transistors, active matrices or solar cells. The crystallization of the amorphous silicon to obtain pc-Si can be achieved with different processes, among which nickel-induced crystallization is because it requires low concentrations of the metal and low annealing temperatures. Nucleation and growth of crystalline silicon are measured by the formation of silicide NiSi 2 , which has a lattice constant very similar to that of Si, and acts as a seed upon which crystalline grains can develop. The size of the pc-Si final grain depends on many factors, such as the initial concentration of Ni, the annealing time and temperature, and the presence of other atoms in the Si structure. This work presents a study on the influence of these parameters on the silicon crystallization process induced by Ni. We deposited a series of hydrogenated amorphous silicon samples (a-Si:H) on glass substrates, using the plasma-enhanced chemical vapor deposition method (PE-CVD) with silane gas (SiH 4 ). The deposition temperature was 200 o C, and we prepared intrinsic samples (i), lightly doped with boron (p), heavily doped with boron (p + ) and heavily doped with phosphorous (n + ). Each sample was divided into eight portions, depositing different concentrations of Ni into each one using the cathodic sputtering method. The concentration of Ni was determined by atomic adsorption spectroscopy, and included from 1.5 1 0 15 to 1.5 1 0 16 at/cm 2 . Later the samples were submitted to different thermal treatments in a circulating nitrogen atmosphere. In order to avoid violent dehydrogenation of the a-Si:H that damages the samples, the annealing was carried out gradually. In a first stage the samples were heated at a velocity of 0.5 o C /min up to 400 o C, holding them for 24 hrs at this temperature in order to reach hydrogen effusion. Heating

  2. Preparation of anode-electrolyte structures using graphite, sodium bicarbonate or citric acid as pore forming agents for application in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Paz Fiuza, Raigenis da; Silva, Marcos Aurelio da; Guedes, Bruna C.; Pontes, Luiz A.; Boaventura, Jaime Soares [UFBA, Salvador, Bahia (Brazil). Energy and Materials Science Group

    2010-07-01

    Cermets based on Ni supported on YSZ or GDC were prepared for use as anode in direct reform SOFCs. NaHCO3 (Na-Ni-YSZ and Na-Ni-GDC) or citric acid (Ac-Ni-YSZ and Ac-Ni-GDC) were used as pore forming agents (PFAs). The SOFC anode was also prepared using graphite (G-Ni-YSZ and G-Ni-GDC) as PFA for the purposes of comparison. The testing unitary SOFC, planar type, was made by pressing the anode-electrolyte assembly, followed by sintering at 1500 C. After this, LSM (lanthanum and strontium manganite) paint was used for the cathode deposition. The powdered cermets were evaluated in ethanol steam reforming at 650 C. The ethanol conversion was 84% and 32% for cermets Na-Ni-YSZ and G-Ni-YSZ, respectively and the selectivity to H{sub 2} was 32 and 20% for the two cermets, respectively. The Na-Ni-YSZ cermet was ten times more resistant to carbon deposition than the G-Ni-YSZ cermet. SEM micrographs of the anode-electrolyte assembly showed that the use of NaHCO{sub 3} as PFA created a well formed interface between layers with homogeneously distributed pores. In contrast, graphite as PFA formed a loose interface between anode and electrolyte. The performance of the unitary SOFC was evaluated using ethanol, hydrogen or methane as fuel. The cell operated well using any of these fuels; however, they exhibited different electrochemical behavior. (orig.)

  3. Klucel™ EF and ELF polymers for immediate-release oral dosage forms prepared by melt extrusion technology.

    Science.gov (United States)

    Mohammed, Noorullah Naqvi; Majumdar, Soumyajit; Singh, Abhilasha; Deng, Weibin; Murthy, Narasimha S; Pinto, Elanor; Tewari, Divya; Durig, Thomas; Repka, Michael A

    2012-12-01

    The objective of this research work was to evaluate Klucel™ hydroxypropylcellulose (HPC) EF and ELF polymers, for solubility enhancement as well as to address some of the disadvantages associated with solid dispersions. Ketoprofen (KPR), a Biopharmaceutics Classification System class II drug with poor solubility, was utilized as a model compound. Preliminary thermal studies were performed to confirm formation of a solid solution/dispersion of KPR in HPC matrix and also to establish processing conditions for hot-melt extrusion. Extrudates pelletized and filled into capsules exhibited a carrier-dependent release with ELF polymer exhibiting a faster release. Tablets compressed from milled extrudates exhibited rapid release owing to the increased surface area of the milled extrudate. Addition of mannitol (MNT) further enhanced the release by forming micro-pores and increasing the porosity of the extrudates. An optimized tablet formulation constituting KPR, MNT, and ELF in a 1:1:1 ratio exhibited 90% release in 15 min similar to a commercial capsule formulation. HPC polymers are non-ionic hydrophilic polymers that undergo polymer-chain-length-dependent solubilization and can be used to enhance solubility or dissolution rate of poorly soluble drugs. Dissolution/release rate could be tailored for rapid-release applications by selecting a suitable HPC polymer and altering the final dosage form. The release obtained from pellets was carrier-dependent and not drug-dependent, and hence, such a system can be effectively utilized to address solubility or precipitation issues with poorly soluble drugs in the gastrointestinal environment.

  4. Elucidation of Compression-Induced Surface Crystallization in Amorphous Tablets Using Sum Frequency Generation (SFG) Microscopy.

    Science.gov (United States)

    Mah, Pei T; Novakovic, Dunja; Saarinen, Jukka; Van Landeghem, Stijn; Peltonen, Leena; Laaksonen, Timo; Isomäki, Antti; Strachan, Clare J

    2017-05-01

    To investigate the effect of compression on the crystallization behavior in amorphous tablets using sum frequency generation (SFG) microscopy imaging and more established analytical methods. Tablets containing neat amorphous griseofulvin with/without excipients (silica, hydroxypropyl methylcellulose acetate succinate (HPMCAS), microcrystalline cellulose (MCC) and polyethylene glycol (PEG)) were prepared. They were analyzed upon preparation and storage using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM) and SFG microscopy. Compression-induced crystallization occurred predominantly on the surface of the neat amorphous griseofulvin tablets, with minimal crystallinity being detected in the core of the tablets. The presence of various types of excipients was not able to mitigate the compression-induced surface crystallization of the amorphous griseofulvin tablets. However, the excipients affected the crystallization rate of amorphous griseofulvin in the core of the tablet upon compression and storage. SFG microscopy can be used in combination with ATR-FTIR spectroscopy and SEM to understand the crystallization behaviour of amorphous tablets upon compression and storage. When selecting excipients for amorphous formulations, it is important to consider the effect of the excipients on the physical stability of the amorphous formulations.

  5. Preparation and properties of 1-tetradecanol/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol gelatinous form-stable phase change materials

    International Nuclear Information System (INIS)

    Tian, Tuo; Song, Jian; Niu, Libo; Feng, Rongxiu

    2013-01-01

    Graphical abstract: The 1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol can self-assemble to form three-dimensional network and immobilized the 1-tetradecanol. As a result, the gel-to-sol transition temperature of the composite PCM increased and the 1-tetradecanol leakage decreased. Highlights: ► First used of 1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol in alcohol-based PCMs. ► A new method of doping with exfoliated graphite is presented. ► A possible mechanism for decreasing leakage has been proposed based on SEM results. ► The prepared composite PCMs showed a high-energy storage density. ► The addition of exfoliated graphite enhanced the thermal conductivity of the PCMs. - Abstract: A 1-tetradecanol (TD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol (DMDBS) composite was prepared as a novel form-stable phase change material (PCM), and the properties of the composites such as the gel-to-sol transition temperature, the latent heat, the microstructure and the thermal storage performance were characterized. The composite was prepared by impregnating DMDBS into TD and the maximum feasible weight percentage of TD was determined to be 94.2 wt%. The gel-to-sol transition temperature of the composite PCM was 158.3–180.0 °C, which is well above the melting point of 1-tetradecanol. Differential scanning calorimeter (DSC) was used to determine the melting and freezing enthalpies of 1-tetradecanol in the composite PCM and the values are 218.5 and 215.3 J g −1 , respectively. Scanning electron microscopy (SEM) results showed that 1-tetradecanol dispersed in the three-dimensional network formed by DMDBS. The relationship between the amount of DMDBS additive and the leakage was also discussed. The thermal conductivity of the composite PCM was improved by doping with exfoliated graphite

  6. Short, intermediate and long range order in amorphous ices

    Science.gov (United States)

    Martelli, Fausto; Torquato, Salvatore; Giovanbattista, Nicolas; Car, Roberto

    Water exhibits polyamorphism, i.e., it exists in more than one amorphous state. The most common forms of glassy water are the low-density amorphous (LDA) and the high-density amorphous (HDA) ices. LDA, the most abundant form of ice in the Universe, transforms into HDA upon isothermal compression. We model the transformation of LDA into HDA under isothermal compression with classical molecular dynamics simulations. We analyze the molecular structures with a recently introduced scalar order metric to measure short and intermediate range order. In addition, we rank the structures by their degree of hyperuniformity, i.e.,the extent to which long range density fluctuations are suppressed. F.M. and R.C. acknowledge support from the Department of Energy (DOE) under Grant No. DE-SC0008626.

  7. Amorphous areas in the cytoplasm of Dendrobium tepal cells

    Science.gov (United States)

    van Doorn, Wouter G.; Kirasak, Kanjana; Ketsa, Saichol

    2013-01-01

    In Dendrobium flowers some tepal mesophyll cells showed cytoplasmic areas devoid of large organelles. Such amorphous areas comprised up to about 40% of the cross-section of a cell. The areas were not bound by a membrane. The origin of these areas is not known. We show data suggesting that they can be formed from vesicle-like organelles. The data imply that these organelles and other material become degraded inside the cytoplasm. This can be regarded as a form of autophagy. The amorphous areas became surrounded by small vacuoles, vesicles or double membranes. These seemed to merge and thereby sequester the areas. Degradation of the amorphous areas therefore seemed to involve macroautophagy. PMID:23823702

  8. Preparation and properties of lauric acid/silicon dioxide composites as form-stable phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Fang Guiyin; Li Hui; Liu Xu

    2010-01-01

    Form-stable lauric acid (LA)/silicon dioxide (SiO 2 ) composite phase change materials were prepared using sol-gel methods. The LA was used as the phase change material for thermal energy storage, with the SiO 2 acting as the supporting material. The structural analysis of these form-stable LA/SiO 2 composite phase change materials was carried out using Fourier transformation infrared spectroscope (FT-IR). The microstructure of the form-stable composite phase change materials was observed by a scanning electronic microscope (SEM). The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analysis apparatus (TGA), respectively. The SEM results showed that the LA was well dispersed in the porous network of SiO 2 . The DSC results indicated that the melting latent heat of the form-stable composite phase change material is 117.21 kJ kg -1 when the mass percentage of the LA in the SiO 2 is 64.8%. The results of the TGA showed that these materials have good thermal stability. The form-stable composite phase change materials can be used for thermal energy storage in waste heat recovery and solar heating systems.

  9. Extractive spectrophotometric determination of five selected drugs by ion-pair complex formation with bromothymol blue in pure form and pharmaceutical preparations

    Directory of Open Access Journals (Sweden)

    Sneha G. Nair

    2015-12-01

    Full Text Available Simple, precise, selective, and expeditious spectrophotometric methods have been developed for the determination of itopride (ITO, midodrine (MID, diclofenac (DIC, mesalamine (MES, and sumatriptan (SUM in their pure form as well as in pharmaceutical preparations. The method was based on ion-pair complex formation between the drugs and anionic dye, bromothymol blue in an acidic medium (pH 2.0–4.0. The yellow colored complexes formed were quantitatively extracted into chloroform and measured at 411, 410, 413, 412, and 414 nm wavelength for ITO, MID, DIC, MES, and SUM, respectively. Beer’s law was obeyed in the concentration range of 3.0–30 µg/mL for ITO, 1.0–20 µg/mL for MID, 1.5–40 µg/mL for DIC, 1.2–12 µg/mL for MES, and 0.5–15 µg/mL for SUM. The stoichiometry of the complexes formed between the drugs and the dye was 1:1 as determined by Job’s method of continuous variation. The association constant (KIP of the ion-pair complexes formed was evaluated using Benesi–Hildebrand equation. Limit of detection, limit of quantification, and Sandell’s sensitivity of the methods were also estimated. The proposed methods were successfully employed for the determination of these drugs in their pharmaceutical dosage forms.

  10. FY 1998 annual report on the results of new industry creation type industrial science and technology research and development on the research and development of supermetals. Development of techniques for controlling structures of nano-amorphous materials; 1998 nendo super metal no gijutsu kaihatsu. Nano amorphous kozo seigyo zairyo no gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Described herein are the FY 1998 results of the development of techniques for controlling structures of nano-amorphous materials. For the development of techniques for finely dispersing fine particles, mechanical alloying (MA) and mechanical milling (MM) are investigated, to structure nano-crystals in common steel, for which hot isostatic pressing is evaluated as a consolidation process for the MA- and MM-prepared powders in the FY 1998. For researches on high-speed particle deposition and super plastic forming, an Al-Ni, Al-Fe and Al-Ti alloy are selected as the nano-structure materials to be prepared by evaporation, and various compositions of these systems are evaporated, in order to investigate their microstructures, mechanical properties and thermal stabilities. For researches on techniques for controlling phases with the aid of high-density energy, the R and D efforts are directed to exploration of composition of high resistance to corrosion by acid at dew point, preparation of non-equilibrium (e.g., amorphous) powders, and development of solidification and forming techniques, with the target of creation of an amorphous alloy showing corrosion resistance at least twice as high as that of the commercial corrosion-resistance material and formable into a bulk shape having a thickness of at least 1 mm. For researches on controlled cooling techniques, the basic data are collected. (NEDO)

  11. Propolis-Sahara honeys preparation exhibits antibacterial and anti-biofilm activity against bacterial biofims formed on urinary catheters

    Directory of Open Access Journals (Sweden)

    Saad Aissat

    2016-11-01

    Full Text Available Objective: To evaluate the antibacterial effect of Sahara honeys (SHs against bacterial biofilms formed on urinary catheters in combination with propolis-Sahara honeys (P-SHs. Methods: Three clinical isolates were subjected to biofilm detection methods. The antibacterial and anti-biofilm activity for SHs and P-SHs were determined using agar well diffusion and the percentage of biofilm inhibition (PBI methods. Results: The PBI for Gram-positive bacteria [Staphylococcus aureus (S. aureus] was in the range of 0%–20%, while PBI for Gram-negative bacteria [Pseudomonas aeruginosa and Escherichia coli (E. coli] were in range of 17%–57% and 16%–65%, respectively. The highest PBI (65% was produced by SH2 only on E. coli. In agar well diffusion assay, zones of inhibition ranged from 11–20 mm (S. aureus, 9–19 mm (Pseudomonas aeruginosa and 11–19 mm (E. coli. The highest inhibition (20 mm was produced by SH1 only on S. aureus. In addition, the treatment of SHs and P-SHs catheters with a polymicrobial biofilms reduced biofilm formation after 48 h exposure period. Conclussions: SHs and P-SHs applied as a natural agent can be used as a prophylactic agent to prevent the formation of in vitro biofilm.

  12. INFLUENCE OF THE COOLING RATE AND THE BLEND RATIO ON THE PHYSICAL STABILTIY OF CO-AMORPHOUS NAPROXEN/INDOMETHACIN

    DEFF Research Database (Denmark)

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian

    2016-01-01

    Co-amorphisation represents a promising approach to increase the physical stability and dissolution rate of amorphous active pharmaceutical ingredients (APIs) as an alternative to polymer glass solutions. For amorphous and co-amorphous systems, it is reported that the preparation method and the b......Co-amorphisation represents a promising approach to increase the physical stability and dissolution rate of amorphous active pharmaceutical ingredients (APIs) as an alternative to polymer glass solutions. For amorphous and co-amorphous systems, it is reported that the preparation method...... and the blend ratio play major roles with regard to the resulting physical stability. Therefore, in the present study, co-amorphous naproxen-indomethacin (NAP/IND) was prepared by melt-quenching at three different cooling rates and at ten different NAP/IND blend ratios. The samples were analyzed using XRPD...... and FTIR, both directly after preparation and during storage to investigate their physical stabilities. All cooling methods led to fully amorphous samples, but with significantly different physical stabilities. Samples prepared by fast cooling had a higher degree of crystallinity after 300 d of storage...

  13. A novel once daily microparticulate dosage form comprising lansoprazole to prevent nocturnal acid breakthrough in the case of gastro-esophageal reflux disease: preparation, pharmacokinetic and pharmacodynamic evaluation.

    Science.gov (United States)

    Alai, Milind; Lin, Wen Jen

    2013-01-01

    The objective of this study was to formulate and evaluate the lansoprazole (LPZ)-loaded microparticles to prevent nocturnal acid breakthrough in the case of gastro-esophageal reflux disease (GERD). The microparticulate delivery system was prepared by solvent evaporation method using Eudragit RS100 as a matrix polymer followed by enteric coated with Eudragit S100 and hydroxypropyl methylcellulose phthalate HP55 using spray drying method. The enteric coated microparticles were stable in gastric pH condition. In vivo pharmacokinetic and pharmacodynamic studies in male Wistar rats demonstrated that enteric coated microparticles sustained release of LPZ and promoted ulcer healing activity. In other words, the microparticulate dosage form provided effective drug concentration for a longer period as compared to conventional extended release dosage form, and showed sufficient anti-acid secretion activity to treat acid related disorders including the enrichment of nocturnal acid breakthrough event based on a once daily administration.

  14. Generalized melting criterion for beam-induced amorphization

    International Nuclear Information System (INIS)

    Lam, N. Q.; Okamoto, Paul R.

    1993-09-01

    Recent studies have shown that the mean-square static atomic displacements provide a generic measure of the enthalpy stored in the lattice in the form of chemical and topological disorder, and that the effect of the displacements on the softening of shear elastic constants is identical to that of heating. This finding lends support to a generalized form of the Lindemann phenomenological melting criterion and leads to a natural interpretion of crystalline-to-amorphous transformations as defect-induced melting of metastable crystals driven beyond a critical state of disorder where the melting temperature falls below the glass-transition temperature. Application of the generalized Lindemann criterion to both the crystalline and amorphous phases indicates that the enthalpies of the two phases become identical when their shear moduli become equal. This thermo-elastic rule provides a basis for predicting the relative susceptibility of compounds to amorphization in terms of their elastic properties as measured by Debye temperatures. The present approach can explain many of the basic findings on beam-induced amorphization of intermetallic compounds as well as amorphous phase formation associated with ion implantation, ion-beam mixing and other solid-state processes

  15. Solubility and bioavailability of stabilized amorphous calcium carbonate.

    Science.gov (United States)

    Meiron, Oren E; Bar-David, Elad; Aflalo, Eliahu D; Shechter, Assaf; Stepensky, David; Berman, Amir; Sagi, Amir

    2011-02-01

    Since its role in the prevention of osteoporosis in humans was proven some 30 years ago, calcium bioavailability has been the subject of numerous scientific studies. Recent technology allowing the production of a stable amorphous calcium carbonate (ACC) now enables a bioavailability analysis of this unique form of calcium. This study thus compares the solubility and fractional absorption of ACC, ACC with chitosan (ACC-C), and crystalline calcium carbonate (CCC). Solubility was evaluated by dissolving these preparations in dilute phosphoric acid. The results demonstrated that both ACC and ACC-C are more soluble than CCC. Fractional absorption was evaluated by intrinsically labeling calcium carbonate preparations with (45)Ca, orally administrated to rats using gelatin capsules. Fractional absorption was determined by evaluating the percentage of the administrated radioactive dose per milliliter that was measured in the serum, calcium absorption in the femur, and whole-body retention over a 34-hour period. Calcium serum analysis revealed that calcium absorption from ACC and ACC-C preparations was up to 40% higher than from CCC, whereas retention of ACC and ACC-C was up to 26.5% higher than CCC. Absorbed calcium in the femurs of ACC-administrated rats was 30% higher than in CCC-treated animals, whereas 15% more calcium was absorbed following ACC-C treatment than following CCC treatment. This study demonstrates the enhanced solubility and bioavailability of ACC over CCC. The use of stable ACC as a highly bioavailable dietary source for calcium is proposed based on the findings of this study. Copyright © 2011 American Society for Bone and Mineral Research.

  16. Preparation and soft magnetic properties of spark plasma sintered compacts based on Fe–Si–B glassy powder

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: bogdan.neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Marinca, T.F.; Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Isnard, O. [Institut Néel, CNRS/University Joseph Fourier, BP 166, 38042 Grenoble Cédex 9 (France); Popa, F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Păşcuţă, P. [Physics and Chemistry Department Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania)

    2014-07-05

    Highlights: • Amorphous powder of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) was prepared by wet mechanical alloying. • Spark plasma sintering was used for compaction of amorphous Fe{sub 75}Si{sub 20}B{sub 5} powder. • Increasing SPS time/temperature leads to improvement of AC/DC compacts properties. - Abstract: Amorphous powder of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) was prepared by wet mechanical alloying route using benzene as surfactant. The amorphous phase is obtained after 60 h of milling. Structural, morphological, and thermal characteristics were investigated. The as-milled powder consists in micrometric particles with a mean diameter of 10.4 μm which are formed by the agglomeration of smaller particles. The amorphous powder is thermally stable up to the temperature of 490 °C. Spark plasma sintered compacts were prepared from the amorphous powders at sintering temperatures of 800, 850 and 900 °C. The phases formation and their evolution was investigated by X-ray diffraction technique showing that Fe{sub 3}Si and Fe{sub 2}B are the main phases formed during the spark plasma sintering process. Fe{sub 75}Si{sub 20}B{sub 5} (at.%) samples in the form of a ring were investigated in DC and AC magnetization regime. It was found that the boride phase formation (during sintering) and the low density of the compacts affect the magnetic properties of the compacts. In addition, a superficial contamination of the compacts with carbon (a layer of 2–3 μm) was evidenced, contributing thus to their soft magnetic deterioration. Increasing of the saturation induction, maximum relative permeability and initial relative permeability was observed by increasing both sintering temperature and time. It was generally observed that the compacts with high density have higher total core losses at high frequency.

  17. ANTIMONY INDUCED CRYSTALLIZATION OF AMORPHOUS SILICON

    Institute of Scientific and Technical Information of China (English)

    Y. Wang; H.Z. Li; C.N. Yu; G.M. Wu; I. Gordon; P. Schattschneider; O. Van Der Biest

    2007-01-01

    Antimony induced crystallization of PVD (physics vapor deposition) amorphous silicon can be observed on sapphire substrates. Very large crystalline regions up to several tens of micrometers can be formed. The Si diffraction patterns of the area of crystallization can be observed with TEM (transmission electron microscopy). Only a few and much smaller crystals of the order of 1μm were formed when the antimony layer was deposited by MBE(molecular beam epitaxy) compared with a layer formed by thermal evaporation. The use of high vacuum is essential in order to observe any Sb induced crystallization at all. In addition it is necessary to take measures to limit the evaporation of the antimony.

  18. Preparation of mesoporous titanium dioxide anode by a film- and pore-forming agent for the dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Wenjing; Xiao, Yaoming, E-mail: ymxiao@sxu.edu.cn; Han, Gaoyi, E-mail: han_gaoyis@sxu.edu.cn; Zhou, Haihan; Chang, Yunzhen; Zhang, Ying

    2016-04-15

    Highlights: • PVP is used as a film- and pore-forming agent to prepare the mesoporous TiO{sub 2} anode. • The TiO{sub 2} anode supplies high surface area for the dye adsorption. • The DSSC efficiency is strongly dependent on the pore properties of the TiO{sub 2} anode. • The DSSC efficiency with the TiO{sub 2} anode prepared by 20 wt% PVP reaches 8.39%. - Abstract: A novel mean of generating mesoporous titanium dioxide (TiO{sub 2}) anodes by employing polyvinylpyrrolidone (PVP) as the film- and pore-forming agent are proposed for dye-sensitized solar cells (DSSCs). The influences on the morphology and photovoltaic performances of the TiO{sub 2} anodes are investigated by adjusting the PVP content in synthesizing the mesoporous TiO{sub 2} anodes. The photovoltaic conversion efficiency of the DSSC is found to be strongly dependent on the pore properties of the TiO{sub 2} anode. After the sintering process, the removal of the PVP leaves porously interconnected channel structures inside the TiO{sub 2} anode, supplying enhanced specific surface area for the dye adsorption as well as the efficient electron transmission. As a result, the TiO{sub 2} anode prepared by 20 wt% PVP presents the highest performances, based on which the DSSC achieves the highest conversion efficiency of 8.39%, approximately increased by 56.53% than that of the DSSC fabricated without PVP (5.36%).

  19. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group

    International Nuclear Information System (INIS)

    Collins, E.; Duguid, J.; Henry, R.; Karell, E.J.; Laidler, J.J.; McDeavitt, S.M.; Thompson, M.; Toth, L.M.; Williamson, M.; Willit, J.L.

    1999-01-01

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD and D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years

  20. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, E.; Duguid, J.; Henry, R.; Karell, E.; Laidler, J.; McDeavitt, S.; Thompson, M.; Toth, M.; Williamson, M.; Willit, J.

    1999-08-12

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD&D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years.

  1. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis

    Directory of Open Access Journals (Sweden)

    Yiran li

    2013-10-01

    Full Text Available This paper is focused on preparation and performance analysis of a series of form-stable phase change materials (FSPCMs, based on eutectic mixtures as phase change materials (PCMs for thermal energy storage and high-density polyethylene (HDPE-ethylene-vinyl acetate (EVA polymer as supporting materials. The PCMs were eutectic mixtures of tetradecanol (TD–capric acid (CA, TD–lauric acid (LA, and TD–myristic acid (MA, which were rarely explored before. Thermal properties of eutectic mixtures and FSPCMs were measured by differential scanning calorimeter (DSC. The onset melting/solidification temperatures of form-stable PCMs were 19.13 °C/13.32 °C (FS TD–CA PCM, 24.53 °C/24.92 °C (FS TD–LA PCM, and 33.15 °C/30.72 °C (FS TD–MA PCM, respectively, and latent heats were almost greater than 90 J/g. The surface morphologies and chemical stability of form-stable PCM were surveyed by scanning electron microscopy (SEM and Fourier-transform infrared (FT-IR spectroscopy, respectively. The thermal cycling test revealed that the thermal reliability of these three form-stable PCMs was good. Thermal storage/release experiment indicated melting/solidification time was shortened by introducing 10 wt % aluminum powder (AP. It is concluded that these FSPCMs can act as potential building thermal storage materials in terms of their satisfactory thermal properties.

  2. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis.

    Science.gov (United States)

    Huang, Jingyu; Lu, Shilei; Kong, Xiangfei; Liu, Shangbao; Li, Yiran

    2013-10-22

    This paper is focused on preparation and performance analysis of a series of form-stable phase change materials (FSPCMs), based on eutectic mixtures as phase change materials (PCMs) for thermal energy storage and high-density polyethylene (HDPE)-ethylene-vinyl acetate (EVA) polymer as supporting materials. The PCMs were eutectic mixtures of tetradecanol (TD)-capric acid (CA), TD-lauric acid (LA), and TD-myristic acid (MA), which were rarely explored before. Thermal properties of eutectic mixtures and FSPCMs were measured by differential scanning calorimeter (DSC). The onset melting/solidification temperatures of form-stable PCMs were 19.13 °C/13.32 °C (FS TD-CA PCM), 24.53 °C/24.92 °C (FS TD-LA PCM), and 33.15 °C/30.72 °C (FS TD-MA PCM), respectively, and latent heats were almost greater than 90 J/g. The surface morphologies and chemical stability of form-stable PCM were surveyed by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy, respectively. The thermal cycling test revealed that the thermal reliability of these three form-stable PCMs was good. Thermal storage/release experiment indicated melting/solidification time was shortened by introducing 10 wt % aluminum powder (AP). It is concluded that these FSPCMs can act as potential building thermal storage materials in terms of their satisfactory thermal properties.

  3. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces.

    Science.gov (United States)

    Wijesinghe, W P S L; Mantilaka, M M M G P G; Chathuranga Senarathna, K G; Herath, H M T U; Premachandra, T N; Ranasinghe, C S K; Rajapakse, R P V J; Rajapakse, R M G; Edirisinghe, Mohan; Mahalingam, S; Bandara, I M C C D; Singh, Sanjleena

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    International Nuclear Information System (INIS)

    Narayan, Jagdish; Bhaumik, Anagh

    2015-01-01

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals

  5. Fundamentals of amorphous solids structure and properties

    CERN Document Server

    Stachurski, Zbigniew H

    2014-01-01

    Long awaited, this textbook fills the gap for convincing concepts to describe amorphous solids. Adopting a unique approach, the author develops a framework that lays the foundations for a theory of amorphousness. He unravels the scientific mysteries surrounding the topic, replacing rather vague notions of amorphous materials as disordered crystalline solids with the well-founded concept of ideal amorphous solids. A classification of amorphous materials into inorganic glasses, organic glasses, glassy metallic alloys, and thin films sets the scene for the development of the model of ideal amorph

  6. Fabrication and thermal characterization of amorphous and nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti compound

    Energy Technology Data Exchange (ETDEWEB)

    Tavoosi, Majid, E-mail: ma.tavoosi@gmail.com

    2017-01-15

    In this study, the fabrication and structural characterization of amorphous/nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti phase has been performed. In this regards, milling and annealing processes were applied on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} (at. %) powder mixture for different periods of time. The prepared samples were characterized using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM) and differential scanning calorimetery (DSC). According to the results, supersaturated solid solution, nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti (with average crystallite size of about 7 nm) and amorphous phases indicated three different microstructures which can be formed in Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} system during milling process. The formed supersaturated solid solution and amorphous phases were unstable and transformed to Al{sub 9}FeNi/Al{sub 3}Ti intermetallic compound during annealing process. It is shown that, Al{sub 9}FeNi phase in Al{sub 9}FeNi/Al{sub 3}Ti intermetallic compound can decompose into Al{sub 3}Ni, Al{sub 13}Fe{sub 4} and liquid phases during a reversible peritectic reaction at 809 °C. - Highlights: • We study the effect of milling process on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} alloy. • We study the effect of annealing on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} supersaturated solid solution phase. • We study the effect of annealing on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} amorphous phase. • We study the thermal behaviour of Al{sub 9}FeNi/Al{sub 3}Ti compound.

  7. Neutron diffraction and thermal studies of amorphous CS2 realised by low-temperature vapour deposition

    International Nuclear Information System (INIS)

    Yamamuro, O.; Matsuo, T.; Onoda-Yamamuro, N.; Takeda, K.; Munemura, H.; Tanaka, S.; Misawa, M.

    2003-01-01

    We have succeeded in preparing amorphous carbon disulphide (CS 2 ) by depositing its vapour on a cold substrate at 10 K. Complete formation of the amorphous state has been confirmed by neutron diffraction and differential thermal analysis (DTA). The amorphous sample crystallized at ca. 70 K, which is lower than the hypothetical glass transition temperature (92 K) estimated from the DTA data of the (CS 2 ) x (S 2 Cl 2 ) 1-x binary mixture. CS 2 , a symmetric linear tri-atomic molecule, is the simplest of the amorphized molecular substances whose structural and thermal information has been reported so far. Comparison of the static structure factors S(Q) has shown that the orientational correlation of CS 2 molecules may be much stronger in the amorphous state than in the liquid state at higher temperature. (authors)

  8. Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage: preparation and thermal properties

    International Nuclear Information System (INIS)

    Sari, Ahmet

    2004-01-01

    This paper deals with the preparation of paraffin/high density polyethylene (HDPE) composites as form-stable, solid-liquid phase change material (PCM) for thermal energy storage and with determination of their thermal properties. In such a composite, the paraffin (P) serves as a latent heat storage material and the HDPE acts as a supporting material, which prevents leakage of the melted paraffin because of providing structural strength. Therefore, it is named form-stable composite PCM. In this study, two kinds of paraffins with melting temperatures of 42-44 deg. C (type P1) and 56-58 deg. C (type P2) and latent heats of 192.8 and 212.4 J g -1 were used. The maximum weight percentage for both paraffin types in the PCM composites without any seepage of the paraffin in the melted state were found as high as 77%. It is observed that the paraffin is dispersed into the network of the solid HDPE by investigation of the structure of the composite PCMs using a scanning electronic microscope (SEM). The melting temperatures and latent heats of the form-stable P1/HDPE and P2/HDPE composite PCMs were determined as 37.8 and 55.7 deg. C, and 147.6 and 162.2 J g -1 , respectively, by the technique of differential scanning calorimetry (DSC). Furthermore, to improve the thermal conductivity of the form-stable P/HDPE composite PCMs, expanded and exfoliated graphite (EG) by heat treatment was added to the samples in the ratio of 3 wt.%. Thereby, the thermal conductivity was increased about 14% for the form-stable P1/HDPE and about 24% for the P2/HDPE composite PCMs. Based on the results, it is concluded that the prepared form-stable P/HDPE blends as composite type PCM have great potential for thermal energy storage applications in terms of their satisfactory thermal properties and improved thermal conductivity. Furthermore, these composite PCMs added with EG can be considered cost effective latent heat storage materials since they do not require encapsulation and extra cost to enhance

  9. Amorphous carbon enhancement of hydrogen penetration into UO2

    International Nuclear Information System (INIS)

    Zalkind, S.; Shamir, N.; Gouder, T.; Akhvlediani, R.; Hoffman, A.

    2014-01-01

    In a previous study, it was demonstrated that an amorphous carbon layer, deposited on a native oxide covered uranium surface, significantly enhances the interaction of hydrogen with the uranium metal. Fig. 1[2], demonstrates the preferential hydrogen attack (forming uranium hydride) on the carbon covered area of the naturally oxidized uranium metal

  10. Structure of hydrogenated amorphous silicon from ab initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buda, F. (Department of Physics, The Ohio State University, 174 West 18th Avenue, Columbus, Ohio (USA)); Chiarotti, G.L. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Laboratorio Tecnologie Avanzate Superfici e Catalisi del Consorzio Interuniversitario Nazionale di Fisica della Materia, Padriciano 99, I-34012 Trieste (Italy)); Car, R. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Institut Romard de Recherche Numerique en Physique des Materiaux, CH-1015 Lausanne, Switzerland Department of Condensed Matter Physics, University of Geneva, CH-1211 Geneva (Switzerland)); Parrinello, M. (IBM Research Division, Zurich Research Laboratory, CH-8803 Rueschlikon (Switzerland))

    1991-09-15

    We have generated a model of hydrogenated amorphous silicon by first-principles molecular dynamics. Our results are in good agreement with the available experimental data and provide new insight into the microscopic structure of this material. The calculation lends support to models in which monohydride complexes are prevalent, and indicates a strong tendency of hydrogen to form small clusters.

  11. Preparation, characterization and enhanced adsorption performance for Cr(VI) of mesoporous NiFe2O4 by twice pore-forming method

    International Nuclear Information System (INIS)

    Jia, Zhigang; Peng, Kuankuan; Xu, Lixin

    2012-01-01

    Magnetic mesoporous NiFe 2 O 4 with higher surface area has been prepared by the twice pore-forming method, including the calcination of the oxalate precursor and leaching of ZnO pore-forming agent. The X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS) and BET surface area measurement are used to evaluate the pore structural parameters and surface chemistry of the adsorbent respectively. The pore-forming mechanism is proposed based on the experimental results. The adsorption behavior of mesoporous NiFe 2 O 4 for Cr(VI) is investigated in detail. The results show that kinetic data follow a pseudo-second-order model and equilibrium data are well fitted by the Langmuir model. The maximum adsorption capacity is 43.68 mg g −1 at pH 2. The removal for Cr(VI) is mainly physisorption process derived from coulombic interaction. The as-prepared TPF-NiFe 2 O 4 is promising as sorbent for Cr(VI) removal because of its higher adsorption capacity, separation convenience and highly efficient reusability. -- Highlights: ► The increase of BET area was realized by leaching of ZnO from mesoporous ZnO/NiFe 2 O 4 . ► TPF-NiFe 2 O 4 demenstrates higher adsorption capacity for Cr(VI) in aqueous solution. ► TPF-NiFe 2 O 4 with magnetic sensitivity is promosing for Cr(VI) removal. ► The used TPF-NiFe 2 O 4 adsorbent can be recycled.

  12. Health hazards due to the inhalation of amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Merget, R.; Bruening, T. [Research Institute for Occupational Medicine (BGFA), Bochum (Germany); Bauer, T. [Bergmannsheil, University Hospital, Department of Internal Medicine, Division of Pneumonology, Allergology and Sleep Medicine, Bochum (Germany); Kuepper, H.U.; Breitstadt, R. [Degussa-Huels Corp., Wesseling (Germany); Philippou, S. [Department of Pathology, Augusta Krankenanstalten, Bochum (Germany); Bauer, H.D. [Research Institute for Hazardous Substances (IGF), Bochum (Germany)

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or

  13. Unlocking the Electrocatalytic Activity of Chemically Inert Amorphous Carbon-Nitrogen for Oxygen Reduction: Discerning and Refactoring Chaotic Bonds

    DEFF Research Database (Denmark)

    Zhang, Caihong; Zhang, Wei; Wang, Dong

    2017-01-01

    Mild annealing enables inactive nitrogen (N)-doped amorphous carbon (a-C) films abundant with chaotic bonds prepared by magnetron sputtering to become effective for the oxygen reduction reaction (ORR) by virtue of generating pyridinic N. The rhythmic variation of ORR activity elaborates well...... on the subtle evolution of the amorphous C−N bonds conferred by spectroscopic analysis....

  14. Preparation and analysis of amorphous carbon films deposited from (C{sub 6}H{sub 12})/Ar/He chemistry for application as the dry etch hard mask in the semiconductor manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungmoo [Department of Materials Science and Engineering, Korea University, Seoul, 136-701 (Korea, Republic of); TC Technology Team, Samsung Electronics Co. Ltd., Gyeounggi-Do, 446-711 (Korea, Republic of); Won, Jaihyung; Choi, Jongsik [TC Technology Team, Samsung Electronics Co. Ltd., Gyeounggi-Do, 446-711 (Korea, Republic of); Jang, Samseok [Department of Materials Science and Engineering, Korea University, Seoul, 136-701 (Korea, Republic of); Jee, Yeonhong; Lee, Hyeondeok [TC Technology Team, Samsung Electronics Co. Ltd., Gyeounggi-Do, 446-711 (Korea, Republic of); Byun, Dongjin, E-mail: dbyun@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul, 136-701 (Korea, Republic of)

    2011-08-01

    Amorphous carbon layers (ACL) were deposited on Si (100) wafers by plasma enhanced chemical vapor deposition (PECVD) by using 1-hexene (C{sub 6}H{sub 12}) as a carbon source for dry etch hard mask of semiconductor devices manufacturing process. The deposition characteristics and film properties were investigated by means of ellipsometry, Raman spectroscopy, X-ray photo electron spectroscopy (XPS) and stress analysis. Hardness, Young's modulus, and surface roughness of ACL deposited at 550 deg. C were investigated by using nano-indentation and AFM. The deposition rate was decreased from 5050 A/min to 2160 A/min, and dry etch rate was decreased from 2090 A/min to 1770 A/min, and extinction coefficient was increased from 0.1 to 0.5. Raman analysis revealed a higher shift of the G-peak and a lower shift of the D-peak and the increase of I(D)/I(G) ratio as the deposition temperature was increased from 350 deg. C to 550 deg. C. XPS results of ACL deposited at 550 deg. C revealed a carbon 1s binding energy of 284.4 eV. The compressive film stress was decreased from 2.95 GPa to 1.28 GPa with increasing deposition temperature. The hardness and Young's modulus of ACL deposited at 550 deg. C were 5.8 GPa and 48.7 GPa respectively. The surface roughness RMS of ACL deposited at 550 deg. C was 2.24 A, and that after cleaning in diluted HF solution (H{sub 2}O:HF = 200:1), SC1 (NH{sub 4}OH:H{sub 2}O{sub 2}:H{sub 2}O = 1:4:20) solution, and sulfuric acid solution (H{sub 2}SO{sub 4}:H{sub 2}O{sub 2} = 6:1) was 2.28 A, 2.30 A and 7.34 A, respectively. The removal amount of ACL deposited at 550 deg. C in diluted HF solution, SC1 solution and sulfuric acid solution was 6 A, 36 A and 110 A, respectively. These results demonstrated the viability of ACL deposited by PECVD from C{sub 6}H{sub 12} at 550 deg. C for application as the dry etch hard mask in fabrication of semiconductor devices.

  15. Amorphous titanium-oxide supercapacitors

    OpenAIRE

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-01-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7?mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large r...

  16. The Role of Configurational Entropy in Amorphous Systems

    Directory of Open Access Journals (Sweden)

    Kirsten A. Graeser

    2010-05-01

    Full Text Available Configurational entropy is an important parameter in amorphous systems. It is involved in the thermodynamic considerations, plays an important role in the molecular mobility calculations through its appearance in the Adam-Gibbs equation and provides information on the solubility increase of an amorphous form compared to its crystalline counterpart. This paper presents a calorimetric method which enables the scientist to quickly determine the values for the configurational entropy at any temperature and obtain the maximum of information from these measurements.

  17. Amorphous molecular junctions produced by ion irradiation on carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Zhenxia; Yu Liping; Zhang Wei; Ding Yinfeng; Li Yulan; Han Jiaguang; Zhu Zhiyuan; Xu Hongjie; He Guowei; Chen Yi; Hu Gang

    2004-01-01

    Experiments and molecular dynamics have demonstrated that electron irradiation could create molecular junctions between crossed single-wall carbon nanotubes. Recently molecular dynamics computation predicted that ion irradiation could also join single-walled carbon nanotubes. Employing carbon ion irradiation on multi-walled carbon nanotubes, we find that these nanotubes evolve into amorphous carbon nanowires, more importantly, during the process of which various molecular junctions of amorphous nanowires are formed by welding from crossed carbon nanotubes. It demonstrates that ion-beam irradiation could be an effective way not only for the welding of nanotubes but also for the formation of nanowire junctions

  18. Biorelevant characterisation of amorphous furosemide salt exhibits conversion to a furosemide hydrate during dissolution

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Gordon, Sarah; Pajander, Jari Pekka

    2013-01-01

    , as well as of crystalline furosemide salt and acid showed a higher rate of dissolution of the salt forms in comparison with the two acid forms. The measured dissolution rates of the four furosemide forms from the UV imaging system and from eluted effluent samples were consistent with dissolution rates...... obtained from micro dissolution experiments. Partial least squares-discriminant analysis of Raman spectra of the amorphous acid form during flow through dissolution showed that the amorphous acid exhibited a fast conversion to the crystalline acid. Flow through dissolution coupled with Raman spectroscopy...... showed a conversion of the amorphous furosemide salt to a more stable polymorph. It was found by thermogravimetric analysis and hot stage microscopy that the salt forms of furosemide converted to a trihydrate during dissolution. It can be concluded that during biorelevant dissolution, the amorphous...

  19. Thickness dependence of magnetic properties and giant magneto-impedance effect in amorphous Co{sub 73}Si{sub 12}B{sub 15} thin films prepared by Dual-Ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); BISSE/BUAA-SPNEE joint Laboratory Magnetism and Sperconducting technology on Spacecraft, Beihang University, Beijing 100191 (China); Wang, San-sheng, E-mail: wangssh@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); BISSE/BUAA-SPNEE joint Laboratory Magnetism and Sperconducting technology on Spacecraft, Beihang University, Beijing 100191 (China); Hu, Teng [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); He, Tong-fu [School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China); Chen, Zi-yu [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Yi, Zhong; Meng, Li-Fei [Science and Technology on Reliability and Environmental Engineering Laboratory, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094 (China); BISSE/BUAA-SPNEE joint Laboratory Magnetism and Sperconducting technology on Spacecraft, Beihang University, Beijing 100191 (China)

    2017-03-15

    Dual-Ion Beam Assisted Deposition is a suitable method for the preparation of giant magneto-impedance (GMI) materials. In this paper, Co{sub 73}Si{sub 12}B{sub 15} thin films with different thicknesses were prepared by Dual-Ion Beam Assisted Deposition, and the influences of film thickness on magnetic properties and GMI effect were investigated. It was found that the asymmetric magnetic hysteresis loop in the prepared Co{sub 73}Si{sub 12}B{sub 15} thin films occurs at ambient temperature, and the shift behavior of hysteresis loop associated with film thickness. With the film thickness increasing, the values of shift field and coercive field and other parameters such as remanence and shift ratio appeared complex variation. At a certain frequency, the large GMI effect is only observed in some films, which have good magnetic properties including low coercivity, low remanence ratio and high shift ratio. The results indicated that the thickness dependence of magnetic properties nonlinearly determined the GMI effect in Co{sub 73}Si{sub 12}B{sub 15} thin films. - Highlights: • The relationship between film thickness and ΔZ/Z, ΔR/R, ΔX/X ratio of CoSiB film exhibits a complex behavior as the film thickness increases from 1.33 to 7.34 µm. The maximum value of GMI ratio is observed when the film thickness was 1.56, 2.48, 3.81 or 7.34 µm. • With the increase of film thickness, the peak frequency shifts to lower frequency, but does not decrease following the t-power law. • The above thickness phenomenon is due to the different magnetic properties of thin films. • The Dual-Ion Beam Assisted Deposition is introduced to prepare the GMI materials.

  20. Design and fabrication of a mechanical alloying system for preparing intermetallic, nanocrystalline, amorphous and quasicrystalline compounds; Diseno y fabricacion de un sistema de aleado mecanico para preparar compuestos intermetalicos, nanocristalinos, amorfos y cuasicristalinos

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio M, J.; Iturbe G, J.L.; Castaneda J, G. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In this work a grinding system was designed and fabricated which allowed to improve the operation conditions in time, frequency, temperature and selection of the grinding media and that allow the contamination decrease of the compounds. By means of this method of mechanical alloying new metallic compounds can be produced, starting from elemental powders, with fine and controlled microstructures. These compounds prepared by this method are going to be used as materials for the hydrogen storage. (Author)

  1. Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin/high density polyethylene composites

    International Nuclear Information System (INIS)

    Cai Yibing; Wei Qufu; Huang Fenglin; Gao Weidong

    2008-01-01

    The halogen-free flame retardant form-stable phase change materials (PCM) based on paraffin/high density polyethylene (HDPE) composites were prepared by using twin-screw extruder technique. The structures and properties of the form-stable PCM composites based on intumescent flame retardant system with expandable graphite (EG) and different synergistic additives, such as ammonium polyphosphate (APP) and zinc borate (ZB) were characterized by scanning electronic microscope (SEM), thermogravimetric analyses (TGA), dynamic Fourier-transform infrared (FTIR) spectra, differential scanning calorimeter (DSC) and Cone calorimeter test. The TGA results showed that the halogen-free flame retardant form-stable PCM composites produced a larger amount of charred residue at 700 deg. C, although the onset of weight loss of the halogen-free flame retardant form-stable PCM composites occurred at a lower temperature due to the thermal decomposition of flame retardant. The DSC measurements indicated that the additives of flame retardant had little effect on the thermal energy storage property, and the temperatures of phase change peaks and the latent heat of the paraffin showed better occurrence during the freezing process. The dynamic FTIR monitoring results revealed that the breakdowns of main chains (HDPE and paraffin) and formations of various residues increased with increasing thermo-oxidation temperature. It was also found from the Cone calorimeter tests that the peak of heat release rate (PHRR) decreased significantly. Both the decrease of the PHRR and the structure of charred residue after combustion indicated that there was a synergistic effect between the EG and APP, contributing to the improved flammability of the halogen-free flame retardant form-stable PCM composites

  2. Formation, Physicochemical Characterization, and Thermodynamic Stability of the Amorphous State of Drugs and Excipients.

    Science.gov (United States)

    Martino, Piera Di; Magnoni, Federico; Peregrina, Dolores Vargas; Gigliobianco, Maria Rosa; Censi, Roberta; Malaj, Ledjan

    2016-01-01

    Drugs and excipients used for pharmaceutical applications generally exist in the solid (crystalline or amorphous) state, more rarely as liquid materials. In some cases, according to the physicochemical nature of the molecule, or as a consequence of specific technological processes, a compound may exist exclusively in the amorphous state. In other cases, as a consequence of specific treatments (freezing and spray drying, melting and co-melting, grinding and compression), the crystalline form may convert into a completely or partially amorphous form. An amorphous material shows physical and thermodynamic properties different from the corresponding crystalline form, with profound repercussions on its technological performance and biopharmaceutical properties. Several physicochemical techniques such as X-ray powder diffraction, thermal methods of analysis, spectroscopic techniques, gravimetric techniques, and inverse gas chromatography can be applied to characterize the amorphous form of a compound (drug or excipient), and to evaluate its thermodynamic stability. This review offers a survey of the technologies used to convert a crystalline solid into an amorphous form, and describes the most important techniques for characterizing the amorphous state of compounds of pharmaceutical interest.

  3. PREPARATION AND CHARACTERIZATION OF CO-PROCESSED EXCIPIENT-PREGELATINIZED CASSAVA STARCH PROPIONATE AS A MATRIX IN THE GASTRORETENTIVE DOSAGE FORM

    Directory of Open Access Journals (Sweden)

    Junaedi

    2011-11-01

    Full Text Available The gastroretentive dosage form is designed to prolong the gastric residence time of the drug delivery system whichalso results in the development of an appropriate excipient. The purpose of this study is to develop and characterize coprocessedexcipient made from carrageenan (kappa-iota = 1:1 and pregelatinized cassava starch propionate (PCSP inratios of 1:1, 1:2, and 1:3. PCSP was prepared with propionic anhydride in an aqueous medium. The product was mixedwith carrageenan (kappa-iota = 1:1, as well as characterized physicochemical and functional properties. The coprocessedexcipient was then used as a mucoadhesive granule and floating tablet. The USP Basket was selected toperform the dissolution test of the granules in HCl buffer (pH 1.2 and distilled water for 8 hours each. Mucoadhesiveproperties were evaluated using bioadhesive through a vitro test and wash-off test. As for the floating tablet, the USPPaddle was selected to perform the dissolution test of the tablets in 0.1 N HCl for 10 hours. The floating lag time andfloating time were tested in 0.1 N HCl for 24 hours. The result of these studies indicated that co-processed excipientcarrageenan-PCSP can retard dosage form in gastric and drug controlled release, thus making it a suitable material forthe gastroretentive dosage form.

  4. Infrared Spectra and Optical Constants of Elusive Amorphous Methane

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.

    2015-01-01

    New and accurate laboratory results are reported for amorphous methane (CH4) ice near 10 K for the study of the interstellar medium (ISM) and the outer Solar System. Near- and mid-infrared (IR) data, including spectra, band strengths, absorption coefficients, and optical constants, are presented for the first time for this seldom-studied amorphous solid. The apparent IR band strength near 1300 cm(exp -1) (7.69 micrometer) for amorphous CH4 is found to be about 33% higher than the value long used by IR astronomers to convert spectral observations of interstellar CH4 into CH4 abundances. Although CH4 is most likely to be found in an amorphous phase in the ISM, a comparison of results from various laboratory groups shows that the earlier CH4 band strength at 1300 cm(exp -1) (7.69 micrometer) was derived from IR spectra of ices that were either partially or entirely crystalline CH4 Applications of the new amorphous-CH4 results are discussed, and all optical constants are made available in electronic form.

  5. Amorphous and Nanocomposite Materials for Energy-Efficient Electric Motors

    Science.gov (United States)

    Silveyra, Josefina M.; Xu, Patricia; Keylin, Vladimir; DeGeorge, Vincent; Leary, Alex; McHenry, Michael E.

    2016-01-01

    We explore amorphous soft-magnetic alloys as candidates for electric motor applications. The Co-rich system combines the benefits of low hysteretic and eddy-current losses while exhibiting negligible magnetostriction and robust mechanical properties. The amorphous precursors can be devitrified to form nanocomposite magnets. The superior characteristics of these materials offer the advantages of ease of handling in the manufacturing processing and low iron losses during motor operation. Co-rich amorphous ribbons were laser-cut to build a stator for a small demonstrator permanent-magnet machine. The motor was tested up to ~30,000 rpm. Finite-element analyses proved that the iron losses of the Co-rich amorphous stator were ~80% smaller than for a Si steel stator in the same motor, at 18,000 rpm (equivalent to an electric frequency of 2.1 kHz). These low-loss soft magnets have great potential for application in highly efficient high-speed electric machines, leading to size reduction as well as reduction or replacement of rare earths in permanent-magnet motors. More studies evaluating further processing techniques for amorphous and nanocomposite materials are needed.

  6. Large-Scale Structure and Hyperuniformity of Amorphous Ices

    Science.gov (United States)

    Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto

    2017-09-01

    We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.

  7. The amorphous phase transition in irradiated NiTi alloy

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Kissinger, H.E.; Pelton, A.R.

    1985-01-01

    Observed supralinear dose dependence for the amorphous transformation during irradiation of NiTi is compatible with a cascade overlap model for heavy ion (2.5 MeV Ni + , 6 MeV Ta +++ ) irradiations. A model based on total defect build-up, however, is necessary to explain the amorphous transition induced by electron irradiation and can also be applied to heavy ion irradiation. The cascade effects in this latter model are manifested by non-uniform defect distribution in the lattice. The defect build-up model requires a high activation energy for interstitial migration which is not incompatible with recent findings. The form of the temperature dependence can also be rationalized using a defect build-up model (amorphous phase transition, heavy-ion irradiation, electron irradiation, NiTi, defect build-up, cascade overlap). (author)

  8. Demonstration of thin film pair distribution function analysis (tfPDF for the study of local structure in amorphous and crystalline thin films

    Directory of Open Access Journals (Sweden)

    Kirsten M. Ø. Jensen

    2015-09-01

    Full Text Available By means of normal-incidence, high-flux and high-energy X-rays, total scattering data for pair distribution function (PDF analysis have been obtained from thin films (tf, suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. The `tfPDF' method is illustrated through studies of as-deposited (i.e. amorphous and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows the prediction of whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.

  9. Production of amorphous alloys by ion implantation

    International Nuclear Information System (INIS)

    Grant, W.A.; Chadderton, L.T.; Johnson, E.

    1978-01-01

    Recent data are reported on the use of ion implantation to produce amorphous metallic alloys. In particular data on the dose dependence of the crystalline to amorphous transition induced by P + implantation of nickel is presented. (Auth.)

  10. Amorphous nanoparticles — Experiments and computer simulations

    International Nuclear Information System (INIS)

    Hoang, Vo Van; Ganguli, Dibyendu

    2012-01-01

    The data obtained by both experiments and computer simulations concerning the amorphous nanoparticles for decades including methods of synthesis, characterization, structural properties, atomic mechanism of a glass formation in nanoparticles, crystallization of the amorphous nanoparticles, physico-chemical properties (i.e. catalytic, optical, thermodynamic, magnetic, bioactivity and other properties) and various applications in science and technology have been reviewed. Amorphous nanoparticles coated with different surfactants are also reviewed as an extension in this direction. Much attention is paid to the pressure-induced polyamorphism of the amorphous nanoparticles or amorphization of the nanocrystalline counterparts. We also introduce here nanocomposites and nanofluids containing amorphous nanoparticles. Overall, amorphous nanoparticles exhibit a disordered structure different from that of corresponding bulks or from that of the nanocrystalline counterparts. Therefore, amorphous nanoparticles can have unique physico-chemical properties differed from those of the crystalline counterparts leading to their potential applications in science and technology.

  11. Optical properties of amorphous silicon: Some problem areas

    International Nuclear Information System (INIS)

    Ravindra, N.M.; Chelle, F. de; Ance, C.; Ferraton, J.P.; Berger, J.M.; Coulibaly, S.P.

    1983-08-01

    In this presentation we essentially attempt to throw light on some problem areas concerning the various optical properties of amorphous silicon. The problems seem to emerge from the classical methods employed to determine the optical properties like the optical gap, urbach tail parameter and other related characteristics. Additional problems have emerged in recent years by virtue of many attempts to generalize the property-behaviour relationships for amorphous silicon without attributing any importance to the method of preparation of the films. It should be noted here that although many authors believe disorder to be the controlling parameter, we are of the opinion that at least for films containing fairly large concentrations of hydrogen, the hydrogen concentration has an equally important role to play. The present study has been carried out for films prepared by glow-discharge and chemical vapour deposition. (author)

  12. Improvement of the physicochemical properties of Co-amorphous naproxen-indomethacin by naproxen-sodium

    DEFF Research Database (Denmark)

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian

    2017-01-01

    Improvement of the physicochemical properties of amorphous active pharmaceutical ingredients (APIs) applying the concept of co-amorphisation is a promising alternative to the use of polymer glass solutions. In co-amorphous systems, the physical stability and the dissolution rate of the involved c...... or full exchange of naproxen by its sodium salt was performed, which may present a general optimization method to improve co-amorphous systems....... In the present study, it was thus tested if the physicochemical properties of co-amorphous naproxen-indomethacin could be optimized by incorporation of the naproxen sodium into the system. Three different co-amorphous systems in nine different molar ratios were prepared by quench-cooling: naproxen...... components may be improved in comparison to the respective single amorphous phases. However, for the co-amorphous naproxen-indomethacin model system it has been reported that recrystallization could not be prevented for more than 112days regardless of the applied preparation method and blend ratio...

  13. Post-heat treatment of arc-sprayed coating prepared by the wires combination of Mg-cathode and Al-anode to form protective intermetallic layers

    International Nuclear Information System (INIS)

    Xu Rongzheng; Song Gang

    2011-01-01

    A Mg-Al intermetallic compounds coating was prepared on the surface of Mg-steel lap joint by arc-sprayed Al-Mg composite coating (Mg-cathode and Al-anode) and its post-heat treatment (PHT). The effect of PHT temperature on the phase transition, microstructure and mechanical properties of the coating was investigated by X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, optical microscope and microhardness test. The result shows that the intermetallic compounds layer that is mainly composed of Al 3 Mg 2 and Mg 17 Al 12 is formed by the self-diffusion reaction of Mg and Al splats in the coating after PHT for 4 h at 430 deg. C.

  14. Role of the coach-manager and organizational forms to manage the preparation of athletes in the new socio-economic conditions

    Directory of Open Access Journals (Sweden)

    Vladimir Paevskyy

    2014-10-01

    Full Text Available Purpose: to reveal the role of the coach, to discharge the role of manager, as well as the importance of modern organizational forms to manage the preparation of athletes in the new socio-economic conditions. Material and Methods: the methods used in the study of the theoretical level, including the analysis and synthesis of literature and materials posted on the Internet. Results: it was shown that the characteristics of the problem of improving the training of trainers is the account of the variety and diversity of managerial situations. Core members of the athletic training are the coach and the athlete. Coach main participant in the project, in fact, the project manager. Object management training is the behavior of the athlete and his condition. Conclusion: during the studies confirmed the problem of the need to improve the organization and management of the development of sport in today's Ukraine.

  15. Preparation and thermal properties of mineral-supported polyethylene glycol as form-stable composite phase change materials (CPCMs) used in asphalt pavements.

    Science.gov (United States)

    Jin, Jiao; Lin, Feipeng; Liu, Ruohua; Xiao, Ting; Zheng, Jianlong; Qian, Guoping; Liu, Hongfu; Wen, Pihua

    2017-12-05

    Three kinds of mineral-supported polyethylene glycol (PEG) as form-stable composite phase change materials (CPCMs) were prepared to choose the most suitable CPCMs in asphalt pavements for the problems of asphalt pavements rutting diseases and urban heat islands. The microstructure and chemical structure of CPCMs were characterized by SEM, FT-IR and XRD. Thermal properties of the CPCMs were determined by TG and DSC. The maximum PEG absorption of diatomite (DI), expanded perlite (EP) and expanded vermiculite (EVM) could reach 72%, 67% and 73.6%, respectively. The melting temperatures and latent heat of CPCMs are in the range of 52-55 °C and 100-115 J/g, respectively. The results show that PEG/EP has the best thermal and chemical stability after 100 times of heating-cooling process. Moreover, crystallization fraction results show that PEG/EP has slightly higher latent heats than that of PEG/DI and PEG/EVM. Temperature-adjusting asphalt mixture was prepared by substituting the fine aggregates with PEG/EP CPCMs. The upper surface maximum temperature difference of temperature-adjusting asphalt mixture reaches about 7.0 °C in laboratory, and the surface peak temperature reduces up to 4.3 °C in the field experiment during a typical summer day, indicating a great potential application for regulating pavement temperature field and alleviating the urban heat islands.

  16. Amorphous titanium-oxide supercapacitors

    Science.gov (United States)

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-10-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.

  17. Radiation tolerance of amorphous semiconductors

    International Nuclear Information System (INIS)

    Nicolaides, R.V.; DeFeo, S.; Doremus, L.W.

    1976-01-01

    In an attempt to determine the threshold radiation damage in amorphous semiconductors, radiation tests were performed on amorphous semiconductor thin film materials and on threshold and memory devices. The influence of flash x-rays and neutron radiation upon the switching voltages, on- and off-state characteristics, dielectric response, optical transmission, absorption band edge and photoconductivity were measured prior to, during and following irradiation. These extensive tests showed the high radiation tolerance of amorphous semiconductor materials. Electrical and optical properties, other than photoconductivity, have a neutron radiation tolerance threshold above 10 17 nvt in the steady state and 10 14 nvt in short (50 μsec to 16 msec) pulses. Photoconductivity increases by 1 1 / 2 orders of magnitude at the level of 10 14 nvt (short pulses of 50 μsec). Super flash x-rays up to 5000 rads (Si), 20 nsec, do not initiate switching in off-state samples which are voltage biased up to 90 percent of the threshold voltage. Both memory and threshold amorphous devices are capable of switching on and off during nuclear radiation transients at least as high as 2 x 10 14 nvt in 50 μsec pulses

  18. Amorphous metal matrix composite ribbons

    International Nuclear Information System (INIS)

    Barczy, P.; Szigeti, F.

    1998-01-01

    Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)

  19. Fracture Phenomena in Amorphous Selenium

    DEFF Research Database (Denmark)

    Lindegaard-Andersen, Asger; Dahle, Birgit

    1966-01-01

    Fracture surfaces of amorphous selenium broken in flexure at room temperature have been studied. The fracture velocity was found to vary in different regions of the fracture surface. Peculiar features were observed in a transition zone between fast and slower fracture. In this zone cleavage steps...

  20. Model for amorphous aggregation processes

    Science.gov (United States)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  1. High pressure synthesis of amorphous TiO2 nanotubes

    Directory of Open Access Journals (Sweden)

    Quanjun Li

    2015-09-01

    Full Text Available Amorphous TiO2 nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO2 nanotubes. The structural phase transitions of anatase TiO2 nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD method. The starting anatase structure is stable up to ∼20GPa, and transforms into a high-density amorphous (HDA form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO2 nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO2 phase was revealed by high-resolution transmission electron microscopy (HRTEM study. In addition, the bulk modulus (B0 = 158 GPa of the anatase TiO2 nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa. We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO2 nanotubes.

  2. Kinetics and formation mechanism of amorphous Fe52Nb48 alloy powder fabricated by mechanical alloying

    International Nuclear Information System (INIS)

    El-Eskandarany, S.

    1999-01-01

    A single phase amorphous Fe 52 Nb 48 alloy has been synthesized through a solid state interdiffusion of pure polycrystalline Fe and Nb powders at room temperature, using a high-energy ball-milling technique. The mechanisms of metallic glass formation and competing crystallization processes in the mechanically deformed composite powders have been investigated by means of X-ray diffraction, Moessbauer spectroscopy, differential thermal analysis, scanning electron microscopy and transmission electron microscopy. The numerous intimate layered composite particles of the diffusion couples that formed during the first and intermediate stages of milling time (0-56 ks), are intermixed to form amorphous phase(s) upon heating to about 625 K by so-called thermally assisted solid state amorphization, TASSA. The amorphization heat of formation for binary system via the TASSA, ΔH a , was measured directly as a function of the milling time. Comparable with the TASSA, homogeneous amorphous alloys were fabricated directly without heating the composite multilayered particles upon milling these particles for longer milling time (86 ks-144 ks). The amorphization reaction here is attributed to the mechanical driven solid state amorphization. This single amorphous phase transforms into an order phase (μ phase) upon heating at 1088 K (crystallization temperature, T x ) with enthalpy change of crystallization, ΔH x , of -8.3 kJmol -1 . (orig.)

  3. A Molecular-Level View of the Physical Stability of Amorphous Solid Dispersions

    Science.gov (United States)

    Yuan, Xiaoda

    Many pharmaceutical compounds being developed in recent years are poorly soluble in water. This has led to insufficient oral bioavailability of many compounds in vitro. The amorphous formulation is one of the promising techniques to increase the oral bioavailability of these poorly water-soluble compounds. However, an amorphous drug substance is inherently unstable because it is a high energy form. In order to increase the physical stability, the amorphous drug is often formulated with a suitable polymer to form an amorphous solid dispersion. Previous research has suggested that the formation of an intimately mixed drug-polymer mixture contributes to the stabilization of the amorphous drug compound. The goal of this research is to better understand the role of miscibility, molecular interactions and mobility on the physical stability of amorphous solid dispersions. Methods were developed to detect different degrees of miscibility on nanometer scale and to quantify the extent of hydrogen-bonding interactions between the drug and the polymer. Miscibility, hydrogen-bonding interactions and molecular mobility were correlated with physical stability during a six-month period using three model systems. Overall, this research provides molecular-level insights into many factors that govern the physical stability of amorphous solid dispersions which can lead to a more effective design of stable amorphous formulations.

  4. First-principles study of nitrogen doping in cubic and amorphous Ge2Sb2Te5

    Science.gov (United States)

    Caravati, S.; Colleoni, D.; Mazzarello, R.; Kühne, T. D.; Krack, M.; Bernasconi, M.; Parrinello, M.

    2011-07-01

    We investigated the structural, electronic and vibrational properties of amorphous and cubic Ge2Sb2Te5 doped with N at 4.2 at.% by means of large scale ab initio simulations. Nitrogen can be incorporated in molecular form in both the crystalline and amorphous phases at a moderate energy cost. In contrast, insertion of N in the atomic form is very energetically costly in the crystalline phase, though it is still possible in the amorphous phase. These results support the suggestion that N segregates at the grain boundaries during the crystallization of the amorphous phase, resulting in a reduction in size of the crystalline grains and an increased crystallization temperature.

  5. Morphology and mechanical behaviour of concretes reinforced by amorphous cast fibres

    International Nuclear Information System (INIS)

    Redon, Carl

    1997-01-01

    This research thesis addresses the characterization of the morphology and mechanical behaviour of concretes reinforced by amorphous cast fibres. It first gathers some general characteristics and observations related to the amorphous cast fibre: roughness, failure mode, amorphous structure, X-ray analysis, fire resistance. Experimental methods and techniques developed for morphological analysis and mechanical tests are presented (sample preparation, tensile test, and compression sample) and the use of image automatic analysis techniques is then addressed (void morphology and granulometry analysis, inter-void distance measurement, fibre spatial distribution). The next part reports the study of the mechanical behaviour under axial compression [fr

  6. Dynamics and Structural Details of Amorphous Phases of Ice Determined by Incoherent Inelastic Neutron Scattering

    International Nuclear Information System (INIS)

    Klug, D.D.; Tulk, C.A.; Svensson, E.C.; Loong, C.

    1999-01-01

    Incoherent-inelastic neutron scattering data are obtained over the energy range of lattice and internal vibrations of water molecules in phases of ice prepared by pressure-induced amorphization (high-density amorphous ice, hda), by thermal annealing of hda (low-density amorphous ice, lda), and by rapidly cooling water, as well as in ice Ih and Ic . Hydrogen bonding interactions in lda differ significantly from those in the glass obtained by rapid quenching, which has hydrogen-bond interactions characteristic of highly supercooled water. Hydrogen-bond interactions in hda are weaker than in the low-density phases. copyright 1999 The American Physical Society

  7. Preparation and thermal properties of form-stable palmitic acid/active aluminum oxide composites as phase change materials for latent heat storage

    International Nuclear Information System (INIS)

    Fang, Guiyin; Li, Hui; Cao, Lei; Shan, Feng

    2012-01-01

    Form-stable palmitic acid (PA)/active aluminum oxide composites as phase change materials were prepared by adsorbing liquid palmitic acid into active aluminum oxide. In the composites, the palmitic acid was used as latent heat storage materials, and the active aluminum oxide was used as supporting material. Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD) and scanning electronic microscope (SEM) were used to determine the chemical structure, crystalloid phase and microstructure of the composites, respectively. The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetry analyzer (TGA). The FT-IR analyses results indicated that there is no chemical interaction between the palmitic acid and active aluminum oxide. The SEM results showed that the palmitic acid was well adsorbed into porous network of the active aluminum oxide. The DSC results indicated that the composites melt at 60.25 °C with a latent heat of 84.48 kJ kg −1 and solidify at 56.86 °C with a latent heat of 78.79 kJ kg −1 when the mass ratio of the PA to active aluminum oxide is 0.9:1. Compared with that of the PA, the melting and solidifying time of the composites CPCM5 was reduced by 20.6% and 21.4% because of the increased heat transfer rate through EG addition. The TGA results showed that the active aluminum oxide can improve the thermal stability of the composites. -- Highlights: ► Form-stable PA/active aluminum oxide composites as PCMs were prepared. ► Chemical structure, crystalloid phase and microstructure of composites were determined. ► Thermal properties and thermal stability of the composites were investigated. ► Expanded graphite can improve thermal conductivity of the composites.

  8. Structural relaxations in the bulk amorphous alloy Fe{sub 61}Co{sub 10}Ti{sub 3}Y{sub 6}B{sub 20}

    Energy Technology Data Exchange (ETDEWEB)

    Błoch, K., E-mail: 23kasia1@wp.pl; Nabiałek, M.; Gondro, J.

    2017-05-01

    The paper presents studies of annealing effect on the disaccommodation phenomenon in bulk amorphous alloy Fe{sub 61}Co{sub 10}Ti{sub 3}Y{sub 6}B{sub 20}. The investigated sample was prepared by suction-casting method in the form of rod. The annealing process has been performed at temperature well below the crystallisation temperature. The amorphous structure has been confirmed using X-ray diffractometer. The susceptibility and its disaccommodation were determined using completely automated set up. The disaccommodation curve was decomposed into three elementary processes, each of them was described by Gaussian distribution of relaxation times. The obtained results indicate that the disaccommodation phenomenon in studied alloy is related with directional ordering of atom pairs near the free volumes; this is in agreement with H. Kronmüller's theorem.

  9. Amorphous gauge glass theory

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Bennett, D.L.

    1987-08-01

    Assuming that a lattice gauge theory describes a fundamental attribute of Nature, it should be pointed out that such a theory in the form of a gauge glass is a weaker assumption than a regular lattice model in as much as it is not constrained by the imposition of translational invariance; translational invariance is, however, recovered approximately in the long wavelength or continuum limit. (orig./WL)

  10. How desert varnish forms?

    Science.gov (United States)

    Perry, Randall S.; Kolb, Vera M.; Lynne, Bridget Y.; Sephton, Mark A.; Mcloughlin, Nicola; Engel, Michael H.; Olendzenski, Lorraine; Brasier, Martin; Staley, James T., Jr.

    2005-09-01

    Desert varnish is a black, manganese-rich rock coating that is widespread on Earth. The mechanism underlying its formation, however, has remained unresolved. We present here new data and an associated model for how desert varnish forms, which substantively challenges previously accepted models. We tested both inorganic processes (e.g. clays and oxides cementing coatings) and microbial methods of formation. Techniques used in this preliminary study include SEM-EDAX with backscatter, HRTEM of focused ion beam prepared (FIB) wafers and several other methods including XRPD, Raman spectroscopy, XPS and Tof-SIMS. The only hypothesis capable of explaining a high water content, the presence of organic compounds, an amorphous silica phase (opal-A) and lesser quantities of clays than previously reported, is a mechanism involving the mobilization and redistribution of silica. The discovery of silica in desert varnish suggests labile organics are preserved by interaction with condensing silicic acid. Organisms are not needed for desert varnish formation but Bacteria, Archaea, Eukarya, and other organic compounds are passively incorporated and preserved as organominerals. The rock coatings thus provide useful records of past environments on Earth and possibly other planets. Additionally this model also helps to explain the origin of key varnish and rock glaze features, including their hardness, the nature of the "glue" that binds heterogeneous components together, its layered botryoidal morphology, and its slow rate of formation.

  11. Microstructure analysis of cofebsinb metallic glasses with a various geometry prepared by planar flow casting and suction casting methods

    International Nuclear Information System (INIS)

    Hosko, J.; Janotova, J.; Svec, P.; Matko, I.; Janickovic, D.; Svec, P. Sr.

    2012-01-01

    In this paper we have studied the structure of as-cast Co_4_7Fe_2_0_._9B_2_1_._2Si_4_._6Nb_6_._3 ribbon, bilayer and bulk samples in form of rods up to 5 mm diameter. Amorphous structure of the ribbons and bilayer prepared by PFC was confirmed by XRD characterization. XRD analysis of the bulk sample with 5 mm diameter indicated the presence of crystalline phases. However, XRD analysis of the bulk sample with 4 mm diameter indicated no significant crystalline peaks. From TEM analysis it was found that in-situ BMG composite was obtained in bulk sample. The edge of bulk sample with 4 mm diameter was fully amorphous, however, the center of this sample contains crystalline particles of micron sizes dispersed in the amorphous matrix. Our results suggest that the system Co_4_7Fe_2_0_._9B_2_1_._2Si_4_._6Nb_6_._3 has high GFA because we have prepared various amorphous materials with different shape and thickness using the techniques of suction casting, modified PFC and PFC. The critical diameter of bulk samples with chemical composition Co_4_7Fe_2_0_._9B_2_1_._2Si_4_._6Nb_6_._3 for emergence amorphous phase is 4 mm. (authors)

  12. Converting sunlight into red light in fluorosilicate glass for amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Chengguo, E-mail: mingchengguo1978@163.com [Physics Department, School of Sciences, Tianjin University of Science & Technology, Tianjin 300457 (China); Song, Feng [Photonics Center, College of Physical Science, Nankai University, Tianjin 300071 (China); Ren, Xiaobin [Physics Department, School of Sciences, Tianjin University of Science & Technology, Tianjin 300457 (China); Yuan, Fengying; Qin, Yueting [Physics Department, School of Sciences, Tianjin University of Science & Technology, Tianjin 300457 (China); Photonics Center, College of Physical Science, Nankai University, Tianjin 300071 (China); An, Liqun; Cai, Yuanxue [Physics Department, School of Sciences, Tianjin University of Science & Technology, Tianjin 300457 (China)

    2017-03-15

    Fluorosilicate glass was prepared by high-temperature melting method to explore highly efficient luminescence materials for amorphous silicon solar cells. Absorption, excitation and emission spectra of the glass were measured. The optical characters of the glass were discussed in details. The glass can efficiently convert sunlight into red light. Our glass can be applied to amorphous silicon solar cells as a converter of solar spectrum.

  13. Amorphous infinite coordination polymer microparticles: a new class of selective hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, You-Moon; Heo, Jungseok; Mirkin, Chad A [Department of Chemistry, International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL (United States); Armatas, Gerasimos S [Department of Chemistry, Northwestern University, Evanston, IL (United States); Kanatzidis, Mercouri G [Materials Science Division, Argonne National Laboratory, Argonne, IL (United States)

    2008-06-04

    A new class of micrometer-sized amorphous infinite coordination particles is selectively prepared from the coordination chemistry of a metallo-salen building block and Zn{sup 2+} ions. The particles show moderately high H{sub 2} uptake and almost no N{sub 2} adsorption, even though they are amorphous and do not have the well-defined channels typically used to explain such selectivity in metal-organic framework systems. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  14. Thermal Infrared and Visible to Near-Infrared Spectral Analysis of Chert and Amorphous Silica

    Science.gov (United States)

    McDowell, M. L.; Hamilton, V. E.; Cady, S. L.; Knauth, P.

    2009-03-01

    We look in detail at the thermal infrared and visible to near-infrared spectra of various forms of chert and amorphous silica and compare the spectral variations between samples with variations in physical and chemical characteristics.

  15. An IR investigation of solid amorphous ethanol - Spectra, properties, and phase changes

    Science.gov (United States)

    Hudson, Reggie L.

    2017-12-01

    Mid- and far-infrared spectra of condensed ethanol (CH3CH2OH) at 10-160 K are presented, with a special focus on amorphous ethanol, the form of greatest astrochemical interest, and with special attention given to changes at 155-160 K. Infrared spectra of amorphous and crystalline forms are shown. The refractive index at 670 nm of amorphous ethanol at 16 K is reported, along with three IR band strengths and a density. A comparison is made to recent work on the isoelectronic compound ethanethiol (CH3CH2SH), and several astrochemical applications are suggested for future study.

  16. Using Flory-Huggins phase diagrams as a pre-formulation tool for the production of amorphous solid dispersions: a comparison between hot-melt extrusion and spray drying.

    Science.gov (United States)

    Tian, Yiwei; Caron, Vincent; Jones, David S; Healy, Anne-Marie; Andrews, Gavin P

    2014-02-01

    Amorphous drug forms provide a useful method of enhancing the dissolution performance of poorly water-soluble drugs; however, they are inherently unstable. In this article, we have used Flory-Huggins theory to predict drug solubility and miscibility in polymer candidates, and used this information to compare spray drying and melt extrusion as processes to manufacture solid dispersions. Solid dispersions were prepared using two different techniques (hot-melt extrusion and spray drying), and characterised using a combination of thermal (thermogravimetric analysis and differential scanning calorimetry), spectroscopic (Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction methods. Spray drying permitted generation of amorphous solid dispersions across a wider drug concentration than melt extrusion. Melt extrusion provided sufficient energy for more intimate mixing to be achieved between drug and polymer, which may improve physical stability. It was also confirmed that stronger drug-polymer interactions might be generated through melt extrusion. Remixing and dissolution of recrystallised felodipine into the polymeric matrices did occur during the modulated differential scanning calorimetry analysis, but the complementary information provided from FTIR confirms that all freshly prepared spray-dried samples were amorphous with the existence of amorphous drug domains within high drug-loaded samples. Using temperature-composition phase diagrams to probe the relevance of temperature and drug composition in specific polymer candidates facilitates polymer screening for the purpose of formulating solid dispersions. © 2013 Royal Pharmaceutical Society.

  17. Temperature dependence of copper diffusion in different thickness amorphous tungsten/tungsten nitride layer

    Science.gov (United States)

    Asgary, Somayeh; Hantehzadeh, Mohammad Reza; Ghoranneviss, Mahmood

    2017-11-01

    The amorphous W/WN films with various thickness (10, 30 and 40 nm) and excellent thermal stability were successfully prepared on SiO2/Si substrate with evaporation and reactive evaporation method. The W/WN bilayer has technological importance because of its low resistivity, high melting point, and good diffusion barrier properties between Cu and Si. The thermal stability was evaluated by X-ray diffractometer (XRD) and Scanning Electron Microscope (SEM). In annealing process, the amorphous W/WN barrier crystallized and this phenomenon is supposed to be the start of Cu atoms diffusion through W/WN barrier into Si. With occurrence of the high-resistive Cu3Si phase, the W/WN loses its function as a diffusion barrier. The primary mode of Cu diffusion is the diffusion through grain boundaries that form during heat treatments. The amorphous structure with optimum thickness is the key factor to achieve a superior diffusion barrier characteristic. The results show that the failure temperature increased by increasing the W/WN film thickness from 10 to 30 nm but it did not change by increasing the W/WN film thickness from 30 to 40 nm. It is found that the 10 and 40 nm W/WN films are good diffusion barriers at least up to 800°C while the 30 nm W/WN film shows superior properties as a diffusion barrier, but loses its function as a diffusion barrier at about 900°C (that is 100°C higher than for 10 and 40 nm W/WN films).

  18. PREPARATION OF TITANIA SOL-GEL COATINGS CONTAINING SILVER IN VARIOUS FORMS AND MEASURING OF THEIR BACTERICIDAL EFFECTS AGAINST E. COLI

    Directory of Open Access Journals (Sweden)

    Diana Horkavcova

    2015-09-01

    Full Text Available The work describes titania coatings containing various forms of silver applied on a titanium substrate by a dip-coating sol-gel technique. Silver was added into the basic titania sol in form of colloid particles of Ag, crystals of AgNO3, particles of AgI, particles of Ag3PO4 and Ag3PO4 developed in situ (in the sol by reaction of AgNO3 with added calcium phosphate (brushite or monetite. Mechanically and chemically treated titanium substrates were dipped at a constant rate into individual types of sols. Subsequently, they were slowly fired. The fired coatings contained microcracks. All over the surface there were evenly distributed spherical nanoparticles of silver (Ag, AgNO3 or microcrystals of AgI and Ag3PO4. The prepared coatings were tested under static conditions for their bactericidal effects against gram-negative bacteria Escherichia coli (E. coli. The coated substrates were immersed into a suspension of E. coli in physiological solution for 24 and 4 hours. The basic titania coatings with no silver demonstrated no bactericidal properties. Very good bactericidal effect against E. coli in both types of bactericidal test showed the titania coatings with AgNO3, Ag3PO4 crystals and Ag3PO4 developed in situ.

  19. The ir emission features: Emission from PAH (Polycyclic Aromatic Hydrocarbons) molecules and amorphous carbon particles

    Energy Technology Data Exchange (ETDEWEB)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    PAHs can have several forms in the interstellar medium. To assess the importance of each requires the availability of a collection of high quality, complete mid-ir interstellar emission spectra, a collection of laboratory spectra of PAH samples prepared under realistic conditions and a firm understanding of the microscopic emission mechanism. Given what we currently know about PAHs, the spectroscopic data suggests that there are at least two components which contribute to the interstellar emission spectrum: free molecule sized PAHs producing the narrow features and amorphous carbon particles (which are primarily made up of an irregular ''lattice'' of PAHs) contributing to the broad underlying components. An exact treatment of the ir fluorescence from highly vibrationally excited large molecules shows that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. Since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is called for in conjunction with an observational program which focuses on the spatial characteristics of the spectra. In this way the distribution and evolution of carbon from molecule to particle can be traced. 38 refs., 9 figs.

  20. Controlled fluoridation of amorphous carbon films deposited at reactive plasma conditions

    Directory of Open Access Journals (Sweden)

    Yoffe Alexander

    2015-09-01

    Full Text Available A study of the correlations between plasma parameters, gas ratios, and deposited amorphous carbon film properties is presented. The injection of a C4F8/Ar/N2 mixture of gases was successfully used in an inductively coupled plasma system for the preparation of amorphous carbon films with different fluoride doping at room-temperature, using silicon as a substrate. This coating was formed at low-pressure and low-energy using an inductively coupled plasma process. A strong dependence between the ratios of gases during deposition and the composition of the substrate compounds was shown. The values of ratios between Ar (or Ar+N2 and C4F8 - 1:1 and between N2 and Ar - 1:2 in the N2/Ar/C4F8 mixture were found as the best for low fluoridated coatings. In addition, an example of improving the etch-passivation in the Bosch procedure was described. Scanning electron microscopy with energy dispersive spectroscopy options, X-ray diffraction, and X-ray reflectivity were used for quantitative analysis of the deposited films.

  1. The ir emission features: Emission from PAH [Polycyclic Aromatic Hydrocarbons] molecules and amorphous carbon particles

    International Nuclear Information System (INIS)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    PAHs can have several forms in the interstellar medium. To assess the importance of each requires the availability of a collection of high quality, complete mid-ir interstellar emission spectra, a collection of laboratory spectra of PAH samples prepared under realistic conditions and a firm understanding of the microscopic emission mechanism. Given what we currently know about PAHs, the spectroscopic data suggests that there are at least two components which contribute to the interstellar emission spectrum: free molecule sized PAHs producing the narrow features and amorphous carbon particles (which are primarily made up of an irregular ''lattice'' of PAHs) contributing to the broad underlying components. An exact treatment of the ir fluorescence from highly vibrationally excited large molecules shows that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. Since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is called for in conjunction with an observational program which focuses on the spatial characteristics of the spectra. In this way the distribution and evolution of carbon from molecule to particle can be traced. 38 refs., 9 figs

  2. Influence of lidocaine forms (salt vs. freebase) on properties of drug-Eudragit® L100-55 extrudates prepared by reactive melt extrusion.

    Science.gov (United States)

    Liu, Xu; Ma, Xiangyu; Kun, Eucharist; Guo, Xiaodi; Yu, Zhongxue; Zhang, Feng

    2018-06-05

    This study examines the preparation of sustained-release lidocaine polyelectrolyte complex using reactive melt extrusion. Eudragit L100-55 was selected as the ionic polymer. The influence of drug forms (freebase vs. hydrochloride salt) on lidocaine-Eudragit L100-55 interactions, physical stability, and dissolution properties of extrudates was investigated. It was confirmed by DSC, FT-IR and Raman spectroscopy that polyelectrolyte could only form via the acid-base reaction between Eudragit L100-55 and lidocaine freebase. Due to this ionic interaction, the lidocaine extrudate was physically more stable than the lidocaine hydrochloride extrudate during the storage under stressed condition. Drug release from lidocaine extrudate was a function of drug solubility, polymer solubility, drug-polymer interaction, and drug-induced microenvironment pH. At 30% drug loading, extrudate exhibited sustained release in aqueous media at pH 1.2 and 4.5. Due to the alkaline microenvironment pH induced by dissolved lidocaine, Eudragit L100-55 was solubilized and sustained-release was not achieved in water and aqueous media at pH 5.5. In comparison, lidocaine hydrochloride induced an acidic microenvironment. Drug release of lidocaine hydrochloride extrudate was similar at pH 1.2, 4.5, 5.5 and water with drug being released over 10 hours. The release of lidocaine hydrochloride from the extrudates in these media was primarily controlled by microenvironment pH. It is concluded that different forms of lidocaine resulted in different drug-polymer interactions and distinctive physicochemical properties of extrudates. Copyright © 2018. Published by Elsevier B.V.

  3. Distortion of Local Atomic Structures in Amorphous Ge-Sb-Te Phase Change Materials

    Science.gov (United States)

    Hirata, A.; Ichitsubo, T.; Guan, P. F.; Fujita, T.; Chen, M. W.

    2018-05-01

    The local atomic structures of amorphous Ge-Sb-Te phase-change materials have yet to be clarified and the rapid crystal-amorphous phase change resulting in distinct optical contrast is not well understood. We report the direct observation of local atomic structures in amorphous Ge2Sb2Te5 using "local" reverse Monte Carlo modeling dedicated to an angstrom-beam electron diffraction analysis. The results corroborated the existence of local structures with rocksalt crystal-like topology that were greatly distorted compared to the crystal symmetry. This distortion resulted in the breaking of ideal octahedral atomic environments, thereby forming local disordered structures that basically satisfied the overall amorphous structure factor. The crystal-like distorted octahedral structures could be the main building blocks in the formation of the overall amorphous structure of Ge-Sb-Te.

  4. Structural characterization of amorphous Fe-Si and its recrystallized layers

    International Nuclear Information System (INIS)

    Naito, Muneyuki; Ishimaru, Manabu; Hirotsu, Yoshihiko; Valdez, James A.; Sickafus, Kurt E.

    2006-01-01

    We have synthesized amorphous Fe-Si thin layers and investigated their microstructure using transmission electron microscopy (TEM). Si single crystals with (1 1 1) orientation were irradiated with 120 keV Fe + ions to a fluence of 4.0 x 10 17 cm -2 at cryogenic temperature (120 K), followed by thermal annealing at 1073 K for 2 h. A continuous amorphous layer with a bilayered structure was formed on the topmost layer of the Si substrate in the as-implanted specimen: the upper layer was an amorphous Fe-Si, while the lower one was an amorphous Si. After annealing, the amorphous bilayer crystallized into a continuous β-FeSi 2 thin layer

  5. A theoretical and spectroscopic study of co-amorphous naproxen and indomethacin

    DEFF Research Database (Denmark)

    Löbmann, Korbinian; Laitinen, Riikka; Grohganz, Holger

    2013-01-01

    . In this study, the co-amorphous drug mixture containing naproxen (NAP) and indomethacin (IND) was investigated using infrared spectroscopy (IR) and quantum mechanical calculations. The structures of both drugs were optimized as monomer, homodimer and heterodimer using density functional theory and used...... for the calculation of IR spectra. Conformational analysis confirmed that the optimized structures were suitable for the theoretical prediction of the spectra. Vibrational modes from the calculation could be matched with experimentally observed spectra for crystalline and amorphous NAP and IND, and it could be shown...... that both drugs exist as homodimers in their respective individual amorphous form. With the results from the experimental single amorphous drugs and theoretical homodimers, a detailed analysis of the experimental co-amorphous and theoretical heterodimer spectra was performed and evaluated. It is suggested...

  6. Characterization of the hidden glass transition of amorphous cyclomaltoheptaose.

    Science.gov (United States)

    Tabary, Nicolas; Mahieu, Aurélien; Willart, Jean-François; Dudognon, Emeline; Danède, Florence; Descamps, Marc; Bacquet, Maryse; Martel, Bernard

    2011-10-18

    An amorphous solid of cyclomaltoheptaose (β-cyclodextrin, β-CD) was formed by milling its crystalline form using a high-energy planetary mill at room temperature. The glass transition of this amorphous solid was found to occur above the thermal degradation point of the material preventing its direct observation and thus its full characterization. The corresponding glass transition temperature (T(g)) and the ΔC(p) at T(g) have, however, been estimated by extrapolation of T(g) and ΔC(p) of closely related amorphous compounds. These compounds include methylated β-CD with different degrees of substitution and molecular alloys obtained by co-milling β-CD and methylated β-CD (DS 1.8) at different ratios. The physical characterization of the amorphous states have been performed by powder X-ray diffraction and differential scanning calorimetry, while the chemical integrity of β-CD upon milling was checked by NMR spectroscopy and mass spectrometry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Production and properties of light-metal base amorphous alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Masumoto, Tsuyoshi

    1993-01-01

    Light-metal base alloys with high specific strength and good corrosion resistance were produced through amorphization of Al and Mg-based alloys. The amorphous phase is formed in rapidly solidified Al-TM-Ln and Mg-TM-Ln (TM=transition metal, Ln=lanthanide metal) alloys. The highest tensile strength (σ f ) reaches 1,330 MPa for the Al base and 830 MPa for the Mg base. Furthermore, the Mg-based alloys have a large glass-forming capacity which enables to produce an amorphous phase by a metallic mold casting method. The extrusion of the Al-based amorphous powders at temperatures above crystallization temperature caused the formation of high strength materials with finely mixed structure consisting of dispersed intermetallic compounds in an Al matrix. The highest values of σ f and fatigue limit are as high as 940 and 313 MPa, respectively, at room temperature and 520 and 165 MPa at 473 K. The extruded Al-Ni-Mm alloy has already been used as machine parts and subsequent further development as practical materials is expected by taking these advantages

  8. Thermodynamically controlled crystallization of glucose pentaacetates from amorphous phase

    Energy Technology Data Exchange (ETDEWEB)

    Wlodarczyk, P., E-mail: patrykw@imn.gliwice.pl; Hawelek, L.; Hudecki, A.; Kolano-Burian, A. [Institute of Non-Ferrous Metals, ul. Sowinskiego 5, 44-100 Gliwice (Poland); Wlodarczyk, A. [Department of Animal Histology and Embryology, University of Silesia, ul. Bankowa 9, 40-007 Katowice (Poland)

    2016-08-15

    The α and β glucose pentaacetates are known sugar derivatives, which can be potentially used as stabilizers of amorphous phase of active ingredients of drugs (API). In the present work, crystallization behavior of equimolar mixture of α and β form in comparison to both pure anomers is revealed. It was shown that despite the same molecular interactions and similar molecular dynamics, crystallization from amorphous phase is significantly suppressed in equimolar mixture. Time dependent X-ray diffraction studies confirmed higher stability of the quenched amorphous equimolar mixture. Its tendency to crystallization is about 10 times lower than for pure anomers. Calorimetric studies revealed that the α and β anomers don’t form solid solutions and have eutectic point for x{sub α} = 0.625. Suppressed crystallization tendency in the mixture is probably caused by the altered thermodynamics of the system. The factors such as difference of free energy between crystalline and amorphous state or altered configurational entropy are probably responsible for the inhibitory effect.

  9. Molecular simulation of freestanding amorphous nickel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.Q. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France); Hoang, V.V., E-mail: vvhoang2002@yahoo.com [Department of Physics, Institute of Technology, National University of Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Lauriat, G. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France)

    2013-10-31

    Size effects on glass formation in freestanding Ni thin films have been studied via molecular dynamics simulation with the n-body Gupta interatomic potential. Atomic mechanism of glass formation in the films is determined via analysis of the spatio-temporal arrangements of solid-like atoms occurred upon cooling from the melt. Solid-like atoms are detected via the Lindemann ratio. We find that solid-like atoms initiate and grow mainly in the interior of the film and grow outward. Their number increases with decreasing temperature and at a glass transition temperature they dominate in the system to form a relatively rigid glassy state of a thin film shape. We find the existence of a mobile surface layer in both liquid and glassy states which can play an important role in various surface properties of amorphous Ni thin films. We find that glass formation is size independent for models containing 4000 to 108,000 atoms. Moreover, structure of amorphous Ni thin films has been studied in details via coordination number, Honeycutt–Andersen analysis, and density profile which reveal that amorphous thin films exhibit two different parts: interior and surface layer. The former exhibits almost the same structure like that found for the bulk while the latter behaves a more porous structure containing a large amount of undercoordinated sites which are the origin of various surface behaviors of the amorphous Ni or Ni-based thin films found in practice. - Highlights: • Glass formation is analyzed via spatio-temporal arrangements of solid-like atoms. • Amorphous Ni thin film exhibits two different parts: surface and interior. • Mobile surface layer enhances various surface properties of the amorphous Ni thin films. • Undercoordinated sites play an important role in various surface activities.

  10. Beating Homogeneous Nucleation and Tuning Atomic Ordering in Glass-Forming Metals by Nanocalorimetry.

    Science.gov (United States)

    Zhao, Bingge; Yang, Bin; Abyzov, Alexander S; Schmelzer, Jürn W P; Rodríguez-Viejo, Javier; Zhai, Qijie; Schick, Christoph; Gao, Yulai

    2017-12-13

    In this paper, the amorphous Ce 68 Al 10 Cu 20 Co 2 (atom %) alloy was in situ prepared by nanocalorimetry. The high cooling and heating rates accessible with this technique facilitate the suppression of crystallization on cooling and the identification of homogeneous nucleation. Different from the generally accepted notion that metallic glasses form just by avoiding crystallization, the role of nucleation and growth in the crystallization behavior of amorphous alloys is specified, allowing an access to the ideal metallic glass free of nuclei. Local atomic configurations are fundamentally significant to unravel the glass forming ability (GFA) and phase transitions in metallic glasses. For this reason, isothermal annealing near T g from 0.001 s to 25,000 s following quenching becomes the strategy to tune local atomic configurations and facilitate an amorphous alloy, a mixed glassy-nanocrystalline state, and a crystalline sample successively. On the basis of the evolution of crystallization enthalpy and overall latent heat on reheating, we quantify the underlying mechanism for the isothermal nucleation and crystallization of amorphous alloys. With Johnson-Mehl-Avrami method, it is demonstrated that the coexistence of homogeneous and heterogeneous nucleation contributes to the isothermal crystallization of glass. Heterogeneous rather than homogeneous nucleation dominates the isothermal crystallization of the undercooled liquid. For the mixed glassy-nanocrystalline structure, an extraordinary kinetic stability of the residual glass is validated, which is ascribed to the denser packed interface between amorphous phase and ordered nanocrystals. Tailoring the amorphous structure by nanocalorimetry permits new insights into unraveling GFA and the mechanism that correlates local atomic configurations and phase transitions in metallic glasses.

  11. Soft magnetic properties of bulk amorphous Co-based samples

    International Nuclear Information System (INIS)

    Fuezer, J.; Bednarcik, J.; Kollar, P.

    2006-01-01

    Ball milling of melt-spun ribbons and subsequent compaction of the resulting powders in the supercooled liquid region were used to prepare disc shaped bulk amorphous Co-based samples. The several bulk samples have been prepared by hot compaction with subsequent heat treatment (500 deg C - 575 deg C). The influence of the consolidation temperature and follow-up heat treatment on the magnetic properties of bulk samples was investigated. The final heat treatment leads to decrease of the coercivity to the value between the 7.5 to 9 A/m (Authors)

  12. Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol–gel method

    International Nuclear Information System (INIS)

    Li, Min; Wu, Zhishen; Tan, Jinmiao

    2012-01-01

    Highlights: ► Paraffin/SiO 2 /EG composite PCM was prepared with sol–gel method. ► The thermal conductivity of SiO 2 /paraffin/EG is 94.7% higher than paraffin. ► The latent heat of paraffin/SiO 2 /EG composite is 104.4 J/g. -- Abstract: A form-stable paraffin/silicon dioxide (SiO 2 )/expanded graphite (EG) composite phase change material (PCM) was prepared by sol–gel method. Silica gel acts as the supporting material and EG is used to increase the thermal conductivity. The mass fractions of silicon oxide and graphite are 20.8% and 7.2%, respectively. The composite PCM was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transformation infrared spectroscopy (FTIR) method. Thermal properties and thermal stability of the composite PCM were studied using differential scanning calorimetry (DSC). The result shows that paraffin was well dispersed in the network of silica gel and there is no chemical reaction between them. The phase change temperature of the paraffin/SiO 2 composite and the paraffin/SiO 2 /EG composite are 27.53 °C and 27.72 °C, respectively. The latent heat of the paraffin/SiO 2 composite and the paraffin/SiO 2 /EG composite are 112.8 J/g and 104.4 J/g, respectively. The thermal conductivity of the SiO 2 /paraffin composite and the SiO 2 /paraffin/EG composite are 28.2% and 94.7% higher than that of paraffin.

  13. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.; Smith, Casey; Hussain, Muhammad Mustafa

    2013-01-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  14. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-04-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  15. Transient photoconductivity in amorphous semiconductors

    International Nuclear Information System (INIS)

    Mpawenayo, P.

    1997-07-01

    Localized states in amorphous semiconductors are divided in disorder induced shallow trap levels and dangling bonds deep states. Dangling bonds are assumed here to be either neutral or charged and their energy distribution is a single gaussian. Here, it is shown analytically that transient photocurrent in amorphous semiconductors is fully controlled by charge carriers transitions between localized states for one part and tunneling hopping carriers on the other. Localized dangling bonds deep states act as non radiative recombination centres, while hopping tunnelling is assisted by the Coulomb interaction between defects sites. The half-width of defects distribution is the disorder parameter that determines the carrier hopping time between defects sites. The macroscopic time that explains the long decay response times observed will all types of amorphous semiconductors is duly thought to be temperature dependent. Basic equations developed by Longeaud and Kleider are solved for the general case of a semiconductor after photo-generation. It turns out that the transient photoconductivity decay has two components; one with short response times from carriers trap-release transitions between shallow levels and extended states and a hopping component made of inter-dependent exponentials whose time constants span in larger ranges depending on disorder. The photoconductivity hopping component appears as an additional term to be added to photocurrents derived from existing models. The results of the present study explain and complete the power law decay derived in the multiple trapping models developed 20 years ago only in the approximation of the short response time regime. The long response time regime is described by the hopping macroscopic time. The present model is verified for all samples of amorphous semiconductors known so far. Finally, it is proposed to improved the modulated photoconductivity calculation techniques by including the long-lasting hopping dark documents

  16. Magnetic excitations in amorphous ferromagnets

    International Nuclear Information System (INIS)

    Continentino, M.A.

    The propagation of magnetic excitations in amorphous ferromagnets is studied from the point of view of the theory of random frequency modulation. It is shown that the spin waves in the hydrodynamic limit are well described by perturbation theory while the roton-like magnetic excitations with wavevector about the peak in the structure factor are not. A criterion of validity of perturbation theory is found which is identical to a narrowing condition in magnetic resonance. (author) [pt

  17. Role of thermodynamic, kinetic and structural factors in the recrystallization behavior of amorphous erythromycin salts

    Energy Technology Data Exchange (ETDEWEB)

    Nanakwani, Kapil; Modi, Sameer R.; Kumar, Lokesh; Bansal, Arvind K., E-mail: akbansal@niper.ac.in

    2014-04-01

    Graphical abstract: - Highlights: • Crystallization kinetics of amorphous erythromycin salts was assessed. • Contribution of thermodynamic, kinetic and structural factors was evaluated. • Role of counterions on physical stability of amorphous salts was investigated. • Implications of the study: In rationalizing stabilization approach for amorphous form. - Abstract: Amorphous form has become an important drug delivery strategy for poorly water soluble drugs. However, amorphous form has inherent physical instability due to its tendency to recrystallize to stable crystalline form. In the present study, amorphous forms of erythromycin free base (ED) and its salts namely, stearate (ES), phosphate (EP) and thiocyanate (ET) were generated by in situ melt quenching and evaluated for their crystallization tendency. Salts were characterized for kinetic, thermodynamic and structural factors to understand crystallization behavior. Kinetics of crystallization followed the order as ES > EP > ET > ED. Fragility and molecular mobility does not completely explain these findings. However, configurational entropy (S{sub conf}), indicative of entropic barrier to crystallization, followed the order as ET > EP > ES > ED. Lower crystallization tendency of ED can be explained by its lower thermodynamic driving force for crystallization (H{sub conf}). This correlated well with different structural parameters for the counter ions.

  18. Polyamorphism in Water: Amorphous Ices and their Glassy States

    Science.gov (United States)

    Amann-Winkel, K.; Boehmer, R.; Fujara, F.; Gainaru, C.; Geil, B.; Loerting, T.

    2015-12-01

    Water is ubiquitous and of general importance for our environment. But it is also known as the most anomalous liquid. The fundamental origin of the numerous anomalies of water is still under debate. An understanding of these anomalous properties of water is closely linked to an understanding of the phase diagram of the metastable non-crystalline states of ice. The process of pressure induced amorphization of ice was first observed by Mishima et al. [1]. The authors pressurized hexagonal ice at 77 K up to a pressure of 1.6 GPa to form high density amorphous ice (HDA). So far three distinct structural states of amorphous water are known [2], they are called low- (LDA), high- (HDA) and very high density amorphous ice (VHDA). Since the discovery of multiple distinct amorphous states it is controversy discussed whether this phenomenon of polyamorphism at high pressures is connected to the occurrence of more than one supercooled liquid phase [3]. Alternatively, amorphous ices have been suggested to be of nanocrystalline nature, unrelated to liquids. Indeed inelastic X-ray scattering measurements indicate sharp crystal-like phonons in the amorphous ices [4]. In case of LDA the connection to the low-density liquid (LDL) was inferred from several experiments including the observation of a calorimetric glass-to-liquid transition at 136 K and ambient pressure [5]. Recently also the glass transition in HDA was observed at 116 K at ambient pressure [6] and at 140 K at elevated pressure of 1 GPa [7], using calorimetric measurements as well as dielectric spectroscopy. We discuss here the general importance of amorphous ices and their liquid counterparts and present calorimetric and dielectric measurements on LDA and HDA. The good agreement between dielectric and calorimetric results convey for a clearer picture of water's vitrification phenomenon. [1] O. Mishima, L. D. Calvert, and E. Whalley, Nature 314, 76, 1985 [2] D.T. Bowron, J. L. Finney, A. Hallbrucker, et al., J. Chem

  19. Validated spectroscopic methods for determination of anti-histaminic drug azelastine in pure form: Analytical application for quality control of its pharmaceutical preparations

    Science.gov (United States)

    El-Masry, Amal A.; Hammouda, Mohammed E. A.; El-Wasseef, Dalia R.; El-Ashry, Saadia M.

    2018-02-01

    Two simple, sensitive, rapid, validated and cost effective spectroscopic methods were established for quantification of antihistaminic drug azelastine (AZL) in bulk powder as well as in pharmaceutical dosage forms. In the first method (A) the absorbance difference between acidic and basic solutions was measured at 228 nm, whereas in the second investigated method (B) the binary complex formed between AZL and Eosin Y in acetate buffer solution (pH 3) was measured at 550 nm. Different criteria that have critical influence on the intensity of absorption were deeply studied and optimized so as to achieve the highest absorption. The proposed methods obeyed Beer's low in the concentration range of (2.0-20.0 μg·mL- 1) and (0.5-15.0 μg·mL- 1) with % recovery ± S.D. of (99.84 ± 0.87), (100.02 ± 0.78) for methods (A) and (B), respectively. Furthermore, the proposed methods were easily applied for quality control of pharmaceutical preparations without any conflict with its co-formulated additives, and the analytical results were compatible with those obtained by the comparison one with no significant difference as insured by student's t-test and the variance ratio F-test. Validation of the proposed methods was performed according the ICH guidelines in terms of linearity, limit of quantification, limit of detection, accuracy, precision and specificity, where the analytical results were persuasive. The absorption spectrum of AZL (16 μg·mL- 1) in 0.1 M HCl. The absorption spectrum of AZL (16 μg·mL- 1) in 0.1 M NaOH. The difference absorption spectrum of AZL (16 μg·mL- 1) in 0.1 M NaOH vs 0.1 M HCl. The absorption spectrum of eosin binary complex with AZL (10 μg·mL- 1).

  20. Downstream processing of a ternary amorphous solid dispersion: The impacts of spray drying and hot melt extrusion on powder flow, compression and dissolution.

    Science.gov (United States)

    Davis, Mark T; Potter, Catherine B; Walker, Gavin M

    2018-06-10

    Downstream processing aspects of a stable form of amorphous itraconazole exhibiting enhanced dissolution properties were studied. Preparation of this ternary amorphous solid dispersion by either spray drying or hot melt extrusion led to significantly different powder processing properties. Particle size and morphology was analysed using scanning electron microscopy. Flow, compression, blending and dissolution were studied using rheometry, compaction simulation and a dissolution kit. The spray dried material exhibited poorer flow and reduced sensitivity to aeration relative to the milled extrudate. Good agreement was observed between differing forms of flow measurement, such as Flow Function, Relative flow function, Flow rate index, Aeration rate, the Hausner ratio and the Carr index. The stability index indicated that both powders were stable with respect to agglomeration, de-agglomeration and attrition. Tablet ability and compressibility studies showed that spray dried material could be compressed into stronger compacts than extruded material. Blending of the powders with low moisture, freely-flowing excipients was shown to influence both flow and compression. Porosity studies revealed that blending could influence the mechanism of densification in extrudate and blended extrudate formulations. Following blending, the powders were compressed into four 500 mg tablets, each containing a 100 mg dose of amorphous itraconazole. Dissolution studies revealed that the spray dried material released drug faster and more completely and that blending excipients could further influence the dissolution rate. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Crystallization process and magnetic properties of amorphous iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Phu, N D; Luong, N H; Chau, N; Hai, N H; Ngo, D T; Hoang, L H

    2011-01-01

    This paper studied the crystallization process, phase transition and magnetic properties of amorphous iron oxide nanoparticles prepared by the microwave heating technique. Thermal analysis and magnetodynamics studies revealed many interesting aspects of the amorphous iron oxide nanoparticles. The as-prepared sample was amorphous. Crystallization of the maghemite γ-Fe 2 O 3 (with an activation energy of 0.71 eV) and the hematite α-Fe 2 O 3 (with an activation energy of 0.97 eV) phase occurred at around 300 deg. C and 350 deg. C, respectively. A transition from the maghemite to the hematite occurred at 500 deg. C with an activation energy of 1.32 eV. A study of the temperature dependence of magnetization supported the crystallization and the phase transformation. Raman shift at 660 cm -1 and absorption band in the infrared spectra at 690 cm -1 showed the presence of disorder in the hematite phase on the nanoscale which is supposed to be the origin of the ferromagnetic behaviour of that antiferromagnetic phase.

  2. Preparation, morphology and thermal properties of electrospun fatty acid eutectics/polyethylene terephthalate form-stable phase change ultrafine composite fibers for thermal energy storage

    International Nuclear Information System (INIS)

    Cai Yibing; Ke Huizhen; Lin Liang; Fei Xiuzhu; Wei Qufu; Song Lei; Hu Yuan; Fong Hao

    2012-01-01

    Highlights: ► Electrospun binary fatty acid eutectics/PET ultrafine composite fibers were prepared. ► Fatty acid eutectics had appropriate phase transition temperature and heat enthalpy. ► Their morphological structures and thermal properties were different from each other. ► Composite fibers could be innovative form-stable PCMs for thermal energy storage. - Abstract: The ultrafine composite fibers based on the composites of binary fatty acid eutectics and polyethylene terephthalate (PET) with varied fatty acid eutectics/PET mass ratios (50/100, 70/100, 100/100 and 120/100) were fabricated using the technique of electrospinning as form-stable phase change materials (PCMs). The five binary fatty acid eutectics including LA–MA, LA–PA, MA–PA, MA–SA and PA–SA were prepared according to Schrader equation, and then were selected as an innovative type of solid–liquid PCMs. The results characterized by differential scanning calorimeter (DSC) indicated that the prepared binary fatty acid eutectics with low phase transition temperatures and high heat enthalpies for climatic requirements were more suitable for applications in building energy storage. The structural morphologies, thermal energy storage and thermal stability properties of the ultrafine composite fibers were investigated by scanning electron microscope (SEM), DSC and thermogravimetric analysis (TGA), respectively. SEM images revealed that the electrospun binary fatty acid eutectics/PET ultrafine composite fibers possessed the wrinkled surfaces morphologies compared with the neat PET fibers with cylindrical shape and smooth surfaces; the grooves or ridges on the corrugated surface of the ultrafine composite fibers became more and more prominent with increasing fatty acid eutectics amount in the composite fibers. The fibers with the low mass ratio maintained good structural morphologies while the quality became worse when the mass ratio is too high (more than 100/100). DSC measurements

  3. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  4. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Saharoui; Mughal, Asad Jahangir

    2015-01-01

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  5. Study of low resistivity and high work function ITO films prepared by oxygen flow rates and N2O plasma treatment for amorphous/crystalline silicon heterojunction solar cells.

    Science.gov (United States)

    Hussain, Shahzada Qamar; Oh, Woong-Kyo; Kim, Sunbo; Ahn, Shihyun; Le, Anh Huy Tuan; Park, Hyeongsik; Lee, Youngseok; Dao, Vinh Ai; Velumani, S; Yi, Junsin

    2014-12-01

    Pulsed DC magnetron sputtered indium tin oxide (ITO) films deposited on glass substrates with lowest resistivity of 2.62 x 10(-4) Ω x cm and high transmittance of about 89% in the visible wavelength region. We report the enhancement of ITO work function (Φ(ITO)) by the variation of oxygen (O2) flow rate and N2O surface plasma treatment. The Φ(ITO) increased from 4.43 to 4.56 eV with the increase in O2 flow rate from 0 to 4 sccm while surface treatment of N2O plasma further enhanced the ITO work function to 4.65 eV. The crystallinity of the ITO films improved with increasing O2 flow rate, as revealed by XRD analysis. The ITO work function was increased by the interfacial dipole resulting from the surface rich in O- ions and by the dipole moment formed at the ITO surface during N2O plasma treatment. The ITO films with high work functions can be used to modify the front barrier height in heterojunction with intrinsic thin layer (HIT) solar cells.

  6. Cefuroxime axetil solid dispersions prepared using solution enhanced dispersion by supercritical fluids.

    Science.gov (United States)

    Jun, Seoung Wook; Kim, Min-Soo; Jo, Guk Hyun; Lee, Sibeum; Woo, Jong Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2005-12-01

    Cefuroxime axetil (CA) solid dispersions with HPMC 2910/PVP K-30 were prepared using solution enhanced dispersion by supercritical fluids (SEDS) in an effort to increase the dissolution rate of poorly water-soluble drugs. Their physicochemical properties in solid state were characterized by differential scanning calorimeter (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectrometry (FT-IR) and scanning electron microscopy. No endothermic and characteristic diffraction peaks corresponding to CA were observed for the solid dispersions in DSC and PXRD. FTIR analysis demonstrated the presence of intermolecular hydrogen bonds between CA and HPMC 2910/PVP K-30 in solid dispersions, resulting in the formation of amorphous or non-crystalline CA. Dissolution studies indicated that the dissolution rates were remarkably increased in solid dispersions compared with those in the physical mixture and drug alone. In conclusion, an amorphous or non-crystalline CA solid dispersion prepared using SEDS could be very useful for the formulation of solid dosage forms.

  7. Low-energy excitations in amorphous films of silicon and germanium

    International Nuclear Information System (INIS)

    Liu, X.; Pohl, R.O.

    1998-01-01

    We present measurements of internal friction and shear modulus of amorphous Si (a-Si) and amorphous Ge (a-Ge) films on double-paddle oscillators at 5500 Hz from 0.5 K up to room temperature. The temperature- independent plateau in internal friction below 10 K, which is common to all amorphous solids, also exists in these films. However, its magnitude is smaller than found for all other amorphous solids studied to date. Furthermore, it depends critically on the deposition methods. For a-Si films, it decreases in the sequence of electron-beam evaporation, sputtering, self-ion implantation, and hot-wire chemical-vapor deposition (HWCVD). Annealing can also reduce the internal friction of the amorphous films considerably. Hydrogenated a-Si with 1 at.% H prepared by HWCVD leads to an internal friction more than two orders of magnitude smaller than observed for all other amorphous solids. The internal friction increases after the hydrogen is removed by effusion. Our results are compared with earlier measurements on a-Si and a-Ge films, none of which had the sensitivity achieved here. The variability of the low-energy tunneling states in the a-Si and a-Ge films may be a consequence of the tetrahedrally bonded covalent continuous random network. The perfection of this network, however, depends critically on the preparation conditions, with hydrogen incorporation playing a particularly important role. copyright 1998 The American Physical Society

  8. Manufacturing Amorphous Solid Dispersions with a Tailored Amount of Crystallized API for Biopharmaceutical Testing.

    Science.gov (United States)

    Theil, Frank; Milsmann, Johanna; Anantharaman, Sankaran; van Lishaut, Holger

    2018-05-07

    The preparation of an amorphous solid dispersion (ASD) by dissolving a poorly water-soluble active pharmaceutical ingredient (API) in a polymer matrix can improve the bioavailability by orders of magnitude. Crystallization of the API in the ASD, though, is an inherent threat for bioavailability. Commonly, the impact of crystalline API on the drug release of the dosage form is studied with samples containing spiked crystallinity. These spiked samples possess implicit differences compared to native crystalline samples, regarding size and spatial distribution of the crystals as well as their molecular environment. In this study, we demonstrate that it is possible to grow defined amounts of crystalline API in solid dosage forms, which enables us to study the biopharmaceutical impact of actual crystallization. For this purpose, we studied the crystal growth in fenofibrate tablets over time under an elevated moisture using transmission Raman spectroscopy (TRS). As a nondestructive method to assess API crystallinity in ASD formulations, TRS enables the monitoring of crystal growth in individual dosage forms. Once the kinetic trace of the crystal growth for a certain environmental condition is determined, this method can be used to produce samples with defined amounts of crystallized API. To investigate the biopharmaceutical impact of crystallized API, non-QC dissolution methods were used, designed to identify differences between the various amounts of crystalline materials present. The drug release in the samples manufactured in this fashion was compared to that of samples with spiked crystallinity. In this study, we present for the first time a method for targeted crystallization of amorphous tablets to simulate crystallized ASDs. This methodology is a valuable tool to generate model systems for biopharmaceutical studies on the impact of crystallinity on the bioavailability.

  9. Water sorption and glass transition of amorphous sugars containing BSA

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, K.; Suzuki, T.; Tatsumichi, T.; Kirii, S.; Okazaki, M. [Kyoto Univ., Kyoto (Japan). Dept. of Chemical Engineering

    2000-08-01

    Water sorption and glass transition of four amorphous sugars (lactose, maltose, sucrose, and trehalose) containing bovine serum albumin (BSA) are investigated. Freeze-dried sugar-BSA samples equilibrated at several water activities ranging from 0 to 0.43 were prepared. Moisture content and glass transition temperature (T{sub g}) were measured. For the all sugars, it is found that BSA lowers T{sub g} at low water activity, and raises it at high water activity. It is also found that the difference between T{sub g} of the sugar-BSA samples and that of the corresponding amorphous sugar samples (T{sub g0}) depends mainly on T{sub g0}. (author)

  10. Photo stability Assessment in Amorphous-Silicon Solar Cells

    International Nuclear Information System (INIS)

    Gandia, J. J.; Carabe, J.; Fabero, F.; Jimenez, R.; Rivero, J. M.

    1999-01-01

    The present status of amorphous-silicon-solar-cell research and development at CIEMAT requires the possibility to characterise the devices prepared from the point of view of their stability against sunlight exposure. Therefore a set of tools providing such a capacity has been developed. Together with an introduction to photovoltaic applications of amorphous silicon and to the photodegradation problem, the present work describes the process of setting up these tools. An indoor controlled photodegradation facility has been designed and built, and a procedure has been developed for the measurement of J-V characterisation in well established conditions. This method is suitable for all kinds of solar cells, even for those for which no model is still available. The photodegradation and characterisation of some cells has allowed to validate both the new testing facility and method. (Author) 14 refs

  11. Properties of amorphous FeCoB alloy particles (abstract)

    DEFF Research Database (Denmark)

    Charles, S. W.; Wells, S.; Meagher, A.

    1988-01-01

    -ray diffraction. Magnetic measurements of the saturation magnetization, coercivity, and remanence of the particles have been measured. The transition from the amorphous-to-crystalline state has been studied using differential scanning calorimetry (DSC) and thermomagnetometry up to a temperature of 450 °C (see Fig......Amorphous and crystalline alloy particles (0.05–0.5 nm) of FexCoyBz in which the ratio x:y ranges from 0 to 1 have been prepared by the borohydride reduction of iron and cobalt salts in aqueous solution. The structure of the particles has been studied using Mössbauer spectroscopy and x....... 1). It has been shown that the fraction of boron in the alloys (10–35 at. %) is dependent upon the rate of addition of salts to borohydride and the concentration of cobalt present; this in turn influences the crystallinity and magnetic properties . Journal of Applied Physics is copyrighted...

  12. Ion-induced damage and amorphization in Si

    International Nuclear Information System (INIS)

    Holland, O.W.; White, C.W.

    1990-01-01

    Ion-induced damage growth in high-energy, self-ion irradiated Si was studied using electron microscopy and Rutherford backscattering spectroscopy. The results show that there is a marked variation in the rate of damage growth, as well as the damage morphology, along the path of the ion. Near the ion end-of-range (eor), damage increases monotonically with ion fluence until a buried amorphous layer is formed, while damage growth saturates at a low level in the region ahead. The morphology of the damage in the saturated region is shown to consist predominantly of simple defect clusters such as the divacancy. Damage growth remains saturated ahead of the eor until expansion of the buried amorphous layer encroaches into the region. A homogeneous growth model is presented which accounts for damage saturation, and accurately predicts the dose-rate dependence of the saturation level. Modifications of the model are discussed which are needed to account for the rapid growth in the eor region and near the interface of the buried amorphous layer. Two important factors contributing to rapid damage growth are identified. Spatial separation of the Frenkel defect pairs (i.e. interstitials and vacancies) due to the momentum of the interstitials is shown to greatly impact damage growth near the eor, while uniaxial strain in the interfacial region of the amorphous layer is identified as an important factor contributing to growth at that location. 20 refs., 10 figs

  13. The production of UV Absorber amorphous cerium sulfide thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kariper, İshak Afşin, E-mail: akariper@gmail.com [Faculty of Education, Erciyes University, Kayseri (Turkey)

    2017-10-15

    This study investigates the production of cerium sulfide (CeSx) amorphous thin films on substrates (commercial glass) by chemical bath deposition at different pH levels. The transmittance, absorption, optical band gap and refractive index of the films are measured by UV/VIS Spectrum. According to XRD analysis, the films show amorphous structure in the baths with pH: 1 to 5. It has been observed that the optical and structural properties of the films depend on pH value of the bath. The optical band gap (2.08 eV to 3.16 eV) of the films changes with the film thickness (23 nm to 1144 nm). We show that the refractive index has a positive relationship with the film thickness, where the values of 1.93, 1.45, 1.42, 2.60 and 1.39 are obtained for the former, and 34, 560, 509, 23 and 1144 nm (at 550 nm wavelength) for the latter. We compare the optical properties of amorphous and crystal form of CeSx thin films. We show that the optical band gaps of the amorphous CeS{sub x} are lower than that of crystal CeS{sub x} . (author)

  14. Superconducting properties of amorphous Zr-Ge binary alloys

    International Nuclear Information System (INIS)

    Inoue, A.; Takahashi, Y.; Toyota, N.; Fukase, T.; Masumoto, T.

    1982-01-01

    A new type of refractory metal-metalloid amorphous alloys exhibiting superconductivity has been found in a binary Zr-Ge system by a modified melt-spinning technique. Specimens are in the form of continuous ribbons 1 to 2 mm wide and 0.02 to 0.03 mm thick. The germanium content in the amorphous alloys is limited to the range of 13 to 21 at%. These amorphous alloys are so ductile that no cracks are observed even after closely contacted bending test. Data are reported for various alloy compositions for the Vickers hardness and crystallization temperature, the tensile fracture strength, superconducting transition temperature Tsub(c), upper critical magnetic field, critical current density in the absence of an applied field, upper critical field gradient at Tsub(c) and the electrical resistivity at 4.2 K. The Ginzburg-Landau (GL) parameter and the GL coherence length were estimated to be 72 to 111 and about 7.9 nm, respectively, from these experimental values by using the Ginzburg-Landau-Abrikosov-Gorkov theory and hence it is concluded that the Zr-Ge amorphous alloys are extremely 'soft' type-II superconductor with high degree of dirtiness which possesses the Tsub(c) values higher than zirconium metal, in addition to high strength combined with good ductility. (author)

  15. PDF analysis on re-crystallized structure from amorphous BiT

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Yasuhiro [Japan Atomic Energy Research Institute, Synchrotron Radiation Research Center, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan)]. E-mail: yoneda@spring8.or.jp; Kohara, Shinji [Synchrotron Radiation Research Laboratory, Japan Synchrotron Radiation, Research Institute, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hamazaki, Shin' ichi [Department of Electronics, Iwaki Meisei University, Iino 5-5-1, Chuohdai, Fukushima 970-8551 (Japan); Takashige, Masaaki [Department of Electronics, Iwaki Meisei University, Iino 5-5-1, Chuohdai, Fukushima 970-8551 (Japan); Mizuki, Jun' ichiro [Japan Atomic Energy Research Institute, Synchrotron Radiation Research Center, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2005-08-15

    A glass sample of composition Bi{sub 4}Ti{sub 3}O{sub 12} was prepared by rapid quenching. The as-quenched sample was confirmed to be amorphous by synchrotron X-ray measurements. The crystallization process of the amorphous sample was also investigated by high-energy X-ray diffraction and by atomic pair distribution function analysis. The perovskite layer in the crystal Bi{sub 4}Ti{sub 3}O{sub 12} is transformed to a pyrochlore structure in the amorphous sample. The amorphous sample first crystallized to a metastable phase by acquiring long-range ordering of the pyrochlore structure at T {sub cryst1}, and then secondary crystallized into a reverted Bi{sub 4}Ti{sub 3}O{sub 12} structure at T {sub cryst2}.

  16. Amorphization of thiamine chloride hydrochloride: A study of the crystallization inhibitor properties of different polymers in thiamine chloride hydrochloride amorphous solid dispersions.

    Science.gov (United States)

    Arioglu-Tuncil, Seda; Bhardwaj, Vivekanand; Taylor, Lynne S; Mauer, Lisa J

    2017-09-01

    Amorphous solid dispersions of thiamine chloride hydrochloride (THCl) were created using a variety of polymers with different physicochemical properties in order to investigate how effective the various polymers were as THCl crystallization inhibitors. THCl:polymer dispersions were prepared by lyophilizing solutions of THCl and amorphous polymers (guar gum, pectin, κ-carrageenan, gelatin, and polyvinylpyrrolidone (PVP)). These dispersions were stored at select temperature (25 and 40°C) and relative humidity (0, 23, 32, 54, 75, and 85% RH) conditions and monitored at different time points using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). Moisture sorption isotherms of all samples were also obtained. Initially amorphous THCl was produced in the presence of ≥40% w/w pectin, κ-carrageenan, gelatin, and guar gum or ≥60% w/w PVP. Trends in polymer THCl crystallization inhibition (pectin≥κ-carrageenan>gelatin>guar gum≫PVP) were primarily based on the ability of the polymer to interact with THCl via hydrogen bonding and/or ionic interactions. The onset of THCl crystallization from the amorphous dispersions was also related to storage conditions. THCl remained amorphous at low RH conditions (0 and 23% RH) in all 1:1 dispersions except THCl:PVP. THCl crystallized in some dispersions below the glass transition temperature (T g ) but remained amorphous in others at T~T g . At high RHs (75 and 85% RH), THCl crystallized within one day in all samples. Given the ease of THCl amorphization in the presence of a variety of polymers, even at higher vitamin concentrations than would be found in foods, it is likely that THCl is amorphous in many low moisture foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Joint ESRF-Cecam workshop polymorphous in liquid and amorphous matter

    International Nuclear Information System (INIS)

    Price, D.L.; Hennet, L.; Krishnan, S.; Sinn, H.; Alp, E.E.; Saboungi, M.L.; Holland-Moritz, D.; Mossa, S.; Tarjus, G.; Trapananti, A.; Di Cicco, A.; Filipponi, A.; Tanaka, H.; Soper, A.K.; Strassle, Th.; Klotz, S.; Hamel, G.; Nelmes, R.J.; Loveday, J.S.; Rousse, G.; Canny, B.; Chervin, J.C.; Saitta, M.; Marek Koza, M.; Schober, H.; Geiger, A.; Brovchenko, I.; Oleinikova, A.; Strassle, T.; Reichert, H.; Jakse, N.; Lebacq, O.; Pasturel, A.; Salmon, P.S.; Martin, R.A.; Massobrio, C.; Poon, W.C.K.; Pham, K.N.; Voigtmann, Th.; Egelhaaf, S.U.; Pusey, P.N.; Petukhov, A.V.; Dolbnya, I.P.; Vroege, G.J.; Lekkerkerker, H.N.W.; Konig, H.; Keen, D.A.; Benedetti, L.R.; Sihachakr, D.; Dewaele, A.; Weck, G.; Crichton, W.; Mezouar, M.; Loubeyre, P.; Shimojo, F.; Ferlat, G.; San Miguel, A.; Xu, H.; Martinez-Garcia, D.; Zuniga, J.; Munoz-Sanjose, V.; Felipponi, A.; Panfilis, S. de; Di Cicco, A.; Guthrie, M.; Tulk, C.A.; Bemore, C.J.; Xu, J.; Yarger, J.L.; Mao, H.K.; Hemley, R.J.

    2004-01-01

    This workshop is dedicated to new trends in the simulation and experimental studies of liquid and amorphous matter. Particular emphasis is given to polymorphism in equilibrium and under-cooled metastable liquids, glasses and to amorphous network-forming systems. 5 mains sessions over the 3 days have been organized: 1) under-cooled liquid metals, 2) liquid, glassy and amorphous semiconductors, 3) water and related systems, 4) colloids, macro-molecules and biological cells, and 5) state-of-the-art in experimental and theoretical investigations. This document gathers the abstracts of the presentations

  18. Joint ESRF-Cecam workshop polymorphous in liquid and amorphous matter

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L.; Hennet, L.; Krishnan, S.; Sinn, H.; Alp, E.E.; Saboungi, M.L.; Holland-Moritz, D.; Mossa, S.; Tarjus, G.; Trapananti, A.; Di Cicco, A.; Filipponi, A.; Tanaka, H.; Soper, A.K.; Strassle, Th.; Klotz, S.; Hamel, G.; Nelmes, R.J.; Loveday, J.S.; Rousse, G.; Canny, B.; Chervin, J.C.; Saitta, M.; Marek Koza, M.; Schober, H.; Geiger, A.; Brovchenko, I.; Oleinikova, A.; Strassle, T.; Reichert, H.; Jakse, N.; Lebacq, O.; Pasturel, A.; Salmon, P.S.; Martin, R.A.; Massobrio, C.; Poon, W.C.K.; Pham, K.N.; Voigtmann, Th.; Egelhaaf, S.U.; Pusey, P.N.; Petukhov, A.V.; Dolbnya, I.P.; Vroege, G.J.; Lekkerkerker, H.N.W.; Konig, H.; Keen, D.A.; Benedetti, L.R.; Sihachakr, D.; Dewaele, A.; Weck, G.; Crichton, W.; Mezouar, M.; Loubeyre, P.; Shimojo, F.; Ferlat, G.; San Miguel, A.; Xu, H.; Martinez-Garcia, D.; Zuniga, J.; Munoz-Sanjose, V.; Felipponi, A.; Panfilis, S. de; Di Cicco, A.; Guthrie, M.; Tulk, C.A.; Bemore, C.J.; Xu, J.; Yarger, J.L.; Mao, H.K.; Hemley, R.J

    2004-07-01

    This workshop is dedicated to new trends in the simulation and experimental studies of liquid and amorphous matter. Particular emphasis is given to polymorphism in equilibrium and under-cooled metastable liquids, glasses and to amorphous network-forming systems. 5 mains sessions over the 3 days have been organized: 1) under-cooled liquid metals, 2) liquid, glassy and amorphous semiconductors, 3) water and related systems, 4) colloids, macro-molecules and biological cells, and 5) state-of-the-art in experimental and theoretical investigations. This document gathers the abstracts of the presentations.

  19. Better understanding of dissolution behaviour of amorphous drugs by in situ solid-state analysis using Raman spectroscopy

    DEFF Research Database (Denmark)

    Savolainen, M; Kogermann, K; Heinz, A

    2009-01-01

    of two amorphous drugs, indomethacin (IMC) and carbamazepine (CBZ). The dissolution rate was higher from amorphous IMC compared to the crystalline alpha- and gamma-forms. However, the dissolution rate started to slow down during the experiment. In situ Raman analysis verified that at that time point...

  20. Hydrogen in disordered and amorphous solids

    International Nuclear Information System (INIS)

    Bambakidis, G; Bowman, R.C.

    1986-01-01

    This book presents information on the following topoics: elements of the theory of amorphous semiconductors; electronic structure of alpha-SiH; fluctuation induced gap states in amorphous hydrogenated silicon; hydrogen on semiconductor surfaces; the influence of hydrogen on the defects and instabilities in hydrogenated amorphous silicon; deuteron magnetic resonance in some amorphous semiconductors; formation of amorphous metals by solid state reactions of hydrogen with an intermetallic compound; NMR studies of the hydrides of disordered and amorphous alloys; neutron vibrational spectroscopy of disordered metal-hydrogen system; dynamical disorder of hydrogen in LaNi /SUB 5-y/ M /SUB y/ hydrides studied by quasi-elastic neutron scattering; recent studies of intermetallic hydrides; tritium in Pd and Pd /SUB 0.80/ Sg /SUB 0.20/ ; and determination of hydrogen concentration in thin films of absorbing materials

  1. Contribution to the study of the amorphization mechanisms of intermetallic compounds by mechanical grinding; Contribution a l`etude des mecanismes d`amorphisation par sollicitation mecanique de composes intermetalliques

    Energy Technology Data Exchange (ETDEWEB)

    Galy, D

    1995-01-11

    This work aims at identifying the mechanisms responsible for amorphization of NiZr and NiZr{sub 2} compounds under ball-milling. In the first part, the effect of a localized deformation is studied: the deformation is produced by indentation on bulk samples, very high local strains can be achieved by this technique. The resulting microstructure is studied by transmission electron microscopy (TEM). No evidence for amorphization is found in these compounds, contrary to what is known to occur in silicon and germanium. Despite of their high brittleness, the NiZr and NiZr{sub 2} compounds accommodate the multiaxial localized stress by plastic deformation: dislocations multiplication and glide, micro-twinning. Dislocations (both perfect and imperfect) and micro-twins have been analysed into details for the first time. The twinning mechanism in NiZr{sub 2} has been elucidated. In the second part of this work, the microstructure of NiZr{sub 2} in the course of amorphization by ball-milling is studied by TEM observation are prepared by ultra-microtomy. The following evolution is observed: first, the material is fragmented and plastically deformed; the microstructure is refined by polygonation. Second, aggregates are formed by a fragmentation and sticking process, leading to a stationary size for the aggregates. The aggregates themselves are made of a mixture of nanocrystalline (about 10 nm) material and coarser crystallites. As milling proceeds, the latter disappear to the benefit of the former. Once aggregates are 100% nanocrystalline, the amorphous phase appears and develops to the expense of the nanocrystalline phase. At late stages, small crystallites embedded in an amorphous matrix are observed. No massive chemical disordering is observed but a small amount can not be ruled out. It is suggested that amorphization occurs by chemical disordering at interfaces, induced by shear waves. (Author). 76 refs., 57 figs., 12 tabs.

  2. AmAMorph: Finite State Morphological Analyzer for Amazighe

    Directory of Open Access Journals (Sweden)

    Fatima Zahra Nejme

    2016-03-01

    Full Text Available This paper presents AmAMorph, a morphological analyzer for Amazighe language using a system based on the NooJ linguistic development environment. The paper begins with the development of Amazighe lexicons with large coverage formalization. The built electronic lexicons, named ‘NAmLex’, ‘VAmLex’ and ‘PAmLex’ which stand for ‘Noun Amazighe Lexicon’, ‘Verb Amazighe Lexicon’ and ‘Particles Amazighe Lexicon’, link inflectional, morphological, and syntacticsemantic information to the list of lemmas. Automated inflectional and derivational routines are applied to each lemma producing over inflected forms. To our knowledge,AmAMorph is the first morphological analyzer for Amazighe. It identifies the component morphemes of the forms using large coverage morphological grammars. Along with the description of how the analyzer is implemented, this paper gives an evaluation of the analyzer.

  3. Annealing Effects on the Magnetization of Co-Ni-B Amorphous Nanoparticles

    International Nuclear Information System (INIS)

    Vargas, J.M.

    2001-01-01

    Chemically prepared (Co x Ni 1-x ) 1 00 -y B y (x=0.5, 0.75, 1; y∼30) amorphous fine particles were characterized by x-ray diffraction, DTA and TGA, and in-situ magnetic measurement as a function of annealing temperature in an inert atmosphere.Magnetic measurement performed in as prepared and ∼150C degree annealed samples show an increase of the saturation magnetization and magnetic moment after thermal tretment.Room temperature magnetization increases by factors of ∼3 in average.These measurements may indicate a local re-ordering of the amorphous phase at temperatures much lower than the full crystallization temperature

  4. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide

    Science.gov (United States)

    Balistrieri, L.S.; Chao, T.T.

    1990-01-01

    This work compares and models the adsorption of selenium and other anions on a neutral to alkaline surface (amorphous iron oxyhydroxide) and an acidic surface (manganese dioxide). Selenium adsorption on these oxides is examined as a function of pH, particle concentration, oxidation state, and competing anion concentration in order to assess how these factors might influence the mobility of selenium in the environment. The data indicate that 1. 1) amorphous iron oxyhydroxide has a greater affinity for selenium than manganese dioxide, 2. 2) selenite [Se(IV)] adsorption increases with decreasing pH and increasing particle concentration and is stronger than selenate [Se(VI)] adsorption on both oxides, and 3. 3) selenate does not adsorb on manganese dioxide. The relative affinity of selenate and selenite for the oxides and the lack of adsorption of selenate on a strongly acidic surface suggests that selenate forms outer-sphere complexes while selenite forms inner-sphere complexes with the surfaces. The data also indicate that the competition sequence of other anions with respect to selenite adsorption at pH 7.0 is phosphate > silicate > molybdate > fluoride > sulfate on amorphous iron oxyhydroxide and molybdate ??? phosphate > silicate > fluoride > sulfate on manganese dioxide. The adsorption of phosphate, molybdate, and silicate on these oxides as a function of pH indicates that the competition sequences reflect the relative affinities of these anions for the surfaces. The Triple Layer surface complexation model is used to provide a quantitative description of these observations and to assess the importance of surface site heterogeneity on anion adsorption. The modeling results suggest that selenite forms binuclear, innersphere complexes with amorphous iron oxyhydroxide and monodentate, inner-sphere complexes with manganese dioxide and that selenate forms outer-sphere, monodentate complexes with amorphous iron oxyhydroxide. The heterogeneity of the oxide surface sites

  5. Amorphous silicon based radiation detectors

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Qureshi, S.; Wildermuth, D.; Fujieda, I.; Street, R.A.

    1991-07-01

    We describe the characteristics of thin(1 μm) and thick (>30μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and γ rays. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. 13 refs., 7 figs

  6. Inelastic scattering from amorphous solids

    International Nuclear Information System (INIS)

    Price, D.L.

    1985-08-01

    The potential of inelastic neutron scattering techniques for surveying various aspects of the dynamics of amorphous solids is briefly reviewed. The recent use of the Intense Pulsed Neutron Source to provide detailed information on the optical vibrations of glasses is discussed in more detail. The density of states represents an averaged quantity which gives information about the general characteristics of the structure and bonding. More extensive information can be obtained by studying the detailed wavevector dependence of the dynamic structure factor. 15 refs., 7 figs

  7. Micro/nanostructures formation by femtosecond laser surface processing on amorphous and polycrystalline Ni{sub 60}Nb{sub 40}

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Edwin, E-mail: edwin.peng@huskers.unl.edu [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Tsubaki, Alfred; Zuhlke, Craig A. [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Wang, Meiyu [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Bell, Ryan [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Lucis, Michael J. [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Anderson, Troy P.; Alexander, Dennis R. [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Gogos, George; Shield, Jeffrey E. [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States)

    2017-02-28

    Highlights: • Femtosecond laser processing of glass-forming Ni{sub 60}Nb{sub 40} produce surface structures. • Cross sectioning, imaging, & TEM sample preparation with dual-beam SEM. • Low laser fluence surface structures’ form by ablation. • High laserfluence surface structures form by ablation and fluid flow. - Abstract: Femtosecond laser surface processing is a technology that can be used to functionalize many surfaces, imparting specialized properties such as increased broadband optical absorption or superhydrophilicity/superhydrophobicity. In this study, two unique classes of surface structures, below surface growth (BSG) and above surface growth (ASG) mounds, were formed by femtosecond laser surface processing on amorphous and polycrystalline Ni{sub 60}Nb{sub 40} with two different grain sizes. Cross sectional imaging of these mounds revealed thermal evidence of the unique formation processes for each class of surface structure. BSG mounds formed on all three substrates using the same laser parameters had similar surface morphology. The microstructures in the mounds were unaltered compared with the substrate before laser processing, suggesting their formation was dominated by preferential valley ablation. ASG mounds had similar morphology when formed on the polycrystalline Ni{sub 60}Nb{sub 40} substrates with 100 nm and 2 μm grain size. However, the ASG mounds had significantly wider diameter and higher peak-to-valley heights when the substrate was amorphous Ni{sub 60}Nb{sub 40}. Hydrodynamic melting was primarily responsible for ASG mound formation. On amorphous Ni{sub 60}Nb{sub 40} substrates, the ASG mounds are most likely larger due to lower thermal diffusivity. There was clear difference in growth mechanism of femtosecond laser processed BSG and ASG mounds, and grain size does not appear to be a factor.

  8. A mechanistic model for radiation-induced crystallization and amorphization in U3Si

    International Nuclear Information System (INIS)

    Rest, J.

    1994-06-01

    Radiation-induced amorphization is assessed. A rate-theory model is formulated wherein amorphous clusters are formed by the damage event These clusters are considered centers of expansion (CE), or excess-free-volume zones. Simultaneously, centers of compression (CC) are created in the material. The CCs are local regions of increased density that travel through the material as an elastic (e.g., acoustic) shock wave. The CEs can be annihilated upon contact with CCs (annihilation probability depends on height of the energy barrier), forming either a crystallized region indistinguishable from the host material, or a region with a slight disorientation (recrystallized grain). Recrystallized grains grow by the accumulation of additional CCs. Full amorphization is calculated on the basis of achieving a fuel volume fraction consistent with the close packing of spherical entities. Amorphization of a recrystallized grain is hindered by the grain boundary. Preirradiation of U 3 Si above the critical temperature for amorphization results in of nanometer-size grains. Subsequent reirradiation below the critical temperature shows that the material has developed a resistance to radiation-induced amorphization higher dose needed to amorphize the preirradiated samples than now preirradiated samples. In the model, it is assumed that grain boundaries act as effective defect sinks, and that enhanced defect annihilation is responsible for retarding amorphization at low temperature. The calculations have been validated against data from ion-irradiation experiments with U 3 Si. To obtain additional validation, the model has also been applied to the ion-induced motion of the interface between crystalline and amorphous phases of U 3 Si. Results of this analysis are compared to data and results of calculations for ion bombardment of Si

  9. Microstructure and property of Fe–Co–B–Si–C–Nb amorphous composite coating fabricated by laser cladding process

    International Nuclear Information System (INIS)

    Zhu, Y.Y.; Li, Z.G.; Li, R.F.; Li, M.; Daze, X.L.; Feng, K.; Wu, Y.X.

    2013-01-01

    Laser cladding of Fe 34 Co 34 B 20 Si 5 C 3 Nb 4 on a low carbon steel substrate was conducted using coaxial powder feeding method. Microstructure, phase and microhardness were investigated by scanning electronic microscopy, transmission electron microscopy, X-ray diffraction, electron probe micro-analysis and microhardness tester. Amorphous coating with NbC particles embedded in the matrix was formed. Differential scanning calorimetry curve showed that the glass transition temperature (T g ) and the onset crystallization temperature (T x ) were 799 K and 850 K, respectively. The supercooled liquid region (ΔT x = T x − T g ) was as large as 51 K, which implied the high thermal stability of the supercooled liquid against crystallization. Due to the NbC particles embedded in the amorphous matrix, the mean value of the microhardness of the coating prepared by laser cladding was higher than that of the bulk metallic glass formed by the copper mold casting method. The contribution of NbC particles to the total microhardness was theoretically estimated. The estimated hardness of the composite coating agreed well with the tested value.

  10. Characterization of oxide layers on amorphous Mg-based alloys by Auger electron spectroscopy with sputter depth profiling

    Energy Technology Data Exchange (ETDEWEB)

    Baunack, S.; Wolff, U. [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung Dresden, Postfach 270016, 01171, Dresden (Germany); Subba Rao, R.V. [Indira Ghandi Centre for Atomic Research, 603 102, Kalpakkam, Tamil Nadu (India)

    2003-04-01

    Amorphous ribbons of Mg-Y-TM-[Ag](TM: Cu, Ni), prepared by melt spinning, were subjected to electrochemical investigations. Oxide layers formed anodically under potentiostatic control in different electrolytes were investigated by AES and sputter depth profiling. Problems and specific features of characterization of the composition of oxide layers and amorphous ternary or quaternary Mg-based alloys have been investigated. In the alloys the Mg(KL{sub 23}L{sub 23}) peak exhibits a different shape compared to that in the pure element. Analysis of the peak of elastically scattered electrons proved the absence of plasmon loss features, characteristic of pure Mg, in the alloy. A different loss feature emerges in Mg(KL{sub 23}L{sub 23}) and Cu(L{sub 23}VV). The system Mg-Y-TM-[Ag] suffers preferential sputtering. Depletion of Mg and enrichment of TM and Y are found. This is attributed mainly to the preferential sputtering of Mg. Thickness and composition of the formed oxide layer depend on the electrochemical treatment. After removing the oxide by sputtering the concentration of the underlying alloy was found to be affected by the treatment. (orig.)

  11. The Effect of Substitution of Fe By Co on Rapidly Quenched (FeCoMoCuB Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Marek Paluga

    2005-01-01

    Full Text Available (Fe1-xCox79Mo8Cu1B15 amorphous alloys ware prepared in the form of ribbons by rapid quenching for x=0. 0.25 and 0.5. The effect of variation of Co/Fe ratio is analyzed with respect to the formation of amorphous state and to transformation of the structure into nancrystalline phases formed after subsequent thermal treatment. Selected properties and atomic structure in as-quenched state are studied by TEM, AFM, XRD any by measurement of magnetoresistance characteristics. The influence of heat treatment on transport and magnetic properties is shown on temperature dependencies of electrical resistivity and magnetization. It was founf that while the increase of Co content leads to the increase of Curie temperature of as-quenched structure, transition to nanocrystalline state is not affected in a significant manner. The as-quenched state for alloy without Co was found to contain thin crystal-containing layer which, however, was observed, contary to general behavior, at the side of the ribbon exposed to higher quenching rates.

  12. Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers.

    Science.gov (United States)

    Lenz, Elisabeth; Löbmann, Korbinian; Rades, Thomas; Knop, Klaus; Kleinebudde, Peter

    2017-01-01

    Co-amorphous drug-amino acid systems have gained growing interest as an alternative to common amorphous formulations which contain polymers as stabilizers. Several preparation methods have recently been investigated, including vibrational ball milling on a laboratory scale or spray drying in a larger scale. In this study, the feasibility of hot melt extrusion for continuous manufacturing of co-amorphous drug-amino acid formulations was examined, challenging the fact that amino acids melt with degradation at high temperatures. Furthermore, the need for an addition of a polymer in this process was evaluated. After a polymer screening via the solvent evaporation method, co-amorphous indomethacin-arginine was prepared by a melting-solvent extrusion process without and with copovidone. The obtained products were characterized with respect to their solid-state properties, non-sink dissolution behavior, and stability. Results were compared to those of spray-dried formulations with the same compositions and to spray-dried indomethacin-copovidone. Overall, stable co-amorphous systems could be prepared by extrusion without or with copovidone, which exhibited comparable molecular interaction properties to the respective spray-dried products, while phase separation was detected by differential scanning calorimetry in several cases. The formulations containing indomethacin in combination with arginine and copovidone showed enhanced dissolution behavior over the formulations with only copovidone or arginine. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Neutron diffraction and thermal studies of amorphous CS{sub 2} realised by low-temperature vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yamamuro, O.; Matsuo, T. [Osaka Univ., Dept. of Chemistry, Graduate School of Sciences (Japan); Onoda-Yamamuro, N. [Tokyo Denki Univ., College of Sciences and Technology (Japan); Takeda, K. [Naruto Univ., Dept. of Chemistry, Tokushima (Japan); Munemura, H.; Tanaka, S.; Misawa, M. [Niigata Univ. (Japan). Faculty of Science

    2003-08-01

    We have succeeded in preparing amorphous carbon disulphide (CS{sub 2}) by depositing its vapour on a cold substrate at 10 K. Complete formation of the amorphous state has been confirmed by neutron diffraction and differential thermal analysis (DTA). The amorphous sample crystallized at ca. 70 K, which is lower than the hypothetical glass transition temperature (92 K) estimated from the DTA data of the (CS{sub 2}){sub x}(S{sub 2}Cl{sub 2}){sub 1-x} binary mixture. CS{sub 2}, a symmetric linear tri-atomic molecule, is the simplest of the amorphized molecular substances whose structural and thermal information has been reported so far. Comparison of the static structure factors S(Q) has shown that the orientational correlation of CS{sub 2} molecules may be much stronger in the amorphous state than in the liquid state at higher temperature. (authors)

  14. Effect Of Low-Temperature Annealing On The Properties Of Ni-P Amorphous Alloys Deposited Via Electroless Plating

    Directory of Open Access Journals (Sweden)

    Zhao Guanlin

    2015-06-01

    Full Text Available Amorphous Ni-P alloys were prepared via electroless plating and annealing at 200°C at different times to obtain different microstructures. The effects of low-temperature annealing on the properties of amorphous Ni-P alloys were studied. The local atomic structure of the annealed amorphous Ni-P alloys was analyzed by calculating the atomic pair distribution function from their X-ray diffraction patterns. The results indicate that the properties of the annealed amorphous Ni-P alloys are closely related to the order atomic cluster size. However, these annealed Ni-P alloys maintained their amorphous structure at different annealing times. The variation in microhardness is in agreement with the change in cluster size. By contrast, the corrosion resistance of the annealed alloys in 3.5 wt% NaCl solution increases with the decrease in order cluster size.

  15. Cost-effective alternative to nano-encapsulation: Amorphous curcumin-chitosan nanoparticle complex exhibiting high payload and supersaturation generation.

    Science.gov (United States)

    Nguyen, Minh Hiep; Yu, Hong; Kiew, Tie Yi; Hadinoto, Kunn

    2015-10-01

    While the wide-ranging therapeutic activities of curcumin have been well established, its successful delivery to realize its true therapeutic potentials faces a major challenge due to its low oral bioavailability. Even though nano-encapsulation has been widely demonstrated to be effective in enhancing the bioavailability of curcumin, it is not without drawbacks (i.e. low payload and costly preparation). Herein we present a cost-effective bioavailability enhancement strategy of curcumin in the form of amorphous curcumin-chitosan nanoparticle complex (or curcumin nanoplex in short) exhibiting a high payload (>80%). The curcumin nanoplex was prepared by a simple yet highly efficient drug-polysaccharide complexation method that required only mixing of the curcumin and chitosan solutions under ambient condition. The effects of (1) pH and (2) charge ratio of chitosan to curcumin on the (i) physical characteristics of the nanoplex (i.e. size, colloidal stability and payload), (ii) complexation efficiency, and (iii) production yield were investigated from which the optimal preparation condition was determined. The nanoplex formation was found to favor low acidic pH and charge ratio below unity. At the optimal condition (i.e. pH 4.4. and charge ratio=0.8), stable curcumin nanoplex (≈260nm) was prepared at >90% complexation efficiency and ≈50% production yield. The amorphous state stability, colloidal stability, and in vitro non-cytotoxicity of the nanoplex were successfully established. The curcumin nanoplex produced prolonged supersaturation (3h) in the presence of hydroxypropyl methylcellulose (HPMC) at five times of the saturation solubility of curcumin. In addition, curcumin released from the nanoplex exhibited improved chemical stability owed to the presence of chitosan. Both results (i.e. high supersaturation and improved chemical stability) bode well for the ability of the curcumin nanoplex to enhance the bioavailability of curcumin clinically. Copyright © 2015

  16. Three-dimensional nanomechanical mapping of amorphous and crystalline phase transitions in phase-change materials.

    Science.gov (United States)

    Grishin, Ilja; Huey, Bryan D; Kolosov, Oleg V

    2013-11-13

    The nanostructure of micrometer-sized domains (bits) in phase-change materials (PCM) that undergo switching between amorphous and crystalline phases plays a key role in the performance of optical PCM-based memories. Here, we explore the dynamics of such phase transitions by mapping PCM nanostructures in three dimensions with nanoscale resolution by combining precision Ar ion beam cross-sectional polishing and nanomechanical ultrasonic force microscopy (UFM) mapping. Surface and bulk phase changes of laser written submicrometer to micrometer sized amorphous-to-crystalline (SET) and crystalline-to-amorphous (RESET) bits in chalcogenide Ge2Sb2Te5 PCM are observed with 10-20 nm lateral and 4 nm depth resolution. UFM mapping shows that the Young's moduli of crystalline SET bits exceed the moduli of amorphous areas by 11 ± 2%, with crystalline content extending from a few nanometers to 50 nm in depth depending on the energy of the switching pulses. The RESET bits written with 50 ps pulses reveal shallower depth penetration and show 30-50 nm lateral and few nanometer vertical wavelike topography that is anticorrelated with the elastic modulus distribution. Reverse switching of amorphous RESET bits results in the full recovery of subsurface nanomechanical properties accompanied with only partial topography recovery, resulting in surface corrugations attributed to quenching. This precision sectioning and nanomechanical mapping approach could be applicable to a wide range of amorphous, nanocrystalline, and glass-forming materials for 3D nanomechanical mapping of amorphous-crystalline transitions.

  17. Recrystallization of implanted amorphous silicon layers. I. Electrical properties of silicon implanted with BF+2 or Si++B+

    International Nuclear Information System (INIS)

    Tsai, M.Y.; Streetman, B.G.

    1979-01-01

    Electrical properties of recrystallized amorphous silicon layers, formed by BF + 2 implants or Si + +B + implants, have been studied by differential resistivity and Hall-effect measurements. Electrical carrier distribution profiles show that boron atoms inside the amorphized Si layers can be fully activated during recrystallization at 550 0 C. The mobility is also recovered. However, the tail of the B distribution, located inside a damaged region near the original amorphous-crystalline interface, remains inactive. This inactive tail has been observed for all samples implanted with BF + 2 . Only in a thicker amorphous layer, formed for example by Si + predamage implants, can the entire B profile be activated. The etch rate of amorphous silicon in HF and the effect of fluorine on the recrystallization rate are also reported

  18. 1D - photonic crystals prepared from the amorphous chalcogenide films

    Czech Academy of Sciences Publication Activity Database

    Kohoutek, T.; Orava, J.; Wágner, T.; Hrdlička, M.; Vlček, Milan; Frumar, M.

    2009-01-01

    Roč. 20, - (2009), S346-S350 ISSN 0957-4522. [International Conference of Optical and Optoelectronic Materials and Applications. London, 29.07.2007-03.08.2007] Institutional research plan: CEZ:AV0Z40500505 Keywords : chalcogenide thin films Subject RIV: CA - Inorganic Chemistry Impact factor: 1.020, year: 2009

  19. Effect of mechanical stress on the magnetic properties of amorphous Fe-B ribbons

    International Nuclear Information System (INIS)

    Kecer, J.; Novak, L.

    2011-01-01

    From this point of view, we have dealt with the effect of mechanical stress in this work. It is one of the variables, together with an external magnetic field and temperature, in which it can be expected a significant impact on changes in magnetic properties of amorphous ferromagnets prepared by rapid quenching of the melt. Internal tensions, significantly affecting the magnetic parameters, are introduced into the material already under preparation. Although the rate of internal stresses in amorphous tape is high, we can see significant changes in the measured magnetic parameters induced by mechanical stresses. By applying mechanical stress on amorphous sample Fe 84 B 16 , is highlighted the impact of internal stresses in the direction of stress, which induces the direction of axis of easy magnetising and it results in filling the hysteresis loop to the J axis, coercivity values decreasing by half, constant of magnetoelastic anisotropy decreasing by half and change in the value of magnetostriction. (authors)

  20. Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers

    DEFF Research Database (Denmark)

    Lenz, Elisabeth; Löbmann, Korbinian; Rades, Thomas

    2017-01-01

    Co-amorphous drug-amino acid systems have gained growing interest as an alternative to common amorphous formulations which contain polymers as stabilizers. Several preparation methods have recently been investigated, including vibrational ball milling on a laboratory scale or spray drying......, and stability. Results were compared to those of spray-dried formulations with the same compositions and to spray-dried indomethacin-copovidone. Overall, stable co-amorphous systems could be prepared by extrusion without or with copovidone, which exhibited comparable molecular interaction properties...... to the respective spray-dried products, while phase separation was detected by differential scanning calorimetry in several cases. The formulations containing indomethacin in combination with arginine and copovidone showed enhanced dissolution behavior over the formulations with only copovidone or arginine....