WorldWideScience

Sample records for prepared amorphous forms

  1. Preparation and characterization of amorphous, I and II forms of clopidogrel hydrogen sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jie; Wang, Jing [National Engineering Laboratory for Cereal Fermentation Technology, School of Chemical and Material Engineering, Jiangnan University; Wuxi 214122 (China); Rohani, S. [Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2012-05-15

    In this work the amorphous, I and II forms of clopidogrel hydrogen sulfate (CHS) were prepared and characterized by use of powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The labile precipitate and oiling out during reactive crystallization were also firstly reported. Based on the solubility and thermochemical data, the amorphous form and I form is found to be monotropically related, while the I form and II form are enantiotropically related. In addition, both transformations from anhydrous form to I form and from I form to II form are greatly temperature-dependent, which gives us a window to prepare each pure form. These results will contribute a better understanding about the polymorphic nature and crystallization mechanism of clopidogrel hydrogen sulfate. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Preparation and Characterization of Amorphous Layer on Aluminum Alloy Formed by Plasma Electrolytic Deposition (PED)

    Institute of Scientific and Technical Information of China (English)

    GUAN Yong-jun; XIA Yuan

    2004-01-01

    In this investigation, protective layers were formed on aluminum substrate by Plasma Electrolytic Deposition (PED) using sodium silicate solution. The relation between the thickness of the layer and process time were studied. XRD,SEM, EDS were used to study the layer's structure, composition and micrograph. The results show that the deposited layers are amorphous and contain mainly oxygen, silicon, and aluminum. The possible formation mechanism of amorphous [Al-Si-O] layer was proposed: During discharge periods, Al2O3 phase of the passive film and SiO32-near the substrate surface are sintered into xSiO2(1-x)Al2O3 and then transformed into amorphous [Al-Si-O] phase.

  3. Recent developments in micro- and nanofabrication techniques for the preparation of amorphous pharmaceutical dosage forms.

    Science.gov (United States)

    Qi, Sheng; Craig, Duncan

    2016-05-01

    Nano- and microfabrication techniques have been widely explored in the textile, polymer and biomedical arenas, although more recently these systems have attracted considerable interest as drug delivery vehicles with concomitant considerations of physical characterization, scalability, stability and drug release. In this review, the current thinking with regards to the manufacture of solid amorphous pharmaceutical materials using electrohydrodynamic and gyration-based approaches, melt-spinning approaches, thermal moulding, inkjet printing and 3D printing will be examined in the context of their potential and actual viability as dosage forms. A series of practical examples will be discussed as to how these approaches have been used as means of producing drug delivery systems for a range of delivery systems and treatments.

  4. Amorphous drugs and dosage forms

    DEFF Research Database (Denmark)

    Grohganz, Holger; Löbmann, K.; Priemel, P.

    2013-01-01

    The transformation to an amorphous form is one of the most promising approaches to address the low solubility of drug compounds, the latter being an increasing challenge in the development of new drug candidates. However, amorphous forms are high energy solids and tend to recry stallize. New form...

  5. Amorphous drugs and dosage forms

    DEFF Research Database (Denmark)

    Grohganz, Holger; Löbmann, K.; Priemel, P.

    2013-01-01

    The transformation to an amorphous form is one of the most promising approaches to address the low solubility of drug compounds, the latter being an increasing challenge in the development of new drug candidates. However, amorphous forms are high energy solids and tend to recry stallize. New...... formulation principles are needed to ensure the stability of amorphous drug forms. The formation of solid dispersions is still the most investigated approach, but additional approaches are desirable to overcome the shortcomings of solid dispersions. Spatial separation by either coating or the use of micro......-containers has shown potential to prevent or delay recrystallization. Another recent approach is the formation of co-amorphous mixtures between either two drugs or one drug and one low molecular weight excipient. Molecular interactions between the two molecules provide an energy barrier that has to be overcome...

  6. Preparation and Characterization of Amorphous Layer on Aluminum Alloy Formed by Plasma Electrolytic Deposition (PED)

    Institute of Scientific and Technical Information of China (English)

    GUANYong-jun; XIAYuan

    2004-01-01

    In this investigation, protective layers were formed on aluminum substrate by Plasma Electrolytic Deposition (PED) using sodium silicate solution. The relation between the thickness of the layer and process time were studied. XRD, SEM, EDS were used to study the layer's structure, composition and micrograph. The results show that the deposited layers are amorphous and contain mainly oxygen, silicon, and aluminum. The possible formation mechanism of amorphous[Al-Si-O] layer was proposed: During discharge periods, Al2O3 phase of the passive film and SiO32- near the substrate surface are sintered into xSiO2(1-x)Al2O3 and then transformed into amorphous [Al-Si-O] phase.

  7. Amorphous calcium carbonate particles form coral skeletons

    Science.gov (United States)

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang-Yu; Stifler, Cayla A.; Frazier, Matthew J.; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V.; Marcus, Matthew A.; Gilbert, Pupa U. P. A.

    2017-09-01

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene–Eocene Thermal Maximum that occurred 56 Mya.

  8. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying

    DEFF Research Database (Denmark)

    Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger;

    2015-01-01

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co......-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) showed...... the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions) was observed when SLS was spray-dried with SVS (and LYS). In conclusion, spray drying of SVS and LYS from...

  9. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying.

    Science.gov (United States)

    Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas; Laitinen, Riikka

    2015-12-03

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a "spring and parachute" effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions) was observed when SLS was spray-dried with SVS (and LYS). In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS.

  10. Preparation of High Purity Amorphous Boron Powder

    Directory of Open Access Journals (Sweden)

    K.V. Tilekar

    2005-10-01

    Full Text Available Amorphous boron powder of high purity (92-94 % with a particle size of l-2 mm is preferred as a fuel for fuel-rich propellants for integrated rocket ramjets and for igniter formulations. Thispaper describes the studies on process optimisation of two processes, ie, oxidative roasting of boron (roasting boron in air and roasting boron with zinc in an inert medium for preparing high purity boron. Experimental studies reveal that roasting boron with zinc at optimised process conditions yields boron of purity more than 93 per cent, whereas oxidative roasting method yields boron of purity - 92 per cent. Oxidative roasting has comparative edge over the other processes owing to its ease of scale-up and simplicity

  11. Lyophilization monophase solution technique for preparation of amorphous flutamide dispersions.

    Science.gov (United States)

    Elgindy, Nazik; Elkhodairy, Kadria; Molokhia, Abdallah; Elzoghby, Ahmed

    2011-07-01

    Flutamide (FLT) is a poorly soluble anticancer drug. Therefore, lyophilized dispersions (LDs) of FLT with polyvinylpyrrolidone (PVP) K30, polyethylene glycol (PEG) 6000, and pluronic F127 were prepared via lyophilization monophase solution technique with the aim of increasing its dissolution rate. FLT showed an A(L)-type phase solubility diagrams with PVP and PEG, whereas A(N)-type diagram was obtained with pluronic. The amount of residual tertiary butyl alcohol, determined by gas chromatography, was 0.015-0.021% w/w. Differential scanning calorimetry and X-ray diffractometry revealed that FLT-polymer 1:1 LDs were partially amorphous, whereas the 1:3 and 1:5 LDs were completely amorphous. After 6 months storage, polymers under study inhibited FLT recrystallization maintaining its amorphous form. The particle size of FLT-polymer LDs was between 0.81 and 2.13 μm, with a high surface area (268.43-510.82 m²/g) and porosity (354.01-676.23 e⁻³ mL/g). Also, the poor flow properties of FLT could be improved but to a limited extent. FLT dissolution was significantly enhanced with the fastest dissolution that was achieved using pluronic. After 30 min, about 66.52%, 78.23%, and 81.64% of FLT was dissolved from 1:5 FLT-PVP, PEG, and pluronic LDs, respectively, compared with only 13.45% of FLT. These data suggest that these polymers might be useful adjuncts in preparation and stabilization of amorphous immediate-release FLT LDs.

  12. Structural studies of several distinct metastable forms of amorphous ice.

    Science.gov (United States)

    Tulk, C A; Benmore, C J; Urquidi, J; Klug, D D; Neuefeind, J; Tomberli, B; Egelstaff, P A

    2002-08-23

    Structural changes during annealing of high-density amorphous ice were studied with both neutron and x-ray diffraction. The first diffraction peak was followed from the high- to the low-density amorphous form. Changes were observed to occur through a series of intermediate forms that appear to be metastable at each anneal temperature. Five distinct amorphous forms were studied with neutron scattering, and many more forms may be possible. Radial distribution functions indicate that the structure evolves systematically between 4 and 8 angstroms. The phase transformations in low-temperature liquid water may be much more complex than currently understood.

  13. Process induced disorder in crystalline materials: differentiating defective crystals from the amorphous form of griseofulvin.

    Science.gov (United States)

    Feng, Tao; Pinal, Rodolfo; Carvajal, M Teresa

    2008-08-01

    This research investigates milling induced disorder in crystalline griseofulvin. Griseofulvin was subjected to cryogenic milling for various lengths of time. For comparison, the amorphous form of griseofulvin was also prepared by the quench melt method. Different analytical techniques were used to study the differences between the cryomilled, amorphous and crystalline forms of the drug. Cryogenic milling of griseofulvin progressively reduces the crystallinity of the drug by inducing crystal defects, rather than amorphous materials. Raman analysis provides evidence of structural differences between the two. The differences between the defective crystals produced by milling and the amorphous form are significant enough as to be measurable in their bulk thermal properties. Defective crystals show significant decrease in the heat of fusion as a function of milling time but do not exhibit a glass transition nor recrystallization from the amorphous form. Crystal defects undergo recrystallization upon heating at temperatures well below the glass transition temperature (T(g)) in a process that is separate and completely independent from the crystallization of the amorphous griseofulvin, observed above T(g). Physical mixtures of defective crystals and amorphous drug demonstrate that the thermal events associated with each form persist in the mixtures, unaffected by the presence of the other form.

  14. Thermal decomposition of silane to form hydrogenated amorphous Si

    Science.gov (United States)

    Strongin, M.; Ghosh, A.K.; Wiesmann, H.J.; Rock, E.B.; Lutz, H.A. III

    Hydrogenated amorphous silicon is produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, at elevated temperatures of about 1700 to 2300/sup 0/C, in a vacuum of about 10/sup -8/ to 10/sup -4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate to form hydrogenated amorphous silicon.

  15. Preparation and characterization of spray-dried co-amorphous drug-amino acid salts

    DEFF Research Database (Denmark)

    Jensen, Katrine Birgitte Tarp; Blaabjerg, Lasse Ingerslev; Lenz, Elisabeth;

    2016-01-01

    scale. In this study, spray-drying was investigated as a scale up preparation method for co-amorphous indomethacin (IND)-amino acid mixtures. In addition, the physico-chemical properties of the different co-amorphous systems were investigated with respect to the amino acids' ability towards co...... dissolution behaviour, and physical stability at various storage conditions, were examined. KEY FINDINGS: Results showed that IND could be converted into an amorphous form in combination with the amino acids arginine (ARG), histidine (HIS) and lysine (LYS) by spray-drying. Solid state characterization...... mixtures were physically stable (>10 months) at room temperature and 40°C under dry conditions. Intrinsic dissolution of the co-amorphous mixtures showed an improved dissolution behaviour under intestinal pH conditions for IND-ARG compared with the crystalline and amorphous forms of the drug. On the other...

  16. Amorphization within the tablet: Using microwave irradiation to form a glass solution in situ.

    Science.gov (United States)

    Doreth, Maria; Hussein, Murtadha Abdul; Priemel, Petra A; Grohganz, Holger; Holm, René; Lopez de Diego, Heidi; Rades, Thomas; Löbmann, Korbinian

    2017-03-15

    In situ amorphization is a concept that allows to amorphize a given drug in its final dosage form right before administration. Hence, this approach can potentially be used to circumvent recrystallization issues that other amorphous formulation approaches are facing during storage. In this study, the feasibility of microwave irradiation to prepare amorphous solid dispersions (glass solutions) in situ was investigated. Indomethacin (IND) and polyvinylpyrrolidone K12 (PVP) were tableted at a 1:2 (w/w) ratio. In order to study the influence of moisture content and energy input on the degree of amorphization, tablet formulations were stored at different relative humidity (32, 43 and 54% RH) and subsequently microwaved using nine different power-time combinations up to a maximum energy input of 90kJ. XRPD results showed that up to 80% (w/w) of IND could be amorphized within the tablet. mDSC measurements revealed that with increasing microwaving power and time, the fractions of crystalline IND and amorphous PVP reduced, whereas the amount of in situ formed IND-PVP glass solution increased. Intrinsic dissolution showed that the dissolution rate of the microwaved solid dispersion was similar to that of a quench cooled, fully amorphous glass solution even though the microwaved samples contained residual crystalline IND. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Amorphous semiconductor sample preparation for transmission EXAFS measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ridgway, M.C.; Glover, C.J.; Tan, H.H. [Australian National Univ., Canberra (Australia). Dept. of Electronic Materials Engineering] [and others

    1998-12-31

    A novel methodology has been developed for the preparation of amorphous semiconductor samples for use in transmission extended x-ray absorption fine structure (EXAFS) measurements. Epitaxial heterostructures were fabricated by metal organic chemical vapor deposition (group III-Vs) or molecular beam epitaxy (group IVs). An epitaxial layer of {approximately} 2 {micro}m thickness was separated from the underlying substrate by selective chemical etching of an intermediate sacrificial layer. Ion implantation was utilized to amorphize the epitaxial layer either before or after selective chemical etching. The resulting samples were both stoichiometric and homogeneous in contrast to those produced by conventional techniques. The fabrication of amorphous GaAs, InP, In{sub 0.53}Ga{sub 0.47}As and Si{sub x}Ge{sub 1{minus}x} samples is described. Furthermore, EXAFS measurements comparing both fluorescence and transmission detection, and crystalline and amorphized GaAs, are shown.

  18. Preparation and recrystallization behavior of spray-dried co-amorphous naproxen-indomethacin.

    Science.gov (United States)

    Beyer, Andreas; Radi, Lydia; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Leopold, Claudia S

    2016-07-01

    To improve the dissolution properties and the physical stability of amorphous active pharmaceutical ingredients, small molecule stabilizing agents may be added to prepare co-amorphous systems. The objective of the study was to investigate if spray-drying allows the preparation of co-amorphous drug-drug systems such as naproxen-indomethacin and to examine the influence of the process conditions on the resulting initial sample crystallinity and the recrystallization behavior of the drug(s). For this purpose, the process parameters inlet temperature and pump feed rate were varied according to a 2(2) factorial design and the obtained samples were analyzed with X-ray powder diffractometry and Fourier-transformed infrared spectroscopy. Evaluation of the data revealed that the preparation of fully amorphous samples could be achieved depending on the process conditions. The resulting recrystallization behavior of the samples, such as the total recrystallization rate, the individual recrystallization rates of naproxen and indomethacin as well as the polymorphic form of indomethacin that was formed were influenced by these process conditions. For initially amorphous samples, it was found that naproxen and indomethacin recrystallized almost simultaneously, which supports the theory of formation of drug-drug heterodimers in the co-amorphous phase.

  19. Preparation of Ti-based amorphous brazing alloy

    Institute of Scientific and Technical Information of China (English)

    ZOU Jia-sheng; JIANG Zhi-guo; XU Zhi-rong; CHEN Guang

    2006-01-01

    A new kind of amorphous active brazing alloy foil with the composition of Ti40Zr25Ni15Cu20 was successfully synthesized using melt spinning in roll forging machine in argon atmosphere. The amorphous structure and composition were examined by X-ray diffraction, differential thermal analysis and energy dispersive X-ray detector. The results show that the Ti40Zr25Ni15Cu20 amorphous alloy foil has excellent wettability on Si3N4 ceramic and demonstrate a strong glass forming ability. The reduced glass transition temperature (Trg) and the temperature interval of supercooled liquid region before crystallization are 0.76 and 78 K, respectively.

  20. Amorphous Ni-P Hollow Spheres Prepared by Self-assembly of Ni-P Nanoparticles on Polystyrene Beads

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The first preparation of amorphous Ni-P/PS (polystyrene) core-shell and Ni-P hollow microspheres was per-formed using a surface seeding-electroless plating method. The preliminary magnetic properties of the amorphous Ni-P hollow sphere were investigated and compared with those of the Ni hollow sphere.

  1. Application of polyglycolized glycerides in protection of amorphous form of etoricoxib during compression.

    Science.gov (United States)

    Shimpi, Shamkant; Mahadik, Kakasaheb; Takada, Kanji; Paradkar, Anant

    2007-10-01

    Polymorphic transition and stability problems during amorphous drug formulation are the major limiting factors in pharmaceutical technology. The purpose of the study was to evaluate the ability of polyglycolized glycerides (Gelucire) in protection of amorphous form of drug during compression and shelf life with lower proportion. Amorphous etoricoxib (AET) was prepared by spray drying technique. Tablets of AET and melt granules of AET (MG-AET) with Gelucire 50/13 were prepared. Tablets parameters like hardness, disintegration and content uniformity were evaluated. Tablets were evaluated immediately after compression and on storage for 3 months at ambient conditions to determine degree of transformation using X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and dissolution profiles. Spray drying yielded the amorphous etoricoxib. Content uniformity in the tablet was in between 95 to 105%. Other parameters like disintegration and hardness were well within the limits. The results showed significant difference in the degree of crystallinity between AET tablet and MG-AET tablet. MG-AET tablet showed absence of crystallinity after 3 months storage. The reason could be formation of hydrogen bonding between the Gelucire and AET. Also Gelucire can be tableted very easily under low pressure and showed elastic recovery. Gelucire yielded a soft embedding during tableting, which prevented the polymorphic transformation. Polyglycolized glycerides (Gelucire 50/13) are able to protect amorphous etoricoxib during compression. As excipient required is low, it became possible to prepare tablet formulation as compared to other excipient like polyvinylpyrrolidon (PVP).

  2. Clozapine-carboxylic acid plasticized co-amorphous dispersions: Preparation, characterization and solution stability evaluation

    Directory of Open Access Journals (Sweden)

    Ali Ahmed Mahmoud Abdelhaleem

    2015-06-01

    Full Text Available This study addressed the possibility of forming of co-amorphous systems between clozapine (CZ and various carboxylic acid plasticizers (CAPs. The aim was to improve the solubility and oral bioavailability of clozapine. Co-amorphous dispersions were prepared using modified solvent evaporation methodology at drug/plasticizer stoichiometric ratios of 1:1, 1:1.5 and 1:2. Solid state characterization was performed using differential scanning calorimetry, X-ray diffraction and infra red spectroscopy. Highly soluble homogeneous co-amorphous dispersions were formed between clozapine and CAPs via hydrogen bonding. The co-amorphous dispersions formed with tartaric acid (1:2 showed the highest dissolution percentage (> 95 % in 20 minutes compared to pure crystalline CZ (56 %. Highly stable solutions were obtained from co-amorphous CZ-citric and CZ-tartaric acid at 1:1.5 molar ratio. The prepared dispersions suggest the possibility of peroral or sublingual administration of highly soluble clozapine at a reduced dose with the great chance to bypass the first pass metabolism.

  3. Compaction of Chemically Prepared Amorphous Fe-B nanoparticles

    DEFF Research Database (Denmark)

    Hendriksen, P.V.; Bødker, Franz; Mørup, Steen

    1997-01-01

    We report on attempts to compact chemically prepared amorphous iron-boron particles. The praticles have a size of about 100 nm and are pyrophoric. We have made a special die for uniaxial pressing in which the compaction can be performed at elevated temperature without exposing the powder to air. ....... Densities of up to 75% of that of bulk Fe-B have been obtained. Coercivity measurements show that the material is not magnetically soft....

  4. Compaction of Chemically Prepared Amorphous Fe-B nanoparticles

    DEFF Research Database (Denmark)

    Hendriksen, P.V.; Bødker, Franz; Mørup, Steen

    1997-01-01

    We report on attempts to compact chemically prepared amorphous iron-boron particles. The praticles have a size of about 100 nm and are pyrophoric. We have made a special die for uniaxial pressing in which the compaction can be performed at elevated temperature without exposing the powder to air....... Densities of up to 75% of that of bulk Fe-B have been obtained. Coercivity measurements show that the material is not magnetically soft....

  5. Atomic pairwise distribution function analysis of the amorphous phase prepared by different manufacturing routes

    DEFF Research Database (Denmark)

    Boetker, Johan P.; Koradia, Vishal; Rades, Thomas

    2012-01-01

    was subjected to quench cooling thereby creating an amorphous form of the drug from both starting materials. The milled and quench cooled samples were, together with the crystalline starting materials, analyzed with X-ray powder diffraction (XRPD), Raman spectroscopy and atomic pair-wise distribution function...... (PDF) analysis of the XRPD pattern. When compared to XRPD and Raman spectroscopy, the PDF analysis was superior in displaying the difference between the amorphous samples prepared by milling and quench cooling approaches of the two starting materials....

  6. Influence of particle size and preparation methods on the physical and chemical stability of amorphous simvastatin

    DEFF Research Database (Denmark)

    Zhang, Fang; Aaltonen, Jaakko; Tian, Fang

    2009-01-01

    molecular mobility and higher chemical degradation than CM. Therefore, the current study demonstrated that QC and CM have obvious differences in both physical and chemical properties. It was concluded that care should be taken when choosing preparation methods for making amorphous materials. Furthermore......, particle size, a factor that has often been overlooked when dealing with amorphous materials, was shown to have an influence on physical stability of amorphous simvastatin.......This study investigated the factors influencing the stability of amorphous simvastatin. Quench-cooled amorphous simvastatin in two particle size ranges, 150-180 microm (QC-big) and amorphous simvastatin (CM) were prepared, and their physical and chemical...

  7. Amorphization and thermal stability of aluminum-based nanoparticles prepared from the rapid cooling of nanodroplets: effect of iron addition.

    Science.gov (United States)

    Xiao, Shifang; Li, Xiaofan; Deng, Huiqiu; Deng, Lei; Hu, Wangyu

    2015-03-07

    Despite an intensive investigation on bimetallic nanoparticles, little attention has been paid to their amorphization in the past few decades. The study of amorphization on a nanoscale is of considerable significance for the preparation of amorphous nanoparticles and bulk metallic glass. Herein, we pursue the amorphization process of Al-based nanoparticles with classic molecular dynamics simulations and local structural analysis techniques. By a comparative study of the amorphization of pure Al and Fe-doped Al-based nanodroplets in the course of rapid cooling, we find that Fe addition plays a very important role in the vitrification of Al-based nanodroplets. Owing to the subsurface segregated Fe atoms with their nearest neighbors tending to form relatively stable icosahedral (ICO) clusters, the Fe-centred cluster network near the surface effectively suppresses the crystallization of droplets from surface nucleation and growth as the concentration of Fe attains a certain value. The glass formation ability of nanodroplets is suggested to be enhanced by the high intrinsic inner pressure as a result of small size and surface tension, combined with the dopant-inhibited surface nucleation. In addition, the effect of the size and the added concentration of nanoparticles on amorphization and the thermal stability of the amorphous nanoparticles are discussed. Our findings reveal the amorphization mechanism in Fe-doped Al-based nanoparticles and provide a theoretical guidance for the design of amorphous materials.

  8. Preparation and Properties of Mg-Cu-Y-Al bulk Amorphous Alloys

    DEFF Research Database (Denmark)

    Pryds, Nini; Eldrup, Morten Mostgaard; Ohnuma, M.

    2000-01-01

    Bulk amorphous (Mg(1-gamma)Al(gamma))(60)CU(30)Y(10) alloys were prepared using a relatively simple technique of rapid cooling of the melt in a copper wedge mould. The temperature vs, time was recorded during the cooling and solidification process of the melt and compared with a spacial and tempo......Bulk amorphous (Mg(1-gamma)Al(gamma))(60)CU(30)Y(10) alloys were prepared using a relatively simple technique of rapid cooling of the melt in a copper wedge mould. The temperature vs, time was recorded during the cooling and solidification process of the melt and compared with a spacial......-ray diffraction (XRD) and differential scanning calorimetry (DSC) for different alloy compositions and annealing temperatures. On annealing into the supercooled liquid state (441 K), specimens with no Al content remain basically amorphous while nanoparticles are formed and remain stable also at higher...... temperatures in specimens containing a few percent Al. The alloy with no Al crystallises apparently without the formation of nanoparticles. The critical cooling rate for the formation of an amorphous Mg(60)CU(30)Y(10) specimen was determined experimentally by a combination of DSC data and temperature vs, time...

  9. Chemical preparation and investigation of Fe-P-B ultrafine amorphous alloy particles

    Institute of Scientific and Technical Information of China (English)

    胡征; 吴勇; 范以宁; 颜其洁; 陈懿

    1997-01-01

    A series of Fe-P-B ultrafine amorphous alloy particles has been prepared by the chemical reduction method The composition and size of the particles have been effectively adjusted.Mossbauer spectroscopy in addition to sonic other techniques has been used to investigate the reaction process,the factors that influence the preparation,the crystallization of the particles,and the interactions between the components within them.The results indicate that the co-deposition of iron,phosphorus and boron atoms in the solution at room temperature forms Fe-P-B amorphous alloy particles,and a preferential bonding of Fe-P bond to Fe-B one exists in the particles.

  10. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    Science.gov (United States)

    Farmer, Joseph C.; Wong, Frank M.G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2014-07-15

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  11. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA; Wong, Frank M. G. [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Yang, Nancy [Lafayette, CA; Lavernia, Enrique J [Davis, CA; Blue, Craig A [Knoxville, TN; Graeve, Olivia A [Reno, NV; Bayles, Robert [Annandale, VA; Perepezko, John H [Madison, WI; Kaufman, Larry [Brookline, MA; Schoenung, Julie [Davis, CA; Ajdelsztajn, Leo [Walnut Creek, CA

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  12. Preparation of the cast glass-coated amorphous magnetic microwires

    Science.gov (United States)

    Baranov, S. A.; Yaltychenko, O. V.; Kanarovskii, E. Yu.; Codescu, M. M.

    2016-12-01

    In the present work, the cast glass-coated amorphous microwires manufactured by the Ulitovsky-Taylor method are studied. Interest in the cast glass-coated amorphous microwires has greatly increased in the last few years mainly due to their technological applications, in particular, as the sensor elements in the various devices. Technological aspects of the Ulitovsky-Taylor method for the preparation of the glass-coated microwires with the different radius are analyzed. It is essential that the microwires are manufactured using a rapid solidification technique. The geometrical characteristics of a microwire depend on the physical properties of a metal and of glass, the diameter of the initial glass tube, and the parameters of the heating inductor. The given method provides the microwire geometric parameters of within the wide ranges. Respectively, a metallic core diameter in these microwires can range from 0.5 to 70 μm, and their glass-coating thickness can be varied from 1 to 50 μm. Moreover, the length of the derivable samples can reach up to 104 m. The obtained microwires exhibit the magnetic properties, which are high dependent on the metallic core composition, and similarly as it was done here for the residual stresses, they can be expressed through the microwire geometric parameters.

  13. Detailed stability investigation of amorphous solid dispersions prepared by single-needle and high speed electrospinning.

    Science.gov (United States)

    Démuth, B; Farkas, A; Pataki, H; Balogh, A; Szabó, B; Borbás, E; Sóti, P L; Vigh, T; Kiserdei, É; Farkas, B; Mensch, J; Verreck, G; Van Assche, I; Marosi, G; Nagy, Z K

    2016-02-10

    In this research the long-term stability (one year) of amorphous solid dispersions (ASDs) prepared by high speed electrospinning was investigated at 25 °C/60% relative humidity (RH) (closed conditions) and 40 °C/75% RH (open conditions). Single needle electrospinning and film casting were applied as reference technologies. Itraconazole (ITR) was used as the model API in 40% concentration and the ASDs consisted of either one of the following polymers as a comparison: polyvinylpyrrolidone-vinyl acetate 6:4 copolymer (no hydrogen bonds between API and polymer) and hydroxypropyl methylcellulose (possible hydrogen bonds between oxo or tertiary nitrogen function of API and hydroxyl moiety of polymer). DSC, XRPD and dissolution characteristics of samples at 0, 3 and 12 months were investigated. In addition, Raman maps of certain electrospun ASDs were assessed to investigate crystallinity. A new chemometric method, based on Multivariate Curve Resolution-Alternating Least Squares algorithm, was developed to calculate the spectrum of amorphous ITR in the matrices and to determine the crystalline/amorphous ratio of aged samples. As it was expected ITR in single needle electrospun SDs was totally amorphous at the beginning, in addition hydroxypropyl methylcellulose could keep ITR in this form at 40 °C/75% RH up to one year due to the hydrogen bonds and high glass transition temperature of the SD. In polyvinylpyrrolidone-vinyl acetate matrix ITR remained amorphous at 25 °C/60% RH throughout one year. Materials prepared by scaled-up, high throughput version of electrospinning, which is compatible with pharmaceutical industry, also gained the same quality. Therefore these ASDs are industrially applicable and with an appropriate downstream process it would be possible to bring them to the market.

  14. Formulation and delivery of improved amorphous fenofibrate solid dispersions prepared by thin film freezing.

    Science.gov (United States)

    Zhang, Meimei; Li, Houli; Lang, Bo; O'Donnell, Kevin; Zhang, Haohao; Wang, Zhouhua; Dong, Yixuan; Wu, Chuanbin; Williams, Robert O

    2012-11-01

    The objective of this study was to prepare amorphous fenofibrate (FB) solid dispersions using thin film freezing (TFF) and to incorporate the solid dispersions into pharmaceutically acceptable dosage forms. FB solid dispersions prepared with optimized drug/polymer ratios were characterized by modulated differential scanning calorimetry (MDSC), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) specific surface area measurements, Fourier-transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), and supersaturation dissolution testing. Furthermore, a dry granulation technique was used to encapsulate the TFF compositions for in vitro dissolution and in vivo animal pharmacokinetic studies. The results showed that the TFF process produced amorphous, porous, microstructured, and stable solid dispersions with high surface areas. Development of solid oral dosage forms revealed that the performance of the FB containing solid dispersions was not affected by the formulation process, which was confirmed by DSC and XRD. Moreover, an in vivo pharmacokinetic study in rats revealed a significant increase in FB absorption compared to bulk FB. We confirmed that amorphous solid dispersions with large surface areas produced by the TFF process displayed superior dissolution rates and corresponding enhanced bioavailability of the poorly water-soluble drug, FB. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Influence of preparation pathway on the glass forming ability

    DEFF Research Database (Denmark)

    Blaabjerg, Lasse Ingerslev; Lindenberg, Eleanor; Rades, Thomas

    2017-01-01

    The glass forming ability (GFA), i.e. the ease of amorphization of drugs, is mostly investigated using the critical cooling rate upon melt quenching to generate an amorphous product via the thermodynamic pathway. However, amorphous materials can also be prepared via the kinetic pathway by milling...... cooling rate will also have a low minimal milling time and is thus a good glass former........ In this case, the time required to generate an amorphous product is called the minimal milling time. This study investigates the correlation of the GFA between these two pathways. Eighteen compounds were chosen and their GFA was investigated by determining the critical cooling rate and the minimal milling time....... It was observed that drugs, which turned amorphous upon cooling from the melt at slow cooling rates also had a low minimal milling time and vice versa. It was found that the GFA of the studied set of drugs was inherent and independent of the preparation method. It can be concluded that a drug with low critical...

  16. Solid-state amorphization of rebamipide and investigation on solubility and stability of the amorphous form.

    Science.gov (United States)

    Xiong, Xinnuo; Xu, Kailin; Li, Shanshan; Tang, Peixiao; Xiao, Ying; Li, Hui

    2017-02-01

    Solid-state amorphization of crystalline rebamipide (RBM) was realized by ball milling and spray drying. The amorphous content of samples milled for various time was quantified using X-ray powder diffraction. Crystalline RBM and three amorphous RBM obtained by milling and spray drying were characterized by morphological analysis, X-ray diffraction, thermal analysis and vibrational spectroscopy. The crystal structure of RBM was first determined by single-crystal X-ray diffraction. In addition, the solubility and dissolution rate of the RBM samples were investigated in different media. Results indicated that the solubility and the dissolution rates of spray-dried RBM-PVP in different media were highly improved compared with crystalline RBM. The physical stabilities of the three amorphous RBM were systematically investigated, and the stability orders under different storage temperatures and levels of relative humidity (RH) were both as follows: spray dried RBM < milled RBM < spray dried RBM-PVP. A direct glass-to-crystal transformation was induced under high RH, and the transformation rate rose with increasing RH. However, amorphous RBM could stay stable at RH levels lower than 57.6% (25 °C).

  17. Amino acids as co-amorphous stabilizers for poorly water soluble drugs--Part 1: preparation, stability and dissolution enhancement.

    Science.gov (United States)

    Löbmann, Korbinian; Grohganz, Holger; Laitinen, Riikka; Strachan, Clare; Rades, Thomas

    2013-11-01

    Poor aqueous solubility of an active pharmaceutical ingredient (API) is one of the most pressing problems in pharmaceutical research and development because up to 90% of new API candidates under development are poorly water soluble. These drugs usually have a low and variable oral bioavailability, and therefore an unsatisfactory therapeutic effect. One of the most promising approaches to increase dissolution rate and solubility of these drugs is the conversion of a crystalline form of the drug into its respective amorphous form, usually by incorporation into hydrophilic polymers, forming glass solutions. However, this strategy only led to a small number of marketed products usually because of inadequate physical stability of the drug (crystallization). In this study, we investigated a fundamentally different approach to stabilize the amorphous form of drugs, namely the use of amino acids as small molecular weight excipients that form specific molecular interactions with the drug resulting in co-amorphous forms. The two poorly water soluble drugs carbamazepine and indomethacin were combined with amino acids from the binding sites of the biological receptors of these drugs. Mixtures of drug and the amino acids arginine, phenylalanine, tryptophan and tyrosine were prepared by vibrational ball milling. Solid-state characterization with X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) revealed that the various blends could be prepared as homogeneous, single phase co-amorphous formulations indicated by the appearance of an amorphous halo in the XRPD diffractograms and a single glass transition temperature (Tg) in the DSC measurements. In addition, the Tgs of the co-amorphous mixtures were significantly increased over those of the individual drugs. The drugs remained chemically stable during the milling process and the co-amorphous formulations were generally physically stable over at least 6 months at 40 °C under dry conditions. The

  18. Preparation and structural characterization of amorphous spray-dried dispersions of tenoxicam with enhanced dissolution.

    Science.gov (United States)

    Patel, Jagdishwar R; Carlton, Robert A; Yuniatine, Fnu; Needham, Thomas E; Wu, Lianming; Vogt, Frederick G

    2012-02-01

    Tenoxicam is a poorly soluble nonsteroidal anti-inflammatory drug. In this work, the solubility of tenoxicam is enhanced using amorphous spray-dried dispersions (SDDs) prepared using two molar equivalents of l-arginine and optionally with 10%-50% (w/w) polyvinylpyrrolidone (PVP). When added to the dispersions, PVP is shown to improve physical properties and also assists in maintaining supersaturation in solution. The dispersions provide a twofold increase over equilibrium solubility at the same pH. The dispersions are characterized using electron microscopy, vibrational spectroscopy, diffuse-reflectance visible spectroscopy, and X-ray powder diffraction. The structures of the dispersions are probed using solid-state nuclear magnetic resonance (SSNMR) experiments applied to the (1) H, (13) C, and (15) N nuclei, including two-dimensional dipolar correlation experiments that detect molecular association and the formation of a glass solution between tenoxicam, l-arginine, and PVP. Other aspects of the amorphous structure, including hydrogen-bonding interactions and the ionization state of tenoxicam and l-arginine, are also explored using SSNMR methods. These methods are used to show that the SDDs contain an amorphous l-arginine salt of tenoxicam in a glass solution that also includes PVP when present. Finally, the dispersions show only a minor decrease in chemical stability during accelerated stability studies relative to a crystalline form of tenoxicam.

  19. RF Sputtering for preparing substantially pure amorphous silicon monohydride

    Science.gov (United States)

    Jeffrey, Frank R.; Shanks, Howard R.

    1982-10-12

    A process for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicon produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous silicon hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  20. CuZrAl amorphous alloys prepared by casting and milling

    Science.gov (United States)

    Tomolya, K.; Janovszky, D.; Sveda, M.; Hegman, N.; Solyom, J.; Roosz, A.

    2009-01-01

    Several preparation methods are available for the production of amorphous alloys. During the experiment described in this paper (Cu58Zr42)100-xAlx (x = 0-14,8; in at%) amorphous alloys were prepared by casting and ball-milling. The ingots were produced by arc melting. Wedge-shaped samples were prepared from the ingots by centrifugal casting into copper mould. The microstructures of these samples were defined by SEM. The amorphous samples were analysed by DSC and the activation energy of the crystallization processes was calculated from the measured temperatures. The master alloys of identical composition were milled by ball-mill for different periods of time. The powders were analysed by XRD in order to define the amorphous fractions.

  1. Simulation study for atomic size and alloying effects during forming processes of amorphous alloys

    Institute of Scientific and Technical Information of China (English)

    ZHENG Caixing; LIU Rangsu; PENG Ping; ZHOU Qunyi

    2004-01-01

    A molecular dynamics (MD) simulation study has been performed for the solidification processes of two binary liquid alloys Ag6Cu4 and CuNi by adopting the quantum Sutton-Chen many-body potentials. By analyzing bond-types, it is demonstrated that at the cooling rate of 2×1012K/s, the CuNi forms fcc crystal structures, while the Ag6Cu4 forms amorphous structures. The original reason is that the atomic radius ratio (1.13) of the CuAg is bigger than that (1.025) of the CuNi. This shows that the atomic size difference is indeed the main factor for forming amorphous alloys. Moreover, for Ag60Cu40,corresponding to the deep eutectic point in the phase diagram, it forms amorphous structure easily. This confirms that as to the forming tendency and stability of amorphous alloys, the alloying effect plays a key role. In addition, having analyzed the transformation of microstructures by using the bond-type index and cluster-type index methods, not only the key role of the icosahedral configuration to the formation and stability of amorphous alloys can be explained, but also the solidification processes of liquid metals and the characteristics of amorphous structures can be further understood.

  2. Wettability and surface chemistry of crystalline and amorphous forms of a poorly water soluble drug.

    Science.gov (United States)

    Puri, Vibha; Dantuluri, Ajay K; Kumar, Mahesh; Karar, N; Bansal, Arvind K

    2010-05-12

    The present study compares energetics of wetting behavior of crystalline and amorphous forms of a poorly water soluble drug, celecoxib (CLB) and attempts to correlate it to their surface molecular environment. Wettability and surface free energy were determined using sessile drop contact angle technique and water vapor sorption energetics was measured by adsorption calorimetry. The surface chemistry was elucidated by X-ray photoelectron spectroscopy (XPS) and crystallographic evaluation. The two solid forms displayed distinctly different wetting with various probe liquids and in vitro dissolution media. The crystalline form surface primarily exhibited dispersive surface energy (47.3mJ/m(2)), while the amorphous form had a slightly reduced dispersive (45.2mJ/m(2)) and a small additional polar (4.8mJ/m(2)) surface energy. Calorimetric measurements, revealed the amorphous form to possess a noticeably high differential heat of absorption, suggesting hydrogen bond interactions between its polar energetic sites and water molecules. Conversely, the crystalline CLB form was found to be inert to water vapor sorption. The relatively higher surface polarity of the amorphous form could be linked to its greater oxygen-to-fluorine surface concentration ratio of 1.27 (cf. 0.62 for crystalline CLB), as determined by XPS. The crystallographic studies of the preferred cleavage plane (020) of crystalline CLB further supported its higher hydrophobicity. In conclusion, the crystalline and amorphous forms of CLB exhibited disparate surface milieu, which in turn can have implications on the surface mediated events.

  3. Preparation and recrystallization behavior of spray-dried co-amorphous naproxen-indomethacin

    DEFF Research Database (Denmark)

    Beyer, Andreas; Radi, Lydia; Grohganz, Holger;

    2016-01-01

    To improve the dissolution properties and the physical stability of amorphous active pharmaceutical ingredients, small molecule stabilizing agents may be added to prepare co-amorphous systems. The objective of the study was to investigate if spray-drying allows the preparation of co-amorphous drug-drug...... systems such as naproxen-indomethacin and to examine the influence of the process conditions on the resulting initial sample crystallinity and the recrystallization behavior of the drug(s). For this purpose, the process parameters inlet temperature and pump feed rate were varied according to a 2...... and indomethacin recrystallized almost simultaneously, which supports the theory of formation of drug-drug heterodimers in the co-amorphous phase....

  4. Preparation and characterization of electroplated amorphous gold-nickel alloy film for electrical contact applications

    Energy Technology Data Exchange (ETDEWEB)

    Togasaki, Norihiro [Department of Applied Chemistry, Waseda University, Okubo, Shinjuku, Tokyo 169-8555 (Japan); Okinaka, Yutaka [Advanced Research Institute for Science and Engineering, Waseda University, Okubo, Shinjuku, Tokyo 169-8555 (Japan); Homma, Takayuki [Department of Applied Chemistry, Waseda University, Okubo, Shinjuku, Tokyo 169-8555 (Japan); Advanced Research Institute for Science and Engineering, Waseda University, Okubo, Shinjuku, Tokyo 169-8555 (Japan); Osaka, Tetsuya [Department of Applied Chemistry, Waseda University, Okubo, Shinjuku, Tokyo 169-8555, Japan and Advanced Research Institute for Science and Engineering, Waseda University, Okubo, Shinjuku, Tokyo 169-8555 (Japan)]. E-mail: osakatet@waseda.jp

    2005-11-10

    A process for electroplating amorphous gold-nickel alloy with the atomic ratio of unity was developed. The plating bath was prepared by adding potassium cyanoaurate(I) into a known plating bath which produces amorphous nickel-tungsten alloy. At a sufficiently high gold concentration, the alloy deposit did not contain any tungsten. The amorphous nature of the Au-Ni alloy produced in the new bath was confirmed by using TEM and THEED. Hardness, resistivity, and contact resistance of this new alloy were determined, and the results are discussed for applications as an electrical contact material.

  5. Amorphous TM1−xBx alloy particles prepared by chemical reduction (invited)

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, Steen

    1991-01-01

    Amorphous transition-metal boron (TM-B) alloy particles can be prepared by chemical reduction of TM ions by borohydride in aqueous solutions. ln the last few years systematic studies of the parameters which control the composition, and, in turn, many of the properties of the alloy particles, have...... been performed and are reviewed in the present paper. The most important preparation parameters which influence the composition are the concentration of the borohydride solution and the pH of the TM salt solution. By controlling these parameters it is possible to prepare amorphous alloy samples...

  6. Ferroelectric-Like Properties of Amorphous Metal Oxide Thin Films Prepared by Sol-Gel Technique.

    Science.gov (United States)

    Xu, Yuhuan

    1995-01-01

    Advances in the field of both optical and electrical integrated circuit devices require new thin film materials. Ferroelectric materials have attractive properties such as hysteresis behavior, pyroelectricity, piezoelectricity and nonlinear optical properties. Many ferroelectric thin films have been successfully prepared from metal organic compounds via sol-gel processing. Thus far, research has concentrated upon polycrystalline or epitaxial ferroelectric films. For amorphous ferroelectric thin films, preliminary experimental results in our laboratory indicated that these amorphous films possessed good ferroelectric -like properties. The purpose of this research is (1) to fabricate amorphous metal oxide thin films by the sol-gel technique, (2) to determine whether these amorphous metal oxide thin films have ferroelectric-like properties and (3) to propose a theoretical model ("ferrons model") to explain the ferroelectric-like properties of amorphous thin films, which deals with a structure of permanent dipoles of "partially ordered clusters" (ferrons) in the amorphous films. The theoretical model is based on our experimental results of thin films of two amorphous materials (barium titanite and lead zirconate titanate). This research may provide a new functional material which could be useful for producing integrated electronic and electrooptic devices.

  7. Magnetic properties of crystalline and amorphous Fe-B alloys prepared by electroless plating

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Bangwei (CCAST (World Lab.), Beijing (China) Dept. of Physics, Hunan Univ., Changsha (China)); Hu Wangyu; Zhu Deqi (Dept. of Physics, Hunan Univ., Changsha (China))

    1993-01-01

    Amorphous samples of Fe[sub 100-x]B[sub x] (x=18, 24, 27.4) and crystalline samples of Fe[sub 100-x]B[sub x] (x=2.2, 10.6) have been prepared by electroless plating. Their magnetic properties have been studied. The Curie temperature Tc increases upon increasing the boron concentration for the amorphous alloys from 613 K (x=18) to 776 K (x=27.4). However, the saturation magnetization and magnetic moment decrease with increasing boron concentration for both the crystalline and amorphous alloys. The data have been analyzed and discussed using the molecular-field theory and the rigid-band theory and the charge transfer of sp electrons from the metalloids to the d-band of the transition metals. The dependence of the magnetic properties of the amorphous alloys on heat treatment has also been studied. (orig.).

  8. Foaming of amorphous drug delivery systems prepared by hot melt mixing and extrusion

    Science.gov (United States)

    Terife, Graciela

    Currently there is considerable interest from both academe and pharmaceutical industry in exploring foaming processes and their products in drug delivery applications. However, there is still little knowledge of the impact of the morphology of the foamed structures on the performance of drug products in spite of some publications in this area. Therefore, the main objective of this dissertation is to gain a fundamental understanding of the correlation between foam morphology and performance of amorphous drug delivery systems, which are comprised of an Active Pharmaceutical Ingredient (API) and Polymer excipient. The Hot Melt Extrusion (HME) process is used to compound the following API / polymer binary systems: Indomethacin (INM) with SoluplusRTM (PVCap-PVAc-PEG); Carbamazepine (CBZ) with PVCap-PVAc-PEG; and INM with EudragitRTM EPO. Comprehensive characterization of these binary systems carried out by combining Differential Scanning Calorimetry, Fourier Transform Infrared spectroscopy, X-Ray Diffraction, and Scanning Electron Microscopy, shows that in all HME-prepared and foamed samples the APIs are amorphous and dissolved in the polymer excipients. The most important contributions of this dissertation can be grouped into three areas: (a) an understanding of the mechanisms by which foamed dosage forms can lead to faster API release, as well as the key morphological aspects of the cellular structures to achieve this, (b) an understanding of the correlation between the mechanism controlling the release of an API from an amorphous dosage and the enhancement in its release rate upon foaming, and (c) an understanding of the impact of the morphology of the cellular structures in the milling efficiency of HME products and the dissolution performance of the particles produced. In the first area, foamed amorphous solid solutions with three different morphologies are produced through the batch foaming process. A strong correlation between foam morphology and the enhancement

  9. Amorphous nanoshell formed through random growth and related plasmonic behaviors

    Science.gov (United States)

    Wang, Yuwei; Shen, Hongming; He, Yingbo; Cheng, Yuqing; Perriat, Pascal; Martini, Matteo; Tillement, Olivier; Gong, Qihuang; Lu, Guowei

    2014-08-01

    The optical properties of gold nanoshell formed through random growth process were numerically investigated by employing finite-difference time-domain method. The growth process can be divided approximately into four stages according to the optical spectra and 3D morphology. The incomplete nanoshell with surface coverage ratio (R) around 70% was found to form surface ‘hot spots' with high field enhancement, which are useful for surface enhanced Raman scattering. Additionally, high Purcell factor and quantum efficiency at the core center for the nanoshells with R ∼ 90% are suitable for encapsulated fluorescent probe that can exploit the high surface plasmonic enhancement effect.

  10. Preparation and mechanism study of bulk pure rare-earth metals with amorphous and nanocrystalline structures

    Institute of Scientific and Technical Information of China (English)

    LI ErDong; SONG XiaoYan; ZHANG JiuXing; LU NianDuan

    2007-01-01

    The preparation and the mechanism study of bulk pure rare-earth metals with amorphous and nanocrystalline structures, which were produced by spark plasma sintering (SPS), were carried out in this paper. With different processing parameters, the amorphous, two phases of amorphous and nanocrystalline, and complete nanocrystalline microstructures have been obtained. The nano-grain sizes in the bulk nanocrystalline materials are found smaller than the original powder particles sizes, which may change the conventional viewpoint that the grains in the sintered bulk are generally coarser than the raw powder particles. The technique developed in the present work can be extended to the preparation of many other nano bulk metal materials, and thus enables the studies of the nano-size effects on the physical, chemical and mechanical properties of bulk nano materials.

  11. Calcium Carbonate Storage in Amorphous Form and Its Template-Induced Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Han, T Y; Aizenberg, J

    2007-08-31

    Calcium carbonate crystallization in organisms often occurs through the transformation from the amorphous precursor. It is believed that the amorphous phase could be temporarily stabilized and stored, until its templated transition to the crystalline form is induced. Here we develop a bio-inspired crystallization strategy that is based on the above mechanism. Amorphous calcium carbonate (ACC) spherulitic particles are formed and stabilized on a self-assembled monolayer (SAM) of hydroxy-terminated alkanethiols on Au surface. The ACC is stored as a reservoir for ions and is induced to crystallize on command by introducing a secondary surface that is functionalized with carboxylic acid-terminated SAM. This secondary surface acts as a template for oriented and patterned nucleation. Various oriented crystalline arrays and micropatterned films are formed. We also show that the ACC phase can be doped with foreign ions (e.g. Mg) and organic molecules (e.g. dyes) and that these dopants later function as growth modifiers of calcite crystals and become incorporated into the crystals during the transformation process of ACC to calcite. We believe that our strategy opens the way of using a stabilized amorphous phase as a versatile reservoir system that can be converted in a highly controlled fashion to a crystalline form upon contacting the nucleating template.

  12. Method of forming semiconducting amorphous silicon films from the thermal decomposition of fluorohydridodisilanes

    Science.gov (United States)

    Sharp, Kenneth G.; D'Errico, John J.

    1988-01-01

    The invention relates to a method of forming amorphous, photoconductive, and semiconductive silicon films on a substrate by the vapor phase thermal decomposition of a fluorohydridodisilane or a mixture of fluorohydridodisilanes. The invention is useful for the protection of surfaces including electronic devices.

  13. Ferromagnetic Fe-based Amorphous Alloy with High Glass-forming Ability

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A ferromagnetic amorphous Fe73Al4Ge2Nb1P10C6B4 alloy with highglass-forming ability was synthesized by melt spinning. The supercooled liquid region before crystallization reaches about 65.7 K. The crystallized structure consists of α-Fe, Fe3B, FeB, Fe3P and Fe3C phases. The Febased amorphous alloy exhibits good magnetic properties with a high saturation magnetization and a low saturated magnetostriction. The crystallization leads to an obvious decrease in the soft magnetic properties.

  14. Thermodynamic and Kinetic Study of Crystallization Reaction of Fe/Dy Multilayers Form Amorphous State

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To give further insight into the behavior of Fe/Dy multilayers in the crystallization from as-deposited amorphous state, free energy diagram of Fe/Dy system was constructed based on Miedema semiempirical theory. It is shown that the crystallization of amorphous films is controlled by both thermodynamic and kinetic conditions. The calculated free energies of crystalline Fe and Dy are significantly lower than those in the amorphous states, which provide thermodynamic driving force for crystallization. During annealing, the kinetic phase evolution of the multilayers is controlled by free energy barrier of nucleation and critical-size of new phase nucleus. Thus it explains the experimental results that Fe crystallites formed first followed by Dy grains, whereas crystalline Fe-Dy intermetallic compounds were not observed during annealing at moderate temperatures.

  15. Preparation of Fe-Based Bulk Amorphous Materials and Its Application to Sensors

    Institute of Scientific and Technical Information of China (English)

    Sun Xiaohua; Wu Jinbin; Zhao Zengqi; Zhao Jun; Sun Guangjie; Liu Changsheng

    2004-01-01

    The study of recent years found that big bulk amorphous alloys were formed for some multi-element compositions at rapid cooling speed such as Zr-, La-, Fe-, Mg-based alloys with wide undercooled liquid phase field and high trend of forming glass.( ATx = crystallization temperature Tx - glass transformation temperature Tg) Bulk amorphous copper mold upper suction casting with minus pressure while some new technical processes and adding new elements such as Co, Nb, Ca, etc.were used to improve magnetic properties and other performances of the materials.The results show that Fe-based bulk amorphous alloys have low coercive force and high permeability, which are successfully applied to magnetoelectric sensors with temperature ranges between -45 ℃ and 150 ℃ by special design of magnetic circuits.

  16. Glass Forming Ability of Amorphous Drugs Investigated by Continuous Cooling and Isothermal Transformation.

    Science.gov (United States)

    Blaabjerg, Lasse I; Lindenberg, Eleanor; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas

    2016-09-06

    The aim of this study was to investigate the glass forming ability of 12 different drugs by the determination of continuous cooling and isothermal transformation diagrams in order to elucidate if an inherent differentiation between the drugs with respect to their the glass forming ability can be made. Continuous-cooling-transformation (CCT) and time-temperature-transformation (TTT) diagrams of the drugs were developed in order to predict the critical cooling rate necessary to convert the drug from the melt into an amorphous form. While TTT diagrams overestimated the actual critical cooling rate, they allowed an inherent differentiation of glass forming ability for the investigated drugs into drugs that are extremely difficult to amorphize (>750 °C/min), drugs that require modest cooling rates (>10 °C/min), and drugs that can be made amorphous even at very slow cooling rates (>2 °C/min). Thus, the glass forming ability can be predicted by the use of TTT diagrams. In contrast to TTT diagrams, CCT diagrams may not be suitable for small organic molecules due to poor separation of exothermic events, which makes it difficult to determine the zone of recrystallization. In conclusion, this study shows that glass forming ability of drugs can be predicted by TTT diagrams.

  17. Atomic pairwise distribution function analysis of the amorphous phase prepared by different manufacturing routes

    DEFF Research Database (Denmark)

    Boetker, Johan P.; Koradia, Vishal; Rades, Thomas;

    2012-01-01

    was subjected to quench cooling thereby creating an amorphous form of the drug from both starting materials. The milled and quench cooled samples were, together with the crystalline starting materials, analyzed with X-ray powder diffraction (XRPD), Raman spectroscopy and atomic pair-wise distribution function...

  18. Preparation of Uniform Ni-B Amorphous Alloy Catalyst on CNTs and its Performance for Acetylene Selective Hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Chang Yuan HU; Feng Yi LI; Rong Bin ZHANG; Li HUA

    2006-01-01

    Uniform Ni-B amorphous alloys about 14 nm have been prepared on CNTs-A support,named Ni-B/CNTs-A. In comparison with the Ni-B/CNTs amorphous catalyst, Ni-B/CNTs-A showed higher nickel loading, determined by ICP and better catalytic activity and ethylene selectivity in the acetylene hydrogenation reaction.

  19. Amorphous solid dispersions of sulfonamide/soluplus® and sulfonamide/PVP prepared by ball milling

    OpenAIRE

    Healy, Anne,

    2013-01-01

    PUBLISHED The aim of this paper is to investigate the physicochemical properties of binary amorphous dispersions of poorly soluble sulfonamide/polymeric excipient prepared by ball milling. The sulfonamides selected were sulfathiazole (STZ), sulfadimidine (SDM), sulfamerazine (SMZ) and sulfadiazine (SDZ). The excipients were polyvinylpyrrolidone (PVP) and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft co-polymer, commercially known as Soluplus®. Co-milled systems were cha...

  20. Preparation, characterization and in vivo studies of amorphous solid dispersion of berberine with hydrogenated phosphatidylcholine.

    Science.gov (United States)

    Shi, Chunyang; Tong, Qing; Fang, Jianguo; Wang, Chenguang; Wu, Jizhou; Wang, Wenqing

    2015-07-10

    Berberine, a pure crystalline quaternary ammonium salt with the basic structure of isoquinoline alkaloid, has multiple pharmacological bioactivities. But the poor bioavailability of berberine limited its wide clinical applications. In the present study, we aimed to develop an amorphous solid dispersion of berberine with hydrogenated phosphatidylcholine (HPC) in order to improve its bioavailability. The physical characterization studies such as differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Fourier transform infrared spectrophotometry (FT-IR) and scanning electron microscopy (SEM) were conducted to characterize the formation of amorphous berberine HPC solid dispersion (BHPC-SD). The everted intestinal sac and single-pass intestinal perfusion study proved that permeability and intestinal absorption of amorphous BHPC-SD was improved compared with that of pure crystalline berberine, and the pharmacokinetic study results demonstrated that the extent of bioavailability was significantly increased as well. However, the dissolution study indicated that the aqueous cumulative dissolution percentages of berberine remained unchanged or even lower by means of preparation into solid dispersion with HPC. Therefore, according to the previous mechanistic studies, the present results supported that it is the enhanced molecularly dissolved concentration (supersaturation) of berberine by transformation from crystalline structure into amorphous solid dispersions that triggers the enhanced permeability, and consequently results in the improved intestinal absorption and bioavailability.

  1. Amorphous Indium Selenide Thin Films Prepared by RF Sputtering: Thickness-Induced Characteristics.

    Science.gov (United States)

    Han, Myoung Yoo; Park, Yong Seob; Kim, Nam-Hoon

    2016-05-01

    The influence of indium composition, controlled by changing the film thickness, on the optical and electrical properties of amorphous indium selenide thin films was studied for the application of these materials as Cd-free buffer layers in CI(G)S solar cells. Indium selenide thin films were prepared using RF magnetron sputtering method. The indium composition of the amorphous indium selenide thin films was varied from 94.56 to 49.72 at% by increasing the film thickness from 30 to 70 nm. With a decrease in film thickness, the optical transmittance increased from 87.63% to 96.03% and Eg decreased from 3.048 to 2.875 eV. Carrier concentration and resistivity showed excellent values of ≥1015 cm(-3) and ≤ 10(4) Ω x cm, respectively. The conductivity type of the amorphous indium selenide thin films could be controlled by changing the film-thickness-induced amount of In. These results indicate the possibility of tuning the properties of amorphous indium selenide thin films by changing their composition for use as an alternate buffer layer material in CI(G)S solar cells.

  2. Crystallization and X-ray diffraction of crystals formed in water-plasticized amorphous lactose.

    Science.gov (United States)

    Jouppila, K; Kansikas, J; Roos, Y H

    1998-01-01

    Effects of storage time and relative humidity on crystallization and crystal forms produced from amorphous lactose were investigated. Crystallization was observed from time-dependent loss of sorbed water and increasing intensities of peaks in X-ray diffraction patterns. The rate of crystallization increased with increasing storage relative humidity. Lactose crystallized mainly as alpha-lactose monohydrate and anhydrous crystals with alpha- and beta-lactose in a molar ratio of 5:3. The results suggested that the crystal form was defined by the early nucleation process. The crystallization data are important in modeling of crystallization phenomena and prediction of stability of lactose-containing food and pharmaceutical materials.

  3. Preparation and properties of amorphous titania-coated zinc oxide nanoparticles

    Science.gov (United States)

    Liao, Min-Hung; Hsu, Chih-Hsiung; Chen, Dong-Hwang

    2006-07-01

    Amorphous TiO 2-coated ZnO nanoparticles were prepared by the solvothermal synthesis of ZnO nanoparticles in ethanol and the followed by sol-gel coating of TiO 2 nanolayer. The analyses of X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed that the resultant ZnO nanoparticles were hexagonal with a wurtzite structure and a mean diameter of about 60 nm. Also, after TiO 2 coating, the TEM images clearly indicated the darker ZnO nanoparticles being surrounded by the lighter amorphous TiO 2 layers. The zeta potential analysis revealed the pH dependence of zeta potentials for ZnO nanoparticles shifted completely to that for TiO 2 nanoparticles after TiO 2 coating, confirming the formation of core-shell structure and suggesting the coating of TiO 2 was achieved via the adhesion of the hydrolyzed species Ti-O - to the positively charged surface of ZnO nanoparticles. Furthermore, the analyses of Fourier transform infrared (FTIR) and Raman spectra were also conducted to confirm that amorphous TiO 2 were indeed coated on the surface of ZnO nanoparticles. In addition, the analyses of ultraviolet-visible (UV-VIS) and photoluminescence (PL) spectra revealed that the absorbance of amorphous TiO 2-coated ZnO nanoparticles at 375 nm gradually decreased with an increase in the Ti/Zn molar ratio and the time for TiO 2 coating, and the emission intensity of ZnO cores could be significantly enhanced by the amorphous TiO 2 shell.

  4. Photocatalytic C60-amorphous TiO2 composites prepared by atomic layer deposition

    Science.gov (United States)

    Justh, Nóra; Firkala, Tamás; László, Krisztina; Lábár, János; Szilágyi, Imre Miklós

    2017-10-01

    Nanocomposites of TiO2 and single fullerene (C60) molecule are prepared by atomic layer deposition (ALD). To create nucleation sites for the ALD reaction, the bare fullerene is functionalized by H2SO4/HNO3 treatment, which results in C60-SO3H. After a NaOH washing step the intermediate hydrolyzes into C60sbnd OH. This process and the consecutive ALD growth of TiO2 are monitored with FTIR, TG/DTA-MS, EDX, Raman, FTIR, XRD, and TEM measurements. Although the TiO2 grown by ALD at 80 and 160 °C onto fullerol is amorphous it enhances the decomposition of methyl orange under UV exposure. This study proves that amorphous TiO2 grown by low temperature ALD has photocatalytic activity, and it can be used e.g. as self-cleaning coatings also on heat sensitive substrates.

  5. Liquid antisolvent preparation of amorphous cefuroxime axetil nanoparticles in a tube-in-tube microchannel reactor.

    Science.gov (United States)

    Zhu, Wen-Zhen; Wang, Jie-Xin; Shao, Lei; Zhang, Hai-xia; Zhang, Qian-xia; Chen, Jian-Feng

    2010-08-16

    This article presents the preparation of nanoparticles of amorphous cefuroxime axetil (CFA) in a microporous tube-in-tube microchannel reactor (MTMCR). The experimental results indicated that CFA particle with a tunable size of 400-1400 nm could be achieved under a high throughput in the range of 1.5-6L/min. The average particle size decreased with increasing overall volumetric flow rate and decreasing CFA concentration, micropore size, and annular channel width. The produced CFA nanoparticles were characterized by SEM, XRD, FT-IR, DSC and a dissolution test, which indicated that the nanosized CFA was amorphous and exhibited higher dissolution rate compared to the raw CFA. The MTMCR might offer a general and facile pathway for mass production of the nanoparticles of hydrophobic pharmaceuticals thanks to its high throughput capacity and excellent micromixing performance.

  6. The dielectric behavior of vapor-deposited amorphous solid water and of its crystalline forms

    Science.gov (United States)

    Johari, G. P.; Hallbrucker, Andreas; Mayer, Erwin

    1991-08-01

    The dielectric permittivity and loss of vapor-deposited amorphous solid water (ASW) have been measured for fixed frequencies of 1 and 10 kHz from 80 K to its crystallization temperature. Similar measurements have also been made on the cubic ice formed after the crystallization of ASW and the hexagonal ice formed on heating the cubic ice. The loss tangent shows a broad sub-Tg relaxation peak centered at about 100 K and an approach towards a plateau value which appears as a shoulder. The peak is attributed to thermally activated rotation of H2O molecules with one or two dangling OH groups on the surface of the pores of the microporous sample, and the shoulder to localized motions within the network structure. Sintering of the samples on thermal cycling between 77 and ≊120 K in vacuo causes the broad peak to vanish. With increase in temperature, above Tg, the loss tangent shows the emergence of the expected α-relaxation peak of a liquid at T>Tg, whose completion is terminated by the onset of crystallization to cubic ice at about the same temperature for 1 kHz and for 10 kHz measurements. Thereafter, crystallization becomes slower, thus allowing further observation of the low-temperature part of the α-relaxation peak. The dielectric loss of amorphous solid water at 80 K is nearly 20 times that of the cubic ice formed on its crystallization after heating to 193 K, and nearly 3.5 times higher at Tg. The dielectric loss of the cubic ice formed on crystallization tends towards a plateau value prior to rapidly increasing with increase in temperature, an evidence for a low temperature relaxation which vanishes on conversion to hexagonal ice. This relaxation indicates a remnant topologically disordered structure of intergranular water and/or stacking faults in cubic ice. Samples sintered by thermal cycling in vacuo to ≊120 K crystallized in one step, whereas those without prior thermal cycling crystallized in two steps to cubic ice. Annealing of the ASW at 130 K

  7. Preparation and Properties of Mg-Cu-Y-Al bulk Amorphous Alloys

    DEFF Research Database (Denmark)

    Pryds, Nini; Eldrup, Morten Mostgaard; Ohnuma, M.

    2000-01-01

    measurements to be 60-150 K/s, in agreement with estimates from the literature. The Vickers hardness (Hv) of the amorphous material for y = 2% is higher (similar to 360 kg/mm(2)) than for y = 0 (similar to 290 kg/mm(2)). On crystallisation the hardness of the latter material increases to the 400 kg/mm(2) level......Bulk amorphous (Mg(1-gamma)Al(gamma))(60)CU(30)Y(10) alloys were prepared using a relatively simple technique of rapid cooling of the melt in a copper wedge mould. The temperature vs, time was recorded during the cooling and solidification process of the melt and compared with a spacial...... and temporal numerical simulation of that process. It is concluded that good thermal contact is maintained between the amorphous part of the solidified sample and the mould, while a rather poor contact develops between the crystalline part of the sample and the mould, probably due to the appearance of a narrow...

  8. Preparation and pharmaceutical characterization of amorphous cefdinir using spray-drying and SAS-process.

    Science.gov (United States)

    Park, Junsung; Park, Hee Jun; Cho, Wonkyung; Cha, Kwang-Ho; Kang, Young-Shin; Hwang, Sung-Joo

    2010-08-30

    The aim of this study was to investigate the effects of micronization and amorphorization of cefdinir on solubility and dissolution rate. The amorphous samples were prepared by spray-drying (SD) and supercritical anti-solvent (SAS) process, respectively and their amorphous natures were confirmed by DSC, PXRD and FT-IR. Thermal gravimetric analysis was performed by TGA. SEM was used to investigate the morphology of particles and the processed particle had a spherical shape, while the unprocessed crystalline particle had a needle-like shape. The mean particle size and specific surface area were measured by dynamic light scattering (DLS) and BET, respectively. The DLS result showed that the SAS-processed particle was the smallest, followed by SD and the unprocessed cefdinir. The BET result was the same as DLS result in that the SAS-processed particle had the largest surface area. Therefore, the processed cefdinir, especially the SAS-processed particle, appeared to have enhanced apparent solubility, improved intrinsic dissolution rate and better drug release when compared with SD-processed and unprocessed crystalline cefdinir due not only to its amorphous nature, but also its reduced particle size. Conclusions were that the solubility and dissolution rate of crystalline cefdinir could be improved by physically modifying the particles using SD and SAS-process. Furthermore, SAS-process was a powerful methodology for improving the solubility and dissolution rate of cefdinir.

  9. Preparation of fine silicon particles from amorphous silicon monoxide by the disproportionation reaction

    Science.gov (United States)

    Mamiya, Mikito; Takei, Humihiko; Kikuchi, Masae; Uyeda, Chiaki

    2001-07-01

    Fine Si particles have been prepared by the disproportionation reaction of silicon monoxide (SiO), that is: 2SiO→Si+SiO 2. Amorphous powders of SiO are heated between 900°C and 1400°C in a flow of Ar and the obtained specimens are analyzed by X-ray powder diffraction and high-resolution transmission electron microscopy. The treatments between 1000°C and 1300°C for more than 0.5 h result in origination of Si particles dispersed in amorphous oxide media. The particle size varies from 1-3 to 20-40 nm, depending on the heating temperature. Kinetic analyses of the reaction reveal that the activation energy is 1.1 eV (82.1 kJ mol -1). The specimens annealed above 1350°C changes into a mixture of Si and cristobalite, suggesting a solid state transformation in the surrounding oxides from the amorphous to crystalline states.

  10. Glass-forming ability analysis of selected Fe-based bulk amorphous alloys

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2010-09-01

    Full Text Available Purpose: The paper mainly aims to present the structure and thermal stability of selected Fe-based bulk metallic glasses: Fe72B20Si4Nb4 and Fe43Co14Ni14B20Si5Nb4.Design/methodology/approach: The investigated samples were cast in form of the rods by the pressure die casting method. The structure analysis of the studied materials in as-cast state was carried out using XRD and TEM methods. The thermal stability associated with glass transition temperature (Tg, onset (Tx and peak (Tp crystallization temperature was examined by differential scanning calorimetry (DSC. Several parameters have been used to determine the glass-forming ability of studied alloys. The parameters of GFA included reduced glass transition temperature (Trg, supercooled liquid region (ΔTx, the stability (S and (Kgl parameter.Findings: The XRD and TEM investigations revealed that the studied as-cast metallic glasses were fully amorphous. Changes of the onset and peak crystallization temperature and the glass transition temperature as a function of glassy samples thickness were stated. The good glass-forming ability (GFA enabled casting of the Fe72B20Si4Nb4 and Fe43Co14Ni14B20Si5Nb4 glassy rods.Practical implications: The obtained examination results confirm the utility of applied investigation methods in the thermal stability analysis of examined bulk amorphous alloys. It is evident that parameters Trg, ΔTx, Kgl, S could be used to determine glass-forming ability of studied bulk metallic glasses.Originality/value: The success of fabrication of studied Fe-based bulk metallic glasses in form of rods with diameter up to 3 mm is important for the future progress in research of this group of materials.

  11. Consecutively preparing d-xylose, organosolv lignin, and amorphous ultrafine silica from rice husk.

    Science.gov (United States)

    Zhang, Hongxi; Ding, Xuefeng; Wang, Zichen; Zhao, Xu

    2014-01-01

    Rice husk is an abundant agricultural by-product reaching the output of 80 million tons annually in the world. The most common treatment method of rice husk is burning or burying, which caused serious air pollution and resource waste. In order to solve this problem, a new method is proposed to comprehensively utilize the rice husk in this paper. Firstly, the D-xylose was prepared from the semicellulose via dilute acid hydrolysis. Secondly, the lignin was separated via organic solvent pulping from the residue. Finally, the amorphous ultrafine silica was prepared via pyrolysis of the residue produced in the second process. In this way, the three main contents of rice husk (semicellulose, lignin, and silica) are consecutively converted to three fine chemicals, without solid waste produced. The yields of D-xylose and organosolv lignin reach 58.2% and 58.5%, respectively. The purity and specific surface of amorphous ultrafine silica reach 99.92% and 225.20 m(2)/g.

  12. Consecutively Preparing D-Xylose, Organosolv Lignin, and Amorphous Ultrafine Silica from Rice Husk

    Directory of Open Access Journals (Sweden)

    Hongxi Zhang

    2014-01-01

    Full Text Available Rice husk is an abundant agricultural by-product reaching the output of 80 million tons annually in the world. The most common treatment method of rice husk is burning or burying, which caused serious air pollution and resource waste. In order to solve this problem, a new method is proposed to comprehensively utilize the rice husk in this paper. Firstly, the D-xylose was prepared from the semicellulose via dilute acid hydrolysis. Secondly, the lignin was separated via organic solvent pulping from the residue. Finally, the amorphous ultrafine silica was prepared via pyrolysis of the residue produced in the second process. In this way, the three main contents of rice husk (semicellulose, lignin, and silica are consecutively converted to three fine chemicals, without solid waste produced. The yields of D-xylose and organosolv lignin reach 58.2% and 58.5%, respectively. The purity and specific surface of amorphous ultrafine silica reach 99.92% and 225.20 m2/g.

  13. Amorphous solid dispersion of cyclosporine A prepared with fine droplet drying process: Physicochemical and pharmacokinetic characterization.

    Science.gov (United States)

    Suzuki, Hiroki; Moritani, Tatsuru; Morinaga, Tadahiko; Seto, Yoshiki; Sato, Hideyuki; Onoue, Satomi

    2017-03-15

    The present study aimed to develop an amorphous solid dispersion (ASD) of cyclosporine A (CsA) by a fine droplet drying (FDD) process for improvement in oral absorption of CsA. CsA and hydroxypropyl cellulose-SSL were dissolved in 1,4-dioxane, and the solution was powdered by the FDD process to obtain the ASD formulation of CsA (ASD/CsA). The ASD/CsA was characterized in terms of morphology, particle size distribution, crystallinity, dissolution behavior, physicochemical stability, and pharmacokinetic behavior in rats. The ASD/CsA was obtained in the form of uniform spherical particles, and the span factor was calculated to be ca. 0.4. CsA in the formulation existed in an amorphous state. The ASD/CsA exhibited a higher dissolution behavior of CsA than amorphous CsA, whereas storage of the ASD/CsA under accelerated conditions led to impairment in the dissolution behavior. The constant release of CsA from non-aged ASD/CsA was observed during dissolution testing. After oral administration of CsA samples (10mg-CsA/kg) in rats, the ASD/CsA showed a high and sustained plasma concentration of CsA as evidenced by a 18-fold increase in the oral bioavailability of CsA compared with amorphous CsA. From these findings, the FDD process might be an efficacious option for the ASD formulation of CsA with enhanced biopharmaceutics properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Microcrystalline B-doped window layers prepared near amorphous to microcrystalline transition by HWCVD and its application in amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. [Department of Physics/Center of Optical Technologies and Laser Controlled Processes, University of Kaiserslautern, P.O. Box 3049, Kaiserslautern D-67653 (Germany)]. E-mail: kumarp@rhrk.uni-kl.de; Kupich, M. [Department of Physics/Center of Optical Technologies and Laser Controlled Processes, University of Kaiserslautern, P.O. Box 3049, Kaiserslautern D-67653 (Germany); Grunsky, D. [Department of Physics/Center of Optical Technologies and Laser Controlled Processes, University of Kaiserslautern, P.O. Box 3049, Kaiserslautern D-67653 (Germany); Schroeder, B. [Department of Physics/Center of Optical Technologies and Laser Controlled Processes, University of Kaiserslautern, P.O. Box 3049, Kaiserslautern D-67653 (Germany)

    2006-04-20

    The electronic and structural properties of p-type microcrystalline silicon films prepared near the microcrystalline to amorphous ({mu}c-amorphous) transition by hot-wire chemical vapor deposition are studied. Silane is used as a source gas while H{sub 2} as diluent and trimethylboron (TMB) and boron trifluoride (BF{sub 3}) as doping gases. Increasing TMB concentration from 0.01% to 5% favors the amorphous growth whereas for BF{sub 3} the crystalline fraction remains constant. The dark conductivity ({sigma} {sub d}) of {mu}c-Si:H p-layers remains approximately constant for TMB 1-5% at constant crystalline fraction X {sub c}. This dark conductivity behavior is attributed to the decrease in doping efficiency with increasing TMB concentration. The best initial efficiency obtained for a 400 nm amorphous pin solar cell with optimized {mu}c-Si:H p-layer is 7.7% (V {sub oc} = 874 mV, J {sub sc} = 12.91 mA/cm{sup 2}, FF = 68%)

  15. Efficient visible luminescence of nanocrystalline silicon prepared from amorphous silicon films by thermal annealing and stain etching

    Directory of Open Access Journals (Sweden)

    Nikulin Valery

    2011-01-01

    Full Text Available Abstract Films of nanocrystalline silicon (nc-Si were prepared from hydrogenated amorphous silicon (a-Si:H by using rapid thermal annealing. The formed nc-Si films were subjected to stain etching in hydrofluoric acid solutions in order to passivate surfaces of nc-Si. The optical reflectance spectroscopy revealed the nc-Si formation as well as the high optical quality of the formed films. The Raman scattering spectroscopy was used to estimate the mean size and volume fraction of nc-Si in the annealed films, which were about 4 to 8 nm and 44 to 90%, respectively, depending on the annealing regime. In contrast to as-deposited a-Si:H films, the nc-Si films after stain etching exhibited efficient photoluminescence in the spectral range of 600 to 950 nm at room temperature. The photoluminescence intensity and lifetimes of the stain etched nc-Si films were similar to those for conventional porous Si formed by electrochemical etching. The obtained results indicate new possibilities to prepare luminescent thin films for Si-based optoelectronics.

  16. Thermal Conductivity of Amorphous and Nanocrystalline Silicon Films Prepared by Hot-Wire Chemical-Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, William M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jugdersuren, B. [Sotera Defense Solutions, Inc.; Kearney, B. T. [Naval Research Laboratory; Queen, D. R. [Naval Research Laboratory; Metcalf, T. H. [Naval Research Laboratory; Culbertson, J. C. [Naval Research Laboratory; Chervin, C. N. [Naval Research Laboratory; Stroud, R. M. [Naval Research Laboratory; Wang, Q. [Formerly NREL; Liu, Xiao [Naval Research Laboratory

    2017-07-31

    We report 3..omega.. thermal conductivity measurements of amorphous and nanocrystalline silicon thin films from 85 to 300 K prepared by hot-wire chemical-vapor deposition, where the crystallinity of the films is controlled by the hydrogen dilution during growth. The thermal conductivity of the amorphous silicon film is in agreement with several previous reports of amorphous silicon prepared by a variety of deposition techniques. The thermal conductivity of the as-grown nanocrystalline silicon film is 70% higher and increases 35% more after an anneal at 600 degrees C. They all have similarly weak temperature dependence. Structural analysis shows that the as-grown nanocrystalline silicon is approximately 60% crystalline, nanograins and grain boundaries included. The nanograins, averaging 9.1 nm in diameter in the as-grown film, are embedded in an amorphous matrix. The grain size increases to 9.7 nm upon annealing, accompanied by the disappearance of the amorphous phase. We extend the models of grain boundary scattering of phonons with two different non-Debye dispersion relations to explain our result of nanocrystalline silicon, confirming the strong grain size dependence of heat transport for nanocrystalline materials. However, the similarity in thermal conductivity between amorphous and nanocrystalline silicon suggests the heat transport mechanisms in both structures may not be as dissimilar as we currently understand.

  17. Thermal conductivity of amorphous and nanocrystalline silicon films prepared by hot-wire chemical-vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jugdersuren, B.; Kearney, B. T.; Queen, D. R.; Metcalf, T. H.; Culbertson, J. C.; Chervin, C. N.; Stroud, R. M.; Nemeth, W.; Wang, Q.; Liu, Xiao

    2017-07-01

    We report 3..omega.. thermal conductivity measurements of amorphous and nanocrystalline silicon thin films from 85 to 300 K prepared by hot-wire chemical-vapor deposition, where the crystallinity of the films is controlled by the hydrogen dilution during growth. The thermal conductivity of the amorphous silicon film is in agreement with several previous reports of amorphous silicon prepared by a variety of deposition techniques. The thermal conductivity of the as-grown nanocrystalline silicon film is 70% higher and increases 35% more after an anneal at 600 degrees C. They all have similarly weak temperature dependence. Structural analysis shows that the as-grown nanocrystalline silicon is approximately 60% crystalline, nanograins and grain boundaries included. The nanograins, averaging 9.1 nm in diameter in the as-grown film, are embedded in an amorphous matrix. The grain size increases to 9.7 nm upon annealing, accompanied by the disappearance of the amorphous phase. We extend the models of grain boundary scattering of phonons with two different non-Debye dispersion relations to explain our result of nanocrystalline silicon, confirming the strong grain size dependence of heat transport for nanocrystalline materials. However, the similarity in thermal conductivity between amorphous and nanocrystalline silicon suggests the heat transport mechanisms in both structures may not be as dissimilar as we currently understand.

  18. Thermal conductivity of amorphous and nanocrystalline silicon films prepared by hot-wire chemical-vapor deposition

    Science.gov (United States)

    Jugdersuren, B.; Kearney, B. T.; Queen, D. R.; Metcalf, T. H.; Culbertson, J. C.; Chervin, C. N.; Stroud, R. M.; Nemeth, W.; Wang, Q.; Liu, Xiao

    2017-07-01

    We report 3 ω thermal conductivity measurements of amorphous and nanocrystalline silicon thin films from 85 to 300 K prepared by hot-wire chemical-vapor deposition, where the crystallinity of the films is controlled by the hydrogen dilution during growth. The thermal conductivity of the amorphous silicon film is in agreement with several previous reports of amorphous silicon prepared by a variety of deposition techniques. The thermal conductivity of the as-grown nanocrystalline silicon film is 70% higher and increases 35% more after an anneal at 600 ∘C . They all have similarly weak temperature dependence. Structural analysis shows that the as-grown nanocrystalline silicon is approximately 60 % crystalline, nanograins and grain boundaries included. The nanograins, averaging 9.1 nm in diameter in the as-grown film, are embedded in an amorphous matrix. The grain size increases to 9.7 nm upon annealing, accompanied by the disappearance of the amorphous phase. We extend the models of grain boundary scattering of phonons with two different non-Debye dispersion relations to explain our result of nanocrystalline silicon, confirming the strong grain size dependence of heat transport for nanocrystalline materials. However, the similarity in thermal conductivity between amorphous and nanocrystalline silicon suggests the heat transport mechanisms in both structures may not be as dissimilar as we currently understand.

  19. A thermodynamic approach towards glass-forming ability of amorphous metallic alloys

    Indian Academy of Sciences (India)

    Sonal R Prajapati; Supriya Kasyap; Arun Pratap

    2015-12-01

    A quantitative measure of the stability of a glass as compared to its corresponding crystalline state can be obtained by calculating the thermodynamic parameters, such as the Gibbs free energy difference (), entropy difference () and the enthalpy difference () between the super-cooled liquid and the corresponding crystalline phase. is known as the driving force of crystallization. The driving force of crystallization () provides very important information about the glass-forming ability (GFA) of metallic glasses (MGs). Lesser the driving force of crystallization more is the GFA. The varies linearly with the critical size (). According to Battezzati and Garonne the parameter ( = (1−(/))/(1−( / ))) in the expression for should be a constant (i.e., 0.8), but its uniqueness is not observed for all MGs. The thermal stability of various alloy compositions is studied by their undercooled liquid region ( = − ). Large implies greater stability against crystallization of the amorphous structure. Other GFA parameters are also calculated and correlated with critical size ().

  20. Effect of milling conditions on solid-state amorphization of glipizide, and characterization and stability of solid forms.

    Science.gov (United States)

    Xu, Kailin; Xiong, Xinnuo; Zhai, Yuanming; Wang, Lili; Li, Shanshan; Yan, Jin; Wu, Di; Ma, Xiaoli; Li, Hui

    2016-09-10

    In this study, the amorphization of glipizide was systematically investigated through high-energy ball milling at different temperatures. The results of solid-state amorphization through milling indicated that glipizide underwent direct crystal-to-glass transformation at 15 and 25°C and crystal-to-glass-to-crystal conversion at 35°C; hence, milling time and temperature had significant effects on the amorphization of glipizide, which should be effectively controlled to obtain totally amorphous glipizide. Solid forms of glipizide were detailedly characterized through analyses of X-ray powder diffraction, morphology, thermal curves, vibrational spectra, and solid-state nuclear magnetic resonance. The physical stability of solid forms was investigated under different levels of relative humidity (RH) at 25°C. Forms I and III are kinetically stable and do not form any new solid-state forms at various RH levels. By contrast, Form II is kinetically unstable, undergoing direct glass-to-crystal transformation when RH levels higher than 32.8%. Therefore, stability investigation indicated that Form II should be stored under relatively dry conditions to prevent rapid crystallization. High temperatures can also induce the solid-state transformation of Form II; the conversion rate increased with increasing temperature.

  1. Temperature- and moisture-induced crystallization of amorphous lactose in composite particles with sodium alginate prepared by spray-drying.

    Science.gov (United States)

    Takeuchi, H; Yasuji, T; Yamamoto, H; Kawashima, Y

    2000-01-01

    The purpose of this study was to investigate the temperature- and moisture-induced crystallization of amorphous lactose in the composite particles prepared by spray-drying an aqueous solution of crystalline lactose and sodium alginate. The temperature-induced crystallization of amorphous lactose in the composite particles was suppressed by increasing the amount of sodium alginate in the particles. The stabilizing effect of sodium alginate on amorphous lactose in the composite particles was greater than that in physical mixtures having the same formulating ratios. The improved stability of amorphous lactose in the composite particles was attributed to an increase in the glass transition temperature (Tg) of the mixture. Moisture-induced crystallization of amorphous lactose was also retarded by increasing the amount of sodium alginate in composite particles. Although the Tg of the mixture was reduced by increasing the water content of the particles, the values were higher than that of 100% amorphous lactose when particles of the same water content were compared. The change in the Tg of the composite particles with increasing water content was interpreted as involving three components of the Gordon-Taylor equation. In the amorphous lactose-sodium alginate systems, the Tg values of the composite particles containing sodium alginate were higher than the theoretical line predicted by two components of the Gordon-Taylor equation. These results suggested that there was a specific interaction between the sodium alginate and lactose molecules. This specific interaction was suggested by the fact that only very little amorphous lactose was measured in the spray-dried composite particles stored under humid conditions using differential scanning calorimetry. This molecular interaction may also be partly responsible for the suppression of both the temperature- and moisture-induced crystallization of amorphous lactose in the composite particles.

  2. Effects of Mo additions on the glass-forming ability and magnetic properties of bulk amorphous Fe-C-Si-B-P-Mo alloys

    Institute of Scientific and Technical Information of China (English)

    YI; Seonghoon

    2010-01-01

    Glass formation, mechanical and magnetic properties of the Fe76-xC7.0Si3.3B5.0P8.7Mox (x=0, 1 at.%, 3 at.% and 5 at.%) alloys prepared using an industrial Fe-P master alloy have been studied. With the substitution of Mo for Fe, glass-forming ability (GFA) was significantly enhanced and fully amorphous rods with a diameter of up to 5 mm were produced in the alloy with 3% Mo. The Mo-containing amorphous alloys also exhibited high fracture strength of 3635–3881 MPa and excellent magnetic properties including a high saturation magnetization of 1.10–1.41 T, a high Curie temperature and a low coercive force. The unique combination of high GFA, high fracture strength and excellent magnetic properties make the newly developed bulk metallic glasses viable for practical engineering applications.

  3. Optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation

    Science.gov (United States)

    Chen, Chao; Li, Weiqi; Zhou, Ying; Chen, Cheng; Luo, Miao; Liu, Xinsheng; Zeng, Kai; Yang, Bo; Zhang, Chuanwei; Han, Junbo; Tang, Jiang

    2015-07-01

    Sb2Se3 is a very promising photovoltaic material because of its attractive material, optical and electrical properties. Very recently, we reported a superstrate CdS/Sb2Se3 solar cell with 5.6% certified efficiency. In this letter, we focused on the optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation. Using temperature dependent transmission spectrum and temperature dependent photoluminescence, the indirect optical transition nature and bandgap values as functions of temperature were acquired. Using ellipsometry measurements and Swanepoel's envelope method, the refractive indices as well as the dielectric constant in a wide wavelength range of 193-2615 nm were obtained. These works would lay the foundation for the further development of Sb2Se3 thin film solar cells.

  4. The Preparation and Characterization of Amorphous SiCN Thin Films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Radio Frequency plasma enhanced Chemical Vapor Deposition (RF CVD) using N2, SiH4 and C2H4 as the reaction sources was used to prepare amorphous ternary SixCyNz thin films. The chemical states of the C, Si and N atoms in the films were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FTIR). The refractive index n, extinction coefficient k and optical band gap Eopt of the thin films were investigated by UV-visible spectrophotometer and spectroscopic ellipsometer.The results show that a complex chemical bonding network rather than a simple mixture of Si3N4,SiC,CNx and a-C etc. , may exist in the ternary thin films. The n's of the films are within the range of 1.90-2. 45, and Eopt's of all samples are within the range of 2.71 -2. 86 eV.

  5. Characterization of degradation products of amorphous and polymorphic forms of clopidogrel bisulphate under solid state stress conditions

    DEFF Research Database (Denmark)

    Raijada, Dhara K; Prasad, Bhagwat; Paudel, Amrit

    2010-01-01

    The present study deals with the stress degradation studies on amorphous and polymorphic forms of clopidogrel bisulphate. The objective was to characterize the degradation products and postulate mechanism of decomposition of the drug under solid state stress conditions. For that, amorphous form...... degradation products were observed under various stress conditions. The structures of all of them were elucidated using LC-MS/TOF and LC-MS(n) studies. While one matched the known hydrolytic decomposition product of the drug in solution, seven others were new. The postulated degradation pathway and mechanism...

  6. Optical and electrical characterization of crystalline silicon films formed by rapid thermal annealing of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Baldus-Jeursen, Christopher, E-mail: cjbaldus@uwaterloo.ca; Tarighat, Roohollah Samadzadeh, E-mail: rsamadza@uwaterloo.ca; Sivoththaman, Siva, E-mail: sivoththaman@uwaterloo.ca

    2016-03-31

    The effect of rapid thermal annealing (RTA) on n-type hydrogenated amorphous silicon (a-Si:H) films deposited on single-crystal silicon (c-Si) wafers was studied by electrical and optical methods. Deposition of a-Si:H films by plasma-enhanced chemical vapor deposition (PECVD) was optimized for high deposition rate and maximum film uniformity. RTA processed films were characterized by spreading resistance profiling (SRP), Hall effect, spectroscopic ellipsometry, defect etching, and transmission electron microscopy (TEM). It was found that the films processed between 600 °C and 1000 °C were highly crystalline and that the defect density in the films diminished with increasing thermal budget. Junctions formed by the RTA processed n-type a-Si:H films on p-type c-Si wafers were tested for device applicability. It was established that these films can be used as the emitter layer in n{sup +}p photovoltaic (PV) devices with over 14% conversion efficiency. - Highlights: • Rapid thermal annealing of doped amorphous silicon deposited on single-crystal silicon (c-Si) wafers resulted in highly crystalline films for photovoltaic devices. • As the annealing temperature increased, the electrical and optical properties of the films became increasingly similar to single-crystal silicon. • Annealing temperatures between 500-1000 oC were investigated. Solar cell devices fabricated after annealing at 750 oC were found to be the most suitable compromise between good quality crystalline films and minimal dopant diffusion into the c-Si wafer. • Annealed films were highly conductive without the need for a transparent conducting oxide.

  7. Dual-mechanism gastroretentive drug delivery system loaded with an amorphous solid dispersion prepared by hot-melt extrusion.

    Science.gov (United States)

    Vo, Anh Q; Feng, Xin; Pimparade, Manjeet; Ye, Xinyou; Kim, Dong Wuk; Martin, Scott T; Repka, Michael A

    2017-02-28

    In the present study, we aimed to prepare a gastroretentive drug delivery system that would be both highly resistant to gastric emptying via multiple mechanisms and would also potentially induce in situ supersaturation. The bioadhesive floating pellets, loaded with an amorphous solid dispersion, were prepared in a single step of hot-melt extrusion technology. Hydroxypropyl cellulose (Klucel™ MF) and hypromellose (Benecel™ K15M) were used as matrix-forming polymers, and felodipine was used as the model drug. The foam pellets were fabricated based on the expansion of CO2, which was generated from sodium bicarbonate during the melt-extrusion process. A 2(n) full factorial experimental design was utilized to investigate the effects of formulation compositions to the pellet properties. The melt-extrusion process transformed the crystalline felodipine into an amorphous state that was dispersed and "frozen" in the polymer matrix. All formulations showed high porosity and were able to float immediately, without lag time, on top of gastric fluid, and maintained their buoyancy over 12h. The pellet-specific floating force, which could be as high as 4800μN/g, increased significantly during the first hour, and was relatively stable until 9h. The sodium bicarbonate percentage was found to be most significantly effect to the floating force. The ex vivo bioadhesion force of the pellets to porcine stomach mucosa was approximately 5mN/pellet, which was more than five times higher than the gravitation force of the pellet saturated with water. Drug release was well controlled up to 12h in the sink condition of 0.5% sodium lauryl sulphate in 0.1N HCl. The dissolution at 1, 3, 5, and 8h were 5-12%, 25-45%, 55-80%, and ≥75% respectively for all 11 formulations. In biorelevant dissolution medium, a supersaturated solution was formed, and the concentration was maintained at around 2μg/mL, approximately 10-folds higher than that of the pure felodipine. All input factors

  8. Glass Forming Ability and Magnetic Property of Fe74Al4Sn2(PSiB)20 Amorphous Alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei-fei; ZHOU Shao-xiong

    2004-01-01

    Amorphous ribbons of Fe74Al4Sn2(PSiB)20 alloy have been synthesized by melt spinning and axial design method. The thermal properties of the amorphous ribbons have been measured by differential scanning calorimeter (DSC). The DSC results show that the Fe74Al4Sn2P12Si4B4 amorphous alloy has relatively wider supercooled liquid region with a temperature interval of 40.38 K (ΔTx=Tx-Tg). The alloys with a higher phosphorous content in the metalloid element composition triangle of Fe74Al4Sn2(PSiB)20 have high glass forming ability. The amorphous alloys also show good magnetic properties in which Fe74Al4Sn2P6.67Si6.67B6.67 alloy has a large maximum permeability (μm), Fe78Al4Sn2P3Si3B10 alloy exhibits a high square ratio (Br/B10) and Fe74Al4Sn2P4Si12B4 shows a low core loss (P0.5/1.3T). High glass forming ability and good magnetic properties make Fe74Al4Sn2(PSiB)20 amorphous alloys valuable in future research.

  9. Trehalose amorphization and recrystallization.

    Science.gov (United States)

    Sussich, Fabiana; Cesàro, Attilio

    2008-10-13

    The stability of the amorphous trehalose prepared by using several procedures is presented and discussed. Amorphization is shown to occur by melting (T(m)=215 degrees C) or milling (room temperature) the crystalline anhydrous form TRE-beta. Fast dehydration of the di-hydrate crystalline polymorph, TRE-h, also produces an amorphous phase. Other dehydration procedures of TRE-h, such as microwave treatment, supercritical extraction or gentle heating at low scan rates, give variable fractions of the polymorph TRE-alpha, that undergo amorphization upon melting (at lower temperature, T(m)=130 degrees C). Additional procedures for amorphization, such as freeze-drying, spray-drying or evaporation of trehalose solutions, are discussed. All these procedures are classified depending on the capability of the undercooled liquid phase to undergo cold crystallization upon heating the glassy state at temperatures above the glass transition temperature (T(g)=120 degrees C). The recrystallizable amorphous phase is invariably obtained by the melt of the polymorph TRE-alpha, while other procedures always give an amorphous phase that is unable to crystallize above T(g). The existence of two different categories is analyzed in terms of the transformation paths and the hypothesis that the systems may exhibit different molecular mobilities.

  10. Low-Temperature Preparation of Amorphous-Shell/Nanocrystalline-Core Nanostructured TiO2 Electrodes for Flexible Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Dongshe Zhang

    2008-01-01

    Full Text Available An amorphous shell/nanocrystalline core nanostructured TiO2 electrode was prepared at low temperature, in which the mixture of TiO2 powder and TiCl4 aqueous solution was used as the paste for coating a film and in this film amorphous TiO2 resulted from direct hydrolysis of TiCl4 at 100∘C sintering was produced to connect the particles forming a thick crack-free uniform nanostructured TiO2 film (12 μm, and on which a photoelectrochemical solar cell-based was fabricated, generating a short-circuit photocurrent density of 13.58 mA/cm2, an open-circuit voltage of 0.647 V, and an overall 4.48% light-to-electricity conversion efficiency under 1 sun illumination.

  11. Preparation and characterization of polymer-derived amorphous silicon carbide with silicon-rich stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takashi, E-mail: mtakashi@jaist.ac.jp [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Iwasaka, Akira [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Takagishi, Hideyuki [Faculty of Symbiotic System Science, Fukushima University, 1 Kanayagawa, Fukushima-shi, Fukushima 960-1296 (Japan); Shimoda, Tatsuya [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2016-08-01

    Polydihydrosilane with pendant hexyl groups was synthesized to obtain silicon-rich amorphous silicon carbide (a-SiC) films via the solution route. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross-linkage. Therefore, the polymer provides sufficient purity for the fabrication of semiconducting a-SiC. Here, we investigated the correlation of Si/C stoichiometry between the polymer and the resultant a-SiC film. The structural, optical, and electrical properties of the films with various carbon contents were also explored. Experimental results suggested that the excess carbon that did not participate in Si−C configurations was decomposed and was evaporated during polymer-to-SiC conversion. Consequently, the upper limit of the carbon in resultant a-SiC film was < 50 at.%; namely, the polymer provided silicon-rich a-SiC, whereas the conventionally used polycarbosilane inevitably provides carbon-rich one. These features of this unusual polymer open up a frontier of polymer-derived SiC and solution-processed SiC electronics. - Highlights: • Polymeric precursor solution for silicon carbide (SiC) is synthesized. • Semiconducting amorphous SiC is prepared via solution route. • The excess carbon is decomposed during cross-linking resulting in Si-rich SiC films. • The grown SiC films contain substantial amount of hydrogen atoms as SiH{sub n}/CH{sub n} entities. • Presence of CH{sub n} entities induces dangling bonds, causing poor electrical properties.

  12. Preparation and Characterization of Hydrous Zirconium Oxide Formed by Homogeneous Precipitation

    Directory of Open Access Journals (Sweden)

    Silva G.L.J.P. da

    2002-01-01

    Full Text Available This paper reports on the preparation, characterization and study of the ion exchange behavior of hydrous zirconium oxides formed by homogeneous precipitation from zirconium oxychloride. The precipitants used were obtained by thermal decomposition of urea, sodium nitrite or ammonium carbonate. Seven compounds were prepared and characterized by thermal analysis, X-ray diffractometry and by surface area measurements. Amorphous forms were obtained in each case, a result that agrees with those obtained by conventional gel precipitation methodology. All these materials present surface area values of >148 m².g-1, determined after heat treatment at 50 °C. The ion exchange behavior of each hydrous zirconium oxide prepared was studied using K+ as the exchanged species and the results compared with those obtained for hydrous zirconium oxide originally precipitated by the sol gel method.

  13. Chemical short-range order domain in bulk amorphous alloy and the prediction of glass forming ability

    Institute of Scientific and Technical Information of China (English)

    HUI; Xidong(惠希东); YAO; Kefu(姚可夫); KOU; Hongchao(寇宏超); CHEN; Guoliang(陈国良)

    2003-01-01

    Short-range order domains of face central cubic Zr2Ni (F-Zr2Ni) and tetragonal Zr2Ni (T-Zr2Ni) type structure with a size about 1-3 nanometers were observed in bulk amorphous Zr52.5Cu17.9Ni14.6Al10Ti5 alloy by using HREM and nano-beam electron diffraction technique. A new thermodynamic model was formulated based on the concept of chemical short-range order (SCRO). The molar fractions of CSRO and thermodynamic properties in Ni-Zr, Cu-Zr, Al-Zr, Al-Ni, Zr-Ni-Al and Zr-Ni-Cu were calculated. According to the principle of maximum the optimum glass forming ability (GFA) compositions were predicted in binary and ternary alloys. These results were proved to be valid by the experimental data of crystallizing activation energy, ΔTx and XRD patterns. The TTT curves of Zr-Ni-Cu alloys calculated based on CSRO model shows that the lowest critical cooling rate GFA is in the order of 100 K/s, which is close to the practical cooling rate for the preparation of Zr-based BMG alloys.

  14. Preparation and Cycling Performance of Iron or Iron Oxide Containing Amorphous Al-Li Alloys as Electrodes

    Directory of Open Access Journals (Sweden)

    Franziska Thoss

    2014-12-01

    Full Text Available Crystalline phase transitions cause volume changes, which entails a fast destroying of the electrode. Non-crystalline states may avoid this circumstance. Herein we present structural and electrochemical investigations of pre-lithiated, amorphous Al39Li43Fe13Si5-powders, to be used as electrode material for Li-ion batteries. Powders of master alloys with the compositions Al39Li43Fe13Si5 and Al39Li43Fe13Si5 + 5 mass-% FeO were prepared via ball milling and achieved amorphous/nanocrystalline states after 56 and 21.6 h, respectively. In contrast to their Li-free amorphous pendant Al78Fe13Si9, both powders showed specific capacities of about 400 and 700 Ah/kgAl, respectively, after the third cycle.

  15. CORROSION BEHAVIOR OF Cu-Nb AND Ni-Nb AMORPHOUS FILMS PREPARED BY ION BEAM ASSISTED DEPOSITION

    Institute of Scientific and Technical Information of China (English)

    B. Zhao; F. Zeng; D.M. Li; F. Pan

    2003-01-01

    The Cu25Nb75 and Ni45Nb55 amorphous films with about 500nm thickness were prepared by ion beam assisted deposition (IBAD). Potentiodynamic polarization measurement was adopted to investigate the corrosion resistance of samples and the tests were carried out respectively in 1mol/L H2SO4 and NaOH aquatic solution. The corrosion performance of the amorphous films was compared with that of multilayered and pure Nb films. Experimental results indicated that the corrosion resistance of amorphous films was better than that of the corresponding multilayers and pure Nb films for both Ni-Nb system with negative heat of formation and Cu-Nb system with positive heat of formation.

  16. Photoluminescence of donor-acceptor carbazole-based molecules in amorphous and powder forms

    Science.gov (United States)

    Adès, D.; Boucard, V.; Cloutet, E.; Siove, A.; Olivero, C.; Castex, M. C.; Pichler, G.

    2000-05-01

    We present absorption and photoluminescence features of four samples of carbazole molecules substituted with various electron-acceptor groups. These molecules named 1-(N-ethylcarbazolyl)-2-substituted-2-cyanovinylene contain in their structure the electron-donor carbazole nucleus and cyanovinylene bearing either another nitrile function, an ethylester, a phenyl, or a para-nitrophenyl groups. It is shown that depending on the strength of the donor-acceptor internal charge transfer, both the absorption and emission spectra are more or less redshifted. It is found that the ethyl-ester derivative displays the best relative photoluminescence efficiency among all the samples and its peak is measured at 490 nm when taking amorphous thin film. The microcrystalline powder form of the same material exhibits spectral narrowing and shift of the peak emission. We obtain further narrowing of the emission band and further redshifting of the emission when we illuminate, transversely, a glass capillary containing the crystalline sample by an ultraviolet light-emitting diode.

  17. Microstructural analyses of amorphic diamond, i-C, and amorphous carbon

    DEFF Research Database (Denmark)

    Collins, C. B.; Davanloo, F.; Jander, D.R.;

    1992-01-01

    Recent experiments have identified the microstructure of amorphic diamond with a model of packed nodules of amorphous diamond expected theoretically. However, this success has left in doubt the relationship of amorphic diamond to other noncrystalline forms of carbon. This work reports...... the comparative examinations of the microstructures of samples of amorphic diamond, i-C, and amorphous carbon. Four distinct morphologies were found that correlated closely with the energy densities used in preparing the different materials. Journal of Applied Physics is copyrighted by The American Institute...

  18. Preparation and characterization of silver nanoparticle loaded amorphous hydrogel of carboxymethylcellulose for infected wounds.

    Science.gov (United States)

    Das, Anup; Kumar, Ajay; Patil, Niranjan B; Viswanathan, Chandra; Ghosh, Deepa

    2015-10-05

    There is a growing demand for an appropriate and safe antimicrobial dressing to treat infected deep wounds. An amorphous gel formulation (SNP-CMC), containing silver nanoparticles (SNPs) and carboxymethylcellulose (CMC), was prepared in one step by the reduction of silver nitrate in situ. Spectrophotometric and microscopic analysis revealed that the SNPs were 7-21 nm in diameter. In simulated wound experiments, SNP-CMC gel was found to absorb 80.48 ± 4.69% w/w of saline and donate 17.43 ± 0.76% w/w of moisture within 24h indicating its dual fluid affinity. Cytocompatibility of the gel was assessed by proliferation studies with primary human skin cells. The antimicrobial activity studies showed that SNP-CMC containing 50 ppm of SNPs was effective against the growth of both Gram negative and Gram positive strains including methicillin-resistant Staphylococcus aureus (MRSA). These results indicate that SNP-CMC could be ideal for the treatment of deep infected wounds.

  19. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers

    Directory of Open Access Journals (Sweden)

    Zhang Kui-Hua

    2011-01-01

    Full Text Available Abstract Calcium phosphate is the most important inorganic constituent of biological tissues, and synthetic calcium phosphate has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of amorphous calcium phosphate (ACP/polylactide-block-monomethoxy(polyethyleneglycol hybrid nanoparticles and ACP porous nanospheres. Europium-doping is performed to enable photoluminescence (PL function of ACP porous nanospheres. A high specific surface area of the europium-doped ACP (Eu3+:ACP porous nanospheres is achieved (126.7 m2/g. PL properties of Eu3+:ACP porous nanospheres are investigated, and the most intense peak at 612 nm is observed at 5 mol% Eu3+ doping. In vitro cytotoxicity experiments indicate that the as-prepared Eu3+:ACP porous nanospheres are biocompatible. In vitro drug release experiments indicate that the ibuprofen-loaded Eu3+:ACP porous nanospheres show a slow and sustained drug release in simulated body fluid. We have found that the cumulative amount of released drug has a linear relationship with the natural logarithm of release time (ln(t. The Eu3+:ACP porous nanospheres are bioactive, and can transform to hydroxyapatite during drug release. The PL properties of drug-loaded nanocarriers before and after drug release are also investigated.

  20. Influence of microenvironment pH, humidity, and temperature on the stability of polymorphic and amorphous forms of clopidogrel bisulfate

    DEFF Research Database (Denmark)

    Raijada, Dhara K; Singh, Saranjit; Bansal, Arvind K

    2010-01-01

    The effect of microenvironment pH, humidity, and temperature was evaluated on the stability of polymorphic and amorphous forms of clopidogrel bisulfate, when present alone or in combinations. Oxalic acid and sodium carbonate were used as solid stressors to create acidic and alkaline pH, respectiv......The effect of microenvironment pH, humidity, and temperature was evaluated on the stability of polymorphic and amorphous forms of clopidogrel bisulfate, when present alone or in combinations. Oxalic acid and sodium carbonate were used as solid stressors to create acidic and alkaline p...... more degradation than the individual forms above critical relative humidity (85% RH). Similar higher degradation was observed between 75% RH and 85% RH in case of acid-stressed samples. In alkaline microenvironment, all the samples showed identical decomposition attributed to conversion of bisulfate...

  1. Hydrogenation of Furfural to Furfuryl Alcohol over Co-B Amorphous Catalysts Prepared by Chemical Reduction in Variable Media

    Institute of Scientific and Technical Information of China (English)

    LI, Hui; CHAI, Wei-Mei; LUO, Hong-Shan; LI, He-Xing

    2006-01-01

    Five Co-B amorphous alloy catalysts were prepared by chemical reduction in different media, including pure water and pure ethanol as well as the mixture of ethanol and water with variable ethanol content. Their catalytic properties were evaluated using liquid phase furfural hydrogenation to furfuryl alcohol as the probe reaction. It was found that the reaction media had no significant influence on either the amorphous structure of the Co-B catalyst or the electronic interaction between metallic Co and alloying B. This could successfully account for the fact that all the as-prepared Co-B catalysts exhibited almost the same selectivity to furfuryl alcohol and the same activity per surface area ( RSH ), which could be considered as the intrinsic activity, since the nature of active sites remained unchanged. However, the activity per gram of Co ( RmH ) of the as-prepared Co-B catalysts increased rapidly when the ethanol content in the water-ethanol mixture used as the reaction medium for catalyst preparation increased. This could be attributed to the rapid increase in the surface area possibly owing to the presence of more oxidized boron species which could serve as a support for dispersing the Co-B amorphous alloy particles.

  2. Preparation and Properties of Amorphous NiFe/Cu/NiFe Thin Films

    Institute of Scientific and Technical Information of China (English)

    YE Yun; JIANG Ya-dong; HU Wen-cheng; ZENG Hong-juan

    2004-01-01

    The amorphous of Permalloy on the copper subtract was studied using composite electroplating method. A portion of hydrogen brings the counteraction on the surface of cathode leading nickel-iron alloys to be anomalous in the process of co-depositing. The results of X-ray diffraction (XRD) show that the Ni-Fe alloys layer is amorphous. The Giant Magneto -Impedance (GMI) effect of Ni-Fe alloys was obtained under the optimal conditions, dependence on the soft magnetic property of Ni-Fe amorphous thin film. As a result, the ratios△ Z/Z of NiFe/Cu/NiFe amorphous thin film are 30% at 40 kHz which is in low frequency. Furthermore, the GMI value of NiFe/Cu/NiFe amorphous thin film with a sandwich structure is higher than that of single-layer ferromagnetic films of the same thickness.

  3. Inhibition of Recrystallization of Amorphous Lactose in Nanocomposites Formed by Spray-Drying.

    Science.gov (United States)

    Hellrup, Joel; Alderborn, Göran; Mahlin, Denny

    2015-11-01

    This study aims at investigating the recrystallization of amorphous lactose in nanocomposites. In particular, the focus is on the influence of the nano- to micrometer length scale nanofiller arrangement on the amorphous to crystalline transition. Further, the relative significance of formulation composition and manufacturing process parameters for the properties of the nanocomposite was investigated. Nanocomposites of amorphous lactose and fumed silica were produced by co-spray-drying. Solid-state transformation of the lactose was studied at 43%, 84%, and 94% relative humidity using X-ray powder diffraction and microcalorimetry. Design of experiments was used to analyze spray-drying process parameters and nanocomposite composition as factors influencing the time to 50% recrystallization. The spray-drying process parameters showed no significant influence. However, the recrystallization of the lactose in the nanocomposites was affected by the composition (fraction silica). The recrystallization rate constant decreased as a function of silica content. The lowered recrystallization rate of the lactose in the nanocomposites could be explained by three mechanisms: (1) separation of the amorphous lactose into discrete compartments on a micrometer length scale (compartmentalization), (2) lowered molecular mobility caused by molecular interactions between the lactose molecules and the surface of the silica (rigidification), and/or (3) intraparticle confinement of the amorphous lactose.

  4. Hydriding and dehydriding characteristics of nanocrystalline and amorphous Mg20-xLaxNi10(x=0-6) alloys prepared by melt-spinning

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yanghuan; ZHAO Dongliang; REN Huiping; GUO Shihai; WANG Qingchun; WANG Xinlin

    2009-01-01

    In order to improve the hydrogenation and dehydrogenation performances of the Mg2Ni-type alloys, Mg was partially substituted by La in the alloy, and melt spinning technology was used for the preparation of the Mg20-xLaxNi10 (x=0, 2, 4, 6) hydrogen storage alloys. The structures of the alloys were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). It was found that no amorphous phase formed in the as-spun La-free alloy, but the as-spun alloys containing La held a major amorphous phase. When La content x≤2, the major phase in the as-cast alloys was Mg2Ni phase, but with further increase of La content, the major phase of the as-cast alloys changed into LaNi5+LaMg3 phase. Thermal stability of the as-spun alloys was studied by differential scanning calorimetry (DSC), showing that spinning rate was a negligible factor on the crystallization temperature of the amor-phous phase. The hydrogen absorption and desorption kinetics of the as-cast and as-spun alloys were measured using an automatically con-trolled Sieverts apparatus, confirming that the hydrogen absorption and desorption capacities and kinetics of the as-cast alloys clearly in-creased with rising La content. For La content x=2, the as-spun alloy displayed optimal hydrogen desorption kinetics at 200 ℃.

  5. Preparation of Nanosized GdCoO3 Powder Using Amorphous Heteronuclear Complex as a Precursor

    Institute of Scientific and Technical Information of China (English)

    ZHU Yongfa; YI Tao; GAO Song; YAN Chunhua; CAO Lili

    2001-01-01

    Nanosized GdCoO3 cobaltite oxide powder with perovskite structure was successfully synthesized at a relative low calcination temperature using an amorphous heteronuclear complex, GdCo(DTPA)·6H2O, as a precursor.Differential thermal analysis (DTA) and thermogravimetric analysis (TGA) indicated that the precursor completely decomposed into cobaltit e oxide above 400℃.X-ray photoelection spectroscopy (XPS) revealed that the decomposed species was composed of GdCoO3 cobaltite oxide after the precursor was calcined at 500℃ for 2 h.X-ray diffraction (XRD) demonstrated that nanosized GdCoO3 crystalline powder with perovskite structure was formed after the calcination temperature was increased to 650℃.The GdCoO3 grain size increased linearly from 20 nm to 50 nm when the calcination temperature was increased from 500℃ to 800℃,and the grain size increased from 10 nm to 30 nm when the precursor was calcined at 500℃ for 1 to 8 h.

  6. Formulation and process design for a solid dosage form containing a spray-dried amorphous dispersion of ibipinabant.

    Science.gov (United States)

    Leane, Michael M; Sinclair, Wayne; Qian, Feng; Haddadin, Raja; Brown, Alan; Tobyn, Mike; Dennis, Andrew B

    2013-01-01

    Amorphous forms of poorly soluble drugs are more frequently being incorporated into solid dispersions for administration and extensive research has led to a reasonable understanding of how these dispersions, although still kinetically unstable, improve stability relative to the pure amorphous form. There remains however a paucity of literature describing the effects on such solid dispersions of subsequent processing into solid dosage forms such as tablets. This paper addresses this area by looking at the effects of the addition of common excipients and different manufacturing routes on the stability of a spray-dried dispersion (SDD) of the cannabinoid CB-1 antagonist, ibipinabant. A marked difference in physical stability of tablets was seen with the different fillers with microcrystalline cellulose (MCC) giving the best stability profile. It was found that minimising the number of compression steps led to improved formulation stability with a direct compression process giving the best results. Increased levels of crystallinity were seen in coated tablets most likely due to the exposure of the amorphous matrix to moisture and heat during the coating process. DSIMS analysis of the SDD particles indicated increased levels of polymer on the surface.

  7. Preparation of Al72Ni8Ti8Zr6Nb3Y3 amorphous powders and bulk materials

    Science.gov (United States)

    Wu, Yu; Wang, Xin-fu; Han, Fu-sheng

    2016-10-01

    Amorphous Al72Ni8Ti8Zr6Nb3Y3 powders were successfully fabricated by mechanical alloying. The microstructure, glass-forming ability, and crystallization behavior of amorphous Al72Ni8Ti8Zr6Nb3Y3 powders were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The isothermal crystallization kinetics was analyzed by the Johnson-Mehl-Avrami equation. In the results, the supercooled liquid region of the amorphous alloy is as high as 81 K, as determined by non-isothermal DSC curves. The activation energy for crystallization is as high as 312.6 kJ·mol-1 obtained by Kissinger and Ozawa analyses. The values of Avrami exponent ( n) imply that the crystallization is dominated by interface-controlled three-dimensional growth in the early stage and the end stage and by diffusion-controlled two- or three-dimensional growth in the middle stage. In addition, the amorphous Al72Ni8Ti8Zr6Nb3Y3 powders were sintered under 2 GPa at temperatures of 673 K and 723 K. The results show that the Vickers hardness of the compacted powders is as high as Hv 1215.

  8. Confinement of Amorphous Lactose in Pores Formed Upon Co-Spray Drying With Nanoparticles.

    Science.gov (United States)

    Hellrup, Joel; Mahlin, Denny

    2017-01-01

    This study aims at investigating factors influencing humidity-induced recrystallization of amorphous lactose, produced by co-spray drying with particles of cellulose nanocrystals or sodium montmorillonite. In particular, the focus is on how the nanoparticle shape and surface properties influence the nanometer to micrometer length scale nanofiller arrangement in the nanocomposites and how the arrangements influence the mechanisms involved in the inhibition of the amorphous to crystalline transition. The nanocomposites were produced by co-spray drying. Solid-state transformations were analyzed at 60%-94% relative humidity using X-ray powder diffraction, microcalorimetry, and light microscopy. The recrystallization rate constant for the lactose/cellulose nanocrystals and lactose/sodium montmorillonite nanocomposites was lowered at nanofiller contents higher than 60% and was stable for months at 80% nanofiller. The most likely explanation to these results is spontaneous formations of mesoporous particle networks that the lactose is confined upon co-spray drying at high filler content. Compartmentalization and rigidification of the amorphous lactose proved to be less important mechanisms involved in the stabilization of lactose in the nanocomposites. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Photoelectron yield spectroscopy and inverse photoemission spectroscopy evaluations of p-type amorphous silicon carbide films prepared using liquid materials

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Tatsuya, E-mail: mtatsuya@jaist.ac.jp, E-mail: mtakashi@jaist.ac.jp [Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Masuda, Takashi, E-mail: mtatsuya@jaist.ac.jp, E-mail: mtakashi@jaist.ac.jp; Inoue, Satoshi; Shimoda, Tatsuya [Green Device Research Center, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1211 (Japan); Yano, Hiroshi; Iwamuro, Noriyuki [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki 305-8573 (Japan)

    2016-05-15

    Phosphorus-doped amorphous silicon carbide films were prepared using a polymeric precursor solution. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross-linkage, providing semiconducting properties in the films. The valence and conduction states of resultant films were determined directly through the combination of inverse photoemission spectroscopy and photoelectron yield spectroscopy. The incorporated carbon widened energy gap and optical gap comparably in the films with lower carbon concentrations. In contrast, a large deviation between the energy gap and the optical gap was observed at higher carbon contents because of exponential widening of the band tail.

  10. Preparation of Plate Fe60Co8Zr10Mo5W2B15 Bulk Amorphous Alloy and Its Fracture Toughness

    Institute of Scientific and Technical Information of China (English)

    XIAO Huaxing; CHEN Guang

    2005-01-01

    With processes of arc melting, inductive melting and copper mold suction casting, a plate Fe-based bulk amorphous alloy Fe60Co8Zr10Mo5W2B15 with a thickness of 1mm was prepared. The surfaces and fractures of the cast bulk amorphous alloy were agleam and with typical metallic luster. The glass transition temperature(Tg), supercooled liquid region(△Tx)and reduced glass transition temperature(T rg)of the prepared Fe-based amorphous alloy are 884 K,63 K, and 0.611 respectively. The fracture toughness of the cast bulk amorphous alloy is at the level of 1.6 MPa·m1/2.

  11. Ion implantation into amorphous Si layers to form carrier-selective contacts for Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Feldmann, Frank; Mueller, Ralph; Reichel, Christian; Hermle, Martin [Fraunhofer Institute for Solar Energy Systems, Heidenhofstrasse 2, 79110, Freiburg (Germany)

    2014-09-15

    This paper reports our findings on the boron and phosphorus doping of very thin amorphous silicon layers by low energy ion implantation. These doped layers are implemented into a so-called tunnel oxide passivated contact structure for Si solar cells. They act as carrier-selective contacts and, thereby, lead to a significant reduction of the cell's recombination current. In this paper we address the influence of ion energy and ion dose in conjunction with the obligatory high-temperature anneal needed for the realization of the passivation quality of the carrier-selective contacts. The good results on the phosphorus-doped (implied V{sub oc} = 725 mV) and boron-doped passivated contacts (iV{sub oc} = 694 mV) open a promising route to a simplified interdigitated back contact (IBC) solar cell featuring passivated contacts. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Chemical bonding structural analysis of nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite films prepared by coaxial arc plasma deposition

    Science.gov (United States)

    Gima, Hiroki; Zkria, Abdelrahman; Katamune, Yūki; Ohtani, Ryota; Koizumi, Satoshi; Yoshitake, Tsuyoshi

    2017-01-01

    Nitrogen-doped ultra-nanocrystalline diamond/hydrogenated amorphous carbon composite films prepared in hydrogen and nitrogen mixed-gas atmospheres by coaxial arc plasma deposition with graphite targets were studied electrically and chemical-bonding-structurally. The electrical conductivity was increased by nitrogen doping, accompanied by the production of n-type conduction. From X-ray photoemission, near-edge X-ray absorption fine-structure, hydrogen forward-scattering, and Fourier transform infrared spectral results, it is expected that hydrogen atoms that terminate diamond grain boundaries will be partially replaced by nitrogen atoms and, consequently, π C–N and C=N bonds that easily generate free electrons will be formed at grain boundaries.

  13. Spatial confinement can lead to increased stability of amorphous indomethacin

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Keller, Stephan Sylvest; Gordon, Keith C.

    2012-01-01

    The aim of this study was to investigate whether the physical stability of amorphous indomethacin can be improved by separating the drug material into small units by the use of microcontainers. Crystallisation from the spatially confined amorphous indomethacin in the microcontainers was determined...... and compared with the crystallisation kinetics of amorphous bulk indomethacin.Amorphous indomethacin in both a bulk form and contained within microcontainers was prepared by melting of bulk or container-incorporated γ-indomethacin, respectively, followed by quench-cooling. Microcontainers of three different...... sizes (diameters of 73μm, 174μm and 223μm) were used for the confinement of amorphous indomethacin, in order to elucidate whether the size of the microcontainer had an influence on the stability of the amorphous form. Following preparation, all samples were stored at 30°C and 23% RH. A sample of 100...

  14. Preparation and utilization of amorphous siliceous materials from serpentine (Mg3Si2O5(OH)4) by acid treatment; Jamonseki no kofuka kachika ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-30

    Concerning the conversion of serpentine, not only its magnesium component but also silica component, into industrial materials, conditions suitable for the production of porous materials and amorphous silica by acid treatment were evaluated, and the properties of the products were evaluated. The silica resulting from the acid treatment of serpentine comes out in different forms, each reflecting the structure of the parent rock, that is, an amorphous mass of planar particles from antigorite and a fascicular mass of filaments from chrysotile. A microporic structure resulted when a small quantity of magnesium was allowed to remain in the skeleton structure and acid treatment conditions were properly adjusted. Several siliceous compounds were prepared for the purpose of finding use for silica from this rock, and then it was found that high-efficiency production of high-crystallinity compounds was possible and that they were furnished with properties fit for use as materials. Furthermore, study was made about the kaolinite reaction in which serpentine would be directly converted into useful materials. 105 refs., 55 figs., 6 tabs.

  15. Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique

    Science.gov (United States)

    Abdel Rafea, M.; Roushdy, N.

    2009-01-01

    Amorphous copper oxide films were deposited using the SILAR technique. Both Cu2O and CuO crystallographic phases exist in deposited and annealed films. Crystallization and growth processes by annealing at temperatures up to 823 K form grains with nano- and micro-spherical shapes. The calculated crystallite size from the XRD measurement was found to be in the range 14-21 nm while nano-spheres in the diameter range 50-100 nm were observed by SEM micrographs. The band gap for amorphous film was found to be 2.3 eV which increased slowly to 2.4 eV by annealing the film at 373 K. This was explained by defect redistribution in amorphous films. Annealing in the temperature range 373-673 K decreased the band gap gradually to 1.85 eV. The decrease of the band gap with annealing temperature in the range 373-673 K agrees well with the Brus model of the energy gap confinement effect in nanostructured semiconducting materials. Annealing in the temperature range 673-823 K decreases the band gap slowly to 1.7 eV due to the smaller contribution of the confinement effect. Below 573 K, Cu2O is the most probable crystalline phase in the film, while Cu2O and CuO crystalline phases may coexist at annealing temperatures above 573 K due to further oxidation of Cu2O. A wider transmittance spectral window in the visible region was obtained by controlling the annealing conditions of the amorphous copper oxide film and its applicability to the window layer of solar cell was suggested.

  16. Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Rafea, M; Roushdy, N [Electronic Materials Department, Advanced Technologies and New Materials Institute, Mubarak City for Scientific Research and Technology Applications, PO Box 21934, New Borg El-Arab City, Alexandria (Egypt)], E-mail: m.abdelrafea@mucsat.sci.eg

    2009-01-07

    Amorphous copper oxide films were deposited using the SILAR technique. Both Cu{sub 2}O and CuO crystallographic phases exist in deposited and annealed films. Crystallization and growth processes by annealing at temperatures up to 823 K form grains with nano- and micro-spherical shapes. The calculated crystallite size from the XRD measurement was found to be in the range 14-21 nm while nano-spheres in the diameter range 50-100 nm were observed by SEM micrographs. The band gap for amorphous film was found to be 2.3 eV which increased slowly to 2.4 eV by annealing the film at 373 K. This was explained by defect redistribution in amorphous films. Annealing in the temperature range 373-673 K decreased the band gap gradually to 1.85 eV. The decrease of the band gap with annealing temperature in the range 373-673 K agrees well with the Brus model of the energy gap confinement effect in nanostructured semiconducting materials. Annealing in the temperature range 673-823 K decreases the band gap slowly to 1.7 eV due to the smaller contribution of the confinement effect. Below 573 K, Cu{sub 2}O is the most probable crystalline phase in the film, while Cu{sub 2}O and CuO crystalline phases may coexist at annealing temperatures above 573 K due to further oxidation of Cu{sub 2}O. A wider transmittance spectral window in the visible region was obtained by controlling the annealing conditions of the amorphous copper oxide film and its applicability to the window layer of solar cell was suggested.

  17. Preparation and characterization of Fe-based bulk metallic glasses in plate form

    Energy Technology Data Exchange (ETDEWEB)

    Lavorato, G.C. [INTECIN (FIUBA-CONICET), Paseo Colon 850, Capital Federal (Argentina); Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Fiore, G.; Castellero, A.; Baricco, M. [Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Moya, J.A., E-mail: jmoya.fi.uba@gmail.com [IESIING, Facultad de Ingenieria e Informatica, UCASAL, Salta (Argentina); CONICET (Argentina)

    2012-08-15

    Amorphous alloys with composition (at%) Fe{sub 48}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Gd{sub 2} (alloy A) and Fe{sub 48}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Y{sub 2} (alloy B) were prepared either using pure elements (A and B1) and a commercial AISI430 steel as a base material (B2). When prepared from pure elements both alloys (A and B1) could be cast in plate form with a fixed thickness of 2 mm and variable lengths between 10 and 20 mm by means of copper-mold injection in air atmosphere. In the case of alloy B2, prepared using commercial grade raw materials, rods of 2 mm diameter were obtained. X-ray diffraction and scanning electron microscopy observations confirmed that an amorphous structure was obtained in all the as-cast samples. A minor fraction of crystalline phases (oxides and carbides) was detected on the as-cast surface. Differential scanning calorimetry measurements showed a glass transition temperature at 856 K for alloy A and 841 K for alloy B1, and an onset crystallization temperature of 887 K for alloy A and 885 K for alloy B1. In the case of alloy B2 a slightly different crystallization sequence was observed. Values of hardness ({approx}13 GPa) and the Young modulus ({approx}180 GPa) were measured by nanoindentation for both the alloys. The effects of adverse casting conditions (such as air atmosphere, non-conventional injection copper mold casting and partial replacement of pure elements with commercial grade raw materials) on the glass formation and properties of the alloy are discussed.

  18. Gel-forming reagents and uses thereof for preparing microarrays

    Science.gov (United States)

    Golova, Julia; Chernov, Boris; Perov, Alexander

    2010-11-09

    New gel-forming reagents including monomers and cross-linkers, which can be applied to gel-drop microarray manufacturing by using co-polymerization approaches are disclosed. Compositions for the preparation of co-polymerization mixtures with new gel-forming monomers and cross-linker reagents are described herein. New co-polymerization compositions and cross-linkers with variable length linker groups between unsaturated C.dbd.C bonds that participate in the formation of gel networks are disclosed.

  19. Preparation of hard magnetic materials in thin film form

    Energy Technology Data Exchange (ETDEWEB)

    Pigazo, F.; Palomares, F.J. [Instituto de Ciencia de Materiales de Madrid-CSIC, c/ Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain); Cebollada, F. [EUITT-UPM, Carretera de Valencia km 7, 28031 Madrid (Spain); Gonzalez, J.M. [Unidad Asociada ICMM-IMA, c/ Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)], E-mail: jesus.m.gonzalez@icmm.csic.es

    2008-07-15

    We report on the preparation, by means of pulsed laser ablation deposition, of trilayers of nominal composition Cr/SmCo{sub 5}/Cr//Si with thicknesses in the order of 250/240/125 nm, respectively. According to the results of the structural, chemical and magnetic characterizations performed in our as-deposited samples, the Sm-Co layer was structurally amorphous, exhibited abrupt compositional interfaces with the capping and buffering layers, and coercivities of a few hundreds of Oe. Magnetic hardness was developed upon submitting the samples to current anneals under vacuum at temperatures in the range of 540-670 deg. C. The hardening process was followed in detail by correlating the phase distribution, the nature of the interlayer atomic diffusion processes, the occurrence of textures and the temperature dependence of the coercive force. From our results we conclude about (i) the occurrence of a large degree of Co diffusion/segregation, which results in the detection, from the diffraction and magnetometric results, of the presence of CoCr alloys in the treated samples, and (ii) the close correlation, evidenced from the fits of the temperature dependence of the coercive force to the micromagnetic model, between the coercivity optimization and the crystallinity enhancement of the SmCo{sub 5} grains.

  20. Amorphous calcium phosphate nanospheres/polylactide composite coated tantalum scaffold: facile preparation, fast biomineralization and subchondral bone defect repair application.

    Science.gov (United States)

    Zhou, Rong; Xu, Wei; Chen, Feng; Qi, Chao; Lu, Bing-Qiang; Zhang, Hao; Wu, Jin; Qian, Qi-Rong; Zhu, Ying-Jie

    2014-11-01

    Calcium phosphate (CaP) materials are widely used in various biomedical areas such as drug/gene delivery and bone repair/tissue engineering. In this study, amorphous CaP nanospheres synthesized by a simple co-precipitation method are used to prepare the CaP-polylactide (CaP-PLA) composite. Then, the as-prepared CaP-PLA composite is used to coat tantalum (Ta) plates and porous scaffolds. Compared with bare Ta plate, CaP-PLA coated Ta plates show a high performance of surface biomineralization in simulated body fluid (SBF). In addition, the hydrophilicity of the CaP-PLA coated Ta plates is significantly improved. CaP-PLA coated Ta plates with bovine serum albumin (BSA) are prepared and used for the investigation of BSA release in vitro. The experimental results indicate a sustained BSA release property and simultaneous biomineralization of the as-prepared BSA-containing CaP-PLA coated Ta plates. Furthermore, CaP-PLA coated Ta scaffolds are favorable for the human osteoblast-like MG63 cells adhesion and spreading. The vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-containing CaP-PLA coated porous Ta scaffolds are used for the study of rabbit subchondral bone defect repair, covering with autogeneic periosteums. The as-prepared CaP-PLA composite coated Ta scaffolds are useful to guide the bone regeneration in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Preparation and Characterization of Amorphous Silica and Calcium Oxide from Agricultural Wastes

    OpenAIRE

    Supachai Sompech; Thananchai Dasri; Sukhontip Thaomola

    2016-01-01

    Rice husk ash and bagasse ash were agricultural wastes that provide an abundanceof the silica (SiO2) source and the chicken eggshells and duck eggshells were important sources forcalcium oxide (CaO). Therefore, in this study the rice husk ash and bagasse ash were used as raw materials for synthesisofsilica powder,while chicken eggshells and duck eggshells were synthesized forthe calcium oxide.The results from the XRD pattern clearly showedthe structural formation of amorphous SiO2 and CaO pha...

  2. Axially aligned organic fibers and amorphous calcium phosphate form the claws of a terrestrial isopod (Crustacea).

    Science.gov (United States)

    Vittori, Miloš; Srot, Vesna; Žagar, Kristina; Bussmann, Birgit; van Aken, Peter A; Čeh, Miran; Štrus, Jasna

    2016-08-01

    Skeletal elements that are exposed to heavy mechanical loads may provide important insights into the evolutionary solutions to mechanical challenges. We analyzed the microscopic architecture of dactylus claws in the woodlice Porcellio scaber and correlated these observations with analyses of the claws' mineral composition with energy dispersive X-ray spectrometry (EDX), electron energy loss spectroscopy (EELS) and selected area electron diffraction (SAED). Extraordinarily, amorphous calcium phosphate is the predominant mineral in the claw endocuticle. Unlike the strongly calcified exocuticle of the dactylus base, the claw exocuticle is devoid of mineral and is highly brominated. The architecture of the dactylus claw cuticle is drastically different from that of other parts of the exoskeleton. In contrast to the quasi-isotropic structure with chitin-protein fibers oriented in multiple directions, characteristic of the arthropod exoskeleton, the chitin-protein fibers and mineral components in the endocuticle of P. scaber claws are exclusively axially oriented. Taken together, these characteristics suggest that the claw cuticle is highly structurally anisotropic and fracture resistant and can be explained as adaptations to predominant axial loading of the thin, elongated claws. The nanoscale architecture of the isopod claw may inspire technological solutions in the design of durable machine elements subjected to heavy loading and wear.

  3. Structure and electronic properties features of amorphous chalhogenide semiconductor films prepared by ion-plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Korobova, N., E-mail: korobova3@mail.ru; Timoshenkov, S. [Department of Microelectronics, National Research University of Electronic Technology (MIET), Zelenograd (Russian Federation); Almasov, N.; Prikhodko, O. [al-Farabi Kazakh National University, Almaty (Kazakhstan); Tsendin, K. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation)

    2014-10-21

    Structure of amorphous chalcogenide semiconductor glassy As-S-Se films, obtained by high-frequency (HF) ion-plasma sputtering has been investigated. It was shown that the length of the atomic structure medium order and local structure were different from the films obtained by thermal vacuum evaporation. Temperature dependence of dark conductivity, as well as the dependence of the spectral transmittance has been studied. Conductivity value was determined at room temperature. Energy activation conductivity and films optical band gap have been calculated. Temperature and field dependence of the drift mobility of charge carriers in the HF As-S-Se films have been shown. Bipolarity of charge carriers drift mobility has been confirmed. Absence of deep traps for electrons in the As{sub 40}Se{sub 30}S{sub 30} spectrum of localized states for films obtained by HF plasma ion sputtering was determined. Bipolar drift of charge carriers was found in amorphous As{sub 40}Se{sub 30}S{sub 30} films obtained by ion-plasma sputtering of high-frequency, unlike the films of these materials obtained by thermal evaporation.

  4. Preparation of amorphous aluminum oxide-hydroxide nanoparticles in amphiphilic silicone-based copolymer microemulsions.

    Science.gov (United States)

    Berkovich, Yana; Aserin, Abraham; Wachtel, Ellen; Garti, Nissim

    2002-01-01

    Organo-inorgano nanocomposites with colloidal dimensions have interesting optical, catalytic, and mechanical properties, particularly when such hybrids are reinforced with transition metal oxide nanoparticles. Nanoparticles with a mean size of 1.0-2.4 nm are obtained through hydrolysis of aluminum isopropoxide in the L(2) phase of amphiphilic (PDMS-POE) polydimethylsiloxane-polyoxyethylene Silwet L-7607-octanol/acetylacetone-water mixtures. The particle sizes are related weakly to the microemulsion composition: 0.8-1.2 nm for 20 wt% Silwet L-7607 and 2.0-2.4 nm for 50 wt% Silwet L-7607. Protection of the particles against aggregation is ensured through their confinement in the intraaggregate colloidal domains. Factors affecting the hydrolysis-condensation process of acetylacetone-complexed aluminum isopropoxide in copolymer-poor and copolymer-rich regions of PDMS-POE W/O microemulsions are studied by Fourier transform infrared spectroscopy, small angle X-ray scattering, and transmission electron microscopy. Prepared nanoparticulate dispersions possess long-term stability and form clear mixtures in different organic polar and nonpolar solvents.

  5. Co amorphous systems: A product development perspective.

    Science.gov (United States)

    Chavan, Rahul B; Thipparaboina, Rajesh; Kumar, Dinesh; Shastri, Nalini R

    2016-12-30

    Solubility is one of the major problems associated with most of the new chemical entities that can be reasonably addressed by drug amorphization. However, being a high-energy form, it usually tends to re-crystallize, necessitating new formulation strategies to stabilize amorphous drugs. Polymeric amorphous solid dispersion (PASD) is one of the widely investigated strategies to stabilize amorphous drug, with major limitations like limited polymer solubility and hygroscopicity. Co amorphous system (CAM), a new entrant in amorphous arena is a promising alternative to PASD. CAMs are multi component single phase amorphous solid systems made up of two or more small molecules that may be a combination of drugs or drug and excipients. Excipients explored for CAM preparation include amino acids, carboxylic acids, nicotinamide and saccharine. Advantages offered by CAM include improved aqueous solubility and physical stability of amorphous drug, with a potential to improve therapeutic efficacy. This review attempts to address different aspects in the development of CAM as drug products. Criterion for co-former selection, various methods involved in CAM preparation, characterization tools, stability, scale up and regulatory requirements for the CAM product development are discussed.

  6. Nano-Crystallization of High-Entropy Amorphous NbTiAlSiWxNy Films Prepared by Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Wenjie Sheng

    2016-06-01

    Full Text Available High-entropy amorphous NbTiAlSiWxNy films (x = 0 or 1, i.e., NbTiAlSiNy and NbTiAlSiWNy were prepared by magnetron sputtering method in the atmosphere of a mixture of N2 + Ar (N2 + Ar = 24 standard cubic centimeter per minute (sccm, where N2 = 0, 4, and 8 sccm. All the as-deposited films present amorphous structures, which remain stable at 700 °C for over 24 h. After heat treatment at 1000 °C the films began to crystalize, and while the NbTiAlSiNy films (N2 = 4, 8 sccm exhibit a face-centered cubic (FCC structure, the NbTiAlSiW metallic films show a body-centered cubic (BCC structure and then transit into a FCC structure composed of nanoscaled particles with increasing nitrogen flow rate. The hardness and modulus of the as-deposited NbTiAlSiNy films reach maximum values of 20.5 GPa and 206.8 GPa, respectively. For the as-deposited NbTiAlSiWNy films, both modulus and hardness increased to maximum values of 13.6 GPa and 154.4 GPa, respectively, and then decrease as the N2 flow rate is increased. Both films could be potential candidates for protective coatings at high temperature.

  7. Investigation and correlation of drug polymer miscibility and molecular interactions by various approaches for the preparation of amorphous solid dispersions.

    Science.gov (United States)

    Meng, Fan; Trivino, Anne; Prasad, Dev; Chauhan, Harsh

    2015-04-25

    Curcumin (CUR) was used as a poorly soluble drug whereas polyvinyl pyrrolidone K90 (PVP), Eudragit EPO (EPO), hydroxypropyl methylcellulose E5 (HPMC) and polyethylene glycol 8000 (PEG) were used as hydrophilic polymers. CUR polymer miscibility was evaluated by solubility parameter, melting point depression and glass transition temperature (Tg) measurements. Molecular interactions between CUR and polymers were determined by Fourier-transform infrared spectroscopy (FTIR) and Raman. Amorphous solid dispersions were prepared with CUR-polymer ratio of 70:30 (w/w) by solvent evaporation technique and were evaluated for dissolution enhancement using USP II method. Physical states of solid dispersions were characterized by X-ray diffraction (XRD) whereas thermal behaviors were investigated using modulated differential scanning calorimetry (MDSC). CUR-EPO system showed good miscibility through all the approaches, whereas immiscibility was found in other CUR-polymer systems. CUR-EPO and CUR-HPMC systems showed significant molecular interactions whereas CUR-PVP and CUR-PEG showed no molecular interactions. All solid dispersions showed significant dissolution enhancement with CUR-EPO showing highest dissolution rate during first 1h whereas CUR-HPMC was effective in maintaining high CUR concentrations for 6h. The study highlights the importance of investigating and correlating drug polymer miscibility and molecular interactions by various approaches for successful formulation of amorphous solid dispersions.

  8. Effects of Microalloying on Glass Forming Ability and Thermodynamic Fragility of Cu-Pr-Based Amorphous Alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of microalloying of Ti and B on the glass formation of Cu60Pr30Ni10Al10-2xTixBx(x=0, 0.05%(atom fraction)) amorphous alloys was investigated using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). XRD analysis showed that microalloying with 0.05% Ti and 0.05% B improved the glass forming ability (GFA). The smaller difference in the Gibbs free energy between the liquid and crystalline states at the glass transition temperature (ΔGl-x (Tg)) and the smaller thermodynamic fragility index (ΔSf/Tm, where ΔSf is the entropy of fusion, and Tm is the melting temperature) after microalloying correlated with the higher GFA.

  9. Preparation and Characterization of Amorphous Silica and Calcium Oxide from Agricultural Wastes

    Directory of Open Access Journals (Sweden)

    Supachai Sompech

    2016-08-01

    Full Text Available Rice husk ash and bagasse ash were agricultural wastes that provide an abundanceof the silica (SiO2 source and the chicken eggshells and duck eggshells were important sources forcalcium oxide (CaO. Therefore, in this study the rice husk ash and bagasse ash were used as raw materials for synthesisofsilica powder,while chicken eggshells and duck eggshells were synthesized forthe calcium oxide.The results from the XRD pattern clearly showedthe structural formation of amorphous SiO2 and CaO phase. While the FTIR results indicated that the spectrums which displayedthe characteristic peaks of the functional groups presenting in the SiO2 and CaOpowder. However, the SEM images revealed that the particles agglomerated, various sizes and the particle size were found to be in micron level.

  10. Operando study of iridium acetylacetonate decomposition on amorphous silica-alumina for bifunctional catalyst preparation.

    Science.gov (United States)

    Nassreddine, Salim; Bergeret, Gérard; Jouguet, Bernadette; Geantet, Christophe; Piccolo, Laurent

    2010-07-28

    The decomposition of iridium acetylacetonate Ir(acac)(3) impregnated on amorphous silica-alumina (ASA) has been investigated by combined thermogravimetry-differential thermal analysis-mass spectrometry (TG-DTA-MS) and by in situ X-ray diffraction (XRD). The resulting Ir/ASA hydrotreating catalysts have also been characterized by transmission electron microscopy (TEM). The effects of heating treatments under oxidative, reductive or inert gas flows are compared with each other and with similar experiments on ASA-supported acetylacetone (acacH). It is shown that Ir(acac)(3) undergoes exothermic combustion during calcination in air, leading to agglomerated IrO(2) particles. Conversely, direct reduction involves hydrogenolysis of the acac followed by hydrogenation of the ligand residues to alkanes and water. These two processes are catalyzed by Ir clusters, the gradual growth of which is followed in situ by XRD. The resulting nanoparticles are highly and homogeneously dispersed.

  11. Preparation of microcrystalline single junction and amorphous-microcrystalline tandem silicon solar cells entirely by hot-wire CVD

    Energy Technology Data Exchange (ETDEWEB)

    Kupich, M.; Grunsky, D.; Kumar, P.; Schroeder, B. [University of Kaiserslautern (Germany). Department of Physics

    2004-01-25

    The hot-wire chemical vapour deposition (HWCVD) has been used to prepare highly conducting p- and n-doped microcrystalline silicon thin layers as well as highly photoconducting, low defect density intrinsic microcrystalline silicon films. These films were incorporated in all-HWCVD, all-microcrystalline nip and pin solar cells, achieving conversion efficiencies of {eta}=5.4% and 4.5%, respectively. At present, only the nip-structures are found to be stable against light-induced degradation. Furthermore, microcrystalline nip and pin structures have been successfully incorporated as bottom cells in all-hot-wire amorphous-microcrystalline nipnip- and pinpin-tandem solar cells for the first time. So far, the highest conversion efficiencies of the 'micromorph' tandem structures are {eta}=5.7% for pinpin-solar cells and 7.0% for nipnip solar cells. (author)

  12. Amorphous silicon films with high deposition rate prepared using argon and hydrogen diluted silane for stable solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gogoi, Purabi; Agarwal, Pratima [Department of Physics, IIT Guwahati, Guwahati 781039 (India); Dixit, P.N. [Plasma Processed Materials Division, National Physical Laboratory, New Delhi 110012 (India)

    2007-08-15

    Hydrogenated amorphous silicon films with high deposition rate (4-5 Aa/s) and reduced Staebler-Wronski effect are prepared using a mixture of silane (SiH{sub 4}), hydrogen and argon. The films show an improvement in short and medium range order. The structural, transport and stability studies on the films are done using X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman scattering studies, electrical conductivity and diffusion length measurement. Presence of both atomic hydrogen and Ar{sup *} in the plasma causes breaking of weak Si-Si bonds and subsequent reconstruction of strong bonds resulting in improvement of short and medium range order. The improved structural order enhances the stability of these films against light soaking. High deposition rate is due to the lesser etching of growing surface compared to the case of only hydrogen diluted silane. (author)

  13. Density and glass forming ability in amorphous atomic alloys: The role of the particle softness

    Science.gov (United States)

    Douglass, Ian; Hudson, Toby; Harrowell, Peter

    2016-04-01

    A key property of glass forming alloys, the anomalously small volume difference with respect to the crystal, is shown to arise as a direct consequence of the soft repulsive potentials between metals. This feature of the inter-atomic potential is demonstrated to be responsible for a significant component of the glass forming ability of alloys due to the decrease in the enthalpy of fusion and the associated depression of the freezing point.

  14. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio...... and a low glass transition temperature. The alloys were prepared by using a relatively simple technique, i.e. rapid cooling of the melt in a copper wedge mould. The essential structural changes that are achieved by going from the amorphous to the crystalline state through the supercooled liquid state...... are discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface...

  15. TDP-43 inclusion bodies formed in bacteria are structurally amorphous, non-amyloid and inherently toxic to neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Claudia Capitini

    Full Text Available Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Such inclusions have variably been described as amorphous aggregates or more structured deposits having an amyloid structure. Following the observations that bacterial inclusion bodies generally consist of amyloid aggregates, we have overexpressed full-length TDP-43 and C-terminal TDP-43 in E. coli, purified the resulting full-length and C-terminal TDP-43 containing inclusion bodies (FL and Ct TDP-43 IBs and subjected them to biophysical analyses to assess their structure/morphology. We show that both FL and Ct TDP-43 aggregates contained in the bacterial IBs do not bind amyloid dyes such as thioflavin T and Congo red, possess a disordered secondary structure, as inferred using circular dichroism and infrared spectroscopies, and are susceptible to proteinase K digestion, thus possessing none of the hallmarks for amyloid. Moreover, atomic force microscopy revealed an irregular structure for both types of TDP-43 IBs and confirmed the absence of amyloid-like species after proteinase K treatment. Cell biology experiments showed that FL TDP-43 IBs were able to impair the viability of cultured neuroblastoma cells when added to their extracellular medium and, more markedly, when transfected into their cytosol, where they are at least in part ubiquitinated and phosphorylated. These data reveal an inherently high propensity of TDP-43 to form amorphous aggregates, which possess, however, an inherently high ability to cause cell dysfunction. This indicates that a gain of toxic function caused by TDP-43 deposits is effective in TDP-43 pathologies, in addition to possible loss of function mechanisms originating from the cellular mistrafficking of the protein.

  16. TDP-43 inclusion bodies formed in bacteria are structurally amorphous, non-amyloid and inherently toxic to neuroblastoma cells.

    Science.gov (United States)

    Capitini, Claudia; Conti, Simona; Perni, Michele; Guidi, Francesca; Cascella, Roberta; De Poli, Angela; Penco, Amanda; Relini, Annalisa; Cecchi, Cristina; Chiti, Fabrizio

    2014-01-01

    Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Such inclusions have variably been described as amorphous aggregates or more structured deposits having an amyloid structure. Following the observations that bacterial inclusion bodies generally consist of amyloid aggregates, we have overexpressed full-length TDP-43 and C-terminal TDP-43 in E. coli, purified the resulting full-length and C-terminal TDP-43 containing inclusion bodies (FL and Ct TDP-43 IBs) and subjected them to biophysical analyses to assess their structure/morphology. We show that both FL and Ct TDP-43 aggregates contained in the bacterial IBs do not bind amyloid dyes such as thioflavin T and Congo red, possess a disordered secondary structure, as inferred using circular dichroism and infrared spectroscopies, and are susceptible to proteinase K digestion, thus possessing none of the hallmarks for amyloid. Moreover, atomic force microscopy revealed an irregular structure for both types of TDP-43 IBs and confirmed the absence of amyloid-like species after proteinase K treatment. Cell biology experiments showed that FL TDP-43 IBs were able to impair the viability of cultured neuroblastoma cells when added to their extracellular medium and, more markedly, when transfected into their cytosol, where they are at least in part ubiquitinated and phosphorylated. These data reveal an inherently high propensity of TDP-43 to form amorphous aggregates, which possess, however, an inherently high ability to cause cell dysfunction. This indicates that a gain of toxic function caused by TDP-43 deposits is effective in TDP-43 pathologies, in addition to possible loss of function mechanisms originating from the cellular mistrafficking of the protein.

  17. Resilient Amorphous Networks Prepared by Photo-Crosslinking High-Molecular-Weight D,L-Lactide and Trimethylene Carbonate Macromers: Mechanical Properties and Shape-Memory Behavior

    NARCIS (Netherlands)

    Sharifi, S.; Grijpma, D.W.

    2012-01-01

    Tough networks are prepared by photo-crosslinking high-molecular-weight DLLA and TMC macromers. These amorphous networks exhibit tunable thermal and mechanical properties and have excellent shape-memory features. Variation of the monomer ratio allows adjustment of Tg between approximately −13 and +5

  18. Preparation and Characterization of Mg1-xB2 Bulk Samples and Cu/Nb Sheathed Wires with Low Grade Amorphous Boron Powder

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Alexiou, Aikaterini; Rubesova, Katerina

    2014-01-01

    MgB2 bulk and wire samples were prepared using cheap, low grade amorphous boron powders. Based on chemical analysis performed on the starting reagents, three nominal stoichiometries were studied. It was found that the structural and superconducting properties of the bulk samples were not affected...

  19. Resilient Amorphous Networks Prepared by Photo-Crosslinking High-Molecular-Weight D,L-Lactide and Trimethylene Carbonate Macromers : Mechanical Properties and Shape-Memory Behavior

    NARCIS (Netherlands)

    Sharifi, Shahriar; Grijpma, Dirk W.

    2012-01-01

    Tough networks are prepared by photo-crosslinking high-molecular-weight DLLA and TMC macromers. These amorphous networks exhibit tunable thermal and mechanical properties and have excellent shape-memory features. Variation of the monomer ratio allows adjustment of Tg between approximately -13 and +5

  20. Preparation of amorphous calcium-magnesium phosphates at pH 7 and characterization by x-ray absorption and fourier transform infrared spectroscopy

    NARCIS (Netherlands)

    Holt, C.; Kemenade, M.J.J.M. van; Harries, J.E.; Nelson, L.S.; Bailey, R.T.; Hukins, D.W.L.; Hasnain, S.S.; Bruyn, P.L. de

    1988-01-01

    Amorphous calcium-magnesium phosphates were prepared by precipitation from moderately supersaturated aqueous solutions at pH 7. Chemical analysis of the samples by ion chromatography showed that up to about 50% of the phosphate ions were protonated, the proportion increasing with the magnesium to ca

  1. Preparation of Amorphous Carbon Films and Evaluation of Its Optical Properties and Gas Barrier Property

    Science.gov (United States)

    Ohsone, Yuuki; Nishi, Hidetaka; Saito, Masanori; Suzuki, Masaki; Murakami, Hiroya; Ohtake, Naoto

    Hydrogenerated amorphous carbon (a-C:H) films can improve oxygen gas barrier characteristics of plastic food containers, by coating it on the surfaces of such containers, and is intended to enhance the preservative quality. However, it has a problem that the degradation of optical transparency in the visible light range blocks the view of the inner content. In this study, we aimed to reduce the oxygen transmission rate (OTR) as well as to improve optical transparency, and fabricated a-C:H films by the pulse plasma chemical vapor deposition (CVD) method on polyethylene terephthalate (PET) films. First, it is clarified that the gas barrier performance in the a-C:H film in the vicinity of the PET boundary surface was lower than that of bulk a-C:H film. Secondly, the OTR and optical transparency of a-C:H films deposited not only from C2H2 but also from Si(CH3)4 were investigated in detail. The a-C:H film deposited from Si(CH3)4 shows high transmittance of 87% for visible light with a relatively low OTR of 3.2 cc/(m2·atm·day).

  2. Phosphorus- and boron-doped hydrogenated amorphous silicon films prepared using vaporized liquid cyclopentasilane

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takashi, E-mail: mtakashi@jaist.ac.jp [Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, 923-1292 (Japan); Takagishi, Hideyuki; Shen, Zhongrong; Ohdaira, Keisuke; Shimoda, Tatsuya [Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, 923-1292 (Japan); Japan Science and Technology Agency, ALCA, Nomi, Ishikawa, 923-1211 (Japan)

    2015-08-31

    A simple, inexpensive method for fabricating a hydrogenated amorphous silicon (a-Si:H) film using thermal chemical vapor deposition from cyclopentasilane (CPS) at atmospheric pressure with a substrate temperature of 370 °C is described. The reactant gas was generated from liquid CPS by vaporization in the deposition chamber. The vaporized CPS gas was transformed immediately into a-Si:H film on a heated substrate. The a-Si:H films could be doped either n- or p-type by dissolving appropriate amounts of white phosphorus or decaborane, respectively, in the liquid CPS before vaporization. This process allows deposition of doped a-Si:H films of photovoltaic device-quality without the need for handling, storage, or transportation of large amounts of gaseous reactants. - Highlights: • B and P doped a-Si:H films made from liquid materials is presented. • Decaborane and white phosphorus is dissolved in the liquid materials. • A simple, inexpensive method for fabricating a-Si:H films using non-vacuum process. • The doped a-Si:H films with usable quality for photovoltaic devices are deposited.

  3. Cataract-associated P23T γD-crystallin retains a native-like fold in amorphous-looking aggregates formed at physiological pH

    Science.gov (United States)

    Boatz, Jennifer C.; Whitley, Matthew J.; Li, Mingyue; Gronenborn, Angela M.; van der Wel, Patrick C. A.

    2017-05-01

    Cataracts cause vision loss through the large-scale aggregation of eye lens proteins as a result of ageing or congenital mutations. The development of new treatments is hindered by uncertainty about the nature of the aggregates and their mechanism of formation. We describe the structure and morphology of aggregates formed by the P23T human γD-crystallin mutant associated with congenital cataracts. At physiological pH, the protein forms aggregates that look amorphous and disordered by electron microscopy, reminiscent of the reported formation of amorphous deposits by other crystallin mutants. Surprisingly, solid-state NMR reveals that these amorphous deposits have a high degree of structural homogeneity at the atomic level and that the aggregated protein retains a native-like conformation, with no evidence for large-scale misfolding. Non-physiological destabilizing conditions used in many in vitro aggregation studies are shown to yield qualitatively different, highly misfolded amyloid-like fibrils.

  4. PREPARATION AND MAGNETIC-PROPERTIES OF AMORPHOUS FE1-XBX (15-LESS-THAN-OR-EQUAL-TO X LESS-THAN-40 ATMOSPHERIC PERCENT) ALLOY PARTICLES

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, S.

    1992-01-01

    Amorphous Fe1-xBx alloy particles have been prepared in aqueous solutions by reduction of Fe2+ ions to the metallic state by the use of NaBH4. It is demonstrated, that by changing the pH of the aqueous metal ion solution the amount of boron incorporated in the alloy particles can be varied between...... 15 and 28 at.%. Fe-57 Mossbauer spectra have been obtained at 10, 80 and 295 K. The hyperfine parameters for amorphous particles have been found to be similar to those found for ribbons and films prepared by the liquid-quench and sputtering techniques, respectively, though with a tendency...... for the magnetic hyperfine fields for the chemically prepared and sputter prepared alloys to deviate slightly from those for melt-spun samples. The magnetic hyperfine fields decrease linearly as a function of T3/2....

  5. Nanofibrous solid dosage form of living bacteria prepared by electrospinning

    Directory of Open Access Journals (Sweden)

    I. Wagner

    2014-05-01

    Full Text Available The aim of this work was to investigate the suitability of electrospinning for biodrug delivery and to develop an electrospinning-based method to produce vaginal drug delivery systems. Lactobacillus acidophilus bacteria were encapsulated into nanofibers of three different polymers (polyvinyl alcohol and polyvinylpyrrolidone with two different molar masses. Shelf life of the bacteria could be enhanced by the exclusion of water and by preparing a solid dosage form, which is an advantageous and patient-friendly way of administration. The formulations were stored at –20, 7 and 25°C, respectively. Viability testing showed that the nanofibers can provide long term stability for huge amounts of living bacteria if they are kept at (or below 7°C. Furthermore, all kinds of nanowebs prepared in this work dissolved instantly when they got in contact with water, thus the developed biohybrid nanowebs can provide new potential ways for curing bacterial vaginosis.

  6. Poole-Frenkel behavior in amorphous oxide thin-film transistors prepared on SiOC

    Science.gov (United States)

    Oh, Teresa

    2014-05-01

    The electron behavior in amorphous indium-gallium-zinc-oxide thin film transistors (a-IGZO TFTs) depends on the polar characteristics of SiOC, which is used as a gate dielectric. The properties of the interface between the semiconductor and SiOC were defined by using a Schottky contact with a low potential barrier and Poole-Frenkel contacts with a high potential barrier. The leakage current of SiOC, which was used as a gate insulator, decreased at the Poole-Frenkel contacts because of the high potential barrier. The ambipolar properties in the field effect transistor were observed to depend on the various characteristics of SiOC, which ranged from its behaving as an ideal insulator or as a material with a high dielectric constant. The resistance of the a-IGZO channel changed from positive to negative at SiOC, which had the lowest polarity. As to the conduction due to the diffusion current, the mobility increased with increasing carrier concentrations. However, the drift carrier conduction was related to the reduced mobility at higher carrier concentrations. The performance of the transistors was enhanced by the tunneling and the diffusion currents Rather than by the drift current caused by trapping. The Schottky contact and the Poole-Frenkel (PF) contacts at an interface between the IGZO channel and the SiOC were defined according to the heights of potential barriers caused by the depletion layer. The leakage current was very low about 10-12 A at SiOC with PF contacts because of the height of potential barrier was double that with a Schottky contact because the tunneling conductance due to the diffusion current originated from the PF contacts of non-polar SiOC.

  7. Poole-Frenkel behavior in amorphous oxide thin-film transistors prepared on SiOC

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Teresa [Cheongju University, Cheongju (Korea, Republic of)

    2014-05-15

    The electron behavior in amorphous indium-gallium-zinc-oxide thin film transistors (a-IGZO TFTs) depends on the polar characteristics of SiOC, which is used as a gate dielectric. The properties of the interface between the semiconductor and SiOC were defined by using a Schottky contact with a low potential barrier and Poole-Frenkel contacts with a high potential barrier. The leakage current of SiOC, which was used as a gate insulator, decreased at the Poole-Frenkel contacts because of the high potential barrier. The ambipolar properties in the field effect transistor were observed to depend on the various characteristics of SiOC, which ranged from its behaving as an ideal insulator or as a material with a high dielectric constant. The resistance of the a-IGZO channel changed from positive to negative at SiOC, which had the lowest polarity. As to the conduction due to the diffusion current, the mobility increased with increasing carrier concentrations. However, the drift carrier conduction was related to the reduced mobility at higher carrier concentrations. The performance of the transistors was enhanced by the tunneling and the diffusion currents Rather than by the drift current caused by trapping. The Schottky contact and the Poole-Frenkel (PF) contacts at an interface between the IGZO channel and the SiOC were defined according to the heights of potential barriers caused by the depletion layer. The leakage current was very low about 10{sup -12} A at SiOC with PF contacts because of the height of potential barrier was double that with a Schottky contact because the tunneling conductance due to the diffusion current originated from the PF contacts of non-polar SiOC.

  8. Electrochemical preparation of lead-doped amorphous Se films and underpotential deposition of lead onto these films

    Science.gov (United States)

    Ivanov, Dmitry K.; Osipovich, Nikolay P.; Poznyak, Sergey K.; Streltsov, Eugene A.

    2003-06-01

    The process of the underpotential deposition (UPD) of Pb adatoms (Pb ad) onto Se was used to produce nanocomposite films consisting of amorphous Se and nanosized PbSe clusters distributed throughout the film bulk. It was found that doping lead into Se films modifies their optical and photoelectrochemical properties and increases the efficiency of the charge transfer both in the film bulk and through the semiconductor | electrolyte interface. Introducing lead into the bulk of Se films significantly promotes the process of Pb ad UPD onto Se surface. The underpotentially deposited Pb ad interact chemically with Se surface atoms, resulting in the formation of a PbSe monolayer. The PbSe formed can be identified by the anodic peak corresponding to its electrochemical oxidation.

  9. Investigation of preparation methods on surface/bulk structural relaxation and glass fragility of amorphous solid dispersions.

    Science.gov (United States)

    Ke, Peng; Hasegawa, Susumu; Al-Obaidi, Hisham; Buckton, Graham

    2012-01-17

    The objective of this study was to investigate the effect of preparation methods on the surface/bulk molecular mobility and glass fragility of solid dispersions. Solid dispersions containing indomethacin and PVP K30 were chosen as the model system. An inverse gas chromatography method was used to determine the surface structural relaxation of the solid dispersions and these data were compared to those for bulk relaxation obtained by DSC. The values of τ(β) for the surface relaxation were 4.6, 7.1 and 1.8h for melt quenched, ball milled and spray dried solid dispersions respectively, compared to 15.6, 7.9 and 9.8h of the bulk. In all systems, the surface had higher molecular mobility than the bulk. The glass fragility of the solid dispersions was also influenced by the preparation methods with the most fragile system showing the best stability. The zero mobility temperature (T(0)) was used to correlate with the physical stability of the solid dispersions. Despite having similar T(g) (65°C), the T(0) of the melt quenched, ball milled and spray dried samples were 21.6, -4.2 and 16.7°C respectively which correlated well with their physical stability results. Therefore, T(0) appears to be a better indicator than T(g) for predicting stability of amorphous materials.

  10. Preparation and Characterisation of Amorphous-silicon Photovoltaic Devices Having Microcrystalline Emitters; Preparacion y Caracterizacion de Dispositivos Fotovoltaicos de Silicio Amorfo con Emisiones Microcristalinos

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, M. T.; Gandia, J. J.; Carabe, J. [CIEMAT. Madrid (Spain)

    1999-11-01

    The present work summarises the essential aspects of the research carried out so far at CIEMAT on amorphous-silicon solar cells. The experience accumulated on the preparation and characterisation of amorphous and microcrystalline silicon has allowed to start from intrinsic (absorbent) and p-and n-type (emitters) materials not only having excellent optoelectronic properties, but enjoying certain technological advantages with respect to those developed by other groups. Among these are absorbent-layer growth rates between 5 and 10 times as fast as conventional ones and microcrystalline emitters prepared without using hydrogen. The preparation of amorphous-silicon cells has required the solution of a number of problems, such as those related to pinholes, edge leak currents and diffusion of metals into the semiconductor. Once such constraints have been overcome, it has been demonstrated not only that the amorphous-silicon technology developed at CIEMAT is valid for making solar cells, but also that the quality of the semiconductor material is good for the application according to the partial results obtained. The development of thin-film laser-scribing technology is considered essential. Additionally it has been concluded that cross contamination, originated by the fact of using a single-chamber reactor, is the basic factor limiting the quality of the cells developed at CIEMAT. The present research activity is highly focused on the solution of this problem. (Author)

  11. 19 CFR 143.24 - Preparation of Customs Form 7501 and Customs Form 368 or 368A (serially numbered).

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Preparation of Customs Form 7501 and Customs Form 368 or 368A (serially numbered). 143.24 Section 143.24 Customs Duties U.S. CUSTOMS AND BORDER... Informal Entry § 143.24 Preparation of Customs Form 7501 and Customs Form 368 or 368A (serially...

  12. Thermal behaviour of Cu-Ti and Cu-Ti-H amorphous powders prepared by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Baricco, M. (Ist. Elettrotecnico Nazionale Galileo Ferraris and INFM/GNSM, Research Unity, Turin (Italy)); Battezzati, L. (Dipt. di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali, Turin Univ. (Italy)); Soletta, I.; Schiffini, L. (Dipt. di Chimica, Univ. di Sassari (Italy)); Cowlam, N. (Dept. of Physics, Univ. of Sheffield (UK))

    1991-03-25

    Solid state amorphization reactions in Cu-Ti have been studied by means of DSC and structural techniques. The influence of hydrogen from the parent titanium powder on the amorphization and crystallization processes has been investigated. For Cu-Ti a diffusion-controlled process can be inferred for solid state amorphization from the parabolic trend of the heat of crystallization, as a function of the milling time. The presence of hydrogen in the alloys is found to modify the crystallization behaviour of the amorphous phase. A DSC method for the determination of the amount of hydrogen present in the alloys is given. (orig.).

  13. Polycrystalline Si films with unique microstructures formed from amorphous Si films by non-thermal equilibrium flash lamp annealing

    Energy Technology Data Exchange (ETDEWEB)

    Ohdaira, Keisuke; Nishikawa, Takuya; Shiba, Kazuhiro; Takemoto, Hiroyuki; Matsumura, Hideki [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Ishikawa (Japan)

    2010-04-15

    Flash lamp annealing (FLA), with millisecond-order duration, can crystallize amorphous silicon (a-Si) films a few {mu}m thick on glass substrates, resulting in formation of polycrystalline Si (poly-Si) films with unprecedented periodic microstructures. The characteristic microstructure, formed spontaneously during crystallization, consists of large-grain regions, containing relatively large grains more than 100 nm in size, and fine-grain regions, including only 10-nm-sized fine grains. The microstructures results from explosive crystallization (EC), driven by heat generation corresponding to the difference of the enthalpies of meta-stable a-Si and stable crystalline Si(c-Si) states, which realizes lateral crystallization velocity on the order of m/s. The lateral crystallization may stop when the temperature of a-Si in the vicinity of c-Si, which is decided by both homogeneous heating from flash irradiation and thermal diffusion from c-Si, falls below a crystallization temperature. This idea is supported by the experimental fact that a lateral crystallization length decreases with decreasing pulse duration. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Optical parameters of In Se and In Se Te thin amorphous films prepared by pulsed laser deposition

    Science.gov (United States)

    Hrdlicka, M.; Prikryl, J.; Pavlista, M.; Benes, L.; Vlcek, M.; Frumar, M.

    2007-05-01

    The thin films of materials based on In Se are under study for their applicability in photovoltaic devices, solid-state batteries and phase-change memories. The amorphous thin films of In2Se3-xTex (x=0 1.5) and InSe were prepared by pulsed laser deposition method (PLD) using a KrF excimer laser beam (λ=248 nm, 0.5 J cm-2) from polycrystalline bulk targets. The compositions of films verified by energy-dispersive X-ray analysis (EDX) were close to the compositions of targets. The surfaces of PLD films containing small amount of droplets were viewed by optical and scanning electron microscopy (SEM). The optical properties (transmittance and reflectance spectra, spectral dependence of index of refraction, optical gap, single-oscillator energy, dispersion energy, dielectric constant) of the films were determined. The values of index of refraction increased with increasing substitution of Te for Se in In2Se3 films, the values of the optical gap decreased with increasing substitution of Te for Se in In2Se3 films.

  15. Correlation of photothermal conversion on the photo-induced deformation of amorphous carbon nitride films prepared by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Harata, T.; Aono, M., E-mail: aono@nda.ac.jp; Kitazawa, N.; Watanabe, Y. [Department of Materials Science and Engineering, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686 (Japan)

    2014-08-04

    The photo-induced deformation of hydrogen-free amorphous carbon nitride (a-CN{sub x}) films was investigated under visible-light illumination. The films gave rise to photothermal conversion by irradiation. In this study, we investigated the effects of thermal energy generated by irradiation on the deformation of a-CN{sub x}/ultrathin substrate bimorph specimens. The films were prepared on both ultrathin Si and SiO{sub 2} substrates by reactive radio-frequency magnetron sputtering from a graphite target in the presence of pure nitrogen gas. The temperature of the film on the SiO{sub 2} substrate increased as the optical band-gap of the a-CN{sub x} was decreased. For the film on Si, the temperature remained constant. The deformation degree of the films on Si and SiO{sub 2} substrates were approximately the same. Thus, the deformation of a-CN{sub x} films primarily induced by photon energy directly.

  16. Mechanical properties of amorphous alloys ribbons prepared by rapid quenching of the melt after different thermal treatments before quenching

    NARCIS (Netherlands)

    Tabachnikova, ED; Bengus, VZ; Egorov, D V; Tsepelev, VS; Ocelik, Vaclav

    1997-01-01

    The mechanical properties of amorphous alloy are greatly influenced by the thermal treatment of its melt before rapid quenching. The strength and the fracture toughness of some amorphous alloys obtained after melt beating above the melt critical temperature T-CR are essentially higher than those obt

  17. [Amorphization in pharmaceutical technology].

    Science.gov (United States)

    Révész, Piroska; Laczkovich, Orsolya; Eros, István

    2004-01-01

    The amorphization of crystalline active ingredients may be necessary because of the polymorphism of the active substance, the poor water-solubility of the drug material, difficult processing in the crystalline form and the taking out of a patent for a new (amorphous) form. This article introduces protocols for amorphization, which use methods traditionally applied in pharmaceutical technology. The protocols involve three possible routes: solvent methods, hot-melt technologies and milling procedures. With this presentation, the authors suggest help for practising experts to find the correct amorphization method.

  18. Rheology Guided Rational Selection of Processing Temperature To Prepare Copovidone-Nifedipine Amorphous Solid Dispersions via Hot Melt Extrusion (HME).

    Science.gov (United States)

    Yang, Fengyuan; Su, Yongchao; Zhang, Jingtao; DiNunzio, James; Leone, Anthony; Huang, Chengbin; Brown, Chad D

    2016-10-03

    The production of amorphous solid dispersions via hot melt extrusion (HME) relies on elevated temperature and prolonged residence time, which can result in potential degradation and decomposition of thermally sensitive components. Herein, the rheological properties of a physical mixture of polymer and an active pharmaceutical ingredient (API) were utilized to guide the selection of appropriate HME processing temperature. In the currently studied copovidone-nifedipine system, a critical temperature, which is substantially lower (∼13 °C) than the melting point of crystalline API, was captured during a temperature ramp examination and regarded as the critical point at which the API could molecularly dissolve into the polymer. Based on the identification of this critical point, various solid dispersions were prepared by HME processing below, at, and above the critical temperature (both below and above the melting temperature (Tm) of crystalline API). In addition, the resultant extrudates along with two control solid dispersions prepared by physical mixing and cryogenic milling were assessed by X-ray diffraction, differential scanning calorimetry, hot stage microscopy, rheology, and solid-state NMR. Physicochemical properties of resultant solid dispersions indicated that the identified critical temperature is sufficient for the polymer-API system to reach a molecular-level mixing, manifested by the transparent and smooth appearance of extrudates, the absence of API crystalline diffraction and melting peaks, dramatically decreased rheological properties, and significantly improved polymer-API miscibility. Once the critical temperature has been achieved, further raising the processing temperature only results in limited improvement of API dispersion, reflected by slightly reduced storage modulus and complex viscosity and limited improvement in miscibility.

  19. Alumina ceramics prepared with new pore-forming agents

    Directory of Open Access Journals (Sweden)

    Zuzana Živcová

    2008-06-01

    Full Text Available Porous ceramics have a wide range of applications at all length scales, ranging from fi ltration membranes and catalyst supports to biomaterials (scaffolds for bone ingrowths and thermally or acoustically insulating bulk materials or coating layers. Organic pore-forming agents (PFAs of biological origin can be used to control porosity, pore size and pore shape. This work concerns the characterization and testing of several less common pore-forming agents (lycopodium, coffee, fl our and semolina, poppy seed, which are of potential interest from the viewpoint of size, shape or availability. The performance of these new PFAs is compared to that of starch, which has become a rather popular PFA for ceramics during the last decade. The PFAs investigated in this work are in the size range from 5 μm (rice starch to approximately 1 mm (poppy seed, all with more or less isometric shape. The burnout behavior of PFAs is studied by thermal analysis, i.e. thermogravimetry and differential thermal analysis. For the preparation of porous alumina ceramics from alumina suspensions containing PFAs traditional slip casting (into plaster molds and starch consolidation casting (using metal molds are used in this work. The resulting microstructures are investigated using optical microscopy, combined with image analysis, as well as other methods (Archimedes method of double-weighing in water, mercury intrusion porosimetry.

  20. Effect of Zr Addition on Glass-Forming Ability and Magnetic Properties of Fe-Nd-Al-B Alloys Prepared by Suction Casting

    Institute of Scientific and Technical Information of China (English)

    BAI Qin; XU Hui; TAN Xiao-Hua; MENG Tao

    2009-01-01

    The microstructure and magnetic behaviors of the Fe--Nd-AI-B alloys prepared by suction casting with zirconium addition are investigated. With the small amount of zirconium addition, the magnetic properties of the alloys change from hard magnetic property to soft magnetic property. The proper addition of Zr (6%) not only improves the glass forming ability, but also suppresses the crystallization. From the scanning electron microscopy of the [(Fe0.53Nd0.37Al0.10)0.96B0.04]94Zr6 alloy and the local average elemental compositions determined using energy dispersive spectroscopy analysis, the amorphous phase with a composition of Fe47Nd38Al12Zr3 in the alloy can be observed. The bulk amorphous Fe47Nd38Al12Zr3 alloy is prepared by suction casting exhibiting good glassforming ability and soft magnetic behavior.

  1. Scanning transmission electron microscope analysis of amorphous-Si insertion layers prepared by catalytic chemical vapor deposition, causing low surface recombination velocities on crystalline silicon wafers

    OpenAIRE

    2012-01-01

    Microstructures of stacked silicon-nitride/amorphous-silicon/crystalline-silicon (SiN_x/a-Si/c-Si) layers prepared by catalytic chemical vapor deposition were investigated with scanning transmission electron microscopy to clarify the origin of the sensitive dependence of surface recombination velocities (SRVs) of the stacked structure on the thickness of the a-Si layer. Stacked structures with a-Si layers with thicknesses greater than 10 nm exhibit long effective carrier lifetimes, while thos...

  2. Preparation of Mg55Ni35Si10 Amorphous Powders by Mechanical Alloying and Consolidation by Vacuum Hot Pressing

    Institute of Scientific and Technical Information of China (English)

    YANG Deng-Ke; WEN Cui-E; HAN Fu-Sheng; WANG Qing-Zhou; LI Hai-Jin

    2006-01-01

    @@ Amorphous Mg55Ni35Si10 powders are fabricated by using a mechanical alloying technique. The amorphous powders are found to exhibit a relatively high crystallization temperature of 380℃. The as-milled amorphous Mg55Ni35Si10 powders are consolidated successfully into bulk body by vacuum hot pressing technique. Limited nanocrystallization is noticed. The Vickers microhardness range of the Mg55Ni35Si10 bulk sample is 7834 to 8048 Mpa. Its bending strength and compressive strength are 529 Mpa and 1466 Mpa, respectively.

  3. Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    Science.gov (United States)

    Xu, J. L.; Xiao, Q. F.; Mei, D. D.; Zhong, Z. C.; Tong, Y. X.; Zheng, Y. F.; Li, L.

    2017-03-01

    Amorphous SiO2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the "coral reef" like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 μm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO2 and a few amorphous Fe2O3 and Nd2O3. The amorphous SiO2 coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees.

  4. Bulk amorphous alloys: Preparation and properties of (Mg0.98Al0.02)x(Cu0.75Y0.25)100

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Pedersen, Allan Schrøder; Ohnuma, M.

    2000-01-01

    provides a range of cooling rates within a single ingot during the solidification that link the slowly and rapidly cooled microstructure for each alloy composition. Hence, the maximum thickness of the amorphous part of the cast material will be a measure of the glass forming ability (GFA) of the particular......New bulk amorphous quaternary alloys of the composition (Mg1-xAlx)(60)Cu30Y10 (x = 0 - 0.17) were recently reported by the authors and preliminary results of the influence of Al content on the ability to form a bulk amorphous phase were presented. In the present note we extend this work to look...... alloy. X-ray diffraction (XRD) and Differential Scanning Calorimetry (DSC) have been used to investigate the structure and the various structural transitions in the alloys. One observation is that the GFA decreases with increasing content of (Mg0.98Al0.02)(x). For x > similar to 75 at.% no amorphous...

  5. High-intensity ultrasonication as a way to prepare graphene/amorphous iron oxyhydroxide hybrid electrode with high capacity in lithium battery.

    Science.gov (United States)

    González, José R; Menéndez, Rosa; Alcántara, Ricardo; Nacimiento, Francisco; Tirado, José L; Zhecheva, Ekaterina; Stoyanova, Radostina

    2015-05-01

    The preparation of graphene/iron oxyhydroxide hybrid electrode material with very homogeneous distribution and close contact of graphene and amorphous iron oxyhydroxide nanoparticles has been achieved by using high-intensity ultrasonication. Due to the negative charge of the graphene surface, iron ions are attracted toward the surface of dispersed graphene, according to the zeta potential measurements. The anchoring of the FeO(OH) particles to the graphene layers has been revealed by using mainly TEM, XPS and EPR. TEM observations show that the size of the iron oxide particles is about 4 nm. The ultrasonication treatment is the key parameter to achieve small particle size in these graphene/iron oxyhydroxide hybrid materials. The electrochemical behavior of composite graphene/amorphous iron oxyhydroxide prepared by using high-intensity ultrasonication is outstanding in terms of gravimetric capacity and cycling stability, particularly when metallic foam is used as both the substrate and current collector. The XRD-amorphous character of iron oxyhydroxide in the hybrid electrode material and the small particle size contribute to achieve the improved electrochemical performance.

  6. Amorphous Alloy Membranes Prepared by Melt-Spin methods for Long-Term use in Hydrogen Separation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Dhanesh; Kim, Sang-Mun; Adibhatla, Anasuya; Dolan, Michael; Paglieri, Steve; Flanagan, Ted; Chien, Wen-Ming; Talekar, Anjali; Wermer, Joseph

    2013-02-28

    Amorphous Ni-based alloy membranes show great promise as inexpensive, hydrogenselective membrane materials. In this study, we developed membranes based on nonprecious Ni-Nb-Zr alloys by adjusting the alloying content and using additives. Several studies on crystallization of the amorphous ribbons, in-situ x-ray diffraction, SEM and TEM, hydrogen permeation, hydrogen solubility, hydrogen deuterium exchange, and electrochemical studies were conducted. An important part of the study was to completely eliminate Palladium coatings of the NiNbZr alloys by hydrogen heattreatment. The amorphous alloy (Ni0.6Nb0.4)80Zr20 membrane appears to be the best with high hydrogen permeability and good thermal stability.

  7. Preparation and Magnetocaloric Effect in Amorphous Fe91-xLaxZr9 Alloys%非晶态Fe91-xLaxZr9合金的制备与磁热效应

    Institute of Scientific and Technical Information of China (English)

    李海军; 特古斯; 刘雨江; 张伟; 陈晓君; 利胜

    2013-01-01

    采用电弧熔炼和真空电磁感应甩带方法制备了Fe91-xLaxZr9(x=1,3,5,10)系列非晶合金,研究了该非晶合金的磁性和磁热效应.X-射线衍射结果显示,样品的形成主要为非晶态合金.非晶态Fe8lLal0Zr9合金的磁熵变随温度变化的曲线表明,外场为1.5T时样品最大等温磁熵变为0.8J/(kg·K),半峰宽对应的温度变化范围为245~285K.%In this article, we investigated the preparation of amorphous Fe91-xLaxZr9 (x= 1,3, 5,10 ) alloys and their magnetic and magnetocaloric properties. The samples of the amorphous alloys were prepared by using arc melting and melt spinning methods. X-ray diffraction shows that the samples form in amorphous state. The isothermal magnetic entropy change of Fe81La10Zr9 alloy was determined from magnetization data basis on Maxwell relation. The result shows that the maximal magnetic entropy change is 0. 8 J/(kg · K). The half-peak wide temperature span is from 245 K to 285 K.

  8. Encapsulation of CO2 into amorphous and crystalline α-cyclodextrin powders and the characterization of the complexes formed.

    Science.gov (United States)

    Ho, Thao M; Howes, Tony; Bhandari, Bhesh R

    2015-11-15

    Carbon dioxide complexation was undertaken into solid matrices of amorphous and crystalline α-cyclodextrin (α-CD) powders, under various pressures (0.4-1.6 MPa) and time periods (4-96 h). The results show that the encapsulation capacity of crystalline α-CD was significantly lower than that of amorphous α-CD at low pressure and short time (0.4-0.8 MPa and 4-24 h), but was markedly enhanced with an increase of pressure and prolongation of encapsulation time. For each pressure level tested, the time required to reach a near equilibrium encapsulation capacity of the crystalline powder was around 48 h, which was much longer than that of the amorphous one, which only required about 8h. The inclusion complex formation of both types of α-CD powders was confirmed by the appearance of a CO2 peak on the FTIR and NMR spectra. Moreover, inclusion complexes were also characterized by DSC, TGA, SEM and X-ray analyses.

  9. Amorphization within the tablet

    DEFF Research Database (Denmark)

    Doreth, Maria; Hussein, Murtadha Abdul; Priemel, Petra A.

    2017-01-01

    , the feasibility of microwave irradiation to prepare amorphous solid dispersions (glass solutions) in situ was investigated. Indomethacin (IND) and polyvinylpyrrolidone K12 (PVP) were tableted at a 1:2 (w/w) ratio. In order to study the influence of moisture content and energy input on the degree of amorphization......, tablet formulations were stored at different relative humidity (32, 43 and 54% RH) and subsequently microwaved using nine different power-time combinations up to a maximum energy input of 90 kJ. XRPD results showed that up to 80% (w/w) of IND could be amorphized within the tablet. mDSC measurements...

  10. Photoemission studies of amorphous silicon induced by P + ion implantation

    Science.gov (United States)

    Petö, G.; Kanski, J.

    1995-12-01

    An amorphous Si layer was formed on a Si (1 0 0) surface by P + implantation at 80 keV. This layer was investigated by means of photoelectron spectroscopy. The resulting spectra are different from earlier spectra on amorphous Si prepared by e-gun evaporation or cathode sputtering. The differences consist of a decreased intensity in the spectral region corresponding to p-states, and appearace of new states at higher binding energy. Qualitativity similar results have been reported for Sb implanted amorphous Ge and the modification seems to be due to the changed short range order.

  11. Structural and optical properties of thin films porous amorphous silicon carbide formed by Ag-assisted photochemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Boukezzata, A., E-mail: assiab2006@yahoo.fr [Silicon Technology Development Unit (UDTS), 02 Bd. Frantz FANON, B.P. 140 Algiers (Algeria); Keffous, A., E-mail: keffousa@yahoo.fr [Silicon Technology Development Unit (UDTS), 02 Bd. Frantz FANON, B.P. 140 Algiers (Algeria); Cheriet, A.; Belkacem, Y.; Gabouze, N.; Manseri, A. [Silicon Technology Development Unit (UDTS), 02 Bd. Frantz FANON, B.P. 140 Algiers (Algeria); Nezzal, G. [Houari Boumediene University (USTHB), Chemical Faculty, Algiers (Algeria); Kechouane, M.; Bright, A. [Houari Boumediene University, Physical Faculty, Algiers (Algeria); Guerbous, L. [Algerian Nuclear Research Center (CRNA), Algiers (Algeria); Menari, H. [Silicon Technology Development Unit (UDTS), 02 Bd. Frantz FANON, B.P. 140 Algiers (Algeria)

    2010-07-01

    In this work, we present the formation of porous layers on hydrogenated amorphous SiC (a-SiC: H) by Ag-assisted photochemical etching using HF/K{sub 2}S{sub 2}O{sub 8} solution under UV illumination at 254 nm wavelength. The amorphous films a-SiC: H were elaborated by d.c. magnetron sputtering using a hot pressed polycrystalline 6H-SiC target. Because of the high resistivity of the SiC layer, around 1.6 M{Omega} cm and in order to facilitate the chemical etching, a thin metallic film of high purity silver (Ag) has been deposited under vacuum onto the thin a-SiC: H layer. The etched surface was characterized by scanning electron microscopy, secondary ion mass spectroscopy, infrared spectroscopy and photoluminescence. The results show that the morphology of etched a-SiC: H surface evolves with etching time. For an etching time of 20 min the surface presents a hemispherical crater, indicating that the porous SiC layer is perforated. Photoluminescence characterization of etched a-SiC: H samples for 20 min shows a high and an intense blue PL, whereas it has been shown that the PL decreases for higher etching time. Finally, a dissolution mechanism of the silicon carbide in 1HF/1K{sub 2}S{sub 2}O{sub 8} solution has been proposed.

  12. Amorphous pharmaceutical solids.

    Science.gov (United States)

    Vranić, Edina

    2004-07-01

    Amorphous forms are, by definition, non-crystalline materials which possess no long-range order. Their structure can be thought of as being similar to that of a frozen liquid with the thermal fluctuations present in a liquid frozen out, leaving only "static" structural disorder. The amorphous solids have always been an essential part of pharmaceutical research, but the current interest has been raised by two developments: a growing attention to pharmaceutical solids in general, especially polymorphs and solvates and a revived interest in the science of glasses and the glass transition. Amorphous substances may be formed both intentionally and unintentionally during normal pharmaceutical manufacturing operations. The properties of amorphous materials can be exploited to improve the performance of pharmaceutical dosage forms, but these properties can also give rise to unwanted effects that need to be understood and managed in order for the systems to perform as required.

  13. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud;

    2012-01-01

    exothermic than that of amorphous calcium carbonate (ACC). This suggests that enthalpy of crystallization in carbonate systems is ionic-size controlled, which may have significant implications in a wide variety of conditions, including geological sequestration of anthropogenic carbon dioxide.......Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  14. Economic benefit of a polyacrylate-based hydrogel compared to an amorphous hydrogel in wound bed preparation of venous leg ulcers

    Directory of Open Access Journals (Sweden)

    Kaspar D

    2015-04-01

    Full Text Available Daniela Kaspar,1 Jörg Linder,1 Petra Zöllner,1 Ulrich Simon,2 Hans Smola1,31Medical Competence Centre, Paul Hartmann AG, Heidenheim, Germany; 2Scientific Computing Centre, Ulm University, Ulm, Germany; 3Department of Dermatology, University of Cologne, Cologne, GermanyObjective: To assess the cost-effectiveness of a polyacrylate (PA-based hydrogel compared to an amorphous hydrogel in wound bed preparation for venous leg ulcers.Method: A cost-effectiveness analysis was undertaken alongside a multicenter, randomized controlled trial performed in France. A total of 75 patients with venous leg ulcers extensively covered with fibrin and necrotic tissue were randomized to a PA-containing hydrogel or an amorphous hydrogel. Wounds were treated for 14 days and costs were estimated from the German payer's perspective. Medical costs included study treatment, wound treatment supply, and labor time. The clinical benefit was expressed as the number of patients with wounds >50% covered with granulation tissue within 14 days. The incremental cost-effectiveness ratio (ICER was expressed as the additional cost spent with >50% granulation tissue per day per patient within 14 days of leg ulcer care.Results: Because of individual pricing of wound dressings in hospitals, cost data were derived from the outpatient sector. A total of 33 patients were treated using the PA-based hydrogel and 37 patients using the amorphous hydrogel. The estimated total direct costs per patient and per 14 days of therapy were €306 for both treatment groups. However, with the PA-based hydrogel, 2.5 additional days with wounds covered >50% with granulation tissues were gained within 14 days of leg ulcer care compared to the comparator. The ICER was €0 per additional day spent with >50% granulation tissue.Conclusion: Although there were a greater number of dressing changes in the PA-based hydrogel treatment, the total treatment cost for 14 days of leg ulcer care was the same for both

  15. 32 CFR Appendix A to Part 1290 - Preparation Guide for DD Form 1805, Violation Notice

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Preparation Guide for DD Form 1805, Violation Notice A Appendix A to Part 1290 National Defense Other Regulations Relating to National Defense DEFENSE.... DISTRICT COURTS Pt. 1290, App. A Appendix A to Part 1290—Preparation Guide for DD Form 1805,...

  16. Preparation and properties of amorphous MgB2/MgO superstructures: A new model disordered superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Siemons, W.

    2010-04-05

    In this paper we introduce a novel method for fabricating MgB{sub 2}/MgO multilayers and demonstrate the potential for using them as a new model for disordered superconductors. In this approach we control the annealing of the MgB{sub 2} to yield an interesting new class of disordered (amorphous) superconductors with relatively high transition temperatures. The multilayers appear to exhibit quasi-two-dimensional superconductivity with controlled anisotropy. We discuss the properties of the multilayers as the thickness of the components of the bilayers vary.

  17. Precision analysis in billet preparation for micro bulk metal forming

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans N.

    2015-01-01

    press. When using a vertical mechanical press, the material is fed as billets into the forming zone. Therefore, a large number of highly uniform billets are required to run mass production in such a setup. Shearing technique was used for manufacturing the billets. The efficiency of the shearing tool...... is examined in terms of volume control, circularity, dimension and sheared surface quality. The shearing tool is based on holders for both bar and cutoff. The tool is fixed in dimensions, since the dimensions of billets are fixed throughout experiments of this research. The paper presents the experimental...

  18. Amino acids as co-amorphous stabilizers for poorly water-soluble drugs - Part 2

    DEFF Research Database (Denmark)

    Löbmann, K.; Laitinen, R.; Strachan, C.

    2013-01-01

    The formation of co-amorphous drug-drug mixtures has proved to be a powerful approach to stabilize the amorphous form and at the same time increase the dissolution of poorly water-soluble drugs. Molecular interactions in these co-amorphous formulations can play a crucial role in stabilization...... and dissolution enhancement. In this regard, Fourier-transform infrared spectroscopy (FTIR) is a valuable tool to analyze the molecular near range order of the compounds in the co-amorphous mixtures. In this study, several co-amorphous drugs - low molecular weight excipient blends - have been analyzed with FTIR...... spectroscopy. Molecular interactions of the drugs carbamazepine and indomethacin with the amino acids arginine, phenylalanine, and tryptophan were investigated. The amino acids were chosen from the biological target site of both drugs and prepared as co-amorphous formulations together with the drugs...

  19. N-doped P25 TiO2-amorphous Al2O3 composites: one-step solution combustion preparation and enhanced visible-light photocatalytic activity.

    Science.gov (United States)

    Li, Fa-tang; Zhao, Ye; Hao, Ying-juan; Wang, Xiao-jing; Liu, Rui-hong; Zhao, Di-shun; Chen, Dai-mei

    2012-11-15

    Nitrogen-doped Degussa P25 TiO2-amorphous Al2O3 composites were prepared via facile solution combustion. The composites were characterised using X-ray diffraction, high-resolution transmission microscopy, scanning electron microscopy, nitrogen adsorption-desorption measurements, X-ray photoelectron spectroscopy, UV-vis light-diffusion reflectance spectrometry (DRS), zeta-potential measurements, and photoluminescence spectroscopy. The DRS results showed that TiO2 and amorphous Al2O3 exhibited absorption in the UV region. However, the Al2O3/TiO2 composite exhibited visible-light absorption, which was attributed to N-doping during high-temperature combustion and to alterations in the electronic structure of Ti species induced by the addition of Al. The optimal molar ratio of TiO2 to Al2O3 was 1.5:1, and this composite exhibited a large specific surface area of 152 m2/g, surface positive charges, and enhanced photocatalytic activity. These characteristics enhanced the degradation rate of anionic methylene orange, which was 43.6 times greater than that of pure P25 TiO2. The high visible-light photocatalytic activity was attributed to synthetic effects between amorphous Al2O3 and TiO2, low recombination efficiency of photo-excited electrons and holes, N-doping, and a large specific surface area. Experiments that involved radical scavengers indicated that OH and O2- were the main reactive species. A potential photocatalytic mechanism was also proposed.

  20. Structural, microstructural and magnetic properties of amorphous/nanocrystalline Ni{sub 63}Fe{sub 13}Mo{sub 4}Nb{sub 20} powders prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, L., E-mail: leilakarimi@iauahvaz.ac.ir [Materials Science and Engineering Department, Islamic Azad University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Shokrollahi, H. [Materials Science and Engineering Department, Shiraz University of Technology, 71555-313, Shiraz (Iran, Islamic Republic of)

    2011-06-09

    Highlights: > The amorphous/nanocrystalline Ni{sub 63}Fe{sub 13}Mo{sub 4}Nb{sub 20} magnetic powders were prepared by mechanical alloying. > The saturation magnetization decreases and the coercivity increases as a result of the electronic interactions and the grain size reduction. > The use of amorphous alloy is due to the lower magnetic losses and higher electrical resistivity compared with other magnetic material - Abstract: This paper focuses on the magnetic, structural and microstructural studies of amorphous/nanocrystalline Ni{sub 63}Fe{sub 13}Mo{sub 4}Nb{sub 20} powders prepared by mechanical alloying. The ball-milling of Ni, Fe, Mo and Nb powders leads to alloying the element powders, the nanocrystalline and an amorphization matrix with Mo element up to 120 h followed by the strain and thermal-induced nucleation of a single nanocrystalline Ni-based phase from the amorphous matrix at 190 h. The results showed that the saturation magnetization decreases as a result of the electronic interactions between magnetic and non-magnetic elements and finally increases by the partial crystallization of the amorphous matrix. The coercive force increases as the milling time increases and finally decreases due to sub-grains formation.

  1. Hydrogen related crystallization in intrinsic hydrogenated amorphous silicon films prepared by reactive radiofrequency magnetron sputtering at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Senouci, D. [Laboratoire de Genie Physique, Universite Ibn-Khaldoun, 14000 Tiaret (Algeria); LPCMME, Departement de Physique, Universite d' Oran Es-senia, 3100, Oran (Algeria); Baghdad, R., E-mail: r_baghdad@mail.univ-tiaret.dz [Laboratoire de Genie Physique, Universite Ibn-Khaldoun, 14000 Tiaret (Algeria); Belfedal, A.; Chahed, L. [LPCMME, Departement de Physique, Universite d' Oran Es-senia, 3100, Oran (Algeria); Portier, X. [CIMAP, CEA, CNRS UMR 6252-ENSICAEN, UCBN, 6 Bvd Marechal Juin, 14050 Caen Cedex (France); Charvet, S. [LPMC, UFR des Sciences, Universite de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens (France); Kim, K.H. [LPICM, Laboratoire de Physique des Interfaces et Couches Minces, CNRS UMR 7647, Ecole Polytechnique, 91128 Palaiseau (France); TOTAL S.A., Gas and Power, R and D Division, Courbevoie (France); Roca i Cabarrocas, P. [LPICM, Laboratoire de Physique des Interfaces et Couches Minces, CNRS UMR 7647, Ecole Polytechnique, 91128 Palaiseau (France); Zellama, K. [LPMC, UFR des Sciences, Universite de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens (France)

    2012-11-01

    We present an investigation on the transition from amorphous to nanocrystalline silicon and associated hydrogen changes during the first steps of hydrogenated nanocrystalline silicon growth for films elaborated by reactive radiofrequency magnetron sputtering at a substrate temperature as low as room temperature and for deposition times varying from 3 to 60 min. Complementary experimental techniques have been used to characterize the films in their as-deposited state. They are completed by thermal hydrogen effusion experiments conducted in the temperature range, from room temperature to 800 Degree-Sign C. The results show that, during the initial stages of growth, the presence of a hydrogen-rich layer is necessary to initiate the crystallization process. - Highlights: Black-Right-Pointing-Pointer Nanocrystalline silicon growth at room temperature. Black-Right-Pointing-Pointer Transition from amorphous to nanocrystalline silicon. Black-Right-Pointing-Pointer Chemical reactions of H atoms with strained Si-Si bonds. Black-Right-Pointing-Pointer H selective etching and chemical transport caused the silicon nucleation.

  2. Preparation of Zr50Al15−Ni10Cu25Y amorphous powders by mechanical alloying and thermodynamic calculation

    Indian Academy of Sciences (India)

    Woyun Long; Anxian Lu; Jing Li

    2013-12-01

    Amorphous Zr50Al15−Ni10Cu25Y powders were fabricated by mechanical alloying at a low rotation speed from commercial pure element powders. The beneficial effect of Al partially substituted by Y in Zr50Al15Ni10Cu25 on glass-forming ability was investigated. The as-milled powders were characterized by X-ray diffraction and transmission electron microscopy. The results show that partial substitution of Al by Y can improve the glass-forming ability of Zr50Al15Ni10Cu25 alloy. Thermodynamic calculation of equivalent free energy shows that Zr50Al13.8Ni10Cu25Y1.2 alloy has the highest glass-forming ability, which is in good agreement with the report of orthogonal experiments.

  3. Near-Edge X-Ray Absorption Fine Structure of Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Films Prepared by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Shinya Ohmagari

    2009-01-01

    Full Text Available The atomic bonding configuration of ultrananocrystalline diamond (UNCD/hydrogenated amorphous carbon (a-C:H films prepared by pulsed laser ablation of graphite in a hydrogen atmosphere was examined by near-edge X-ray absorption fine structure spectroscopy. The measured spectra were decomposed with simple component spectra, and they were analyzed in detail. As compared to the a-C:H films deposited at room substrate-temperature, the UNCD/a-C:H and nonhydrogenated amorphous carbon (a-C films deposited at a substrate-temperature of 550∘C exhibited enhanced ∗ and ∗C≡C peaks. At the elevated substrate-temperature, the ∗ and ∗C≡C bonds formation is enhanced while the ∗C–H and ∗C–C bonds formation is suppressed. The UNCD/a-C:H film showed a larger ∗C–C peak than the a-C film deposited at the same elevated substrate-temperature in vacuum. We believe that the intense ∗C–C peak is evidently responsible for UNCD crystallites existence in the film.

  4. PHOTO- AND ELECTRO-LUMINESCENCE FROM HYDROGENATED AMORPHOUS SILICON CARBIDE FILMS PREPARED BY USING ORGANIC CARBON SOURCE

    Institute of Scientific and Technical Information of China (English)

    Xu Jun; Ma Tian-fu; Li Wei; Chen Kun-ji; Li Zhi-feng; Lu Wei

    2000-01-01

    Hydrogenated amorphous silicon carbide (a-SiC:H) films were grown byusing an organic source, xylene (C8H{10), instead of methane(CH4) in a conventional plasma enhanced chemical vapor depositionsystem. The optical band gap of these samples was increased gradually bychanging the gas ratio of C8H10 to SiH4. The film with highoptical band gap was soft and polymer-like and intense photoluminescencewere obtained. Room temperature electro-luminescence was also achievedwith peak energy at 2.05 eV (600 nm) for the a-SiC:H film withoptical band gap of 3.2 eV.1.8mm

  5. The amorphous solid dispersion of the poorly soluble ABT-102 forms nano/microparticulate structures in aqueous medium: impact on solubility

    Directory of Open Access Journals (Sweden)

    Frank KJ

    2012-11-01

    Full Text Available Kerstin J Frank,1,3 Ulrich Westedt,2 Karin M Rosenblatt,2 Peter Hölig,2 Jörg Rosenberg,2 Markus Mägerlein,2 Gert Fricker,3 Martin Brandl11Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark; 2Abbott GmbH and Co. KG, Ludwigshafen, Germany; 3Department of Pharmaceutical Technology, University of Heidelberg, Heidelberg, GermanyAbstract: Amorphous solid dispersions (ASDs are a promising formulation approach for poorly soluble active pharmaceutical ingredients (APIs, because they ideally enhance both dissolution rate and solubility. However, the mechanism behind this is not understood in detail. In the present study, we investigated the supramolecular and the nano/microparticulate structures that emerge spontaneously upon dispersion of an ASD in aqueous medium and elucidated their influence on solubility. The ASD, prepared by hot melt extrusion, contained the poorly soluble ABT-102 (solubility in buffer, 0.05 µg/mL, a hydrophilic polymer, and three surfactants. The apparent solubility of ABT-102 from the ASD-formulation was enhanced up to 200 times in comparison to crystalline ABT-102. At the same time, the molecular solubility, as assessed by inverse equilibrium dialysis, was enhanced two times. Asymmetrical flow field-flow fractionation in combination with a multiangle light-scattering detector, an ultraviolet detector, and a refractometer enabled us to separate and identify the various supramolecular assemblies that were present in the aqueous dispersions of the API-free ASD (placebo and of binary/ternary blends of the ingredients. Thus, the supramolecular assemblies with a molar mass between 20,000 and 90,000 could be assigned to the polyvinylpyrrolidone/vinyl acetate 64, while two other kinds of assemblies were assigned to different surfactant assemblies (micelles. The amount of ABT-102 remaining associated with each of the assemblies upon fractionation was quantified offline with high

  6. Nanoscale Infrared, Thermal, and Mechanical Characterization of Telaprevir-Polymer Miscibility in Amorphous Solid Dispersions Prepared by Solvent Evaporation.

    Science.gov (United States)

    Li, Na; Taylor, Lynne S

    2016-03-07

    Miscibility is of great interest for pharmaceutical systems, in particular, for amorphous solid dispersions, as phase separation can lead to a higher tendency to crystallize, resulting in a loss in solubility, decreased dissolution rate, and compromised bioavailability. The purpose of this study was to investigate the miscibility behavior of a model poorly water-soluble drug, telaprevir (TPV), with three different polymers using atomic force microscopy-based infrared, thermal, and mechanical analysis. Standard atomic force microscopy (AFM) imaging together with nanoscale infrared spectroscopy (AFM-IR), nanoscale thermal analysis (nanoTA), and Lorentz contact resonance (LCR) measurements were used to evaluate the miscibility behavior of TPV with three polymers, hydroxypropyl methylcellulose (HPMC), HPMC acetate succinate (HPMCAS), and poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA), at different drug to polymer ratios. Phase separation was observed with HPMC and PVPVA at drug loadings above 10%. For HPMCAS, a smaller miscibility gap was observed, with phase separation being observed at drug loadings higher than ∼30-40%. The domain size of phase-separated regions varied from below 50 nm to a few hundred nanometers. Localized infrared spectra, nano-TA measurements, images from AFM-based IR, and LCR measurements showed clear contrast between the continuous and discrete domains for these phase-separated systems, whereby the discrete domains were drug-rich. Fluorescence microscopy provided additional evidence for phase separation. These methods appear to be promising to evaluate miscibility in drug-polymer systems with similar Tgs and submicron domain sizes. Furthermore, such findings are of obvious importance in the context of contributing to a mechanistic understanding of amorphous solid dispersion phase behavior.

  7. Micro-scale prediction method for API-solubility in polymeric matrices and process model for forming amorphous solid dispersion by hot-melt extrusion.

    Science.gov (United States)

    Bochmann, Esther S; Neumann, Dirk; Gryczke, Andreas; Wagner, Karl G

    2016-10-01

    A new predictive micro-scale solubility and process model for amorphous solid dispersions (ASDs) by hot-melt extrusion (HME) is presented. It is based on DSC measurements consisting of an annealing step and a subsequent analysis of the glass transition temperature (Tg). The application of a complex mathematical model (BCKV-equation) to describe the dependency of Tg on the active pharmaceutical ingredient (API)/polymer ratio, enables the prediction of API solubility at ambient conditions (25°C). Furthermore, estimation of the minimal processing temperature for forming ASDs during HME trials could be defined and was additionally confirmed by X-ray powder diffraction data. The suitability of the DSC method was confirmed with melt rheological trials (small amplitude oscillatory system). As an example, ball milled physical mixtures of dipyridamole, indomethacin, itraconazole and nifedipine in poly(vinylpyrrolidone-co-vinylacetate) (copovidone) and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®) were used.

  8. In situ X-ray Diffraction Study of Graphitic Carbon Formed During Heating and Cooling of Amorphous-C/Ni bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Saenger, K.; Tsang, J; Bol, A; Chu, J; Grill, A; Lavoie, C

    2010-01-01

    We examine graphitization of amorphous carbon (a-C) in a-C/Ni bilayer samples having the structure Si/SiO{sub 2}/a-C(3-30 nm)/Ni(100 nm). In situ x-ray diffraction (XRD) measurements during heating in He at 3 C/s to 1000 C showed graphitic C formation beginning at temperatures T of 640-730 C, suggesting graphitization by direct metal-induced crystallization, rather than by a dissolution/precipitation mechanism in which C is dissolved during heating and expelled from solution upon cooling. We also find that graphitic C, once formed, can be reversibly dissolved by heating to T > 950 C, and that nongraphitic C can be volatilized by annealing in H{sub 2}-containing ambients.

  9. Preparation of high-quality hydrogenated amorphous silicon film with a new microwave electron cyclotron resonance chemical vapour deposition system assisted with hot wire

    Institute of Scientific and Technical Information of China (English)

    Zhu Xiu-Hong; Chen Guang-Hua; Yin Sheng-Yi; Rong Yan-Dong; Zhang Wen-Li; Hu Yue-Hui

    2005-01-01

    The preparation of high-quality hydrogenated amorphous silicon (a-Si:H) film with a new microwave electron cyclotron resonance-chemical vapour deposition (MWECR-CVD) system assisted with hot wire is presented. In this system the hot wire plays an important role in perfecting the microstructure as well as improving the stability and the optoelectronic properties of the a-Si:H film. The experimental results indicate that in the microstructure of the a-Si:H film, the concentration of dihydride is decreased and a trace of microcrystalline occurs, which is useful to improve its stability, and that in the optoelectronic properties of the a-Si:H film, the deposition rate reaches above 2.0nm/s and the photosensitivity increases up to 4.71× 105.

  10. Investigation of the atypical glass transition and recrystallization behavior of amorphous prazosin salts.

    Science.gov (United States)

    Kumar, Lokesh; Popat, Dharmesh; Bansal, Arvind K

    2011-08-25

    This manuscript studied the effect of counterion on the glass transition and recrystallization behavior of amorphous salts of prazosin. Three amorphous salts of prazosin, namely, prazosin hydrochloride, prazosin mesylate and prazosin tosylate were prepared by spray drying, and characterized by optical-polarized microscopy, differential scanning calorimetry and powder X-ray diffraction. Modulated differential scanning calorimetry was used to determine the glass transition and recrystallization temperature of amorphous salts. Glass transition of amorphous salts followed the order: prazosin mesylate > prazosin tosylate ~ prazosin hydrochloride. Amorphous prazosin mesylate and prazosin tosylate showed glass transition, followed by recrystallization. In contrast, amorphous prazosin hydrochloride showed glass transition and recrystallization simultaneously. Density Functional Theory, however, suggested the expected order of glass transition as prazosin hydrochloride > prazosin mesylate > prazosin tosylate. The counterintuitive observation of amorphous prazosin hydrochloride having lower glass transition was explained in terms of its lower activation energy (206.1 kJ/mol) for molecular mobility at Tg, compared to that for amorphous prazosin mesylate (448.5 kJ/mol) and prazosin tosylate (490.7 kJ/mol), and was further correlated to a difference in hydrogen bonding strength of the amorphous and the corresponding recrystallized salts. This study has implications in selection of an optimal amorphous salt form for pharmaceutical development.

  11. Magnetostrictive amorphous bimetal sensors

    CERN Document Server

    Mehnen, L; Kaniusas, E

    2000-01-01

    The paper describes the application of a magnetostrictive amorphous ribbon (AR) for the detection of bending. In order to increase sensitivity, a bimetal structure is used which consists of AR and a nonmagnetic carrier ribbon. Several methods for the preparation of the bimetal are discussed. Results of the bending sensitivities are given for various combinations of the material types indicating crucial problems of bimetal preparation.

  12. Preparation of an amorphous sodium furosemide salt improves solubility and dissolution rate and leads to a faster Tmax after oral dosing to rats

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Gordon, Sarah; Holm, René

    2013-01-01

    to an increase in media surfactant concentration was not seen. The amorphous salt demonstrated an 8- and 20-fold higher intrinsic dissolution rate (IDR) when compared to amorphous and crystalline free acid, respectively. The promising properties of the amorphous salt in vitro were further evaluated in an in vivo...

  13. Amorphous nanophotonics

    CERN Document Server

    Scharf, Toralf

    2013-01-01

    This book represents the first comprehensive overview over amorphous nano-optical and nano-photonic systems. Nanophotonics is a burgeoning branch of optics that enables many applications by steering the mould of light on length scales smaller than the wavelength with devoted nanostructures. Amorphous nanophotonics exploits self-organization mechanisms based on bottom-up approaches to fabricate nanooptical systems. The resulting structures presented in the book are characterized by a deterministic unit cell with tailored geometries; but their spatial arrangement is not controlled. Instead of periodic, the structures appear either amorphous or random. The aim of this book is to discuss all aspects related to observable effects in amorphous nanophotonic material and aspects related to their design, fabrication, characterization and integration into applications. The book has an interdisciplinary nature with contributions from scientists in physics, chemistry and materials sciences and sheds light on the topic fr...

  14. Drug-excipient behavior in polymeric amorphous solid dispersions.

    OpenAIRE

    Surikutchi Bhanu Teja; Shashank Pralhad Patil; Ganesh Shete; Sarsvatkumar Patel; Arvind Kumar Bansal

    2016-01-01

    Amorphous drug delivery systems are increasingly utilized to enhance aqueous solubility and oral bioavailability. However, they lack physical and/or chemical stability. One of the most common ways of stabilizing an amorphous form is by formulating it as an amorphous solid dispersion. This review focuses on polymeric amorphous solid dispersions wherein polymers are used as excipients to stabilize the amorphous form. A brief introduction to the basic concepts of amorphous systems such as glass ...

  15. Drug excipient behavior in polymeric amorphous solid dispersions

    OpenAIRE

    Bhanu Teja Surikutchi; Shashank Pralhad Patil; Ganesh Shete; Sarsvatkumar Patel; Arvind Kumar Bansal

    2013-01-01

    Amorphous drug delivery system is being increasingly utilized for enhancing aqueous solubility and oral bioavailability. However it suffers from lack of physical/chemical stability. One of the most common ways of stabilizing an amorphous form is by formulating it as amorphous solid dispersion. This review focuses on the polymeric amorphous solid dispersion wherein polymers are used as excipients to stabilize the amorphous form. We present a brief introduction of basic concepts of amorphous sy...

  16. Crystallization of Fe78Si9B13 Bulk Crystaline/Amorphous (c/a) Composite

    Institute of Scientific and Technical Information of China (English)

    JIN Shifeng; WANG Weimin; NIU Yuchao; ZHANG Jiteng; LI Guihua; BIAN Xiufang

    2008-01-01

    A metallic crystalline/amorphous (c/a) bulk composite was prepared by the slow cooling method after remelting the amorphous Fe78Si9B13 ribbon. By X-ray diffraction (XRD),differential scanning calorimetry (DSC) and scanning electron microscope (SEM), the composite consists of the primary dendrite a-Fe (without Si) as well as the amorphous matrix. After being anneal at 800 K, the uniform spheroid particles are formed in the c/a composite, which does not form in the amorphous ribbon under the various annealing process. Energy dispersive analysis of X-rays (EDAX), SEM and XRD were applied to give more detailed information. The formation and evolution of the particle may stimulate the possible application of the Fe-matrix amorphous alloy.

  17. Transformation from amorphous to nano-crystalline SiC thin films prepared by HWCVD technique without hydrogen dilution

    Indian Academy of Sciences (India)

    F Shariatmadar Tehrani

    2015-09-01

    Silicon carbide (SiC) thin films were deposited on Si(111) by the hot wire chemical vapour deposition (HWCVD) technique using silane (SiH4) and methane (CH4) gases without hydrogen dilution. The effects of SiH4 to CH4 gas flow ratio (R) on the structural properties, chemical composition and photoluminescence (PL) properties of the films deposited at the different gas flow ratios were investigated and compared. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra revealed a structural transition from amorphous SiC to cubic nano-crystalline SiC films with the increase in the gas flow ratio. Raman scattering confirmed the multi-phased nature of the films. Auger electron spectroscopy showed that the carbon incorporation in the film structure was strongly dependent on the gas flow ratio. A similar broad visible room-temperature PL with two peaks was observed for all SiC films. The main PL emission was correlated to the band to band transition in uniform a-SiC phase and the other lower energy emission was related to the confined a-Si : H clusters in a-SiC matrix. SiC nano-crystallites exhibit no significant contribution to the radiative recombination.

  18. Preparation of ZrC nano-particles reinforced amorphous carbon composite coating by atmospheric pressure chemical vapor deposition

    Science.gov (United States)

    Sun, W.; Xiong, X.; Huang, B. Y.; Li, G. D.; Zhang, H. B.; Xiao, P.; Chen, Z. K.; Zheng, X. L.

    2009-05-01

    To eliminate cracks caused by thermal expansion mismatch between ZrC coating and carbon-carbon composites, a kind of ZrC/C composite coating was designed as an interlayer. The atmospheric pressure chemical vapor deposition was used as a method to achieve co-deposition of ZrC and C from ZrCl 4-C 3H 6-H 2-Ar source. Zirconium tetrachloride (ZrCl 4) powder carrier was especially made to control accurately the flow rate. The microstructure of ZrC/C composite coating was studied using analytical techniques. ZrC/C coating shows same morphology as pyrolytic carbon. Transmission electron microscopy (TEM) shows ZrC grains with size of 10-50 nm embed in turbostratic carbon. The formation mechanism is that the growth of ZrC crystals was inhibited by surrounding pyrolytic carbon and kept as nano-particles. Fracture morphologies imply good combination between coating and substrate. The ZrC crystals have stoichiometric proportion near 1, with good crystalline but no clear preferred orientation while pyrolytic carbon is amorphous. The heating-up oxidation of ZrC/C coating shows 11.58 wt.% loss. It can be calculated that the coating consists of 74.04 wt.% ZrC and 25.96 wt.% pyrolytic carbon. The average density of the composite coating is 5.892 g/cm 3 by Archimedes' principle.

  19. Electrical and optical properties of hydrogenated amorphous silicon-germanium (a-Si1 - xGexH) films prepared by reactive ion beam sputtering

    Science.gov (United States)

    Bhan, Mohan Krishan; Malhotra, L. K.; Kashyap, Subhash C.

    1989-09-01

    Thin films of hydrogenated amorphous silicon-germanium (a-Si1-xGex: H) alloys have been prepared by reactive ion beam sputtering of a composite target of silicon and germanium. The dependence of the deposition rate, conductivity-temperature variation, optical absorption coefficient, refractive index, imaginary part of the dielectric constant, hydrogen content, and infrared (IR) absorption spectra on germanium content (x) are reported and analyzed. For a typical composition—a-Si28Ge72:H (x=0.72), the effect of beam voltage, H2:Ar flow ratio, and substrate temperature on the material properties have also been investigated. For the films prepared with increasing x, the expected behavior of a decrease in both hydrogen content and band gap and an increase in the electrical conductivity have been observed. The films prepared at x>0.80 are found to be more homogeneous than the films deposited at 0.0disorder introduced by the random mixing of Si and Ge atoms in the a-Si1-xGex: H network in the latter case. The a-Si28Ge72:H films exhibiting minimum conductivity (1.7×10-7 Ω-1 cm-1) have been obtained for an H2:Ar flow ratio of 10:1 and a beam voltage and substrate temperature of 1500 V and 300 °C, respectively. These films contain a hydrogen concentration of 10.2 at. % and show an optical band gap of 1.25 eV. The IR studies have shown that a-Si28Ge72:H films prepared both at low beam voltages and at low substrate temperatures show the unusual preferential attachment of hydrogen to Ge rather than to Si.

  20. 48 CFR 1846.672 - Preparing DD Forms 250 and 250c.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Preparing DD Forms 250 and 250c. 1846.672 Section 1846.672 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... DD Forms 250 and 250c....

  1. Forming of communicative competence as condition of professional preparation of future teachers of physical culture

    Directory of Open Access Journals (Sweden)

    Samsutina NM.

    2010-02-01

    Full Text Available The modern state and necessity of realization of forming communicative competence of future teachers of physical culture is found out in the process of professional preparation. 294 students took part in an experiment. Rotined expedience of realization of forming of communicative competence of future teachers of physical culture. The questionnaire of students of higher educational establishments is conducted. The level of formed of communicative competence for students remains at low level. It needs strengthening of attention to perfection of process of professional preparation of future teachers of physical culture.

  2. Patient's perception of location, form and size in case of cavity preparation.

    Science.gov (United States)

    Isoya, Kazuhiro; Sasaki, Yoshiyuki; Mataki, Shiro

    2004-06-01

    The aim of the present study was to clarify the difference between the imagination of patients and the reality in regard to the location, the form and the size of the cavity in case of cavity preparation for dental restoration. Firstly, we manufactured the dummy dentition for simulated cavity preparation and the operator intra-orally prepared a cavity on the dummy dentition in subject to confirm its validity. Then, 5 operators intra-orally prepared prescribed cavities at the both sides of maxillary first molars on the dummy dentition in every one of 5 subjects with masking. We compared the location, the form and the area of these prepared cavities with those imagined by subjects, respectively. In 58% of cases, the subjects could accurately recognize the location of prepared teeth. And 34% of cases also determined the Class of cavity form. The imagined area was larger than the actual area and the difference was statistically significant (p cavity preparation and patients tended to overestimate amounts of removed tooth substance.

  3. Evaluation of resistance form of different preparation features on mandibular molars

    Directory of Open Access Journals (Sweden)

    Bajoghli Farshad

    2013-01-01

    Full Text Available Aims: Resistance form of full metal-ceramic crown is an important feature that determines longevity of these restorations. This study evaluated the resistance form of full metal-ceramic prepared with four different design features. Materials and Methods: An acrylic tooth was prepared with 20° total occlusal convergence (TOC angle, 2.5 mm of occlusocervical dimension and a shoulder finishing line. This design lacked resistance form. The crown preparation was subsequently modified by preparing Mesial Occlusal Distal isthmus, placing occlusal inclined plane, and reducing TOC. Four metal dies from these designs were constructed by lathe machine and then 10 metal copings were fabricated for each preparation. Metal coping were cemented on metal dies with temp-bond cement. Force was applied at 45° from lingual to buccal direction with universal testing machine. Statistical analysis used: The data were evaluated by Kruskal-Wallis and non-parametric Mann-Whitney test. Results: All features increased resistance form when compare to control group. However, reduce TOC group showed greatest value of resistance. Conclusion: Within the limitation of this study, reducing the tapering of occlusocervival dimension is the most effective way in increasing resistance form, although, other features were also effective.

  4. Recommendations for the hygienic preparation of infant formula in powder form

    OpenAIRE

    Federal Institute for Risk Assessment

    2012-01-01

    The hygienic requirements for infant formula are very high. For this reason, infections caused by pathogenic germs are rare. Nevertheless, in exceptional cases, contamination of the baby food may occur, because many types of germs survive the manufacturing process for food in powder form. They can then multiply in the prepared food. In addition, baby food can be contaminated with germs via spoons, teats or baby bottles when the formula is prepared. Against this background, the Federal Institu...

  5. Flexible amorphous metal films with high stability

    Science.gov (United States)

    Liu, M.; Cao, C. R.; Lu, Y. M.; Wang, W. H.; Bai, H. Y.

    2017-01-01

    We report the formation of amorphous Cu50Zr50 films with a large-area of more than 100 cm2. The films were fabricated by ion beam assisted deposition with a slow deposition rate at moderate temperature. The amorphous films have markedly enhanced thermal stability, excellent flexibility, and high reflectivity with atomic level smoothness. The multifunctional properties of the amorphous films are favorites in the promising applications of smart skin or wearable devices. The method of preparing highly stable amorphous metal films by tuning the deposition rate instead of deposition temperature could pave a way for exploring amorphous metal films with unique properties.

  6. Layered amorphous silicon as negative electrodes in lithium-ion batteries

    Science.gov (United States)

    Zhao, Leyi; Dvorak, D. J.; Obrovac, M. N.

    2016-11-01

    Chemical delithiation is used to prepare bulk quantities of amorphous silicon powder from lithium-silicon compounds. The amorphous silicon materials formed are air and water stable and are found to have layered structures. When cycled in Li-ion half cells, coatings containing layered amorphous silicon are found to have significantly lower volume expansion during lithiation and improved cycling characteristics compared to that of bulk crystalline Si. We suggest chemical delithiation as a convenient method to synthesize bulk quantities of Si powders containing self-organized void spaces that can accommodate volume expansion during lithiation.

  7. Study of amorphous films of TiAlN prepared by reactive cathodic erosion by radiofrequencies; Estudio de peliculas amorfas de TiAlN preparadas por erosion catodica reactiva por radiofrecuencias

    Energy Technology Data Exchange (ETDEWEB)

    Garcia G, L. [Programa de Posgrado en Materiales del Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Queretaro (Mexico); Morales H, J. [Programa de Posgrado en Ingenieria de la Facultad de Ingenieria de la Universidad Autonoma de Queretaro, (Mexico); Bartolo P, J.P.; Ceh S, O. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Merida, Km. 6 Antigua Carretera a Progreso, A.P. 73 Cordemex 97310 Merida, Yucatan (Mexico); Munoz S, J.; Espinoza B, F.J. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Queretaro, (Mexico)

    2004-07-01

    Using the reactive magnetron r f sputtering technique, we prepared TiAlN films with amorphous structure on Corning glass and steel substrates in a reactive atmosphere of nitrogen and argon using a target of Ti-AI (40/60 wt. %). The average temperature of the substrates was about 25 C, with the purpose of obtaining amorphous films. The ratio of partial pressure of nitrogen to argon, PN/PAr was varied according to these values: 0.14, 0.28, and 0.43; fixing these values during whole the evaporation. Further on, films were prepared introducing nitrogen in periodic pulses with maximum values of PN/PAr 4.7 during 45 seconds, with fixed periods of 10, 15 and 20 minutes. In all cases amorphous films were obtained, according to X-ray Diffraction. The chemical composition of the samples was measured by electron dispersive spectroscopy, showing a clear dependence with the evaporation conditions. In spite of the amorphous structure of the material, atomic force microscopy measurements showed a surface morphology dependent on the nitrogen content. Additionally, measurements of electronic spectroscopy for chemical analysis and Raman scattering spectroscopy for identification of chemical bonds were carried out. Measurements of mechanical properties of the samples were carried out using nano indentation and micro-hardness Vickers's tests. (Author)

  8. Large Polycrystalline Silicon Grains Prepared by Excimer Laser Crystallization of Sputtered Amorphous Silicon Film with Process Temperature at 100 °C

    Science.gov (United States)

    He, Ming; Ishihara, Ryoichi; Neihof, Ellen J. J.; van Andel, Yvonne; Schellevis, Hugo; Metselaar, Wim; Beenakker, Kees

    2007-03-01

    Large polycrystalline silicon (poly-Si) grains with a diameter of 1.8 μm are successfully prepared by excimer laser crystallization (ELC) of a sputtered amorphous silicon (α-Si) film at a maximum process temperature of 100 °C. By pulsed DC magnetron sputtering, α-Si is deposited on a non-structured oxidized wafer. It is found that the α-Si film deposited with a bias is easily ablated during ELC, even at an energy density below the super lateral growth (SLG) region. However, the α-Si film deposited without a bias can endure an energy density well beyond the SLG region without ablation. This zero-bias sputtered α-Si film with a high compressive stress has a low Ar content and a high density, which is beneficial for the suppression of ablation. Large grains with a petal-like shape can be obtained in a wide energy density window, which can be a result from some fine crystallites in the α-Si matrix. These large grains with a low process temperature are promising for the direct formation of system circuits as well as a high-quality display on a plastic foil.

  9. Investigation of physical properties and stability of indomethacin-cimetidine and naproxen-cimetidine co-amorphous systems prepared by quench cooling, coprecipitation and ball milling

    DEFF Research Database (Denmark)

    Lim, Ai Wei; Löbmann, Korbinian; Grohganz, Holger;

    2016-01-01

    OBJECTIVES: The objective was to characterize the structural behaviour of indomethacin-cimetidine and naproxen-cimetidine co-amorphous systems (1 : 1 molar ratio) prepared by quench cooling, co-evaporation and ball milling. METHODS: Powder X-ray diffraction (PXRD) and DSC were used to characterise...... the samples. Structural relaxation (i.e. molecular mobility) behaviour was obtained from the Kohlrausch-Williams-Watts (KWW) relationship. KEY FINDINGS: A glass transition temperature (Tg ), on average 20 °C higher than the predicted Tg (calculated from the Fox equation), was observed in all samples...... by quench cooling (ln τ(β) = 2.4) and co-evaporation (ln τ(β) = 2.5). In contrast, molecular mobility of the naproxen-cimetidine samples followed the order co-evaporation (ln τ(β) = 0.8), quench cooling (ln τ(β) = 1.6) and ball milling (ln τ(β) = 1.8). CONCLUSION: The estimated relaxation times by the DSC...

  10. Electrochemical performance of NiO-doped LiFePO4/C cathode materials prepared from amorphous FePO4 · xH2O

    Science.gov (United States)

    Mahmud, Iqbal; Kim, Dong-Seob; Ur, Soon-Chul

    2016-05-01

    LiFePO4/C composites are prepared from amorphous FePO4 · xH2O and are modified with NiO (0.0, 0.01, 0.02, 0.03, and 0.04 mol) by using a solid-state reaction process with a spex milling system. The crystalline structure and the morphology of synthesized powders have been characterized by using X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD patterns indicate a complete solid solution for all the NiO-doped LiFePO4/C composites. The SEM images show that the sizes of the particles produced are distributed in the range of 200 - 300 nm. The electrochemical performances have been evaluated by using an impedance measurement and a galvanostatic charge/discharge test. The initial properties and impedance measurement reveal different improvements for different amounts of NiO doping in LiFePO4/C. A maximum capacity of 158.8 mAh/g at 0.1 C has been achieved LiFePO4/C doped with NiO at 0.01 mol. The present work reveals that the newly processed composite of LiFePO4/C doped with a small amount of NiO may be a promising material for using in a lithium-ion battery.

  11. Promoting effect of CeO2 on cyclohexanol conversion over CeO2-ZnO mixed oxide materials prepared by amorphous citrate process

    Indian Academy of Sciences (India)

    Braja Gopal Mishra; G Ranga Rao

    2002-04-01

    CeO2-ZnO materials were prepared by amorphous citrate process and characterized by TGA, XRD, UV-DRS and surface area measurements. TGA showed that the citrate precursors decompose in the range 350-550°C producing CeO2-containing catalytic materials. XRD and DRS results indicated the formation of well-dispersed interstitial Zn$_{x}$Ce$^{4+}_{1-2x}$Ce$^{3+}_{2x}$O2 solid solution on ZnO matrix. Addition of CeO2 to ZnO produced high surface area mixed oxide materials in citrate method. Cyclohexanol conversion reaction was carried out on these catalytic materials to investigate the effect of rare earth oxide on the activity and selectivity. It was found that CeO2 promotes the activity of ZnO without affecting the selectivity to cyclohexanone significantly. The factors such as reaction temperature and WHSV have turned out to be important for cyclohexanol conversion over CeO2-containing ZnO catalyst materials.

  12. Containerless processing of amorphous ceramics

    Science.gov (United States)

    Weber, J. K. Richard; Krishnan, Shankar; Schiffman, Robert A.; Nordine, Paul C.

    1990-01-01

    The absence of gravity allows containerless processing of materials which could not otherwise be processed. High melting point, hard materials such as borides, nitrides, and refractory metals are usually brittle in their crystalline form. The absence of dislocations in amorphous materials frequently endows them with flexibility and toughness. Systematic studies of the properties of many amorphous materials have not been carried out. The requirements for their production is that they can be processed in a controlled way without container interaction. Containerless processing in microgravity could permit the control necessary to produce amorphous forms of hard materials.

  13. Preparation of Y2Ti2O7 pyrochlore glass-ceramics as potential waste forms for actinides: The effects of processing conditions

    Science.gov (United States)

    Kong, Linggen; Zhang, Yingjie; Karatchevtseva, Inna

    2017-10-01

    Glass-Y2Ti2O7 pyrochlore was fabricated by sintering the mixture of glass precursor powder and (YTi)-composite which was prepared by a soft chemistry route. X-ray diffraction and Raman spectroscopy confirmed that the phase pure pyrochlore was crystallized in-situ in amorphous glass matrix at 1200 °C with dwelling time over 1 h. Pyrochlore was formed in glass matrix with cooling rate ∼0.1-40 °C/min, and independent of addition of alkali/alkaline earth fluorides. Glass matrix was able to accommodate/dissolve small amounts of impurities and the mean pyrochlore particle size was between 1 and 2 μm in glass observed by scanning electron microscopy.

  14. 48 CFR 1845.7101 - Instructions for preparing NASA Form 1018.

    Science.gov (United States)

    2010-10-01

    ... Standards (SFFAS) to be used for property records are SFFAS No. 3 “Accounting for Inventory and Related... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Instructions for preparing NASA Form 1018. 1845.7101 Section 1845.7101 Federal Acquisition Regulations System NATIONAL...

  15. Method for preparing hydrous titanium oxide spherules and other gel forms thereof

    Science.gov (United States)

    Collins, J.L.

    1998-10-13

    The present invention are methods for preparing hydrous titanium oxide spherules, hydrous titanium oxide gels such as gel slabs, films, capillary and electrophoresis gels, titanium monohydrogen phosphate spherules, hydrous titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite sorbent, titanium monohydrogen phosphate spherules having suspendible particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, titanium oxide spherules in the form of anatase, brookite or rutile, titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite, hydrous titanium oxide fiber materials, titanium oxide fiber materials, hydrous titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite, titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite and spherules of barium titanate. These variations of hydrous titanium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters and ceramics. 6 figs.

  16. Pharmaceutical approaches to preparing pelletized dosage forms using the extrusion-spheronization process.

    Science.gov (United States)

    Trivedi, Namrata R; Rajan, Maria Gerald; Johnson, James R; Shukla, Atul J

    2007-01-01

    Pelletized dosage forms date back to the 1950s, when the first product was introduced to the market. Since then, these dosage forms have gained considerable popularity because of their distinct advantages, such as ease of capsule filling because of better flow properties of the spherical pellets; enhancement of drug dissolution; ease of coating; sustained, controlled, or site-specific delivery of the drug from coated pellets; uniform packing; even distribution in the GI tract; and less GI irritation. Pelletized dosage forms can be prepared by a number of techniques, including drug layering on nonpareil sugar or microcrystalline cellulose beads, spray drying, spray congealing, rotogranulation, hot-melt extrusion, and spheronization of low melting materials or extrusion-spheronization of a wet mass. This review discusses recent developments in the pharmaceutical approaches that have been used to prepare pelletized dosage forms using the extrusion-spheronization process over the last decade. The review is divided into three parts: the first part discusses the extrusion-spheronization process, the second part discusses the effect of varying formulation and process parameters on the properties of the pellets, and the last part discusses the different approaches that have been used to prepare pelletized dosage forms using the extrusion-spheronization process.

  17. Apatite Formation from Amorphous Calcium Phosphate and Mixed Amorphous Calcium Phosphate/Amorphous Calcium Carbonate.

    Science.gov (United States)

    Ibsen, Casper J S; Chernyshov, Dmitry; Birkedal, Henrik

    2016-08-22

    Crystallization from amorphous phases is an emerging pathway for making advanced materials. Biology has made use of amorphous precursor phases for eons and used them to produce structures with remarkable properties. Herein, we show how the design of the amorphous phase greatly influences the nanocrystals formed therefrom. We investigate the transformation of mixed amorphous calcium phosphate/amorphous calcium carbonate phases into bone-like nanocrystalline apatite using in situ synchrotron X-ray diffraction and IR spectroscopy. The speciation of phosphate was controlled by pH to favor HPO4 (2-) . In a carbonate free system, the reaction produces anisotropic apatite crystallites with large aspect ratios. The first formed crystallites are highly calcium deficient and hydrogen phosphate rich, consistent with thin octacalcium phosphate (OCP)-like needles. During growth, the crystallites become increasingly stoichiometric, which indicates that the crystallites grow through addition of near-stoichiometric apatite to the OCP-like initial crystals through a process that involves either crystallite fusion/aggregation or Ostwald ripening. The mixed amorphous phases were found to be more stable against phase transformations, hence, the crystallization was inhibited. The resulting crystallites were smaller and less anisotropic. This is rationalized by the idea that a local phosphate-depletion zone formed around the growing crystal until it was surrounded by amorphous calcium carbonate, which stopped the crystallization.

  18. Aluminum Matrix Composites Strengthened with CuZrAgAl Amorphous Atomized Powder Particles

    Science.gov (United States)

    Dutkiewicz, Jan; Rogal, Łukasz; Wajda, Wojciech; Kukuła-Kurzyniec, Agata; Coddet, Christian; Dembinski, Lucas

    2015-06-01

    The Al-matrix composites were prepared by hot pressing in vacuum of an aluminum powder with 20 and 40 wt.% addition of the amorphous Cu43Zr43Ag7Al7 alloy (numbers indicate at.%) obtained using gas atomization method. The amorphous structure of the powder was confirmed using x-ray diffraction, DSC, and TEM. The average size of mostly spherical particles was 100 μm, so the powder was sieved to obtain maximum size of 60 μm. The composites were prepared using uniaxial cold pressing in vacuum and at a temperature of 400 °C. The composites of hardness from 43 to 53 HV were obtained for both additions of the amorphous phase. They reached compression strength of 150 MPa for 20% of amorphous phase and 250 MPa for the higher content. The modest hardening effect was caused by crack initiation at Al/amorphous interfaces. The amorphous phase was only partially crystallized in the hot-pressed composites, what did not cause hardness decrease. The application of nanocrystalline aluminum powders obtained by high-energy ball milling for the matrix of composites allowed obtaining nanocrystalline aluminum matrix composites of size near 150 nm, strengthened with the amorphous powders, whose compression strength was near 550 MPa for the composite containing 40% of the amorphous phase and slightly lower for the composite containing 20% of the phase. They showed much higher ductility of 23% in comparison with 7% for the composite containing 40% amorphous phase. The distribution of the strengthening phase in the nanocrystalline matrix was not homogeneous; the amorphous particles formed bands, where majority of cracks nucleated during compression test.

  19. Structural study of amorphous polyaniline

    Science.gov (United States)

    Laridjani, M.; Pouget, J. P.; MacDiarmid, A. G.; Epstein, A. J.

    1992-06-01

    Many materials, especially polymers, have a substantial volume fraction with no long range crystalline order. Through these regions are often termed amorphous, they frequently have a specific local order. We describe and use here a method, base on a non-energy dispersive X-ray diffraction technique, to obtain good quality interference functions and, by Fourier transform, radial distribution functions of the amorphous structure of polymers. We apply this approach to members of a family of electronic polymers of current interest : polyaniline emeraldine bases. We show that the local order exhibits significant differences in type I and type II materials, precipitated as salt and base respectively. These studies demonstrate the importance of sample preparation in evaluating the physical properties of polyaniline, and provide a structural origin for memory effects observed in the doping-dedoping processes. Beaucoup de matériaux, spécialement les polymères, ont une importante fraction de leur volume sans ordre cristallin à longue portée. Bien que ces régions soient souvent appelées amorphes, elles présentent fréquemment un ordre local caractéristique. Nous décrivons et utilisons dans ce papier une méthode, basée sur une technique de diffraction de rayons X non dispersive en énergie, pour obtenir des fonctions d'interférence de bonne qualité et, par transformée de Fourier, la fonction de distribution radiale des polymères amorphes. Nous appliquons cette technique à plusieurs éléments d'une même famille de polymères électroniques d'intérêt actuel : les polyanilines éméraldine bases. Nous montrons que l'ordre local présente d'appréciables différences dans les matériaux de type I et II, préparés respectivement sous forme de sel et de base. Cette étude démontre l'importance des conditions de préparation sur les propriétés physiques du polyaniline et donne une base structurale aux effets observés dans les processus de dopage-dédopage de

  20. PREPARATION AND ACTIVATION OF RAPIDLY SOLIDIFIED Ni-Zr-Al AMORPHOUS ALLOY FOR CATALYTIC PURPOSE%快速凝固Ni-Zr-Al非晶态催化合金的制备与活化处理

    Institute of Scientific and Technical Information of China (English)

    张国胜; 张海峰; 沈宁福

    1999-01-01

    @@ As new catalytic materials, amorphous alloys have attracted much attention since 1980s. Rapid solidification is one of the main techniques to prepare amorphous alloys.However, as-cast rapidly solidified alloys usually can not be directly used as the catalyst for their poor surface area, oxide film on their surface, etc. Therefore, activation pretreatment must be carried out. Recently, leaching aluminum has been attempted to activate rapidly solidified amorphous catalytic alloys containing aluminum. In order to carry out such an activation pretreatment, the Al-rich amorphous precursor alloys must be obtained first, in which the content of active component must be sufficiently high so that the catalytic activity of the activated catalyst can be attained. On the other hand, the chemical composition of the precursor must approach eutectic point or contribute to the range of low liquidus temperature so that the glass transition can be easily achieved according to the solidification theory[1]. So far Al-based alloys which meet the dual confinement have not been found yet. For Ni-Al and Cu-Al systems,only the microcrystalline alloys can be obtained through rapid solidification[2,3].In the present study, glass formation was achieved by introducing promotion elements in Ni-Al system precursor alloys.

  1. Compaction of amorphous iron–boron powder

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian

    1993-01-01

    Large scale practical use of bulk amorphous alloys requires the capability of molding the material to a desired design, for instance by compaction of an amorphous powder. This is a difficult task because the sintering temperature is limited by the crystallization temperature of the alloy.1 Here we...... report on attempts to compact amorphous iron–boron particles prepared by chemical reduction of Fe(II) ions in aqueous solution by NaBH4 (Ref. 2). The particles prepared in this way are pyrophoric, but can be passivated. The small particle size (10–100 nm), characteristic of this preparation technique...

  2. Crystallization kinetics of amorphous Nd3.6 Pr5.4 Fe83Co3B5 and preparation of α-Fe/Nd2Fe14B nanocomposite magnets by controlled melt-solidification technique

    Institute of Scientific and Technical Information of China (English)

    杨丽; 尚勇

    2003-01-01

    The crystallization kinetics of amorphous Nd3. 6 Pr5.4 Fe83 Co3 B5 and the preparation of α-Fe/Nd2 Fe14 B nanocomposite magnets by controlled melt-solidification of Nd3.6Pr5.4Fe83Co3B5 was investigated by employing DTA, XRD, and TEM. The results show that a metastable intermediate phase Nd8Fe27B24 prior to α-Fe and Nd2 Fe14 B phases is crystallized as the amorphous Nd3.6 Pr5.4 Fe83 Co3 B5 is heated to 1 223 K. The crystallization activation energy of α-Fe and Nd8 Fe27324 phases is larger at the beginning stage of crystallization, and then it decreases with crystallized fraction x for the former and has little change when x is below 70% for the latter, which essentially results in an α-Fe/Nd2 Fe14 B microstructure with a relatively coarse grain size about 20-60 nm and a non-uniform distribution of grain size in the annealed alloy. The a-Fe/Nd2 Fe14 B nanocomposite magnets with a small average grain size about 14 nm and a quite uniform grain size distribution were prepared by controlled melt-solidification of nealing the amorphous Nd3. 6 Pr5. 4 Fe83 Co3 B5 precursor alloy.

  3. M-Si-B合金非晶形成能力的CALPHAD模式评估%Evaluation of the amorphous-forming ability of M-Si-B ternary alloys using CALPHAD approach

    Institute of Scientific and Technical Information of China (English)

    长谷部光弘

    2005-01-01

    A thermodynamic study has been carried out on M-Si-B (M=Fe, Ni) ternary systems. A regular solution approximation based on the sublattice model was adopted to describe the Gibbs energy for the individual phases in the binary and ternary systems. Thermodynamic parameters for each phase were evaluated by using the experimental data. These parameters enabled us to obtain reproducible calculations of the isothermal and vertical section diagrams.The amorphous-forming ability of M-Si-B ternary alloys has been evaluated by introducing thermodynamic quantities obtained from the phase diagram calculations into Davies-Uhlmann kinetic formulations. For the computation, the timetemperature- transformation (TTT) diagram, which gives the time necessary for the formation of the detectable amount of crystal during transformation, was obtained at a finite temperature The critical cooling rate for amorphization could be defined as the minimum cooling speed that does not intersect the TTT curve and, hence, these critical cooling rates enable us to evaluate the glass-forming ability of M-Si-B ternary alloys. The driving force for the crystallization of the crystalline phase was derived, on the basis of the thermodynamic functions of each phase formulated by the present study. The calculated results showed good agreement with the experimental data on the compositional range of amorphization in these alloy systems.

  4. Amorphous Silk Fibroin Membranes for Separation of CO2

    Science.gov (United States)

    Aberg, Christopher M.; Patel, Anand K.; Gil, Eun Seok; Spontak, Richard J.; Hagg, May-Britt

    2009-01-01

    Amorphous silk fibroin has shown promise as a polymeric material derivable from natural sources for making membranes for use in removing CO2 from mixed-gas streams. For most applications of silk fibroin, for purposes other than gas separation, this material is used in its highly crystalline, nearly natural form because this form has uncommonly high tensile strength. However, the crystalline phase of silk fibroin is impermeable, making it necessary to convert the material to amorphous form to obtain the high permeability needed for gas separation. Accordingly, one aspect of the present development is a process for generating amorphous silk fibroin by treating native silk fibroin in an aqueous methanol/salt solution. The resulting material remains self-standing and can be prepared as thin film suitable for permeation testing. The permeability of this material by pure CO2 has been found to be highly improved, and its mixed-gas permeability has been found to exceed the mixed-gas permeabilities of several ultrahigh-CO2-permeable synthetic polymers. Only one of the synthetic polymers poly(trimethylsilylpropyne) [PTMSP] may be more highly permeable by CO2. PTMSP becomes unstable with time, whereas amorphous silk should not, although at the time of this reporting this has not been conclusively proven.

  5. Glass forming range of the Ti-Fe-Si amorphous alloys: An effective materials-design approach coupling CALPHAD and topological instability criterion

    Science.gov (United States)

    Zhao, Guo-Hua; Mao, Huahai; Louzguine-Luzgin, Dmitri V.

    2016-11-01

    A method of composition design for metallic glasses was proposed by using the Calculation of Phase Diagrams (CALPHAD) with the assistance of the topological instability criterion. This methodology was demonstrated in the quick and effective searching of glass-forming regions for Ti-Fe-Si and Ti-Zr-Fe-Si alloys containing no biologically toxic elements, e.g., Ni and Cu. In addition, the Ti-Fe-Si system may promote the glass formation owing to the existence of a deep eutectic at the Ti-rich corner. A self-consistent thermodynamic database was constructed based on the CALPHAD approach. The liquidus projection, isothermal sections, and the enthalpy of mixing were calculated by using the database. On the basis of these calculations coupling with the topological instability "lambda λ criterion," the potential glass-forming alloy compositions in a narrow region were suggested for experimental validation. Thereafter, the isothermal sections of the Ti-Zr-Fe-Si quaternary system were calculated at certain contents of Zr. The designed alloys were prepared by arc-melting and followed by melt-spinning to the ribbon shape. The experimental verifications matched reasonably well with the theoretical calculations. This work offers new insights for predicting glass-forming alloys based on thermodynamic arguments; it shall be of benefit for the exploration of new metallic glasses.

  6. Preparation and evaluation of microcapsules using polymerized rosin as a novel wall forming material.

    Science.gov (United States)

    Fulzele, S V; Satturwar, P M; Kasliwal, R H; Dorle, A K

    2004-02-01

    Sustained release diclofenac sodium microcapsules were prepared using polymerized rosin as a novel wall-forming material by a solvent evaporation technique. A novel method developed in our laboratory with the potential for scale-up and production of polymerized rosin microcapsules is detailed. These microcapsules might have application for development of implant/depot systems, primarily due to a sustained/controlled release capability and potential biocompatibility of polymerized rosin. The effect of variables like solvent systems, stirring speed and temperature were previously optimized. The solution system of drug and polymerized rosin dissolved in iso-propyl alcohol and acetone is sprayed with the help of a 0.5 mm nozzle spray gun in liquid paraffin maintained at 60 degrees C in the stirring condition. Varying drug:polymer ratios, namely 1:1, 1:2, 2:1, 1:3 and 3:1, were employed for microcapsule preparation. The prepared microcapsules were evaluated for size, shape, drug content and in vitro drug release. The morphology of microcapsules was characterized by scanning electron microscopy. The microcapsules show sustained release curves at pH 7.4 phosphate buffer for up to 10 h. The data obtained from the dissolution profiles were compared in the light of different kinetics models and the regression coefficients were compared. The in vitro dissolution study confirmed the Higuchi-order release pattern. Particle size and release data analysis from five consecutive batches prepared in the laboratory indicated suitable reproducibility of the proposed solvent evaporation process.

  7. Formation and crystallization of bulk Pd82Si18 amorphous alloys

    Institute of Scientific and Technical Information of China (English)

    蒲建; 王敬丰; 肖建中; 崔昆

    2003-01-01

    Bulk amorphous Pd82Si18 alloy with the largest diameter of 8 mm was prepared by water quenching the molten alloy with flux medium in a quartz tube. The calculation result indicates that the bulk Pd82Si18 amorphous alloys have a low critical cooling rate (Rc) of 4.589 K/s or less. The experimental results show that purifying melt may improve glass forming ability(GFA) of undercooled melt, while liquid phase separation (LPS) of undercooled melt will decrease its GFA. There are some differences in crystallization experiments between bulk metallic glass and amorphous ribbons of Pd82Si18 alloys. These include the numbers of exothermic peak, glass transition temperature Tg, crystallization temperature Tx, region of undercooling liquid (ΔT=Tx-Tg) respectively. The links of cooling rates of melt and crystallization of Pd82Si18 amorphous alloys are explored.

  8. Solid-state properties and dissolution behaviour of tablets containing co-amorphous indomethacin-arginine

    DEFF Research Database (Denmark)

    Lenz, Elisabeth; Jensen, Katrine Birgitte Tarp; Blaabjerg, Lasse Ingerslev;

    2015-01-01

    Co-amorphous drug formulations provide the possibility to stabilize a drug in its amorphous form by interactions with low molecular weight compounds, e.g. amino acids. Recent studies have shown the feasibility of spray drying as a technique to manufacture co-amorphous indomethacin......–arginine in a larger production scale. In this work, a tablet formulation was developed for a co-amorphous salt, namely spray dried indomethacin–arginine (SD IND–ARG). The effects of compaction pressure on tablet properties, physical stability and dissolution profiles under non-sink conditions were examined....... Dissolution profiles of tablets with SD IND–ARG (TAB SD IND–ARG) were compared to those of tablets containing a physical mixture of crystalline IND and ARG (TAB PM IND–ARG) and to the dissolution of pure spray dried powder. Concerning tableting, the developed formulation allowed for the preparation of tablets...

  9. New spectrofluorimetric method for the determination of nizatidine in bulk form and in pharmaceutical preparations

    Science.gov (United States)

    Karasakal, Ayça; Ulu, Sevgi Tatar

    2013-08-01

    A simple, accurate and highly sensitive spectrofluorimetric method has been developed for determination of nizatidine in pure form and in pharmaceutical dosage forms. The method is based on the reaction between nizatidine and 1-dimethylaminonaphthalene-5-sulphonyl chloride in carbonate buffer, pH 10.5, to yield a highly fluorescent derivative peaking at 513 nm after excitation at 367 nm. Various factors affecting the fluorescence intensity of nizatidin-dansyl derivative were studied and conditions were optimized. The method was validated as per ICH guidelines. The fluorescence concentration plot was rectilinear over the range of 25-300 ng/mL. Limit of detection and limit of quantification were calculated as 11.71 and 35.73 ng/mL, respectively. The proposed method was successfully applied to pharmaceutical preparations.

  10. Structural characteristics of copper/hydrogenated amorphous carbon composite films prepared by microwave plasma-assisted deposition processes from methane-argon and acetylene-argon gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Thiery, F.; Pauleau, Y.; Grob, J.J.; Babonneau, D

    2004-11-01

    Copper/hydrogenated amorphous carbon (Cu/a-C:H) composite films have been deposited on silicon substrates by a hybrid technique combining microwave plasma-assisted chemical vapor deposition and sputter-deposition from methane-argon and acetylene-argon gas mixtures. The major objective of this work was to investigate the effect of the carbon gas precursor on the structural characteristics of Cu/a-C:H composite films deposited at ambient temperature. The major characteristics of CH{sub 4}-argon and C{sub 2}H{sub 2}-argon plasmas were analyzed by Langmuir probe measurements. The composition of films was determined by Rutherford backscattering spectroscopy, energy recoil detection analyses and nuclear reaction analyses. The carbon content in the films was observed to vary in the range 20-77 at.% and 7.5-99 at.% as the CH{sub 4} and C{sub 2}H{sub 2} concentrations in the gas phase increased from 10 to 100%, respectively. The atom number ratio H/C in the films was scattered approximately 0.4 whatever the carbon gas precursor used. The crystallographic structure and the size of copper crystallites incorporated in the a-C were determined by X-ray diffraction techniques. The copper crystallite size decreased from 20 nm in pure copper films to less than 5 nm in Cu/a-C:H films containing more than 40 at.% of carbon. Grazing incidence small angle X-ray scattering measurements were performed to investigate the size distribution and distance of copper crystallites as functions of the deposition parameters. The structural characteristics of copper crystallites were dependent on the hydrocarbon gas precursor used. The crystallite size and the width of the size distribution were homogeneous in films deposited from CH{sub 4}. Copper crystallites with an anisotropic shape were found in films deposited from C{sub 2}H{sub 2}. The major radicals formed in the plasma and condensed on the surface of growing films, namely CH and C{sub 2}H radicals for films produced from CH{sub 4} and C

  11. Methods, forms and facilities of professional preparation of teachers-tutors in the conditions of the controlled from distance form of teaching

    Directory of Open Access Journals (Sweden)

    Osadchiy V.V.

    2010-06-01

    Full Text Available The problems of professional preparation of teachers-tutors are studied. The features of application of methods are considered, forms and facilities of professional preparation of teachers-tutors in the conditions of the controlled from distance form of teaching. As expedient methods are selected: method of lecture, video trainings, interactive methods (role-playing, case studies, brainstorming, methods of reflection, control methods, exercises, laboratory method. By the forms of organization are electronic seminars, web-seminars, videos-seminars. By teaching facilities are electronic educational resources and services of network the Internet.

  12. PREPARATION AND APPLICATION OF PHOTOSENSITIVE COPOLYMERS FOR PDP BARRIER RIBS FORMED BY PHOTOLITHOGRAPHY

    Institute of Scientific and Technical Information of China (English)

    Tao Zhang; Qian-wen Dong; Wei Zhang; Jie Wei

    2013-01-01

    In this work,the photosensitive paste was prepared.It was comprised of inorganic particles and a photosensitive organic component.The inorganic particles included glass,ceramics,and metals.The organic component should contain at least the following photosensitive materials:photosensitive monomers,photoreactive copolymer and photopolymerization initiators.The photoreactive copolymer played a role of an adhesive in the photosensitive paste.Meanwhile in the development stage,the carboxyl groups of the copolymer reacted with the alkalescent developer.Following this,the unexposed part must be removed and an excellent pattern can be formed.A series of three-component acrylic copolymers (MAA/St/MMA) were designed,and then synthesized via free radical polymerization.Subsequently glycidyl methacrylate (GMA) was employed to modify the prepared copolymers through ring-opening reactions between the carboxyl groups and the epoxide groups.Eventually the photosensitive copolymers were obtained and used to form the barrier ribs of PDPs.The chemical structure,glass transition temperature,acid value and molecular weight of photosensitive copolymers had different effects on the structure and pattern of PDP barrier ribs.Through analyzing effects of different polymer performance parameters on the patterns of barrier ribs,the optimal photosensitive copolymer was acquired.

  13. Near net shape forming processes for chemically prepared zinc oxide varistors.

    Energy Technology Data Exchange (ETDEWEB)

    Lockwood, Steven John; Voigt, James A.; Tuttle, Bruce Andrew; Bell, Nelson Simmons

    2005-01-01

    Chemically prepared zinc oxide powders are fabricated for the production of high aspect ratio varistor components. Colloidal processing in water was performed to reduce agglomerates to primary particles, form a high solids loading slurry, and prevent dopant migration. The milled and dispersed powder exhibited a viscoelastic to elastic behavioral transition at a volume loading of 43-46%. The origin of this transition was studied using acoustic spectroscopy, zeta potential measurements and oscillatory rheology. The phenomenon occurs due to a volume fraction solids dependent reduction in the zeta potential of the solid phase. It is postulated to result from divalent ion binding within the polyelectrolyte dispersant chain, and was mitigated using a polyethylene glycol plasticizing additive. Chemically prepared zinc oxide powders were processed for the production of high aspect ratio varistor components. Near net shape casting methods including slip casting and agarose gelcasting were evaluated for effectiveness in achieving a uniform green microstructure achieving density values near the theoretical maximum during sintering. The structure of the green parts was examined by mercury porisimetry. Agarose gelcasting produced green parts with low solids loading values and did not achieve high fired density. Isopressing the agarose cast parts after drying raised the fired density to greater than 95%, but the parts exhibited catastrophic shorting during electrical testing. Slip casting produced high green density parts, which exhibited high fired density values. The electrical characteristics of slip cast parts are comparable with dry pressed powder compacts. Alternative methods for near net shape forming of ceramic dispersions were investigated for use with the chemically prepared ZnO material. Recommendations for further investigation to achieve a viable production process are presented.

  14. Guide to preparation of Department of Energy procurement and financial assistance planning forms

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    A procurement and federal assistance planning system is vital to effective and efficient management of the Department of Energy's mission. The planning system is essential to the procurement and Federal assistance process. It gives Departmental managers and the procurement community information on how DOE plans to do business in the next fiscal year as well as the extent of competition in the Departmental procurement process. Planning information is used to forecast procurement workload and plans for increased competition. Good planning can be a tool to efficiently manage resources in order to expedite the timely acquisition of equipment and contractual services and continue the Department's mission. Planning is the first step in the procurement and financial assistance process and the Integrated Procurement Management Information System (IPMIS). Therefore, it is essential that planning forms are accurately completed and updated to provide the initial source data for planned procurement and assistance transactions. The complete Guide to Preparation of Department of Energy Procurement and Financial Assistance Planning Forms was revised to incorporate the latest changes in IPMIS. This Guide and a memorandum which officially requests DOE offices to submit planning forms for all planned procurement and assistance transactions provide instructions for completing the forms and other information relative to fulfilling this requirement. The planning forms are DOE F-4200.6, DOE-F-4200.7 and DOE-F-4200.8. These forms and this Guide can be obtained from any Headquarters supply store, regional offices, operations offices, energy research centers, project offices and power administrations.

  15. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs.

    Science.gov (United States)

    Baghel, Shrawan; Cathcart, Helen; O'Reilly, Niall J

    2016-09-01

    Poor water solubility of many drugs has emerged as one of the major challenges in the pharmaceutical world. Polymer-based amorphous solid dispersions have been considered as the major advancement in overcoming limited aqueous solubility and oral absorption issues. The principle drawback of this approach is that they can lack necessary stability and revert to the crystalline form on storage. Significant upfront development is, therefore, required to generate stable amorphous formulations. A thorough understanding of the processes occurring at a molecular level is imperative for the rational design of amorphous solid dispersion products. This review attempts to address the critical molecular and thermodynamic aspects governing the physicochemical properties of such systems. A brief introduction to Biopharmaceutical Classification System, solid dispersions, glass transition, and solubility advantage of amorphous drugs is provided. The objective of this review is to weigh the current understanding of solid dispersion chemistry and to critically review the theoretical, technical, and molecular aspects of solid dispersions (amorphization and crystallization) and potential advantage of polymers (stabilization and solubilization) as inert, hydrophilic, pharmaceutical carrier matrices. In addition, different preformulation tools for the rational selection of polymers, state-of-the-art techniques for preparation and characterization of polymeric amorphous solid dispersions, and drug supersaturation in gastric media are also discussed.

  16. 非晶态给药体系的形成机制与制备工艺的研究进展%The progress of research on the formation mechanism and preparation process of amorphous drug delivery system

    Institute of Scientific and Technical Information of China (English)

    王杏林; 王频; 尹东东

    2013-01-01

    At high-energy state,amorphous drug delivery system can improve the solubility and bioavail-ability of poorly water-soluble drugs effectively.The balance between thermodynamics and kinetics is the natural reason for amorphous drug delivery system to maintain stable,and also determines the difficulty of preparing process.The new preparing technologies such as supercritical CO2-mediated method,lyophilization monophase solution technique,electro-spinning,microwaves irradiation,acoustic levitation and the application of new materials as porous media and new coagulants play important roles in improving dynamic and thermodynamic stability of amorphous drug delivery system.This article gives an overview on the formation mechanism,research on stability,and progress in preparing technology of the amorphous drug delivery system.%非晶态作为一种高能态的给药形式,能够有效地改善水难溶性药物的水溶性和生物利用度.热力学和动力学的平衡是非晶态给药体系保持稳定的本质,也是非晶态制备过程中决定制备工艺难易的主导因素.超临界CO2介导、单相低压冷冻干燥、静电纺丝、微波辐射、超声悬浮等新型技术以及多孔介质和新型混凝剂等新型材料的应用,在改善非晶态给药体系的动力学和热力学稳定性方面发挥了较为优势的作用.在本文中,对非晶态给药体系的形成机制与稳定性的相关研究以及制备工艺的新进展进行综述.

  17. Preparation and characterization of a ferrimagnetic amorphous alloy of GdCo entering the design of magnetic tunnel junctions: ionizing radiations hardness of magnetic tunnel junctions; preparation et caracterisation d'un alliage amorphe ferrimagnetique de GdCo entrant dans la conception de jonctions tunnel magnetiques. Resistance des jonctions tunnel magnetiques aux rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Conraux, Y

    2005-10-15

    The magnetic random access memories (MRAM) are on the way to supplant the other forms of random access memories using the states of electric charge, and this thanks to their many technical advantages: not-volatility, speed, low consumption power, robustness. Also, the MRAM are alleged insensitive with the ionizing radiations, which was not checked in experiments until now. The current architecture of the MRAM is based on the use of magnetic tunnel junctions (MTJ). These MRAM can present an important disadvantage, because they are likely of present errors of addressing, in particular when integration (density of memory cells) is increasingly thorough. The work undertaken during this thesis relates to these two points: - to check the functional reliability of the MRAM containing JTM exposed to high energy ionizing radiations; - to study a ferrimagnetic amorphous alloy, GdCo, likely to enter the composition of JTM and allowing to free from the possible errors of addressing by a process of thermal inhibition of the memory cells. This work of thesis showed that the MRAM containing JTM preserve their functional properties fully when they are subjected to intense ionizing radiations, and that GdCo is a very interesting material from the point of view of the solid state physics and magnetism, that its physical properties are very promising as for its applications, and that its integration in a JTM still claims technological developments. (author)

  18. Amorphous soft magnetic composite-cores with various orientations of the powder-flakes

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y.Y.; Wang, Y.G., E-mail: yingang.wang@nuaa.edu.cn; Xia, G.T.

    2015-12-15

    Fe{sub 78}Si{sub 9}B{sub 13} amorphous powder cores were prepared by cold pressing the amorphous powders crushed from amorphous ribbons and orientated with an external magnetic field. Three orientations of magnetic powder cores were obtained: (i) the disorderedly orientated amorphous magnetic powder core (DOAMP), (ii) the circularly orientated amorphous magnetic powder core (COAMP), and (iii) the radially orientated amorphous magnetic powder core (ROAMP). The effect of the shape anisotropy of the flake powders on the magnetic properties of the powder cores was investigated. The powders parallel to external magnetic field is beneficial for achieving the excellent performance of the cores. Below 100 kHz the product of the effective permeability and the quality factor of COAMP core increases by 9.1% and 21.2% compared to that of the DOAMP and the ROAMP cores, respectively, while the coercive field and the magnetic induction intensity keep almost the same. Pressing magnetic powders under a magnetic field to form preferred orientation is suitable for optimal design of soft magnetic cores toward practical applications. - Highlights: • The powders can be orientated to form ordered structure along the magnetic lines. • Circular orientation of the powders improves soft magnetic properties of cores. • Reduction of the demagnetizing field within the powders can increase the µ{sub e}. • Structural ordering can be used for optimal design of magnetic composite materials.

  19. Amorphous silicon carbon films prepared by hybrid plasma enhanced chemical vapor/sputtering deposition system: Effects of r.f. power

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Nur Maisarah Abdul, E-mail: nurmaisarahrashid@gmail.com [Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ritikos, Richard; Othman, Maisara; Khanis, Noor Hamizah; Gani, Siti Meriam Ab. [Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Muhamad, Muhamad Rasat [Chancellery Office, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Rahman, Saadah Abdul, E-mail: saadah@um.edu.my [Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chancellery Office, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia)

    2013-02-01

    Silicon carbon films were deposited using a hybrid radio frequency (r.f.) plasma enhanced chemical vapor deposition (PECVD)/sputtering deposition system at different r.f. powers. This deposition system combines the advantages of r.f. PECVD and sputtering techniques for the deposition of silicon carbon films with the added advantage of eliminating the use of highly toxic silane gas in the deposition process. Silicon (Si) atoms were sputtered from a pure amorphous silicon (a-Si) target by argon (Ar) ions and carbon (C) atoms were incorporated into the film from C based growth radicals generated through the discharge of methane (CH{sub 4}) gas. The effects of r.f. powers of 60, 80, 100, 120 and 150 W applied during the deposition process on the structural and optical properties of the films were investigated. Raman spectroscopic studies showed that the silicon carbon films contain amorphous silicon carbide (SiC) and amorphous carbon (a-C) phases. The r.f. power showed significant influence on the C incorporation in the film structure. The a-C phases became more ordered in films with high C incorporation in the film structure. These films also produced high photoluminescence emission intensity at around 600 nm wavelength as a result of quantum confinement effects from the presence of sp{sup 2} C clusters embedded in the a-SiC and a-C phases in the films. - Highlights: ► Effects of radio frequency (r.f.) power on silicon carbon (SiC) films were studied. ► Hybrid plasma enhanced chemical vapor deposition/sputtering technique was used. ► r.f. power influences C incorporation in the film structure. ► High C incorporation results in higher ordering of the amorphous C phase. ► These films produced high photoluminescence emission intensity.

  20. Synthesis and photocatlytic performance of nano-sized TiO{sub 2} materials prepared by dealloying Ti–Cu–Pd amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jing [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Zhu, Shengli, E-mail: slzhu@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Xu, Wence; Cui, Zhenduo [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Yang, Xianjin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2015-05-15

    Highlights: • TiO{sub 2} nanospindles were synthesized by dealloying Ti–Cu–Pd amorphous alloy. • Pd significantly enhanced the exposure of high-energy (0 0 1) facet of TiO{sub 2}. • TiO{sub 2} with high-energy (0 0 1) facet showed good photocatalytic activity. - Abstract: TiO{sub 2} nanospindles with exposed (0 0 1) facet were synthesized through a simple dealloying reaction. The rutile photocatalysts were characterized by X-ray diffraction, scanning electron microscope and transmission electron microscope, inductively coupled plasma optical emission spectrometry and ultraviolet–visible spectrophotometer. A Rhodamine B dye (RhB) was used to detect the photocatalytic activity of TiO{sub 2} under full light irradiation. The presence of Pd in the original amorphous alloy reduced the surface free energy of TiO{sub 2}, stabilized the (0 0 1) facet. The Pd8-TiO{sub 2} sample exhibited the largest crystal size along the direction which is perpendicular to the (0 0 1) facet. The photocatalytic degradation rate of RhB was improved due to the Pd addition in the original amorphous alloy. This indicated that the exposure of (0 0 1) facets could enhance the activity of TiO{sub 2} photocatalyst. In addition, the presence of isolated Pd atoms on the surface of TiO{sub 2} would be another probable reason for the improvement of photocatalytic activity.

  1. Optical and Structural Properties of Microcrystalline GaN on an Amorphous Substrate Prepared by a Combination of Molecular Beam Epitaxy and Metal-Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jung-Wook; Hwang, Hyeong-Yong; Kang, Eun-Kyu; Park, Kwangwook; Kim, Ci-Hyun; Lee, Dong-Seon; Jho, Young-Dahl; Bae, Si-Young; Lee, Yong-Tak

    2016-05-01

    Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the other hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances.

  2. Structure and properties of forming adsorbents prepared from different particle sizes of coal fly ash

    Institute of Scientific and Technical Information of China (English)

    Zhuannian Liu; Yuan Liu

    2015-01-01

    In this paper, different particle sizes of coal fly ash FA-R (D50=15.75μm), FA-A (D50=3.61μm) and FA-B (D50=1.73μm) were treated with NaOH solution to prepare the forming adsorbents FFA-R, FFA-A and FFA-B. The structure and adsorption properties of the forming adsorbents for methylene blue (MB) from aqueous solu-tion were examined. The results showed that the specific surface areas and adsorption capacities of the forming adsorbent for MB increased with decreasing particle size of raw coal fly ashes. The adsorption kinetic data of MB on FFA-R, FFA-A and FFA-B fitted the second-order kinetic model very wel with the rate constants (k2) of 3.15 × 10−2, 3.84 × 10−2 and 6.27 × 10−2 g·mg−1·min−1, respectively. The adsorption process was not only con-trol ed by intra-particle diffusion. The isotherms of MB on FFA-R, FFA-A and FFA-B can be described by the Lang-muir isotherm and the Freundlich isotherm, and the adsorption processes were spontaneous and exothermic. © 2014 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. Al rights reserved.

  3. Preparation and characterization of solid oral dosage forms containing soy isoflavones

    Directory of Open Access Journals (Sweden)

    Stela R. de Oliveira

    2013-02-01

    Full Text Available Soy isoflavones have been extensively used for menopausal symptoms and prevention of hormone-related cancer, osteoporosis and cardiovascular diseases. Commercially available forms of isoflavones include supplements, capsules and tablets. However, the non-standardization of soy isoflavones extracts and different dissolution profiles of these solid dosage forms highlight the need of additional studies on the development of well characterized pharmaceutical dosage forms of isoflavones. In this work, immediate release oral tablets of soy isoflavones were obtained and evaluated. Genistein and daidzein, were the main constituents of the dried soy extract. Preparation of the tables was accomplished in a rotary tableting machine following either a dry mixture for direct compression or wet granulation with different excipients. Powder, granules and tablets were evaluated for several parameters, including flow properties, Carr and Hausner indexes, hardness, friability, disintegration time and drug release profile. Also, a fast and validated HPLC analytical method for both genistein and daidzein was developed. Formulations containing sodium croscarmellose and sodium dodecyl sulfate resulted in better flowability as indicated by the flow rate and angle of repose, faster disintegration time and immediate release dissolution profile.

  4. Calcium binding to beta-2-microglobulin at physiological pH drives the occurrence of conformational changes which cause the protein to precipitate into amorphous forms that subsequently transform into amyloid aggregates.

    Directory of Open Access Journals (Sweden)

    Sukhdeep Kumar

    Full Text Available Using spectroscopic, calorimetric and microscopic methods, we demonstrate that calcium binds to beta-2-microglobulin (β2m under physiological conditions of pH and ionic strength, in biological buffers, causing a conformational change associated with the binding of up to four calcium atoms per β2m molecule, with a marked transformation of some random coil structure into beta sheet structure, and culminating in the aggregation of the protein at physiological (serum concentrations of calcium and β2m. We draw attention to the fact that the sequence of β2m contains several potential calcium-binding motifs of the DXD and DXDXD (or DXEXD varieties. We establish (a that the microscopic aggregation seen at physiological concentrations of β2m and calcium turns into actual turbidity and visible precipitation at higher concentrations of protein and β2m, (b that this initial aggregation/precipitation leads to the formation of amorphous aggregates, (c that the formation of the amorphous aggregates can be partially reversed through the addition of the divalent ion chelating agent, EDTA, and (d that upon incubation for a few weeks, the amorphous aggregates appear to support the formation of amyloid aggregates that bind to the dye, thioflavin T (ThT, resulting in increase in the dye's fluorescence. We speculate that β2m exists in the form of microscopic aggregates in vivo and that these don't progress to form larger amyloid aggregates because protein concentrations remain low under normal conditions of kidney function and β2m degradation. However, when kidney function is compromised and especially when dialysis is performed, β2m concentrations probably transiently rise to yield large aggregates that deposit in bone joints and transform into amyloids during dialysis related amyloidosis.

  5. A slow cooling rate of indomethacin melt spatially confined in microcontainers increases the physical stability of the amorphous drug without influencing its biorelevant dissolution behaviour

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Keller, Stephan Sylvest; Boisen, Anja;

    2013-01-01

    Amorphous indomethacin was prepared by melting the γ-form of indomethacin, spatially confined within microcontainers (inner diameter of 223 μm), followed by cooling of the melt at a rate of 14, 23 or 36 K/min. The physical stability of the amorphous indomethacin within microcontainers was investi......Amorphous indomethacin was prepared by melting the γ-form of indomethacin, spatially confined within microcontainers (inner diameter of 223 μm), followed by cooling of the melt at a rate of 14, 23 or 36 K/min. The physical stability of the amorphous indomethacin within microcontainers....../min, whereas cracks and an uneven surface were observed when cooling at rates of 23 and 36 K/min. The uneven surface is hypothesised to be the main reason for the lower physical stability, as the cracks could act as nucleation sites for crystal growth. The rate of cooling was not seen to have any effect...

  6. PAT: From Western solid dosage forms to Chinese materia medica preparations using NIR-CI.

    Science.gov (United States)

    Zhou, Luwei; Xu, Manfei; Wu, Zhisheng; Shi, Xinyuan; Qiao, Yanjiang

    2016-01-01

    Near-infrared chemical imaging (NIR-CI) is an emerging technology that combines traditional near-infrared spectroscopy with chemical imaging. Therefore, NIR-CI can extract spectral information from pharmaceutical products and simultaneously visualize the spatial distribution of chemical components. The rapid and non-destructive features of NIR-CI make it an attractive process analytical technology (PAT) for identifying and monitoring critical control parameters during the pharmaceutical manufacturing process. This review mainly focuses on the pharmaceutical applications of NIR-CI in each unit operation during the manufacturing processes, from the Western solid dosage forms to the Chinese materia medica preparations. Finally, future applications of chemical imaging in the pharmaceutical industry are discussed.

  7. Preparation and Characterization of a Gastric Floating Dosage Form of Capecitabine

    Directory of Open Access Journals (Sweden)

    Ehsan Taghizadeh Davoudi

    2013-01-01

    Full Text Available Gastrointestinal disturbances, such as nausea and vomiting, are considered amongst the main adverse effects associated with oral anticancer drugs due to their fast release in the gastrointestinal tract (GIT. Sustained release formulations with proper release profiles can overcome some side effects of conventional formulations. The current study was designed to prepare sustained release tablets of Capecitabine, which is approved by the Food and Drug Administration (FDA for the treatment of advanced breast cancer, using hydroxypropyl methylcellulose (HPMC, carbomer934P, sodium alginate, and sodium bicarbonate. Tablets were prepared using the wet granulation method and characterized such that floating lag time, total floating time, hardness, friability, drug content, weight uniformity, and in vitro drug release were investigated. The sustained release tablets showed good hardness and passed the friability test. The tablets’ floating lag time was determined to be 30–200 seconds, and it floated more than 24 hours and released the drug for 24 hours. Then, the stability test was done and compared with the initial samples. In conclusion, by adjusting the right ratios of the excipients including release-retarding gel-forming polymers like HPMC K4M, Na alginate, carbomer934P, and sodium bicarbonate, sustained release Capecitabine floating tablet was formulated.

  8. Preparation and Characterization of a Gastric Floating Dosage Form of Capecitabine

    Science.gov (United States)

    Taghizadeh Davoudi, Ehsan; Ibrahim Noordin, Mohamed; Kadivar, Ali; Kamalidehghan, Behnam; Farjam, Abdoreza Soleimani; Akbari Javar, Hamid

    2013-01-01

    Gastrointestinal disturbances, such as nausea and vomiting, are considered amongst the main adverse effects associated with oral anticancer drugs due to their fast release in the gastrointestinal tract (GIT). Sustained release formulations with proper release profiles can overcome some side effects of conventional formulations. The current study was designed to prepare sustained release tablets of Capecitabine, which is approved by the Food and Drug Administration (FDA) for the treatment of advanced breast cancer, using hydroxypropyl methylcellulose (HPMC), carbomer934P, sodium alginate, and sodium bicarbonate. Tablets were prepared using the wet granulation method and characterized such that floating lag time, total floating time, hardness, friability, drug content, weight uniformity, and in vitro drug release were investigated. The sustained release tablets showed good hardness and passed the friability test. The tablets' floating lag time was determined to be 30–200 seconds, and it floated more than 24 hours and released the drug for 24 hours. Then, the stability test was done and compared with the initial samples. In conclusion, by adjusting the right ratios of the excipients including release-retarding gel-forming polymers like HPMC K4M, Na alginate, carbomer934P, and sodium bicarbonate, sustained release Capecitabine floating tablet was formulated. PMID:24288681

  9. Research and development of photovoltaic power system. Study on growth mechanism of a-Si:H and preparation of the stable, high quality films; Taiyoko hatsuden system no kenkyu kaihatsu. Amorphous silicon no seimaku kiko to kohinshitsuka

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, M. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1994-12-01

    This paper reports the result obtained during fiscal 1994 on research on a film forming mechanism for amorphous silicon for solar cells and its quality improvement. In in-situ observation on plasma CVD surface reaction by using the total reflection infrared absorbing spectroscopy, an observation on a real time basis was performed on the reaction process of an a-Si:H surface in contact with gas mixture plasma composed of SiH4 + CH4. In microscopic observation on initial processes of amorphous silicon growth, surface morphological change before and after a-Si:H deposition at 200{degree}C was observed by using an inter-atomic force microscope. The observation verified that a-Si:H has grown to an atomic layer. In research on defect density in a-Si:H fabricated under high-speed film forming conditions, analysis was made on correlation between the film forming speed at 250{degree}C and defect density in the film. Other research works include those on a high-quality a-SiGe:H film fabricated by using the nanometer film forming/hydrogen plasma annealing method, modulated doping into multi-layer films of a-Si:H/a-Ge:H, and thin film transistor using very thin multi layer films of a-Si:H/a-Ge:H. 5 refs., 12 figs.

  10. Miscibility/stability considerations in binary solid dispersion systems composed of functional excipients towards the design of multi-component amorphous systems.

    Science.gov (United States)

    Yoo, Seung-uk; Krill, Steven L; Wang, Zeren; Telang, Chitra

    2009-12-01

    The correlations between amorphous miscibility/physical stability of binary solid dispersions (a highly crystalline additive-an amorphous polymer) and the physicochemical properties of the components were investigated. Crystalline functional excipients including surfactants, organic acids, and organic bases were prepared in binary solid dispersions in amorphous polymers by solvent evaporation method. Amorphous miscibility and physical stability of the systems were characterized using polarized light microscope, differential scanning calorimeter, and powder X-ray diffraction. Physicochemical parameters (solubility parameter (delta), hydrogen bond energy, Log P, pK(a) value as an indicator of acid-base ionic interaction, and T(g) of the dispersion as a surrogate of system's mobility) were selected as thermodynamic and kinetic factors to examine their influences on the systems' amorphous miscibility and physical stability. All systems possessing acid-base ionic interaction formed amorphous state. In the absence of the ionic interaction, solubility parameter and partition coefficient were shown to have major roles on amorphous formation. Upon storage condition at 25 degrees C/60% RH for 50 days, systems having ionic interaction and high T(g) remained in the amorphous state. This binary system study provides an insight and a basis for formation of the amorphous state of multi-component solid dispersions utilizing their physicochemical properties.

  11. Atomistic Models of Amorphous Semiconductors

    NARCIS (Netherlands)

    Jarolimek, K.

    2011-01-01

    Crystalline silicon is probably the best studied material, widely used by the semiconductor industry. The subject of this thesis is an intriguing form of this element namely amorphous silicon. It can contain a varying amount of hydrogen and is denoted as a-Si:H. It completely lacks the neat long

  12. Improved physical stability of amorphous state through acid base interactions.

    Science.gov (United States)

    Telang, Chitra; Mujumdar, Siddharthya; Mathew, Michael

    2009-06-01

    To investigate role of specific interactions in aiding formation and stabilization of amorphous state in ternary and binary dispersions of a weakly acidic drug. Indomethacin (IMC), meglumine (MU), and polyvinyl pyrollidone (PVP) were the model drug, base, and polymer, respectively. Dispersions were prepared using solvent evaporation. Physical mixtures were cryogenically coground. XRPD, PLM, DSC, TGA, and FTIR were used for characterization. MU has a high crystallization tendency and is characterized by a low T(g) (17 degrees C). IMC crystallization was inhibited in ternary dispersion with MU compared to IMC/PVP alone. An amorphous state formed readily even in coground mixtures. Spectroscopic data are indicative of an IMC-MU amorphous salt and supports solid-state proton transfer. IMC-MU salt displays a low T(g) approximately 50 degrees C, but is more physically stable than IMC, which in molecular mixtures with MU, resisted crystallization even when present in stoichiometric excess of base. This is likely due to a disrupted local structure of amorphous IMC due to specific interactions. IMC showed improved physical stability on incorporating MU in polymer, in spite of low T(g) of the base indicating that chemical interactions play a dominant role in physical stabilization. Salt formation could be induced thermally and mechanically.

  13. Facile preparation of electroactive amorphous α-ZrP/PANI hybrid film for potential-triggered adsorption of Pb{sup 2+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Quan [Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Du, Xiao [Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); North Japan Research Institute for Sustainable Energy (NJRISE), Hirosaki University, 2-1-3, Matsubara, Aomori 030-0813 (Japan); Ma, Xuli [Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Hao, Xiaogang, E-mail: tyutxghao@hotmail.com [Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Guan, Guoqing [North Japan Research Institute for Sustainable Energy (NJRISE), Hirosaki University, 2-1-3, Matsubara, Aomori 030-0813 (Japan); Wang, Zhongde; Xue, Chunfeng; Zhang, Zhonglin; Zuo, Zhijun [Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-05-30

    Highlights: • Amorphous α-ZrP/PANI film was first synthesized in aqueous solution by CV method. • The obtained hybrid film had excellent cation exchange property. • Rapid ion exchange process was controlled by the potential-triggered mechanism. • α-ZrP could provide acid micro-environment for PANI’s electroactivity. • Exfoliated α-ZrP enhanced the adsorption capability towards Pb{sup 2+} ions. - Abstract: An electroactive hybrid film composed of amorphous α-zirconium phosphate and polyaniline (α-ZrP/PANI) is controllably synthesized on carbon nanotubes (CNTs) modified Au electrodes in aqueous solution by cyclic voltammetry method. Electrochemical quartz crystal microbalance (EQCM), scanning electron microscopy (SEM) and X-ray power diffraction (XRD) analysis are applied for the evaluation of the synthesis process. It is found that the exfoliated amorphous α-ZrP nanosheets are well dispersed in PANI and the hydrolysis of α-ZrP is successfully suppressed by controlling the exfoliation temperature and adding appropriate supporting electrolyte. The insertion/release of heavy metals into/from the film is reversibly controlled by a potential-triggered mechanism. Herein, α-ZrP, a weak solid acid, can provide an acidic micro-environment for PANI to promote the electroactivity in neutral aqueous solutions. Especially, the hybrid film shows excellent potential-triggered adsorption of Pb{sup 2+} ion due to the selective complexation of Pb{sup 2+} ion with oxygen derived from P−O−H of α-ZrP. Also, it shows long-term cycle stability and rapid potential-responsive adsorption/desorption rate. This kind of novel hybrid film is expected to be a promising potential-triggered ESIX material for separation and recovery of heavy metal ions from wastewater.

  14. Delafossite-CuAlO{sub 2} films prepared by annealing of amorphous Cu-Al-O films at high temperature under controlled atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong-Ying, E-mail: hychen@cc.kuas.edu.tw; Tsai, Ming-Wei

    2011-07-01

    In this study, amorphous Cu-Al-O films were deposited onto a (100) p-type silicon substrate by a magnetron sputtering system. The films were then annealed at 700 deg. C and 800 deg. C for 2 h in N{sub 2}, air and O{sub 2}. X-ray diffraction patterns showed that the as-deposited films were amorphous. When the films were annealed at 700 deg. C, the monoclinic-CuO and spinel-CuAl{sub 2}O{sub 4} phases were detected in all atmospheres. As the annealing temperature increased to 800 deg. C, delafossite-CuAlO{sub 2} (R3-bar m and P6{sub 3}/mmc phases) appeared in N{sub 2} whereas monoclinic-CuO and spinel-CuAl{sub 2}O{sub 4} phases were detected in air and O{sub 2}. Thermodynamic calculations can explain the formation of delafossite-CuAlO{sub 2} films. The optical bandgap and conductivity of delafossite-CuAlO{sub 2} films were 3.30 eV and 6.8 x 10{sup -3} S/cm, respectively, which are compatible with other data in the literature. The p-type characteristic in delafossite-CuAlO{sub 2} films was verified by a hot-probe method.

  15. Multivariate Quantification of the Solid State Phase Composition of Co-Amorphous Naproxen-Indomethacin

    Directory of Open Access Journals (Sweden)

    Andreas Beyer

    2015-10-01

    Full Text Available To benefit from the optimized dissolution properties of active pharmaceutical ingredients in their amorphous forms, co-amorphisation as a viable tool to stabilize these amorphous phases is of both academic and industrial interest. Reports dealing with the physical stability and recrystallization behavior of co-amorphous systems are however limited to qualitative evaluations based on the corresponding X-ray powder diffractograms. Therefore, the objective of the study was to develop a quantification model based on X-ray powder diffractometry (XRPD, followed by a multivariate partial least squares regression approach that enables the simultaneous determination of up to four solid state fractions: crystalline naproxen, γ-indomethacin, α-indomethacin as well as co-amorphous naproxen-indomethacin. For this purpose, a calibration set that covers the whole range of possible combinations of the four components was prepared and analyzed by XRPD. In order to test the model performances, leave-one-out cross validation was performed and revealed root mean square errors of validation between 3.11% and 3.45% for the crystalline molar fractions and 5.57% for the co-amorphous molar fraction. In summary, even four solid state phases, involving one co-amorphous phase, can be quantified with this XRPD data-based approach.

  16. Surface Passivation of CdSe Quantum Dots in All Inorganic Amorphous Solid by Forming Cd1‑xZnxSe Shell

    Science.gov (United States)

    Xia, Mengling; Liu, Chao; Zhao, Zhiyong; Wang, Jing; Lin, Changgui; Xu, Yinsheng; Heo, Jong; Dai, Shixun; Han, Jianjun; Zhao, Xiujian

    2017-02-01

    CdSe quantum dots (QDs) doped glasses have been widely investigated for optical filters, LED color converter and other optical emitters. Unlike CdSe QDs in solution, it is difficult to passivate the surface defects of CdSe QDs in glass matrix, which strongly suppress its intrinsic emission. In this study, surface passivation of CdSe quantum dots (QDs) by Cd1‑xZnxSe shell in silicate glass was reported. An increase in the Se/Cd ratio can lead to the partial passivation of the surface states and appearance of the intrinsic emission of CdSe QDs. Optimizing the heat-treatment condition promotes the incorporation of Zn into CdSe QDs and results in the quenching of the defect emission. Formation of CdSe/Cd1‑xZnxSe core/graded shell QDs is evidenced by the experimental results of TEM and Raman spectroscopy. Realization of the surface passivation and intrinsic emission of II-VI QDs may facilitate the wide applications of QDs doped all inorganic amorphous materials.

  17. Improving Co-Amorphous Drug Formulations by the Addition of the Highly Water Soluble Amino Acid, Proline

    Directory of Open Access Journals (Sweden)

    Katrine Tarp Jensen

    2014-07-01

    Full Text Available Co-amorphous drug amino acid mixtures were previously shown to be a promising approach to create physically stable amorphous systems with the improved dissolution properties of poorly water-soluble drugs. The aim of this work was to expand the co-amorphous drug amino acid mixture approach by combining the model drug, naproxen (NAP, with an amino acid to physically stabilize the co-amorphous system (tryptophan, TRP, or arginine, ARG and a second highly soluble amino acid (proline, PRO for an additional improvement of the dissolution rate. Co-amorphous drug-amino acid blends were prepared by ball milling and investigated for solid state characteristics, stability and the dissolution rate enhancement of NAP. All co-amorphous mixtures were stable at room temperature and 40 °C for a minimum of 84 days. PRO acted as a stabilizer for the co-amorphous system, including NAP–TRP, through enhancing the molecular interactions in the form of hydrogen bonds between all three components in the mixture. A salt formation between the acidic drug, NAP, and the basic amino acid, ARG, was found in co-amorphous NAP–ARG. In comparison to crystalline NAP, binary NAP–TRP and NAP–ARG, it could be shown that the highly soluble amino acid, PRO, improved the dissolution rate of NAP from the ternary co-amorphous systems in combination with either TRP or ARG. In conclusion, both the solubility of the amino acid and potential interactions between the molecules are critical parameters to consider in the development of co-amorphous formulations.

  18. Structural and optical properties of Eu{sup 3+} doped Y{sub 2}O{sub 3} nanostructures embedded in amorphous alumina waveguides prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pillonnet, A [Laboratoire de Physico-Chimie des Materiaux Luminescents, UMR CNRS 5620, UCB Lyon I, 10 rue Andre-Marie Ampere, 69622 Villeurbanne Cedex (France); Lancok, J [Laboratoire de Physico-Chimie des Materiaux Luminescents, UMR CNRS 5620, UCB Lyon I, 10 rue Andre-Marie Ampere, 69622 Villeurbanne Cedex (France); Martinet, C [Laboratoire de Physico-Chimie des Materiaux Luminescents, UMR CNRS 5620, UCB Lyon I, 10 rue Andre-Marie Ampere, 69622 Villeurbanne Cedex (France); Marty, O [Laboratoire d' Electronique, Nanotechnologies et Capteurs, EA CNRS 3780, UCB Lyon I (France); Bellessa, J [Laboratoire de Physique de la Matiere Condensee et Nanostructures, UMR CNRS 5586, UCB Lyon I (France); Garapon, C [Laboratoire de Physico-Chimie des Materiaux Luminescents, UMR CNRS 5620, UCB Lyon I, 10 rue Andre-Marie Ampere, 69622 Villeurbanne Cedex (France)

    2006-11-08

    Composite optical waveguides of Eu doped Y{sub 2}O{sub 3} nanolayers with various theoretical thicknesses from 10 to 0.2 nm embedded in an amorphous alumina matrix were prepared by targeted alternating pulsed laser ablation. Their structural and fluorescence properties were compared to those of thick nanocrystallized Eu:Y{sub 2}O{sub 3} films deposited under the same conditions. Whereas layers with thicknesses of 5 and 10 nm are continuous and crystalline, layers with thickness of less than 2 nm are constituted of isolated amorphous nanoparticles with a mean height of around 1 nm, according to transmission electron microscopy and atomic force microscopy. The Eu{sup 3+} fluorescence properties show that Eu{sup 3+} ions are localized in different sites inside the nanolayers or nanoparticles or at the interface with the matrix, depending on the size of the nanostructure. The refractive index of the composite waveguides was measured by m-line spectroscopy. Waveguiding propagation was observed00.

  19. A comparative study of the structure and crystallization of bulk metallic amorphous rod Pr60Ni30Al10 and melt-spun metallic amorphous ribbon Al87Ni10Pr3

    Institute of Scientific and Technical Information of China (English)

    Meng Qing-Ge; Li Jian-Guo; Zhou Jian-Kun

    2006-01-01

    Pr-based bulk metallic amorphous (BM1 rods (Pr60Ni30Al10) and Al-based amorphous ribbons (Al87Ni10Pr3)have been prepared by using copper mould casting and single roller melt-spun techniques, respectively. Thermal parameters deduced from differential scanning calorimeter (DS3 indicate that the glass-forming ability (GF1 of Pr60Nia0Al10 BMA rod is far higher than that of Al87Ni10Pr3 ribbon. A comparative study about the differences in structure between the two kinds of glass-forming alloys, superheated viscosity and crystallization are also made. Compared with the amorphous alloy Al87Ni10Pr3, the BMA alloy Pr60Ni30Al10 shows high thermal stability and large viscosity, small diffusivity at the same superheated temperatures. The results of x-Ray diffraction (XRD) and transmission electron microscope (TEM) show the pronounced difference in structure between the two amorphous alloys.Together with crystallization results, the main structure compositions of the amorphous samples are confirmed. It seems that the higher the GFA, the more topological type clusters in the Pr-Ni-Al amorphous alloys, the GFAs of the present glass-forming alloys are closely related to their structures.

  20. Preparation and characterization of essential oil-loaded starch nanoparticles formed by short glucan chains.

    Science.gov (United States)

    Qiu, Chao; Chang, Ranran; Yang, Jie; Ge, Shengju; Xiong, Liu; Zhao, Mei; Li, Man; Sun, Qingjie

    2017-04-15

    Essential oils (EOs), including menthone, oregano, cinnamon, lavender, and citral, are natural products that have antimicrobial and antioxidant activities. However, extremely low water solubility, and easy degradation by heat, restrict their application. The aim of this work was to evaluate the enhancement in antioxidative and antimicrobial activities of EOs encapsulated in starch nanoparticles (SNPs) prepared by short glucan chains. For the first time, we have successfully fabricated menthone-loaded SNPs (SNPs-M) at different complexation temperatures (30, 60, and 90°C) by an in situ nanoprecipitation method. The SNPs-M displayed spherical shapes, and the particle sizes ranged from 93 to 113nm. The encapsulation efficiency (EE) of SNPs-M increased significantly with an increase in complexation temperature, and the maximum EE was 86.6%. The SNPs-M formed at 90°C had high crystallization and thermal stability. The durations of the antioxidant and antimicrobial activities of EOs was extended by their encapsulation in the SNPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Preparation and application of triple helix forming oligonucleotides and single strand oligonucleotide donors for gene correction.

    Science.gov (United States)

    Alam, Rowshon; Thazhathveetil, Arun Kalliat; Li, Hong; Seidman, Michael M

    2014-01-01

    Strategies for site-specific modulation of genomic sequences in mammalian cells require two components. One must be capable of recognizing and activating a specific target sequence in vivo, driving that site into an exploitable repair pathway. Information is transferred to the site via participation in the pathway by the second component, a donor nucleic acid, resulting in a permanent change in the target sequence. We have developed biologically active triple helix forming oligonucleotides (TFOs) as site-specific gene targeting reagents. These TFOs, linked to DNA reactive compounds (such as a cross-linking agent), activate pathways that can engage informational donors. We have used the combination of a psoralen-TFO and single strand oligonucleotide donors to generate novel cell lines with directed sequence changes at the target site. Here we describe the synthesis and purification of bioactive psoralen-linked TFOs, their co-introduction into mammalian cells with donor nucleic acids, and the identification of cells with sequence conversion of the target site. We have emphasized details in the synthesis and purification of the oligonucleotides that are essential for preparation of reagents with optimal activity.

  2. Preparation of sustained-release composite coating formed by dexamethasone and oxidated sodium alginate.

    Science.gov (United States)

    Gao, Wenqing; Li, Tong; Yu, Meili; Hu, Xiaomin; Duan, Dawei; Lin, Tingting

    2014-01-01

    Inflammatory reaction and thrombosis are the unsolved main problems of non-coated biomaterials applied in cardiac surgery. In the present study, a series of sustained composite coating was prepared and characterized, such as in the chemical modification of polyvinyl chloride (PVC) for applications in cardiac surgery and the assessment of the biological property of modified PVC. The composite coatings were mainly formed by dexamethasone (DXM) and oxidated sodium alginate (OSA) through ionic and covalent bond methods. The biocompatibility and hemocompatibility of the coating surface were evaluated. Scanning electron microscopy analysis of the surface morphologies of the thrombus and platelets revealed that DXM-OSA coating improved the antithrombogenicity and biocompatibility of PVC circuits, which were essential for cardiac pulmonary bypass surgery. Evaluation of in vitro release revealed that the DXM on group PPC was gradually released in 8 h. Thus, DXM that covalently combined on the PVC surface showed sustained release. By contrast, DXM on groups PPI and PPD was quickly or shortly released, suggesting that groups PPI and PPD did not have sustained-release property. Overall, results indicated that the DXM-OSA composite coating may be a promising coating for the sustained delivery of DXM.

  3. Amino acids as co-amorphous stabilizers for poorly water soluble drugs--Part 1

    DEFF Research Database (Denmark)

    Löbmann, Korbinian; Grohganz, Holger; Laitinen, Riikka

    2013-01-01

    . However, this strategy only led to a small number of marketed products usually because of inadequate physical stability of the drug (crystallization). In this study, we investigated a fundamentally different approach to stabilize the amorphous form of drugs, namely the use of amino acids as small...... molecular weight excipients that form specific molecular interactions with the drug resulting in co-amorphous forms. The two poorly water soluble drugs carbamazepine and indomethacin were combined with amino acids from the binding sites of the biological receptors of these drugs. Mixtures of drug...... and the amino acids arginine, phenylalanine, tryptophan and tyrosine were prepared by vibrational ball milling. Solid-state characterization with X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) revealed that the various blends could be prepared as homogeneous, single phase co...

  4. Amorphization strategy affects the stability and supersaturation profile of amorphous drug nanoparticles.

    Science.gov (United States)

    Cheow, Wean Sin; Kiew, Tie Yi; Yang, Yue; Hadinoto, Kunn

    2014-05-05

    Amorphous drug nanoparticles have recently emerged as a promising bioavailability enhancement strategy of poorly soluble drugs attributed to the high supersaturation solubility generated by the amorphous state and fast dissolution afforded by the nanoparticles. Herein we examine the effects of two amorphization strategies in the nanoscale, i.e., (1) molecular mobility restrictions and (2) high energy surface occupation, both by polymer excipient stabilizers, on the (i) morphology, (ii) colloidal stability, (iii) drug loading, (iv) amorphous state stability after three-month storage, and (v) in vitro supersaturation profiles, using itraconazole (ITZ) as the model drug. Drug-polyelectrolyte complexation is employed in the first strategy to prepare amorphous ITZ nanoparticles using dextran sulfate as the polyelectrolyte (ITZ nanoplex), while the second strategy employs pH-shift precipitation using hydroxypropylmethylcellulose as the surface stabilizer (nano-ITZ), with both strategies resulting in >90% ITZ utilization. Both amorphous ITZ nanoparticles share similar morphology (∼300 nm spheres) with the ITZ nanoplex exhibiting better colloidal stability, albeit at lower ITZ loading (65% versus 94%), due to the larger stabilizer amount used. The ITZ nanoplex also exhibits superior amorphous state stability, attributed to the ITZ molecular mobility restriction by electrostatic complexation with dextran sulfate. The higher stability, however, is obtained at the expense of slower supersaturation generation, which is maintained over a prolonged period, compared to the nano-ITZ. The present results signify the importance of selecting the optimal amorphization strategy, in addition to formulating the excipient stabilizers, to produce amorphous drug nanoparticles having the desired characteristics.

  5. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  6. Thermoanalytical and Fourier transform infrared spectral curve-fitting techniques used to investigate the amorphous indomethacin formation and its physical stability in Indomethacin-Soluplus® solid dispersions.

    Science.gov (United States)

    Lin, Shan-Yang; Lin, Hong-Liang; Chi, Ying-Ting; Huang, Yu-Ting; Kao, Chi-Yu; Hsieh, Wei-Hsien

    2015-12-30

    The amorphous form of a drug has higher water solubility and faster dissolution rate than its crystalline form. However, the amorphous form is less thermodynamically stable and may recrystallize during manufacturing and storage. Maintaining the amorphous state of drug in a solid dosage form is extremely important to ensure product quality. The purpose of this study was to quantitatively determine the amount of amorphous indomethacin (INDO) formed in the Soluplus® solid dispersions using thermoanalytical and Fourier transform infrared (FTIR) spectral curve-fitting techniques. The INDO/Soluplus® solid dispersions with various weight ratios of both components were prepared by air-drying and heat-drying processes. A predominate IR peak at 1683cm(-1) for amorphous INDO was selected as a marker for monitoring the solid state of INDO in the INDO/Soluplus® solid dispersions. The physical stability of amorphous INDO in the INDO/Soluplus® solid dispersions prepared by both drying processes was also studied under accelerated conditions. A typical endothermic peak at 161°C for γ-form of INDO (γ-INDO) disappeared from all the differential scanning calorimetry (DSC) curves of INDO/Soluplus® solid dispersions, suggesting the amorphization of INDO caused by Soluplus® after drying. In addition, two unique IR peaks at 1682 (1681) and 1593 (1591)cm(-1) corresponded to the amorphous form of INDO were observed in the FTIR spectra of all the INDO/Soluplus® solid dispersions. The quantitative amounts of amorphous INDO formed in all the INDO/Soluplus® solid dispersions were increased with the increase of γ-INDO loaded into the INDO/Soluplus® solid dispersions by applying curve-fitting technique. However, the intermolecular hydrogen bonding interaction between Soluplus® and INDO were only observed in the samples prepared by heat-drying process, due to a marked spectral shift from 1636 to 1628cm(-1) in the INDO/Soluplus® solid dispersions. The INDO/Soluplus® solid

  7. Characterization of amorphous hydrogenated carbon formed by low-pressure inductively coupled plasma enhanced chemical vapor deposition using multiple low-inductance antenna units.

    Science.gov (United States)

    Tsuda, Osamu; Ishihara, Masatou; Koga, Yoshinori; Fujiwara, Shuzo; Setsuhara, Yuichi; Sato, Naoyuki

    2005-03-24

    Three-dimensional plasma enhanced chemical vapor deposition (CVD) of hydrogenated amorphous carbon (a-C:H) has been demonstrated using a new type high-density volumetric plasma source with multiple low-inductance antenna system. The plasma density in the volume of phi 200 mm x 100 mm is 5.1 x 10(10) cm(-3) within +/-5% in the lateral directions and 5.2 x 10(10)cm(-3) within +/-10% in the axial direction for argon plasma under the pressure of 0.1 Pa and the total power as low as 400 W. The uniformity of the thickness and refractive index is within +/-3.5% and +/-1%, respectively, for the a-C:H films deposited on the substrates placed on the six side walls, the top of the phi 60 mm x 80 mm hexagonal substrate holder in the pure toluene plasma under the pressure is as low as 0.04 Pa, and the total power is as low as 300 W. It is also found that precisely controlled ion bombardment by pulse biasing led to the explicit observation in Raman and IR spectra of the transition from polymer-like structure to diamond-like structure accompanied by dehydrogenation due to ion bombardment. Moreover, it is also concluded that the pulse biasing technique is effective for stress reduction without a significant degradation of hardness. The stress of 0.6 GPa and the hardness of 15 GPa have been obtained for 2.0 microm thick films deposited with the optimized deposition conditions. The films are durable for the tribology test with a high load of 20 N up to more than 20,000 cycles, showing the specific wear rate and the friction coefficient were 1.2 x 10(-7) mm3/Nm and 0.04, respectively.

  8. Room-temperature preparation and dielectric properties of amorphous Bi3.95Er0.05Ti3O12 thin films on flexible polyimide substrates via pulsed laser deposition method

    Science.gov (United States)

    Mo, Zhong; Wu, Guangheng; Bao, Dinghua

    2012-05-01

    Bi3.95Er0.05Ti3O12 (BErT) thin films were prepared on flexible polyimide (PI) substrates at room temperature by pulsed laser deposition. These BErT thin films deposited under low oxygen pressures are dense, uniform, and crack-free with an amorphous structure. The highly flexible thin film with a thickness of about 160 nm deposited under 3 Pa oxygen pressure shows excellent dielectric characteristics, such as a dielectric constant of 51 and a dielectric loss of 0.025, and a maximum capacitance density of 237 nF/cm2 at 1 kHz. When it is curved at different curvature radii (by applying external deformation), the thin film still remains superior dielectric performance. In addition, the thin film also shows good dielectric aging characteristic (or thermal stability) and high optical transparency. BErT thin films can find applications in flexible optoelectronic devices and embedded capacitors.

  9. Co-Amorphous Combination of Nateglinide-Metformin Hydrochloride for Dissolution Enhancement.

    Science.gov (United States)

    Wairkar, Sarika; Gaud, Ram

    2016-06-01

    The aim of the present work was to prepare a co-amorphous mixture (COAM) of Nateglinide and Metformin hydrochloride to enhance the dissolution rate of poorly soluble Nateglinide. Nateglinide (120 mg) and Metformin hydrochloride (500 mg) COAM, as a dose ratio, were prepared by ball-milling technique. COAMs were characterized for saturation solubility, amorphism and physicochemical interactions (X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR)), SEM, in vitro dissolution, and stability studies. Solubility studies revealed a sevenfold rise in solubility of Nateglinide from 0.061 to 0.423 mg/ml in dose ratio of COAM. Solid-state characterization of COAM suggested amorphization of Nateglinide after 6 h of ball milling. XRPD and DSC studies confirmed amorphism in Nateglinide, whereas FTIR elucidated hydrogen interactions (proton exchange between Nateglinide and Metformin hydrochloride). Interestingly, due to low energy of fusion, Nateglinide was completely amorphized and stabilized by Metformin hydrochloride. Consequently, in vitro drug release showed significant increase in dissolution of Nateglinide in COAM, irrespective of dissolution medium. However, little change was observed in the solubility and dissolution profile of Metformin hydrochloride, revealing small change in its crystallinity. Stability data indicated no traces of devitrification in XRPD of stability sample of COAM, and % drug release remained unaffected at accelerated storage conditions. Amorphism of Nateglinide, proton exchange with Metformin hydrochloride, and stabilization of its amorphous form have been noted in ball-milled COAM of Nateglinide-Metformin hydrochloride, revealing enhanced dissolution of Nateglinide. Thus, COAM of Nateglinide-Metformin hydrochloride system is a promising approach for combination therapy in diabetic patients.

  10. Theoretical Considerations in Developing Amorphous Solid Dispersions

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Priemel, Petra Alexandra; Surwase, Sachin;

    2014-01-01

    Before pursuing the laborious route of amorphous solid dispersion formulation and development, which is the topic of many of the subsequent chapters in this book, the formulation scientist would benefit from a priori knowledge whether the amorphous route is a viable one for a given drug and how...... to their glass-forming ability and glass stability. In the main parts of this chapter, we review theoretical approaches to determine amorphous drug polymer miscibility and crystalline drug polymer solubility, as a prerequisite to develop amorphous solid dispersions (glass solutions)....... much solubility improvement, and hence increase in bioavailability, can be expected, and what forms of solid dispersion have been developed in the past. In this chapter, we therefore initially define the various forms of solid dispersions, and then go on to discuss properties of pure drugs with respect...

  11. Enhanced proton conductivity of niobium phosphates by interfacing crystal grains with an amorphous functional phase

    DEFF Research Database (Denmark)

    Huang, Yunjie; Yu, Lele; Li, Haiyan

    2016-01-01

    Niobium phosphate is an interesting proton conductor operational in the intermediate temperature range. In the present work two forms of phosphates were prepared: an amorphous one with high specific area and a crystalline one with low specific surface area. Both phosphates exhibited very low proton...... conductivities. An activation process was developed to convert the phosphates into crystal grains with a phosphorus rich amorphous phase along the grain boundaries. As a result, the obtained niobium phosphates showed considerably enhanced and stable proton conductivities. The activation effect was prominent when...... the high surface area amorphous phosphate was used as the precursor. At 250 °C thus obtained niobium phosphate showed a high and stable conductivity of 0.03 S cm−1 under dry atmosphere and of 0.06 S cm−1 at a water partial pressure of 0.12 atm....

  12. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  13. Amino acids as co-amorphous stabilizers for poorly water-soluble drugs--Part 2: molecular interactions.

    Science.gov (United States)

    Löbmann, Korbinian; Laitinen, Riikka; Strachan, Clare; Rades, Thomas; Grohganz, Holger

    2013-11-01

    The formation of co-amorphous drug-drug mixtures has proved to be a powerful approach to stabilize the amorphous form and at the same time increase the dissolution of poorly water-soluble drugs. Molecular interactions in these co-amorphous formulations can play a crucial role in stabilization and dissolution enhancement. In this regard, Fourier-transform infrared spectroscopy (FTIR) is a valuable tool to analyze the molecular near range order of the compounds in the co-amorphous mixtures. In this study, several co-amorphous drugs--low molecular weight excipient blends--have been analyzed with FTIR spectroscopy. Molecular interactions of the drugs carbamazepine and indomethacin with the amino acids arginine, phenylalanine, and tryptophan were investigated. The amino acids were chosen from the biological target site of both drugs and prepared as co-amorphous formulations together with the drugs by vibrational ball milling. A detailed analysis of the FTIR spectra of these formulations revealed specific peak shifts in the vibrational modes of functional groups of drug and amino acid, as long as one amino acid from the biological target site was present in the blends. These peak shifts indicate that the drugs formed specific molecular interactions (hydrogen bonding and π-π interactions) with the amino acids. In the drug-amino acid mixtures that contained amino acids which were not present at the biological target site, no such interactions were identified. This study shows the potential of amino acids as small molecular weight excipients in co-amorphous formulations to stabilize the amorphous form of a poorly water-soluble drug through strong and specific molecular interactions with the drug.

  14. Photoassisted degradation of rhodamine B by nanoparticles of {alpha}-Bi{sub 2}Mo{sub 3}O{sub 12} prepared by an amorphous complex precursor

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-de la Cruz, A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, N.L. (Mexico)], E-mail: azmartin@gama.fime.uanl.mx; Marcos Villarreal, S.M.G. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, N.L. (Mexico); Torres-Martinez, Leticia M. [Departamento de Ecomateriales y Energia, Universidad Autonoma de Nuevo Leon, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, N.L. (Mexico); Lopez Cuellar, E.; Ortiz Mendez, U. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, N.L. (Mexico)

    2008-12-01

    Nanoparticles of {alpha}-Bi{sub 2}Mo{sub 3}O{sub 12} have been synthesized by a method that involves an amorphous complex precursor. The phase formation process, crystal structure and morphology of the synthesized samples were followed by TGA/DTA, XRD, TEM and SEM techniques. The effect of temperature of calcination on the surface area and optical properties of {alpha}-Bi{sub 2}Mo{sub 3}O{sub 12} nanoparticles has been also investigated. The photocatalytical activity of {alpha}-Bi{sub 2}Mo{sub 3}O{sub 12} nanoparticles was evaluated in the degradation of rhodamine B molecules in aqueous solution under visible light irradiation. The best photocatalyst was selected by evaluating the photocatalytic properties of samples with different calcination temperatures. The kinetic degradation of rhodamine B was adjusted with a first-order reaction with an apparent rate constant k' = 1.36 x 10{sup -2} min{sup -1} and t{sub 1/2} = 51 min for the best material obtained. The mineralization degree of the dye to CO{sub 2} and H{sub 2}O was around 56% after 100 h of irradiation.

  15. Mechanical properties and structure of zirconia-mullite ceramics prepared by in-situ controlled crystallization of Si-Al-Zr-O amorphous bulk

    Institute of Scientific and Technical Information of China (English)

    LIANG Shu-quan; ZHONG Jie; TAN Xiao-ping; TANG Yan

    2008-01-01

    Zirconia-mullite nano-composite ceramics were fabricated by in-situ controlled crystallization of Si-Al-Zr-O amorphous bulk, which were first treated at 900-1 000 ℃ for nucleation, then treated at higher temperature for crystallization to obtain ultra-fine zirconia-mullite composite ceramics. The effects of treating temperature and ZrO2 addition on mechanical properties and microstructure were analyzed. A unique structure in which there are a lot of near equiaxed t-ZrO2 grains and fine yield-cracks has been developed in the samples with 15% zirconia addition treated at 1 150 ℃. This specific microstructure is much more effective in toughening ceramics matrix and results in the best mechanical properties. The flexural strength and fracture toughness are 520 MPa and 5.13 MPa·m1/2, respectively. Either higher zirconia addition or higher crystallization temperature will produce large size rod-like ZrO2 and mullite grains, which are of negative effect on mechanical properties of this new composite ceramics.

  16. Acid-base interactions in amorphous solid dispersions of lumefantrine prepared by spray-drying and hot-melt extrusion using X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Song, Yang; Zemlyanov, Dmitry; Chen, Xin; Su, Ziyang; Nie, Haichen; Lubach, Joseph W; Smith, Daniel; Byrn, Stephen; Pinal, Rodolfo

    2016-12-05

    This study investigates drug-excipient interactions in amorphous solid dispersions (ASDs) of the model basic compound lumefantrine (LMN), with five acidic polymers. X-ray photoelectron spectroscopy (XPS) was used to measure the extent of the protonation of the tertiary amine in LMN by the five acidic polymers. The extent/efficiency of protonation of the ASDs was assessed a function of polymer type, manufacturing process (hot-melt extrusion vs. spray drying), and drug loading (DL). The most strongly acidic polymer, polystyrene sulfonic acid (PSSA) was found to be the most efficient polymer in protonating LMN, independently of manufacturing method and DL. The rank order for the protonation extent of LMN by each polymer is roughtly the same for both manufacturing processes. However, protonation efficiency of polymers of similar acidic strength ranged from ∼0% to 75% (HPMCAS and Eudragit L100-55, respectively), suggesting an important role of molecular/mixing effects. For some polymers, including Eudragit L100 55 and HPMCP, spray-drying resulted in higher protonation efficiency compared to hot-melt extrusion. This result is attributable to a more favorable encounter between acid and base groups, when exposed to each other in solution phase. Increasing DL led to decreased protonation efficiency in most cases, particularly for polyacrylic acid, despite having the highest content of acidic groups per unit mass. These results indicate that the combined effects of acid strength and mixing phenomena regulate the efficiency of acid-base interactions in the ASDs.

  17. Magnetic Properties of Nanometer-sized Crystalline and Amorphous Particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Bødker, Franz; Hansen, Mikkel Fougt;

    1997-01-01

    Amorphous transition metal-metalloid alloy particles can be prepared by chemical preparation techniques. We discuss the preparation of transition metal-boron and iron-carbon particles and their magnetic properties. Nanometer-sized particles of both crystalline and amorphous magnetic materials...... are superparamagnetic at finite temperatures. The temperature dependence of the superparamagnetic relaxation time and the influence of inter-particle interactions is discussed. Finally, some examples of studies of surface magnetization of alpha-Fe particles are presented....

  18. Magnetic Properties of Nanometer-sized Crystalline and Amorphous Particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Bødker, Franz; Hansen, Mikkel Fougt

    1997-01-01

    Amorphous transition metal-metalloid alloy particles can be prepared by chemical preparation techniques. We discuss the preparation of transition metal-boron and iron-carbon particles and their magnetic properties. Nanometer-sized particles of both crystalline and amorphous magnetic materials...... are superparamagnetic at finite temperatures. The temperature dependence of the superparamagnetic relaxation time and the influence of inter-particle interactions is discussed. Finally, some examples of studies of surface magnetization of alpha-Fe particles are presented....

  19. Creep in amorphous metals

    Directory of Open Access Journals (Sweden)

    Michael E. Kassner

    2015-01-01

    Full Text Available This paper reviews the work on creep behavior of amorphous metals. There have been, over the past several years, a few reviews of the mechanical behavior of amorphous metals. Of these, the review of the creep properties of amorphous metals by Schuh et al. though oldest of the three, is particularly noteworthy and the reader is referred to this article published in 2007. The current review of creep of amorphous metals particularly focuses on those works since that review and places the work prior to 2007 in a different context where new developments warrant.

  20. Lipid-Based Formulations Can Enable the Model Poorly Water-Soluble Weakly Basic Drug Cinnarizine to Precipitate in an Amorphous-Salt Form during in Vitro Digestion

    DEFF Research Database (Denmark)

    Khan, Jamal; Rades, Thomas; Boyd, Ben J

    2016-01-01

    The tendency for poorly water-soluble weakly basic drugs to precipitate in a noncrystalline form during the in vitro digestion of lipid-based formulations (LBFs) was linked to an ionic interaction between drug and fatty acid molecules produced upon lipid digestion. Cinnarizine was chosen as a mod...

  1. Liquid dosage forms extemporaneously prepared from commercially available products - considering new evidence on stability.

    Science.gov (United States)

    Haywood, Alison; Glass, Beverley D

    2013-01-01

    Although the world's population is ageing and as a result of this an increasing number of patients are experiencing difficulty in swallowing, there remains a lack of commercially available oral liquids for both these older and paediatric patients. This presents a problem to health care professionals, especially the pharmacist in practice, who is often required to provide a solution for these patients by preparing oral liquids extemporaneously from commercially available products. Preparation of these oral liquids is challenging, both due to the lack of pharmacopoeial and stability-indicating formulae and the fact that their stability is not only determined by the active pharmaceutical ingredient, but also the ability of excipients from the commercial product to interact with each other and the active pharmaceutical ingredient. This increases the complexity of the stability considerations to be taken into account within these oral liquids, highlighting the number of parameters to be considered in the extemporaneous preparation of oral liquids. This paper presents new evidence on the stability of 42 oral liquids prepared from commercially available products, reported on in the literature since the previous review published in 2006. However, unlike the previous review where the stability concerns in 7.2% of the extemporaneously prepared oral liquids were mainly due to interaction between the active pharmaceutical ingredients and the excipients in the commercial product, most of these stability considerations have been recognised and this has resulted in the authors proposing solutions to these problems prior to the extemporaneous preparation of the oral liquid. As such this paper also focuses on the increased level of research that has been undertaken to solve previous issues related to stability, especially in terms of the use of commercial products, which is common practice in the extemporaneous preparation of oral liquids.

  2. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Yang; Hong, Shao-Chyang [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Hwang, Fu-Tsai [Department of Electro-Optical Engineering, National United University, Miao-Li, 36003, Taiwan (China); Lai, Li-Wen [ITRI South, Industrial Technology Research Institute, Liujia, Tainan, 73445, Taiwan (China); Lin, Tan-Wei [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Liu, Day-Shan, E-mail: dsliu@sunws.nfu.edu.tw [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China)

    2011-10-31

    The effect of a nickel oxide (NiO{sub x}) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO{sub x}) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO{sub x} films, with and without a NiO{sub x} seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO{sub x} film, deposited on a NiO{sub x} seed layer, was found to be lower than that of a pure TiO{sub x} film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO{sub x} film deposited onto the NiO{sub x} seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO{sub x}/TiO{sub x} system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  3. RAPID ASSOCIATION OF UNCONJUGATED BILIRUBIN WITH AMORPHOUS CALCIUM-PHOSPHATE

    NARCIS (Netherlands)

    VANDERVEERE, CN; SHOEMAKER, B; VANDERMEER, R; GROEN, AK; JANSEN, PLM; ELFERINK, RPJO

    1995-01-01

    The association of unconjugated bilirubin (UCB) with amorphous calcium phosphate was studied in vitro. To this end UCB, solubilized in different micellar bile salt solutions, was incubated with freshly prepared calcium phosphate precipitate. It was demonstrated that amorphous calcium phosphate (ACP)

  4. Creep of FINEMET alloy at amorphous to nanocrystalline transition

    NARCIS (Netherlands)

    Csach, K.; Miškuf, J.; Juríková, A.; Ocelík, V.

    2009-01-01

    The application of FINEMET-type materials with specific magnetic properties prepared by the crystallization of amorphous alloys is often limited by their brittleness. The structure of these materials consists of nanosized Fe-based grains surrounded with amorphous phase. Then the final macroscopic

  5. Creep of FINEMET alloy at amorphous to nanocrystalline transition

    NARCIS (Netherlands)

    Csach, K.; Miškuf, J.; Juríková, A.; Ocelík, V.

    2009-01-01

    The application of FINEMET-type materials with specific magnetic properties prepared by the crystallization of amorphous alloys is often limited by their brittleness. The structure of these materials consists of nanosized Fe-based grains surrounded with amorphous phase. Then the final macroscopic me

  6. Enhanced Physical Stability of Amorphous Drug Formulations via Dry Polymer Coating.

    Science.gov (United States)

    Capece, Maxx; Davé, Rajesh

    2015-06-01

    Although amorphous solid drug formulations may be advantageous for enhancing the bioavailability of poorly soluble active pharmaceutical ingredients, they exhibit poor physical stability and undergo recrystallization. To address this limitation, this study investigates stability issues associated with amorphous solids through analysis of the crystallization behavior for acetaminophen (APAP), known as a fast crystallizer, using a modified form of the Avrami equation that kinetically models both surface and bulk crystallization. It is found that surface-enhanced crystallization, occurring faster at the free surface than in the bulk, is the major impediment to the stability of amorphous APAP. It is hypothesized that a novel use of a dry-polymer-coating process referred to as mechanical-dry-polymer-coating may be used to inhibit surface crystallization and enhance stability. The proposed process, which is examined, simultaneously mills and coats amorphous solids with polymer, while avoiding solvents or solutions, which may otherwise cause stability or crystallization issues during coating. It is shown that solid dispersions of APAP (64% loading) with a small particle size (28 μm) could be prepared and coated with the polymer, carnauba wax, in a vibratory ball mill. The resulting amorphous solid was found to have excellent stability as a result of inhibition of surface crystallization.

  7. Extruded foams prepared from high amylose starch with sodium stearate to form amylose inclusion complexes

    Science.gov (United States)

    Starch foams were prepared from high amylose corn starch in the presence and absence of sodium stearate and PVOH to determine how the formation of amylose-sodium stearate inclusion complexes and the addition of PVOH would affect foam properties. Low extrusion temperatures were used, and X-ray diffra...

  8. Preparation, Characterization and Utilization of Electrodes Coated with Polymeric Networks Formed by Gamma Radiation Crosslinking.

    Science.gov (United States)

    1987-04-01

    CHARACTERIZATION, AND UTILIZATION OF ELECTRODES COATED WITH POLYMERIC NETWORKS FORMED BY GAMMA RADIATION CROSSLINKING FINAL REPORT Accession For NTIS GRA... radiation crosslinking . The polymers and their structures are shown in Table I. All of these have been found to form cross-linked networks when exposed

  9. A METHOD OF PREPARING SPHERICAL NANO-CRYSTAL CELLULOSE WITH MIXED CRYSTALLINE FORMS OF CELLULOSE Ⅰ AND Ⅱ

    Institute of Scientific and Technical Information of China (English)

    Xiao-fang Li; En-yong Ding; Guo-kang Li

    2001-01-01

    A new kind of nano-crystal cellulose (NCC) prepared from natural cotton fiber has been obtained by the method of acid hydrolysis. Compared to most other nanophase materials that derive from inorganic materials, our products are prepared from natural cotton fibers. The products are of spherical shape with mixed crystal forms of cellulose Ⅰ and Ⅱ. The preparation conditions determine the properties of the products. Prior treatment is a critical procedure. The properties of the products are also strongly affected by such conditions as the kinds of acids used, the ratio of the acid mixture, the acid concentration, the ultrasonic agitation time and hydrolysis temperature. The number average molecular weight of NCC is determined by gel permeation chromatography (GPC). The particle size and shape were determined by transmission electron microscopy (TEM). X-ray diffraction was used to detect the crystallinity and average crystallite size of the particle.

  10. New methodology of preparation support for solid oxide fuel cells using different pore forming agent

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, Raigenis da P.; Guedes, Bruna C.F.; Silva, Marcos A. da; Carvalho, Luiz F.V. de; Boaventura, Jaime S. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica; Pontes, Luiz A.M. [Universidade Federal da Bahia (EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Programa de Pos-Graduacao em Engenharia Quimica

    2008-07-01

    The development of environment-friendly energy sources has been of the most important scientific and technological area. Solid oxide fuel cells (SOFC) are very promising alternative for their ability to handle renewable fuels with low emissions and high efficiency. However, this device requires massive improvement before commercial application. This work studies the pore formation in the cell anode and cathode with NaHCO{sub 3} or citric acid, comparing to graphite. The three agents make pore with similar features, but the use of NaHCO{sub 3} and citric acid considerably improves the adhesion of the electrode-electrolyte interface, critical characteristic for good cell efficiency. The prepared anode-electrolyte-cathode structure was studied by SEM technique. The SOFC prepared using citric acid was tested with gaseous ethanol, natural gas and hydrogen. For all these three fuels the SOFC shows virtually no overpotential, indicating the good ionic conductance of the electrodes-electrolyte interface.. (author)

  11. Preparation and Characterization of a Gastric Floating Dosage Form of Capecitabine

    OpenAIRE

    Taghizadeh Davoudi, Ehsan; Ibrahim Noordin,Mohamed; Ali KADIVAR; Kamalidehghan, Behnam; Farjam, Abdoreza Soleimani; Akbari Javar, Hamid

    2013-01-01

    Gastrointestinal disturbances, such as nausea and vomiting, are considered amongst the main adverse effects associated with oral anticancer drugs due to their fast release in the gastrointestinal tract (GIT). Sustained release formulations with proper release profiles can overcome some side effects of conventional formulations. The current study was designed to prepare sustained release tablets of Capecitabine, which is approved by the Food and Drug Administration (FDA) for the treatment of a...

  12. Preparation and evaluation of directly compressible forms of mutual prodrugs of ibuprofen

    Directory of Open Access Journals (Sweden)

    Bhosale A

    2006-01-01

    Full Text Available Tablets of mutual prodrugs of ibuprofen, i.e, ′ibuprofen with paracetamol′ and ′ibuprofen with salicylamide,′ were prepared by direct compression method. The preformulation studies such as flow property, solid state stability at elevated temperatures, solid state stability under different humidity conditions, photolytic stability and compatibility studies of prodrugs with excipients were also performed to design and develop tablet formulations of prodrugs. Quality control tests and in vivo studies of prepared tablets of prodrugs were performed. The result of preformulation studies revealed that prodrugs have good flow property, good solid state stability at elevated temperatures and unstable under different humidity conditions. The photolytic stability study showed that prodrugs are quite stable to light; hence prodrugs are nonphotolytic. The compatibility study indicated that there was no incompatibility or interaction between prodrugs and excipients, which were tried. The prepared tablets of prodrugs were found to satisfy all quality control requirements of tablets mentioned in the Indian Pharmacopoeia. In vivo study of tablet formulations of prodrugs confirmed that they possessed the ability of parent drug, i.e., ibuprofen. In vivo study also showed better extent of bioavailability (indicated by AUC0-24 of tablet of prodrugs as compared to tablets of ibuprofen.

  13. Comparison of guar gum from different sources for the preparation of prolonged-release or colon-specific dosage forms.

    Science.gov (United States)

    Acartürk, Füsun; Celkan, Armağan

    2009-01-01

    The aim of the present study was to compare some physicochemical properties of guar gum samples from different sources and thus to investigate the suitability of these samples for the formulation of either prolonged-release or colon-specific dosage forms. Twelve different guar gum samples from India, Pakistan and the USA were used. Theophylline was chosen as a model drug. The flow type of the guar gum samples was determined as pseudoplastic. The viscosity and the particle size of the guar gum samples were found to be the main parameters which could affect the drug release from matrix tablets. All of the guar gum samples are suitable for use in the preparation of prolonged-release matrix tablets. But, three of them, obtained from India and the USA, may be potentially the most suitable guar gum samples for the preparation of colon-specific dosage forms.

  14. Glycopolymers Prepared by Ring-Opening Metathesis Polymerization Followed by Glycoconjugation Using a Triazole-Forming "Click" Reaction.

    Science.gov (United States)

    Okoth, Ronald; Basu, Amit

    2016-01-01

    We describe a protocol for the preparation of glycopolymers derived from the ring-opening polymerization of a norbornene carboxylic acid derivative. Polymerization is followed by attachment of a linker and subsequent glycoconjugation via a triazole-forming azide-alkyne click reaction. The use of a protected amine-terminating agent allows for the attachment of a probe molecule such as a fluorescein dye. The syntheses of a neutral galactopolymer as well a polyanionic poly-3-O-sulfo-galactopolymer are described.

  15. [Preparation of peroral delayed-action drug forms using biological polymers as the base. 4. Preparation of erosion tablets with a base of starch hydrolysis products].

    Science.gov (United States)

    Mank, R; Kala, H; Lorenz, A

    1989-09-01

    The preparation and investigation of erosonic tablets using a modified starch product are described. Codeine phosphate and pholedrine sulfate served as model drugs. The pharmaceutical investigations showed, that this product is a good auxiliary substance for the direct compression. When in contact with water, the tablets form a gel. This gel determines the drug release. In in vitro investigations a degradation of the starch product by enzymes was detected. Especially the amount of the release values obtained were analyzed by the equation of Noyes-Whitney.

  16. Preparation

    Directory of Open Access Journals (Sweden)

    M.M. Dardir

    2014-03-01

    Full Text Available Some hexanamide-mono and di-linoleniate esters were prepared by the reaction of linolenic acid and hexanamide (derived from the reaction of hexanoic acid and diethanolamine. The chemical structure for the newly prepared hexanamide-mono and di-linoleniate esters were elucidated using elemental analysis, (FTIR, H 1NMR and chemical ionization mass spectra (CI/Ms spectroscopic techniques. The results of the spectroscopic analysis indicated that they were prepared through the right method and they have high purity. The new prepared esters have high biodegradability and lower toxicity (environmentally friendly so they were evaluated as a synthetic-based mud (ester-based mud for oil-well drilling fluids. The evaluation included study of the rheological properties, filtration and thermal properties of the ester based-muds formulated with the newly prepared esters compared to the reference commercial synthetic-based mud.

  17. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhiming [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Zhang, Yuzhong [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Zheng, Shuilin, E-mail: shuilinzh@yahoo.com.cn [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Park, Yuri [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Frost, Ray L., E-mail: r.frost@qut.edu.au [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia)

    2013-04-20

    Highlights: ► Composite phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite. ► The optimum mixed proportion was obtained through differential scanning calorimetry. ► Thermal energy storage properties of the composite PCMs were determined by DSC. ► Thermal cycling test showed that the prepared PCMs are thermally reliable and chemically stable. - Abstract: A composite paraffin-based phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite through the fusion adsorption method. In this study, raw diatomite was purified by thermal treatment in order to improve the adsorption capacity of diatomite, which acted as a carrier material to prepare shape-stabilized PCMs. Two forms of paraffin (paraffin waxes and liquid paraffin) with different melting points were blended together by the fusion method, and the optimum mixed proportion with a suitable phase-transition temperature was obtained through differential scanning calorimetry (DSC) analysis. Then the prepared composite paraffin was adsorbed in calcined diatomite. The prepared paraffin/calcined diatomite composites were characterized by the scanning electron microscope (SEM) and Fourier transformation infrared (FT-IR) analysis techniques. Thermal energy storage properties of the composite PCMs were determined by DSC method. DSC results showed that there was an optimum adsorption ratio between composite paraffin and calcined diatomite and the phase-transition temperature and the latent heat of the composite PCMs were 33.04 °C and 89.54 J/g, respectively. Thermal cycling test of composite PCMs showed that the prepared material is thermally reliable and chemically stable. The obtained paraffin/calcined diatomite composites have proper latent heat and melting temperatures, and show practical significance and good potential application value.

  18. Distinct effects of memory retrieval and articulatory preparation when learning and accessing new word forms.

    Directory of Open Access Journals (Sweden)

    Anni Nora

    Full Text Available Temporal and frontal activations have been implicated in learning of novel word forms, but their specific roles remain poorly understood. The present magnetoencephalography (MEG study examines the roles of these areas in processing newly-established word form representations. The cortical effects related to acquiring new phonological word forms during incidental learning were localized. Participants listened to and repeated back new word form stimuli that adhered to native phonology (Finnish pseudowords or were foreign (Korean words, with a subset of the stimuli recurring four times. Subsequently, a modified 1-back task and a recognition task addressed whether the activations modulated by learning were related to planning for overt articulation, while parametrically added noise probed reliance on developing memory representations during effortful perception. Learning resulted in decreased left superior temporal and increased bilateral frontal premotor activation for familiar compared to new items. The left temporal learning effect persisted in all tasks and was strongest when stimuli were embedded in intermediate noise. In the noisy conditions, native phonotactics evoked overall enhanced left temporal activation. In contrast, the frontal learning effects were present only in conditions requiring overt repetition and were more pronounced for the foreign language. The results indicate a functional dissociation between temporal and frontal activations in learning new phonological word forms: the left superior temporal responses reflect activation of newly-established word-form representations, also during degraded sensory input, whereas the frontal premotor effects are related to planning for articulation and are not preserved in noise.

  19. Indomethacin nanocrystals prepared by different laboratory scale methods: effect on crystalline form and dissolution behavior

    Energy Technology Data Exchange (ETDEWEB)

    Martena, Valentina; Censi, Roberta [University of Camerino, School of Pharmacy (Italy); Hoti, Ela; Malaj, Ledjan [University of Tirana, Department of Pharmacy (Albania); Di Martino, Piera, E-mail: piera.dimartino@unicam.it [University of Camerino, School of Pharmacy (Italy)

    2012-12-15

    The objective of this study is to select very simple and well-known laboratory scale methods able to reduce particle size of indomethacin until the nanometric scale. The effect on the crystalline form and the dissolution behavior of the different samples was deliberately evaluated in absence of any surfactants as stabilizers. Nanocrystals of indomethacin (native crystals are in the {gamma} form) (IDM) were obtained by three laboratory scale methods: A (Batch A: crystallization by solvent evaporation in a nano-spray dryer), B (Batch B-15 and B-30: wet milling and lyophilization), and C (Batch C-20-N and C-40-N: Cryo-milling in the presence of liquid nitrogen). Nanocrystals obtained by the method A (Batch A) crystallized into a mixture of {alpha} and {gamma} polymorphic forms. IDM obtained by the two other methods remained in the {gamma} form and a different attitude to the crystallinity decrease were observed, with a more considerable decrease in crystalline degree for IDM milled for 40 min in the presence of liquid nitrogen. The intrinsic dissolution rate (IDR) revealed a higher dissolution rate for Batches A and C-40-N, due to the higher IDR of {alpha} form than {gamma} form for the Batch A, and the lower crystallinity degree for both the Batches A and C-40-N. These factors, as well as the decrease in particle size, influenced the IDM dissolution rate from the particle samples. Modifications in the solid physical state that may occur using different particle size reduction treatments have to be taken into consideration during the scale up and industrial development of new solid dosage forms.

  20. Indomethacin nanocrystals prepared by different laboratory scale methods: effect on crystalline form and dissolution behavior

    Science.gov (United States)

    Martena, Valentina; Censi, Roberta; Hoti, Ela; Malaj, Ledjan; Di Martino, Piera

    2012-12-01

    The objective of this study is to select very simple and well-known laboratory scale methods able to reduce particle size of indomethacin until the nanometric scale. The effect on the crystalline form and the dissolution behavior of the different samples was deliberately evaluated in absence of any surfactants as stabilizers. Nanocrystals of indomethacin (native crystals are in the γ form) (IDM) were obtained by three laboratory scale methods: A (Batch A: crystallization by solvent evaporation in a nano-spray dryer), B (Batch B-15 and B-30: wet milling and lyophilization), and C (Batch C-20-N and C-40-N: Cryo-milling in the presence of liquid nitrogen). Nanocrystals obtained by the method A (Batch A) crystallized into a mixture of α and γ polymorphic forms. IDM obtained by the two other methods remained in the γ form and a different attitude to the crystallinity decrease were observed, with a more considerable decrease in crystalline degree for IDM milled for 40 min in the presence of liquid nitrogen. The intrinsic dissolution rate (IDR) revealed a higher dissolution rate for Batches A and C-40-N, due to the higher IDR of α form than γ form for the Batch A, and the lower crystallinity degree for both the Batches A and C-40-N. These factors, as well as the decrease in particle size, influenced the IDM dissolution rate from the particle samples. Modifications in the solid physical state that may occur using different particle size reduction treatments have to be taken into consideration during the scale up and industrial development of new solid dosage forms.

  1. Preparation And Properties Of Black Zinc Selective Absorbers Formed By Reactive rf Sputtering

    Science.gov (United States)

    Hutchins, Michael G.; Figgures, Christopher C.; Childs, Geoffrey N.

    1989-03-01

    Black zinc selective solar absorber coatings with solar absorptance 0.94 and thermal emittance 0.21 have been prepared by the reactive rf sputtering of Zn targets in Ar-02 atmospheres. For these films the zinc to oxygen ratio is greater than one and the films are composed of both zinc and zinc oxide. The surface microstructure of the films considerably enhances the short wavelength absorptance properties. The coatings represent a possible low-cost selective absorber for flat plate and evacuated tube solar collector applications.

  2. Preparation of highly (001)-oriented photoactive tungsten diselenide (WSe{sub 2}) films by an amorphous solid-liquid-crystalline solid (aSLcS) rapid-crystallization process

    Energy Technology Data Exchange (ETDEWEB)

    Bozheyev, Farabi; Friedrich, Dennis; Nie, Man; Rengachari, Mythili; Ellmer, Klaus [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Institute for Solar Fuels, Hahn-Meitner-Platz 1, 14109, Berlin (Germany)

    2014-09-15

    Highly (001)-textured tungsten diselenide WSe{sub 2} thin films have been prepared by a two-step process on quartz glass and TiN metallic back contacts, respectively. At first, X-ray amorphous, selenium-rich WSe{sub 2+x} films were deposited by reactive magnetron sputtering at room temperature onto a thin metal promoter film (Ni or Pd) and afterwards annealed in an H{sub 2}Se/Ar atmosphere. X-ray diffraction and scanning electron microscopy show that highly (001)-oriented WSe{sub 2} films can be grown, which is caused by the formation of liquid promoter-metal selenide droplets which dissolve tungsten or tungsten selenide at temperatures, higher than the eutectic temperature in the promoter metal-selenium system, followed by oversaturation and eventually crystallization of WSe{sub 2} platelets. Time-resolved microwave conductivity measurements show that the films are photoactive. The sum of the carrier mobilities of the best films μ{sub e} + μ{sub h} is in the range of 1-7 cm{sup 2} V{sup -1} s{sup -1}. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. nanocomposites formed under submerged DC arc discharge: preparation, characterization and photocatalytic properties

    Science.gov (United States)

    Avcı, Ahmet; Eskizeybek, Volkan; Gülce, Handan; Haspulat, Bircan; Şahin, Ömer Sinan

    2014-09-01

    A rutile TiO2 (α-TiO2) and hexagonal wurtzite ZnO nanocomposite was directly and synchronously synthesized via arc discharge method submerged in de-ionized water. In correlation with the detailed characterization of the morphology, and crystalline structure of the prepared ZnO-TiO2 nanocomposites, the UV-visible and photoluminescence properties were studied. X-ray diffraction and transmission electron microscopy investigations revealed the co-existence of α-TiO2 and hexagonal wurtzite ZnO phases with the ZnO and α-TiO2 nanoparticles are in nanorod and nanospheres morphologies, respectively. The diameters of the synthesized nanocomposite particles are in the range of 5-70 nm. Interestingly, the as-prepared ZnO-TiO2 nanocomposite shows better photocatalytic activity for photodegradation of the methylene blue dye than both of pure ZnO and TiO2 nanocatalyts. This work would explore feasible routes to synthesize efficient metal or/and metal oxide nanocomposites for degrading organic pollutants, gas sensing or other related applications.

  4. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review

    KAUST Repository

    Guillen, Gregory R.

    2011-04-06

    The methods and mechanisms of nonsolvent induced phase separation have been studied for more than fifty years. Today, phase inversion membranes are widely used in numerous chemical industries, biotechnology, and environmental separation processes. The body of knowledge has grown exponentially in the past fifty years, which suggests the need for a critical review of the literature. Here we present a review of nonsolvent induced phase separation membrane preparation and characterization for many commonly used membrane polymers. The key factors in membrane preparation discussed include the solvent type, polymer type and concentration, nonsolvent system type and composition, additives to the polymer solution, and film casting conditions. A brief introduction to membrane characterization is also given, which includes membrane porosity and pore size distribution characterization, membrane physical and chemical properties characterization, and thermodynamic and kinetic evaluation of the phase inversion process. One aim of this review is to lay out the basics for selecting polymer solvent nonsolvent systems with appropriate film casting conditions to produce membranes with the desired performance, morphology, and stability, and to choose the proper way to characterize these properties of nonsolvent induced phase inversion membranes. © 2011 American Chemical Society.

  5. Comparative analysis on reproducibility among 5 intraoral scanners: sectional analysis according to restoration type and preparation outline form

    Science.gov (United States)

    2016-01-01

    PURPOSE The trueness and precision of acquired images of intraoral digital scanners could be influenced by restoration type, preparation outline form, scanning technology and the application of power. The aim of this study is to perform the comparative evaluation of the 3-dimensional reproducibility of intraoral scanners (IOSs). MATERIALS AND METHODS The phantom containing five prepared teeth was scanned by the reference scanner (Dental Wings) and 5 test IOSs (E4D dentist, Fastscan, iTero, Trios and Zfx Intrascan). The acquired images of the scanner groups were compared with the image from the reference scanner (trueness) and within each scanner groups (precision). Statistical analysis was performed using independent two-samples t-test and analysis of variance (α=.05). RESULTS The average deviations of trueness and precision of Fastscan, iTero and Trios were significantly lower than the other scanners. According to the restoration type, significantly higher trueness was observed in crown and inlay than in bridge. However, no significant difference was observed among four sites of preparation outline form. If compared by the characteristics of IOS, high trueness was observed in the group adopting the active triangulation and using powder. However, there was no significant difference between the still image acquisition and video acquisition groups. CONCLUSION Except for two intraoral scanners, Fastscan, iTero and Trios displayed comparable levels of trueness and precision values in tested phantom model. Difference in trueness was observed depending on the restoration type, the preparation outline form and characteristics of IOS, which should be taken into consideration when the intraoral scanning data are utilized. PMID:27826385

  6. Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process.

    Science.gov (United States)

    Kim, Jeong-Soo; Kim, Min-Soo; Park, Hee Jun; Jin, Shun-Ji; Lee, Sibeum; Hwang, Sung-Joo

    2008-07-09

    The objective of the study was to prepare amorphous atorvastatin hemi-calcium using spray-drying and supercritical antisolvent (SAS) process and evaluate its physicochemical properties and oral bioavailability. Atorvastatin hemi-calcium trihydrate was transformed to anhydrous amorphous form by spray-drying and SAS process. With the SAS process, the mean particle size and the specific surface area of amorphous atorvastatin were drastically changed to 68.7+/-15.8nm, 120.35+/-1.40m2/g and 95.7+/-12.2nm, 79.78+/-0.93m2/g from an acetone solution and a tetrahydrofuran solution, respectively and appeared to be associated with better performance in apparent solubility, dissolution and pharmacokinetic studies, compared with unprocessed crystalline atorvastatin. Oral AUC0-8h values in SD rats for crystalline and amorphous atorvastatin were as follow: 1121.4+/-212.0ngh/mL for crystalline atorvastatin, 3249.5+/-406.4ngh/mL and 3016.1+/-200.3ngh/mL for amorphous atorvastatin from an acetone solution and a tetrahydrofuran solution with SAS process, 2227.8+/-274.5 and 2099.9+/-339.2ngh/mL for amorphous atorvastatin from acetone and tetrahydrofuran with spray-drying. The AUCs of all amorphous atorvastatin significantly increased (PSAS process exhibits better bioavailability than spray-drying because of particle size reduction with narrow particle size distribution. It was concluded that physicochemical properties and bioavailability of crystalline atorvastatin could be improved by physical modification such as particle size reduction and generation of amorphous state using spray-drying and SAS process. Further, SAS process was a powerful methodology for improving the physicochemical properties and bioavailability of atorvastatin.

  7. 48 CFR 1845.7102 - Instructions for preparing DD Form 1419.

    Science.gov (United States)

    2010-10-01

    ... Sections I and II before submission of DD Form 1419, DOD Industrial Plant Equipment Requisition, to the.... Enter the manufacturer's name and Federal Supply Code for manufacturer (Cataloging Handbook H4-1) of the...-explanatory. Block 7. Place an “X” in the applicable block to indicate whether you desire to physically...

  8. Textured surface structures formed using new techniques on transparent conducting Al-doped zinc oxide films prepared by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Tadatsugu [Optoelectronic Device System R& D Center, Kanazawa Institute of Technology, Nonoichi, Ishikawa 921-8501 (Japan); Miyata, Toshihiro, E-mail: tmiyata@neptune.kanazawa-it.ac.jp [Optoelectronic Device System R& D Center, Kanazawa Institute of Technology, Nonoichi, Ishikawa 921-8501 (Japan); Uozaki, Ryousuke [Optoelectronic Device System R& D Center, Kanazawa Institute of Technology, Nonoichi, Ishikawa 921-8501 (Japan); Sai, Hitoshi; Koida, Takashi [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)

    2016-09-01

    Surface-textured Al-doped ZnO (AZO) films formed using two new techniques based on magnetron sputtering deposition were developed by optimizing the light scattering properties to be suitable for transparent electrode applications in thin-film silicon solar cells. Scrambled egg-like surface-textured AZO films were prepared using a new texture formation technique that post-etched pyramidal surface-textured AZO films prepared under deposition conditions suppressing c-axis orientation. In addition, double surface-textured AZO films were prepared using another new texture formation technique that completely removed, by post-etching, the pyramidal surface-textured AZO films previously prepared onto the initially deposited low resistivity AZO films; simultaneously, the surface of the low resistivity films was slightly etched. However, the obtained very high haze value in the range from the near ultraviolet to visible light in the scrambled egg-like surface-textured AZO films did not contribute significantly to the obtainable photovoltaic properties in the solar cells fabricated using the films. Significant light scattering properties as well as a low sheet resistance could be achieved in the double surface-textured AZO films. In addition, a significant improvement of external quantum efficiency in the range from the near ultraviolet to visible light was achieved in superstrate-type n-i-p μc-Si:H solar cells fabricated using a double surface-textured AZO film prepared under optimized conditions as the transparent electrode. - Highlights: • Double surface-textured AZO films prepared using a new texture formation technique • Extensive light scattering properties with low sheet resistance achieved in the double surface-textured AZO films • Improved external quantum efficiency of μc-Si:H solar cells using a double surface-textured AZO film.

  9. Amorphous Solid Water:

    DEFF Research Database (Denmark)

    Wenzel, Jack; Linderstrøm-Lang, C. U.; Rice, Stuart A.

    1975-01-01

    The structure factor of amorphous solid D2O deposited from the vapor at 10°K has been obtained by measuring the neutron diffraction spectrum in the wave vector transfer from 0.8 to 12.3 reciprocal angstroms. The results indicate that the phase investigated is amorphous and has a liquiid-like stru......The structure factor of amorphous solid D2O deposited from the vapor at 10°K has been obtained by measuring the neutron diffraction spectrum in the wave vector transfer from 0.8 to 12.3 reciprocal angstroms. The results indicate that the phase investigated is amorphous and has a liquiid...

  10. Preparation of Si3N4 Form Diatomite via a Carbothermal Reduction-Nitridation Process

    Science.gov (United States)

    Ma, Bin; Huang, Zhaohui; Mei, Lefu; Fang, Minghao; Liu, Yangai; Wu, Xiaowen; Hu, Xiaozhi

    2016-05-01

    Si3N4 was produced using diatomite and sucrose as silicon and carbon sources, respectively. The effect of the C/SiO2 molar ratio, heating temperature and soaking time on the morphology and phase compositions of the final products was investigated by scanning electron microscopy, x-ray diffraction analysis and energy dispersive spectroscopy. The phase equilibrium relationships of the system at different heating temperatures were also investigated based on the thermodynamic analysis. The results indicate that the phase compositions depended on the C/SiO2 molar ratio, heating temperature and soaking time. Fabrication of Si3N4 from the precursor via carbothermal reduction nitridation was achieved at 1550°C for 1-8 h using a C/SiO2 molar ratio of 3.0. The as-prepared Si3N4 contained a low amount of Fe3Si (<1 wt.%).

  11. Thermal transport in amorphous materials: a review

    Science.gov (United States)

    Wingert, Matthew C.; Zheng, Jianlin; Kwon, Soonshin; Chen, Renkun

    2016-11-01

    Thermal transport plays a crucial role in performance and reliability of semiconductor electronic devices, where heat is mainly carried by phonons. Phonon transport in crystalline semiconductor materials, such as Si, Ge, GaAs, GaN, etc, has been extensively studied over the past two decades. In fact, study of phonon physics in crystalline semiconductor materials in both bulk and nanostructure forms has been the cornerstone of the emerging field of ‘nanoscale heat transfer’. On the contrary, thermal properties of amorphous materials have been relatively less explored. Recently, however, a growing number of studies have re-examined the thermal properties of amorphous semiconductors, such as amorphous Si. These studies, which included both computational and experimental work, have revealed that phonon transport in amorphous materials is perhaps more complicated than previously thought. For instance, depending on the type of amorphous materials, thermal transport occurs via three types of vibrations: propagons, diffusons, and locons, corresponding to the propagating, diffusion, and localized modes, respectively. The relative contribution of each of these modes dictates the thermal conductivity of the material, including its magnitude and its dependence on sample size and temperature. In this article, we will review the fundamental principles and recent development regarding thermal transport in amorphous semiconductors.

  12. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    Science.gov (United States)

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  13. [Solcoseryl--new preparation for the pathogenetic treatment of patients with paroxysmal forms of cerebrovascular pathology].

    Science.gov (United States)

    Rudenko, A Iu; Bashkirova, L M

    2003-01-01

    The central goal of the investigation was to study Solcoseryl (SolcoSwitzerland) therapeutic efficacy for patients suffering from early or chronic cerebrovascular diseases complicated with different forms of paroxysms. 29 patients were examined. (14 of them were with vegetovascular dystonia, 7 with discirculatory encephalopathy of degree of 1 and 8 with discirculatory encephalopathy of degree of II). The authors revealed Solcoseryl to be positive in decreasing incidence and duration of vegetovascular fits, complaints, pathologic symptoms.

  14. Crystallization from microemulsions ? a novel method for the preparation of new crystal forms of aspartame

    Science.gov (United States)

    Füredi-Milhofer, Helga; Garti, N.; Kamyshny, A.

    1999-03-01

    Solubilization and crystallization of the artificial sweetener aspartame (APM), in water/isooctane microemulsions stabilized with sodium diisooctyl sulfosuccinate (AOT) has been investigated. The amount of aspartame that could be solubilized depended primarily on the amount of surfactant and on the temperature. The maximum AOT/aspartame molar ratio at the w/o interface is shown to be 6.2 at 25°C. It was concluded that the dipeptide is located at the w/o interface interspersed between surfactant molecules and that it acts as a cosurfactant. A new crystal form, APM III, was obtained by cooling of hot w/isooctane/AOT microemulsions containing solubilized aspartame. The new crystal form exhibits a distinct X-ray diffraction powder pattern, as well as changes in the FTIR spectra, thermogravimetric and DSC patterns. H-NMR spectra of APM III dissolved in D 2O were identical to the spectrum of commercial aspartame recorded under the same conditions. The new crystal form has greatly improved dissolution kinetics.

  15. Innovative Technology for Preparation of Seamless Nitinol Tubes Using SHS Without Forming

    Science.gov (United States)

    Salvetr, Pavel; Pecenová, Zuzana; Školáková, Andrea; Novák, Pavel

    2017-04-01

    This paper presents innovative technology for the production of seamless Ni-Ti tubes using self-propagating high-temperature synthesis (SHS). The proposed production technology is a unique method which removes the need of forming operations, reduces machining processes, and at the same time it eliminates the negatives of production Ni-Ti alloys by conventional melting methods. The proposed process consists in SHS reaction in evacuated silica tube with the use of extremely high heating rate (over 300 K min-1).

  16. Innovative Technology for Preparation of Seamless Nitinol Tubes Using SHS Without Forming

    Science.gov (United States)

    Salvetr, Pavel; Pecenová, Zuzana; Školáková, Andrea; Novák, Pavel

    2017-01-01

    This paper presents innovative technology for the production of seamless Ni-Ti tubes using self-propagating high-temperature synthesis (SHS). The proposed production technology is a unique method which removes the need of forming operations, reduces machining processes, and at the same time it eliminates the negatives of production Ni-Ti alloys by conventional melting methods. The proposed process consists in SHS reaction in evacuated silica tube with the use of extremely high heating rate (over 300 K min-1).

  17. Characterizing and Cataloguing Star-Forming Galaxies in Preparation for the LADUMA Survey

    Science.gov (United States)

    Perez, Manuel Joe; Baker, Andrew J.; Wu, John F.

    2017-01-01

    This poster presents the results of an effort to process, characterize, and catalog the optical spectra of ~ 1,500 star-forming galaxies, located in the Extended Chandra Deep Field South (ECDFS), which will be used in stacking experiments by the Looking At the Distant Universe with the MeerKAT Array (LADUMA) deep HI survey. The LADUMA HI data will be used to study the evolution of the Tully-Fisher relation, cosmic neutral gas density, and other intrinsic properties of galaxies as a function of redshift. The stacking component of this research will rely on large catalogs of star-forming galaxies in the ECDFS, categorized according to star-formation rate (SFR), metallicity, stellar color excess, and redshift. We used optical spectra obtained with the Anglo-Australian Telescope, for which we have developed an automated pipeline to calculate extinction-corrected line fluxes, SFRs, and various metallicity diagnostics. The pipeline ultimately provides a visualization of the objects and their intrinsic properties as related to redshift for future analysis by the LADUMA team. This work has been supported by NSF grant PHY-1560077.

  18. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  19. Structural Evolution of Compressing Amorphous Ice

    Institute of Scientific and Technical Information of China (English)

    WANG Yan; DONG Shun-Le

    2007-01-01

    Molecular dynamics simulation is employed to study structural evolution during compressing low density amorphous ice from one atmosphere to 2.5 GPa.The calculated results show that high density amorphous ice is formed under intermediate pressure of about 1.0 GPa and O-O-O angle ranges from about 83°to 113°and O-H……O is bent from 112°to 160°.The very high density amorphous ice is also formed under the pressure larger than 1.4 GPa and interstitial molecules are found in 0.3-0.4 (A) just beyond the nearest O-O distance.Low angle O-H……O disappears and it is believed that these hydrogen bonds are broken or re-bonded under high pressures.

  20. Determination of tacrolimus crystalline fraction in the commercial immediate release amorphous solid dispersion products by a standardized X-ray powder diffraction method with chemometrics.

    Science.gov (United States)

    Rahman, Ziyaur; Siddiqui, Akhtar; Bykadi, Srikant; Khan, Mansoor A

    2014-11-20

    Clinical performance of an amorphous solid dispersion (ASD) drug product is related to the amorphous drug content because of the greater bioavailability of this form of the drug than its crystalline form. Therefore, it is paramount to monitor the amorphous and the crystalline fractions in the ASD products. The objective of the present investigation was to study the feasibility of using a standardized X-ray powder diffraction (XRPD) in conjunction with chemometric methods to quantitate the amorphous and crystalline fraction of the drug in several tacrolimus ASD products. Three ASD products were prepared in which drug to excipients ratios ranged from 1:19 to 1:49. The amorphous and crystalline drug products were mixed in various proportions so that amorphous/crystalline tacrolimus in the samples vary from 0 to 100%. XRPD of the samples of the drug products were collected, and PLSR and PCR chemometric methods were applied to the data. The R(2) was greater than '0.987' for all the models and bias in the models were statistically insignificant (p>0.05). RMSEP and SEP values were smaller for PLSR models than PCR models. The models prediction capabilities were good and can predict as low as 10% when drug to excipient ratio is as high as 1:49. In summary, XRPD and chemometric provide powerful analytical tools to monitor the crystalline fractions of the drug in the ASD products.

  1. Novel methods of powder preparation and ceramic forming for improving reliability of multilayer ceramic actuators

    Science.gov (United States)

    Near, Craig D.; Dawson, William J.; Swartz, Scott L.; Issartel, Jean P.

    1993-07-01

    Critical components of many smart systems employ multilayer piezoelectric actuators based on lead zirconate titanate (PZT) ceramics. Applications include active vibration systems, noise suppression, acoustic camouflage, actuated structures, reconfigurable surfaces, and structural health monitoring. Two strategies involving novel materials processing techniques are discussed for improving the performance and reliability of PZT ceramic components. The first is the use of an advanced powder synthesis, which was recently developed for a range of DoD specification materials. The second strategy involves two improved ceramic manufacturing routes designed to replace the current tape casting and co-firing method. One is the use of roll- compaction for tape forming. The other is the application of the infiltrated electrode approach. Both of these methods provide improved electrical and mechanical performances and superior reliability.

  2. Preparation of porous microsphere-scaffolds by electrohydrodynamic forming and thermally induced phase separation

    Energy Technology Data Exchange (ETDEWEB)

    Ghanbar, Hanif; Luo, C.J.; Bakhshi, Poonam [Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom); Day, Richard [Division of Medicine, University College London, Rockefeller Building, 21 University Street, London, WC1E 6JJ (United Kingdom); Edirisinghe, Mohan, E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom)

    2013-07-01

    The availability of forming technologies able to mass produce porous polymeric microspheres with diameters ranging from 150 to 300 μm is significant for some biomedical applications where tissue augmentation is required. Moreover, appropriate assembly of microspheres into scaffolds is an important challenge to enable direct usage of the as-formed structures in treatments. This work reports the production of poly (glycolic-co-lactic acid) and poly (ε-caprolactone) microspheres under ambient conditions using one-step electrohydrodynamic jetting (traditionally known as atomisation) and thermally induced phase separation (TIPS). To ensure robust production for practical uses, this work presents 12 comprehensive parametric mode mappings of the diameter distribution profiles of the microspheres obtained over a broad range of key processing parameters and correlating of this with the material parameters of 5 different polymer solutions of various concentrations. Poly (glycolic-co-lactic acid) (PLGA) in Dimethyl carbonate (DMC), a low toxicity solvent with moderate conductivity and low dielectric constant, generated microspheres within the targeted diameter range of 150–300 μm. The fabrication of the microspheres suitable for formation of the scaffold structure is achieved by changing the collection method from distilled water to liquid nitrogen and lyophilisation in a freeze dryer. Highlights: ► EHDA is a unique method for production of the desired size of microspheres. ► Polymer solution properties are used to tailor the size distribution of spheres. ► Process control parameters (flow rate and applied voltage) are key in size control. ► Combination of EHDA with TIPS provides porous microspheres for assembly of scaffold.

  3. Characterization and Hydrodesulfurization Properties of Catalysts Derived from Amorphous Metal-boron Materials

    Energy Technology Data Exchange (ETDEWEB)

    Parks, Greg; Pease, Melissa; Layman, Kathryn A.; Burns, Autumn W.; Bussell, Mark E.; Wang, Xianqin; Hanson, Jonathan; Rodriguez, Jose A.

    2007-01-22

    Unsupported and silica-supported amorphous metal-boron materials (Ni-B, Mo-O-B, and Ni-Mo-O-B) were prepared by NaBH4 reduction of aqueous or impregnated metal salts. The resulting materials were characterized by a range of techniques, including conventional and time-resolved X-ray diffraction. The latter technique was used to determine the onset of crystallization of the amorphous materials during annealing in He flow and to identify the phases formed. Annealing of unsupported Ni-B resulted in the crystallization of predominantly Ni3B, followed by Ni metal, whereas Ni-B/SiO2 formed Ni and then NiO. There was no evidence for crystallization of B-containing phases for Mo-O-B or Mo-O-B/SiO2 on annealing; instead, the predominant phase formed was MoO2. In general, the phases formed for Ni-Mo-O-B and Ni-Mo-O-B/SiO2 were consistent with those formed in the monometallic materials, but at higher annealing temperatures. Catalysts prepared by sulfiding Ni-B/SiO2 and Ni-Mo-O-B/SiO2 materials had significantly higher thiophene HDS activities than conventionally prepared sulfided Ni/SiO2 and Ni-Mo/SiO2 catalysts, whereas a sulfided Mo-O-B/SiO2 catalyst had a dramatically lower HDS activity than a sulfided Mo/SiO2 catalyst.

  4. Preparation and analysis of chemically gradient functional bioceramic coating formed by pulsed laser deposition.

    Science.gov (United States)

    Rajesh, P; Muraleedharan, C V; Sureshbabu, S; Komath, Manoj; Varma, Harikrishna

    2012-02-01

    Bioactive ceramic coatings based on calcium phosphates yield better functionality in the human body for a variety of metallic implant devices including orthopaedic and dental prostheses. In the present study chemically and hence functionally gradient bioceramic coating was obtained by pulsed laser deposition method. Calcium phosphate bioactive ceramic coatings based on hydroxyapatite (HA) and tricalcium phosphate (TCP) were deposited over titanium substrate to produce gradation in physico-chemical characteristics and in vitro dissolution behaviour. Sintered targets of HA and α-TCP were deposited in a multi target laser deposition system. The obtained deposits were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. Inductively coupled plasma spectroscopy was used to estimate the in vitro dissolution behaviour of coatings. The variation in mechanical property of the gradient layer was evaluated through scratch test and micro-indentation hardness. The bioactivity was examined in vitro with respect to the ability of HA layer to form on the surface as a result of contact with simulated body fluid. It could be inferred that chemically gradient functional bioceramic coating can be produced by laser deposition of multiple sintered targets with variable chemical composition.

  5. Preparation, Characterization and Thermal Properties of Paraffin Wax – Expanded Perlite Form-Stable Composites for Latent Heat Storage

    Directory of Open Access Journals (Sweden)

    Tugba GURMEN OZCELIK

    2017-02-01

    Full Text Available In this study, form-stable composite phase change materials (PCM for latent heat storage were prepared by impregnating paraffin wax into the pores of the expanded perlite (EP. The characterization of the composite PCMs was performed by FTIR, TGA, SEM and DSC analysis. The melting point and heat of fusion were determined for 25 % paraffin included composite, as 54.3 °C and 94.71 J/g and for 45 % paraffin included composite as 53.6 °C and 106.69 J/g, respectively. The FTIR results showed that there were no chemical reaction between the perlite and paraffin. TGA analysis indicated that both composite PCMs had good thermal stability. SEM images showed that the paraffin was dispersed uniformly into the pores and on the EP surface. There was no leakage and degradation at the composite PCMs after heating and cooling cycles. According to the results, both prepared composites showed good thermal energy storage properties, reliability and stability. All results suggested that the presented form- stable composite PCMs has great potential for thermal energy storage applications.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.13661

  6. Annealing crystallization and catalytic activity of ultrafine NiB amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Annealing crystallization of ultrafine NiB amorphous alloy prepared by the chemical reduction method was studied by DTA,XRD and XAFS techniques. The XRD and XAFS results have revealed that the crystallization process of ultrafine NiB amorphous alloy proceeds in two steps. First,ultrafine NiB amorphous alloy is crystallized to form metastable nanocrystalline Ni3B at an annealing temperature of 325℃. Second,the nanocrystalline Ni3B is further decom-posed into crystalline Ni at 380℃ or higher tempera ture,the local structure around Ni atoms in resultant product is similar to that in Ni foil. It was found that the catalytic ac-tivity of nanocrystalline Ni3B for benzene hydrogenation is much higher than that of ultrafine NiB amorphous alloy or crystalline Ni. The result indicates that the active sites of nanocrystalline Ni3B for benzene hydrogenation are com-posed of both Ni and B with proper geometry configuration.

  7. LOW TEMPERATURE OPTICAL PROPERTIES OF AMORPHOUS OXIDE NANOCLUSTERS IN POLYMETHYL METHACRYLATE MATRIX

    Institute of Scientific and Technical Information of China (English)

    V. V. VOLKOV; WANG ZHONG-LIN; Zou BING-SUO; XIE SI-SHEN

    2000-01-01

    We studied the temperature-dependent steady-state and time-resolved fluorescence properties of very small (1-2 nm) ZnO, CdO, and PbO amorphous nanoclusters prepared in AOT reverse micelles and imbedded in polymethyl methacrylate(PMMA) films. X-ray diffraction and electron diffraction and imaging indicate that these structures are amorphous. These amorphous oxide nanoclusters demonstrate similar structural, electronic, and optical properties. Properties of steady-state fluorescence spectra indicate the unique localization of electronic states due to the amorphous structure. ZnO and CdO show double-band fluorescence structure, which is due to the spin-orbital splitting, similar to Cu2O. Time-resolved fluorescence studies of the nanoclusters in the polymer reveal two lifetime components, as found in solution. The slow component reflects relaxation processes from band-tail states while the fast component may be related to high-lying extended states. The temperature dependence of fast fluorescence component reveals the presence of exciton hopping between anharmonic wells at temperatures higher than 200K. We correlate the barrier height between two wells formed around local atoms with the inter-atomic distance and bond ionicity.

  8. Microstructure and properties of hydrophobic films derived from Fe-W amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    Song Wang; Yun-han Ling; Jun Zhang; Jian-jun Wang; Gui-ying Xu

    2014-01-01

    Amorphous metals are totally different from crystalline metals in regard to atom arrangement. Amorphous metals do not have grain boundaries and weak spots that crystalline materials contain, making them more resistant to wear and corrosion. In this study, amorphous Fe-W alloy films were first prepared by an electroplating method and were then made hydrophobic by modification with a water repellent (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. Hierarchical micro-nano structures can be obtained by slightly oxidizing the as-deposited alloy, accompanied by phase transformation from amorphous to crystalline during heat treatment. The mi-cro-nano structures can trap air to form an extremely thin cushion of air between the water and the film, which is critical to producing hydrophobicity in the film. Results show that the average values of capacitance, roughness factor, and impedance for specific surface areas of a 600°C heat-treated sample are greater than those of a sample treated at 500°C. Importantly, the coating can be fabricated on various metal substrates to act as a corrosion retardant.

  9. Corrosion behavior of amorphous/nanocrystalline Al-Cr-Fe film deposited by double glow plasmas technique

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In order to improve the corrosion resistance of AZ31 magnesium alloy,the amorphous/nanocrystal Al-Cr-Fe film has been successfully prepared on AZ31 magnesium alloy by double glow plasma tech-nology.The amorphous/nanocrystalline consists of two different regions,i.e.,an amorphous layer on outmost surface and an underlying lamellar nanocrystalline layer with a grain size of less than 10 nm.The corrosion behavior of amorphous/nanocrystalline Al-Cr-Fe film in 3.5% NaCl solution is investi-gated using an electrochemical polarization measurement.Compared with the AZ31 magnesium alloy,the amorphous/nanocrystalline Al-Cr-Fe film exhibits more positive corrosion potentials and lower corrosion current densities than that of AZ31 magnesium alloy.XPS measurement reveals that the passive film formed on the Al-Cr-Fe film after the anodic polarization tests is strongly enriched in Cr2O3,Fe2O3 and Al2O3 at outer surface of the film and in the inner layer consists of Cr2O3,FeO and Al2O3.

  10. Structural morphology of amorphous conducting carbon film

    Indian Academy of Sciences (India)

    P N Vishwakarma; V Prasad; S V Subramanyam; V Ganesan

    2005-10-01

    Amorphous conducting carbon films deposited over quartz substrates were analysed using X-ray diffraction and AFM technique. X-ray diffraction data reveal disorder and roughness in the plane of graphene sheet as compared to that of graphite. This roughness increases with decrease in preparation temperature. The AFM data shows surface roughness of carbon films depending on preparation temperatures. The surface roughness increases with decrease in preparation temperature. Also some nucleating islands were seen on the samples prepared at 900°C, which are not present on the films prepared at 700°C. Detailed analysis of these islands reveals distorted graphitic lattice arrangement. So we believe these islands to be nucleating graphitic. Power spectrum density (PSD) analysis of the carbon surface indicates a transition from the nonlinear growth mode to linear surface-diffusion dominated growth mode resulting in a relatively smoother surface as one moves from low preparation temperature to high preparation temperature. The amorphous carbon films deposited over a rough quartz substrate reveal nucleating diamond like structures. The density of these nucleating diamond like structures was found to be independent of substrate temperature (700–900°C).

  11. Self-Climbed Amorphous Carbon Nanotubes Filled with Transition Metal Oxide Nanoparticles for Large Rate and Long Lifespan Anode Materials in Lithium Ion Batteries.

    Science.gov (United States)

    Li, Shuoyu; Liu, Yuyi; Guo, Peisheng; Wang, Chengxin

    2017-08-16

    A composed material of amorphous carbon nanotubes (ACNTs) and encapsulated transition metal oxide (TMOs) nanoparticles was prepared by a common thermophysics effect, which is named the Marangoni effect, and a simple anneal process. The prepared ropy solution would form a Marangoni convection and climb into the channel of anodic aluminum oxide template (AAO) spontaneously. The ingenious design of the preparation method determined a distinctive structure of TMOs nanoparticles with a size of ∼5 nm and amorphous carbon coated outside full in the ACNTs. Here we prepared the ferric oxide (Fe2O3) nanoparticles and Fe2O3 mixed with manganic oxide (Fe2O3&Mn2O3) nanoparticles encapsulated in ACNTs as two anode materials of lithium ion batteries' the TMOs-filled ACNTs presented an evolutionary electrochemical performance in some respects of highly reversible capacity and excellent cycling stability (880 mA h g(-1) after 150 cycles).

  12. Structure of amorphous sulfur

    CSIR Research Space (South Africa)

    Eichinger, BE

    2001-06-01

    Full Text Available The lambda-transition of elemental sulfur occurring at about 159°C has long been associated with the conversion of cyclic S8 rings (c-S8) to amorphous polymer (a-S) via a ring opening polymerization. It is demonstrated, with the use of both density...

  13. Effect of particle size on microstructure and strength of porous spinel ceramics prepared by pore-forming in situ technique

    Indian Academy of Sciences (India)

    Wen Yan; Nan Li; Yuanyuan Li; Guangping Liu; Bingqiang Han; Juliang Xu

    2011-08-01

    The porous spinel ceramics were prepared from magnesite and bauxite by the pore-forming in situ technique. The characterization of porous spinel ceramics was determined by X-ray diffractometer (XRD), scanning electron microscopy(SEM), mercury porosimetry measurement etc and the effects of particle size on microstructure and strength were investigated. It was found that particle size affects strongly on the microstructure and strength. With decreasing particle size, the pore size distribution occurs from multi-peak mode to bi-peak mode, and lastly to mono-peak mode; the porosity decreases but strength increases. The most apposite mode is the specimens from the grinded powder with a particle size of 6.53 m, which has a high apparent porosity (40%), a high compressive strength (75.6MPa), a small average pore size (2.53 m) and a homogeneous pore size distribution.

  14. Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea

    Energy Technology Data Exchange (ETDEWEB)

    Mou Zhigang [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Chen Xiaoye [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123 (China); Du Yukou; Wang Xiaomei [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Yang Ping, E-mail: pyang@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Wang Suidong, E-mail: wangsd@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123 (China)

    2011-12-15

    Nitrogen doped graphene was synthesized from graphite oxide and urea by thermal solid-state reaction. The samples were characterized by transmission electron microscopy, atomic force microscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectra, element analysis, and electrical conductivity measurement. The results reveal that there is a gradual thermal transformation of nitrogen bonding configurations from amide form nitrogen to pyrrolic, then to pyridinic, and finally to 'graphitic' nitrogen in graphene sheets with increasing annealing temperature from 200 to 700 Degree-Sign C. The products prepared at 600 Degree-Sign C and 700 Degree-Sign C show that the quantity of nitrogen incorporated into graphene lattice is {approx}10 at.% with simultaneous reduction of graphite oxide. Oxygen-containing functional groups in graphite oxide are responsible for the doping reaction to produce nitrogen doped graphene.

  15. Preparation technology and anti-corrosion performances of black ceramic coatings formed by micro-arc oxidation on aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    CHEN Ling; HAN Jing; YU Shengxue

    2006-01-01

    In order to prepare ornamental and anti-corrosive coating on aluminum alloys, preparation technology of black micro-arc ceramic coatings on Al alloys in silicate based electrolyte was studied.The influence of content of Na2WO4 and combination additive in solution on the performance of black ceramic coatings was studied; the anticorrosion performances of black ceramic coatings were evaluated through whole-immersion test and electrochemical method in 3.5% NaCl solution at different pH value; SEM and XRD were used to analyze the surface morphology and phase constitutes of the black ceramic coatings.Experimental results indicated that, without combination additives, with the increasing of Na2WO4 content in the electrolyte, ceramic coating became darker and thicker, but the color was not black; after adding combination additive, the coating turned to be black; the black ceramic coating was multi-hole form in surface.There was a small quantity of tungsten existing in the black ceramic coating beside α-Al2O3 phase and β-Al2O3 phase.And aluminum alloy with black ceramic coating exhibited excellent anti-corrosion property in acid, basic and neutral 3.5% NaCl solution.

  16. THE SURFACE STRUCTURAL AND MECHANICAL PROPERTIES OF THE AMORPHOUS CO22Y54AL24 RIBBON

    Directory of Open Access Journals (Sweden)

    Anna Bukowska

    2013-09-01

    Full Text Available The aim of this study was to manufacture amorphous Co22Y54Al24 alloy in a form of thin ribbons and to investigate their properties. The investigated ribbons were prepared by rapid solidification of molten metal on a rotating copper cylinder (melt-spinning. In order to obtain the material with amorphous structure, the cooling rate of the liquid alloy should vary in a range from 104 to 106 K/s. The microstructure studies were performed using X-ray diffractometery. The mechanical properties were investigated by metallographic studies, micro-hardness and tribological resistance tests moreover the surface roughness profile were analyzed. All studies were performed for two sides of tapes, since the differences in ribbons surface, related with manufacturing process, are clearly visible. The surface from the bottom (drum side was glossy and from the top side it was shiny.

  17. Glass transition phenomena applied to powdered amorphous food carbohydrates

    OpenAIRE

    Ronkart, Sebastien N; Blecker, Christophe; Deroanne, Claude; Paquot, Michel

    2009-01-01

    Glass transition phenomena applied to powdered amorphous food carbohydrates. During these last fifteen years, some food technologists and scientists have become aware of the importance of the glass transition, a thermal property of glassy or amorphous material, in food preparation processes. Recent studies have successfully correlated this fundamental notion to technofunctional changes within the powder. The aim of this paper is to present in a non exhaustive manner the relationship between g...

  18. Structures of surface and interface of amorphous ice

    Science.gov (United States)

    Kumagai, Yu; Ikeda-Fukazawa, Tomoko

    2017-06-01

    To investigate the surface structure, we performed molecular dynamics calculations of amorphous ice. The result shows that a low density layer, which forms a few hydrogen bonds with weaker strength, exists in the surface. Furthermore, the sintering processes were simulated to investigate the structure of grain boundary formed from the adsorption of two surfaces. The result indicates that a low density region exists in a boundary between amorphous ice grains. The structures of surface and interface of amorphous ice have important implications for adsorption, diffusion, and chemical reaction in ice grains of interstellar molecular clouds.

  19. Preparation and properties of amorphous FeCo alloy nanoparticles/natural rubber composites%铁钴纳米合金/天然橡胶复合材料制备及性能研究

    Institute of Scientific and Technical Information of China (English)

    王凤平; 薛行华; 马立胜; 蔡静瑶; 符新

    2011-01-01

    采用液相还原法制备铁钴合金纳米粒子(nano-FeCo),通过不同的制备工艺与天然胶乳共混,制备铁钴纳米合金/天然橡胶复合材料(NR/nano-FeCo).利用X射线衍射仪(XRD)和透射电子显微镜(TEM)对样品结构进行表征.并考察了复合材料的力学性能及不同制备工艺对复合材料性能的影响.结果表明,液相还原法制备的nano-FeCo粒子为无定形结构,粒径约为70 nm.在天然橡胶(NR)基体中分散均匀,分散相粒径在100 nm左右;随着纳米粒子的加入,有效地提高了复合材料的力学性能,同时,可提高NR的热老化性能.NR/nano-FeCo的最佳制备工艺是乳液共混法.%FeCo alloy nanoparticles(nano-FeCo) were synthesized by reduction process in liquid phase. Then the nano-FeCo particles were coagulated with natural rubber latex to prepare FeCo alloy nanoparticles/natural rubber composites(NR/nano-FeCo). The structure and properties of the samples were investigated by X-ray powder diffraction(XRD) and transmission electron microscopy (TEM). And its mechanical properties and different processes were studied. The results showed that nano-FeCo particles are amorphous. The average size of the particles is about 70nm. The nano-FeCo particles are homogenously distributed throughout NR matrix, and the particle size of disperse phase is about 100 nm. The mechanical properties of composites are effectively improved with the addition of nanoparticles. Thermal aging property of NR are also improved with the addition of nanoparticles. The best process is emulsion coagulation method.

  20. Systems and Methods for Fabricating Objects Including Amorphous Metal Using Techniques Akin to Additive Manufacturing

    Science.gov (United States)

    Hofmann, Douglas (Inventor)

    2017-01-01

    Systems and methods in accordance with embodiments of the invention fabricate objects including amorphous metals using techniques akin to additive manufacturing. In one embodiment, a method of fabricating an object that includes an amorphous metal includes: applying a first layer of molten metallic alloy to a surface; cooling the first layer of molten metallic alloy such that it solidifies and thereby forms a first layer including amorphous metal; subsequently applying at least one layer of molten metallic alloy onto a layer including amorphous metal; cooling each subsequently applied layer of molten metallic alloy such that it solidifies and thereby forms a layer including amorphous metal prior to the application of any adjacent layer of molten metallic alloy; where the aggregate of the solidified layers including amorphous metal forms a desired shape in the object to be fabricated; and removing at least the first layer including amorphous metal from the surface.

  1. Microstructural study of the crystallization of amorphous Fe–Sn–B ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Maťko, Igor, E-mail: igor.matko@savba.sk [Institute of Physics, Slovak Academy of Sciences, Dúbravska cesta 9, 845 11 Bratislava (Slovakia); Illeková, Emília; Peter Švec Sr; Švec, Peter; Janičkovič, Dušan [Institute of Physics, Slovak Academy of Sciences, Dúbravska cesta 9, 845 11 Bratislava (Slovakia); Vodárek, Vlastimil [VŠB-Technical University of Ostrava, Department of Materials Engineering, 708 33 Ostrava-Poruba (Czech Republic)

    2014-12-05

    Highlights: • Amorphous Fe{sub 78}Sn{sub 5}B{sub 17} ribbons were prepared by planar flow casting. • Crystallization was studied by thermal analysis, XRD and TEM. • The crystallization begins by formation of specific nanocrystalline Fe(Sn) phase. • Role of Sn in formation of the nanocrystalline phase is discussed. • Next step of the crystallization corresponding to complex process is also analysed. - Abstract: Amorphous Fe{sub 78}Sn{sub 5}B{sub 17} ribbons were prepared by planar flow casting. The thermodynamic stability and the kinetics of observed phase transformations were monitored by thermal analysis. The structure and morphology of phases forming upon the thermally activated crystallization is studied by X-ray diffraction and transmission electron microscopy. The crystallization begins by nucleation-and-growth of specific nanocrystalline bcc-Fe(Sn) phase, its structure is explored more in details and the role of Sn in its formation is discussed. In the next step of the crystallization a transformation of remaining amorphous matrix to iron borides runs via rather complex process, which is inspected more in details as well.

  2. Study on the Phase Transformation Behavior of Nanosized Amorphous TiO2

    Institute of Scientific and Technical Information of China (English)

    Huaqing XIE; Tonggeng XI; Qinghong ZHANG; Qingren WU

    2003-01-01

    Nanosized amorphous TiO2 powders with a specific surface area of 501 m2.g-1 were prepared by hydrolysis. Aftercalcined at 400℃ for 2 h, the prepared amorphous TiO2 powders were fully transformed into anatase crystallitesthe samples of nanosized amorphous TiO2 mixed with microsized anatase, nanosized anatase, or nanosized α-Al2O3respectively. Effects of sample packing, anatase addition, or α-Al2O3 addition on the crystallization behavior ofnanosized amorphous TiO2 were analyzed.

  3. Parametrized dielectric functions of amorphous GeSn alloys

    Science.gov (United States)

    D'Costa, Vijay Richard; Wang, Wei; Schmidt, Daniel; Yeo, Yee-Chia

    2015-09-01

    We obtained the complex dielectric function of amorphous Ge1-xSnx (0 ≤ x ≤ 0.07) alloys using spectroscopic ellipsometry from 0.4 to 4.5 eV. Amorphous GeSn films were formed by room-temperature implantation of phosphorus into crystalline GeSn alloys grown by molecular beam epitaxy. The optical response of amorphous GeSn alloys is similar to amorphous Ge and can be parametrized using a Kramers-Kronig consistent Cody-Lorentz dispersion model. The parametric model was extended to account for the dielectric functions of amorphous Ge0.75Sn0.25 and Ge0.50Sn0.50 alloys from literature. The compositional dependence of band gap energy Eg and parameters associated with the Lorentzian oscillator have been determined. The behavior of these parameters with varying x can be understood in terms of the alloying effect of Sn on Ge.

  4. Properties of amorphous carbon

    CERN Document Server

    2003-01-01

    Amorphous carbon has a wide range of properties that are primarily controlled by the different bond hydridisations possible in such materials. This allows for the growth of an extensive range of thin films that can be tailored for specific applications. Films can range from those with high transparency and are hard diamond-like, through to those which are opaque, soft and graphitic-like. Films with a high degree of sp3 bonding giving the diamond-like properties are used widely by industry for hard coatings. Application areas including field emission cathodes, MEMS, electronic devices, medical and optical coatings are now close to market. Experts in amorphous carbon have been drawn together to produce this comprehensive commentary on the current state and future prospects of this highly functional material.

  5. A study of the crystallisation of amorphous salbutamol sulphate using water vapour sorption and near infrared spectroscopy.

    Science.gov (United States)

    Columbano, Angela; Buckton, Graham; Wikeley, Philip

    2002-04-26

    The crystallisation of amorphous salbutamol sulphate prepared by spray drying was monitored using a humidity controlled microbalance (Dynamic Vapour Sorption apparatus, Surface Measurement Systems) combined with a near-infrared probe. Amorphous salbutamol sulphate was prepared by spray drying from a solution in water. The particles were then analysed using scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, powder X-ray diffraction, isothermal microcalorimetry and water vapour sorption analysis combined with near-infrared spectroscopy (NIR). Isothermal microcalorimetry and water vapour sorption combined with NIR spectroscopy were able to detect the transition from the amorphous to crystalline state. However while the isothermal microcalorimeter showed only a classic crystallisation exotherm when the material was exposed at 75% RH, the DVS-NIR results at the same humidity highlighted a more complex process. When exposed at 75% RH, the uptake of water was followed by crystallisation that was detected using NIR. The expulsion of water after crystallisation was very slow and at a constant rate whether the material was exposed to 75 or 0% RH. The NIR and DVS studies indicated that the material had crystallised very soon after exposure to high RH. The water that was expelled during crystallisation was not displaced from the particles and remained associated with the particles for many days. This study showed that the use of gravimetric analysis together with NIR spectroscopy provided valuable information on the dynamics of the crystallisation of salbutamol sulphate. The retention of water within recently crystallised salbutamol is potentially important to the behaviour of dosage forms containing the amorphous (or partially amorphous) form of this drug.

  6. Amorphous solid dispersions of piroxicam and Soluplus(®): Qualitative and quantitative analysis of piroxicam recrystallization during storage.

    Science.gov (United States)

    Lust, Andres; Strachan, Clare J; Veski, Peep; Aaltonen, Jaakko; Heinämäki, Jyrki; Yliruusi, Jouko; Kogermann, Karin

    2015-01-01

    The conversion of active pharmaceutical ingredient (API) from amorphous to crystalline form is the primary stability issue in formulating amorphous solid dispersions (SDs). The aim of the present study was to carry out qualitative and quantitative analysis of the physical solid-state stability of the SDs of poorly water-soluble piroxicam (PRX) and polyvinyl caprolactam-polyvinyl acetate-polyethylene-glycol graft copolymer (Soluplus(®)). The SDs were prepared by a solvent evaporation method and stored for six months at 0% RH/6 °C, 0% RH/25 °C, 40% RH/25 °C and 75% RH/25 °C. Fourier transform infrared spectroscopy equipped with attenuated total reflection accessory (ATR-FTIR) and Raman spectroscopy were used for characterizing the physical solid-state changes and drug-polymer interactions. The principal component analysis (PCA) and multivariate curve resolution alternating least squares (MCR-ALS) were used for the qualitative and quantitative analysis of Raman spectra collected during storage. When stored at 0% RH/6 °C and at 0% RH/25 °C, PRX in SDs remained in an amorphous form since no recrystallization was observed by ATR-FTIR and Raman spectroscopy. Raman spectroscopy coupled with PCA and MCR-ALS and ATR-FTIR spectroscopy enabled to detect the recrystallization of amorphous PRX in the samples stored at higher humidity.

  7. Size-independent shear band formation in amorphous nanowires made from simulated casting

    Science.gov (United States)

    Shi, Yunfeng

    2010-03-01

    Molecular dynamics simulations indicate that surfaces strongly influence the strain localization behavior of amorphous nanowires in tension. A sample preparation routine that simulates casting was employed to facilitate the relaxation of the sample surface. Samples as short as 15 nm (7.5 nm in diameter) form dominant shear bands during deformation. The elastic energy release during plastic deformation is sufficient to provide the excess potential energy required for the shear band nucleation at rather small sample sizes. The results show that shear band formation is almost size-independent and is bounded only by its own length scale.

  8. The Slow Relaxation Dynamics in the Amorphous Pharmaceutical Drugs Cimetidine, Nizatidine, and Famotidine.

    Science.gov (United States)

    Viciosa, M Teresa; Moura Ramos, Joaquim J; Diogo, Hermínio P

    2016-12-01

    The slow molecular mobility in the amorphous solid state of 3 active pharmaceutical drugs (cimetidine, nizatidine, and famotidine) has been studied using differential scanning calorimetry and the 2 dielectric-related techniques of dielectric relaxation spectroscopy and thermally stimulated depolarization currents. The glass-forming ability, the glass stability, and the tendency for crystallization from the equilibrium melt were investigated by differential scanning calorimetry, which also provided the characterization of the main relaxation of the 3 glass formers. The chemical instability of famotidine at the melting temperature and above it prevented the preparation of the amorphous for dielectric studies. In contrast, for cimetidine and nizatidine, the dielectric study yielded the main kinetic features of the α relaxation and of the secondary relaxations. According to the obtained results, nizatidine displays the higher fragility index of the 3 studied glass-forming drugs. The thermally stimulated depolarization current technique has proved useful to identify the Johari-Goldstein relaxation and to measure τβJG in the amorphous solid state, that is, in a frequency range which is not easily accessible by dielectric relaxation spectroscopy. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Utilization of a Green Brominating Agent for the Spectrophotometric Determination of Pipazethate HCl in Pure Form and Pharmaceutical Preparations

    Directory of Open Access Journals (Sweden)

    Ayman A. Gouda

    2013-01-01

    Full Text Available Five simple, accurate, and sensitive spectrophotometric methods (A–E have been described for the indirect assay of pipazethate HCl (PZT either in pure form or in pharmaceutical preparations. The proposed methods are based on the bromination of pipazethate HCl with a solution of excess bromate-bromide mixture in hydrochloric acid medium and subsequent estimation of the residual bromine by different reaction schemes. In the first three methods (A–C, the determination of the residual bromine is based on its ability to bleach the color of methyl orange, indigo carmine, or thymol blue dyes and measuring the absorbance at 520, 610, and 550 nm for methods A, B, and C, respectively. Methods D and E involves treating the unreacted bromine with a measured excess of iron(II, and the remaining iron(II is complexed with 1,10-phenanthroline, and the increase in absorbance is measured at 510 nm for method D and the resulting iron(III is complexed with thiocyanate and the absorbance is measured at 480 nm for method E. The different experimental parameters affecting the development and stability of the color are carefully studied and optimized. Regression analysis of the Beer-Lambert plots showed good correlation in the concentration ranges of 0.5–8.0 μg . The apparent molar absorptivity, Sandell's sensitivity, detection and quantitation limits were evaluated. The proposed methods have been applied and validated successfully for the analysis of the drug in its pure form and pharmaceutical formulations with mean recoveries of 99.94%–100.15% and relative standard deviation ≤1.53. No interference was observed from a common pharmaceutical adjuvant. Statistical comparison of the results with the reference method shows excellent agreement and indicates no significant difference in accuracy and precision.

  10. HRTEM study of Popigai impact diamond: heterogeneous diamond nanostructures in native amorphous carbon matrix

    Science.gov (United States)

    Kis, Viktoria K.; Shumilova, Tatyana; Masaitis, Victor

    2016-07-01

    High-resolution transmission electron microscopy was applied for the detailed nanostructural investigation of Popigai impact diamonds with the aim of revealing the nature of the amorphous carbon of the matrix. The successful application of two complementary specimen preparation methods, focused ion beam (FIB) milling and mechanical cleavage, allowed direct imaging of nanotwinned nanodiamond crystals embedded in a native amorphous carbon matrix for the first time. Based on its stability under the electron beam, native amorphous carbon can be easily distinguished from the amorphous carbon layer produced by FIB milling during specimen preparation. Electron energy loss spectroscopy of the native amorphous carbon revealed the dominance of sp 2-bonded carbon and the presence of a small amount of oxygen. The heterogeneous size distribution and twin density of the nanodiamond crystals and the structural properties of the native amorphous carbon are presumably related to non-graphitic (organic) carbon precursor material.

  11. Conditions for homogeneous preparation of stable monomeric and oligomeric forms of activated Vip3A toxin from Bacillus thuringiensis.

    Science.gov (United States)

    Kunthic, Thittaya; Surya, Wahyu; Promdonkoy, Boonhiang; Torres, Jaume; Boonserm, Panadda

    2016-07-29

    Bacillus thuringiensis vegetative insecticidal proteins like Vip3A have been used for crop protection and to delay resistance to existing insecticidal Cry toxins. However, little is known about Vip3A's behavior or its mechanism of action, and a structural model is required. Herein, in an effort to facilitate future crystallization and functional studies, we have used the orthogonal biophysical techniques of light scattering and sedimentation to analyze the aggregation behavior and stability of trypsin-activated Vip3A toxin in solution. Both scattering and sedimentation data suggest that at pH 10 the toxin is monomeric and adopts an elongated shape, but after overnight incubation aggregation was observed at all pH values tested (5-12). The narrowest size distribution was observed at pH 7, but it was consistent with large oligomers of ~50 nm on average. The addition of β-D-glucopyranoside (OG) helped in achieving preparations that were stable and with a narrower particle size distribution. In this case, scattering was consistent with a 4-nm monomeric globular Vip3A form. After OG dialysis, 40-nm particles were detected, with a molecular weight consistent with homotetramers. Therefore, OG is proposed as the detergent of choice to obtain a Vip3A crystal for structural studies, either before (monomers) or after dialysis (tetramers).

  12. On-chip preparation of calcium alginate particles based on droplet templates formed by using a centrifugal microfluidic technique.

    Science.gov (United States)

    Liu, Mei; Sun, Xiao-Ting; Yang, Chun-Guang; Xu, Zhang-Run

    2016-03-15

    A novel chip-based approach for the fabrication of oblate spheriodal calcium alginate particles was developed by combining the droplet template method and the centrifugal microfluidic strategy. Circular chips with multiple radial channels were designed. Sodium alginate solutions in radial channels were flung into CaCl2 solutions in the form of droplets under centrifugal force, and the droplets transformed into particles through cross-linking reaction. The size and morphology of particles could be controlled by regulating the centrifugal force, the channel geometry and the distance between the channel outlet and the CaCl2 solution. The throughput of particle production was evidently enhanced by increasing the number of radial channels to 48 and 64. The coefficients of variation of particle sizes were in the range of 5.2-5.6%, which indicated the monodisperse particles could be prepared by using the present method. With the chip configuration readily modified, the same platform could be used to produce Janus particles. The Janus particles showed clear interfaces owing to the high flight speed and the rapid gelling process of the droplets. This method would be capable of generating particles with complicated morphology and multifunction from diverse polymeric materials.

  13. Synthesis, characterization, and in-vitro cytocompatibility of amorphous β-tri-calcium magnesium phosphate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Satish S., E-mail: sss42@pitt.edu [Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Roy, Abhijit, E-mail: abr20@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Lee, Boeun, E-mail: bol11@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Banerjee, Ipsita [Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Mechanical Engineering and Materials Science, University of Pittsburgh, PA 15261 (United States)

    2016-10-01

    Biphasic mixtures of crystalline β-tricalcium magnesium phosphate (β-TCMP) and an amorphous calcium magnesium phosphate have been synthesized and reported to support enhanced hMSC differentiation in comparison to β-tricalcium phosphate (β-TCP) due to the release of increased amounts of bioactive ions. In the current study, completely amorphous β-TCMP has been synthesized which is capable of releasing increased amounts of Mg{sup 2+} and PO{sub 4}{sup 3−} ions, rather than a biphasic mixture as earlier reported. The amorphous phase formed was observed to crystallize between temperatures of 400–600 °C. The scaffolds prepared with amorphous β-TCMP were capable of supporting enhanced hMSC proliferation and differentiation in comparison to commercially available β-TCP. However, a similar gene expression of mature osteoblast markers, OCN and COL-1, in comparison to biphasic β-TCMP was observed. To further study the role of Mg{sup 2+} and PO{sub 4}{sup 3−} ions in regulating hMSC osteogenic differentiation, the capability of hMSCs to mineralize in growth media supplemented with Mg{sup 2+} and PO{sub 4}{sup 3−} ions was studied. Interestingly, 5 mM PO{sub 4}{sup 3−} supported mineralization while the addition of 5 mM Mg{sup 2+} to 5 mM PO{sub 4}{sup 3−} inhibited mineralization. It was therefore concluded that the release of Ca{sup 2+} ions from β-TCMP scaffolds also plays a role in regulating osteogenic differentiation on these scaffolds and it is noted that further work is required to more accurately determine the exact role of Mg{sup 2+} in regulating hMSC osteogenic differentiation. - Highlights: • Synthesis of amorphous Mg containing beta tricalcium phosphate ceramics • Amorphous beta TCMP supports enhanced hMSC proliferation and differentiation. • Amorphous beta TCMP shows comparable OCN and COL-1 expression to biphasic TCMP. • Presence of 5 mM Mg{sup 2+} and PO{sub 4}{sup 3−} ions in growth media inhibits hMSC mineralization.

  14. 1/F Noise in Amorphous GeTe.

    Science.gov (United States)

    1976-06-18

    AD—A035 105 NAVAL SURFACE WEAPONS CEN TeR WHITE OAK LAB SILVER SP——ETC F/S 20/12 1/F NOISE IN AMORPHOUS IElt .(U) ani 76 K P SCHARNI4O*ST UNCLASSIFIED... preparation procedure had to be used. Six millimeter long sections of amorphous GeTe of different thicknesses and widths were deposited on 10 to 20 mil...structure and have initiated an effort to improve our sample preparation procedure. Exposure of samples to ambient during transfer from one evaporator

  15. Wear Resistant Amorphous and Nanocomposite Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  16. Refining stability and dissolution rate of amorphous drug formulations

    DEFF Research Database (Denmark)

    Grohganz, Holger; Priemel, Petra A; Löbmann, Korbinian;

    2014-01-01

    amorphous counterpart is often seen as a potential solution to increase the solubility. However, amorphous systems are physically unstable. Therefore, pharmaceutical formulations scientists need to find ways to stabilise amorphous forms. Areas covered: The use of polymer-based solid dispersions is the most......Introduction: Poor aqueous solubility of active pharmaceutical ingredients (APIs) is one of the main challenges in the development of new small molecular drugs. Additionally, the proportion of poorly soluble drugs among new chemical entities is increasing. The transfer of a crystalline drug to its...... established technique for the stabilisation of amorphous forms, and this review will initially focus on new developments in this field. Additionally, newly discovered formulation approaches will be investigated, including approaches based on the physical restriction of crystallisation and crystal growth...

  17. Mechanical alloying of Cu/Al plates and preparation of bulk amorphous/nanocrystalline composite by thermoplastic deformation%搅拌摩擦法制备Cu-Al非晶/纳米晶复合材料

    Institute of Scientific and Technical Information of China (English)

    徐红霞; 段辉平; 宋洪海

    2013-01-01

    利用搅拌摩擦技术,使叠放在一起的Cu、Al板材发生强烈的热塑性变形.对搅拌区产物的显微结构分析表明:Cu、Al板材被搅拌破碎并充分混合在一起,Cu、Al元素发生扩散并实现合金化;在搅拌区中有许多尺寸> 1μm的非晶相和非晶/纳米晶复合相,非晶相的基体中含有平均尺寸约为5nm的纳米晶.热塑性变形技术不仅可用于块体金属材料的机械合金化,也可用于制备块体非晶/纳米晶复合材料.%Strong thermoplastic deformation of overlapped Cu and Al plates had been realized by stir friction processing. Transmission electron microscopy investigation on the microstructure of the stirred zone demonstrate that the Cu and Al plates are torn into shreds and well-mixed in the stirred zone. The inter-diffusion between Cu and Al shreds happens, resulting in the mechanical alloying of Cu/Al plates. There are many amorphous phases with size of more than 1 micron and amorphous/nanocrystalline composite phases in the deformation zone. The average size of the nanocrystallines surrounded by amorphous phases, is about 5 nanometers. Experimental results strongly suggest that the thermoplastic deformation technique can not only be used to do mechanical alloying for bulk metallic materials but also to fabricate bulk amorphous/crystalline materials.

  18. Health hazards due to the inhalation of amorphous silica.

    Science.gov (United States)

    Merget, R; Bauer, T; Küpper, H U; Philippou, S; Bauer, H D; Breitstadt, R; Bruening, T

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic ("thermal" or "fumed") silica, and (3) chemically or physically modified silica. According to the different physicochemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no study

  19. Hydrogel-forming microneedles prepared from "super swelling" polymers combined with lyophilised wafers for transdermal drug delivery.

    Science.gov (United States)

    Donnelly, Ryan F; McCrudden, Maelíosa T C; Zaid Alkilani, Ahlam; Larrañeta, Eneko; McAlister, Emma; Courtenay, Aaron J; Kearney, Mary-Carmel; Singh, Thakur Raghu Raj; McCarthy, Helen O; Kett, Victoria L; Caffarel-Salvador, Ester; Al-Zahrani, Sharifa; Woolfson, A David

    2014-01-01

    We describe, for the first time, hydrogel-forming microneedle arrays prepared from "super swelling" polymeric compositions. We produced a microneedle formulation with enhanced swelling capabilities from aqueous blends containing 20% w/w Gantrez S-97, 7.5% w/w PEG 10,000 and 3% w/w Na2CO3 and utilised a drug reservoir of a lyophilised wafer-like design. These microneedle-lyophilised wafer compositions were robust and effectively penetrated skin, swelling extensively, but being removed intact. In in vitro delivery experiments across excised neonatal porcine skin, approximately 44 mg of the model high dose small molecule drug ibuprofen sodium was delivered in 24 h, equating to 37% of the loading in the lyophilised reservoir. The super swelling microneedles delivered approximately 1.24 mg of the model protein ovalbumin over 24 h, equivalent to a delivery efficiency of approximately 49%. The integrated microneedle-lyophilised wafer delivery system produced a progressive increase in plasma concentrations of ibuprofen sodium in rats over 6 h, with a maximal concentration of approximately 179 µg/ml achieved in this time. The plasma concentration had fallen to 71±6.7 µg/ml by 24 h. Ovalbumin levels peaked in rat plasma after only 1 hour at 42.36±17.01 ng/ml. Ovalbumin plasma levels then remained almost constant up to 6 h, dropping somewhat at 24 h, when 23.61±4.84 ng/ml was detected. This work represents a significant advancement on conventional microneedle systems, which are presently only suitable for bolus delivery of very potent drugs and vaccines. Once fully developed, such technology may greatly expand the range of drugs that can be delivered transdermally, to the benefit of patients and industry. Accordingly, we are currently progressing towards clinical evaluations with a range of candidate molecules.

  20. Hydrogel-forming microneedles prepared from "super swelling" polymers combined with lyophilised wafers for transdermal drug delivery.

    Directory of Open Access Journals (Sweden)

    Ryan F Donnelly

    Full Text Available We describe, for the first time, hydrogel-forming microneedle arrays prepared from "super swelling" polymeric compositions. We produced a microneedle formulation with enhanced swelling capabilities from aqueous blends containing 20% w/w Gantrez S-97, 7.5% w/w PEG 10,000 and 3% w/w Na2CO3 and utilised a drug reservoir of a lyophilised wafer-like design. These microneedle-lyophilised wafer compositions were robust and effectively penetrated skin, swelling extensively, but being removed intact. In in vitro delivery experiments across excised neonatal porcine skin, approximately 44 mg of the model high dose small molecule drug ibuprofen sodium was delivered in 24 h, equating to 37% of the loading in the lyophilised reservoir. The super swelling microneedles delivered approximately 1.24 mg of the model protein ovalbumin over 24 h, equivalent to a delivery efficiency of approximately 49%. The integrated microneedle-lyophilised wafer delivery system produced a progressive increase in plasma concentrations of ibuprofen sodium in rats over 6 h, with a maximal concentration of approximately 179 µg/ml achieved in this time. The plasma concentration had fallen to 71±6.7 µg/ml by 24 h. Ovalbumin levels peaked in rat plasma after only 1 hour at 42.36±17.01 ng/ml. Ovalbumin plasma levels then remained almost constant up to 6 h, dropping somewhat at 24 h, when 23.61±4.84 ng/ml was detected. This work represents a significant advancement on conventional microneedle systems, which are presently only suitable for bolus delivery of very potent drugs and vaccines. Once fully developed, such technology may greatly expand the range of drugs that can be delivered transdermally, to the benefit of patients and industry. Accordingly, we are currently progressing towards clinical evaluations with a range of candidate molecules.

  1. THE EFFECT OF PREPARATION CONDITIONS OF RAPIDLY SOLIDIFIED IRON BASED GRANULES ON PROPERTIES OF COMPOSITE MATERIAL FORMED BY CASTING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2017-01-01

    Full Text Available The variety of requirements for friction pairs requires the development of different technologies for the production of tribological materials with reference to the operation modes. Composite materials obtained by the casting technology have been successfully applied for the normalization of the thermomechanical state of the steam turbines. These composites consist of the matrix based on copper alloys reinforced with cast iron granules. Because the structure and properties of cast iron are determined by the conditions of their production studies have been conducted on determination of preparation conditions on grain structure and properties of the synthesized composite material. Using an upgraded unit for production of granules technological regimes were determined providing narrow fractional composition. It has been found that granules formed are characterized with typical microstructure of white cast iron containing perlite and ledeburite. Microhardness of pilot cast iron granules is characterized by high values (from 7450 up to 9450 MPa and depends on the size of the fraction. Composite materials obtained using experimental granules had a microhardness of the reinforcing cast iron granules about 3500 MPa, and a bronze matrix – 1220 MPa, which is higher than the hardness of the composite material obtained by using the annealed DCL-1granules (2250 MPa. Metal base of experimental granules in the composite material has the structure of perlitic ductile iron with inclusions of ferrite not exceeding 10–15% and set around a flocculent graphite. As a result, the increase of physical-mechanical properties of finished products made of composite material is observed. 

  2. Formation of iron disilicide on amorphous silicon

    Science.gov (United States)

    Erlesand, U.; Östling, M.; Bodén, K.

    1991-11-01

    Thin films of iron disilicide, β-FeSi 2 were formed on both amorphous silicon and on crystalline silicon. The β-phase is reported to be semiconducting with a direct band-gap of about 0.85-0.89 eV. This phase is known to form via a nucleation-controlled growth process on crystalline silicon and as a consequence a rather rough silicon/silicide interface is usually formed. In order to improve the interface a bilayer structure of amorphous silicon and iron was sequentially deposited on Czochralski silicon in an e-gun evaporation system. Secondary ion mass spectrometry profiling (SIMS) and scanning electron micrographs revealed an improvement of the interface sharpness. Rutherford backscattering spectrometry (RBS) and X-ray diffractiometry showed β-FeSi 2 formation already at 525°C. It was also observed that the silicide growth was diffusion-controlled, similar to what has been reported for example in the formation of NiSi 2 for the reaction of nickel on amorphous silicon. The kinetics of the FeSi 2 formation in the temperature range 525-625°C was studied by RBS and the activation energy was found to be 1.5 ± 0.1 eV.

  3. Amorphization of Molecular Liquids of Pharmaceutical Drugs by Acoustic Levitation

    Directory of Open Access Journals (Sweden)

    C. J. Benmore

    2011-08-01

    Full Text Available It is demonstrated that acoustic levitation is able to produce amorphous forms from a variety of organic molecular compounds with different glass forming abilities. This can lead to enhanced solubility for pharmaceutical applications. High-energy x-ray experiments show that several viscous gels form from saturated pharmaceutical drug solutions after 10–20 min of levitation at room temperature, most of which can be frozen in solid form. Laser heating of ultrasonically levitated drugs can also result in the vitrification of molecular liquids, which is not attainable using conventional amorphization methods.

  4. New amorphous alloy with high glass forming ability on the Cu-Zr-Al-Gd system; Desenvolvimento de nova liga com estrutura amorfa no sistema Cu-Zr-Al-Gd

    Energy Technology Data Exchange (ETDEWEB)

    Mazzer, E.M.; Aliaga, L.C.R.; Bolfarini, C.; Botta Filho, W.J.; Kiminami, C.S., E-mail: eric_mazzer@hotmail.co [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    The prediction of the Glass Forming Ability (GFA) in metallic alloys is usually performed by empirical or semi-empirical criteria in binary or ternary systems. For multi-component systems with more than three elements, the criteria or models become extremely complex making it impractical. In this paper we present the results on the GFA prediction of the Cu-Zr-Al-Gd alloys, where compositions had been selected for the synergy of the topological instability and electronegativity criteria which was increased by the average radio criterion for the quaternary system. Alloys were prepared and processed by arc-meting and die casting techniques. Characterization was made by x-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) techniques. It was concluded that Cu{sub 39,2}Zr{sub 49}Al{sub 9}, {sub 80}Gd{sub 2} alloy presents high thermal stability expressed by great supercooled liquid region upper to 76 deg C. (author)

  5. Effects of heating conditions on the glass transition parameters of amorphous sucrose produced by melt-quenching.

    Science.gov (United States)

    Lee, Joo Won; Thomas, Leonard C; Schmidt, Shelly J

    2011-04-13

    This research investigates the effects of heating conditions used to produce amorphous sucrose on its glass transition (T(g)) parameters, because the loss of crystalline structure in sucrose is caused by the kinetic process of thermal decomposition. Amorphous sucrose samples were prepared by heating at three different scan rates (1, 10, and 25 °C/min) using a standard differential scanning calorimetry (SDSC) method and by holding at three different isothermal temperatures (120, 132, and 138 °C) using a quasi-isothermal modulated DSC (MDSC) method. In general, the quasi-isothermal MDSC method (lower temperatures for longer times) exhibited lower T(g) values, larger ΔC(p) values, and broader glass transition ranges (i.e., T(g end) minus T(g onset)) than the SDSC method (higher temperatures for shorter times), except at a heating rate of 1 °C/min, which exhibited the lowest T(g) values, the highest ΔC(p), and the broadest glass transition range. This research showed that, depending on the heating conditions employed, a different amount and variety of sucrose thermal decomposition components may be formed, giving rise to wide variation in the amorphous sucrose T(g) values. Thus, the variation observed in the literature T(g) values for amorphous sucrose produced by thermal methods is, in part, due to differences in the heating conditions employed.

  6. Evolution of structure and infrared radiation properties for ferrite-based amorphous coating

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lei [State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); Fan, Xi’an, E-mail: groupfxa@163.com [State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); Zhang, Jianyi [State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); Hu, Xiaoming [Suzhou Sagreon New Materials Co., Ltd, Zhangjiagang 215625 (China); Li, Guangqiang; Zhang, Zhan [State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China)

    2014-10-15

    Highlights: • The ferrite-based amorphous infrared radiation coating was prepared by plasma spraying. • The coating could keep amorphous structure when the temperature was below 700 °C. • The amorphous structure can improve the emissivity of ferrite-based coatings. • The amorphous coating exhibited a higher emissivity than that by brushing process. • The coating has an excellent thermal shock resistance and can work at 1000 °C. - Abstract: The ferrite-based amorphous coatings with high infrared radiation properties have been successfully prepared on the surface of carbon steel substrate by plasma spraying process. The phase, morphology, microstructure, thermal behavior and infrared emissivity were determined by X-ray diffraction, scanning electron microscopy, differential scanning calorimetry and infrared spectroscopy. The prepared coating could keep amorphous structure when the ambient temperature was below 700 °C and it would crystallize gradually with further increasing the temperature. The amorphous structure is confirmed to be constructive for improving the emissivity of ferrite-based coatings, especially in the 3–8 μm band. The emissivity of the amorphous coating obtained by plasma spraying was over 0.8 in 3–8 μm band at 800 °C, which was higher than that of the coating with same composition prepared by conventional brushing method. The excellent thermal shock resistance of the coatings makes them to be good candidates for sensible energy-saving materials, which could work for long term at 1000 °C.

  7. Amorphous and nanostructured silica and aluminosilicate spray-dried microspheres

    Science.gov (United States)

    Todea, M.; Turcu, R. V. F.; Frentiu, B.; Tamasan, M.; Mocuta, H.; Ponta, O.; Simon, S.

    2011-08-01

    Amorphous silica and aluminosilicate microspheres with diameters in the 0.1-20 μm range were produced by spray drying method. SEM, TEM and AFM images showed the spherical shape of the obtained particles. Based on thermal analysis data, several heat treatments have been applied on the as-prepared samples in order to check the amorphous state stability of the microspheres and to develop nanosized crystalline phases. As-prepared microspheres remain amorphous up to 1400 °C. By calcination at 1400 °C, cristobalite type nanocrystals are developed on silica sample, while in aluminosilicate sample first are developed mullite type nanocrystals and only after prolonged treatment are developed also cristobalite type nanocrystals. 29Si and 27Al MAS NMR results show that the local order around aluminum and silicon atoms strongly depend on the thermal history of the microspheres.

  8. Inprovement of Field Emission Properties of PBS Thin Films by Amorphous Carbon Coating

    Directory of Open Access Journals (Sweden)

    S. Jana

    2011-01-01

    Full Text Available Lead sulfide (PbS nanocrystalline thin films were synthesized at room temperature via chemical bath deposition on both silicon and glass substrates and coated with amorphous carbon of different thickness by varying deposition time in plasma enhanced chemical vapor deposition technique. The as prepared samples were characterized by X-ray diffraction (XRD, field emission scanning electron microscope (FESEM and atomic force microscope (AFM. XRD study reveals that coating of amorphous carbon does not change the crystal structure of PbS. From FESEM images it is seen that the average size of PbS nanoparticle does not exceed 100 nm, though sometomes small cubic particles agglomerated to form bigger particles. The coating of amorphous carbon can be clearly visible by the FESEM as well as from AFM micrographs. Field emission study show a significant betterment for the carbon coated sample as compared to the pure PbS. The effect of inter-electrode distance on the field emission characteristics of best field emitting sample has been studied for three different inter-electrode distances.

  9. Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature.

    Science.gov (United States)

    Deng, Changjian; Lau, Miu Lun; Barkholtz, Heather M; Xu, Haiping; Parrish, Riley; Xu, Meiyue Olivia; Xu, Tao; Liu, Yuzi; Wang, Hao; Connell, Justin G; Smith, Kassiopeia A; Xiong, Hui

    2017-08-03

    We report an amorphous boron nanorod anode material for lithium-ion batteries prepared through smelting non-toxic boron oxide in liquid lithium. Boron in theory can provide capacity as high as 3099 mA h g(-1) by alloying with Li to form B4Li5. However, experimental studies of the boron anode have been rarely reported for room temperature lithium-ion batteries. Among the reported studies the electrochemical activity and cycling performance of the bulk crystalline boron anode material are poor at room temperature. In this work, we utilized an amorphous nanostructured one-dimensional (1D) boron material aiming at improving the electrochemical reactivity between boron and lithium ions at room temperature. The amorphous boron nanorod anode exhibited, at room temperature, a reversible capacity of 170 mA h g(-1) at a current rate of 10 mA g(-1) between 0.01 and 2 V. The anode also demonstrated good rate capability and cycling stability. The lithium storage mechanism was investigated by both sweep voltammetry measurements and galvanostatic intermittent titration techniques (GITTs). The sweep voltammetric analysis suggested that the contributions from lithium ion diffusion into boron and the capacitive process to the overall lithium charge storage are 57% and 43%, respectively. The results from GITT indicated that the discharge capacity at higher potentials (>∼0.2 V vs. Li/Li(+)) could be ascribed to a capacitive process and at lower potentials (lithium-ion batteries.

  10. Characterization and Hydrodesulfurization Properties of Catalysts Derived from Amorphous Metal-Boron Materials

    Energy Technology Data Exchange (ETDEWEB)

    Parks,G.; Pease, M.; Burns, A.; Layman, K.; Bussell, M.; Wang, X.; Hanson, J.; Rodriquez, J.

    2007-01-01

    Unsupported and silica-supported amorphous metal-boron materials (Ni-B, Mo-O-B, and Ni-Mo-O-B) were prepared by NaBH{sub 4} reduction of aqueous or impregnated metal salts. The resulting materials were characterized by a range of techniques, including conventional and time-resolved X-ray diffraction. The latter technique was used to determine the onset of crystallization of the amorphous materials during annealing in He flow and to identify the phases formed. Annealing of unsupported Ni-B resulted in the crystallization of predominantly Ni{sub 3}B, followed by Ni metal, whereas Ni-B/SiO{sub 2} formed Ni and then NiO. There was no evidence for crystallization of B-containing phases for Mo-O-B or Mo-O-B/SiO{sub 2} on annealing; instead, the predominant phase formed was MoO{sub 2}. In general, the phases formed for Ni-Mo-O-B and Ni-Mo-O-B/SiO2 were consistent with those formed in the monometallic materials, but at higher annealing temperatures. Catalysts prepared by sulfiding Ni-B/SiO{sub 2} and Ni-Mo-O-B/SiO{sub 2} materials had significantly higher thiophene HDS activities than conventionally prepared sulfided Ni/SiO2 and Ni-Mo/SiO{sub 2} catalysts, whereas a sulfided Mo-O-B/SiO{sub 2} catalyst had a dramatically lower HDS activity than a sulfided Mo/SiO{sub 2} catalyst.

  11. Estabilidad de la glucosa oxidasa en sistemas amorfos formados por los disacáridos sacarosa, maltosa y trehalosa Glucose oxidase stability in amorphous systems formed by saccharose, maltose and trehalose disaccharides

    Directory of Open Access Journals (Sweden)

    Hans L. D. Valenzuela

    2007-01-01

    Full Text Available Glucose-oxidase (GOD, suffers conformational change during freeze-drying. In order to determine the protection level granted by amorphous matrices (AM of saccharose, maltose, trehalose and their combinations, the thermal inactivation constants (K D of GOD trapped in these systems were determined. For its evaluation, GOD samples were balanced at different water activities and heated up to 30, 50 and 70 ºC. The best AM found for GOD stability was saccharose-trehalose (5/10% p/v. The K D values (K D.10-4 at a w = 0.0 were 3 at 30 ºC and 6 at 70 ºC. For non-protected GOD under the same conditions these values were 48 at 30 ºC and 257 at 70 ºC.

  12. Beyond amorphous organic semiconductors

    Science.gov (United States)

    Hanna, Jun-ichi

    2003-07-01

    Recently it has been discovered that some types of liquid crystals, which believed to be governed by ionic conduction, exhibit a very fast electronic conduction. Their charge carrier transport is characterized by high mobility over 10-2 cm2/Vs independent of electric field and temperature. Now, the liquid crystals are being recognized as a new class of organic semiconductors. In this article, a new aspect of liquid crystals as a self-organizing molecular semiconductor are reviewed, focused on their basic charge carrier transport properties and discussed in comparison with those of molecular crystals and amorphous materials. And it is concluded that the liquid crystal is promising as a quality organic semiconductor for the devices that require a high mobility.

  13. Structure and Properties of an Amorphous Metal-Organic Framework

    Science.gov (United States)

    Bennett, Thomas D.; Goodwin, Andrew L.; Dove, Martin T.; Keen, David A.; Tucker, Matthew G.; Barney, Emma R.; Soper, Alan K.; Bithell, Erica G.; Tan, Jin-Chong; Cheetham, Anthony K.

    2010-03-01

    ZIF-4, a metal-organic framework (MOF) with a zeolitic structure, undergoes a crystal-amorphous transition on heating to 300°C. The amorphous form, which we term a-ZIF, is recoverable to ambient conditions or may be converted to a dense crystalline phase of the same composition by heating to 400°C. Neutron and x-ray total scattering data collected during the amorphization process are used as a basis for reverse Monte Carlo refinement of an atomistic model of the structure of a-ZIF. The structure is best understood in terms of a continuous random network analogous to that of a-SiO2. Optical microscopy, electron diffraction and nanoindentation measurements reveal a-ZIF to be an isotropic glasslike phase capable of plastic flow on its formation. Our results suggest an avenue for designing broad new families of amorphous and glasslike materials that exploit the chemical and structural diversity of MOFs.

  14. Stress originating from nanovoids in hydrogenated amorphous semiconductors

    Science.gov (United States)

    Wang, Zumin; Flötotto, David; Mittemeijer, Eric J.

    2017-03-01

    Structural inhomogeneities in the form of voids of nanometer sizes (nanovoids) have long been known to be present in hydrogenated amorphous semiconductors (Si, Ge). The physical and electrical properties of hydrogenated amorphous semiconductors can be pronouncedly influenced by the presence and characteristics of such nanovoids. In this work, by measuring in situ the intrinsic stress developments during deposition of pure, amorphous and of hydrogenated amorphous semiconductor (Si, Ge) thin films, under the same conditions in ultrahigh vacuum and on a comparative basis, a major source of tensile stress development could be ascribed to the occurrence of nanovoids in a-Si:H and a-Ge:H. The measurements allowed a quantitative evaluation of the surface stress acting along the surface of the nanovoids: 1.1-1.9 N/m for a-Si:H and 0.9-1.9 N/m for a-Ge:H.

  15. Enhanced Corrosion Resistance of Iron-Based Amorphous Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B; Day, S D; Lian, T; Aprigliano, L F; Hailey, P D; Farmer, J C

    2007-02-18

    Iron-based amorphous alloys possess enhanced hardness and are highly resistant to corrosion, which make them desirable for wear applications in corrosive environments. It was of interest to examine the behavior of amorphous alloys during anodic polarization in concentrated salt solutions and in the salt-fog testing. Results from the testing of one amorphous material (SAM2X5) both in ribbon form and as an applied coating are reported here. Cyclic polarization tests were performed on SAM2X5 ribbon as well as on other nuclear engineering materials. SAM2X5 showed the highest resistance to localized corrosion in 5 M CaCl{sub 2} solution at 105 C. Salt fog tests of 316L SS and Alloy 22 coupons coated with amorphous SAM2X5 powder showed resistance to rusting. Partial devitrification may be responsible for isolated pinpoint rust spots in some coatings.

  16. Crystallization of amorphous lactose at high humidity studied by terahertz time domain spectroscopy

    Science.gov (United States)

    McIntosh, Alexander I.; Yang, Bin; Goldup, Stephen M.; Watkinson, Michael; Donnan, Robert S.

    2013-02-01

    We report the first use of terahertz time-domain spectroscopy (THz-TDS) to study the hydration and crystallization of an amorphous molecular solid at high humidity. Lactose in its amorphous and monohydrate forms exhibits different terahertz spectra due to the lack of long range order in the amorphous material. This difference allowed the transformation of amorphous lactose to its monohydrate form at high humidity to be studied in real time. Spectral fitting of frequency-domain data allowed kinetic data to be obtained and the crystallization was found to obey Avrami kinetics. Bulk changes during the crystallization could also be observed in the time-domain.

  17. First-principles study of hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Jarolimek, K.; Groot, R.A. de; Wijs, G.A. de; Zeman, M.

    2009-01-01

    We use a molecular-dynamics simulation within density-functional theory to prepare realistic structures of hydrogenated amorphous silicon. The procedure consists of heating a crystalline structure of Si64H8 to 2370 K, creating a liquid and subsequently cooling it down to room temperature. The effect

  18. First-principles study of hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Jarolimek, K.; Groot, R.A. de; Wijs, G.A. de; Zeman, M.

    2009-01-01

    We use a molecular-dynamics simulation within density-functional theory to prepare realistic structures of hydrogenated amorphous silicon. The procedure consists of heating a crystalline structure of Si64H8 to 2370 K, creating a liquid and subsequently cooling it down to room temperature. The effect

  19. Crystallization and Transport Properties of Amorphous Cr-Si Thin Film Thermoelectrics

    Science.gov (United States)

    Novikov, S. V.; Burkov, A. T.; Schumann, J.

    2014-06-01

    We studied the thermoelectric properties, crystallization, and stability of amorphous and nanocrystalline states in Cr-Si composite films. Amorphous films, prepared by magnetron sputtering, were transformed into the nanocrystalline state by annealing with in situ thermopower and electrical resistivity measurements. We have found that the amorphous state is stable in these film composites to about 550 K. Prior to crystallization, the amorphous films undergo a structural relaxation, detected by peculiarities in the temperature dependences of the transport properties, but not visible in x-ray or electron diffraction. The magnitude and temperature dependences of electrical conductivity and thermopower indicate that electron transport in the amorphous films is through extended states. The amorphous films are crystallized at annealing temperatures above 550 K into a nanocrystalline composite with an average grain size of 10-20 nm.

  20. Processing and characterization of amorphous magnesium based alloy for application in biomedical implants

    Directory of Open Access Journals (Sweden)

    Telma Blanco Matias

    2014-07-01

    Full Text Available Magnesium-based bulk metallic glasses are attractive due to their single-phase, chemically homogeneous alloy system and the absence of second-phase, which could impair the mechanical properties and corrosion resistance. However, one of the unsolved problems for the manufacturability and the applications of bulk metallic glasses is that their glass-forming ability is very sensitive to the preparation techniques and impurity of components since oxygen in the environment would markedly deteriorate the glass-forming ability. Therefore, the aim of this study was to establish proper processing conditions to obtain a magnesium-based amorphous ternary alloy and its characterization. The final composition was prepared using two binary master alloys by melting in an induction furnace. Carbon steel crucible was used in argon atmosphere with and without addition of SF6 gas in order to minimize the oxygen contamination. The microstructure, amorphous nature, thermal properties and chemical analysis of samples were investigated by scanning electron microscopy (SEM, X-ray diffraction (XRD, differential scanning calorimetry (DSC and inductively coupled plasma emission spectrometry, respectively. The oxygen content of the as-cast samples was chemically analyzed by using carrier gas hot extraction (O/N Analyzer TC-436/LECO and was kept bellow 25 ppm (without SF6 and 10 ppm (with SF6. Bulk samples were produced by rapid cooling in a cooper mold until 1.5 mm thickness, with amorphous structures being observed up to 2.5 mm.

  1. Study on the substrate-induced crystallisation of amorphous SiC-precursor ceramics. TIB/A; Untersuchungen zur substratinduzierten Kristallisation amorpher SiC-Precursorkeramiken

    Energy Technology Data Exchange (ETDEWEB)

    Rau, C.

    2000-12-01

    In the present thesis the crystallization behaviour of amorphous silicon-carbon materials (SiC{sub x}) was studied. The main topic of the experimental studies formed thereby the epitactical crystallization of thin silicon carbide layers on monocrystalline substrates of silicon carbides or silicon. Furthermore by thermolysis of the polymer amorphous SiC{sub x}-powder was obtained.

  2. Mg-Ni-RE块体非晶合金的制备及稳定性能%Study of Preparation and Stabilizability Properties of Mg-Based Amorphous Alloy

    Institute of Scientific and Technical Information of China (English)

    彭浩; 赵平; 李双寿; 刘金海

    2013-01-01

    Ag replacing Mg can improve the glass-forming ability of Mg75Ni15Gd10, and its preparation size increases from 3 mm up to 7 mm of Mg69Ni15Gd10Ag6. The Ag addition can improve the density of corrosion products in alkali solution, reduce the passivation current density, improve the forming speed and the stability of passive film and enhance the electrochemical reaction charge transfer resistance. The corrosion rate of Mg75Ni15Gd10 in NaCl solution of 0.1 mol/L descended by 62%. After 90 cycles, the capacity retention rate can be enhanced to 75% from 55% of Mg75Ni15Gd10.%Ag元素替代部分Mg可以改善Mg75Ni15Gd10的非晶形成能力,制备尺寸由3 mm提高到Mg69Ni15Gd10Ag6的7mm.Ag的添加可提高非晶在盐溶液中腐蚀产物的致密性,使腐蚀电位正移,腐蚀电流降低,提高电化学反应电荷转移电阻,使金属基体腐蚀溶解反应变得困难,使非晶合金Mg75Ni15Gd10在0.1 mol/L NaCl溶液中的腐蚀速率下降62%.同时,Ag的添加可以使非晶合金Mg75Ni15Gd10在90次充/放电后的容量保持率由55%提高到75%.

  3. Co-Amorphous Combination of Nateglinide-Metformin Hydrochloride for Dissolution Enhancement

    National Research Council Canada - National Science Library

    Wairkar, Sarika; Gaud, Ram

    The aim of the present work was to prepare a co-amorphous mixture (COAM) of Nateglinide and Metformin hydrochloride to enhance the dissolution rate of poorly soluble Nateglinide. Nateglinide (120 mg...

  4. Microstructure and tribological properties of Zr-based amorphous-nanocrystalline coatings deposited on the surface of titanium alloys by Electrospark Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Xiang; Tan, Yefa, E-mail: tanyefa7651@163.com; Zhou, Chunhua; Xu, Ting; Zhang, Zhongwei

    2015-11-30

    Highlights: • Zr-based amorphous-nanocrystalline coatings were well prepared on TC11 titanium alloys. • High glass forming ability of alloy system and high cooling rate of Electrospark Deposition process are beneficial for the generation of amorphous phase. • A model has been applied to investigate the generation of nanocrystalline phases in amorphous coating. • Excellent wear properties obtained due to nanocrystalline phases distributed in amorphous organization. - Abstract: In order to improve the wear resistance of titanium alloys, the Zr-based amorphous-nanocrystalline coatings were prepared by Electrospark Deposition (ESD) on the surface of TC11. The microstructure of the coatings was analyzed and the tribological behavior and mechanism of the coatings were investigated. The results show that the coating is mainly composed of amorphous phase Zr{sub 55}Cu{sub 30}Al{sub 10}Ni{sub 5} and distributed a large number of nano particles with the diameter between 2 nm and 4 nm such as CuZr{sub 3}, Ni{sub 2}Zr{sub 3}, NiZr{sub 2}, etc. The new alloy system made up of molten electrode material of Zr-based alloy and TC11 substrate has a large glass forming ability, which transforms to amorphous phase in the rapid heating and cooling ESD process. The long-range diffusions of atoms such as Zr and Cu in amorphous microstructure play an important role in nano nucleation growth. The coating is dense, uniform, bonding with TC11 substrate metallurgically. The thickness of the coating is from 55 μm to 60 μm and the average microhardness is 801.3 HV{sub 0.025}. The coating has good friction-reducing and anti-wear properties. The friction coefficient of the coating changes between 0.13 and 0.21 with small fluctuation, decreasing about 60% compared to that of TC11 substrate. And the wear resistance of the coating is increased by 57% than that of TC11 substrate. The main wear mechanism of the coating is micro-cutting wear accompanied with oxidation wear.

  5. Applications of KinetiSol dispersing for the production of plasticizer free amorphous solid dispersions.

    Science.gov (United States)

    DiNunzio, James C; Brough, Chris; Miller, Dave A; Williams, Robert O; McGinity, James W

    2010-06-14

    Thermal manufacturing methods for the production of solid dispersions frequently require the addition of a plasticizer in order to achieve requisite molten material flow properties when processed by unit operations such as hot melt extrusion. KinetiSol Dispersing, a rapid high energy thermal manufacturing process, was investigated for the ability to produce amorphous solid dispersions without the aid of a plasticizer. For this study itraconazole was used as a model active ingredient, while Eudragit L100-55 and Carbomer 974P were used as model solid dispersion carriers. Triethyl citrate (TEC) was used as necessary as a model plasticizer. Compositions prepared by KinetiSol Dispersing and hot melt extrusion were evaluated for solid state properties, supersaturated in vitro dissolution behavior under pH change conditions and accelerated stability performance. Results showed that both manufacturing processes were capable of producing amorphous solid dispersions, however compositions produced by hot melt extrusion required the presence of TEC and yielded a glass transition temperature (T(g)) of approximately 54 degrees C. Plasticized and unplasticized compositions were successfully produced by KinetiSol Dispersing, with plasticizer free solid dispersions exhibiting a T(g) of approximately 101 degrees C. Supersaturated in vitro dissolution testing revealed a significantly higher dissolution rate of plasticized material which was attributed to the pore forming behavior of TEC during the acidic phase of testing. A further contribution to release may also have been provided by the greater diffusivity in the plasticized polymer. X-ray diffraction testing revealed that under accelerated stability conditions, plasticized compositions exhibited partial recrystallization, while plasticizer free materials remained amorphous throughout the 6-month testing period. These results demonstrated that KinetiSol Dispersing could be used for the production of amorphous solid dispersions

  6. Nickel-disilicide-assisted excimer laser crystallization of amorphous silicon

    Institute of Scientific and Technical Information of China (English)

    Liao Yan-Ping; Shao Xi-Bin; Gao Feng-Li; Luo Wen-Sheng; Wu Yuan; Fu Guo-Zhu; Jing Hai; Ma Kai

    2006-01-01

    Polycrystalline silicon (poly-Si) thin film has been prepared by means of nickel-disilicide (NiSi2) assisted excimer laser crystallization (ELC). The process to prepare a sample includes two steps. One step consists of the formation of NiSi2 precipitates by heat-treating the dehydrogenated amorphous silicon (a-Si) coated with a thin layer of Ni. And the other step consists of the formation of poly-Si grains by means of ELC. According to the test results of scanning electron microscopy (SEM), another grain growth model named two-interface grain growth has been proposed to contrast with the conventional Ni-metal-induced lateral crystallization (Ni-MILC) model and the ELC model. That is, an additional grain growth interface other than that in conventional ELC is formed, which consists of NiSi2 precipitates and a-Si.The processes for grain growth according to various excimer laser energy densities delivered to the a-Si film have been discussed. It is discovered that grains with needle shape and most of a uniform orientation are formed which grow up with NiSi2 precipitates as seeds. The reason for the formation of such grains which are different from that of Ni-MILCwithout migration of Ni atoms is not clear. Our model and analysis point out a method to prepare grains with needle shape and mostly of a uniform orientation. If such grains are utilized to make thin-film transistor, its characteristics may be improved.

  7. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization.

    Science.gov (United States)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-03

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (10(6)~ 10(9) Ω/◻).

  8. Amorphous carbon under 80 kv electron irradiation: a means to make or break graphene

    Energy Technology Data Exchange (ETDEWEB)

    Boerrnert, Felix; Bachmatiuk, Alicja [IFW Dresden, PF 27 01 16, 01171 Dresden (Germany); Avdoshenko, Stanislav M. [Technische Universitaet Dresden, 01062 Dresden (Germany); Purdue University, West Lafayette, IN 47907 (United States); Ibrahim, Imad; Buechner, Bernd; Ruemmeli, Mark H. [IFW Dresden, PF 27 01 16, 01171 Dresden (Germany); Technische Universitaet Dresden, 01062 Dresden (Germany); Cuniberti, Gianaurelio [Technische Universitaet Dresden, 01062 Dresden (Germany)

    2012-11-02

    Amorphous carbon irradiated by electrons at acceleration voltages of 80 kV is studied in high-resolution transmission electron microscopy. Amorphous carbon deposited on graphene or h-BN membranes forms graphene layers parallel to the support due to van der Waals interactions. One can use deposited amorphous carbon to engineer graphene either for its catalyst-free fabrication or its destruction. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. In situ molecular elucidation of drug supersaturation achieved by nano-sizing and amorphization of poorly water-soluble drug.

    Science.gov (United States)

    Ueda, Keisuke; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu

    2015-09-18

    Quantitative evaluation of drug supersaturation and nanoparticle formation was conducted using in situ evaluation techniques, including nuclear magnetic resonance (NMR) spectroscopy. We prepared a ternary complex of carbamazepine (CBZ) with hydroxypropyl methylcellulose (HPMC) and sodium dodecyl sulfate (SDS) to improve the drug concentration. Different preparation methods, including grinding and spray drying, were performed to prepare the ternary component products, ground mixture (GM) and spray-dried sample (SD), respectively. Although CBZ was completely amorphized in the ternary SD, CBZ was partially amorphized with the remaining CBZ crystals in the ternary GM. Aqueous dispersion of the ternary GM formed nanoparticles of around 150 nm, originating from the CBZ crystals in the ternary GM. In contrast, the ternary SD formed transparent solutions without a precipitate. The molecular-level evaluation using NMR measurements revealed that approximately half a dose of CBZ in the ternary GM dispersion was present as nanoparticles; however, CBZ in the ternary SD was completely dissolved in the aqueous solution. The characteristic difference between the solid states, followed by different preparation methods, induced different solution characteristics in the ternary GM and SD. The permeation study, using a dialysis membrane, showed that the CBZ concentration dissolved in the bulk water phase rapidly reduced in the ternary SD dispersion compared to the ternary GM dispersion; this demonstrated the advantage of ternary GM dispersion in the maintenance of CBZ supersaturation. Long-term maintenance of a supersaturated state of CBZ observed in the ternary GM dispersion rather than in the ternary SD dispersion was achieved by the inhibition of CBZ crystallization owing to the existence of CBZ nanoparticles in the ternary GM dispersion. Nanoparticle formation, combined with drug amorphization, could be a promising approach to improve drug concentrations. The detailed elucidation

  10. Preparation, characterization and thermal properties of styrene maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Ahmet; Alkan, Cemil; Karaipekli, Ali; Oenal, Adem [Department of Chemistry, Gaziosmanpasa University, 60240, Tokat (Turkey)

    2008-02-15

    Fatty acids such as stearic acid (SA), palmitic acid (PA), myristic acid (MA) and lauric acid (LA) are promising phase change materials (PCMs) for latent heat thermal energy storage (LHTES) applications, but high cost is the major drawback of them, limiting their utility area in thermal energy storage. The use of fatty acids as form stable PCMs will increase their feasibilities in practical applications due to the reduced cost of the LHTES system. In this regard, a series of styrene maleic anhydride copolymer (SMA)/fatty acid composites, SMA/SA, SMA/PA, SMA/MA, and SMA/LA, were prepared as form stable PCMs by encapsulation of fatty acids into the SMA, which acts as a supporting material. The encapsulation ratio of fatty acids was as much as 85 wt.% and no leakage of fatty acid was observed even when the temperature of the form stable PCM was over the melting point of the fatty acid in the composite. The prepared form stable composite PCMs were characterized using optic microscopy (OM), viscosimetry and Fourier transform infrared (FT-IR) spectroscopy methods, and the results showed that the SMA was physically and chemically compatible with the fatty acids. In addition, the thermal characteristics such as melting and freezing temperatures and latent heats of the form stable composite PCMs were measured by using the differential scanning calorimetry (DSC) technique, which indicated they had good thermal properties. On the basis of all the results, it was concluded that form stable SMA/fatty acid composite PCMs had important potential for practical LHTES applications such as under floor space heating of buildings and passive solar space heating of buildings by using wallboard, plasterboard or floors impregnated with a form stable PCM due to their satisfying thermal properties, easy preparation in desired dimensions, direct usability without needing additional encapsulation thereby eliminating the thermal resistance caused by the shell and, thus, reducing the cost of

  11. Interactions of hydrogen with amorphous hafnium oxide

    Science.gov (United States)

    Kaviani, Moloud; Afanas'ev, Valeri V.; Shluger, Alexander L.

    2017-02-01

    We used density functional theory (DFT) calculations to study the interaction of hydrogen with amorphous hafnia (a -HfO2 ) using a hybrid exchange-correlation functional. Injection of atomic hydrogen, its diffusion towards electrodes, and ionization can be seen as key processes underlying charge instability of high-permittivity amorphous hafnia layers in many applications. Hydrogen in many wide band gap crystalline oxides exhibits negative-U behavior (+1 and -1 charged states are thermodynamically more stable than the neutral state) . Our results show that in a -HfO2 hydrogen is also negative-U, with charged states being the most thermodynamically stable at all Fermi level positions. However, metastable atomic hydrogen can share an electron with intrinsic electron trapping precursor sites [Phys. Rev. B 94, 020103 (2016)., 10.1103/PhysRevB.94.020103] forming a [etr -+O -H ] center, which is lower in energy on average by about 0.2 eV. These electron trapping sites can affect both the dynamics and thermodynamics of the interaction of hydrogen with a -HfO2 and the electrical behavior of amorphous hafnia films in CMOS devices.

  12. Influence of the cooling rate and the blend ratio on the physical stability of co-amorphous naproxen/indomethacin.

    Science.gov (United States)

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Leopold, Claudia S

    2016-12-01

    Co-amorphization represents a promising approach to increase the physical stability and dissolution rate of amorphous active pharmaceutical ingredients (APIs) as an alternative to polymer glass solutions. For amorphous and co-amorphous systems, it is reported that the preparation method and the blend ratio play major roles with regard to the resulting physical stability. Therefore, in the present study, co-amorphous naproxen-indomethacin (NAP/IND) was prepared by melt-quenching at three different cooling rates and at ten different NAP/IND blend ratios. The samples were analyzed using XRPD and FTIR, both directly after preparation and during storage to investigate their physical stabilities. All cooling methods led to fully amorphous samples, but with significantly different physical stabilities. Samples prepared by fast cooling had a higher degree of crystallinity after 300d of storage than samples prepared by intermediate cooling and slow cooling. Intermediate cooling was subsequently used to prepare co-amorphous NAP/IND at different blend ratios. In a previous study, it was postulated that the equimolar (0.5:0.5) co-amorphous blend of NAP/IND is most stable. However, in the present study the physically most stable blend was found for a NAP/IND ratio of 0.6:0.4, which also represents the eutectic composition of the crystalline NAP/γ-IND system. This indicates that the eutectic point may be of major importance for the stability of binary co-amorphous systems. Slight deviations from the optimal naproxen molar fraction led to significant recrystallization during storage. Either naproxen or γ-indomethacin recrystallized until a naproxen molar fraction of about 0.6 in the residual co-amorphous phase was reached again. In conclusion, the physical stability of co-amorphous NAP/IND may be significantly improved, if suitable preparation conditions and the optimal phase composition are chosen.

  13. FTIR studies of BPO 4·2SiO 2, BPO 4·SiO 2 and 2BPO 4·SiO 2 joints in amorphous and crystalline forms

    Science.gov (United States)

    Adamczyk, A.; Handke, M.; Mozgawa, W.

    1999-11-01

    The MIR spectra of glasses and devitrificates of BPO 4·2SiO 2, BPO 4 SiO 2 and 2BPO 4·SiO 2 compositions have been shown. The bands arising from the Si-O, B-O and P-O bonds vibrations can be assigned in the spectra of the above samples. All bands appear almost at the same wavenumber range: what causes their coincidence? Therefore, all spectra of crystalline and amorphous materials were decomposed into component bands. The decomposed MIR spectra of these samples, as well as the tetragonal boron orthophosphate BPO 4 and the low temperature crystobalite spectra, were then compared. Therefore, one can estimate the probability of the existence of any compounds within the BPO 4-SiO 2 (P 2O 5-B 2O 3-SiO 2) system. The presence of BPO 4·2SiO 2 was reported in a few papers. The results obtained in this work can be treated as an attempt to verify the above hypothesis verifying because of the opposed information existing on this subject in literature.

  14. FRACTURE OF AMORPHOUS BILAYER RIBBON

    NARCIS (Netherlands)

    Ocelik, Vaclav; DUHAJ, P; CSACH, K; MISKUF, J; BENGUS, VZ

    On the basis of measuring the mechanical properties and observing the fracture surface of an amorphous bilayer ribbon some partial conclusions on the mechanical quality of the bimetal boundary were drawn.

  15. Nickel-induced crystallization of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J A; Arce, R D; Buitrago, R H [INTEC (CONICET-UNL), Gueemes 3450, S3000GLN Santa Fe (Argentina); Budini, N; Rinaldi, P, E-mail: jschmidt@intec.unl.edu.a [FIQ - UNL, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2009-05-01

    The nickel-induced crystallization of hydrogenated amorphous silicon (a-Si:H) is used to obtain large grained polycrystalline silicon thin films on glass substrates. a-Si:H is deposited by plasma enhanced chemical vapour deposition at 200 deg. C, preparing intrinsic and slightly p-doped samples. Each sample was divided in several pieces, over which increasing Ni concentrations were sputtered. Two crystallization methods are compared, conventional furnace annealing (CFA) and rapid thermal annealing (RTA). The crystallization was followed by optical microscopy and scanning electron microscopy observations, X-ray diffraction, and reflectance measurements in the UV region. The large grain sizes obtained - larger than 100{mu}m for the samples crystallized by CFA - are very encouraging for the preparation of low-cost thin film polycrystalline silicon solar cells.

  16. Effect of Preparation Method on Surface Area and Crystalline Form of CeO2-ZrO2 Solid Solution

    Institute of Scientific and Technical Information of China (English)

    王晓红; 郭耘; 卢冠忠; 郭杨龙; 王筠松; 张志刚; 刘晓晖

    2004-01-01

    The CeO2-ZrO2 solid solutions were prepared by a reverse microemulsion method. The effect of preparation parameters on the surface area and crystalline form of the solid solutions were studied by the BET surface area and XRD analysis. The studies indicate that the separation of the microemulsion phase during the preparation procedure can decrease the specific surface area of sample, adding hydrogen peroxide in the matrix solution can increase the specific surface area and stability of sample. The surface area of sample calcined at 550 ℃ for 5 h is 149 m2·g-1, and that calcined at 900 ℃ for 6 h is 88 m2·g-1.The sample with tetragonal symmetry Ce0.5Zr0.5O2 phase has a higher stability.

  17. Evaluation of mechanical properties of partially amorphous and nanocrystalline Al{sub 50}Ti{sub 40}Si{sub 10} composites prepared by mechanical alloying and hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Roy, D., E-mail: droy2k6@gmail.com [Mechanical and Manufacturing Engineering Department, University of Manitoba, Winnipeg, Canada R3T 2N2 (Canada); Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907 (United States); Metallurgical and Materials Engineering Department, Indian Institute of Technology, Kharagpur 721302 (India); Metallurgical and Materials Engineering Department, NIFFT, Ranchi 834003 (India); Polish Academy of Sciences, Institute of High Pressure Physics (UNIPRESS), Sokolowska 29/37, Warszawa 01-142 (Poland); Mitra, R. [Metallurgical and Materials Engineering Department, Indian Institute of Technology, Kharagpur 721302 (India); Ojo, O.A. [Mechanical and Manufacturing Engineering Department, University of Manitoba, Winnipeg, Canada R3T 2N2 (Canada); Singh, S.S. [Metallurgical and Materials Engineering Department, Indian Institute of Technology, Kharagpur 721302 (India); Kolesnikov, D.; Lojkowski, W. [Polish Academy of Sciences, Institute of High Pressure Physics (UNIPRESS), Sokolowska 29/37, Warszawa 01-142 (Poland); Scattergood, R.O.; Koch, C.C. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907 (United States); Manna, I. [Central Glass and Ceramic Research Institute, Jadavpur, Kolkata 700032 (India)

    2012-10-15

    Graphical abstract: - Abstract: Mechanically alloyed in situ nano Al{sub 3}Ti dispersed Al{sub 50}Ti{sub 40}Si{sub 10} amorphous matrix alloy powder was consolidated by hot isostatic pressing in the temperature range of 300-600 Degree-Sign C with a pressure of 1.2 GPa and holed at this temperature for 10 min. Microstructural and phase evolution studies of the mechanically alloyed powder and sintered compacts were conducted by X-ray diffraction and transmission electron microscopy. Alloy sintered at 500 Degree-Sign C recorded an excellent combination of high hardness (8.61 GPa), compressive strength (1212 MPa) and Young's modulus (149 GPa). Furthermore, these results have been compared with that of earlier studies based on conventional sintering (CCS), and high pressure sintering (HPS).

  18. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Herath, H.M.T.U. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Premachandra, T.N. [Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Ranasinghe, C.S.K. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.P.V.J. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.M.G., E-mail: rmgr@pdn.ac.lk [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Edirisinghe, Mohan; Mahalingam, S. [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Bandara, I.M.C.C.D. [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia); Singh, Sanjleena [Central Analytical Research Facility, Institute of Future Environments, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia)

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO{sub 2} thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO{sub 2} thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  19. Improving co-amorphous drug formulations by the addition of the highly water soluble amino acid proline

    DEFF Research Database (Denmark)

    Jensen, Katrine Birgitte Tarp; Löbmann, Korbinian; Rades, Thomas;

    2014-01-01

    by combining the model drug, naproxen (NAP), with an amino acid to physically stabilize the co-amorphous system (tryptophan, TRP, or arginine, ARG) and a second highly soluble amino acid (proline, PRO) for an additional improvement of the dissolution rate. Co-amorphous drug-amino acid blends were prepared......Co-amorphous drug amino acid mixtures were previously shown to be a promising approach to create physically stable amorphous systems with the improved dissolution properties of poorly water-soluble drugs. The aim of this work was to expand the co-amorphous drug amino acid mixture approach...... by ball milling and investigated for solid state characteristics, stability and the dissolution rate enhancement of NAP. All co-amorphous mixtures were stable at room temperature and 40 °C for a minimum of 84 days. PRO acted as a stabilizer for the co-amorphous system, including NAP–TRP, through enhancing...

  20. Preparation of nucleoside-pyridine hybrids and pyridine attached acylureas from an unexpected uracil ring-opening and pyridine ring-forming sequence

    Institute of Scientific and Technical Information of China (English)

    Xue Sen Fan; Xia Wang; Xin Ying Zhang; Dong Feng; Ying Ying Qu

    2009-01-01

    Novel pyrimidine nucleoside-3,5-dicyanopyridine hybrids (4) or pyridine attached acylureas (5) were selectively and efficiently prepared from the reaction of 2'-deoxyuridin-5-yl-methylene malonortitrile (1), malononitrile (2) and thiophenol (3) or from an unexpected uracil ring-opening and pyridine ring-forming sequence via the reaction of 1 and 3. It is the first time such a sequence has ever been reported.

  1. Preparation and characterization of Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3} composite oxide formed by cathodic electroplating and anodizing

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Joo-Hee; Kim, Tae-Yoo; Kim, Nam-Jeong; Lee, Chang-Hyoung; Park, Eun-Mi [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Park, Chan [Division of Materials Science and Engineering, Pukyong National University, Busan 608-739 (Korea, Republic of); Suh, Su-Jeong, E-mail: suhsj@skku.ac.kr [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Advanced Materials and Process Research Center for IT, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2011-11-15

    Highlights: > We fabricate Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3}/Al film for high performance thin film capacitor. > The optimum condition of electrolyte composition will coat NbO{sub x} on Al without corrosion of Al during the cathodic electroplating. > Increasing annealing temperature will form Nb{sub 2}O{sub 5} crystalline. > The Al{sub 2}O{sub 3} layer will form between Nb{sub 2}O{sub 5} layer and metal Al after anodizing and the thin film capacitor with Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3}/Al improve dielectric properties. - Abstract: Al foil was coated with niobium oxide by cathodic electroplating and anodized in a neutral boric acid solution to achieve high capacitance in a thin film capacitor. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) revealed the niobium oxide layer on Al to be a hydroxide-rich amorphous phase. The film was crystalline and had stoichiometric stability after annealing at temperatures up to 600 deg. C followed by anodizing at 500 V, and the specific capacitance of the Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3} composite oxide was approximately 27% higher than that of Al{sub 2}O{sub 3} without a Nb{sub 2}O{sub 5} layer. The capacitance was quite stable to the resonance frequency. Overall, the Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3} composite oxide film is a suitable material for thin film capacitors.

  2. Mössbauer effect studies and X-ray diffraction analysis of cobalt ferrite prepared in powder form by thermal decomposition method

    Indian Academy of Sciences (India)

    M D Joseph Sebastian; B Rudraswamy; M C Radhakrishna; Ramani

    2003-08-01

    Cobalt ferrite (Co$_x$Fe$_{3–x}$O4) is prepared in powder form by thermal decomposition of iron and cobalt salts and is analysed by X-ray diffraction and Mössbauer spectroscopic techniques. The variation of Mössbauer parameters, lattice parameters and crystallite size of the products formed with variation in the composition of Fe and Co ratios are studied. The studies confirm the formation of nano-size cobalt ferrite particles with defect structure and it is found to be maximum for the Fe : Co = 60 : 40 ratio of the initial precursor oxides.

  3. Contents and features of forming students' culture of health of special medical group in the process of theoretical preparation on physical education.

    Directory of Open Access Journals (Sweden)

    Gribok N.N.

    2010-12-01

    Full Text Available The problem of forming valued attitude is considered toward own health for students with the presence of diseases. New vision of maintenance of theoretical preparation is found on physical education of students at which rejections are marked in a state of health. An experimental on-line tutorial is offered, on the basis of analysis of the existent program, on physical education for the students of task medical force. It is set that the offered on-line tutorial is directed not only on liquidation of diseases but also on forming, strengthening and maintenance of own health in spiritual, psychical and physical aspects.

  4. Deformation behavior of an electrodeposited nano-Ni/amorphous Fe78Si9B13 laminated composite sheet

    Directory of Open Access Journals (Sweden)

    Zhang Kaifeng

    2015-01-01

    Full Text Available A nano-Ni/amorphous Fe78Si9B13 composite sheet was prepared in the form of three-ply (Ni-Fe78Si9B13-Ni laminated structure by an electrodeposition method. The average grain size of Ni layers is about 50 nm. The interface of laminated composite was investigated with SEM equipped with energy dispersive scanning (EDS and line analysis technique. The laminated composite has a good interfacial bonding between amorphous layer and nano-Ni layers due to the mutual diffusion of atoms in Fe78Si9B13 and Ni layers during the process of electrodeposition. A maximum elongation of 115.5% was obtained when the volume fraction of nano-Ni layers (VNi was 0.77, which is greatly higher than that of monolithic amorphous Fe78Si9B13 ribbon (36.3% tested under the same conditions. Bulging tests were carried out to evaluate plastic forming properties of the Fe78Si9B13/Ni laminated composite. Under the condition of 450 °C, 4.0 MPa and 30 min, a good bulging part with the relative bulging height (RBH of 0.4 was obtained.

  5. Amorphous stabilization and dissolution enhancement of amorphous ternary solid dispersions: combination of polymers showing drug-polymer interaction for synergistic effects.

    Science.gov (United States)

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2014-11-01

    The purpose of this study was to understand the combined effect of two polymers showing drug-polymer interactions on amorphous stabilization and dissolution enhancement of indomethacin (IND) in amorphous ternary solid dispersions. The mechanism responsible for the enhanced stability and dissolution of IND in amorphous ternary systems was studied by exploring the miscibility and intermolecular interactions between IND and polymers through thermal and spectroscopic analysis. Eudragit E100 and PVP K90 at low concentrations (2.5%-40%, w/w) were used to prepare amorphous binary and ternary solid dispersions by solvent evaporation. Stability results showed that amorphous ternary solid dispersions have better stability compared with amorphous binary solid dispersions. The dissolution of IND from the ternary dispersion was substantially higher than the binary dispersions as well as amorphous drug. Melting point depression of physical mixtures reveals that the drug was miscible in both the polymers; however, greater miscibility was observed in ternary physical mixtures. The IR analysis confirmed intermolecular interactions between IND and individual polymers. These interactions were found to be intact in ternary systems. These results suggest that the combination of two polymers showing drug-polymer interaction offers synergistic enhancement in amorphous stability and dissolution in ternary solid dispersions.

  6. Amorphous carbon for photovoltaics

    Science.gov (United States)

    Risplendi, Francesca; Grossman, Jeffrey C.

    2015-03-01

    All-carbon solar cells have attracted attention as candidates for innovative photovoltaic devices. Carbon-based materials such as graphene, carbon nanotubes (CNT) and amorphous carbon (aC) have the potential to present physical properties comparable to those of silicon-based materials with advantages such as low cost and higher thermal stability.In particular a-C structures are promising systems in which both sp2 and sp3 hybridization coordination are present in different proportions depending on the specific density, providing the possibility of tuning their optoelectronic properties and achieving comparable sunlight absorption to aSi. In this work we employ density functional theory to design suitable device architectures, such as bulk heterojunctions (BHJ) or pn junctions, consisting of a-C as the active layer material.Regarding BHJ, we study interfaces between aC and C nanostructures (such as CNT and fullerene) to relate their optoelectronic properties to the stoichiometry of aC. We demonstrate that the energy alignment between the a-C mobility edges and the occupied and unoccupied states of the CNT or C60 can be widely tuned by varying the aC density to obtain a type II interface.To employ aC in pn junctions we analyze the p- and n-type doping of a-C focusingon an evaluation of the Fermi level and work function dependence on doping.Our results highlight promising features of aC as the active layer material of thin-film solar cells.

  7. High-strength Zr-based bulk amorphous alloys containing nanocrystalline and nanoquasicrystalline particles

    Directory of Open Access Journals (Sweden)

    A Inoue, C Fan, J Saida and T Zhang

    2000-01-01

    Full Text Available It was recently found that the addition of special elements leading to the deviation from the three empirical rules for the achievement of high glass-forming ability causes new mixed structures consisting of the amorphous phase containing nanoscale compound or quasicrystal particles in Zr–Al–Ni–Cu–M (M=Ag, Pd, Au, Pt or Nb bulk alloys prepared by the copper mold casting and squeeze casting methods. In addition, the mechanical strength and ductility of the nonequilibrium phase bulk alloys are significantly improved by the formation of the nanostructures as compared with the corresponding amorphous single phase alloys. The composition ranges, formation factors, preparation processes, unique microstructures and improved mechanical properties of the nanocrystalline and nanoquasicrystalline Zr-based bulk alloys are reviewed on the basis of our recent results reported over the last two years. The success of synthesizing the novel nonequilibrium, high-strength bulk alloys with good mechanical properties is significant for the future progress of basic science and engineering.

  8. Electronic excitation induced amorphization in titanate pyrochlores: an ab initio molecular dynamics study

    Science.gov (United States)

    Xiao, H. Y.; Weber, W. J.; Zhang, Y.; Zu, X. T.; Li, S.

    2015-01-01

    The response of titanate pyrochlores (A2Ti2O7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser, electron and ion irradiations. PMID:25660219

  9. Femtosecond laser crystallization of amorphous Ge

    Science.gov (United States)

    Salihoglu, Omer; Kürüm, Ulaş; Yaglioglu, H. Gul; Elmali, Ayhan; Aydinli, Atilla

    2011-06-01

    Ultrafast crystallization of amorphous germanium (a-Ge) in ambient has been studied. Plasma enhanced chemical vapor deposition grown a-Ge was irradiated with single femtosecond laser pulses of various durations with a range of fluences from below melting to above ablation threshold. Extensive use of Raman scattering has been employed to determine post solidification features aided by scanning electron microscopy and atomic force microscopy measurements. Linewidth of the Ge optic phonon at 300 cm-1 as a function of laser fluence provides a signature for the crystallization of a-Ge. Various crystallization regimes including nanostructures in the form of nanospheres have been identified.

  10. Thermodynamics, molecular mobility and crystallization kinetics of amorphous griseofulvin.

    Science.gov (United States)

    Zhou, Deliang; Zhang, Geoff G Z; Law, Devalina; Grant, David J W; Schmitt, Eric A

    2008-01-01

    Griseofulvin is a small rigid molecule that shows relatively high molecular mobility and small configurational entropy in the amorphous phase and tends to readily crystallize from both rubbery and glassy states. This work examines the crystallization kinetics and mechanism of amorphous griseofulvin and the quantitative correlation between the rate of crystallization and molecular mobility above and below Tg. Amorphous griseofulvin was prepared by rapidly quenching the melt in liquid N2. The thermodynamics and dynamics of amorphous phase were then characterized using a combination of thermal analysis techniques. After characterization of the amorphous phase, crystallization kinetics above Tg were monitored by isothermal differential scanning calorimetry (DSC). Transformation curves for crystallization fit a second-order John-Mehl-Avrami (JMA) model. Crystallization kinetics below Tg were monitored by powder X-ray diffraction and fit to the second-order JMA model. Activation energies for crystallization were markedly different above and below Tg suggesting a change in mechanism. In both cases molecular mobility appeared to be partially involved in the rate-limiting step for crystallization, but the extent of correlation between the rate of crystallization and molecular mobility was different above and below Tg. A lower extent of correlation below Tg was observed which does not appear to be explained by the molecular mobility alone and the diminishing activation energy for crystallization suggests a change in the mechanism of crystallization.

  11. Preparation and Characterization of Copolymer Micelles Formed by Poly(ethylene glycol)-Polylactide Block Copolymers as Novel Drug Carriers

    Institute of Scientific and Technical Information of China (English)

    姜维; 王运东; 甘泉; 张建铮; 赵秀文; 费维扬; 贝建中; 王身国

    2006-01-01

    Diblock copolymer poly(ethylene glycol) methyl ether-polylactide (MePEG-PLA) micelles were prepared by dialysis against water. Indomethacin (IMC) as a model drug was entrapped into the micelles by dialysis method. The critical micelle concentration (CMC) of the prepared micelles in distilled water investigated by fluorescence spectroscopy was 0.0051mg/mL which is lower than that of common low molecular weight surfactants. The diameters of MePEG-PLA micelles and IMC loaded MePEG-PLA micelles in a number-averaged scale measured by dynamic light scattering were 52.4 and 53.7 nm respectively. The observation with transmission electron microscope and scanning electron microscope showed that the appearance of MePEG-PLA micelles was in a spherical shape. The content of IMC incorporated in the core portion of the micelles was 18% (ω). The effects of the synthesis method of the copolymer on the polydispersity of the micelles and the yield of the micelles formation were discussed.

  12. The specific heat of pure and hydrogenated amorphous silicon

    Science.gov (United States)

    Queen, Daniel Robert

    At low temperature, amorphous materials have low energy excitations that result in a heat capacity that is in excess of the Debye heat capacity calculated from the sound velocity. These excitations are ubiquitous to the glassy state and occur with roughly the same density for all glasses. The specific heat has a linear temperature dependence below 1K that has been described by the phenomenological two-level systems (TLS) model in addition to a T 3 temperature dependence which is in excess of the T3 Debye specific heat. It is still unknown what exact mechanism gives rise to the TLS but it is assumed that groups of atoms have configurations that are close in energy and, at low temperature, these atoms can change configurations by tunneling through the energy barrier separating them. It has been an open question as to whether tetrahedrally bonded materials, like amorphous silicon, can support TLS due to the over-constrained nature of their bonding. It is shown in this work that amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) have specific heat CP in excess of the Debye specific heat which depends on the details of the growth process. There is a linear term that is due to TLS in addition to an excess T3 contribution. We find that the TLS density depends on number density of atoms in the a-Si film and that the presence of hydrogen in a-Si:H increases CP further. We suggest that regions of low density are sufficiently under-constrained to support tunneling between structural configurations at low temperature as described by the TLS model. The presence of H further lowers the energy barriers for the tunneling process resulting in an increase in TLS density in a-Si:H. The presence of H in a-Si:H network is found to be metastable. Annealing causes H to diffuse away from clustered regions which reduces the density of TLS. A low temperature anomaly is found in the a-Si:H films in their as prepared state that is of unknown origin but appears to take the

  13. Solubility and bioavailability of stabilized amorphous calcium carbonate.

    Science.gov (United States)

    Meiron, Oren E; Bar-David, Elad; Aflalo, Eliahu D; Shechter, Assaf; Stepensky, David; Berman, Amir; Sagi, Amir

    2011-02-01

    Since its role in the prevention of osteoporosis in humans was proven some 30 years ago, calcium bioavailability has been the subject of numerous scientific studies. Recent technology allowing the production of a stable amorphous calcium carbonate (ACC) now enables a bioavailability analysis of this unique form of calcium. This study thus compares the solubility and fractional absorption of ACC, ACC with chitosan (ACC-C), and crystalline calcium carbonate (CCC). Solubility was evaluated by dissolving these preparations in dilute phosphoric acid. The results demonstrated that both ACC and ACC-C are more soluble than CCC. Fractional absorption was evaluated by intrinsically labeling calcium carbonate preparations with (45)Ca, orally administrated to rats using gelatin capsules. Fractional absorption was determined by evaluating the percentage of the administrated radioactive dose per milliliter that was measured in the serum, calcium absorption in the femur, and whole-body retention over a 34-hour period. Calcium serum analysis revealed that calcium absorption from ACC and ACC-C preparations was up to 40% higher than from CCC, whereas retention of ACC and ACC-C was up to 26.5% higher than CCC. Absorbed calcium in the femurs of ACC-administrated rats was 30% higher than in CCC-treated animals, whereas 15% more calcium was absorbed following ACC-C treatment than following CCC treatment. This study demonstrates the enhanced solubility and bioavailability of ACC over CCC. The use of stable ACC as a highly bioavailable dietary source for calcium is proposed based on the findings of this study. Copyright © 2011 American Society for Bone and Mineral Research.

  14. Selective preparation of elusive and alternative single component polymorphic solid forms through multi-component crystallisation routes.

    Science.gov (United States)

    Thomas, Lynne H; Wales, Craig; Wilson, Chick C

    2016-05-31

    A transferable, simple, method for producing previously elusive and novel polymorphic forms of important active pharmaceutical ingredients (APIs; paracetamol (acetaminophen), piroxicam and piracetam) is demonstrated. Nitrogen heterocyclic co-molecules are employed to influence the self-assembly crystallisation process in a multi-component environment. Previously unknown solvates have also been synthesised by this method.

  15. Preparation and characterization of form-stable paraffin/polycaprolactone composites as phase change materials for thermal energy storage

    Directory of Open Access Journals (Sweden)

    Aludin M.S.

    2017-01-01

    Full Text Available Paraffin is Phase Change Materials (PCM that possesses desirable properties such as high thermal energy storage and thermal stability to make it suitable for thermal energy storage applications. However, paraffin has been reported to leak out during the melting process. In this study, composites were prepared by dissolving paraffin and polycaprolactone (PCL at varied mass percent compositions in chloroform and then purified through precipitation techniques. The leakage test was conducted by placing the composite samples on a set of four-layer filter papers and left in a furnace at 90°C for 1 hour. By incorporating PCL into paraffin phase, the leakage mass percentage was drastically reduced. The PCL polymer matrix in the composites may have trapped the paraffin molecules during melting process thus prevent it from leaking.

  16. Preparation of hardened body in calcium carbonate-aspartic acid-chitosan system by using amorphous calcium carbonate; Hishoshitsu tansan calcium wo genryo to suru tansan calcium-asuparaginsan-kitosankei kokatai no sakusei

    Energy Technology Data Exchange (ETDEWEB)

    Yasue, T.; Aigami, H.; Arai, Y. [Nihon University, Tokyo (Japan). Faculty of Science and Engineering

    1998-11-01

    Notice was given on chitosan to discuss fabrication of hardened body in calcium carbonate-aspartic acid-chitosan system. First, aspartic acid (Asp) was adsorbed into surface of amorphous calcium carbonate (ACC). Then, discussions were given on effects of water-solid mass ratio and chitosan amount on compressive strength of the hardened body in the calcium carbonate-chitosan system made by using a flow-in molding process. As a result, approximately the same compressive strength as that of calcium carbonate (calcite type) was obtained when anhydrous ACC as a product of ACC heated at 250 deg C is used as the raw material. Thus, the hardened body in calcium carbonate-aspartic acid-chitosan system was fabricated by using the Asp adsorbed anhydrous ACC as the starting material. The compressive strength decreased with increasing Asp adsorption amount. Therefore, a hardened body was fabricated by using compression molding at 10 MPa, rather than using the flow-in molding process. It was revealed from the results of infrared absorption spectroscopy that the compression molding strengthens the compounding of Asp chemically adsorbed on the ACC surface with chtosan, and improves the compression strength. 23 refs., 8 figs.

  17. Band offsets at the crystalline / hydrogenated amorphous silicon interface from first-principles

    Science.gov (United States)

    Hazrati, Ebrahim; Jarolimek, Karol; de Wijs, Gilles A.; InstituteMolecules; Materials Team

    2015-03-01

    The heterojunction formed between crystalline silicon (c-Si) and hydrogenated amorphous silicon (a-Si:H) is a key component of a new type of high-efficiency silicon solar cell. Since a-Si:H has a larger band gap than c-Si, band offsets are formed at the interface. A band offset at the minority carrier band will mitigate recombination and lead to an increased efficiency. Experimental values of band offsets scatter in a broad range. However, a recent meta-analysis of the results (W. van Sark et al.pp. 405, Springer 2012) gives a larger valence offset (0.40 eV) than the conduction offset (0.15 eV). In light of the conflicting reports our goal is to calculate the band offsets at the c-Si/a-Si:H interface from first-principles. We have prepared several atomistic models of the interface. The crystalline part is terminated with (111) surfaces on both sides. The amorphous structure is generated by simulating an annealing process at 1100 K, with DFT molecular dynamics. Once the atomistic is ready it can be used to calculate the electronic structure of the interface. Our preliminary results show that the valence offset is larger than the conduction band offset.

  18. Annealed Crystallization and Catalytic activity of Ultrafine NiB Amorphous Alloy

    Institute of Scientific and Technical Information of China (English)

    WEIShiqing; HUTiandou; 等

    2001-01-01

    A Ultrafine amorphous NiB alloy was prepared via chemical reduction method;Its structures during the crystallizatioin precess was characterized by such techniques as Differential thermal analysis (DTA),X-ray absorption fine structure (XAFS) and X-ray diffraction(XRD),and correlated to the catalytic properties for benzene hydrogenation.It was found that the crystallization of amorphous NiB alloy was carried out in two steps,as indicated by two exothermic peaks centered at 598 and 652K respectively.During the first step.two metastable crystalline phases,i.e.,Ni3B and a noaocrstalline Ni phase(Ni-rich NiB alloy),were formed.Further annealing at higher temperature of 652 K may result in the decomposition of crystalline Ni3B and aggregation of nanocrystalline Ni,the benzene hydrogenation is optimized around the annealing temperature of 623K.It most probably results from the maximum amount of active site on nanocrystalline Ni formed by thermal treatment at appropriate annealing temperature.

  19. Preserving the supersaturation generation capability of amorphous drug-polysaccharide nanoparticle complex after freeze drying.

    Science.gov (United States)

    Kiew, Tie Yi; Cheow, Wean Sin; Hadinoto, Kunn

    2015-04-30

    While the supersaturation generation capability of amorphous nanopharmaceuticals (NPs) in their aqueous suspension form has been well established, their supersaturation generation is adversely affected after drying. Herein we investigated the effects of freeze drying on the supersaturation generation capability of a new class of amorphous NPs referred to as drug nanoplex prepared and stabilized by electrostatic complexation of drug molecules with polysaccharides (dextran sulfate). Using ciprofloxacin as the model drug, two types of freeze-drying adjuvants were investigated, i.e., (1) highly water-soluble excipient (trehalose, mannitol), whose role was to prevent irreversible NPs aggregations upon drying, and (2) crystallization inhibitor (hydroxypropylmethylcellulose (HPMC)), whose role was to suppress crystallization of the dissolved drug and the remaining solid phase. The results showed that dual-adjuvant formulations (i.e. trehalose-HPMC and mannitol-HPMC) were required to preserve the supersaturation generation capability of the drug nanoplex suspension after drying. Freeze drying with only one adjuvant type, or incorporating HPMC as physical mixtures with the freeze-dried nanoplex, were ineffective in preserving the supersaturation. The dual-adjuvant formulations produced prolonged supersaturation levels over 240min at ≈6-8× of the saturation solubility with comparable area under the curve (AUC) in the concentration versus time plot as that exhibited by the suspension form. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Fundamentals of amorphous solids structure and properties

    CERN Document Server

    Stachurski, Zbigniew H

    2014-01-01

    Long awaited, this textbook fills the gap for convincing concepts to describe amorphous solids. Adopting a unique approach, the author develops a framework that lays the foundations for a theory of amorphousness. He unravels the scientific mysteries surrounding the topic, replacing rather vague notions of amorphous materials as disordered crystalline solids with the well-founded concept of ideal amorphous solids. A classification of amorphous materials into inorganic glasses, organic glasses, glassy metallic alloys, and thin films sets the scene for the development of the model of ideal amorph

  1. Nanostructures having crystalline and amorphous phases

    Science.gov (United States)

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  2. Effets du traitement chimique de la surface d'une électrode négative en silicium amorphe pour batterie lithium-ion: étude par spectroscopie infrarouge in situ

    OpenAIRE

    Alves Dalla Corte, Daniel

    2013-01-01

    140 pages, 152 references; Silicon represents an expressive gain in energy density for negative electrodes in Li-ion batteries. Reversible cycling and long term stability of silicon electrodes are both dependent of the passivation efficiency of the solid electrolyte interface (SEI) layer formed at the electrode surface. Surface and bulk phenomena of amorphous silicon were studied by in-situ FTIR spectroscopy during electrochemical cycling. Electrodes were prepared by thin-film deposition of h...

  3. Universal features of amorphous plasticity

    Science.gov (United States)

    Budrikis, Zoe; Castellanos, David Fernandez; Sandfeld, Stefan; Zaiser, Michael; Zapperi, Stefano

    2017-07-01

    Plastic yielding of amorphous solids occurs by power-law distributed deformation avalanches whose universality is still debated. Experiments and molecular dynamics simulations are hampered by limited statistical samples, and although existing stochastic models give precise exponents, they require strong assumptions about fixed deformation directions, at odds with the statistical isotropy of amorphous materials. Here, we introduce a fully tensorial, stochastic mesoscale model for amorphous plasticity that links the statistical physics of plastic yielding to engineering mechanics. It captures the complex shear patterning observed for a wide variety of deformation modes, as well as the avalanche dynamics of plastic flow. Avalanches are described by universal size exponents and scaling functions, avalanche shapes, and local stability distributions, independent of system dimensionality, boundary and loading conditions, and stress state. Our predictions consistently differ from those of mean-field depinning models, providing evidence that plastic yielding is a distinct type of critical phenomenon.

  4. Amorphization of Crystalline Water Ice

    CERN Document Server

    Zheng, Weijun; Kaiser, Ralf I

    2008-01-01

    We conducted a systematic experimental study to investigate the amorphization of crystalline ice by irradiation in the 10-50 K temperature range with 5 keV electrons at a dose of ~140 eV per molecule. We found that crystalline water ice can be converted partially to amorphous ice by electron irradiation. Our experiments showed that some of the 1.65-micrometer band survived the irradiation, to a degree that depends on the temperature, demonstrating that there is a balance between thermal recrystallization and irradiation-induced amorphization, with thermal recrystallizaton dominant at higher temperatures. At 50 K, recrystallization due to thermal effects is strong, and most of the crystalline ice survived. Temperatures of most known objects in the solar system, including Jovian satellites, Saturnian satellites, and Kuiper belt objects, are equal to or above 50 K, this might explain why water ice detected on those objects is mostly crystalline.

  5. Fabrication and thermal characterization of amorphous and nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti compound

    Energy Technology Data Exchange (ETDEWEB)

    Tavoosi, Majid, E-mail: ma.tavoosi@gmail.com

    2017-01-15

    In this study, the fabrication and structural characterization of amorphous/nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti phase has been performed. In this regards, milling and annealing processes were applied on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} (at. %) powder mixture for different periods of time. The prepared samples were characterized using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM) and differential scanning calorimetery (DSC). According to the results, supersaturated solid solution, nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti (with average crystallite size of about 7 nm) and amorphous phases indicated three different microstructures which can be formed in Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} system during milling process. The formed supersaturated solid solution and amorphous phases were unstable and transformed to Al{sub 9}FeNi/Al{sub 3}Ti intermetallic compound during annealing process. It is shown that, Al{sub 9}FeNi phase in Al{sub 9}FeNi/Al{sub 3}Ti intermetallic compound can decompose into Al{sub 3}Ni, Al{sub 13}Fe{sub 4} and liquid phases during a reversible peritectic reaction at 809 °C. - Highlights: • We study the effect of milling process on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} alloy. • We study the effect of annealing on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} supersaturated solid solution phase. • We study the effect of annealing on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} amorphous phase. • We study the thermal behaviour of Al{sub 9}FeNi/Al{sub 3}Ti compound.

  6. Preparation and Wear Resistance of Aluminum Composites Reinforced with In Situ Formed TiO/Al2O3

    Science.gov (United States)

    Qin, Q. D.; Huang, B. W.; Li, W.; Zeng, Z. Y.

    2016-05-01

    An in situ TiO/Al2O3-reinforced Al composite is successfully prepared using a powder metallurgy route by the reaction of Ti2CO and Al powder. The Ti2CO powder is produced by carrying out a carbothermic reduction of titanium dioxide at 1000 °C. XRD results show that the final product is composed of Al, TiO, Al2O3, and Al3Ti. Morphology examination of the composite reveals the presence of bigger blocks of TiO and fine particles of Al2O3 and the volume fraction of reinforcement is found to range between 18 and 55%. As the volume fraction of the reinforced materials approaches 50%, the particles start to agglomerate. Dry sliding wear tests conducted using a conventional pin-on-disk testing machine show that the wear resistance of the composite is higher than that of the pure aluminum ingot. The wear rate of the composite increases almost linearly with the increase in the wear distance. The sliding wear test shows that as the volume fraction of the reinforced phase increases, the coefficient of friction decreases. The wear mechanism is also discussed.

  7. Study on the Sea-Buckthorn (Hippophae rhamnoides L.) Preparation Forms Destined to its Nutritio-Pharmaceutical Use

    OpenAIRE

    Carmen Georgeta Dumitrescu (Manole)

    2016-01-01

    In conducting this research we started from the multiple uses of sea-buckthorn in our everyday life. In addition to the positive effect of sea-buckthorn plant on the environment, especially by fixing the soil, almost all parts of this miraculous shrub have therapeutically effect (fruits, leaves, shoots etc.) and can be consumed in various forms. Aim of this paper is to present the nutritional value of sea-buckthorn, recipes most frequently used and the effects that they have on people. In ord...

  8. Preparation of anode-electrolyte structures using graphite, sodium bicarbonate or citric acid as pore forming agents for application in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Paz Fiuza, Raigenis da; Silva, Marcos Aurelio da; Guedes, Bruna C.; Pontes, Luiz A.; Boaventura, Jaime Soares [UFBA, Salvador, Bahia (Brazil). Energy and Materials Science Group

    2010-07-01

    Cermets based on Ni supported on YSZ or GDC were prepared for use as anode in direct reform SOFCs. NaHCO3 (Na-Ni-YSZ and Na-Ni-GDC) or citric acid (Ac-Ni-YSZ and Ac-Ni-GDC) were used as pore forming agents (PFAs). The SOFC anode was also prepared using graphite (G-Ni-YSZ and G-Ni-GDC) as PFA for the purposes of comparison. The testing unitary SOFC, planar type, was made by pressing the anode-electrolyte assembly, followed by sintering at 1500 C. After this, LSM (lanthanum and strontium manganite) paint was used for the cathode deposition. The powdered cermets were evaluated in ethanol steam reforming at 650 C. The ethanol conversion was 84% and 32% for cermets Na-Ni-YSZ and G-Ni-YSZ, respectively and the selectivity to H{sub 2} was 32 and 20% for the two cermets, respectively. The Na-Ni-YSZ cermet was ten times more resistant to carbon deposition than the G-Ni-YSZ cermet. SEM micrographs of the anode-electrolyte assembly showed that the use of NaHCO{sub 3} as PFA created a well formed interface between layers with homogeneously distributed pores. In contrast, graphite as PFA formed a loose interface between anode and electrolyte. The performance of the unitary SOFC was evaluated using ethanol, hydrogen or methane as fuel. The cell operated well using any of these fuels; however, they exhibited different electrochemical behavior. (orig.)

  9. Effect of melt spinning on gaseous hydrogen storage characteristics of nanocrystalline and amorphous Nd-added Mg2Ni-type alloys

    Institute of Scientific and Technical Information of China (English)

    张羊换; 袁泽明; 杨泰; 祁焱; 郭世海; 赵栋梁

    2016-01-01

    Nanocrystalline and amorphous Mg-Nd-Ni-Cu quaternary alloys with a composition of (Mg24Ni10Cu2)100-xNdx (x=0, 5, 10, 15, 20) were prepared by melt spinning technology and their structures as well as gaseous hydrogen storage characteristics were investigated. The XRD, TEM and SEM linked with EDS detections reveal that the as-spun Nd-free alloy holds an entire nanocrystalline structure but a nanocrystalline and amorphous structure for the as-spun Nd-added alloy, implying that the addition of Nd facilitates the glass forming in the Mg2Ni-type alloy. Furthermore, the degree of amorphization of the as-spun Nd-added alloy and thermal stability of the amorphous structure clearly increase with the spinning rate rising. The melt spinning ameliorates the hydriding and dehydriding kinetics of the alloys dramatically. Specially, the rising of the spinning rate from 0 (the as-cast was defined as the spinning rate of 0 m/s) to 40 m/s brings on the hydrogen absorption saturation ratio(a)5R(a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increasing from 36.9% to 91.5% and the hydrogen desorption ratio(d)10R(a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) rising from 16.4% to 47.7% for the (x=10) alloy, respectively.

  10. Formation, properties and microstructure of amorphous/crystalline composite Ag{sub 20}Cu{sub 30}Ti{sub 50} alloy using miscibility gap

    Energy Technology Data Exchange (ETDEWEB)

    Ziewiec, Krzysztof, E-mail: kziewiec@gmail.co [Institute of Technology, Pedagogical University of Cracow, ul. Podchorazych 2, 30-084 Krakow (Poland); Kedzierski, Zbigniew; Zielinska-Lipiec, Anna; Stepinski, Janusz; Kac, Slawomir [AGH University of Science and Technology, Faculty of Metal Engineering and Industrial Computer Science, 30 Mickiewicza Ave, 30-059 Krakow (Poland)

    2009-08-12

    The aim of the work was to produce the amorphous/crystalline composite with uniform distribution of fine crystalline soft phase. Silver-copper-titanium Ag{sub 20}Cu{sub 30}Ti{sub 50} alloy was prepared using 99.95 wt% Ag, 99.95 wt% Cu, 99.95 wt% Ti that were arc-melted in argon atmosphere. Then the alloy was melt spun on a copper wheel with linear velocity of 33 m/s. Investigation of the microstructure for both arc-melt massive sample and melt-spun ribbons was performed with use of scanning electron microscope (SEM) with EDS, light microscope (LM) and X-ray diffraction. The thermal stability was evaluated by differential scanning calorimetry (DSC). The properties such as Young modulus and Vickers hardness number before and after crystallization of the amorphous matrix were measured with use of nanoindenter. The microstructure was investigated by transmission electron microscope (TEM). It was found, that the alloy has a tendency for separation within the liquid state due to the miscibility gap which resulted in segregation into Ti-Cu-Ag matrix and Ag-base spherical particles after arc-melting. During rapid cooling through the melt spinning the Ag{sub 20}Cu{sub 30}Ti{sub 50} alloy formed an amorphous/crystalline composite of fcc silver-rich spherical particles within the amorphous Ti-Cu-Ag matrix.

  11. Near-infrared and fourier transform infrared chemometric methods for the quantification of crystalline tacrolimus from sustained-release amorphous solid dispersion.

    Science.gov (United States)

    Rahman, Ziyaur; Siddiqui, Akhtar; Bykadi, Srikant; Khan, Mansoor A

    2014-08-01

    The objective of the present research was to study the feasibility of using near-infrared (NIR) and Fourier transform infrared (FTIR)-based chemometric models in quantifying crystalline and amorphous tacrolimus from its sustained-release amorphous solid dispersion (ASD). ASD contained ethyl cellulose, hydroxypropyl methyl cellulose, and lactose monohydrate as carriers, and amorphous form of tacrolimus in it was confirmed by X-ray powder diffraction. Crystalline physical mixture was mixed with ASD in various proportions to prepare sample matrices containing 0%-100% amorphous/crystalline tacrolimus. NIR and FTIR of the samples were recorded, and data were mathematically pretreated using multiple scattering correction, standard normal variate, or Savitzky-Golay before multivariate analysis, partial-least-square regression (PLSR), and principle component regression (PCR). The PLSR models were more accurate than PCR for NIR and FTIR data as indicated by low value of root-mean-squared error of prediction, standard error of prediction and bias, and high value of R(2). Additionally, NIR data-based models were more accurate and precise than FTIR data models. In conclusion, NIR chemometric models provide simple and fast method to quantitate crystalline tacrolimus in the ASD formulation.

  12. Preparation, Structural Characterization and Luminescent Property of Binuclear Silver(Ⅰ) Complex Formed by Benzotriazole and 1-Hydroxymethyl Benzotriazole

    Institute of Scientific and Technical Information of China (English)

    LIU,Qing-xiang(柳清湘); XU,Feng-Bo(徐凤波); LI,Qing-Shan(李庆山); ZENG,Xian-Shun(曾宪顺); LENG,Xue-Bing(冷雪冰); ZHANG,Zheng-Zhi(张正之)

    2002-01-01

    Dinuclear silver(Ⅰ) six-membered ring complex [A g2(bta)2-(hmbta)2] (ClO4)2 (3) has been synthesized by the reaction of benzotriazole (bra) (1) and 1-hydroxymethyl benzotriazole (hmbta) (2) with Ag(CH3CN)4ClO4. The structures of compound 2 and Complex 3 have been studied by single crystal Xray diffraction analysis. The change of luminescent intensity of 1, 2 and3 was reported. Compound 2 crystallizes in the monoclinic system with space group P2(1)/c, a = 0.7655(10) nm,b =1.0126(14) nm, c=0.9502(13) nm, β=95.07(2)°, V=0.7337(17) nm3 and Z=4. Complex 3 crystallizes in the triclinic system with space group P1, a=0.73611(18) nm, b=0.9152(2) nm, c = 1.2277(3) nm, β=87.170(5)°, V=0.8221(3) nm3and Z = 1. The main structural feature of complex 3 is a symmetric dinuclear six-menbered ring formed by two silver(Ⅰ) atoms and four N-atoms from two benzotriazoles.The second structural feature of complex 3 is the π-π stacking interaction between two adjacent molecular planes, which forms the two-dimentional layer structure. Besides, compared with 2, the luminescent intensity of complex 3 shows a remarkable enhancement.

  13. Health hazards due to the inhalation of amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Merget, R.; Bruening, T. [Research Institute for Occupational Medicine (BGFA), Bochum (Germany); Bauer, T. [Bergmannsheil, University Hospital, Department of Internal Medicine, Division of Pneumonology, Allergology and Sleep Medicine, Bochum (Germany); Kuepper, H.U.; Breitstadt, R. [Degussa-Huels Corp., Wesseling (Germany); Philippou, S. [Department of Pathology, Augusta Krankenanstalten, Bochum (Germany); Bauer, H.D. [Research Institute for Hazardous Substances (IGF), Bochum (Germany)

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or

  14. 生物质成型炭的制备及其性能研究%Preparation and Properties of Formed Biomass Charcoal

    Institute of Scientific and Technical Information of China (English)

    卢辛成; 蒋剑春; 孟中磊; 孙康; 谢新苹

    2013-01-01

    Formed biomass charcoal was prepared by powder charcoal from biomass. The influences of category, dosage of adhesive and temperature of the heat treatment on the properties of the formed biomass charcoal were studied. It was found that formed biomass charcoal prepared using carboxymethylcellulose as an adhesive has a better performance than that from amylum. The optimum technological process is that the dosage of adhesive is 6 % and heat treatment at 200℃ for one hour. Physical and chemical properties of the formed charcoal were also studied. The results showed that the formed biomass charcoal has the fixed carbon content of 88.95 % , heat value of 30.6 kJ/g and abrasion resistance of 99. 83 % .%以生物质炭粉为原料制备成型炭燃料,考察了黏结剂种类、用量以及热处理温度对成型炭性能的影响.结果表明:羧甲基纤维素用作黏结剂制备得到的成型炭性能优于以淀粉为黏结剂制备的成型炭,并且得到最优的工艺条件为黏结剂添加量为6%,在200℃下热处理1h.测定了制备得到的成型炭的理化性能,其固定碳质量分数可达到88.95%,热值为30.6 kJ/g,强度为99.83%.

  15. Synthesis and characterization of tin(IV) phenyl phosphonate in nano form

    Indian Academy of Sciences (India)

    Chitra Sumej; Beena Raveendran

    2008-08-01

    An inorgano–organic ion exchanger, Sn(IV) phenyl phosphonate, has been synthesized in amorphous form. Further, an attempt has been made to synthesize Sn(IV) phenyl phosphonate in the nano form. The materials have been characterized for elemental analysis (ICP–AES), thermal analysis (TGA), X-ray analysis and FTIR spectroscopy. Chemical resistivity of these materials has been accessed in acidic, basic and organic solvent media. Catalytic activity has been studied and compared by using esterification of ethylene glycol as a model reaction wherein glycoldiacetate has been prepared. The transport properties of these materials have been explored by measuring specific proton conduction at different temperatures using SOLARTRON DATASET impedance analyser over a frequency range 1 Hz–1 MHz. It has been observed that Sn(IV) phenyl phosphate in the nano form behaves as a better Bronsted catalyst and proton conductor as compared to the amorphous form.

  16. Preparation and properties of 1-tetradecanol/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol gelatinous form-stable phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Tuo; Song, Jian; Niu, Libo [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Feng, Rongxiu, E-mail: rxfeng7091@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2013-02-20

    Graphical abstract: The 1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol can self-assemble to form three-dimensional network and immobilized the 1-tetradecanol. As a result, the gel-to-sol transition temperature of the composite PCM increased and the 1-tetradecanol leakage decreased. Highlights: ► First used of 1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol in alcohol-based PCMs. ► A new method of doping with exfoliated graphite is presented. ► A possible mechanism for decreasing leakage has been proposed based on SEM results. ► The prepared composite PCMs showed a high-energy storage density. ► The addition of exfoliated graphite enhanced the thermal conductivity of the PCMs. - Abstract: A 1-tetradecanol (TD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol (DMDBS) composite was prepared as a novel form-stable phase change material (PCM), and the properties of the composites such as the gel-to-sol transition temperature, the latent heat, the microstructure and the thermal storage performance were characterized. The composite was prepared by impregnating DMDBS into TD and the maximum feasible weight percentage of TD was determined to be 94.2 wt%. The gel-to-sol transition temperature of the composite PCM was 158.3–180.0 °C, which is well above the melting point of 1-tetradecanol. Differential scanning calorimeter (DSC) was used to determine the melting and freezing enthalpies of 1-tetradecanol in the composite PCM and the values are 218.5 and 215.3 J g{sup −1}, respectively. Scanning electron microscopy (SEM) results showed that 1-tetradecanol dispersed in the three-dimensional network formed by DMDBS. The relationship between the amount of DMDBS additive and the leakage was also discussed. The thermal conductivity of the composite PCM was improved by doping with exfoliated graphite.

  17. Nanoscale Morphology in Tensile Fracture of a Brittle Amorphous Ribbon

    Institute of Scientific and Technical Information of China (English)

    Xifeng LI; Kaifeng ZHANG; Guofeng WANG

    2008-01-01

    The paper reports on the observation of nanoscale morphology on the tensile fracture surface of a brittle amorphous Fe-based ribbon. The formation of nanoscale damage cavity structure is a main characteristic morphology on the fracture surfaces. Approaching the ribbon boundary, these damage cavities assemble and form the nanoscale periodic corrugations, which are neither Wallner lines nor crack front waves. The periodic corrugations result from the interactions between the reflected elastic waves by the boundaries of amorphous ribbon and the stress fields of the crack tip.

  18. Containerless synthesis of amorphous and nanophase organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Benmore, Chris J.; Weber, Johann R.

    2016-05-03

    The invention provides a method for producing a mixture of amorphous compounds, the method comprising supplying a solution containing the compounds; and allowing at least a portion of the solvent of the solution to evaporate while preventing the solute of the solution from contacting a nucleation point. Also provided is a method for transforming solids to amorphous material, the method comprising heating the solids in an environment to form a melt, wherein the environment contains no nucleation points; and cooling the melt in the environment.

  19. The Role of Configurational Entropy in Amorphous Systems

    Directory of Open Access Journals (Sweden)

    Kirsten A. Graeser

    2010-05-01

    Full Text Available Configurational entropy is an important parameter in amorphous systems. It is involved in the thermodynamic considerations, plays an important role in the molecular mobility calculations through its appearance in the Adam-Gibbs equation and provides information on the solubility increase of an amorphous form compared to its crystalline counterpart. This paper presents a calorimetric method which enables the scientist to quickly determine the values for the configurational entropy at any temperature and obtain the maximum of information from these measurements.

  20. Biorelevant characterisation of amorphous furosemide salt exhibits conversion to a furosemide hydrate during dissolution

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Gordon, Sarah; Pajander, Jari Pekka

    2013-01-01

    , as well as of crystalline furosemide salt and acid showed a higher rate of dissolution of the salt forms in comparison with the two acid forms. The measured dissolution rates of the four furosemide forms from the UV imaging system and from eluted effluent samples were consistent with dissolution rates...... obtained from micro dissolution experiments. Partial least squares-discriminant analysis of Raman spectra of the amorphous acid form during flow through dissolution showed that the amorphous acid exhibited a fast conversion to the crystalline acid. Flow through dissolution coupled with Raman spectroscopy...... showed a conversion of the amorphous furosemide salt to a more stable polymorph. It was found by thermogravimetric analysis and hot stage microscopy that the salt forms of furosemide converted to a trihydrate during dissolution. It can be concluded that during biorelevant dissolution, the amorphous...

  1. The effect of preparation method on the proton conductivity of indium doped tin pyrophosphates

    DEFF Research Database (Denmark)

    Anfimova, Tatiana; Lie-Andersen, T.; Jensen, E. Pristed

    2015-01-01

    Indium doped tin pyrophosphates were prepared by three synthetic routes. A heterogeneous synthesis from metal oxides with excess phosphoric acid produces crystalline phosphate particles with a phosphorus rich amorphous phase along the grain boundaries. The amorphous phase prevents the agglomerati...

  2. Study on the Sea-Buckthorn (Hippophae rhamnoides L. Preparation Forms Destined to its Nutritio-Pharmaceutical Use

    Directory of Open Access Journals (Sweden)

    Carmen Georgeta Dumitrescu (Manole

    2016-11-01

    Full Text Available In conducting this research we started from the multiple uses of sea-buckthorn in our everyday life. In addition to the positive effect of sea-buckthorn plant on the environment, especially by fixing the soil, almost all parts of this miraculous shrub have therapeutically effect (fruits, leaves, shoots etc. and can be consumed in various forms. Aim of this paper is to present the nutritional value of sea-buckthorn, recipes most frequently used and the effects that they have on people. In order to achieve all these, materials from the scientific literature were used, as well as an own research, carried out during a year, on a total number of 50 people. Results prove that the sea-buckthorn must be introduced, in greater extent, in our daily diet, as it improves human health.

  3. Synthesis of SnO2 nanorods from aqueous solution: The effect of preparation conditions on the formed patterns

    Institute of Scientific and Technical Information of China (English)

    Xin Wen Huang; Zong Jian Liu; Yi Fan Zheng; Qiu Lin Nie

    2010-01-01

    SnO2 nanorods were deposited on the Si substrates in an aqueous solution containing both SnCl4 and CO(NH2)2. It is found that different self-assembled patterns of SnO2 nanorods can be obtained by changing the deposition conditions such as the molar ratio of CO(NH2)2 to SnCl4 and the pretreatment of the substrate. Scattered SnO2 nanorods, for example, can be changed into flower-like patterns when the molar ratio of CO(NH2)2 to SnCl4 is raised, and well-aligned nanorod arrays can be formed when the pretreatment of the snbstrate is changed. In addition, some interesting patterns, e.g. Tree-like patterns, can also be observed.

  4. Klucel™ EF and ELF polymers for immediate-release oral dosage forms prepared by melt extrusion technology.

    Science.gov (United States)

    Mohammed, Noorullah Naqvi; Majumdar, Soumyajit; Singh, Abhilasha; Deng, Weibin; Murthy, Narasimha S; Pinto, Elanor; Tewari, Divya; Durig, Thomas; Repka, Michael A

    2012-12-01

    The objective of this research work was to evaluate Klucel™ hydroxypropylcellulose (HPC) EF and ELF polymers, for solubility enhancement as well as to address some of the disadvantages associated with solid dispersions. Ketoprofen (KPR), a Biopharmaceutics Classification System class II drug with poor solubility, was utilized as a model compound. Preliminary thermal studies were performed to confirm formation of a solid solution/dispersion of KPR in HPC matrix and also to establish processing conditions for hot-melt extrusion. Extrudates pelletized and filled into capsules exhibited a carrier-dependent release with ELF polymer exhibiting a faster release. Tablets compressed from milled extrudates exhibited rapid release owing to the increased surface area of the milled extrudate. Addition of mannitol (MNT) further enhanced the release by forming micro-pores and increasing the porosity of the extrudates. An optimized tablet formulation constituting KPR, MNT, and ELF in a 1:1:1 ratio exhibited 90% release in 15 min similar to a commercial capsule formulation. HPC polymers are non-ionic hydrophilic polymers that undergo polymer-chain-length-dependent solubilization and can be used to enhance solubility or dissolution rate of poorly soluble drugs. Dissolution/release rate could be tailored for rapid-release applications by selecting a suitable HPC polymer and altering the final dosage form. The release obtained from pellets was carrier-dependent and not drug-dependent, and hence, such a system can be effectively utilized to address solubility or precipitation issues with poorly soluble drugs in the gastrointestinal environment.

  5. Thermal stability of amorphous tungsten/tungsten nitride synthesis using HFCVD as a diffusion barrier for copper

    Energy Technology Data Exchange (ETDEWEB)

    Asgary, Somayeh; Hantehzadeh, Mohammad Reza; Ghoranneviss, Mahmood [Islamic Azad University, Plasma Physics Research Center, Science and Research Branch, Tehran (Iran, Islamic Republic of); Boochani, Arash [Islamic Azad University, Department of Physics, Kermanshah Branch, Kermanshah (Iran, Islamic Republic of)

    2016-05-15

    The amorphous W/WN bi-layer with excellent thermal stability was successfully prepared by hot-filament chemical vapor deposition method on SiO{sub 2}/Si substrate. It was found that the W/WN bi-layer is technological importance because of its low resistivity and good diffusion barrier properties between Cu and Si up to 700 C for 30 min. The thermal stability was evaluated by X-ray diffractometer (XRD) and scanning electron microscope. The XRD results show that the Cu{sub 3}Si phase was formed by Cu diffusion through W/WN barrier for the 800 C annealed sample. The formation of the Cu-Si compounds denotes the failure of the W/WN diffusion barrier with rapid increase in sheet resistance of the film. The microstructure of the interface between W/WN and Cu reflects the stability and breakdown of the barriers. The failure of this amorphous barrier occurs with heat treatment when the deposited amorphous barrier material crystallizes. The major part of Cu diffusion in polycrystalline structure with disordered grain boundaries is controlled by grain boundaries. AFM results indicated a rapid increase in surface roughness at the diffusion barrier failure temperature. It was found that the grain size plays an important factor to control the thermally stability of the W/WN bi-layer. (orig.)

  6. Amorphous GeOx-Coated Reduced Graphene Oxide Balls with Sandwich Structure for Long-Life Lithium-Ion Batteries.

    Science.gov (United States)

    Choi, Seung Ho; Jung, Kyeong Youl; Kang, Yun Chan

    2015-07-01

    Amorphous GeOx-coated reduced graphene oxide (rGO) balls with sandwich structure are prepared via a spray-pyrolysis process using polystyrene (PS) nanobeads as sacrificial templates. This sandwich structure is formed by uniformly coating the exterior and interior of few-layer rGO with amorphous GeOx layers. X-ray photoelectron spectroscopy analysis reveals a Ge:O stoichiometry ratio of 1:1.7. The amorphous GeOx-coated rGO balls with sandwich structure have low charge-transfer resistance and fast Li(+)-ion diffusion rate. For example, at a current density of 2 A g(-1), the GeOx-coated rGO balls with sandwich and filled structures and the commercial GeO2 powders exhibit initial charge capacities of 795, 651, and 634 mA h g(-1), respectively; the corresponding 700th-cycle charge capacities are 758, 579, and 361 mA h g(-1). In addition, at a current density of 5 A g(-1), the rGO balls with sandwich structure have a 1600th-cycle reversible charge capacity of 629 mA h g(-1) and a corresponding capacity retention of 90.7%, as measured from the maximum reversible capacity at the 100th cycle.

  7. Preparation and properties of lauric acid/silicon dioxide composites as form-stable phase change materials for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Fang Guiyin, E-mail: gyfang@nju.edu.cn [Department of Physics, Nanjing University, Hankou Road 22, Nanjing, Jiangsu 210093 (China); Li Hui [Department of Material Science and Engineering, Nanjing University, Nanjing 210093 (China); Liu Xu [Department of Physics, Nanjing University, Hankou Road 22, Nanjing, Jiangsu 210093 (China)

    2010-08-01

    Form-stable lauric acid (LA)/silicon dioxide (SiO{sub 2}) composite phase change materials were prepared using sol-gel methods. The LA was used as the phase change material for thermal energy storage, with the SiO{sub 2} acting as the supporting material. The structural analysis of these form-stable LA/SiO{sub 2} composite phase change materials was carried out using Fourier transformation infrared spectroscope (FT-IR). The microstructure of the form-stable composite phase change materials was observed by a scanning electronic microscope (SEM). The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analysis apparatus (TGA), respectively. The SEM results showed that the LA was well dispersed in the porous network of SiO{sub 2}. The DSC results indicated that the melting latent heat of the form-stable composite phase change material is 117.21 kJ kg{sup -1} when the mass percentage of the LA in the SiO{sub 2} is 64.8%. The results of the TGA showed that these materials have good thermal stability. The form-stable composite phase change materials can be used for thermal energy storage in waste heat recovery and solar heating systems.

  8. Extractive spectrophotometric determination of five selected drugs by ion-pair complex formation with bromothymol blue in pure form and pharmaceutical preparations

    Directory of Open Access Journals (Sweden)

    Sneha G. Nair

    2015-12-01

    Full Text Available Simple, precise, selective, and expeditious spectrophotometric methods have been developed for the determination of itopride (ITO, midodrine (MID, diclofenac (DIC, mesalamine (MES, and sumatriptan (SUM in their pure form as well as in pharmaceutical preparations. The method was based on ion-pair complex formation between the drugs and anionic dye, bromothymol blue in an acidic medium (pH 2.0–4.0. The yellow colored complexes formed were quantitatively extracted into chloroform and measured at 411, 410, 413, 412, and 414 nm wavelength for ITO, MID, DIC, MES, and SUM, respectively. Beer’s law was obeyed in the concentration range of 3.0–30 µg/mL for ITO, 1.0–20 µg/mL for MID, 1.5–40 µg/mL for DIC, 1.2–12 µg/mL for MES, and 0.5–15 µg/mL for SUM. The stoichiometry of the complexes formed between the drugs and the dye was 1:1 as determined by Job’s method of continuous variation. The association constant (KIP of the ion-pair complexes formed was evaluated using Benesi–Hildebrand equation. Limit of detection, limit of quantification, and Sandell’s sensitivity of the methods were also estimated. The proposed methods were successfully employed for the determination of these drugs in their pharmaceutical dosage forms.

  9. Parametrized dielectric functions of amorphous GeSn alloys

    Energy Technology Data Exchange (ETDEWEB)

    D' Costa, Vijay Richard, E-mail: elevrd@nus.edu.sg; Wang, Wei; Yeo, Yee-Chia, E-mail: eleyeoyc@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Schmidt, Daniel [Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603 (Singapore)

    2015-09-28

    We obtained the complex dielectric function of amorphous Ge{sub 1−x}Sn{sub x} (0 ≤ x ≤ 0.07) alloys using spectroscopic ellipsometry from 0.4 to 4.5 eV. Amorphous GeSn films were formed by room-temperature implantation of phosphorus into crystalline GeSn alloys grown by molecular beam epitaxy. The optical response of amorphous GeSn alloys is similar to amorphous Ge and can be parametrized using a Kramers-Kronig consistent Cody-Lorentz dispersion model. The parametric model was extended to account for the dielectric functions of amorphous Ge{sub 0.75}Sn{sub 0.25} and Ge{sub 0.50}Sn{sub 0.50} alloys from literature. The compositional dependence of band gap energy E{sub g} and parameters associated with the Lorentzian oscillator have been determined. The behavior of these parameters with varying x can be understood in terms of the alloying effect of Sn on Ge.

  10. Infrared Spectra and Optical Constants of Elusive Amorphous Methane

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.

    2015-01-01

    New and accurate laboratory results are reported for amorphous methane (CH4) ice near 10 K for the study of the interstellar medium (ISM) and the outer Solar System. Near- and mid-infrared (IR) data, including spectra, band strengths, absorption coefficients, and optical constants, are presented for the first time for this seldom-studied amorphous solid. The apparent IR band strength near 1300 cm(exp -1) (7.69 micrometer) for amorphous CH4 is found to be about 33% higher than the value long used by IR astronomers to convert spectral observations of interstellar CH4 into CH4 abundances. Although CH4 is most likely to be found in an amorphous phase in the ISM, a comparison of results from various laboratory groups shows that the earlier CH4 band strength at 1300 cm(exp -1) (7.69 micrometer) was derived from IR spectra of ices that were either partially or entirely crystalline CH4 Applications of the new amorphous-CH4 results are discussed, and all optical constants are made available in electronic form.

  11. Amorphization in Gd-Co alloys and multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, J.A. [Departamento de Fisica Teorica, Universidad de Valladolid, Valladolid (Spain); Hojvat de Tendler, R. [Instituto de Estudios Nucleares, Centro Atomico Ezeiza, CNEA, Buenos Aires (Argentina); Barbiric, D.A. [Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Universidad de Buenos Aires, Buenos Aires (Argentina); Riveiro, J.M. [Departamento de Fisica Aplicada, Universidad de Castilla-La Mancha, Ciudad Real (Spain)

    2002-10-07

    A semiempirical model is used to analyse the results of published experiments reporting on the solid-state amorphization reactions in bilayers and multilayers formed by Gd and Co. The role of the interfacial effects in raising the free energy of the initial arrangement in a multilayered configuration, and in promoting the amorphization reaction, is studied in detail. The model explains the observation of amorphous alloys over a broad composition range in the bilayer experiments. The preferred composition obtained in the multilayer experiments is discussed critically and the model prediction of a preferred composition Gd{sub 0.46}Co{sub 0.54} is in good agreement with the compositions observed in recent experiments. (author)

  12. Demonstration of thin film pair distribution function analysis (tfPDF for the study of local structure in amorphous and crystalline thin films

    Directory of Open Access Journals (Sweden)

    Kirsten M. Ø. Jensen

    2015-09-01

    Full Text Available By means of normal-incidence, high-flux and high-energy X-rays, total scattering data for pair distribution function (PDF analysis have been obtained from thin films (tf, suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. The `tfPDF' method is illustrated through studies of as-deposited (i.e. amorphous and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows the prediction of whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.

  13. A novel once daily microparticulate dosage form comprising lansoprazole to prevent nocturnal acid breakthrough in the case of gastro-esophageal reflux disease: preparation, pharmacokinetic and pharmacodynamic evaluation.

    Science.gov (United States)

    Alai, Milind; Lin, Wen Jen

    2013-01-01

    The objective of this study was to formulate and evaluate the lansoprazole (LPZ)-loaded microparticles to prevent nocturnal acid breakthrough in the case of gastro-esophageal reflux disease (GERD). The microparticulate delivery system was prepared by solvent evaporation method using Eudragit RS100 as a matrix polymer followed by enteric coated with Eudragit S100 and hydroxypropyl methylcellulose phthalate HP55 using spray drying method. The enteric coated microparticles were stable in gastric pH condition. In vivo pharmacokinetic and pharmacodynamic studies in male Wistar rats demonstrated that enteric coated microparticles sustained release of LPZ and promoted ulcer healing activity. In other words, the microparticulate dosage form provided effective drug concentration for a longer period as compared to conventional extended release dosage form, and showed sufficient anti-acid secretion activity to treat acid related disorders including the enrichment of nocturnal acid breakthrough event based on a once daily administration.

  14. Amorphous titanium-oxide supercapacitors

    Science.gov (United States)

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-10-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.

  15. Model for amorphous aggregation processes

    Science.gov (United States)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  16. Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers

    DEFF Research Database (Denmark)

    Lenz, Elisabeth; Löbmann, Korbinian; Rades, Thomas

    2017-01-01

    in a larger scale. In this study, the feasibility of hot melt extrusion for continuous manufacturing of co-amorphous drug-amino acid formulations was examined, challenging the fact that amino acids melt with degradation at high temperatures. Furthermore, the need for an addition of a polymer in this process...... was evaluated. After a polymer screening via the solvent evaporation method, co-amorphous indomethacin-arginine was prepared by a melting-solvent extrusion process without and with copovidone. The obtained products were characterized with respect to their solid-state properties, non-sink dissolution behavior......Co-amorphous drug-amino acid systems have gained growing interest as an alternative to common amorphous formulations which contain polymers as stabilizers. Several preparation methods have recently been investigated, including vibrational ball milling on a laboratory scale or spray drying...

  17. Serendipity or prepared mind? Recollections of the KOP translocation (1967) and of one form of Perrault syndrome.

    Science.gov (United States)

    Opitz, John M

    2014-12-01

    The human X/autosome translocation, designated KOP, was discovered by Dr. Philip D. Pallister in Montana in 1967 in a young man with apparent Klinefelter syndrome. Collaboratively it was possible to elucidate the genetic nature of his unprecedented chromosome rearrangement and its developmental effects in mother and son. In retrospect, these clinical and genetic studies at the height of the somatic cell genetics era (Ruddle, Siniscalco, etc.) presented human genetics with a highly productive opportunity to begin gene mapping of autosomes and the X chromosome. The late Victor McKusick considered the discovery of the KOP translocation, as he determined personally in Montana, one of the major transforming events in human genetics. The Perrault syndrome evaluated in two families in Montana and one in Sicily for familial deafness, primary amenorrhea and neurologic impairment (progressive in some), turned out to be heterogeneous. In the "hands" of Dr. M.-C. King of Seattle four forms of Perrault syndrome have been identified. The autosomal recessive mutation present in the P family studied with Dr. Pallister in Helena, turned out to affect the mitochondrial histidyl tRNA synthetase gene present in prokaryotes, annelids, fungi and mammals, hence, must already have been present in LUCA some 3.8 billion years ago.

  18. Propolis-Sahara honeys preparation exhibits antibacterial and anti-biofilm activity against bacterial biofims formed on urinary catheters

    Directory of Open Access Journals (Sweden)

    Saad Aissat

    2016-11-01

    Full Text Available Objective: To evaluate the antibacterial effect of Sahara honeys (SHs against bacterial biofilms formed on urinary catheters in combination with propolis-Sahara honeys (P-SHs. Methods: Three clinical isolates were subjected to biofilm detection methods. The antibacterial and anti-biofilm activity for SHs and P-SHs were determined using agar well diffusion and the percentage of biofilm inhibition (PBI methods. Results: The PBI for Gram-positive bacteria [Staphylococcus aureus (S. aureus] was in the range of 0%–20%, while PBI for Gram-negative bacteria [Pseudomonas aeruginosa and Escherichia coli (E. coli] were in range of 17%–57% and 16%–65%, respectively. The highest PBI (65% was produced by SH2 only on E. coli. In agar well diffusion assay, zones of inhibition ranged from 11–20 mm (S. aureus, 9–19 mm (Pseudomonas aeruginosa and 11–19 mm (E. coli. The highest inhibition (20 mm was produced by SH1 only on S. aureus. In addition, the treatment of SHs and P-SHs catheters with a polymicrobial biofilms reduced biofilm formation after 48 h exposure period. Conclussions: SHs and P-SHs applied as a natural agent can be used as a prophylactic agent to prevent the formation of in vitro biofilm.

  19. Complex Amorphous Dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    van Dover, Robert Bruce [Cornell Univ., Ithaca, NY (United States)

    2014-11-22

    This work focused on synthesizing a wide range of oxides containing two or more metals, and measuring their properties. Many simple metal oxides such as zirconium oxide, have been extensively studied in the past. We developed a technique in which we create a large number of compositions simultaneously and examine their behavior to understand trends and identify high performance materials. Superior performance generally comes in the form of increased responsiveness; in the materials we have studied this may mean more electrical charge for a given voltage in a capacitor, faster switching for a given drive in a transistor, more current for a given voltage in an ionic conductor, or more current for a given illumination in a solar cell. Some of the materials we have identified may find use in decreasing the power needed to operate integrated circuits, other materials could be useful for solar power or other forms of energy conversion.

  20. Amorphous Silicon 16—bit Array Photodetector①

    Institute of Scientific and Technical Information of China (English)

    ZHANGShaoqiang; XUZhongyang; 等

    1997-01-01

    An amorphous silicon 16-bit array photodetector with the a-SiC/a-Si heterojunction diode is presented.The fabrication processes of the device were studied systematically.By the optimum of the diode structure and the preparation procedures,the diode with Id<10-12A/mm2 and photocurrentIp≥0.35A/W has been obtained at the wavelength of 632nm.

  1. EPR and NMR studies of amorphous aluminum borates

    NARCIS (Netherlands)

    Simon, S.; Pol, A. van der; Reijerse, E.J.; Kentgens, A.P.M.; Moorsel, G.J.M.P. van; Boer, E. de

    1994-01-01

    Amorphous aluminium borates, Al2(1–x)B2xO3 with O [less-than-or-eq]x[less-than-or-eq] 0.5, prepared from mixtures of aluminium nitrate, boric acid and glycerol, have been studied by EPR and 27Al MASNMR as a function of composition and heat-treatment temperature (Tt[less-than-or-eq] 860 °C). EPR stud

  2. Magnetoresistance and magnetic properties in amorphous Fe-based wires

    Science.gov (United States)

    Bordin, G.; Buttino, G.; Cecchetti, A.; Poppi, M.

    2001-06-01

    The longitudinal and transverse magnetoresistances in amorphous Fe 77.5Si 7.5B 15 wires are studied at different values of the DC-bias currents in order to clarify the mechanism of the magnetization according to a 'core-shell' domain model. The role of closure domain structures in the magnetization process of the wires is analysed. Moreover, the effects of the Joule heating on the internal stresses, introduced during the rapid quenching in the sample preparation, are examined.

  3. EPR and NMR studies of amorphous aluminum borates

    NARCIS (Netherlands)

    Simon, S.; Pol, A. van der; Reijerse, E.J.; Kentgens, A.P.M.; Moorsel, G.J.M.P. van; Boer, E. de

    1994-01-01

    Amorphous aluminium borates, Al2(1–x)B2xO3 with O [less-than-or-eq]x[less-than-or-eq] 0.5, prepared from mixtures of aluminium nitrate, boric acid and glycerol, have been studied by EPR and 27Al MASNMR as a function of composition and heat-treatment temperature (Tt[less-than-or-eq] 860 °C). EPR stud

  4. Structural and thermal properties of Cu-Hf-Ti bulk amorphous alloys

    Science.gov (United States)

    Rontó, V.; Nagy, E.; Svéda, M.; Roósz, A.; Tranta, F.

    2009-01-01

    Cu-Hf-Ti amorphous alloys are high strength and wear resistant materials. Master alloys of Cu57.5Hf27.5Ti15 and Cu57.5Hf25Ti17.5 ternary alloys have been prepared by arc melting, and wedge and rod shaped samples have been cast by centrifugal casting. Liquidus and solidus temperatures of the alloys were determined by DTA. The fully amorphous size was determined by X-ray diffraction. Thermodynamic properties of the amorphous alloys were studied by DSC measurements and Kissinger analyses were performed.

  5. sp³ -linked amorphous carbon with sulfonic acid groups as a heterogeneous acid catalyst.

    Science.gov (United States)

    Suganuma, Satoshi; Nakajima, Kiyotaka; Kitano, Masaaki; Hayashi, Shigenobu; Hara, Michikazu

    2012-09-01

    SO₃H-bearing amorphous carbon prepared from polyvinyl chloride (PVC) is studied as a heterogeneous Brønsted acid catalyst. Sulfonation of partially carbonized PVC produces amorphous carbon consisting of small SO₃H-bearing carbon sheets linked by sp³ -based aliphatic hydrocarbons. This carbon material exhibits much higher catalytic performance in the hydrolysis of cellobiose than conventional heterogeneous Brønsted acid catalysts with SO₃H groups, including SO₃H-bearing amorphous carbon derived from cellulose. This can be attributed to a high density of SO₃H groups and the fast diffusion of reactants and products enabled by a flexible carbon network.

  6. EFFECT OF PRE-ALLOYING CONDITION ON THE BULK AMORPHOUS ALLOY ND(60)FE(30)AL(10).

    Energy Technology Data Exchange (ETDEWEB)

    OCONNOR,A.S.; LEWIS,L.H.; MCCALLUM,R.W.; DENNIS,K.W.; KRAMER,M.J.; KIM ANH,D.T.; DAN,N.H.; PHUC,N.X.

    2000-09-10

    Bulk metallic glasses are materials that require only modest cooling rates to obtain amorphous solids directly from the melt. Nd{sub 60}Fe{sub 30}Al{sub 10} has been reported to be a ferromagnetic bulk metallic glass that exhibits high coercivity, a combination unlike conventional Nd-based amorphous magnetic alloys. To clarify the relationship between short-range order and high coercivity in glassy Nd{sub 60}Fe{sub 30}Al{sub 10}, experiments were performed to verify the existence of a homogeneous liquid state prior to rapid solidification. Alloys were prepared by various pre-alloying routes and then melt-spun. Arc-melted alloys were prepared for melt spinning using three different protocols involving: (1) alloying all three elements at once, (2) forming a Nd-Fe alloy which was subsequently alloyed with Al, and (3) forming a Fe-Al alloy for subsequent alloying with Nd. XRD, DTA, and magnetic measurement data from the resultant ribbons indicate significant differences in both the glassy fraction and the crystalline phase present in the as-spun material. These observed differences are attributed to the presence of highly stable nanoscopic aluminide-and/or silicide-phases, or motes, present in the melt prior to solidification. These motes would affect the short-range order and coercivity of the resultant glassy state and are anticipated to provide heterogeneous nucleation sites for crystallization.

  7. A Molecular-Level View of the Physical Stability of Amorphous Solid Dispersions

    Science.gov (United States)

    Yuan, Xiaoda

    Many pharmaceutical compounds being developed in recent years are poorly soluble in water. This has led to insufficient oral bioavailability of many compounds in vitro. The amorphous formulation is one of the promising techniques to increase the oral bioavailability of these poorly water-soluble compounds. However, an amorphous drug substance is inherently unstable because it is a high energy form. In order to increase the physical stability, the amorphous drug is often formulated with a suitable polymer to form an amorphous solid dispersion. Previous research has suggested that the formation of an intimately mixed drug-polymer mixture contributes to the stabilization of the amorphous drug compound. The goal of this research is to better understand the role of miscibility, molecular interactions and mobility on the physical stability of amorphous solid dispersions. Methods were developed to detect different degrees of miscibility on nanometer scale and to quantify the extent of hydrogen-bonding interactions between the drug and the polymer. Miscibility, hydrogen-bonding interactions and molecular mobility were correlated with physical stability during a six-month period using three model systems. Overall, this research provides molecular-level insights into many factors that govern the physical stability of amorphous solid dispersions which can lead to a more effective design of stable amorphous formulations.

  8. Design and fabrication of a mechanical alloying system for preparing intermetallic, nanocrystalline, amorphous and quasicrystalline compounds; Diseno y fabricacion de un sistema de aleado mecanico para preparar compuestos intermetalicos, nanocristalinos, amorfos y cuasicristalinos

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio M, J.; Iturbe G, J.L.; Castaneda J, G. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In this work a grinding system was designed and fabricated which allowed to improve the operation conditions in time, frequency, temperature and selection of the grinding media and that allow the contamination decrease of the compounds. By means of this method of mechanical alloying new metallic compounds can be produced, starting from elemental powders, with fine and controlled microstructures. These compounds prepared by this method are going to be used as materials for the hydrogen storage. (Author)

  9. Quantification of low levels (<10%) of amorphous content in micronised active batches using dynamic vapour sorption and isothermal microcalorimetry.

    Science.gov (United States)

    Mackin, Lesley; Zanon, Roger; Park, Jung Min; Foster, Kimberly; Opalenik, Holly; Demonte, Matt

    2002-01-14

    During the processing of pharmaceutical solids (e.g. milling, spray drying, tablet compaction, wet granulation and lyophilisation), various degrees of disorder in the form of crystal defects and/or amorphous regions may be generated. Even relatively low levels of amorphous material (developed at a very early stage of the actives development program such that the impact of small quantities of amorphous material on the quality attributes of the formulation can be fully assessed. The methods can be applied to any active, the only criteria is that the amorphous material will recrystallise on exposure to moisture or solvent vapours, and no hydrates or solvates are formed.

  10. Thickness dependence of magnetic properties and giant magneto-impedance effect in amorphous Co73Si12B15 thin films prepared by Dual-Ion beam assisted deposition

    Science.gov (United States)

    Zhang, Yu; Wang, San-sheng; Hu, Teng; He, Tong-fu; Chen, Zi-yu; Yi, Zhong; Meng, Li-Fei

    2017-03-01

    Dual-Ion Beam Assisted Deposition is a suitable method for the preparation of giant magneto-impedance (GMI) materials. In this paper, Co73Si12B15 thin films with different thicknesses were prepared by Dual-Ion Beam Assisted Deposition, and the influences of film thickness on magnetic properties and GMI effect were investigated. It was found that the asymmetric magnetic hysteresis loop in the prepared Co73Si12B15 thin films occurs at ambient temperature, and the shift behavior of hysteresis loop associated with film thickness. With the film thickness increasing, the values of shift field and coercive field and other parameters such as remanence and shift ratio appeared complex variation. At a certain frequency, the large GMI effect is only observed in some films, which have good magnetic properties including low coercivity, low remanence ratio and high shift ratio. The results indicated that the thickness dependence of magnetic properties nonlinearly determined the GMI effect in Co73Si12B15 thin films.

  11. Structural relaxations in the bulk amorphous alloy Fe{sub 61}Co{sub 10}Ti{sub 3}Y{sub 6}B{sub 20}

    Energy Technology Data Exchange (ETDEWEB)

    Błoch, K., E-mail: 23kasia1@wp.pl; Nabiałek, M.; Gondro, J.

    2017-05-01

    The paper presents studies of annealing effect on the disaccommodation phenomenon in bulk amorphous alloy Fe{sub 61}Co{sub 10}Ti{sub 3}Y{sub 6}B{sub 20}. The investigated sample was prepared by suction-casting method in the form of rod. The annealing process has been performed at temperature well below the crystallisation temperature. The amorphous structure has been confirmed using X-ray diffractometer. The susceptibility and its disaccommodation were determined using completely automated set up. The disaccommodation curve was decomposed into three elementary processes, each of them was described by Gaussian distribution of relaxation times. The obtained results indicate that the disaccommodation phenomenon in studied alloy is related with directional ordering of atom pairs near the free volumes; this is in agreement with H. Kronmüller's theorem.

  12. [Preparation and evaluation of press-coated aminophylline tablet using crystalline cellulose and polyethylene glycol in the outer shell for timed-release dosage forms].

    Science.gov (United States)

    Watanabe, Yoshiteru; Mukai, Baku; Kawamura, Ken-ichi; Ishikawa, Tatsuya; Namiki, Michihiro; Utoguchi, Naoki; Fujii, Makiko

    2002-02-01

    In an attempt to achieve chronopharmacotherapy for asthma, press-coated tablets (250 mg), which contained aminophylline in the core tablet in the form of low-substituted hydroxypropylcellulose (L-HPC) and coated with crystalline cellulose (PH-102) and polyethylene glycol (PEG) at various molecular weights and mixing ratios in the amounts of PH-102 and PEG as the outer shell (press-coating material), were prepared (chronopharmaceutics). Their applicability as timed-release (delayed-release) tablets with a lag time of disintegration and a subsequent rapid drug release phase was investigated. Various types of press-coated tablets were prepared using a tableting machine, and their aminophylline dissolution profiles were evaluated by the JP paddle method. Tablets with the timed-release characteristics could be prepared, and the lag time of disintegration was prolonged as the molecular weight and the amount of PEG, for example PEG 500,000, in the outer shell were increased. The lag time of disintegration could be controlled by the above-mentioned method, however, the pH of the medium had no effect on disintegration of the tablet and dissolution behavior of theophylline. The press-coated tablet (core tablet:aminophylline 50 mg, L-HPC and PEG 6000; outer shell:PH-102:PEG = 8:2 200 mg) with the timed-release characteristics was administered orally to rabbits for an in vivo test. Theophylline was first detected in plasma more than 2 h after administration; thus, this tablet showed a timed-release characteristics in the gastrointestinal tract. The time (tmax) required to reach the maximum plasma theophylline concentration (Cmax) observed after administration of the press-coated tablet was significantly (p 24) between the press-coated tablet and aminophylline solution. These results suggest that the press-coated aminophylline tablet (with the timed-release characteristic) offers a promising forms of theophylline chronotherapy for asthma.

  13. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, E.; Duguid, J.; Henry, R.; Karell, E.; Laidler, J.; McDeavitt, S.; Thompson, M.; Toth, M.; Williamson, M.; Willit, J.

    1999-08-12

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD&D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years.

  14. Overview of the amorphous precursor phase strategy in biomineralization

    Institute of Scientific and Technical Information of China (English)

    Steve WEINER; Julia MAHAMID; Yael POLITI; Yurong MA; Lia ADDADI

    2009-01-01

    It was assumed for a long time that organisms produce minerals directly from a saturated solution. A few exceptions were known,including the well documented mineralized teeth of the chiton. In 1997 it was demon-stratedthat sea urchin larvae form their calcitic spicules by first depositing a highly unstable mineral phase called amorphous cualcium carbonate.This other phgyla has since been shown to be used by anlmals from other phyla and for both aragonita and calcite Recent evidence shows that vertebrate bone mineral may also be formed via a precursor phase of amorphous calcium carbonate. This strategy thus appears to be widespread The challenge now is to understand the mechanisms by which these unstable phases are initially formed,how they are temporarily stabilized and how they are destabilized and trans form into a crystalline mature product.

  15. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces.

    Science.gov (United States)

    Wijesinghe, W P S L; Mantilaka, M M M G P G; Chathuranga Senarathna, K G; Herath, H M T U; Premachandra, T N; Ranasinghe, C S K; Rajapakse, R P V J; Rajapakse, R M G; Edirisinghe, Mohan; Mahalingam, S; Bandara, I M C C D; Singh, Sanjleena

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value.

  16. 以介孔硅为基质的固体分散体片剂的制备与性质考察%Preparations and properties of the tablets formed with telmisartan and mesoporous silica

    Institute of Scientific and Technical Information of China (English)

    陈美洁; 张彦卓; 韩旭; 李文静; 姜同英

    2013-01-01

    Objective To prepare the tablets containing telmisartan and mesoporous silica solid disperse system and investigate its stability. Methods Based on the screening formulation, the tablets were produced with direct compression method. XRD and DSC were used for the identification of the crystal transformation, together with HPLC methods to quantify the drug. Results Telmisartan and mesoporous silica solid disperse system 66 g,crosslinked polyvinylpyrrolidone 30 g,microcrystalline cellulose 50 g, mannitol 50 g and magnesium stearate 4 g were mixed and directly compressed to produce 1 000 tablets, content uniformity and dissolution met the requirement, and stability was well and telmisartan in tablets maintained amorphous state during 12 months storage. Conclusions For poorly soluble crystalline drugs,short mesoporous pore channels of MSN self-made can be used to prepare the amorphous state solid disperse system, and the drug in its subsequent preparation can exist as amorphous state at least 12 months.%目的 将替米沙坦与介孔硅制备成片剂,并考察片剂的稳定性.方法 在处方筛选的基础上,采用粉末直接压片法压制替米沙坦-介孔硅片剂;采用高效液相色谱法测定药物含量;采用示差扫描量热、X-射线衍射和溶出法考察制剂的晶型稳定性.结果 替米沙坦-介孔硅分散体66 g、交联聚乙烯吡咯烷酮30 g、微晶纤维素50 g、甘露醇50 g、硬脂酸镁4 g,混合均匀,压制成1 000片,含量均匀度和溶出度符合要求,在12个月内替米沙坦稳定性良好,且一直以无定型状态存在.结论 利用自制介孔硅制备固体分散体,介孔硅的孔道使难溶性药物长期以无定型状态存在,故制剂稳定性良好.

  17. Functionalized Amorphous Aluminosilicates

    Science.gov (United States)

    Mesgar, Milad

    Alkali treated aluminosilicate (geopolymer) was functionalized by surfactant to increase the hydrophobicity for making Pickering emulsion for the first part of this work. In the first part of this study, alkali treated metakaolin was functionalized with cetyltrimethylammonium bromide ((C16H33)N(CH 3)3Br, CTAB). The electrostatic interaction between this quaternary ammonium and the surface of the aluminosilicate which has negative charge has taken place. The particles then were used to prepare Pickering emulsion. The resulting stable dispersions, obtained very fast at very simple conditions with low ratio of aluminosilicate to liquid phase. In the second part, the interaction between geopolymer and glycerol was studied to see the covalent grafting of the geopolymer for making geopolymer composite. The composite material would be the basis material to be used as support catalyst, thin coating reagent and flame retardant material and so on, Variety of techniques, Thermogravimetric (TGA), Particle-induced X-ray emission (PIXE), FTIR, Solid state NMR, Powder X-ray diffraction (PXRD), BET surface area, Elemental analysis (CHN), TEM, SEM and Optical microscopy were used to characterize the functionalized geopolymer.

  18. The influence of pressure on the intrinsic dissolution rate of amorphous indomethacin

    DEFF Research Database (Denmark)

    Löbmann, Korbinian; Flouda, Konstantina; Qiu, Danwen

    2014-01-01

    New drug candidates increasingly tend to be poorly water soluble. One approach to increase their solubility is to convert the crystalline form of a drug into the amorphous form. Intrinsic dissolution testing is an efficient standard method to determine the intrinsic dissolution rate (IDR) of a drug...... and to test the potential dissolution advantage of the amorphous form. However, neither the United States Pharmacopeia (USP) nor the European Pharmacopeia (Ph.Eur) state specific limitations for the compression pressure in order to obtain compacts for the IDR determination. In this study, the influence......, compression pressure had an impact on the IDR of pure amorphous IND compacts. Above a critical compression pressure, amorphous particles sintered to form a single compact with dissolution properties similar to quench-cooled disc and crystalline IND compacts. In such a case, the apparent dissolution advantage...

  19. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Ahmet; Karaipekli, Ali [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey)

    2009-05-15

    This study is focused on the preparation and characterization of thermal properties and thermal reliability of palmitic acid (PA)/expanded graphite (EG) composite as form-stable phase change material (PCM). The maximum mass fraction of PA retained in EG was found as 80 wt% without the leakage of PA in melted state even when it is heated over the melting point of PA. Therefore, the PA/EG (80/20 w/w%) composite was characterized as form-stable PCM. From differential scanning calorimetry (DSC) analysis, the melting and freezing temperatures and latent heats of the form-stable PCM were measured as 60.88 and 60.81 C and 148.36 and 149.66 J/g, respectively. Thermal cycling test showed that the composite PCM has good thermal reliability although it was subjected to 3000 melting/freezing cycles. Fourier transformation infrared (FT-IR) spectroscopic investigation indicated that it has good chemical stability after thermal cycling. Thermal conductivities of PA/EG composites including different mass fractions of EG (5%, 10%, 15% and 20%) were also measured. Thermal conductivity of form-stable PA/EG (80/20 w/w%) composite (0.60 W/mK) was found to be 2.5 times higher than that of pure PA (0.17 W/mK). Moreover, the increase in thermal conductivity of PA was confirmed by comparison of the melting and freezing times of pure PA with that of form-stable composite. Based on all results, it was concluded that the form-stable PA/EG (80/20 w/w%) has considerable latent heat energy storage potential because of its good thermal properties, thermal and chemical reliability and thermal conductivity. (author)

  20. Study on Preparation of Formed Activated Carbon from Bagasse%甘蔗渣制备板状成型活性炭的研究

    Institute of Scientific and Technical Information of China (English)

    张承龙; 白建峰; 孙可伟

    2011-01-01

    Formed activated carbon block was prepared using powdered activated carbon prepared from bagasse with phosphoric acid activation.The influence of various preparation parameters such as the type binders and the amount of the binders was investigated.The test results showed that the iodine value of quantity adsorption and volume adsorption of formed activated carbon block decreased as ratio of binder increased,the penetration rate of formed activated carbon block decreased with increasing ratio of binder when using carboxymethylcellulose as binder,and the penetration rate first decreased a little,then increased with increasing ratio of binder when using polyvinyl alcohol as binder.The adsorption behavior of formed activated carbon block binded by carboxymethylcellulose was better;the iodine value of quantity adsorption and volume adsorption was 418.8211 mg/cm^3 on 10% of carboxymethylcellulose.%以磷酸活化法所制得的甘蔗渣粉状活性炭为原料,研究不同粘接剂种类、粘接剂添加量对板状成型活性炭性能的影响。结果表明:板状成型活性炭的体积吸附量及质量吸附量随着粘结剂添加量的增加而减小;渗透速率随着羧甲基纤维素添加量的增加而减小,随着聚乙烯醇素添加量的增加先是呈略微下降而后增加;以羧甲基纤维素为粘接剂制得的板状成型活性炭的性能较好,当羧甲基纤维素的添加量为10%时,其体积碘吸附量为418.82 mg/cm^3。

  1. New bulk glassy alloys in Cu-Zr-Ag ternary system prepared by casting and milling

    Science.gov (United States)

    Janovszky, D.; Tomolya, K.; Sveda, M.; Solyom, J.; Roosz, A.

    2009-01-01

    The thermal stability, crystallization behaviour and glass forming ability of Cu-Zr-Ag system have been investigated on the basis of a ternary phase diagram. We altered the concentration of the alloys from the Cu58Zr42 to the concentration of the deep eutectic point of the Cu-Zr-Ag ternary system and we calculated the glass forming ability parameters. This paper summerises the results of the procedure during which Cu-Zr-Ag amorphous alloys with different Ag content (0-25%) were prepared by casting and ball-milling. Wedge-shaped samples were prepared from the ingots by centrifugal casting into copper mold. The supercooled liquid region (ΔTx) exceeded 75K. Following the characterization of the cast alloys, master alloys of identical composition were milled in a Fritsch Pulverisette 2 ball-mill. The powders, milled for various periods of time were analysed by XRD in order to define the amorphous fraction.

  2. Deposition of amorphous carbon-silver composites

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Zarco, O. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, Ciudad Universitaria. 04510, Mexico D. F. Mexico (Mexico); Rodil, S.E., E-mail: ser42@iim.unam.m [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, Ciudad Universitaria. 04510, Mexico D. F. Mexico (Mexico); Camacho-Lopez, M.A. [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Tollocan s/n, esq. Paseo Colon, Toluca, Estado de Mexico, 50110 (Mexico)

    2009-12-31

    Composites of amorphous carbon films and silver were deposited by co-sputtering, where the target (10 cm diameter) was of pure graphite with small inclusion of pure silver (less than 1 cm{sup 2}). The films were deposited under different powers, from 40 to 250 W, and different target-substrate distances. The substrate was earthed and rotated in order to obtain a uniform distribution of the silver content. The addition of the Ag piece into the target increased the deposition rate of the carbon films, which could be related to the higher sputter yield of the silver, but there seems to be also a contribution from a larger emission of secondary electrons from the Ag that enhances the plasma and therefore the sputtering process becomes more efficient. Scanning electron micrographs acquired using backscattered electrons showed that the silver was segregated from the carbon matrix, forming nanoparticles or larger clusters as the power was increased. The X-ray diffraction pattern showed that the silver was crystalline and the carbon matrix remained amorphous, although for certain conditions a peak attributed to fullerene-like structures was obtained. Finally, we used Raman spectroscopy to understand the bonding characteristics of the carbon-silver composites, finding that there are variations in the D/G ratio, which can be correlated to the observed structure and X-ray diffraction results.

  3. An IR investigation of solid amorphous ethanol - Spectra, properties, and phase changes.

    Science.gov (United States)

    Hudson, Reggie L

    2017-12-05

    Mid- and far-infrared spectra of condensed ethanol (CH3CH2OH) at 10-160K are presented, with a special focus on amorphous ethanol, the form of greatest astrochemical interest, and with special attention given to changes at 155-160K. Infrared spectra of amorphous and crystalline forms are shown. The refractive index at 670nm of amorphous ethanol at 16K is reported, along with three IR band strengths and a density. A comparison is made to recent work on the isoelectronic compound ethanethiol (CH3CH2SH), and several astrochemical applications are suggested for future study. Published by Elsevier B.V.

  4. Effects of Polybenzoxazine on Shape Memory Properties of Polyurethanes with Amorphous and Crystalline Soft Segments

    Directory of Open Access Journals (Sweden)

    Senlong Gu

    2014-04-01

    Full Text Available This paper evaluates the role of minor component polybenzoxazine (PB on shape-memory properties of polyurethanes (PU with glassy and crystalline soft segments. The polymer compounds were prepared in two steps. In the first step, benzoxazine, polyurethane pre-polymer, and chain extender butanediol (BD were mixed into a solution followed by chain-extension of the pre-polymer with BD. In the second step, benzoxazine was polymerized at 180 °C for 3 h to obtain shape memory polymer compounds. The atomic force microscopy images revealed that the PB-phase formed uniform dispersions in PU. The presence of PB-phase induced shape-memory behavior in non-shape memory PU with amorphous soft segment and significantly improved the values of shape fixity, recovery ratio, and recovery stress in shape memory polyurethane with crystalline soft segment.

  5. Fe-Zr-Nd-Y-B permanent magnet derived from crystallization of bulk amorphous alloy

    Science.gov (United States)

    Tan, Xiaohua; Xu, Hui; Bai, Qin; Dong, Yuanda

    2007-12-01

    The microstructure and magnetic properties of Nd2Fe14B/(Fe3B,α-Fe) nanocomposite magnet derived form crystallization of bulk amorphous Fe68Zr2Y4B21Nd5 alloy, which was prepared by copper mold casting, have been investigated. The obtaining maximum values of Ms, Mr, Hci, and (BH)max annealed at 963K for Fe68Zr2Nd5Y4B21 alloy are 86Am2/kg, 49Am2/kg, 380kA/m, and 43kJ/m3, respectively. δM plot, high resolution transmission electron microscopy observation, and three-dimensional atom probe technique clarified that the hard magnetic behavior is due to the exchange coupling between soft and hard magnetic nanophases.

  6. Controlled fluoridation of amorphous carbon films deposited at reactive plasma conditions

    Directory of Open Access Journals (Sweden)

    Yoffe Alexander

    2015-09-01

    Full Text Available A study of the correlations between plasma parameters, gas ratios, and deposited amorphous carbon film properties is presented. The injection of a C4F8/Ar/N2 mixture of gases was successfully used in an inductively coupled plasma system for the preparation of amorphous carbon films with different fluoride doping at room-temperature, using silicon as a substrate. This coating was formed at low-pressure and low-energy using an inductively coupled plasma process. A strong dependence between the ratios of gases during deposition and the composition of the substrate compounds was shown. The values of ratios between Ar (or Ar+N2 and C4F8 - 1:1 and between N2 and Ar - 1:2 in the N2/Ar/C4F8 mixture were found as the best for low fluoridated coatings. In addition, an example of improving the etch-passivation in the Bosch procedure was described. Scanning electron microscopy with energy dispersive spectroscopy options, X-ray diffraction, and X-ray reflectivity were used for quantitative analysis of the deposited films.

  7. Anti-plasticizing effect of amorphous indomethacin induced by specific intermolecular interactions with PVA copolymer.

    Science.gov (United States)

    Ueda, Hiroshi; Aikawa, Shohei; Kashima, Yousuke; Kikuchi, Junko; Ida, Yasuo; Tanino, Tadatsugu; Kadota, Kazunori; Tozuka, Yuichi

    2014-09-01

    The mechanism of how poly(vinyl alcohol-co-acrylic acid-co-methyl methacrylate) (PVA copolymer) stabilizes an amorphous drug was investigated. Solid dispersions of PVA copolymer, poly(vinyl pyrrolidone) (PVP), and poly(vinyl pyrrolidone-co-vinyl acetate) (PVPVA) with indomethacin (IMC) were prepared. The glass transition temperature (Tg)-proportion profiles were evaluated by differential scanning calorimetry (DSC). General Tg profiles decreasing with the IMC ratio were observed for IMC-PVP and IMC-PVPVA samples. An interesting antiplasticizing effect of IMC on PVA copolymer was observed; Tg increased up to 20% IMC ratio. Further addition of IMC caused moderate reduction with positive deviation from theoretical values. Specific hydrophilic and hydrophobic interactions between IMC and PVA copolymer were revealed by infrared spectra. The indole amide of IMC played an important role in hydrogen bonding with PVA copolymer, but not with PVP and PVPVA. X-ray diffraction findings and the endotherm on DSC profiles suggested that PVA copolymer could form a semicrystalline structure and a possibility of correlation of the crystallographic nature with its low hygroscopicity was suggested. PVA copolymer was able to prevent crystallization of amorphous IMC through both low hygroscopicity and the formation of a specific intermolecular interaction compared with that with PVP and PVPVA.

  8. Pyrolytic transformation from polydihydrosilane to hydrogenated amorphous silicon film

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takashi, E-mail: mtakashi@jaist.ac.jp [Japan Science and Technology Agency, ERATO, Shimoda Nano-Liquid Process Project, 2-13 Asahidai, Nomi, Ishikawa, 923-1211 (Japan); Matsuki, Yasuo [Japan Science and Technology Agency, ERATO, Shimoda Nano-Liquid Process Project, 2-13 Asahidai, Nomi, Ishikawa, 923-1211 (Japan); Yokkaichi Research Center, JSR Corporation, 100 Kawajiri-cho, Yokkaichi, Mie, 510-8552 (Japan); Shimoda, Tatsuya [Japan Science and Technology Agency, ERATO, Shimoda Nano-Liquid Process Project, 2-13 Asahidai, Nomi, Ishikawa, 923-1211 (Japan); School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292 (Japan)

    2012-08-31

    The fabrication of thin film silicon devices based on solution processes rather than on conventional vacuum processes is of substantial interest since cost reductions may result. Using a solution process, we coated substrates with polydihydrosilane solution and studied the pyrolytic transformation of the material into hydrogenated amorphous silicon (a-Si:H). From thermal gravimetry and differential thermal analysis data a significant reduction in weight of the material and a construction of Si-Si bonds are concluded for the pyrolysis temperature T{sub p} = 270 to 360 Degree-Sign C. The appearance of amorphous silicon phonon bands in Raman spectra for films prepared at T{sub p} {>=} 330 Degree-Sign C suggests the construction of a three-dimensional amorphous silicon network. Films prepared at T{sub p} {>=} 360 Degree-Sign C exhibit a hydrogen content near 10 at.% and an optical gap near 1.6 eV similar to device-grade vacuum processed a-Si:H. However, the infrared microstructure factor, the spin density, and the photosensitivity require significant improvements. - Highlights: Black-Right-Pointing-Pointer We fabricate hydrogenated amorphous silicon (a-Si:H) films by a solution process. Black-Right-Pointing-Pointer The a-Si:H films are prepared by pyrolytic transformation in polysilane solution. Black-Right-Pointing-Pointer We investigate basic properties in relation to the pyrolysis temperature. Black-Right-Pointing-Pointer Raman spectra, hydrogen content, and optical gap are similar to device-grade a-Si:H. Black-Right-Pointing-Pointer Microstructure factor, spin density, and photoconductivity show poor quality.

  9. Amorphous surface layers in Ti-implanted Fe

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, J.A.; Follstaedt, D.M.; Picraux, S.T.

    1979-01-01

    Implanting Ti into high-purity Fe results in an amorphous surface layer which is composed of not only Fe and Ti, but also C. Implantations were carried out at room temperature over the energy range 90 to 190 keV and fluence range 1 to 2 x 10/sup 16/ at/cm/sup 2/. The Ti-implanted Fe system has been characterized using transmission electron microscopy (TEM), ion backscattering and channeling analysis, and (d,p) nuclear reaction analysis. The amorphous layer was observed to form at the surface and grow inward with increasing Ti fluence. For an implant of 1 x 10/sup 17/ Ti/cm/sup 2/ at 180 keV the layer thickness was 150 A, while the measured range of the implanted Ti was approx. 550 A. This difference is due to the incorporation of C into the amorphous alloy by C being deposited on the surface during implantation and subsequently diffusing into the solid. Our results indicate that C is an essential constituent of the amorphous phase for Ti concentrations less than or equal to 10 at. %. For the 1 x 10/sup 17/ Ti/cm/sup 2/ implant, the concentration of C in the amorphous phase was approx. 25 at. %, while that of Ti was only approx. 3 at. %. A higher fluence implant of 2 x 10/sup 17/ Ti/cm/sup 2/ produced an amorphous layer with a lower C concentration of approx. 10 at. % and a Ti concentration of approx. 20 at. %.

  10. Molecular simulation of freestanding amorphous nickel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.Q. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France); Hoang, V.V., E-mail: vvhoang2002@yahoo.com [Department of Physics, Institute of Technology, National University of Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Lauriat, G. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France)

    2013-10-31

    Size effects on glass formation in freestanding Ni thin films have been studied via molecular dynamics simulation with the n-body Gupta interatomic potential. Atomic mechanism of glass formation in the films is determined via analysis of the spatio-temporal arrangements of solid-like atoms occurred upon cooling from the melt. Solid-like atoms are detected via the Lindemann ratio. We find that solid-like atoms initiate and grow mainly in the interior of the film and grow outward. Their number increases with decreasing temperature and at a glass transition temperature they dominate in the system to form a relatively rigid glassy state of a thin film shape. We find the existence of a mobile surface layer in both liquid and glassy states which can play an important role in various surface properties of amorphous Ni thin films. We find that glass formation is size independent for models containing 4000 to 108,000 atoms. Moreover, structure of amorphous Ni thin films has been studied in details via coordination number, Honeycutt–Andersen analysis, and density profile which reveal that amorphous thin films exhibit two different parts: interior and surface layer. The former exhibits almost the same structure like that found for the bulk while the latter behaves a more porous structure containing a large amount of undercoordinated sites which are the origin of various surface behaviors of the amorphous Ni or Ni-based thin films found in practice. - Highlights: • Glass formation is analyzed via spatio-temporal arrangements of solid-like atoms. • Amorphous Ni thin film exhibits two different parts: surface and interior. • Mobile surface layer enhances various surface properties of the amorphous Ni thin films. • Undercoordinated sites play an important role in various surface activities.

  11. PREPARATION AND CHARACTERIZATION OF CO-PROCESSED EXCIPIENT-PREGELATINIZED CASSAVA STARCH PROPIONATE AS A MATRIX IN THE GASTRORETENTIVE DOSAGE FORM

    Directory of Open Access Journals (Sweden)

    Junaedi

    2011-11-01

    Full Text Available The gastroretentive dosage form is designed to prolong the gastric residence time of the drug delivery system whichalso results in the development of an appropriate excipient. The purpose of this study is to develop and characterize coprocessedexcipient made from carrageenan (kappa-iota = 1:1 and pregelatinized cassava starch propionate (PCSP inratios of 1:1, 1:2, and 1:3. PCSP was prepared with propionic anhydride in an aqueous medium. The product was mixedwith carrageenan (kappa-iota = 1:1, as well as characterized physicochemical and functional properties. The coprocessedexcipient was then used as a mucoadhesive granule and floating tablet. The USP Basket was selected toperform the dissolution test of the granules in HCl buffer (pH 1.2 and distilled water for 8 hours each. Mucoadhesiveproperties were evaluated using bioadhesive through a vitro test and wash-off test. As for the floating tablet, the USPPaddle was selected to perform the dissolution test of the tablets in 0.1 N HCl for 10 hours. The floating lag time andfloating time were tested in 0.1 N HCl for 24 hours. The result of these studies indicated that co-processed excipientcarrageenan-PCSP can retard dosage form in gastric and drug controlled release, thus making it a suitable material forthe gastroretentive dosage form.

  12. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-04-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  13. On amorphization and nanocomposite formation in Al–Ni–Ti system by mechanical alloying

    Indian Academy of Sciences (India)

    K Das; G K Dey; B S Murty; S K Pabi

    2005-11-01

    Amorphous structure generated by mechanical alloying (MA) is often used as a precursor for generating nanocomposites through controlled devitrification. The amorphous forming composition range of ternary Al–Ni–Ti system was calculated using the extended Miedema's semi-empirical model. Eleven compositions of this system showing a wide range of negative enthalpy of mixing (− mix) and amorphization (− amor) of the constituent elements were selected for synthesis by MA. The Al88Ni6Ti6 alloy with relatively small negative mix (−0.4 kJ/mol) and amor (−14.8 kJ/mol) became completely amorphous after 120 h of milling, which is possibly the first report of complete amorphization of an Al-based rare earth element free Al–TM–TM system (TM = transition metal) by MA. The alloys of other compositions selected had much more negative mix and amor; but they yielded either nanocomposites of partial amorphous and crystalline structure or no amorphous phase at all in the as-milled condition, evidencing a high degree of stability of the intermetallic phases under the MA environment. Hence, the negative mix and amor are not so reliable for predicting the amorphization in the present system by MA.

  14. Full spectrum and selected spectrum based chemometric methods for the simultaneous determination of Cinnarizine and Dimenhydrinate in laboratory prepared mixtures and pharmaceutical dosage form

    Science.gov (United States)

    Tawakkol, Shereen M.; El-Zeiny, Mohamed B.; Hemdan, A.

    2017-02-01

    Three chemometric methods namely, concentration residual augmented classical least squares (CRACLS), spectral residual augmented classical least squares (SRACLS) and partial least squares (PLS) were applied for the simultaneous quantitative determination of Cinnarizine and Dimenhydrinate in their binary mixtures. All techniques were applied with and without variable selection using genetic algorithm (GA) resulting in six models (CRACLS, GA-CRACLS, SRACLS, GA-SRACLS, PLS, GA-PLS). These models were applied for the simultaneous determination of the drugs in their laboratory prepared mixtures and pharmaceutical dosage form via handling their UV spectral data. It was found that GA based models are simpler and more robust than those built with the full spectral data. The proposed models were found to be simple, fast and require no preliminary separation steps; so they can be used for the routine analysis of this binary mixture in quality control laboratories.

  15. Preparation and thermal properties of form-stable palmitic acid/active aluminum oxide composites as phase change materials for latent heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Guiyin, E-mail: gyfang@nju.edu.cn [School of Physics, Nanjing University, Nanjing 210093 (China); Li, Hui [Department of Material Science and Engineering, Nanjing University, Nanjing 210093 (China); Cao, Lei; Shan, Feng [School of Physics, Nanjing University, Nanjing 210093 (China)

    2012-12-14

    Form-stable palmitic acid (PA)/active aluminum oxide composites as phase change materials were prepared by adsorbing liquid palmitic acid into active aluminum oxide. In the composites, the palmitic acid was used as latent heat storage materials, and the active aluminum oxide was used as supporting material. Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD) and scanning electronic microscope (SEM) were used to determine the chemical structure, crystalloid phase and microstructure of the composites, respectively. The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetry analyzer (TGA). The FT-IR analyses results indicated that there is no chemical interaction between the palmitic acid and active aluminum oxide. The SEM results showed that the palmitic acid was well adsorbed into porous network of the active aluminum oxide. The DSC results indicated that the composites melt at 60.25 Degree-Sign C with a latent heat of 84.48 kJ kg{sup -1} and solidify at 56.86 Degree-Sign C with a latent heat of 78.79 kJ kg{sup -1} when the mass ratio of the PA to active aluminum oxide is 0.9:1. Compared with that of the PA, the melting and solidifying time of the composites CPCM5 was reduced by 20.6% and 21.4% because of the increased heat transfer rate through EG addition. The TGA results showed that the active aluminum oxide can improve the thermal stability of the composites. -- Highlights: Black-Right-Pointing-Pointer Form-stable PA/active aluminum oxide composites as PCMs were prepared. Black-Right-Pointing-Pointer Chemical structure, crystalloid phase and microstructure of composites were determined. Black-Right-Pointing-Pointer Thermal properties and thermal stability of the composites were investigated. Black-Right-Pointing-Pointer Expanded graphite can improve thermal conductivity of the composites.

  16. Amorphous titania/carbon composite electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Vaughey, John T.; Jansen, Andrew; Joyce, Christopher D.

    2017-05-09

    An isolated salt comprising a compound of formula (H.sub.2X)(TiO(Y).sub.2) or a hydrate thereof, wherein X is 1,4-diazabicyclo[2.2.2]octane (DABCO), and Y is oxalate anion (C.sub.2O.sub.4.sup.-2), when heated in an oxygen-containing atmosphere at a temperature in the range of at least about 275.degree. C. to less than about 400.degree. C., decomposes to form an amorphous titania/carbon composite material comprising about 40 to about 50 percent by weight titania and about 50 to about 60 percent by weight of a carbonaceous material coating the titania. Heating the composite material at a temperature of about 400 to 500.degree. C. crystallizes the titania component to anatase. The titania materials of the invention are useful as components of the cathode or anode of a lithium or lithium ion electrochemical cell.

  17. Amorphous silica scale in cooling waters

    Energy Technology Data Exchange (ETDEWEB)

    Midkiff, W.S.; Foyt, H.P.

    1976-01-01

    In 1968, most of the evaporation cooled recirculating water systems at Los Alamos Scientific Laboratory were nearly inoperable due to scale. These systems, consisting of cooling towers, evaporative water coolers, evaporative condensers, and air washers had been operated on continuous blowdown without chemical treatment. The feedwater contained 80 mg/l silica. A successful program of routine chemical addition in the make-up water was begun. Blends of chelants, dispersants and corrosion inhibitors were found to gradually remove old scale, prevent new scale, and keep corrosion to less than an indicated rate of one mil per year. An explanation has been proposed that amorphous silica by itself does not form a troublesome scale. When combined with a crystal matrix such as calcite, the resultant silica containing scale can be quite troublesome. Rapid buildup of silica containing scale can be controlled and prevented by preventing formation of crystals from other constituents in the water such as hardness or iron. (auth)

  18. Polyamorphism in Water: Amorphous Ices and their Glassy States

    Science.gov (United States)

    Amann-Winkel, K.; Boehmer, R.; Fujara, F.; Gainaru, C.; Geil, B.; Loerting, T.

    2015-12-01

    Water is ubiquitous and of general importance for our environment. But it is also known as the most anomalous liquid. The fundamental origin of the numerous anomalies of water is still under debate. An understanding of these anomalous properties of water is closely linked to an understanding of the phase diagram of the metastable non-crystalline states of ice. The process of pressure induced amorphization of ice was first observed by Mishima et al. [1]. The authors pressurized hexagonal ice at 77 K up to a pressure of 1.6 GPa to form high density amorphous ice (HDA). So far three distinct structural states of amorphous water are known [2], they are called low- (LDA), high- (HDA) and very high density amorphous ice (VHDA). Since the discovery of multiple distinct amorphous states it is controversy discussed whether this phenomenon of polyamorphism at high pressures is connected to the occurrence of more than one supercooled liquid phase [3]. Alternatively, amorphous ices have been suggested to be of nanocrystalline nature, unrelated to liquids. Indeed inelastic X-ray scattering measurements indicate sharp crystal-like phonons in the amorphous ices [4]. In case of LDA the connection to the low-density liquid (LDL) was inferred from several experiments including the observation of a calorimetric glass-to-liquid transition at 136 K and ambient pressure [5]. Recently also the glass transition in HDA was observed at 116 K at ambient pressure [6] and at 140 K at elevated pressure of 1 GPa [7], using calorimetric measurements as well as dielectric spectroscopy. We discuss here the general importance of amorphous ices and their liquid counterparts and present calorimetric and dielectric measurements on LDA and HDA. The good agreement between dielectric and calorimetric results convey for a clearer picture of water's vitrification phenomenon. [1] O. Mishima, L. D. Calvert, and E. Whalley, Nature 314, 76, 1985 [2] D.T. Bowron, J. L. Finney, A. Hallbrucker, et al., J. Chem

  19. Novel Fe-based amorphous magnetic powder cores with ultra-low core losses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Amorphous magnetic alloy powders were prepared from bulk metallic glasses Fe74Cr2Mo2Sn2P10Si4B4C2 with supercooled liq-uid region of 32 K by water atomization.Amorphous magnetic powder core precursor was produced from a mixture of the amorphous alloy powder with addition of insulation and bonding materials by mold compacting at room temperature.After annealing the core precursor,the amorphous magnetic core exhibits superior magnetic properties as compared with molypermalloy powder core.The initial permeability up to 1 MHz was about 80,the flux density at 300 Oe was 1.06 T and the core loss at 100 kHz for Bm=0.1 T was only 329 kW/m3.The ultra-low core loss is attributed to the combination of relatively high resistivity and the amorphous structure of the Fe-based amorphous powder.Besides the outstanding magnetic properties,the Fe-based amorphous magnetic powder core had a much lower cost which renders the powder cores a potential candidate for a variety of industrial applications.

  20. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.