WorldWideScience

Sample records for prepare synthetic solutions

  1. Methods for preparing synthetic freshwaters.

    Science.gov (United States)

    Smith, E J; Davison, W; Hamilton-Taylor, J

    2002-03-01

    Synthetic solutions that emulate the major ion compositions of natural waters are useful in experiments aimed at understanding biogeochemical processes. Standard recipes exist for preparing synthetic analogues of seawater, with its relatively constant composition, but, due to the diversity of freshwaters, a range of compositions and recipes is required. Generic protocols are developed for preparing synthetic freshwaters of any desired composition. The major problems encountered in preparing hard and soft waters include dissolving sparingly soluble calcium carbonate, ensuring that the ionic components of each concentrated stock solution cannot form an insoluble salt and dealing with the supersaturation of calcium carbonate in many hard waters. For acidic waters the poor solubility of aluminium salts requires attention. These problems are overcome by preparing concentrated stock solutions according to carefully designed reaction paths that were tested using a combination of experiment and equilibrium modeling. These stock solutions must then be added in a prescribed order to prepare a final solution that is brought into equilibrium with the atmosphere. The example calculations for preparing hard, soft and acidic freshwater surrogates with major ion compositions the same as published analyses, are presented in a generalized fashion that should allow preparation of any synthetic freshwater according to its known analysis.

  2. Removal of heavy metals from synthetic solution by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Mohamed Ilou

    2016-05-01

    Full Text Available The objective of this work concerns the optimization of the operating conditions for the removal of heavy metals from synthetic solution by Electrocoagulation (EC. To reach this purpose, we prepared a synthetic wastewater containing certain heavy metals (Ni, Cu, Zn, Fe and Pb to study the influence of various parameters (conductivity, pH, time of electrolysis, current density and the initial concentration of the metal on the rate of removal of these metals. The results show that this rate of removal can reach 99.9 % in the following optimal conditions: pH included between 6 and 8 and a density of the current of 1~1.5A / dm2. This study shows that it is possible to remove metals in aqueous solution by the technique of electrocoagulation. 

  3. Solution preparation

    International Nuclear Information System (INIS)

    Seitz, M.G.

    1982-01-01

    Reviewed in this statement are methods of preparing solutions to be used in laboratory experiments to examine technical issues related to the safe disposal of nuclear waste from power generation. Each approach currently used to prepare solutions has advantages and any one approach may be preferred over the others in particular situations, depending upon the goals of the experimental program. These advantages are highlighted herein for three approaches to solution preparation that are currently used most in studies of nuclear waste disposal. Discussion of the disadvantages of each approach is presented to help a user select a preparation method for his particular studies. Also presented in this statement are general observations regarding solution preparation. These observations are used as examples of the types of concerns that need to be addressed regarding solution preparation. As shown by these examples, prior to experimentation or chemical analyses, laboratory techniques based on scientific knowledge of solutions can be applied to solutions, often resulting in great improvement in the usefulness of results

  4. Preparation of synthetic standard minerals

    International Nuclear Information System (INIS)

    Herrick, C.C.; Bustamante, S.J.; Charls, R.W.; Cowan, R.E.; Hakkila, E.A.; Hull, D.E.; Olinger, B.W.; Roof, R.B.; Sheinberg, H.; Herrick, G.C.

    1978-01-01

    A number of techniques for synthetic mineral preparations have been examined. These techniques include hot-pressing in graphite dies at moderate pressures, high-pressure, high-temperature synthesis in a piston and cylinder apparatus, isostatic pressing under helium gas pressures, hydrous mineral preparations using water as the pressure medium, explosion-generated shock waves, and radiofrequency heating. Minerals suitable for equation-of-state studies (three-inch, high-density discs), for thermodynamic property determinations (low-density powders) and for microprobe standards (fusion-cast microbeads) have been prepared. Mechanical stress-strain calculations in the piston-cylinder apparatus have been initiated and their integration with thermal stress calculations is currently under investigation

  5. Stability of antibiotics and amino acids in two synthetic L-amino acid solutions commonly used for total parenteral nutrition in children

    DEFF Research Database (Denmark)

    Colding, H; Andersen, G E

    1978-01-01

    The stability and interaction at 29 degrees C of ampicillin, carbenicillin, gentamicin, and polymyxin B were examined in a common electrolyte solution, invertose darrow, and in two synthetic l-amino acid solutions, one commercial (vamin with fructose; Vitrum) and the other a neonatal preparation ...

  6. Preparation of Natural and Synthetic Porous Biodegradable ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Preparation of Natural and Synthetic Porous Biodegradable Scaffolds for Infected Wounds. Characterised for their physical properties, pore size and release kinetics. Release kinetics of bioactive molecules (antibiotics) in a controlled fashion. Release pattern of the ...

  7. Porous Chromatographic Materials as Substrates for Preparing Synthetic Nuclear Explosion Debris Particles

    International Nuclear Information System (INIS)

    Harvey, Scott D.; Liezers, Martin; Antolick, Kathryn C.; Garcia, Ben J.; Sweet, Lucas E.; Carman, April J.; Eiden, Gregory C.

    2013-01-01

    In this study, we investigated several porous chromatographic materials as synthetic substrates for preparing surrogate nuclear explosion debris particles. The resulting synthetic debris materials are of interest for use in developing analytical methods. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110°C) to drive off water, and then treating them at high temperatures (up to 800°C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-point metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies were applied to characterize solubility, material balance, and formation of recalcitrant species. Dissolution experiments indicated loading was 1.5 to 3 times higher than expected from the pore volume alone, a result attributed to surface coating. Analysis of load solutions before and after filling the material pores revealed that most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating some metals were selectively loaded. High-temperature treatments caused reduced solubility of several metal species, and loss of some metals (rhenium and tellurium) because volatile species were formed. Sample preparation reproducibility was high (the inter-batch relative standard deviation was 7.8%, and the intra-batch relative standard deviation was 0.84%) indicating that this material is suitable for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find use in

  8. Corrosion performance of Al-Si-Cu hypereutectic alloys in a synthetic condensed automotive solution

    Directory of Open Access Journals (Sweden)

    Hamilta de Oliveira Santos

    2005-06-01

    Full Text Available In this investigation the corrosion resistance of four Al-Si hypereutectic alloys in a solution typical of condensate from automotive fuel combustion products, and referred to here as synthetic condensed automotive solution, has been studied. Three commercial alloys that are used for cylinder liners, and a laboratory made alloy, were studied by electrochemical impedance spectroscopy and measurements were taken after increasing times of immersion in this solution. Comparison of the electrochemical response of the four alloys in the corrosive solution was carried out. Although the mechanisms by which the four alloys corroded were similar, the results indicated differences in corrosion resistances of these alloys, and these differences could be related to their microstructures. The laboratory prepared alloy showed increased susceptibility to pitting corrosion compared to the commercial alloys. The surfaces of the alloys were examined, before and after the corrosion test, by scanning electron microscopy and analyzed by energy dispersive spectroscopy. The results indicated preferential attack of the aluminium matrix phase in all the alloys. The alloy with higher copper content and prepared by spray forming was more susceptible to pitting compared to the other alloys. The EIS response at low frequencies indicated a diffusion-controlled process, probably that of oxygen to the alloy interface.

  9. Preparing Synthetic Biology for the World

    Directory of Open Access Journals (Sweden)

    Gerd H.G. Moe-Behrens

    2013-01-01

    Full Text Available Synthetic Biology promises low-cost, exponentially scalable products and global health solutions in the form of self-replicating organisms, or living devices. As these promises are realized, proof-of-concept systems will gradually migrate from tightly regulated laboratory or industrial environments into private spaces as, for instance, probiotic health products, food, and even do-it-yourself bioengineered systems. What additional steps, if any, should be taken before releasing engineered self-replicating organisms into a broader user space? In this review, we explain how studies of genetically modified organisms lay groundwork for the future landscape of biosafety. Early in the design process, biological engineers are anticipating potential hazards and developing innovative tools to mitigate risk. Here, we survey lessons learned, ongoing efforts to engineer intrinsic biocontainment, and how different stakeholders in synthetic biology can act to accomplish best practices for biosafety.

  10. Mimicking vernix caseosa-Preparation and characterization of synthetic biofilms

    NARCIS (Netherlands)

    Rissmann, R.; Oudshoorn, M.H.M.; Zwier, R.; Ponec, M.; Bouwstra, J.A.; Hennink, W.E.

    2009-01-01

    The multiple protecting and barrier-supporting properties of the creamy, white biofilm vernix caseosa (VC) before and after birth suggest that a VC biomimetic could be an innovative barrier cream for barrier-deficient skin. The aim of this study was the rational design and preparation of synthetic

  11. Sorption of zinc on synthetic hydroxyapatite from aqueous solution

    International Nuclear Information System (INIS)

    Pivarciova, L.; Rosskopfova, O.; Galambos, M.; Rajec, P.

    2014-01-01

    The sorption of Zn 2+ on synthetic hydroxyapatite was investigated using a batch method and radiotracer technique. This work was aimed to study influence of the contact time, effect of pH and different concentration of Zn 2+ ions in the solution. The percentage of zinc adsorption on HA1 and HA2 was more than 96 % during 1 h for initial Zn 2+ concentration of 1·10 -4 .5·10 -4 and 1·10 -3 mol·dm -3 . The equilibrium time of 2 h was chosen for further experiments. The sorption of zinc on hydroxyapatite was pH independent ranging from 4.5 to 6.5 as a result of buffering properties of hydroxyapatite. The experimental data for adsorption of zinc have been interpreted in the term of Langmuir isotherm and the value of maximum adsorption capacity of zinc on a commercial hydroxyapatite and hydroxyapatite prepared by wet precipitation process was calculated to be 0.437 mmol·g -1 and 0.605 mmol·g -1 , respectively. (authors)

  12. A synthetic interpretation: the double-preparation theory

    International Nuclear Information System (INIS)

    Gondran, Michel; Gondran, Alexandre

    2014-01-01

    In the 1927 Solvay conference, three apparently irreconcilable interpretations of the quantum mechanics wave function were presented: the pilot-wave interpretation by de Broglie, the soliton wave interpretation by Schrödinger and the Born statistical rule by Born and Heisenberg. In this paper, we demonstrate the complementarity of these interpretations corresponding to quantum systems that are prepared differently and we deduce a synthetic interpretation: the double-preparation theory. We first introduce in quantum mechanics the concept of semi-classical statistically prepared particles, and we show that in the Schrödinger equation these particles converge, when h→0, to the equations of a statistical set of classical particles. These classical particles are undiscerned, and if we assume continuity between classical mechanics and quantum mechanics, we conclude the necessity of the de Broglie–Bohm interpretation for the semi-classical statistically prepared particles (statistical wave). We then introduce in quantum mechanics the concept of a semi-classical deterministically prepared particle, and we show that in the Schrödinger equation this particle converges, when h→0, to the equations of a single classical particle. This classical particle is discerned and assuming continuity between classical mechanics and quantum mechanics, we conclude the necessity of the Schrödinger interpretation for the semi-classical deterministically prepared particle (the soliton wave). Finally we propose, in the semi-classical approximation, a new interpretation of quantum mechanics, the ‘theory of the double preparation’, which depends on the preparation of the particles. (paper)

  13. Porous chromatographic materials as substrates for preparing synthetic nuclear explosion debris particles

    International Nuclear Information System (INIS)

    Harvey, S.D.; Carman, A.J.; Martin Liezers; Antolick, K.C.; Garcia, B.J.; Eiden, G.C.; Sweet, L.E.

    2013-01-01

    Several porous chromatographic materials were investigated as synthetic substrates for preparing surrogate nuclear explosion debris particles. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110 deg C) to drive off water, and then treating them at high temperatures (up to 800 deg C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-point metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies characterized material balance and the formation of recalcitrant species. Metal loading was 1.5-3 times higher than expected from the pore volume alone, a result attributed to surface coating. Most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating selective loading. High-temperature treatments caused reduced solubility of several metals, and the loss of some volatile species (rhenium and tellurium). Sample preparation reproducibility was high (the inter- and intra-batch relative standard deviations were 7.8 and 0.84 %, respectively) indicating suitability for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find use in radioanalytical methods development and/or serve as a starting material for the synthesis of more complex nuclear explosion debris forms (e.g., Trinitite). (author)

  14. Synthetic Textile Red Dye Removal From Aqueous Solution by Adsorption onto Pomegranate Peel

    Directory of Open Access Journals (Sweden)

    Sundus Saleh Nehaba

    2017-07-01

    Full Text Available This study is conducted to evaluate the ability of using pomegranate peel as low cost material for adsorption one of synthetic textile dye (C.I.Direct Red 89 dye. The removal of dye from aqueous solution is done by using pomegranate peel with two forms, as raw pomegranate peel (RPP and activated carbon prepared from pomegranate peel(ACPP. Some operational factors like contact time, pH, adsorbent dosage , and temperature were investigated in experimental work. Also the thermodynamic parameters ΔH, ΔG, and ΔS were calculated, the result shows that the adsorption process of dye onto two forms of adsorbents was spontaneous and endothermic in nature. Finally, the adsorption isotherm of experimental data we refitted for the Langmuir, and Freundlich equations

  15. The preparation of synthetic standards for use in instrumental neutron-activation analysis

    International Nuclear Information System (INIS)

    Eddy, B.T.; Watterson, J.I.W.; Erasmus, C.S.

    1979-01-01

    An account is given of the formulation and preparation of synthetic standards suitable for the routine analysis of minerals, ores, and ore concentrates by instrumental neutron activation. Fifteen standards were prepared, each containing from one to seven elements. The standards contain forty-four elements that produce isotopes with half-lives longer than 12 hours. An evaluation of the accuracy and precision of the method of preparation is given

  16. The first preparative solution phase synthesis of melanotan II

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available Melanotan II is a synthetic cyclic heptapeptide used to prevent a sunlight-induced skin cancer by stimulating the skin tanning process. In this paper we report the first solution phase synthesis of the title compound. The hexapeptide sequence has been assembled by [(2+2+1+1] scheme. After removing the orthogonal protection, a carbodiimide mediated lactamization, involving the ε-amino group of lysine and γ-carboxy group of aspartic acid, led to a cyclic intermediate. Appending N-acetylnorleucine concluded the assembly of melanotan II molecule. Protection of the lateral groups in arginine and tryptophan was omitted for atom and step economy reasons. The total synthesis of melanotan II was accomplished in 12 steps with 2.6% overall yield, affording >90% pure peptide without using preparative chromatography.

  17. New technology for preparing drilling solutions

    Energy Technology Data Exchange (ETDEWEB)

    Proselkov, Y M; Minenkov, V M

    1981-01-01

    It is indicated that it is possible to provide the necessary indices of structural-mechanical properties of solution with additional dispersion of clay particles in water at the initial stage of preparation of solutions. In the process of dispersion the indices of rheological properties of the solution vary: static SNS and dynamic of shear stress, plastic viscosity. With consideration of the aforementioned a new technology has been developed for preparing solutions from powdery materials. To carry out the technological process we use serial blocks BPR-70 with ejector hydromixer, drilling or centrifuge pump, standard capacity of circulation system, and hydraulic dispersing agent. The technology for preparing the solution is as follow (see figure). Water is poured into tank 4 in an amount equal to half the volume of the prepared portion of solution. In hydraulic disperser 6 packing is installed with a diameter in accordance with the productivity of the drilling pump 5. After this aeration is switched on for 5-7 minutes in the silo 1 of BPR with excess air pressure of 0.2-0.3 kg/cm/sup 2/. Then the drilling pump is switched on and water is pumped through in the following order: tank 4, hydraulic disperser 6, ejector hydromixer 3, tank 4. Pressure at the pump discharge should be 120-150 kg/cm/sup 2/, and the vacuum in the chamber of the electronic hydromixer is at least 0.2 kg/cm/sup 2/. With the aid of a regulating fan 2 we must create a vacuum in the chamber of the hydromixer amounting to 0.08-0.12 kg/cm/sup 2/, and as a consequence of this the fan can regulate the rate and evenness of clay powder feed.

  18. Semi-synthetic preparation of the rare, cytotoxic, deep-sea sourced sponge metabolites discorhabdins P and U.

    Science.gov (United States)

    Grkovic, Tanja; Kaur, Balwinder; Webb, Victoria L; Copp, Brent R

    2006-04-01

    Semi-synthetic routes to the enzyme inhibitory and potently anti-proliferative marine natural products discorhabdins P and U were developed by one-step methylation reactions of discorhabdins C and B, respectively. Two novel semi-synthetic derivatives of discorhabdin U were also prepared, one of which (6) exhibited significant anti-proliferative activity.

  19. Electron Beam Mediated Simple Synthetic Route to Preparing Layered Zinc Hydroxide

    International Nuclear Information System (INIS)

    Bae, Hyo Sun; Jung, Hyun

    2012-01-01

    We have developed a novel and eco-friendly synthetic route for the preparation of a two-dimensional layered zinc hydroxide with intercalated nitrate anions. The layered zinc hydroxide nitrate, called 'zinc basic salt', was, in general, successfully synthesized, using an electron beam irradiation technique. The 2-propanol solutions containing hydrated zinc nitrate were directly irradiated with an electron-beam at room temperature, under atmospheric conditions, without stabilizers or base molecules. Under electron beam irradiation, the reactive OH· radicals were generated by radiolysis of water molecules in precursor metal salts. After further radiolytic processes, the hydroxyl anions might be formed by the reaction of solvated electrons and the OH· radical. Finally, the Zn 5 (OH) 8 (NO 3 ) 2 ·2H 2 O was precipitated by the reaction of zinc cation and hydroxyl anions. Structure and morphology of obtained compounds were characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and high resolution transmission electron microscopy (HR-TEM). The chemical components of the products were determined by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (EA). The thermal behavior of products was studied by thermogravimetric (TG) and differential thermal analysis (DTA)

  20. Basics of Sterile Compounding: Ophthalmic Preparations, Part 1: Ophthalmic Solutions.

    Science.gov (United States)

    Allen, Loyd V

    2016-01-01

    Ophthalmic preparations are used to treat allergies, bacterial and viral infections, glaucoma, and numerous other eye conditions. When the eye's natural defensive mechanisms are compromised or overcome, an ophthalmic preparation, in a solution, suspension, or ointment form, may be indicated, with solutions being the most common form used to deliver a drug to the eye. This article provides a general discussion on ophthalmic preparations and specifically discusses the preparation of solutions. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  1. Ion exchange of strontium on synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Lazic, S.; Vukovic, Z.

    1991-01-01

    Adsorption of strontium ions on synthetic hydroxyapatite was examined using both batch and column methods. The apatite was prepared from aqueous solutions and characterized by standard analytical methods. The sample obtained had characteristics of well crystallized stoichiometric hydroxyapatite. The experimental data for sorption of strontium can be very well fitted with Langmuir's adsorption isotherm. It was found that sorption occurs by an ion exchange reaction between strontium ions in solution and calcium ions in apatite. (author) 14 refs.; 5 figs.; 1 tab

  2. Preparation and evaluation of veterinary 20% injectable solution of tylosin

    Directory of Open Access Journals (Sweden)

    Fouad K. Mohammad

    2010-02-01

    Full Text Available A veterinary injectable aqueous solution of the antibiotic tylosin at a concentration of 20% was prepared under aseptic conditions in dark glass bottles each containing 100 ml. The preparation was intended for animal use only. It contained 200 g tylosin tartrate, 500 ml propylene glycol, benzyl alcohol 40 ml as a preservative and water for injection up to 1000 ml. The preparation was clear yellow viscous aqueous solution free from undesired particles. The preparation complied with the requirements for injectable solutions. It was active in vitro against E. coli (JM83. The preparation of 20% tylosin solution was safe under field conditions in treating sheep and cattle suffering from pneumonia at the dose rate of 1 ml/20 kg body weight, intramuscularly/ day for 3 successive days. In conclusion, we presented the know-how of a veterinary formulation of injectable solution of 20% tylosin for clinical use in ruminants. [Vet. World 2010; 3(1.000: 5-7

  3. Analysis of fast neutrons elastic moderator through exact solutions involving synthetic-kernels

    International Nuclear Information System (INIS)

    Moura Neto, C.; Chung, F.L.; Amorim, E.S.

    1979-07-01

    The computation difficulties in the transport equation solution applied to fast reactors can be reduced by the development of approximate models, assuming that the continuous moderation holds. Two approximations were studied. The first one was based on an expansion in Taylor's series (Fermi, Wigner, Greuling and Goertzel models), and the second involving the utilization of synthetic Kernels (Walti, Turinsky, Becker and Malaviya models). The flux obtained by the exact method is compared with the fluxes from the different models based on synthetic Kernels. It can be verified that the present study is realistic for energies smaller than the threshold for inelastic scattering, as well as in the resonance region. (Author) [pt

  4. Preparative electrophoresis of industrial fission product solutions

    International Nuclear Information System (INIS)

    Tret, Joel

    1971-07-01

    The aim of this work is to contribute to the development of the continuous electrophoresis technique while studying its application in the preparative electrophoresis of industrial fission product solutions. The apparatus described is original. It was built for the purposes of the investigation and proved very reliable in operation. The experimental conditions necessary to maintain and supervise the apparatus in a state of equilibrium are examined in detail; their stability is an important factor, indispensable to the correct performance of an experiment. By subjecting an industrial solution of fission products to preparative electrophoresis it is possible, according to the experimental conditions, to prepare carrier-free radioelements of radiochemical purity (from 5 to 7 radioelements): 137 Cs, 90 Sr, 141+144 Ce, 91 Y, 95 Nb, 95 Zr, 103+106 Ru. (author) [fr

  5. Preparation of a zeolite-modified polymer monolith for identification of synthetic colorants in lipsticks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqi; Li, Zheng [College of Chemistry, Jilin University, Changchun 130012 (China); Niu, Qian [Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Ma, Jiutong [College of Chemistry, Jilin University, Changchun 130012 (China); Jia, Qiong, E-mail: jiaqiong@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2015-10-30

    Graphical abstract: Poly(methacrylic acid-ethylene dimethacrylate) monolithic column embedded with zeolites was prepared and employed for the polymer monolith microextraction of colorants combined with HPLC. - Highlights: • Zeolite, as a kind of mesoporous material, was firstly combined with PMME. • Zeolite@poly(MAA-EDMA) monolith columns were prepared for the enrichment of colorants. • Zeolite@poly(MAA-EDMA) monolith columns demonstrated relatively high extraction capacity. - Abstract: A novel zeolite-modified poly(methacrylic acid-ethylenedimethacrylate) (zeolite@poly(MAA-EDMA)) monolithic column was prepared with the in situ polymerization method and employed in polymer monolith microextraction for the separation and preconcentration of synthetic colorants combined with high performance liquid chromatography. The polymer was characterized by scanning electronmicroscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermo-gravimetric analysis. Various parameters affecting the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, we obtained acceptable linearities, low limits of detection, and good intra-day/inter-day relative standard deviations. The method was applied to the determination of synthetic colorants in lipsticks with recoveries ranged from 70.7% to 109.7%. Compared with conventional methacrylic acid-based monoliths, the developed monolith exhibited high enrichment capacity because of the introduction of zeolites into the preparation process. The extraction efficiency followed the order: zeolite@poly(MAA-EDMA) > poly(MAA-EDMA) > direct HPLC analysis.

  6. Synthetic salt cake standards for analytical laboratory quality control

    International Nuclear Information System (INIS)

    Schilling, A.E.; Miller, A.G.

    1980-01-01

    The validation of analytical results in the characterization of Hanford Nuclear Defense Waste requires the preparation of synthetic waste for standard reference materials. Two independent synthetic salt cake standards have been prepared to monitor laboratory quality control for the chemical characterization of high-level salt cake and sludge waste in support of Rockwell Hanford Operations' High-Level Waste Management Program. Each synthetic salt cake standard contains 15 characterized chemical species and was subjected to an extensive verification/characterization program in two phases. Phase I consisted of an initial verification of each analyte in salt cake form in order to determine the current analytical capability for chemical analysis. Phase II consisted of a final characterization of those chemical species in solution form where conflicting verification data were observed. The 95 percent confidence interval on the mean for the following analytes within each standard is provided: sodium, nitrate, nitrite, phosphate, carbonate, sulfate, hydroxide, chromate, chloride, fluoride, aluminum, plutonium-239/240, strontium-90, cesium-137, and water

  7. Labile synthetic cadmium complexes are not bioavailable to Pseudokirchneriella subcapitata in resin buffered solutions

    Energy Technology Data Exchange (ETDEWEB)

    Verheyen, L., E-mail: Liesbeth.Verheyen@ees.kuleuven.be [Division of Soil and Water Management, K.U. Leuven, Kasteelpark Arenberg 20, Box 2459, 3001 Heverlee (Belgium); Merckx, R. [Division of Soil and Water Management, K.U.Leuven, Kasteelpark Arenberg 20, Box 2459, 3001 Heverlee (Belgium); Smolders, E., E-mail: Erik.Smolders@ees.kuleuven.be [Division of Soil and Water Management, K.U. Leuven, Kasteelpark Arenberg 20, Box 2459, 3001 Heverlee (Belgium)

    2012-11-15

    The Free Ion Activity Model (FIAM) predicts that cadmium (Cd) uptake by organisms is identical for solutions with the same free Cd{sup 2+} concentration and inorganic composition. Clear exceptions to the FIAM have been shown for Cd uptake by plant roots, periphyton and human cells where labile Cd complexes increase bioavailability and which has been attributed to their role in enhancing Cd diffusion towards the uptake cells. Here, we assessed the role of labile Cd complexes on Cd uptake by algae, for which diffusion limitations should be less pronounced due to their smaller size. Long-term (3 days) Cd uptake by the green algae Pseudokirchneriella subcapitata was measured in resin buffered solutions with or without synthetic ligands and at three Cd{sup 2+} ion activities (pCd 8.2-5.7). The free Cd{sup 2+} activity was maintained during the test using a metal-selective resin located in the algal bottles. Total dissolved Cd increased up to 35-fold by adding the synthetic ligands at constant Cd{sup 2+} activity. In contrast, Cd uptake by algae increased maximally 2.8 fold with increasing concentration of the synthetic ligands and the availability of the complexes were maximally 5.2% relative to Cd{sup 2+} for NTA and CDTA complexes. It is concluded that labile Cd complexes do not greatly enhance Cd bioavailability to the unicellular algae and calculations suggest that Cd transport from solution to these small cells is not rate limiting.

  8. Labile synthetic cadmium complexes are not bioavailable to Pseudokirchneriella subcapitata in resin buffered solutions

    International Nuclear Information System (INIS)

    Verheyen, L.; Merckx, R.; Smolders, E.

    2012-01-01

    The Free Ion Activity Model (FIAM) predicts that cadmium (Cd) uptake by organisms is identical for solutions with the same free Cd 2+ concentration and inorganic composition. Clear exceptions to the FIAM have been shown for Cd uptake by plant roots, periphyton and human cells where labile Cd complexes increase bioavailability and which has been attributed to their role in enhancing Cd diffusion towards the uptake cells. Here, we assessed the role of labile Cd complexes on Cd uptake by algae, for which diffusion limitations should be less pronounced due to their smaller size. Long-term (3 days) Cd uptake by the green algae Pseudokirchneriella subcapitata was measured in resin buffered solutions with or without synthetic ligands and at three Cd 2+ ion activities (pCd 8.2–5.7). The free Cd 2+ activity was maintained during the test using a metal-selective resin located in the algal bottles. Total dissolved Cd increased up to 35-fold by adding the synthetic ligands at constant Cd 2+ activity. In contrast, Cd uptake by algae increased maximally 2.8 fold with increasing concentration of the synthetic ligands and the availability of the complexes were maximally 5.2% relative to Cd 2+ for NTA and CDTA complexes. It is concluded that labile Cd complexes do not greatly enhance Cd bioavailability to the unicellular algae and calculations suggest that Cd transport from solution to these small cells is not rate limiting.

  9. Highly efficient fluoride adsorption from aqueous solution by nepheline prepared from kaolinite through alkali-hydrothermal process.

    Science.gov (United States)

    Wang, Hao; Feng, Qiming; Liu, Kun; Li, Zishun; Tang, Xuekun; Li, Guangze

    2017-07-01

    A direct alkali-hydrothermal induced transformation process was adopted to prepare nepheline from raw kaolinite (shortened form RK in this paper) and NaOH solution in this paper. Structure and morphology characterizations of the synthetic product showed that the nepheline possessed high degree of crystallinity and uniform surface morphology. Specific surface area of nepheline is 18 m 2 /g, with a point of zero charge at around pH 5.0-5.5. The fluoride (F - ions) adsorption by the synthetic nepheline (shortened form SN in this paper) from aqueous solution was also investigated under different experimental conditions. The adsorption process well matched the Langmuir isotherm model with an amazing maximum adsorption capacity of 183 mg/g at 323 K. The thermodynamic parameters (ΔG 0 , ΔH 0 , and ΔS 0 ) for adsorption on SN were also determined from the temperature dependence. The adsorption capacities of fluoride on SN increased with increasing of temperature and initial concentration. Initial pH value also had influence on adsorption process. Adsorption of fluoride was rapidly increased in 5-60 min and thereafter increased slowly to reach the equilibrium in about 90-180 min under all conditions. The adsorption followed a pseudo-second order rate law. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Solution dynamics of synthetic and natural polyelectrolytes

    Science.gov (United States)

    Krause, Wendy E.

    Polyelectrolytes are abundant in nature and essential to life, and used extensively in industry. This work discussed two polyelectrolytes: sodium poly(2-acrylamido-2-methylpropanesulfonate) (NaPAMS), synthetic polyelectrolyte, and sodium hyaluronate (NaHA), a glycosaminoglycan. Rheological data of NaPAMS solutions of variable chain length and concentration were reported. A strong dependence of viscosity eta on chain length: eta ˜ M2.4 was found. The comparison of the rheological data with two proposed scaling theories (Dobrynin 1995, Witten 1987) forces the conclusion that neither theory is correct. A possible interpretation of the viscosity data falling between the predictions of the two scaling theories is that some chain rigidity may persist beyond the correlation length. A sample model for the conductivity of semidilute polyelectrolytes with no added salt was presented. The model correctly describes the logarithmic decrease of specific conductance observed for many polyelectrolytes at low concentration (below ca. 10-2M), and is in good agreement with data from NaPAMS solutions. NaHA in phosphate buffered saline behaves as a typical polyelectrolyte in the high-salt limit, as Newtonian viscosities are observed over a wide range of shear rates. There is no evidence of intermolecular hydrogen bonding causing gel formation in NaHA solutions without protein present. The viscosity of 3 mg/mL NaHA was measured in the presence of the selected anti-inflammatory agents. Of the seven additives investigated only (D)-penicillamine significantly altered the rheology of HA. (D)-Penicillamine dramatically reduced the viscosity of HA, probably by disrupting intramolecular hydrogen bonding. The plasma proteins albumin and gamma-globulins bind to HA in solution to form a weak reversible gel. The rheology and osmotic pressure of the simple model for synovial fluid, consisting of 3mg/mL NaHA, 11 mg/mL albumin, and 7 mg/mL gamma-globulins in phosphate buffered saline, were studied

  11. Solution chemistry techniques in SYNROC preparation

    International Nuclear Information System (INIS)

    Dosch, R.G.; Lynch, A.W.

    1981-07-01

    Investigations of titanate-based ceramic forms for radioactive waste immobilization are underway at Sandia National Laboratories (SNLA) and at Lawrence Livermore National Laboratory (LLNL). Although the waste forms differ as to overall product composition, the waste-containing phases in both ceramic products have similar crystalline structure types. These include metallic phases along with oxides with structure types of the mineral analogues perovskite, zirconolite, and hollandite. Significant differences also exist in the area of processing. More conventional ceramic processing methods are used at LLNL to produce SYNROC while solution chemistry techniques involving metal alkoxide chemistry and ion exchange have been developed at SNLA to prepare calcium titanate-based waste ceramics. The SNLA techniques were recently modified and applied to producing SYNROC (compositions C and D) as part of an interlaboratory information exchange between SNLA and LLNL. This report describes the methods used in preparing SYNROC including the solution interaction, and hot-pressing methods used to obtain fully dense SYNROC monoliths

  12. Use of CRM's as mutual calibrating materials and control of synthetic multielement standards as used in INAA

    International Nuclear Information System (INIS)

    Rossbach, M.; Stoeppler, M.

    1987-01-01

    Dilution effects of different multielement synthetic standard solutions were studied by measuring 10-12 different concentrations of the same solution. Peak area comparison of four Certified Reference Materials (CRMs) using one value for the evaluation of the other three repetitively led to the intercomparison (degree of compatibility) of the certified values. The idea of the preparation of each laboratory's 'secondary reference standard' by comparison of synthetic multielement standards with as many CRMs as practically feasible is advocated to improve the reliability of analytical results. (author)

  13. In vitro storage of synthetic seeds: Effect of different storage ...

    African Journals Online (AJOL)

    In vitro derived shoots of olive cv. Moraiolo were employed in synthetic seeds preparation by alginate encapsulation, and then stored in artificial endosperm solution at cold (4°C) and room storage (21 ± 2°C) conditions in interaction with different storage intervals of 0, 15, 30, 45 and 60 days to evaluate the comparative ...

  14. Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid Nanoparticles

    Science.gov (United States)

    Hood, Matthew A.; Mari, Margherita; Muñoz-Espí, Rafael

    2014-01-01

    This article reviews the recent advances and challenges in the preparation of polymer/inorganic hybrid nanoparticles. We mainly focus on synthetic strategies, basing our classification on whether the inorganic and the polymer components have been formed in situ or ex situ, of the hybrid material. Accordingly, four types of strategies are identified and described, referring to recent examples: (i) ex situ formation of the components and subsequent attachment or integration, either by covalent or noncovalent bonding; (ii) in situ polymerization in the presence of ex situ formed inorganic nanoparticles; (iii) in situ precipitation of the inorganic components on or in polymer structures; and (iv) strategies in which both polymer and inorganic component are simultaneously formed in situ. PMID:28788665

  15. Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Nikooe, Naeme, E-mail: naeme.nikooe@stu.um.ac.ir; Saljoughi, Ehsan, E-mail: saljoughi@um.ac.ir

    2017-08-15

    Highlights: • Preparation of novel PVDF nanofiltration membranes with noticeable hydrophilicity. • Simultaneous achievement of hydrophilicity and dye removal via addition of Brij-58. • In situ modification and stability of hydrophilic property via addition of Brij-58. - Abstract: In the present research, for the first time PVDF/Brij-58 blend nanofiltration membranes with remarkable performance in filtration of dye aqueous solution were prepared via immersion precipitation. A noticeable improvement in water permeation and fouling resistance of the PVDF membranes was achieved by using Brij-58 surfactant as a hydrophilic additive. Scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR) and water contact angle were applied for the investigation of membrane morphology, detection of the surface chemical composition and relative hydrophilicity/hydrophobicity, respectively. The membrane performance was studied and compared by determination of pure water flux (PWF) and filtration of synthetic reactive dye aqueous solutions as well as bovine serum albumin (BSA) as foulant model. It was found out that addition of 4 wt.% Brij-58 to the casting solution results in formation of membrane with remarkable hydrophilicity and fouling resistance (contact angle of 46° and flux recovery ratio (FRR) = 90%), higher porosity and consequently noticeable PWF (31.2 L/m{sup 2} h) and recognized dye rejection value (90%) in comparison with the pristine PVDF nanofiltration membrane. Addition of Brij-58 surfactant to the casting solution resulted in formation of NF membrane with higher hydrophilicity and permeability as well as higher dye rejection value in comparison with the addition of PEG 400 additive.

  16. Cadmium fixation by synthetic hydroxyapatite in aqueous solution-Thermal behaviour

    International Nuclear Information System (INIS)

    Marchat, David; Bernache-Assollant, Didier; Champion, Eric

    2007-01-01

    This study deals with the mechanism of the cadmium uptake by synthetic hydroxyapatite (HA: Ca 10 (PO 4 ) 6 (OH) 2 ) in aqueous solution. The rate of cadmium fixation by hydroxyapatite was investigated at 10 and 50 deg. C using batch experiments. Inductively coupled plasma atomic emission spectrometry, X-ray diffraction, FT-IR spectroscopy and electron microscopy were used to characterize the starting HA and the samples. The thermal behaviour of the powders was determined with the help of three thermoanalytical techniques (TGA, DTA, and MS) and temperature programmed X-ray diffraction. Cadmium immobilization kinetics can be divided into two steps: substitution of Ca 2+ ions by Cd 2+ in the HA lattice at the particle's surface, followed by their incorporation into the hydroxyapatite bulk. This results in the formation of an apatite solid solution, which is very important because in this way decontamination and storage can be performed with the same material

  17. Preparation of working calibration and test materials: uranyl nitrate solution

    International Nuclear Information System (INIS)

    Yamamura, S.S.; Spraktes, F.W.; Baldwin, J.M.; Hand, R.L.; Lash, R.P.

    1977-05-01

    Reliable working calibration and test materials (WCTMs) are essential to a meaningful analytical measurements quality assurance program. This report describes recommended methods for the preparation of uranyl nitrate solution WCTMs for testing analytical methods, for calibrating methods, and for testing personnel. Uranyl nitrate solution WCTMs can be synthesized from characterized starting materials or prepared from typical plant materials by thorough characterization with reference to primary or secondary reference calibration and test materials (PRCTMs or SRCTMs). Recommended starting materials are described along with detailed procedures for (a) preparing several widely-used types of uranyl nitrate solution WCTMs, (b) packaging the WCTMs, (c) analyzing the WCTMs to establish the reference values or to confirm the synthesis, and (d) statistically evaluating the analytical data to assign reference values and to assess the accuracy of the WCTMs

  18. Thermal decomposition of synthetic antlerite prepared by microwave-assisted hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Nobuyoshi [Chemistry Laboratory, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima 739-8524 (Japan)], E-mail: nkoga@hiroshima-u.ac.jp; Mako, Akira; Kimizu, Takaaki; Tanaka, Yuu [Chemistry Laboratory, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima 739-8524 (Japan)

    2008-01-30

    Copper(II) hydroxide sulfate was synthesized by a microwave-assisted hydrothermal method from a mixed solution of CuSO{sub 4} and urea. Needle-like crystals of ca. 20-30 {mu}m in length precipitated by irradiating microwave for 1 min were characterized as Cu{sub 3}(OH){sub 4}SO{sub 4} corresponding to mineral antlerite. The reaction pathway and kinetics of the thermal decomposition of the synthetic antlerite Cu{sub 3}(OH){sub 4}SO{sub 4} were investigated by means of thermoanalytical techniques complemented by powder X-ray diffractometry and microscopic observations. The thermal decomposition of Cu{sub 3}(OH){sub 4}SO{sub 4} proceeded via two separated reaction steps of dehydroxylation and desulfation to produce CuO, where crystalline phases of Cu{sub 2}OSO{sub 4} and CuO appeared as the intermediate products. The kinetic characteristics of the respective steps were discussed in comparison with those of the synthetic brochantite Cu{sub 4}(OH){sub 6}SO{sub 4} reported previously.

  19. Electrochemical behaviour of titanium coated stainless steel by r.f. sputtering in synthetic sweat solutions for electrode applications

    International Nuclear Information System (INIS)

    Fonseca, C.; Vaz, F.; Barbosa, M.A.

    2004-01-01

    The r.f. sputtering technique was used to deposit titanium thin films on stainless steel substrates, aiming at the application of the coated samples as skin contact materials for 'dry' active electrodes. In this work the electrochemical behaviour of the coated samples was investigated in synthetic sweat solutions and their performance was compared with that of uncoated stainless steel and bulk titanium. The characterisation of the samples was carried out by electrochemical techniques and scanning electron microscopy. The coated samples displayed corrosion resistance values in synthetic sweat solutions much higher than stainless steel samples and of the same order of the values measured for bulk titanium in the same conditions

  20. Preparation of Magnetite Nanocrystals from Ferrous Sulphate Solution

    International Nuclear Information System (INIS)

    Cho Yu Mon; Tint Tint Kywe; Moe Moe Kyaw

    2010-12-01

    Magnetite (Fe3O4) nanoparticle were prepared by hydrothermal process in two ways, which would be used for production of copier toner.In this investigation, the first process was made from ferrous sulphate (FeSO4 . 7H2O) by using 10 M sodium hydroxide solution. In this method, magnetite nanoparticles were prepared by changing aeration time from 1 to 3 hr and heated at 90C for 15 min. The alternative process was carried out from ferrous sulphate (FeSO4.7H2O) by using 6.6 M sodium hydroxide solution and sodium silicate solution.Magnetite (black iron oxide) was synthesized by using different aeration times and reaction times. Aeration time was changed from 1 to 2 hr and reaction time was changed from 1 to 5.5 hr at 85 C. The magnetites obtained were examined by X-ray Diffraction (XRD) analysis and Scanning Electron Microscopy (SEM) technique. The average particle size range of magnetite nanoprticles were 90-120 nm and 120-150 nm in each process. The maximum yied percentages of magnetite based on FeSO4 in both processing were found to be 46.30% and 60.72%. The precent yields of magnetite in both preparation based on theoretical yields were 91.02% and 94.83% respectively.

  1. Synthetic food colours in saffron solutions, saffron rice and saffron chicken from restaurants in Tehran, Iran.

    Science.gov (United States)

    Moradi-Khatoonabadi, Zhila; Amirpour, Mansooreh; AkbariAzam, Maryam

    2015-01-01

    Saffron solutions, saffron rice and saffron chicken samples were considered for synthetic colours as additives, which are forbidden according to Iranian national standards. Samples were taken from restaurants of three locations and analysed by high-performance liquid chromatography. Of the total 573 samples, 52% were positive for at least one colour. The most prevalent colours were Tartrazine, Quinoline Yellow and Sunset Yellow, with 44%, 9.1% and 8.4% of the samples testing positive for these colours, respectively. Carmoisine and Ponceau were both detected only in 0.5% of the positive samples and found only in saffron solution. In conclusion, synthetic food colours, especially Tartrazine should be regarded as a potential risk in saffron and its related food. Therefore, new attempts for food safety and quality should be undertaken to eliminate the use of these colours in restaurants.

  2. Independent assessment of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) sample preparation quality : Effect of sample preparation on MALDI-MS of synthetic polymers

    NARCIS (Netherlands)

    Kooijman, Pieter C.; Kok, Sander; Honing, Maarten

    2017-01-01

    Rationale: Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) provides detailed and in-depth information about the molecular characteristics of synthetic polymers. To obtain the most accurate results the sample preparation parameters should be chosen to suit the sample and the

  3. Preparation of uranium standard solutions for x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Wong, C.M.; Cate, J.L.; Pickles, W.L.

    1978-03-01

    A method has been developed for gravimetrically preparing uranium nitrate standards with an estimated mean error of 0.1% (1 sigma) and a maximum error of 0.2% (1 sigma) for the total uranium weight. Two source materials, depleted uranium dioxide powder and NBS Standard Reference Material 960 uranium metal, were used to prepare stock solutions. The NBS metal proved to be superior because of the small but inherent uncertainty in the stoichiometry of the uranium oxide. These solutions were used to prepare standards in a freeze-dried configuration suitable for x-ray fluorescence analysis. Both gravimetric and freeze-drying techniques are presented. Volumetric preparation was found to be unsatisfactory for 0.1% precision for the sample size of interest. One of the primary considerations in preparing uranium standards for x-ray fluorescence analysis is the development of a technique for dispensing a 50-μl aliquot of a standard solution with a precision of 0.1% and an accuracy of 0.1%. The method developed corrects for variation in aliquoting and for evaporation loss during weighing. Two sets, each containing 50 standards have been produced. One set has been retained by LLL and one set retained by the Savannah River project

  4. Independent assessment of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) sample preparation quality: Effect of sample preparation on MALDI-MS of synthetic polymers.

    Science.gov (United States)

    Kooijman, Pieter C; Kok, Sander; Honing, Maarten

    2017-02-28

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) provides detailed and in-depth information about the molecular characteristics of synthetic polymers. To obtain the most accurate results the sample preparation parameters should be chosen to suit the sample and the aim of the experiment. Because the underlying principles of MALDI are still not fully known, a priori determination of optimal sample preparation protocols is often not possible. Employing an automated sample preparation quality assessment method recently presented by us we quantified the sample preparation quality obtained using various sample preparation protocols. Six conventional matrices with and without added potassium as a cationization agent and six ionic liquid matrices (ILMs) were assessed using poly(ethylene glycol) (PEG), polytetrahydrofuran (PTHF) and poly(methyl methacrylate) (PMMA) as samples. All sample preparation protocols were scored and ranked based on predefined quality parameters and spot-to-spot repeatability. Clearly distinctive preferences were observed in matrix identity and cationization agent for PEG, PTHF and PMMA, as the addition of an excess of potassium cationization agent results in an increased score for PMMA and a contrasting matrix-dependent effect for PTHF and PEG. The addition of excess cationization agent to sample mixtures dissipates any overrepresentation of high molecular weight polymer species. Our results show reduced ionization efficiency and similar sample deposit homogeneity for all tested ILMs, compared with well-performing conventional MALDI matrices. The results published here represent a start in the unsupervised quantification of sample preparation quality for MALDI samples. This method can select the best sample preparation parameters for any synthetic polymer sample and the results can be used to formulate hypotheses on MALDI principles. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Use of CRM's as mutual calibrating materials and control of synthetic multielement standards as used in INAA

    International Nuclear Information System (INIS)

    Rossbach, M.; Stoeppler, M.

    1986-01-01

    The comparability of analytical results from different laboratories requires accurately known concentrations in the applied standards. Dilution effects of different multielement synthetic standard solutions have been studied by measuring 10 - 12 different concentrations of the same solution. Peak area comparison of four Certified Reference Materials (CRM's) using one value for the evaluation of the other three repetitively led to the intercomparison (degree of compatibility) of the certified values. The idea of the preparation of each laboratory's ''secondary reference standard'' by comparison of synthetic multielement standards with as many CRM's as practically feasible is advocated to improve the reliability of analytical results. (author)

  6. Adsorption of nickel on synthetic hydroxyapatite from aqueous solutions

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Galambos, M.; Pivarciova, L.; Rajec, P.; Caplovicova, M.

    2013-01-01

    The sorption of nickel on synthetic hydroxyapatite was investigated using a batch method and radiotracer technique. The hydroxyapatite samples used in experiments were a commercial hydroxyapatite and hydroxyapatite of high crystallinity with Ca/P ratio of 1.563 and 1.688, respectively, prepared by a wet precipitation process. The sorption of nickel on hydroxyapatite was pH independent ranging from 4.5 to 6.5 as a result of buffering properties of hydroxyapatite. The adsorption of nickel was rapid and the percentage of Ni sorption on both samples of hydroxyapatite was >98 % during the first 15-30 min of the contact time for initial Ni 2+ concentration of 1 x 10 -4 mol dm -3 . The experimental data for sorption of nickel have been interpreted in the term of Langmuir isotherm and the value of maximum sorption capacity of nickel on a commercial hydroxyapatite and hydroxyapatite prepared by wet precipitation process was calculated to be 0.184 and 0.247 mmol g -1 , respectively. The sorption of Ni 2+ ions was performed by ion-exchange with Ca 2+ cations on the crystal surface of hydroxyapatite under experimental conditions. The competition effect of Co 2+ and Fe 2+ towards Ni 2+ sorption was stronger than that of Ca 2+ ions. NH 4 + ions have no apparent effect on nickel sorption. (author)

  7. Electroerosion method for preparation of saturated solutions of ruthenium hydroxochloride

    International Nuclear Information System (INIS)

    Mikhalev, V.A.; Andrianov, G.A.; Zhadanov, B.V.; Ryazanov, A.I.

    1987-01-01

    A pilot plant for carrying out electroerosion processes using pulse current of high unit power is developed. The solution process of metallic Ru in concentrated HCl is investigated. The possibility of preparation of ruthenium hydroxochloride solutions of 300 g/l concentration is established; it gives the possibility of Ru solution under conditions similar to the process of salting out

  8. The corrosion of zircaloy 2 in anaerobic synthetic cement pore solution

    International Nuclear Information System (INIS)

    Hansson, C.M.

    1984-12-01

    Measurements have been made of the corrosion rates of Zircaloy 2 tubes in anaerobic synthetic cement pore solution of pH 12.0-13.8. The samples were tested in the as-received condition by the polarization resistance technique using a Tafal constant of 52 mV/decade and, for all pH values, corrosion rates of 3.10 -5 A/m 2 (0.03 μm/yr) were determined. These corrosion currents are at the lower limit of the experimental detection range of the technique used. Some samples were then held at a low electrochemical potential, namely -1850 mV SCE, for several days but this treatment had only a minor effect on the behaviour of the Zircaloy: the value of corrosion rate was increased by a factor of 3 and the free potential was temporarily lowered but drifted towards more positive values after the applied potential was removed. Attempts were made to remove the passive film from the surface of the samples by electrochemical reduction. For practical, experimental reasons, this was not successful and, instead, the effect of removing the film by scratching the surface was investigated. At both the free potential and at applied cathodic potentials, an anodic current was detected immediately and the surface was scratched but, in all cases, the scratched area repassivated within a few seconds and the anodic corrosion current fell accordingly. Thus, it may be concluded that active corrosion of Zircaloy 2 in anaerobic concrete will not occur and, by comparison with measurements on steel, it is likely that the passive corrosion rates will be even lower in concrete than those measured in the synthetic pore solution. (Author)

  9. Application of Sargassum biomass to remove heavy metal ions from synthetic multi-metal solutions and urban storm water runoff.

    Science.gov (United States)

    Vijayaraghavan, K; Teo, Ting Ting; Balasubramanian, R; Joshi, Umid Man

    2009-05-30

    The ability of Sargassum sp. to biosorb four metal ions, namely lead, copper, zinc, and manganese from a synthetic multi-solute system and real storm water runoff has been investigated for the first time. Experiments on synthetic multi-solute systems revealed that Sargassum performed well in the biosorption of all four metal ions, with preference towards Pb, followed by Cu, Zn, and Mn. The solution pH strongly affected the metal biosorption, with pH 6 being identified as the optimal condition for achieving maximum biosorption. Experiments at different biosorbent dosages revealed that good biosorption capacity as well as high metal removal efficiency was observed at 3g/L. The biosorption kinetics was found to be fast with equilibrium being attained within 50 min. According to the Langmuir isotherm model, Sargassum exhibited maximum uptakes of 214, 67.5, 24.2 and 20.2mg/g for lead, copper, zinc, and manganese, respectively in single-solute systems. In multi-metal systems, strong competition between four metal ions in terms of occupancy binding sites was observed, and Sargassum showed preference in the order of Pb>Cu>Zn>Mn. The application of Sargassum to remove four heavy metal ions in real storm water runoff revealed that the biomass was capable of removing the heavy metal ions. However, the biosorption performance was slightly lower compared to that of synthetic metal solutions. Several factors were responsible for this difference, and the most important factor is the presence of other contaminants such as anions, organics, and other trace metals in the runoff.

  10. Development of an online preparation system for multitracer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kasamatsu, Yoshitaka [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)], E-mail: kasamatsu.yoshitaka@jaea.go.jp; Yatsukawa, Makoto; Sato, Wataru; Ninomiya, Kazuhiko; Ohki, Toshihiro; Takahashi, Naruto [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Yokoyama, Akihiko [Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Kikunaga, Hidetoshi [Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Kinoshita, Norikazu [Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Shibata, Sadao [Nuclear Safety Technology Center, Rokkasho, Aomori 039-3212 (Japan); Shinohara, Atsushi [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2008-03-15

    We have developed a new target-irradiation system for the online preparation of multitracer solutions, where the nuclear-reaction products recoiling out of the target are directly implanted in a solvent as a liquid catcher. A rapid online transportation of the solution has enabled highly efficient recovery of the multitracer solutions having even short-lived radioactive isotopes without any chemical treatments. It has been suggested that the collection efficiency depends on the chemical properties of the recoil elements.

  11. Development of an online preparation system for multitracer solutions

    International Nuclear Information System (INIS)

    Kasamatsu, Yoshitaka; Yatsukawa, Makoto; Sato, Wataru; Ninomiya, Kazuhiko; Ohki, Toshihiro; Takahashi, Naruto; Yokoyama, Akihiko; Kikunaga, Hidetoshi; Kinoshita, Norikazu; Shibata, Sadao; Shinohara, Atsushi

    2008-01-01

    We have developed a new target-irradiation system for the online preparation of multitracer solutions, where the nuclear-reaction products recoiling out of the target are directly implanted in a solvent as a liquid catcher. A rapid online transportation of the solution has enabled highly efficient recovery of the multitracer solutions having even short-lived radioactive isotopes without any chemical treatments. It has been suggested that the collection efficiency depends on the chemical properties of the recoil elements

  12. Characterization of PAN/ATO nanocomposites prepared by solution ...

    Indian Academy of Sciences (India)

    Conducting nanocomposites of polyacrylonitrile (PAN) and antimony-doped tin oxide (ATO) were prepared by solution blending. Electrical properties of the nanocomposites were characterized by means of electrical conductivity measurements and the phase structures were investigated via scanning electron microscopy ...

  13. Lessons learned in streamlining the preparation of SNM standard solutions

    International Nuclear Information System (INIS)

    Clark, J.P.; Johnson, S.R.

    1986-01-01

    Improved safeguard measurements have produced a demand for greater quantities of reliable SNM solution standards. At the Savannah River Plant (SRP), the demand for these standards has been met by several innovations to improve the productivity and reliability of standards preparations. With the use of computer controlled balance, large batches of SNM stock solutions are prepared on a gravimetric basis. Accurately dispensed quantities of the stock solution are weighed and stored in bottles. When needed, they are quantitatively transferred to tared containers, matrix adjusted to target concentrations, weighed, and measured for density at 25 0 C. Concentrations of SNM are calculated both gravimetrically and volumetrically. Calculated values are confirmed analytically before the standards are used in measurement control program (MCP) activities. The lessons learned include: MCP goals include error identification and management. Strategy modifications are required to improve error management. Administrative controls can minimize certain types of errors. Automation can eliminate redundancy and streamline preparations. Prudence and simplicity enhance automation success. The effort expended to increase productivity has increased the reliability of standards and provided better documentation for quality assurance

  14. Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution

    Science.gov (United States)

    Nikooe, Naeme; Saljoughi, Ehsan

    2017-08-01

    In the present research, for the first time PVDF/Brij-58 blend nanofiltration membranes with remarkable performance in filtration of dye aqueous solution were prepared via immersion precipitation. A noticeable improvement in water permeation and fouling resistance of the PVDF membranes was achieved by using Brij-58 surfactant as a hydrophilic additive. Scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR) and water contact angle were applied for the investigation of membrane morphology, detection of the surface chemical composition and relative hydrophilicity/hydrophobicity, respectively. The membrane performance was studied and compared by determination of pure water flux (PWF) and filtration of synthetic reactive dye aqueous solutions as well as bovine serum albumin (BSA) as foulant model. It was found out that addition of 4 wt.% Brij-58 to the casting solution results in formation of membrane with remarkable hydrophilicity and fouling resistance (contact angle of 46° and flux recovery ratio (FRR) = 90%), higher porosity and consequently noticeable PWF (31.2 L/m2 h) and recognized dye rejection value (90%) in comparison with the pristine PVDF nanofiltration membrane. Addition of Brij-58 surfactant to the casting solution resulted in formation of NF membrane with higher hydrophilicity and permeability as well as higher dye rejection value in comparison with the addition of PEG 400 additive.

  15. Allergic contact dermatitis from the synthetic fragrances Lyral and acetyl cedrene in separate underarm deodorant preparations.

    Science.gov (United States)

    Handley, J; Burrows, D

    1994-11-01

    The case is reported of a 28-year-old man who developed allergic contact dermatitis from 2 synthetic fragrance ingredients, Lyral (3- and 4-(4-hydroxy-4-methylpentyl)-3-cyclohexene-1-aldehyde) and acetyl cedrene, in separate underarm deodorant preparations. The implications of the patient's negative patch test reactions to the European standard series (Trolab) and cosmetics and fragrance series (both Chemotechnique Diagnostics) are discussed. The importance is stressed of patch testing with the patient's own preparations when cosmetic dermatitis is suspected, and of identifying and reporting offending fragrance ingredients, with a view possibly to updating the European standard series and commercially available cosmetics and fragrance series.

  16. 21 CFR 73.1200 - Synthetic iron oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically prepared...

  17. 21 CFR 73.200 - Synthetic iron oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically prepared...

  18. Preparation of patients submitted to thyroidectomy with oral glucose solutions.

    Science.gov (United States)

    Libiszewski, Michał; Drozda, Rafał; Smigielski, Janusz; Kuzdak, Krzysztof; Kołomecki, Krzysztof

    2012-05-01

    The AIM OF THE STUDY was to determine postoperative insulin-resistance in patients subject to total thyroidectomy, the prevalence of subjective feelings of hunger immediately before surgery, and the incidence of nausea/vomiting after surgery in patients prepared for elective operations by means of oral glucose solutions. The study group comprised 115 patients, including 71 patients prepared for surgery by means of oral glucose solutions (12.5% glucose) administered 12 and 3 hours before the procedure, at a dose of 800 and 400 ml. The control group comprised 44 patients prepared for surgery by means of the traditional manner- the last meal was served before 2pm the day before the surgical procedure, while fluids before 10pm. Considering both groups, we evaluated glucose and insulin levels three times, as well as determined the insulin-resistance ratio (HOMA-IR) 24 before, and 12 hours and 7 days after surgery. The incidence of nausea and vomiting after surgery, and the subjective feeling of hunger before surgery were also evaluated. Statistically significant differences considering insulin level and HOMA-IR values were observed during the II and III measurements. The glucose and insulin values, and the HOMA-IR insulin-resistance ratio, showed no statistically significant differences during measurement I. No statistically significant glucose level differences were observed during measurements II and III. A significantly greater subjective feeling of hunger before surgery and nausea/vomiting afterwards were observed in the control group. The preparation of patients with oral glucose solutions decreases the incidence of postoperative (thyroidectomy) insulin-resistance, and occurrence of nausea/vomiting during the postoperative period.

  19. One-pot synthetic method to prepare highly N-doped nanoporous carbons for CO2 adsorption

    International Nuclear Information System (INIS)

    Meng, Long-Yue; Park, Soo-Jin

    2014-01-01

    A one-pot synthetic method was used for the preparation of nanoporous carbon containing nitrogen from polypyrrole (PPY) using NaOH as the activated agent. The activation process was carried out under set conditions (NaOH/PPY = 2 and NaOH/PPY = 4) at different temperatures in 600–900 °C for 2 h. The effect of the activation conditions on the pore structure, surface functional groups and CO 2 adsorption capacities of the prepared N-doped activated carbons was examined. The carbon was analyzed by X-ray photoelectron spectroscopy (XPS), N2/77 K full isotherms, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The CO 2 adsorption capacity of the N-doped activated carbon was measured at 298 K and 1 bar. By dissolving the activation agents, the N-doped activated carbon exhibited high specific surface areas (755–2169 m 2 g −1 ) and high pore volumes (0.394–1.591 cm 3 g −1 ). In addition, the N-doped activated carbons contained a high N content at lower activation temperatures (7.05 wt.%). The N-doped activated carbons showed a very high CO 2 adsorption capacity of 177 mg g −1 at 298 K and 1 bar. The CO 2 adsorption capacity was found to be dependent on the microporosity and N contents. - Highlights: • A one-pot synthetic method was used for the preparation of N-doped nanoporous carbons. • Polypyrrole (PPY) were activated with NaOH under set conditions (NaOH/PPY = 2 and 4). • N-doped activated carbon exhibited high specific surface areas (2169 m 2 g −1 ). • The carbons showed a very high CO 2 adsorption capacity of 177 mg g −1 at 298 K

  20. Synthetic surfactant- and cross-linker-free preparation of highly stable lipid-polymer hybrid nanoparticles as potential oral delivery vehicles.

    Science.gov (United States)

    Wang, Taoran; Xue, Jingyi; Hu, Qiaobin; Zhou, Mingyong; Chang, Chao; Luo, Yangchao

    2017-06-05

    The toxicity associated with concentrated synthetic surfactants and the poor stability at gastrointestinal condition are two major constraints for practical applications of solid lipid nanoparticles (SLN) as oral delivery vehicles. In this study, a synthetic surfactant-free and cross-linker-free method was developed to fabricate effective, safe, and ultra-stable lipid-polymer hybrid nanoparticles (LPN). Bovine serum albumin (BSA) and dextran varying in molecular weights were first conjugated through Maillard reaction and the conjugates were exploited to emulsify solid lipid by a solvent diffusion and sonication method. The multilayer structure was formed by self-assembly of BSA-dextran micelles to envelope solid lipid via a pH- and heating-induced facile process with simultaneous surface deposition of pectin. The efficiency of different BSA-dextran conjugates was systematically studied to prepare LPN with the smallest size, the most homogeneous distribution and the greatest stability. The molecular interactions were characterized by Fourier transform infrared and fluorescence spectroscopies. Both nano spray drying and freeze-drying methods were tested to produce spherical and uniform pectin-coated LPN powders that were able to re-assemble nanoscale structure when redispersed in water. The results demonstrated the promise of a synthetic surfactant- and cross-linker-free technique to prepare highly stable pectin-coated LPN from all natural biomaterials as potential oral delivery vehicles.

  1. Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: Effect of gamma radiation

    International Nuclear Information System (INIS)

    Akter, Nousin; Khan, Ruhul A.; Salmieri, Stephane; Sharmin, Nusrat; Dussault, Dominic; Lacroix, Monique

    2012-01-01

    Chitosan (1 wt%, in 2% aqueous acetic acid solution) and starch (1 wt%, in deionised water) were dissolved and mixed in different proportions (20–80 wt% chitosan) then films were prepared by casting. Tensile strength and elongation at break of the 50% chitosan containing starch-based films were found to be 47 MPa and 16%, respectively. It was revealed that with the increase of chitosan in starch, the values of TS improved significantly. Monomer, 2-butane diol-diacrylate (BDDA) was added into the film forming solutions (50% starch-based), then casted films. The BDDA containing films were irradiated under gamma radiation (5–25 kGy) and it was found that strength of the films improved significantly. On the other hand, synthetic petroleum-based polymeric films (polycaprolactone, polyethylene and polypropylene) were prepared by compression moulding. Mechanical and barrier properties of the films were evaluated. The gamma irradiated (25 kGy) films showed higher strength and better barrier properties. - Highlights: ► Chitosan and starch-based biodegradable films were prepared by casting. ► With the increase of chitosan in starch, the strength of the films improved significantly. ► Monomer, 2-Butane diol-diacrylate was grafted with the films by gamma radiation. ► Mechanical properties of synthetic polymeric films improved by gamma radiation. ► The irradiated polymer films showed better water vapor barrier properties.

  2. Preparation of Synthetic Zeolites from Myanmar Clay Mineral

    International Nuclear Information System (INIS)

    Phyu Phyu Win

    2004-04-01

    Faujasite type zeolite X was successfully synthesized from Myanmar clay mineral kaolinite, by treating with sodium hydroxide at 820 C followed by dissolution in water and hydrothermal treatment. It was found that the solution of fused clay powder can be crystallized at 90C under ambient pressure to synthesize faujasite type zeolite X. The effects of aging time and the amount of water on the formation of the product phase and Si/ Al ratios of the resulting products were investigated. Most of the Si and Al components in kaolinite might be dissolved into an alkaline solution and reacted to form ring-like structures. Then it was effectively transformed into zeolite materials. The maximum relative crystallinity of faujasite zeolite obtained was found to be 100%. Zeolite P was found to be a competitive phase present in some resulting products during hydrothermal treatment. The cation exchange capacity of kaolinite is very low, but increased after a proper treatment. It was found that the prepared faujasite type zeolite X, zeolite P and hydrogen zeolite (HZ) can reduce the hardness, the alkalinity, the total dissolved solid and the dissolved iron of raw water in the batch wise operation of water treatment. Therefore, it can be used as the cation exchanged resin for water treatment

  3. An Efficient and Green Procedure for the Preparation of Acylals from ...

    African Journals Online (AJOL)

    An Efficient and Green Procedure for the Preparation of Acylals from Aldehydes Catalyzed by Alum [KAl(SO 4 ) 2 .12H 2 O] ... South African Journal of Chemistry ... mild reaction conditions, short reaction times and excellent yields, and offers a green synthetic solution by avoiding toxic catalysts and hazardous solvents.

  4. The preparation and measurement of activity for 57Co standard solution

    International Nuclear Information System (INIS)

    Yang Jingxia; Yu Yiguang; Du Hongshan; Chen Xilin

    1994-12-01

    In the preparation of 57 Co, the reactions of 56 Fe (d, n) 57 Co and 56 Fe(d,2n) 57 Co were selected by using 8.7 MeV deuteron to radiate natural iron which was electroplated on copper target. The methods of TBP-Benzene extraction and cation exchange were used for separating and purifying 57 Co. The purity of the solution was checked by HPGe γ spectrometer and the total contents of γ impurities were below 0.2%. To prepare the source, silicon gel suspension was electrosprayed on VYNS thin film which was metallized by gold to form a proper source pad. Weighing balance was used to quantitatively prepare the sources. Research on the effects of the working gas pressure and the working voltage on the plateau curve was carried on by the pressurized 4 πβ-γ coincidence equipment. Finally, efficiency extrapolation method was used to accurately measure the specific activity of 57 Co solution by means of changing the discrimination threshold. The total uncertainty is about 1.2%(3σ) . It is shown that the solution is uniform, stable and accuracy with the reliable specific activity through the domestic comparison. (6 figs.; 6 tabs.)

  5. Gravimetric preparation and characterization of primary reference solutions of molybdenum and rhodium.

    Science.gov (United States)

    Kaltenbach, Angela; Noordmann, Janine; Görlitz, Volker; Pape, Carola; Richter, Silke; Kipphardt, Heinrich; Kopp, Gernot; Jährling, Reinhard; Rienitz, Olaf; Güttler, Bernd

    2015-04-01

    Gravimetrically prepared mono-elemental reference solutions having a well-known mass fraction of approximately 1 g/kg (or a mass concentration of 1 g/L) define the very basis of virtually all measurements in inorganic analysis. Serving as the starting materials of all standard/calibration solutions, they link virtually all measurements of inorganic analytes (regardless of the method applied) to the purity of the solid materials (high-purity metals or salts) they were prepared from. In case these solid materials are characterized comprehensively with respect to their purity, this link also establishes direct metrological traceability to The International System of Units (SI). This, in turn, ensures the comparability of all results on the highest level achievable. Several national metrology institutes (NMIs) and designated institutes (DIs) have been working for nearly two decades in close cooperation with commercial producers on making an increasing number of traceable reference solutions available. Besides the comprehensive characterization of the solid starting materials, dissolving them both loss-free and completely under strict gravimetric control is a challenging problem in the case of several elements like molybdenum and rhodium. Within the framework of the European Metrology Research Programme (EMRP), in the Joint Research Project (JRP) called SIB09 Primary standards for challenging elements, reference solutions of molybdenum and rhodium were prepared directly from the respective metals with a relative expanded uncertainty associated with the mass fraction of U rel(w) methods required to assist with the preparation and as dissemination tools.

  6. Assessment of Some Synthetic Polymers for the Removal of Pollutants from Waste Solutions

    International Nuclear Information System (INIS)

    Ayoub, R.; El-Naggar, H.A.; Ezz EL-Din, M.R.; Moussa, A.R.

    1999-01-01

    The sorption capacity of 134 Cs, 60 Co, 152+154 Eu and Cu (II) by three prepared has been studied using batch and column techniques. The three polymers are polyacrylic acid (PAA), polyacrylamide-acrylic acid (PAM-AA) and polyacrylamide-N-vinyl-2-pyrraldone (PAM-NVP). These polymers were prepared by gamma radiation initiated polymerization of their corresponding monomer solutions. The appropriate value for V/m ratio (volume of solution to mass of polymer) that can result in reasonably high distribution coefficient, Kd, was determined. The variation of the amount sorbed of the isotope per gram polymer (X/m) with concentration of the relevant element was found to follow a Frendlich type isotherm. The distribution coefficient, Kd, of the studied element was found to be affected by the ph of the solution. The desorption of the investigated metal ions is also studied at different ph. For column studies, the percent removed of the radioisotopes 134 Cs, 60 Co, ( 152+154 )Eu in addition to some heavy metals ions such as Pb, Cd, Zn and Cu(II) was determined. More than 95% of these elements were removed when 3 beds column of PAA or PAM-AA was used. From the data obtained we can conclude that the polymer PAA or PAM-AA can considered as an efficient sorbent for metal cations from their aqueous solution

  7. Preparation, assay and certification of aqueous ethanol reference solutions

    CSIR Research Space (South Africa)

    Archer, M

    2007-04-01

    Full Text Available with traceability to the SI. Ethanol solutions in the concentration range 10 mg/100 g to 20 g/100 g are prepared gravimetrically by mixing ethanol and reagent quality water. To verify the concentration of the ethanol it is oxidized to acetic acid with potassium...

  8. Study of sorption processes of strontium on the synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Galambos, M.; Rajec, P.

    2011-01-01

    The sorption of strontium on synthetic hydroxyapatite was investigated using batch method and radiotracer technique. The hydroxyapatite samples were prepared by a wet precipitation process followed by calcination of calcium phosphate that precipitated from aqueous solution. Also, commercial hydroxyapatites were used. The sorption of strontium on hydroxyapatite depended on the method of preparation and it was pH independent ranging from 4 to 9 as a result of buffering properties of hydroxyapatite. The distribution coefficient K d was significantly decreased with increasing concentration of Sr 2+ and Ca 2+ ions in solution with concentration above 1 x 10 -3 mol dm -3 . The percentage strontium sorption for commercial and by wet method prepared hydroxyapatite was in the range of 83-96%, while calcined hydroxyapatite was ranging from 10 to 30%. The experimental data for sorption of strontium have been interpreted in the term of Langmuir isotherm. The sorption of Sr 2+ ions was performed by ion-exchange with Ca 2+ cations on the crystal surface of hydroxyapatite. Although calcined hydroxyapatite is successfully used as biomaterial for hard tissues repair, it is not used for the treatment of liquid wastes. (author)

  9. Current status of synthetic epikeratoplasty.

    Science.gov (United States)

    Thompson, K P; Hanna, K; Waring, G O; Gipson, I; Liu, Y; Gailitis, R P; Johnson-Wint, B; Green, K

    1991-01-01

    Many of the deficiencies with human tissue epikeratoplasty might be improved by the use of a suitable synthetic lenticule. Potential biomaterials for epikeratoplasty include collagen (types I, III, or IV), collagen-hydrogel copolymers, bioactive synthetics, and coated hydrogels. The biomaterial must be engineered to achieve strict specifications of optical clarity, support of epithelial migration and adhesion, permeability to solutes, and stability to corneal proteases. Attaching synthetic lenticules to the cornea without cutting Bowman's layer by adhesives, laser welding, or direct adhesion may also improve the efficacy of synthetic epikeratoplasty.

  10. The effect of sample preparation methods on glass performance

    International Nuclear Information System (INIS)

    Oh, M.S.; Oversby, V.M.

    1990-01-01

    A series of experiments was conducted using SRL 165 synthetic waste glass to investigate the effects of surface preparation and leaching solution composition on the alteration of the glass. Samples of glass with as-cast surfaces produced smooth reaction layers and some evidence for precipitation of secondary phases from solution. Secondary phases were more abundant in samples reacted in deionized water than for those reacted in a silicate solution. Samples with saw-cut surfaces showed a large reduction in surface roughness after 7 days of reaction in either solution. Reaction in silicate solution for up to 91 days produced no further change in surface morphology, while reaction in DIW produced a spongy surface that formed the substrate for further surface layer development. The differences in the surface morphology of the samples may create microclimates that control the details of development of alteration layers on the glass; however, the concentrations of elements in leaching solutions show differences of 50% or less between samples prepared with different surface conditions for tests of a few months duration. 6 refs., 7 figs., 1 tab

  11. Arsenic sulfide layers for dielectric reflection mirrors prepared from solution

    Science.gov (United States)

    Matějec, Vlastimil; Pedlikova, Jitka; BartoÅ, Ivo; Podrazký, Ondřej

    2017-12-01

    Chalcogenide materials due to high refractive indices, transparency in the mid-IR spectral region, nonlinear refractive indices, etc, have been employed as fibers and films in different photonic devices such as light amplifiers, optical regenerators, broadband radiation sources. Chalcogenide films can be prepared by physical methods as well as by solution-based techniques in which solutions of chalcogenides in amines are used. This paper presents results on the solution-based fabrication and optical characterization of single arsenic sulfide layers and multilayer stacks containing As2S3 layers together with porous silica layers coated on planar and fiber-optic substrates. Input As2S3 solutions for the layer fabrications were prepared by dissolving As2S3 powder in n-propylamine in a concentration of 0.50 mol/l. These solutions were applied on glass slides by dip-coating method and obtained layers were thermally treated in vacuum at temperatures up to 180 °C. Similar procedure was used for As2S3 layers in multilayer stacks. Such stacks were fabricated by repeating the application of one porous silica layer prepared by the sol-gel method and one As2S3 layer onto glass slides or silica fibers (a diameter of 0.3 mm) by using the dip-coating method. It has been found that the curing process of the applied layers has to be carefully controlled in order to obtain stacks with three pairs of such layers. Single arsenic and porous silica layers were characterized by optical microscopy, and by measuring their transmission spectra in a range of 200-2500 nm. Thicknesses and refractive indices were estimated from the spectra. Transmission spectra of planar multilayer stacks were measured, too. Interference bands have been determined from optical measurements on the multilayer stacks with a minimum transmittance of about 50% which indicates the possibility of using such stacks as reflecting mirrors.

  12. Preparation of inorganic crystalline compounds induced by ionizing, UV and laser radiation

    International Nuclear Information System (INIS)

    Cuba, V.; Pavelkova, T.; Barta, J.; Indrei, J.; Gbur, T.; Pospisil, M.; Mucka, V.; Docekalova, Z.; Zavadilova, A.; Vlk, M.

    2011-01-01

    Complete text of publication follows. Radiation methods represent powerful tool for synthesis of various inorganic materials. Study of solid particles formation from solutions in the field of UV or ionizing radiation is one of the very promising and long term pursued trends in photochemistry and radiation chemistry. The motivation may be various, either preparation of new materials or removal of hazardous contaminants (e.g. heavy metals) from wastewater. This work deals with preparation of some metal oxides, synthetic garnets and spinel structures via irradiation of aqueous solutions containing precursors, i.e. soluble metal salts, radical scavengers and/or macromolecular stabilizers. Namely, results on radiation induced preparation of nickel, zinc, yttrium and aluminium oxides are summarized, as well as zinc peroxide, yttrium / lutetium - aluminium garnets and cobalt(II) aluminate. 60 Co irradiator, linear electron accelerator, medium pressure UV lamp and solid state laser were used as the sources of radiation. Aside from preparation, various physico-chemical and structural properties of compounds prepared were also studied. All used modifications of radiation method are rather convenient and simple, and yield (nano)powder materials with interesting characteristics. Prepared materials generally have high chemical purity, high specific surface area and narrow distribution of particles size (ranging in tens of nm). Generally, all types of irradiation result in materials with comparable properties and structural characteristics; but in the case of synthetic garnets and spinels, preparation using UV-radiation seems to be the most convenient for their preparation. Among compounds discussed, only zinc oxide and zinc peroxide were prepared directly via irradiation. For preparation of other crystalline compounds, additional heat treatment (at low temperature) of amorphous solid phase formed under irradiation was necessary.

  13. Control theory meets synthetic biology.

    Science.gov (United States)

    Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

    2016-07-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. © 2016 The Author(s).

  14. Chemical analysis of freshly prepared and stored capsaicin solutions: implications for tussigenic challenges.

    Science.gov (United States)

    Kopec, Scott E; DeBellis, Ronald J; Irwin, Richard S

    2002-01-01

    The purpose of this study was to assess the stability of stored capsaicin solutions and the actual concentrations of prepared solutions. Capsaicin solutions ranging in concentration from 0.5 to 128 microM were mixed and analyzed using high performance liquid chromatography. Samples of varying concentrations were then stored under 4 environmental conditions: 4 degrees C and protected from light, room temperature (RT) exposed to light, RT protected from light, and -20 degrees C and protected from light. The concentrations were measured every other month for 1 year. Actual concentrations of freshly prepared solutions were on average 88.3% of predicted. For solutions stored at 4 degrees C, there was a decrease only in the lower concentrations (0.5, 1, and 2 microM) after 2 months (P=0.003). Solutions stored at RT exposed to light decreased in concentration after 6 months (P=0.020), and solutions stored at RT protected from light decreased in concentration after 4 months (P=0.026). The group stored at -20 degrees C decreased in concentration after 1 year (P=0.033). We conclude that the actual concentration of capsaicin solution is less than predicted, and solutions of 4 microM or higher concentration are stable for 1 year if stored at 4 degrees C protected from light.

  15. Comparision of Chitosan Function as Adsorbent for Nitrate Removal Using Synthetic Aqueous Solution and Drinking Water

    Directory of Open Access Journals (Sweden)

    Mohammad Norisepehr

    2013-12-01

    Full Text Available Background & Objectives: Nitrate and nitrite compounds pollution of groundwater resources in recent years which recently their mean concentration due to enhancement of different kind of municipal, industrial and agriculture waste water, were increased. The most common source of nitrates entering the water include chemical fertilizers and animal manure in agriculture, septic tank effluent, wastewater, wastewater treatment plants, animal and plant residue analysis on the ground of non-sanitary disposal of solid waste and the use of absorbing wells for sewage disposal. Materials and methods: This experimental study is applied to the nitrate removal using chitosan in laboratory scale at ambient temperature and the design of the system was Batch. Effects of parameters such as pH, contact time, initial concentration and adsorbent concentration of nitrate on nitrate removal from aqueous solution was studied. Results: Function of chitosan in synthetic aqueous solution and drinking water according to the slurry system results, the optimum condition was obtained at pH=4, 20 min contact time and increasing the initial concentration of nitrate enhance the adsorption capacity of chitosan. Also optimum dosage of adsorbent was obtained at 0.5 g/l. The data obtained from the experiments of adsorbent isotherm were analyzed using Langmuir and Freundlich isotherm models. The Langmuir equation was found to be the best fitness with the experimental data (R2>0.93. Conclusion: Although efficiency of Nitrate removal in synthetic aqueous solution was better than drinking water, adsorption process using chitosan as an option for the design and selection nitrate removal should be considered in order to achieve environmental standards.

  16. Integration of Computational and Preparative Techniques to Demonstrate Physical Organic Concepts in Synthetic Organic Chemistry: An Example Using Diels-Alder Reaction

    Science.gov (United States)

    Palmer, David R. J.

    2004-01-01

    The Diels-Alder reaction is used as an example for showing the integration of computational and preparative techniques, which help in demonstrating the physical organic concepts in synthetic organic chemistry. These experiments show that the students should not accept the computational results without questioning them and in many Diels-Alder…

  17. Perovskite/polymer solar cells prepared using solution process

    International Nuclear Information System (INIS)

    Rosa, E. S.; Shobih; Nursam, N. M.; Saputri, D. G.

    2016-01-01

    We report a simple solution-based process to fabricate a perovskite/polymer tandem solar cell using inorganic CH 3 NH 3 PM 3 as an absorber and organic PCBM (6,6 phenyl C61- butyric acid methyl ester) as an electron transport layer. The absorber solution was prepared by mixing the CH 3 NH 3 I (methyl ammonium iodide) with PbI 2 (lead iodide) in DMF (N,N- dimethyl formamide) solvent. The absorber and electron transport layer were deposited by spin coating method. The electrical characteristics generated from the cell under 50 mW/cm 2 at 25 °C comprised of an open circuit voltage of 0. 3 1 V, a short circuit current density of 2.53 mA/cm 2 , and a power conversion efficiency of 0.42%. (paper)

  18. Finding Hope in Synthetic Biology.

    Science.gov (United States)

    Takala, Tuija

    2017-04-01

    For some, synthetic biology represents great hope in offering possible solutions to many of the world's biggest problems, from hunger to sustainable development. Others remain fearful of the harmful uses, such as bioweapons, that synthetic biology can lend itself to, and most hold that issues of biosafety are of utmost importance. In this article, I will evaluate these points of view and conclude that although the biggest promises of synthetic biology are unlikely to become reality, and the probability of accidents is fairly substantial, synthetic biology could still be seen to benefit humanity by enhancing our ethical understanding and by offering a boost to world economy.

  19. Use of synthetic, crystalline, L-α-dimyristoyl lecithin in cardiolipin antigens

    Science.gov (United States)

    Reyn, Alice; Bentzon, Michael Weis

    1956-01-01

    Experiments were carried out by the authors to determine whether synthetic, crystalline, L-α-dimyristoyl lecithin could replace natural purified lecithins in the preparation of cardiolipin antigens. These experiments were designed specifically to find out whether it was possible to obtain the same serological reactions, qualitatively and quantitatively, with the test antigen as with a reference antigen containing natural lecithin, and whether the test antigen had the same keeping qualities as the reference antigen. The tests used were the quantitative complement-fixation test as modified by Mørch in 1933, and the VDRL slide flocculation test. The results showed that synthetic, crystalline, L-α-dimyristoyl lecithin could replace natural lecithin in the preparation of cardiolipin antigens, but that the antigens prepared with the synthetic lecithin were significantly less sensitive than those prepared with an equimolar amount of natural lecithin. The authors consider that further investigation is required before the use of synthetic lecithin is finally adopted. PMID:13342931

  20. Construction of synthetic dermis and skin based on a self-assembled peptide hydrogel scaffold.

    Science.gov (United States)

    Kao, Bunsho; Kadomatsu, Koichi; Hosaka, Yoshiaki

    2009-09-01

    Using biocompatible peptide hydrogel as a scaffold, we prepared three-dimensional synthetic skin that does not contain animal-derived materials or pathogens. The present study investigated preparation methods, proliferation, and functional expression of fibroblasts in the synthetic dermis and differentiation of keratinocytes in the epidermis. Synthetic dermis was prepared by mixing fibroblasts with peptide hydrogel, and synthetic skin was prepared by forming an epidermal layer using keratinocytes on the synthetic dermis. A fibroblast-rich foamy layer consisting of homogeneous peptide hydrogel subsequently formed in the synthetic dermis, with fibroblasts aggregating in clusters within the septum. The epidermis consisted of three to five keratinocyte layers. Immunohistochemical staining showed human type I collagen, indicating functional expression around fibroblasts in the synthetic dermis, keratinocyte differentiation in the epidermis, and expression of basement membrane proteins. The number of fibroblasts tended to increase until the second week and was maintained until the fourth week, but rapidly decreased in the fifth week. In the synthetic dermis medium, the human type I collagen concentration increased after the second week to the fifth week. These findings suggest that peptide hydrogel acts as a synthetic skin scaffold that offers a platform for the proliferation and functional expression of fibroblasts and keratinocytes.

  1. Struvite Precipitation and Phosphorous Removal from Urine Synthetic Solution: Reaction Kinetic Study

    Directory of Open Access Journals (Sweden)

    Marwa Saied Shalaby

    2015-03-01

    Full Text Available Phosphorus, like oil, is a non-renewable resource that must be harvested from finite resources in the earth’s crust. An essential element for life, phosphorus is becoming increasingly scarce, contaminated, and difficult to extract. Struvite or magnesium ammonium phosphate (MgNH4PO4.6H2O is a white, crystalline phosphate mineral that can be used as a bio-available fertilizer. The main objective of this research is to indicate the most important operating parameters affecting struvite precipitation by means of chemical reaction kinetics. The present study explores struvite precipitation by chemical method under different starting molar ratios, pH and SSR. It is shown that an increase of starting Mg: PO4: NH4 with respect to magnesium (1.6:1:1 strongly influences the growth rate of struvite and so the efficiency of the phosphate removal. This was attributed to the effect of magnesium on the struvite solubility product and on the reached supersaturation Super Saturation Ratio at optimum starting molar ratio and pH. It was also shown, by using chemical precipitation method that the determined Super Saturation Ratio (SSR values of struvite, at 8, 8.5, 9, 9.5 and 10 are 1.314, 4.29, 8.89, 9.87 and 14.89 respectively are close to those presented in the literature for different origins of wastewater streams. The results show that SSR , pH, and starting molar ratio strongly influences the kinetics of precipitation and so phosphorous removal to reach 93% removal percent , 5.95 mg/lit as a minimum PO4 remained in solution, and 7.9 gm precipitated struvite from feed synthetic solution of 750 ml . The product was subjected to chemical analysis by means of EDIX-FTIR, SEM and XRD showing conformity with published literature. First-order kinetics was found to be sufficient to describe the rate data. The rates increased with increasing pH and so SSR and the apparent rate constants for the reaction were determined. © 2015 BCREC UNDIP. All rights reserved

  2. Opportunities for microfluidic technologies in synthetic biology

    OpenAIRE

    Gulati, Shelly; Rouilly, Vincent; Niu, Xize; Chappell, James; Kitney, Richard I.; Edel, Joshua B.; Freemont, Paul S.; deMello, Andrew J.

    2009-01-01

    We introduce microfluidics technologies as a key foundational technology for synthetic biology experimentation. Recent advances in the field of microfluidics are reviewed and the potential of such a technological platform to support the rapid development of synthetic biology solutions is discussed.

  3. DECOLORISATION OF AQUEOUS SOLUTIONS OF SYNTHETIC DYES BY Lentinus polychrous Lév. CULTIVATED ON CASSAVA RHIZOME

    Directory of Open Access Journals (Sweden)

    Jirachaya Boonyarit

    2015-02-01

    Full Text Available Cassava rhizomes are left in fields after harvesting. This agricultural waste is rich in lignocellulosic material which is a substrate for white rot fungi. Disposal of synthetic dyes poses a problem to the environment and it needs to be addressed. The ability of Lentinus polychrous Lév., a white rot fungus, grown on the cassava rhizome chips, to decolorise three kinds of synthetic dye was studied. The effects of the initial moisture content of cassava rhizome used for fungal cultivation, the temperature during the decolorisation, and the pH of synthetic dye solution on the extent of decolorisation were investigated. The decolorisations of Reactive blue 49, Navy blue and Acid blue 62 were affected by the initial moisture content of cassava rhizome. The highest extents of decolorisation of these dyestuffs were observed when the fungus was cultivated at 70% initial moisture content. Temperatures of 30, 37 and 45oC did not alter the extent of decolorisation of the dyestuffs. The most extensive decolorisations of Reactive blue 49 and Acid blue 62 (anthraquinone dyes were at pH 3.0 while that of Navy blue (azo dye was at pH 7.0. Adsorption was the main mechanism of decolorisation of Navy blue. However, both enzymic degradation and adsorption were involved in the decolorisations of Reactive blue 49 and Acid blue 62.

  4. [Application of fuzzy mathematics on modifying taste of oral solution of traditional Chinese drug].

    Science.gov (United States)

    Wang, Youjie; Feng, Yi; Zhang, Bo

    2009-01-01

    To apply Fuzzy mathematical methods to choose the best taste modifying prescription of oral solution of traditional Chinese drug. Jin-Fukang oral solution was used as a model drug. The oral solution was prepared in different taste modifying prescriptions, whose tastes were evaluated by the fuzzy quality synthetic evaluation system. Compound-sweeteners with Sucralose and Erythritol was the best choice. Fuzzy integrated evaluation can be used to evaluate the taste of traditional Chinese medicinal pharmaceuticals, which overcame the artificial factors and achieve more objective conclusion.

  5. Crystal violet: Study of the photo-fading of an early synthetic dye in aqueous solution and on paper with HPLC-PDA, LC-MS and FORS

    NARCIS (Netherlands)

    Confortin, D.; Neevel, H.; Brustolon, M.; Franco, L.; Kettelarij, A.J.; Williams, R.M.; van Bommel, M.R.

    2010-01-01

    The photo-fading of crystal violet (CV), one of the earliest synthetic dyes and an ink component, is examined both in solution and on paper. Aqueous solutions of CV were exposed to UV light (365nm) and samples were taken at constant time intervals and analysed with a High Performance Liquid

  6. Synthetic approach of norbadione A: new preparation of alcohols from sulfones and boron compounds

    International Nuclear Information System (INIS)

    Billaud, C.

    2005-12-01

    The synthetic approach of norbadione A, a pigment from mushrooms related to pulvinic acids, was studied. This compound has the property to complex caesium and has shown an antioxidant activity. The first strategy, based on a double Suzuki-Miyaura coupling between a naphtho-lactone with two boron functions and two pulvinic moieties with a triflate was unsuccessful and has shown a deactivating effect of the lactone. Modifications aimed to inhibit the electro-attracting character of the lactone permitted to obtain a bis(coupled) product with a poor yield. A second approach based on a the cyclization of enol aryl-acetates was studied in order to build the pulvinic moiety in several steps. The important reaction of introduction of an alkyl-acetate from a triflate was realised by a palladium-mediated coupling. The cyclization attempts carried out using a naphthalenic compound allowed us to isolate a monocyclised product. A parallel study was to first build a tetronic moiety and then to construct the exocyclic double bond by a method developed in the laboratory for the preparation of an iodated pulvinic compound. Finally, a new preparation of alcohols from sulfones and boron compounds was developed. Two known reactions in the chemistry of boron were combined. The first one is the reaction between anions of sulfones and tri-alkyl-boranes, the second one is a thermal isomerization which places the boron atom in a terminal position. A new preparation of primary alcohols was thus carried out. (author)

  7. Fabrication and performance of all-solid-state chloride sensors in synthetic concrete pore solutions.

    Science.gov (United States)

    Gao, Xiaojian; Zhang, Jian; Yang, Yingzi; Deng, Hongwei

    2010-01-01

    One type of all-solid-state chloride sensor was fabricated using a MnO(2) electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M), and the potential value remains stable with increasing immersion time. The existence of K(+), Ca(2+), Na(+) and SO(4) (2-) ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments.

  8. Fabrication and Performance of All-Solid-State Chloride Sensors in Synthetic Concrete Pore Solutions

    Directory of Open Access Journals (Sweden)

    Hongwei Deng

    2010-11-01

    Full Text Available One type of all-solid-state chloride sensor was fabricated using a MnO2 electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M, and the potential value remains stable with increasing immersion time. The existence of K+, Ca2+, Na+ and SO42− ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments.

  9. Preparation of iron metal nano solution by anodic dissolution with high voltage

    International Nuclear Information System (INIS)

    Nguyen Duc Hung; Do Thanh Tuan

    2012-01-01

    Iron nano metal solution is prepared from anodic dissolution process with ultra- high Dc voltage. The size and shape of iron nanoparticles determined by Tem images and particle size distribution on the device LA-950 Laser Scattering Particle Distribution Analyzer V2. The concentration of nano-iron solution was determined by the analytical methods AAS atomic absorption spectrometry and Faraday's law. The difference in concentration of both methods demonstrated outside the anodic dissolution process has created the water electrolysis to form H 2 and O 2 gases and heating the solution. (author)

  10. [Nasal submicron emulsion of Scutellariae Radix extract preparation technology research based on phase transfer of solute technology].

    Science.gov (United States)

    Shi, Ya-jun; Shi, Jun-hui; Chen, Shi-bin; Yang, Ming

    2015-07-01

    Based on the demand of nasal drug delivery high drug loadings, using the unique phase transfer of solute, integrating the phospholipid complex preparation and submicron emulsion molding process of Scutellariae Radix extract, the study obtained the preparation of the high drug loadings submicron emulsion of Scutellariae Radix extract. In the study of drug solution dispersion method, the uniformity of drug dispersed as the evaluation index, the traditional mixing method, grinding, homogenate and solute phase transfer technology were investigated, and the solute phase transfer technology was adopted in the last. With the adoption of new technology, the drug loading capacity reached 1.33% (phospholipid complex was 4%). The drug loading capacity was improved significantly. The transfer of solute method and timing were studied as follows,join the oil phase when the volume of phospholipid complex anhydrous ethanol solution remaining 30%, the solute phase transfer was completed with the continued recycling of anhydrous ethanol. After drug dissolved away to oil phase, the preparation technology of colostrum was determined with the evaluation index of emulsion droplet form. The particle size of submicron emulsion, PDI and stability parameters were used as evaluation index, orthogonal methodology were adopted to optimize the submicron emulsion ingredient and main influential factors of high pressure homogenization technology. The optimized preparation technology of Scutellariae Radix extract nasal submicron emulsion is practical and stable.

  11. Influence of microstructure on stress corrosion cracking of mild steel in synthetic caustic-nitrate nuclear waste solution

    International Nuclear Information System (INIS)

    Sarafian, P.G.

    1975-12-01

    The influence of alloy microstructure on stress corrosion cracking of mild steel in caustic-nitrate synthetic nuclear waste solutions was studied. An evaluation was made of the effect of heat treatment on a representative material (ASTM A 516 Grade 70) used in the construction of high activity radioactive waste storage tanks at Savannah River Plant. Several different microstructures were tested for susceptibility to stress corrosion cracking. Precracked fracture specimens loaded in either constant load or constant crack opening displacement were exposed to a variety of caustic-nitrate and nitrate solutions. Results were correlated with the mechanical and corrosion properties of the microstructures. Crack velocity and crack arrest stress intensity were found to be related to the yield strength of the steel microstructures. Fractographic evidence indicated pH depletion and corrosive crack tip chemistry conditions even in highly caustic solutions. Experimental results were compatible with crack growth by a strain-assisted anodic dissolution mechanism; however, hydrogen embrittlement also was considered possible

  12. Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: Effect of gamma radiation

    Science.gov (United States)

    Akter, Nousin; Khan, Ruhul A.; Salmieri, Stephane; Sharmin, Nusrat; Dussault, Dominic; Lacroix, Monique

    2012-08-01

    Chitosan (1 wt%, in 2% aqueous acetic acid solution) and starch (1 wt%, in deionised water) were dissolved and mixed in different proportions (20-80 wt% chitosan) then films were prepared by casting. Tensile strength and elongation at break of the 50% chitosan containing starch-based films were found to be 47 MPa and 16%, respectively. It was revealed that with the increase of chitosan in starch, the values of TS improved significantly. Monomer, 2-butane diol-diacrylate (BDDA) was added into the film forming solutions (50% starch-based), then casted films. The BDDA containing films were irradiated under gamma radiation (5-25 kGy) and it was found that strength of the films improved significantly. On the other hand, synthetic petroleum-based polymeric films (polycaprolactone, polyethylene and polypropylene) were prepared by compression moulding. Mechanical and barrier properties of the films were evaluated. The gamma irradiated (25 kGy) films showed higher strength and better barrier properties.

  13. The relationship of radioimmunoassay to bioassay: In vitro studies with synthetic lysine vasopressin in aqueous solution inactivated by heat

    International Nuclear Information System (INIS)

    Loeve Lemboel, H.

    1978-01-01

    The relationship of radioimmunoassay to pressor assay and antidiuretic assay was investigated in a simple in vitro system of synthetic lysine vasopressin in aqueous solution inactivated by heating at 100 deg C for 9, 18, 27, 36, 54 and 72 h. An apparent dissociation between radioimmunoassay and bioassay was demonstrated, with biological activity being lost more rapidly than immunological activity. The half-times were 32 h for radioimmunoassay, 23 h for antidiuretic assay and 22 h for pressor assay. However, ion-exchange chromatography showed immunological heterogeneity but biological homogeneity of the lysine vasopressin used, and indicated that the presence of impurities in the vasopressin might to some extent explain the discrepancy between assay results. Synthetic arginine vasopressin and arginine vasopressin of pituitary origin showed a similar immunological heterogeneity by ion-exchange chromatography. (author)

  14. Preparation of Acrylamide-based Anionic Polyelectrolytes for Soil Establishment

    Directory of Open Access Journals (Sweden)

    Ahmad Rabiee

    2012-12-01

    Full Text Available Synthetic water soluble acrylamide-based polymers have wide range of ap-plications  in  the  feld  of  soil  establishment  and  non-desertifcation.  In  this research, the acrylamide-based anionic polyelectrolytes were prepared by  solution polymerization. The polymerization was carried out using AIBN as a radical initiator and at different degrees of anionic charges ranging between 10% and 30% using sodium hydroxide as hydrolyzing agents. The chemical structure of the  synthetic polymers was studied and confrmed by FTIR technique. The charge density on polymer backbone was determined by titration method. The rheological behavior of polymer solutions was evaluated by Brookfeld viscometer. The results show that the viscosity decreases with increasing the shear rate of solutions. Molecular weights of samples were measured by laser light scattering analyzer. The morphology of the polymer was studied by SEM and the EDX was used for elemental analysis determination. The anionic polymers with 10-30% negative charges were mixed with clay in order to evaluate the soil establishment. The results show that an anionic polyelectro-lyte can make soil particles more cohesive and improve soil physical properties.

  15. Removal of Pb(II) from aqueous solution by natural and synthetic ...

    African Journals Online (AJOL)

    The point of zero charge values of 9.57 and 8.20 were obtained by mass titration method for synthetic and natural calcite, respectively. The maximum adsorption capacities of 200 mg/g and 150 mg/g Pb(II) of synthetic calcite and natural calcite were obtained at initial lead loading of 1200 mg/L at 25±2 °C, respectively.

  16. Preparation of metallic nanoparticles by irradiation in starch aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Nemţanu, Monica R., E-mail: monica.nemtanu@inflpr.ro; Braşoveanu, Mirela, E-mail: monica.nemtanu@inflpr.ro; Iacob, Nicuşor, E-mail: monica.nemtanu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Electron Accelerators Laboratory, 409 Atomiştilor St., PO Box MG-36, 077125, Bucharest-Măgurele (Romania)

    2014-11-24

    Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔE{sub ab} (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle h{sup o} was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.

  17. Novel chemistry of alpha-tosyloxy ketones: applications to the solution- and solid-phase synthesis of privileged heterocycle and enediyne libraries

    DEFF Research Database (Denmark)

    Nicolaou, K C; Montagnon, T; Ulven, T

    2002-01-01

    New synthetic technologies for the preparation and elaboration of alpha-tosyloxy ketones in solution- and on solid-phase are described. Both olefins and ketones serve as precursors to these relatively stable chemical entities: olefins via a novel one-pot epoxidation, arylsulfonic acid displacemen...

  18. Application of synthetic diffusion method in the numerical solution of the equations of neutron transport in slab geometry

    International Nuclear Information System (INIS)

    Valdes Parra, J.J.

    1986-01-01

    One of the main problems in reactor physics is to determine the neutron distribution in reactor core, since knowing that, it is possible to calculate the rapidity of occurrence of different nuclear reaction inside the reactor core. Within different theories existing in nuclear reactor physics, is neutron transport the one in which equation who govern the exact behavior of neutronic distribution are developed even inside the proper neutron transport theory, there exist different methods of solution which are approximations to exact solution; still more, with the purpose to reach a more precise solution, the majority of methods have been approached to the obtention of solutions in numerical form with the aim of take the advantages of modern computers, and for this reason a great deal of effort is dedicated to numerical solution of the equations of neutron transport. In agreement with the above mentioned, in this work has been developed a computer program which uses a relatively new techniques known as 'acceleration of synthetic diffusion' which has been applied to solve the neutron transport equation with 'classical schemes of spatial integration' obtaining results with a smaller quantity of interactions, if they compare to done without using such equation (Author)

  19. COMPARISON OF REACTIVITY OF SYNTHETIC AND BOVINE HYDROXYAPATITE IN VITRO UNDER DYNAMIC CONDITIONS

    Directory of Open Access Journals (Sweden)

    DIANA HORKAVCOVÁ

    2014-03-01

    Full Text Available Hydroxyapatite materials prepared by two methods: synthetic (HA–S and bovine (HA-B granules were exposed to a longterm in vitro test under dynamic conditions. Testing cells, filled up to one fourth (¼V of their volume with the tested material, were exposed to continuous flow of simulated body fluid (SBF for 56 days. The objective of the experiment was to determine whether reactivity of the biomaterials (hydroxyapatites, prepared by different methods but identical in terms of their chemical and phase composition, in SBF were comparable. Analyses of the solutions proved that both materials were highly reactive from the very beginning of interaction with SBF (significant decrease of Ca2+ and (PO43- concentrations in the leachate. SEM/EDS images have shown that the surface of bovine HA-B was covered with a new hydroxyapatite (HAp phase in the first two weeks of the test while synthetic HA–S was covered after two weeks of the immersion in SBF. At the end of the test, day 56, both materials were completely covered with well developed porous HAp phase in form of nano-plates. A calculation of the rate of HAp formation from the concentration of (PO43- ions in SBF leachates confirmed that all removed ions were consumed for the formation of the HAp phase throughout the entire testing time for bovine HA–B and only during the second half of the testing time for synthetic HA–S.

  20. The preparation of primary standard solutions for each of the noble metals

    International Nuclear Information System (INIS)

    Mallett, R.C.; Wall, G.J.; Jones, E.A.; Royal, S.J.

    1977-01-01

    A revised method for the preparation of primary standard solutions for each of the noble metals is described. It is now recommended that standard noble-metal solutions should be made from the pure metals and not from salts as previously described. Metals should have a certified purity of 99,95 per cent or better, and the purity should be confirmed by analysis, the techniques of emission spectography or spark-source mass spectrography being used. After the metals have been dissolved, the solutions are made up to volume and the metal content of the standard solutions is checked. For most instrumental techniques for which the standards are intended, the check analysis should be within 0,3 per cent of the certified value

  1. PETI-298 Prepared by Microwave Synthesis: Neat Resin and Composite Properties

    Science.gov (United States)

    Smith, Joseph G.; Connell, John W.; Li, Chao-Jun; Wu, Wei; Criss, Jim M., Jr.

    2004-01-01

    PETI-298 is a high temperature/high performance matrix resin that is processable into composites by resin transfer molding (RTM), resin infusion and vacuum assisted RTM techniques. It is typically synthesized in a polar aprotic solvent from the reaction of an aromatic anhydride and a combination of diamines and endcapped with phenylethynylphthalic anhydride. Microwave synthesis of PETI-298 was investigated as a means to eliminate solvent and decrease reaction time. The monomers were manually mixed and placed in a microwave oven for various times to determine optimum reaction conditions. The synthetic process was subsequently scaled-up to 330g. Three batches were synthesized and combined to give 1 kg of material that was characterized for thermal and rheological properties and compared to PETI-298 prepared by the classic solution based synthetic method. The microwave synthesized PETI-298 was subsequently used to fabricate flat laminates on T650 carbon fabric by RTM. The composite panels were analyzed and mechanical properties determined and compared with those fabricated from PETI-298 prepared by the classic solution method. The microwave synthesis process and characterization of neat resin and carbon fiber reinforced composites fabricated by RTM will be presented. KEY WORDS: Resin Transfer Molding, High Temperature Polymers, Phenylethynyl Terminated Imides, Microwave Synthesis

  2. Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending + melt compounding

    DEFF Research Database (Denmark)

    Madaleno, Liliana Andreia Oliveira; Schjødt-Thomsen, Jan; Pinto, José Cruz

    2010-01-01

    Two types of montmorillonite (MMT), natural sodium montmorillonite (Na-MMT) and organically modified montmorillonite (OMMT), in different amounts of 1, 2, 5, 10 and 25 phr (parts per hundred resin), were dispersed in rigid poly (vinyl chloride) by two different methods solution blending...... and solution blending + melt compounding The effects on morphology, thermal and mechanical properties of the PVC/MMT nanocomposites were studied by varying the amount of Na-MMT and OMMT in both methods SEM and XRD analysis revealed that possible intercalated and exfoliated structures were obtained in all...... prepared by solution blending + melt compounding method Experimental values for 1 and 2 phr are larger than the calculated values which directly suggest that the MMT particles are exfoliated (C) 2010 Elsevier Ltd All rights reserved...

  3. Stability of fortified cefazolin ophthalmic solutions prepared in artificial tears containing surfactant-based versus oxidant-based preservatives.

    Science.gov (United States)

    Rojanarata, Theerasak; Tankul, Junlathip; Woranaipinich, Chayanee; Potawanich, Paweena; Plianwong, Samarwadee; Sakulma, Sirinart; Saehuan, Choedchai

    2010-10-01

    The aim of this study was to investigate the stability of fortified cefazolin sodium ophthalmic solutions (50 mg mL⁻¹) extemporaneously prepared in commercial artificial tears containing 2 different types of preservatives, namely the surfactants and oxidants. Fortified cefazolin sodium solutions were prepared by reconstituting cefazolin for injection with sterile water and further diluted with Tears Naturale II or Natear, 2 commercial artificial tears containing polyquaternium-1 and sodium perborate, respectively, as preservatives. The solutions were then kept at room temperature (28°C) or in the refrigerator (4°C). During the 28-day period, the formulations were periodically examined for the physical appearance, pH, and the remaining drug concentrations. The antibacterial potency was evaluated as the minimal inhibitory concentration against Staphylococcus aureus strain ATCC 29923 by broth dilution technique. The activity of the preservatives was demonstrated by antimicrobial effectiveness tests. On day 28, the microbial contamination in the preparations was tested. The stability profiles of cefazolin solutions prepared in Tears Naturale II, Natear, and water were not different, but they were significantly influenced by the storage temperature. The refrigerated formulations showed no loss of drug and antibacterial potency as well as alteration of physical appearance and pH throughout the 28 days. In contrast, those kept at room temperature showed gradual change in color and odor. The degradation of drug exceeded 10% from day 3 and the decrease of antibacterial potency could be observed at week 3. All cefazolin solutions prepared in artificial tears retained the antimicrobial activity of preservatives and were free from bacterial and fungal contamination throughout the 28-day period of study. Cefazolin sodium ophthalmic solutions can be extemporaneously prepared in Tears Naturale II or Natear without the influence from different types of preservatives used in

  4. Epitaxial ternary nitride thin films prepared by a chemical solution method

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hongmei [Los Alamos National Laboratory; Feldmann, David M [Los Alamos National Laboratory; Wang, Haiyan [TEXAS A& M; Bi, Zhenxing [TEXAS A& M

    2008-01-01

    It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach, polymer-assisted deposition. The structural, electrical, and optical properties of the films are also investigated.

  5. Preparation of acid deficient solutions of uranyl nitrate and thorium nitrate by steam denitration

    International Nuclear Information System (INIS)

    Yamagishi, Shigeru; Takahashi, Yoshihisa

    1996-01-01

    Acid deficient heavy metal (HM) nitrate solutions are often required in the internal gelation processes for nuclear fuel fabrication. The stoichiometric HM-nitrate solutions are needed in a sol-gel process for fuel fabrication. A method for preparing such nitrate solutions with a controlled molar ratio of nitrate/metal by denitration of acid-excess nitrate solutions was developed. The denitration was conducted by bubbling a nitrate solution with a mixture of steam+Ar. It was found that steam was more effective for the denitration than Ar. The acid deficient uranyl nitrate solution with nitrate/U=1.55 was yielded by steam bubbling, while not by only Ar bubbling. As for thorium nitrate, acid deficient solutions of nitrate/Th≥3.1 were obtained by steam bubbling. (author)

  6. An economic route to mass production of graphene oxide solution for preparing graphene oxide papers

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Yan-Jia; Tsai, Bo-Da; Huang, Wu-Jang, E-mail: wjhuang@mail.npust.edu.tw

    2015-03-15

    Highlights: • Graphene oxide paper can be prepared from synthesized graphene sheet containing carbon materials. • Graphene oxide paper can be used as a phase change materials for thermal storage. • To prepare graphene oxide paper from synthesized graphene sheet containing carbon materials could highly reduce the cost. - Abstract: Graphene oxide paper (GOP) is a composite material fabricated from graphene oxide (GO) solution. In addition, it can be a novel and potential material for application on the separation of water vapor from gaseous steam or larger alkali ions from aqueous solution. GOP could be used as electricity and thermal storage materials. The preparation of GO commonly uses high purity natural or artificial graphite. It is difficult to prepare GOP from artificial graphite powder due to the cost of $1,450 US/ton. In this study, we tried to prepare GOPs from homemade graphene sheets containing carbon materials (GSCCMs) and evaluate the thermal properties of GSCCM derived GOPs. Results show that GSCCM derived GOPs have a higher phase transition temperature, and the average mesophase phase change enthalpy is 9.41 J/g, which is 2.87 times higher than graphite derived GOP. Therefore, to prepare GOP from GSCCMs could highly reduce the cost.

  7. Landslide rehabilitation with geo synthetics in open coal mine Oslomej

    International Nuclear Information System (INIS)

    Dimitrievski, Ljupcho; Ilievska, Frosina; Ilievski, Darko

    2004-01-01

    In November 2002 stability is violated and landslides are registered in open coal mine Oslomej, Republic of Macedonia. Around the profile IV existing open irrigation channel was interrupted and landslide was extended to the regional way R421 Kicevo - Oslomej. The landslide was classified like big and dangerous, including danger for disruption of the regional road and pipeline Studencica - Oslomej for supplying of thermal power plant Oslomej with technical water. According to the proposed solution, main project design for landslide rehabilitation was prepared with using geo synthetics Stabilenka 200/45. In fill is local soil material which had been placed and compacted in layers, it had formed a composite construction. Stabilenka acts as a reinforcement due to its ability to absorb tensile forces. With the design solution two retaining walls of reinforced soil and complete drainage system of geo composite materials had been constructed This paper deals with details of the design and the construction. (Author)

  8. Characterization of growth sectors in synthetic quartz grown from cylindrical seeds parallel to [0001] direction

    Directory of Open Access Journals (Sweden)

    Pedro Luiz Guzzo

    2004-06-01

    Full Text Available In the present study, the morphology and the impurity distribution were investigated in growth sectors formed around the [0001] axis of synthetic quartz crystals. Plates containing cylindrical holes and cylindrical bars parallel to [0001] were prepared by ultrasonic machining and further used as seed-crystals. The hydrothermal growth of synthetic quartz was carried out in a commercial autoclave under NaOH solution during 50 days. The morphologies of crystals grown from cylindrical seeds were characterized by X-ray diffraction topography. For both types of crystals, +X- and X- growth sectors were distinctly observed. Infrared spectroscopy and ionizing radiation were adopted to reveal the distribution of point defects related to Si-Al substitution and OH-species. It was found a different distribution of Al-related centers in relation to the crystals grown from conventional Y-bar and Z-plate seeds.

  9. Synthetic biology: programming cells for biomedical applications.

    Science.gov (United States)

    Hörner, Maximilian; Reischmann, Nadine; Weber, Wilfried

    2012-01-01

    The emerging field of synthetic biology is a novel biological discipline at the interface between traditional biology, chemistry, and engineering sciences. Synthetic biology aims at the rational design of complex synthetic biological devices and systems with desired properties by combining compatible, modular biological parts in a systematic manner. While the first engineered systems were mainly proof-of-principle studies to demonstrate the power of the modular engineering approach of synthetic biology, subsequent systems focus on applications in the health, environmental, and energy sectors. This review describes recent approaches for biomedical applications that were developed along the synthetic biology design hierarchy, at the level of individual parts, of devices, and of complex multicellular systems. It describes how synthetic biological parts can be used for the synthesis of drug-delivery tools, how synthetic biological devices can facilitate the discovery of novel drugs, and how multicellular synthetic ecosystems can give insight into population dynamics of parasites and hosts. These examples demonstrate how this new discipline could contribute to novel solutions in the biopharmaceutical industry.

  10. SPE/TLC/Densitometric Quantification of Selected Synthetic Food Dyes in Liquid Foodstuffs and Pharmaceutical Preparations

    Directory of Open Access Journals (Sweden)

    Anna W. Sobańska

    2017-01-01

    Full Text Available Selected synthetic food dyes (tartrazine, Ponceau 4R, Brilliant Blue, orange yellow, and azorubine were isolated from liquid preparations (mouthwashes and beverages by Solid Phase Extraction on aminopropyl-bonded silica with diluted aqueous sodium hydroxide as an eluent. The extraction step was followed by thin layer chromatography on silica gel 60 with chloroform-isopropanol-25% aq. ammonia 1 : 3 : 1 (v/v/v as mobile phase and the densitometric quantification of dyes was achieved using quadratic calibration plots (R2>0.997; LOQ = 0.04–0.09 μgspot−1. The overall recoveries for all studied dyes were at the average level of over 90% and the repeatability of the proposed procedure (CV ≤ 4.1% was sufficient to recommend it for the routine quantification of the aforementioned dyes in liquid matrices.

  11. Defining the Synthetic Biology Supply Chain.

    Science.gov (United States)

    Frazar, Sarah L; Hund, Gretchen E; Bonheyo, George T; Diggans, James; Bartholomew, Rachel A; Gehrig, Lindsey; Greaves, Mark

    Several recent articles have described risks posed by synthetic biology and spurred vigorous discussion in the scientific, commercial, and government communities about how to best detect, prevent, regulate, and respond to these risks. The Pacific Northwest National Laboratory's (PNNL) deep experience working with dual-use technologies for the nuclear industry has shown that analysis of supply chains can reveal security vulnerabilities and ways to mitigate security risk without hindering beneficial research and commerce. In this article, a team of experts in synthetic biology, data analytics, and national security describe the overall supply chain surrounding synthetic biology to illustrate new insights about the effectiveness of current regulations, the possible need for different screening approaches, and new technical solutions that could help identify or mitigate risks in the synthetic biology supply chain.

  12. Preparation of Fish Skin Gelatin-Based Nanofibers Incorporating Cinnamaldehyde by Solution Blow Spinning

    Science.gov (United States)

    Liu, Fei; Avena-Bustillos, Roberto J.; Bridges, David F.; Takeoka, Gary R.; Wu, Vivian C. H.; Chiou, Bor-Sen; McHugh, Tara H.; Zhong, Fang

    2018-01-01

    Cinnamaldehyde, a natural preservative that can non-specifically deactivate foodborne pathogens, was successfully incorporated into fish skin gelatin (FSG) solutions and blow spun into uniform nanofibers. The effects of cinnamaldehyde ratios (5–30%, w/w FSG) on physicochemical properties of fiber-forming emulsions (FFEs) and their nanofibers were investigated. Higher ratios resulted in higher values in particle size and viscosity of FFEs, as well as higher values in diameter of nanofibers. Loss of cinnamaldehyde was observed during solution blow spinning (SBS) process and cinnamaldehyde was mainly located on the surface of resultant nanofibers. Nanofibers all showed antibacterial activity by direct diffusion and vapor release against Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes. Inhibition zones increased as cinnamaldehyde ratio increased. Nanofibers showed larger inhibition effects than films prepared by casting method when S. typhimurium was exposed to the released cinnamaldehyde vapor, although films had higher remaining cinnamaldehyde than nanofibers after preparation. Lower temperature was favorable for cinnamaldehyde retention, and nanofibers added with 10% cinnamaldehyde ratio showed the highest retention over eight-weeks of storage. Results suggest that FSG nanofibers can be prepared by SBS as carriers for antimicrobials. PMID:29470390

  13. Preparation of Fish Skin Gelatin-Based Nanofibers Incorporating Cinnamaldehyde by Solution Blow Spinning.

    Science.gov (United States)

    Liu, Fei; Türker Saricaoglu, Furkan; Avena-Bustillos, Roberto J; Bridges, David F; Takeoka, Gary R; Wu, Vivian C H; Chiou, Bor-Sen; Wood, Delilah F; McHugh, Tara H; Zhong, Fang

    2018-02-22

    Cinnamaldehyde, a natural preservative that can non-specifically deactivate foodborne pathogens, was successfully incorporated into fish skin gelatin (FSG) solutions and blow spun into uniform nanofibers. The effects of cinnamaldehyde ratios (5-30%, w / w FSG) on physicochemical properties of fiber-forming emulsions (FFEs) and their nanofibers were investigated. Higher ratios resulted in higher values in particle size and viscosity of FFEs, as well as higher values in diameter of nanofibers. Loss of cinnamaldehyde was observed during solution blow spinning (SBS) process and cinnamaldehyde was mainly located on the surface of resultant nanofibers. Nanofibers all showed antibacterial activity by direct diffusion and vapor release against Escherichia coli O157:H7 , Salmonella typhimurium , and Listeria monocytogenes . Inhibition zones increased as cinnamaldehyde ratio increased. Nanofibers showed larger inhibition effects than films prepared by casting method when S . typhimurium was exposed to the released cinnamaldehyde vapor, although films had higher remaining cinnamaldehyde than nanofibers after preparation. Lower temperature was favorable for cinnamaldehyde retention, and nanofibers added with 10% cinnamaldehyde ratio showed the highest retention over eight-weeks of storage. Results suggest that FSG nanofibers can be prepared by SBS as carriers for antimicrobials.

  14. Photocatalysis of zinc oxide nanotip array/titanium oxide film heterojunction prepared by aqueous solution deposition

    Science.gov (United States)

    Lee, Ming-Kwei; Lee, Bo-Wei; Kao, Chen-Yu

    2017-05-01

    A TiO2 film was prepared on indium tin oxide (ITO)/glass by aqueous solution deposition (ASD) with precursors of ammonium hexafluoro-titanate and boric acid at 40 °C. The photocatalysis of annealed TiO2 film increases with increasing growth time and decreases with increasing growth times longer than 60 min. A ZnO nanotip array was prepared on ZnO seed layer/TiO2 film/glass by aqueous solution deposition with precursors of zinc nitrate and ammonium hydroxide at 70 °C. The photocatalysis of ASD-ZnO/ASD-TiO2 film/ITO glass can be better than that of P25.

  15. Preparation of ZnS semiconductor nanocrystals using pulsed laser ablation in aqueous surfactant solutions

    International Nuclear Information System (INIS)

    Choi, S-H; Sasaki, T; Shimizu, Y; Yoon, J-W; Nichols, W T; Sung, Y-E; Koshizaki, N

    2007-01-01

    Cubic ZnS semiconductor nanocrystals with the size of 2 to 5 nm were prepared by pulsed laser ablation in aqueous surfactant solutions of sodium dodecyl sulfate and cetyltrimethylammonium bromide without any further treatments. The obtained suspensions of the nanocrystals have broad photoluminescence emission from 375 to 600 nm. The abundance and emission intensity of the nanocrystals depend on the concentration of the surfactant in solution

  16. SANS studies of solutions and molecular composites prepared from cellulose tricarbanilate

    CERN Document Server

    Alava, C; Cameron, J D; Cowie, J M G; Vaqueiro, P; Möller, A; Triolo, A

    2002-01-01

    We report on SANS measurements carried out on the instrument SANS1 (V4) at the BENSC facility on solutions and composites of cellulose tricarbanilate (CTC). This cellulose derivative exhibits lyotropic behaviour in methylacrylate (MA). The SANS data indicate that in the isotropic liquid state (up to 25% wt CTC in MA) the CTC chains behave like rods of mass per unit length (M/L). In the liquid crystalline (LC) phase (at and above 35% wt CTC in MA), the Q dependence varies from Q sup - sup 1 to Q sup - sup 4 , probably as a result of self-assembling of the CTC chains. The general aim of our work is to prepare molecular composites, i.e. miscible blends of rigid-rod and flexible-coil polymers, from CTC solutions in polymerizable media. To establish the degree of homogeneity of the composites, we performed SANS measurements on UV-cured CTC/MA solutions. Here, we compare the SANS data of CTC/monomer solutions with those of the corresponding composites. (orig.)

  17. Characterization of film-forming solutions and films incorporating free and nanoencapsulated tea polyphenol prepared by gelatins with different Bloom values

    Science.gov (United States)

    Gelatin film-forming solutions and their films incorporating tea polyphenol (TP) and chitosan nanoparticles (CSNs) were prepared from gelatins with different Bloom values (100, 150 and 225). Blank gelatin film-forming solutions and films were prepared as controls. Gelatins with higher Bloom values h...

  18. Media-fill simulation tests in manual and robotic aseptic preparation of injection solutions in syringes.

    Science.gov (United States)

    Krämer, Irene; Federici, Matteo; Kaiser, Vanessa; Thiesen, Judith

    2016-04-01

    The purpose of this study was to evaluate the contamination rate of media-fill products either prepared automated with a robotic system (APOTECAchemo™) or prepared manually at cytotoxic workbenches in the same cleanroom environment and by experienced operators. Media fills were completed by microbiological environmental control in the critical zones and used to validate the cleaning and disinfection procedures of the robotic system. The aseptic preparation of patient individual ready-to-use injection solutions was simulated by using double concentrated tryptic soy broth as growth medium, water for injection and plastic syringes as primary packaging materials. Media fills were either prepared automated (500 units) in the robot or manually (500 units) in cytotoxic workbenches in the same cleanroom over a period of 18 working days. The test solutions were incubated at room temperature (22℃) over 4 weeks. Products were visually inspected for turbidity after a 2-week and 4-week period. Following incubation, growth promotion tests were performed with Staphylococcus epidermidis. During the media-fill procedures, passive air monitoring was performed with settle plates and surface monitoring with contact plates on predefined locations as well as fingerprints. The plates got incubated for 5-7 days at room temperature, followed by 2-3 days at 30-35℃ and the colony forming units (cfu) counted after both periods. The robot was cleaned and disinfected according to the established standard operating procedure on two working days prior to the media-fill session, while on six other working days only six critical components were sanitized at the end of the media-fill sessions. Every day UV irradiation was operated for 4 h after finishing work. None of the 1000 media-fill products prepared in the two different settings showed turbidity after the incubation period thereby indicating no contamination with microorganisms. All products remained uniform, clear, and light

  19. Automatic Design of Synthetic Gene Circuits through Mixed Integer Non-linear Programming

    Science.gov (United States)

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398

  20. Acid in perchloroethylene scrubber solutions used in HTGR fuel preparation processes. Analytical chemistry studies

    International Nuclear Information System (INIS)

    Lee, D.A.

    1979-02-01

    Acids and corrosion products in used perchloroethylene scrubber solutions collected from HTGR fuel preparation processes have been analyzed by several analytical methods to determine the source and possible remedy of the corrosion caused by these solutions. Hydrochloric acid was found to be concentrated on the carbon particles suspended in perchloroethylene. Filtration of carbon from the scrubber solutions removed the acid corrosion source in the process equipment. Corrosion products chemisorbed on the carbon particles were identified. Filtered perchloroethylene from used scrubber solutions contained practically no acid. It is recommended that carbon particles be separated from the scrubber solutions immediately after the scrubbing process to remove the source of acid and that an inhibitor be used to prevent the hydrolysis of perchloroethylene and the formation of acids

  1. Photoluminescent properties of Y2O3:Eu3+ phosphors prepared via urea precipitation in non-aqueous solution

    International Nuclear Information System (INIS)

    Sun, Y.; Qi, L.; Lee, M.; Lee, B.I.; Samuels, W.D.; Exarhos, G.J.

    2004-01-01

    Europium-doped yttrium oxide phosphors were obtained by firing precursors prepared by urea precipitation in ethanol and ethylenediamine. The precipitation in non-aqueous solution was carried out in an autoclave at 150 deg. C to allow the decomposition of urea. The photoluminescent intensities of the phosphors prepared in ethanol and ethylenediamine increased by about 30% compared to that of the phosphor prepared by the conventional urea homogeneous precipitation in aqueous solution. Amorphous carbonates and amorphous hydroxides/carbonates mixtures were identified as precursors from ethanol and ethylenediamine, respectively. The morphology and particle size were studied by SEM and dynamic laser scattering method

  2. Preparation and provisional validation of a large size dried spike: Batch SAL-9934

    International Nuclear Information System (INIS)

    Jammet, G.; Zoigner, A.; Doubek, N.; Aigner, H.; Deron, S.; Bagliano, G.

    1990-05-01

    To determine uranium and plutonium concentration using isotope dilution mass spectrometry, weighed aliquands of a synthetic mixture containing about 2 mg of Pu (with a 239 Pu abundance of about 98%) and 40 mg of U (with a 235 U enrichment of about 19%) have been prepared and verified by SAL to be used to spike samples of concentrated spent fuel solutions with a high burn-up and a low 235 U enrichment. Certified Reference Materials Pu-NBL-126, natural U-NBS-960 and 93% enriched U-NBL-116 were used to prepare a stock solution containing 3.2 mg/ml of Pu and 64.3 mg/ml of 18.8% enriched U. Before shipment to the Reprocessing Plant, aliquands of the stock solution are dried to give Large Size Dried (LSD) Spikes which resist shocks encountered during transportation, so that they can readily be recovered quantitatively at the plant. This paper describes the preparation and the validation of a third batch of LSD-Spike which is intended to be used as a common spike by the plant operator, the national and the IAEA inspectorates. 6 refs, 6 tabs

  3. Immobilization of radioiodine in synthetic boracite

    Science.gov (United States)

    Babad, H.; Strachan, D.M.

    1982-09-23

    A nuclear waste storage product is disclosed in which radioiodine is incorporated in a synthetic boracite. The boracite may be prepared by reacting a transition metal iodide with an alkali horate under mild hydrothermal conditions, drying the reaction product, and then hot pressing.

  4. Adsorption of Heavy Metals From Industrial Wastes Using Membranes Prepared by Radiation Grafting

    International Nuclear Information System (INIS)

    Hegazy, E. A.; Kamal, H.; Maziad, N.; Dessouki, A.M.; Aly, H.F.

    1999-01-01

    Preparation of synthetic membranes using simultaneous radiation grafting of acrylic acid (AAc) and styrene (Sty) individually and in a binary monomers mixture onto polypropylene (PP) has been carried out. The effect of preparation conditions such as irradiation dose, monomer and inhibitor concentration, comonomer composition on the grafting yield was investigated. The thermal stability and mechanical properties were also investigated as a function of degree of grafting. Accordingly the possibility of its practical use in industrial waste treatment is determined. The prepared cation-exchange membranes possess good mechanical properties, high thermal stability and good characteristics for separation processes. These membranes have also good affinity toward the adsorption or chelation with Fe 3+ , Pb 2+ , and Cd 2+ ions either in a mixture or exists alone in the solution

  5. Electrochemical characteristics of silver- and nickel-coated synthetic graphite prepared by a gas suspension spray coating method for the anode of lithium secondary batteries

    International Nuclear Information System (INIS)

    Choi, Won Chang; Byun, Dongjin; Lee, Joong Kee; Cho, Byung won

    2004-01-01

    Four kinds of synthetic graphite coated with silver and nickel for the anodes of lithium secondary batteries were prepared by a gas suspension spray coating method. The electrode coated with silver showed higher charge-discharge capacities due to a Ag-Li alloy, but rate capability decreased at higher charge-discharge rate. This result can be explained by the formation of an artificial Ag oxidation film with higher impedance, this lowered the rate capability at high charge-discharge rate due to its low electrical conductivity. Rate capability is improved, however, by coating nickel and silver together on the surface of synthetic graphite. The nickel which is inactive with oxidation reaction plays an important role as a conducting agent which enhanced the conductivity of the electrode

  6. Protease-sensitive synthetic prions.

    Directory of Open Access Journals (Sweden)

    David W Colby

    2010-01-01

    Full Text Available Prions arise when the cellular prion protein (PrP(C undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrP(Sc. Frequently, PrP(Sc is protease-resistant but protease-sensitive (s prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164, denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174 did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrP(Sc and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600-750 days in Tg4053 mice, which exhibited sPrP(Sc. These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrP(Sc.

  7. Selection of dissolution process for spent fuels and preparation of corrosion test solution simulated to dissolver (contract research)

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Terakado, Shogo; Koya, Toshio; Hamada, Shozo; Kiuchi, Kiyoshi

    2001-03-01

    In order to evaluate the reliability of reprocessing equipment materials used in the Rokkasho Reprocessing Plant, we have proceeded a mock-up test and laboratory tests for getting corrosion parameters. In a dissolver made of zirconium, the simulation of test solutions to the practical solution which includes the high concentration of radioactive elements such as FP and TRU is one of the important issues with respect to the life prediction. On this experiment, the dissolution process of spent fuels and the preparation of test solution for evaluating the corrosion resistance of dissolver materials were selected. These processes were tested in the No.3 cell of WASTEF. The test solution for corrosion tests was prepared by adjusting the uranium and nitric acid concentrations. (author)

  8. Chemical analysis of zinc electroplating solutions by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Jung, Sung-Mo; Cho, Young-Mo; Na, Han-Gil

    2007-01-01

    A quantitative analysis method used to analyze chlorine, iron and zinc in electroplating solutions, using X-ray spectrometry in atmospheric He mode, is proposed. The present research concerns the replacement of the conventional analyses of electroplating solutions with rapid and reproducible quantification using X-ray fluorescence spectrometer. An in-depth investigation conducted in the present study identifies the species present in the real electroplating solutions. XRD patterns and semi-quantitative results for the electroplating solutions show synthetic standards based on the compositional range of solutions by analyzing the electroplating solutions obtained in real processes. 28 calibration standard solutions are prepared by diluting liquid standard solutions certified by titration and ICP-OES analyses used to construct the XRF calibration curves for Cl, Fe and Zn. The suggested method showed satisfactory precision and accuracy in the analysis of electroplating solutions. The present study provides evidences that the proposed XRF spectrometry could be an alternative analytical method to replace the conventional techniques by comparing the uncertainties estimated for each method. (author)

  9. Comparison of in situ polymerization and solution-dispersion techniques in the preparation of Polyimide/Montmorillonite (MMT) Nanocomposites.

    Science.gov (United States)

    Ahmad, Mansor Bin; Gharayebi, Yadollah; Salit, Mohd Sapuan; Hussein, Mohd Zobir; Shameli, Kamyar

    2011-01-01

    In this paper, Polyimide/Montmorillonite Nanocomposites (PI/MMT NCs), based on aromatic diamine (4-Aminophenyl sulfone) (APS) and aromatic dianhydride (3,3',4,4'-benzophenonetetracarboxylic dianhydride) (BTDA) were prepared using in situ polymerization and solution-dispersion techniques. The prepared PI/MMT NCs films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The XRD results showed that at the content of 1.0 wt % Organo Montmorillonite (OMMT) for two techniques and 3.0 wt % OMMT for the in situ polymerization technique, the OMMT was well-intercalated, exfoliated and dispersed into polyimide matrix. The OMMT agglomerated when its amount exceeded 10 wt % and 3.0 wt % for solution-dispersion and in situ polymerization techniques respectively. These results were confirmed by the TEM images of the prepared PI/MMT NCs. The TGA thermograms indicated that thermal stability of prepared PI/MMT NCs were increased with the increase of loading that, the effect is higher for the samples prepared by in situ polymerization technique.

  10. The preparation of magnetite from iron(III) and iron(II) salt solutions

    International Nuclear Information System (INIS)

    Segal, D.L.

    1980-10-01

    Methods are described for the preparation of magnetite from iron(III) and iron(II) salt solutions at temperatures between 295 to 373 K. The effect of the reagent concentration, a chelating agent and different alkali-metal cations on the formation of magnetite has been investigated. The magnetite samples have been examined by X-ray diffraction, transmission electron microscopy, adsorption of nitrogen, emission spectroscopy, X-ray photoelectron spectroscopy and by determination of the point of zero charge. A review of previous work on the preparation of magnetite in an aqueous environment is also included. This work is relevant to the corrosion processes which can occur in the water coolant circuits of nuclear reactors. (author)

  11. Preparation of polymeric materials by radiation for different industrial waste treatment

    International Nuclear Information System (INIS)

    Maziad, N.A.M.

    1997-01-01

    Preparation of synthetic membranes using radiation induced graft copolymerization of styrene ( Sty ), acrylic acid ( A Ac ) and styrene/acrylic acid (Sty/A Ac) onto low density polyethylene ( LDPE ), polypropylene ( PP ) and polyvinyl chloride ( PVC ) films are carried out . The effect of preparation conditions on the grafting yield and on the homogeneity of grafting is thoroughly investigated. Characterization and some physical properties such as mechanical, electrical conductivity and thermal behaviour of the prepared grafted membranes are studied. Thus, the possibility of their practicable use are determined. In addition, possible applications of such prepared membranes in the separation of heavy metals such as Fe 3+, Cd 2+ and Pb 2+ from waste water are investigated. It is found that, the prepared grafted membranes have a good affinity towards the adsorption or chelation with F 3+ and Pb 2+ either in a mixture containing other metals or if they exist alone in the feed solution . It is recommended that such prepared grafted membranes could be useful in separation of Pb 2+ ions from a mixture of other metal ions

  12. Investigation into reaction of heterogenous isotopic exchange with gaseoUs tritium in solution for preparation labelled lipid compounds

    International Nuclear Information System (INIS)

    Shevchenko, V.P.; Myasoedov, N.F.

    1983-01-01

    The applicability of the method of heterogeneous catalytic isotopic exchange with gaseous tritium in the solution for the production of labelled lipide preparations is studied. Labelled saturated and unsaturated aliphatic acids, prostaglandins, phospholipides and sphingolipides are prepared

  13. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles

    Directory of Open Access Journals (Sweden)

    Marcus Baumann

    2013-10-01

    Full Text Available This review which is the second in this series summarises the most common synthetic routes as applied to the preparation of many modern pharmaceutical compounds categorised as containing a six-membered heterocyclic ring. The reported examples are based on the top retailing drug molecules combining synthetic information from both scientific journals and the wider patent literature. It is hoped that this compilation, in combination with the previously published review on five-membered rings, will form a comprehensive foundation and reference source for individuals interested in medicinal, synthetic and preparative chemistry.

  14. Preparation and Low Temperature Short-term Storage for Synthetic Seeds of Caladium bicolor

    Directory of Open Access Journals (Sweden)

    Mehpara MAQSOOD

    2015-03-01

    Full Text Available An efficient somatic embryo encapsulation and in vitro plant regeneration technique were established with Caladium bicolor, an important ornamental plant.Tuber derived embryogenic callus (95.50% was obtained on Murashige and Skoog (MS medium amended with 0.5 mg L-1 α-Naphthalene acetic acid (NAA + 0.5 mg L-1 6-Benzyladenine (BA. The embryogenic callus later differentiated into somatic embryos in the same plant growth regulators (PGRs added medium (NAA and BA. The induced embryos matured and developed into plantlets in NAA and BA added media; maximum plantlets development was observed at 1.0 mg L-1 NAA + 1.0 mg L-1 BA supplemented medium. Synthetic seeds were produced by encapsulating embryos in gel containing 3.0% sucrose + 3.0% sodium alginate and 100 mM of calcium chloride.The highest synthetic seed germination (97.6% was observed on medium supplemented with 1.0 mg L-1 NAA + 1.0 mg L-1 BA. The synthetic seeds were kept at low temperatures for storage; the encapsulated beads were viable and demonstrated good germination even after 12 weeks of storage at 4 °C. The plantlet recovery frequency was however declined with time. The synthetic seed derived plantlets were morphologically similar to the mother plant.

  15. Preparation and isolation of isobenzofuran

    Directory of Open Access Journals (Sweden)

    Morten K. Peters

    2017-12-01

    Full Text Available The synthesis, isolation and characterization of isobenzofuran are described in this publication. Isobenzofuran is of general interest in synthetic and physical organic chemistry because it is one of the most reactive dienes known. A number of synthetic pathways have been published which all suffer from disadvantages such as low yields and difficult purification. We present a synthetic pathway to prepare isobenzofuran in laboratory scale with high yields, from affordable, commercially available starting materials.

  16. Polyethylene glycol powder solution versus senna for bowel preparation for colonoscopy in children.

    Science.gov (United States)

    Terry, Natalie A; Chen-Lim, Mei Lin; Ely, Elizabeth; Jatla, Muralidhar; Ciavardone, Denise; Esch, Salina; Farace, Lisa; Jannelli, Frances; Puma, Anita; Carlow, Dean; Mamula, Petar

    2013-02-01

    Safety and effectiveness of large-volume polyethylene glycol-based solution (PEG-ES) have been documented, but the taste and volume can be barriers to successful colonoscopy preparation. Efficacy and safety of small-volume electrolyte-free (PEG-P) preparation (Miralax) for colonoscopy preparation have been rarely studied, although presently used at many pediatric centers. The primary objective of the present study was to determine whether PEG-P results in a more efficacious and safe colonoscopy preparation as compared with senna. The study design was prospective, randomized, and single-blinded. Patients ages 6 to 21 years were randomized to a 2-day clean-out regimen of PEG-P at a dose of 1.5 g/kg divided twice per day for 2 days versus senna 15 mL daily (ages 6-12) or 30 mL daily (ages 12-21) for 2 days. Both preparations required 1 day of clear liquids whereas senna preparation required an additional day of full liquid diet. A blinded endoscopist graded the quality of preparation with a standardized cleanliness tool (Aronchick scale). Serum chemistry panels were obtained. Patients or parents rated symptoms and ease of preparation. The anticipated number of subjects was 166; however, the interim analysis demonstrated inferiority of senna preparation. Thirty patients were evaluated in the present study. Of the patients in the PEG-P arm, 88% (14/16) received an excellent/good score compared with 29% (4/14), with the senna preparation (P = 0.0022). Both preparations were well-tolerated by patient-graded ease of preparation. Demographics and laboratory values did not differ significantly across the 2 groups. No serious adverse events were noted. PEG-P is an effective colonoscopy preparation whereas senna preparation was insufficient. Both were well-tolerated and appear safe in a pediatric population.

  17. The complex synthesis and solid state chemistry of ceria-lanthana solid solutions prepared via a hexamethylenetetramine precipitation

    International Nuclear Information System (INIS)

    Fleming, P.G.; Holmes, J.D.; Otway, D.J.; Morris, M.A.

    2011-01-01

    Mixed oxide solid solutions are becoming ever more commercially important across a range of applications. However, their synthesis can be problematical. Here, we show that ceria-lanthana solid solutions can be readily prepared via simple precipitation using hexamethylenetetramine. However, the solution chemistry can be complex, which results in the precipitated particles having a complex structure and morphology. Great care must be taken in both the synthesis and characterisation to quantify the complexity of the product. Even very high heat treatments were not able to produce highly homogeneous materials and X-ray diffractions reveals the non-equilibrium form of particles prepared in this way. Unexpected crystal structures are revealed including a new metastable cubic La 2 O 3 phase. - Graphical abstract: The suggested mechanism for the formation of dual fluorite phase particles, where Step 1 corresponds to room temperature aging, Step 2; heating the solution to 90 deg. C, Step 3; cooling of the solution to room temperature, Step 4; calcination to 500 deg. C, Step 5; calcination to 700 deg. C and Step 6; calcination to 1300 deg. C. The terminology of e.g. La 1-x Ce x (OH) 3 is used to indicate the formation of a mixed oxy-hydroxy participate rather than a definitive assignment of stoichiometry. Similarly, La 1-y Ce y O 2 only implies a mixed solid solution. Highlights: → Mol% of prepared Ce-La oxides did not follow that of reactant mol%. → Complex reaction pathway found to be dependent on metal solution concentrations. → At certain concentrations core shell particles were found to form. → A reaction model was produced based on cationic solubility. → Report lanthana solubility higher than previously reported in CeO 2 .

  18. Removal of Methylene Blue from Aqueous Solution by Activated Carbon Prepared from Pea Shells (Pisum sativum

    Directory of Open Access Journals (Sweden)

    Ünal Geçgel

    2013-01-01

    Full Text Available An activated carbon was prepared from pea shells and used for the removal of methylene blue (MB from aqueous solutions. The influence of various factors such as adsorbent concentration, initial dye concentration, temperature, contact time, pH, and surfactant was studied. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. The adsorption isotherm was found to follow the Langmuir model. The monolayer sorption capacity of activated carbon prepared from pea shell for MB was found to be 246.91 mg g−1 at 25 ∘C. Two simplified kinetic models including pseudo-first-order and pseudo-second-order equation were selected to follow the adsorption processes. Kinetic studies showed that the adsorption followed pseudo-second-order kinetic model. Various thermodynamic parameters such as , , and were evaluated. The results in this study indicated that activated carbon prepared from pea shell could be employed as an adsorbent for the removal of MB from aqueous solutions.

  19. Preparation and evaluation of a coumarin library towards the inhibitory activity of the enzyme gGAPDH from Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Alvim Junior, Joel; Dias, Ricardo L.A.; Correa, Arlene G. [Universidade Federal de Sao Carlos, SP (Brazil). Dept. de Quimica]. E-mail: agcorrea@power.ufscar.br; Castilho, Marcelo S.; Oliva, Glaucius [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica

    2005-07-15

    Chagas' disease, caused by Trypanosoma cruzi, is endemic in 15 countries in Latin America. In this work a library of 38 coumarins was prepared in solution phase and evaluated against T. cruzi glycolytic enzyme glyceraldehyde-3-phosphate-dehydrogenase (gGAPDH). The synthetic route was based on the Knoevenagel condensation of different 2-hydroxybenzaldehydes with Meldrum's acid or diethyl malonate, followed by O-alkylation and/or transesterification reactions. Among the prepared coumarins, the best values obtained to inhibit 50% of the enzymatic activity range from 80 to 130 {mu}M. (author)

  20. Preparation and evaluation of a coumarin library towards the inhibitory activity of the enzyme gGAPDH from Trypanosoma cruzi

    International Nuclear Information System (INIS)

    Alvim Junior, Joel; Dias, Ricardo L.A.; Correa, Arlene G.; Castilho, Marcelo S.; Oliva, Glaucius

    2005-01-01

    Chagas' disease, caused by Trypanosoma cruzi, is endemic in 15 countries in Latin America. In this work a library of 38 coumarins was prepared in solution phase and evaluated against T. cruzi glycolytic enzyme glyceraldehyde-3-phosphate-dehydrogenase (gGAPDH). The synthetic route was based on the Knoevenagel condensation of different 2-hydroxybenzaldehydes with Meldrum's acid or diethyl malonate, followed by O-alkylation and/or transesterification reactions. Among the prepared coumarins, the best values obtained to inhibit 50% of the enzymatic activity range from 80 to 130 μM. (author)

  1. Synthetic multielement standards used for instrumental neutron activation analysis as rock imitations

    International Nuclear Information System (INIS)

    Leypunskaya, D.I.; Drynkin, V.I.; Belenky, B.V.; Kolomijtsev, M.A.; Dundera, V.Yu.; Pachulia, N.V.

    1975-01-01

    Complex (multielemental) standards representing microelement composition of standard rocks such as trap ST-1 (USSR), gabbrodiorite SGD-1 (USSR), albitized granite SG-1 (USSR), basalt BCR-1 (USA) and granodiorite GSP-1 (USA) have been synthesized. It has been shown that the concentration of each microelement in the synthetic standards can be given with a high precision. Comparative investigation has been carried out of the synthetic imitations and the above natural standard rocks. It has been found that the result of the instrumental neutron activation analysis using the synthetic standards is as good as in the case when natural standard rocks are used. The results obtained have been also used for substantiation of the versatility of the method used for standard preparation, i.e. a generalization has been made of a possibility of using this method for the preparation of synthetic standards representing the microelement composition of any natural rocks with various compositions and concentrations of microelements. (T.G.)

  2. Preparation of porous monolayer film by immersing the stearic acid Langmuir-Blodgett monolayer on mica in salt solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S. [Institute of Near-Field Optics and Nano Technology, School of Physics and Optoelectronic Technology, Dalian University of Technology, Street No. 2 Linggong Road, Dalian 116024 (China); Li, Y.L.; Zhao, H.L.; Liang, H. [Institute of Photo-Biophysics, School of Physics and Electronic, Henan University, Jinming, Kaifeng 475004, Henan (China); Liu, B., E-mail: boliu@henu.edu.cn [Institute of Photo-Biophysics, School of Physics and Electronic, Henan University, Jinming, Kaifeng 475004, Henan (China); Pan, S., E-mail: span@dlut.edu.cn [Institute of Near-Field Optics and Nano Technology, School of Physics and Optoelectronic Technology, Dalian University of Technology, Street No. 2 Linggong Road, Dalian 116024 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Porous film has been prepared by immersing the stearic acid Langmuir-Blodgett monolayer on mica in salt solution. Black-Right-Pointing-Pointer The mechanism relies on the electrostatic screening effect of the cations in salt solution. Black-Right-Pointing-Pointer The factors influencing the size and area of the pores were investigated. - Abstract: Porous materials have drawn attention from scientists in many fields such as life sciences, catalysis and photonics since they can be used to induce some materials growth as expected. Especially, porous Langmuir-Blodgett (LB) film is an ideal material with controlled thickness and flat surface. In this paper, stearic acid (SA), which has been extensively explored in LB film technique, is chosen as the template material with known parameters to prepare the LB film, and then the porous SA monolayer film is obtained by means of etching in salt solution. The main etching mechanism is suggested that the cations in the solution block the electrostatic interaction between the polar carboxyl group of SA and the electronegative mica surface. The influencing factors (such as concentration of salt solution, valence of cation and surface pressure) of the porous SA film are systematically studied in this work. The novel method proposed in this paper makes it convenient to prepare porous monolayer film for designed material growth or cell culture.

  3. Precipitation in Al–Mg solid solution prepared by solidification under high pressure

    International Nuclear Information System (INIS)

    Jie, J.C.; Wang, H.W.; Zou, C.M.; Wei, Z.J.; Li, T.J.

    2014-01-01

    The precipitation in Al–Mg solid solution containing 21.6 at.% Mg prepared by solidification under 2 GPa was investigated. The results show that the γ-Al 12 Mg 17 phase is formed and the β′ phase cannot be observed in the solid solution during ageing process. The precipitation of γ and β phases takes place in a non-uniform manner during heating process, i.e. the γ and β phases are first formed in the interdendritic region, which is caused by the inhomogeneous distribution of Mg atoms in the solid solution solidified under high pressure. Peak splitting of X-ray diffraction patterns of Al(Mg) solid solution appears, and then disappears when the samples are aged at 423 K for different times, due to the non-uniform precipitation in Al–Mg solid solution. The direct transformation from the γ to β phase is observed after ageing at 423 K for 24 h. It is considered that the β phase is formed through a peritectoid reaction of α + γ → β which needs the diffusion of Mg atoms across the interface of α/γ phases. - Highlights: • The γ phase is formed and the β′ phase is be observed in Al(Mg) solid solution. • Peak splitting of XRD pattern of Al(Mg) solid solution appears during aged at 150 °C. • The β phase is formed through a peritectoid reaction of α + γ → β

  4. Preparation and provisional validation of a large size dried spike: Batch SAL-9931

    International Nuclear Information System (INIS)

    Jammet, G.; Zoigner, A.; Doubek, N.; Grabmueller, G.; Bagliano, G.

    1990-05-01

    To determine uranium and plutonium concentration using isotope dilution mass spectrometry, weighed aliquands of a synthetic mixture containing about 2 mg of Pu (with a 239 Pu abundance of about 98%) and 40 mg of U (with a 235 U enrichment of about 19%) have been prepared and verified by SAL to be used to spike samples of concentrated spent fuel solutions with a high burn-up and a low 235 U enrichment. The advantages of such a Large Size Dried (LSD) Spike have been pointed out elsewhere and proof of the usefulness in the field reported. Certified Reference Materials Pu-NBL-126, natural U-NBS-960 and 93% enriched U-NBL-116 were used to prepare a stock solution containing 1.8 mg/ml of Pu and 37.3 mg/ml of 19.4% enriched U. Before shipment to the Reprocessing Plant, aliquands of the stock solution are dried to give Large Size Dried Spikes which resist shocks encountered during transportation, so that they can readily be recovered quantitatively at the plant. This paper describes the preparation and the validation of a Large Size Dried Spike which is intended to be used as a common spike by the plant operator, the national and the IAEA inspectorates. 6 refs, 7 tabs

  5. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    OpenAIRE

    Chiku, Masanobu; Tomita, Shoji; Higuchi, Eiji; Inoue, Hiroshi

    2011-01-01

    Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate) and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1) at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  6. A randomized, controlled, double-blind trial of the adjunct use of Clebopride in polyethylene glycol electrolyte (PEG) solution for colonoscopy preparation.

    Science.gov (United States)

    Abdullah, Murdani; Rani, A Aziz; Fauzi, Achmad; Syam, Ari Fahrial; Makmun, Dadang; Simadibrata, Marcellus; Manan, Chudahman; Harjodisastro, Daldiyono

    2010-01-01

    To study the benefit of Clebopride as an adjuvant in polyethylene glycol electrolyte (PEG) solution for colonoscopy preparation. Eighty one adult patients who underwent colonoscopy examination were recruited in this randomized double blind controlled study. First group received PEG and placebo, whereas second group received PEG and Clebopride. Two litres of PEG was taken at night before colonoscopy. The acceptability and tolerability of bowel preparation were assessed through interview method. The efficacy of bowel preparation was assessed using Aronchick's Criteria. In terms of acceptability, 64 patients (31 patients from placebo group vs 33 patients from Clebopride group) were able to drink two litres of PEG solution. Sixty patients (29 patients from placebo group and 31 patients from Clebopride group) were willing to accept PEG solution for their next bowel preparation. On the term of tolerability, nausea, abdominal distension, and borborygmus were more frequent in the placebo group (34.2% vs 27.9%; 44.7% vs 32.6%; 26.3% vs 4.6% respectively). However, only the difference at the incidence of borborygmus that was statistically significant (pClebopride group and 81.6% of bowel preparation in placebo group were optimal (p = 0.585). The adjunct use of Clebopride in PEG solution for colonoscopy preparations tends to increase the acceptability, tolerability, and efficacy. The presence of borborygmus was significantly lower in the Clebopride group.

  7. Preparation of SiO2-KCoFC composite ion-exchanger for removal of Cs in the soil decontamination waste solution

    International Nuclear Information System (INIS)

    Lee, Jung Joon; Moon, Jei kwon; Lee, Kune Woo

    2009-01-01

    The soil decontamination process has been developed for remediate the soil wastes excavated from the TRIGA research reactor sites. Even though the process was proven to be very effective for decontaminate the radioactive nuclides such as cesium and cobalt, the secondary spent solution should be treated with an appropriate method to minimize the waste volume. There are mainly two components in the spent decontamination solution of Cs and Co. The Co in the waste solution can be removed easily by precipitation under a basic condition. However, since the Cs is hardly removed by precipitation, an appropriate selective removal method should be employed. In this study, an inorganic composite ion exchanger of SiO 2 -KCoFC was prepared by sol-gel method for a removal of Cs in the decontamination waste solution. An optimum condition for a preparation of the composite ion exchanger and the adsorption performances of the prepared composite ion exchangers were evaluated

  8. Molecularly imprinted polymer based quartz crystal microbalance sensor system for sensitive and label-free detection of synthetic cannabinoids in urine.

    Science.gov (United States)

    Battal, Dilek; Akgönüllü, Semra; Yalcin, M Serkan; Yavuz, Handan; Denizli, Adil

    2018-07-15

    Herein, we prepared a novel quartz crystal microbalance (QCM) sensor for synthetic cannabinoids (JWH-073, JWH-073 butanoic acid, JWH-018 and JWH-018 pentanoic acid,) detection. Firstly, the synthetic cannabinoid (SCs) imprinted (MIP) and non-imprinted (NIP) nanoparticles were synthesized by mini-emulsion polymerization system. The SCs-imprinted nanoparticles were first characterized by SEM, TEM, zeta-size and FTIR-ATR analysis and then were dropped onto the gold QCM surface. The SCs-imprinted QCM sensor was characterized by an ellipsometer, contact angle, and AFM. The limit of detection was found as 0.3, 0.45, 0.4, 0.2 pg/mL JWH-018, JWH-073, JWH-018 pentanoic acid and JWH-073 butanoic acid, respectively. The selectivity of the SCs-imprinted QCM sensor was shown by using JWH-018, JWH-018 pentanoic acid, JWH-073 and JWH-073 butanoic acid. According to the results, the SCs-imprinted QCM sensors show highly selective and sensitive in a broad range of synthetic cannabinoid concentrations (0.0005-1.0 ng/mL) in both aqueous and synthetic urine solutions. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Innovative plant protection means prepared natural raw materials

    Directory of Open Access Journals (Sweden)

    Omar Lomtadze

    2018-03-01

    Full Text Available Were developed new compositions preparation against pests and diseases of plant: Insekto-acaricide “Antipest”, Fungicide “Antifungal”, a drug against of overwintering pests “Proinsekt” and nutritious preparation “Si-humate”.The effectiveness of trial oil-emulsion preparation “Proinsect” was assessed by the spread of pests - San Jose scale (Diaspidiotus perniciosus and mountain ash bentwing (Leucoptera scitella Costa on treated trees. According to field testing, the efficiency of preparation “Proinsect” exceeds the effectiveness of one of the best imported oily preparation “Sipcomol”, which was selected as a reference.Joint content in composition of synthetic pyretroids with turpentine oil, supposedly synergism takes place (turpentines cause prolonged action of synthetic pyrethroid. In working solutions, obtained from turpentine oil containing composition concentration of pyretroid is low, but it is enough during the whole period of pest development cycle. According to the comparative field testing of “Antipest” and imported preparations, against for fruits pests their efficiency is at almost one level, despite the low content (by 30–40% of pyrethroid (cypermethrin in “Antipest”.The developed phosphate preparation “Antifungal” is a little bit less effective compared to Bordeaux mixture. If well take into account significant decrease of intensity of disease spread and development after the action of phosphate preparation, also very low toxicity zinc hydro- and dihydrophosphates compared to the blue vitriol (Copper(II sulfate, the developed fungicide preparation can be successfully used instead of traditional Bordeaux mixture and in particular against the peach leaf curl.According to the results of field trials, effect, of developed silicon containing humic nutrient composition -“Si-humate” on experimental 2-year-old seedlings apples and peach is on the average 15–17% better than the control ones in

  10. One-component solution system to prepare nanometric anatase TiO2

    International Nuclear Information System (INIS)

    Trung, Tran; Ha, Chang-Sik

    2004-01-01

    A novel one-pot synthesis route was proposed to prepare nanometric anatase TiO 2 using trichloroethylene as reaction medium, which may have great advantage over multicomponent solution systems when TiO 2 is used as a reinforcing filler for polymers dissolved in trichloroethylene. The anatase TiO 2 nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy and small-angle X-ray scattering (SAXS). It was found that the diameters of TiO 2 nanoparticles are in the range from 5 to 13 nm

  11. Characteristics of zinc oxide nanorod array/titanium oxide film heterojunction prepared by aqueous solution deposition

    Science.gov (United States)

    Lee, Ming-Kwei; Hong, Min-Hsuan; Li, Bo-Wei

    2016-07-01

    The characteristics of a ZnO nanorod array/TiO2 film heterojunction were investigated. A TiO2 film was prepared on glass by aqueous solution deposition with precursors of ammonium hexafluorotitanate and boric acid at 40 °C. Then, a ZnO seed layer was prepared on a TiO2 film/glass substrate by RF sputtering. A vertically oriented ZnO nanorod array was grown on a ZnO seed layer/TiO2 film/glass substrate by aqueous solution deposition with precursors of zinc nitrate and hexamethylenetetramine (HMT) at 70 °C. After thermal annealing in N2O ambient at 300 °C, this heterojunction used as an oxygen gas sensor shows much better rise time, decay time, and on/off current ratio than as-grown and annealed ZnO nanorods.

  12. Synthetic biology and conservation of nature: wicked problems and wicked solutions.

    Science.gov (United States)

    Redford, Kent H; Adams, William; Mace, Georgina M

    2013-01-01

    So far, conservation scientists have paid little attention to synthetic biology; this is unfortunate as the technology is likely to transform the operating space within which conservation functions, and therefore the prospects for maintaining biodiversity into the future.

  13. Preparation of anti-ciguatoxin monoclonal antibodies using synthetic haptens: sandwich ELISA detection of ciguatoxins.

    Science.gov (United States)

    Tsumuraya, Takeshi; Fujii, Ikuo; Hirama, Masahiro

    2014-01-01

    Ciguatera fish poisoning (CFP) is a form of food poisoning caused by the consumption of fish that have accumulated a type of sodium channel activator toxin called ciguatoxins (CTXs), which are produced by dinoflagellates of the genus Gambierdiscus through the food chain. CFP affects more than 50000 people each year. The extremely low level of CTXs in tainted fish has hampered the development of antibodies for the detection of these toxins. Monoclonal antibodies (mAbs) specific against major congeners of CTX3C, 51-hydroxyCTX3C, CTX1B, and 54-deoxyCTX1B were prepared by immunization of mice with protein conjugates of rationally designed synthetic haptens in place of the natural toxins. We found that haptenic groups possessing a surface area larger than 400 angstroms2 were required to produce mAbs that can bind strongly to CTXs. Direct sandwich ELISA utilizing two different monoclonal antibodies that bind specifically to one of the two wings of a CTX were established to detect CTXs. No cross-reactivity was observed against the other marine toxins tested, including brevetoxin A, brevetoxin B, okadaic acid, and maitotoxin.

  14. The Debye light scattering equation’s scaling relation reveals the purity of synthetic dendrimers

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Hui-Yu; Chen, Hsiao-Ping [National Chung Cheng University, Department of Chemistry and Biochemistry (China); Tang, Yi-Hsuan [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry (China); Chen, Hui-Ting [Kaohsiung Medical University, Department of Fragrance and Cosmetic Science (China); Kao, Chai-Lin, E-mail: clkao@kmu.edu.tw [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry (China); Wang, Shau-Chun, E-mail: chescw@ccu.edu.tw [National Chung Cheng University, Department of Chemistry and Biochemistry (China)

    2016-03-15

    Spherical dendrimer structures cannot be structurally modeled using conventional polymer models of random coil or rod-like configurations during the calibration of the static light scattering (LS) detectors used to determine the molecular weight (M.W.) of a dendrimer or directly assess the purity of a synthetic compound. In this paper, we used the Debye equation-based scaling relation, which predicts that the static LS intensity per unit concentration is linearly proportional to the M.W. of a synthetic dendrimer in a dilute solution, as a tool to examine the purity of high-generational compounds and to monitor the progress of dendrimer preparations. Without using expensive equipment, such as nuclear magnetic resonance or mass spectrometry, this method only required an affordable flow injection set-up with an LS detector. Solutions of the purified dendrimers, including the poly(amidoamine) (PAMAM) dendrimer and its fourth to seventh generation pyridine derivatives with size range of 5–9 nm, were used to establish the scaling relation with high linearity. The use of artificially impure mixtures of six or seven generations revealed significant deviations from linearity. The raw synthesized products of the pyridine-modified PAMAM dendrimer, which included incompletely reacted dendrimers, were also examined to gauge the reaction progress. As a reaction toward a particular generational derivative of the PAMAM dendrimers proceeded over time, deviations from the linear scaling relation decreased. The difference between the polydispersity index of the incompletely converted products and that of the pure compounds was only about 0.01. The use of the Debye equation-based scaling relation, therefore, is much more useful than the polydispersity index for monitoring conversion processes toward an indicated functionality number in a given preparation.Graphical abstract.

  15. The Debye light scattering equation’s scaling relation reveals the purity of synthetic dendrimers

    International Nuclear Information System (INIS)

    Tseng, Hui-Yu; Chen, Hsiao-Ping; Tang, Yi-Hsuan; Chen, Hui-Ting; Kao, Chai-Lin; Wang, Shau-Chun

    2016-01-01

    Spherical dendrimer structures cannot be structurally modeled using conventional polymer models of random coil or rod-like configurations during the calibration of the static light scattering (LS) detectors used to determine the molecular weight (M.W.) of a dendrimer or directly assess the purity of a synthetic compound. In this paper, we used the Debye equation-based scaling relation, which predicts that the static LS intensity per unit concentration is linearly proportional to the M.W. of a synthetic dendrimer in a dilute solution, as a tool to examine the purity of high-generational compounds and to monitor the progress of dendrimer preparations. Without using expensive equipment, such as nuclear magnetic resonance or mass spectrometry, this method only required an affordable flow injection set-up with an LS detector. Solutions of the purified dendrimers, including the poly(amidoamine) (PAMAM) dendrimer and its fourth to seventh generation pyridine derivatives with size range of 5–9 nm, were used to establish the scaling relation with high linearity. The use of artificially impure mixtures of six or seven generations revealed significant deviations from linearity. The raw synthesized products of the pyridine-modified PAMAM dendrimer, which included incompletely reacted dendrimers, were also examined to gauge the reaction progress. As a reaction toward a particular generational derivative of the PAMAM dendrimers proceeded over time, deviations from the linear scaling relation decreased. The difference between the polydispersity index of the incompletely converted products and that of the pure compounds was only about 0.01. The use of the Debye equation-based scaling relation, therefore, is much more useful than the polydispersity index for monitoring conversion processes toward an indicated functionality number in a given preparation.Graphical abstract

  16. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Masanobu Chiku

    2011-09-01

    Full Text Available Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1 at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  17. Numerical solution of the equation of neutrons transport on plane geometry by analytical schemes using acceleration by synthetic diffusion

    International Nuclear Information System (INIS)

    Alonso-Vargas, G.

    1991-01-01

    A computer program has been developed which uses a technique of synthetic acceleration by diffusion by analytical schemes. Both in the diffusion equation as in that of transport, analytical schemes were used which allowed a substantial time saving in the number of iterations required by source iteration method to obtain the K e ff. The program developed ASD (Synthetic Diffusion Acceleration) by diffusion was written in FORTRAN and can be executed on a personal computer with a hard disc and mathematical O-processor. The program is unlimited as to the number of regions and energy groups. The results obtained by the ASD program for K e ff is nearly completely concordant with those of obtained utilizing the ANISN-PC code for different analytical type problems in this work. The ASD program allowed obtention of an approximate solution of the neutron transport equation with a relatively low number of internal reiterations with good precision. One of its applications would be in the direct determinations of axial distribution neutronic flow in a fuel assembly as well as in the obtention of the effective multiplication factor. (Author)

  18. Study of the separation of strontium from solutions which imitate natural waters of increased mineralization

    International Nuclear Information System (INIS)

    Golub, A.M.; Voitko, I.N.; Glushchenko, L.V.; Mitrofanova, O.G.; Zyryanova, N.P.

    1976-01-01

    It has been shown by experiments on synthetically prepared solutions that it is possible to separate strontium and calcium by carbonate precipitation from the larger part of the magnesium accompanying them in natural high mineral waters. In this way the residual content of strontium is reduced to a value of 40-50 mg/liter and, under conditions of removing CO 2 from the solution, to 5-10 mg/liter. The high ionic strength of the solution prevented a more complete precipitation of strontium. Magnesium may be isolated from the filtrate after precipitation of the calcium-strontium mixture. The possibility has been shown of isolating strontium from the mixture of carbonates by means of pyrolysis at 1100-1200 0 and the selective solution of SrO in hot water

  19. Effect of Nb on barium titanate prepared from citrate solutions

    Directory of Open Access Journals (Sweden)

    Stojanović Biljana D.

    2002-01-01

    Full Text Available The influence of the addition of dopants on the microstructure development and electrical properties of BaTiO3 doped with 0.2, 0.4, 0.6, 0.8 mol% of Nb and 0.01 mol% of Mn based compounds was studied. Doped barium titanate was prepared using the polymeric precursor method from citrate solutions. The powders calcined at 700°C for 4 hours were analysed by infrared (IR spectroscopy to verify the presence of carbonates, and by X-ray diffraction (XRD for phase formation. The phase composition, microstructure and dielectric properties show a strong dependence on the amount of added niobium.

  20. Comparative study for the removal of Sr2+ and Pb2+ from waste solutions using synthetic and natural cow bone apatite

    International Nuclear Information System (INIS)

    Ezz El-Din, M.R.

    2007-01-01

    The aim of this study is to develop the cow bone derived apatite as a new sorbent for Sr 2+ and Pb 2+ ions from their aqueous waste solutions. In this respect, four different types of apatite (Ca 10 (PO 4 )6(OH) 2 ) were investigated. The first was natural cow bone apatite (raw bone). The second was cow bone derived apatite after treatment at 700 degree C. The third was synthetic apatite and the last was commercial apatite supplied from Bio Rad company, USA. Removal of Sr 2+ and Pb 2+ by the studied samples was investigated using batch experiments. The different parameters affecting sorption process such as contact time, metal ion concentration and hydrogen ion concentration of the aqueous phase were studied. Desorption of the investigated ions from the loaded samples was also studied. The results obtained showed that the raw cow bone was more effective than the other investigated HAP for adsorbing both Sr 2+ and Pb 2+ ions since the removal percentage of Sr 2+ and Pb 2+ by natural cow bone apatite were 85% and 98%, respectively, while the removal of Sr 2+ and Pb 2+ by the synthetic apatite were 71% and 62%, respectively. From the obtained data, it can be concluded that the natural (raw) cow bone apatite can be used as an ion exchanger for removal of some radioactive elements that may present in radioactive waste solutions as well as it could be considered as a new competitor of the other natural absorbents. Therefore, it is recommended that the natural cow bone apatite could be used for removal of both Sr 2+ and Pb 2+ from radioactive waste solutions as well as other wastewater

  1. Synthetic approaches to uniform polymers.

    Science.gov (United States)

    Ali, Monzur; Brocchini, Steve

    2006-12-30

    Uniform polymers are characterised by a narrow molecular weight distribution (MWD). Uniformity is also defined by chemical structure in respect of (1) monomer orientation, sequence and stereo-regularity, (2) polymer shape and morphology and (3) chemical functionality. The function of natural polymers such as polypeptides and polynucleotides is related to their conformational structure (e.g. folded tertiary structure). This is only possible because of their high degree of uniformity. While completely uniform synthetic polymers are rare, polymers with broad structure and MWD are widely used in medicine and the biomedical sciences. They are integral components in final dosage forms, drug delivery systems (DDS) and in implantable devices. Increasingly uniform polymers are being used to develop more complex medicines (e.g. delivery of biopharmaceuticals, enhanced formulations or DDS's for existing actives). In addition to the function imparted by any new polymer it will be required to meet stringent specifications in terms of cost containment, scalability, biocompatibility and performance. Synthetic polymers with therapeutic activity are also being developed to exploit their polyvalent properties, which is not possible with low molecular weight molecules. There is need to utilise uniform polymers for applications where the polymer may interact with the systemic circulation, tissues or cellular environment. There are also potential applications (e.g. stimuli responsive coatings) where uniform polymers may be used for their more defined property profile. While it is not yet practical to prepare synthetic polymers to the same high degree of uniformity as proteins, nature also effectively utilises many polymers with lower degrees of uniformity (e.g. polysaccharides, poly(amino acids), polyhydroxyalkanoates). In recent years it has become possible to prepare with practical experimental protocols sufficient quantities of polymers that display many aspects of uniformity. This

  2. ZnO-nanorod-array/p-GaN high-performance ultra-violet light emitting devices prepared by simple solution synthesis

    Science.gov (United States)

    Jha, Shrawan Kumar; Luan, Chunyan; To, Chap Hang; Kutsay, Oleksandr; Kováč, Jaroslav; Zapien, Juan Antonio; Bello, Igor; Lee, Shuit-Tong

    2012-11-01

    Pure ultra-violet (UV) (378 nm) electroluminescence (EL) from zinc oxide (ZnO)-nanorod-array/p-gallium nitride (GaN) light emitting devices (LEDs) is demonstrated at low bias-voltages (˜4.3 V). Devices were prepared merely by solution-synthesis, without any involvement of sophisticated material growth techniques or preparation methods. Three different luminescence characterization techniques, i.e., photo-luminescence, cathodo-luminescence, and EL, provided insight into the nature of the UV emission mechanism in solution-synthesized LEDs. Bias dependent EL behaviour revealed blue-shift of EL peaks and increased peak sharpness, with increasing the operating voltage. Accelerated bias stress tests showed very stable and repeatable electrical and EL performance of the solution-synthesized nanorod LEDs.

  3. Solution-phase parallel synthesis of aryloxyimino amides via a novel multicomponent reaction among aromatic (Z)-chlorooximes, isocyanides, and electron-deficient phenols.

    Science.gov (United States)

    Mercalli, Valentina; Giustiniano, Mariateresa; Del Grosso, Erika; Varese, Monica; Cassese, Hilde; Massarotti, Alberto; Novellino, Ettore; Tron, Gian Cesare

    2014-11-10

    A library of 41 aryloxyimino amides was prepared via solution phase parallel synthesis by extending the multicomponent reaction of (Z)-chlorooximes and isocyanides to the use of electron-deficient phenols. The resulting aryloxyiminoamide derivatives can be used as intermediates for the synthesis of benzo[d]isoxazole-3-carboxamides, dramatically reducing the number of synthetic steps required by other methods reported in literature.

  4. Nano-biocomposites based on synthetic aliphatic polyesters and nanoclay

    CSIR Research Space (South Africa)

    Ojijo, Vincent O

    2014-05-01

    Full Text Available This article gives an overview of the recent developments in the preparation, characterisation, properties, crystallisation behaviour, and melt rheology of clay-containing composites of biodegradable synthetic aliphatic polyesters such as poly...

  5. Biotin-specific synthetic receptors prepared using molecular imprinting

    Energy Technology Data Exchange (ETDEWEB)

    Piletska, Elena; Piletsky, Sergey; Karim, Kal; Terpetschnig, Ewald; Turner, Anthony

    2004-02-16

    The composition of new molecularly imprinted polymers (MIPs) specific for biotin was optimised using molecular modelling software. Three functional monomers: methacrylic acid (MAA), 2-(trifluoromethyl)acrylic acid (TFAA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPSA), which demonstrated the highest binding scores with biotin, were tested on their ability to generate specific binding sites. The imprinted polymers were photografted to the surface of polystyrene microspheres in water. The affinity of the synthetic 'receptor' sites was evaluated in binding experiments using horseradish peroxidase-labelled biotin. Good correlation was found between the modelling results and the performance of the materials in the template re-binding study. The dissociation constants for all MIPs were 1.4-16.8 nM, which is sufficient for most analytical applications where biotin is used as a label.

  6. Biotin-specific synthetic receptors prepared using molecular imprinting

    International Nuclear Information System (INIS)

    Piletska, Elena; Piletsky, Sergey; Karim, Kal; Terpetschnig, Ewald; Turner, Anthony

    2004-01-01

    The composition of new molecularly imprinted polymers (MIPs) specific for biotin was optimised using molecular modelling software. Three functional monomers: methacrylic acid (MAA), 2-(trifluoromethyl)acrylic acid (TFAA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPSA), which demonstrated the highest binding scores with biotin, were tested on their ability to generate specific binding sites. The imprinted polymers were photografted to the surface of polystyrene microspheres in water. The affinity of the synthetic 'receptor' sites was evaluated in binding experiments using horseradish peroxidase-labelled biotin. Good correlation was found between the modelling results and the performance of the materials in the template re-binding study. The dissociation constants for all MIPs were 1.4-16.8 nM, which is sufficient for most analytical applications where biotin is used as a label

  7. Long synthetic nanotubes from calix[4]arenes.

    Science.gov (United States)

    Organo, Voltaire G; Sgarlata, Valentina; Firouzbakht, Farhood; Rudkevich, Dmitry M

    2007-01-01

    We report the synthesis and encapsulation properties of long (up to 5 nm) molecular nanotubes 1-4, which are based on calix[4]arenes and can be filled with multiple nitrosonium (NO(+)) ions upon reaction with NO(2)/N(2)O(4) gases. These are among the largest nanoscale molecular containers prepared to date and can entrap up to five guests. The structure and properties of tubular complexes 1(NO(+))(2)-4(NO(+))(5) were studied by UV/Vis, FTIR, and (1)H NMR spectroscopy in solution, and also by molecular modeling. Entrapment of NO(+) in 1(NO(+))(2)-4(NO(+))(5) is reversible, and addition of [18]crown-6 quickly recovers starting tubes 1-4. The FTIR and titration data revealed enhanced binding of NO(+) in longer tubes, which may be due to cooperativity. The described nanotubes may serve as materials for storing and converting NO(x) and also offer a promise to further develop supramolecular chemistry of molecular containers. These findings also open wider perspectives towards applications of synthetic nanotubes as alternatives to carbon nanotubes.

  8. Evaluation of synthetic zeolite as engineering passive permeable reactive barrier

    International Nuclear Information System (INIS)

    Ibrahim, O.A.A.

    2011-01-01

    models were used to describe the pollutant transport within the permeable reactive barrier. Based on the obtained results, the following can be concluded: 1. Synthetic zeolite X proposed as a reactive barrier material was successfully prepared and completely characterized using XRD, FTIR, EDX, and SEM techniques. 2. Sorption studies indicated the feasibility of using the prepared zeolite X as a reactive barrier material due to its high capacity, chemical stability and selectivity for the concerned heavy metals (Zn 2+ and Cd 2+ ions). 3. Transport properties of both zinc and cadmium ions through zeolite X packed column have been determined. The hydrodynamic dispersion coefficients needed for describe the migration of Zn 2+ and Cd 2+ ions were determined. 4. Retardation coefficients using linear and nonlinear isotherm models were utilized to determine the capability of the synthesized zeolite X to impede the movement of zinc and cadmium ions carried by the fluid. 5. Transport of contaminants in groundwater systems, which is based on the integration of advection dispersion equation using specific boundary conditions, provides a number of analytical solutions. Some of these solutions have been derived for one dimensional pulse contaminant input or a continuous input.

  9. DESIGN AND EVALUATION OF LOSARTAN POTASSIUM MATRIX TABLETS WITH NATURAL AND SYNTHETIC POLYMERS

    OpenAIRE

    R. L. C. Sasidhar et al.

    2012-01-01

    The objective of the study was to formulate controlled release matrix tablets of losartan Potassium by using a combination of hydrophilic synthetic polymer like poly (ethylene oxides) and natural gums like xanthan gum, karaya gum and guar gum. A combination of synthetic hydrophobic polymers like methacrylates with synthetic hydrophilic polymer like poly (ethylene oxide) was also used in the preparation of matrix tablets and evaluated for their influence on controlled drug release. The matrix ...

  10. Gold nanoparticles prepared by electro-exploding wire technique in aqueous solutions

    Science.gov (United States)

    Kumar, Lalit; Kapoor, Akanksha; Meghwal, Mayank; Annapoorni, S.

    2016-05-01

    This article presents an effective approach for the synthesis of Au nanoparticles via an environmentally benevolent electro-exploding wire (EEW) technique. In this process, Au nanoparticles evolve through the plasma generated from the parent Au metal. Compared to other typical chemical methods, electro-exploding wire technique is a simple and economical technique which normally operates in water or organic liquids under ambient conditions. Efficient size control was achieved using different aqueous medium like (1mM) NaCl, deionized water and aqueous solution of sodium hydroxide (NaOH, pH 9.5) using identical electro-exploding conditions. The gold nanoparticles exhibited the UV-vis absorption spectrum with a maximum absorption band at 530 nm, similar to that of gold nanoparticles chemically prepared in a solution. The mechanism of size variation of Au nanoparticles is also proposed. The results obtained help to develop methodologies for the control of EEW based nanoparticle growth and the functionalization of nanoparticle surfaces by specific interactions.

  11. Preparation of tetraethylenepentamine modified magnetic graphene oxide for adsorption of dyes from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaosheng [Hubei Normal University (China); Tang, Ping; Liu, Liangliang, E-mail: liuliangliang@caas.cn [Chinese Academy of Agricultural Sciences, Changsha (China)

    2018-05-01

    In this study, tetraethylenepentamine modified magnetic graphene oxide nanomaterial (TMGO) was prepared and characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and vibration sample magnetometer (VSM). All the characterizations proved that the modification and preparation of TMGO were successful. The TMGO nanomaterial was used in the adsorption of Acid Red 18 (AR) in aqueous solution. The parameters like pH of solution, adsorption kinetics and isotherms were all investigated. The results indicated that the TMGO nanomaterial had satisfied adsorption ability and the maximum adsorption capacity was 524.2 mg g{sup -}'1 at 45 °C and pH 6. The adsorption capacity remained at 91.8% of the initial value after five cycles. The adsorption process with AR was found through fitting the pseudo-second-order kinetics equations and the Freundlich adsorption model. The experimental results demonstrated that the TMGO nanomaterial could be rapidly extracted from the medium and had a good adsorption ability to remove dyes in wastewater. (author)

  12. Morphology and thermal degradation study of poly(lactic acid)/synthetic mica composites

    International Nuclear Information System (INIS)

    Souza, D.H.S.; Dias, M.L.

    2010-01-01

    Poly(lactic acid) (PLA)/synthetic mica composites has been little studied in the literature. In this work, an organophilic synthetic mica was used to prepare PLA nanocomposites. The composites were obtained at an internal mixer containing 3, 5, 7 and 10 wt% of mica. The materials were analyzed by x-ray diffraction, thermogravimetric analysis and gel permeation chromatography. (author)

  13. The Role of Synthetic Biology in NASA's Missions

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    The time has come to for NASA to exploit synthetic biology in pursuit of its missions, including aeronautics, earth science, astrobiology and most notably, human exploration. Conversely, NASA advances the fundamental technology of synthetic biology as no one else can because of its unique expertise in the origin of life and life in extreme environments, including the potential for alternate life forms. This enables unique, creative "game changing" advances. NASA's requirement for minimizing upmass in flight will also drive the field toward miniaturization and automation. These drivers will greatly increase the utility of synthetic biology solutions for military, health in remote areas and commercial purposes. To this end, we have begun a program at NASA to explore the use of synthetic biology in NASA's missions, particular space exploration. As part of this program, we began hosting an iGEM team of undergraduates drawn from Brown and Stanford Universities to conduct synthetic biology research at NASA Ames Research Center. The 2011 team (http://2011.igem.org/Team:Brown-Stanford) produced an award-winning project on using synthetic biology as a basis for a human Mars settlement.

  14. Glycan characterization of the NIST RM monoclonal antibody using a total analytical solution: From sample preparation to data analysis.

    Science.gov (United States)

    Hilliard, Mark; Alley, William R; McManus, Ciara A; Yu, Ying Qing; Hallinan, Sinead; Gebler, John; Rudd, Pauline M

    Glycosylation is an important attribute of biopharmaceutical products to monitor from development through production. However, glycosylation analysis has traditionally been a time-consuming process with long sample preparation protocols and manual interpretation of the data. To address the challenges associated with glycan analysis, we developed a streamlined analytical solution that covers the entire process from sample preparation to data analysis. In this communication, we describe the complete analytical solution that begins with a simplified and fast N-linked glycan sample preparation protocol that can be completed in less than 1 hr. The sample preparation includes labelling with RapiFluor-MS tag to improve both fluorescence (FLR) and mass spectral (MS) sensitivities. Following HILIC-UPLC/FLR/MS analyses, the data are processed and a library search based on glucose units has been included to expedite the task of structural assignment. We then applied this total analytical solution to characterize the glycosylation of the NIST Reference Material mAb 8761. For this glycoprotein, we confidently identified 35 N-linked glycans and all three major classes, high mannose, complex, and hybrid, were present. The majority of the glycans were neutral and fucosylated; glycans featuring N-glycolylneuraminic acid and those with two galactoses connected via an α1,3-linkage were also identified.

  15. Preparation of Ti/IrO2 Anode with Low Iridium Content by Thermal Decomposition Process: Electrochemical removal of organic pollutants in water

    Science.gov (United States)

    Yaqub, Asim; Isa, Mohamed Hasnain; Ajab, Huma; Kutty, S. R. M.; Ezechi, Ezerie H.; Farooq, Robina

    2018-04-01

    In this study IrO2 (Iridium oxide) was coated onto a titanium plate anode from a dilute (50 mg/10 ml) IrCl3×H2O salt solution. Coating was done at high temperature (550∘C) using thermal decomposition. Surface morphology and characteristics of coated surface of Ti/IrO2 anode were examined by FESEM and XRD. The coated anode was applied for electrochemical removal of organic pollutants from synthetic water samples in 100 mL compartment of batch electrochemical cell. About 50% COD removal was obtained at anode prepared with low Ir content solution while 72% COD removal was obtained with anode prepared at high Ir content. Maximum COD removal was obtained at 10 mA/cm2 current density.

  16. Preparation and certification of solutions of perdeuterated polycyclic aromatic compounds intended for use as surrogate internal standards

    International Nuclear Information System (INIS)

    Quilliam, M.A.; Hardstaff, W.R.; Anacleto, J.F.; LeBlanc, M.D.; Stergiopoulos, V.; Dick, K.L.; Bowser, M.T.; Curtis, J.M.; Embree, D.J.; Sim, P.G.; Boyd, R.K.

    1994-01-01

    Two standard solutions of deuterated polycyclic aromatic compounds (PACs) have been prepared for use as surrogate internal standards. Solution DPAC-1 contains 21 deuterated PACs, and is intended for use with mass spectrometric (MS) detection. Most of the difficulties in certifying concentrations in DPAC-1 arose from the fact that none of the individual compounds was 100% deuterated, so that effects of mass spectrometric fragmentation are convoluted with those of isotopic distributions. The best methods are discussed for using such internal standards so as to minimize these problems, together with those arising from kinetic isotope effects. Solution DPAC-2 contains 6 deuterated PACs, and is primarily intended for use with reversed-phase high-performance liquid chromatography (HPLC) with fluorescence detection (FLD, dural programmed wavelength mode), in which the signals for analyte and internal standard are separated chromatographically rather than via the detector. Full details of the preparation of these solutions are described. In addition, examples of their use in the analysis of a certified coal-tar extract (NIST SRM 1597) are described briefly. In one example a novel HPLC-MS technique was employed, and in the other the HPLC-FLD technique was used. (orig.)

  17. Synthetic biology, inspired by synthetic chemistry.

    Science.gov (United States)

    Malinova, V; Nallani, M; Meier, W P; Sinner, E K

    2012-07-16

    The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. FORMULATION DEVELOPMENT OF MUCOADHESIVE MICROCAPSULES OF METFORMIN HYDROCHLORIDE USING NATURAL AND SYNTHETIC POLYMERS AND IN VITRO CHARACTERIZATION

    OpenAIRE

    Yellanki Shiva Kumar; Deb Sambit kumar; Goranti Sharada; Nerella Naveen kumar

    2010-01-01

    The objective of this work was to develop optimized and systematically evaluate performances of mucoadhesive microcapsules of antihyperglycemic agent drug Metformin. Alginate microcapsules coated with mucoadhesive natural or synthetic polymers were prepared by Orifice-Ionic Gelation technique utilizing calcium chloride as a cross linking agent. The effect of type (natural or synthetic) and concentration of coating polymers and concentration of alginate on formulation was investigated. Prepare...

  19. Characteristics of Color Produced by Awa Natural Indigo and Synthetic Indigo

    Directory of Open Access Journals (Sweden)

    Miyoko Kawahito

    2009-06-01

    Full Text Available Color of cloth dyed with Awa natural indigo is quantitatively compared with color of the cloth dyed with synthetic indigo. Results showed that: 1 color produced by Awa natural indigo is bluer and brighter than color produced by synthetic indigo; 2 a single Gaussian function fits the profile of the running of color produced by Awa natural indigo and the running of color produced by synthetic indigo prepared with sodium hydrosulfite approximates a linear sum of two Gaussian functions; 3 before and after washing, color is quantitatively more uneven when produced by Awa natural indigo than when produced by synthetic indigo; 4 the diffusion coefficient of Awa natural indigo is lower than that of synthetic indigo; 5 color superiority of Awa natural indigorelates to smaller diffusion coefficient, slower reduction, poorer penetration, and higher dye aggregation.

  20. Preparation and Characterization of Coating Solution Based on Waterborne Polyurethane Dispersion containing Fluorine for Primer on Electro Galvanized Steel Sheet

    International Nuclear Information System (INIS)

    Jin, Chung Keun; Lim, Sung Hyung

    2015-01-01

    The purpose of this research was to synthesize fluorine modified waterborne polyurethane dispersion (F-WPU) by soap-free (internal emulsifier) emulsion polymerization techniques, to prepare coating solution based on fluorine modified waterborne polyurethane dispersion (F-WPU) and to compare the chemical and thermo-mechanical properties on the electrogalvanized steel sheet. Environmentally friendly F-WPU was prepared with a fluorinated polyol containing 60 wt% of fluorine. There are various ways of combining a wide variety of fluorinated polyols and diisocyanate to exhibit novel properties of waterborne polyurethane dispersion. Components of coating solution were largely divided into 4 kinds i.e., F-WPU, acrylic emulsion, silane coupling agent, and colloidal silicate. F-WPU coating solution on the electro-galvanized steel sheet showed excellent properties of corrosion resistance, alkali resistance and heat resistance, as compared to other coating solutions using a general waterborne resin. The F-WPU coating solution's reliable effects are possibly due to the fluorine atoms incorporated even in a small amount of F-WPU

  1. Preparation and Characterization of Coating Solution Based on Waterborne Polyurethane Dispersion containing Fluorine for Primer on Electro Galvanized Steel Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Chung Keun; Lim, Sung Hyung [Buhmwoo Institute of Technology Research, Hwaseong (Korea, Republic of)

    2015-10-15

    The purpose of this research was to synthesize fluorine modified waterborne polyurethane dispersion (F-WPU) by soap-free (internal emulsifier) emulsion polymerization techniques, to prepare coating solution based on fluorine modified waterborne polyurethane dispersion (F-WPU) and to compare the chemical and thermo-mechanical properties on the electrogalvanized steel sheet. Environmentally friendly F-WPU was prepared with a fluorinated polyol containing 60 wt% of fluorine. There are various ways of combining a wide variety of fluorinated polyols and diisocyanate to exhibit novel properties of waterborne polyurethane dispersion. Components of coating solution were largely divided into 4 kinds i.e., F-WPU, acrylic emulsion, silane coupling agent, and colloidal silicate. F-WPU coating solution on the electro-galvanized steel sheet showed excellent properties of corrosion resistance, alkali resistance and heat resistance, as compared to other coating solutions using a general waterborne resin. The F-WPU coating solution's reliable effects are possibly due to the fluorine atoms incorporated even in a small amount of F-WPU.

  2. WISB: Warwick Integrative Synthetic Biology Centre.

    Science.gov (United States)

    McCarthy, John

    2016-06-15

    Synthetic biology promises to create high-impact solutions to challenges in the areas of biotechnology, human/animal health, the environment, energy, materials and food security. Equally, synthetic biologists create tools and strategies that have the potential to help us answer important fundamental questions in biology. Warwick Integrative Synthetic Biology (WISB) pursues both of these mutually complementary 'build to apply' and 'build to understand' approaches. This is reflected in our research structure, in which a core theme on predictive biosystems engineering develops underpinning understanding as well as next-generation experimental/theoretical tools, and these are then incorporated into three applied themes in which we engineer biosynthetic pathways, microbial communities and microbial effector systems in plants. WISB takes a comprehensive approach to training, education and outreach. For example, WISB is a partner in the EPSRC/BBSRC-funded U.K. Doctoral Training Centre in synthetic biology, we have developed a new undergraduate module in the subject, and we have established five WISB Research Career Development Fellowships to support young group leaders. Research in Ethical, Legal and Societal Aspects (ELSA) of synthetic biology is embedded in our centre activities. WISB has been highly proactive in building an international research and training network that includes partners in Barcelona, Boston, Copenhagen, Madrid, Marburg, São Paulo, Tartu and Valencia. © 2016 The Author(s).

  3. An Integrated Laboratory Approach toward the Preparation of Conductive Poly(phenylene vinylene) Polymers

    Science.gov (United States)

    Knoerzer, Timm A.; Balaich, Gary J.; Miller, Hannah A.; Iacono, Scott T.

    2014-01-01

    Poly(phenylene vinylene) (PPV) represents an important class of conjugated, conducting polymers that have been readily exploited in the preparation of organic electronic materials. In this experiment, students prepare a PPV polymer via a facile multistep synthetic sequence with robust spectroscopic evaluation of synthetic intermediates and the…

  4. Peptide/protein-polymer conjugates: synthetic strategies and design concepts.

    Science.gov (United States)

    Gauthier, Marc A; Klok, Harm-Anton

    2008-06-21

    This feature article provides a compilation of tools available for preparing well-defined peptide/protein-polymer conjugates, which are defined as hybrid constructs combining (i) a defined number of peptide/protein segments with uniform chain lengths and defined monomer sequences (primary structure) with (ii) a defined number of synthetic polymer chains. The first section describes methods for post-translational, or direct, introduction of chemoselective handles onto natural or synthetic peptides/proteins. Addressed topics include the residue- and/or site-specific modification of peptides/proteins at Arg, Asp, Cys, Gln, Glu, Gly, His, Lys, Met, Phe, Ser, Thr, Trp, Tyr and Val residues and methods for producing peptides/proteins containing non-canonical amino acids by peptide synthesis and protein engineering. In the second section, methods for introducing chemoselective groups onto the side-chain or chain-end of synthetic polymers produced by radical, anionic, cationic, metathesis and ring-opening polymerization are described. The final section discusses convergent and divergent strategies for covalently assembling polymers and peptides/proteins. An overview of the use of chemoselective reactions such as Heck, Sonogashira and Suzuki coupling, Diels-Alder cycloaddition, Click chemistry, Staudinger ligation, Michael's addition, reductive alkylation and oxime/hydrazone chemistry for the convergent synthesis of peptide/protein-polymer conjugates is given. Divergent approaches for preparing peptide/protein-polymer conjugates which are discussed include peptide synthesis from synthetic polymer supports, polymerization from peptide/protein macroinitiators or chain transfer agents and the polymerization of peptide side-chain monomers.

  5. Layered double hydroxides as the next generation inorganic anion exchangers: Synthetic methods versus applicability.

    Science.gov (United States)

    Chubar, Natalia; Gilmour, Robert; Gerda, Vasyl; Mičušík, Matej; Omastova, Maria; Heister, Katja; Man, Pascal; Fraissard, Jacques; Zaitsev, Vladimir

    2017-07-01

    This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water treatment application and dynamic adsorption conditions, as well as the first report to associate these properties with the synthetic methods used for LDH preparation. Increasingly stronger maximum allowable concentrations (MAC) of various contaminants in drinking water and liquid foodstuffs require regular upgrades of purification technologies, which might also be useful in the extraction of valuable substances for reuse in accordance with modern sustainability strategies. Adsorption is the main separation technology that allows the selective extraction of target substances from multicomponent solutions. Inorganic anion exchangers arrived in the water business relatively recently to achieve the newly approved standards for arsenic levels in drinking water. LDHs (or hydrotalcites, HTs) are theoretically the best anion exchangers due to their potential to host anions in their interlayer space, which increases their anion removal capacity considerably. This potential of the interlayer space to host additional amounts of target aqueous anions makes the LDHs superior to bulk anion exchanger. The other unique advantage of these layered materials is the flexibility of the chemical composition of the metal oxide-based layers and the interlayer anions. However, until now, this group of "classical" anion exchangers has not found its industrial application in adsorption and catalysis at the industrial scale. To accelerate application of LDHs in water treatment on the industrial scale, the authors critically reviewed recent scientific and technological knowledge on the properties and adsorptive removal of LDHs from water on the fundamental science level. This also includes review of the research tools useful to reveal the adsorption mechanism and the material properties beyond the nanoscale. Further, these properties are

  6. Anisotropic surface hole-transport property of triphenylamine-derivative single crystal prepared by solution method

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Katagiri, Mitsuhiko; Shironita, Sayoko [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nagayama, Norio [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Ricoh Company, Ltd., Nishisawada, Numazu, Shizuoka 410-0007 (Japan)

    2016-12-01

    Highlights: • A hole transport molecule was investigated based on its electrochemical redox characteristics. • The solubility and supersolubility curves of the molecule were measured in order to prepare a large crystal. • The polarization micrograph and XRD results revealed that a single crystal was obtained. • An anisotropic surface conduction, in which the long-axis direction exceeds that of the amorphous layer, was observed. • The anisotropic surface conduction was well explained by the molecular stacked structure. - Abstract: This paper reports the anisotropic hole transport at the triphenylamine-derivative single crystal surface prepared by a solution method. Triphenylamine derivatives are commonly used in a hole-transport material for organic photoconductors of laser-beam printers, in which the materials are used as an amorphous form. For developing organic photovoltaics using the photoconductor’s technology, preparation of a single crystal seems to be a specific way by realizing the high mobility of an organic semiconductor. In this study, a single crystal of 4-(2,2-diphenylethenyl)-N,N-bis(4-methylphenyl)-benzenamine (TPA) was prepared and its anisotropic hole-transport property measured. First, the hole-transport property of the TPA was investigated based on its chemical structure and electrochemical redox characteristics. Next, a large-scale single crystal formation at a high rate was developed by employing a solution method based on its solubility and supersolubility curves. The grown TPA was found to be a single crystal based on the polarization micrograph observation and crystallographic analysis. For the TPA single crystal, an anisotropic surface conduction was found, which was well explained by its molecular stack structure. The measured current in the long-axis direction is one order of magnitude greater than that of amorphous TPA.

  7. Vaginal preparation with antiseptic solution before cesarean section for preventing postoperative infections.

    Science.gov (United States)

    Haas, David M; Morgan, Sarah; Contreras, Karenrose

    2014-09-09

    Cesarean delivery is one of the most common surgical procedures performed by obstetricians. Infectious morbidity after cesarean delivery can have a tremendous impact on the postpartum woman's return to normal function and her ability to care for her baby. Despite the widespread use of prophylactic antibiotics, postoperative infectious morbidity still complicates cesarean deliveries. To determine if cleansing the vagina with an antiseptic solution before a cesarean delivery decreases the risk of maternal infectious morbidities, including endometritis and wound complications. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (21 July 2014). We included randomized and quasi-randomized trials assessing the impact of vaginal cleansing immediately before cesarean delivery with any type of antiseptic solution versus a placebo solution/standard of care on post-cesarean infectious morbidity. We independently assessed eligibility and quality of the studies. Five trials randomizing 1946 women (1766 analyzed) evaluated the effects of vaginal cleansing (all with povidone-iodine) on post-cesarean infectious morbidity. The risk of bias was generally low, with the quality of most of the studies being high. Vaginal preparation immediately before cesarean delivery significantly reduced the incidence of post-cesarean endometritis from 7.2% in control groups to 3.6% in vaginal cleansing groups (average risk ratio (RR) 0.39, 95% confidence interval (CI) 0.16 to 0.97, five trials, 1766 women). The risk reduction was particularly strong for women with ruptured membranes (1.4% in the vaginal cleansing group versus 15.4% in the control group; RR 0.13, 95% CI 0.02 to 0.66, two trials, 148 women). No other outcomes realized statistically significant differences between the vaginal cleansing and control groups. No adverse effects were reported with the povidone-iodine vaginal cleansing.The quality of the evidence using GRADE was low for post-cesarean endometritis

  8. Exploring challenges and solutions in the preparation of surgical patients

    DEFF Research Database (Denmark)

    Møller, Thea Palsgaard; Münter, Kristine Husum; Østergaard, Doris

    2015-01-01

    management system tasks, 26% of anaesthesia record tasks, 24% of medication tasks, 14% of blood test tasks and 12% of patient record tasks. In two workshops held for each of four specialties, a total of 21 participants mapped the preoperative patient journey with related responsibilities, tasks and written......, workshops including table simulations involving the various professions and specialties were held. RESULTS: In total, 314 surgical procedures were performed of which 196 were eligible for analysis. Emergency procedures showed the poorest results with non-completed tasks comprising 58% of electronic patient...... documentation. Furthermore, challenges and suggestions for solutions were identified. CONCLUSIONS: Completion of mandatory tasks for surgical patient preparation was poor. Workshops with table simulations actively involved the stakeholders from various professions and specialties in describing the patient...

  9. The preparation method of solid boron solution in silicon carbide in the form of micro powder

    International Nuclear Information System (INIS)

    Pampuch, R.; Stobierski, L.; Lis, J.; Bialoskorski, J.; Ermer, E.

    1993-01-01

    The preparation method of solid boron solution in silicon carbide in the form of micro power has been worked out. The method consists in introducing mixture of boron, carbon and silicon and heating in the atmosphere of inert gas to the 1573 K

  10. Quasi-Similarity Model of Synthetic Jets

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Kordík, Jozef

    2009-01-01

    Roč. 149, č. 2 (2009), s. 255-265 ISSN 0924-4247 R&D Projects: GA AV ČR IAA200760705; GA ČR GA101/07/1499 Institutional research plan: CEZ:AV0Z20760514 Keywords : jets * synthetic jets * similarity solution Subject RIV: BK - Fluid Dynamics Impact factor: 1.674, year: 2009 http://www.sciencedirect.com

  11. Synthetic seed technology for encapsulation and regrowth of in vitro ...

    African Journals Online (AJOL)

    In this study, various concentrations of sodium alginate solutions and calcium chloride solutions were tested in order to optimize the size, shape and texture of alginate synthetic seeds or beads for Acacia hybrid bud-sprouting. The shoot buds and axillary buds from in vitro Acacia hybrids, as explants were encapsulated with ...

  12. Can mothers safely prepare labon-gur salt-sugar solution after demonstration in a diarrhoeal hospital?

    DEFF Research Database (Denmark)

    Islam, M A; Kofoed, Poul-Erik; Begum, S

    1992-01-01

    Home-based salt-sugar solution (SSS) prepared with labon (locally produced sea salt) and gur (unrefined brown sugar) has been recommended as a cheap, locally available and a simple tool to prevent and treat diarrhoeal dehydration. Preparation of labon-gur SSS is demonstrated to the patients...... and the attendants at ICDDR, Bangladesh. To evaluate performances, 150 mothers were asked to measure labon and gur by finger pinch and first method and 100 mothers measured half a seer of water to prepare labon-gur SSS, shortly after the demonstration sessions. 4.0% of the samples exceeded the upper safety limit...... this knowledge. Our study suggests that demonstration of home-based SSS in a diarrhoeal hospital may positively affect health education and that health personnel should actively participate in increasing health awareness....

  13. Improving the Compatibility of Natural and Synthetic Polymer Blends by Radiation Treatments for Using in Practical Application

    International Nuclear Information System (INIS)

    Abu-El Fadle, F.I.

    2011-01-01

    Different polymer blends based on the natural polymers carboxymethyl cellulose (CMC) and sodium alginate as well as the synthetic polymers poly(ethylene glycol) (PEG), poly(ethylene oxide) (PEO) and poly acrylamide (PAM) were prepared by solution casting in the form of films. The common solvent used was water. The different blends prepared in this study were subjected to gamma radiation. The compatibility and structure-property behaviour of these blends was studied by differential scanning calorimetry (DSC), Fourier-Transform Infrared (FTIR) analysis, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile mechanical testing before and after irradiation. In addition, the swelling properties of different polymer blends were studied at different conditions of temperature and ph. The controlled release characters of the different blends of different drugs were investigated. In addition, the different polymer blends were used for the removal of heavy metals and dyes waste.

  14. Transuranium elements leaching from simulated HLW glasses in synthetic interstitial claywater

    International Nuclear Information System (INIS)

    Wang, L.

    1992-08-01

    The main objective of this Master Thesis is to measure the steady-state concentrations of Pu, Np, and Am upon the leaching of High-Level Waste Glass in two types of synthetic claywater: humic acid free and humic acid containing synthetic claywater. The synthetic claywater has a composition that is representative for the in-situ interstitial groundwater of the Boom clay formation, a potential geological repository of radioactive waste in Belgium. The steady-state concentrations of transuranium elements were measured by leaching experiments with a typical duration of 400 days. Five main conclusions are drawn from the experimental data. (1) The transuranium elements that are released from simulated High Level Waste Glass are dominantly present in the synthetic claywater solutions as colloids. These colloids are smaller than 2 nm in absence of humic acids. In the presence of humic acids however, the colloids interact with actinides (adsorb or coagulate) and form particles larger than 2 nm. Np and Am are associated with inorganic and organic colloids in the synthetic interstitial claywater solution whereas Pu forms only inorganic colloids. (2) The steady-state concentration of Pu is in good agreement with the solubility of the Pu compound PuO 2 .xH 2 O. It is therefore concluded that PuO 2 .xH 2 O is the solubility controlling phase. (3) The Pu(IV)-species are dominant in the leaching solutions. Carbonate and humic acid complexes are negligible. (4) The steady-state concentrations of Np and Am in leaching solutions were much lower than the values calculated on the basis of known thermodynamic data. This indicates that the solubility controlling phases for Np and Am were not correctly identified or that the measured Np and Am concentrations were not steady-state values. (5) Non-active glass leaching tests have indicated that no organic colloids were formed as a result of glass dissolution. (A.S.)

  15. Research on the structure in solution of optically active synthetic polymers (propylene polysulphide, propylene polyoxide, tertio-butyl polysulphide)

    International Nuclear Information System (INIS)

    Sarrazin, Brigitte

    1971-03-01

    It was proposed to study the structure of sulphur-containing synthetic polymers, stereo-regular, optically active in solution and able to adopt a spiral conformation, with special reference to propylene polysulphide. Two methods were used, the first mathematical (conformational energy calculations) and the second physico-chemical, essentially spectroscopic. By conformational analysis it is possible to choose the most probable structures liable to be adopted by a given polymer in solution while the spectro-polarimetric study should, in principle, invalidate or confirm certain of these hypotheses. The conformational energy calculations showed that in fact there is no energy conformation low enough to be stable in solution. Strictly speaking however we can refer to a region of stability in which steric hindrance is low and many energy minima exist. These minima are indistinguishable both by their energy values and by their spatial localizations and are all enclosed in the region bounded by the barriers due to steric hindrance. This uncertainty does not arise from approximations made in the calculations, but from the multitude of stereochemical structure possible. Investigations into the variation of the optical rotary dispersion and the circular dichroism as a function of temperature indicated the existence of three or more equilibrium states in the dioxane. The spectra appear to be the summation of the optical activities of the numerous simultaneously possible conformations. It appears that polymers, such as propylene polysulphide or propylene polyoxide do not have stable structures in solution. These are molecules of great flexibility possessing a large number of degrees of freedom. These properties distinguish them from the natural polymers, carrying precise information, such as DNA which must consequently have stable conformations. (author) [fr

  16. OIL SOLUTIONS POWDER

    Science.gov (United States)

    Technical product bulletin: aka OIL SOLUTIONS POWDER, SPILL GREEN LS, this miscellaneous oil spill control agent used in cleanups initially behaves like a synthetic sorbent, then as a solidifier as the molecular microencapsulating process occurs.

  17. Cefuroxime axetil solid dispersions prepared using solution enhanced dispersion by supercritical fluids.

    Science.gov (United States)

    Jun, Seoung Wook; Kim, Min-Soo; Jo, Guk Hyun; Lee, Sibeum; Woo, Jong Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2005-12-01

    Cefuroxime axetil (CA) solid dispersions with HPMC 2910/PVP K-30 were prepared using solution enhanced dispersion by supercritical fluids (SEDS) in an effort to increase the dissolution rate of poorly water-soluble drugs. Their physicochemical properties in solid state were characterized by differential scanning calorimeter (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectrometry (FT-IR) and scanning electron microscopy. No endothermic and characteristic diffraction peaks corresponding to CA were observed for the solid dispersions in DSC and PXRD. FTIR analysis demonstrated the presence of intermolecular hydrogen bonds between CA and HPMC 2910/PVP K-30 in solid dispersions, resulting in the formation of amorphous or non-crystalline CA. Dissolution studies indicated that the dissolution rates were remarkably increased in solid dispersions compared with those in the physical mixture and drug alone. In conclusion, an amorphous or non-crystalline CA solid dispersion prepared using SEDS could be very useful for the formulation of solid dosage forms.

  18. Laboratory evaluation of limestone and lime neutralization of acidic uranium mill tailings solution. Progress report

    International Nuclear Information System (INIS)

    Opitz, B.E.; Dodson, M.E.; Serne, R.J.

    1984-02-01

    Experiments were conducted to evaluate a two-step neutralization scheme for treatment of acidic uranium mill tailings solutions. Tailings solutions from the Lucky Mc Mill and Exxon Highland Mill, both in Wyoming, were neutralized with limestone, CaCO 3 , to an intermediate pH of 4.0 or 5.0, followed by lime, Ca(OH) 2 , neutralization to pH 7.3. The combination limestone/lime treatment methods, CaCO 3 neutralization to pH 4 followed by neutralization with Ca(OH) 2 to pH 7.3 resulted in the highest quality effluent solution with respect to EPA's water quality guidelines. The combination method is the most cost-effective treatment procedure tested in our studies. Neutralization experiments to evaluate the optimum solution pH for contaminant removal were performed on the same two tailings solutions using only lime Ca(OH) 2 as the neutralizing agent. The data indicate solution neutralization above pH 7.3 does not significantly increase removal of pH dependent contaminants from solution. Column leaching experiments were performed on the neutralized sludge material (the precipitated solid material which forms as the acidic tailings solutions are neutralized to pH 4 or above). The sludges were contacted with laboratory prepared synthetic ground water until several effluent pore volumes were collected. Effluent solutions were analyzed for macro ions, trace metals and radionuclides in an effort to evaluate the long term effectiveness of attenuating contaminants in sludges formed during solution neutralization. Neutralized sludge leaching experiments indicate that Ca, Na, Mg, Se, Cl, and SO 4 are the only constituents which show solution concentrations significantly higher than the synthetic ground water in the early pore volumes of long-term leaching studies

  19. Removal of Phosphate from Synthetic Aqueous Solution by Adsorption with Dolomite from Padalarang

    Directory of Open Access Journals (Sweden)

    Fadjari Lucia Nugroho

    2014-12-01

    Full Text Available The presence of phosphate in wastewaters can cause eutrophication of surface water bodies leading to algal-blooming in the aquatic environment and degradation of water quality. Phosphate removal from wastewaters by conventional biological treatment removes only 10-30% of the phosphate, whilst chemical treatment using precipitants such as calcium or iron salts, although effective, is expensive and produces water-rich sludge which must be further treated. Hence, phosphate removal by adsorption in the form of Ca -phosphate has been proposed as an alternative to the more traditional methods. This study investigated the feasibility of using dolomite–a common sedimentary rock–from Padalarang, West Java, Indonesia as the adsorbent for the removal of phosphate from synthetic aqueous solution. Chemical analysis revealed that the Padalarang dolomite contains 33.6-36.2% CaO. Batch experiments at room temperature indicated that optimum removal of phosphate was achieved at pH 9. At 25°C , where increasing concentrations of phosphate (10–100 mg/L increased phosphate adsorption (2.15-31.3 mg/g by the dolomite. The adsorption of phosphate could be described by the Langmuir isotherm model, with constants Qm= 476.19 mg/g, K L= 0,00106 L/mg and equilibrium parameter (R L: 0.904 – 0.989. Phosphate adsorption by dolomite not only permits its removal but also its potential recovery for reuse.

  20. Possibility of Modification of Zeolites by Iron Oxides and its Utilization for Removal of Pb(II from Water Solutions

    Directory of Open Access Journals (Sweden)

    Michal Lovás

    2004-12-01

    Full Text Available Ion-exchange properties of cations from lattice and ions from solutions are characteristic for zeolites. Zeolites as sorbents are used in many branches of industry. Ion-exchange reactions of cations on zeolites have been a theme of many works. With the exception of using natural zeolites as the sorbent, a modification of surface of zeolites and preparation of synthetic zeolites has received interest lately. One of the common modification of zeolites is modification by iron oxides, which increases capacity of adsorption. In this work, we prepared a modified zeolite by the precipitation of magnetite on the surface of zeolite. This new adsorbent was used to remove of Pb(II from waste water. The maximum adsorption capacity was 73,25 mg/g from the solution of Pb with the concentration of 400 mg/l.

  1. Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste.

    Science.gov (United States)

    Rao, M Madhava; Reddy, D H K Kumar; Venkateswarlu, Padala; Seshaiah, K

    2009-01-01

    Removal of mercury from aqueous solutions using activated carbon prepared from Ceiba pentandra hulls, Phaseolus aureus hulls and Cicer arietinum waste was investigated. The influence of various parameters such as effect of pH, contact time, initial metal ion concentration and adsorbent dose for the removal of mercury was studied using a batch process. The experiments demonstrated that the adsorption process corresponds to the pseudo-second-order-kinetic models and the equilibrium adsorption data fit the Freundlich isotherm model well. The prepared adsorbents ACCPH, ACPAH and ACCAW had removal capacities of 25.88 mg/g, 23.66 mg/g and 22.88 mg/g, respectively, at an initial Hg(II) concentration of 40 mg/L. The order of Hg(II) removal capacities of these three adsorbents was ACCPH>ACPAH>ACCAW. The adsorption behavior of the activated carbon is explained on the basis of its chemical nature. The feasibility of regeneration of spent activated carbon adsorbents for recovery of Hg(II) and reuse of the adsorbent was determined using HCl solution.

  2. Bio-treatment of phosphate from synthetic wastewater using ...

    African Journals Online (AJOL)

    Michael Horsfall

    effect of carbon sources (glucose, starch, sucrose and lactose) at 0.5% on the ... to be maximum of 68 % in synthetic phosphate wastewater with glucose carbon ... possible entry of this ion into aquatic environment is ... Therefore it is essential to control the emission of ... Mumbai, India) was prepared and selected bacterial.

  3. The effect of solution heat treatments on the microstructure and hardness of ZK60 magnesium alloys prepared under low-frequency alternating magnetic fields

    International Nuclear Information System (INIS)

    Li, Caixia; Yu, Yan Dong

    2013-01-01

    The solidified structure of ZK60 magnesium alloys in the presence and absence of electromagnetic stirring during the solidification process was compared, and the precipitates of ZK60 magnesium alloys were analyzed after a solution heat treatment using optical microscopy, micro-hardness analysis, X-ray diffraction and scanning electron microscopy. The results showed that the microstructure of cast alloys under a low-frequency alternating magnetic field (LFAMF) was mainly composed of a primary crystalline Mg matrix and a non-equilibrium eutectic structure (Mg+MgZn+MgZn 2 ). In comparison with the microstructure observed in the absence of the electromagnetic field, the eutectic network structure on the grain boundary under low-frequency alternating magnetic field was finer and exhibited a more uniform grain distribution. The grains under the LFAMF were refined in comparison with those under no electromagnetic field before the solution heat treatment, and the former grain distribution was more uniform than the latter after the solution heat treatment. The more uniform grain distribution is because the solution heat treatment is conducive to the dissolution of the second phase particles. The hardness exhibited a downward trend with increasing solution heat treatment time. Under the same solution heat treatment, the hardness value of the samples prepared under the LFAMF was lower than those prepared in the absence of the electromagnetic field. In contrast, the mechanical properties of alloys prepared under the LFAMF were better than those prepared in the absence of the electromagnetic field.

  4. Synthetic Sling Failure - Evaluations and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. S. [Washington River Protection Solutions, Richland, WA (United States); Mackey, Thomas C. [Washington River Protection Solutions, Richland, WA (United States)

    2009-10-26

    The information and evaluations provided in this report were compiled to address the recurring problem of synthetic sling failure. As safety is the number one priority in all work aspects, a solution must be devised to prevent accidents from occurring. A total of thirteen cases regarding synthetic sling failure were evaluated in order to determine their causes, effects, and preventative measures. From the collected data, it was found that all cases in which the synthetic sling contacted the edge of its load resulted in sling failure. It is required that adequate synthetic sling protection devices be used to protect slings in any lift where the sling comes in direct contact with the edge or corner of its load. However, there are no consensus codes or standards stating the type, material, or purpose of the type of protective device used to protect the sling from being cut. Numerous industry standards and codes provide vague descriptions on how to protect synthetic slings. Without a clear, concise statement of how to protect synthetic slings, it is common for inadequate materials and sling protection devices to be used in an attempt to meet the intent of these requirements. The use of an inadequate sling protection device is the main cause of synthetic sling failure in all researched cases. Commercial sling protection devices come in many shapes and sizes, and have a variety of names, as well as advertised uses. 'Abrasion pads' and 'wear protectors' are two different names for products with the same intended purpose. There is no distinguishable way to determine the extent of sling protection which these devices will provide, or what specific scenarios they are made for. This creates room for error in a field where error is unacceptable. This report provides a recommended action for hoisting and rigging activities which require synthetic slings to contact a load, as well as recommended changes to industry standards which will benefit overall

  5. Solution based preparation of Perovskite-type oxide films and powders

    Energy Technology Data Exchange (ETDEWEB)

    McHale, Jr., James M. [Temple Univ., Philadelphia, PA (United States). Dept. of Chemistry

    1995-04-01

    Conventional solid state reactions are diffusion limited processes that require high temperatures and long reaction times to reach completion. In this work, several solution based methods were utilized to circumvent this diffusion limited reaction and achieve product formation at lower temperatures. The solution methods studied all have the common goal of trapping the homogeneity inherent in a solution and transferring this homogeneity to the solid state, thereby creating a solid atomic mixture of reactants. These atomic mixtures can yield solid state products through "diffusionless" mechanisms. The effectiveness of atomic mixtures in solid state synthesis was tested on three classes of materials, varying in complexity. A procedure was invented for obtaining the highly water soluble salt, titanyl nitrate, TiO(NO3)2, in crystalline form, which allowed the production of titanate materials by freeze drying. The freeze drying procedures yielded phase pure, nanocrystalline BaTiO3 and the complete SYNROC-B phase assemblage after ten minute heat treatments at 600{degrees}C and 1100{degrees}C, respectively. Two novel methods were developed for the solution based synthesis of Ba2YCu3O7-x and Bi2Sr2Ca2Cu3O10. Thin and thick films of Ba2YCu3O7-x and Bi2Sr2Ca2u3O10 were synthesized by an atmospheric pressure, chemical vapor deposition technique. Liquid ammonia solutions of metal nitrates were atomized with a stream of N2O and ignited with a hydrogen/oxygen torch. The resulting flame was used to coat a substrate with superconducting material. Bulk powders of Ba2YCu3O7-x and Bi2Sr2Ca2Cu3O10 were synthesized through a novel acetate glass method. The materials prepared were

  6. Electrochemical Preparation of Polyaniline Nanowires with the Used Electrolyte Solution Treated with the Extraction Process and Their Electrochemical Performance

    Directory of Open Access Journals (Sweden)

    Ying Wu

    2018-02-01

    Full Text Available Electrochemical polymerization of aniline is one of the most promising methods to prepare polyaniline (PANI materials. However, during this process, the electrolyte solution must be replaced after electropolymerization of a certain time because of the generation and the accumulation of the by-products, which have significant effects on the morphology, purity and properties of PANI products. Treatment and recycling of the used electrolyte solution are worthwhile to study to reduce the high treatment cost of the used electrolyte solution containing aniline and its polymerization by-products. Here, the composition of the used electrolyte solution was separated and determined by high performance liquid chromatography coupled with diode array detection (HPLC-DAD in the range of ultraviolet and visible (UV-Vis light. The analysis results revealed that the used electrolyte solution consisted of aniline, p-hydroquinone (HQ, p-benzoquinone (BQ, co-oligomers of aniline and p-benzoquinone (CAB and acid. Then, n-octanol and 2-octanone were selected as extracts to remove HQ, BQ and CAB from the used electrolyte solution. Following that, the recycled electrolyte solution was prepared by adjusting the concentration of aniline and acid of the aqueous phase, and the electrochemical polymerization process was conducted. Finally, the obtained PANI was characterized by scanning electron microscope (SEM and electrochemical methods. The experimental results clearly demonstrate that the morphology and specific capacitance of PANI produced from the recycled electrolyte solution can be recovered completely. This research paves the way for reusing the used electrolyte solution for aniline electrochemical polymerization.

  7. Electrochemical Preparation of Polyaniline Nanowires with the Used Electrolyte Solution Treated with the Extraction Process and Their Electrochemical Performance.

    Science.gov (United States)

    Wu, Ying; Wang, Jixiao; Ou, Bin; Zhao, Song; Wang, Zhi; Wang, Shichang

    2018-02-12

    Electrochemical polymerization of aniline is one of the most promising methods to prepare polyaniline (PANI) materials. However, during this process, the electrolyte solution must be replaced after electropolymerization of a certain time because of the generation and the accumulation of the by-products, which have significant effects on the morphology, purity and properties of PANI products. Treatment and recycling of the used electrolyte solution are worthwhile to study to reduce the high treatment cost of the used electrolyte solution containing aniline and its polymerization by-products. Here, the composition of the used electrolyte solution was separated and determined by high performance liquid chromatography coupled with diode array detection (HPLC-DAD) in the range of ultraviolet and visible (UV-Vis) light. The analysis results revealed that the used electrolyte solution consisted of aniline, p-hydroquinone (HQ), p-benzoquinone (BQ), co-oligomers of aniline and p-benzoquinone (CAB) and acid. Then, n-octanol and 2-octanone were selected as extracts to remove HQ, BQ and CAB from the used electrolyte solution. Following that, the recycled electrolyte solution was prepared by adjusting the concentration of aniline and acid of the aqueous phase, and the electrochemical polymerization process was conducted. Finally, the obtained PANI was characterized by scanning electron microscope (SEM) and electrochemical methods. The experimental results clearly demonstrate that the morphology and specific capacitance of PANI produced from the recycled electrolyte solution can be recovered completely. This research paves the way for reusing the used electrolyte solution for aniline electrochemical polymerization.

  8. [New polymer-drug systems based on natural and synthetic polymers].

    Science.gov (United States)

    Racoviţă, Stefania; Vasiliu, Silvia; Foia, Liliana

    2010-01-01

    The great versatility of polymers makes them very useful in the biomedical and pharmaceutical fields. The combination of natural and synthetic polymers leads to new materials with tailored functional properties. The aim of this work consists in the preparation of new drug delivery system based on chitosan (natural polymer) and polybetaines (synthetic polymers), by a simple process, well known in the literature as complex coacervation methods. Also, the adsorption and release studies of two antibiotics as well as the preservation of their bactericidal capacities were performed.

  9. Preparation and characterization of regenerated fiber from the aqueous solution of Bombyx mori cocoon silk fibroin

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhenghua [Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Department of Application Engineering, ZheJiang Vocational College of Economic and Trade, HangZhou, ZheJiang 310018 (China); Imada, Takuzo [Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Asakura, Tetsuo, E-mail: asakura@cc.tuat.ac.jp [Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2009-10-15

    The regenerated silk fibers with high strength and high biodegradability were prepared from the aqueous solution of Bombyx mori silk fibroin from cocoons with wet spinning method. Although the tensile strength of the regenerated silk fibroin fiber, 210 MPa is still half of the strength of native silk fiber, the diameter of the fiber is about 100 {mu}m which is suitable for monofilament of suture together with high biodegradability. The high concentration (30%, w/v) of the aqueous solution of the silk fibroin which corresponds to the high concentration in the middle silkgland of silkworm was obtained. This was performed by adjusting the pH of the aqueous solution to 10.4 which corresponds to pK{sub a} value of the OH group of Tyr residues in the silk fibroin. The mixed solvent, methanol/acetic acid (7:3 in volume ratio) was used as coagulant solvent for preparing the regenerated fiber. The structural change of silk fibroin fiber by stretching was monitored with both {sup 13}C solid state NMR and X-ray diffraction methods, indicating that the high strength of the fiber is related with the long-range orientation of the silk fibroin chain with {beta}-sheet structure.

  10. Development of biochar and chitosan blend for heavy metals uptake from synthetic and industrial wastewater

    Science.gov (United States)

    Hussain, Athar; Maitra, Jaya; Khan, Kashif Ali

    2017-12-01

    Heavy metals are usually released into water bodies from industrial/domestic effluents such as metal plating industries, mining and tanneries. Adsorption is a fundamental process in the physiochemical treatment of wastewaters because of its low cost. Great efforts have been made to use the economically efficient and unconventional adsorbents to adsorb heavy metals from aqueous solutions, such as plant wastes and agricultural waste. Biochar mixed with chitosan after crosslinking can be casted into membranes, beads and solutions which can be effectively utilized as an adsorbent for metal ion uptake. Keeping these facts into consideration, the present study was undertaken with the objective to determine the effect of various proportions of biochar-modified chitosan membranes on the sorption characteristics of different heavy metals like Cu, Pb, As and Cd along with comparison of sorption characteristics between industrial waste water samples containing multi-metals and standard synthetic stock solution containing a particular metal. It is apparent from the results that the bioadsorbent prepared from biochar and chitosan are low-cost efficacious resource due to its easy availability. It is also eco-friendly material for making adsorbent for abstraction of heavy metals from aqueous solution. This adsorbent can be best utilized for adsorption of heavy metals.

  11. The Effect of Toluene Solution on the Hydrogen Absorption of the Mg-Ti Alloy Prepared by Synthetic Alloying

    Directory of Open Access Journals (Sweden)

    H. Suwarno

    2009-07-01

    Full Text Available The synthesis and characterization of the Mg–Ti alloy have been carried out through a mechanical alloying technique under toluene solution. The Mg and Ti powders are milled for 10, 20, and 30 h in a high energy ball mill. The milled alloys are then hydrided at a temperature of 300 oC in order to investigate the possibility used for hydrogen storage materials. The refinement analyses of the x-ray diffraction patterns show that mechanical alloying of the Mg–Ti powders under toluene solution results in the formation of the TiH2 and Mg2Ti phases. Quantitative analyses indicate that the mass fractions of the TiH2 and Mg2Ti phases are 62.90 % and 30.60 %, while the value for Mg and Ti amount to 2.6 wt% and 1.25 wt%. On hydriding at a temperature of 300 oC, the milled powders are transformed into Mg2TiH4, TiH2 and γ-MgH2 phases with the mass fractions of 25.48 wt%, 64.0 wt%, and 10.52 wt%, respectively. Microstructure analyses show that before milling the shape of particle is mostly a ball shape, after 30 h of milling the shape of particles changes into polygonal shape, and upon hydriding the shape of particles changes from a polygonal shape into an irregular one. The final composition of the specimen after hydriding exhibits that Mg-Ti alloy can be promoted as a hydrogen storage material.

  12. Radiation synthesis and characterization of network structure of natural/synthetic double-network superabsorbent polymers

    International Nuclear Information System (INIS)

    Sen, M.; Hayrabolulu, H.

    2011-01-01

    Complete text of publication follows. Superabsorbent polymers (SAPs) are moderately cross linked, 3-D, hydrophilic network polymers that can absorb and conserve considerable amounts of aqueous fluids even under certain heat or pressure. Because of the unique properties superior to conventional absorbents, SAPs have found potential application in many fields such as hygienic products, disposable diapers, horticulture, gel actuators, drug-delivery systems, as well as water-blocking tapes coal dewatering, water managing materials for the renewal of arid and desert environment, etc. In recent years, naturally available resources, such as polysaccharides have drawn considerable attention for the preparation of SAPs. Since the mechanical properties of polysaccharide based natural polymers are low, researchers have mostly focused on natural/synthetic polymer/monomer mixtures to obtain novel SAPs. The aim of this study is to synthesize and characterization of network structure of novel double-network (DN) hydrogels as a SAP. Hydrogels with high mechanical strength have been prepared by radiation induced polymerization and crosslink of acrylic acid sodium salt in the presence of natural polymer locust bean gum. Liquid retention capacities and absorbency under load (AUL) analysis of synthesized SAPs was performed at different temperatures in water and synthetic urine solution, in order to determine their SAP character. For the characterization of network structure of the semi-IPN hydrogels, the average molecular weight between cross links (M c ) were evaluated by using uniaxial compression and oscillatory dynamical mechanical analyses and the advantage and disadvantage of these two technique for the characterization of network structures were compared.

  13. Moessbauer Study of Discoloration of Synthetic Resin Covered Electric Switches

    International Nuclear Information System (INIS)

    Kuzmann, E.; Muzsay, I.; Homonnay, Z.; Vertes, A.

    2002-01-01

    57 Fe Moessbauer spectroscopy and X-ray diffractometry were used to investigate brown discoloration and sediments formed on the surface of synthetic resin product covered electronic switches. The Moessbauer measurement revealed that alloyed steels and iron-containing corrosion products are associated with the discolored layers. Iron, and iron corrosion products were shown by both MS and XRD in the sediments formed eventually during the finishing of the synthetic resin products after machining and washing with water solution.

  14. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil.

    Science.gov (United States)

    Padois, Karine; Cantiéni, Céline; Bertholle, Valérie; Bardel, Claire; Pirot, Fabrice; Falson, Françoise

    2011-09-15

    Solid lipid nanoparticles have been reported as possible carrier for skin drug delivery. Solid lipid nanoparticles are produced from biocompatible and biodegradable lipids. Solid lipid nanoparticles made of semi-synthetic triglycerides stabilized with a mixture of polysorbate and sorbitan oleate were loaded with 5% of minoxidil. The prepared systems were characterized for particle size, pH and drug content. Ex vivo skin penetration studies were performed using Franz-type glass diffusion cells and pig ear skin. Ex vivo skin corrosion studies were realized with a method derived from the Corrositex(®) test. Solid lipid nanoparticles suspensions were compared to commercial solutions in terms of skin penetration and skin corrosion. Solid lipid nanoparticles suspensions have been shown as efficient as commercial solutions for skin penetration; and were non-corrosive while commercial solutions presented a corrosive potential. Solid lipid nanoparticles suspensions would constitute a promising formulation for hair loss treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Characteristics of Barium Hexaferrite Nanoparticles Prepared by Temperature-Controlled Chemical Coprecipitation

    International Nuclear Information System (INIS)

    Kwak, Jun Young; Lee, Choong Sub; Kim, Don; Kim, Yeong Il

    2012-01-01

    Ba-ferrite (BaFe 12 O 19 ) nanoparticles were synthesized by chemical coprecipitation method in an aqueous solution. The particle size and the crystallization temperature of the Ba-ferrite nanoparticles were controlled varying the precipitation temperature. The precipitate that was prepared at 0 .deg. C showed the crystal structure of Ba-ferrite in X-ray diffraction when it was calcined at the temperature above 580 .deg. C, whereas what was prepared at 50 .deg. C showed the crystallinity when it was calcined at the temperature higher than about 700 .deg. C. The particle sizes of the synthesized Ba-ferrite were in a range of about 20-30 nm when it was prepared by being precipitated at 0 .deg. C and calcined at 650 .deg. C. When the precipitation temperature increased, the particle size also increased even at the same calcination temperature. The magnetic properties of the Ba-ferrite nanoparticles were also controlled by the synthetic condition of precipitation and calcination temperature. The coercive force could be appreciably lowered without a loss of saturation magnetization when the Ba-ferrite nanoparticles were prepared by precipitation and calcination both at low temperatures

  16. A novel fully synthetic and self-assembled peptide solution for endoscopic submucosal dissection-induced ulcer in the stomach.

    Science.gov (United States)

    Uraoka, Toshio; Ochiai, Yasutoshi; Fujimoto, Ai; Goto, Osamu; Kawahara, Yoshiro; Kobayashi, Naoya; Kanai, Takanori; Matsuda, Sachiko; Kitagawa, Yuko; Yahagi, Naohisa

    2016-06-01

    Endoscopic submucosal dissection (ESD) can remove early stage GI tumors of various sizes en bloc; however, success requires reducing the relatively high postprocedure bleeding rate. The aim of this study was to assess the safety and efficacy of a novel, fully synthetic, and self-assembled peptide solution that functions as an extracellular matrix scaffold material to facilitate reconstruction of normal tissues in ESD-induced ulcers. Consecutive patients who underwent gastric ESD were prospectively enrolled. Immediately after the resection, the solution was applied to the site with a catheter. Gastric ulcers were evaluated by endoscopy and classified as active, healing, or scarring stages at weeks 1, 4, and 8 after ESD. Forty-seven patients with 53 lesions, including 14 (29.8%) previously on antithrombotic therapy and 2 (4.3%) requiring heparin bridge therapy, were analyzed; 2 patients were excluded, 1 with perforations and 1 with persistent coagulopathy. The mean size of the en bloc resected specimens was 36.5 ± 11.3 mm. The rate of post-ESD bleeding was 2.0% (1/51; 95% CI, 0.03-10.3). Transitional rate to the healing stage of ESD-induced ulcers at week 1 was 96% (49/51). Subsequent endoscopies demonstrated the scarring stage in 19% (9/48) and 98% (41/42) at weeks 4 and 8, respectively. No adverse effects related to this solution occurred. The use of this novel peptide solution may potentially aid in reducing the delayed bleeding rate by promoting mucosal regeneration and speed of ulcer healing after large endoscopic resections in the stomach. Further studies, particularly randomized controlled studies, are needed to fully evaluate its efficacy. ( 000011548.). Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  17. Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations.

    Science.gov (United States)

    Patzke, Greta R; Zhou, Ying; Kontic, Roman; Conrad, Franziska

    2011-01-24

    Oxide nanomaterials are indispensable for nanotechnological innovations, because they combine an infinite variety of structural motifs and properties with manifold morphological features. Given that new oxide materials are almost reported on a daily basis, considerable synthetic and technological work remains to be done to fully exploit this ever increasing family of compounds for innovative nano-applications. This calls for reliable and scalable preparative approaches to oxide nanomaterials and their development remains a challenge for many complex nanostructured oxides. Oxide nanomaterials with special physicochemical features and unusual morphologies are still difficult to access by classic synthetic pathways. The limitless options for creating nano-oxide building blocks open up new technological perspectives with the potential to revolutionize areas ranging from data processing to biocatalysis. Oxide nanotechnology of the 21st century thus needs a strong interplay of preparative creativity, analytical skills, and new ideas for synergistic implementations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Removal of nitrate from ammonium hydroxide solution containing organics by ion exchange method

    International Nuclear Information System (INIS)

    Venugopal Chetty, K.; Gamare, Jayashree S.; Vaidya, V.N.

    2004-01-01

    Removal of nitrate from ammonium hydroxide solution containing HMTA (hexamethyltetramine) and Urea was studied using indigenously available anion exchange resins. This type of waste is produced during nuclear fuel preparation by internal gelation process. The resins used are Tulsion A-27(MP) and Duolite A. 102D. The time of equilibration and capacity of the resins were determined from distribution ratios obtained by equilibrating resin with nitrate solution. The loading, washing and elution behavior of nitrate on these resins were studied using synthetic mixture having similar composition of the waste produced. Elution studies were carried out using sodium hydroxide, hydrochloric acid and ammonium chloride. The studies were also carried out at higher temperature of around 60 degC. The data was compared with that obtained using Dowex 1x4 for the same purpose. (author)

  19. Immobilization of N-Heterocyclic Carbene Compounds: A Synthetic Perspective.

    Science.gov (United States)

    Zhong, Rui; Lindhorst, Anja C; Groche, Florian J; Kühn, Fritz E

    2017-02-08

    Over the course of the past 15 years the success story of N-heterocyclic carbene (NHC) compounds in organic, inorganic, and organometallic chemistry has been extended to another dimension. The immobilization of NHC compounds, undergoing continuous diversification, broadens their range of applications and leads to new solutions for challenges in catalytic and synthetic chemistry. This review intends to present a synthetic toolkit for the immobilization of NHC compounds, giving the reader an overview on synthetic techniques and strategies available in the literature. By individually summarizing and assessing the synthetic steps of the immobilization process, a comprehensive picture of the strategies and methodologies for the immobilization of NHC compounds is presented. Furthermore, the characterization of supported NHC compounds is discussed in detail in order to set up necessary criteria for an in-depth analysis of the immobilized derivatives. Finally, the catalytic applications of immobilized NHC compounds are briefly reviewed to illustrate the practical use of this technique for a broad variety of reaction types.

  20. DNA recognition by synthetic constructs.

    Science.gov (United States)

    Pazos, Elena; Mosquera, Jesús; Vázquez, M Eugenio; Mascareñas, José L

    2011-09-05

    The interaction of transcription factors with specific DNA sites is key for the regulation of gene expression. Despite the availability of a large body of structural data on protein-DNA complexes, we are still far from fully understanding the molecular and biophysical bases underlying such interactions. Therefore, the development of non-natural agents that can reproduce the DNA-recognition properties of natural transcription factors remains a major and challenging goal in chemical biology. In this review we summarize the basics of double-stranded DNA recognition by transcription factors, and describe recent developments in the design and preparation of synthetic DNA binders. We mainly focus on synthetic peptides that have been designed by following the DNA interaction of natural proteins, and we discuss how the tools of organic synthesis can be used to make artificial constructs equipped with functionalities that introduce additional properties to the recognition process, such as sensing and controllability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Immunomodulating activities of soluble synthetic polymer-bound drugs.

    Science.gov (United States)

    Ríhová, Blanka

    2002-09-13

    The introduction of a synthetic material into the body always affects different body systems, including the defense system. Synthetic polymers are usually thymus-independent antigens with only a limited ability to elicit antibody formation or to induce a cellular immune response against them. However, there are many other ways that they influence or can be used to influence the immune system of the host. Low-immunogenic water-soluble synthetic polymers sometimes exhibit significant immunomodulating activity, mainly concerning the activation/suppression of NK cells, LAK cells and macrophages. Some of them, such as poly(ethylene glycol) and poly[N-(2-hydroxypropyl)methacrylamide], can be used as effective protein carriers, as they are able to reduce the immunogenicity of conjugated proteins and/or to reduce non-specific uptake of liposome/nanoparticle-entrapped drugs and other therapeutic agents. Recently, the development of vaccine delivery systems prepared from biodegradable and biocompatible water-soluble synthetic polymers, microspheres, liposomes and/or nanoparticles has received considerable attention, as they can be tailored to meet the specific physical, chemical, and immunogenic requirements of a particular antigen and some of them can also act as adjuvants. Copyright 2002 Elsevier Science B.V.

  2. Numerical modeling of the radiative transfer in a turbid medium using the synthetic iteration.

    Science.gov (United States)

    Budak, Vladimir P; Kaloshin, Gennady A; Shagalov, Oleg V; Zheltov, Victor S

    2015-07-27

    In this paper we propose the fast, but the accurate algorithm for numerical modeling of light fields in the turbid media slab. For the numerical solution of the radiative transfer equation (RTE) it is required its discretization based on the elimination of the solution anisotropic part and the replacement of the scattering integral by a finite sum. The solution regular part is determined numerically. A good choice of the method of the solution anisotropic part elimination determines the high convergence of the algorithm in the mean square metric. The method of synthetic iterations can be used to improve the convergence in the uniform metric. A significant increase in the solution accuracy with the use of synthetic iterations allows applying the two-stream approximation for the regular part determination. This approach permits to generalize the proposed method in the case of an arbitrary 3D geometry of the medium.

  3. Preparation of H3-labelled methyl ethers of saturated fatty acids by heterogeneous catalytic isotope exchange in solution with gaseous tritium

    International Nuclear Information System (INIS)

    Shevchenko, V.P.; Myasoedov, N.F.

    1980-01-01

    A simple method of preparing 3 H-labelled methyl ethers of saturated fatty acids in the dioxane solution using the method of isotopic heterogenous catalytic exchange with gaseous tritium, is suggested. 3 H-labelled natural fatty acids (C 12 -C 18 ) are prepared by alkaline hydrolysis [ru

  4. PREPARATION OF POLY(METHYL METHACRYLATE)/LAYERED DOUBLE HYDROXIDES NANOCOMPOSITES via in situ SOLUTION POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An exfoliated layered double hydroxides/poly(methyl methacrylate) (LDHs/PMMA) nanocomposite was prepared by in situ solution polymerization of methyl methacrylate (MMA) in the presence of 4-vinylbenzenesulfonate intercalated LDHs(MgAl-VBS LDHs). MgAl-VBS LDHs was prepared by the ion exchange method, and the structure and composition of the MgAl-VBS LDHs were determined by X-ray diffraction (XRD), infrared spectroscopy and elemental analysis. XRD and transmission electron microscopy (TEM) were employed to examine the structure of LDHs/PMMA nanocomposite. It was indicated that the LDHs layers were well exfoliated and dispersed in the PMMA matrix. The grafting of PMMA onto LDHs was confirmed by the extraction result and the weight fraction of grafted PMMA increased as the weight fraction of LDHs in the nanocomposites increased.

  5. FC and ZFC magnetic properties of ferro-spinels (MFe2O4) prepared by solution-combustion method

    Science.gov (United States)

    Aravind, G.; Kumar, R. Vijaya; Nathaniyal, V.; Rambabu, T.; Ravinder, D.

    2017-07-01

    Magnetic ferro-spinels MFe2O4 (M= Co and Ni) prepared by citrate-gel solution combustion method using metal nitrates with low sintering temperature (500°C). From the XRD and TEM studies confirm that a nano crystalline nature of the prepared samples. Field Cooled (FC) and Zero Field Cooled (ZFC) magnetic studies of the prepared ferro-spinels are measured by using vibrating sample magnetometer (VSM). The resultant magnetization of the prepared samples as a function of an applied magnetic field 10 T was measured at two different temperatures 5 K and 310 K. Field Cooled (FC) and Zero Field Cooled (ZFC) magnetization measurements under an applied field of 100 Oe and 1000 Oe in the temperature range of 5-375 K were carried out, which shows the blocking temperature of these two samples at around 350 K.

  6. Natural - synthetic - artificial!

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2010-01-01

    The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life.......The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life....

  7. Synthetic biology in the UK - An outline of plans and progress.

    Science.gov (United States)

    Clarke, L J; Kitney, R I

    2016-12-01

    Synthetic biology is capable of delivering new solutions to key challenges spanning the bioeconomy, both nationally and internationally. Recognising this significant potential and the associated need to facilitate its translation and commercialisation the UK government commissioned the production of a national Synthetic Biology Roadmap in 2011, and subsequently provided crucial support to assist its implementation. Critical infrastructural investments have been made, and important strides made towards the development of an effectively connected community of practitioners and interest groups. A number of Synthetic Biology Research Centres, DNA Synthesis Foundries, a Centre for Doctoral Training, and an Innovation Knowledge Centre have been established, creating a nationally distributed and integrated network of complementary facilities and expertise. The UK Synthetic Biology Leadership Council published a UK Synthetic Biology Strategic Plan in 2016, increasing focus on the processes of translation and commercialisation. Over 50 start-ups, SMEs and larger companies are actively engaged in synthetic biology in the UK, and inward investments are starting to flow. Together these initiatives provide an important foundation for stimulating innovation, actively contributing to international research and development partnerships, and helping deliver useful benefits from synthetic biology in response to local and global needs and challenges.

  8. Preparation of Lignin/Sodium Dodecyl Sulfate Composite Nanoparticles and Their Application in Pickering Emulsion Template-Based Microencapsulation.

    Science.gov (United States)

    Pang, Yuxia; Wang, Shengwen; Qiu, Xueqing; Luo, Yanling; Lou, Hongming; Huang, Jinhao

    2017-12-20

    Lignin is a vastly underutilized biomass resource. The preparation of water-dispersed lignin nanoparticles is an effective way to realize the high-value utilization of lignin. However, the currently reported preparation methods of lignin nanoparticles still have some drawbacks, such as the requirement for toxic organic solvent or chemical modification, complicated operation process, and poor dispersibility. Here, lignin/sodium dodecyl sulfate (SDS) composite nanoparticles (LSNPs) with outstanding water dispersibility and a size range of 70-200 nm were facilely prepared via acidifying the mixed basic solution of alkaline lignin and SDS. No harsh chemical was needed. The formation mechanism was systematically studied. Results indicated that the LSNPs were obtained by acid precipitation of the mixed micelles formed by the self-assembly of lignin and SDS. In addition, on the basis of the LSNP-stabilized Pickering emulsions, lignin/polyurea composite microcapsules combining the excellent chemical stability of a synthetic polyurea shell with the fantastic antiphotolysis and antioxidant properties of lignin were successfully prepared.

  9. Methods for preparation of deuterated amino acids

    International Nuclear Information System (INIS)

    Pshenichnikova, A.B.; Karnaukhova, E.N.; Zvonkova, E.N.

    1995-01-01

    The current state and prospects for the use of amino acids labeled with stable isotopes are considered. Methods for the preparation of deuterated amino acids, including synthetic, chemicoenzymatic, and biosynthetic ones, and deuterium exchange reactions are summarized. Problems in the preparation of optically pure amino acids are discussed. 120 refs., 15 figs

  10. Evaluation of synthetic zeolites as oral delivery vehicle for anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    Elham Khodaverdi

    2014-05-01

    Full Text Available Objective(s: In this research, zeolite X and zeolite Y were used as vehicle to prepare intestine targeted oral delivery systems of indomethacin and ibuprofen. Materials and Methods: A soaking procedure was implemented to encapsulate indomethacin or ibuprofen within synthetic zeolites. Gravimetric methods and IR spectra of prepared formulations were used to assess drug loading efficiencies into zeolite structures. Scanning Electron Microscopy (SEM was also utilized to determine morphologies changes in synthetic zeolites after drug loading. At the next stage, dissolution studies were used to predict the in vivo performance of prepared formulations at HCl 0.1 N and PBS pH 6.5 as simulated gastric fluid (SGF and simulated intestine fluid (SIF, respectively. Results: Drug loadings of prepared formulations was determined between 24-26 % w/w. Dissolution tests at SGF were shown that zeolites could retain acidic model drugs in their porous structures and can be able to limit their release into the stomach. On the other hand, all prepared formulations completely released model drugs during 3 hr in simulated intestine fluid. Conclusion: Obtained results indicated zeolites could potentially be able to release indomethacin and ibuprofen in a sustained and controlled manner and reduced adverse effects commonly accompanying oral administrations of NSAIDs.

  11. Bin packing problem solution through a deterministic weighted finite automaton

    Science.gov (United States)

    Zavala-Díaz, J. C.; Pérez-Ortega, J.; Martínez-Rebollar, A.; Almanza-Ortega, N. N.; Hidalgo-Reyes, M.

    2016-06-01

    In this article the solution of Bin Packing problem of one dimension through a weighted finite automaton is presented. Construction of the automaton and its application to solve three different instances, one synthetic data and two benchmarks are presented: N1C1W1_A.BPP belonging to data set Set_1; and BPP13.BPP belonging to hard28. The optimal solution of synthetic data is obtained. In the first benchmark the solution obtained is one more container than the ideal number of containers and in the second benchmark the solution is two more containers than the ideal solution (approximately 2.5%). The runtime in all three cases was less than one second.

  12. Bonding and orientation of 1,4-benzenedimethanethiol on Au(111) prepared from solution and from gas phase

    International Nuclear Information System (INIS)

    Pasquali, L; Terzi, F; Zanardi, C; Seeber, R; Paolicelli, G; Mahne, N; Nannarone, S

    2007-01-01

    The orientation and bonding of 1,4-benzenedimethanethiol molecules on Au(111) is studied by means of x-ray and ultraviolet (UV) photoemission, x-ray absorption and metastable deexcitation spectroscopy. The organic films are prepared both from solution and by exposing the clean substrate to the vapours of the substance in an evacuated environment. This leads to two different growth modes: when self-assembled monolayers (SAMs) are prepared from solution, the molecules tend to form a bilayer film with the molecules standing upright and with the molecular axis forming an angle of about 30 0 with respect to the substrate normal; when growth is carried out from the gas phase, the molecules tend to assume at the earliest stages of exposure a flat-lying configuration, with both sulfur end-groups bonding to Au; at increasing exposure the surface coverage presents a saturation and the chemisorbed molecules tend to assume an upright arrangement

  13. Adsorption of Zn(II) in aqueous solution by activated carbons prepared from evergreen oak (Quercus rotundifolia L.).

    Science.gov (United States)

    Gómez-Tamayo, M del Mar; Macías-García, Antonio; Díaz Díez, M Angeles; Cuerda-Correa, Eduardo M

    2008-05-01

    In the present work activated carbons have been prepared from evergreen oak wood. Different samples have been prepared varying the concentration of the activating agent (H(3)PO(4)) and the treatment temperature. The yield of the process decreases with increasing phosphoric acid concentrations. Furthermore, high concentrations of activating agent lead to mainly mesoporous activated carbons to the detriment of the microporous texture. Treatment temperatures up to 450 degrees C lead to a progressive increase of the micro- and mesopore volumes. Values of specific surface area (S(BET)) as high as 1723 m(2) g(-1)have been obtained using appropriate phosphoric acid concentrations and treatment temperatures. The samples prepared have been successfully used in the removal of Zn(II) from aqueous solutions. From the adsorption kinetic data it may be stated that the equilibrium time is, in all cases, below 170 h. The adsorption process as a rule becomes faster as the mesopore volume and specific surface area of the samples increase. The adsorption isotherms in liquid phase point out that the adsorption capacity (n(0)(s)) and the affinity towards the solute (K(ci)) are higher for the sample showing the most developed mesoporous texture and surface area as well.

  14. Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications.

    Science.gov (United States)

    Yuvakkumar, R; Suresh, J; Nathanael, A Joseph; Sundrarajan, M; Hong, S I

    2014-08-01

    In the present investigation, we report a sustainable novel green synthetic strategy to synthesis zinc oxide nanocrystals. This is the first report on sustainable biosynthesis of zinc oxide nanocrystals employing Nephelium lappaceum L., peel extract as a natural ligation agent. Green synthesis of zinc oxide nanocrystals was carried out via zinc-ellagate complex formation using rambutan peel wastes. The successful formation of zinc oxide nanocrystals was confirmed employing standard characterisation studies. A possible mechanism for the formation of ZnO nanocrystals with rambutan peel extract was also proposed. The prepared ZnO nanocrystals were coated on the cotton fabric and their antibacterial activity were analyzed. ZnO nanocrystals coated cotton showed good antibacterial activity towards Escherichia coli (E. coli), gram negative bacteria and Staphylococcus aureus (S. aureus), gram positive bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Clozapine-carboxylic acid plasticized co-amorphous dispersions: Preparation, characterization and solution stability evaluation

    Directory of Open Access Journals (Sweden)

    Ali Ahmed Mahmoud Abdelhaleem

    2015-06-01

    Full Text Available This study addressed the possibility of forming of co-amorphous systems between clozapine (CZ and various carboxylic acid plasticizers (CAPs. The aim was to improve the solubility and oral bioavailability of clozapine. Co-amorphous dispersions were prepared using modified solvent evaporation methodology at drug/plasticizer stoichiometric ratios of 1:1, 1:1.5 and 1:2. Solid state characterization was performed using differential scanning calorimetry, X-ray diffraction and infra red spectroscopy. Highly soluble homogeneous co-amorphous dispersions were formed between clozapine and CAPs via hydrogen bonding. The co-amorphous dispersions formed with tartaric acid (1:2 showed the highest dissolution percentage (> 95 % in 20 minutes compared to pure crystalline CZ (56 %. Highly stable solutions were obtained from co-amorphous CZ-citric and CZ-tartaric acid at 1:1.5 molar ratio. The prepared dispersions suggest the possibility of peroral or sublingual administration of highly soluble clozapine at a reduced dose with the great chance to bypass the first pass metabolism.

  16. The system architecture for renewable synthetic fuels

    DEFF Research Database (Denmark)

    Ridjan, Iva

    To overcome and eventually eliminate the existing heavy fossil fuels in the transport sector, there is a need for new renewable fuels. This transition could lead to large capital costs for implementing the new solutions and a long time frame for establishing the new infrastructure unless a suitable...... and production plants, so it is important to implement it in the best manner possible to ensure an efficient and flexible system. The poster will provide an overview of the steps involved in the production of synthetic fuel and possible solutions for the system architecture based on the current literature...

  17. Characterization of Laboratory Prepared Concrete Pastes Exposed to High Alkaline and High Sodium Salt Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-30

    The objective of this study was to identify potential chemical degradation mechanisms for the Saltstone Disposal Unit (SDU) concretes, which over the performance life of the structures may be exposed to highly alkaline sodium salt solutions containing sulfate, hydroxide, and other potentially corrosive chemicals in salt solution and saltstone flush water, drain water, leachate and / or pore solution. The samples analyzed in this study were cement pastes prepared in the SIMCO Technologies, Inc. concrete laboratory. They were based on the paste fractions of the concretes used to construct the Saltstone Disposal Units (SDUs). SDU 1 and 4 concrete pastes were represented by the PV1 test specimens. The paste in the SDU 2, 3, 5, and 6 concrete was represented by the PV2 test specimens. SIMCO Technologies, Inc. selected the chemicals and proportions in the aggressive solutions to approximate proportions in the saltstone pore solution [2, 3, 5, and 6]. These test specimens were cured for 56 days in curing chamber before being immersed in aggressive solutions. After exposure, the samples were frozen to prevent additional chemical transport and reaction. Selected archived (retrieved from the freezer) samples were sent to the Savannah River National Laboratory (SRNL) for additional characterization using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray (EDX) spectroscopy. Characterization results are summarized in this report. In addition, a correlation between the oxide composition of the pastes and their chemical durability in the alkaline salt solutions is provided.

  18. Preparation of silver nanoparticles from synthetic and natural sources: remediation model for PAHs

    International Nuclear Information System (INIS)

    Abbasi, M.; Saeed, F.; Rafique, U.

    2013-01-01

    The emergence of nanoscience and technology is gaining popularity with an increasing demand for metal nanoparticles applicability in various areas such as electronics, catalysis, chemistry, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this work, an attempt is made to compare the efficiency of two different synthesis methods and application of each for the remediation of poly aromatic hydrocarbons (PAHs). In this regard, silver nanoparticles are prepared by green and wet chemical method using plant extract of garlic (Allium sativum). The extract is known to reduce the metal during synthesis and acts as stabilizing ligand. These synthesized silver nanoparticles (Agp) and (AgW) were applied as adsorbents in synthetic batch mode experiments at varying parameters of pH and temperature. A concentration of 0.01mg/L of Phenanthrene, Anthracene, and Pyrene were induced at fixed dosage of 1mg/Kg of adsorbent. Residual concentration of each PAH was analyzed on UV-Visible spectrophotometer. The results indicated that both adsorbents follow the sequence of Phenanthrene>Pyrene>Anthracene with optimal removal of higher than 85 percentage in each case. A distinguishing privilege is attained by Agp adsorbent showing 3, 3 and 11 orders of magnitude higher efficiency than Agw. It may be attributed to more functional groups in the plant extract participating in binding of PAH to the surface. Each synthesized adsorbents was characterized by FTIR, SEM and EDX. The average particle size was determined to be of the order of 13-26 nm. The study concludes the use of alternate economical and green adsorbents for control of poly aromatic hydrocarbons (PAHs). (author)

  19. Preparation of Silver Nanoparticles from Synthetic and Natural Sources: Remediation Model for PAHs

    International Nuclear Information System (INIS)

    Abbasi, Maryam; Saeed, Fatima; Rafique, Uzaira

    2014-01-01

    The emergence of nanoscience and technology is gaining popularity with an increasing demand for metal nanoparticles applicability in various areas such as electronics, catalysis, chemistry, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this work, an attempt is made to compare the efficiency of two different synthesis methods and application of each for the remediation of poly aromatic hydrocarbons (PAHs). In this regard, silver nanoparticles are prepared by green and wet chemical method using plant extract of garlic (Allium sativum). The extract is known to reduce the metal during synthesis and acts as stabilizing ligand. These synthesized silver nanoparticles (Agp) and (AgW) were applied as adsorbents in synthetic batch mode experiments at varying parameters of pH and temperature. A concentration of 0.01mg/L of Phenanthrene, Anthracene, and Pyrene were induced at fixed dosage of 1mg/Kg of adsorbent. Residual concentration of each PAH was analyzed on UV-Visible spectrophotometer. The results indicated that both adsorbents follow the sequence of Phenanthrene>Pyrene>Anthracene with optimal removal of higher than 85% in each case. A distinguishing privilege is attained by Agp adsorbent showing 3, 3 and 11 orders of magnitude higher efficiency than Agw. It may be attributed to more functional groups in the plant extract participating in binding of PAH to the surface. Each synthesized adsorbents was characterized by FTIR, SEM and EDX. The average particle size was determined to be of the order of 13-26 nm. The study concludes the use of alternate economical and green adsorbents for control of poly aromatic hydrocarbons (PAHs)

  20. Preparation of Silver Nanoparticles from Synthetic and Natural Sources: Remediation Model for PAHs

    Science.gov (United States)

    Abbasi, Maryam; Saeed, Fatima; Rafique, Uzaira

    2014-06-01

    The emergence of nanoscience and technology is gaining popularity with an increasing demand for metal nanoparticles applicability in various areas such as electronics, catalysis, chemistry, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this work, an attempt is made to compare the efficiency of two different synthesis methods and application of each for the remediation of poly aromatic hydrocarbons (PAHs). In this regard, silver nanoparticles are prepared by green and wet chemical method using plant extract of garlic (Allium sativum). The extract is known to reduce the metal during synthesis and acts as stabilizing ligand. These synthesized silver nanoparticles (Agp) and (AgW) were applied as adsorbents in synthetic batch mode experiments at varying parameters of pH and temperature. A concentration of 0.01mg/L of Phenanthrene, Anthracene, and Pyrene were induced at fixed dosage of 1mg/Kg of adsorbent. Residual concentration of each PAH was analyzed on UV-Visible spectrophotometer. The results indicated that both adsorbents follow the sequence of Phenanthrene>Pyrene>Anthracene with optimal removal of higher than 85% in each case. A distinguishing privilege is attained by Agp adsorbent showing 3, 3 and 11 orders of magnitude higher efficiency than Agw. It may be attributed to more functional groups in the plant extract participating in binding of PAH to the surface. Each synthesized adsorbents was characterized by FTIR, SEM and EDX. The average particle size was determined to be of the order of 13-26 nm. The study concludes the use of alternate economical and green adsorbents for control of poly aromatic hydrocarbons (PAHs).

  1. Electrochemical preparation of uranium and plutonium measuring probes for alpha spectroscopy from organic solutions

    International Nuclear Information System (INIS)

    Gruner, W.; Beutmann, A.

    1980-01-01

    A method for preparation of uranium and plutonium measuring probes for α-spectrometry is described. The method is based on electrodeposition from isopropanol and especially from ethanol and methanol solution. It was shown that a definite additions of a little amount of water lead to an increase of the deposition rate. It is possible to reach a 100% deposition in ethanol after an electrolysis time of 3 minutes for uranium and 30 minutes for plutonium with voltages of 150-200 V. (author)

  2. The use of synthetic input sequences in time series modeling

    International Nuclear Information System (INIS)

    Oliveira, Dair Jose de; Letellier, Christophe; Gomes, Murilo E.D.; Aguirre, Luis A.

    2008-01-01

    In many situations time series models obtained from noise-like data settle to trivial solutions under iteration. This Letter proposes a way of producing a synthetic (dummy) input, that is included to prevent the model from settling down to a trivial solution, while maintaining features of the original signal. Simulated benchmark models and a real time series of RR intervals from an ECG are used to illustrate the procedure

  3. Highly luminescent core-shell InP/ZnX (X = S, Se) quantum dots prepared via a phosphine synthetic route.

    Science.gov (United States)

    Mordvinova, Natalia; Vinokurov, Alexander; Kuznetsova, Tatiana; Lebedev, Oleg I; Dorofeev, Sergey

    2017-01-24

    Here we report a simple method for the creation of highly luminescent core-shell InP/ZnX (X = S, Se) quantum dots (QDs) on the basis of a phosphine synthetic route. In this method a Zn precursor was added to the reaction mixture at the beginning of the synthesis to form an In(Zn)P alloy structure, which promoted the formation of a ZnX shell. Core-shell InP/ZnX QDs exhibit highly intensive emission with a quantum yield over 50%. The proposed method is primarily important for practical applications. Advantages of this method compared to the widely used SILAR technique are discussed. We further demonstrate that the SILAR approach consisting of consequent addition of Zn and chalcogen precursors to pre-prepared non-doped InP colloidal nanoparticles is not quite suitable for shell growth without the addition of special activator agents or the use of very reactive precursors.

  4. Rapid method for quantification of seven synthetic pigments in colored Chinese steamed buns using UFLC-MS/MS without SPE.

    Science.gov (United States)

    Gao, He-Gang; Gong, Wen-Jie; Zhao, Yong-Gang

    2015-01-01

    Synthetic pigments are still used instead of natural pigments in many foods and their residues in food could be an important risk to human health. A simple and rapid analytical method combining the low-cost extraction protocol with ultra-fast liquid chromatography-tandem quadrupole mass spectrometry (UFLC-MS/MS) was developed for the simultaneous determination of seven synthetic pigments used in colored Chinese steamed buns. For the first time, ethanol/ammonia solution/water (7:2:1, v/v/v) was used as extraction solution for the synthetic pigments in colored Chinese steamed buns. The results showed that the property of the extraction solution used in this method was more effective than critic acid solution, which is used in the polyamide adsorption method. The limits of quantification for the seven synthetic pigments ranged from 0.15 to 0.50 μg/kg. The present method was successfully applied to samples of colored Chinese steamed buns for food-safety risk monitoring in Zhejiang Province, China. The results found sunset yellow pigment in six out of 300 colored Chinese steamed buns (from 0.50 to 32.6 μg/kg).

  5. Synthetic seismic acceleration time-histories and their acceptance criteria

    International Nuclear Information System (INIS)

    Xu Hong

    1996-01-01

    In seismic dynamic response analysis of structures and equipment, time-history analysis is now widely used. The 3-D seismic acceleration time-histories or 3-D seismic displacement time-histories are required in the 3-D seismic dynamic response analysis as the seismic excitation input data. Because of the lack of actual acceleration time-histories for the field where the structures or equipment are installed, the general practice is to use the synthetic seismic acceleration time-histories, which are derived from the design seismic response spectra of the field, as the seismic excitation input data. However, from one specified design response spectrum indefinite solutions of acceleration time-histories can be derived depending on the values of the input parameters. Not all the derived synthetic time-histories can be used as seismic excitation input data. Only those which meet the acceptance criteria can be used. The factors (input parameters), which will affect the time-history solution from a specified seismic response spectrum, and the acceptance criteria are discussed

  6. Semi-synthetic preparation of 1-O-[1'-14C]hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) using plant cell cultures

    International Nuclear Information System (INIS)

    Weber, N.; Mangold, H.K.

    1985-01-01

    Incubation of photomixotrophic cell suspension cultures of rape (Brassica napus) and heterotrophic cell suspension cultures of soya (Glycine max) with 1-O-[1'- 14 C]hexadecyl-sn-glycerol or rac-1-O-[1'- 14 C]hexadecylglycerol leads in high yield (up to 78%) to labeled 1-O-hexadecyl-2-acyl-sn-glycero-3-phosphocholines. Alkaline hydrolysis of the choline glycerophospholipids yields pure 1-O-[1'- 14 C]hexadecyl-sn-glycero-3-phosphocholine. 1-O-[1'-14C]Hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) is obtained by acetylating the lyso compound. The semi-synthetic preparation described leads to labeled platelet activating factor in an overall yield of 50-60% without loss of specific activity

  7. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Synthetic pubovaginal sling (TVT: failure in conservative treatment following vaginal exteriorization

    Directory of Open Access Journals (Sweden)

    Edgar Thorell

    2004-04-01

    Full Text Available Female, 57 year-old patient, reported having undergone surgery for correction of urinary incontinence due to sphincteric insufficiency with the implantation of a synthetic pubovaginal sling 14 months earlier. Though she did not present urine loss any longer, approximately 60 days following the surgical procedure she started to report dysuria, pollakiuria and dyspareunia. Attempts of a conservative solution were ineffective. The appearance of a vaginal infra-urethral granuloma and the exteriorization of the synthetic material led to its removal.

  9. Removal of toxic uranium from synthetic nuclear power reactor effluents using uranyl ion imprinted polymer particles.

    Science.gov (United States)

    Preetha, Chandrika Ravindran; Gladis, Joseph Mary; Rao, Talasila Prasada; Venkateswaran, Gopala

    2006-05-01

    Major quantities of uranium find use as nuclear fuel in nuclear power reactors. In view of the extreme toxicity of uranium and consequent stringent limits fixed by WHO and various national governments, it is essential to remove uranium from nuclear power reactor effluents before discharge into environment. Ion imprinted polymer (IIP) materials have traditionally been used for the recovery of uranium from dilute aqueous solutions prior to detection or from seawater. We now describe the use of IIP materials for selective removal of uranium from a typical synthetic nuclear power reactor effluent. The IIP materials were prepared for uranyl ion (imprint ion) by forming binary salicylaldoxime (SALO) or 4-vinylpyridine (VP) or ternary SALO-VP complexes in 2-methoxyethanol (porogen) and copolymerizing in the presence of styrene (monomer), divinylbenzene (cross-linking monomer), and 2,2'-azobisisobutyronitrile (initiator). The resulting materials were then ground and sieved to obtain unleached polymer particles. Leached IIP particles were obtained by leaching the imprint ions with 6.0 M HCl. Control polymer particles were also prepared analogously without the imprint ion. The IIP particles obtained with ternary complex alone gave quantitative removal of uranyl ion in the pH range 3.5-5.0 with as low as 0.08 g. The retention capacity of uranyl IIP particles was found to be 98.50 mg/g of polymer. The present study successfully demonstrates the feasibility of removing uranyl ions selectively in the range 5 microg - 300 mg present in 500 mL of synthetic nuclear power reactor effluent containing a host of other inorganic species.

  10. Electrochemical Preparation of Polyaniline Nanowires with the Used Electrolyte Solution Treated with the Extraction Process and Their Electrochemical Performance

    OpenAIRE

    Ying Wu; Jixiao Wang; Bin Ou; Song Zhao; Zhi Wang; Shichang Wang

    2018-01-01

    Electrochemical polymerization of aniline is one of the most promising methods to prepare polyaniline (PANI) materials. However, during this process, the electrolyte solution must be replaced after electropolymerization of a certain time because of the generation and the accumulation of the by-products, which have significant effects on the morphology, purity and properties of PANI products. Treatment and recycling of the used electrolyte solution are worthwhile to study to reduce the high tr...

  11. Preparation and characterization of corn reinforced polymer sheet of fibers

    International Nuclear Information System (INIS)

    Moreira, Tatiana Martinez; Seo, Emilia Satoshi Miyamaru

    2016-01-01

    There is a global trend in seeking plant fibers to replace the synthetic fibers to obtain reinforced composites aimed at the use of renewable resources. In this context, this paper aims to develop the process of preparing maize leaf fibers, characterizing them and adapting them for applications in the construction industry and develop a reinforced polymer composite with these fibers. Corn leaves were dried in environmental temperature, treated by mercerizing, then neutralized with acid solution and washed in running water. The characterization of the corn leaf fibers was carried out by X-ray diffraction, X-ray fluorescence, scanning electron microscopy, specific surface area, thermogravimetry and specific mass. The mercerizing treatment was effective, because the maize fibers have characteristics similar to synthetic fibers, leading to a possibility of new technological uses. The polymeric composite material was developed by extrusion processes and injection and tested for tensile testing, differential scanning calorimetry and scanning electron microscopy, thus reused an organic waste that would be disposed of by inserting it in a technological process, contributing to the research and development of new polymeric materials as well as to reduce waste discarded as scrap. (author)

  12. Early age hydration of calcium sulfoaluminate (synthetic ye'elimite, ) in the presence of gypsum and varying amounts of calcium hydroxide

    KAUST Repository

    Hargis, Craig W.; Kirchheim, Ana Paula; Monteiro, Paulo J.M.; Gartner, Ellis M.

    2013-01-01

    Suspensions of synthetic ye'elimite (C4A3S̄) in a saturated gypsum (CS̄H2) and calcium hydroxide (CH) solution were examined in-situ in a wet cell by soft X-ray transmission microscopy and ex-situ by scanning electron microscopy. The most voluminous hydration product observed was ettringite. Ettringite commonly displayed acicular, filiform, reticulated, and stellate crystal habits. Additionally, pastes with C 4A3S̄, 15% CS̄H2, and varying amounts of CH were prepared and examined with X-ray diffraction (XRD) and isothermal calorimetry. The XRD experiments showed that increasing CH content caused more solid solution (SO4 2 -/OH-) AFm phases to form at early ages (< 1 d) and more monosulfate to form at later ages (> 1 d). Calorimetry indicated that the increased production of solid solution AFm was accompanied with an increase in the initial (< 30 min) rate of heat evolution, and increasing CH generally reduced the time till the second maximum rate of heat evolution due to the formation of ettringite and monosulfate. © 2013 Elsevier Ltd.

  13. Early age hydration of calcium sulfoaluminate (synthetic ye'elimite, ) in the presence of gypsum and varying amounts of calcium hydroxide

    KAUST Repository

    Hargis, Craig W.

    2013-06-01

    Suspensions of synthetic ye\\'elimite (C4A3S̄) in a saturated gypsum (CS̄H2) and calcium hydroxide (CH) solution were examined in-situ in a wet cell by soft X-ray transmission microscopy and ex-situ by scanning electron microscopy. The most voluminous hydration product observed was ettringite. Ettringite commonly displayed acicular, filiform, reticulated, and stellate crystal habits. Additionally, pastes with C 4A3S̄, 15% CS̄H2, and varying amounts of CH were prepared and examined with X-ray diffraction (XRD) and isothermal calorimetry. The XRD experiments showed that increasing CH content caused more solid solution (SO4 2 -/OH-) AFm phases to form at early ages (< 1 d) and more monosulfate to form at later ages (> 1 d). Calorimetry indicated that the increased production of solid solution AFm was accompanied with an increase in the initial (< 30 min) rate of heat evolution, and increasing CH generally reduced the time till the second maximum rate of heat evolution due to the formation of ettringite and monosulfate. © 2013 Elsevier Ltd.

  14. Infrared spectroscopic study of the synthetic Mg-Ni talc series

    Science.gov (United States)

    Blanchard, Marc; Méheut, Merlin; Delon, Louise; Poirier, Mathilde; Micoud, Pierre; Le Roux, Christophe; Martin, François

    2018-05-01

    Five talc samples [(Mg,Ni)3Si4O10(OH)2] covering the entire Mg-Ni solid solution were synthesized following a recently developed and patented process (Dumas et al., Process for preparing a composition comprising synthetic mineral particles and composition, 2013a; Procédé de préparation d'une composition comprenant des particules minérales synthétiques et composition, 2013b), which produces sub-micron talc particles replying to industrial needs. Near- and mid-infrared spectra were collected and compared to infrared spectra modeled from first-principles calculations based on density functional theory. The good agreement between experimental and theoretical spectra allowed assigning unambiguously all absorption bands. We focused in particular on the four main OH stretching bands, which represent good probes of their local physical and chemical environment. The description of the vibrational modes at the origin of these absorption bands and the theoretical determination of absorption coefficients provide a firm basis for quantifying the talc chemical composition from infrared spectroscopy and for discussing the distribution of divalent cations in the octahedral sheet. Results confirm that these synthetic talc samples have a similar structure as natural talc, with a random distribution of Mg and Ni atoms. They only differ from natural talc by their hydrophilic character, which is due to their large proportion of reactive sites on sheet edges due to sub-micronic size of the particles. Therefore, the contribution on infrared spectra of hydroxyls adsorbed on edge sites has also been investigated by computing the infrared signature of hydroxyls of surface models.

  15. Synthetic approaches to aromatic belts: building up strain in macrocyclic polyarenes.

    Science.gov (United States)

    Eisenberg, David; Shenhar, Roy; Rabinovitz, Mordecai

    2010-08-01

    This tutorial review discusses synthetic strategies towards aromatic belts, defined here as double-stranded conjugated macrocycles, such as [n]cyclacenes, [n]cyclophenacenes, Schlüter belt, and Vögtle belt. Their appeal stems, firstly, from the unique nature of their conjugation, having p orbitals oriented radially rather than perpendicular to the plane of the macrocycle. Secondly, as aromatic belts are model compounds of carbon nanotubes of different chiralities, a synthetic strategy towards the buildup of structural strain in these compounds could finally open a route towards rational chemical synthesis of carbon nanotubes. The elusiveness of these compounds has stimulated fascinating and ingenious synthetic strategies over the last decades. The various strategies are classified here by their approach to the buildup of structural strain, which is the main obstacle in the preparation of these curved polyarenes.

  16. High performance liquid chromatographic determination of some guaiphenesin-containing cough-cold preparations

    Directory of Open Access Journals (Sweden)

    Mohamed A. Korany

    2011-04-01

    Full Text Available This paper presents different HPLC methods for the simultaneous determination of some guaiphenesin-containing cough-cold preparations. Three pharmaceutically available combinations were analyzed: salbutamol sulfate (SAL and guaiphenesin (GUA, combination I; ascorbic acid (ASC, paracetamol (PAR and guaiphenesin (GUA, combination II; and theophylline anhydrous (THE, guaiphenesin (GUA and ambroxol hydrochloride (AMB, combination III. A 250 × 4.6 mm C-18 column was used for all combinations. The mobile phase for the three combinations consisted of a mixture of methanol and 0.01 M aqueous phosphate buffer solution. The pH of the mobile phase was adjusted to 3.2, 6.2 and 3.8 for combinations I, II and III, respectively. The proposed HPLC methods were successfully applied to the determination of the investigated drugs, both in synthetic mixtures and in pharmaceutical preparations, without any matrix interference and with high precision and accuracy. Different aspects of analytical validation are presented in the text.

  17. Recalcitrant Compounds Removal in Raw Leachate and Synthetic Effluents Using the White-Rot Fungus Bjerkandera adusta

    Directory of Open Access Journals (Sweden)

    Alessandra Bardi

    2017-10-01

    Full Text Available Recalcitrant compounds limit the efficiency of conventional biological processes for wastewater treatment, representing one of the major issues in the field. This study focused on the treatment of three effluents with White-Rot-Fungus (WRF Bjerkandera adusta MUT 2295 in batch tests, with biomass cultivated in attached form on polyurethane foam cubes (PUFs to test its efficiency in the removal of the target effluents’ recalcitrant fraction. Treatment efficiency of B. adusta was evaluated on landfill leachate (Canada and two solutions containing synthetic recalcitrant compounds, which were prepared with tannic and humic acid. Chemical Oxygen Demand (COD and color removal, the production of manganese peroxidases, and the consumption of a co-substrate (glucose were monitored during the experiment. Biological Oxygen Demand (BOD5 and fungal dry weight were measured at the beginning and at the end of the experiment. After co-substrate addition, effluent COD was 2300 ± 85, 2545 ± 84, and 2580 ± 95 (mg/L in raw leachate and tannic and humic acids, respectively. COD removal of 48%, 61%, and 48% was obtained in raw leachate and in the synthetic effluents containing tannic and humic acids, respectively. Color removal of 49%, 25%, and 42% was detected in raw leachate and in tannic and humic acid solutions, respectively. COD and color removals were associated with the increase of fungal dry weight, which was observed in all the trials. These results encourage the use of the selected fungal strain to remove tannic acid, while further investigations are required to optimize leachate and humic acid bioremediation.

  18. Synthetic Cannabinoids

    Directory of Open Access Journals (Sweden)

    Aslihan Okan Ibiloglu

    2017-09-01

    Full Text Available Synthetic cannabinoids which is a subgroup of cannabinoids are commonly used for recreational drug use throughout the whole world. Although both marijuana and synthetic cannabinoids stimulate the same receptors, cannabinoid receptor 1 (CB1 and cannabinoid receptor 2 (CB2, studies have shown that synthetic cannabinoids are much more potent than marijuana. The longer use of synthetic cannabinoids can cause severe physical and psychological symptoms that might even result in death, similar to many known illicit drugs. Main treatment options mostly involve symptom management and supportive care. The aim of this article is to discuss clinical and pharmacological properties of the increasingly used synthetic cannabinoids. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(3.000: 317-328

  19. Thermodynamic stability of radioactivity standard solutions

    International Nuclear Information System (INIS)

    Iroulard, M.G.

    2007-04-01

    The basic requirement when preparing radioactivity standard solutions is to guarantee the concentration of a radionuclide or a radioelement, expressed in the form of activity concentration (Ac = A/m (Bq/g), with A: activity and m: mass of solution). Knowledge of the law of radioactive decay and the half-life of a radionuclide or radioelement makes it possible to determine the activity concentration at any time, and this must be confirmed subsequently by measurement. Furthermore, when radioactivity standard solutions are prepared, it is necessary to establish optimal conditions of thermodynamic stability of the standard solutions. Radioactivity standard solutions are prepared by metrology laboratories from original solutions obtained from a range of suppliers. These radioactivity standard solutions must enable preparation of liquid and/or solid radioactivity standard sources of which measurement by different methods can determine, at a given instant, the activity concentration of the radionuclide or radioelement present in the solution. There are a number of constraints associated with the preparation of such sources. Here only those that relate to the physical and chemical properties of the standard solution are considered, and therefore need to be taken into account when preparing a radioactivity standard solution. These issues are considered in this document in accordance with the following plan: - A first part devoted to the chemical properties of the solutions: - the solubilization media: ultra-pure water and acid media, - the carriers: concentration, oxidation state of the radioactive element and the carrier element. - A second part describing the methodology of the preparation, packaging and storage of standard solutions: - glass ampoules: the structure of glasses, the mechanisms of their dissolution, the sorption phenomenon at the solid-solution interface, - quartz ampoules, - cleaning and packaging: cleaning solutions, internal surface coatings and

  20. Thermodynamic stability of radioactivity standard solutions

    Energy Technology Data Exchange (ETDEWEB)

    Iroulard, M.G

    2007-04-15

    The basic requirement when preparing radioactivity standard solutions is to guarantee the concentration of a radionuclide or a radioelement, expressed in the form of activity concentration (Ac = A/m (Bq/g), with A: activity and m: mass of solution). Knowledge of the law of radioactive decay and the half-life of a radionuclide or radioelement makes it possible to determine the activity concentration at any time, and this must be confirmed subsequently by measurement. Furthermore, when radioactivity standard solutions are prepared, it is necessary to establish optimal conditions of thermodynamic stability of the standard solutions. Radioactivity standard solutions are prepared by metrology laboratories from original solutions obtained from a range of suppliers. These radioactivity standard solutions must enable preparation of liquid and/or solid radioactivity standard sources of which measurement by different methods can determine, at a given instant, the activity concentration of the radionuclide or radioelement present in the solution. There are a number of constraints associated with the preparation of such sources. Here only those that relate to the physical and chemical properties of the standard solution are considered, and therefore need to be taken into account when preparing a radioactivity standard solution. These issues are considered in this document in accordance with the following plan: - A first part devoted to the chemical properties of the solutions: - the solubilization media: ultra-pure water and acid media, - the carriers: concentration, oxidation state of the radioactive element and the carrier element. - A second part describing the methodology of the preparation, packaging and storage of standard solutions: - glass ampoules: the structure of glasses, the mechanisms of their dissolution, the sorption phenomenon at the solid-solution interface, - quartz ampoules, - cleaning and packaging: cleaning solutions, internal surface coatings and

  1. Adsorbents/ion exchangers-PVA blend membranes: Preparation, characterization and performance for the removal of Zn2+ by electrodialysis

    Science.gov (United States)

    Caprarescu, Simona; Radu, Anita-Laura; Purcar, Violeta; Ianchis, Raluca; Sarbu, Andrei; Ghiurea, Marius; Nicolae, Cristian; Modrogan, Cristina; Vaireanu, Danut-Ionel; Périchaud, Alain; Ebrasu, Daniela-Ion

    2015-02-01

    The present paper was aimed at studying the possibility of zinc (Zn) removal from the wastewater discharged from zinc electroplating processes. In order to save industrial and environmental resources, the concentrated solution could be reused after electrodialysis process. A mini-electrodialysis system with three cylindrical compartments and different membranes containing various resins (Purolite A500 and Hypersol-Macronet MN500) was employed, which can be further applied for the treatment of synthetic effluent which contained zinc ions. The electrodialysis system was operated at constant voltage using different concentrations of synthetic solutions of zinc ions, without and with electrolyte recirculation for 1.5 h. The pH and conductivity of solutions were measured before and after the electrodialysis process occurs. Also the removal ratio (Rr) and mass flow (J) of zinc ions, energy consumption (EC) and current efficiency (CE) were determined. It was found that electrodialysis treatment generated a very low conductivity solution, enabling its reuse as rinse water. According to the obtained results when using a membrane pair with higher ion exchange capacity (IEC) the removal ratio is improved (over 80%). The physico-chemical, structural and mechanical properties of prepared membranes were registered, before and after electrodialysis process takes place, by means of complementary analytical techniques, namely, ion-exchange capacity, water content and thickness measurements. Furthermore analysis were also carried out by Fourier transform infrared spectroscopy (FT-IR), environmental scanning electron microscopy (ESEM), thermal gravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS).

  2. Stability of O/W Emulsion with Synthetic Perfumes Oxidized by Singlet Oxygen

    Directory of Open Access Journals (Sweden)

    Naoki Watabe

    2013-01-01

    Full Text Available We prepared O/W emulsion composed of a synthetic perfume, n-dodecane, protoporphyrin IX disodium salt (PpIX-2Na, sodium dodecyl sulfate, and water and investigated oxidative decomposition of the synthetic perfume in the emulsion and change in the stability of the emulsion by singlet oxygen (1O2 generated by photosensitization of PpIX-2Na. We used eugenol, linalool, benzyl acetate, α-ionone, α-hexylcinnamaldehyde, and d-limonene as a synthetic perfume. The stability of the O/W emulation including eugenol and linalool significantly decreased with increasing light irradiation time. The decrease in the emulsion stability may be attributable to oxidative decomposition of eugenol and linalool by 1O2 and enlargement of the oil droplet size.

  3. One step aqueous solution preparation of nanosize iron-doped tin oxide from SnO{sub 2}.xH{sub 2}O gel

    Energy Technology Data Exchange (ETDEWEB)

    Melghit, Khaled [Chemistry Department, College of Science, P.O. Box 36, Al-Khodh 123, Sultan Qaboos University (Oman)]. E-mail: melghit@squ.edu.om; Bouziane, Khalid [Physics Department, College of Science, P.O. Box 36, Al-Khodh 123, Sultan Qaboos University (Oman)

    2006-03-15

    Nanosized iron-doped tin oxide solid solution was prepared by mixing tin oxide gel SnO{sub 2}.xH{sub 2}O with a boiling solution of iron nitrate. The XRD data of the as-prepared and annealed sample at 773 K show that the patterns are indexed to the rutile phase without any trace of an extra phase. SEM and TEM results performed on different selected area of the samples reveal a homogeneous composition of 8 at.% of Fe content and a size of about 2 nm of the particles. The particles size was found to increase slightly with temperature; about 7 nm after 24 h at 773 K. Structural and magnetic results seem to indicate that Fe{sup 3+} substitute for Sn{sup 4+} on the as-prepared sample. The system presents some weak ferromagnetic character at room temperature.

  4. Buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions: from protein buffer capacity prediction to bioprocess applications.

    Science.gov (United States)

    Bahrenburg, Sven; Karow, Anne R; Garidel, Patrick

    2015-04-01

    Protein therapeutics, including monoclonal antibodies (mAbs), have significant buffering capacity, particularly at concentrations>50 mg/mL. This report addresses pH-related issues critical to adoption of self-buffered monoclonal antibody formulations. We evaluated solution conditions with protein concentrations ranging from 50 to 250 mg/mL. Samples were both buffer-free and conventionally buffered with citrate. Samples were non-isotonic or adjusted for isotonicity with NaCl or trehalose. Studies included accelerated temperature stability tests, shaking stability studies, and pH changes in infusion media as protein concentrate is added. We present averaged buffering slopes of capacity that can be applied to any mAb and present a general method for calculating buffering capacity of buffer-free, highly concentrated antibody liquid formulations. In temperature stability tests, neither buffer-free nor conventionally buffered solution conditions showed significant pH changes. Conventionally buffered solutions showed significantly higher opalescence than buffer-free ones. In general, buffer-free solution conditions showed less aggregation than conventionally buffered solutions. Shaking stability tests showed no differences between buffer-free and conventionally buffered solutions. "In-use" preparation experiments showed that pH in infusion bag medium can rapidly approximate that of self-buffered protein concentrate as concentrate is added. In summary, the buffer capacity of proteins can be predicted and buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Sokker, H.H., E-mail: hesham_sokkre@yahoo.com [Jazan University, Faculty of Science (Saudi Arabia); National Center for Radiation Research and Technology, Polymer Chemistry Department, P.O. Box 29, Cairo (Egypt); El-Sawy, Naeem M. [National Center for Radiation Research and Technology, Polymer Chemistry Department, P.O. Box 29, Cairo (Egypt); Hassan, M.A. [Scib Company of Paints, Cairo (Egypt); El-Anadouli, Bahgat E. [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2011-06-15

    The adsorption of crude oil (initial concentration 0.5-30 g/L) from aqueous solution using hydrogel of chitosan based polyacrylamide (PAM) prepared by radiation induced graft polymerization has been investigated. The prepared hydrogel was characterized by FTIR and SEM micrographs. The experiments were carried out as a function of different initial concentrations of oil residue, acrylamide concentration, contact time and pH to determine the optimum condition for the adsorption of residue oil from aqueous solution and sea water. The results obtained showed that the hydrogel prepared at concentration of 40% acrylamide (AAm) and at a radiation dose of 5 kGy has high removal efficiency of crude oil 2.3 g/g at pH 3. Equilibrium studies have been carried out to determine the capacity of the hydrogel for adsorption of crude oil, Langmuir and Freundlich adsorption models were applied to describe the experimental isotherms and isotherms constants. Equilibrium data were found to fit very well with both Freundlich and Langmuir models. Also the adsorption of oil onto the hydrogel behaves as a pseudo-second-order kinetic models rather than the pseudo-first-order kinetic model.

  6. Synthetic Strategies for High Dielectric Constant Silicone Elastomers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt

    synthetic strategies were developed in this Ph.D. thesis, in order to create silicone elastomers with high dielectric constants and thereby higher energy densities. The work focused on maintaining important properties such as dielectric loss, electrical breakdown strength and elastic modulus....... The methodology therefore involved chemically grafting high dielectric constant chemical groups onto the elastomer network, as this would potentially provide a stable elastomer system upon continued activation of the material. The first synthetic strategy involved the synthesis of a new type of cross...... extender’ that allowed for chemical modifications such as Cu- AAC. This route was promising for one-pot elastomer preparation and as a high dielectric constant additive to commercial silicone systems. The second approach used the borane-catalysed Piers-Rubinsztajn reaction to form spatially well...

  7. Comparative study of the various methods of preparation of silicate solution and its effect on the geopolymerization reaction

    Directory of Open Access Journals (Sweden)

    N. Essaidi

    Full Text Available This paper is based on the characterization of synthesized geopolymer binders based on either powder or solution silicate, and the amount of water contained in synthesized binders is determined to evaluate their possibility to coat a brick. The structural evolution of the formed geopolymers was investigated using FTIR spectroscopy. The mechanical properties were evaluated using compression tests. The structural evolution ensured that the solutions prepared from silicate powder or liquid had different degrees of polymerization, which modified the polycondensation reaction of the mixture. Nevertheless, the use of aluminosilicate solutions based on powder or liquid display similar behavior in a polycondensation reaction. The obtained materials show good mechanical properties, and it is possible to deposit this binder on the brick depending on the water content. Keywords: Silicate powder, Bricks, Alkaline solution, Binders, Depolymerization, Metakaolin reactivity

  8. [From synthetic biology to synthetic humankind].

    Science.gov (United States)

    Nouvel, Pascal

    2015-01-01

    In this paper, we propose an historical survey of the expression "synthetic biology" in order to identify its main philosophical components. The result of the analysis is then used to investigate the meaning of the notion of "synthetic man". It is shown that both notions share a common philosophical background that can be summed up by the short but meaningful assertion: "biology is technology". The analysis allows us to distinguish two notions that are often confused in transhumanist literature: the notion of synthetic man and the notion of renewed man. The consequences of this crucial distinction are discussed. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  9. Sorption of fission nuclides on model milk components. I. Sorption of radiostrontium on hydroxyapatite in aqueous solutions

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Kopunec, R.; Matel, L.; Macasek, F.; Kristin, J.

    1999-01-01

    Hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 is a mineral widely spread in nature as a main constituent of phosphate rocks, and also as the major inorganic component of bones and teeth. It was found that sorption process occurs by an ion exchange reaction mechanism between strontium ions in solution and calcium ions in apatite. Ca 2+ → Sr 2+ substitution in hydroxyapatite is important since it explains the mechanism of incorporation of beta-active Sr-90 of atomic debris into the human skeletal system. The strontium uptake at 100 grad C is done by adsorption and diffusion while at 25 grad C it is done by the process of adsorption only. The hydroxyapatite was prepared from aqueous solutions and characterized by standard analytical methods. Some samples of hydroxyapatite were modified by heating after its precipitation from aqueous solution. The sample obtained had characteristics of well crystallized stoichiometric hydroxyapatite. Also, commercial hydroxy-apatites were used. Sorption of strontium ions on synthetic hydroxyapatite was examined using batch method and sorption depends on the method of preparation of hydroxyapatite. In generally, sorption of strontium decreases with the increase in the particle size of hydroxyapatite and decreases with the increase in the pH ( hydroxyapatite surface is amphoteric and acts as a buffer in a wide pH range). The sorption of strontium increases with the increase in [Sr 2+ ] or [Ca 2+ ] in solution to ∼ 10 -5 mol · dm -3 for the hydroxyapatite prepared by heating. The experimental data for sorption of strontium has been fitted with Langmuir-adsorption isotherm. (authors)

  10. The Cysteine S-Alkylation Reaction as a Synthetic Method to Covalently Modify Peptide Sequences.

    Science.gov (United States)

    Calce, Enrica; De Luca, Stefania

    2017-01-05

    Synthetic methodologies to chemically modify peptide molecules have long been investigated for their impact in the field of chemical biology. They allow the introduction of biochemical probes useful for studying protein functions, for manipulating peptides with therapeutic potential, and for structure-activity relationship investigations. The commonly used approach was the derivatization of an amino acid side chain. In this regard, the cysteine, for its unique reactivity, has been widely employed as the substrate for such modifications. Herein, we report on methodologies developed to modify the cysteine thiol group through the S-alkylation reaction. Some procedures perform the alkylation of cysteine derivatives, in order to prepare building blocks to be used during the peptide synthesis, whilst some others selectively modify peptide sequences containing a cysteine residue with a free thiol group, both in solution and in the solid phase. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High-throughput analysis for preparation, processing and analysis of TiO2 coatings on steel by chemical solution deposition

    International Nuclear Information System (INIS)

    Cuadrado Gil, Marcos; Van Driessche, Isabel; Van Gils, Sake; Lommens, Petra; Castelein, Pieter; De Buysser, Klaartje

    2012-01-01

    Highlights: ► High-throughput preparation of TiO 2 aqueous precursors. ► Analysis of stability and surface tension. ► Deposition of TiO 2 coatings. - Abstract: A high-throughput preparation, processing and analysis of titania coatings prepared by chemical solution deposition from water-based precursors at low temperature (≈250 °C) on two different types of steel substrates (Aluzinc® and bright annealed) is presented. The use of the high-throughput equipment allows fast preparation of multiple samples saving time, energy and material; and helps to test the scalability of the process. The process itself includes the use of IR curing for aqueous ceramic precursors and possibilities of using UV irradiation before the final sintering step. The IR curing method permits a much faster curing step compared to normal high temperature treatments in traditional convection devices (i.e., tube furnaces). The formulations, also prepared by high-throughput equipment, are found to be stable in the operational pH range of the substrates (6.5–8.5). Titanium alkoxides itself lack stability in pure water-based environments, but the presence of the different organic complexing agents prevents it from hydrolysis and precipitation reactions. The wetting interaction between the substrates and the various formulations is studied by the determination of the surface free energy of the substrates and the polar and dispersive components of the surface tension of the solutions. The mild temperature program used for preparation of the coatings however does not lead to the formation of pure crystalline material, necessary for the desired photocatalytic and super-hydrophilic behavior of these coatings. Nevertheless, some activity can be reported for these amorphous coatings by monitoring the discoloration of methylene blue in water under UV irradiation.

  12. Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor

    Science.gov (United States)

    Hao, Zhi-Qiang; Cao, Jing-Pei; Wu, Yan; Zhao, Xiao-Yan; Zhuang, Qi-Qi; Wang, Xing-Yong; Wei, Xian-Yong

    2017-09-01

    Waste sugar solution (WSS), which contains abundant 2-keto-L-gulonic acid, is harmful to the environment if discharged directly. For value-added utilization of the waste resource, a novel process is developed for preparation of porous carbon spheres by hydrothermal carbonization (HTC) of WSS followed by KOH activation. Additionally, the possible preparation mechanism of carbon spheres is proposed. The effects of hydrothermal and activation parameters on the properties of the carbon sphere are also investigated. The carbon sphere is applied to electric double-layer capacitor and its electrochemical performance is studied. These results show that the carbon sphere obtained by HTC at 180 °C for 12 h with the WSS/deionized water volume ratio of 2/3 possess the highest specific capacitance under identical activation conditions. The specific capacitance of the carbon spheres can reach 296.1 F g-1 at a current density of 40 mA g-1. Besides, excellent cycle life and good capacitance retention (89.6%) are observed at 1.5 A g-1 after 5000 cycles. This study not only provides a facile and potential method for the WSS treatment, but also achieves the high value-added recycling of WSS for the preparation of porous carbon spheres with superior electrochemical properties.

  13. Preparation of mesoporous Cs-POM@MOF-199@MCM-41 under two different synthetic methods for a highly oxidesulfurization of dibenzothiophene.

    Science.gov (United States)

    Li, Si-Wen; Li, Jia-Rong; Jin, Qi-Ping; Yang, Zhi; Zhang, Rong-Lan; Gao, Rui-Min; Zhao, Jian-She

    2017-09-05

    Two different synthetic methods, the direct method and the substitution method, were used to synthesize the Cs-POM@MOF-199@MCM-41 (Cs-PMM), in which the modified heteropolyacid with cesium salt has been encapsulated into the pores with the mixture of MOF and MCM-41. The structural properties of the as-prepared catalysts were characterized using various analytical techniques: powder X-ray diffraction, FT-IR, SEM, TEM, XPS and BET, confirming that the Cs-POM active species retained its Keggin structure after immobilization. The substitution method of Cs-PMM exhibited more excellent catalytic performance for oxidative desulfurization of dibenzothiophene in the presence of oxygen. Under optimal conditions, the DBT conversion rate reached up to 99.6% and could be recycled 10 times without significant loss of catalytic activity, which is mainly attributed to the slow leaching of the active heteropolyacid species from the strong fixed effect of the mixture porous materials. Copyright © 2017. Published by Elsevier B.V.

  14. In vitro storage of synthetic seeds: Effect of different storage ...

    African Journals Online (AJOL)

    GREGORY

    2010-08-30

    Aug 30, 2010 ... comparative regrowth and conversion capacity of synthetic seeds. Cold stored .... solution for 35 min. After complexation, the hardened alginate ... difference (LSD) test at 5% probability level (Steel et al., 1997). RESULTS AND ..... dure already proposed by Roussos and Pontikis (2002) that simplified the ...

  15. AKI associated with synthetic cannabinoids: a case series.

    Science.gov (United States)

    Bhanushali, Gautam Kantilal; Jain, Gaurav; Fatima, Huma; Leisch, Leah J; Thornley-Brown, Denyse

    2013-04-01

    SPICE, or K2, encompasses preparations of synthetic cannabinoids marketed as incense products, bath additives, and air fresheners and used for recreational purposes. These preparations are usually smoked for their cannabis-like effects and do not appear on routine urine toxicology screens. We report four cases of oliguric AKI associated with SPICE use in previously healthy men. All showed improvement in renal function without need for renal replacement therapy. Renal biopsy, performed in three of the patients, revealed acute tubular necrosis. The close temporal and geographic associations between the clinical presentation and the development of AKI strongly suggest an association between these SPICE preparations and AKI. Further investigations are required to identify the potential nephrotoxic agent(s). Nephrotoxicity from designer drugs should be included in the differential diagnosis of AKI, especially in young adults with negative urine drug screens.

  16. INTERACTION OF ALBUMIN AND IMMUNOGLOBULIN G WITH SYNTHETIC HYDROXYAPATITE

    Directory of Open Access Journals (Sweden)

    E. Pylypchuk

    2012-12-01

    Full Text Available It was shown by X-ray phase analysis, IR spectra analysis and MALDI-ToF mass spectrometry methods that interaction of synthetic hydroxyapatite with a solution of immunoglobulin G leads to its partial dissolution due to leaching from the surface of calcium triphosphate which, in our opinion, forms complexes with immunoglobulin G.

  17. Standard Methods of Analysis of Sulfochromate Etch Solution Used in Surface Preparation of Aluminum

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2012-01-01

    1.1 These methods offer a means for controlling the effectiveness of the etchant which is normally used for preparing the surface of aluminum alloys for subsequent adhesive bonding. As the etchant reacts with the aluminum, hexavalent chromium is converted to trivalent chromium; a measure of the two and the difference can be used to determine the amount of dichromate used. 1.2 The sulfochromate solution can be replenished by restoring the sodium dichromate and the sulfuric acid to the original formulation levels. The lower limit of usefulness will vary depending upon solution storage, adhesives used, critical nature of bond capability, variety of metals processed, etc. and should be determined. Replenishment will be limited to the number of times the chemical ingredients can be restored and maintained to the required levels and should be determined by the user. Sludge collecting in the bottom of a tank should be minimized by periodic removal of sludge. For some applications, the hexavalent chromium should not ...

  18. Preparation and Characterization of Biochars from Eichornia crassipes for Cadmium Removal in Aqueous Solutions.

    Directory of Open Access Journals (Sweden)

    Feng Li

    Full Text Available The study investigated the preparation and characterization of biochars from water hyacinth at 300°C to 700°C for cadmium (Cd removal from aqueous solutions. The adsorption process was dominated by oxygen-containing functional groups with irregular surfaces via esterification reactions. Furthermore, the mineral components in the biochars also contributed to Cd absorption through precipitation. Parameters such as the effects of solution pH, contact time, and initial concentration were studied. The optimum pH value was observed at 5.0, in which nearly 90% of Cd was removed. The maximum Cd adsorption capacities based on the Langmuir isotherm were calculated at 49.837, 36.899, and 25.826 mg g(-1. The adsorption processes of the biochars followed the pseudo-second-order kinetics, with the equilibrium achieved around 5 h. The biochar from E. crassipes is a promising adsorbent for the treatment of wastewater, which can in turn convert one environmental problem to a new cleaning Technology.

  19. Preparation and Characterization of Biochars from Eichornia crassipes for Cadmium Removal in Aqueous Solutions.

    Science.gov (United States)

    Li, Feng; Shen, Kaixuan; Long, Xiaolin; Wen, Jiasheng; Xie, Xiaojie; Zeng, Xiangyun; Liang, Yanyan; Wei, Yansha; Lin, Zefeng; Huang, Wenrou; Zhong, Ruida

    2016-01-01

    The study investigated the preparation and characterization of biochars from water hyacinth at 300°C to 700°C for cadmium (Cd) removal from aqueous solutions. The adsorption process was dominated by oxygen-containing functional groups with irregular surfaces via esterification reactions. Furthermore, the mineral components in the biochars also contributed to Cd absorption through precipitation. Parameters such as the effects of solution pH, contact time, and initial concentration were studied. The optimum pH value was observed at 5.0, in which nearly 90% of Cd was removed. The maximum Cd adsorption capacities based on the Langmuir isotherm were calculated at 49.837, 36.899, and 25.826 mg g(-1). The adsorption processes of the biochars followed the pseudo-second-order kinetics, with the equilibrium achieved around 5 h. The biochar from E. crassipes is a promising adsorbent for the treatment of wastewater, which can in turn convert one environmental problem to a new cleaning Technology.

  20. Green-synthetized silver nanoparticles for Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy (NELIBS) using a mobile instrument

    Science.gov (United States)

    Poggialini, F.; Campanella, B.; Giannarelli, S.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Safi, A.; Palleschi, V.

    2018-03-01

    When compared to other analytical techniques, LIBS shows relatively low precision and, generally, high Limits of Detection (LODs). Until recently, the attempts in improving the LIBS performances have been based on the use of more stable/powerful lasers, high sensitivity detectors or controlled environmental parameters. This can hinder the competitiveness of LIBS by increasing the instrumental setup cost and the difficulty of operation. Sample treatment has proved to be a viable and simple way to increase the LIBS signal; in particular, the Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy (NELIBS) methodology uses a deposition of metal nanoparticles on the sample to greatly increase the emission of the LIBS plasma. In this work, we used a simple, fast, "green" and low-cost method to synthetize silver nanoparticles by using coffee extract as reducing agents for a silver nitrate solution. This allowed us to obtain nanoparticles of about 25 nm in diameter. We then explored the application of such nanoparticles to the NELIBS analysis of metallic samples with a mobile LIBS instrument. By adjusting the laser parameters and optimizing the sample preparation procedure, we obtained a NELIBS signal that is 4 times the LIBS one. This showed the potential of green-synthetized nanoparticle for NELIBS applications and suggests the possibility of an in-situ application of the technique.

  1. Preparation and evaluation of a novel anticancer drug delivery carrier for 5-Fluorouracil using synthetic bola-amphiphile based on lysine as polar heads

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Beibei [School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016 (China); Yuan, Yue, E-mail: hiyueyuan@163.com [School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016 (China); Yan, Yun [College of Chemistry and Molecular Engineering, Peking University, 202 Chenfu Road, Beijing 100871 (China); Zhou, Xiaoping [School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun 130021 (China); Li, Yue; Kan, Qiming [School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016 (China); Li, Sanming, E-mail: li_sanming@sina.com [School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016 (China)

    2017-06-01

    A novel bolaamphiphile surfactant N,N′-(dodecane-1, 12-diyl) bis (2,6-diaminohexanamide) (DADL) was designed and synthesized using L-lysine and 1,12-diaminododecane as the hydrophilic and hydrophobic part, respectively. After separation and purification, the structure of the synthetic bolaamphiphile surfactant was verified by FTIR, MS and {sup 1}H NMR. The synthetic bolaamphiphile was able to self-assemble to form vesicles. After formulation screening, vesicles loaded with 5-Fluorouracil (5-Fu) were prepared with Tween 60 and DADL by sonication and were examined by dynamic light scattering and transmission electron microscopy. Micro-FTIR was applied to investigate the conformation of the bola molecules within the vesicle membrane. The release profile of the vesicles showed a pH-sensitive and sustained release. No significant toxicity was observed in an in vitro cell viability assay. The antitumor efficacy of the 5-Fu-loaded vesicles on H{sub 22} tumor-bearing mice was remarkably high due to the EPR effects. These results show that our novel bolaamphiphile derived from lysine has excellent potential as a pH-sensitive drug carrier. - Highlights: • A novel bolaamphiphile molecule with lysine as hydrophilic part was synthesized. • The synthesized bolaamphiphile could self-assemble to form nano-sized vesicles. • The vesicles were pH-sensitive and have tumor-targeting potential.

  2. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures.

    Science.gov (United States)

    Shi, Weidong; Song, Shuyan; Zhang, Hongjie

    2013-07-07

    Because of their unique chemical and physical properties, inorganic semiconducting nanostructures have gradually played a pivotal role in a variety of research fields, including electronics, chemical reactivity, energy conversion, and optics. A major feature of these nanostructures is the quantum confinement effect, which strongly depends on their size, shape, crystal structure and polydispersity. Among all developed synthetic methods, the hydrothermal method based on a water system has attracted more and more attention because of its outstanding advantages, such as high yield, simple manipulation, easy control, uniform products, lower air pollution, low energy consumption and so on. Precise control over the hydrothermal synthetic conditions is a key to the success of the preparation of high-quality inorganic semiconducting nanostructures. In this review, only the representative hydrothermal synthetic strategies of inorganic semiconducting nanostructures are selected and discussed. We will introduce the four types of strategies based on exterior reaction system adjustment, namely organic additive- and template-free hydrothermal synthesis, organic additive-assisted hydrothermal synthesis, template-assisted hydrothermal synthesis and substrate-assisted hydrothermal synthesis. In addition, the two strategies based on exterior reaction environment adjustment, including microwave-assisted and magnetic field-assisted hydrothermal synthesis, will be also described. Finally, we conclude and give the future prospects of this research area.

  3. Enhancement of the electrooxidation of ethanol on Pt-Sn-P/C catalysts prepared by chemical deposition process

    Science.gov (United States)

    Xue, Xinzhong; Ge, Junjie; Tian, Tian; Liu, Changpeng; Xing, Wei; Lu, Tianhong

    In this paper, five Pt 3Sn 1/C catalysts have been prepared using three different methods. It was found that phosphorus deposited on the surface of carbon with Pt and Sn when sodium hypophosphite was used as reducing agent by optimization of synthetic conditions such as pH in the synthetic solution and temperature. The deposition of phosphorus should be effective on the size reduction and markedly reduces PtSn nanoparticle size, and raise electrochemical active surface (EAS) area of catalyst and improve the catalytic performance. TEM images show PtSnP nanoparticles are highly dispersed on the carbon surface with average diameters of 2 nm. The optimum composition is Pt 3Sn 1P 2/C (note PtSn/C-3) catalyst in my work. With this composition, it shows very high activity for the electrooxidation of ethanol and exhibit enhanced performance compared with other two Pt 3Sn 1/C catalysts that prepared using ethylene glycol reduction method (note PtSn/C-EG) and borohydride reduction method (note PtSn/-B). The maximum power densities of direct ethanol fuel cell (DEFC) were 61 mW cm -2 that is 150 and 170% higher than that of the PtSn/C-EG and PtSn/C-B catalyst.

  4. Jojoba Oil Soft Colloidal Nanocarrier of a Synthetic Retinoid: Preparation, Characterization and Clinical Efficacy in Psoriatic Patients.

    Science.gov (United States)

    Nasr, Maha; Abdel-Hamid, Sameh; Moftah, Noha H; Fadel, Maha; Alyoussef, Abdullah A

    2017-01-01

    Nanotechnology has provided substantial benefits in drug delivery, especially in the treatment of dermatological diseases. Psoriasis is a chronic inflammatory skin disease in which topical delivery of antipsoriatic agents is considered the first line treatment. To investigate whether the encapsulation of the synthetic retinoid tazarotene in a nanocarrier based on jojoba oil would decrease its irritation potential and clinically improve its therapeutic outcome in psoriatic patients. A microemulsion system based on jojoba wax and labrasol/plurol isostearique was prepared and characterized. The selected formula displayed spherical morphology, particle size of 15.49±2.41 nm, polydispersity index of 0.20 ±0.08, negative charge and low viscosity. The microemulsion provided two folds increase in skin deposition of tazarotene, correlating with higher reduction in psoriatic patients PASI scores after treatment (68% reduction in PASI scores versus 8.96% reduction with the marketed gel). No irritation was encountered in patients using microemulsion, with redness and inflammation reported with the marketed gel-treated patients. Jojoba oil microemulsion proved to be advantageous in reducing the irritancy of tazarotene, enhancing its skin deposition and achieving better therapeutic outcome in psoriatic patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Preparation and characterization of flower-like gold nanomaterials and iron oxide/gold composite nanomaterials

    International Nuclear Information System (INIS)

    Yang Zusing; Lin, Z H; Tang, C-Y; Chang, H-T

    2007-01-01

    We have successfully synthesized flower-like gold nanomaterials and Fe 3 O 4 /Au composite nanomaterials through the use of wet chemical methods in aqueous solution. In the presence of 0.5 mM citrate, 0.313 mM poly(ethylene glycol), and 109.72 mM sodium acetate (NaOAc), we prepared Au nanoflowers (NFs) having diameters ranging from 300 to 400 nm in aqueous solution after the reduction of Au ions at room temperature for 10 min. In the presence of spherical Fe 3 O 4 nanomaterials, we applied a similar synthetic method to prepare Fe 3 O 4 /Au composite nanomaterials, including nanowires (NWs) that have a length of 1.58 μm and a width of 28.3 nm. We conducted energy-dispersive x-ray analysis, scanning electron microscopy, transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption, and x-ray powder diffraction measurements to characterize the as-prepared flower-like Au nanomaterials and Fe 3 O 4 /Au composite nanomaterials. From time-evolution TEM measurements, we suggested that Au atoms that were bound to the Fe 3 O 4 nanomaterials grew to form Fe 3 O 4 /Au composite nanomaterials. The as-prepared Au NFs absorbed light strongly in the visible-near-infrared (Vis-NIR) region (500-1200 nm). The Fe 3 O 4 /Au composite nanomaterials had electronic conductivities greater than 100 nA at an applied voltage of 20 mV, which induced a temperature increase of 20.5 ± 0.5 deg. C under an alternating magnetic field (62 μT)

  6. Preparation of Cu{sub 2}O nanoparticles in cupric chloride solutions with a simple mechanochemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D., E-mail: ma97chen@hotamil.co [School of Materials Science and Engineering, Hunan University, Changsha, 410082 (China); Graduate School of Energy Science, Kyoto University, 606-8501, Kyoto (Japan); Ni, S. [School of Materials Science and Engineering, Hunan University, Changsha, 410082 (China); Fang, J.J. [College of Electromechanical Engineering, North China University of Technology, Beijing, 100041 (China); Xiao, T. [School of Materials Science and Engineering, Hunan University, Changsha, 410082 (China)

    2010-08-15

    The cuprous oxide (Cu{sub 2}O) nanoparticles with diameter of 50-150 nm are prepared by high-energy ball milling in the various CuCl{sub 2} solutions with different [Cl{sup -}] concentration. The as-synthesized products are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Finally, the effects of [Cl{sup -}] concentrations on the formation of cuprous oxide and reaction mechanism are discussed.

  7. Method of preparing Ru-immobilized polymer-supported catalyst for hydrogen generation from NaBH{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ching-Wen; Chen, Chuh-Yung; Huang, Yao-Hui [Department of Chemical Engineering, National Cheng Kung University, No.1, University Road, Tainan City 70101 (China)

    2009-03-15

    A method of preparing a polymer-supported catalyst for hydrogen generation is introduced in this article. This polymer-supported catalyst is the structure of ruthenium (Ru) nanoparticle immobilized on a monodisperse polystyrene (PSt) microsphere. The diameter of the Ru nanoparticle is around 16 nm, and the diameter of the PSt microsphere is 2.65 um. This preparation method is accomplished by two unique techniques: one is sodium lauryl sulfate/sodium formaldehyde sulfoxylate (SLS/SFS) interface-initiated system, the other is 2-methacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester (GMA-IDA) chelating monomer. By taking advantage of these two techniques, Ru{sup 3+} ion will be chelated and then reduced to Ru{sup (0)} nanoparticle over PSt surface predominantly. The hydrolysis of alkaline sodium borohydride (NaBH{sub 4}) solution catalyzed by this Ru-immobilized polymer-supported catalyst is also examined in this article. It reveals that the hydrogen generation rate is 215.9 ml/min g-cat. in a diluted solution containing 1 wt.% NaBH{sub 4} and 1 wt.% NaOH, and this Ru-immobilized polymer-supported catalyst could be recycled during the reaction. (author)

  8. Improving the drug delivery characteristics of graphene oxide based polymer nanocomposites through the “one-pot” synthetic approach of single-electron-transfer living radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Peng; Liu, Meiying; Tian, Jianwen; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Xu, Dazhuang [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Liu, Liangji [Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330006 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    Graphical abstract: The PEGylated graphene oxides with high water dispersibility, good biocompatibility as well as high drug loading capability were fabricated via “one-pot” SET-LRP. - Highlights: • Surface modification of graphene oxide with polymers. • One-pot single-electron-transfer living radical polymerization. • Improving drug delivery characteristics. • The synthetic approach is rather simple, universal and effective. - Abstract: Graphene oxide (GO) based polymer nanocomposites have attracted extensive research interest recently for their outstanding physicochemical properties and potential applications. However, surface modification of GO with synthetic polymers has demonstrated to be trouble for most polymerization procedures are occurred under non-aqueous solution, which will in turn lead to the restacking of GO. In this work, a facile and efficient “one-pot” strategy has been developed for surface modification of GO with synthetic polymers through single-electron-transfer living radical polymerization (SET-LRP). The GO based polymer nanocomposites were obtained via SET-LRP in aqueous solution using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the monomer and 11-bromoundecanoic acid as the initiator, which could be effectively adsorbed on GO through hydrophobic interaction. The successful preparation of GO based polymer nanocomposites was confirmed by a series of characterization techniques such as {sup 1}H nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The resultant products exhibit high water disperisibility, excellent biocompatibility and high efficient drug loading capability, making these PEGylated GO nanocomposites promising candidates for biomedical applications.

  9. Preparation and validation of a large size dried spike: Batch SAL-9924

    International Nuclear Information System (INIS)

    Bagliano, G.; Cappis, J.; Doubek, N.; Jammet, G.; Raab, W.; Zoigner, A.

    1989-12-01

    To determine uranium and plutonium concentration using isotope dilution mass spectrometry, weighed aliquands of a synthetic mixture containing 2 to 4 mg of Pu (with a 239 Pu abundance of about 97%) and 40 to 200 mg of U (with a 235 U enrichment of about 18%) can be advantageously used to spike a concentrated spent fuel solution with a high burn up and with a low 235 U enrichment. This will simplify the conditioning of the sample by 1) reduced time of preparation (from more than one day used for the conventional technique to 2-3 hours); 2) reduced burden for the operator with a clear easiness for the inspector to witness the entire procedure (accurate dilution of the spent fuel sample before spiking being no longer necessary). Furthermore this type of spike could be used as a common spike for the operator and the inspector. The source materials are available in sufficient quantity and are enough cheaper than the commonly used 233 U and 242 Pu or 244 Pu tracer that the costs of the overall Operator-Inspector procedures will be reduced. Certified Reference Materials Pu-NBL-126, natural U-NBS-960 and 93% enriched U-NBL-116 were used to prepare a stock solution containing 1.7 mg/ml of Pu and 68 mg/ml of 17.5% enriched U. Before shipment to the Reprocessing Plant, aliquands of the stock solution must be dried to give Large Size Dried Spikes which resist shocks encountered during transportation, so that they can readily be recovered quantitatively at the plant. This paper describes the preparation and the validation of the Large Size Dried Spike. Proof of usefulness in the field will be done at a later date in parallel with analysis by the conventional technique. Refs and tabs

  10. Post-Synthetic Polymerization of UiO-66-NH2 Nanoparticles and Polyurethane Oligomer toward Stand-Alone Membranes for Dye Removal and Separation.

    Science.gov (United States)

    Yao, Bing-Jian; Jiang, Wei-Ling; Dong, Ying; Liu, Zhi-Xian; Dong, Yu-Bin

    2016-07-18

    Metal-organic frameworks (MOFs) are widely used as porous materials in the fields of adsorption and separation. However, their practical application is largely hindered by limitations to their processability. Herein, new UiO-66-Urea-based flexible membranes with MOF loadings of 50 (1), 60 (2), and 70 wt % (3) were designed and prepared by post-synthetic polymerization of UiO-66-NH2 nanoparticles and a polyurethane oligomer under mild conditions. The adsorption behavior of membrane 3 towards four hydrophilic dyes, namely, eosin Y (EY), rhodamine B (RB), malachite green (MG), and methylene blue (MB), in aqueous solution was studied in detail. It exhibits strong adsorption of EY and RB but weak adsorption of MG and MB in aqueous solution. Owing to the selective adsorption of these hydrophilic dyes, membrane 3 can remove EY and RB from aqueous solution and completely separate EY/MB, RB/MG, and RB/MB mixtures in aqueous solution. In addition, the membrane is uniformly textured, easily handled, and can be reused for dye adsorption and separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Microbial contamination and labelling of self-prepared, multi-dose ...

    African Journals Online (AJOL)

    The name of the solution was indicated on 100% of the containers and the concentration of the solution was on 96.4%. The date the solution was prepared was indicated on 74.6% of containers and the time the solution was prepared was on 57.3%. Only 8.2% of healthcare workers who prepared the solution confirmed it by ...

  12. Simplified preparation of coniferyl and sinapyl alcohols.

    Science.gov (United States)

    Kim, Hoon; Ralph, John

    2005-05-04

    Coniferyl and sinapyl alcohols were prepared from commercially available coniferaldehyde and sinapaldehyde using borohydride exchange resin in methanol. This reduction is highly regioselective and exceptionally simple, making these valuable monolignols readily available to researchers lacking synthetic chemistry expertise.

  13. Preparation and application of potassium and sodium titanate for removal of plutonium from basic solution

    International Nuclear Information System (INIS)

    Patil, Prashant; Pathak, Sachin S.; Pius, I.C.; Mukerjee, S.K.

    2014-01-01

    In PUREX process, after extraction and stripping of uranium and plutonium, the extractant, tributyl phosphate is usually washed with sodium carbonate solution before reuse for the removal of radiolytic/hydrolytic degradation products of TBP and small amounts of HNO 3 , uranium and plutonium goes into aqueous phase during carbonate washings. Partial neutralization of carbonate by the acid converts it to bicarbonate. Removal of plutonium from such sodium carbonate/bicarbonate streams facilitates their disposal. In the present work, studies were carried out to prepare inorganic ion-exchangers such as potassium and sodium titanates for their application as ion-exchange material. It is essential to prepare these materials in granular form to obtain good liquid flow property for ion exchange column operations, however, it is also important that the final product is having good surface area and porosity so that they may exhibit good ion exchange capacity

  14. Nitrate conversion and supercritical fluid extraction of UO2-CeO2 solid solution prepared by an electrolytic reduction-coprecipitation method

    International Nuclear Information System (INIS)

    Zhu, L.Y.; Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J.

    2014-01-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N 2 O 4 into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO 2 -CeO 2 solid solution was prepared as a surrogate for a UO 2 -PuO 2 solid solution, and the recovery of U and Ce from the UO 2 -CeO 2 solid solution with liquid N 2 O 4 and supercritical CO 2 containing tri-n-butyl phosphate (TBP) was investigated. The UO 2 -CeO 2 solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N 2 O 4 . The XRD pattern of the nitrates was similar to that of UO 2 (NO 3 ) 2 . 3H 2 O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO 2 containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  15. Optimising concentrations of antimicrobial agents in pharmaceutical preparations: Case of an oral solution of glycerol and an ophthalmic solution containing cysteamine.

    Science.gov (United States)

    Chan Hew Wai, A; Becasse, P; Tworski, S; Pradeau, D; Planas, V

    2014-11-01

    In the context of current distrust of antimicrobial preservatives, the quantities of these substances in two pharmaceutical formulas were studied: an ophthalmic solution of cysteamine preserved benzalkonium chloride at 1mg/5mL and Glycerotone(®) preserved with sorbic acid at 0.1g/100g. The purpose of this work was to verify that a reduction of the quantities of preservative continues to fulfil the requirements for antimicrobial preservation. The Test of efficacy of antimicrobial preservation, section 5.1.3 of the 8th edition of the European Pharmacopoeia, was carried out on each formulation prepared with decreasing quantities of preservative. The results show that formulations whose preservative concentration was reduced by a factor of four remained compliant with standards. It is to be noted that in formulas without preservative, fungal growth was observed in both the solution of Glycerotone(®) and the ophthalmic solution containing cysteamine. Although there is no question that an antimicrobial preservative is necessary, the quantity of preservative can be reduced without deteriorating the quality of the pharmaceutical product but the minimal effective concentration remains to be determined. The formulations of many pharmaceutical products should therefore be examined in order to limit the quantities of preservative while continuing to guarantee patient's safety. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Progress in the preparation of magnetic nanoparticles for applications in biomedicine

    Energy Technology Data Exchange (ETDEWEB)

    Roca, A G; Costo, R; Rebolledo, A F; Veintemillas-Verdaguer, S; Tartaj, P; Gonzalez-Carreno, T; Morales, M P; Serna, C J, E-mail: puerto@icmm.csic.e [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain)

    2009-11-21

    This review summarizes recent advances in synthesis routes for quickly and reliably making and functionalizing magnetic nanoparticles for applications in biomedicine. We put special emphasis on describing synthetic strategies that result in the production of nanosized materials with well-defined physical and crystallochemical characteristics as well as colloidal and magnetic properties. Rather than grouping the information according to the synthetic route, we have described methods to prepare water-dispersible equiaxial magnetic nanoparticles with sizes below about 10 nm, sizes between 10 and 30 nm and sizes around the monodomain-multidomain magnetic transition. We have also described some recent examples reporting the preparation of anisometric nanoparticles as well as methods to prepare magnetic nanosized materials other than iron oxide ferrites, for example Co and Mn ferrite, FePt and manganites. Finally, we have described examples of the preparation of multicomponent systems with purely inorganic or organic-inorganic characteristics. (topical review)

  17. 3rd congress on applied synthetic biology in Europe (Costa da Caparica, Portugal, February 2016).

    Science.gov (United States)

    Cueva, Miguel

    2017-03-25

    The third meeting organised by the European Federation of Biotechnology (EFB) on advances in Applied Synthetic Biotechnology in Europe (ASBE) was held in Costa da Caparica, Portugal, in February 2016. Abundant novel applications in synthetic biology were described in the six sessions of the meeting, which was divided into technology and tools for synthetic biology (I, II and III), bionanoscience, biosynthetic pathways and enzyme synthetic biology, and metabolic engineering and chemical manufacturing. The meeting presented numerous methods for the development of novel synthetic strains, synthetic biological tools and synthetic biology applications. With the aid of synthetic biology, production costs of chemicals, metabolites and food products are expected to decrease, by generating sustainable biochemical production of such resources. Also, such synthetic biological advances could be applied for medical purposes, as in pharmaceuticals and for biosensors. Recurrent, linked themes throughout the meeting were the shortage of resources, the world's transition into a bioeconomy, and how synthetic biology is helping tackle these issues through cutting-edge technologies. While there are still limitations in synthetic biology research, innovation is propelling the development of technology, the standardisation of synthetic biological tools and the use of suitable host organisms. These developments are laying a foundation to providing a future where cutting-edge research could generate potential solutions to society's pressing issues, thus incentivising a transition into a bioeconomy. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Peripherally applied synthetic peptide isoAsp7-Aβ(1-42) triggers cerebral β-amyloidosis.

    Science.gov (United States)

    Kozin, S A; Cheglakov, I B; Ovsepyan, A A; Telegin, G B; Tsvetkov, P O; Lisitsa, A V; Makarov, A A

    2013-10-01

    Intracerebral and intraperitoneal inoculation with β-amyloid-rich brain extracts originating from patients with Alzheimer's disease as well as intracerebral injection of aggregates composed of synthetic Aβ can induce cerebral β-amyloidosis, and associated cognitive dysfunctions in susceptible animal hosts. We have found that repetitive intravenous administration of 100 μg of synthetic peptide corresponding to isoAsp7-containing Aβ(1-42), an abundant age-dependent Aβ isoform present both in the pathological brain and in syntheticpreparations, robustly accelerates formation of classic dense-core congophilic amyloid plaques in the brain of β-amyloid precursor protein transgenic mice. Our findings indicate this peptide as an inductive agent of cerebral β-amyloidosis in vivo.

  19. Library Design-Facilitated High-Throughput Sequencing of Synthetic Peptide Libraries.

    Science.gov (United States)

    Vinogradov, Alexander A; Gates, Zachary P; Zhang, Chi; Quartararo, Anthony J; Halloran, Kathryn H; Pentelute, Bradley L

    2017-11-13

    A methodology to achieve high-throughput de novo sequencing of synthetic peptide mixtures is reported. The approach leverages shotgun nanoliquid chromatography coupled with tandem mass spectrometry-based de novo sequencing of library mixtures (up to 2000 peptides) as well as automated data analysis protocols to filter away incorrect assignments, noise, and synthetic side-products. For increasing the confidence in the sequencing results, mass spectrometry-friendly library designs were developed that enabled unambiguous decoding of up to 600 peptide sequences per hour while maintaining greater than 85% sequence identification rates in most cases. The reliability of the reported decoding strategy was additionally confirmed by matching fragmentation spectra for select authentic peptides identified from library sequencing samples. The methods reported here are directly applicable to screening techniques that yield mixtures of active compounds, including particle sorting of one-bead one-compound libraries and affinity enrichment of synthetic library mixtures performed in solution.

  20. Optimising Realism of Synthetic Agricultural Images using Cycle Generative Adversarial Networks

    NARCIS (Netherlands)

    Barth, R.; IJsselmuiden, J.M.M.; Hemming, J.; Henten, van E.J.

    2017-01-01

    A bottleneck of state-of-the-art machine learning methods, e.g. deep learning, for plant part image segmentation in agricultural robotics is the requirement of large manually annotated datasets. As a solution, large synthetic datasets including ground truth can be rendered that realistically reflect

  1. Synthesis of Gold Nanoparticles Stabilized in Dextran Solution by Gamma Co-60 Ray Irradiation and Preparation of Gold Nanoparticles/Dextran Powder

    Directory of Open Access Journals (Sweden)

    Phan Ha Nu Diem

    2017-01-01

    Full Text Available Gold nanoparticles (AuNPs in spherical shape with diameter of 6–35 nm stabilized by dextran were synthesized by γ-irradiation method. The AuNPs were characterized by UV-Vis spectroscopy and transmission electron microscopy. The influence of pH, Au3+ concentration, and dextran concentration on the size of AuNPs was investigated. Results indicated that the smallest AuNPs size (6 nm and the largest AuNPs size (35 nm were obtained for pH of 1 mM Au3+/1% dextran solution of 5.5 and 7.5, respectively. The smaller Au3+ concentration favored smaller size and conversely the smaller dextran concentration favored bigger size of AuNPs. AuNPs powders were prepared by spay drying, coagulation, and centrifugation and their sizes were also evaluated. The purity of prepared AuNPs powders was also examined by energy dispersive X-ray (EDX analysis. Thus, the as-prepared AuNPs stabilized by biocompatible dextran in solution and/or in powder form can be potentially applied in biomedicine and pharmaceutics.

  2. An Asymmetric Synthetic Approach to the A-ring of the Taxol Family of Anti-Cancer Compounds

    Directory of Open Access Journals (Sweden)

    M. L. Marin

    1998-02-01

    Full Text Available A synthetic route developed for the preparation of the A-ring of Taxol family of molecules is reported. By means of an intramolecular Diels-Alder reaction an asymmetric approach to this ring has been accomplished. Also, initial studies to prepare the A ring using an intramolecular Diels-Alder reaction have been successful.

  3. Arsenic Removal from Aqueous Solutions Using Modified and Unmodified Oak Sawdust

    Directory of Open Access Journals (Sweden)

    Ali Reza Rahmani

    2016-01-01

    Full Text Available In this research, oak sawdust, in both modified and unmodified forms, was used as an economical and low-cost material for the removal of arsenic from aqueous solutions. For this purpose, arsenic synthetic samples were prepared using NaAsO2 in distilled water and the effects of pH, adsorbent dosage, contact time, and initial As(V concentration were investigated on As(V adsorption using the adsorbents prepared. The results showed that modified sawdust achieved the highest efficiency (>91% over a contact time of 60 min and at pH 7 when the adsorbent dosage was 4gr/L and the initial As(V concentration was 150 µg/L. The data from both adsorbents fitted well to the Langmuir isotherm. Under optimum conditions (an initial As(V concentration of 150 µg/L and optimal absorption pH, contact time, and adsorbent dosage, maximum As(V removal efficiencies were 93.85% and 91.034% with the modified  and unmodified sawdust adsorbents, respectively. Given the availability and low cost of the adsorbent used and the high removal efficiency obtained at  lower adsorbent dosages and contact times, the modified oak sawdust may be recommended as an effective adsorbent for the removal of arsenic (v from aqueous solutions, especially since it requires no need for pH modification.

  4. Gold nanoparticles prepared by laser ablation in aqueous biocompatible solutions: assessment of safety and biological identity for nanomedicine applications

    Directory of Open Access Journals (Sweden)

    Correard F

    2014-11-01

    Full Text Available Florian Correard,1,2 Ksenia Maximova,3 Marie-Anne Estève,1,2 Claude Villard,1 Myriam Roy,4 Ahmed Al-Kattan,3 Marc Sentis,3 Marc Gingras,4 Andrei V Kabashin,3 Diane Braguer1,2 1Aix Marseille Université, INSERM, CR02 UMR_S911, Marseille, France; 2APHM, Hôpital Timone, Marseille, France; 3Aix Marseille Université, CNRS, LP3 UMR 7341, Marseille, France; 4Aix Marseille Université, CNRS, CINAM, UMR 7325 Marseille, France Abstract: Due to excellent biocompatibility, chemical stability, and promising optical properties, gold nanoparticles (Au-NPs are the focus of research and applications in nanomedicine. Au-NPs prepared by laser ablation in aqueous biocompatible solutions present an essentially novel object that is unique in avoiding any residual toxic contaminant. This paper is conceived as the next step in development of laser-ablated Au-NPs for future in vivo applications. The aim of the study was to assess the safety, uptake, and biological behavior of laser-synthesized Au-NPs prepared in water or polymer solutions in human cell lines. Our results showed that laser ablation allows the obtaining of stable and monodisperse Au-NPs in water, polyethylene glycol, and dextran solutions. The three types of Au-NPs were internalized in human cell lines, as shown by transmission electron microscopy. Biocompatibility and safety of Au-NPs were demonstrated by analyzing cell survival and cell morphology. Furthermore, incubation of the three Au-NPs in serum-containing culture medium modified their physicochemical characteristics, such as the size and the charge. The composition of the protein corona adsorbed on Au-NPs was investigated by mass spectrometry. Regarding composition of complement C3 proteins and apolipoproteins, Au-NPs prepared in dextran solution appeared as a promising drug carrier. Altogether, our results revealed the safety of laser-ablated Au-NPs in human cell lines and support their use for theranostic applications. Keywords: protein

  5. Electrochemically formed passive layers on titanium - preparation and biocompatibility assessment in Hank's balanced salt solution

    International Nuclear Information System (INIS)

    Zhao, B.; Jerkiewicz, G.

    2006-01-01

    Uniform and crack-free passive layers on Ti are prepared using AC voltage in 7.5 wt.% aq. NH 4 ·BF 4 at 25 o C. The passive layers possess coloration (wide spectrum of colors) that depends on the experimental conditions. The biocompatibility of such prepared passive layers is evaluated using corrosion science and analytical techniques. Their corrosion behavior, Ti-ion release, surface roughness, and wettability in Hank's Balanced Salt Solution (HBSS) at 37 o C are the main focus of this work. Open-circuit potential and polarization measurements demonstrate that the corrosion potential (E corr ) of the passive layers becomes more positive than that of the untreated Ti. The value of E corr increases as we increase the AC voltage (VAC). Their corrosion rate (CR) is lower than that of the untreated Ti, and they reduced the Ti-ion release level from 230 to 15 ppb. An increase in the AC voltage frequency (f) leads to a slightly higher level of the Ti-ion release (∼50 ppb). Surface profilometry, optical microscopy, and scanning electron microscopy (SEM) analyses show that prolonged exposure of the passive layers to HBSS results in changes to their surface topography. The passive layers prepared by the application of AC voltage are rougher and more hydrophilic than the untreated Ti. Our methodology of preparing biocompatible passive layers on Ti might be applied as a new surface treatment procedure for Ti implants. (author)

  6. Improvement of mechanical properties of hydrogel by irradiation of polymers in aqueous solution with κ-carrageenan

    International Nuclear Information System (INIS)

    Makuuchi, K.; Yoshii, F.; Zhai, M.

    2000-01-01

    Predominate radiation reaction of κ-carrageenan (KC) hydrogel is the main chain scission of KC. The gel strength of KC hydrogel decreased with increasing irradiation dose. However, KC was found to enhances the radiation crosslinking of synthetic water-soluble polymer (SWSP) such as poly(ethylene oxide) (PEO) and poly(N-vinylpyrolidone) (PVP) in aqueous solution. The gel strength of SWSP hydrogel increased with increasing dose when KC was blended. Probably the radiation degraded KC radicals are recombined with radicals of PVP and PEO. The hydrogel thus prepared absorbs huge amounts of water due to the presence of strong hydrophilic -OSO 3 - groups in KC. (author)

  7. Improvement of mechanical properties of hydrogel by irradiation of polymers in aqueous solution with {kappa}-carrageenan

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, K.; Yoshii, F. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Aranilla, C.T. [Philippine Nuclear Research Institute, Diliman, Quezon (Philippines); Zhai, M. [Department of Technical Physics, Peking Univ., Beijing (China)

    2000-03-01

    Predominate radiation reaction of {kappa}-carrageenan (KC) hydrogel is the main chain scission of KC. The gel strength of KC hydrogel decreased with increasing irradiation dose. However, KC was found to enhances the radiation crosslinking of synthetic water-soluble polymer (SWSP) such as poly(ethylene oxide) (PEO) and poly(N-vinylpyrolidone) (PVP) in aqueous solution. The gel strength of SWSP hydrogel increased with increasing dose when KC was blended. Probably the radiation degraded KC radicals are recombined with radicals of PVP and PEO. The hydrogel thus prepared absorbs huge amounts of water due to the presence of strong hydrophilic -OSO{sub 3}{sup -} groups in KC. (author)

  8. Proposed satellite position determination systems and techniques for Geostationary Synthetic Aperture Radar

    OpenAIRE

    Martin Fuster, Roger; Fernández Usón, Marc; Casado Blanco, David; Broquetas Ibars, Antoni

    2016-01-01

    This paper proposes two different calibration techniques for Geostationary Synthetic Aperture Radar (GEOSAR) missions requiring a high precision positioning, based on Active Radar Calibrators and Ground Based Interferometry. The research is enclosed in the preparation studies of a future GEOSAR mission providing continuous monitoring at continental scale. Peer Reviewed

  9. Radiocesium Removal From Synthetic Steam-Generator Cleaning Solutions. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Narbutt, H; Bartos, B [Department of Radiochemistry, Institute of Nuclear Chemistry and Technology, PL-03185 Warsaw (Poland); Taleb, H [On leave from Tajoura Nuclear Research Center, Tripoli (Libyan Arab Jamahiriya)

    1996-03-01

    Adjustment of {sup 137} Cs{sup +} on ion exchangers from aqueous solutions containing ammonia and various chelating agents was studied. The solutions simulated radioactive waste obtained after chemical cleaning of steam generators (SG) in nuclear power plants according to the technology developed by Siemens KWU and contained ammonia and one of the following chelating agents; nitrilotriacetic acid (NTA), ethylenediamine tetraacetic acid (EDTA), and ethylenediamine(EDA), to dissolve iron and/or copper corrosion deposits. The ion exchangers used were of the composite type, and consisted of powdered cobalt(II) hexacyanoferrate incorporated into beads of a phenolsulphonic resin. Another composite adsorbent with titanium hexacyanoferrate has proved to adsorb {sup 137} Cs{sup +} from the NTA and EDA solutions more effectively than commercial caesium- selective resin Lewatit DN-KR. However, because of high concentration of competitive ammonium ions at PH 7.2(at higher PH the sorbent decomposed), the removal of radiocaesium was still insufficient. 3 figs.

  10. Distributed detection of communities in complex networks using synthetic coordinates

    International Nuclear Information System (INIS)

    Papadakis, H; Fragopoulou, P; Panagiotakis, C

    2014-01-01

    Various applications like finding Web communities, detecting the structure of social networks, and even analyzing a graph’s structure to uncover Internet attacks are just some of the applications for which community detection is important. In this paper, we propose an algorithm that finds the entire community structure of a network, on the basis of local interactions between neighboring nodes and an unsupervised distributed hierarchical clustering algorithm. The novelty of the proposed approach, named SCCD (standing for synthetic coordinate community detection), lies in the fact that the algorithm is based on the use of Vivaldi synthetic network coordinates computed by a distributed algorithm. The current paper not only presents an efficient distributed community finding algorithm, but also demonstrates that synthetic network coordinates could be used to derive efficient solutions to a variety of problems. Experimental results and comparisons with other methods from the literature are presented for a variety of benchmark graphs with known community structure, derived from varying a number of graph parameters and real data set graphs. The experimental results and comparisons to existing methods with similar computation cost on real and synthetic data sets demonstrate the high performance and robustness of the proposed scheme. (paper)

  11. An Integrated Solution-Based Rapid Sample Preparation Procedure for the Analysis of N-Glycans From Therapeutic Monoclonal Antibodies.

    Science.gov (United States)

    Aich, Udayanath; Liu, Aston; Lakbub, Jude; Mozdzanowski, Jacek; Byrne, Michael; Shah, Nilesh; Galosy, Sybille; Patel, Pramthesh; Bam, Narendra

    2016-03-01

    Consistent glycosylation in therapeutic monoclonal antibodies is a major concern in the biopharmaceutical industry as it impacts the drug's safety and efficacy and manufacturing processes. Large numbers of samples are created for the analysis of glycans during various stages of recombinant proteins drug development. Profiling and quantifying protein N-glycosylation is important but extremely challenging due to its microheterogeneity and more importantly the limitations of existing time-consuming sample preparation methods. Thus, a quantitative method with fast sample preparation is crucial for understanding, controlling, and modifying the glycoform variance in therapeutic monoclonal antibody development. Presented here is a rapid and highly quantitative method for the analysis of N-glycans from monoclonal antibodies. The method comprises a simple and fast solution-based sample preparation method that uses nontoxic reducing reagents for direct labeling of N-glycans. The complete work flow for the preparation of fluorescently labeled N-glycans takes a total of 3 h with less than 30 min needed for the release of N-glycans from monoclonal antibody samples. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. The preparation of accelerator targets by the evaporation of acetate-organic solutions in the presence of NH3 gas

    International Nuclear Information System (INIS)

    Cai, S.Y.; Ghiorso, A.; Hoffman, D.C.

    1987-03-01

    The chemical methods described in this paper have been developed for preparation of isotopic targets for bombardment by accelerator-produced ions. Three systems are compared: nitrate-, chloride-, and acetate-organic solutions. The best method was found to be the metallic acetate-organic solution system, evaporated onto the substrate in the presence of ammonia gas. A detailed procedure is given for this method. The targets obtained by the acetate-organic solution system are uniform and adherent. The hydroxide forms fine crystals of good quality for target thicknesses from a few μg/cm 2 to several mg/cm 2 . Thicknesses up to 5 mg/cm 2 of Eu as the oxide were obtained by this method. The process is simple and fast. 18 refs., 1 tab

  13. Review on preparation techniques of particle reinforced metal matrix composites

    Directory of Open Access Journals (Sweden)

    HAO Bin

    2006-02-01

    Full Text Available This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparation techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  14. Synthetic Receptors for the High-Affinity Recognition of O-GlcNAc Derivatives

    NARCIS (Netherlands)

    Rios, Pablo; Carter, Tom S; Mooibroek, Tiddo J; Crump, Matthew P; Lisbjerg, Micke; Pittelkow, Michael; Supekar, Nitin T; Boons, Geert-Jan|info:eu-repo/dai/nl/088245489; Davis, Anthony P

    2016-01-01

    The combination of a pyrenyl tetraamine with an isophthaloyl spacer has led to two new water-soluble carbohydrate receptors ("synthetic lectins"). Both systems show outstanding affinities for derivatives of N-acetylglucosamine (GlcNAc) in aqueous solution. One receptor binds the methyl glycoside

  15. Removal of heavy metals from aqueous solution by using mango ...

    African Journals Online (AJOL)

    user

    2011-03-14

    Mar 14, 2011 ... exchange, reverse osmosis and solvent extraction (Rich and Cherry, 1987). ... the solution chemistry of the metals, the activity of the functional groups in the .... and Zn2+ from synthetic solutions in single and binary metal solutions. ... coefficient of determination are 0.9449 and 0.9643 for. Langmiur and ...

  16. Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis—Desalination using MgSO4 draw solution

    KAUST Repository

    Sairam, M.; Sereewatthanawut, E.; Li, K.; Bismarck, A.; Livingston, A.G.

    2011-01-01

    A lab scale method for the preparation of defect free flat sheet composite membranes for forward osmosis (FO) has been developed. Membranes containing a thin layer of cellulose acetate (CA) cast on a nylon fabric of 50μm thick were prepared by phase inversion in water. Cellulose acetate (CA) membranes with an overall thickness of 70-80μm have been prepared with lactic acid, maleic acid and zinc chloride as pore forming agents, at different annealing temperatures, for forward osmosis. These membranes have been tested in the desalination of saline feeds (35g·L-1 of NaCl) using magnesium sulphate solution (150g·L-1) as the draw solution. The water flux, and rejection of NaCl, were compared with those of commercially available membranes tested under the same FO conditions. The commercially available FO membrane from Hydration Technologies Inc, OR (M1) has a permeability of 0.13L·h-1·m-2·bar-1 with a NaCl rejection of 97% when tested with 150g·L-1 of MgSO4 in the draw solution. Another commercially available membrane for FO from Hydration Technologies Inc, OR, M2 has a water permeability of 0.014L·h-1·m-2·bar-1 with NaCl rejection of 100%. The flux and rejection of the CA membranes prepared in this work are found to be dependent on the nature of the pore forming agent, and annealing temperature. Impregnation of an inorganic filler, sodium montmorrillonite in CA membranes and coating of CA membranes with hydrophilic PVA did not enhance the flux of base CA membranes. Cellulose acetate membranes cast from dope solutions containing acetone/isopropanol and lactic acid, maleic acid and zinc chloride as pore forming agents have water permeabilities of 0.13, 0.09 and 0.68L·h-1·m-2·bar-1 respectively, with NaCl rejections of 97.7, 99.3 and 88% when annealed at 50°C. CA membranes prepared with zinc chloride as a pore forming agent have good permeability of 0.27L·h-1·m-2·bar-1 with a NaCl rejection of 95% when annealed at 70°C. © 2011.

  17. Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis—Desalination using MgSO4 draw solution

    KAUST Repository

    Sairam, M.

    2011-06-01

    A lab scale method for the preparation of defect free flat sheet composite membranes for forward osmosis (FO) has been developed. Membranes containing a thin layer of cellulose acetate (CA) cast on a nylon fabric of 50μm thick were prepared by phase inversion in water. Cellulose acetate (CA) membranes with an overall thickness of 70-80μm have been prepared with lactic acid, maleic acid and zinc chloride as pore forming agents, at different annealing temperatures, for forward osmosis. These membranes have been tested in the desalination of saline feeds (35g·L-1 of NaCl) using magnesium sulphate solution (150g·L-1) as the draw solution. The water flux, and rejection of NaCl, were compared with those of commercially available membranes tested under the same FO conditions. The commercially available FO membrane from Hydration Technologies Inc, OR (M1) has a permeability of 0.13L·h-1·m-2·bar-1 with a NaCl rejection of 97% when tested with 150g·L-1 of MgSO4 in the draw solution. Another commercially available membrane for FO from Hydration Technologies Inc, OR, M2 has a water permeability of 0.014L·h-1·m-2·bar-1 with NaCl rejection of 100%. The flux and rejection of the CA membranes prepared in this work are found to be dependent on the nature of the pore forming agent, and annealing temperature. Impregnation of an inorganic filler, sodium montmorrillonite in CA membranes and coating of CA membranes with hydrophilic PVA did not enhance the flux of base CA membranes. Cellulose acetate membranes cast from dope solutions containing acetone/isopropanol and lactic acid, maleic acid and zinc chloride as pore forming agents have water permeabilities of 0.13, 0.09 and 0.68L·h-1·m-2·bar-1 respectively, with NaCl rejections of 97.7, 99.3 and 88% when annealed at 50°C. CA membranes prepared with zinc chloride as a pore forming agent have good permeability of 0.27L·h-1·m-2·bar-1 with a NaCl rejection of 95% when annealed at 70°C. © 2011.

  18. Composite Properties of Polyimide Resins Made From "Salt-Like" Solution Precursors

    Science.gov (United States)

    Cano, Roberto J.; Weiser, Erik S.; SaintClair, Terry L.; Echigo, Yoshiaki; Kaneshiro, Hisayasu

    1997-01-01

    Recent work in high temperature materials at NASA Langley Research Center (LaRC (trademark)) have led to the development of new polyimide resin systems with very attractive properties. The majority of the work done with these resin systems has concentrated on determining engineering mechanical properties of composites prepared from a poly(amide acid) precursor. Three NASA Langley-developed polyimide matrix resins, LaRC (trademark) -IA, LaRC (trademark) -IAX, and LaRC (trademark) -8515, were produced via a salt-like process developed by Unitika Ltd. The 'salt-like' solutions (sixty-five percent solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC Multipurpose Tape Machine. Process parameters were determined and composite panels fabricated. Mechanical properties are presented for these three intermediate modulus carbon fiber/polyimide matrix composites and compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (thirty-five percent solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of polyimide composites.

  19. Evaluation of a Group A Streptococcus synthetic oligosaccharide as vaccine candidate.

    Science.gov (United States)

    Kabanova, Anna; Margarit, Immaculada; Berti, Francesco; Romano, Maria R; Grandi, Guido; Bensi, Giuliano; Chiarot, Emiliano; Proietti, Daniela; Swennen, Erwin; Cappelletti, Emilia; Fontani, Paola; Casini, Daniele; Adamo, Roberto; Pinto, Vittoria; Skibinski, David; Capo, Sabrina; Buffi, Giada; Gallotta, Marilena; Christ, William J; Campbell, A Stewart; Pena, John; Seeberger, Peter H; Rappuoli, Rino; Costantino, Paolo

    2010-12-10

    Bacterial infections caused by Group A Streptococcus (GAS) are a serious health care concern that currently cannot be prevented by vaccination. The GAS cell-wall polysaccharide (GAS-PS) is an attractive vaccine candidate due to its constant expression pattern on different bacterial strains and protective properties of anti-GAS-PS antibodies. Here we report for the first time the immunoprotective efficacy of glycoconjugates with synthetic GAS oligosaccharides as compared to those containing the native GAS-PS. A series of hexa- and dodecasaccharides based on the GAS-PS structure were prepared by chemical synthesis and conjugated to CRM(197). When tested in mice, the conjugates containing the synthetic oligosaccharides conferred levels of immunoprotection comparable to those elicited by the native conjugate. Antisera from immunized rabbits promoted phagocytosis of encapsulated GAS strains. Furthermore we discuss variables that might correlate with glycoconjugate immunogenicity and demonstrate the potential of the synthetic approach that benefits from increased antigen purity and facilitated manufacturing. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. n-Type Conductivity of Cu2O Thin Film Prepared in Basic Aqueous Solution Under Hydrothermal Conditions

    Science.gov (United States)

    Ursu, Daniel; Miclau, Nicolae; Miclau, Marinela

    2018-03-01

    We report for the first time in situ hydrothermal synthesis of n-type Cu2O thin film using strong alkaline solution. The use of copper foil as substrate and precursor material, low synthesis temperature and short reaction time represent the arguments of a new, simple, inexpensive and high field synthesis method for the preparation of n-type Cu2O thin film. The donor concentration of n-type Cu2O thin film obtained at 2 h of reaction time has increased two orders of magnitude than previous reported values. We have demonstrated n-type conduction in Cu2O thin film prepared in strong alkaline solution, in the contradiction with the previous works. Based on experimental results, the synthesis mechanism and the origin of n-type photo-responsive behavior of Cu2O thin film were discussed. We have proposed that the unexpected n-type character could be explained by H doping of Cu2O thin film in during of the hydrothermal synthesis that caused the p-to-n conductivity-type conversion. Also, this work raises new questions about the origin of n-type conduction in Cu2O thin film, the influence of the synthesis method on the nature of the intrinsic defects and the electrical conduction behavior.

  1. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  2. Novel metal oxides prepared by ingenious synthetic routes

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Gopalakrishnan, J.; Vidyasagar, K.; Ganguli, A.K.; Ramanan, A.; Ganapathi, L.

    1986-01-01

    Several novel oxides have been prepared by the decomposition of carbonate precursors of calcite structure of the general formulas Mn/sub 1-x/M/sub x/CO 3 (M = Mg,Co,Cd), Ca/sub 1-x/M/sup prime//sub x/CO 3 , and Ca/sub 1-x/-yM/sup //sub x/M/sup double-prime//sub y/CO 3 (M',M'' = Mn,Fe,Co). Typical of the oxides synthesized are a variety of monoxides, Mn/sub 1-x/M/sub x/O, of rocksalt structure and perovskite-related oxides such as Ca 2 FeCoO 5 , Ca 2 Co 2 O 5 , and Ca 3 Fe 2 MnO 8 , many of them exhibiting novel anion-vacancy-ordered superstructures. An interesting series of oxides prepared by the topotactic reduction of Ca 2 Fe/sub 2-x/Mn/sub x/O/sub 6-y/ (synthesized by the decomposition of the corresponding carbonate precursors) is Ca 2 Fe/sub 2-x/Mn/sub x/O 5 where three different coordination polyhedra (octahedra, tetrahedra, and square pyramids) of the transition metals coexist. Topotactic reduction of LaCoO 3 and LaNiO 3 yields new oxides, La 2 Co 2 O 5 and La 2 Ni 2 O 5 , possessing anion-vacancy-ordered superstructures. While La 2 Co 2 O 5 adopts the brownmillerite structure, La 2 Ni 2 O 5 exhibits a new type of vacancy ordering with octahedral and square-planar coordination of Ni 2+ . Slightly reduced LaNiO 3 seem to exhibit crystallographic shear (CS) planes similar to WO/sub 3-x/. Topotactic dehydration of isostructural Mo/sub 1-x/W/sub x/O 3 x H 2 O provides a convenient route for the synthesis of Mo/sub 1-x/W/sub x/O 3 (0 3 -related structure

  3. Rapid preparation of solution-processed InGaZnO thin films by microwave annealing and photoirradiation

    International Nuclear Information System (INIS)

    Cheong, Heajeong; Ogura, Shintaro; Ushijima, Hirobumi; Yoshida, Manabu; Fukuda, Nobuko; Uemura, Sei

    2015-01-01

    We fabricated solution-processed indium–gallium–zinc oxide (IGZO) thin-film transistors (TFTs) by microwave (MW) annealing an IGZO precursor film followed by irradiating with vacuum ultraviolet (VUV) light. MW annealing allows more rapid heating of the precursor film than conventional annealing processes using a hot plate or electric oven and promotes the crystallization of IGZO. VUV irradiation was used to reduce the duration and temperature of the post-annealing step. Consequently, the IGZO TFTs fabricated through MW annealing for 5 min and VUV irradiation for 1 min exhibited an on/off current ratio of 10 8 and a field-effect mobility of 0.3 cm 2  V −1  s −1 . These results indicate that MW annealing and photoirradiation is an effective combination for annealing solution processed IGZO precursor films to prepare the semiconductor layers of TFTs

  4. Preparation of Li4Ti5O12 electrode thin films by a mist CVD process with aqueous precursor solution

    Directory of Open Access Journals (Sweden)

    Kiyoharu Tadanaga

    2015-03-01

    Full Text Available Spinel Li4Ti5O12 thin films were prepared by a mist CVD process, using an aqueous solution of lithium nitrate and a water-soluble titanium lactate complex as the source of Li and Ti, respectively. In this process, mist particles ultrasonically atomized from a source aqueous solution were transferred by nitrogen gas to a heating substrate to prepare thin films. Scanning electron microscopy observation showed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 500 nm were obtained. In the X-ray diffraction analysis, formation of Li4Ti5O12 spinel phase was confirmed in the obtained thin film sintered at 700 °C for 4 h. The cell with the thin films as an electrode exhibited a capacity of about 110 mAh g−1, and the cell showed good cycling performance during 10 cycles.

  5. Development of an EMC3-EIRENE Synthetic Imaging Diagnostic

    Science.gov (United States)

    Meyer, William; Allen, Steve; Samuell, Cameron; Lore, Jeremy

    2017-10-01

    2D and 3D flow measurements are critical for validating numerical codes such as EMC3-EIRENE. Toroidal symmetry assumptions preclude tomographic reconstruction of 3D flows from single camera views. In addition, the resolution of the grids utilized in numerical code models can easily surpass the resolution of physical camera diagnostic geometries. For these reasons we have developed a Synthetic Imaging Diagnostic capability for forward projection comparisons of EMC3-EIRENE model solutions with the line integrated images from the Doppler Coherence Imaging diagnostic on DIII-D. The forward projection matrix is 2.8 Mpixel by 6.4 Mcells for the non-axisymmetric case we present. For flow comparisons, both simple line integral, and field aligned component matrices must be calculated. The calculation of these matrices is a massive embarrassingly parallel problem and performed with a custom dispatcher that allows processing platforms to join mid-problem as they become available, or drop out if resources are needed for higher priority tasks. The matrices are handled using standard sparse matrix techniques. Prepared by LLNL under Contract DE-AC52-07NA27344. This material is based upon work supported by the U.S. DOE, Office of Science, Office of Fusion Energy Sciences. LLNL-ABS-734800.

  6. Biosorption Studies for the Removal of Malachite Green from its Aqueous Solution by Activated Carbon Prepared from Cassava Peel

    Directory of Open Access Journals (Sweden)

    C. Parvathi

    2011-01-01

    Full Text Available The association of dyes with health related problems is not a new phenomenon. The effectiveness of carbon adsorption for dye removal from textile effluent has made it an ideal alternative to other expensive treatment methods. The preparation of activated carbon from agricultural waste could increase economic return and reduce pollution. Cassava peel has been used as a raw material to produce activated carbon. The study investigates the removal of malachite green dye from its aqueous solution. The effects of condition such as adsorbent dosage, initial dye concentration, pH and contact time were studied. The adsorption capacity was demonstrated as a function of time for malachite green from aqueous solution by the prepared activated carbon. The results showed that as the amount of the adsorbent was increased, the percentage of dye removal increased accordingly. Higher adsorption percentages were observed at lower concentrations of malachite green dye. Silver nitrate treated cassava peel showed a better performance compared to Sulphuric acid treated and raw carbons, thus making it an interesting option for dye removal textile effluent.

  7. Deposition and characteristics of PbS thin films by an in-situ solution chemical reaction process

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Junna; Ji, Huiming; Wang, Jian; Zheng, Xuerong; Lai, Junyun; Liu, Weiyan; Li, Tongfei [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Ma, Yuanliang; Li, Haiqin; Zhao, Suqin [College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining 810007 (China); Jin, Zhengguo, E-mail: zhgjin@tju.edu.cn [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2015-09-01

    Preferential oriented and uniform PbS thin films were deposited by a room temperature in-situ solution chemical reaction process, in which the lead nitrate as precursor in a form of thin solid films from lead precursor solution was used to react with ammonium sulfide ethanol solution. Influence of 1-butanol addition in the lead precursor solution, Pb:S molar ratios in the separate cationic and anionic solutions, deposition cycle numbers and annealing treatment in Ar atmosphere on structure, morphology, chemical composition and optical absorption properties of the deposited PbS films were investigated based on X-ray diffraction, field emission scanning electron microscopy, energy dispersive spectrometer, atomic force microscopy, selected area electron diffraction, UV–vis, near infrared ray and fourier transform infrared spectroscopy measurements. The results showed that the deposited PbS thin films had a cubic structure and highly preferred orientation along with the plane (100). The deposition rate of single-layer was stable, about 30 nm in thickness per deposition cycle. - Highlights: • Time-efficiency synthetic method for the preparation of lead sulfide (PbS) films • Effect of 1-butanol addition into cationic precursor solution is discussed. • Growth rate of the PbS films is stable at about 30 nm per cycle.

  8. Synthetic glycopeptides and glycoproteins with applications in biological research

    Directory of Open Access Journals (Sweden)

    Ulrika Westerlind

    2012-05-01

    Full Text Available Over the past few years, synthetic methods for the preparation of complex glycopeptides have been drastically improved. The need for homogenous glycopeptides and glycoproteins with defined chemical structures to study diverse biological phenomena further enhances the development of methodologies. Selected recent advances in synthesis and applications, in which glycopeptides or glycoproteins serve as tools for biological studies, are reviewed. The importance of specific antibodies directed to the glycan part, as well as the peptide backbone has been realized during the development of synthetic glycopeptide-based anti-tumor vaccines. The fine-tuning of native chemical ligation (NCL, expressed protein ligation (EPL, and chemoenzymatic glycosylation techniques have all together enabled the synthesis of functional glycoproteins. The synthesis of structurally defined, complex glycopeptides or glyco-clusters presented on natural peptide backbones, or mimics thereof, offer further possibilities to study protein-binding events.

  9. Recent advances in the molecular design of synthetic vaccines

    Science.gov (United States)

    Jones, Lyn H.

    2015-12-01

    Vaccines have typically been prepared using whole organisms. These are normally either attenuated bacteria or viruses that are live but have been altered to reduce their virulence, or pathogens that have been inactivated and effectively killed through exposure to heat or formaldehyde. However, using whole organisms to elicit an immune response introduces the potential for infections arising from a reversion to a virulent form in live pathogens, unproductive reactions to vaccine components or batch-to-batch variability. Synthetic vaccines, in which a molecular antigen is conjugated to a carrier protein, offer the opportunity to circumvent these problems. This Perspective will highlight the progress that has been achieved in developing synthetic vaccines using a variety of molecular antigens. In particular, the different approaches used to develop conjugate vaccines using peptide/proteins, carbohydrates and other small molecule haptens as antigens are compared.

  10. Uncovering the method of production and detection of synthetic acetic acid adulteration in vinegar by tandem use of 14C liquid scintillation counting and 13C/12C ratio mass spectrometry

    International Nuclear Information System (INIS)

    Wechner, Stefan; Voropaev, Andrey; Eichinger, Lorenz; Santos, Flora L.; Castaneda, Soledad; Racho, Michael; Pabroa, Preciosa Corazon; Morco, Ryan; Sucgang, Raymond J.

    2010-01-01

    Fraudulent adulteration and or misrepresentation had been a problem for commercial vinegar in the Philippines. Solutions of synthetic acetic acid mixed with colorants and flavour enhancers have been marketed as v inegar . Philippine regulations prohibit the sale of these vinegars produced by non-biogenic means as well as misrepresentation of the fine natural vinegars with cheaper version produced using lower value raw materials. The lack of reliable analytical tools however, has hampered the proper implementation of these laws. In this study, authentic vinegar samples were acquired, which were prepared by natural fermentation of : sugar cane, pineapple juice, and mango juice. Another type of cane vinegar was prepared by fermentation of cane sugar using acetator. Commercial vinegar samples, purchased from major supermarkets in the Philippines, were likewise obtained. Calcium acetate was produced by reaction of distilled vinegar samples with calcium carbonate, and subsequent drying of the resulting solution. Portions of the calcium acetate derived from the samples,were reacted with pyrophosphoric acid in a reflux and the glacial acetic acid was recovered by distillation under reduced pressure. The recovered glacial acetic acid were reconstituted to 90 % v/v. The acetic solutions were mixed with an Optiphase Hisafe Scintillant in vials. The C14 activities of the samples were measured in a 1414 Wallac Scintillation Counter and expressed as disintegrations per gram carbon or dpm/g C. Biogenic samples exhibit 12-15 dpm/g C activities, while synthetic samples show 0-2 dpm/g C activities. The remaining portions of the calcium acetate powder were placed in evacuated glass ampoules containing potassium peroxidisulfate and silver (1) permanganate. The samples inside the ampoules were oxidized to Carbon Dioxide, CO 2 gas, in a furnace. The CO 2 were then purified and bled to an Isotope Ratio mass spectrometer. 1 3C/ 1 2C ratios were determined and compared against a standard

  11. An efficient sodium citrate-promoted synthetic method for the preparation of AuNPs@mesoSiO2 for surface enhanced Raman spectroscopy in the detection of diluted blood

    Directory of Open Access Journals (Sweden)

    Yun Zou

    2017-12-01

    Full Text Available We report on a novel, green, and efficient organically synthetic method for the preparation of gold nanoparticles embedded in mesoporous silica (AuNPs@mesoSiO2. AuNPs@mesoSiO2 prepared by one-pot synthesis method using sodium citrate as the key reactant was applied for surface enhanced Raman spectroscopy (SERS application in the analysis of diluted blood traces. The synthesized nanoparticles are of high quality, as characterized by use of X-ray diffraction, scanning electron microscopy and transmission electron microscopy. They exhibit high surface areas (170.18–883 m2/g and significant SERS enhancement. Detection of diluted blood (v/v, 1:50 traces through AuNPs@mesoSiO2 enhanced SERS is demonstrated, which has not been studied in previous literature. The combination of the SERS and AuNPs@mesoSiO2 would be a valuable tool for forensic investigation. Keywords: Gold nanoparticles, Mesoporous materials, Synthesis, SERS, Blood trace

  12. A synthetic computational environment: To control the spread of respiratory infections in a virtual university

    Science.gov (United States)

    Ge, Yuanzheng; Chen, Bin; liu, Liang; Qiu, Xiaogang; Song, Hongbin; Wang, Yong

    2018-02-01

    Individual-based computational environment provides an effective solution to study complex social events by reconstructing scenarios. Challenges remain in reconstructing the virtual scenarios and reproducing the complex evolution. In this paper, we propose a framework to reconstruct a synthetic computational environment, reproduce the epidemic outbreak, and evaluate management interventions in a virtual university. The reconstructed computational environment includes 4 fundamental components: the synthetic population, behavior algorithms, multiple social networks, and geographic campus environment. In the virtual university, influenza H1N1 transmission experiments are conducted, and gradually enhanced interventions are evaluated and compared quantitatively. The experiment results indicate that the reconstructed virtual environment provides a solution to reproduce complex emergencies and evaluate policies to be executed in the real world.

  13. Adsorption of chlorinated hydrocarbons from aqueous solutions by wetted and non-wetted synthetic sorbents:dynamics

    NARCIS (Netherlands)

    Rexwinkel, G.; Rexwinkel, Glenn; Berkhout, J.T.A.M.; Heesink, Albertus B.M.

    2003-01-01

    In the present investigation the dynamics of the adsorption of several chlorinated hydrocarbons onto wetted and non-wetted synthetic sorbents was studied. A single particle model was developed to describe the adsorption behavior. The values of the mass transfer coefficient, needed to describe the

  14. Enhancement of the electrooxidation of ethanol on Pt-Sn-P/C catalysts prepared by chemical deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Xinzhong; Ge, Junjie; Tian, Tian [Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Liu, Changpeng; Xing, Wei; Lu, Tianhong [Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022 (China)

    2007-10-25

    In this paper, five Pt{sub 3}Sn{sub 1}/C catalysts have been prepared using three different methods. It was found that phosphorus deposited on the surface of carbon with Pt and Sn when sodium hypophosphite was used as reducing agent by optimization of synthetic conditions such as pH in the synthetic solution and temperature. The deposition of phosphorus should be effective on the size reduction and markedly reduces PtSn nanoparticle size, and raise electrochemical active surface (EAS) area of catalyst and improve the catalytic performance. TEM images show PtSnP nanoparticles are highly dispersed on the carbon surface with average diameters of 2 nm. The optimum composition is Pt{sub 3}Sn{sub 1}P{sub 2}/C (note PtSn/C-3) catalyst in my work. With this composition, it shows very high activity for the electrooxidation of ethanol and exhibit enhanced performance compared with other two Pt{sub 3}Sn{sub 1}/C catalysts that prepared using ethylene glycol reduction method (note PtSn/C-EG) and borohydride reduction method (note PtSn/-B). The maximum power densities of direct ethanol fuel cell (DEFC) were 61 mW cm{sup -2} that is 150 and 170% higher than that of the PtSn/C-EG and PtSn/C-B catalyst. (author)

  15. Transport synthetic acceleration scheme for multi-dimensional neutron transport problems

    Energy Technology Data Exchange (ETDEWEB)

    Modak, R S; Kumar, Vinod; Menon, S V.G. [Theoretical Physics Div., Bhabha Atomic Research Centre, Mumbai (India); Gupta, Anurag [Reactor Physics Design Div., Bhabha Atomic Research Centre, Mumbai (India)

    2005-09-15

    The numerical solution of linear multi-energy-group neutron transport equation is required in several analyses in nuclear reactor physics and allied areas. Computer codes based on the discrete ordinates (Sn) method are commonly used for this purpose. These codes solve external source problem and K-eigenvalue problem. The overall solution technique involves solution of source problem in each energy group as intermediate procedures. Such a single-group source problem is solved by the so-called Source Iteration (SI) method. As is well-known, the SI-method converges very slowly for optically thick and highly scattering regions, leading to large CPU times. Over last three decades, many schemes have been tried to accelerate the SI; the most prominent being the Diffusion Synthetic Acceleration (DSA) scheme. The DSA scheme, however, often fails and is also rather difficult to implement. In view of this, in 1997, Ramone and others have developed a new acceleration scheme called Transport Synthetic Acceleration (TSA) which is much more robust and easy to implement. This scheme has been recently incorporated in 2-D and 3-D in-house codes at BARC. This report presents studies on the utility of TSA scheme for fairly general test problems involving many energy groups and anisotropic scattering. The scheme is found to be useful for problems in Cartesian as well as Cylindrical geometry. (author)

  16. Transport synthetic acceleration scheme for multi-dimensional neutron transport problems

    International Nuclear Information System (INIS)

    Modak, R.S.; Vinod Kumar; Menon, S.V.G.; Gupta, Anurag

    2005-09-01

    The numerical solution of linear multi-energy-group neutron transport equation is required in several analyses in nuclear reactor physics and allied areas. Computer codes based on the discrete ordinates (Sn) method are commonly used for this purpose. These codes solve external source problem and K-eigenvalue problem. The overall solution technique involves solution of source problem in each energy group as intermediate procedures. Such a single-group source problem is solved by the so-called Source Iteration (SI) method. As is well-known, the SI-method converges very slowly for optically thick and highly scattering regions, leading to large CPU times. Over last three decades, many schemes have been tried to accelerate the SI; the most prominent being the Diffusion Synthetic Acceleration (DSA) scheme. The DSA scheme, however, often fails and is also rather difficult to implement. In view of this, in 1997, Ramone and others have developed a new acceleration scheme called Transport Synthetic Acceleration (TSA) which is much more robust and easy to implement. This scheme has been recently incorporated in 2-D and 3-D in-house codes at BARC. This report presents studies on the utility of TSA scheme for fairly general test problems involving many energy groups and anisotropic scattering. The scheme is found to be useful for problems in Cartesian as well as Cylindrical geometry. (author)

  17. Synthetic Biodegradable Hydrogels with Excellent Mechanical Properties and Good Cell Adhesion Characteristics Obtained by the Combinatorial Synthesis of Photo-Cross-Linked Networks

    NARCIS (Netherlands)

    Zant, Erwin; Grijpma, Dirk W.

    Major drawbacks of synthetic hydrogels are their poor mechanical properties and their limited ability to allow cell attachment and proliferation. By photo-cross-linking mixtures of dimethacrylate-functionalized oligomers (macromers) in a combinatorial manner in solution, synthetic hydrogels with

  18. Thermoluminescent characteristics of synthetic hydroxyapatite (SHAp)

    International Nuclear Information System (INIS)

    Alvarez, R.; Rivera, T.; Guzman, J.; Piña-Barba, M.C.; Azorin, J.

    2014-01-01

    This paper presents the experimental results of the thermoluminescent (TL) characteristics of synthetic hydroxyapatite (SHAp) obtained by the sol–gel method. For preparation of the SHAp powders, phosphorus pentoxide (P 2 O 5 ) and calcium nitrate tetrahydrated (Ca(NO 3 ) 2 –4H 2 O) were used. The powders obtained were submitted at different temperatures. The structural and morphological characterization were carried out using X-ray diffraction (XRD) and scanning electron microscopy techniques. TL glow curve exhibited two peaks centered at around 200 °C and 300 °C. TL response of SHAp as a function of gamma absorbed dose was linear over a wide dose range. Fading of the storage information in the samples irradiated was also studied. The experimental results show that the synthetic hydroxyapatite obtained by the sol–gel method may have used in gamma radiation dosimetry applications. - highlights: • Dosimetric characteristics of SHAp under gamma irradiation effect were analyzed • SHAp powders were obtained by Sol–Gel method • Fading anomalous of HAp was performed showing 15% during 90 days • SHAp showed good dosimetric characteristics. • Dosimetric characteristics of SHAp have not been reported yet in the literature before this paper

  19. Physicochemical properties of synthetic nano-birnessite and its enhanced scavenging of Co"2"+ and Sr"2"+ ions from aqueous solutions

    International Nuclear Information System (INIS)

    Metwally, S.S.; Ghaly, M.; El-Sherief, E.A.

    2017-01-01

    Nano-birnessite was prepared, characterized and used for removal of cobalt and strontium ions from aqueous solutions. Scanning electron microscope and atomic force microscope images indicated that the particles of the prepared material are presented in the nano-scale form, the grain size was found in a range of 58–95 nm. Specific surface area of the prepared nano-birnessite was determined and found to be 200.54 m"2/g. The Capacities of nano-birnessite for cobalt and strontium are 2.97 and 3.04 meq/g, respectively. The kinetic studies indicated that the sorption of the two ions obeys pseudo-second-order model and controlled by an intra-particle diffusion mechanism. The diffusivity of Co"2"+ and Sr"2"+ ions onto nano-birnessite was determined and indicated that the sorption is chemisorption process. Hence, nano-birnessite material is an efficient sorbent and can be used to decrease the influx of pollutants, such as; Co"2"+ and Sr"2"+ ions to the environment or their removal from contaminated media. - Graphical abstract: 3D AFM images for nano-birnessite. - Highlights: • Nano-birnessite was prepared using sol-gel method. • It was characterized using different analytical techniques. • Sorption of cobalt and strontium ions onto nano-birnessite was investigated. • Kinetic studies and some kinetic models were tested for the sorption process. • Nano-birnessite exhibited high sorption capacity compared to other sorbents obtained in the literature.

  20. Preparation of supramolecular hydrogel-enzyme hybrids exhibiting biomolecule-responsive gel degradation.

    Science.gov (United States)

    Shigemitsu, Hajime; Fujisaku, Takahiro; Onogi, Shoji; Yoshii, Tatsuyuki; Ikeda, Masato; Hamachi, Itaru

    2016-09-01

    Hydrogelators are small, self-assembling molecules that form supramolecular nanofiber networks that exhibit unique dynamic properties. Development of supramolecular hydrogels that degrade in response to various biomolecules could potentially be used for applications in areas such as drug delivery and diagnostics. Here we provide a synthetic procedure for preparing redox-responsive supramolecular hydrogelators that are used to create hydrogels that degrade in response to oxidizing or reducing conditions. The synthesis takes ∼2-4 d, and it can potentially be carried out in parallel to prepare multiple hydrogelator candidates. This described solid-phase peptide synthesis protocol can be used to produce previously described hydrogelators or to construct a focused molecular library to efficiently discover and optimize new hydrogelators. In addition, we describe the preparation of redox-responsive supramolecular hydrogel-enzyme hybrids that are created by mixing aqueous solutions of hydrogelators and enzymes, which requires 2 h for completion. The resultant supramolecular hydrogel-enzyme hybrids exhibit gel degradation in response to various biomolecules, and can be rationally designed by connecting the chemical reactions of the hydrogelators with enzymatic reactions. Gel degradation in response to biomolecules as triggers occurs within a few hours. We also describe the preparation of hydrogel-enzyme hybrids arrayed on flat glass slides, enabling high-throughput analysis of biomolecules such as glucose, uric acid, lactate and so on by gel degradation, which is detectable by the naked eye. The protocol requires ∼6 h to prepare the hydrogel-enzyme hybrid array and to complete the biomolecule assay.

  1. Single-component solid lipid nanocarriers prepared with ultra-long chain amphiphilic lipids

    DEFF Research Database (Denmark)

    Wei, Wei; Lu, Xiaonan; Wang, Zegao

    2017-01-01

    HYPOTHESIS: Synthetic sugar alcohol mono-behenates with high melting points, surface activity and resistance to enzymatic lipolysis, are expected to form stable single-component solid lipid nanocarriers (SC-SLNs). The preparation methods and the polar head group of the molecules should affect the......-probe sonication method had a micelle structure with fenofibrate incorporated into a lipid monolayer. This study provides an insight into the systematic development of novel amphiphilic lipids for solid lipid-based drug delivery system.......HYPOTHESIS: Synthetic sugar alcohol mono-behenates with high melting points, surface activity and resistance to enzymatic lipolysis, are expected to form stable single-component solid lipid nanocarriers (SC-SLNs). The preparation methods and the polar head group of the molecules should affect...... using the lipolysis model. The structure and drug distribution of the nanocarriers were studied using AFM and TEM. FINDINGS: Both the polar head group of the molecules and the preparation methods affect the particle size and size distribution. Nanocarriers prepared with sorbitol mono-behenates showed...

  2. Influence of natural and synthetic carotenoids on the color of egg yolk

    Directory of Open Access Journals (Sweden)

    Fernanda Papa Spada

    2016-06-01

    Full Text Available ABSTRACT Carotenoids are incorporated into the diet of laying hens in order to modify the yolk color. A natural source of carotenoids in tropical countries is annatto, which could be used in the diets of hens. This study aimed to evaluate the addition of natural (annatto and synthetic carotenoids to the diet of laying hens (commercial and alternative and their effects on yolk color and consumer sensory perception of fresh and stored eggs obtained from two different preparations (boiled and fried. Physicochemical analysis of proximate composition, thiobarbituric acid reactive substances (TBARS, emulsion activity and instrumental color were performed. Cooking caused significant alterations to the moisture in the preparations and this may have directly affected the color intensity, influencing factors related to egg appearance. In this study, 85 % of the panelists indicated that yolk color is an important attribute of the product’s quality. There was no antioxidant effect of the carotenoids in raw eggs. Synthetic additives should be better dosed to obtain the desired effect. Storage did not alter the proximate composition of the eggs.

  3. Synthetic fuels for transportation : background paper #1 : the future potential of electric and hybrid vehicles

    Science.gov (United States)

    1982-03-01

    This report presents a comprehensive review of the future of electric and hybrid : vehicles through the year 2010 in the United States. It was prepared for the : Office of Technology Assessment as background information for its study, : "Synthetic Fu...

  4. Cerium oxide for the destruction of chemical warfare agents: A comparison of synthetic routes

    Energy Technology Data Exchange (ETDEWEB)

    Janoš, Pavel, E-mail: pavel.janos@ujep.cz [Faculty of the Environment, University of Jan Evangelista Purkyně, Králova Výšina 7, 400 96 Ústí nad Labem (Czech Republic); Henych, Jiří [Faculty of the Environment, University of Jan Evangelista Purkyně, Králova Výšina 7, 400 96 Ústí nad Labem (Czech Republic); Institute of Inorganic Chemistry AS CR v.v.i., 25068 Řež (Czech Republic); Pelant, Ondřej; Pilařová, Věra; Vrtoch, Luboš [Faculty of the Environment, University of Jan Evangelista Purkyně, Králova Výšina 7, 400 96 Ústí nad Labem (Czech Republic); Kormunda, Martin [Faculty of Sciences, University of Jan Evangelista Purkyně, České Mládeže 8, 400 96 Ústí nad Labem (Czech Republic); Mazanec, Karel [Military Research Institute, Veslařská 230, 637 00 Brno (Czech Republic); and others

    2016-03-05

    Highlights: • Four synthetic routes were compared to prepare the nanoceria-based reactive sorbents. • The sorbents prepared by homogeneous hydrolysis destroy efficiently the soman and VX nerve agents. • Toxic organophosphates are converted to less-dangerous products completely within a few minutes. • Surface non-stoichiometry and −OH groups promote the destruction by the S{sub N}2 mechanism. - Abstract: Four different synthetic routes were used to prepare active forms of cerium oxide that are capable of destroying toxic organophosphates: a sol–gel process (via a citrate precursor), homogeneous hydrolysis and a precipitation/calcination procedure (via carbonate and oxalate precursors). The samples prepared via homogeneous hydrolysis with urea and the samples prepared via precipitation with ammonium bicarbonate (with subsequent calcination at 500 °C in both cases) exhibited the highest degradation efficiencies towards the extremely dangerous nerve agents soman (O-pinacolyl methylphosphonofluoridate) and VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) and the organophosphate pesticide parathion methyl. These samples were able to destroy more than 90% of the toxic compounds in less than 10 min. The high degradation efficiency of cerium oxide is related to its complex surface chemistry (presence of surface −OH groups and surface non-stoichiometry) and to its nanocrystalline nature, which promotes the formation of crystal defects on which the decomposition of organophosphates proceeds through a nucleophilic substitution mechanism that is not dissimilar to the mechanism of enzymatic hydrolysis of organic phosphates by phosphotriesterase.

  5. Monoclonal antibodies against a synthetic peptide from human immunodeficiency virus type 1 Nef protein

    DEFF Research Database (Denmark)

    Steinaa, L; Wulff, A M; Saermark, T

    1994-01-01

    Monoclonal antibodies against a synthetic peptide (aa 138-152) from HIV-1 Nef protein were produced and characterized. Three hybridoma lines producing monoclonal antibodies (MAbs) against the synthetic peptide were generated by fusion between P3-X63 Ag8.653 myeloma cells and BALB/c splenocytes from...... mice immunized with the synthetic peptide coupled to keyhole limpet hemocyanin (KLH). The hybridomas were screened and selected by ELISA with the peptide coupled to bovine serum albumin (BSA) immobilized to the polystyrene surface and specificity for the peptide was confirmed by competitive ELISA...... with the peptide free in solution. The reactions of the MAbs with a 5-aa motif (WCYKL) included in the sequence were examined with synthetic peptides and two of the MAbs reacted with the motif. The recognitions of recombinant full-length Nef protein were also tested. One MAb reacted with the protein in both ELISA...

  6. Rapid preparation of solution-processed InGaZnO thin films by microwave annealing and photoirradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Heajeong; Ogura, Shintaro; Ushijima, Hirobumi; Yoshida, Manabu; Fukuda, Nobuko; Uemura, Sei, E-mail: sei-uemura@aist.go.jp [Flexible Electronics Research Center (FLEC), National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2015-06-15

    We fabricated solution-processed indium–gallium–zinc oxide (IGZO) thin-film transistors (TFTs) by microwave (MW) annealing an IGZO precursor film followed by irradiating with vacuum ultraviolet (VUV) light. MW annealing allows more rapid heating of the precursor film than conventional annealing processes using a hot plate or electric oven and promotes the crystallization of IGZO. VUV irradiation was used to reduce the duration and temperature of the post-annealing step. Consequently, the IGZO TFTs fabricated through MW annealing for 5 min and VUV irradiation for 1 min exhibited an on/off current ratio of 10{sup 8} and a field-effect mobility of 0.3 cm{sup 2} V{sup −1} s{sup −1}. These results indicate that MW annealing and photoirradiation is an effective combination for annealing solution processed IGZO precursor films to prepare the semiconductor layers of TFTs.

  7. On Beyond Star Trek, the Role of Synthetic Biology in Nasa's Missions

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    The time has come to for NASA to exploit the nascent field of synthetic biology in pursuit of its mission, including aeronautics, earth science, astrobiology and notably, human exploration. Conversely, NASA advances the fundamental technology of synthetic biology as no one else can because of its unique expertise in the origin of life and life in extreme environments, including the potential for alternate life forms. This enables unique, creative "game changing" advances. NASA's requirement for minimizing upmass in flight will also drive the field toward miniaturization and automation. These drivers will greatly increase the utility of synthetic biology solutions for military, health in remote areas and commercial purposes. To this end, we have begun a program at NASA to explore the use of synthetic biology in NASA's missions, particularly space exploration. As part of this program, we began hosting an iGEM team of undergraduates drawn from Brown and Stanford Universities to conduct synthetic biology research at NASA Ames Research Center. The 2011 team (http://2011.igem.org/Team:Brown-Stanford) produced an award-winning project on using synthetic biology as a basis for a human Mars settlement and the 2012 team has expanded the use of synthetic biology to estimate the potential for life in the clouds of other planets (http://2012.igem.org/Team:Stanford-Brown; http://www.calacademy.org/sciencetoday/igem-competition/). More recent projects from the Stanford-Brown team have expanded our ideas of how synthetic biology can aid NASA's missions from "Synthetic BioCommunication" (http://2013.igem.org/Team:Stanford-Brown) to a "Biodegradable UAS (drone)" in collaboration with Spelman College (http://2014.igem.org/Team:StanfordBrownSpelman#SBS%20iGEM) and most recently, "Self-Folding Origami" (http://2015.igem.org/Team:Stanford-Brown), the winner of the 2015 award for Manufacturing.

  8. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project

    OpenAIRE

    Sliva, Anna; Yang, Huanming; Boeke, Jef D.; Mathews, Debra J. H.

    2015-01-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) Project is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with...

  9. The radioprotective effect of synthetic immunomodulators on hemopoietic cfu-s

    International Nuclear Information System (INIS)

    Semina, O.V.; Semenets, T.N.; Dejgin, V.I.; Korotkov, A.M.; Poverennyj, A.M.

    1993-01-01

    The radiotherapeutic effect of thymogen (Glu-Trp) and thymohexin (Arg-Lys-Asp-Val-Agr) synthetic peptide immunomodulators was investigated. Both thymogen and thymohexin were demonstrated to be able to reduce the damagine effect of ionizing radiation (1 Gy) on CFU-S by half. The treatment by these preparations after irradiation at dose of 4 Gy leads to more intensive restoration of CFU-S population as compared with control

  10. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jongkwon [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang (Korea, Republic of); Um, Wooyong, E-mail: wooyong.um@pnnl.gov [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang (Korea, Republic of); Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Choung, Sungwook [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang (Korea, Republic of)

    2014-09-15

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl–KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl–KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl–KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl–KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  11. Physicochemical properties of cassava starch and starch-keratin prepared biofilm

    Directory of Open Access Journals (Sweden)

    Oluwasina Olugbenga Oladayo

    2016-08-01

    Full Text Available Synthetic plastics pose one of the biggest threats to the environment and a promising solution is biodegradable polymers. This study investigates the properties of biofilms prepared using starch/keratin blend with and without formaldehyde. Some starch properties in percentage are; moisture content 0.27, hydration capacity 189.66, amylopectin content 65.79 and amylose content 34.21. From the water testing results, thickness swelling, water absorption capacity and linear expansion of biofilm without formaldehyde after 10 s of soaking in water were 28.59%, 8.89% and 4.90% respectively and 65.30%, 91.33% and 46.29% respectively after 40 s. But, higher values are recorded for those biofilms made with addition of formaldehyde. Thus using water effect on the properties of the biofilms as the performance index, the research indicates that biofilms without formaldehyde had better performance than those with formaldehyde

  12. A simple method for the determination of synthetic spirit in some alcoholic beverages

    International Nuclear Information System (INIS)

    Majerova, P.; Fiser, B.; Leseticky, L.

    2002-01-01

    Measurement of carbon C-14 can be used to distinguish between natural and synthetic alcohol. Natural ethanol produced by fermentation of sugar contains approximately 16.13 DPM (0,27 Bq) per gram of carbon, synthetic ethanol should contain no carbon-14. Natural C-14 content can be determined precisely and conveniently by liquid scintillation counting. Various scintillation cocktails were tested and the best results were achieved with PCS. The optimum measurement conditions were also identified. Samples of spirits were fractionated on a short distillation column and the resulting 96% ethanol was measured. For comparison was distilled and measured A 35% aqueous solution of natural ethanol was also distilled and measured for a comparison. The natural-to-synthetic ethanol ratio was obtained for a series of commercial spirits. (P.A.)

  13. Shell Scotsford's experience with a 100 per cent synthetic crude diet

    International Nuclear Information System (INIS)

    Margerum, M.

    1997-01-01

    A qualitative overview of Shell Canada's Scotford refinery was presented. The Scotford refinery is the only refinery in North America designed to run on 100 per cent synthetic crude. As a result, Scotford has a unique configuration and has faced some unique problems. Some of the challenges met in converting synthetic crude to today's products are described. The refinery's unique configuration is centered around a large hydrocracker and has high yield flexibility. The major units of the refinery are the crude unit, hydrocracker, naphtha hydrotreater and reformer, the aromatics complex, the distillate hydrogenator and the hydrogen plants. The refinery products include low sulphur gasoline, jet fuel and diesel fuel. Other products include LPG, FCC feed, benzene and solvents. Several process problems have been experienced at the Scotford refinery including hydrodenitrification of synthetic gasoline, PCA fouling, particulate fouling, crude unit fouling, and distillate lubricity. Solutions have been devised for most of these problems. 3 figs

  14. Characterization of Thermal Stability of Synthetic and Semi-Synthetic Engine Oils

    Directory of Open Access Journals (Sweden)

    Anand Kumar Tripathi

    2015-03-01

    Full Text Available Engine oils undergo oxidative degradation and wears out during service. Hence it is important to characterize ageing of engine oils at different simulated conditions to evaluate the performance of existing oils and also design new formulations. This work focuses on characterizing the thermo-oxidative degradation of synthetic and semi-synthetic engine oils aged at 120, 149 and 200 °C. Apparent activation energy of decomposition of aged oils evaluated using the isoconversional Kissinger-Akahira-Sunose technique was used as a thermal stability marker. The temporal variation of stability at different ageing temperatures was corroborated with kinematic viscosity, oxidation, sulfation and nitration indices, total base number, antiwear additive content and molecular structure of the organic species present in the oils. At the lowest temperature employed, synthetic oil underwent higher rate of oxidation, while semi-synthetic oil was stable for longer time periods. At higher temperatures, the initial rate of change of average apparent activation energy of synthetic oil correlated well with a similar variation in oxidation number. A mixture of long chain linear, branched, and cyclic hydrocarbons were observed when semi-synthetic oil was degraded at higher temperatures.

  15. Hybrid Silicon-Based Organic/Inorganic Block Copolymers with Sol-Gel Active Moieties: Synthetic Advances, Self-Assembly and Applications in Biomedicine and Materials Science.

    Science.gov (United States)

    Czarnecki, Sebastian; Bertin, Annabelle

    2018-03-07

    Hybrid silicon-based organic/inorganic (multi)block copolymers are promising polymeric precursors to create robust nano-objects and nanomaterials due to their sol-gel active moieties via self-assembly in solution or in bulk. Such nano-objects and nanomaterials have great potential in biomedicine as nanocarriers or scaffolds for bone regeneration as well as in materials science as Pickering emulsifiers, photonic crystals or coatings/films with antibiofouling, antibacterial or water- and oil-repellent properties. Thus, this Review outlines recent synthetic efforts in the preparation of these hybrid inorganic/organic block copolymers, gives an overview of their self-assembled structures and finally presents recent examples of their use in the biomedical field and material science. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Development of a novel and customizable two-solution mixing type spray nozzle for one-step preparation of nanoparticle-containing microparticles.

    Science.gov (United States)

    Ozeki, Tetsuya; Akiyama, Yusuke; Takahashi, Norimitsu; Tagami, Tatsuaki; Tanaka, Toshiyuki; Fujii, Masashi; Okada, Hiroaki

    2012-01-01

    Production of drug nanoparticles is an effective strategy to enhance solubility and oral absorption of water-insoluble drugs. The handling of drug nanoparticles has been an important issue in drug formulation because nanoparticles easily aggregate each other and redispersion of these particles is very difficult. In the present study, we developed a unique two-solution mixing type spray nozzle that can prepare drug nanoparticles in microparticles in one step without any common solvent and surfactant, and then, the prepared formulation were evaluated. Ethylcellulose (EC) and mannitol (MAN) were used as a model polymer of water-insoluble compound and a water-soluble carrier, respectively. We characterized the EC/MAN microparticles produced by the novel spray nozzle when customizing the nozzle parts to mix EC and MAN solution. Relatively smaller EC nanoparticles (customizable parts in the nozzle. In addition, the core of EC nanoparticles (<50 nm) was also observed by atomic force microscopy. We also found that the mixing time in the nozzle parts affected the size and the standard deviation of EC nanoparticles. These results suggest that the size of EC nanoparticles in MAN microparticles is controllable by using this unique nozzle. After all, we could prepare MAN microparticles containing EC nanoparticles in one step by using the novel nozzle. The drug/MAN microparticles formulation produced by the nozzle may be useful for the handling of drug nanoparticles.

  17. Assessment of preparation methods for organic phosphorus analysis in phosphorus-polluted Fe/Al-rich Haihe river sediments using solution 31P-NMR.

    Directory of Open Access Journals (Sweden)

    Wenqiang Zhang

    Full Text Available Fe/Al-rich river sediments that were highly polluted with phosphorus (P were used in tests to determine the optimum preparation techniques for measuring organic P (Po using solution (31P nuclear magnetic resonance spectroscopy ((31P-NMR. The optimum pre-treatment, extraction time, sediment to solution ratio and sodium hydroxide-ethylenediaminetetraacetic acid (NaOH-EDTA extractant solution composition were determined. The total P and Po recovery rates were higher from freeze- and air-dried samples than from fresh samples. An extraction time of 16 h was adequate for extracting Po, and a shorter or longer extraction time led to lower recoveries of total P and Po, or led to the degradation of Po. An ideal P recovery rate and good-quality NMR spectra were obtained at a sediment:solution ratio of 1:10, showing that this ratio is ideal for extracting Po. An extractant solution of 0.25 M NaOH and 50 mM EDTA was found to be more appropriate than either NaOH on its own, or a more concentrated NaOH-EDTA mixture for (31P-NMR analysis, as this combination minimized interference from paramagnetic ions and was appropriate for the detected range of Po concentrations. The most appropriate preparation method for Po analysis, therefore, was to extract the freeze-dried and ground sediment sample with a 0.25 M NaOH and 50 mM EDTA solution at a sediment:solution ratio of 1:10, for 16 h, by shaking. As lyophilization of the NaOH-EDTA extracts proved to be an optimal pre-concentration method for Po analysis in the river sediment, the extract was lyophilized as soon as possible, and analyzed by (31P-NMR.

  18. Thermoelectric properties of Bi2Te3-Bi2Se3 solid solutions prepared by attrition milling and hot pressing

    International Nuclear Information System (INIS)

    Lee, Go-Eun; Kim, Il-Ho; Choi, Soon-Mok; Lim, Young-Soo; Seo, Won-Seon; Park, Jae-Soung; Yang, Seung-Ho

    2014-01-01

    Bi 2 Te 3-y Se y (y = 0.15 - 0.6) solid solutions were prepared by attrition milling and hot pressing. The lattice constants decreased with increasing Se content, indicating that the Se atoms were successfully substituted into the Te sites. All specimens exhibited n-type conduction, and their electrical resistivities increased slightly with increasing temperature. With increasing Se content, the Seebeck coefficients increased while the thermal conductivity decreased due to the increase in phonon scattering. The maximum figure of merit obtained was 0.63 at 440 K for the undoped Bi 2 Te 2.4 Se 0.6 solid solution.

  19. Synthesis, sintering and dissolution of thorium and uranium (IV) mixed oxide solid solutions: influence of the method of precursor preparation; Synthese, frittage et caracterisation de solutions solides d'oxydes mixtes de thorium et d'uranium (IV): influence de la methode de preparation du precurseur

    Energy Technology Data Exchange (ETDEWEB)

    Hingant, N

    2008-12-15

    Mixed actinide dioxides are currently considered as potential fuels for the third and fourth generations of nuclear reactors. In this context, thorium-uranium (IV) dioxide solid solutions were studied as model compounds to underline the influence of the method of preparation on their physico-chemical properties. Two methods of synthesis, both based on the initial precipitation of oxalate precursors have been developed. The first consisted in the direct precipitation ('open' system) while the second involved hydrothermal conditions ('closed' system). The second method led to a significant improvement in the crystallization of the samples especially in the field of the increase of the grain size. In these conditions, the formation of a complete solid solution Th{sub 1-x}U{sub x}(C{sub 2}O{sub 4}){sub 2}.2H{sub 2}O was prepared between both end-members. Its crystal structure was also resolved. Whatever the initial method considered, these compounds led to the final dioxides after heating above 400 C. The various steps associated to this transformation, involving the dehydration of precursors then the decomposition of oxalate groups have been clarified. Moreover, the use of wet chemistry methods allowed to reduce the sintering temperature of the final thorium-uranium (IV) dioxide solid solutions. Whatever the method of preparation considered, dense samples (95% to 97% of the calculated value) were obtained after only 3 hours of heating at 1500 C. Additionally, the use of hydrothermal conditions significantly increased the grain size, leading to the reduction of the occurrence of the grain boundaries and of the global residual porosity. The significant improvement in the homogeneity of cations distribution in the samples was also highlighted. Finally, the chemical durability of thorium-uranium (IV) dioxide solid solutions was evaluated through the development of leaching tests in nitric acid. The optimized homogeneity especially in terms of the

  20. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project.

    Science.gov (United States)

    Sliva, Anna; Yang, Huanming; Boeke, Jef D; Mathews, Debra J H

    2015-08-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) PROJECT is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 PROJECT: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. Copyright © 2015 by the Genetics Society of America.

  1. Aragonite coating solutions (ACS) based on artificial seawater

    Science.gov (United States)

    Tas, A. Cuneyt

    2015-03-01

    Aragonite (CaCO3, calcium carbonate) is an abundant biomaterial of marine life. It is the dominant inorganic phase of coral reefs, mollusc bivalve shells and the stalactites or stalagmites of geological sediments. Inorganic and initially precipitate-free aragonite coating solutions (ACS) of pH 7.4 were developed in this study to deposit monolayers of aragonite spherules or ooids on biomaterial (e.g., UHMWPE, ultrahigh molecular weight polyethylene) surfaces soaked in ACS at 30 °C. The ACS solutions of this study have been developed for the surface engineering of synthetic biomaterials. The abiotic ACS solutions, enriched with calcium and bicarbonate ions at different concentrations, essentially mimicked the artificial seawater composition and started to deposit aragonite after a long (4 h) incubation period at the tropical sea surface temperature of 30 °C. While numerous techniques for the solution deposition of calcium hydroxyapatite (Ca10(PO4)6(OH)2), of low thermodynamic solubility, on synthetic biomaterials have been demonstrated, procedures related to the solution-based surface deposition of high solubility aragonite remained uncommon. Monolayers of aragonite ooids deposited at 30 °C on UHMWPE substrates soaked in organic-free ACS solutions were found to possess nano-structures similar to the mortar-and-brick-type botryoids observed in biogenic marine shells. Samples were characterized using SEM, XRD, FTIR, ICP-AES and contact angle goniometry.

  2. Preparation and X-ray diffraction characterization of Th1-xBixO2-0.5x (where x= 0 to 0.5) solid solutions

    International Nuclear Information System (INIS)

    Kanrar, Buddhadev; Misra, N.L.

    2015-01-01

    Solid solutions of ThO 2 and Bi 2 O 3 were prepared by solid state reactions of these oxides. X-ray diffraction studies indicated that Bi +3 up to 50 at% can be dissolved in ThO 2 lattice. Rietveld refinement of the XRD patterns indicated single phase solid solutions up to 50 atom% of Bi +3 in ThO 2 lattice. The cell parameters of the solid solutions were found to decrease with increasing amount of Bi +3 in the lattice. (author)

  3. Platinum uptake from chloride solutions using biosorbents

    Directory of Open Access Journals (Sweden)

    Mehmet Hakan Morcali

    2013-04-01

    Full Text Available Present work investigates platinum uptake from synthetically prepared, dilute platinum-bearing solutions using biomass residues, i.e. pistachio nut shell and rice husk, which are abundant in Turkey, and provides a comparison between these two biosorbents. Effects of the different uptake parameters, sorbent dosage, contact time, temperature and pH of solution on platinum uptake (% were studied in detail on a batch sorption. Before the pistachio nut shell was activated, platinum uptake (% was poor compared to the rice husk. However, after the pistachio nut shell was activated at 1000 °C under an argon atmosphere, the platinum uptake (% increased two-fold. The pistachio nut shell (original and activated and rice husk were shown to be better than commercially available activated carbon in terms of adsorption capacity. These two sorbents have also been characterized by FTIR and SEM. Adsorption equilibrium data best complied with the Langmuir isotherm model. Maximum adsorption capacities, Qmax, at 25 °C were found to be 38.31 and 42.02 mg.g- 1for the activated pistachio nut shell and rice husk, respectively. Thermodynamic calculations using the measured ∆H°, ∆S° and ∆G° values indicate that the uptake process was spontaneous and endothermic. The experimental data were shown to be fit the pseudo-second-order kinetic model.

  4. Pentavalent Uranium Chemistry - Synthetic Pursuit Of A Rare Oxidation State

    Energy Technology Data Exchange (ETDEWEB)

    Graves, Christopher R [Los Alamos National Laboratory; Kiplinger, Jaqueline L [Los Alamos National Laboratory

    2009-01-01

    This feature article presents a comprehensive overview of pentavalent uranium systems in non-aqueous solution with a focus on the various synthetic avenues employed to access this unusual and very important oxidation state. Selected characterization data and theoretical aspects are also included. The purpose is to provide a perspective on this rapidly evolving field and identify new possibilities for future developments in pentavalent uranium chemistry.

  5. Microbial viability in preparations packaged for single use.

    Science.gov (United States)

    Obayashi, Akiko; Oie, Shigeharu; Kamiya, Akira

    2003-05-01

    We evaluated microbial viability in preparations packaged for single use only which mandate that residual solution be discarded such as albumin and globulin preparations as blood products, preparations containing albumin (such as urokinase and interferon), fat emulsions, and a preparation containing fat emulsions (propofol). In most preparations, Serratia marcescens and Burkholderia cepacia proliferated rapidly at 30 degrees C. However, in globulin preparations containing 1-2.25% glycine to prevent protein degradation (Gamma-Venin P, Venilon-I, Globulin Injection, and Ahlbulin), no growth of S. marcescens and B. cepacia was detected over 24 h at 30 degrees C. For globulin preparations containing 1-2.25% glycine, the injunction to "Discard residual solution after the package has been used" in the package inserts can be revised to "It is possible to use residual solution within 24 h after the package has been used with storage in a cool place."

  6. Controlling Ionic Transport for Device Design in Synthetic Nanopores

    Science.gov (United States)

    Kalman, Eric Boyd

    Polymer nanopores present a number of behaviors not seen in microscale systems, such as ion current rectification, ionic selectivity, size exclusion and potential dependent ion concentrations in and near the pore. The existence of these effects stems from the small size of nanopores with respect to the characteristic length scales of surface interactions at the interface between the nanopore surface and the solution within it. The large surface-to-volume ratio due to the nanoscale geometry of a nanopore, as well as similarity in scale between geometry and interaction demands the solution interact with the nanopore walls. As surfaces in solution almost always carry residual charge, these surface forces are primarily the electrostatic interactions between the charge groups on the pore surface and the ions in solution. These interactions may be used by the experimentalist to control ionic transport through synthetic nanopores, and use them as a template for the construction of devices. In this research, we present our work on creating a number of ionic analogs to seminal electronic devices, specifically diodes, and transistors, by controlling ionic transport through the electrostatic interactions between a single synthetic nanopore and ions. Control is achieved by "doping" the effective charge carrier concentration in specific regions of the nanopore through manipulation of the pore's surface charge. This manipulation occurs through two mechanisms: chemical modification of the surface charge and electrostatic manipulation of the local internal nanopore potential using a gate electrode. Additionally, the innate selectivity of the charged nanopores walls allows for the separation of charges in solution. This well-known effect, which spawns measureable quantities, the streaming potential and current, has been used to create nanoscale water desalination membranes. We attempt to create a device using membranes with large nanopore densities for the desalination of water

  7. Safety, patient's tolerance, and efficacy of a 2-liter vitamin C-enriched macrogol bowel preparation: a randomized, endoscopist-blinded prospective comparison with a 4-liter macrogol solution

    NARCIS (Netherlands)

    Mathus-Vliegen, E. M. H.; van der Vliet, K.

    2013-01-01

    Optimal bowel preparation is associated with lower polyp miss rates, but patients have difficulties in complying with the usual 4-L bowel preparation. This study aimed to compare the safety, acceptance, and efficacy of 2-L polyethylene glycol electrolyte solution enriched in vitamin C with 4-L

  8. Chemistry and structure of lunar and synthetic armalcolite

    International Nuclear Information System (INIS)

    Wechsler, B.A.; Prewitt, C.T.; Papike, J.J.

    1976-01-01

    A study of the chemical trends displayed by lunar armalcolites has been made in conjunction with single-crystal X-ray structure refinements of lunar and synthetic armalcolite in order to assess the possible importance of Ti 3+ in lunar armalcolite and to characterize the effects of cation substitutions on the structure. The apparent cation deficiences found in lunar armalcolites analyzed with the electron microprobe most likely reflect the presence of Ti 3+ , although the existence of vacancies cannot be ruled out. Structure refinements of an Apollo 17 armalcolite are consistent with either interpretation. These results support experimental evidence suggesting the presence of Ti 3+ in armalcolite and indicate that virtually all lunar armalcolites probably contain approximately 4-11 mol.% Ti 2 3+ Ti 4+ 0 5 component in solid solution. The cation distribution in lunar armalcolite is essentially completely ordered. However, synthetic crystals quenched from near 1200 0 C have been found to retain significant cation disorder. (Auth.)

  9. Bio-inspired Structural Colors from Deposition of Synthetic Melanin Nanoparticles by Evaporative Self-assembly

    Science.gov (United States)

    Xiao, Ming; Li, Yiwen; Deheyn, Dimitri; Yue, Xiujun; Gianneschi, Nathan; Shawkey, Matthew; Dhinojwala, Ali

    2015-03-01

    Melanin, a ubiquitous black or brown pigment in the animal kingdom, is a unique but poorly understood biomaterial. Many bird feathers contain melanosomes (melanin-containing organelles), which pack into ordered nanostructures, like multilayer or two-dimensional photonic crystal structures, to produce structural colors. To understand the optical properties of melanin and how melanosomes assemble into certain structures to produce colors, we prepared synthetic melanin (polydopamine) particles with variable sizes and aspect ratios. We have characterized the absorption and refractive index of the synthetic melanin particles. We have also shown that we can use an evaporative process to self-assemble melanin films with a wide range of colors. The colors obtained using this technique is modeled using a thin-film interference model and the optical properties of the synthetic melanin nanoparticles. Our results on self-assembly of synthetic melanin nanoparticles provide an explanation as why the use of melanosomes to produce colors is prevalent in the animal kingdom. National science foundation, air force office of scientific research, human frontier science program.

  10. Evaluation of safety, performance and emissions of synthetic fuel blends in a Cessna Citation II

    NARCIS (Netherlands)

    Snijders, T.A.; Melkert, J.A.

    2011-01-01

    Prior to being used in aviation, alternative fuels have to be tested thoroughly to ensure safe operation. At Delft University of Technology, a test programme was performed to evaluate the safety, performance and emissions of synthetic fuel blends. During test preparations, compatibility of the

  11. Automatic design of digital synthetic gene circuits.

    Directory of Open Access Journals (Sweden)

    Mario A Marchisio

    2011-02-01

    Full Text Available De novo computational design of synthetic gene circuits that achieve well-defined target functions is a hard task. Existing, brute-force approaches run optimization algorithms on the structure and on the kinetic parameter values of the network. However, more direct rational methods for automatic circuit design are lacking. Focusing on digital synthetic gene circuits, we developed a methodology and a corresponding tool for in silico automatic design. For a given truth table that specifies a circuit's input-output relations, our algorithm generates and ranks several possible circuit schemes without the need for any optimization. Logic behavior is reproduced by the action of regulatory factors and chemicals on the promoters and on the ribosome binding sites of biological Boolean gates. Simulations of circuits with up to four inputs show a faithful and unequivocal truth table representation, even under parametric perturbations and stochastic noise. A comparison with already implemented circuits, in addition, reveals the potential for simpler designs with the same function. Therefore, we expect the method to help both in devising new circuits and in simplifying existing solutions.

  12. The preparation of magnetic nanoparticles for applications in biomedicine

    International Nuclear Information System (INIS)

    Tartaj, Pedro; Morales, Maria del Puerto; Veintemillas-Verdaguer, Sabino; Gonzalez-Carreno, Teresita; Serna, Carlos J

    2003-01-01

    This review is focused on describing state-of-the-art synthetic routes for the preparation of magnetic nanoparticles useful for biomedical applications. In addition to this topic, we have also described in some detail some of the possible applications of magnetic nanoparticles in the field of biomedicine with special emphasis on showing the benefits of using nanoparticles. Finally, we have addressed some relevant findings on the importance of having well-defined synthetic routes to produce materials not only with similar physical features but also with similar crystallochemical characteristics. (topical review)

  13. A Rapid Synthetic Method for the Preparation of Two Tris-Cobalt(III) Compounds.

    Science.gov (United States)

    Jackman, Donald C.; Rillema, D. Paul

    1989-01-01

    Reports a method of preparation for tris(ethylenediamine)cobalt(III) and tris(2,2'-bipyridine)cobalt(III) that will shorten the preparation time by approximately 3 hours. Notes the time for synthesis and isolation of compound one was 1 hour (yield 38 percent) while compound two took 50 minutes (yield 71%). (MVL)

  14. Artificial magnetic-field quenches in synthetic dimensions

    Science.gov (United States)

    Yılmaz, F.; Oktel, M. Ö.

    2018-02-01

    Recent cold atom experiments have realized models where each hyperfine state at an optical lattice site can be regarded as a separate site in a synthetic dimension. In such synthetic ribbon configurations, manipulation of the transitions between the hyperfine levels provide direct control of the hopping in the synthetic dimension. This effect was used to simulate a magnetic field through the ribbon. Precise control over the hopping matrix elements in the synthetic dimension makes it possible to change this artificial magnetic field much faster than the time scales associated with atomic motion in the lattice. In this paper, we consider such a magnetic-flux quench scenario in synthetic dimensions. Sudden changes have not been considered for real magnetic fields as such changes in a conducting system would result in large induced currents. Hence we first study the difference between a time varying real magnetic field and an artificial magnetic field using a minimal six-site model. This minimal model clearly shows the connection between gauge dependence and the lack of on-site induced scalar potential terms. We then investigate the dynamics of a wave packet in an infinite two- or three-leg ladder following a flux quench and find that the gauge choice has a dramatic effect on the packet dynamics. Specifically, a wave packet splits into a number of smaller packets moving with different velocities. Both the weights and the number of packets depend on the implemented gauge. If an initial packet, prepared under zero flux in an n -leg ladder, is quenched to Hamiltonian with a vector potential parallel to the ladder, it splits into at most n smaller wave packets. The same initial wave packet splits into up to n2 packets if the vector potential is implemented to be along the rungs. Even a trivial difference in the gauge choice such as the addition of a constant to the vector potential produces observable effects. We also calculate the packet weights for arbitrary initial and

  15. Stability of tacrolimus solutions in polyolefin containers.

    Science.gov (United States)

    Lee, Jun H; Goldspiel, Barry R; Ryu, Sujung; Potti, Gopal K

    2016-02-01

    Results of a study to determine the stability of tacrolimus solutions stored in polyolefin containers under various temperature conditions are reported. Triplicate solutions of tacrolimus (0.001, 0.01, and 0.1 mg/mL) in 0.9% sodium chloride injection or 5% dextrose injection were prepared in polyolefin containers. Some samples were stored at room temperature (20-25 °C); others were refrigerated (2-8 °C) for 20 hours and then stored at room temperature for up to 28 hours. The solutions were analyzed by stability-indicating high-performance liquid chromatography (HPLC) assay at specified time points over 48 hours. Solution pH was measured and containers were visually inspected at each time point. Stability was defined as retention of at least 90% of the initial tacrolimus concentration. All tested solutions retained over 90% of the initial tacrolimus concentration at all time points, with the exception of the 0.001-mg/mL solution prepared in 0.9% sodium chloride injection, which was deemed unstable beyond 24 hours. At all evaluated concentrations, mean solution pH values did not change significantly over 48 hours; no particle formation was detected. During storage in polyolefin bags at room temperature, a 0.001-mg/mL solution of tacrolimus was stable for 24 hours when prepared in 0.9% sodium chloride injection and for at least 48 hours when prepared in 5% dextrose injection. Solutions of 0.01 and 0.1 mg/mL prepared in either diluent were stable for at least 48 hours, and the 0.01-mg/mL tacrolimus solution was also found to be stable throughout a sequential temperature protocol. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  16. Synthetic Biology and Human Health: Potential Applications for Spaceflight

    Science.gov (United States)

    Karouia, Fathi; Carr, Christopher; Cai, Yizhi; Chen, Y.; Grenon, Marlene; Larios-Sanz, Maia; Jones, Jeffrey A.; Santos, Orlando

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. Spaceflight-related changes have been reported in the musculo-skeletal, cardiovascular, neurovestibular, endocrine, and immune systems. The spacecraft environment further subjects the traveler to noise and gravitational forces, as well as airborne chemical, microbiological contaminants, and radiation exposure. As humans prepare for longer duration missions effective countermeasures must be developed, verified, and implemented to ensure mission success. Over the past ten years, synthetic biology has opened new avenues for research and development in areas such as biological control, biomaterials, sustainable energy production, bioremediation, and biomedical therapies. The latter in particular is of great interest to the implementation of long-duration human spaceflight capabilities. This article discusses the effects of spaceflight on humans, and reviews current capabilities and potential needs associated with the health of the astronauts where synthetic biology could play an important role in the pursuit of space exploration.

  17. The Dissolution of Synthetic Na-Boltwoodite in Sodium Carbonate Solutions

    International Nuclear Information System (INIS)

    Ilton, Eugene S.; Liu, Chongxuan; Yantasee, Wassana; Wang, Zheming; Moore, Dean A.; Felmy, Andrew R.; Zachara, John M.

    2006-01-01

    Uranyl silicates such as uranophane and Na-boltwoodite appear to control the solubility of uranium in the contaminated sediments at the US Department of Energy Hanford site (Liu et al., 2004). Consequently, the solubility of synthetic Na-boltwoodite was determined over a wide range of bicarbonate concentrations, from circumneutral to alkaline pH, that are representative of porewater and groundwater compositions at the Hanford site. Results show that Na-boltwoodite dissolution was nearly congruent and its solubility increased with increasing bicarbonate concentration. Calculated solubility constants varied by nearly 2 log units from low bicarbonate (no added NaCO3) to 50 mmol/L bicarbonate. However, the solubility constants only vary by 0.5 log units from 0 added bicarbonate to 1.2 mmol/L bicarbonate, where logKsp = 5.39-5.92 and the average logKsp = 5.63. No systematic trend in logKsp was apparent over this range in bicarbonate concentrations. LogKsp values trended down with increasing bicarbonate concentration, where logKsp = 4.06 at 50 mmol/L bicarbonate. We conclude that the calculated solubility constants at high bicarbonate are compromised by an incomplete or inaccurate uranyl-carbonate speciation model

  18. Enzyme stabilization by glass-derived silicates in glass-exposed aqueous solutions

    Science.gov (United States)

    Ives, J.A.; Moffett, J.R.; Arun, P.; Lam, D.; Todorov, T.I.; Brothers, A.B.; Anick, D.J.; Centeno, J.; Namboodiri, M.A.A.; Jonas, W.B.

    2010-01-01

    Objectives: To analyze the solutes leaching from glass containers into aqueous solutions, and to show that these solutes have enzyme activity stabilizing effects in very dilute solutions. Methods: Enzyme assays with acetylcholine esterase were used to analyze serially succussed and diluted (SSD) solutions prepared in glass and plastic containers. Aqueous SSD preparations starting with various solutes, or water alone, were prepared under several conditions, and tested for their solute content and their ability to affect enzyme stability in dilute solution. Results: We confirm that water acts to dissolve constituents from glass vials, and show that the solutes derived from the glass have effects on enzymes in the resultant solutions. Enzyme assays demonstrated that enzyme stability in purified and deionized water was enhanced in SSD solutions that were prepared in glass containers, but not those prepared in plastic. The increased enzyme stability could be mimicked in a dose-dependent manner by the addition of silicates to the purified, deionized water that enzymes were dissolved in. Elemental analyses of SSD water preparations made in glass vials showed that boron, silicon, and sodium were present at micromolar concentrations. Conclusions: These results show that silicates and other solutes are present at micromolar levels in all glass-exposed solutions, whether pharmaceutical or homeopathic in nature. Even though silicates are known to have biological activity at higher concentrations, the silicate concentrations we measured in homeopathic preparations were too low to account for any purported in vivo efficacy, but could potentially influence in vitro biological assays reporting homeopathic effects. ?? 2009 The Faculty of Homeopathy.

  19. Optimized Production of Coal Fly Ash Derived Synthetic Zeolites for Mercury Removal from Wastewater

    Science.gov (United States)

    Tauanov, Z.; Shah, D.; Itskos, G.; Inglezakis, V.

    2017-09-01

    Coal fly ash (CFA) derived synthetic zeolites have become popular with recent advances and its ever-expanding range of applications, particularly as an adsorbent for water and gas purification and as a binder or additive in the construction industry and agriculture. Among these applications, perpetual interest has been in utilization of CFA derived synthetic zeolites for removal of heavy metals from wastewater. We herein focus on utilization of locally available CFA for efficient adsorption of mercury from wastewater. To this end, experimental conditions were investigated so that to produce synthetic zeolites from Kazakhstani CFAs with conversion into zeolite up to 78%, which has remarkably high magnetite content. In particular, the effect of synthesis reaction temperature, reaction time, and loading of adsorbent were systematically investigated and optimized. All produced synthetic zeolites and the respective CFAs were characterized using XRD, XRF, PSA and porosimetric instruments to obtain microstructural and mineralogical data. Furthermore, the synthesized zeolites were studied for the removal of mercury from aqueous solutions. A comparison of removal eficiency and its relationship to the physical and chemical properties of the synthetic zeolites were analyzed and interpreted.

  20. Organoactinide chemistry: synthesis, structure, and solution dynamics

    International Nuclear Information System (INIS)

    Brennan, J.G.

    1985-12-01

    This thesis considers three aspects of organoactinide chemistry. In chapter one, a bidentate phosphine ligand was used to kinetically stabilize complexes of the type Cp 2 MX 2 . Ligand redistribution processes are present throughout the synthetic work, as has often been observed in uranium cyclopentadienyl chemistry. The effects of covalent M-L bonding on the solution and solid state properties of U(III) coordination complexes are considered. In particular, the nature of the more subtle interaction between the metal and the neutral ligand are examined. Using relative basicity data obtained in solution, and solid state structural data (and supplemented by gas phase photoelectron measurements), it is demonstrated that the more electron rich U(III) centers engage in significant U → L π-donation. Trivalent uranium is shown to be capable of acting either as a one- or two-electron reducing agent toward a wide variety of unsaturated organic and inorganic molecules, generating molecular classes unobtainable via traditional synthetic approaches, as well as offering an alternative synthetic approach to molecules accessible via metathesis reactions. Ligand redistribution processes are again observed, but given the information concerning ligand lability, this reactivity pattern is applied to the synthesis of pure materials inaccessible from redox chemistry. 214 refs., 33 figs., 10 tabs

  1. [Preparation and evaluation of stationary phase of high performance liquid chromatography for the separation of basic solutes].

    Science.gov (United States)

    Wang, P; Wang, J; Cong, R; Dong, B

    1997-05-01

    A bonded phase for high performance liquid chromatography (HPLC) has been prepared by the new reaction between silica and silicon ether. The ether was synthesized from alkylchlorosilane and pentane-2,4-dione in the presence of imidazole under inert conditions by using anhydrous tetrahydrofuran as solvent. The bonded phase thus obtained was characterized by elemental analysis, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and HPLC evaluation. The carbon content was 9.4% and the surface coverage almost attained 3.0micromol/m2 without end-capping. The silanol absorption peaks of the product cannot be observed from the DRIFT spectrum, which revealed that the silanization reaction proceeded thoroughly. The basic solutes, such as aniline, o-toluidine, p-toluidine, N,N-dimethylaniline and pyridine were used as the probe solutes to examine their interaction with the residual silanols on the surface of the products. No buffer or salt was used in the mobile phase for these experiments. In comparison with an acidic solute, such as, phenol, basic aniline eluted in front of phenol, and the ratio of asymmetry of aniline peak to that of the phenol peak was 1.1. Furthermore the relative k' value of p-toluidine to that of o-toluidine was also 1.1. All the results showed that the stationary phase has better quality and reproducibility and can be used for the separation of basic solutes efficiently.

  2. Adsorption of malachite green from aqueous solution onto carbon prepared from Arundo donax root

    International Nuclear Information System (INIS)

    Zhang Jian; Li Yan; Zhang Chenglu; Jing Yuming

    2008-01-01

    Arundo donax root carbon (ADRC), a new adsorbent, was prepared from Arundo donax root by carbonization. The surface area of the adsorbent was determined 158 m 2 /g by N 2 adsorption isotherm. Batch adsorption experiments were carried out for the removal of malachite green (MG) from aqueous solution using ADRC as adsorbent. The effects of various parameters such as solution pH (3-10), carbon dose (0.15-1.0 g/100 ml) and initial MG concentration (10-100 mg/l) on the adsorption system were investigated. The effective pH was 5-7 and the optimum adsorbent dose was found to be 0.6 g/100 ml. Equilibrium experimental data at 293, 303 and 313 K were better represented by Langmuir isotherm than Freundlich isotherm using linear and non-linear methods. Thermodynamic parameters such as ΔG, ΔH and ΔS were also calculated. The negative Gibbs free energy change and the positive enthalpy change indicated the spontaneous and endothermic nature of the adsorption. The adsorption equilibrium time was 180 min. Adsorption kinetics was determined using pseudo-first-order model, pseudo-second-order model and intraparticle diffusion model. The results showed that the adsorption of MG onto ADRC followed pseudo-second-order model

  3. On isomorphous substitution of calcium by sodium and lanthanum in synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Get'man, E.I.; Kanyuka, Yu.V.; Loboda, S.N.

    1998-01-01

    Isomorphous substitution of calcium by sodium and lanthanum in synthetic hydroxyapatite Ca 5-2x La x (PO 4 ) 3 OH by x=0-2.5 within the temperature range 1100-800 deg C is studied through the roentgenophase analysis and IR-spectroscopy methods. It is established that singlephase solid solutions are formed in the area of x≥0.4 by a≤0.4 there exist phases with LaPO 4 , LaNa 6 (PO 4 ) 3 structures and unknown phase along with solid solution of the apatite structure

  4. Synthetic environments

    Science.gov (United States)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  5. Preparation of functional composite materials based on chemically derived graphene using solution process

    International Nuclear Information System (INIS)

    Kim, M; Hyun, W J; Mun, S C; Park, O O

    2015-01-01

    Chemically derived graphenes were assembled into functional composite materials using solution process from stable solvent dispersion. We have developed foldable electronic circuits on paper substrates using vacuum filtration of graphene nanoplates dispersion and a selective transfer process without need for special equipment. The electronic circuits on paper substrates revealed only a small change in conductance under various folding angles and maintained an electronic path after repetitive folding and unfolding. We also prepared flexible. binder-free graphene paper-like materials by addition of graphene oxide as a film stabilizer. This graphene papers showed outstanding electrical conductivity up to 26,000 S/m and high charge capacity as an anode in lithium-ion battery without any post-treatments. For last case, multi-functional thin film structures of graphene nanoplates were fabricated by using layer-by-layer assembly technique, showing optical transparency, electrical conductivity and enhanced gas barrier property. (paper)

  6. Preparation of zirconium molybdate gel generator

    International Nuclear Information System (INIS)

    Charoen, S.; Aungurarat, G.; Laohawilai, S.; Sukontpradit, W.; Jingjit, S.

    1994-01-01

    A procedure for preparation of 99mTc generator based on conversion to zirconium molybdate gel of 99Mo produced by neutron activation was reported. The gel was prepared from zirconium oxychloride solution pH 1.6, ammonium molybdate solution pH 3-5 and mole ratio of Zr:Mo 1:1 which had water content about 7-8%. Small generators containing 1-1.5 g of gel were eluted with average efficiencies of 77% and the activity peak in the first 3 ml of 10 ml of saline solution. The amount of Mo and Zr in eluates were below the acceptance limit. The gel generators of activity about 100 mCi were prepared and had the good performance in elutability and stability

  7. Work-Life Balance At A Glance- A Synthetic Review

    OpenAIRE

    MEHTA, Dr. PALLAVI; KUNDNANI, NEERA

    2015-01-01

    The literature review on Work Life Balance has been done with a view keeping in mind the momentum with which the concept has become pervasive due to changing work-life style and with major aim to bring an insight into various forces surrounding it which hinders its equilibrium and solutions to overcome thisdisequilibrium. The current synthetic review helps in identifying the effects of organization support, work-family conflict, workplace stress and personality on work-life equilibrium. In th...

  8. Stability of ampicillin, piperacillin, cefotaxime, netilmicin and amikacin in an L-amino acid solution prepared for total parenteral nutrition of newborn infants

    DEFF Research Database (Denmark)

    Goldstein, K; Colding, H; Andersen, G E

    1988-01-01

    The stability of ampicillin, piperacillin and cefotaxime, alone or in combination with either netilmicin or amikacin, was tested by microbiological methods at 29 degrees C (ampicillin, also at 22 degrees C) in an L-amino acid solution specially prepared for newborn infants. In the case of ampicil...

  9. 2,6-Lutidine-isatinecate, a semi-synthetic pyrrolizidine alkaloid: X-ray and n.m.r. studies

    International Nuclear Information System (INIS)

    Drewes, S.E.; Field, J.S.; Pitchford, A.T.; Van Rooyen, P.H.; Dillen, J.L.M.

    1985-01-01

    A semi-synthetic pyrrolizidine alkaloid has been prepared from a necic acid and a pyridine base moiety. N.m.r. and X-ray analyses of this compound were carried out in order to establish the relationship between the structure and chemical shift

  10. 2,6-Lutidine-isatinecate, a semi-synthetic pyrrolizidine alkaloid: X-ray and N. M. R. studies

    Energy Technology Data Exchange (ETDEWEB)

    Drewes, S.E.; Field, J.S.; Pitchford, A.T.; Van Rooyen, P.H.; Dillen, J.L.M.

    1985-09-01

    A semi-synthetic pyrrolizidine alkaloid has been prepared from a necic acid and a pyridine base moiety. N.M.R. and X-ray analyses of this compound were carried out in order to establish the relationship between the structure and chemical shift.

  11. Reclamation of zinc-contaminated soil using a dissolved organic carbon solution prepared using liquid fertilizer from food-waste composting.

    Science.gov (United States)

    Chiang, Po-Neng; Tong, Ou-Yang; Chiou, Chyow-San; Lin, Yu-An; Wang, Ming-Kuang; Liu, Cheng-Chung

    2016-01-15

    A liquid fertilizer obtained through food-waste composting can be used for the preparation of a dissolved organic carbon (DOC) solution. In this study, we used the DOC solutions for the remediation of a Zn-contaminated soil (with Zn concentrations up to 992 and 757 mg kg(-1) in topsoil and subsoil, respectively). We then determined the factors that affect Zn removal, such as pH, initial concentration of DOC solution, and washing frequency. Measurements using a Fourier Transform infrared spectrometer (FT-IR) revealed that carboxyl and amide were the major functional groups in the DOC solution obtained from the liquid fertilizer. Two soil washes using 1,500 mg L(-1) DOC solution with a of pH 2.0 at 25°C removed about 43% and 21% of the initial Zn from the topsoil and subsoil, respectively. Following this treatment, the pH of the soil declined from 5.4 to 4.1; organic matter content slightly increased from 6.2 to 6.5%; available ammonium (NH4(+)-N) content increased to 2.4 times the original level; and in the topsoil, the available phosphorus content and the exchangeable potassium content increased by 1.65 and 2.53 times their initial levels, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Removal of Cu from aqueous solutions by synthetic hydroxyapatite: EXAFS investigation

    International Nuclear Information System (INIS)

    Corami, Alessia; D'Acapito, Francesco; Mignardi, Silvano; Ferrini, Vincenzo

    2008-01-01

    The sorption of aqueous Cu on synthetic hydroxyapatite has been investigated by means of the results of a combined structural simulation and extended X-ray absorption fine structure (EXAFS) analysis. The removal of Cu was studied in batch experiments at 25 ± 2 deg. C. The sorption of Cu follows Langmuir behaviour and was attributed to a two-step mechanism involving surface complexation and ion exchange with Ca resulting in the formation of a copper-containing hydroxyapatite. EXAFS results suggest that the heavy metal is present in the Cu 2+ form. The structural experimental and theoretical analysis shows that Cu is bond to about four O atoms at a distance of about 1.95 A. In all the studied cases the immobilization site of Cu is the same. The fixation of Cu occurs in the surface sites of hydroxyapatite whereas the sorption in the Ca sites in the inner part of the structure is unlikely

  13. Preparation of modified polymer- Alumino silicate composite and their application in removal of some radionuclides from aqueous solutions

    International Nuclear Information System (INIS)

    El- Masry, E.H.

    2012-01-01

    Ion exchange is one of the most common and effective treatment methods for radioactive liquid waste. This technique is well developed and has been employed for many years in both the nuclear industry and in other industries. In this thesis polyacrylamide- zeolite and polyacrylamide- bentonite composites were prepared and characterized using advanced analytical techniques. The prepared materials were used as composite ion exchangers for removal of Cesium, Cobalt and Strontium ions from simulated waste solution. Effect of ph of the medium on the removal of aforementioned ions was investigated. The sorption kinetic was studied and the data were analyzed by different kinetic models which rivaled that the mechanism of the sorption processes is mainly controlled by pseudo-second order reaction, and particle diffusion might be involved in the sorption processes. The values of diffusion coefficient of the three metal ions were calculated and suggested that chemisorption was the predominated sorption mechanism. Several isotherm models were applied for the sorption, and thermodynamic parameters were determined. The positive values of enthalpy change, δH, for the three metal ions confirmed the endothermic nature of the sorption processes. The results indicated that the prepared materials can be used as efficient ion exchange materials for the removal of cesium, cobalt and strontium ions from simulated waste solution. In the present study, immobilization of polyacrylamide- zeolite and/ or polyacrylamide- bentonite composites loaded with cesium, cobalt and/or strontium radionuclides with Ordinary Portland Cement (OPC) has been carried out. Several factors affecting the characteristics of the final solidified waste product towards safe disposal such as mechanical strength and leaching behavior of the radioisotopes have been studied. The obtained results showed that the presence of polyacrylamide- zeolite and/ or polyacrylamide- bentonite composites in the cemented wastes

  14. Preparation of robust braid-reinforced poly(vinyl chloride) ultrafiltration hollow fiber membrane with antifouling surface and application to filtration of activated sludge solution.

    Science.gov (United States)

    Zhou, Zhuang; Rajabzadeh, Saeid; Fang, Lifeng; Miyoshi, Taro; Kakihana, Yuriko; Matsuyama, Hideto

    2017-08-01

    Braid-reinforced hollow fiber membranes with high mechanical properties and considerable antifouling surface were prepared by blending poly(vinyl chloride) (PVC) with poly(vinyl chloride-co-poly(ethylene glycol) methyl ether methacrylate) (poly(VC-co-PEGMA)) copolymer via non-solvent induced phase separation (NIPS). The tensile strength of the braid-reinforced PVC hollow fiber membranes were significantly larger than those of previously reported various types of PVC hollow fiber membranes. The high interfacial bonding strength indicated the good compatibility between the coating materials and the surface of polyethylene terephthalate (PET)-braid. Owing to the surface segregation phenomena, the membrane surface PEGMA coverage increased upon increasing the poly(VC-co-PEGMA)/PVC blending ratio, resulting in higher hydrophilicities and bovine serum albumin (BSA) repulsion. To compare the fouling properties, membranes with similar PWPs were prepared by adjusting the dope solution composition to eliminate the effect of hydrodynamic conditions on the membrane fouling performance. The blend membranes surface exhibited considerable fouling resistance to the molecular adsorption from both BSA solution and activated sludge solution. In both cases, the flux recovered to almost 80% of the initial flux using only water backflush. Considering their great mechanical properties and antifouling resistance to activated sludge solution, these novel membranes show good potential for application in wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Opportunities in plant synthetic biology.

    Science.gov (United States)

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  16. Preparation, Structural and Dielectric Properties of Solution Grown Polyvinyl Alcohol(PVA) Film

    Science.gov (United States)

    Nangia, Rakhi; Shukla, Neeraj K.; Sharma, Ambika

    2017-08-01

    Flexible dielectrics with high permittivity have been investigated extensively due to their applications in electronic industry. In this work, structural and electrical characteristics of polymer based film have been analysed. Poly vinyl alcohol (PVA) film was prepared by solution casting method. X-ray diffraction (XRD) characterization technique is used to investigate the structural properties. The semi-crystalline nature has been determined by the analysis of the obtained XRD pattern. Electrical properties of the synthesized film have been analysed from the C-V and I-V curves obtained at various frequencies and temperatures. Low conductivity values confirm the insulating behaviour of the film. However, it is found that conductivity increases with temperature. Also, the dielectric permittivity is found to be higher at lower frequencies and higher temperatures, that proves PVA to be an excellent dielectric material which can be used in interface electronics. Dielectric behaviour of the film has been explained based on dipole orientations to slow and fast varying electric field. However further engineering can be done to modulate the structural, electrical properties of the film.

  17. Stacking layered structure of polymer light emitting diodes prepared by evaporative spray deposition using ultradilute solution for improving carrier balance

    International Nuclear Information System (INIS)

    Aoki, Youichi; Shakutsui, Masato; Fujita, Katsuhiko

    2009-01-01

    Polymer light-emitting diodes (PLEDs) with staking layered structures are prepared by the evaporative spray deposition using ultradilute solution (ESDUS) method, which has enabled forming a polymer layer onto another polymer layer even if both polymers are soluble in a solvent used for the preparation. By this method, polymers having various HOMO and LUMO levels can be stacked as a hole transport layer, an emitting layer and an electron transport layer as commonly employed in small molecule-based organic light emitting diodes. Here we demonstrated that a PLED having a tri-layer structure using three kinds of polymers showed significant improvement in quantum efficiency compared with those having a single or bi-layer structure of corresponding polymers.

  18. From noise to synthetic nucleoli: can synthetic biology achieve new insights?

    Science.gov (United States)

    Ciechonska, Marta; Grob, Alice; Isalan, Mark

    2016-04-18

    Synthetic biology aims to re-organise and control biological components to make functional devices. Along the way, the iterative process of designing and testing gene circuits has the potential to yield many insights into the functioning of the underlying chassis of cells. Thus, synthetic biology is converging with disciplines such as systems biology and even classical cell biology, to give a new level of predictability to gene expression, cell metabolism and cellular signalling networks. This review gives an overview of the contributions that synthetic biology has made in understanding gene expression, in terms of cell heterogeneity (noise), the coupling of growth and energy usage to expression, and spatiotemporal considerations. We mainly compare progress in bacterial and mammalian systems, which have some of the most-developed engineering frameworks. Overall, one view of synthetic biology can be neatly summarised as "creating in order to understand."

  19. Microstructural features of the La1−xCaxFeO3−δ solid solutions prepared via Pechini route

    International Nuclear Information System (INIS)

    Gerasimov, E.Yu.; Isupova, L.A.; Tsybulya, S.V.

    2015-01-01

    Highlights: • La 1−x Ca x FeO (3−δ) (0 ≤ x ≤ 0.7) perovskite were prepared by Pechini method. • Planar defects in direction (1 0 1) were observed in the perovskite surface. • α-Fe 2 O 3 particles (1–10 nm) on the surface of perovskite were revealed. • Amount of α-Fe 2 O 3 particles on the perovskite surface grew with rising x values. - Abstract: Solid solutions with La 1−x Ca x FeO 3−δ (0 ≤ x ≤ 0.7) perovskite-like structure prepared via Pechini route have been investigated by using high resolution transmission electron microscopy and X-ray diffraction. Extended planar defects lying in (1 0 1) crystallographic planes and α-Fe 2 O 3 nanoparticles on the surface of perovskite microcrystals are characteristic of the samples under investigation. It was found that testing of the samples in catalytic deep CH 4 oxidation process results in partial destruction of solid solutions with formation of planar defects in the bulk and α-Fe 2 O 3 particles on the surface

  20. Natural and Synthetic Barriers to Immobilize Radionuclides

    International Nuclear Information System (INIS)

    Um, W.

    2011-01-01

    solution conditions. Particularly for temperature extremes, the backfill material should be able to withstand elevated temperatures resulting from the heat generating high-radiation fluxes of solidified high-level nuclear wastes. The barrier materials are most commonly synthetic or natural inorganic materials that selectively adsorb radionuclide and metallic contaminants. In here, both natural and synthetic barrier materials are discussed to increase our understanding of potential retardation of radionuclide transport in the repository

  1. Locus-specific detection of HLA-DQ and -DR antigens by antibodies against synthetic N-terminal octapeptides of the beta chain

    DEFF Research Database (Denmark)

    Deufel, T; Grove, A; Kofod, Hans

    1985-01-01

    Antibodies against synthetic peptides representing the class-II antigen HLA-DR and -DQ beta chain N-terminal sequences were prepared in rabbits. The two octapeptides only share two amino acids and enzyme-linked immuno-assays showed the antisera only to bind to its own antigen. Both peptide antisera...... chains of HLA-DR and -DQ have been prepared by the preparation by the production of antibodies against the N-terminal sequences of each polypeptide....

  2. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials

    Directory of Open Access Journals (Sweden)

    Rosalind A. Le Feuvre

    2018-06-01

    Full Text Available Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials, where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal. Keywords: Synthetic biology, Materials, Biological materials, Biomaterials, Advanced materials

  3. Measurement of Muscle Protein Fractional Synthetic Rate by Capillary Gas Chromatography/Combustion Isotope Ratio Mass Spectrometry

    OpenAIRE

    Yarasheski, Kevin E.; Smith, Kenneth; Rennie, Michael J.; Bier, Dennis M.

    1992-01-01

    The measurement of skeletal muscle protein fractional synthetic rate using an infusion of (1-13C)leucine and measuring the isotopic abundance of the tracer in skeletal muscle protein by preparative gas chromatography (GC)/ninhydrin isotope ratio mass spectrometry (IRMS) is laborious and subject to errors owing to contamination by 12C. The purpose of this study was to compare muscle (13C)leucine enrichment measured with the conventional preparative GC/ninhydrin IRMS approach to a new, continuo...

  4. Synthetic genome engineering forging new frontiers for wine yeast.

    Science.gov (United States)

    Pretorius, Isak S

    2017-02-01

    holds is the de novo production of the raspberry ketone aroma compound, 4-[4-hydroxyphenyl]butan-2-one, in a wine yeast strain (AWRI1631), which was recently achieved via metabolic pathway engineering and synthetic enzyme fusion. A peek over the horizon is revealing that the future of "Wine Yeast 2.0" is already here. Therefore, this article seeks to help prepare the wine industry - an industry rich in history and tradition on the one hand, and innovation on the other - for the inevitable intersection of the ancient art practiced by winemakers and the inventive science of pioneering "synthetic genomicists". It would be prudent to proactively engage all stakeholders - researchers, industry practitioners, policymakers, regulators, commentators, and consumers - in a meaningful dialog about the potential challenges and opportunities emanating from Synthetic Biology. To capitalize on the new vistas of synthetic yeast genomics, this paper presents wine yeast research in a fresh context, raises important questions and proposes new directions.

  5. Diffusion-synthetic acceleration methods for discrete-ordinates problems

    International Nuclear Information System (INIS)

    Larsen, E.W.

    1984-01-01

    The diffusion-synthetic acceleration (DSA) method is an iterative procedure for obtaining numerical solutions of discrete-ordinates problems. The DSA method is operationally more complicated than the standard source-iteration (SI) method, but if encoded properly it converges much more rapidly, especially for problems with diffusion-like regions. In this article we describe the basic ideas behind the DSA method and give a (roughly chronological) review of its long development. We conclude with a discussion which covers additional topics, including some remaining open problems an the status of current efforts aimed at solving these problems

  6. Synthetic biology and metabolic engineering.

    Science.gov (United States)

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  7. Uncovering the method of production and detection of synthetic acetic acid adulteration in vinegar by tandem use of {sup 1}4C liquid scintillation counting and {sup 1}3C/{sup 1}2C ratio mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wechner, Stefan; Voropaev, Andrey; Eichinger, Lorenz [HYDROISOTOP GmbHk Scweitenkirchen, Germany (Germany); Santos, Flora L; Castaneda, Soledad; Racho, Michael; Pabroa, Preciosa Corazon; Morco, Ryan; Sucgang, Raymond J [Philippine Nuclear Research Institute, Diliman, Quezon City (Philippines)

    2010-07-01

    Fraudulent adulteration and or misrepresentation had been a problem for commercial vinegar in the Philippines. Solutions of synthetic acetic acid mixed with colorants and flavour enhancers have been marketed as {sup v}inegar{sup .} Philippine regulations prohibit the sale of these vinegars produced by non-biogenic means as well as misrepresentation of the fine natural vinegars with cheaper version produced using lower value raw materials. The lack of reliable analytical tools however, has hampered the proper implementation of these laws. In this study, authentic vinegar samples were acquired, which were prepared by natural fermentation of : sugar cane, pineapple juice, and mango juice. Another type of cane vinegar was prepared by fermentation of cane sugar using acetator. Commercial vinegar samples, purchased from major supermarkets in the Philippines, were likewise obtained. Calcium acetate was produced by reaction of distilled vinegar samples with calcium carbonate, and subsequent drying of the resulting solution. Portions of the calcium acetate derived from the samples,were reacted with pyrophosphoric acid in a reflux and the glacial acetic acid was recovered by distillation under reduced pressure. The recovered glacial acetic acid were reconstituted to 90 % v/v. The acetic solutions were mixed with an Optiphase Hisafe Scintillant in vials. The C14 activities of the samples were measured in a 1414 Wallac Scintillation Counter and expressed as disintegrations per gram carbon or dpm/g C. Biogenic samples exhibit 12-15 dpm/g C activities, while synthetic samples show 0-2 dpm/g C activities. The remaining portions of the calcium acetate powder were placed in evacuated glass ampoules containing potassium peroxidisulfate and silver (1) permanganate. The samples inside the ampoules were oxidized to Carbon Dioxide, CO{sub 2} gas, in a furnace. The CO{sub 2} were then purified and bled to an Isotope Ratio mass spectrometer. {sup 1}3C/{sup 1}2C ratios were determined and

  8. Nitrate conversion and supercritical fluid extraction of UO{sub 2}-CeO{sub 2} solid solution prepared by an electrolytic reduction-coprecipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L.Y. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology; China Institute of Atomic Energy, Beijing (China); Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2014-04-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N{sub 2}O{sub 4} into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO{sub 2}-CeO{sub 2} solid solution was prepared as a surrogate for a UO{sub 2}-PuO{sub 2} solid solution, and the recovery of U and Ce from the UO{sub 2}-CeO{sub 2} solid solution with liquid N{sub 2}O{sub 4} and supercritical CO{sub 2} containing tri-n-butyl phosphate (TBP) was investigated. The UO{sub 2}-CeO{sub 2} solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N{sub 2}O{sub 4}. The XRD pattern of the nitrates was similar to that of UO{sub 2}(NO{sub 3}){sub 2} . 3H{sub 2}O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO{sub 2} containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  9. Solution-blown nanofiber mats from fish sarcoplasmic protein

    DEFF Research Database (Denmark)

    Sett, S.; Boutrup Stephansen, Karen; Yarin, A.L.

    2016-01-01

    In the present work, solution-blowing was adopted to form nanofibers from fish sarcoplasmic proteins (FSPs). Nanofiber mats containing different weight ratios (up to 90/10) of FSP in the FSP/nylon 6 blended nanofibers were formed from formic acid solutions, and compared to electrospun fibers made...... that the production rate of solution-blowing was increased 30-fold in relation to electrospinning. Overall, this study reveals FSP as an interesting biopolymeric alternative to synthetic polymers, and the introduction of FSP to nylon 6 provides a composite with controlled properties....

  10. Synthetic biological networks

    International Nuclear Information System (INIS)

    Archer, Eric; Süel, Gürol M

    2013-01-01

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  11. DNA Modified with Metal Nanoparticles: Preparation and Characterization of Ordered Metal-DNA Nanostructures in a Solution and on a Substrate

    Directory of Open Access Journals (Sweden)

    Nina Kasyanenko

    2016-01-01

    Full Text Available DNA interaction with silver and aluminum nanoparticles in a solution has been investigated with the AFM, SEM, dynamic light scattering, viscometry, and spectral methods. The comparison of DNA interaction with nanoparticles synthesized by the reduction of Ag+ ions and with nanoparticles obtained by the electric discharge plasma method was done. DNA metallization in a solution and on n-silicon surface with metal nanoparticles or by the reduction of silver ions after their binding to DNA was executed and studied. It was shown that DNA strands with regular location of silver or aluminum nanoparticles can be prepared. The conditions for the formation of silver nanoparticles and silver nanoclusters on DNA were analyzed.

  12. Aragonite coating solutions (ACS) based on artificial seawater

    International Nuclear Information System (INIS)

    Tas, A. Cuneyt

    2015-01-01

    Graphical abstract: - Highlights: • Developed completely inorganic solutions for the deposition of monolayers of aragonite spherules (or ooids). • Solutions mimicked the artificial seawater. • Biomimetic crystallization was performed at the tropical sea surface temperature of 30 °C. - Abstract: Aragonite (CaCO 3 , calcium carbonate) is an abundant biomaterial of marine life. It is the dominant inorganic phase of coral reefs, mollusc bivalve shells and the stalactites or stalagmites of geological sediments. Inorganic and initially precipitate-free aragonite coating solutions (ACS) of pH 7.4 were developed in this study to deposit monolayers of aragonite spherules or ooids on biomaterial (e.g., UHMWPE, ultrahigh molecular weight polyethylene) surfaces soaked in ACS at 30 °C. The ACS solutions of this study have been developed for the surface engineering of synthetic biomaterials. The abiotic ACS solutions, enriched with calcium and bicarbonate ions at different concentrations, essentially mimicked the artificial seawater composition and started to deposit aragonite after a long (4 h) incubation period at the tropical sea surface temperature of 30 °C. While numerous techniques for the solution deposition of calcium hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ), of low thermodynamic solubility, on synthetic biomaterials have been demonstrated, procedures related to the solution-based surface deposition of high solubility aragonite remained uncommon. Monolayers of aragonite ooids deposited at 30 °C on UHMWPE substrates soaked in organic-free ACS solutions were found to possess nano-structures similar to the mortar-and-brick-type botryoids observed in biogenic marine shells. Samples were characterized using SEM, XRD, FTIR, ICP-AES and contact angle goniometry

  13. Aragonite coating solutions (ACS) based on artificial seawater

    Energy Technology Data Exchange (ETDEWEB)

    Tas, A. Cuneyt, E-mail: c_tas@hotmail.com

    2015-03-01

    Graphical abstract: - Highlights: • Developed completely inorganic solutions for the deposition of monolayers of aragonite spherules (or ooids). • Solutions mimicked the artificial seawater. • Biomimetic crystallization was performed at the tropical sea surface temperature of 30 °C. - Abstract: Aragonite (CaCO{sub 3}, calcium carbonate) is an abundant biomaterial of marine life. It is the dominant inorganic phase of coral reefs, mollusc bivalve shells and the stalactites or stalagmites of geological sediments. Inorganic and initially precipitate-free aragonite coating solutions (ACS) of pH 7.4 were developed in this study to deposit monolayers of aragonite spherules or ooids on biomaterial (e.g., UHMWPE, ultrahigh molecular weight polyethylene) surfaces soaked in ACS at 30 °C. The ACS solutions of this study have been developed for the surface engineering of synthetic biomaterials. The abiotic ACS solutions, enriched with calcium and bicarbonate ions at different concentrations, essentially mimicked the artificial seawater composition and started to deposit aragonite after a long (4 h) incubation period at the tropical sea surface temperature of 30 °C. While numerous techniques for the solution deposition of calcium hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}), of low thermodynamic solubility, on synthetic biomaterials have been demonstrated, procedures related to the solution-based surface deposition of high solubility aragonite remained uncommon. Monolayers of aragonite ooids deposited at 30 °C on UHMWPE substrates soaked in organic-free ACS solutions were found to possess nano-structures similar to the mortar-and-brick-type botryoids observed in biogenic marine shells. Samples were characterized using SEM, XRD, FTIR, ICP-AES and contact angle goniometry.

  14. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials.

    Science.gov (United States)

    Le Feuvre, Rosalind A; Scrutton, Nigel S

    2018-06-01

    Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials , where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal.

  15. Continuous Reduced Graphene Oxide Film Prepared by Stitching of Nanosheets at the Interface of Two Immiscible Solutions

    International Nuclear Information System (INIS)

    Sohn, Young Ku; Kim, Seog K.; Min, Bong Ki

    2011-01-01

    RGO sheets dispersed in water are prepared by chemical reduction of GO using ascorbic acid. By mixing and sonication of submicron-size RGO sheets in two immiscible liquids (e. g., chloroform and water) for the first time we have prepared a continuous large-area RGO film at the interface. In other words, we have shown that aggregated RGO sheets could be fully stretched at the interface to form a continuous film. The RGO film has been characterized by SEM, TEM, UV-vis absorption, XPS and Raman. The film exhibits high flexibility, transparency, and very long-term stability without forming aggregations. Without requiring vapor deposition, a special instrument, or a filtration followed by a removing the filter paper one could easily achieve a continuous RGO-film in any laboratories. Our solution-based method is much simpler and cost-effective, and very good for large scale mass production. This finding could boost real applications of graphene in laboratory and industry, and provide a new methodology for the fabrication of large-area continuous graphene films. Graphene, an atom-thick two-dimensional (2D) honeycomb lattice sheet of sp 2 -bonded carbon atoms, has recently been emerged as a new promising material in various fields. Because of its gigantic charge carrier mobility it could be applied to field-effect transistors as a substitute of silicon. Due to its transparency and high electrical conductivity, it could be used as a substitute of ITO electrode in solar cells and light-emitting diodes. Other superior properties include large surface area, flexibility, strength, stiffness, and thermal conductivity. These provides wide applications of graphene including supercapa-citor, battery, sensor, storage and drug delivery. For real applications, large-scale of graphene sheets or films needs to be prepared. Large-area (orders of centimeters) graphene films have recently been fabricated using a chemical vapor deposition (CVD) method on various metal substrates. This

  16. Facile synthesis of highly active PdAu nanowire networks as self-supported electrocatalyst for ethanol electrooxidation.

    Science.gov (United States)

    Hong, Wei; Wang, Jin; Wang, Erkang

    2014-06-25

    In recent years, direct ethanol fuel cells (DEFCs) are attracting increasing attention owing to their wide applications. However, a significant challenge in the development of DEFC technology is the urgent need for highly active anode catalysts for the ethanol oxidation reaction. In this work, a facile and reproducible method for the high-yield synthesis of PdAu nanowire networks is demonstrated. The whole synthetic process is very simple, just mixing Na2PdCl4, HAuCl4, and KBr in an aqueous solution and using polyvinylpyrrolidone as a protective reagent while sodium borohydride as a reductant. The whole synthetic process can be simply performed at room temperature and completed in 30 min, which can greatly simplify the synthetic process and lower the preparation cost. Electrochemical catalytic measurement results prove that the as-prepared catalysts exhibit dramatically enhanced electrocatalytic activity for ethanol electrooxidation in alkaline solution. The facile synthetic process and excellent catalytic performance of the as-prepared catalysts demonstrate that they can be used as a promising catalyst for DEFCs.

  17. Recent developments in MrBUMP: better search-model preparation, graphical interaction with search models, and solution improvement and assessment.

    Science.gov (United States)

    Keegan, Ronan M; McNicholas, Stuart J; Thomas, Jens M H; Simpkin, Adam J; Simkovic, Felix; Uski, Ville; Ballard, Charles C; Winn, Martyn D; Wilson, Keith S; Rigden, Daniel J

    2018-03-01

    Increasing sophistication in molecular-replacement (MR) software and the rapid expansion of the PDB in recent years have allowed the technique to become the dominant method for determining the phases of a target structure in macromolecular X-ray crystallography. In addition, improvements in bioinformatic techniques for finding suitable homologous structures for use as MR search models, combined with developments in refinement and model-building techniques, have pushed the applicability of MR to lower sequence identities and made weak MR solutions more amenable to refinement and improvement. MrBUMP is a CCP4 pipeline which automates all stages of the MR procedure. Its scope covers everything from the sourcing and preparation of suitable search models right through to rebuilding of the positioned search model. Recent improvements to the pipeline include the adoption of more sensitive bioinformatic tools for sourcing search models, enhanced model-preparation techniques including better ensembling of homologues, and the use of phase improvement and model building on the resulting solution. The pipeline has also been deployed as an online service through CCP4 online, which allows its users to exploit large bioinformatic databases and coarse-grained parallelism to speed up the determination of a possible solution. Finally, the molecular-graphics application CCP4mg has been combined with MrBUMP to provide an interactive visual aid to the user during the process of selecting and manipulating search models for use in MR. Here, these developments in MrBUMP are described with a case study to explore how some of the enhancements to the pipeline and to CCP4mg can help to solve a difficult case.

  18. Crystal violet: Study of the photo-fading of an early synthetic dye in aqueous solution and on paper with HPLC-PDA, LC-MS and FORS

    International Nuclear Information System (INIS)

    Confortin, Daria; Brustolon, Marina; Franco, Lorenzo; Neevel, Han; Bommel, Maarten R van; Kettelarij, Albert J; Williams, Rene M

    2010-01-01

    The photo-fading of crystal violet (CV), one of the earliest synthetic dyes and an ink component, is examined both in solution and on paper. Aqueous solutions of CV were exposed to UV light (365nm) and samples were taken at constant time intervals and analysed with a High Performance Liquid Chromatography-Photo Diode Array (HPLC-PDA) and Liquid Chromatography-Mass Spectroscopy (LC-MS). Demethylation products were positively identified. Also, deamination probably occurred. The oxidation at the central carbon likely generates Michler's ketone (MK) or its derivatives, but still needs confirmation. To study CV on paper, Whatman paper was immersed in CV and exposed to UV light. Before and after different irradiation periods, reflectance spectra were recorded with Fibre Optic Reflectance Spectrophotometry (FORS). A decrease in CV concentration and a change in aggregation type for CV molecules upon irradiation was observed. Colorimetric L*a*b* values before and during irradiation were also measured. Also, CV was extracted from paper before and after different irradiation periods and analysed with HPLC-PDA. Photo-fading of CV on paper produced the same products as in solution, at least within the first 100 hours of irradiation. Finally, a photo-fading of CV in the presence of MK on Whatman paper was performed. It was demonstrated that MK both accelerates CV degradation and is consumed during the reaction. The degradation pathway identified in this work is suitable for explaining the photo/fading of other dyes belonging to the triarylmethane group.

  19. A meta-analysis of randomized controlled trials of low-volume polyethylene glycol plus ascorbic acid versus standard-volume polyethylene glycol solution as bowel preparations for colonoscopy.

    Directory of Open Access Journals (Sweden)

    Qingsong Xie

    Full Text Available BACKGROUND: Standard-volume polyethylene glycol (PEG gut lavage solutions are safe and effective, but they require the consumption of large volumes of fluid. A new lower-volume solution of PEG plus ascorbic acid has been used recently as a preparation for colonoscopy. AIM: A meta-analysis was performed to compare the performance of low-volume PEG plus ascorbic acid with standard-volume PEG as bowel preparation for colonoscopy. STUDY: Electronic and manual searches were performed to identify randomized controlled trials (RCTs that compared the performance of low-volume PEG plus ascorbic acid with standard-volume PEG as bowel preparation for colonoscopy. After a methodological quality assessment and data extraction, the pooled estimates of bowel preparation efficacy during bowel cleansing, compliance with preparation, willingness to repeat the same preparation, and the side effects were calculated. We calculated pooled estimates of odds ratios (OR by fixed- and/or random-effects models. We also assessed heterogeneity among studies and the publication bias. RESULTS: Eleven RCTs were identified for analysis. The pooled OR for preparation efficacy during bowel cleansing and for compliance with preparation for low-volume PEG plus ascorbic acid were 1.08 (95% CI = 0.98-1.28, P = 0.34 and 2.23 (95% CI = 1.67-2.98, P<0.00001, respectively, compared with those for standard-volume PEG. The side effects of vomiting and nausea for low-volume PEG plus ascorbic acid were reduced relative to standard-volume PEG. There was no significant publication bias, according to a funnel plot. CONCLUSIONS: Low-volume PEG plus ascorbic acid gut lavage achieved non-inferior efficacy for bowel cleansing, is more acceptable to patients, and has fewer side effects than standard-volume PEG as a bowel preparation method for colonoscopy.

  20. Physicochemical properties of synthetic nano-birnessite and its enhanced scavenging of Co{sup 2+} and Sr{sup 2+} ions from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, S.S., E-mail: sicosad@hotmail.com; Ghaly, M.; El-Sherief, E.A.

    2017-06-01

    Nano-birnessite was prepared, characterized and used for removal of cobalt and strontium ions from aqueous solutions. Scanning electron microscope and atomic force microscope images indicated that the particles of the prepared material are presented in the nano-scale form, the grain size was found in a range of 58–95 nm. Specific surface area of the prepared nano-birnessite was determined and found to be 200.54 m{sup 2}/g. The Capacities of nano-birnessite for cobalt and strontium are 2.97 and 3.04 meq/g, respectively. The kinetic studies indicated that the sorption of the two ions obeys pseudo-second-order model and controlled by an intra-particle diffusion mechanism. The diffusivity of Co{sup 2+} and Sr{sup 2+} ions onto nano-birnessite was determined and indicated that the sorption is chemisorption process. Hence, nano-birnessite material is an efficient sorbent and can be used to decrease the influx of pollutants, such as; Co{sup 2+} and Sr{sup 2+} ions to the environment or their removal from contaminated media. - Graphical abstract: 3D AFM images for nano-birnessite. - Highlights: • Nano-birnessite was prepared using sol-gel method. • It was characterized using different analytical techniques. • Sorption of cobalt and strontium ions onto nano-birnessite was investigated. • Kinetic studies and some kinetic models were tested for the sorption process. • Nano-birnessite exhibited high sorption capacity compared to other sorbents obtained in the literature.

  1. MWCNTs/Cellulose Hydrogels Prepared from NaOH/Urea Aqueous Solution with Improved Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Yingpu Zhang

    2015-01-01

    Full Text Available Novel high strength composite hydrogels were designed and synthesized by introducing multiwalled carbon nanotubes (MWCNTs into cellulose/NaOH/urea aqueous solution and then cross-linked by epichlorohydrin. MWCNTs were used to modify the matrix of cellulose. The structure and morphology of the hydrogels were characterized by Fourier transform infrared (FT-IR spectroscopy, high resolution transmission electron microscopy (HR-TEM, and scanning electron microscopy (SEM. The results from swelling testing revealed that the equilibrium swelling ratio of hydrogels decreased with the increment of MWCNTs content. Thermogravimetric analysis (TGA and dynamic mechanical analysis (DMA results demonstrated that the introduction of MWCNT into cellulose hydrogel networks remarkably improved both thermal and mechanical properties of the composite hydrogels. The preparation of MWCNTs modifiedcellulose-based composites with improved mechanical properties was the first important step towards the development of advanced functional materials.

  2. Interstitial positions of tin ions in alpha-(FerichSn)(2)O-3 solid solutions prepared by mechanical alloying

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Lin, Rong; Nielsen, Kurt

    1997-01-01

    The microstructure of samples of 91, 85, and 71 mol % alpha-Fe-2-O-3-SnO2. prepared by mechanical alloying, has been studied by x-ray diffraction with Rietveld structure refinements, On the basis of the structure refinements to the whole x-ray diffraction patterns for the four as-milled samples, ......, it is found that tin ions do not substitute iron ions in the solid solution, although this model is generally assumed in the literature. The Sn4+ ions occupy the empty octahedral holes in the lattice of the alpha-Fe2O3 phase.......The microstructure of samples of 91, 85, and 71 mol % alpha-Fe-2-O-3-SnO2. prepared by mechanical alloying, has been studied by x-ray diffraction with Rietveld structure refinements, On the basis of the structure refinements to the whole x-ray diffraction patterns for the four as-milled samples...

  3. Preparation and characterization of porphyrin-polythiophene stacked films as prepared by electrochemical method under stirring condition

    International Nuclear Information System (INIS)

    Sugawa, Kosuke; Akiyama, Tsuyoshi; Yamada, Sunao

    2008-01-01

    Porphyrin-polythiophene (pTh) stacked films consisting of meso-tetrathienylporphyrin (TThP) and bithiophene (BiTh) were prepared on transparent indium-tin-oxide (ITO) electrodes by sequential electrochemical scanning of applied potential between 0 and + 2 V vs Ag wire in the electrolyte solution of BiTh and TThP under stirring condition. First, the pTh films were prepared by electrochemical polymerization and then TThP was incorporated into the as-prepared pTh film by subsequent electrochemical scanning as described above in the TThP solution. The operation of solution stirring during electrochemical scanning achieved the formation of robust stacked films. UV/Vis and fluorescence spectra confirmed that the amount of TThP moiety increased with increasing the number of electrochemical scanning cycles in the TThP solution. In order to evaluate the incorporation profile of TThP, surface analyses and depth profiles of stacked films were carried out by XPS spectroscopy. The results suggested that all films formed porphyrin-polythiophene stacked structure precisely, and that TThP was exclusively incorporated around the outermost region of the pTh film

  4. Synthetic biology and occupational risk.

    Science.gov (United States)

    Howard, John; Murashov, Vladimir; Schulte, Paul

    2017-03-01

    Synthetic biology is an emerging interdisciplinary field of biotechnology that involves applying the principles of engineering and chemical design to biological systems. Biosafety professionals have done an excellent job in addressing research laboratory safety as synthetic biology and gene editing have emerged from the larger field of biotechnology. Despite these efforts, risks posed by synthetic biology are of increasing concern as research procedures scale up to industrial processes in the larger bioeconomy. A greater number and variety of workers will be exposed to commercial synthetic biology risks in the future, including risks to a variety of workers from the use of lentiviral vectors as gene transfer devices. There is a need to review and enhance current protection measures in the field of synthetic biology, whether in experimental laboratories where new advances are being researched, in health care settings where treatments using viral vectors as gene delivery systems are increasingly being used, or in the industrial bioeconomy. Enhanced worker protection measures should include increased injury and illness surveillance of the synthetic biology workforce; proactive risk assessment and management of synthetic biology products; research on the relative effectiveness of extrinsic and intrinsic biocontainment methods; specific safety guidance for synthetic biology industrial processes; determination of appropriate medical mitigation measures for lentiviral vector exposure incidents; and greater awareness and involvement in synthetic biology safety by the general occupational safety and health community as well as by government occupational safety and health research and regulatory agencies.

  5. Iodine and fluorine removal of the water using two synthetic adsorbents of great fixation capacity

    International Nuclear Information System (INIS)

    Neri G, M.; Badillo A, V. E.

    2012-10-01

    In this work is studied the affinity of two synthetic adsorbents of great fixation capacity, the alumina and the hydroxyapatite, as alternative for the removal of two halogens, iodine and fluorine of the water; the first of importance in the radioactive wastes management and the second of interest in public health. This study was carried out applying the technique of radioactive tracers, with 131 I and the radionuclide 18 F (it produced in the unit PET-cyclotron of the UNAM). The affinity of the synthetic adsorbents for the halogens is expressed in terms of the distribution coefficient and of the retention percent in function of the solution ph. The results obtained for the iodine and fluorine in the synthetic solids are markedly different; in the case of the iodine, the retention is worthless in the whole interval of studied ph while for the fluorine high distribution coefficient and fixation percentages are presented of until 100%. Also for the fluorine in hydroxyapatite high distribution coefficients and superiors are obtained in relation to those that are obtained in the alumina. In both solids the fluorine retention diminishes as the ph of the solution increases, what shows the competition with the hydroxyl ions for the active places in surface. (Author)

  6. The Survey of Melia Azaderach L. ash in Removal of Hexavalent Chromium from Synthetic Electroplating Industry Wastewater

    Directory of Open Access Journals (Sweden)

    MT Ghaneian

    2014-11-01

    Conclusion: Melia azedarach ash is an effective adsorbent in removal of hexavalent chromium from synthetic electroplating industries wastewater. In addition, the use of this biosorbent in preparation and application aspects is simple and cheap compared to many other natural and man-made adsorbent.

  7. Synthetic Biology and Personalized Medicine

    Science.gov (United States)

    Jain, K.K.

    2013-01-01

    Synthetic biology, application of synthetic chemistry to biology, is a broad term that covers the engineering of biological systems with structures and functions not found in nature to process information, manipulate chemicals, produce energy, maintain cell environment and enhance human health. Synthetic biology devices contribute not only to improve our understanding of disease mechanisms, but also provide novel diagnostic tools. Methods based on synthetic biology enable the design of novel strategies for the treatment of cancer, immune diseases metabolic disorders and infectious diseases as well as the production of cheap drugs. The potential of synthetic genome, using an expanded genetic code that is designed for specific drug synthesis as well as delivery and activation of the drug in vivo by a pathological signal, was already pointed out during a lecture delivered at Kuwait University in 2005. Of two approaches to synthetic biology, top-down and bottom-up, the latter is more relevant to the development of personalized medicines as it provides more flexibility in constructing a partially synthetic cell from basic building blocks for a desired task. PMID:22907209

  8. A Facile Method for the Preparation of Unsymmetrical Ureas Utilizing Zirconium(IV) Chloride

    International Nuclear Information System (INIS)

    Lee, Anna; Kim, Hee-Kwon; Thompson, David H.

    2016-01-01

    A facile synthetic method for the preparation of unsymmetrical ureas from amines is described.Carbamoyl imidazole compounds were prepared by the reaction of 1,1-carbonyldiimidazole with primary or secondary amines, and further activation by treatment with zirconium(IV) chloride to generate the desired urea. This reaction protocol was applied to the synthesis of tri and tetrasubstituted ureas with high yields. This study provides an alternative guideline for the practical preparation of various unsymmetrical ureas.

  9. Tracking the emergence of synthetic biology.

    Science.gov (United States)

    Shapira, Philip; Kwon, Seokbeom; Youtie, Jan

    2017-01-01

    Synthetic biology is an emerging domain that combines biological and engineering concepts and which has seen rapid growth in research, innovation, and policy interest in recent years. This paper contributes to efforts to delineate this emerging domain by presenting a newly constructed bibliometric definition of synthetic biology. Our approach is dimensioned from a core set of papers in synthetic biology, using procedures to obtain benchmark synthetic biology publication records, extract keywords from these benchmark records, and refine the keywords, supplemented with articles published in dedicated synthetic biology journals. We compare our search strategy with other recent bibliometric approaches to define synthetic biology, using a common source of publication data for the period from 2000 to 2015. The paper details the rapid growth and international spread of research in synthetic biology in recent years, demonstrates that diverse research disciplines are contributing to the multidisciplinary development of synthetic biology research, and visualizes this by profiling synthetic biology research on the map of science. We further show the roles of a relatively concentrated set of research sponsors in funding the growth and trajectories of synthetic biology. In addition to discussing these analyses, the paper notes limitations and suggests lines for further work.

  10. Printability of Synthetic Papers by Electrophotography

    Directory of Open Access Journals (Sweden)

    Rozália Szentgyörgyvölgyi

    2010-04-01

    Full Text Available This paper deals with the printability of synthetic papers by the electrophotography technique. Prints of cmyk colour fields from 20% to 100% raster tone values were printed on three types of synthetic papers (one film synthetic paper and two fiber synthetic papers. The investigation of the appearance included densitometric measurement of the cmyk prints. The results have shown differences in the optical density and optical tone value between cmyk prints made on various synthetic papers. The highest optical density and the increase of the optical tone value were observed on the film synthetic paper, where cmyk prints were more saturated. The highest abrasion resistance of cmyk prints was obtained from the fibre synthetic paper.

  11. Removal of cesium radioisotopes from solutions using granulated zeolites

    International Nuclear Information System (INIS)

    Bronic, J.; Subotic, B.

    1991-01-01

    The influence of type of zeolite and the flow rate of solution through the column on the removal efficiency of radioactive cesium ions from solution has been investigated. The analysis of the change in the concentration of cesium ions in the solutions and distribution of cesium ions in the column fillings (granulated zeolites), after passing the solutions through the columns filled with various granulated zeolites (zeolite 4A, zeolite 13X, synthetic mordenite) was performed. On the basis of the results of this study, the conditions for the most efficient removal of cesium ions from solutions have been discussed. (author) 35 refs.; 9 figs.; 1 tab

  12. Synthetic addiction extends the productive life time of engineered Escherichia coli populations

    DEFF Research Database (Denmark)

    Rugbjerg, Peter; Sarup-Lytzen, Kira; Nagy, Mariann

    2018-01-01

    range of genetic variants that disrupt the biosynthetic capacity of the engineered organism. Synthetic product addiction that couples high-yield production of a desired metabolite to expression of nonconditionally essential genes could offer a solution to this problem by selectively favoring cells...... with biosynthetic capacity in the population without constraining the medium. We constructed such synthetic product addiction by controlling the expression of two nonconditionally essential genes with a mevalonic acid biosensor. The product-addicted production organism retained high-yield mevalonic acid production...... through 95 generations of cultivation, corresponding to the number of cell generations required for >200-m3 industrial-scale production, at which time the nonaddicted strain completely abolished production. Using deep DNA sequencing, we find that the product-addicted populations do not accumulate genetic...

  13. Preparation of fluorescent polyaniline nanoparticles in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Kleber G. B. [Universidade Federal de Pernambuco, Departamento de Engenharia Mecanica (Brazil); Melo, Etelino F. de [Universidade Federal de Pernambuco, Departamento de Quimica Fundamental (Brazil); Andrade, Cesar A. S. [Universidade Federal de Pernambuco, Departamento de Bioquimica (Brazil); Melo, Celso P. de, E-mail: celso@df.ufpe.br [Universidade Federal de Pernambuco, Departamento de Fisica (Brazil)

    2013-01-15

    We report the synthesis of stable polyaniline nanoparticles (PANI{sub N}Ps) based on the chemical oxidative polymerization of aniline in aqueous solutions of surfactants. Surfactants of three different types-cationic (dodecyltrimethylammonium bromide-DTAB), anionic (sodium dodecyl sulfate-SDS), and non-ionic (Triton X-405-TX-405)-were used. The resulting PANI{sub N}Ps{sub s}urfactant samples were characterized through UV-Vis, fluorescence and Fourier transform infrared spectroscopies, and scanning electronic microscopy (SEM). We have verified that the color of the PANI{sub N}Ps{sub s}urfactant dispersions is affected by a change in the pH of the solution. The PANI-NPs{sub s}urfactant colloidal suspensions in aqueous solution present a surprising high fluorescence quantum yield value (ranging from 1.9 Multiplication-Sign 10{sup -3} to 6.9 Multiplication-Sign 10{sup -3}) that can be controlled as a function of the pH, a fact that we associate to the corresponding protonation degree of the PANI polymeric chains. We suggest that these fluorescent nanocomposites can find important technological applications in different areas such as organic light emitting devices, biosensors, and pigments for coatings.

  14. Preparation of fluorescent polyaniline nanoparticles in aqueous solutions

    International Nuclear Information System (INIS)

    Alves, Kleber G. B.; Melo, Etelino F. de; Andrade, César A. S.; Melo, Celso P. de

    2013-01-01

    We report the synthesis of stable polyaniline nanoparticles (PANI N Ps) based on the chemical oxidative polymerization of aniline in aqueous solutions of surfactants. Surfactants of three different types—cationic (dodecyltrimethylammonium bromide—DTAB), anionic (sodium dodecyl sulfate—SDS), and non-ionic (Triton X-405–TX-405)—were used. The resulting PANI N Ps s urfactant samples were characterized through UV–Vis, fluorescence and Fourier transform infrared spectroscopies, and scanning electronic microscopy (SEM). We have verified that the color of the PANI N Ps s urfactant dispersions is affected by a change in the pH of the solution. The PANI-NPs s urfactant colloidal suspensions in aqueous solution present a surprising high fluorescence quantum yield value (ranging from 1.9 × 10 −3 to 6.9 × 10 −3 ) that can be controlled as a function of the pH, a fact that we associate to the corresponding protonation degree of the PANI polymeric chains. We suggest that these fluorescent nanocomposites can find important technological applications in different areas such as organic light emitting devices, biosensors, and pigments for coatings.

  15. Evaluation of the effects of aging in synthetic saliva solution of both commercial and silanized Nd–Fe–B magnets for dental application

    Energy Technology Data Exchange (ETDEWEB)

    Fabiano, F., E-mail: ffabiano@unime.it [Department of Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy); Department of Experimental, Specialized Medical-Surgical and Odontostomatological Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina (Italy); Puliafito, V.; Calabrese, L.; Borsellino, C.; Bonaccorsi, L.M.; Giordano, A. [Department of Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy); Fabiano, V. [Department of Human Pathology, University of Messina, Via Consolare Valeria 1, 98125 Messina (Italy); Cordasco, G. [Department of Experimental, Specialized Medical-Surgical and Odontostomatological Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina (Italy)

    2016-04-01

    Neodymium–iron–boron magnets are able to ensure a magnetic flux with high maximum energy product also at miniaturized size. In the past, due to their marked corrosion in saliva they were unsuccessfully implemented in orthodontic systems. Thereby, we propose a multi-layered organic–inorganic coating able to supply anticorrosion resistance, wear resistance and durability to the whole assembly. We evaluated the influence on the magnetic force of commercial nickel plated and silanized Nd–Fe–B during aging time in synthetic Fusayama saliva. Two magnets based-micromagnetic simulations were performed in order to analyze the magnetic field generated which is linked to the magnetic force. Our key results underline that the proposed hybrid coating does not affect the magnetic force of Nd–Fe–B magnets, moreover, preventing corrosion degradation in aggressive solution. Thus the limiting aspects avoiding the use of Nd–Fe–B magnets for orthodontic and prosthodontic applications can be overcome by using silane agents as surface coating.

  16. Preparation and characterization of spironolactone nanoparticles by antisolvent precipitation.

    Science.gov (United States)

    Dong, Yuancai; Ng, Wai Kiong; Shen, Shoucang; Kim, Sanggu; Tan, Reginald B H

    2009-06-22

    Due to low aqueous solubility and slow dissolution rate, spironolactone, a synthetic steroid diuretic, has a low and variable oral bioavailability. Nanoparticles were thus prepared by antisolvent precipitation in this work for accelerating dissolution of this kind of poorly water-soluble drugs. Effects of surfactant type/concentration and feed drug concentration on the precipitated particle size were evaluated. It was found that introduction of spironolactone solution in N-methyl-2-pyrrolidone (NMP) to the antisolvent water can produce the particles in the submicron range with hydroxypropyl methylcellulose (HPMC) as the stabilizer. The particle size decreased with the increase of HPMC concentration from 0 to 0.125% (w/v), further increase of which did not affect the size significantly. Increasing feed drug concentration from 10 to 100 mg/ml resulted in the particle size decrease. In comparison with raw drug, the chemical structure of nanosized spironolactone was not changed but the crystallinity was reduced. Dissolution of spironolactone nanoparticles in 0.1M HCl was 2.59 times faster than raw drugs in 60 min.

  17. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  18. Preparation standardisation and use of plutonium nitrate reference solutions

    International Nuclear Information System (INIS)

    Brown, M.L.; Drummond, J.L.

    1981-07-01

    A procedure is described for the purification of a plutonium nitrate solution in nitric acid for use as a plutonium master standard. Anion exchange chromatography followed by oxalate precipitation is used to purify the plutonium and the residual cationic impurities are analysed by emission spectroscopy. The plutonium content is accurately and precisely measured by two independent methods, namely by gravimetry as PuO 2 at 1250 0 C and by ceric oxidation, ferrous reduction and dichromate titration. Full details of the purification procedure are given, with recommended methods for storing and using the standard solution. It is concluded that such a solution is the most satisfactory reference material, available for plutonium analysis for reprocessing plants, and is adequately related to other, internationally accepted, standard reference materials. (author)

  19. Stability of sodium bicarbonate solutions in polyolefin bags.

    Science.gov (United States)

    Wear, Jennifer; McPherson, Timothy B; Kolling, William M

    2010-06-15

    The stability of sodium bicarbonate solutions in sterile water for injection or 5% dextrose injection stored at 21-24 degrees C or 2-4 degrees C was evaluated. Sodium bicarbonate injection was obtained in 50-mL vials of 8.4% (1 meq/mL). A total of 50, 100, or 150 meq of sodium bicarbonate was added to each 1-L polyolefin bag of either sterile water for injection or 5% dextrose injection. All solutions were prepared in a laminar-airflow hood using aseptic technique. Bags were punctured once to remove headspace air and once for the addition of each 50 meq of sodium bicarbonate. Six replicates of each test solution were prepared. The solutions were stored at 21-24 degrees C and 2-4 degrees C. Control solutions (50 and 150 meq) were similarly prepared in triplicate. Control solutions were sparged with either nitrogen gas or oxygen gas before storage. Sodium bicarbonate stability was assessed by measuring solution pH. Bicarbonate content was measured utilizing titration. Both pH and bicarbonate concentrations were measured immediately upon preparation and on days 3, 5, and 7 for both test and control solutions. All 95% confidence interval values for sample solution pH remained within 7.0-8.5 for seven days at 2-4 degrees C. Sodium bicarbonate solutions of 50, 100, and 150 meq in sterile water for injection or 5% dextrose injection were stable for up to seven days when refrigerated. The 50-meq solution was stable for up to 48 hours when stored at room temperature, and the 100- and 150-meq solutions were stable for up to 30 hours when stored at room temperature.

  20. Effects of Unsaturated Zones on Baseflow Recession: Analytical Solution and Application

    Science.gov (United States)

    Zhan, H.; Liang, X.; Zhang, Y. K.

    2017-12-01

    Unsaturated flow is an important process in baseflow recessions and its effect is rarely investigated. A mathematical model for a coupled unsaturated-saturated flow in a horizontally unconfined aquifer with time-dependent infiltrations is presented. Semi-analytical solutions for hydraulic heads and discharges are derived using Laplace transform and Cosine transform. The solutions are compared with solutions of the linearized Boussinesq equation (LB solution) and the linearized Laplace equation (LL solution), respectively. The result indicates that a larger dimensionless constitutive exponent κD of the unsaturated zone leads to a smaller discharge during the infiltration period and a larger discharge after the infiltration. The lateral discharge of the unsaturated zone is significant when κD≤1, and becomes negligible when κD≥100. For late times, the power index b of the recession curve-dQ/dt aQb, is 1 and independent of κD, where Q is the baseflow and a is a constant lumped aquifer parameter. For early times, b is approximately equal to 3 but it approaches infinity when t→1. The present solution is applied to synthetic and field cases. The present solution matched the synthetic data better than both the LL and LB solutions, with a minimum relative error of 16% for estimate of hydraulic conductivity. The present solution was applied to the observed streamflow discharge in Iowa, and the estimated values of the aquifer parameters were reasonable.

  1. Stability-indicating HPLC method for the determination of the stability of oxytocin parenteral solutions prepared in polyolefin bags.

    Science.gov (United States)

    Kaushal, G; Sayre, B E; Prettyman, T

    2012-02-01

    Oxytocin is very commonly used in clinical settings and is a nonapeptide hormone that stimulates the contraction of uterine smooth muscles. In this study the stability of extemporaneously compounded oxytocin solutions was investigated in polyolefin bags. The sterile preparations of oxytocin were compounded to the strength of 0.02 U/mL in accordance with United States Pharmacopeia (USP) standards. In order to carry out the stability testing of these parenteral products, the solutions were stored under three different temperature conditions of -20°C (frozen), 2-6°C (refrigerated), and 22-25°C (room temperature). Three solutions from each temperature were withdrawn and were assessed for stability on days 0, 7, 15, 21, and 30 as per the USP guidelines. The assay of oxytocin was examined by an HPLC method at each time point. No precipitation, cloudiness or color change was observed during this study at all temperatures. The assay content by HPLC revealed that oxytocin retains greater than at least 90% of the initial concentrations for 21 days. There was no significant change in pH and absorbance values for 21 days under all the conditions of storage. Oxytocin parenteral solutions in the final concentration of 0.02 U/mL and diluted in normal saline are stable for at least 30 days under frozen and refrigerated conditions for 30 days. At the room temperature, the oxytocin solutions were stable for at least 21 days. The stability analysis results show that the shelf-life of 21 days observed in this study was far better than their recommended expiration dates.

  2. Synthetic Aziridines in Medicinal Chemistry: A Mini-Review.

    Science.gov (United States)

    Singh, Girija S

    2016-01-01

    Azaheterocyclic compounds are well-known to have diverse types of biological activity. Among them, azacyclopropanes, commonly referred as aziridines, occupy a prominent place in synthetic organic and medicinal chemistry due to its occurrence in natural resources, complexity involved in synthesis due to ring-strain, building blocks in organic synthesis, and its biological properties. Several novel compounds containing aziridine ring have been designed and synthesized recently by medicinal chemists for evaluating their biological profile. A number of compounds are reported as cysteine protease inhibitors, antibacterial, antifungal, anticancer, antileishmanial, and antimalarial agents. This review article summarizes the biological activity of such compounds. The preparation of such compounds is also described.

  3. Synthetic Cathinones ("Bath Salts")

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  4. Solution Combustion Preparation Of Nano-Al2O3: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    M. Farahmandjou

    2015-06-01

    Full Text Available The aluminum oxide materials are widely used in ceramics, refractories and abrasives due to their hardness, chemical inertness, high melting point, non-volatility and resistance to oxidation and corrosion. The paper describes work done on synthesis of α-alumina by using the simple, non-expensive solution combustion method using glycine as fuel.Aluminum oxide (Al2O3 nanoparticles were synthesized by aluminum nitrate 9-hydrate as precursor and glycine as fuel. The samples were characterized by high resolution transmission electron microscopy (HRTEM, field effect scanning electron microscopy (FESEM, X-ray diffraction (XRD and electron dispersive spectroscopy (EDS. As there are many forms of transition aluminas produced during this process, x-ray diffraction (XRD technique was used to identify α-alumina. The diameter of sphere-like as-prepared nanoparticles was about 10 nm as estimated by XRD technique and direct HRTEM observation. The surface morphological studies from SEM depicted the size of alumina decreases with increasing annealing temperature. Absorbance peak of UV-Vis spectrum showed the small bandgap energy of 2.65 ev and the bandgap energy increased with increasing annealing temperature because of reducing the size.

  5. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications.

    Science.gov (United States)

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed.

  6. Development of a Synthetic Synovial Fluid for Tribological Testing

    Directory of Open Access Journals (Sweden)

    Emely Lea Bortel

    2015-12-01

    Full Text Available Wear tests of joint prostheses are usually performed using bovine calf serum. The results from different laboratories are hardly ever comparable as, for example, the protein concentration and the protein composition of the serum-based test liquids vary. In addition, the viscosity of these test liquids is similar to that of water and does not match the more viscous synovial fluid. The present work was aimed at developing a synthetic synovial fluid as an alternative to the existing test liquids. Improved consistency and reproducibility of results at a similar price were required. Hyaluronic acid (HA, the lyophilized proteins bovine serum albumin (BSA and immunoglobulin G (IgG, the phospholipid lecithin (PL and salts were applied in a stepwise approach to replace the actually used test liquid based on newborn calf serum. The in vitro results obtained with ultra-high-molecular-weight polyethylene (UHMWPE pins sliding against CoCrMo discs revealed that the developed synthetic synovial fluid fulfils the set requirements: increase of viscosity, reasonable cost, improved consistency and wear particles which resemble the ones found in vivo. The developed synthetic synovial fluid with 3 g/L HA, 19 g/L BSA, 11 g/L IgG, 0.1 g/L PL and Ringer solution is a more realistic alternative to the used serum-based test liquid.

  7. Advancing Climate Change Education and Youth Empowerment: Preparing Our Communities with the Skills, Knowledge, and Passion to Push for and Develop Innovative Solutions

    Science.gov (United States)

    Niepold, F., III; Johnston, E.; Rooney-varga, J. N.; Qusba, L.; Staveloz, W.; Poppleton, K.; Cloyd, E. T.; Kretser, J.; Bozuwa, J.; Edkins, M. T.

    2016-12-01

    Today's youth are the first generation to come of age amid rapid climate change, and they have the most at stake in how society responds to it. Climate change will bring economic and environmental challenges as well as opportunities, and citizens who understand the issues at stake will be better prepared to respond. Climate education is a necessary foundation for them to understand and help tackle the complex issue of climate change. Many will become leaders with the skills, knowledge, and passion to push for and develop innovative solutions. As such, this topic requires interdisciplinary and transdisciplinary approaches from a professionally diverse group of experts to effectively build the solid foundation for a low carbon and sustainable economy. Educators from all disciplines need to be enlisted to contribute their talents in building students knowledge and skills to limit human-induced climate change while being prepared for the projected impacts that will continue, and it will accelerate significantly if global emissions of heat-trapping gases continue to increase. This presentation will discuss the new youth and educator engagement partnerships that developed to achieve ways of addressing the problems and opportunities resulting from climate change. We will describe how the partnerships are helping lift up and raise the profile of effective programs that enable transdisciplinary solutions to societal issues. The #Youth4Climate and #Teach4Climate social media campaigns were organized by a flotilla of federal and non-federal partners to inspire young people around the world to take actions on climate change and inspire teachers to prepare students to be part of the solutions to climate change. The largest one, the #Youth4Climate campaign for COP21 youth engagement had over 33 million impressions and opened a discussion for all to join with youth for climate actions at COP21. Each of these three social media campaigns had a simple ask, give young people a voice

  8. Use of synthetic zeolites and other inorganic sorbents for the removal of radionuclides from aqueous wastes

    International Nuclear Information System (INIS)

    Samantha, S.K.; Singh, I.J.; Jain, S.; Sathi, S.; Venkatesan, K.; Ramaswamy, M.; Theyyunni, T.K.; Siddiqui, H.R.

    1997-01-01

    Several synthetic zeolites and inorganic sorbents were tested in the laboratory for the sorption of various radionuclides present in radioactive aqueous waste streams originating from nuclear installations. The sorption of the critical radionuclides like 137 Cs, 90 Sr and 60 Co from level waste solutions was studied using the synthetic zeolites 4A, 13X and AR1 of Indian origin. Granulated forms of ammonium molybdophosphate and CaSO 4 -BaSO 4 eutectoid were tested for the sorption of cesium and strontium respectively, from acidic solutions. The removal of radiostrontium from alkaline salt-loaded intermediate level reprocessing wastes was studied using hydrous ferric oxide-activated carbon composite sorbent, hydrous titania and hydrous manganese dioxide.. The results of these investigations are expected to be of value in formulating radioactive waste treatment schemes for achieving high decontamination and volume reduction factors. (author). 12 refs, 5 figs, 18 tabs

  9. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging.

    Science.gov (United States)

    Gilad, Assaf A; Shapiro, Mikhail G

    2017-06-01

    Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

  10. New designer drugs (synthetic cannabinoids and synthetic cathinones): review of literature.

    Science.gov (United States)

    Cottencin, Olivier; Rolland, Benjamin; Karila, Laurent

    2014-01-01

    New designer drugs (synthetic cannabinoids and synthetic cathinones) are new "legal highs" that are sold online for recreational public or private use. Synthetic cannabinoids are psychoactive herbal and chemical products that mimic the effects of cannabis when used. These drugs are available on the Internet or in head shops as incense or air fresheners to circumvent the law. Cathinone is a naturally occurring beta-ketone amphetamine analog found in the leaves of the Catha edulis plant. Synthetic cathinones are phenylalkylamine derivatives that may possess amphetamine-like properties. These drugs are sold online as bath salts. Designer drugs are often labeled as "not for human consumption" to circumvent drug abuse legislation. The absence of legal risks, the ease of obtaining these drugs, the moderate cost, and the availability via the Internet are the main features that attract users, but the number of intoxicated people presenting with emergencies is increasing. There is evidence that negative health and social consequences may affect recreational and chronic users. The addictive potential of designer drugs is not negligible.

  11. Effect of synthetic vernix biofilms on barrier recovery of damaged mouse skin.

    Science.gov (United States)

    Oudshoorn, Marion H M; Rissmann, Robert; van der Coelen, Dennis; Hennink, Wim E; Ponec, Maria; Bouwstra, Joke A

    2009-08-01

    The aim of this work was to investigate whether topical application of synthetic biofilms supports and accelerates the recovery of the murine skin barrier, disrupted by sequential tape stripping. Therefore, various biofilms were applied topically on disrupted mouse skin to determine which formulation could improve barrier function, as was observed previously for the natural biofilm vernix caseosa (VC). The biofilms [i.e. particles (synthetic corneocytes) embedded in a synthetic lipid matrix] mimic closely the physicochemical properties and structure of VC. Various formulations were prepared using different particle:lipid ratios, particles with different initial water content and uncoated or lipid-coated particles. It was observed that application of all tested formulations improved the skin barrier recovery rate and reduced crust formation and epidermal hyperproliferation. However, only one of the biofilms [i.e. B1; composed of uncoated particles with 50% (w/w) initial water content and particle:lipid ratio of 2:1] mimicked the effects of native VC most closely. This indicates the importance of the presence of individual components, i.e. barrier lipids and water, as well as the ratio of these components. Consequently, these observations suggest the potential use of this biofilm treatment clinically.

  12. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB...

  13. Life after the synthetic cell

    DEFF Research Database (Denmark)

    Rasmussen, Steen

    2010-01-01

    Nature asked eight synthetic-biology experts about the implications for science and society of the “synthetic cell” made by the J. Craig Venter Institute (JCVI). The institute's team assembled, modified and implanted a synthesized genome into a DNA-free bacterial shell to make a self-replicating ......Nature asked eight synthetic-biology experts about the implications for science and society of the “synthetic cell” made by the J. Craig Venter Institute (JCVI). The institute's team assembled, modified and implanted a synthesized genome into a DNA-free bacterial shell to make a self...

  14. The isolation of lutetium from gadolinium contained in Purex process solutions

    International Nuclear Information System (INIS)

    Bostick, D.T.; Vick, D.O.; May, M.P.; Walker, R.L.

    1992-09-01

    A chemical separation procedure has been devised to isolate Lu from Purex dissolver solutions containing the neutron poison, Gd. The isolation procedure involves the removal of U and >Pu from a dissolver solution using tributylphosphate solvent extraction. If required, solvent extraction using di-(2-ethylhexyl) phosphoric acid can be employed to further purify the sample be removing alkali and alkali earth elements. Finally, Lu is chromatographically separated from Gd and rare earth fission products on a Dowex 50W-X8 resin column using an alpha-hydroxyisobutyrate eluant. The success of the chemical separation procedure has been demonstrated in the quantitative recovery of as little as 1.4 ng Lu from solutions containing a 5000-fold excess of Gd. Additionally, Lu has been isolated from synthetic dissolver samples containing U, Ba, Cs, and Gd. Thermal emission MS data indicated that the Lu fraction of the synthetic sample was free of Gd interference

  15. Influence of Monomer Concentration on the Morphologies and Electrochemical Properties of PEDOT, PANI, and PPy Prepared from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Shalini Kulandaivalu

    2016-01-01

    Full Text Available Poly(3,4-ethylenedioxyhiophene (PEDOT, polyaniline (PANI, and polypyrrole (PPy were prepared on indium tin oxide (ITO substrate via potentiostatic from aqueous solutions containing monomer and lithium perchlorate. The concentration of monomers was varied between 1 and 10 mM. The effects of monomer concentration on the polymers formation were investigated and compared by using Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy, scanning electron microscopy (SEM, cyclic voltammetry (CV, and electrochemical impedance spectroscopy (EIS measurements. FTIR and Raman spectra showed no changes in the peaks upon the increment of the concentration. Based on the SEM images, the increment in monomer concentration gives significant effect on morphologies and eventually affects the electrochemical properties. PEDOT electrodeposited from 10 mM solution showed excellent electrochemical properties with the highest specific capacitance value of 12.8 mF/cm2.

  16. Preparation and characterization of PVC /ENR/CNTs Nano composites

    International Nuclear Information System (INIS)

    Ratnam, C.T.; Nur Azrini Ramlee; Keong, C.C.

    2011-01-01

    Poly (vinyl chloride), PVC/ epoxidized natural rubber blend, ENR/ carbon nano tubes, CNTs were prepared by using melt and solution blending methods. Addition of 2 phr of CNTs found to cause a drop in the tensile strength, Ts of the 50/ 50 PVC/ ENR blend. The nano composites prepared by the melt blending method exhibited higher values of Ts compared to the nano composites prepared by solution blending. Melt blending found to be an efficient method to prepare PVC/ ENR/ CNTs nano composites. (author)

  17. Determination and identification of synthetic cannabinoids and their metabolites in different matrices by modern analytical techniques – a review

    International Nuclear Information System (INIS)

    Znaleziona, Joanna; Ginterová, Pavlína; Petr, Jan; Ondra, Peter; Válka, Ivo; Ševčík, Juraj; Chrastina, Jan; Maier, Vítězslav

    2015-01-01

    Highlights: • Synthetic cannabinoids from analytical point of view. • Determination and identification methods of synthetic cannabinoids in different matrices. • Analytical techniques used from thin layer chromatography to high resolution mass spectrometry. • Detailed survey of gas and liquid chromatography methods for synthetic cannabinoids analysis. - Abstract: Synthetic cannabinoids have gained popularity due to their easy accessibility and psychoactive effects. Furthermore, they cannot be detected in urine by routine drug monitoring. The wide range of active ingredients in analyzed matrices hinders the development of a standard analytical method for their determination. Moreover, their possible side effects are not well known which increases the danger. This review is focused on the sample preparation and the determination of synthetic cannabinoids in different matrices (serum, urine, herbal blends, oral fluid, hair) published since 2004. The review includes separation and identification techniques, such as thin layer chromatography, gas and liquid chromatography and capillary electrophoresis, mostly coupled with mass spectrometry. The review also includes results by spectral methods like infrared spectroscopy, nuclear magnetic resonance or direct-injection mass spectrometry

  18. Determination and identification of synthetic cannabinoids and their metabolites in different matrices by modern analytical techniques – a review

    Energy Technology Data Exchange (ETDEWEB)

    Znaleziona, Joanna; Ginterová, Pavlína; Petr, Jan [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146 (Czech Republic); Ondra, Peter; Válka, Ivo [Department of Forensic Medicine and Medical Law Faculty Hospital, Hněvotínská 3, Olomouc CZ-77146 (Czech Republic); Ševčík, Juraj [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146 (Czech Republic); Chrastina, Jan [Institute of Special Education Studies, Faculty of Education, Palacký University, Žižkovo náměsti 5, Olomouc CZ-77146 (Czech Republic); Maier, Vítězslav, E-mail: vitezslav.maier@upol.cz [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146 (Czech Republic)

    2015-05-18

    Highlights: • Synthetic cannabinoids from analytical point of view. • Determination and identification methods of synthetic cannabinoids in different matrices. • Analytical techniques used from thin layer chromatography to high resolution mass spectrometry. • Detailed survey of gas and liquid chromatography methods for synthetic cannabinoids analysis. - Abstract: Synthetic cannabinoids have gained popularity due to their easy accessibility and psychoactive effects. Furthermore, they cannot be detected in urine by routine drug monitoring. The wide range of active ingredients in analyzed matrices hinders the development of a standard analytical method for their determination. Moreover, their possible side effects are not well known which increases the danger. This review is focused on the sample preparation and the determination of synthetic cannabinoids in different matrices (serum, urine, herbal blends, oral fluid, hair) published since 2004. The review includes separation and identification techniques, such as thin layer chromatography, gas and liquid chromatography and capillary electrophoresis, mostly coupled with mass spectrometry. The review also includes results by spectral methods like infrared spectroscopy, nuclear magnetic resonance or direct-injection mass spectrometry.

  19. Diffusion-synthetic acceleration methods for the discrete-ordinates equations

    International Nuclear Information System (INIS)

    Larsen, E.W.

    1983-01-01

    The diffusion-synthetic acceleration (DSA) method is an iterative procedure for obtaining numerical solutions of discrete-ordinates problems. The DSA method is operationally more complicated than the standard source-iteration (SI) method, but if encoded properly it converges much more rapidly, especially for problems with diffusion-like regions. In this article we describe the basic ideas beind the DSA method and give a (roughly chronological) review of its long development. We conclude with a discussion which covers additional topics, including some remaining open problems and the status of current efforts aimed at solving these problems

  20. Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo.

    Science.gov (United States)

    Sharma, Sunil V; Tong, Xiaoxue; Pubill-Ulldemolins, Cristina; Cartmell, Christopher; Bogosyan, Emma J A; Rackham, Emma J; Marelli, Enrico; Hamed, Refaat B; Goss, Rebecca J M

    2017-08-09

    Marrying synthetic biology with synthetic chemistry provides a powerful approach toward natural product diversification, combining the best of both worlds: expediency and synthetic capability of biogenic pathways and chemical diversity enabled by organic synthesis. Biosynthetic pathway engineering can be employed to insert a chemically orthogonal tag into a complex natural scaffold affording the possibility of site-selective modification without employing protecting group strategies. Here we show that, by installing a sufficiently reactive handle (e.g., a C-Br bond) and developing compatible mild aqueous chemistries, synchronous biosynthesis of the tagged metabolite and its subsequent chemical modification in living culture can be achieved. This approach can potentially enable many new applications: for example, assay of directed evolution of enzymes catalyzing halo-metabolite biosynthesis in living cells or generating and following the fate of tagged metabolites and biomolecules in living systems. We report synthetic biological access to new-to-nature bromo-metabolites and the concomitant biorthogonal cross-coupling of halo-metabolites in living cultures.Coupling synthetic biology and chemical reactions in cells is a challenging task. The authors engineer bacteria capable of generating bromo-metabolites, develop a mild Suzuki-Miyaura cross-coupling reaction compatible with cell growth and carry out the cross-coupling chemistry in live cell cultures.

  1. Synthetic anabolic agents: steroids and nonsteroidal selective androgen receptor modulators.

    Science.gov (United States)

    Thevis, Mario; Schänzer, Wilhelm

    2010-01-01

    The central role of testosterone in the development of male characteristics, as well as its beneficial effects on physical performance and muscle growth, has led to the search for synthetic alternatives with improved pharmacological profiles. Hundreds of steroidal analogs have been prepared with a superior oral bioavailability, which should also possess reduced undesirable effects. However, only a few entered the pharmaceutical market due to severe toxicological incidences that were mainly attributed to the lack of tissue selectivity. Prominent representatives of anabolic-androgenic steroids (AAS) are for instance methyltestosterone, metandienone and stanozolol, which are discussed as model compounds with regard to general pharmacological aspects of synthetic AAS. Recently, nonsteroidal alternatives to AAS have been developed that selectively activate the androgen receptor in either muscle tissue or bones. These so-called selective androgen receptor modulators (SARMs) are currently undergoing late clinical trials (IIb) and will be prohibited by the World Anti-Doping Agency from January 2008. Their entirely synthetic structures are barely related to steroids, but particular functional groups allow for the tissue-selective activation or inhibition of androgen receptors and, thus, the stimulation of muscle growth without the risk of severe undesirable effects commonly observed in steroid replacement therapies. Hence, these compounds possess a high potential for misuse in sports and will be the subject of future doping control assays.

  2. Preparation of a generator of technetium-99m

    International Nuclear Information System (INIS)

    Jimeno de Osso, F.

    1981-01-01

    Practical description is given of equipment and operations necessary in the preparation of an isotopic generator of technetium-99m. The preparation and application of the active solution and throughly washed of the chromatographic column have been studied in order to allow molibdenum-99 to be adsorbed on a small band, and the solution of tectium-99m to be eluted with high efficiency and purity. The equipment and accesories used are easy and safety to manage, simplifying operations to be carried out with the active product, eliminating the sterile environment in the shielded cell, and facilitating the preparation of the solution of technetium-99m in sterile and pyrogen-free conditions.(author) [es

  3. Preparation of pyrrolizinone derivatives via sequential transformations of cyclic allyl imides: synthesis of quinolactacide and marinamide.

    Science.gov (United States)

    Simic, Milena; Tasic, Gordana; Jovanovic, Predrag; Petkovic, Milos; Savic, Vladimir

    2018-03-28

    A facile synthetic route has been developed for the preparation of pyrrolizinone derivatives employing N-allyl imides as starting materials. The nucleophilic addition of a vinyl Grignard reagent/RCM/elimination sequence afforded pyrrolizinones in good yields and has been applied for the preparation of naturally occurring quinolactacide and marinamide.

  4. Innovative Fly Ash Geopolymer-Epoxy Composites: Preparation, Microstructure and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Giuseppina Roviello

    2016-06-01

    Full Text Available The preparation and characterization of composite materials based on geopolymers obtained from fly ash and epoxy resins are reported for the first time. These materials have been prepared through a synthetic method based on the concurrent reticulation of the organic and inorganic components that allows the formation of hydrogen bonding between the phases, ensuring a very high compatibility between them. These new composites show significantly improved mechanical properties if compared to neat geopolymers with the same composition and comparable performances in respect to analogous geopolymer-based composites obtained starting from more expensive raw material such as metakaolin. The positive combination of an easy synthetic approach with the use of industrial by-products has allowed producing novel low cost aluminosilicate binders that, thanks to their thixotropicity and good adhesion against materials commonly used in building constructions, could be used within the field of sustainable building.

  5. Synthetic samples as imitators of elements composition for calibration in nuclear-physical methods of analysis

    International Nuclear Information System (INIS)

    Lakhov, V.M.; Gerling, V.Eh.; Il'ina, L.K.; Trojnina, G.G.; Galisheva, Eh.P.

    1987-01-01

    The papers on the problems of developing and application of synthetic standard samples (SS), imitating the substance and material (rocks, ores) element composition aimed at calibration, testing and certification of the equipment as well as check on the results of neutron-activation, X-ray spectral, X-ray radiometric, X-ray fluorescence and other nuclear-physical methods of analysis, are reviewed. It is shown that choice of SS preparation method is defined by peculiarities of analysis method for which calibration SS is designed. Experience in application of SS imitators of element composition in interlaboratory comparisons testifies to potential application of synthetic SS for calibration in different methods of analysis including, nuclear-physical ones

  6. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  7. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  8. Decontamination of waste radioactive polluted solutions in radiation treatment

    International Nuclear Information System (INIS)

    Simova, G.; Boyadzhiev, A.; Mikhajlov, M.G.; Shopov, N.

    1979-01-01

    The decontamination capacity of solutions of the trivial cleaning Bulgarian preparations ''Mipro'', ''Sana'', ''Synthek'' and ''Univer'' for different surfaces (steel, glass, PVC and linoleum) contaminated with cesium-134, strontium-85 or cerium-144 chlorides, was studied. Concentrations from 5 to 15 g/l of the solutions used in this study displayed a degree of cleaning over 90%. Higher concentration of the solution does not improve its cleaning capacity. For evaluation of foam formation by the solutions, the so called ''foam column stability coefficient'' has been adopted. This coefficient represents the ratio between the height of the foam column and the time of its half life, referred to the time for the foam column formation when blown through with a constant air current. On the basis of this index, solutions of the preparation ''Mipro'' proved to be the best ones for decontamination - in the whole investigated concentration span, the foam column stability coefficient for the solutions of this preparation is with two orders lower than the respective coefficient of the other preparations. It was experimentally established that radiation treatment of radio-contaminated solutions reduces the foam column stability coefficient. Radiation treatment should be carried out in a gamma field, realizing at least one megarad within an acceptable for the liquid wastes time period. (A.B.)

  9. Preparation and application of attapulgite/iron oxide magnetic composites for the removal of U(VI) from aqueous solution

    International Nuclear Information System (INIS)

    Fan, Qiao-hui; Li, Ping; Chen, Yun-fei; Wu, Wang-suo

    2011-01-01

    Highlights: → We first synthesized ATP/IOM composites as an adsorbents for removal U(VI) from aqueous solution. → The sorption ability of ATP/IOM composites were obviously superior to ATP and iron oxides. → The prevalent species of U(VI) on ATP/IOM composites were =S s OUO 2 + and =S w OUO 2 (CO 3 ) 2 3- . → ATP/IOM composites could be a promising candidate for pre-concentration and immobilization of radionuclides from large volumes of aqueous solutions. - Abstract: Recently, magnetic sorbents have received considerable attention because of their excellent segregative features and sorption capacities. Herein, attapulgite/iron oxide magnetic (ATP/IOM) composites were prepared and characterized. The sorption results indicated that ATP/IOM composites were superior to ATP and iron oxides individually for the removal of U(VI) from aqueous solution. Based on X-ray photoelectron spectroscopy (XPS) analysis and surface complexation model, the main sorption species of U(VI) on ATP were =X 2 UO 2 0 below pH 4.0 and =S s OUO 2 + , =S w OUO 2 CO 3 - , and =S w OUO 2 (CO 3 ) 2 3- above pH 5.0. However the prevalent species on ATP/IOM composites were =S s OUO 2 + and =S w OUO 2 (CO 3 ) 2 3- over the observed pH range. ATP/IOM composites are a promising candidate for pre-concentration and immobilization of radionuclides from large volumes of aqueous solutions, as required for remediation purposes.

  10. Synthetic Defects for Vibrothermography

    Science.gov (United States)

    Renshaw, Jeremy; Holland, Stephen D.; Thompson, R. Bruce; Eisenmann, David J.

    2010-02-01

    Synthetic defects are an important tool used for characterizing the performance of nondestructive evaluation techniques. Viscous material-filled synthetic defects were developed for use in vibrothermography (also known as sonic IR) as a tool to improve inspection accuracy and reliability. This paper describes how the heat-generation response of these VMF synthetic defects is similar to the response of real defects. It also shows how VMF defects can be applied to improve inspection accuracy for complex industrial parts and presents a study of their application in an aircraft engine stator vane.

  11. Transmission electron microscopy of polyhydroxybutyrate-co-valerate (PHBV)/nanocrystalline cellulose (NCC) bio-nanocomposite prepared using cryo-ultramicrotomy

    Science.gov (United States)

    Ismarul, N. I.; Engku, A. H. E. U.; Siti, N. K.; Tay, K. Y.

    2017-12-01

    Environmental issues on disposal and end-of-life for product made from synthetic petroleum-derived polymers have gained increasing attention from materials scientist to search for new materials with similar physical and mechanical properties but environmental friendly in a way that they are renewable and biodegradable as well. This work is to study the effect of nanocrystalline cellulose in improving the thermal stability of polyhydroxybutyrate-co-valerate biopolymer for high temperature processing of packaging material. 10 % w/w PHBV-NCC bio-nanocomposite feedstock pellet prepared using RONDOL minilab compounder was used as the sample for the preparation of Transmission Electron Microscopy (TEM) sample. RMC Cryo-Ultramicrotomy equipment was used to prepare the ultra-thin slice of the bio-nanocomposite pellet under liquid nitrogen at - 60 °C. Diamond knife was used to slice off about 80-100 nm ultra-thin bio-nanocomposite films and was transferred into the lacey carbon film coated grid using cooled sugar solution. A few drops of phosphotungstic acid was used as negative stain to improve the contrast during the TEM analysis. HITACHI TEM systems was used to obtain the TEM micrograph of PHBV-NCC bio-nanocomposite using 80kV accelerating voltage. A well dispersed NCC in PHBV matrix, ranging from 5 to 25 nm in width was observed.

  12. Chemical stability of oseltamivir in oral solutions.

    Science.gov (United States)

    Albert, K; Bockshorn, J

    2007-09-01

    The stability of oseltamivir in oral aqueous solutions containing the preservative sodium benzoate was studied by a stability indicating HPLC-method. The separation was achieved on a RP-18 ec column using a gradient of mobile phase A (aqueous solution of 50 mM ammonium acetate) and mobile phase B (60% (v/v) acetonitrile/40% (v/v) mobile phase A). The assay was subsequently validated according to the ICH guideline Q2(R1). The extemporaneously prepared "Oseltamivir Oral Solution 15 mg/ml for Adults or for Children" (NRF 31.2.) according to the German National Formulary ("Neues Rezeptur-Formularium") was stable for 84 days if stored under refrigeration. After storage at 25 degrees C the content of oseltamivir decreased to 98.4%. Considering the toxicological limit of 0.5% of the 5-acetylamino derivative (the so-called isomer I) the solution is stable for 46 days. Oseltamivir was less stable in a solution prepared with potable water instead of purified water. Due to an increasing pH the stability of this solution decreased to 14 days. Furthermore a white precipitate of mainly calcium phosphate was observed. The addition of 0.1% anhydrous citric acid avoided these problems and improved the stability of the solution prepared with potable water to 63 days. Sodium benzoate was stable in all oral solutions tested.

  13. Synthetic biology: Emerging bioengineering in Indonesia

    Science.gov (United States)

    Suhandono, Sony

    2017-05-01

    The development of synthetic biology will shape the new era of science and technology. It is an emerging bioengineering technique involving genetic engineering which can alter the phenotype and behavior of the cell or the new product. Synthetic biology may produce biomaterials, drugs, vaccines, biosensors, and even a recombinant secondary metabolite used in herbal and complementary medicine, such as artemisinin, a malaria drug which is usually extracted from the plant Artemisia annua. The power of synthetic biology has encouraged scientists in Indonesia, and is still in early development. This paper also covers some research from an Indonesian research institute in synthetic biology such as observing the production of bio surfactants and the enhanced production of artemisinin using a transient expression system. Synthetic biology development in Indonesia may also be related to the iGEM competition, a large synthetic biology research competition which was attended by several universities in Indonesia. The application of synthetic biology for drug discovery will be discussed.

  14. Electrical conduction of polyimide films prepared from polyamic acid (PAA and pre-imidized polyimide (PI solution

    Directory of Open Access Journals (Sweden)

    2007-07-01

    Full Text Available Electrical conduction characteristics in two different polyimide films prepared by the imidization of polyamic acid (PAA and pre-imidized polyimide (PI solution were investigated. It is found that the current density of the polyimide film from PAA was higher than that of the polyimide film from PI at the same electric field, even though the conduction mechanism in both polyimide films follows the ionic hopping model. The hopping distance was calculated to be 2.8 nm for PAA type and 3.2 nm for PI type polyimide film. It is also found that the decay rate of the residual electrostatic charges on the polyimide films becomes faster in the PAA type than in the PI type polyimide film.

  15. Preparation of fullerene/glass composites

    Science.gov (United States)

    Mattes, Benjamin R.; McBranch, Duncan W.; Robinson, Jeanne M.; Koskelo, Aaron C.; Love, Steven P.

    1995-01-01

    Synthesis of fullerene/glass composites. A direct method for preparing solid solutions of C.sub.60 in silicon dioxide (SiO.sub.2) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these "guests" in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C.sub.60. Depending upon the preparative procedure, C.sub.60 dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C.sub.60 in a solid glass matrix, is generated by the present method.

  16. PVC-based synthetic leather to provide more comfortable and sustainable vehicles

    Science.gov (United States)

    Maia, I.; Santos, J.; Abreu, MJ; Miranda, T.; Carneiro, N.; Soares, GMB

    2017-10-01

    Consumers are increasingly demanding the interior of cars to be comfortable even in the case of more economic commercial segments. Thus, the development of materials with thermoregulation properties has assumed renewed interest for these particular applications. An attempt has been made to prepare a multilayer PVC-based synthetic leather with paraffinic PCMs to be applied on a car seat. The thermal behaviour of the material was analysed using Alambeta apparatus, a thermo-camera and a thermal manikin. The results obtained show that the synthetic leather with incorporated PCMs gives cooler feeling and has higher reaction times regarding environmental temperature variations than the material without PCMs incorporation. Globally, the new designed material allowed greater thermal comfort to the cars´ inhabitants. In addition, the material quality was evaluated according to the standard of the customer, BMW 9,210,275; Edition / Version 4, 2010-10-01 revealing that the material meets all the requirements under test, except for the performance in terms of flexibility.

  17. Sintering study in vertical fixed bed reactor for synthetic aggregate production

    International Nuclear Information System (INIS)

    Quaresma, D.S.; Neves, A.S.S.; Melo, A.O.; Pereira, L.F.S.; Bezerra, P.T.S.; Macedo, E.N.; Souza, J.A.S.

    2017-01-01

    The synthetic aggregates are being employed in civil construction for the reduction of mineral extraction activities. Within this context, the recycling of industrial waste is the basis of the majority of processes to reduce the exploitation of mineral resources. In this work the sintering in a vertical fixed bed reactor for synthetic aggregate production using 20% pellets and 80% charcoal was studied. The pellets were prepared from a mixture containing clay, charcoal and fly ash. Two experiments varying the speed of air sucking were carried out. The material produced was analyzed by X-ray diffraction, scanning electron microscopy, measures of their ceramic properties, and particle size analysis. The results showed that the solid-state reactions, during the sintering process, were efficient and the produced material was classified as coarse lightweight aggregate. The process is interesting for the sintering of aggregates, and can be controlled by composition, particle size, temperature gradient and gaseous flow. (author)

  18. The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology.

    Science.gov (United States)

    Galdzicki, Michal; Clancy, Kevin P; Oberortner, Ernst; Pocock, Matthew; Quinn, Jacqueline Y; Rodriguez, Cesar A; Roehner, Nicholas; Wilson, Mandy L; Adam, Laura; Anderson, J Christopher; Bartley, Bryan A; Beal, Jacob; Chandran, Deepak; Chen, Joanna; Densmore, Douglas; Endy, Drew; Grünberg, Raik; Hallinan, Jennifer; Hillson, Nathan J; Johnson, Jeffrey D; Kuchinsky, Allan; Lux, Matthew; Misirli, Goksel; Peccoud, Jean; Plahar, Hector A; Sirin, Evren; Stan, Guy-Bart; Villalobos, Alan; Wipat, Anil; Gennari, John H; Myers, Chris J; Sauro, Herbert M

    2014-06-01

    The re-use of previously validated designs is critical to the evolution of synthetic biology from a research discipline to an engineering practice. Here we describe the Synthetic Biology Open Language (SBOL), a proposed data standard for exchanging designs within the synthetic biology community. SBOL represents synthetic biology designs in a community-driven, formalized format for exchange between software tools, research groups and commercial service providers. The SBOL Developers Group has implemented SBOL as an XML/RDF serialization and provides software libraries and specification documentation to help developers implement SBOL in their own software. We describe early successes, including a demonstration of the utility of SBOL for information exchange between several different software tools and repositories from both academic and industrial partners. As a community-driven standard, SBOL will be updated as synthetic biology evolves to provide specific capabilities for different aspects of the synthetic biology workflow.

  19. Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: Equilibrium, kinetics and thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Murat; Apaydin-Varol, Esin [Department of Chemical Engineering, Anadolu University, Eskisehir 26470 (Turkey); Puetuen, Ayse E., E-mail: aeputun@anadolu.edu.tr [Department of Chemical Engineering, Anadolu University, Eskisehir 26470 (Turkey)

    2011-05-15

    This study consists of producing high surface area activated carbon from tobacco residues by chemical activation and its behavior of phenol removal from aqueous solutions. K{sub 2}CO{sub 3} and KOH were used as chemical activation agents and three impregnation ratios (50, 75 and 100 wt.%) were applied on biomass. Maximum BET surface areas of activated carbons were obtained from impregnation with 75 wt.% of K{sub 2}CO{sub 3} and 75 wt.% of KOH as 1635 and 1474 m{sup 2}/g, respectively. Optimum adsorption conditions were determined as a function of pH, adsorbent dosage, initial phenol concentration, contact time and temperature of solution for phenol removal. To describe the equilibrium isotherms the experimental data were analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherm models. Pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models were used to find out the kinetic parameters and mechanism of adsorption process. The thermodynamic parameters such as {Delta}G{sup o}, {Delta}H{sup o} and {Delta}S{sup o} were calculated for predicting the nature of adsorption. According to the experimental results, activated carbon prepared from tobacco residue seems to be an effective, low-cost and alternative adsorbent precursor for the removal of phenol from aqueous solutions.

  20. A Simple Preparation Method for Diphosphoimidazole

    DEFF Research Database (Denmark)

    Rosenberg, T.

    1964-01-01

    A simple method for the preparation of diphosphoimidazole is presented that involves direct phosphorylation of imidazole by phosphorus oxychloride in alkaline aqueous solution. Details are given on the use of diphosphoimidazole in preparing sodium phosphoramidate and certain phosphorylated amino...

  1. A Canadian refiner's perspective of synthetic crudes

    International Nuclear Information System (INIS)

    Halford, T.L.; McIntosh, A.P.; Rasmussen

    1997-01-01

    Some of the factors affecting a refiner's choice of crude oil include refinery hardware, particularly gas oil crackers, products slate and product specifications, crude availability, relative crude price and crude quality. An overview of synthetic crude, the use of synthetic crude combined with other crudes and a comparison of synthetic crude with conventional crude oil was given. The two main users of synthetic crude are basically two groups of refiners, those large groups who use synthetic crude combined with other crudes, and a smaller group who run synthetic crude on specially designed units as a sole feed. The effects of changes in fuel legislation were reviewed. It was predicted that the changes will have a mixed impact on the value of synthetic crude, but low sulphur diesel regulations and gasoline sulphur regulations will make current synthetic crudes attractive. The big future change with a negative impact will be diesel cetane increases to reduce engine emissions. This will reduce synthetic crude attractiveness due to distillate yields and quality and high gas oil yields. Similarly, any legislation limiting aromatics in diesel fuel will also make synthetic crudes less attractive. Problems experienced by refiners with hardware dedicated to synthetic crude (salt, naphthenic acid, fouling, quality variations) were also reviewed. 3 tabs

  2. Synthetic nat- or ent-steroids in as few as five chemical steps from epichlorohydrin

    Science.gov (United States)

    Kim, Wan Shin; Du, Kang; Eastman, Alan; Hughes, Russell P.; Micalizio, Glenn C.

    2018-01-01

    Today, more than 100 Food and Drug Administration-approved steroidal agents are prescribed daily for indications including heart failure, inflammation, pain and cancer. While triumphs in organic chemistry have enabled the establishment and sustained growth of the steroid pharmaceutical industry, the production of highly functionalized synthetic steroids of varying substitution and stereochemistry remains challenging, despite the numerous reports of elegant strategies for their de novo synthesis. Here, we describe an advance in chemical synthesis that has established an enantiospecific means to access novel steroids with unprecedented facility and flexibility through the sequential use of two powerful ring-forming reactions: a modern metallacycle-mediated annulative cross-coupling and a new acid-catalysed vinylcyclopropane rearrangement cascade. In addition to accessing synthetic steroids of either enantiomeric series, these steroidal products have been selectively functionalized within each of the four carbocyclic rings, a synthetic ent-steroid has been prepared on a multigram scale, the enantiomer of a selective oestrogen has been synthesized, and a novel ent-steroid with growth inhibitory properties in three cancer cell lines has been discovered.

  3. Membrane properties for permeability testing: Skin versus synthetic membranes.

    Science.gov (United States)

    Haq, Anika; Dorrani, Mania; Goodyear, Benjamin; Joshi, Vivek; Michniak-Kohn, Bozena

    2018-03-25

    Synthetic membranes that are utilized in diffusion studies for topical and transdermal formulations are usually porous thin polymeric sheets for example cellulose acetate (CA) and polysulfones. In this study, the permeability of human skin was compared using two synthetic membranes: cellulose acetate and Strat-M® membrane and lipophilic and hydrophilic compounds either as saturated or formulated solutions as well as marketed dosage forms. Our data suggests that hydrophilic compounds have higher permeation in Strat-M membranes compared with lipophilic ones. High variation in permeability values, a typical property of biological membranes, was not observed with Strat-M. In addition, the permeability of Strat-M was closer to that of human skin than that of cellulose acetate (CA > Strat-M > Human skin). Our results suggest that Strat-M with little or no lot to lot variability can be applied in pilot studies of diffusion tests instead of human skin and is a better substitute than a cellulose acetate. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The Role of Synthetic Reconstruction Tests in Seismic Tomography

    Science.gov (United States)

    Rawlinson, N.; Spakman, W.

    2015-12-01

    Synthetic reconstruction tests are widely used in seismic tomography as a means for assessing the robustness of solutions produced by linear or iterative non-linear inversion schemes. The most common test is the so-called checkerboard resolution test, which uses an alternating pattern of high and low wavespeeds (or some other seismic property such as attenuation). However, checkerboard tests have a number of limitations, including that they (1) only provide indirect evidence of quantitative measures of reliability such as resolution and uncertainty; (2) give a potentially misleading impression of the range of scale-lengths that can be resolved; (3) don't give a true picture of the structural distortion or smearing caused by the data coverage; and (4) result in an inverse problem that is biased towards an accurate reconstruction. The widespread use of synthetic reconstruction tests in seismic tomography is likely to continue for some time yet, so it is important to implement best practice where possible. The goal here is to provide a general set of guidelines, derived from the underlying theory and illustrated by a series of numerical experiments, on their implementation in seismic tomography. In particular, we recommend (1) using a sparse distribution of spikes, rather than the more conventional tightly-spaced checkerboard; (2) using the identical data coverage (e.g. geometric rays) for the synthetic model that was computed for the observation-based model; (3) carrying out multiple tests using anomalies of different scale length; (4) exercising caution when analysing synthetic recovery tests that use anomaly patterns that closely mimic the observation-based model; (5) investigating the trade-off between data noise levels and the minimum wavelength of recovered structure; (6) where possible, test the extent to which preconditioning (e.g. identical parameterization for input and output models) influences the recovery of anomalies.

  5. Geo synthetic-reinforced Pavement systems

    International Nuclear Information System (INIS)

    Zornberg, J. G.

    2014-01-01

    Geo synthetics have been used as reinforcement inclusions to improve pavement performance. while there are clear field evidence of the benefit of using geo synthetic reinforcements, the specific conditions or mechanisms that govern the reinforcement of pavements are, at best, unclear and have remained largely unmeasured. Significant research has been recently conducted with the objectives of: (i) determining the relevant properties of geo synthetics that contribute to the enhanced performance of pavement systems, (ii) developing appropriate analytical, laboratory and field methods capable of quantifying the pavement performance, and (iii) enabling the prediction of pavement performance as a function of the properties of the various types of geo synthetics. (Author)

  6. facile, mild and convenient preparation and characterization of some

    African Journals Online (AJOL)

    B. S. Chandravanshi

    salicylaldehyde with synthetic diamines in methanol solution under mild conditions. ... (11 g, 0.19 mol) potassium hydroxide in 30 mL of water and 10 mL hydrazine ... A mixture of glacial acetic acid (100 mL), 5.8 g of p-amino acetanilide, 8 g of ...

  7. Adsorption of cadmium from aqueous solutions on sulfurized activated carbon prepared from nut shells

    International Nuclear Information System (INIS)

    Fouladi Tajar, Amir; Kaghazchi, Tahereh; Soleimani, Mansooreh

    2009-01-01

    Low-cost activated carbon, derived from nut shells, and its modified sample have been used as replacements for the current expensive methods of removing cadmium from aqueous solutions and waste waters. Adsorption of cadmium onto four kinds of activated carbons has been studied; prepared activated carbon (PAC), commercial activated carbon (CAC), and the sulfurized ones (SPAC and SCAC). The activated carbon has been derived, characterized, treated with sulfur and then utilized for the removal of Cd 2+ . Sulfurizing agent (SO 2 gas) was successfully used in adsorbents' modification process at the ambient temperature. Samples were then characterized and tested as adsorbents of cadmium. Effect of some parameters such as contact time, initial concentration and pH were examined. With increasing pH, the adsorption of cadmium ions was increased and maximum removal, 92.4% for SPAC, was observed in pH > 8.0 (C 0 = 100 mg/L). The H-type adsorption isotherms, obtained for the adsorbents, indicated a favorable process. Adsorption data on both prepared and commercial activated carbon, before and after sulfurization, followed both the Frendlich and Langmuir models. They were better fitted by Frendlich isotherm as compared to Langmuir. The maximum adsorption capacities were 90.09, 104.17, 126.58 and 142.86 mg/g for CAC, PAC, SCAC and SPAC, respectively. Accordingly, surface modification of activated carbons using SO 2 greatly enhanced cadmium removal. The reversibility of the process has been studied in a qualitative manner and it shows that the spent SPAC can be effectively regenerated for further use easily.

  8. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    Science.gov (United States)

    Barleany, Dhena Ria; Ulfiyani, Fida; Istiqomah, Shafina; Heriyanto, Heri; Rahmayetty, Erizal

    2015-12-01

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w-1 acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g-1 of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g-1 and 523 g g-1 for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM).

  9. Preparation of carbon microspheres decorated with silver nanoparticles and their ability to remove dyes from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qingchun [Department of Chemistry, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092 (China); Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Wu, Qingsheng, E-mail: qswu@tongji.edu.cn [Department of Chemistry, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092 (China); Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2015-02-11

    Highlights: • Carbon microspheres decorated with silver nanoparticles (AgNP-CMSs) were prepared. • AgNP-CMSs show not only rapid and high adsorption capacity to methylene blue (MB) in water, but also excellent reusability. • It exhibits photocatalytic activity to Rhodamine B as well as MB under visible light. • The adsorption is from the ionic interactions but not the π–π conjugations. • The origin of photocatalysis is a surface plasmon resonance effect of AgNP on CMSs. - Abstract: Solid, but not hollow or porous, carbon microspheres decorated with silver nanoparticles (AgNP-CMSs) were prepared from silver nitrate and CMSs by a redox reaction at room temperature. The CMSs and AgNP-CMSs were characterized using X-ray diffraction, scanning electron microscopy, field emission scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and UV–vis spectrophotometry. Though with non-high specific surface area, the AgNP-CMSs exhibited a high adsorption capacity toward methylene blue (MB) in an aqueous solution. The AgNP-CMSs were able to remove all the MB from a solution of 30 mg/L MB in water within 1 min when the adsorbent concentration was 0.12 g/L. The AgNP-CMSs also exhibited good adsorption and photocatalytic activity in the decomposition of aqueous Rhodamine B as well as MB under visible light. FTIR was used to examine the interaction between AgNP-CMSs and MB, and the spectrum and more extra experiments suggest ionic interactions between cationic dyes and the negatively charged groups can be formed but not the presence of abundant π–π conjugations between dye molecules and the aromatic rings. The origin of the photocatalytic activity of AgNP-CMSs was attributed to a surface plasmon resonance (SPR) effect of the silver nanoparticles on the CMSs.

  10. Smart-DS: Synthetic Models for Advanced, Realistic Testing: Distribution Systems and Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Venkat K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Palmintier, Bryan S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hale, Elaine T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elgindy, Tarek [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bugbee, Bruce [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rossol, Michael N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lopez, Anthony J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnamurthy, Dheepak [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vergara, Claudio [MIT; Domingo, Carlos Mateo [IIT Comillas; Postigo, Fernando [IIT Comillas; de Cuadra, Fernando [IIT Comillas; Gomez, Tomas [IIT Comillas; Duenas, Pablo [MIT; Luke, Max [MIT; Li, Vivian [MIT; Vinoth, Mohan [GE Grid Solutions; Kadankodu, Sree [GE Grid Solutions

    2017-08-09

    The National Renewable Energy Laboratory (NREL) in collaboration with Massachusetts Institute of Technology (MIT), Universidad Pontificia Comillas (Comillas-IIT, Spain) and GE Grid Solutions, is working on an ARPA-E GRID DATA project, titled Smart-DS, to create: 1) High-quality, realistic, synthetic distribution network models, and 2) Advanced tools for automated scenario generation based on high-resolution weather data and generation growth projections. Through these advancements, the Smart-DS project is envisioned to accelerate the development, testing, and adoption of advanced algorithms, approaches, and technologies for sustainable and resilient electric power systems, especially in the realm of U.S. distribution systems. This talk will present the goals and overall approach of the Smart-DS project, including the process of creating the synthetic distribution datasets using reference network model (RNM) and the comprehensive validation process to ensure network realism, feasibility, and applicability to advanced use cases. The talk will provide demonstrations of early versions of synthetic models, along with the lessons learnt from expert engagements to enhance future iterations. Finally, the scenario generation framework, its development plans, and co-ordination with GRID DATA repository teams to house these datasets for public access will also be discussed.

  11. Generation of synthetic time histories compatible with multiple-damping design response spectra

    International Nuclear Information System (INIS)

    Lilhanand, K.; Tseng, W.S.

    1987-01-01

    Seismic design of nuclear power plants as currently practiced requires time history analyses be performed to generate floor response spectra for seismic qualification of piping, equipment, and components. Since design response spectra are normally prescribed in the form of smooth spectra, the generation of synthetic time histories whose response spectra closely match the ''target'' design spectra of multiple damping values, is often required for the seismic time history analysis purpose. Various methods of generation of synthetic time histories compatible with target response spectra have been proposed in the literature. Since the mathematical problem of determining a time history from a given set of response spectral values is not unique, an exact solution is not possible, and all the proposed methods resort to some forms of approximate solutions. In this paper, a new iteration scheme, is described which effectively removes the difficulties encountered by the existing methods. This new iteration scheme can not only improve the accuracy of spectrum matching for a single-damping target spectrum, but also automate the spectrum matching for multiple-damping target spectra. The applicability and limitations as well as the method adopted to improve the numerical stability of this new iteration scheme are presented. The effectiveness of this new iteration scheme is illustrated by two example applications

  12. Models for synthetic biology.

    Science.gov (United States)

    Kaznessis, Yiannis N

    2007-11-06

    Synthetic biological engineering is emerging from biology as a distinct discipline based on quantification. The technologies propelling synthetic biology are not new, nor is the concept of designing novel biological molecules. What is new is the emphasis on system behavior. The objective is the design and construction of new biological devices and systems to deliver useful applications. Numerous synthetic gene circuits have been created in the past decade, including bistable switches, oscillators, and logic gates, and possible applications abound, including biofuels, detectors for biochemical and chemical weapons, disease diagnosis, and gene therapies. More than fifty years after the discovery of the molecular structure of DNA, molecular biology is mature enough for real quantification that is useful for biological engineering applications, similar to the revolution in modeling in chemistry in the 1950s. With the excitement that synthetic biology is generating, the engineering and biological science communities appear remarkably willing to cross disciplinary boundaries toward a common goal.

  13. Bridging-ligand-substitution strategy for the preparation of metal-organic polyhedra

    Science.gov (United States)

    Li, Jian-Rong; Zhou, Hong-Cai

    2010-10-01

    Metal-organic polyhedra-discrete molecular architectures constructed through the coordination of metal ions and organic linkers-have recently attracted considerable attention due to their intriguing structures, their potential for a variety of applications and their relevance to biological self-assembly. Several synthetic routes have been investigated to prepare these complexes. However, to date, these preparative methods have typically been based on the direct assembly of metal ions and organic linkers. Although these routes are convenient, it remains difficult to find suitable reaction conditions or to control the outcome of the assembly process. Here, we demonstrate a synthetic strategy based on the substitution of bridging ligands in soluble metal-organic polyhedra. The introduction of linkers with different properties from those of the initial metal-organic polyhedra can thus lead to new metal-organic polyhedra with distinct properties (including size and shape). Furthermore, partial substitution can also occur and form mixed-ligand species that may be difficult to access by means of other approaches.

  14. Porous hydrogel of wool keratin prepared by a novel method: An extraction with guanidine/2-mercaptoethanol solution followed by a dialysis

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, Yuki; Takagi, Yusuke; Mori, Hideki; Hara, Masayuki, E-mail: hara@b.s.osakafu-u.ac.jp

    2014-09-01

    In this study, we show a novel simple method to prepare a sponge-like porous keratin hydrogel through the extraction of wool keratin in a solution containing guanidine hydrochloride and 2-mercaptoethanol followed by dialysis for both aggregation of keratin and recrosslink. The gel had a highly porous structure and a fast-swelling property in rehydration after freeze-drying. It had also high mechanical strength both in the tensile test and the measurement of dynamic viscoelasticity. Three types of animal cells, PC12 cells, HOS cells and murine embryonic fibroblasts, well attached and grew on the surface of the porous hydrogel. - Graphical abstract: We show a novel simple method to prepare a sponge-like porous keratin hydrogel (A, B) through the extraction of wool keratin in a solution containing guanidine hydrochloride and 2-mercaptoethanol followed by dialysis for both aggregation of keratin and recrosslink. The gel had a highly porous structure (B) and a fast-swelling property in rehydration after freeze-drying. It had also high mechanical strength both in the tensile test (C) and the measurement of dynamic viscoelasticity (D). Three types of animal cells, PC12 cells (E), HOS cells (F) and murine embryonic fibroblasts (MEFs) (G), well attached and grew on the surface of the porous hydrogel. - Highlights: • We prepared a sponge-like porous keratin hydrogel by a novel method. • We used guanidine with 2-mercaptoethanol to extract keratin from wool fiber. • Extracted keratin was recrosslinked to form a porous keratin hydrogel in dialysis. • The keratin hydrogel had a high mechanical strength. • Three types of cells attached on the keratin hydrogel proliferated well.

  15. Porous hydrogel of wool keratin prepared by a novel method: An extraction with guanidine/2-mercaptoethanol solution followed by a dialysis

    International Nuclear Information System (INIS)

    Ozaki, Yuki; Takagi, Yusuke; Mori, Hideki; Hara, Masayuki

    2014-01-01

    In this study, we show a novel simple method to prepare a sponge-like porous keratin hydrogel through the extraction of wool keratin in a solution containing guanidine hydrochloride and 2-mercaptoethanol followed by dialysis for both aggregation of keratin and recrosslink. The gel had a highly porous structure and a fast-swelling property in rehydration after freeze-drying. It had also high mechanical strength both in the tensile test and the measurement of dynamic viscoelasticity. Three types of animal cells, PC12 cells, HOS cells and murine embryonic fibroblasts, well attached and grew on the surface of the porous hydrogel. - Graphical abstract: We show a novel simple method to prepare a sponge-like porous keratin hydrogel (A, B) through the extraction of wool keratin in a solution containing guanidine hydrochloride and 2-mercaptoethanol followed by dialysis for both aggregation of keratin and recrosslink. The gel had a highly porous structure (B) and a fast-swelling property in rehydration after freeze-drying. It had also high mechanical strength both in the tensile test (C) and the measurement of dynamic viscoelasticity (D). Three types of animal cells, PC12 cells (E), HOS cells (F) and murine embryonic fibroblasts (MEFs) (G), well attached and grew on the surface of the porous hydrogel. - Highlights: • We prepared a sponge-like porous keratin hydrogel by a novel method. • We used guanidine with 2-mercaptoethanol to extract keratin from wool fiber. • Extracted keratin was recrosslinked to form a porous keratin hydrogel in dialysis. • The keratin hydrogel had a high mechanical strength. • Three types of cells attached on the keratin hydrogel proliferated well

  16. Indian jujuba seed powder as an eco-friendly and a low-cost biosorbent for removal of acid blue 25 from aqueous solution.

    Science.gov (United States)

    Krishna, L Sivarama; Reddy, A Sreenath; Zuhairi, W Y Wan; Taha, M R; Reddy, A Varada

    2014-01-01

    Indian jujuba seed powder (IJSP) has been investigated as a low-cost and an eco-friendly biosorbent, prepared for the removal of Acid Blue 25 (AB25) from aqueous solution. The prepared biomaterial was characterized by using FTIR and scanning electron microscopic studies. The effect of operation variables, such as IJSP dosage, contact time, concentration, pH, and temperature on the removal of AB25 was investigated, using batch biosorption technique. Removal efficiency increased with increase of IJSP dosage but decreased with increase of temperature. The equilibrium data were analyzed by the Langmuir and the Freundlich isotherm models. The data fitted well with the Langmuir model with a maximum biosorption capacity of 54.95 mg g(-1). The pseudo-second-order kinetics was the best for the biosorption of AB25 by IJSP, with good correlation. Thermodynamic parameters such as standard free energy change (ΔG(0)), standard enthalpy changes (ΔH(0)), and standard entropy changes (ΔS(0)) were analyzed. The removal of AB25 from aqueous solution by IJSP was a spontaneous and exothermic adsorption process. The results suggest that IJSP is a potential low-cost and an eco-friendly biosorbent for the AB25 removal from synthetic AB25 wastewater.

  17. Superconductors preparation process and products obtained. Procede de preparation de supraconducteurs et produits ainsi obtenus

    Energy Technology Data Exchange (ETDEWEB)

    Lafon, M O; Magnier, C

    1989-03-24

    A superconducting fine powder is prepared by mixing a rare earth sol with a solution of at least an alkaline earth nitrate and at least a transition metal nitrate, the pH is fixed for the said nitrates to stay in solution. The mixture is dried, calcined and eventually crushed.

  18. Evaluation of Synthetic Gypsum Recovered via Wet Flue-Gas Desulfurization from Electric Power Plants for Use in Foundries

    Directory of Open Access Journals (Sweden)

    R. Biernacki

    2012-09-01

    Full Text Available This article investigates possible use of waste gypsum (synthetic, recovered via flue-gas desulfurization from coal-fired electric powerplants, in foundries. Energy sector, which in Eastern Europe is mostly composed from coal-fired electric power plants, is one of the largestproducers of sulfur dioxide (SO2.In order to protect the environment and reduce the amount of pollution flue-gas desulfurization (FGD is used to remove SO2 fromexhaust flue gases of fossil-fuel power plants. As a result of this process gypsum waste is produced that can be used in practicalapplications.Strength and permeability tests have been made and also in-depth analysis of energy consumption of production process to investigateways of preparing the synthetic gypsum for casting moulds application. This paper also assesses the chemical composition, strength andpermeability of moulds made with synthetic gypsum, in comparison with moulds made with traditional GoldStar XL gypsum and withceramic molds. Moreover examination of structure of synthetic gypsum, the investigations on derivatograph and calculations of energyconsumption during production process of synthetic gypsum in wet flue-gas desulfurization were made.After analysis of gathered data it’s possible to conclude that synthetic gypsum can be used as a material for casting mould. There is nosignificant decrease in key properties, and on the other hand there is many additional benefits including low energy consumption,decreased cost, and decreased environmental impact.

  19. Synthetic prions with novel strain-specified properties.

    Science.gov (United States)

    Moda, Fabio; Le, Thanh-Nhat T; Aulić, Suzana; Bistaffa, Edoardo; Campagnani, Ilaria; Virgilio, Tommaso; Indaco, Antonio; Palamara, Luisa; Andréoletti, Olivier; Tagliavini, Fabrizio; Legname, Giuseppe

    2015-12-01

    Prions are infectious proteins that possess multiple self-propagating structures. The information for strains and structural specific barriers appears to be contained exclusively in the folding of the pathological isoform, PrP(Sc). Many recent studies determined that de novo prion strains could be generated in vitro from the structural conversion of recombinant (rec) prion protein (PrP) into amyloidal structures. Our aim was to elucidate the conformational diversity of pathological recPrP amyloids and their biological activities, as well as to gain novel insights in characterizing molecular events involved in mammalian prion conversion and propagation. To this end we generated infectious materials that possess different conformational structures. Our methodology for the prion conversion of recPrP required only purified rec full-length mouse (Mo) PrP and common chemicals. Neither infected brain extracts nor amplified PrP(Sc) were used. Following two different in vitro protocols recMoPrP converted to amyloid fibrils without any seeding factor. Mouse hypothalamic GT1 and neuroblastoma N2a cell lines were infected with these amyloid preparations as fast screening methodology to characterize the infectious materials. Remarkably, a large number of amyloid preparations were able to induce the conformational change of endogenous PrPC to harbor several distinctive proteinase-resistant PrP forms. One such preparation was characterized in vivo habouring a synthetic prion with novel strain specified neuropathological and biochemical properties.

  20. Colorimetric Determination of the Iron(III)-Thiocyanate Reaction Equilibrium Constant with Calibration and Equilibrium Solutions Prepared in a Cuvette by Sequential Additions of One Reagent to the Other

    Science.gov (United States)

    Nyasulu, Frazier; Barlag, Rebecca

    2011-01-01

    The well-known colorimetric determination of the equilibrium constant of the iron(III-thiocyanate complex is simplified by preparing solutions in a cuvette. For the calibration plot, 0.10 mL increments of 0.00100 M KSCN are added to 4.00 mL of 0.200 M Fe(NO[subscript 3])[subscript 3], and for the equilibrium solutions, 0.50 mL increments of…